Ministério da Ciência, Tecnologia, Inovações e Comunicações
CBPFIndex
CENTRO BRASILEIRO DE PESQUISAS FÍSICAS
17/06/2024   
Usuário:
Senha:

Crie sua conta aqui

Procurar por:

Publicações
Projetos
Eventos

Ir para a busca avançada

Notas de Física
Inequivalent ${\mathbb Z}_2^n$-graded brackets, $n$-bit parastatistics and statistical transmutations of supersymmetric quantum mechanics

Data do cadastro: 19/09/2023

Publicação/Divulgação: 19/09/2023

Resp. pelo cadastro:

Status atual: Publicado

Ano da publicação: 2023

Descrição: Given an associative ring of ${\mathbb Z}_2^n$-graded operators, the number of inequivalent brackets of Lie-type which are compatible with the grading and satisfy graded Jacobi identities is $b_n= n+\lfloor n/2\rfloor+1 $. This follows from the Rittenberg-Wyler and Scheunert analysis of ``color" Lie (super)algebras which is revisited here in terms of Boolean logic gates. \\The inequivalent brackets, recovered from ${\mathbb Z}_2^n\times {\mathbb Z}_2^n\rightarrow {\mathbb Z}_2$ mappings, are defined by consistent sets of commutators\slash anticommutators describing particles accommodated into an $n$-bit parastatistics (ordinary bosons/fermions correspond to $1$ bit). Depending on the given graded Lie (super)algebra, its graded sectors can fall into different classes of equivalence expressing different types of particles (bosons, parabosons, fermions, parafermions). As a consequence, the assignment of certain ``marked" operators to a given graded sector is a further mechanism to induce inequivalent graded Lie (super)algebras (the basic examples of quaternions, split-quaternions and biquaternions illustrate these features). \\ As a first application we construct ${\mathbb Z}_2^2$ and ${\mathbb Z}_2^3$-graded quantum Hamiltonians which respectively admit $b_2=4$ and $b_3=5$ inequivalent multiparticle quantizations (the inequivalent parastatistics are discriminated by measuring the eigenvalues of certain observables in some given states). The extension to ${\mathbb Z}_2^n$-graded quantum Hamiltonians for $n>3$ is immediate.\\ As a main physical application we prove that the ${\cal N}$-extended, one-dimensional supersymmetric and superconformal quantum mechanics, for ${\cal N}=1,2,4,8$, are respectively described by $s_{\cal N}=2,6,10,14 $ alternative formulations based on the inequivalent graded Lie (super)algebras. The $s_{\cal N}$ numbers correspond to all possible ``statistical transmutations" of a given set of supercharges which, for ${\cal N}=1,2,4,8$, are accommodated into a ${\mathbb Z}_2^n$-grading with $n=1,2,3,4$ (the identification is ${\cal N}= 2^{n-1}$).\\ In the simplest ${\cal N}=2$ setting (the $2$-particle sector of the de Alfaro-Fubini-Furlan deformed oscillator with $sl(2|1)$ spectrum-generating superalgebra), the ${\mathbb Z}_2^2$-graded parastatistics imply a degeneration of the energy levels which cannot be reproduced by ordinary bosons/fermions statistics.

Número: CBPF-NF-002/23

Autores: M.M. Balbino; I.P. de Freitas; R.G. Rana; F. Toppan


Download do PDF (1.846 KB)


Todos
Todos
Todas
Artigos de Div. Científica
Artigos em Revistas Nac.
Artigos em Revistas Int.
Artigos em Eventos Nac.
Artigos em Eventos Int.
Livros Inteiros
Capítulos de Livro
Propriedades Intelectuais
Áudio
Patentes
Programas de computador
Modelos de utilidade
Marcas
Outras prop. intel.
Tecnologias
Know-how
Serviços tecnológicos
Tecnologias inovadoras
Teses de Doutorado
Dissertações de Mestrado
Projetos de Graduação
Ciência e Sociedade
Documentos Históricos
Monografias
Notas de Física
Notas Técnicas
Outras Produções
· Principal    |    CBPF    |    ·

Copyright 2004 - CBPF. Rio de Janeiro/Brasil
Centro Brasileiro de Pesquisas Físicas
v 1.1

       
P�g. gerada em 0.01 s
Total de consultas SQL: 25