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Abstract

Given an associative ring of Zn
2 -graded operators, the number of inequivalent brackets

of Lie-type which are compatible with the grading and satisfy graded Jacobi identities is
bn “ n ` tn{2u ` 1. This follows from the Rittenberg-Wyler and Scheunert analysis of
“color” Lie (super)algebras which is revisited here in terms of Boolean logic gates.
The inequivalent brackets, recovered from Zn

2 ˆ Zn
2 Ñ Z2 mappings, are defined by con-

sistent sets of commutators/anticommutators describing particles accommodated into an
n-bit parastatistics (ordinary bosons/fermions correspond to 1 bit). Depending on the given
graded Lie (super)algebra, its graded sectors can fall into different classes of equivalence
expressing different types of particles (bosons, parabosons, fermions, parafermions). As a
consequence, the assignment of certain “marked” operators to a given graded sector is a
further mechanism to induce inequivalent graded Lie (super)algebras (the basic examples of
quaternions, split-quaternions and biquaternions illustrate these features).
As a first application we construct Z2

2 and Z3
2-graded quantum Hamiltonians which respec-

tively admit b2 “ 4 and b3 “ 5 inequivalent multiparticle quantizations (the inequivalent
parastatistics are discriminated by measuring the eigenvalues of certain observables in some
given states). The extension to Zn

2 -graded quantum Hamiltonians for n ą 3 is immediate.
As a main physical application we prove that the N -extended, one-dimensional supersym-
metric and superconformal quantum mechanics, for N “ 1, 2, 4, 8, are respectively described
by sN “ 2, 6, 10, 14 alternative formulations based on the inequivalent graded Lie (su-
per)algebras. The sN numbers correspond to all possible “statistical transmutations” of
a given set of supercharges which, for N “ 1, 2, 4, 8, are accommodated into a Zn

2 -grading
with n “ 1, 2, 3, 4 (the identification is N “ 2n´1).
In the simplest N “ 2 setting (the 2-particle sector of the de Alfaro-Fubini-Furlan deformed
oscillator with slp2|1q spectrum-generating superalgebra), the Z2

2-graded parastatistics imply
a degeneration of the energy levels which cannot be reproduced by ordinary bosons/fermions
statistics.
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1 Introduction

The main physical application of this paper is the computation of the “statistical transmu-
tations” of the N -extended one-dimensional Supersymmetric Quantum Mechanics. For N “

1, 2, 4, 8 the N fermionic supercharges can be expressed as (para)bosons/(para)fermions entering
an n-bit parastatistics (the identification being N “ 2n´1 for n “ 1, 2, 3, 4). It is further shown
that in the simplest N “ 2 setting (the multiparticle sector of a statistically transmuted Super-
conformal Quantum Mechanics with de Alfaro-Fubini-Furlan oscillator term), the degeneracy of
the energy spectrum of the paraparticles cannot be reproduced by ordinary bosons/fermions.

The starting mathematical framework is an associative ring of Zn
2 -graded operators which

possesses addition and multiplication. Several questions are addressed. The first one concerns
the bn number of inequivalent graded Lie brackets which are compatible with the Zn

2 associative
grading (the brackets are defined in terms of commutators/anticommutators which describe par-
ticles accommodated into an n-bit parastatistics, with ordinary bosons/fermions corresponding
to 1 bit). Consistency conditions require the brackets to satisfy graded Jacobi identities, while
the operators of the associative ring obey a graded Leibniz rule. The formula for bn can be re-
covered from the analysis of Rittenberg-Wyler in [1,2] and Scheunert in [3]. In those works the
notions of Zn

2 -graded “color” Lie algebras and superalgebras were introduced as extensions and
generalizations of the ordinary Z2-graded Lie superalgebras defined in [4] (the Rittenberg-Wyler
construction is here revisited for our scopes and in particular, for motivations discussed in the
following, the inequivalent graded Lie (super)algebras are reformulated in terms of Boolean logic
gates).

The bn number of inequivalent, Zn
2 -graded compatible, brackets is expressed in terms of the

floor function. One gets

bn “ n ` tn{2u ` 1, so that b0 “ 1, b1 “ 2, b2 “ 4, b3 “ 5, b4 “ 7, . . . . (1.1)

The bn values represent a model-independent lower bound on the number of inequivalent graded
Lie (super)algebras induced by a given set of Zn

2 -graded operators. For a specific model, the
number of induced graded Lie (super)algebras is cn, where

cn ě bn. (1.2)

This is a consequence of the fact that the graded sectors of Lie-type brackets define different types
of particles (bosons, parabosons, fermions, parafermions). If the original set of graded operators
falls into different classes of equivalence, the assignment of certain “marked” operators to a
given type of particle is a further mechanism to induce inequivalent graded Lie (super)algebras.
This feature is illustrated with the computations of the inequivalent graded Lie (super)algebras
induced by quaternions and split-quaternions (for n “ 2) and biquaternions (for n “ 3), the
result being

for quaternions: c2 “ 4 “ b2;
for split-quaternions: c2 “ 6 ą b2 “ 4;
for biquaternions: c3 “ 16 ą b3 “ 5

(1.3)

(in the case of quaternions the three imaginary quaternions are on equal footing, while for
split-quaternions one generator is single out, i.e. “marked”, since its square is negative).
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The computations, presented in Section 6, of the statistical transmutations of the N “

1, 2, 4, 8 Supersymmetric Quantum Mechanics make use of the fact that the operators entering
the Zn

2 -graded associative ring are split into two classes of equivalence: the supercharges Qi’s
and the “empty slots H”. It follows that the sN numbers of induced inequivalent graded Lie
(super)algebras are

sN“1 :“ c1 “ 2 “ b1,

sN“2 :“ c2 “ 6 ą b2,

sN“4 :“ c3 “ 10 ą b3,

sN“8 :“ c4 “ 14 ą b4. (1.4)

The next topic consists in investigating whether the induced inequivalent graded Lie (su-
per)algebras imply physically inequivalent - that is, theoretically distinguishable by performing
measurements leading to unambiguous results - parastatistics. This question became relevant
when the first example of a quantum Hamiltonian invariant under the Z2

2-graded worldline super-
Poincaré algebra was produced [5] (the Hamiltonian under consideration being also invariant
under an “ordinary” N “ 2 supersymmetry). The positive answer was given in [6]. It was shown
that, within the Majid’s [7] framework of graded Hopf algebras endowed with a braided ten-
sor product, in the multiparticle sector of a Z2

2-graded quantum model an observable (different
from the Hamiltonian) could be selected. Measuring the eigenvalues of this observable on cer-
tain eigenstates allows to discriminate the Z2

2-graded parafermionic statistics from the ordinary
bosons/fermions statistics. This scheme was further applied in [8] to prove the detectability of
the Z2

2-graded parabosons.

The first physical application of this paper is presented in Section 5. It consists in the con-
struction, for any integer n P N, of a class of Zn

2 -graded quantum Hamiltonians which possess
bn inequivalent parastatistics - that is, they satisfy the (1.2) lower bound. For n “ 2, 3 the
detectability of all b2 “ 4 and b3 “ 5 parastatistics is explicitly computed. In the framework of
graded Hopf algebras endowed with a braided tensor product, observables (different from Hamil-
tonians) are introduced; measuring their eigenvalues determines which type of (para)particles
are present in a multiparticle sector of the quantum model (the extension of this result to n ą 3
is straightforward). To our knowledge, this is the first time that all b3 “ 5 parastatistics of a
Z3
2-graded quantum Hamiltonian are considered.

After the computation in Section 6 of the statistical transmutations of the one-dimensional,
N “ 1, 2, 4, 8-extended, Supersymmetric Quantum Mechanics, we present in Section 7 the pre-
liminary investigation concerning the detectability of the induced parastatistics. The framework
of graded Hopf algebras endowed with a braided tensor product is applied to, as already men-
tioned, the N “ 2 Superconformal Quantum Mechanics with de Alfaro-Fubini-Furlan oscillator
term. This system is chosen for its simplicity since it possesses a unique vacuum and a discrete
set of energy eigenvalues, so that the involved combinatorics produce neat results. In the original
superconformal setting (before applying the statistical transmutations) the spectrum-generating
superalgebra of the model is slp2|1q. The sN“2 “ 6 parastatistics from (1.4) are split into 3
ordinary bosons/fermions statistics and 3 parastatistics involving Z2

2-graded paraparticles. We
prove that, at the second excited level of the 2-particle states, the 3 parastatistics involving para-
particles imply a degeneracy of the energy eigenvalue which is not reproduced by the 3 ordinary
statistics. The consequence is that Z2

2-graded paraparticles have to be introduced in order to
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reproduce this behaviour. We point out that this is the first time that Z2
2-graded paraparticles

are shown to directly affect the energy spectrum of a quantum model. In the quantum theories
presented in [6, 8] and those in Section 5, as mentioned before, extra observables besides the
Hamiltonian have to be measured. The key difference is that the raising operators applied to
the [6, 8] and Section 5 models are nilpotent, while the raising operators of the superconformal
quantum mechanics are not. We postpone to the Conclusions a more thorough assessment of
our results and of the works in progress that the analysis here presented generate.

Before briefly sketching the state of the art concerning mathematical and physical aspects
of Zn

2 -graded structures and the context of the present investigation we point out that, on a
separate development, paraparticles (different from the ones here described) can now be quantum
simulated (see, e.g. [9]) and even engineered in the laboratory as described in [10]. It is in the
light of these experimental developments that in Section B the inequivalent graded brackets are
presented in terms of Boolean logic gates. They can be possibly used as a blueprint to engineer
Zn
2 -graded paraparticles in the laboratory.

Concerning the mathematical aspects of Zn
2 -graded structures and their physical applications

we mention that these topics received, in recent years, increased attention. This recent boost
of activity finds its motivation in advances obtained from different directions (for earlier works
based on the [1–3] color Lie (super)algebras see [11–13]). It was recognized in [14, 15] that Z2

2-
graded Lie superalgebras appear as dynamical symmetries of relevant physical systems such as
the non-relativistic Lévy-Leblond spinors. Classical and quantum models invariant under Z2

2-
graded superalgebras have been constructed [5, 16–21] and Z2

2-graded superspace formulations
investigated [22–26]. The connection with parastatistics has been discussed in [6, 8, 27–30].
In [31] Z2

2-graded superdivision algebras were classified and a parafermionic Hamiltonian was
described in this context. In the meanwhile, mathematical aspects of the graded (super)algebras
continue to be investigated, see e.g. [32,33]. The majority of the papers mentioned above discuss
theories invariant under Z2

2-graded superalgebras; the reason for that is that such theories involve
parafermions and, in most cases, correspond to generalizations of supersymmetry. On the other
hand, it was pointed out in [20] that invariance under Z2

2-graded Lie algebras produces models
with only bosonic and parabosonic particles. It was shown in [8] that a quantum Hamiltonian
invariant under different choices of Zn

2 -graded Lie (super)algebras (for n “ 0, 1, 2 in the given
example) admits several particles’ assignments which are compatible with the gradings (bosons
for n “ 0, different mixings of bosons/fermions for n “ 1, parabosons or parafermions for
n “ 2). Each assignment corresponds to a different set of (para)particles with measurable
consequences. This is so because, in the multiparticle sectors, the measurements of chosen
observables can discriminate the different cases. Concerning n ě 3, Zn

2 -graded mathematical
structures have been investigated in [34–37] and the first invariant quantum models have started
being constructed in [38,39].

These mathematical, theoretical and experimental advances provided us the motivations to
systematically revisit the theory of (inequivalent) Zn

2 -graded Lie brackets and in pointing out
their physical consequences.

The scheme of the paper is the following:
in Section 2 we revisit the concept of the graded Lie (super)algebras which are compatible

with a Zn
2 -grading assignment of the operators belonging to an associative ring. In Section 3 we

discuss the classes of equivalence of the operators belonging to graded sectors and the notion of
marked operators is introduced. The detectability of n-bit parastatistics within the framework
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of graded Hopf algebras endowed with a braided tensor product is discussed in Section 4. The
first physical application, the construction of a class of Zn

2 -graded quantum Hamiltonians with
bn inequivalent multiparticle quantizations, is presented in Section 5. Section 6 introduces the
algebraic statistical transmutations of the N “ 1, 2, 4, 8 Supersymmetric Quantum Mechanics.
In Section 7 the detectability of the induced parastatistics in the setting of the Superconformal
Quantum Mechanics with DFF oscillator term is shown. The obtained results and an out-
line of future works are discussed here and in the Conclusions. Five mathematical Appendices
complement the paper. In Appendix A we present, for n “ 1, 2, 3, 4, the tables of the bn in-
equivalent graded Lie (super)algebras which are compatible with an associative Zn

2 -graded ring
of operators. In Appendix B the graded Lie brackets are presented in terms of Boolean logic
gates. Appendix C presents the inequivalent graded Lie (super)algebras induced by quater-
nions and split-quaternions. Appendix D illustrates the connection of the Z3

2 grading with the
Fano’s plane. Appendix E presents the 16 inequivalent graded Lie (super)algebras induced by
biquaternions.

2 Revisiting the construction of Zn
2-graded Lie brackets

In this Section we revisit, adapting to our goals and introducing definitions suitable for our
scope, the Rittenberg-Wyler [1,2] and Scheunert [3] constructions of the inequivalent graded Lie
brackets based on a Zn

2 grading.
The starting point is an associative ring of Zn

2 -graded operators which possesses addition
and multiplication (the standard ` and ¨ symbols are used). The A,B,C, . . . operators are
associated with the n-bit gradings rAs “ α, rBs “ β, rCs “ γ, . . ..

The bits are t0, 1u for n “ 1, t00, 10, 01, 11u for n “ 2, t000, 100, 010, 001, 110, 101, 011, 111u

for n “ 3 and so on. The multiplication satisfies

rA ¨ Bs “ α ` β with mod 2 addition. (2.1)

The grading of the identity operator I is

rIs “ 0, so that 0 ` α “ α ` 0 “ α for any α. (2.2)

For n “ 1, 2, 3, . . ., the 0 grading is respectively given by 0, 00, 000, . . ..
A graded Lie bracket, denoted for A,B as pA,Bq, is either a commutator or an anticommu-

tator defined as

pA,Bq :“ A ¨ B ´ p´1qxα,βyB ¨ A, (2.3)

where the bilinear mapping xα, βy takes values 0, 1 mod 2.
The bracket is (anti)symmetric in accordance with

pB,Aq “ p´1qxα,βy`1pA,Bq. (2.4)

In [1, 2] two conditions on the bilinear mapping are imposed. The first condition simply states
that (2.3) is a commutator or an anticommutator; it implies, for the n-bit grading,

xβ, αy “ ˘xα, βy mod 2. (2.5)

Without loss of generality one can assume a symmetric choice for xα, βy, so that

x, y : Zn
2 ˆ Zn

2 Ñ Z2 (2.6)
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is represented by 2n ˆ 2n symmetric matrices with 0, 1 entries.
It is worth pointing out that in the original [1, 2] papers the brackets of color Lie algebras

were presented, using a different convention, as antisymmetric matrices with 0,˘1 entries. As
shown later on, the convenience of the (2.6) symmetric choice is that it allows to present the
inequivalent graded Lie brackets in terms of Boolean logic operators.

The second [1,2] consistency condition for the x, y scalar product, under the (2.6) assumption
with the symmetric choice, simply reads

xα, β ` γy “ xα, βy ` xα, γy mod 2. (2.7)

The justification for imposing this condition is the requirement that a graded Leibniz rule should
be satisfied. Indeed, by assuming

pA,BCq “ pA,Bq ¨ C ` p´1qεABB ¨ pA,Cq with εAB “ 0, 1, (2.8)

straightforward manipulations prove that (2.8) implies both the identification

εAB “ xα, βy (2.9)

and the condition (2.7) to be fulfilled.
The associativity of the multiplication implies that the graded brackets (2.3), expressed in

terms of the symmetric scalar product x, y which satisfies (2.6) and (2.7), obey the graded Jacobi
identities

p´1qxγ,αypA, pB,Cqq ` p´1qxα,βypB, pC,Aqq ` p´1qxβ,γypC, pA,Bqq “ 0. (2.10)

Therefore, the p, q brackets define a graded Lie (super)algebra which is compatible with the Zn
2

grading of the ring of operators.
For the cases under consideration here α, β are the n-component vectors αT “ pα1, α2, . . . , αnq

and βT “ pβ1, β2, . . . , βnq. Their respective i-th components αi and βi correspond to 1-bit (ei-
ther 0 or 1). In this setting the following definitions can be conveniently introduced:

- definition I: a “Zn
2 -graded compatible” Lie algebra is defined by the (2.3) bracket; the sym-

metric scalar product x, y satisfies (2.6) and (2.7) so that, as a consequence, the graded Jacobi
identities (2.10) hold. The further requirement is that the 2n ˆ 2n symmetric matrix (2.6) has
all vanishing diagonal elements: xα, αy “ 0 for any α;

- definition II: a “Zn
2 -graded compatible” Lie superalgebra satisfies all the above properties with

the extra condition that at least one diagonal element of the scalar product is nonzero: xα, αy “ 1
for at least one vector α.

Comments: the difference between graded Lie algebras and superalgebras is relevant in phys-
ical applications. Graded Lie algebras only describe (para)bosonic particles, while graded Lie
superalgebras include (para)fermions which obey the Pauli exclusion principle.
The motivation for introducing the term “compatible” in definitions I and II will be presented
in the next subsection.

2.1 On the inequivalent, Zn
2 -graded compatible, Lie (super)algebras

The [1–3] analysis (which can be easily reproduced) allows to define the inequivalent, Zn
2 -graded

compatible, Lie (super)algebras which satisfy the above definitions I and II. The scalar products
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x, y can be brought to a convenient set of canonical forms. Other equivalent presentations
are obtained by exchanging the n-bit graded sectors (this is tantamount to permute rows and
columns in the scalar product symmetric matrix (2.6) in such a way to bring the matrix into
one of the canonical forms).

The complete list of inequivalent canonical forms for xα, βy can be expressed as follows.

I - For Zn
2 -graded compatible Lie algebras:

xα, βy0 “ 0 (it is an ordinary Lie algebra induced by a vanishing scalar product matrix) and

xα, βyn`1`k “
řj“k

j“0pα2j`1β2j`2 ` α2j`2β2j`1q mod 2, for k “ 0, 1, 2, . . . , tn{2u ´ 1,

where the maximal value for k is expressed in terms of the floor function. (2.11)

II - For Zn
2 -graded compatible Lie superalgebras:

xα, βyk “

j“k
ÿ

j“1

pαjβjq mod 2, for k taking the values k “ 1, 2, . . . n. (2.12)

Therefore, the total number bn of inequivalent, Zn
2 -graded compatible, Lie (super)algebras which

obey definitions I and II is

bn “ n ` tn{2u ` 1. (2.13)

From (2.11,2.12) the corresponding scalar products are labeled as x, yr with r “ 0, 1, 2, . . . , n `

tn{2u.
For n “ 1, 2, 3, . . ., the series produced by bn is

2, 4, 5, 7, 8, 10, . . . . (2.14)

Tables of the representatives of the inequivalent 2n ˆ 2n scalar products symmetric matrices are
given in Appendix A for n “ 1, 2, 3, 4.

The set of the inequivalent Zn
2 -graded compatible Lie (super)algebras is given by the union

of Zm
2 -graded Lie (super)algebras for m “ 0, 1, 2, . . . , n:

tZn
2 -graded compatible L(S)A’su “

ď

m“0,...,n

tZm
2 -graded L(S)A’su. (2.15)

The notion of a Zm
2 -graded Lie (super)algebra “embedded” into an n-bit decomposition is based

on the following property: for the minimal integer m, its graded sectors defining the 2n ˆ 2n

symmetric x, y scalar product matrix (2.6) are consistently grouped into n´m bits which produce
a reduced 2m ˆ 2m symmetric matrix.

It follows that a Z0
2-graded Lie algebra (m “ 0) is an ordinary Lie algebra embedded into

n-bit via the x, y0 scalar product which corresponds to a symmetric matrix with only 0 entries;
similarly, a Z1

2-graded Lie superalgebra is an ordinary Lie superalgebra recovered from the x, y1

scalar product.
An example of a Z2

2-graded Lie superalgebra for a 3-bit assignments is given by the 34 case
in formula (A.3). Its graded sectors can be consistently grouped as

t000, 001u Ñ t00u, t100, 101u Ñ t10u, t010, 011u Ñ t01u, t110, 111u Ñ t11u; (2.16)
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the produced output is the 2-bit graded superalgebra 24 of formula (A.2).
For m “ n the 2n ˆ 2n symmetric matrix (2.6) cannot be reduced. This happens in the

following cases:
i) for any integer n, a unique Zn

2 -graded Lie superalgebra is obtained from the scalar product
x, yn of formula (2.12);
ii) for odd integers n there is no Zn

2 -graded Lie algebra; for even integers n “ 2s, a unique
Zn
2 -graded Lie algebra is obtained from the scalar product x, y 3

2
n “ x, y3s of formula (2.11).

Remark: the usefulness of the introduced notion of Zn
2 -graded compatible Lie (super)algebras

lies on the fact that, in the physical applications discussed in the following (inequivalent mul-
tiparticle quantizations, statistical transmutations of supersymmetric quantum mechanics), the
contributions coming from each one of the bn compatible graded Lie (super)algebras must be
added up.

2.2 The n-bit Boolean logic gates presentation of the graded Lie brackets

The (2.6) scalar product which defines the inequivalent graded Lie brackets admits a presentation
in terms of Boolean logic gates. This alternative formulation can in principle offer a practical set
of instructions for simulating or engineering in the laboratory the desired set of graded brackets
(we already recalled in the Introduction the recent experimentalists’ advances, see [9, 10], in
manipulating parastatistics). This presentation can then be potentially applied to the two main
physical results obtained in the following: quantum toy models with theoretically detectable
paraparticles and the statistical transmutations of supersymmetric quantum mechanics.

The formulation of the inequivalent graded Lie brackets in terms of Boolean logic gates
requires a few steps. At first the graded sectors entering the scalar product tables are rearranged
in a Gray code presentation (only one bit changes from one graded sector to the next one). This
rearrangement permits to make use of the Karnaugh maps [40] which, further simplified, allow
to express the graded-bracket tables in terms of the logical gates “AND”, “OR” and “XOR”.
The details of the construction are given in Appendix B.

3 Classes of equivalence of the graded sectors

The 2n ´ 1 nonzero graded sectors of an associative Zn
2 -graded ring of operators are all on equal

footing and belong to the same class of equivalence. This feature is well illustrated, e.g., in the
n “ 3 case by the assignment of the nonvanishing entries of the 8ˆ8 matrices as shown in (D.1).
Its 7 nonzero graded sectors can also be represented, see figure (D.2), as labeled vertices of a
Fano’s plane.

The introduction of a Zn
2 -graded bracket as defined in (2.3) implies, on the other hand, that

the nonzero graded sectors not necessarily belong, with respect to the brackets, to the same class
of equivalence. By inspecting, for instance, the brackets induced by the 34 scalar product given
in (A.3) one can notice that the column/row of the 001 graded sector is given by all 0’s. It follows
from (2.3) that the 001-graded particles are bosons (they commute with every other particle).
Concerning the remaining nonzero graded sectors of the 34 scalar product one can further notice
that 110, 111 define parabosons, while 101, 011, 100, 010 define parafermions. Therefore, the
nonzero graded sectors of the 34 superalgebra fall into 3 distinct classes of equivalence describing
bosons, parabosons and parafermions.

This analysis can be repeated for all n “ 1, 2, 3, 4-bit inequivalent graded Lie (super)algebras
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presented in Appendix A. Their respective numbers of distinct classes of equivalence are:

11 : 1, 12 : 1;
21 : 1, 22 : 2, 23 : 1, 24 : 2;
31 : 1, 32 : 2, 33 : 2, 34 : 3, 35 : 2;
41 : 1, 42 : 2, 43 : 1, 44 : 2, 45 : 3, 46 : 3, 47 : 2.

(3.1)

These classes of equivalence, defined for the (2.6) scalar product, characterize the types of
particles as (para)bosons or (para)fermions.

Concerning a given Zn
2 -graded ring of operators, classes of equivalence can be introduced

for the operators belonging to the nonzero graded sectors. The operators are on equal footing
if their table of multiplications is preserved when they are interchanged (possibly, up to a sign
normalization). In this case the operators all belong to the same equivalence class. On the
other hand, two or more classes of equivalence accommodate the operators if some of them are
distinguished (they can be referred to as the “marked” operators).

If the Zn
2 -graded operators are on equal footing and belong to the same class of equivalence

it makes no difference which operator is assigned to which nonzero graded sector. Therefore, the
number of the induced, inequivalent, compatible graded Lie (super)algebras coincides with bn
given in (2.13). On the other hand if the operators are accommodated into two or more classes
of equivalence, the number of induced, inequivalent, Zn

2 -graded compatible Lie (super)algebras
can be larger. It will be denoted as cn, with cn ě bn.

These features are exemplified by the computations of the induced inequivalent graded Lie
(super)algebras presented in Appendix C (for the Z2

2-graded quaternions and split-quaternions)
and Appendix E (for the Z3

2-graded biquaternions). In all these cases the identity operator is
assigned to the zero grading 0. Concerning the remaining operators associated with the nonzero
gradings we have:

- 1 class of equivalence for the quaternions since the three imaginary quaternions are on equal
footing;
- 2 classes of equivalence for the split-quaternions since the three generators, besides the identity,
are split as 1` 2 (the square of the marked operator is ´I, while the squares of the 2 remaining
operators are `I);
- 3 classes of equivalence for the biquaternions (the seven generators besides the identity being
split as 1 ` 3 ` 3).

(3.2)

The results of the computations reported in Appendices C and E are

for quaternions: c2 “ 4 “ b2;
for split-quaternions: c2 “ 6 ą b2 “ 4;
for biquaternions: c3 “ 16 ą b3 “ 5.

(3.3)

This analysis is our starting point for proceeding at physical applications.
In Section 5 we construct, for any integer n, Zn

2 -graded quantum Hamiltonians obtained
in terms of 2n pairs of creation/annihilation operators. The pairs are chosen to be on equal
footing so that the number of induced inequivalent graded Lie (super)algebras is bn. This is also
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the number of parastatistics supported by these Hamiltonians. Explicit n “ 2, 3 computations
prove that b2 and respectively b3 are the inequivalent mutiparticle quantizations (with detectable
paraparticles) for these Hamiltonians.

A second application presented in Section 6 (the counting of the statistical transmutations
of the N -extended, one-dimensional, supersymmetric and superconformal quantum mechanics)
is also based on this analysis. The N supercharges Qi, for N “ 1, 2, 4, 8, are respectively ac-
commodated, for n “ 1, 2, 3, 4, into a Zn

2 -graded associative ring of operators. The Hamiltonian
H, being an observable, is assigned to the zero sector 0. Concerning the 2n ´ 1 nonzero sectors,
2n´1 are occupied by the supercharges while the remaining 2n´1 ´ 1 sectors are originally left
unoccupied by the supersymmetry generators (they are later occupied by the descendant opera-
tors QiQj for i ‰ j). The grading assignment of the supercharges produces inequivalent classes
of equivalence (one can loosely says that the unoccupied graded sectors are marked). The com-
putations presented in Section 6 give that the induced inequivalent graded Lie (super)algebras,
denoted as sN , are

sN“1 :“ c1 “ 2, sN“2 :“ c2 “ 6, sN“4 :“ c3 “ 10, sN“8 :“ c4 “ 14. (3.4)

4 Detectable n-bit parastatistics

A single-particle quantum Hamiltonian belonging to a Zn
2 -graded associative ring of operators

admits, following the construction presented in Section 3, a total number of

cn ě bn (4.1)

inequivalent, graded Lie (super)algebras formulations. The number cn is model-dependent, with
the lower bound bn given in (2.13).

For the single-particle theory no measurement can discriminate the different alternatives;
we end up with cn physically equivalent descriptions of the same quantum model; choosing one
description instead of another one is just a matter of taste and/or convenience.

On the other hand, in the First Quantized formulation, the multiparticle sector of the graded
quantum Hamiltonian allows discriminating the different alternatives. The different choices of
(anti)commutation relations among particles imply several consistent n-bit parastatics. The
alternative parastatatistics produce physically measurable consequences.

In this Section we present the general framework which is later applied to analyze Zn
2 -

graded quantum models. This approach was used in [6] and [8] to prove the detectability of,
respectively, the Z2

2-graded parafermions and the Z2
2-graded parabosons. Following Majid, see

[7], the parastatistics is encoded in a graded Hopf algebra endowed with a braided tensor product
(the connection between this formulation and the more traditional approach to parastatistics
based on the [41] trilinear relations has been discussed in [42,43]).

Let A,B,C,D be Zn
2 -graded operators whose respective n-bit gradings are α, β, γ, δ. The

braided tensor product, conveniently denoted as “bbr”, is defined to satisfy the relation

pA bbr Bq ¨ pC bbr Dq “ p´1qxβ,γypACq bbr pBDq, (4.2)

where the p´1qxβ,γy sign on the right hand side depends on the symmetric scalar product in-
troduced in (2.6). Due to the presence of the scalar product, the braided tensor product can
be consistently applied to a Zn

2 -graded compatible Lie (super)algebra g and to its Universal
Enveloping Algebra U :“ Upgq. The Universal Enveloping Algebra U is a graded Hopf algebra.
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Among the graded Hopf algebra structures and costructures, the coproduct ∆ is the relevant
operation which allows, in physical applications, to construct multiparticle states. The coproduct
map

∆ : U Ñ U bbr U (4.3)

satisfies the coassociativity property

∆m`1 :“ p∆ bbr 1q∆m “ p1 bbr ∆q∆m (where ∆1 ” ∆) (4.4)

and the comultiplication

∆pu1u2q “ ∆pu1q ¨ ∆pu2q for any u1, u2 P U . (4.5)

The action of the coproduct on the identity 1 P Upgq and on the primitive elements g P g is
given by

∆p1q “ 1 bbr 1, ∆pgq “ 1 bbr g ` g bbr 1. (4.6)

The result of the map ∆puq on any given element u P U is recovered from the operations (4.6)
and from the comultiplication (4.5).

In physical applications, typical primitive elements satisfying the second equation of (4.6)
are the Hamiltonians and the creation/annihilation operators. The coproduct ∆ “ ∆1 is used
to construct 2-particle states, while ∆m from (4.4) is employed to construct pm ` 1q-particle
states. In the quantum models discussed in the following Sections of the paper, an m-particle
Hilbert space Hm possesses a Fock vacuum |vacym (in the single-particle sector |vacy ” |vacy1).
We have

Hm Ă Hbm
br

1 . (4.7)

Let R be a representation

R : Upgq Ñ EndpH1q. (4.8)

We denote with a hat the represented operators:

pu :“ Rpuq P EndpH1q. (4.9)

This notation is extended to the m-particle Hilbert spaces so that, e.g., z∆puq P EndpH2q.

Let us now now assume a: ” A P g to be a nilpotent creation operator with n-bit grading
α:

A2 “ 0, where rAs “ α and xα, αy “ 0, 1. (4.10)

The corresponding 2-particle creation operator is ∆pAq which, from (4.6), satisfies

∆pAq “ 1 bbr A ` A bbr 1. (4.11)

The comultiplication (4.5) implies

A2 “ 0 ñ ∆pA2q “ ∆pAq ¨ ∆pAq “

´

1 ` p´1qxα,αy
¯

pA bbr Aq. (4.12)
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It results, for (para)fermions with xα, αy “ 1,

A2 “ 0 and xα, αy “ 1 ñ ∆pA2q “ 0. (4.13)

Formula (4.13) encodes, in the graded Hopf algebra formalism endowed with a braided tensor
product, the Pauli exclusion principle of (para)fermions in the multiparticle sector.

Some further comments are in order. The (4.2) signs resulting from the braided tensor
product enter the construction of the vectors v P Hm belonging to the m-particle Hilbert spaces
with m “ 2, 3, . . .. For a Zn

2 -graded compatible Lie (super)algebra an admissible observable
operator Ω P EndpHmq must satisfy the following two necessary conditions:

i) to be hermitian: Ω: “ Ω and

ii) to be zero-graded: rΩs “ 0. (4.14)

These conditions guarantee that the Ω eigenvalues are real.
For the specific quantum models investigated in Section 5 (the quantum Hamiltonians sup-

porting bn inequivalent parastatistics) we construct admissible observables which, applied on
certain given multiparticle states, produce the (4.2) signs as eigenvalues. Therefore, the inequiv-
alent parastatistics can be physically discriminated. For our scopes it is sufficient to present the
construction and the results for the 2-particle sector. A different mechanics appears in the
statistical transmutations of the superconformal quantum mechanics with de Alfaro-Fubini-
Furlan [44] oscillator terms: different contributions of physically inequivalent parastatistics are
directly inferred from the degeneracy of the energy eigenvalues.

5 Construction of Zn
2-graded quantum Hamiltonians with

bn inequivalent multiparticle quantizations

In this Section we present a construction of a class of quantum Hamiltonians, belonging to an as-
sociative Zn

2 -graded ring of operators, whose bn induced inequivalent graded Lie (super)algebras
satisfy the lower bound (4.1). We prove, with explicit n “ 2, 3 computations, that the graded Lie
(super)algebras imply for these Hamiltonians detectable parastatistics resulting in, respectively,
b2 “ 4 and b3 “ 5 inequivalent multiparticle quantizations.

For any integer n we introduce 2n pairs of annihilation/creation operators ai;n, a
:

i;n labeled

as i “ 0, 1, 2, . . . , 2n ´ 1. These annihilation/creation operators, given by 2n`1 ˆ 2n`1 constant
matrices with 0, 1 entries, are expressed as tensor products of 2 ˆ 2 matrices. They are con-

structed in terms of the I “

ˆ

1 0
0 1

˙

, Y “

ˆ

0 1
1 0

˙

matrices introduced in (C.1) and by the

β, γ matrices defined as

β “

ˆ

0 1
0 0

˙

, γ “

ˆ

0 0
1 0

˙

. (5.1)

For n “ 1 (i.e., the 1-bit case) we set the 4 ˆ 4 matrices

a:
0;1 “ I b γ, a0;1 “ pa:

0;1q: “ I b β,

a:
1;1 “ Y b γ, a1;1 “ pa:

1;1q: “ Y b β. (5.2)
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For the n “ 2 (2-bit case) we set the 8 ˆ 8 matrices

a:
0;2 “ I b I b γ, a0;2 “ pa:

0;2q: “ I b I b β,

a:
1;2 “ I b Y b γ, a1;2 “ pa:

1;2q: “ I b Y b β,

a:
2;2 “ Y b I b γ, a2;2 “ pa:

2;2q: “ Y b I b β,

a:
3;2 “ Y b Y b γ, a3;2 “ pa:

3;2q: “ Y b Y b β. (5.3)

The general construction of the n-bit annihilation/creation operators ai;n, a:

i;n now becomes
obvious: the annihilation operator ai;n is the hermitian conjugate of the creation operator (ai;n “

pa:

i;nq:); the creation operators a:

i;n are such that the matrix entering the n`1-th tensor product
is always γ, while the first n tensor products are given by all combinations of the I, Y matrices.

Following these rules we have, for n “ 3, that the eight 16 ˆ 16 creation operators are

a:
0;3 “ I b I b I b γ, a:

1;3 “ I b I b Y b γ, a:
2;3 “ I b Y b I b γ, a:

3;3 “ I b Y b Y b γ,

a:
4;3 “ Y b I b I b γ, a:

5;3 “ Y b I b Y b γ, a:
6;3 “ Y b Y b I b γ, a:

7;3 “ Y b Y b Y b γ.

(5.4)

Due to the presence of the nilpotent operators β, γ (β2 “ γ2 “ 0), for any given i, the pair
ai;n, a

:

i;n defines a fermionic oscillator satisfying

tai;n, ai;nu “ ta:

i;n, a
:

i;nu “ 0, tai;n, a
:

i;nu “ I2n`1 . (5.5)

Furthermore, we have,

for any i, j “ 0, 1, . . . , 2n ´ 1: a:

i;na
:

j;n “ 0. (5.6)

For our purposes the Zn
2 grading is defined by assigning a 0 (1) to any diagonal (antidiagonal)

operator I (Y ) entering the a:

i;n, a
:

i;n tensor products. We therefore have, for the n “ 1, 2 creation
operators:

ra:
0;1s “ 0, ra:

1;1s “ 1; ra:
0;2s “ 00, ra:

1;2s “ 01, ra:
2;2s “ 10, ra:

3;2s “ 11. (5.7)

The extension to n ě 3 is immediate, with the a:
0;n operators assigned to the respective zero-

graded sectors:

ra:
0;ns “ 0. (5.8)

The (5.6) relation implies that, for any given n, the creation operators a:

i;n are all on equal footing
and produce bn inequivalent, Zn

2 -graded compatible, abelian, Lie (super)algebras, defined by the
brackets

pa:

i;n, a
:

j;nq “ 0 (5.9)

which correspond to the respective graded (anti)commutators (for n “ 1, 2, 3, 4 they can be read
from the tables in Appendix A).

The n-bit hermitian Hamiltonian operator Hn is defined to be

Hn :“ a:
0;na0;n, so that

H1 “ diagp0, 1q, H2 “ diagp0, 1, 0, 1q, H3 “ diagp0, 1, 0, 1, 0, 1, 0, 1q, . . . . (5.10)
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By construction Hn “ a:

i;nai;n for any i.
It follows, for any i, that

rHn, ai;ns “ ´ai;n, rHn, a
:

i;ns “ `a:

i;n. (5.11)

The single-particle n-bit Hilbert space H1;n is spanned by the a:

i;n creation operators acting on
the n-bit Fock vacuum |vacyn which satisfies the condition

ai;n|vacyn “ 0 for any i “ 0, 1, . . . , 2n ´ 1. (5.12)

The |vacyn vacuum is a 2n`1-component column vector given by

|vacyn “ r1 (5.13)

(here and in the following rj denotes a column vector with entry 1 in the j-th position and 0
otherwise).

We introduce the vectors

vi;n “ a:

i;n|vacyn. (5.14)

The order of the creation operators presented in (5.3) for n “ 2 and (5.4) for n “ 3 is chosen
so that vi;2 (vi;3) is the 8-component (16-component) column vector vi;2 “ r2i`2 for i “ 0, 1, 2, 3
(vi;3 “ r2i`2 for i “ 0, 1, . . . , 7).

The Zn
2 -graded 2n ` 1-dimensional Hilbert space H1;n is spanned by

H1;n “ t|vacyn, vi;nu, (5.15)

with |vacyn and v0;n belonging to the 0-graded sector.
The energy spectrum is given by 0, 1, with the excited state being 2n-degenerate:

Hn|vacyn “ 0, Hnvi;n “ vi;n for any i. (5.16)

A more general 0-graded diagonal hermitian operator Hd;n can be introduced through the posi-
tion

Hd;n :“ diagpx0, x1, . . . , x2n´1q b pβγq, so that

Hd;1 “ diagp0, x0, 0, x1q, Hd;2 “ p0, x0, 0, x1, 0, x2, 0, x3q, . . . . (5.17)

The real parameters x0, x1, . . . are eigenvalues for the vi;n eigenvectors of Hd;n:

Hd;n|vacyn “ 0, Hd;nvi;n “ xivi;n. (5.18)

In the following we make use of the graded exchange operators Xij;n introduced as

Xij;n “ ei,j ` ej,i, Xij;n “ Xij b I. (5.19)

The Xij;n’s are symmetric 2n`1 ˆ2n`1 matrices. In the above formulas the ei,j symbols indicate
a matrix with entry 1 at the crossing of the i-th row with the j-th column and 0 otherwise. The
i, j indices take values 0 ă i ă j ď 2n ´ 1.

The Xij;n matrices are Zn
2 -graded. Their gradings are

rXij;ns “ ra:

i;ns ` ra:

j;ns mod 2. (5.20)

For n “ 2 the three exchange operators are

X12;2 “

¨

˚

˚

˝

0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

˛

‹

‹

‚

b I, X13;2 “

¨

˚

˚

˝

0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

˛

‹

‹

‚

b I, X23;2 “

¨

˚

˚

˝

0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

˛

‹

‹

‚

b I. (5.21)

Their respective gradings are rX12;2s “ 11, rX13;2s “ 01, rX23;2s “ 10.
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5.1 The inequivalent 2-particle quantizations

Since the construction of the multi-particle sectors from graded Hopf algebras has been outlined
in Section 4, we limit here to present the results. As mentioned at the end of that Section, for
the system under consideration here the proof of the distinguishability of the bn parastatistics
only requires to analyze the 2-particle sector. We explicitly discuss the n “ 2, 3 cases. Extending
both analysis and results to n ą 3 is straightforward.

The n-bit 2-particle vacuum |vacy
p2q
n is given by the 22n`2-component column vector

|vacyp2q
n “ |vacyn b |vacyn. (5.22)

The 2n first-excited states (with energy level 1) are denoted as v
p2q

i;n ; they are given, for i “

0, 1, . . . , 2n ´ 1, by

v
p2q

i;n “ pa:

i;n bbr I2n`1 ` I2n`1 bbr a
:

i;nq|vacyp2q
n ” pa:

i;n b I2n`1 ` I2n`1 b a:

i;nq|vacyp2q
n .(5.23)

The maximal number of second-excited states (energy level 2), denoted as v
p2q

ij;n for 0 ď i ď j ď

2n ´ 1, is 2n´1p2n ´ 1q. These states are given by

v
p2q

ij;n “ pa:

i;n bbr I2n`1 ` I2n`1 bbr a
:

i;nqpa:

j;n bbr I2n`1 ` I2n`1 bbr a
:

j;nq|vacyp2q
n “

“ pa:

i;n b a:

j,n ` p´1qεija:

j,n b a:

i;nq|vacyp2q
n . (5.24)

The p´1qεij “ p´1q
xa:

i;n,a
:

j;ny sign depends on the mutual (anti)commutation properties of the
i-th and j-th particles. The last equation in (5.24) is implied by the (5.9) relation. This relation
also guarantees that there are no third-excited states in the 2-particle sector.

Since the parastatistics are determined by the p´1qεij signs, their inequivalence can only

appear in the sector of the second-excited states v
p2q

ij;n.
The 2-particle Hamiltonian and the 2-particle extension of the diagonal operator (5.17) are

respectively given by

Hp2q
n “ Hn b I2n`1 ` I2n`1 b Hn, H

p2q

d;n “ Hd;n b I2n`1 ` I2n`1 b Hd;n. (5.25)

The 2-particle Hilbert space H2;n is spanned by the vectors

H2;n “ t|vacyp2q
n , v

p2q

i;n , v
p2q

ij;nu. (5.26)

We now analyze the inequivalent parastatistics for n “ 2 and n “ 3.

The n “ 2 cases:

The total number of states of the H2;n“2 Hilbert spaces, depending on the graded Lie (su-
per)algebras of (A.2) are

a) for 21 and 23 (para)bosonic algebras: 1 ` 4 ` 10 “ 15;

b) for 22 and 24 (para)fermionic superalgebras: 1 ` 4 ` 8 “ 13. (5.27)

The above numbers are split into the contributions coming from the E “ 0, 1, 2 energy eigen-
states. The difference in the above a and b subcases is that, for the graded superalgebras,
v11;2 “ v22;2 “ 0 due to the Pauli exclusion principle.
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It follows that the inequivalence of, on one side, the 21, 23 (para)bosonic statistics versus,
on the other side, the 22, 24 (para)fermionic statistics can be read from the degeneracy of the
2-particle energy eigenstates with E “ 2.

Determining the further inequivalence of 21 bosons versus 23 parabosons and of 22 fermions
versus 24 parafermions requires measuring another observable.

Due to the fact that a:
0;2 from (5.3) is a 00-graded operator, the further differences in signs

are encountered for the normalized vectors w12 “ 1?
2
v12;2, w13 “ 1?

2
v13;2, w23 “ 1?

2
v23;2. It

follows from (5.24) and the tables (A.2) that the w12, w13, w23 states are given, for each one of
the four graded (super)algebra cases, by

21 algebra caseq w12 “
1

?
2

pr30 ` r44q, w13 “
1

?
2

pr32 ` r60q, w23 “
1

?
2

pr48 ` r62q.

23 algebra caseq w12 “
1

?
2

pr30 ´ r44q, w13 “
1

?
2

pr32 ` r60q, w23 “
1

?
2

pr48 ´ r62q.

22 superalgebra caseq w12 “
1

?
2

pr30 ´ r44q, w13 “
1

?
2

pr32 ` r60q, w23 “
1

?
2

pr48 ´ r62q.

24 superalgebra caseq w12 “
1

?
2

pr30 ` r44q, w13 “
1

?
2

pr32 ´ r60q, w23 “
1

?
2

pr48 ´ r62q.

(5.28)

For each one of the above cases the w12 vector is an eigenstate of Hd;2 with eigenvalue x1`x2:

Hd;2 w12 “ px1 ` x2qw12. (5.29)

Let us now assume that we have prepared the system under investigation in the w12 state.
In order to determine if our system is composed by ordinary particles or by paraparticles we
perform the measurement of a suitable observable on w12. A relevant observable which allows
to do that is Y12;2, which is constructed in terms of the X12;2 exchange operator:

Y12;2 “ X12;2 b X12;2. (5.30)

By construction Y12;2 is hermitian (Y :
12;2 “ Y12;2) and 00-graded (rY12;2s “ 00). Its admissible

eigenvalues are 0,˘1. Its action on the w13, w23 vectors, for all above four cases (5.28), gives
Y12;2 w13 “ Y12;2 w23 “ 0. On the other hand,

for 21: w12 “
1

?
2

pr30 ` r44q ñ Y12;2 w12 “ `w12,

for 23: w12 “
1

?
2

pr30 ´ r44q ñ Y12;2 w12 “ ´w12. (5.31)

Similarly, for the superalgebra cases,

for 22: w12 “
1

?
2

pr30 ´ r44q ñ Y12;2 w12 “ ´w12,

for 24: w12 “
1

?
2

pr30 ` r44q ñ Y12;2 w12 “ `w12. (5.32)

Therefore, the measured ˘1 eigenvalue of Y12;2 on the w12 state allows to discriminate the 21
statistics from the 23 parastatistics and the 22 statistics from the 24 parastatistics, completing
the proof of their detectability.
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The n “ 3 cases:

The extension of the construction to the n “ 3 cases gives the following results. The total
number of states of the H2;n“3 Hilbert spaces, depending on the graded Lie (super)algebras of
(A.3), are

a) for the 31 and 32 (para)bosonic algebras: 1 ` 8 ` 36 “ 45;

b) for the 33, 34 and 35 (para)fermionic superalgebras: 1 ` 8 ` 32 “ 41. (5.33)

In the graded superalgebra cases four vectors are vanishing due to the Pauli exclusion principle.
As before, the inequivalence of the 31, 32 (para)bosonic statistics with respect to the 33, 34, 35
(para)fermionic statistics is read from the degeneracy of the 2-particle energy eigenstates with
E “ 2.

The inequivalence of the parastatistics within the two subclasses of graded algebras and
graded superalgebras goes as follows.

Discriminating 31 and 32 proceeds as for the n “ 2 cases. It is sufficient to measure the
eigenvalue of the Y12;3 observable, introduced through the position

Y12;3 “ X12;3 b X12;3, (5.34)

acting on the normalized state w12 “ 1?
2
v12;3, which is an eigenstate of Hd;3 with eigenvalue

x1 ` x2:

Hd;3w12 “ px1 ` x2qw12. (5.35)

We get that

for 31: w12 “
1

?
2

pr54 ` r84q ñ Y12;3 w12 “ `w12,

for 32: w12 “
1

?
2

pr54 ´ r84q ñ Y12;3 w12 “ ´w12. (5.36)

For the superalgebra cases we need to discriminate three different parastatistics 33, 34, 35.
In order to do that we need to perform two separate measurements on suitably prepared states.
We can select the normalized states w24 “ 1?

2
v24;3 and w35 “ 1?

2
v35;3. They are eigenstates of

Hd;3 with respective eigenvalues x2 ` x4 and x3 ` x5. We measure the Y24;3 “ X24;3 b X24;3

observable on w24 and the Y35;3 “ X35;3 b X35;3 observable on w35. We get

for 33: w24 “
1

?
2

pr90 ` r150q ñ Y24;3 w24 “ `w24,

for 34: w24 “
1

?
2

pr90 ´ r150q ñ Y24;3 w24 “ ´w24,

for 35: w24 “
1

?
2

pr90 ´ r150q ñ Y24;3 w24 “ ´w24 (5.37)

and

for 33: w35 “
1

?
2

pr124 ` r184q ñ Y35;3 w35 “ `w35,

for 34: w35 “
1

?
2

pr124 ` r184q ñ Y35;3 w35 “ `w35,

for 35: w35 “
1

?
2

pr124 ´ r184q ñ Y35;3 w35 “ ´w35. (5.38)
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Therefore, the following ordered pairs of Y24;3, Y35;3 eigenvalues resulting from the respective
measurements on w24, w35 allow to discriminate the three parastatistics induced by the graded
superalgebras. We have

33 : 34 : 35 :

p`1,`1q p´1,`1q p´1,´1q
(5.39)

Comments: some comments are in order. The framework to detect inequivalent parastatistics
follows the approach discussed in [6,8] for Z2

2-graded (super)algebras. The present construction
allows to extend the analysis to general Zn

2 -graded Hamiltonians. To our knowledge we presented
here the first investigation of inequivalent parastatistics for a Z3

2-graded quantum Hamiltonian.
We should further point that this analysis is immediately applicable to quantum Hamiltonians
possessing an infinite spectrum like the matrix quantum oscillator whose Hosc;n Hamiltonian
can be introduced as

Hosc;n “
1

2
pB2

x ` x2q ¨ I2n`1 ` Hn. (5.40)

The inequivalence of its Zn
2 -graded parastatistics follows from the obtained results for the Hn

term entering the right hand side.

6 The statistical transmutations of the N “ 1, 2, 4, 8-extended
supersymmetric quantum mechanics

In this Section we apply the framework of the induced graded Lie (super)algebras to the Su-
persymmetric Quantum Mechanics which, since its introduction in [45] as a reformulation of
the Atiyah-Singer index theorem, finds relevant applications in both physics and mathemat-
ics. To describe the different n-bit parastatistics associated with the Supersymmetric Quantum
Mechanics we adopt a term, statistical transmutation, which has already been employed by con-
densed matter physicists in a slightly different context (this topic is discussed, e.g., in [46] and
references therein). In our case the notion of algebraic statistical transmutation refers to the
Zn
2 -graded Lie (super)algebras which are induced by the supersymmetric quantum mechanics

operators.
To further clarify this setting we mention that, when the authors of [5] produced an N “ 2

supersymmetric quantum model which was invariant under a Z2
2-graded superalgebra, a question

arised, namely which was the physical role of the Z2
2-graded invariant superalgebra. This question

was answered in [6] by proving that, in the multiparticle sector, the Z2
2-graded invariance induces

a detectable parafermionic statistics. The present algebraic framework is a generalization which
is both model-independent and applicable, for any integer n, to Zn

2 gradings.

For any given positive integer N “ 1, 2, 3, 4, 5, . . ., the superalgebra sqmN of the N -extended
one-dimensional supersymmetric quantum mechanics is given by the (anti)commutators

tQi, Qju “ 2δijH, rH,Qis “ 0, for any i, j “ 1, . . . ,N . (6.1)

The Qi generators are the supercharges and H is the Hamiltonian; they are assumed to be
Hermitian, so that Q:

i “ Qi, H
: “ H.
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We denote as UN :“ UpsqmN q the respective Universal Enveloping Superalgebras; they are
therefore spanned, for m “ 0, 1, 2, . . ., by the sets of operators

UN“1 “ tHm, HmQ1u,

UN“2 “ tHm, HmQ1, H
mQ2, H

mQ1Q2u,

UN“3 “ tHm, HmQ1, H
mQ2, H

mQ3, H
mQ1Q2, H

mQ1Q3, H
mQ2Q3, H

mQ1Q2Q3u,

. . . “ . . . . (6.2)

At any given m the number of operators entering UN is 2N .
The further analysis is based on the matrix differential representations of the Qi’s and H

operators entering (6.1). There are two types of differential representations for the sqmN super-
algebras: at the classical level we have the time-dependent worldline D-module representations
presented in [47, 48] and which are applicable to the construction of invariant, worldline sigma
models; at the quantum level we have the differential representations realizing the Hamiltonian
H as a second-order differential operator of the space coordinates (the connection between the
two types of differential representations is elucidated in [49] and, in a Z2

2-graded context, [18]).
Following [47], in the minimal, irreducible, D-module representations of the sqmN superal-

gebra, the N supercharges Qi are expressed as dN ˆdN matrix, first-order differential operators
in the time variable t, with dN given by the following formula.

Let us parametrize N as

N “ 8k ` r, where k “ 0, 1, 2, . . . P N0 and r “ 1, 2, 3, 4, 5, 6, 7, 8, (6.3)

the dN matrix size is given by

dN “ 2p4k`zprq`1q, for zprq “ rlog2 rs. (6.4)

In the last formula the ceiling function appears, so that

zp1q “ 0, zp2q “ 1, zp3q “ zp4q “ 2, zp5q “ zp6q “ zp7q “ zp8q “ 3. (6.5)

The expression 1
2 ˆ dN (i.e., the dimensionality of the bosonic (fermionic) subspaces) produces

the A034583 sequence in the OEIS (Online Encyclopedia of Integer Sequences) database at
https://oeis.org.:

1

2
ˆ dN ñ 1, 2, 4, 4, 8, 8, 8, 8, 16, 32, 64, 64, 128, 128, 128, 128, 256, . . . . (6.6)

Starting from N ě 4, sqmN also admits, see [50], reducible, but indecomposable D-module
representations. The combinatorics of the statistical transmutations can in principle be com-
puted for anyD-module (both reducible and irreducible) representation of theN -extended sqmN
superalgebra. In the irreducible cases it is convenient to introduce

nN :“ 4k ` zprq ` 1, so that dN ˆ dN “ 2nN ˆ 2nN . (6.7)

It follows that the irreducible supercharges Qi can be assigned to the nonzero graded sectors of
a ZnN

2 grading, with the Hamiltonian H assigned to the nN -bit zero vector 0.
From now on we focus for simplicity on the irreducible representations of the N “ 1, 2, 4, 8-

extended one-dimensional Supersymmetric Quantum Mechanics since these values of N , which
are related to division algebras, are the most widely investigated in the literature.
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Before further proceeding some comments are in order: for N “ 1, 2, 4, 8, the minimal D-
module representations are respectively given by 2ˆ 2, 4ˆ 4, 8ˆ 8, 16ˆ 16 matrices both in the
classical and quantum cases (examples of quantumD-module representations for superconformal
quantum mechanics are given in Section 7). We have, from (6.7),

nN“1 “ 1, nN“2 “ 2, nN“4 “ 3, nN“8 “ 4. (6.8)

It follows that, forN “ 1, 2, 4, 8, the inequivalent graded Lie (super)algebras induced by different
grading assignments of the supercharges Qi are respectively read from the n “ 1, 2, 3, 4-bit
tables of Appendix A. We are now in the position to compute the sN inequivalent graded
Lie (super)algebras induced on UpsqmN q by the minimal H,Qi operators satisfying (6.1). The
scheme, with differences that will be pointed out, is the one already applied to (split-)quaternions
and biquaternions in Appendices C and E.

6.1 The N “ 1 statistical transmutations

The Hamiltonian H is assigned to the vanishing grading, so that rHs “ 0; the grading of the sin-
gle supercharge Q1 is therefore given by rQ1s “ 1. The inequivalent graded Lie (super)algebras
are read from the 1-bit tables (A.1). The two cases are

11 : ñ the Lie algebra rH,Q1s “ 0;

12 : ñ the Lie superalgebra rH,Q1s “ 0, tQ1, Q1u “ 2H. (6.9)

The result is

sN“1 “ 2. (6.10)

6.2 The N “ 2 statistical transmutations

A novel feature appears for N “ 2. The Hamiltonian H is assigned to the rHs “ 00 grading.
The supercharges Q1, Q2 have to be assigned to the nonvanishing gradings. We can set rQ1s “ α,
rQ2s “ β (with α ‰ β), which take values 10, 01, 11. It follows that the grading assignments of
the operators entering the Universal Enveloping (Super)algebra UpsqmN“2q is

rHms “ 00, rHmQ1s “ α, rHmQ2s “ β, rHmQ1Q2s “ α ` β mod 2. (6.11)

It should be noted that, for the sqmN“2 superalgebra spanned by H,Q1, Q2, an empty slot
is assigned to the α ` β-graded sector. This empty slot, denoted as “H”, can be thought to
be associated with a matrix with all vanishing entries. This empty slot plays the role of a
marked generator. It then follows that the computation of the sN“2 inequivalent graded Lie
(super)algebras reproduces the computation of the split-quaternions presented in Appendix C.
Both these computations are based on the 1`2 decompositions of the 2-bit nonvanishing graded
sectors. The results, recovered from the (A.2) tables, are the following.

21 ñ 1 case; this is an ordinary Lie algebra with infinite generators (since rQ1, Q2s ‰ 0)
induced by assigning the gradings rQ1s “ 10, rQ2s “ 01. Since the two supercharges Q1, Q2 are
now bosonic, we refer to this case as the “2B” transmutation.

22 ñ 2 cases, which are split into 22α and 22β .
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The subcase 22α is recovered by assigning the gradings rQ1s “ 10, rQ2s “ 11. It corre-
sponds to an ordinary Lie superalgebra with infinite generators (since rQ1, Q2s ‰ 0). Since the
supercharge Q1 is fermionic, while Q2 is bosonic, we refer to this subcase as the “1F ` 1B”
transmutation.

The subcase 22β is recovered by assigning the gradings rQ1s “ 10, rQ2s “ 01. It corresponds
to the original sqmN“2 Lie superalgebra with two fermionic supercharges Q1, Q2. This subcase
is the “identity transmutation” which will be referred to as “2F”.

23 ñ 1 case; this is a parabosonic Lie algebra recovered from the gradings rQ1s “ 10,
rQ2s “ 01. A finite, 3-generator, graded-abelian Lie algebra is obtained. It is defined by the
(anti)commutators rH,Q1s “ rH,Q2s “ 0, tQ1, Q2u “ 0. Since the two supercharges Q1, Q2 are
parabosonic, we refer to this case as the “2PB” transmutation.

24 ñ 2 cases, which are split into 24α and 24β .

The subcase 24α is a parafermionic Lie superalgebra recovered by assigning the gradings
rQ1s “ 10, rQ2s “ 11. A finite, 3-generator, graded Lie superalgebra is obtained. It is defined
by the (anti)commutators rH,Q1s “ rH,Q2s “ 0, tQ1, Q1u “ 2H, tQ1, Q2u “ 0.
Since the supercharge Q1 is parafermionic, while Q2 is parabosonic, we refer to this subcase as
the “1PF ` 1PB” transmutation.

The subcase 24β is recovered by assigning the gradings rQ1s “ 10, rQ2s “ 01. It produces
a 4-generator finite parafermionic Lie superalgebra (the extra generator being Z :“ Q1Q2).
This graded Lie superalgebra corresponds to the Z2

2-graded worldline super-Poincaré algebra
introduced in [5]. It is defined by the (anti)commutators rH,Q1s “ rH,Q2s “ rH,Zs “ 0,
tQ1, Q1u “ tQ2, Q2u “ 2H, rQ1, Q2s “ 2Z, tQ1, Zu “ tQ2, Zu “ 0.

Since both Q1, Q2 supercharges are parafermionic, we refer to this subcase as the “2PF ”
transmutation.

By summing the contributions from the four 2-bit tables (A.2) we get

sN“2 “ 1 ` 2 ` 1 ` 2 “ 6. (6.12)

6.3 The N “ 4 statistical transmutations

The N “ 4 transmutations are recovered from the 3-bit tables (A.3). The four supercharges
Qi, together with the three vanishing matrices representing the empty slots H, have to be
accommodated into the seven non-zero graded sectors. This results in two classes of equivalence
for the marked generators with 4 ` 3 “ 7 elements. The non-zero graded sectors are encoded,
as visualzed in (D.2), in a Fano’s plane. There are two important remarks.

Remark I: since the product of two vanishing matrices is a vanishing matrix, the three empty
slots H are aligned along an edge of the Fano’s plane.

Remark II: conversely, in the 31´35 tables of (A.3), the product of two (para)bosons produces
a third (para)boson which is necessarily aligned along an edge of the Fano’s plane.

By applying these two properties, the combinatorics which leads to the computation of sN“4

easily follows. We have
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31 ñ 1 case; the seven non-zero graded sectors represent seven bosons. Any grading
assignment for the four Qi’s, such as rQ1s “ 001, rQ2s “ 101, rQ3s “ 011, rQ4s “ 111, leads to
4 bosonic supercharges. Therefore, we refer to this case as the “4B” transmutation.

32 ñ 2 cases, denoted as 32α , 32β . They are implied by the seven non-zero graded sectors
to be split into 1 bosonic and 6 parabosonic particles, the grading of the boson being 001.

The subcase 32α is recovered by assigning the gradings rQ1s “ 001, rQ2s “ 101, rQ3s “

011, rQ4s “ 111. The supercharge Q1 is bosonic, while the three remaining ones are parabosonic.
Therefore, we refer to this subcase as the “1B ` 3PB” transmutation.

The subcase 32β is recovered by assigning the gradings rQ1s “ 110, rQ2s “ 010, rQ3s “

011, rQ4s “ 111. The four supercharges are parabosonic. Therefore, we refer to this subcase as
the “4PB” transmutation.

33 ñ 2 cases, denoted as 33α , 33β . They are implied by the seven non-zero graded sectors
to be split into 3 bosons aligned along an edge of the Fano’s plane and 4 fermions, with the
gradings of the bosons being 001, 010, 011. From remark I, the four supercharges Qi need to be
complementary to an edge of the Fano’s plane, leaving only two inequivalent possibilities.

The subcase 33α is recovered by assigning the gradings rQ1s “ 001, rQ2s “ 011, rQ3s “

101, rQ4s “ 111. The supercharge Q1, Q2 are bosonic, while Q3, Q4 are fermionic. Therefore,
we refer to this subcase as the “2B ` 2F” transmutation.

The subcase 32β is recovered by assigning the gradings rQ1s “ 100, rQ2s “ 110, rQ3s “

101, rQ4s “ 111. All four supercharges are fermionic. This subcase reproduces the original
sqmN“4 superalgebra. Therefore, we refer to it as the “4F” identity transmutation.

34 ñ 3 cases, denoted as 34α , 34β , 34γ . They are implied by the seven non-zero graded
sectors to be split into 1 boson and 2 parabosons aligned along an edge of the Fano’s plane,
plus 4 parafermions; the grading of the boson is 001, while the gradings of the parabosons are
110, 111. By taking into account that the four supercharges Qi are complementary to an edge
of the Fano’s plane, three inequivalent possibilities follow.

The subcase 34α is recovered by assigning the gradings rQ1s “ 001, rQ2s “ 110, rQ3s “

100, rQ4s “ 011. The supercharge Q1 is bosonic, while Q2 is parabosonic and Q3, Q4 are
parafermionic. Therefore, we refer to this subcase as the “1B ` 1PB ` 2PF ” transmutation.

The subcase 34β is recovered by assigning the gradings rQ1s “ 111, rQ2s “ 110, rQ3s “

010, rQ4s “ 011. The supercharges Q1, Q2 are parabosonic, while Q3, Q4 are parafermionic.
Therefore, we refer to this subcase as the “2PB ` 2PF ” transmutation.

The subcase 34γ is recovered by assigning the gradings rQ1s “ 101, rQ2s “ 010, rQ3s “

100, rQ4s “ 011. All four supercharges are parafermionic. Therefore, we refer to this subcase
as a “4PF ” transmutation.
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35 ñ 2 cases, denoted as 35α , 35β . They are implied by the seven non-zero graded sectors
to be split into 3 parabosons aligned along an edge of the Fano’s plane and 4 parafermions, with
the gradings of the parabosons being 110, 101, 011. The analysis of this case mimicks what has
been done in deriving the two inequivalent cases from 33.

The subcase 35α is recovered by assigning the gradings rQ1s “ 101, rQ2s “ 011, rQ3s “

010, rQ4s “ 001. The supercharge Q1, Q2 are parabosonic, while Q3, Q4 are parafermionic.
Therefore, we refer to this subcase as the “2PB ` 2PF ” transmutation.

The subcase 35β is recovered by assigning the gradings rQ1s “ 100, rQ2s “ 111, rQ3s “

010, rQ4s “ 001. All four supercharges are parafermionic. Therefore, we refer to this subcase
as a “4PF ” transmutation.

It should be pointed out that the subcases 34γ and 35β , despite being both characterized
as a “4PF transmutation”, are inequivalent. Indeed, in 34γ the descendent operators QiQj for
i ă j produce 6 operators which are accommodated as 2 bosons and 4 parabosons; in 35β , the
6 descendent operators are accommodated as 6 parabosons.

By summing the contributions from the five 3-bit tables (A.3) we end up with

sN“4 “ 1 ` 2 ` 2 ` 3 ` 2 “ 10. (6.13)

6.4 The N “ 8 statistical transmutations: a tale of two Fano’s planes

The N “ 8 transmutations are recovered from the seven 4-bit tables (A.6). The 8 supercharges
Qi, together with the 7 vanishing matrices representing the empty slots H, have to be accom-
modated into the 15 non-zero graded sectors.

We present at first the computations from the graded Lie algebras 41, 42, 43 and, subse-
quently, the computations from the graded Lie superalgebras 44, 45, 46, 47.

Concerning the graded Lie algebras we have

41 ñ 1 case; the non-zero graded sectors represent 15 bosons. Any grading assignment
for the 8 Qi’s leads to 8 bosonic supercharges. Therefore, we refer to this case as the “8B”
transmutation.

42 ñ 2 cases, denoted as 42α , 42β , implied by the 15 non-zero graded sectors being split
into 3 bosons and 12 parabosons, with the three bosons (whose gradings are 0001, 0010, 0011)
being aligned. The derivation goes as follows. At first one notices that at least 1 boson should be
assigned to an empty slot H. Indeed, trying to assign all empty slots to the parabosonic sectors
leads to a contradiction. Let’s say, without loss of generality, that two H’s are assigned to the
gradings 1000, 1100. The product of the vanishing matrices implies that H is also assigned to
the 0100 grading. On the other hand, no other grading can be assigned to an empty slot. By
assuming, e.g., that H is assigned to 1001, the product of the 1000 and 1001-graded vanishing
matrices implies, against the assumption, that the bosonic sector 0001 is assigned to a vanishing
matrix. It follows that there is no room to accommodate all 7 empty slots in the parabosonic
sectors. As a next observation, if two bosons are assigned to an empty slot, the third boson
should also be assigned to H since the product of two vanishing matrices is a vanishing matrix.
We end up with only two inequivalent possibilities: 1 boson assigned to H or 3 bosons assigned
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to H. By taking the complementary viewpoint of the Qi’s supercharges we get the following
two subcases.

The subcase 42α , recovered by taking 2 bosonic supercharges and 6 parabosonic supercharges.
Therefore, we refer to this subcase as the “2B ` 6PB” transmutation.

The subcase 42β , recovered by taking 8 parabosonic supercharges. Therefore, we refer to this
subcase as an “8PB” transmutation.

43 ñ 1 case; the non-zero graded sectors represent 15 parabosons. Any grading assignment
for the 8 Qi’s leads to 8 parabosonic supercharges. Therefore, we refer to this case as an “8PB”
transmutation.

The combinatorics of the inequivalent graded Lie superalgebras induced by the (A.6) tables
44, 45, 46, 47 is obtained by intersecting two Fano’s planes:

i) the Fano’s plane of the multiplication table of the 7 empty slots H and
ii) the Fano’s plane of the reduced multiplication tables of the 7 (para)bosons entering 44, 45, 46, 47.

The intersection leads to only two possibilities; either

i) 3 empty slots H are assigned to an edge of the (para)bosonic Fano’s plane, or
ii) all 7 empty slots H are assigned to the 7 vertices of the (para)bosonic Fano’s plane.

The proof is straightforward. The multiplication of two (para)fermions gives a (para)boson.
If the two (para)fermions are assigned to the vanishing matrices of the empty slot, the (para)boson
should also be assigned to the empty slot H. By taking two suitable pairs of (para)fermions,
it is easily realized that at least two (para)bosons should be assigned to the empty slot. Next,
the multiplication of the two vanishing matrices implies that the third (para)boson lying on the
edge should also be assigned to H; this proves that the condition leading to case i) is satisfied.
The further assignment of a fourth (para)boson to an empty slot implies (once more due to
the multiplication of the vanishing matrices) that all 7 (para)bosons should be assigned to H,
realizing the case ii).

The inequivalent contributions from 44, 45, 46, 47 to the statistical transmutations are ob-
tained by further taking into account

iii) the vertices of the 44, 47 (para)bosonic Fano’s planes are unmarked (they are 7 bosons
for 44 and 7 parabosons for 47);
iv) the 45 (para)bosonic Fano’s plane presents 3 marked vertices corresponding to bosons lying
on a edge (the 4 remaining vertices are associated with parabosons);
v) the 46 (para)bosonic Fano’s plane present 1 marked vertex corresponding to the single boson,
while the 6 remaining vertices are associated with parabosons.

The inequivalent contributions can be visualized in terms of the following diagrams (la-
beled with greek letters to denote the correponding subcases) which present the respective
(para)bosonic Fano’s planes with/without marked points. The encircled vertices are the ones
which are assigned to the empty slots H.
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We have, for 44 and 47, the following α diagram on top and β diagram on the bottom:

They give the two inequivalent contributions from unmarked vertices. (6.14)

For 45 we have, from top to bottom, the three α, β, γ diagrams:

They give the three inequivalent contributions from 3 marked vertices. (6.15)
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For 46 we have, from top to bottom, the three α, β, γ diagrams:

They give the three inequivalent contributions from 1 marked vertex. (6.16)

It follows that the 8 supercharges Qi of the statistical transmutations are

44 ñ 2 cases, denoted as 44α , 44β .

The subcase 44α is recovered by taking 4 bosonic supercharges and 4 fermionic supercharges.
Therefore, we refer to this subcase as the “4B ` 4F” transmutation.

The subcase 44β is recovered by taking 8 fermionic supercharges. It corresponds to the
original sqmN“8 superalgebra; the “identity transmutation” is denoted as “8F”.

45 ñ 3 cases, denoted as 45α , 45β , 45γ .

The subcase 45α is recovered by taking 4 parabosonic and 4 parafermionic supercharges.
Therefore, we refer to this subcase as the “4PB ` 4PF ” transmutation.

The subcase 45β is recovered by taking 2 bosonic, 2 parabosonic and 4 parafermionic super-
charges. Therefore, we refer to this subcase as the “2B ` 2PB ` 4PF ” transmutation.
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The subcase 45γ is recovered by taking 8 parafermionic supercharges. Therefore, we refer to
this subcase as a “8PF ” transmutation.

46 ñ 3 cases, denoted as 46α , 46β , 46γ .

The subcase 46α is recovered by taking 4 parabosonic and 4 parafermionic supercharges.
Therefore, we refer to this subcase as a “4PB ` 4PF ” transmutation.

The subcase 46β is recovered by taking 1 bosonic, 3 parabosonic and 4 fermionic supercharges.
Therefore, we refer to this subcase as the “1B ` 3PB ` 4PF ” transmutation.

The subcase 46γ is recovered by taking 8 parafermionic supercharges. Therefore, we refer to
this subcase as an “8PB” transmutation.

47 ñ 2 cases, denoted as 47α , 47β .

The subcase 47α is recovered by taking 4 parabosonic supercharges and 4 parafermionic
supercharges. Therefore, we refer to this subcase as a “4PB ` 4PF ” transmutation.

The subcase 47β is recovered by taking 8 parafermionic supercharges. Therefore, we refer to
this subcase as a “8PF ” transmutation.

We end up with 14 inequivalent statistical transmutations of the N “ 8 Supersymmetric Quan-
tum Mechanics. Their inequivalence is spotted in terms of the (para)bosonic/(para)fermionic
assignments of the 8 supercharges Qi and the 7 empty slots H; they are given by:

Transmutations: 8 supercharges: 7 empty slots:

41 8B 7B

42α 2B ` 6PB 1B ` 6PB

42β 8PB 3B ` 4PB

43 8PB 7PB

44α 4B ` 4F 3B ` 4F

44β 8F 7B

45α 4PB ` 4PF 3B ` 4PF

45β 2B ` 2PB ` 4PF 1B ` 2PB ` 4PF

45γ 8PF 3B ` 4PB

46α 4PB ` 4PF 1B ` 2PB ` 4PF

46β 1B ` 3PB ` 4PF 3PB ` 4PF

46γ 8PF 1B ` 6PB

47α 4PB ` 4PF 3PB ` 4PF

47β 8PF 7PB

(6.17)

By summing the contributions from the seven 4-bit tables (A.6) we finally obtain

sN“8 “ 1 ` 2 ` 1 ` 2 ` 3 ` 3 ` 2 “ 14. (6.18)
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6.5 Summary

In this Section we proved that the Universal Enveloping Superalgebras UN ” UpsqmN q of the
one-dimensional, N -extended Supersymmetric Quantum Mechanics admit alternative gradings
besides the original supersymmetric grading. They define on UN inequivalent graded Lie (su-
per)algebras. As discussed in Section 4, each graded Lie (super)algebra defined on an enveloping
algebra induces its own (para)statistics. For N “ 1, 2, 4, 8 the respective sN numbers of inequiv-
alent graded Lie (super)algebras are

N “ 1 : n1 “ 1 s1 “ 1 ` 1 “ 2

N “ 2 : n2 “ 2 s2 “ 1 ` 2 ` 1 ` 2 “ 6

N “ 4 : n4 “ 3 s4 “ 1 ` 2 ` 2 ` 3 ` 2 “ 10

N “ 8 : n8 “ 4 s8 “ 1 ` 2 ` 1 ` 2 ` 3 ` 3 ` 2 “ 14

(6.19)

In the above table the sN numbers are partitioned into the bnN separate contributions coming
from each one of the inequivalent nN -bit graded brackets presented in AppendixA. In accordance
with the discussion in Section 3, the presence of “marked” generators makes sN ě bnN .

The above sN values give the total number of admissible statistical transmutations of the N
supercharges Qi.

The next relevant question is whether the sN parastatistics imply physically observable
consequences. This question is addressed and partially answered in the next Section (the paras-
tatistics are detected from ordinary statistics by measuring the degeneracy of the energy levels
in a multiparticle sector). For simplicity, we discuss this issue in the framework of the Supercon-
formal Quantum Mechanics with the addition of the de Alfaro-Fubini-Furlan [44] oscillator term;
this setting has the advantage of introducing a normalized ground state and a discrete spectrum,
while preserving the spectrum-generating superconformal algebra of the original model.

7 Detectable parastatistics in superconformal quantummechan-
ics with DFF oscillator terms

In this Section we address the question of the physical detectability of the statistical transmuta-
tions of the Supersymmetric Quantum Mechanics presented in Section 6. We remind the discus-
sion in Section 4, namely that each graded Lie (super)algebra defined on a Universal Enveloping
Algebra, such as UN :“ UpsqmN q from formula (6.2), implies its own (para)statistics in the mul-
tiparticle sector of an associated quantum model. The inequivalent graded Lie (super)algebras
applied to a single-particle sector give alternative, but physically equivalent, descriptions; the
analysis of their physical equivalence/inequivalence in a multiparticle sector is model-dependent.

Concerning the sN statistical transmutations (given in (6.19)) of the N “ 1, 2, 4, 8 Super-
symmetric Quantum Mechanics (6.1), what can be said about their detectability?

A complete answer to this question requires, as explained later, a deep and lengthy inves-
tigation of its own which cannot be conducted in this already long paper. Here we limit to
discuss the simplest nontrivial example (the 2-particle sector of an N “ 2 model). We antic-
ipate the finding. The sN“2 “ 6 parastatistics from (6.12) are split into 3 ordinary statistics
(involving ordinary bosonic/fermionic particles from the tables 21, 22 of (A.2)) and 3 genuine
parastatistics involving paraparticles (parabosons/parafermions from the tables 23, 24 of (A.2)).
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The degeneracy of the 2-particle energy levels recovered from the 3 genuine parastatistics differs
from the degeneracies produced by the 3 ordinary statistics. Stated otherwise, in the model
under consideration ordinary bosons/fermions cannot reproduce the degeneracy of the energy
levels of the three Z2

2-graded parastatistics 23, 24α , 24β introduced in subsection 6.2.
To our knowledge this is the first example where Rittenberg-Wyler’s Z2

2-graded parabosons/
parafermions are shown to affect the energy spectrum of a quantum theory. Indeed, we point out
that in the models discussed in Section 5 and the ones in references [6,8], a different mechanism
to detect n-bit paraparticles from ordinary particles is at work: in those cases an observable
different from the Hamiltonian has to be measured since the same energy spectrum is produced
by both ordinary particles and paraparticles.

The analysis of the statistical transmutations is simplified if one works in the framework
of the Superconformal Quantum Mechanics, since one can use as a tool a class of simple Lie
superalgebras (known as superconformal algebras) which act as spectrum-generating superalge-
bras. Examples of such superalgebras are ospp1|2q for N “ 1, slp2|1q for N “ 2, the exceptional
superalgebras Dp2, 1;αq for N “ 4 (see [49]) and F p4q for N “ 8 (see [51]). For a review on
superconformal mechanics one can consult [52] and references therein.

The addition of the de Alfaro-Fubini-Furlan [44] oscillator term in a Hamiltonian preserves
the spectrum-generating superconformal algebra; it introduces a normalized ground state with a
discrete energy spectrum. This makes particularly simple to analyze the physical consequences
of the model under consideration. It is this setting that will be investigated in the following.

7.1 On N “ 1, 2, 4, 8 superconformal quantum mechanics

A one-dimensional N -extended superconformal algebra is a simple Lie superalgebra g entering
the Kac’s classification [4] and whose generators satisfy the following additional properties.
Besides the Z2-grading they possess a scaling dimension s “ ´1,´1

2 , 0,
1
2 , 1 so that

g “ g´1 ‘ g´ 1
2

‘ g0 ‘ g 1
2

‘ g1. (7.1)

The generators entering g˘ 1
2
are odd (fermions), while those entering g0, g˘1 are even (bosons).

The (anti)commutators are such that rgr, gsu Ă gr`s.
The positive subalgebra gą0 “ g 1

2
‘ g1 is isomorphic to the sqmN superalgebra (6.1). A

single generator, the Hamiltonian H, is accommodated in g1, while the N supercharges Qi

are accommodated in g 1
2
. A single generator K, the conformal partner of the Hamiltonian,

is accommodated in g´1, while N generators rQi, the conformal partners of the supercharges
Qi, belong to g´ 1

2
. Finally, g0 contains a dilatation operator D and a subalgebra R, known

in the literature as the “R-symmetry”. The generators H,D,K close an slp2q subalgebra with
D as the Cartan’s element. The total number of generators of a one-dimensional N -extended
superconformal algebra is d “ 2N `3`r, where r is the number of generators of the R-symmetry.

For the superconformal algebras mentioned below ospp1|2q has 5 generators (N “ 1 and
r “ 0 since there is no R-symmetry generator), slp2|1q has 8 generators (N “ 2 and r “ 1,
the R-symmetry being a up1q subalgebra), Dp2, 1;αq has, for generic (see [53]) values of α, 17
generators (N “ 4 and r “ 6, the R-symmetry being a sup2q ‘ sup2q subalgebra), F p4q has 40
generators (N “ 8 and r “ 21, the R-symmetry being a sop7q subalgebra).

The following differential matrix representations of superconformal algebras satisfy the ir-
reducibility conditions, discussed in Section 6, for their sqmN subalgebras; the presentation of
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these representations, in terms of the space coordinate x, makes use of tensor products of the

2ˆ2 matrices I “

ˆ

1 0
0 1

˙

, X “

ˆ

1 0
0 ´1

˙

, Y “

ˆ

0 1
1 0

˙

, A “

ˆ

0 1
´1 0

˙

introduced in (C.1).

For N “ 1, the differential matrix representation of ospp1|2q is given by

Q1 “
1

?
2

ˆ

Bx ¨ A `
β

x
¨ Y

˙

,

rQ1 “
i

?
2
x ¨ A,

H “
1

2

ˆ

´B2
x `

β2

x2

˙

¨ I ´
β

2x2
¨ X,

D “ ´
i

2

ˆ

xBx `
1

2

˙

¨ I,

K “
1

2
x2 ¨ I, (7.2)

where β is an arbitrary real parameter. The above operators are Hermitian. The nonvanishing
ospp1|2q (anti)commutators are

tQ1, Q1u “ 2H, tQ1, rQ1u “ 2D, t rQ1, rQ1u “ 2K,

rD,Q1s “ i
2Q1, rD, rQ1s “ ´ i

2
rQ1, rK,Q1s “ i rQ1, rK, rQ1u “ ´iQ1,

rD,Hs “ iH, rD,Ks “ ´iK, rH,Ks “ ´2iD. (7.3)

For N “ 2, the differential matrix representation of slp2|1q is given by

Q1 “
1

?
2

ˆ

Bx ¨ A b I `
β

x
¨ Y b I

˙

,

Q2 “
1

?
2

ˆ

Bx ¨ Y b A `
β

x
¨ A b A

˙

,

rQ1 “
i

?
2
x ¨ A b I,

rQ2 “
i

?
2
x ¨ Y b A,

H “
1

2

ˆ

´B2
x `

β2

x2

˙

¨ I b I ´
β

2x2
¨ X b I,

D “ ´
i

2

ˆ

xBx `
1

2

˙

¨ I b I,

K “
1

2
x2 ¨ I b I,

W “
i

4
pX b A ` 2β ¨ I b Aq , (7.4)

where W is the R-symmetry generator. As before, the operators are Hermitian and β is an
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arbitrary real parameter. The nonvanishing slp2|1q (anti)commutators are, for j “ 1, 2,

tQ1, Q1u “ tQ2, Q2u “ 2H, t rQ1, rQ1u “ t rQ2, rQ2u “ 2K,

tQ1, rQ1u “ tQ2, rQ2u “ 2D, tQ1, rQ2u “ ´tQ2, rQ1u “ 2W,

rD,Qjs “ i
2Qj , rD, rQjs “ ´ i

2
rQj , rK,Qjs “ i rQj , rK, rQju “ ´iQj ,

rW,Q1s “ i
2Q2, rW,Q2s “ ´ i

2Q1, rW, rQ1s “ i
2

rQ2, rW, rQ2s “ ´ i
2

rQ1,

rD,Hs “ iH, rD,Ks “ ´iK, rH,Ks “ ´2iD. (7.5)

For N “ 4, the differential matrix representation of Dp2, 1;αq is recovered by the repeated
(anti)commutators of the 4 Qi supercharges and the K generator, given by

Q1 “
1

?
2

ˆ

Bx ¨ A b I b I `
β

x
¨ Y b I b I

˙

,

Q2 “
1

?
2

ˆ

Bx ¨ Y b A b X `
β

x
¨ A b A b X

˙

,

Q3 “
1

?
2

ˆ

Bx ¨ Y b A b Y `
β

x
¨ A b A b Y

˙

,

Q4 “
1

?
2

ˆ

Bx ¨ Y b I b A `
β

x
¨ A b I b A

˙

,

K “
1

2
x2 ¨ I b I b I. (7.6)

The above operators realize, see [53], the Dp2, 1;αq superalgebra with the identification
α “ β ´ 1

2 .

For N “ 8, the differential matrix representation of F p4q is presented in [51].

When applying the statistical transmutations of the supersymmetry, the D,H,K operators
belong to the vanishing graded sector 0. For a given i, the supercharge Qi and its conformal
superpartner rQi belong to the same nonvanishing graded sector. In particular, for N “ 2 we
have

rHs “ rKs “ rDs “ 00, rQ1s “ r rQ1s “ µ, rQ2s “ r rQ2s “ ν, rW s “ µ ` ν mod 2,

(7.7)

for µ ‰ ν taking values 10, 01, 11.
The de Alfaro-Fubini-Furlan [44] Hamiltonian HDFF is introduced through the position

HDFF “ H ` K. (7.8)

It corresponds to a β-deformation of a matrix quantum oscillator.
From now on we specialize to the N “ 2 case, so that

HDFF “
1

2

ˆ

´B2
x `

β2

x2
` x2

˙

¨ I b I ´
β

2x2
¨ X b I, with H:

DFF “ HDFF . (7.9)

We can introduce the j “ 1, 2 pairs of creation/annihilation operators a:

j , aj , defined through

aj :“ Qj ´ i rQj , a:

j :“ Qj ` i rQj . (7.10)
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They satisfy

rHDFF , ajs “ ´aj , rHDFF , a
:

js “ a:

j . (7.11)

Furthermore, we have

ta1, a
:
1u “ ta2, a

:
2u “ 2HDFF . (7.12)

Each creation/annihilation pair satisfies a β-deformed Heisenberg algebra

ra1, a
:
1s “ ra2, a

:
2s “ I4 ´ 2βK for K “ X b I, (7.13)

where K is a Klein operator satisfying

K
2

“ I4, taj ,Ku “ ta:

j ,Ku “ 0, with j “ 1, 2. (7.14)

The creation operators a:

j satisfy

ta:

i , a
:

ju “ 2δijZ, rZ, a:

js “ 0, for i, j “ 1, 2, (7.15)

with

Z “ H ` K ` 2iD. (7.16)

The superalgebra (7.15) reproduces the sqmN“2 (anti)commutators; the difference is that the
operators a:

j , Z are not Hermitian.

An exhaustive analysis of the admissible Hilbert spaces, depending on the range of β, of the
HDFF Hamiltonian is presented in [53]. For β ą ´1

2 we can introduce a single-particle Hilbert

space Hp1q

β through the bosonic Fock vacuum Ψβ:

Ψβpxq “
1

b

Γpβ ` 1
2q

xβe´ 1
2
x2

¨

˚

˚

˝

1
0
0
0

˛

‹

‹

‚

, with a1Ψβpxq “ a2Ψβpxq “ 0. (7.17)

The Gamma function ensures, see [53], that Ψβpxq is normalized to satisfy
ş8

´8
dxTrpΨ:

βΨβq “ 1.

The Hilbert space Hp1q

β is spanned by the vectors |m; r, sy:

Given |m; r, sy :“ Zmpa:
1qrpa:

2qsΨβpxq, for r, s “ 0, 1 and m “ 0, 1, 2, . . .,

we have Hp1q

β “ t|m; r, syu. (7.18)

The vectors |m; r, sy are energy eigenstates with energy eigenvalues

HDFF |m; r, sy “ Em;r,s|m; r, sy, Em;r,s “
1

2
` β ` 2m ` r ` s. (7.19)

The energy spectrum of the model is therefore given by 1
2 ` β ` n, with n “ 0, 1, 2, . . ..

Apart from the vacuum energy Evac :“ E0;0,0 “ 1
2 ` β, all other energy levels are doubly

degenerate, producing the p1, 2, 2, 2, . . .q tower.
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7.2 Statistical transmutations of the N “ 2 DFF deformed oscillator

We now apply the framework discussed in Section 4 to the construction of the 2-particle Hilbert
spaces for each one of the six N “ 2 parastatistics introduced in subsection 6.2.

For a given β ą ´1
2 , the 2-particle Hilbert spaces Hp2q

β,˚ are Fock spaces (the asterisk denotes
the corresponding parastatististics), such that

Hp2q

β,˚ Ă Hp1q

β b Hp1q

β . (7.20)

The 2-particle creation/annihilation operators and Hamiltonian are respectively given by

∆pa:

jq “ a:

j bbr I4 ` I4 bbr a
:

j , for j “ 1, 2.

∆pajq “ aj bbr I4 ` I4 bbr aj , for j “ 1, 2.

∆pHDFF q “ HDFF bbr I4 ` I4 bbr HDFF . (7.21)

The 2-particle Fock vacuum Ψβ;0px, yq is the 16-component vector

Ψβ;0px, yq “
1

Γpβ ` 1
2q

pxyqβe´ 1
2

px2`y2qρ1, (7.22)

where ρ1 is the 16-component vector with entry 1 in the first position and 0 otherwise.
The normalization is chosen so that

ş ş8

´8
dxdyTrpΨ:

β;0Ψβ;0q “ 1.
The vacuum satisfies the conditions

∆pa1qΨβ;0 “ ∆pa2qΨβ;0 “ 0. (7.23)

The Hilbert spaces Hp2q

β,˚ are spanned by the vectors obtained by repeatedly applying the creation

operators ∆pa:
1q, ∆pa:

2q on Ψβ;0px, yq.

The 2-particle energy spectrum is given by the discrete E
p2q

β;n energy eigenvalues

E
p2q

β;n “ 1 ` 2β ` n, with n “ 0, 1, 2, . . ., (7.24)

where E
p2q

β;0 “ 1 ` 2β is the vacuum energy.

Let us introduce the symbols

∆1 “ ∆pa:
1q, ∆2 “ ∆pa:

2q and

∆11 “ ∆1 ¨ ∆1, ∆22 “ ∆2 ¨ ∆2, ∆12 “ ∆1 ¨ ∆2, ∆21 “ ∆2 ¨ ∆1. (7.25)

Up to the second excited states, the 2-particle Hilbert space Hp2q

β is spanned by the energy
eigenvectors

E
p2q

β;0 “ 1 ` 2β : Ψβ;0;

E
p2q

β;1 “ 2 ` 2β : Ψβ;1 “ ∆1Ψβ;0, Ψβ;2 “ ∆2Ψβ;0;

E
p2q

β;2 “ 3 ` 2β : Ψβ;11 “ ∆11Ψβ;0, Ψβ;22 “ ∆22Ψβ;0,Ψβ;12 “ ∆12Ψβ;0, Ψβ;21 “ ∆21Ψβ;0.

(7.26)

It follows that the vacuum state is not degenerate, the degeneracy of the first excited energy

level E
p2q

β;1 is 2, while the degeneracy of the second excited energy level E
p2q

β;2 depends on the
parastatistics.
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Indeed we get, in terms of the ˘1 signs δ11, δ22 and δ12 “ δ21:

∆11 “ Z bbr I4 ` I4 bbr Z ` p1 ` δ11qa:
1 bbr a

:
1,

∆22 “ Z bbr I4 ` I4 bbr Z ` p1 ` δ22qa:
2 bbr a

:
2,

∆12 “ V bbr I4 ` I4 bbr V ` a:
1 bbr a

:
2 ` δ12 ¨ a:

2 bbr a
:
1,

∆21 “ ´V bbr I4 ´ I4 bbr V ` a:
2 bbr a

:
1 ` δ21 ¨ a:

1 bbr a
:
2. (7.27)

In the above formulas we set Z “ a:
1a

:
1 “ a:

2a
:
2 and V “ a:

1a
:
2.

The three independent ˘1 signs δ11, δ22, δ12 are recovered from the εij “ 0, 1 entries (associ-
ated with the given graded operators) presented in the (A.2) tables, through the position

δij “ p´1qεij . (7.28)

The connection of the three signs with the six N “ 2 parastatistics introduced in subsection 6.2
is given by

parastatistics δ11 δ22 δ12
21 : `1 `1 `1

23 : `1 `1 ´1

22α : `1 ´1 `1

22α : ´1 `1 `1

24α : `1 ´1 ´1

24α : ´1 `1 ´1

24β : ´1 ´1 `1

22β : ´1 ´1 ´1

(7.29)

It follows from (7.27) that

∆11 “ ∆22 for δ11 “ δ22 “ ´1 (∆11 is not proportional to ∆22 otherwise),

∆12 “ ´∆21 for δ12 “ ´1 (∆12 is not proportional to ∆21 otherwise).

(7.30)

For δ11 “ δ22 “ ´1, the same ray vector is individuated by Ψβ;11,Ψβ;22; for δ12 “ ´1 the same
ray vector is individuated by Ψβ;12,Ψβ;21.

The degeneracy dg of the energy levels, depending on the parastatistics, is reported in the
table below

parastatistics E “ 1 ` 2β E “ 2 ` 2β E “ 3 ` 2β excitations

21 : 1 2 4 2B

22α : 1 2 4 1F ` 1B

22β : 1 2 2 2F

23 : 1 2 3 2PB

24α : 1 2 3 1PF ` 1PB

24β : 1 2 3 2PF

(7.31)

The last column indicates the type of particles, (para)bosons/(para)fermions, entering the model.
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Measuring the energy degeneracy of the second-excited level (E “ 3 ` 2β) does not allow
to discriminate between the 21 and 22α statistics (dg “ 2) and does not allow to discriminate
the three parastatistics 23, 24α , 24β , with dg “ 3, among themselves. It is nevertheless sufficient
to prove, for the model under consideration, that the Z2

2-graded parastatistics imply a different
type of physics than the ordinary bosons/fermions statistics.

7.3 Summary and comments

In this Section we presented the preliminary investigation of the consequences of the algebraic
statistical transmutations of supersymmetry (applied to Superconformal Quantum Mechanics
with the addition of the de Alfaro-Fubini-Furlan oscillator term). We produced the first evidence
that the Z2

2-graded parastatistics directly affect the energy spectrum of a given quantum model.
This is a new mechanism to detect parastatistics than the one at work for the quantum models of
Section 5 and the quantum models discussed in [6,8]; in those cases new observables, constructed
in terms of exchange operators, have to be measured.

What makes the difference is the fact that the creation operators of the quantum models
presented in Section 5 and in references [6, 8] are nilpotent, while the creation operators of the
DFF deformed oscillator, as shown in formula (7.15), are not nilpotent.

In this Section we laid the ground for a systematic investigation, which will be presented
in a forthcoming paper, of the detectability of the inequivalent parastatistics induced by the
algebraic statistical transmutations of supersymmetry. In the Conclusions we will give more
comments about ongoing and planned future investigations.

8 Conclusions

In this paper we studied the consequences of assuming a Zn
2 grading for an associative ring of

operators. We pointed out that the cn number of inequivalent induced compatible graded Lie
(super)algebras and n-bit parastatistics satisfies cn ě bn, where the lower bound bn is given in
formula (1.1). The equality is satisfied if the original set of operators, belonging to a single class
of equivalence, can be interchanged without affecting their algebraic properties. In the converse
case, when the original set of operators is split into two or more classes of equivalence, the strict
inequality for cn holds.

We computed the cn numbers in some illustrative cases: table (1.3) presents the results for
the 2-bit quaternions, split-quaternions and 3-bit biquaternions; the results obtained for the
one-dimensional N “ 1, 2, 4, 8-extended Supersymmetric Quantum Mechanics (with respective
values of n being n “ 1, 2, 3, 4) are reported in table (1.4).

This analysis has been the starting point to proceed to physical applications. In Section 5 we
produced a class of Zn

2 -graded quantum Hamiltonians which satisfy the bn lower bound. By using
the [6, 8] techniques based on graded Hopf algebras endowed with braided tensor products, we
proved that all bn induced parastatistics are physically detectable in the multi-particle sector of
these quantum models; this is so due to the fact that the presence of paraparticles can be deduced
by measuring the eigenvalues of certain observables. We point out that, to our knowledge, this
is the first example of b3 “ 5 inequivalent Z3

2-graded quantum Hamiltonians being presented.
As a major physical application we started investigating the algebraic statistical transmuta-

tions of the Supersymmetric and Superconformal Quantum Mechanics. The framework of the
Superconformal Quantum Mechanics with the addition of the de Alfaro-Fubini-Furlan [44] os-
cillator term is a favourite playground to present such analysis due to the neatness of the results



CBPF-NF-002/23 36

that it produces (uniqueness of the vacuum, discreteness of the energy spectrum, etc.).
Already the simplest setting, namely the N “ 2 model with slp2|1q spectrum-generating

superalgebra, produces a new mechanism to detect Z2
2-graded paraparticles that, to our knowl-

edge, has not been discussed in the literature: in the 2-particle sector the degeneracy of the
energy eigenstates which is recovered from Z2

2-graded (para)bosons/(para)fermions cannot be
reproduced, see table (7.31), by assigning ordinary bosonic/fermionic statistics to the particle
creation operators.

The presented results prove that, in well-defined theoretical settings, the n-bit parastatistics
of Zn

2 -graded quantum Hamiltonians produce inequivocal, physically measurable, consequences.
This outcome provides further motivation for the recent boost of activity, pursued by different
groups and recalled in the Introduction, on physical and mathematical aspects of Zn

2 -graded
color Lie algebras and superalgebras.

It is in the light of these considerations that we introduced, in Appendix B, a Boolean logic
gates presentation of the inequivalent Zn

2 -graded brackets of Lie type. This presentation can be
regarded as a possible blueprint to help experimentalists to either simulate or engineer in the
laboratory the n-bit paraparticles (in the Introduction we already recalled, for a different type
of parastatistics, the simulated/engineered paraparticles dicussed in [9, 10]).

Possibly, the most promising applications would come from condensed matter; it was pointed
out in [31] that Z2

2-graded superdivision algebras allow to go beyond the celebrated [54,55] 10-fold
way of the periodic table of topological insulators and superconductors (in [31] the connection of
certain parafermionic Hamiltonians with Z2

2-graded superdivision algebras has been illustrated).
Section 7 lays the ground for a systematic analysis, which will be presented in a forthcom-

ing paper, of the statistical transmutations of the one-dimensional N -extended Superconformal
Quantum Mechanics. We sketch the main issues that will be postponed to this future work; they
include the derivation of the statistical transmutations of the models with spectrum-generating
superalgebras Dp2, 1;αq (for N “ 4) and F p4q (for N “ 8), the degeneracies of the multipar-
ticle energy spectra and the analysis of the possible role of extra observables related with the
R-symmetry generators. A fascinating topics concerns the statistically transmuted spectrum-
generating graded (super)algebras. Each parastatistics defines its own spectrum-generating (su-
per)algebra which controls the energy degeneracy of the multiparticle sector. The transmuted
spectrum-generated (super)algebras are finite, but not necessarily linear (super)algebras (alter-
natively, in the unfolded formalism, they are presented as infinitely generated, linear, graded
(super)algebras). In this dynamical setting the role of the simple Z2 ˆZ2-graded Lie superalge-
bras, as the ones introduced in [28–30], should be properly understood. Their connection with
parastatistics was motivated by the [56,57] interpretation that the Green’s trilinear relations [41]
are implemented as graded Jacobi identities of superalgebras. On the other hand, the famous
Wigner’s quantization of the harmonic oscillator presented in [58] can be rephrased, with a
modern terminology [59], as a case of statistical transmutation. On the bosonic side we have the
non-semisimple Schrödinger algebra as dynamical symmetry of the Schrödinger equation [60,61]
and which acts as spectrum-generating algebra of the harmonic oscillator; on the fermionic side
of the picture the spectrum of the harmonic oscillator is recovered from an irreducible repre-
sentation of the ospp1|2q superalgebra. The Zn

2 -graded extensions of this construction to n-bit
parastatistics require a careful investigation.

We finally mention that in this paper Klein operators, such as the one entering formula
(7.13), have been derived but not directly used in the construction of parastatistics. Klein
operators were employed in [62] to switch statistics. The [21] construction, which makes use of
them to describe a Z2

2-graded Lie superalgebra, can be extended to any Zn
2 -graded compatible

Lie (super)algebra inducing an n-bit parastatistics.
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Appendix A: tables (up to n ď 4) of the inequivalent graded
brackets compatible with n-bit particles’ assignments

In this Appendix we present the tables (up to n ď 4) of the inequivalent graded Lie brackets
which are compatible with the n-bit assignments of particles (para)statistics. They are given
by Zn

2 ˆ Zn
2 Ñ Z2 mappings. Following our conventions the 0 entries correspond to commu-

tators, while the 1 entries correspond to anticommutators. The tables are symmetric in the
exchange of rows and columns. The tables with all vanishing elements in the diagonal define
the (para)bosonic graded algebras; in [1–3], by taking into account the mod 2 property, they
were expressed as antisymmetric matrices (one can just flip the signs of the lower triangular
entries, so that `1 ÞÑ ´1); to make contact with the Boolean logic we prefer here to work
with non-negative entries only. A 0 diagonal entry implies that the corresponding particle is a
(para)boson, while a 1 diagonal entry implies that the corresponding particle is a (para)fermion
satisfying the Pauli’s exclusion principle (see [8] for a discussion).

The following tables are labeled as “nk”, denoting the k-th graded bracket of the n-bit case;
k is restricted to the values k “ 1, . . . , bn, where the maximal value bn is given in (2.13). The
representatives of the inequivalent brackets are:

- The b1 “ 2 inequivalent brackets of n “ 1:

11 case:

0 1

0 0 0
1 0 0

(comment: an ordinary Lie algebra),

12 case:

0 1

0 0 0
1 0 1

(comment: an ordinary Lie superalgebra);

(A.1)

- The b2 “ 4 inequivalent brackets of n “ 2:
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21 case:

00 10 01 11

00 0 0 0 0
10 0 0 0 0
01 0 0 0 0
11 0 0 0 0

(comment: an ordinary Lie algebra),

22 case:

00 10 01 11

00 0 0 0 0
10 0 1 1 0
01 0 1 1 0
11 0 0 0 0

(comment: an ordinary Z2-graded Lie superalgebra),

23 case:

00 10 01 11

00 0 0 0 0
10 0 0 1 1
01 0 1 0 1
11 0 1 1 0

(comment: the Z2
2 color Lie algebra),

24 case:

00 10 01 11

00 0 0 0 0
10 0 1 0 1
01 0 0 1 1
11 0 1 1 0

(comment: the Z2
2 color Lie superalgebra);

(A.2)

Comment: for each one of the above four cases equivalent presentations are obtained by
rearranging (permuting) rows and columns.

- The b3 “ 5 inequivalent brackets of n “ 3:

the rows (columns) are labeled by 3-bit, α1, α2, α3 (and, respectively, β1, β2, β3). The 1-bit
entries are expressed as mod 2 formulas.
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31 case:

000 100 010 001 110 101 011 111

000 0 0 0 0 0 0 0 0
100 0 0 0 0 0 0 0 0
010 0 0 0 0 0 0 0 0
001 0 0 0 0 0 0 0 0
110 0 0 0 0 0 0 0 0
101 0 0 0 0 0 0 0 0
011 0 0 0 0 0 0 0 0
111 0 0 0 0 0 0 0 0

(the Lie algebra with all 0 entries),

32 case:

000 100 010 001 110 101 011 111

000 0 0 0 0 0 0 0 0
100 0 0 1 0 1 0 1 1
010 0 1 0 0 1 1 0 1
001 0 0 0 0 0 0 0 0
110 0 1 1 0 0 1 1 0
101 0 0 1 0 1 0 1 1
011 0 1 0 0 1 1 0 1
111 0 1 1 0 0 1 1 0

(from α1β2 ` α2β1 mod 2),

33 case:

000 100 010 001 110 101 011 111

000 0 0 0 0 0 0 0 0
100 0 1 0 0 1 1 0 1
010 0 0 0 0 0 0 0 0
001 0 0 0 0 0 0 0 0
110 0 1 0 0 1 1 0 1
101 0 1 0 0 1 1 0 1
011 0 0 0 0 0 0 0 0
111 0 1 0 0 1 1 0 1

(from α1β1 mod 2),

34 case:

000 100 010 001 110 101 011 111

000 0 0 0 0 0 0 0 0
100 0 1 0 0 1 1 0 1
010 0 0 1 0 1 0 1 1
001 0 0 0 0 0 0 0 0
110 0 1 1 0 0 1 1 0
101 0 1 0 0 1 1 0 1
011 0 0 1 0 1 0 1 1
111 0 1 1 0 0 1 1 0

(from α1β1 ` α2β2 mod 2),

35 case:

000 100 010 001 110 101 011 111

000 0 0 0 0 0 0 0 0
100 0 1 0 0 1 1 0 1
010 0 0 1 0 1 0 1 1
001 0 0 0 1 0 1 1 1
110 0 1 1 0 0 1 1 0
101 0 1 0 1 1 0 1 0
011 0 0 1 1 1 1 0 0
111 0 1 1 1 0 0 0 1

(from α1β1 ` α2β2 ` α3β3 mod 2).

(A.3)

The inequivalence of the 5 graded brackets is spotted in terms of:
i) the number Rpnkq of nonvanishing rows and
ii) the trace Trpnkq of the above matrices.
We have

Trp31q “ Trp32q “ 0, T rp33q “ Trp34q “ Trp35q “ 4, (A.4)
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which implies that the cases 31 and 32 correspond to (para)bosonic Lie algebras.
The numbers of nonvanishing rows are given by

Rp31q “ 0, Rp32q “ 6, Rp33q “ 4, Rp34q “ 6, Rp35q “ 7. (A.5)

- The b4 “ 7 inequivalent brackets of n “ 4:

the rows (columns) are labeled by 4-bit, α1, α2, α3, α4 (and, respectively, β1, β2, β3, β4). The
1-bit entries are expressed as mod 2 formulas.

41 case:
0000 1000 0100 0010 0001 1100 1010 1001 0110 0101 0011 1110 1101 1011 0111 1111

0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0010 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1010 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0101 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0011 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1101 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1011 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0111 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1111 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

42 case:
0000 1000 0100 0010 0001 1100 1010 1001 0110 0101 0011 1110 1101 1011 0111 1111

0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1000 0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1
0100 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1
0010 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1100 0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 0
1010 0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1
1001 0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1
0110 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1
0101 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1
0011 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1110 0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 0
1101 0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 0
1011 0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1
0111 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1
1111 0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 0
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43 case:
0000 1000 0100 0010 0001 1100 1010 1001 0110 0101 0011 1110 1101 1011 0111 1111

0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1000 0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1
0100 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1
0010 0 0 0 0 1 0 0 1 0 1 1 0 1 1 1 1
0001 0 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1
1100 0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 0
1010 0 0 1 0 1 1 0 1 1 0 1 1 0 1 0 0
1001 0 0 1 1 0 1 1 0 0 1 1 0 1 1 0 0
0110 0 1 0 0 1 1 1 0 0 1 1 1 0 0 1 0
0101 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0
0011 0 0 0 1 1 0 1 1 1 1 0 1 1 0 0 0
1110 0 1 1 0 1 0 1 0 1 0 1 0 1 0 0 1
1101 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 1
1011 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1
0111 0 1 0 1 1 1 0 0 1 1 0 0 0 1 0 1
1111 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0

44 case:
0000 1000 0100 0010 0001 1100 1010 1001 0110 0101 0011 1110 1101 1011 0111 1111

0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1000 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1
0100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0010 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1100 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1
1010 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1
1001 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1
0110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0101 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0011 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1110 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1
1101 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1
1011 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1
0111 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1111 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1

45 case:
0000 1000 0100 0010 0001 1100 1010 1001 0110 0101 0011 1110 1101 1011 0111 1111

0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1000 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1
0100 0 0 1 0 0 1 0 0 1 0 0 1 1 0 1 1
0010 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1100 0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 0
1010 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1
1001 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1
0110 0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1
0101 0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1
0011 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1110 0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 0
1101 0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 0
1011 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1
0111 0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1
1111 0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 0
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46 case:
0000 1000 0100 0010 0001 1100 1010 1001 0110 0101 0011 1110 1101 1011 0111 1111

0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1000 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1
0100 0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1
0010 0 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1
0001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1100 0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 0
1010 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0
1001 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1
0110 0 0 1 1 0 1 1 0 0 1 1 0 1 1 0 0
0101 0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1
0011 0 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1
1110 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 1
1101 0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 0
1011 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0
0111 0 0 1 1 0 1 1 0 0 1 1 0 1 1 0 0
1111 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 1

47 case:
0000 1000 0100 0010 0001 1100 1010 1001 0110 0101 0011 1110 1101 1011 0111 1111

0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1000 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1
0100 0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1
0010 0 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1
0001 0 0 0 0 1 0 0 1 0 1 1 0 1 1 1 1
1100 0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 0
1010 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0
1001 0 1 0 0 1 1 1 0 0 1 1 1 0 0 1 0
0110 0 0 1 1 0 1 1 0 0 1 1 0 1 1 0 0
0101 0 0 1 0 1 1 0 1 1 0 1 1 0 1 0 0
0011 0 0 0 1 1 0 1 1 1 1 0 1 1 0 0 0
1110 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 1
1101 0 1 1 0 1 0 1 0 1 0 1 0 1 0 0 1
1011 0 1 0 1 1 1 0 0 1 1 0 0 0 1 0 1
0111 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1
1111 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0

(A.6)

The entries of the corresponding cases are given by
41: 0,
42: α1β2 ` α2β1 mod 2 ,
43: α1β2 ` α2β1 ` α3β4 ` α4β3 mod 2,
44: α1β1 mod 2,
45: α1β1 ` α2β2 mod 2,
46: α1β1 ` α2β2 ` α3β3 mod 2,
47: α1β1 ` α2β2 ` α3β3 ` α4β4 mod 2.

(A.7)

The inequivalence of the 7 graded brackets is spotted in terms of:
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i) the number Rpnkq of nonvanishing rows and
ii) the trace Trpnkq of the above matrices.
We have

Trp41q “ Trp42q “ Trp43q “ 0, T rp44q “ Trp45q “ Trp46q “ Trp47q “ 8, (A.8)

which implies that the cases 41, 42 and 43 correspond to (para)bosonic Lie algebras.
The numbers of nonvanishing rows are given by

Rp41q “ 0, Rp42q “ 12, Rp43q “ 15, Rp44q “ 8, Rp45q “ 12, Rp46q “ 14, Rp47q “ 15.

(A.9)

Appendix B: The logic gates presentation of graded Lie brackets

In this Appendix we illustrate how the tables of the inequivalent graded Lie brackets are refor-
mulated in terms of Boolean logic gates (the motivations to introduce this reformulation have
been discussed in Subsection 2.2). The Boolean logic presentation requires a few steps. At
first the graded sectors entering the tables given in Appendix A are rearranged in a Gray code
presentation (only one bit changes from one graded sector to the next one). This rearrange-
ment offers the possibility to use Karnaugh maps which, further simplified, allow to express the
graded-bracket tables in terms of the logical gates “AND”, “OR”,“XOR” and of the “NOT”
operation. In their tables of truth, the outputs of these operations acting on a, b “ 0, 1 are

NOT:
0 ñ 1
1 ñ 0

, AND:

0, 0 ñ 0
0, 1 ñ 0
1, 0 ñ 0
1, 1 ñ 1

, OR:

0, 0 ñ 0
0, 1 ñ 1
1, 0 ñ 1
1, 1 ñ 1

, XOR:

0, 0 ñ 0
0, 1 ñ 1
1, 0 ñ 1
1, 1 ñ 0

.

(B.1)

The symbols used to denote the above operations are

NOT: a ÞÑ a, AND: a, b ÞÑ a ¨ b, OR: a, b ÞÑ a ` b, XOR: a, b ÞÑ a ‘ b. (B.2)

For n “ 2, Gray code presentations of the 22, 23, 24 cases of Appendix A are given by

- 22 case:

(B.3)

- 23 case:

(B.4)



CBPF-NF-002/23 44

- 24 case:

(B.5)

The 1 entries in the above tables are encircled to indicate how they are grouped together in
a Karnaugh map. The horizontal/vertical neighbouring 1 entries are grouped, when possible, in
even numbers (the possible exception is an isolated “1” in a table). After grouping the entries
in pairs, one checks which bit (they are α1, α2, β1, β2 in the above tables) varies in passing from
one encircled row (column) to another row (column). Let us consider, as an example, in table
(B.5) the encircled row from α1 “ 0, α2 “ 1. The β2 bit remains constant (β2 “ 1), while β1
changes from 0 to 1. The non-varying bits in this encircled row are α1, α2, β2. The Karnaugh
map associates with this row the following mod 2 value obtained from the non-varying bits:

α1 ¨ α2 ¨ β2. (B.6)

The bar over α1 denotes the NOT operation; it is due to the fact that, in the encircled row,
α1 “ 0 (while α2 “ β2 “ 1). The different encircled pairs are added with the OR operation. As
a result, the (B.5) table is encoded in the mod 2 equality

xα, βy “ α1 ¨ α2 ¨ β2 ` α1 ¨ α2 ¨ β1 ` α2 ¨ β1 ¨ β2 ` α1 ¨ β1 ¨ β2. (B.7)

Further simplifications are allowed by grouping xα, βy as

xα, βy “ α2 ¨ β2 ¨ pα1 ` β1q ` α1 ¨ β1 ¨ pα2 ` β2q. (B.8)

The next step makes use of the De Morgan’s theorem (i.e., a ` b “ a ¨ b), so that we can write

xα, βy “ α2 ¨ β2 ¨ pα1 ¨ β1q ` α1 ¨ β1 ¨ pα2 ¨ β2q. (B.9)

The final simplification makes use of the XOR operation which satisfies, mod 2,

a ‘ b “ a ¨ b ` a ¨ b. (B.10)

The (B.5) table is then rendered as

xα, βy “ pα1 ¨ β1q ‘ pα2 ¨ β2q. (B.11)

By using the standard graphic presentation of the logic gates, the simplification leading to (B.11)
can be expressed as

(B.12)
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One should note that the symbol of the NAND operation (the combination of NOT with AND
leading to a, b ÞÑ a ¨ b) enters the graph on the left.

The above construction can be repeated for the other n “ 2 (and also n ą 2) tables. In the
Boolean graphical presentation, the xα, βy scalar products of the 22, 23, 24 cases are given by

22 : xα, βy “ α2 ¨ β2 ñ (B.13)

23 : xα, βy “ pα1 ¨ β2q ‘ pα2 ¨ β1q ñ (B.14)

24 : xα, βy “ pα1 ¨ β1q ‘ pα2 ¨ β2q ñ (B.15)

In terms of the Boolean logic operators, the xα, βy scalar products of the five 3-bit cases (A.3)
are expressed as

31 : xα, βy “ 0,

32 : xα, βy “ pα1 ¨ β2q ‘ pα2 ¨ β1q,

33 : xα, βy “ α1 ¨ β1,

34 : xα, βy “ pα1 ¨ β1q ‘ pα2 ¨ β2q,

35 : xα, βy “ pα1 ¨ β1q ‘ pα2 ¨ β2q ‘ pα3 ¨ β3q. (B.16)

The extension of this presentation to the n-bit scalar products with n ą 3 is straightforward.

Appendix C: the graded Lie (super)algebras of (split-)quaternions

As a propaedeutic to the construction and classification in Appendix E of the 3-bit compatible
Z3
2-graded Lie (super)algebras of biquaternions, we discuss in detail the recovering of the 2-

bit, Z2
2-graded compatible Lie (super)algebras over the reals induced by quaternions and split-

quaternions.
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Quaternions and split-quaternions are obtained from an ε-dependent Cayley-Dickson’s dou-
bling of the complex numbers (for ε “ ˘1); the sign assignment ε “ ´1 produces the division
algebra of the quaternions, while the ε “ `1 value produces its split version (see [63, 64] for
details of the construction).

The four generators of the quaternions will be denoted as e0, ei, while the four generators
of the split-quaternions will be denoted as re0, rei. In both cases i “ 1, 2, 3. The generators
e0, re0 are the respective identity elements. The Z2

2 multiplicative grading of quaternions and
split-quaternions is preserved by faithful 4 ˆ 4 real matrix representations.

Without loss of generality, in terms of the 2 ˆ 2 real matrices denoted as

I “

ˆ

1 0
0 1

˙

, X “

ˆ

1 0
0 ´1

˙

, Y “

ˆ

0 1
1 0

˙

, A “

ˆ

0 1
´1 0

˙

, (C.1)

we can set for the quaternions:

e0 “ I b I, e1 “ A b I, e2 “ Y b A, e3 “ X b A, (C.2)

so that

e0 “

¨

˚

˚

˝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

˛

‹

‹

‚

, e1 “

¨

˚

˚

˝

0 0 1 0
0 0 0 1

´1 0 0 0
0 ´1 0 0

˛

‹

‹

‚

, e2 “

¨

˚

˚

˝

0 0 0 1
0 0 ´1 0
0 1 0 0

´1 0 0 0

˛

‹

‹

‚

, e3 “

¨

˚

˚

˝

0 1 0 0
´1 0 0 0
0 0 0 ´1
0 0 1 0

˛

‹

‹

‚

(C.3)

and, for the split-quaternions:

re0 “ I b I, re1 “ A b I, re2 “ Y b Y, re3 “ X b Y, (C.4)

so that

re0 “

¨

˚

˚

˝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

˛

‹

‹

‚

, re1 “

¨

˚

˚

˝

0 0 1 0
0 0 0 1

´1 0 0 0
0 ´1 0 0

˛

‹

‹

‚

, re2 “

¨

˚

˚

˝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

˛

‹

‹

‚

, re3 “

¨

˚

˚

˝

0 1 0 0
1 0 0 0
0 0 0 ´1
0 0 ´1 0

˛

‹

‹

‚

.

(C.5)

The identity operators e0, re0 are always associated with the 2-bit 00-graded sector, while the
remaining operators are accommodated into the 10, 01 and 11-graded sectors. The 4 compatible
graded Lie (super)algebras (denoted as 21, 22, 23, 24) are given in Appendix A, formula (A.2).

Remark: we point out that in cases 21 and 23 the graded sectors 10, 01, 11 are all on equal
footing. On the other hand, in cases 22 and 24, the 11-graded sector is singled out with respect
to the 10 and 01 graded sectors. Indeed, the 11 sector of the 22 case corresponds to a boson,
while 10 and 01 correspond to fermions; in the 24 case 11 corresponds to an “exotic boson” (see
the discussion in [20]), while 10 and 01 correspond to parafermions.

The above remark is irrelevant for the graded (super)algebras induced by the quaternions.
This is so because the three imaginary quaternions e1, e2, e3 are on equal footing and can be
interchanged.
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On the other hand the remark becomes relevant in the construction of the graded (su-
per)algebras induced by the split-quaternions; in this case one of the generators (given in formula
(C.5) by re1) is singled out with respect to re2, re3: by noticing that re21 “ ´re0, while re22 “ re23 “ re0,
we can state that re1 is a “marked” generator.

The above observation implies that we recover 4 inequivalent graded Lie (super)algebras
from quaternions and 6 inequivalent graded Lie (super)algebras from split-quaternions. These
graded Lie (super)algebras are defined by the respective sets of (anti)commutators.

The 4 inequivalent quaternionic graded Lie (super)algebras will be denoted as q1, q2, q3, q4.
Their presentation is as follows:

q1 from 21 with sectors assignments e0 P r00s, e1 P r10s, e2 P r01s, e3 P r11s, so that

re0, e1s “ re0, e2s “ re0, e3s “ 0, re1, e2s “ 2e3, re2, e3s “ 2e1, re3, e1s “ 2e2; (C.6)

q2 from 22 with sectors assignments e0 P r00s, e1 P r10s, e2 P r01s, e3 P r11s, so that

re0, e1s “ re0, e2s “ re0, e3s “ 0, re1, e3s “ ´2e2, re2, e3s “ 2e1,

te1, e1u “ te2, e2u “ ´2e0, te1, e2u “ 0; (C.7)

q3 from 23 with sectors assignments e0 P r00s, e1 P r10s, e2 P r01s, e3 P r11s, so that

re0, e1s “ re0, e2s “ re0, e3s “ 0, te1, e2u “ te2, e3u “ te3, e1u “ 0; (C.8)

q4 from 24 with sectors assignments e0 P r00s, e1 P r10s, e2 P r01s, e3 P r11s, so that

re0, e1s “ re0, e2s “ re0, e3s “ 0, re1, e2s “ 2e3,

te1, e1u “ te2, e2u “ ´2e0, te1, e3u “ te2, e3u “ 0. (C.9)

Comment: q3 and q4 enter the [20] classification of minimal Z2
2-graded Lie (super)algebras

(q3 corresponds to the algebra A7 and q4 to the superalgebra S10ε“`1).

The 6 inequivalent split-quaternionic graded Lie (super)algebras will be denoted as rq1, rq2α,
rq2β, rq3, rq4α, rq4β. Their presentation is as follows:

rq1 from 21 with sectors assignments re0 P r00s, re1 P r10s, re2 P r01s, re3 P r11s, so that

rre0, re1s “ rre0, re2s “ rre0, re3s “ 0, rre1, re2s “ 2re3, rre2, re3s “ ´2re1, rre3, re1s “ 2re2; (C.10)

rq2α from 22 with sectors assignments re0 P r00s, re1 P r10s, re2 P r01s, re3 P r11s, so that

rre0, re1s “ rre0, re2s “ rre0, re3s “ 0, rre1, re3s “ ´2re2, rre2, re3s “ ´2re1,

tre1, re1u “ ´2re0, tre2, re2u “ 2re0, tre1, re2u “ 0; (C.11)

rq2β from 22 with sectors assignments re0 P r00s, re1 P r11s, re2 P r10s, re3 P r01s, so that

rre0, re1s “ rre0, re2s “ rre0, re3s “ 0, rre1, re2s “ 2re3, rre1, re3s “ ´2re2,

tre2, re2u “ tre3, re3u “ 2re0, tre2, re3u “ 0; (C.12)
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rq3 from 23 with sectors assignments re0 P r00s, re1 P r10s, re2 P r01s, re3 P r11s, so that

rre0, re1s “ rre0, re2s “ rre0, re3s “ 0, tre1, re2u “ tre2, re3u “ tre3, re1u “ 0; (C.13)

rq4α from 24 with sectors assignments re0 P r00s, re1 P r10s, re2 P r01s, re3 P r11s, so that

rre0, re1s “ rre0, re2s “ rre0, re3s “ 0, rre1, re2s “ 2re3,

tre1, re1u “ ´2re0, tre2, re2u “ 2re0, tre1, re3u “ tre2, re3u “ 0; (C.14)

rq4β from 24 with sectors assignments re0 P r00s, re1 P r11s, re2 P r10s, re3 P r01s, so that

rre0, re1s “ rre0, re2s “ rre0, re3s “ 0, rre2, re3s “ ´2re1,

tre2, re2u “ tre3, re3u “ 2re0, tre1, re2u “ tre1, re3u “ 0. (C.15)

Comment: rq3, rq4α, rq4β enter the [20] classification of minimal Z2
2-graded Lie (super)algebras

(rq3 corresponds to the algebra A7, rq4α to the superalgebra S10ε“´1 and rq4β to the superalgebra
S10ε“`1).

Appendix D: on the assignments of Z3
2 graded sectors

The combinatorics which are used to derive the 16 inequivalent graded Lie (super)algebras of
the biquaternions and the 10 statistical transmutations of the N “ 4 supersymmetric quantum
mechanics are based on the admissible 3-bit assignments of the Z3

2 graded sectors. Here we
present two tables which clarify this feature.

The Z3
2 grading of 8ˆ 8 matrices implies that the 0 “ 000 (i.e., zero-vector) graded elements

belong to the diagonal, while the 7 remaining sectors are expressed in terms of any choice of
three fundamental gradings α, β, γ according to the following mod 2 relations. The ˚ symbol
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denotes, for each graded sector, which entries of the 8 ˆ 8 matrices can be nonvanishing:

0 ” 000 :

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

˚

˚

˚

˚

˚

˚

˚

˚

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, α :

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

˚

˚

˚

˚

˚

˚

˚

˚

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

β :

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

˚

˚

˚

˚

˚

˚

˚

˚

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, γ :

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

˚

˚

˚

˚

˚

˚

˚

˚

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

α ` β :

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

˚

˚

˚

˚

˚

˚

˚

˚

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, α ` γ :

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

˚

˚

˚

˚

˚

˚

˚

˚

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

β ` γ :

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

˚
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. (D.1)

In another schematical presentation, the 3-bit nonzero vectors can be assigned to the 7 vertices
of the Fano’s plane. For each one of the 7 edges, the sum mod 2 of the vectors of any two vertices
gives the 3-bit vector of the third vertex lying on the edge:

(D.2)
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Appendix E: the graded Lie (super)algebras of biquaternions

The algebra HB of the biquaternions can be regarded as the tensor product C ˆ H of the
complex numbers with the quaternions (over the reals). It admits 8 generators which can be
accommodated into a Z3

2 multiplicative grading (therefore, a 3-bit assignment). A faithful 8ˆ 8
matrix representation which respects the grading can be expressed by tensoring the 2ˆ2 matrices
I,X, Y,A introduced in (C.1). We can set

f0 “ I b I b I, f1 “ I b A b I, f2 “ I b Y b A, f3 “ I b X b A,

g0 “ A b I b I, g1 “ A b A b I, g2 “ A b Y b A, g3 “ A b X b A. (E.1)

By taking into account the definitions of the I,X, Y,A matrices, the following multiplication
table can be derived:

f0 f1 f2 f3 g0 g1 g2 g3
f0 f0 f1 f2 f3 g0 g1 g2 g3
f1 f1 ´f0 f3 ´f2 g1 ´g0 g3 ´g2
f2 f2 ´f3 ´f0 f1 g2 ´g3 ´g0 g1
f3 f3 f2 ´f1 ´f0 g3 g2 ´g1 ´g0
g0 g0 g1 g2 g3 ´f0 ´f1 ´f2 ´f3
g1 g1 ´g0 g3 ´g2 ´f1 f0 ´f3 f2
g2 g2 ´g3 ´g0 g1 ´f2 f3 f0 ´f1
g3 g3 g2 ´g1 ´g0 ´f3 ´f2 f1 f0

(E.2)

The entries in the above table give the left action of a row generator on a column generator.
The generator f0 corresponds to the identity operator, while g0 corresponds to the imagi-

nary unit (g0 commutes with all other generators). The quaternionic subalgebra is spanned by
f0, f1, f2, f3.

The 7 extra generators, besides the identity, fall into 3 different classes of equivalence
(A,B,C) which, extending the analysis of Appendix C, “mark” them. The classes are de-
termined by the operations which leave invariant the multiplication table (E.2); they are the
permutations of the generators in a given class possibly coupled with a ˘1 sign normalization
of the generators. We have

f1, f2, f3 P A, g0 P B, g1, g2, g3 P C. (E.3)

As usual, the identity operator f0 is assigned to the 000-grading, so that

rf0s “ 000. (E.4)

The 3-bit grading assignments of the remaining generators are recovered from the grading as-
signments of f1, f2 and g0; let’s express rf1s “ α, rf2s “ β, rg0s “ γ. The Z3

2-grading consistency
requires

rf0s “ 000, rf1s “ α, rf2s “ β, rf3s “ α ` β,
rg0s “ γ, rg1s “ α ` γ, rg2s “ β ` γ, rg3s “ α ` β ` γ,

(E.5)

where, in the above formulas, the sums are mod 2.
The inequivalent graded Lie (super)algebras which are compatible with the multiplicative

Z3
2 grading assignments are the 5 ones listed in (A.3) and named as 31, 32, 33, 34, 35.
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We can extend the analysis done in Appendix C for the 2-bit assignments and present which
graded sectors (besides 000) are singled out in each one of the 5 tables given in (A.3). The
results are the following:

31 case - the seven sectors 100, 010, 001, 110, 101, 011, 111 are all on equal footing and corre-
spond to bosonic particles;

32 case - the sector 001 is singled out because it corresponds to a bosonic particle, while
the six remaining sectors 100, 010, 110, 101, 011, 111 correspond to parabosons and are on equal
footing;

33 case - the three sectors 010, 001, 011 correspond to bosonic particles, while the remaining
four sectors 100, 110, 101, 111 correspond to fermions;

34 case - the 7 graded sectors are divided into 3 types: 001 corresponds to a bosonic particle,
110 and 111 to parabosons, 100, 010, 101, 011 to parafermions;

35 case - the three sectors 110, 101, 011 correspond to parabosons, while the remaining four
sectors 100, 010, 001, 111 correspond to parafermions.

(E.6)

Therefore, the 7 extra graded sectors (besides 000) are split into the following classes:

31 : 7, 32 : 1 ` 6, 33 : 3 ` 4, 34 : 1 ` 2 ` 4, 35 : 3 ` 4. (E.7)

Inequivalent graded Lie (super)algebras are obtained by assigning the 7 marked generators (E.3)
belonging to A,B,C to the above different classes of graded sectors. The computation gives, for
each one of the 5 cases, the following subcases:

31 case - 1 graded Lie algebra which can be presented as

31,i: α “ 100, β “ 010, γ “ 001 (E.8)

(all other presentations are equivalent);

32 case - 3 inequivalent graded Lie algebras which can be presented as

32,i: α “ 100, β “ 010, γ “ 001,

32,ii: α “ 001, β “ 010, γ “ 100,

32,iii: α “ 111, β “ 010, γ “ 100 (E.9)

(the singled-out sector 001 has been underlined; in the 32,iii case it is assigned to the C generator
g3 whose grading is α ` β ` γ);

33 case - 3 inequivalent graded Lie superalgebras which, taking into account the 3 ` 4
(010, 001, 011{100, 110, 101, 111) split, can be presented as

33,i: α “ 010, β “ 001, γ “ 111,

33,ii: α “ 010, β “ 100, γ “ 111,

33,iii: α “ 010, β “ 100, γ “ 011 (E.10)
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(either the three A generators f1, f2, f3 can all be accommodated in the 010, 001, 011 sectors, or
just one of them; the last scenario leaves two inequivalent possibilities for the γ grading of g0:
either it is accommodated into the 010, 001, 011 sectors or not);

34 case - 6 inequivalent graded Lie superalgebras which, taking into account the 1 ` 2 ` 4
(001{110, 111{100, 010, 101, 011) split, can be presented as

34,i: α “ 001, β “ 110, γ “ 100,

34,ii: α “ 001, β “ 100, γ “ 110,

34,iii: α “ 001, β “ 100, γ “ 011,

34,iv: α “ 110, β “ 100, γ “ 001,

34,v: α “ 110, β “ 100, γ “ 111,

34,vi: α “ 110, β “ 100, γ “ 011 (E.11)

(let us denote as a, b, c the respective graded sectors of the 1 ` 2 ` 4 decomposition; either the
three A generators f1, f2, f3 are all accommodated in the a, b sectors, implying that γ must be
accommodated into c or, alternatively, only one of the three A generators can be accommodated
in a or b. If this generator is accommodated in a, it leaves two possibilities for γ entering b or
c. If this generator is accommodated in c, γ has three inequivalent possibilities: it can enter a,
b or c).

35 case - 3 inequivalent graded Lie superalgebras which, taking into account the 3 ` 4
(110, 101, 011{100, 010, 001, 111) split, can be presented as

35,i: α “ 110, β “ 101, γ “ 100,

35,ii: α “ 110, β “ 100, γ “ 111,

35,iii: α “ 110, β “ 100, γ “ 011 (E.12)

(one repeats the analysis of the 33 case which is also based on a 3`4 split of the graded sectors).

Therefore, the total number nB of inequivalent graded Lie (super)algebras which are com-
patible with the Z3

2 multiplicative grading of the biquaternions is

nB “ 1 ` 3 ` 3 ` 6 ` 3 “ 16. (E.13)

To save space, we limit here to present the sets of defining (anti)commutators for the three
inequivalent superalgebras recovered from the 35 case. All these three subcases are defined in
terms of 32 (anti)commutators. The 7 common ones are

rf0, zs “ 0 for any z P HB. (E.14)

The remaining (anti)commutators are the following.

For 35,i, 9 of the remaining defining brackets are vanishing,

rg0, g1s “ rg0, g2s “ rg0, f3s “ tg1, f3u “ tg2, f3u “ tf1, f2u “ tf1, f3u “ tf2, f3u “ rf3, g3s “ 0

and 16 are nonvanishing:

tg0, g0u “ ´2f0, tg0, f1u “ 2g1, tg0, f2u “ 2g2, tg0, g3u “ ´2f3, tg1, g1u “ 2f0,

rg1, g2s “ ´2f3, tg1, f1u “ ´2g0, rg1, f2s “ 2g3, tg1, g3u “ ´2f2, tg2, g2u “ 2f0,

rg2, f1s “ ´2g3, tg2, f2u “ ´2g0, tg2, g3u “ ´2f1, rf1, g3s “ ´2g2, rf2, g3s “ 2g1,

tg3, g3u “ 2f0. (E.15)
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For 35,ii, 15 of the remaining defining brackets are vanishing,

tf2, f1u “ tf2, g3u “ rf2, g2s “ tf3, f1u “ rf3, g3s “ tf3, g2u “ rg1, f1s “ tg1, g3u “

“ tg1, g2u “ tf1, g3u “ tf1, g2u “ rf1, g0s “ tg3, g2u “ rg3, g0s “ rg2, g0s “ 0

and 10 are nonvanishing:

tf2, f2u “ ´2f0, rf2, f3s “ 2f1, rf2, g1s “ ´2g3, tf2, g0u “ 2g2, tf3, f3u “ ´2f0,

rf3, g1s “ 2g2, tf3, g0u “ 2g3, tg1, g1u “ 2f0, tg1, g0u “ ´2f1, tg0, g0u “ ´2f0. (E.16)

For 35,iii, 9 of the remaining defining brackets are vanishing,

tf2, f1u “ tf2, g1u “ rf2, g0s “ rf3, g3s “ tf3, f1u “ rf3, g2s “ tg3, g1u “ tg3, g2u “ rg0, g2s “ 0

and 16 are nonvanishing:

tf2, f2u “ ´2f0, rf2, f3s “ 2f1, rf2, g3s “ 2g1, tf2, g2u “ ´2g0, tf3, f3u “ ´2f0,

rf3, g1s “ 2g2, tf3, g0u “ 2g3, tg3, g3u “ 2f0, rg3, f1s “ 2g2, tg3, g0u “ ´2f3,

tf1, g1u “ ´2g0, tf1, g0u “ 2g1, rf1, g2s “ 2g3, tg1, g0u “ ´2f1, rg1, g2s “ ´2f3,

tg2, g2u “ 2f0. (E.17)

Comment: the difference between the 35,i and the 35,iii subcases is related to the diagonal
signature of the parafermionic generators. Since f0 is the identity operator, in the 35,i graded
superalgebra case the squares of g0, g1, g2, g3 produce the p´1,`1,`1,`1q signature, while in the
35,iii graded superalgebra case the squares of f2, f3, g3, g2 produce the p´1,´1,`1,`1q signature.
On the basis of this analysis 35,i and 35,iii are different real forms of a graded superalgebra.
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