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Abstract.

The semiclassical Wigner function for a Bohr-quantized energy eigenstate is known

to have a caustic along the corresponding classical closed phase space curve in the

case of a single degree of freedom. Its Fourier transform, the semiclassical chord

function, also has a caustic along the conjugate curve defined as the locus of diameters,

i.e. the maximal chords of the original curve. If the latter is convex, so is its

conjugate, resulting in a simple fold caustic. Indentations in the quantized curve

generate self-intersections of the closed fold line and isolated cusp points. The uniform

approximation through the fold caustic, that is here derived, describes the transition

undergone by the overlap of the state with its translation, from an oscillatory regime

for small chords, to evanescent overlaps, rising to a maximum near the caustic. The

diameter-caustic for the Wigner function is also treated.
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1. Introduction

It is often assumed that the Wigner function [1], W (x) in the phase plane x = (p, q),

for a semiclassical WKB state can be approximated by a Dirac δ-function on the

corresponding classical closed curve in phase space. This simplest approximation does,

indeed, lead to reliable expectation values for smooth classical observables. Nonetheless,

it is hopelessly inadequate for the description of delicate interference effects. It is

then necessary to resort to more refined semiclassical descriptions for the phase space

representations of quantum states, such as Berry’s uniform approximation for the

Wigner function [2].

Quantum interferences are becoming ever more accessible to experiments related to

quantum information, either in quantum optics, atom traps, or other quickly developing

technologies (see e.g. [3]). So far, such experiments have only been realized for very

simple states, but the interesting theoretical features of the states that are investigated

here may be an incentive for further experimental work. A typical interference

experiment superposes two modified copies of the same initial state . For instance,

in quantum optics, it is easy to achieve the unitary transformation that corresponds

to a uniform phase space translation (or displacement). This translated state can then

interfere with the original state. In general, the unitary translation operator

T̂ξ = exp

[

i

}
(ξ ∧ x̂)

]

= exp

[

i

}
(ξp · q̂ − ξq · p̂)

]

, (1.1)

acts on the state |ψ〉 to produce the new state |ψξ〉 = T̂ξ|ψ〉 in strict correspondence

to the classical translation: x 7→ x + ξ. ‖ Thus, given an arbitrary superposition of a

state and its translation, a|ψ〉 + b|ψξ〉, with |a|2 + |b|2 = 1, the probability that this is

measured to be in the untranslated state is |a+ b〈ψ|ψξ〉|2.
Evidently, measurements of such probabilities (through repeated preparation)

supply detailed quantum information concerning these initial states. It so happens

that the full set of possible overlaps defines the complete phase space representation,

χ(ξ) =
1

(2π})
〈ψ|T̂

−ξ|ψ〉. (1.2)

This is known as the chord function [4], the quantum characteristic function (or the

Weyl function as in [5]), which is the Fourier transform of the Wigner function:

χ(ξ) =
1

(2π})

∫

dx W (x) exp

{

i

}
(ξ ∧ x)

}

. (1.3)

The latter can be redefined, following Royer [4, 6], as

W (x) =
1

(π})
〈ψ|R̂x|ψ〉, (1.4)

‖ In the optical context T̂ξ is usually referred to as the displacement operator and is expressed in terms

of creation and annihilation operators for the harmonic oscillator. This is inconvenient for semiclassical

analysis.
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where R̂x, the Fourier transform of the translation operators, corresponds classically to

the phase space reflection through the point x, i. e. x0 7→ 2x − x0. An important

consequence is that the phase space correlations [5, 7], for translational interference,

C(ξ) = |〈ψ|ψξ〉|
2 = (2π})2

∫

dη eiη∧ξ/} |χ(η)|2 = (2π})2

∫

dx W(x) W(x− ξ) , (1.5)

coincide with the autocorrelation of the Wigner function itself. A study of interference

phenomena using the quantum phase space formalism, besides some properties of phase

space distributions can be found in [5].

In the limit of small displacements, ξ → 0, the correlations attain their maximal

value, C(0) = 1. Increased translations reduce them to an oscillatory regime. We shall

be concerned with the correlation of states, whose chord function can be semiclassically

approximated by [7, 8]

χ(ξ) =
∑

j

αj(ξ) eiσj(ξ)/} =
∑

j

χj(ξ) , (1.6)

where the amplitudes and phases are determined by a classical curve, as will be described

in the next section. This is similar to the simplest semiclassical approximation for the

Wigner function [2]

W (x) =
∑

j

aj(x) eiAj (x)/} =
∑

j

Wj(x) . (1.7)

Furthermore, the Fourier relation between this pair of representations is reflected in the

reciprocal relation, which specifies the centres

xj(ξ) = J
∂σj

∂ξ
, (1.8)

for the realizations of the vector ξ as a chord of the classical curve, whereas

ξj(x) = −J
∂Aj

∂x
. (1.9)

determines the chords that have a given centre. Here,

J =

(

0 −1

1 0

)

(1.10)

is the standard symplectic matrix. Typically for an energy eigenstate, the classical curve

is a level curve for the corresponding classical Hamiltonian, related by Bohr-Sommerfeld

[9, 10, 11, 12] quantization. In this way (1.6) and (1.7) are alternative phase space

representation of WKB wave functions.

For large enough displacements, such that the classical translation of the curve

does not intersect the original curve, the phase space correlations are negligible.

The transition between this and the previous oscillatory regime takes place along a

caustic where the chord function attains locally maximal amplitudes and the simple

semiclassical approximation (1.6) breaks down. The main purpose of this paper is to

establish the correct description of this transition from the oscillatory regime to the

region of negligible overlap through a uniform approximation. It is interesting that the
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caustic region for increased quantum correlations is entirely determined by the geometry

of the classical curve supporting the quantum state. The simplest case of a convex closed

curve is here mostly assumed, so that the locus of its diameters, i.e. its maximal chords,

also defines a closed convex curve. However, our results are easily extended to general

curves with any number of indentations. The closed caustic curve, will still be generically

a fold caustic, except at isolated cusp points, according to Thom’s theorem [13]. Though

the general method for obtaining uniform approximations can also be extended to these

higher singularities, this remains for future work.

The present approximation has some resemblance to the uniform approximation

obtained by Berry [2] for the Wigner function close to the classical curve. However, the

latter is simplified by symmetry constraints that do not hold here. Indeed, the present

treatment is even closer to the uniform approximation along the caustic of the Wigner

function far from the curve, which will also be treated. For a start, section 2 reviews

the geometrical construction of the Wigner function and the chord function for a state

that corresponds to a closed quantized curve. In contrast to the treatment in [2], the

construction of the present uniform approximations cannot be limited to a single WKB

branch.

Having defined geometrically the stationary phases for the Wigner function and the

chord function, the method of Chester, Friedman and Ursell [14] then supplies uniform

approximations for the chord function in terms of the Airy function and its derivative

in section 3. This treatment is adapted for the diameter caustic of the Wigner function

in section 4, except at isolated cusp points that are present even for a convex curve. In

both cases, the asymptotic form of these functions for large argument are then connected

to the simpler semiclassical forms (1.6) and (1.7). The analysis of these uniform

approximations close to the caustic furnishes simpler transitional approximations in

section 5.

None of these expressions extends right down to the limit of small chords, because

this is another caustic for both the Wigner function and the chord function. However,

for the eigenstates of the harmonic oscillator (Fock states), the approximations for large

chords can be compared to a small chord formula specified by a Bessel function[7].

This leads to a discussion in section 6 of the normalization of all these phase space

approximations, deriving from the limit C(0) = 1.

2. Construction of the semiclassical Wigner and chord functions

Before embarking on uniform approximations for the Wigner and chord functions, it is

worthwhile to review the derivation of the simpler semiclassical formulae presented in

the introduction. Thus we also specify explicitly the amplitudes and phases and their

geometric interpretation, which are essential ingredients of the uniform approximations.

The starting point is the generalized WKB expression for the wave function
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[9, 10, 11, 12],

〈q|ψI〉 = N
∑

j

∣

∣

∣

∣

∂2Sj(q, I)

∂q∂I

∣

∣

∣

∣

1

2

exp

[

i

}
Sj(q, I) + iβj

]

. (2.1)

Here we assume that the classical curve is defined as a level curve of the action variable

I(x), such that Sj(q, I) corresponds to the j’th branch of the generating function for the

canonical transformation (p, q) 7→ (I, θ), βj is the Maslov correction and N is the overall

normalization constant. Choosing the arbitrary initial point, q0, the action branches are

defined as

Sj(q, I) =

∫ q

q0

pj(Q, I) dQ,
∂Sj

∂I
= θj,

∂Sj

∂q
= pj , (2.2)

so that the amplitude can be rewritten in terms of

∂2Sj(q, I)

∂q∂I
=
∂pj

∂I
(q) =

[

∂I

∂p
(pj(q), q)

]−1

. (2.3)

It will be assumed that the state corresponds classically to a convex closed curve,

so that there will always be a single pair of branches for the action function. This will

hold irrespective of any linear canonical transformation, which it may be convenient to

make, given that both the chord function and the Wigner functions are covariant with

respect to such changes of phase space coordinates. It will also be important to recall

that the closed curve must satisfy the Bohr-Sommerfeld quantization condition:
∮

p dq = 2π}

(

n +
1

2

)

, n ∈ Z. (2.4)

Expressing the translation and reflection operators within the position representa-

tion (see e.g. [4]), the chord function (1.2) becomes

χ(ξ) =
1

(2π})

∫

dq
〈

q+|ψI

〉 〈

ψI|q−
〉

e−iξp·q/} (2.5)

while the Wigner (1.4) is given by

W (x) =
1

(π})

∫

dξq
〈

q+|ψI

〉 〈

ψI |q−
〉

e−ip·ξq/} (2.6)

where, in both equations q± = q ± ξq/2.

In the semiclassical limit, the WKB expression can be inserted, so that we obtain

in each case a sum of integrals that are dominated by their points of stationary phase.

Irrespective of whether these points are sufficiently isolated so as to allow for immediate

evaluation by the stationary phase method, we need to understand the geometric

construction that defines them. In both cases, each stationary point defines values

of q± pairs, which are q-coordinates of a pair of points, x±, lying on the classical closed

curve. In the case of the chord function, each x− is the intersection of the classical curve

with its uniform translation by the vector −ξ, whereas x+ = x− + ξ. This geometry is

exhibited in Fig. 1, which shows that each chord has two realizations in a convex closed

curve. Thus, this construction on a given convex curve always specifies a pair of centres
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Figure 1. Geometrical construction for the stationary points of the chord function.

The intersections at x1
− and x2

−, of the closed curve with its translation by −ξ, define

the pair of realizations of this chord. The q-coordinate of the centres, x1 and x2 of

these realizations defines the stationary points.

x1(ξ) and x2(ξ) for each chord ξ that can be fitted in the curve. It should be pointed

out that more realizations of a given chord may arise, if we deal with nonconvex curves

and, furthermore, such chords may be exterior to the curve. Some of the geometric

implications of indentations are discussed in Appendix B, but the important point is

that the foregoing theoretical treatment is unaffected, except at singular points.

In the case of the Wigner function, instead of a translation, the classical curve is

reflected through the reflection centre, x. This results in a pair of intersections, x+ and

x−, such that x is the centre for the pair of chords ξ = ±(x+ − x−). The stationary

points are then the q-coordinates for this pair of chords. This geometry is shown in Fig.

2. Therefore, there will be at least one pair of chords ±ξ(x), for each reflection centre

in the curve.

The stationary phase evaluation of each integral for the Wigner function,

Wij(x) =
N2

2π}

∫

dξq

∣

∣

∣

∣

∂I

∂p
(pi(q

+), q+)
∂I

∂p
(pj(q

−), q−)

∣

∣

∣

∣

1

2

× exp

[

i

}

[

Si(q
+, I) − Sj(q

−, I)− p · ξq + βi − βj

]

]

, (2.7)

can usually be obtained from a single branch of the action function for the closed curve,

that is, i = j. The stationary phase is half of the area between the curve and its

reflection, or the “chord area” as shown in Fig. 2, except for a Maslov correction. The

only difference between both phases, corresponding to ±ξ(x), is the sign, so that the

semiclassical approximation is real [2].

In the case of the chord function, each stationary phase is given by the construction

in Fig. 3. Unlike the Wigner function, this depends explicitly on a change of phase space

origin, x 7→ x + ξ′, according to the exact formula [7],

χξ
′(ξ) = e

i

}
ξ

′

∧ξ
χ(ξ), (2.8)

but it is also covariant with respect to homogeneous linear canonical transformations.
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Figure 2. Geometrical construction for the stationary points of the Wigner function.

The intersections of the closed curve with its reflection through x defines pair of chords

centred on x. The q-coordinate of these chords defines the stationary points. The area

A(x) determines the phase of the Wigner function.

The amplitudes in the above semiclassical approximations are best expressed in

terms of the canonical action variable, I(x), that defines the closed curve and is

conjugate to the angle variable θ(x) along the curve. If we now define the transported

action variable,

I± = I(x± ξ/2), (2.9)

then, generally, the Poisson bracket for this pair of functions,

{I+, I−} =
∂I+

∂x
∧ ∂I−
∂x

6= 0, (2.10)

and it is found that these amplitudes in (1.6) and (1.7) are

a(x) = |{I+, I−}|− 1

2 = α(ξ). (2.11)

Figure 3. Several geometrical interpretations for the phase for the semiclassical chord

function in the simpler approximation for a WKB function, considering one branch.

The stationary phase itself is determined by the shaded area in the three cases[7].
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Figure 4. Geometrical interpretation for the semiclassical amplitudes of both the

Wigner function and the chord function.

The difference between considering the amplitude as a function on x or ξ depends on

which variable is fixed in (2.11). This only changes the sign of the Poisson bracket.

Here, the equality of coefficients for both representations holds for the chord and its

centre, between a specific pair of points (x−,x+) on the closed curve.

A neat interpretation for these amplitudes follows from the identification of the

action variable I(x) with a classical Hamiltonian. Then the closed curve becomes a

closed trajectory, tangent to the phase space velocity vector, ẋ, and

{I−, I+} = ẋ− ∧ ẋ+, (2.12)

as shown in Fig. 4. It follows that the amplitudes αj(ξ) (or aj(x)), depend on the

degree of transversality of the intersection between the curve and its translation, or its

reflection [2, 7] and so they diverge at caustics, where ẋ+ and ẋ− are parallel.

So far, we have presumed that the contribution of each stationary phase point to

the integrals for either the Wigner function or the chord function, can be obtained by

considering a single branch of the WKB wave function. Thus, i = j in (2.7) and this

single branch can always be accessed through a canonical phase space rotation in the

simple semiclassical approximations above and even for Berry’s uniform theory for the

caustic that arises in the limit of small chords [2]. However, this is not possible in the

present treatment of the caustic at maximal chords, where (2.11) also diverges for both

representations, because the tips of the stationary chord become turning points for the

WKB function in this limit. It is thus necessary to study this limit with the aid of phase

space coordinates, such that it is the cross term between the pair of different branches,

of the action function, which have stationary phases in (2.7). For this reason it will

be important to take care of the phase relation between the branches across a turning

point:

〈q|ψI〉 = N

[

∣

∣

∣

∣

∂2S+(q, I)

∂q∂I

∣

∣

∣

∣

1

2

exp

[

i

}
S+(q, I)

]

+ eiπ/2

∣

∣

∣

∣

∂2S−(q, I)

∂q∂I

∣

∣

∣

∣

1

2

exp

[

i

}
S−(q, I)

]

]

, (2.13)

where π/2 is the Maslov phase and N is the normalization constant. Inserting the above

wave function in (2.5), we obtain four integrals to evaluate. An appropiate choice of the

coordinate axes orientation, in which the both of chord realizations are crossed, reduces
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the chord function for (2.13) to the single integral

χ(ξ) =
N2

2π}

∫

dq

∣

∣

∣

∣

∂I

∂p
(p+(q+), q+)

∂I

∂p
(p−(q−), q−)

∣

∣

∣

∣

1

2

× exp

(

i

}

[

S+(q+, I)− S−(q−, I)− ξp · q
]

+ i
π

2

)

. (2.14)

Here q± = q ± ξq/2. As stated previously, this geometry can be guaranteed by a phase

space rotation. The evaluation of the chord areas in the Wigner function and the chord

function for this geometry is discussed in Appendix A.

3. Uniform approximation for the chord function

Let us allow the pair of these stationary points of (2.14) to coalesce for the chord ξD,

that corresponds to a diameter of the closed curve, i.e. a maximal chord, at which the

semiclassical amplitude (2.11) diverges. In the present case of a convex curve, these

diameters are the locus of a fold caustic with no higher singularity. This is simpler

than the geometry for the corresponding caustic of the Wigner function, studied in the

following section.

We also simplify the calculation by an appropriate choice of origin, in view of the

simple translation property (2.8) of the chord function. This ideal origin lies midway

between the centres for the pair of chord realizations, shown in Fig. 5. The pair of

stationary points q1 and q2 of the integrand in (2.14) are solutions of the equation:

p+(q + ξq/2) − p−(q − ξq/2) = ξp, (3.1)

which are identified as the position coordinates of x1 and x2 in Fig. 5. According to

Appendix A, the Bohr-Sommerfeld quantization rule (2.4) leads to the corresponding

Figure 5. The difference in chord areas, A12, coincides with the area between the

closed curve and its translation. This area shrinks to zero when ξ becomes a diameter

and its conjugate chord η = x1 − x2 → 0. The simplest choice of phase space origin is

at midpoint between x1 and x2.
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phases as

S+(q1 + ξq/2) − S−(q1 − ξq/2) − ξpq1 = A1(ξ) + x1 ∧ ξ, (3.2)

S+(q2 + ξq/2) − S−(q2 − ξq/2) − ξpq2 = A2(ξ) + x2 ∧ ξ. (3.3)

Instead of evaluating (2.14) by stationary phase, this integral is mapped onto the

standard form for a fold diffraction catastrophe [15]:

χ(ξ) =
N2

2πi}
exp

(

iΣA
2}

)∫

∞

−∞

du g(u; ξ) e
i
[

u3

3
−ζ u

]

, (3.4)

where we have defined

ΣA = A1 + A2,
2

3
ζ(ξ)

3

2 =
A12

2}
=

A1 −A2 + η ∧ ξ

2}
. (3.5)

The action difference, A12, is the main ingredient in the present application of the

method of uniform approximation [14, 15]. Its geometric definition is the area between

the closed curve and its translation, as shown in Fig. 5. At the caustic, the chord

ξ = ξD is maximal and its conjugate chord [7]: η = x1 − x2 → 0.

The above integral would define an Airy function [17], Ai(ζ), if g(u; ξ) = 1, but

here the mapping between the variables q 7→ u, respectively in (2.14) and (3.4), leads to

g(u; ξ) =

∣

∣

∣

∣

∂I

∂p
(q(u) + ξq/2)

∂I

∂p
(q(u)− ξq/2)

∣

∣

∣

∣

−
1

2 dq

du
. (3.6)

The approximation now consists in replacing this by a linear function which coincides

with g(u; ξ) at the stationary points, ±ζ 1

2 of (3.4). These map onto q(ζ
1

2 ) = x1q ≡ q1
and q(−ζ 1

2 ) = x2q ≡ q2. The Jacobian of the mapping q ↔ u at the stationary points is

specified by

dq

du
(ζ

1

2 ) =

∣

∣

∣

∣

∣

2}ζ
1

2

∂p
∂q

(q1 + ξq/2) − ∂p
∂q

(q1 − ξq/2)

∣

∣

∣

∣

∣

1

2

, (3.7)

dq

du
(−ζ 1

2 ) =

∣

∣

∣

∣

∣

2}ζ
1

2

∂p
∂q

(q2 + ξq/2) − ∂p
∂q

(q2 − ξq/2)

∣

∣

∣

∣

∣

1

2

, (3.8)

so that

g(ζ
1

2 ; ξ) =

∣

∣

∣

∣

∣

2}ζ
1

2

{I+
1 , I

−

1 }

∣

∣

∣

∣

∣

1

2

, g(−ζ 1

2 ; ξ) =

∣

∣

∣

∣

∣

2}ζ
1

2

{I+
2 , I

−

2 }

∣

∣

∣

∣

∣

1

2

. (3.9)

Thus, recalling the definition of the transported action (2.9) for each chord realization,

we now define

∆I12 ≡
∣

∣{I+
1 , I

−

1 }
∣

∣

−
1

2 −
∣

∣{I+
2 , I

−

2 }
∣

∣

−
1

2 and ΣI12 ≡
∣

∣{I+
1 , I

−

1 }
∣

∣

−
1

2 +
∣

∣{I+
2 , I

−

2 }
∣

∣

−
1

2 ,(3.10)

so as to obtain

g(u; ξ) '
√

}

2

(

ζ
1

4 ΣI12 +
u

ζ
1

4

∆I12

)

, (3.11)
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as an approximation to (3.6), which is linear with respect to u and has the correct values

at the stationary points. Thus, the integral for the chord function becomes

χ(ξ) =
N2

ih

√
}√
2

exp

(

i
ΣA
2}

)
∫

∞

−∞

du

(

ζ
1

4 ΣI12 +
u

ζ
1

4

∆I12

)

e
i
[

u3

3
−ζ u

]

(3.12)

=
N2

i

1√
2}

exp

(

i
ΣA
2}

) (

ζ
1

4 ΣI12Ai (−ζ) − i

ζ
1

4

∆I12Ai′ (−ζ) ,
)

(3.13)

where Ai′ is the derivative of the Airy function. Finally, recalling the definition of the

intermediate variable, ζ, in terms of areas (3.5), we obtain the full unitary approximation

for the chord function:

χ(ξ) = N2 exp

(

i
ΣA
2}

)





[

3
4
A12

] 1

6 ΣI12

i
√

2}
2

3

Ai

(

−
[

3A12

4}

]
2

3

)

−
[

3
4
A12

]−
1

6 ∆I12

√
2}

1

3

Ai′

(

−
[

3A12

4}

]
2

3

)



 . (3.14)

The Airy function, Ai (−ζ), oscillates with increasing amplitude as its argument

increases and then decays exponentially for positive values of −ζ. The maximum

amplitude attained by this function, just bellow the origin, indicates the singularity of

the simple semiclassical amplitude at the caustic. However, this uniform approximation

(3.14) is not yet explicitly resolved very close to the caustic, because A12 → 0 as the

caustic is approached, whereas ΣI12 → ∞. This undeterminacy will be fully resolved in

section 5.

Even so, it is clear that the second term depending on Ai′ (−ζ) can be neglected

in the region close to the caustic. It is a new feature in comparison with the uniform

approximation for the Wigner function for small chords [2], where it is absent because

of the reflection symmetry. Here, this term is essential to obtain the correct limiting

behaviour in the oscillatory region, where the simple semiclassical description is valid.

The other novel feature is the oscillatory phase proportional to ΣA along the caustic,

which will be important to separate the contribution of each realization at the oscillatory

regime. Indeed in the case when the chord areas are significantly greater than Planck’s

constant, the functions in (3.14) can be replaced by the asymptotic forms for large

negative values [17],

Ai(−ζ) → 1
√
πζ

1

4

cos

(

2

3
ζ

3

2 − π

4

)

and Ai′(−ζ) → ζ
1

4√
π

sin

(

2

3
ζ

3

2 − π

4

)

, (3.15)

in order to obtain the correct form in the oscillatory regime as in (1.6):

χ(ξ) → N2

i
√

2π}

[

exp
(

i
[

A1

}
− π

4

])

|{I+
1 , I

−

1 }|
1

2

+
exp

(

i
[

A2

}
+ π

4

])

|{I+
2 , I

−

2 }|
1

2

]

. (3.16)

This result corresponds to the sum of contributions for each chord realization in the

simpler stationary phase approximation of the semiclassical chord function in [7], where
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it was considered that each chord realization lies on a single branch of the WKB wave

function.

Finally, we point out that the assumption of convexity for the quantized curve can

be relaxed. This arises naturally as a constant energy curve for a double well, or from the

classical evolution of a convex curve, if the original curve did not have constant energy.

The corresponding semiclassical WKB states are then defined in the same way as above,

but the action will have a larger number of branches. It is shown in Appendix B that

there may then appear regions in chord space with more than two chord realizations.

The locus of diameters is still a caustic line, acting as a boundary for the different regions,

but now it may exhibit self-intersections at double fold points, as well as cusp points.

Far from the caustic, each chord realization contributes an oscillatory exponential term

to the chord function, of the same form as those in (3.16), which could be obtained

directly from (2.14) by the method of stationary phase. Close to the fold line, we must

substitute the pair of contributions which coalesce there by the corresponding uniform

approximation, as described above. This is possible even at a double fold point, or if

the centre of the chord is exterior to the quantized curve.

According to Thom’s theorem [13], cusp points are the only other generic singularity

to arise on the diameter caustic. The above theory breaks down at such points, because

they correspond to the coalescion of a triplet of chords. However, the same general

approach can in principle be carried out by mapping the integrals onto the corresponding

higher diffraction catastrophe, as described by Berry in [15].

4. Uniform approximation for the Wigner function

As the Wigner function is evaluated at a point x that lies further and further inside

a convex closed classical curve, a caustic will be crossed. This is typically a cusped

triangle[2], in which there are three chords for each centre, as shown in Fig. 6. Typical

paths to its interior enter the triangle through a fold caustic joining two cusps. Such

a caustic point {xi} is the centre of a diameter, as show in Fig. 6, as well as being

the centre of the other chord, which was followed in the continuous path through the

caustic. An example of the full fringe pattern, where the regions characterized by one

or three chords are clearly discernible, can be found in [8].

Again, invoking Thom’s theorem, we can safely limit the generic effect of

indentations of the quantized curve on the diameter caustic to a greater number of

cusp points and self intersections. The fold line is always the boundary between regions

with different numbers of chords. It should be recalled that generic implies a structural

stability with respect to perturbations (of the shape of the classical curve). In particular,

a curve with a centre of (reflection) symmetry, such as a circle or an ellipse, is highly

ungeneric, because this point is the centre of an infinite number of chords, so that

the diameter caustic collapses to a point. As discussed in [7], the class of centro-

symmetric states are notable in that their Wigner and chord functions are related by a
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Figure 6. Wigner function caustic for a quantized closed curve. The curve itself

is a fold caustic (short-chord catastrophe). Another singular curve, composed of

folds and cusps (the diameter caustic), lies in the interior of the quantized curve.

These catastrophe points correspond to centres of the diameters of the outer curve.

Indentations of the quantized curve may increase the number of cusp points, or add

self-intersections to the diameter caustic.

mere rescaling. ¶
The uniform approximation to be derived here concerns the pair of chords, ξ1 and

ξ2 in Fig. 7, that are born from the diameter at the caustic. Away from the cusps, the

contribution of the separate chord, ξ3 in Fig. 7, can still be evaluated by stationary

phase. This is just a simple semiclassical contribution,

W3(x) =
4N2

√
h

|{I(x + ξ3/2), I(x− ξ3/2)}|−
1

2 cos

(

A3

}
− π

4

)

, (4.1)

which could be obtained from a single WKB branch, i = j in (2.7). This could also

be derived from a cross-branch i 6= j (by rotating the phase space coordinates) from

the same integral that furnishes the joint contribution of the pair of chords, ξ1 and ξ2,

which coalesce at the diameter ξD.

This crossed chord picture is essential for the uniform approximation. As in the

theory for the chord function, we now map the integral in the region corresponding to

the chords ξ1 and ξ2 onto the diffraction integral, as in (3.4).

W (x) = 2<e
N2

i2π}
exp

(

i
ΣA

2}

)∫

∞

−∞

dz g(z;x) e
i
[

z
3

3
−ζz

]

+W3(x). (4.2)

Here the parameters of the transformation are given by

ΣA = A1(x) + A2(x),
2

3
ζ

3

2 (x) =
A12(x)

2}
=
A1(x) − A2(x)

2}
, (4.3)

in which A12 is the symplectic area bounded by the closed curve and its reflection

between the ends of ξ1 and ξ2, as show Fig. 7. The procedure is straightforward as for

the chord function, so that recalling that I±j (x) = I(x± ξj/2), we now define

∆I12 ≡
∣

∣{I+
1 , I

−

1 }
∣

∣

−
1

2 −
∣

∣{I+
2 , I

−

2 }
∣

∣

−
1

2 and ΣI12 ≡
∣

∣{I+
1 , I

−

1 }
∣

∣

−
1

2 +
∣

∣{I+
2 , I

−

2 }
∣

∣

−
1

2 . (4.4)

¶ However, the ungeneric point-caustic of the chord function determines the limit of short chords and

it is structurally stable even for states lacking a reflection stmmetry.
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Figure 7. Stationary chords near to long-chord catastrophe of the Wigner function,

displaying the compositions of the area Aj for each stationary chord. The phase

difference for coalescent ξ1 and ξ2 chords is the symplectic area A12 limited by their

tips.

Hence, the linear approximation for the amplitude in (4.2) is

g(z,x) =
√

2}

(

ζ
1

4 ΣI12 +
z

ζ
1

4

∆I12

)

, (4.5)

so that, the Wigner function is given by

W (x) = 2
√

2N2





[

3
4
A12

]
1

6 ΣI12 sin
(

ΣA
2}

)

}
2

3

Ai

(

−
[

3A12

4}

] 2

3

)

−
∆I12 cos

(

ΣA
2}

)

}
1

3

[

3
4
A12

] 1

6

Ai′

(

−
[

3A12

4}

] 2

3

)



+W3(x). (4.6)

We have simply added the noncaustic contribution of the third chord (4.1). Note

that this procedure is quite general: The presence of even more chords, arising from

indentations of the quantized curve is accomodated in the same way. (The same

procedure must also be adopted to deal with the increased complexity of the chord

function.) Again, as for chord function, the behaviour near the caustic is described

correctly in terms of the Airy function and its derivative. Crossing the fold caustic,

the coalescent chords disappear and only the additional term remains, coinciding

with the simpler stationary phase approximation far form the caustic[2], although the

normalization constant must be re-evaluated.

For regions where A12 � }, we can replace the Airy function and its derivative by

their asymptotic forms for large negative values, obtaining

W (x) =
4N2

√
2π}

[

sin
(

A1

}
− π

4

)

|{I+
1 , I

−
1 }|

1

2

+
sin
(

A2

}
+ π

4

)

|{I+
2 , I

−
2 }|

1

2

+
cos
(

A3

}
− π

4

)

|{I+
3 , I

−
3 }|

1

2

]

(4.7)
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Figure 8. The area SI for a point very close to the level curve, I(x) = I. The tips of

the chord η evolve by the action of the Hamiltonian I(x). As a first approximation,

this evolution is linear.

which is a sum of oscillatory terms, each one with a different phase, as in (1.7). This

asymptotic form is a superposition of the individual stationary phase approximations

for each stationary chord.

5. Approximations for the transitional regions

The uniform approximation (3.14) is not explicitly resolved very close to the caustic,

because A12 → 0 as the caustic is approached, whereas ΣI12 → ∞. The classical

curve can be approximated by parabolae in both the neighborhoods of the tips of the

realization of ξD. This equates the amplitude associated for each stationary point, i.e.

ΣI12 = 2{I+, I−} and ∆I12 → 0. Thus, the term of the derivative of the Airy function

in (3.14) cancels near to the caustic.

To obtain an explicit expression for the transitional chord function, we start by

recalling that the action variable, I(x), can be interpreted as a Hamiltonian, such that

the classical curve is a trajectory, i.e. the level curve I(x) = I. Considering x as the

centre of a chord η that conects two points of the curve, xa and xb, we obtain as a first

approximation, xb ' xa + τ ẋa, if x is very close to this curve. Then the action can be

expanded as (see Appendix B in Ref. [4])

I − I(x) ' 1

8
τ 2 ẋ Ix ẋ, (5.1)

where Ix is the Hessian matrix of I at the point x. This quadratic Hamiltonian generates

the assumed linear motion. On the other hand, the area between η and the curve (Fig.

8) is given by [4].

SI(x) ' 1

12
τ 3 ẋ Ix ẋ. (5.2)

Thus, noticing that the centres of the realizations of η are X± ≡ ±ξ/2, the symplectic

area A12 in Fig. 5 may be obtained as

A12(ξ) = SI(ξ/2) + SI(−ξ/2) =
1

12

(

τ 3
+Ẋ+

I ξ

2

Ẋ+ + τ 3
−
Ẋ−

I- ξ

2

Ẋ−

)

(5.3)

where τ± is the time of flight between the tips of each realization of η, under the action

of the Hamiltonian I(x).
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Recalling that x1 and x2 are the midpoints of the realizations of ξ, the Poisson

brackets of the action in the amplitudes in (3.14) will be given by the symplectic

products,

ẋ+
1 ∧ ẋ−

1 = {I+
1 , I

−

1 } ' −{I+
2 , I

−

2 } = ẋ−

2 ∧ ẋ+
2 (5.4)

So that defining the ‘accelerations’[4, 16], ẍ1 and ẍ2, as

ẍj =

(

ẋj ·
∂

∂x

)

ẋ = JIxẋ, (5.5)

such that ẋ+
2 ' ẋ+

1 + τ+ ẍ+
1 and ẋ−

1 ' ẋ−
2 + τ− ẍ−

2 , we obtain

{I+
1 , I

−

1 } =
1

2

[

τ+ Ẋ−
I ξ

2

Ẋ+ + τ− Ẋ+
I- ξ

2

Ẋ−

]

(5.6)

The times τ+ and τ− can be found using (5.1), so that (5.3) becomes

3

4
A12(ξ) =

√
2





[I − I(ξ

2
)]

3

2

[Ẋ+I ξ

2

Ẋ+]
1

2

+
[I − I(-ξ

2
)]

3

2

[Ẋ−I- ξ

2

Ẋ−]
1

2



 . (5.7)

Thus, we have all the necessary ingredients to obtain the transitional form of the chord

function,

χ(ξ) =
eiΣA/2}−iπ/2

π
1

3h
2

3

[τ 3
+Ẋ+

I ξ
2

Ẋ+ + τ 3
−Ẋ−

I- ξ
2

Ẋ−]
1

6

[τ+Ẋ−I ξ

2

Ẋ+ + τ−Ẋ+I- ξ

2

Ẋ−]
1

2

× Ai






−2

1

3





[I − I(ξ

2
)]

3

2

[Ẋ+I ξ

2

Ẋ+]
1

2

+
[I − I(-ξ

2
)]

3

2

[Ẋ−I- ξ

2

Ẋ−]
1

2





2

3






. (5.8)

If the curve has a local symmetry of reflection with respect to the origin, the hessian

matrices will be equal, i.e. I ξ

2

= I- ξ

2

and the velocity vectors Ẋ+ = −Ẋ−. Here we

recall that the origin depends of the chord ξ, since it has been chosen to be the midpoint

between the centres of its realizations on the closed curve. Thus, the transitional chord

function reduces in this simple case to

χ(ξ) =
eiΣA/2}+iπ

(2π)
1

3h
2

3

[Ẋ+
I ξ

2

Ẋ+]−
1

3 Ai



2
I(ξ

2
) − I

[Ẋ+I ξ

2

Ẋ+]
1

3



 . (5.9)

For a diameter ξD, the argument of the Airy function cancels, because I(±ξD/2) = I,

and ΣA/2 is the chord area of ξD. Thus, the transitional approximation remains finite,

and at the caustic it is close to a local amplitude maximum.

We can follow a similar procedure for the Wigner function. Defining ξ̄, as the

average between the stationary chords ξ1 and ξ2, together with the pair of phase space

points, y± = x± ξ̄/2, we obtain

W (ξ) =
4 sin

[

ΣA

2}

]

π
1

3h
2

3

[τ 3
+ẏ+

Iy+ẏ+ − τ 3
−ẏ−

Iy−ẏ−]
1

6

[τ−ẏ+Iy−ẏ− − τ+ẏ−Iy+ ẏ+]
1

2

×Ai



−2
1

3

[

[I − I(y+)]
3

2

[ẏ+Iy+ẏ+]
1

2

− [I − I(y−)]
3

2

[ẏ−Iy−ẏ−]
1

2

] 2

3



 . (5.10)
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Here we ommitted the contribution of the third chord in (4.6), specified by (4.1).

It is important to note that, even though the transitional approximations (5.9)

and (5.10) provide simple explicit expressions for the chord function and the Wigner

function, their validity is constrained to a much narrower range than the full uniform

approximations in the previous sections. Indeed, whereas the latter can be extended

untill the neighbourhood of some other caustic is reached (for instance, the short-chord

caustic) , the asymptotic forms for the transitional approximations in this section do

not describe correctly the oscillatory regime given by (3.16) or (4.7).

6. Long-chord regime for Fock states

Now we consider the excited states, |n〉, of the one dimensional harmonic oscillator

whose classical manifold is a circumference centred at the origin, i.e. it has reflection

symmetry. The quantization condition (2.4) for these circles defines

π(p2 + q2) = 2π}

(

n+
1

2

)

. (6.1)

The exact chord function is given by [7]

χn(ξ) =
e−ξ

2
/4}

2π}
Ln

(

ξ2

2}

)

, (6.2)

where Ln is a Laguerre polynomial. For small chords, |ξ| � },

χI(ξ) ' 1

2π}
J0

(√
2I|ξ|
}

)

, (6.3)

gives a good approximation for the chord function [7], where J0, is the Bessel function

of order zero. Then, the asymptotic form of the Bessel function for large values [17]

leads to

χI(ξ) ' (
√

2I|ξ|)− 1

2

π
√
h

cos

(√
2I|ξ|
}

− 3π

4

)

. (6.4)

We can compare this result with the oscillatory regime (3.16). First, due to

symmetry, the area of one chord realization is complementary to the area of the other

and a simple integral gives the semiclassical phase as

AI(ξ) = 2πI − |ξ|

√

2I −
( |ξ|

2

)2

− 4I arcsin

( |ξ|/2√
2I

)

. (6.5)

Moreover, symmetry equates the Poisson bracket for each chord realization, so that

terms containing the derivative of Airy function will cancel. The Poisson brackets are

then evaluated as

{I+, I−} = |ξ|

√

2I −
( |ξ|

2

)2

, (6.6)
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so that, the uniform approximation for the chord function becomes

χI(ξ) = (−1)n

√
2N2

[

3
4
AI(ξ)

] 1

6

}
2

3 |ξ| 12

[

2I − |ξ|2
4

]−
1

4

Ai

(

−
[

3AI

4}

] 2

3

)

. (6.7)

It follows that the asymptotic behaviour of Airy function, extrapolated for small chords

is

χI(ξ) = (−1)n2N2

√
h

(√
2I|ξ|

)−
1

2

cos

(AI

2}
− π

4

)

. (6.8)

Note that, to lowest order, the argument in the Bessel function (6.3),
√

2I|ξ|, is one half

of the complementary area to the intersection between the circle and its translation.

Thus, the asymptotic limit of the chord function for the long-chord caustic

reproduces the chord function of small chords for Fock states, in an intermediary region.

Furthermore, we immediately obtain the normalization constant as

N2 =
1

2π
. (6.9)

This is an alternative derivation to Berry’s [2]. We can replace this value in (4.7)

outside the caustic, where the two coalescent chords disappear, so as to recover the

simpler stationary phase approximation for the Wigner function [2].

7. Discussion

We have shown that the behaviour of both the Wigner function and the chord function

near a maximal chord singularity can be described by the Airy function and its

derivative. Although, the latter contribution becomes negligible for points very close to

the caustic, it adds an important term to the expansion of the semiclassical distributions

in the oscillatory region, coinciding there with the simpler stationary phase method.

The shape of the diameter-caustic is different in the phase space of centres, x, where

the Wigner function is defined, and in the space of chords, ξ. In the latter case, the

caustic is located on the locus of diameters, ξD, maximal chords of the original closed

complex curve. This diameter caustic is symmetrical with respect to the chord origin

and it is also convex. If the assumption of convexity is relaxed, the symmetry will be

preserved, because −ξD is also a diameter, but the simple fold caustic may then exhibit

higher singularities. This is the case for the diameter-caustic viewed in the phase space

of centres xD = x(ξD). This caustic of the Wigner function has cusps even in the case

of a convex quantized curve [2].

Let us summarize the behaviour of the chord function as we increase a translation in

any direction: a) a maximum at the origin of chords; b) an oscillatory regime, obtained

as a superposition of stationary phase terms for each chord realization; c) a region near

to the maximal chord, i.e. the diameter ξD, expressed in terms of the Airy function

and its derivative, where the amplitude is again maximal and finally d) an evanescent

region for chords longer than diameters (also described by the Airy functions). The only

modification of this general scenario, in the case that the quantized curve is not convex,
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is that there may occur previous intersections with the caustic before the evanescent

region is reached. Though these interior caustics may be even more intense, in all cases

there will be a local maximum in the amplitude for the interference of the state with its

translation, before this decays at long distances.

We have considered only pure states, for which the phase space correlation (1.5)

is given by the squared modulus of the chord function. Thus, using the asymptotic

form of the uniform approximation for the chord function at the semiclassical regime,

we find that, in the oscillatory region far from the caustic, the phase space correlation

is approximately

C(ξ) =
1

}

[

{I+
1 , I

−

1 }−1 + {I+
2 , I

−

2 }−1 + 2{I+
1 , I

−

1 }−
1

2{I+
2 , I

−

2 }−
1

2 sin

(A12

}

)]

, (7.1)

i.e. a pair of classical terms associated to each chord realization and a term that

represents their interference. This formula corrects the semiclassical phase space

correlation presented in [7], which also provides a semiclassical interpretation for the

invariance of the correlation with respect to Fourier transformation. The important

point is that the region near the peak in the phase space correlations, beyond which

they decay, is just the squared modulus of the explicit formula (5.9), i.e. the transitional

approximation for the chord function.
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Appendix A. Crossed chords

Redefining Si = S+ and Sj = S− in (2.7), the phase in the integrand for the Wigner

function evaluated at the point x = (p, q) is

}F (Q;x) = S+(q +Q/2, I) − S−(q −Q/2) − pQ. (A.1)

Let q0 and q1 be the turning points on the closed curve, with q0 < q1. Choosing the

q-axis to pass through q0, according to Fig. A1, then at the stationary phase points,

Q = ±ξq, we have

S+(q + ξq/2) =

∫ q+ξq/2

q0

p+(Q) dQ = a1, (A.2)

S−(q − ξq/2) =

∫ q1

q0

p+(Q) dQ+

∫ q−ξq/2

q1

p−(Q) dQ = a1 + a2 + a3 + [−a3 + a4]. (A.3)

The stationary chord, ξ, is here assumed to be crossed, i.e to have both its tips on

different action branches. Then, the phase becomes

}F (ξq;x) = a1 − [a1 + a2 + a4] − pξq = −[a2 + a4] − pξq = a−
∮

p dq. (A.4)



Uniform approximation for the overlap caustic of a state with its translations 20

Figure A1. Phase difference between the stationary phase points for the Wigner

function, evaluated at x = (p, q), such that the tips of its chord, ξ = (ξp, ξq), lie on

different branches of the WKB function. The shaded area, a = S+(q + ξq/2)− S−(q −
ξq/2) − pξq,

Defining A(x) as the area between the stationary chord and the closed curve, leads to

}F (ξq;x) = A(x)−
∮

p dq = A(x)− 2π

(

n +
1

2

)

. (A.5)

On the other hand, the phase of the integrand in (2.14) that defines the chord

function for the same geometry is

}Fχ(Q, ξ) = S+(Q+ ξq/2) − S−(Q− ξq/2) − ξpQ. (A.6)

The stationary points are position coordinates q, but their geometrical interpretation

provides the respective momentum coordinates, p (as discussed in sec. 2). Again we

denote x = (p, q), thus the stationary phase Fχ depends of x instead of only q. Choosing

the q-axis in the same way as before, we obtain

}Fχ(x, ξ) = S+(q + ξq/2) − S−(q − ξq/2) − pξq + pξq − ξpq, (A.7)

= S+(q + ξq/2) − S−(q − ξq/2) − pξq + x ∧ ξ (A.8)

Defining Ax(ξ) as the symplectic area between the closed curve and the realization of

ξ, centred on x, as in Fig. A1, leads to

}Fχ(x, ξ) = Ax(ξ) + x ∧ ξ − 2π

(

n+
1

2

)

. (A.9)

In order to implement the uniform approximations in sec. 3 and 4, we can ignore the

additional term
∮

p dq in (A.5) and (A.9), because it is quantized. It should be recalled

that the quantization of the closed curve implies that the areas, A(x) and Ax(ξ) and

their respective complementary areas, A′(x) e A′
x
(ξ), satisfy the rule

A(x) + A′(x) = Ax(ξ) + A′

x
(ξ) =

∮

p dq = 2π}

(

n +
1

2

)

, n ∈ Z. (A.10)
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Appendix B. Catastrophes for concave curves

All the geometric chords of a convex curve lie in its interior. This is a global property

which is lost if perturbations of the convex curve result in smooth indentations. It is

important to observe that catastrophe theory, though it is far reaching, is nonetheless

only concerned with local aspects and the same goes for its quantum correspondent that

deals with diffraction catastrophes. Thus, our results are in no way affected by a given

chord being interior or exterior to the quantized curve.

In this Appendix we provide a simple example of the novel features that are

generated by indentations. In the case of the symmetric bean-shaped torus in Fig.

B1, we observe that translations of the torus, involving intersections of the concave

Figure B1. Catastrophes of the chord function for a concave curve. a) A fold caustic

for the overlap of the curve with itself at the middle point caustic of the action S. b)

The four chord realizations. c) Cusp catastrophe when the middle chord colasces with

other one without splittes. d) The four realization coalesce in two pairs, obtaining two

folds.

region, lead to a region with four chord realizations, Fig. B1.b. Two of these cords

coalesce at a fold point, Fig. B1.a; three of them coalesce at a cusp point in Fig. B1.d

and, in Fig. B1.c, we see a pair of fold points.

It is important to note that the chords for the double fold are well separated, so that

they may be analyzed piecemeal within the foregoing theory. Not so the cusp points,

just as in the case of the diameter caustic of the Wigner function.

For completeness we observe that a new short chord caustic also arises for the bean-

torus, as shown in Fig. B2. Fig. B3 shows this, together with the diameter caustic in

chord space. Both curves are symmetric about the origin. One should note that the

boundary between the oscillatory region and the exterior evanescent region is still a fold

line, along which the present uniform approximation is valid.

According to Thom’s theorem [13], the generic structure of the diameter caustic for

the chord function is not affected by further indentations, except by altering the number

of cusp points and self-intersections of the fold line.
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