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INTERACTING PARTICLE
SYSTEMS: RENORMALIZATION
AND MULTI-SCALE ANALYSIS

VLADAS SIDORAVICIUS AND MARIA EULALIA VARES

Chapter 1. Two basic examples and some tools.
1.1 Introduction.

This course is oriented to introduce the audience to a circle
of ideas which are basic for very powerful methods, known as
“block arguments”, “multiscale analysis”, and “renormalization
transformation”. They are used in a big variety of areas ranging
from mathematics, classical and quantum physics, chemistry and
biology, and, depending on a group or tradition, may be found
under several different names.

We will be restricted to the mathematical side of the theory,
in particular to its applications in probabilistic context, focusing
on a special type of random spatial processes, called percolative
systems.

Percolative systems form a large class of random spatial pro-
cesses with a huge number of interacting components, where inter-
esting “global” (or macroscopic) phenomena can be expressed in a
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natural way in terms of paths of local (or microscopic) events that
“percolate” through space (or space-time). Standard examples
are spatial epidemics models, models of porous materials, ad-hoc
wireless networks etc. Less obvious (but at least as important)
examples are statistical mechanics models like magnetization or
localization of waves, where percolation plays a more subtle role.
The models usually have several parameters and an important
problem is whether there is a phase transition (a dramatic change
of the global behavior at some “critical” choice of the parameters),
and how the system behaves at and near the critical point. So-
called renormalization tools and scaling ideas are key ingredients
to handle such problems.

All renormalization group studies have in common the idea of
re-expressing the parameters which define a model in terms of
some other set of parameters, which presumably have simpler in-
teraction, at the same time keeping unchanged those properties of
the model, which are of interest. This is usually achieved via a del-
icate coarse-graining procedure (sometimes also called spin-block
transformation). Informally speaking, it means that a new system
is constructed whose components correspond to large space-time
blocks in the original system. This rescaling can be repeated so
that we get level 1 blocks, level 2 blocks etc. Interesting phenom-
ena in the original system can often be expressed in terms of the
simultaneous occurrence, at all levels, of a related phenomenon.
There are many choices one can make in such a procedure, and
it is not an easy task to make a right choice: the essence lies in
the art to select a small number of key variables and postulate
proper relations among them. Such relations should behave well
under the above mentioned scaling operations. How efficient such
coarse-graining may be largely depends on the internal structure
of the system, and in particular how precise description can be ob-
tained at the length scale which is called the correlation length of
the model, i.e. the length scale at which the overall properties of
the microscopic (original) variables begin to differ markedly from
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macroscopic properties.

Several apparently simple mathematical models, such as perco-
lation, contact process and self-avoiding random walk, are para-
digms for the study of critical phenomena in statistical mechan-
ics. Although these models (as many variations of them) have
been studied by mathematicians for about fifty years, exciting
new developments continue to occur.

The notes have been given some self-consistency, but material
requires familiarity with basic facts in probability.

1.2 The percolation model. Some basic facts and tools.

Percolation refers typically to the phenomenon of propagation
of a fluid (water, oil, gas) in a porous medium (rock, protection
mask). Searching for a mathematical formulation that could cope
with the basic features, Broadbent and Hammersley [11] proposed
in 1957 a simple stochastic model which became known as the per-
colation model, on which there exists now a vaste literature, both
physical and mathematical. The basic idea is to think of pores
and/or channels in the microscopic structure of the medium which
could be open or closed in a random fashion, e.g. independently,
with given probability.

The first natural problem concerns the evaluation of the prob-
ability of finding arbitrarily long paths through which the fluid is
able to propagate. To formulate it mathematically one may take
a graph G = (V,E), where V denotes the set of vertices or sites
(pores in the medium) and E is the set of bonds or edges (channels
or passageways). Given two numbers p(e), p(v) in the interval [0, 1]
we take each pore (channel) to be open or closed with probability
p(v) (p(e), respectively), independently of anything else. A path
in G refers to an alternating sequence g, eq, T1,€1,...,€n_1,Tn,
where xy, ..., x, are distinct vertices, and e; = {(x;,x;11) is the
edge with endvertices x; and z;+1. In this case we say that the
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path connects xy and x,, and has length n. The path is said to be
open when all the x; and e; are open.

A natural example is the d-dimensional hypercube lattice Z<¢
with nearest neighbour edges i.e. E* = {(z,y):||z—y||1 = 1}. The
probability space can be taken as (92, A, P), where = {0, 1}Zd X
{0, 1}Ed, A is the o-field generated by the cylinder sets in €2, that
is, the events that depend on only finitely many vertices and edges,
and P = Pj,,) X Pp), where P, corresponds to the Bernoulli
product measure with density p (on the corresponding space).
Thus w(u) = 1 indicates that u is open, where u could be a vertex
or an edge.

We get the standard bond percolation model by taking the
pores to be all open, so that only the channels are involved, each
one can be open or closed with probabilities p and 1 — p, respec-
tively, where p is a number in the interval [0, 1]. In this case Q =
{0, 1}Ed and P = P,, the product measure with P,(w(e) =1) =p
for each e € E?. Analogously, making p(e) = 1 we have the site
percolation model, in which case 2 = {0, 1}Zd.

To fix things we restrict now to the standard bond percolation
model on Z®.! Two sites = and y are said to be connected if there
exist an open path that connects = to y, and we denote this as
x <> y. We complete the definition by saying = < x, for any =x.
This defines an equivalence relation and C(x) denotes the class
which contains z, which we call the open cluster of z. In other
words, deleting the closed edges, the original graph is transformed
into a random graph, of which the sets C(z) become the connected
components.

The first basic questions concern the size of C(x) and the pos-
sible existence of an infinite open path. Since the model is homo-
geneous we take z = 0, the origin in Z¢ and set 6(p) = 0(p, d) :=

'We write simply Z¢ for (Z4,E%).
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P,(C(0) is infinite), so that we can write

0(p, d) = P,(|C(0)] = o0)

I
|
=
Q
S
I
2

|C'(0)| denoting the cardinality of C(0).

Using coupling methods we easily see that this function is in-
creasing in p. While for d = 1, it is zero unless p = 1, if d > 2 the
model shows the possibility or not of percolation through the ran-
dom medium, depending on p. This is expressed in the following
basic result.

Theorem 1.1 . For d > 2, there exists a critical value 0 <
pe(d) < 1 so that

=0 if p<pc(d)
>0 if p> pe(d)

em®={

We now develop the basic tools and prove this result.

Duality. Planar duality is a very useful concept. For a graph
that can be drawn in the plane in a way that the edges intersect
only at the vertices, also called planar graph, there is a dual that
can be defined as follows: on each face of the graph we put a
vertex of the dual; we connect two such vertices with an edge if
and only if the corresponding faces share an edge in the original
graph. In the particular case of Z2, this gives simply Z2 = {(m +
2,n+ 1): (m,n) € Z*}, with edges among neighbors, isomorphic
to the original lattice. (See Figure 1.1.)
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FiGure 1.1
There is a one to one relation between edges in both graphs,
since each edge e in Z? is crossed by a unique edge e* in the
dual graph. This induces a bond percolation model in the dual
by setting e* is open (closed) if and only if e to be open (closed,
respectively), as in Figure 1.2.

FIGURE 1.2

Coupling Coupling in probability theory refers to a (joint) con-
struction of two or more random processes on the same probability
space. It appears as a very useful tool for establishing compar-
isons, for proving convergences, etc.
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Let (U(e): e € E?) be a family of independent random variables,
each of them uniformly distributed in the interval [0,1], with P
denoting the probability measure on the underlying space. (For
instance, we can take ¥ = [0, 1]Ed the canonical space with its
Borel o-field, P the product measure, and U(e) defined as the
coordinate map o +— o(e).) On this underlying space we construct
a joint realization of the bond percolation models in Z¢, for all p
varying in [0, 1], by setting w,(e) = 1 or 0 according to U(e) < p or
not. The family (w,(e): e € E?) gives the bond percolation model
with parameter p, in the sense that its distribution on {0, 1}Zd
is P,. When referring to this particular construction, also called
standard coupling, we say that e is p-open if wy(e) = 1, and p-
closed otherwise.

Remark 1.2 . (i) The above construction makes evident the

monotonicity in p since for p; < py we have wy, (e) < wp,(e), for

each edge e. In particular, it shows that 6(p) increases with p.
We may set

pe(d) = sup{p € [0, 1]:6(p) = 0}.

and, according to the previous remark, the proof of Theorem 1.1
follows at once if we show that 0 < p.(d) < 1.

Before we proceed to the proof notice that by embedding Z<¢
into Z%+1! as the space generated by the first d coordinates, we see
that 6(p, d) increases in d and thus p.(d + 1) < p.(d). The proof
of Theorem 1.1 thus reduces to the following proposition.

Proposition 1.3 .
(i) pe(d) > 0 for any d.

(i) pe(2) < 1.
Proof.

Proof of part (i). Let us fix d > 2 and omit it from the nota-
tion. Clearly, for C(0) to be infinite we must have open paths of
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arbitrarily length starting at the origin, so that
0(p) = Pp(|C(0)] = 00) < Py(N(n) 2 1) < Ep(N(n)),

where N(n) is the number of open paths starting at the origin
having length n. But, any given path of length n has probability
p™ to be open, so that

Ep(N(n)) = p"a(n)

where o(n) counts the number of paths of length n starting at the
origin.

A simple counting argument yields o(n) < 2d(2d—1)""!, which

allows us to conclude that 6(p) = 0 for p < (2d — 1)~ L.
Proof of part (ii). This may be achieved through a contour ar-
gument, with roots in an article of R. Peierls (1936) on the Ising
model. For this we consider the dual graph Z2 obtained by shift-
ing the original lattice by (1/2,1/2), and the one-to-one relation
between edges in both graphs, with the induced bond percolation
model in the dual, as described above.

At this point it is convenient to recall the definition of a path
given before, and in the same setup, if zg,eq,z1,...,€n_1,%y 18
a path of length n and e, = (z,,x0) is an edge, we say that
X0, €05 L2y« -y Cn_1,Ln, €n, Lo forms a circuit (of length n + 1),
which is said to be open (closed) if all the edges are open (closed,
respectively). The finiteness of C'(0) is equivalent to the existence
of a closed circuit in Z?2 around the origin. The geometrical picture
is clear: being C(0) finite, we consider its edge boundary, formed
by those edges (z,y) with z € C(0),y ¢ C(0). By construction
these edges are closed and the set of their dual edges contains a
circuit around the origin (for a full proof see [25]). The situation
is illustrated in Figure 1.3.
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FIGURE 1.3
Thus

Bp(IC(0)] < o)
< P,(3 a closed circuit in Z? enclosing the origin )

and taking into account the self-duality

P,(]C(0)] < 00) < ZPp(fY is closed ),
00

the sum running over all closed circuites around the origin, de-
noted by yo 0. Given any circuit with length n the probability of
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being closed is (1 — p)™ and so, if we write 3(n) for the number of
circuits of length n that encircle the origin we see that

Pp(IC(0)] < 00) Y Bn)(1—p)" <Y 3(3(1 -p)", (L1

n>4 n>4

where we again have used a simple counting argument to see that
B(n) < n3"~1. To see this notice that such a circuit must have an
edge ((k+1/2,-1/2),k+1/2,1/2)) with k € {0,...,n — 1} and
starting from this one we have at most three ways to choose the
next one. Since the r.h.s. of (1.1) tends to zero as p ' 1, we see
that P,(|C(0)] < o0) < 1 for p < 1 large enough. O

Remark 1.4 Two observations concerning the previous proof
are in order:

(a) The argument used in part (i) can indeed be slightly modified
to see that x(p) := E,(|C(0)]) < oo, for p < (2d — 1)~!. This is
outlined in Ezxercise 1.

(b) The argument used in part (ii) can be improved to yield that
pc(2) < 2/3. This is outlined in Ezercise 2.

Putting together the previous statements we see that (2d —
1)7! < p.(d) < 2/3, for any d > 2. The exact value of p.(d)
depends on the dimension, and it is known only in the case d = 2
by a celebrated theorem of Kesten, proven originally in [24]. The
inequality p.(2) > 1/2 was proven by Harris in 1960, in a funda-
mental article for the development of percolation theory, where
various important ideas and techniques were introduced. It is
known that p.(d) ~ (2d)~! as d — oo, cf. [26]).

Setting
¥ (p) := P,(there exists an infinite open cluster),

Theorem 1.1 implies that 1(p) = 0 for p < p.(d). On the other
hand, the occurrence or not of this event is not affected when we
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change the configuration at finitely many edges, i.e., it is a tail
event. Thus, by Kolmogorov 0-1 law, we have that ¢ (p) = 0 or
1, according to #(p) = 0 or O(p) > 0. It can be seen that 6(-) is
continuous except possibly at p.. A natural question involves the
behaviour at criticality: is 6(p.) = 0?7 This is equivalent to the
continuity at p = p.. (See Sec. 1.2.4.) The answer is known to be
affirmative for d = 2 and d > 19, so that in these cases the graph
of the function 6(-) looks somehow as the picture on the left in
Figure 1.4. One may conjecture the same is true at all dimensions,
but the problem remains open in general.

6 6()

%]
—
kS|
o |
—
kS

FIGURE 1.4 PERCOLATION PROBABILITY

1.2.1. Monotonicity. FKG and BK inequalities

On the space = {0, I}Ed we consider the partial order given
by w < W' if w(e) < w'(e) for all edges e, i.e. whenever an edge is
open in w it is also open in w'.
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A random variable X on € is said to be increasing if X (w) <
X (w') whenever w < w'. If —X is increasing we say that X is
decreasing. We say that an event A € A is increasing (decreasing)
if its indicator function 1 4 is increasing (decreasing, resp.), where
14(w) =1if w € A and 0 otherwise. Thus, A is increasing iff its
complement, A€ is decreasing. Some natural examples of increas-
ing events are: {x <> y}, {|C(0)| = oo}, {3 an infinite open path}.

The coupling of all the measures P, defined through the config-
urations wy, right after Theorem 1.1 makes evident a monotonicity
in the parameter p, cf. Remark 1.2. It implies the following state-
ment whose proof is left as and exercise. (See Ezxercise 3.)

Proposition 1.5 . Let X be an increasing random variable on
(Q,A). If p1 < p2 in the interval [0,1] and E,,(X) ezists for i =
1,2, then E, (X) < E,,(X). In particular, if A is an increasing
event, the function P,(A) increases in p.

A very useful property held by the measures P, is the Harris-
FKG inequality:

Theorem 1.6 . (Harris-FKG inequality) (a) If X and Y are
bounded increasing random variables in (2, A), then

B,(XY) > E,(X)E,(Y) (1.2
(b) If A and B are increasing events in (2, A), then

P,(AN B) > P,(A)P,(B). (1.3)

The above theorem says that increasing events (variables) are
positively correlated under the measures P,. In particular (1.3)
can be stated in terms of the conditional probability:

Py(A| B) > Py(A),
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i.e. knowing that B occurs increases the chances for A to oc-
cur. For product measures this was first proven by Harris in [21].
The property was later investigated for a more general class of
measures of special importance in statistical mechanical models
for ferromagnetic interactions. The extension is due to Fortuin,
Kasteleyn and Ginibre (1971), see [17], and it is usually named
simply FKG inequality (or FKG property).

Proof of Theorem 1.6. Part (b) follows at once from part
(a) by taking X = 14 and Y = 1p. To prove (a) let us first
consider the case when X and Y are cylinder random variables,
i.e. they depend on the state variables at finitely many edges
€1,€2,...,6n. We may proceed by induction on n. For n =1
we have X = f(w(e1)),Y = g(w(e1)) where f,g are increasing
functions on {0,1}. We see that

(f(z) = f(y)(g(z) —g(y)) >0

for any values of z,y € {0,1}. Averaging for x,y independent and
distributed as w(eq) under P,, we get

2(Ep(XY) = Ep(X)Ep(Y)) 2 0

as we wanted to check. For the induction step we let £ > 1 and
assume the result holds for any n < k. Let now X, Y be increasing
functions that depend on w(ey),...,w(ekx+1). We then have:

E,(XY)=E, (E,(XY |w(e1),...,w(ex)))
> Ep (Ep(X |w(er),...,w(ex)Ep(Y |w(e1),...,w(ek)))
> Ep (Ep(X [w(er), ..., w(er))) Ep (Ep(Y [w(er), ..., w(er)))
= Ep(X)Ep(Y),
(1.4)

where the equalities follow from the definition of conditional ex-
pectation, the first inequality follows from the case n = 1, once
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we notice that for fixed w(ey),...,w(ex), X and Y increase in
w(eg+1). The second inequality follows from the induction as-
sumption since E,(X | w(e1),...,w(ex)) and E,(Y | w(er),...,
w(ex)) are increasing in w(ey), ..., w(ek).

To treat the general case we use an approximation procedure.
Let X, Y be increasing, with finite second moment, and let e, eq, . . .
be an enumeration of E?. Taking X,, = E,(X | w(e1),--.,w(en))
and analogously for Y;, we see that both X,, and Y,, are increasing
and cylinder, so that

Ep(X,Yn) > Ep(Xn)Ep(Yn). (1.5)

We can apply the martingale convergence theorem (see e.g. [12])
to conclude that X,, — X and Y,, — Y both a.s. and in L? under
P,, from where we see (check this as Exercise 4) that the r.h.s.
in (1.5) converges to E,(X)E,(Y) and that the Lh.s. tends to
E,(XY), concluding the proof. [

To illustrate further the use of monotonicity we now describe
an inequality which, if compared to (b) in Theorem 1.6, goes in
opposite direction. It is due to van den Berg and Kesten(1985),
and goes under the name of BK inequality. Let A and B be two
increasing events in Q = {0, I}Ed. We denote by A o B the set
of configurations w for which there exist two open (edge) disjoint
paths, one of them guaranteeing the occurrence of A and the other
implying the occurrence of B. The event A o B is called disjoint
occurrence of A and B.

Theorem 1.7 . (BK inequality)
If A and B are increasing cylinder events in {0, 1}Ed, then

Py(Ao B) < P,(A)P,(B). (1.6)

Remark. Notice that Ao B C AN B and that Ao B is also
increasing if so are A and B. The inequality (1.6) extends to
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the disjoint occurrence of any finite number of increasing cylinder
events. (Check this as Exercise 5.)

A natural application of this inequality comes when we take
A= {z < y}, B={u < v} for z,y,u,v € Z%, in which case
the occurrence of A o B means the existence of two disjoint open
paths, connecting = to y and u to v respectively. In this case,
(1.6) becomes

B({z o yto{uc vt [{ucv}) <B{zeyh).  (17)

We shall not prove (1.6) but simply discuss a basic idea behind
(1.7). Let us start by restricting first to a finite sublattice G of
Z% and noticing that when we condition to the occurrence of an
open path from z to y in G we are given a positive information.
This would increase the (conditional) probability of any other in-
creasing event as e.g. {u <> v} in the same graph. But while
considering the disjoint occurrence we are forced to avoid one of
the existing open paths connecting = to y. That this is enough to
make the conditional probability smaller as given in (1.7) is not
obvious.

A basic idea for proving (1.7) goes as this: having fixed G as
in the previous paragraph and fixing any edge e let us modify the
graph by replacing e by two edges that connect the same vertices
as e, call them e; and ep; and change P, by making the edges
e1, ez open or closed with probability p and 1 — p respectively,
independently among themselves and independently of the rest.
While considering the event {z <> y}o{u <> v} in this new model,
the open paths from x to y are not allowed to use e; and those
from u to v cannot use e;. The probability is not smaller than the
original one. We proceed recursively, replacing each edge f in G by
two parallel ones fq, fo and modifying P, as before. Consider the
probabilities of {z <> y}o{u <> v} in these models where the edges
f1 (f2) cannot be used to connect z to y (u to v, respectively).
These probabilities do not decrease along the process. Since G is
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finite, when we have finished to replace all original edges we shall
have two independent copies of the original model, so that we get
(1.7) in G. For a formal proof we refer to [19], or to the original
article [8].

Remark. (Reimer inequality) A version of the BK inequality
holds also for general cylinder events A and B, provided Ao B is
replaced by

AOB := {w: 3 two disjoint open paths v = {e1,...,emn},

v ={e},... e} so that C(w,v) C 4,C(w,vy') C B},
(1.8)
where C(w, S) = {w":w'(e) = w(e) Ve € S}, with S a finite subset
of E?. Notice that if A and B are increasing cylinder events, then
AB = Ao B. The extension was conjectured by van den Berg
and Kesten, and it was proven by Reimer [36]:

P,(ADB) < P,(A)P,(B) (1.9)

for A and B cylinder events in {0, 1}]Ed. One may observe that if
A is increasing and B is decreasing, then ALJB = AN B. From
this and replacing B by its complement B¢, we see that (1.9) also
extends the Harris-FKG inequality for cylinder events. We shall
not use the more general formulation of Reimer. (For the proof
and comments see [19].)

1.2.2. Russo’s formula.

The content of this subsection has a close relation to ideas
and tools coming from reliability theory. A concrete motivation
comes from the problem in the next subsection, where we ask
if x(p) = E,(|C(0)]) < +oo for any p < p. (recall Exercise 1).
Having this in mind one needs a way to see how does the quantity

gp(n) := P,(0 <> 0S(n)) (1.10)
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decay in n, for any p < p., and where S(n) = {z:||z|1 < n}. The
basic point is to have a way to compare g,(n) for different values
of p below the critical parameter.

Notation. If A is a cylinder event, we let A 4 denote the minimal
(finite) set of edges on whose values does the occurrence (or not)
of A depend. This is called the support of A.

More generally, let A be an increasing cylinder event on Q =
{0, 1}Ed. The function P,(A) is increasing in p and we need to get
a handle on how fast does it increase. Recalling the previously
defined coupling we see that for § > 0 small

Ppi5(A) — Pp(A) =P(wp ¢ A, wpys € A). (1.11)

For this not to vanish, the discrepancy set X, s = {e € Aq:p <
U(e) < p+ 6} must be non-empty. But its cardinality | X, s|
has a Binomial distribution with parameters |A4| and §. Thus
P(| X, 5| > 2) = 0(d), so that when considering the leading term
in (1.11) we have only the case when X, 5 = {e} with e € Ay4.
Moreover, it is necessary that given the rest of the configuration
wp (i-e., at all other edges but e), the value at edge e has an
essential aspect to determine the occurrence (or not) of A, in the
following way:

Given A and a configuration w one says that the edge e is
pivotal for (A,w) if 14(w) # 14(w’) where w' is the configuration
obtained from w by changing the value at e. We see at once that
this property does not depend on the value w(e), so that the event
{e is pivotal for A} := {w: e is pivotal for (A,w)} is independent
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of the state at e. We may write

Poys(A4) = Pp(4) =
Z Plwp ¢ A,wpis € A), Xps = {e}) +0(6) =

ecAa

Z P(e is pivotal for (A,wp),p <U(e)< p+ 0, X, s = {e})+0(d)
ecAa

= Z P(e is pivotal for (A,wp),p < U(e) < p+6) + 0(9),
ecAa

where the last o(d) term is the sum of the previous one with

Z P(e is pivotal for (A, wy),p < U(e) < p+6, X, s # {e}).
eEAa

Since the property of e being pivotal for (A,w) does not depend
on the value of w(e), we get

Ppis(A) — Py(A) =06 Z P,(e is pivotal for A) + o(9),
ecAa

from where the next theorem follows.

Theorem 1.8 . If A is an increasing cylinder event, then P,(A)
1s differentiable in p and

——Fp(A) = Ep(N(4)), (1.12)

where N(A)(w) is the number of pivotal edges for (A,w).

To get the announced comparison we observe for P,(w(e) =
1, e is pivotal for A) = pP,(e is pivotal for A). Thus, if A is an
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increasing cylinder event, (1.12) implies that

d 1
d—Pp(A) == Z P,(w(e) =1, e is pivotal for A)
P P oen,

1
= - Z P,(A)P,(e is pivotal for A | A)
P A
= A
1
= S B Ep(N(4) [ 4),
which we may write as

d 1
1 OB P A) = LB (N(4) | 4)

Integrating it we have

Py (A) = Py (A) exp { [ LE,(N(4) | A)dp} L)

for 0 < p; < p2 < 1, and then using the straightforward bound
N(A) < |A4l, we get

Py, (4) < Py, (A)(p2/p1)124! (1.14)

Remark. There is a close relation between the type of analysis
leading to Russo’s formula with relations and techniques used in
reliability theory. This is very natural, when we interpret the
graph as a network with the state w(e) of an edge representing the
reliability of a given link in the network. For a brief summary see
Sec. 2.5 in [19] and the references therein, including the books of
Barlow and Proschan [4,5] and the article by Moore and Shannon
[32].



20 VLADAS SIDORAVICIUS AND MARIA EULALIA VARES
1.2.3. The subcritical phase.

Exercise 1 shows that the expected size of C'(0), denoted by
X(p), is finite for p small. This is an increasing function of p and
one naturally asks if x(p) < oo for all p < p.. The answer is affir-
mative, eliminating the possibility of another critical point here.
This result was proven by Menshikov [33] and also independently
by Aizenman and Barsky [1]. We now describe briefly the main
steps of Menshikov’s argument (with improvement by Kesten).

Writing S, for the || - ||;-ball in Z¢, S, = {z € Z%: ||z||; < n}
and 8S,, = {z € Z% ||z||; = n} its boundary, let A,, = {0 <> 0S,,},
the event that there exists an open path from the origin to 0.5,,.
The question is answered through the following theorem:

Theorem 1.9 . If p < p.(d) then it exists 1, > 0 so that
Py(Ay) < e ™r for all n. (1.15)

This theorem says that the radius of C'(0) has an exponentially
decaying tail. Since |S(n)| < cq(n + 1)¢ for a constant cq that
depends only on the dimension, we see that [|C(0)| > cq(n+1)%] C
A,, and consequently:

Py(|C(0)| > n) < e for all n, (1.16)

for suitable ﬁp > 0 and any p < pc.

Proof. Let g,(n) := P,(A,) as above. For the moment we only
know that g,(n) | 6(p), as n 1 oo, and 0(p) = 0 for p < p.. From
Russo’s formula, expressed in (1.13), we see that for 0 < u < v < 1

oul) < oo { = [ B0V [ Adap}.  @n

The basic point is that for p < p. and large n, upon conditioning
on the “rare” event A, we should get a large number of pivotal
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edges, consistent with some sparsity of the set C'(0). One might
expect to have a sort of roughly linear (in n) lower bound for
E,(N(Ay) | Ap). To see this, conditioning on A,, we consider the
pivotal edges ey, ...,en, which then have to be open (since A,
is increasing). Each open path connecting 0 to 0.S,, must contain
each of these edges always in the same order.

]

|
T
M@

a®

kﬁ

FIGURE 1.5
We see that the set C(0) looks like sort of “sausages”, connected
by these pivotal edges, and we want a lower bound on the expected
number of such sausages. Let us call p; the radius of the i-th such
sausage, that is, p; = ||z; — y;—1||1 where yo = 0 and z;, y; are the
vertices connected by e; (in the proper order), for i = 1,..., N.
(See Figures 1.5, 1.6) Notice that

[(p1+1)+ -+ (pj +1) <n] C[N(4n) > jl. (1.18)
Therefore, for any 0 < p <1

Py(N(An) > j | An) > Pylpr+ -+ p; <n—j | An).  (1.19)
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FIGURE 1.6
The first key point comes from a comparison on the distribution
of the p;,2 = 1,..., N upon conditioning on A4, with N i.i.d.
variables Rq,..., Ry, distributed as the radius of C'(0) under P,
(defined as oo if C(0) is infinite), and which is a finite random
variable if p < p.. One can prove that

Lemma 1.10 . Under the above conditions we have:
Polpj <1j | Anyp1=r1,...,pj—1 =7j-1) = P(R; <r;) (1.20)
for each n,j, provided r1 +---+1; <n—j. Moreover,
Py(pi+-+pj <n—j|Ay) > P(Ry+---+R; <n—j). (1.21)

This lemma, whose proof we postpone to the end of the argu-
ment, brings connection to a classical result from renewal theory.
Observe that from (1.18) and (1.21) we have

Py(N(43) 2 j | An) 2 P(Ry+ -+ Rj <n)
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where R; =1+ min{R;,n}. Thus, if T = min{j > 1: Ry + - +
R; > n} one has
[T >j]=[Ri+ -+ Rj <nl, (1.22)
and collecting (1.19) (1.21) and (1. 22) we get
Ep(N(An) | An) =Y Bp(N(Ag) > j | An)
7>1
> P(T > j)=E(T)-1.
i>1
Recall now the classical Wald identity (see [12])
E(Ry,+---+ Ry) = E(T)E(R)).
Since Rl + -4 RT > n by definition, we have

E(T) > n/E(R1) =n/ Y g,(k), (1.24)
k=0

(1.23)

since 1 = g,(0) and

E(min{Ry,n}) =Y P(R1>k) = gp(k)
k=1 k=1
Putting together (1.17), (1.23) and (1.24) we see that

gu(n) < gu(n) exp (— / (ﬁ - 1)dp)

for any 0 < u < v < 1, and using the monotonicity of p — g, (k)
we get

gu(n) < go(n) exp (—<v ~ ) - 1)) . (.2)

With (1.25) in hands, the issue becomes how we get that ), g, (k)
< oo for each p < p., which clearly would imply (1.15). An
important step is the following analytical result, obtained with
the use of (1.25) and whose proof is omitted in this course. (See

[19].)
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Lemma 1.11 . Ifp < p. there exists y(p) > 0 so that

gp(n) < 'y(p)n_l/2 for all n. (1.26)

Having (1.26) we can use (1.25) again to see that if u < v < p,
then

gu(n) < gy(n)exp ((’u —u)—C(v— u)n1/2) ,
from where it follows that ), g,(k) < oo for any p < p., and the
proof of Theorem 1.9. [

Proof of Lemma 1.10. We first check that (1.21) follows from
(1.20). This is a standard argument in stochastic comparison. We
write

Pypr+--+pi <n—j|Ay)

n—

<.

Polp1+-+pji-1=4,p; <n—j—i|Ap)

vV
S .
[
<. =

Py(pr+ -+ pj—1=1| Ap)Pp(R; <n—j—1)

1
(pr+--,pj—1+ R <n—j|Ap),

X
<O i

(1.27)
where the random variable R; is independent of the edge con-
figuration on S, and is distributed as the radius of C(0). (For
convenience we may have enlarged the probability space so as to
support an i.i.d. sequence Ry, k > 1 distributed as in the lemma,
independent of the edge configuration w. We still call P, the basic
measure.) Clearly we can iterate (1.27) and arrive to (1.21), as
claimed.

The proof of (1.20) uses the BK inequality.
We need to prove that

Po({pj > rj} N BN Ap) < Pp(Ry>rj)Pp(BNAs),  (1.28)
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where B ={p; =r;,i=1,...,5—1}. When j = 1 this reduces to
Pp({pl > 7'1} N An) < Pp(Rl > 7‘1)Pp(An). (1.29)

Notice that {R; > r1} = A, 11 and observe that if p; > ry then
there exist at least two edge disjoint open paths from the origin to
the boundary of Sy, 1. It follows that {p1 > r1}NA,, C A, 1104,
and (1.29) follows at once from the BK inequality.

To consider the case 7 > 2 we decompose B according to all
possible sausages (with their open edges) up to the vertex y;_1:
on B we consider the set of vertices and open edges which can be
reached from the origin without using the edge e;_; to which we
add e;_, and the marked vertex y;_;. This gives a graph v and
y(v) = yj—1 is the marked vertex. We decompose B according
to the realization of v and call B, the corresponding sub-event.
Then

ZP n | By)Py(B.) (1.30)
and

Py({pj >} N AN B) = ZPP({pj > 1} N Ay | By)Pp(By).
! (1.31)

Now, P,(A, | B,) coincides with the probability that there is an
open path from y;_; to 05, without touching other vertices of v,
i.e. without using edges from the previous sausages, including the
pivotal edge and the boundary edges of each sausage, an event
which we write as {y;_1 +> 05, off v}.

Similarly P,({p; > r;}NA, | B) coincides with the probability
that there exist two edge disjoint paths from y;_1 to 9S(y;_1,7;+
1)? and from y;_1 to 85, without using edges from . From the

2S(y,r) = {@:llz —yllL < r} and S(y,r) = {@: ||z — ylL = r}
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BK inequality we have

Po({pj > 1} N An | By)
< Pp(yj—1 ¢ 95(yj-1,7j +1) off V) Py(yj—1 > 95y, off )
< Pp(Ap41)Pp(An | By),

since
Py(yj—1 > 0S(yj—1,7; + 1) off 7)

<Py(yj_1 <> 0S(yj_1,7j + 1)) = Pp(As, +1).

Taking (1.30) and (1.31) into account we get (1.28), thus conclud-
ing the proof. [

Remarks.

(i) While the previous analysis provides only a sub-exponential
decay on the cluster size distribution in the subcritical phase, cf.
(1.16), it is known that P,(|C(0)| > n) < e~*®" if p < p. for
any d. This can be proven also with the help of BK inequality,
by showing that E,(expt|C(0)|) < oo for ¢t positive and small,
as proven by Aizenman and Newman in [3]. It can be combined
with subadditivity, which is another tool that will appear later in
these classes to obtain further results. In the subcritical phase the
model exhibits a standard (volume scale) large deviation principle.
(See [19] for details.)

(ii) Using Theorem 1.9, one can see that the function x, is in-
finitely differentiable in the subcritical region. Instead, using the
exponential decay of the distribution of |C(0)|, the analyticity of
Xp for p € (0,p.) can be proven. (See [19].)

(iii) The connectivity between two sites z and y is defined as
Tp(z,y) 1= Pp(x <> y). Theorem 1.9 implies at once that it decays
exponentially in ||z — y||1, if p < pe.

1.2.4. The supercritical phase.
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We turn to the consideration of some basic features of the su-
percritical phase (p > p.). Since 6(p) > 0 we see that an infinite
open cluster exists with probability one, as it follows from the er-
godicity of the measure. A first natural question is related to the
number N of infinite open clusters. In the supercritical phase this
is a random variable with values in {1,2,...}U{oco}. It is invari-
ant by translations on the basic space, and again the ergodicity
of the measure P, implies that A is P, a.s. constant, for each
p. An important classical result ([2],[13]) tells us that whenever
6(p) > 0 there is exactly one infinite cluster. We examine it now
in the context of Z%. It holds for a certain class of graphs, but
generally this is not true.

Theorem 1.12 . If0(p) > 0 then P,(N =1) =1
This result can be seen in two steps, stated below:
Proposition 1.13 . P,(2 <N < 00) =0 for any p.

Proof. This is due to Newman and Schulman [34]. We already
know that there exists k, constant so that P,(N = k,) =1 and
we want to see that 2 < k, < oo is impossible. Let B(n) =
{-n,...,n}%. Assuming that 1 < k, < oo, we can consider the
event

A, = {all infinite clusters intersect B(n)},

and see that P,(A, N{N = k,}) — 1 as n tends to infinity. In
particular, Pp(A,) > 0 for n large.

But A,, is independent on the state of the edges having both
end-vertices in B(n). On the other hand, making all these edges
open would generate a unique infinite cluster for the realizations
in A,. Thus, if D,, is the event that all edges with both vertices
in B(n) are open, we have, for any n:

Py(N =1) > Py(An N Dy) = Pp(An) Pp(Dy).

Since P,(Dy) > 0 for all n and P,(A,) > 0 for n large, we see
that P,(N =1) > 0, implying that k, =1. O
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Proposition 1.14 . P,(N > 3) =0 for any p.

Proof. This result was initially proven by Aizenman, Kesten and
Newman in [2]. The argument sketched below is due to Burton
and Keane (see [13]). Of course it is enough to consider 0 < p < 1.
It is geometrical, and the following notion plays an important role.
If G = (V,E) is a connected graph, a vertex z € V is said to be
a triple point if: (a) there are three incident edges to z; (b) if we
remove x and the three incident edges we get a graph with three
connected components. (See Figure 1.7.)

We apply this concept to the graph determined by an infinite
open cluster. A vertex x € Z% is a special triple point if: (a) it
belongs to an infinite open cluster; (b) it has three adjacent open
edges in such a way that if z and these edges are removed, the
cluster splits exactly into three infinite open clusters. Let T, be
the event that x is a special triple point.

FIGURE 1.7 TRIPLE POINT

The argument has two pieces:

(i) If k, > 3 one can see that P,(Tp) > 0.

By the translation invariance of the measure, P,(T) is the
same for all . Thus, if P,(Tp) > 0 we can take ¢ > 0 for which
the number of special triple points in B(n) is at least cn?, with
positive probability, for each n > 1.
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On the other hand, the argument sketched below implies that,
if for a given realization w we had order n? special triple points
in B(n — 1), then we would be forced to find the same number of
distinct points in B(n). But for large n this is impossible in Z.
A way to make this argument precise goes as follows:

(ii) Let G be a connected graph as above, where one has z1,..., z,
as distinct triple points. Let us write Vi (x;), Va(z;), Va(x;) for
the connected components of G after deletion of x; and its three
incident edges. Among the 3r sets Vi(z;), Va(z;), Va(x;),i =
1,...,r, at least r + 2 of them are disjoint.

%

=2

Vs

FIGURE 1.8

To verify the previous statement one may first check (which one
can do by induction on r) that there must exist i and two branches,
say Vi(z;), Va(x;), which do not intersect {zy,k # i}. From this
one can see that removing the vertices in Vs(z;) together with
the edges they touch, gives another graph for which the points
Tk, k # 1 are still triple points, and finally apply this last statement
to get (ii). (See [18], [19].)

We leave as exercise to see that from (ii) above we get indeed
that the number of special triple points in B(n — 1) cannot exceed
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the number of sites in dB(n). (Hint: apply the statement for each
of the connected components of such special triple points, using
only the bonds with at least one endvertex in B(n — 1).)

Let us now verify (i) above. Write Ep(y) for the set of edges
with both endvertices in B(n). Let N, be the number of infinite
open clusters that intersect B(n) and let N? be the number of
open clusters intersecting B(n) when we take as closed all the
edges in Ep(,). Therefore P(N;} > 3) > P(N, > 3) which con-
verges to P(N > 3) =1 as n — oo. In particular, we can fix an
n so that P(N? > 3) > 0. Moreover, we can see that: (a) for
a realization w in {N;) > 3} we can select three distinct points
1 = y1(w), y2 = y2(w), y3 = yz(w) (selected in some predeter-
mined way, if more such points do exist) that belong to three dis-
tinct open clusters without using the edges in Eg(,,); (b) {N;) > 3}
is independent of the state at the edges in Ep(y,).

Given y1, Y2, ys we can take three paths that connect the origin
to each of these points, and use only edges in Ep(,) in a way that
the origin is the only common site to any two of them, and each
touches 0B(n) only at the corresponding y;. Let T ,, be the event
that the edges along these paths are open and the other edges in
Ep(n) are closed. (See Figure 1.8.) This has a positive probability,
since 0 < p < 1. Noticing that Ty ,, N {N;? > 3} C T we conclude
that P,(Tp) > 0 foreach 0 <p< 1. O

Some consequences of Theorem 1.12 and further impor-

tant results.

1. For p > p. one has 7,(z,y) := Py(z +> y) > (0(p))>
This property follows quite easily from Theorem 1.12. Indeed

we have

Tp(z,y) > Pp(x,y belong to a same infinite open cluster).

From the uniqueness of the infinite open cluster we see that the
above probability coincides with P,(z <> 0o,y <> 00). Applying
the FKG inequality we get the statement.
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2. The function p — #(p) is continuous in the interval (p., 1].
The left-continuity can be obtained as an application of the
uniqueness result. A proof along these lines is due to van den Berg
and Keane [7] and uses the coupling through the configurations
wp, mentioned earlier. (See [19].) The right continuity is valid in
the all interval [0, 1] and the argument is simpler: the functions
gn(p) = P,(0 <> 0B(n)) are clearly continuous in p and decrease
to O(p) as n — oo; this implies that 6(p) is upper semi-continuous;
since it is also increasing in p we get the right-continuity. (See [37],
[19].)
3. The continuity of the function p — 0(p) at p = p. is therefore
equivalent to (p.) = 0. This is known to be true for d = 2 and
for d > 19. (See [19].)
4. In the supercritical phase the cluster size distribution has a
sub-exponential decay. (See [19].) For the full large deviation
analysis see the monograph [14].)

Some results on the case d = 2. The bond percolation model
on Z? is quite special, due to the possibility of exploiting the self-
duality of the graph, as described in the beginning of Section 1.2.
Recall that for the dual percolation model, we say that a given
edge e is open (closed) if and only if the edge e¢* in the dual which
cross it is open (closed) respectively.

One important example where duality plays an important role
is the determination of p. in this special case:

Theorem 1.15 . (Kesten) p.(Z?) = 1/2.

This result is one of the most important millstones in the history
of percolation. Kesten’s proof, presented in [24], was the crowning
achievement of four papers published over a period of 21 years. In
1960 Harris proved that (1) = 0, see Lemma below, and then in
1978 two independent but largely equivalent works by Russo, and
by Seymour and Welsh provided the necessary ingredients on the
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mean cluster size. Kesten showed how to build on their arguments
to obtain the full result.

Lemma 1.16 . (Harris) For bond percolation on Z? it is the
case that 0(3) = 0. In particular, p.(Z?) > 1.

Remark. Lemma 1.16 was first proved using arguments of some
geometric complexity in a remarkable paper by Harris [21]. This
article contained also several of the techniques used in later im-
portant developments of percolation. As a byproduct, Harris ob-
tained the uniqueness of the infinite cluster in two dimensions.
We now present a simple and elegant proof that 9(%) =0, due to
Zhang (1988). It uses the uniqueness of the infinite cluster, given
in Theorem 1.12.

Proof of Lemma 1.16. We follow the argument of Yu Zhang.
Let us suppose that 6(1/2) > 0. For each positive integer n,
let A(g ) (respectively A(p n), A(sn), A(r,n)), denote the event
that some vertex on the left (respectively right, superior, inferior)
side of the square A,, = [0,7n]? belongs to an infinite open path Z?2
which does not contain any other vertex of A,,. Clearly, the events
A n), ADn) Ay Aan) are increasing, all have the same
probability, and their union is the event that some vertex in A,
belongs to an open infinite cluster. Due to the assumption that
6(1/2) > 0, such an infinite open cluster exists with probability
one, so that

P1/2(A(E,n)UA(D,n)UA(S,n)UA(I,n)) — 1 as n — oo. (1.32)

The “square-root trick” given below implies that

ngr_ir_loo Pyjo(Awny) =1 foru=FE,D,S,1I. (1.33)
Remark. (Square-root trick) If 4,, A,,..., A, are increasing

events and have the same probability, then

Py(41) > 1= {1 - (U, 45)}™.
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To see this, notice that using the FKG inequality we have
1—- Pp(UﬁlAi) mm 1Ac H Pp(Al))m

Due to (1.33) we can choose N so that

\]

P1/2(A(u,N)) > g foru=FE,D,S,I. (134)

Moving to the dual lattice Z2 = {(m+ 3,n+ 1): (m,n) € Z*}, we
define the dual box A} = {z + (1/2,1/2):0 < 21,22 < n}.

Let A?E,n) (respectively A’(*Dm), A?S,n)’ A’El,n)) denote the event
that some vertex on the left (respectively right, superior, inferior)
side of A% belongs to an infinite closed path in Z2 not containing
any other vertex of A¥. Each edge in Z2 is closed with probability
1/2, so that

P1/2(A>(ku’N)) = P1/2(A(’u,,N)) > fOI‘ u = E,D, S, I. (135)

0|

Consider now the event A = A ny) N Ap,n) N A’ES’N) N AZ‘I,N)
where there exist open paths in Z2 \ Ay touching the left and
right sides of Ay, and infinite closed paths in Z2 \ A% touching
the superior and inferior sides of A}, cf. Figure 1.9.
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b?\_/

FIGURE 1.9
By (1.34) and (1.35), we see that the probability that A doesn’t
occur, P(A°), satisfies

1
P1/2 (Ac) < BX

and so Py /5(A) > % If A occurs, then Z2\ Ay contains two disjoint
infinite open clusters, since the involved clusters are physically
separated by an infinite closed path in the dual; each open path
in Z2\ Ay connecting these two clusters would contain an edge
that cross a closed edge in the dual, but such an edge cannot exist.
Similarly, for the realizations in A, the graph ZZ2\ A% contains two
infinite closed clusters, physically separated by an infinite open
path in Z2\ Ay. Now, the full lattice Z? cannot contain (almost
surely) more than one infinite open cluster and, so that there must
exist (almost surely in A) an open connection between the above
mentioned infinite open clusters. By the geometry of the situation
(see Figure 1.9) this connection must cross Ay and thus forms a
barrier for possible connections in the dual connecting the two
infinite closed clusters. Therefore, almost surely in A, the dual
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lattice must contain two or more infinite closed clusters. This last
event has probability zero, due to our assumption that 6(1/2) > 0
and Theorem 1.12. Thus P;/5(A) = 0, in contradiction with the
previous deduction, and the initial hypothesis that 6(1/2) > 0
must be incorrect, concluding the proof. [

1.3. Oriented percolation.

There are many reasons to impose some extra modifications in
the percolation models defined in the previous section. Practical
motivation comes from many areas, chemistry, field theory and
life-sciences being constant sources of this type of requirements.
One of the most traditional model from this family is oriented
percolation. To define this model we will assume that all edges of
the graph Z¢ have “north-east” orientation, i.e. all edges are ori-
ented in the direction of increasing coordinate. As before, we can
consider site or bond models, and the unique difference between
usual (non-oriented) and oriented model is that a path from z to
y can move along edges only in the direction prescribed to each
edge, i.e. one could think that oriented edge x »— x + e; is closed
if one wants to traverse this edge in direction from x + e; to =x.
The open oriented cluster of z, here denoted as C, is defined as
the set of all those vertices y for which there is an open oriented
path from z to y, with the understanding that C, = {z} if there
is no open path starting at x.

There are many parallels between results for oriented percola-
tion and those for ordinary percolation. On the other hand the
corresponding proofs may differ greatly. But not only this makes
these two models substantially different from each other: the ori-
ented percolation models belong to a different “universality class”
than regular percolation. This means that the nature of the infi-
nite cluster and the behavior of the system for p near p. (defined
below) is different in the two cases. We will not discuss these
issues in details here.
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Let us restrict ourselves for the moment to Z2. We rotate
our picture m/4 counterclockwise, and let Z? = {(z,y) € Z? :
x +yis even, y > 0}. We define

€ ={x:(z,n)€ Z? and (0,0) is connected to (z,n)
by an open oriented path}.

€% is a random subset of {—n,...,n}, and we can think of the
model as a discrete time growth process, with the vertical coordi-
nate indicating the time. Let

r0 =sup&?, and £2 =inf¢, (supl = —oo, inf ) = +00),
which are called the right (resp. left) edge of the process.

Considering the standard Bernoulli case as before, i.e. the sites
or edges are open (closed) with probability p (1 — p, respectively),
the process exhibits as before a phase transition, in the sense
that there exists® p. € (0,1) and the for p > p. there is positive
probability that €2 # @, for all n, and as before in this case an
infinite oriented open cluster exists, with probability one.

An important property of this process, which will be discussed
in more details in the next section in the context of the contact
process, is that for p > p. there is a positive constant a(p) so that,
with probability one, if the open oriented cluster of the origin
reaches infinity (i.e. a.s. on the event {£2 # (),Vn}), we have
lim, n='7% = a(p) and lim, n='4% = —a(p). In other words, if
the oriented cluster is infinite, it must grow linearly.

1.4 The Harris contact process. Some basic facts and
tools.

3The actual value of p. differs, of course, in the site or bond versions.
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We now discuss in some detail another example of “classical” per-
colative system sharing many features with (oriented) percolation.
It was introduced by Harris in [22] and conceived with biological
interpretation. This is a continuous time Markov process taking
values on P(Z?), the set of all subsets of Z%, and informally de-
scribed as follows: particles are distributed in Z? in such a way
that each site is either empty or occupied by at most one particle.
The evolution is Markovian: each particle disappears after an ex-
ponential waiting time of rate one, independently of all the rest; at
any time, each particle has the possibility to create a new particle
at each empty neighboring site, with rate A, also independently of
everything else.

In the biological interpretation, occupied sites correspond to
infected individuals, while empty ones correspond to healthy in-
dividuals. We have set the recovery rate as unit, and X is the
rate of propagation of the infection in each direction. With that
in mind, the process may be thought as a very simplified math-
ematical model for the spread of an infection. There are various
extensions with extra enriching ingredients.

Notation. Identifying each ¢ C Z<¢ with its indicator function 1¢,

we may think of the process as taking values on X := {0,1}%2"
and freely shift between the two. We then write £(z,t) = 1 or 0,
according to z € £(t) or not, where ¢ > 0 denotes the time.

To be rigorous, one needs a precise definition and construction
of such an infinite system. Based on the informal description, if
the initial state has infinitely many particles, the process should
leave it instantaneously; infinitely many changes should happen
during any arbitrarily small time interval, contrarily to the case of
a Markov chain. Nevertheless, as the rates are bounded and the
propagation happens only through neighbors, the evolution at any
given finite collection of sites, and during a fixed finite time inter-
val, does not depend on what happens “too far away”. This allows
a formal mathematical construction of the infinite system as limit
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of finite ones, which can be achieved through semigroup theory,
using Hille-Yosida theorem or the so-called martingale problem
method. (See [29].)

The contact process allows also a very useful and more explicit
construction through a random graph in the space-time diagram
7% x R, from which several properties are more readily seen.
This graphical construction is due to Harris and we now describe
it.

For each z € Z% consider (77),cns (T2™Te) cny (2779, en
for s = 1,...,d, the arrival times of 2d + 1 independent Poisson
processes, where (77) has rate 1 and the others have rate A > 0,
which is the parameter of the model. (e; denotes the canonical
unitary vector in i** direction.) All such Poisson processes, also
as « varies on Z<¢, are independently taken. For each z,y € Z¢
with ||z — y|[y = 1, and n > 1, we draw arrows in Z? x R, from
(x, 75Y) to (y,7%Y). Secondly, we put down a cross sign (x) at
each of the points (z,7%), n > 1. A segment linking (z,s) to
(z,t) is called a time segment and has the orientation from (z, s)
to (z,t) if s < t. Given two points (z,s) and (y,t) in Z¢ x Ry,
with s < ¢, we shall say that there is a path from (z, s) to (y,t) if
there is a connected chain of oriented time segments and arrows in
the constructed random graph, which links (z, s) to (y, t), without
going through any cross sign, and following the orientation of time
segments and arrows. (See Figure 1.10.)

The basic contact process with parameter A and starting at
A C Z% is defined as follows: £€4(0) = A, and if t > 0

¢4(t) = {y € Z% there is a path from (z,0) to (y,t)

(1.36)
for some = € A}.

(A is the initial configuration. (64(¢):¢ > 0) denotes the all pro-
cess)
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FIGURE 1.10

Remark. On the space X we consider the usual product topology,
for the discrete topology on {0,1}. Based on a system of inde-
pendent Poisson processes (77), (72¥) (also called “marks”), one
can verify that the graphical construction yields, almost surely,
trajectories ¢ + £4(t) in the Skorohod space D([0,+oc),X) of
paths on X which are right-continuous, with left-limits. If P4 de-
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notes the law of £€4(-) on D([0, +00), X), then it can be seen that
A — P4 (B) is a Borel measurable function, for each Borel set B
in the Skorohod space.

Several basic properties, are readily seen from the graphical
construction. Let s > 0 and consider the “marks” in Z¢ x [s, +00).
This is still a Poisson system just as before, independent of the
“marks” in Z% x [0,s). (Notice that the probability of finding a
“mark” at a fixed time s is zero.) Therefore, if for A C Z? we set:

(S)SA(t) = {y € Z%:there is a path from (z, s) to (y,s +t)

for some z € A},

(1.37)
then ¢4(-) is a basic contact process starting from A. Moreover,
given s:

EAs+-) = L6, as, (1.38)

and we immediately get the Markov property of the contact pro-
cess.

The same random graph may be used to construct several con-
tact processes, providing a natural coupling of them. This in-
cludes the restriction of the contact process to various volumes
A C Z4 (e.g. cubes, slabs or cylinders). In this case we follow the
previous definition, considering only the paths entirely contained
in A x R, . Such restricted processes are denoted by ¢4 (¢). For
A=B(N)={-N,...,N}¥ N > 1, we write £&(t).

Notation. If A C Z4, £4(t) stands for £474(). Xy = {0,1}A.

Remark 1.17 ¢4() is a continuous time Markov chain with
values on the finite set P(B(N)) (identified with Xp(n)). From
the graphical construction one easily verifies the following finite
volume approximation: given ¢, < 400 and a finite set B C Z<,
we have

lim  sup P(EA(t)N B # &5(t)N B) =0,
N—+oo 0<t<tg
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for any A C Z%. On the other side, as t — 400, the infinite
system £4(t) behaves quite differently than &4 (¢). This is part of
the discussion below.

From the previous construction we get the following monotonic-
ity relations to hold a.s. for all ¢ > 0:

(i) &v(®) c ¢4@), if AcCB(N),
(i) En(t) C €8(t), if Ac Bc B(N), (1.39)
(i) ¢4(t) c €8@t), if Ac Bcz

(Items (ii) and (iii) correspond to what is called attractiveness.)

Notation. When the initial configuration is the maximal one we
will omit the superscript: &y (t) = €0 (1), €(t) = €2°(1).

Concerning the ergodic behaviour of the contact process, the
situation for £4(-) is trivial: it is a finite-state Markov chain, the
empty set is an absorbing state which is reached from any initial
state. That is, letting

Ty = inf{t > 0: £5(t) = 0}, (1.40)
then T ﬁ < Tﬁ ) < 400 a.s. In particular, the unique in-
variant measure is dp, the Dirac pointmass at ). The process is
ergodic, in the sense that for any A, £4(t) converges in law to &y,
as t — oc.

The infinite system shows a different behaviour, exhibiting what
can be called dynamical phase transition. This was one of the
reasons for the big interest it raised. Of course, () keeps being
an absorbing state, but there is a critical value A, (depending on
d) so that for A > A there exists a non-trivial invariant measure
pN) £ 5. It appears as the limit in law of £(t), when ¢t — 4o0.
(This is the analogue of existence of percolation in the model of
Sec. 1.3 and we shall address it nextly.)
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For N large the chain &yx(-) may be seen as a suitable trun-
cation (perturbation) of the infinite system, and u» gives place
to a metastable state. If A > A., the process restricted to B(N)
is able to survive for a time exponentially large (in |[B(N)|). Its
metastable behaviour can be dynamically characterized, which in-
cludes the asymptotic unpredictability of Tn/E(Tn). (See [35]
and references therein.)

Monotonicity and attractiveness. Recall from subsection 1.2.1
the coordinatewise order on X: & < ¢ means that {(z) < &'(z)
for all z € Z4, which corresponds to the inclusion in P(Z%). It
induces a partial order on the space of probability measures on
X: if p; and py are probability measures on (X, B(X)) we say
that p; is stochastically smaller than ps, and write u; < pa, if
and only if ui(f) < p2(f) for each continuous and increasing
function f: X — R. (Notation: p(f):= [ fdu.)

The following classical result gives an equivalent coupling prop-
erty, which extends the construction in Section 1.2.

Proposition 1.18 . Let py, pa be probability measures on X =

{0, 1}Zd. The following are equivalent:

(i) There exists a measure i on X X X with marginals py and ps
i.€.,

BAXX) = u1(A), p(XxA) = p(A) forall A€ B(X),
(1.41)
and such that

A{e)e<e) =1. (1.42)

(i5) p1 < po.
The important part is the implication (i) = (). For a proof
and further discussion see e.g. Th. 2.4, Ch. II of [29] or the

references therein. The implication (i) = (4¢) is trivial (and used
in subsection 1.2.1).
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Recalling (1.39), we see that the use of the same “marks” in the
graphical construction of the contact process provides examples
of a direct verification of the coupling property (i) above. In this
way the proof of this proposition is not essential for the following
discussion, though this is a very useful result in a more general
context.

It is proper to observe that < indeed defines a partial order
on the space M;(X), of the probability measures on (X, B(X)).
(Verify it as exercise.)

Going back to the contact process, we see from (1.39)-(iii) that
whenever A C B, the law of £4(t) is stochastically smaller than
that of ¢5(t). The same holds for the process restricted to a
given volume. The property of order preservation is usually called
attractiveness or stochastic monotonicity.

Remark. If (2, A, P) is a probability space on which the Pois-
son processes of “marks” were constructed and p is a probabil-
ity measure on (X, B(X)), the contact process {#(t) with initial
distribution g may be constructed on the space Q=xXxQ
with the product o-algebra, replacing P by p x P. That is,
we first choose an initial A according to g and then run the
evolution ¢4(-), according to the given “marks”. In this way
P(¢*(-) € B) = [ P(&"(-) € B)u(dn), where B is a Borel set on
the path space. Having two initial measures p; and ps coupled cf.
(1.42), we may use the same “marks” to couple the processes (on
Q=X xX xQ, P=px P)in a way that with probability one
EF1(t) C &M2(t), for all t > 0. By Proposition 1.18 we see that if
p1 < pe, then the law of £#1(t) is stochastically smaller than that

of &2 (t).

From (1.38) and (1.39) we see that the laws of £(t) stochasti-
cally decrease in t. In particular, we get the existence of a prob-
ability ™ on X to which they converge, as t — +o00. The at-
tractiveness implies that any weak limit of the laws of £4(t,), as



44 VLADAS SIDORAVICIUS AND MARIA EULALIA VARES

t, — 400, is stochastically smaller than x(*). Thus, we have the
following equivalencies:
(i) p™ = dy;

(ii) €4(t) converges in law to dy for any initial A (ergodicity);

(iil) limyytoo P(z € £(t)) =0 for any z € Z7.

d

This is a general feature of attractive processes on {0, 1}Z :

there is always a maximal (and a minimal) invariant measure and
ergodicity is equivalent to their coincidence.

The graphical construction yields, for any s, > 0, a coupling of
&(s+t) and &(t) that is concentrated on {(n,n’):n C 7'}, cf. (1.38)
and (1.39). Letting s — 400 (and using compactness) we get a
measure fi; concentrated on the upper triangle {(n,n'):n C 7'},
whose first marginal is 4(*) and the second is the law of & (t). In
other words, ) is stochastically smaller than the law of £(t) and
ji; is a coupling as in Proposition 1.18.

Harris Inequality. An important property relating probability
and order has already appeared in subsection 1.2.1: we say that
a probability measure p on X is FKG, or that it has positive
correlations, if u(fg) > u(f)wn(g) for all functions f,g: X — R,
increasing and continuous.

We have already seen in 1.2.1 that the product measures on X
are important examples of FKG measures. Here we briefly discuss
this question in the context of dynamics.

Without a quite explicit knowledge of the measure, it is gener-
ally hard to verify the FKG property. Therefore, it is interesting
to know whether a given stochastic dynamics preserves this prop-
erty, that is, if the initial measure is FKG, so is the law of the
process at any time ¢ > 0. We would typically apply this to any
fixed configuration, or more generally, to any product measure at
time zero.

The following relation of the FKG property and attractive dy-
namics was set by Harris in [23]: an attractive continuous time
Markov chain on a finite partially ordered state space preserves
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the FKG property if and only if it allows jumps only between
comparable states.

We see at once that such property applies to the contact process
on a finite volume A, or to any attractive chain on X, = {0,1}4
for which only one spin changes at each jump. Recalling Remark
1.17, this extends to the infinite volume contact process. It implies
that if ¢ > 0 and f, g are increasing cylinder functions, then

E(fE®)g(E®) > E(F(1))E(g(e@))).

Letting t — +o0 in the previous inequality, we see that () has
positive correlations. Moreover, applying the Markov property
and the attractiveness we see that also the law of (§(¢1),...,&(tk))
is FKG on the product space of k copies of X, for any £ > 1,
t1, ...t > 0.

The next variant of the previous statement is sometimes useful.
For A and A finite, consider the pair (£, (t), &5 (t)) constructed on
the same basic graph. This is an attractive process with respect
to the coordinatewise order on Xy x X;. We see that only jumps
between comparable configurations are allowed. Applying again
Harris result and the approximation through finite volumes, we
conclude that for any A, A C Z4, if f and g are increasing and
continuous, then

E(fEa)g(€x(1) = E(f(€a(®))) E(9(&5(#))) - (1.43)

As in the previous paragraph, this extends to functions on the
time evolution.

One may also verify (1.43) and its extension along the time evo-
lution by setting it in terms of the percolation graph: consider first
a discrete approximation based on the following random graph: for
§ > 0 small, z € Z% k > 0, arrows (z, kd) — (z, (k + 1)) are set
with probability 1 — 6 and arrows (z,kd) — (y, (k + 1)) are set
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with probability Ad if ||y —z||; = 1, with full independence among
different arrows. Using the FKG property of the product measure,
as in subsection 1.2.1, and then letting § — 0, one recovers (1.43).

Self-duality. Self-duality is a quite special property, stated as
follows: if A, B C Z% and t > 0, then

PEABNB#0) = PEB)NA#D). (1.44)

The above relation is particularly useful if exactly one among the
sets A or B is finite. For finite B, ¢B(-) is a continuous time
Markov chain, and (1.44) describes the law of the infinite system
¢4(t) in terms of such chain.

Using the graphical construction, (1.44) follows from the time
reversal property for a system of independent Poisson processes:
we fix ¢t positive and consider the restriction of the random graph
to Z? x [0, t]; reversing the direction of all arrows and of the time,
and keeping the same x-“marks”, we get another graph, through
which we define for 0 < s < ¢:

£4%(s) = {z € Z% 3 a reversed path from some (y, t),

y € A, to (z,t—s)}. (1.45)

By a simple property of Poisson processes, the law of ({AA’t(s): 0<
s < t) is the same as that of (£4(s):0 < s < t). On the other
hand, the construction implies at once that £¢8(t) N A # 0 if and
only if éA’t(t) N B # (), proving (1.44). (Notice that ¢ is fixed in
this construction.)

An important special case of (1.44) comes from choosing A =
Z%, B finite:

P(E(t)NB #0) = P(E7(t) #£0) = P(T" > 1),

where T8 = inf{t > 0:£B(t) = (0} (setting inf() = +oc0). In
particular, letting ¢ — 400 we get

pM{n:nN B # 0} = P(T? = +0), (1.46)
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and taking B = {0} in the last equation: py := pM{n:0 € 5} =
P(T1% = +00).

Dynamical Phase Transition. From the random graph con-
struction and the translation invariance of the Poisson system of
“marks”, we see that u) is translation invariant. In particular
p) =y if and only if py = 0.

The graphical construction yields also the monotonicity in .
Namely, if A < A’ then the law of £¢4(t) with rate ) is stochasti-
cally smaller than that with rate \'. To see this, we may simply
start with the random graph corresponding to A, and construct
a new graph by keeping the same x-“marks” and for the arrows,
each one is kept (disregarded) with probability A\/X (1 — A/N,
resp.) independently of all the rest. The process constructed on
the new graph is clearly smaller than that on the initial one and
corresponds to a contact process with rate A. In particular, if
A < X we have p® < (). Setting

A = sup{\: px = 0}, (1.47)
the previous discussion tells us:
(i) if A < A2, then M = §3 and P(TP = +00) = 0, for any finite
set B;
(ii) if A > A%, then p® #£ 6y and P(T{% = +o00) > 0.

A priori A\ € [0, +oc], and one of the above alternatives could
be empty. An immediate comparison of the cardinality of £¢{°}(¢)
with a branching process whose birth rate is 2Ad, and whose death
rate is one, shows that A9 > ﬁ. This is a too crude comparison
(at least for d small). Another simple lower bound is Al > 1,
obtained by comparing the diameter of £1%}(¢) (for d = 1) with a
random walk which increases by one with rate 2\ and decreases
by one with rate 2, whenever it is larger than or equal to 2; this
walk has a negative drift if A < 1, which would force the set
£19} to be reduced to a point infinitely many times a.s. on the
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set {719 = +o00}; due to the positive death rate this forces a.s.
extinction. Duality can be exploited in a more elaborated fashion
to get A4 > 1. (See [29].)

That )\g < 400 constitutes an important classical result, ini-
tially proven by Harris. For any value of d it is known that A? < %,
as proven by Holley and Liggett. (See Cor. 4.4, Ch. VI of [29].)
For sharper approximations of A? see p. 128 of [31] and references
therein.

The behaviour at A% had been a challenging problem. Using dy-
namical renormalization techniques, Bezuidenhout and Grimmett
[9] have shown that py, = 0.

The measure p®) is also ergodic with respect to the trans-
lations. (See [29].) Moreover, it exhibits exponential decay of
correlations. This is closely related to the speed of convergence of
the dynamics as ¢t — 400, which plays an important role in the
verification of metastability for these processes, cf. Ch. 4 of [35].

Ergodic behaviour. A first natural question concerns the full
description of the set of invariant measures and convergence to
equilibrium in the supercritical phase. Due to peculiar properties
of the random graph on Z X [0, +00), involving crossing of paths,
the one-dimensional case is very special, for which reason the ba-
sic problems concerning the ergodic behaviour were settled much
earlier in this case.

To keep the discussion as simple as possible, we first discuss
the case d = 1 (postponing the multi-dimensional case to Chapter
4).

The characterization of 6y and p™ as the unique extremal
invariant measures constitutes a fundamental fact. In the case
of a one dimensional contact process, more complete information
on the ergodic behaviour is summarized by the following classical
results due to Durrett ([15]).

Complete Convergence Theorem. If A > A\, A C Z, and
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f:P(Z) — R is continuous, then:

Jlim E(f(£4(1))) = P(T* < 00) f(0) + P(T* = +00) u™(f).
In other words, £4(t) converges in law to P(T4 < 00) §g+P(T4 =
+00) u.

Pointwise Ergodic Theorem. Under the same conditions as
above:

t
1| €@ = FO) 1scag + V(D) priy s

Sketch of proof. For the full proofs see Th. 2.28 and Th. 2.33,
Ch. VI of [29]. We sketch the basic arguments for the proof
of the complete convergence theorem: considering A = {0}, the
statement becomes equivalent to:

lim PO )N B #£0,T1% > 1)
oo (1.48)
=M {&: 6N B # 0IP(T1 = +0),

for any finite set B.

The proof sketched here works only for d = 1 and heavily
uses the “edge” processes: r; := max £“N(=0(#) and 4, :=
min ¢Z00400) (), (¢20(=00(¢) and ¢ZN0+)(¢) are a.s. mnon-
empty, and r; and ¢; are well defined, integer valued.) Since the
random graph on which the process is constructed lies on the
plane, we can take advantage of its nearest neighbour character
(horizontal arrows only among nearest neighbours) and use cross-
ing properties of paths to see that {719 > ¢} = {#, < r,,Vs < t},
and that on this event {0 () N [£;, 7] = €(t) N [€g, 7).

A crucial point is the existence, for A > Al, of a constant
a(A) > 0 so that limy, o0 2t = a(A) = —limy 400 & ass., ie.,

t
a linear growth condition. Kingman-Liggett subadditive ergodic
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theorem (Th. 2.6, Ch. VI of [29]) is used for verification of the
a.s. (and L) convergence. Further analysis is needed to determine
that a(X) > 0 for A > AL. (See Th. 2.19 and Th. 2.27, Ch. VI of

[29].)

Given these ingredients and having fixed a finite set B, we have
O nB=¢@t)NB on {[l;,r] > B, T > ¢},

and the indicator function of this last event tends a.s. to that of
{T{% = 4o0}. Therefore one needs to argue that the conditional
distribution of &(t) given {T1% = +oo} tends to ™. If not
the conditioning, this would be just the definition of p»). Using
the attractiveness we see that the conditioning does not spoil the
limit: fix s and take t > s, so that by (1.38) and (1.39)-(iii) we
have P(§(t)N B #0,&) < P(&(t—s)N B # Q)P (&s), where £ =
{T1% > s} or its complement. Thus limsup,_, ., P(£(t) N B #
0,E) < pMN{€:€NB # B} P(E,) for any s, in each of the two cases.
But the sum on the Lh.s. (for & and its complement) tends to
pM{€: €N B # 0} entailing that limy_, o, P(£(t)N B # 0, T10 >
s) = pMN{&:¢nN B # PYP(T > s), for each s. Since P(s <
T{% < 4+00) tends to zero as s — 400 it is simple to conclude
the announced convergence of the conditional distribution.

The extension to any A finite is simple; the conclusion then
follows by attractiveness and since P(T4 = 4oc) tends to 1 as
the cardinality |A| tends to infinity, cf. Remark 1.19 below. O

The proof of the pointwise ergodic theorem combines an argu-
ment analogous to the one we have just sketched with the standard
reasoning based on the ergodic theorem for the stationary process
¢ | We omit it.

Extensions of these results to d > 2 require other tools. The
validity of the complete convergence theorem for d > 2 and any
A > A\ is a consequence of the results in [9] to be briefly mentioned
in Chapter 4.
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Remark 1.19 Let d = 1 and A > Al. Among the sets 4 of a
given finite cardinality n, the survival probability P(T4 = 400) is
minimized if A is a “block” {1,...,n}. Infact,if A = {z1,...,2z,}
and B = {y1,...,yn} are such that 0 < z;41 — x; < y;41 — y; for
eachi=1,...,n—1, then

P(T# = +0) < P(T® = +0). (1.49)

Being the death rate constant, (1.49) should be a consequence
of the way ¢4(t) growths, through empty neighbours of occupied
sites. It may be verified through the following coupling argument,
due to Liggett (cf. Th. 1.9, Ch.VI of [29]): it is possible to
couple ¢4 and ¢P in such a way that for any ¢ < T4 not only
IEB ()| > |€A(t)|, but also B(t) is more spread out, as initially.
That is, if ¢;: €4(t) — €B(t) associates to the it® element of £4(t)
(usual order) the it* one in ¢B(t), then |¢;(z) — 0i(y)| > |z — yl.
For this, set @o(z;) = y; for each i; having defined the joint evo-
lution up to a given time ¢, with the desired property, let the sites
r € £4(t) and ¢;(x) use the same exponential death “clocks”;
those elements of ¢B(t) which are not in the image of ¢; have
independent death “clocks”. Consider the collection of indepen-
dent exponential “clocks” which determine the birth on the empty
neighbours of £¢4(t): if the first change is a birth at = + 1 ¢ £4(t)
(due to an arrow from z € £4(t)), we simultaneously create a
particle in ¢B at ¢;(z) £ 1 (which is possible!); births at empty
neighbours of unpaired sites in ¢2 occur independently. At each
birth time s we update ¢, so that the i** element of £4(s) (usual
order) continues to correspond to the it" one in ¢B(s), for each

i < |€4(s)]-
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Chapter 2. One-dimensional contact process: rates of
convergence.

Time orientation not only makes the analogy between contact
process and oriented percolation very strong, but, generally speak-
ing, many tools and non-rigorous methods could be rigorously for-
malized in the case of oriented percolative systems, transforming
heuristic arguments into proofs. Here we will present an impor-
tant example of this type.

As it was already mentioned in the preceding section, King-
man’s ergodic theorem implies existence of the asymptotic shape
in the supercritical phase. Here we will see a much more refined
fact related to the edge process, namely the large deviations esti-
mate:

Proposition 2.1 . If A > A; and a < a()\), then lim;_, 4 o %log
P(ry < at) exists and is negative.

We will not give a detailed proof of the above proposition, nev-
ertheless below we give all necessary details of the renormalization
procedure leading to its proof.

Arguments of such type were first applied to percolation in the
works of Kesten, Russo and Seymour and Welsh. The application
to the one-dimensional contact process were made by Durrett and
Griffeath, and extended by Gray to a quite general class of attrac-
tive one-dimensional systems. The method has shown to be useful
in many applications and further developments. The basic point
is that by changing the scale one is able to compare the original
system to an oriented one-dependent percolation model where the
density of “open” sites is arbitrarily close to 1. The use of contour
arguments becomes possible and provides very useful information
for the original process at any supercritical parameter .

In this short discussion, aiming to point out the basic scheme
only, we follow [29], where the construction of Durrett and Grif-
feath has been presented with modifications proposed in Gray.
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For full details we refer to any of these texts.

Definition 2.2 Let ii = {(4,j) € Zx Z4:i+ j is even}. Sites
(i,9), (i',7') € 21 are declared neighbours* iff ||(4, ) — (4', 5')||1 :=
li—i'|+|j —j'| = 2. A one-dependent oriented percolation model
on ii, with parameter p, refers to any set of random variables
{Ua, ) (4,9) € Zi} such that:

(i) P(Uq,;) =1) =pand P(U; ;) =0) =1 —p for each (3, j);

(i) If F C ii and ||(4,7)— (7, j')||1 > 2 for each distinct (4, 7), (¢, j) €
F, then the random variables {U(; ; : (¢, ) € F'} are independent.
An open oriented path in this model is a sequence of sites (i1, j1),
ooy (im,jm) with jx+1 = Ji + 1, |7:k+1 - ’l,k| =1if1<k<m-—1,
such that U, ;) = 1if 1 <k <m. (That is, site (4, 7) is “open”
if U; jy = 1; otherwise it is closed.)

The attribute “one-dependent” means that U, ;), (4,7) € F are
independent when F' does not contain a pair of neighbours. (If
4> 2, (4,7) has 8 neighbours in Z2.)

One says that percolation from the origin occurs if it exists
an infinite open oriented path starting at (0,0), i.e, if C(g ) :=
{(4,7): 3 open oriented path from (0,0) to (4,7)} is infinite. The
interpretation of a fluid flowing along channels through open sites
is a natural one, being the reason for the expression “(i,j) is wet”
(4,7) € C(,0)- Occurrence of percolation means that “the fluid
reaches infinitely many sites”.

In other words, Z%r is made into a graph with oriented edges,
connecting (4, 7) to each of (¢ 1,5 + 1), on which one considers
site percolation with the described dependence.

Remark 2.3 In the setup of Definition 2.2 we need the following
applications of Peierls type contour arguments (p close to one),
which are crucial for Proposition 2.1. We follow Th. 3.19 and Th.
3.21, Ch. VI of [29]:

4The minimal || - ||1- distance between distinct points in Zﬁ_ is 2.
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(i) P(C(o,) is infinite ) > 0 if p is sufficiently near to 1.

Proof. 1If Uygo = 1 and Cig) is finite, we may consider a
“closed” contour which blocks percolation. (Contours are defined
in the dual lattice.) Equivalently, we may think of the region
D := Ui jyeco.0 D) C R?, i.e., each site (7,7) is replaced by
the diamond Dy, ;) := {(z,y) € R*: |z —i| + |y — j| < 1}. Non-
occurrence of percolation implies that R? \ D has a unique infi-
nite component. Its boundary I' consists of an even number (at
least 4) of “segments”, i.e., any of the four segments forming the
boundary of a diamond Dy; ;). Let 7 be a fixed realization of T
with 2n “segments”, each of which belongs to the boundary of
a unique “wet” Dy; ;). Exactly n “segments” are upper (left or
right) boundary of the corresponding “wet” Dy; j, implying that
Ugi—1,j+1) = 0 (upper left) or Ugiyq,j41) = 0 (upper right). We
see that v determines a set of at least n/2 different sites on which
U. = 0 (the same site corresponds to at most two different upper
“segments”); since each site has at most 8 different neighbours,
we extract (in a deterministic procedure, using a given fixed to-
tal order in ii) a set F' with cardinality at least n/18, contain-
ing no pairs of neigbhours, with U; ;) = 0 for each (i,j) € F.
Thus, P(I' = v | Ugg,e) = 1) < (1 — p)™/!8 and since there are
at most 32772 different possible v with 2n “segments”, we get
P(C(o,0 is finite ) < (1 —p) +p>°,,5, 32" 2(1 —p)*/18 < 1, for p
close to one. [

(ii) Set 7, := max {j: 3 open oriented path in Zi from (m,0) to
(4,n) for some m < 0}. Ifa < 1, P(7, < an) < ce~" for suitable
c,¢ > 0 and all n > 1, provided p is close enough to 1.

Proof. Let us consider

W ={(i,j) € ii:ﬂ open oriented path from (m,0) to (3, j)
for some m < 0},

and again it is convenient to replace W by V' = U(; jyyew Dy j) C
R2. Given n > 1 with probability one, the set R x [0,n] \ V has



RENORMALIZATION AND MULTI-SCALE ANALYSIS 55

only one infinite component, whose boundary we denote by I
The number of “segments” in I' is of the form n + 2m for some
m > 0. Each such “segment” is contained in the boundary of
exactly one D(; jy, with (i,j) € W, and is classified according to
its position in this diamond, as upper left, upper right, lower left
and lower right. For any fixed m, and calling n,;, nqy., ny, and
ny the number of segments of the corresponding type, one has:

Ny + Ny + Nyt + N = N+ 2

Ny + Ny — Nyl — Ny = Fn;

and so 2(Nyy + Nyr) = N — T + 2m, implying that {7, < an} C
{ Nt + N > 2m++(1_“)} Taking into account the same observa-
tions as in the previous remark, and since the number of possible
different realizations of I' with n + 2m segments is at most 37+2™

: ~ ~ n4+2m 2mtn(1-a)
one ends up with P(7, < an) <> ,3 (1—-p)~ =0 <
3—n+1 provided 1 —p < 3-72/(1-4) O

Remark. The reduction from 2n to n/18 on the number of “seg-
ments” (bonds in the dual lattice) contributing to the estimate
comes from: the orientation, the fact that we have a site model,
and that we cannot use nearest neighbour sites.

It remains to see how a rescaling procedure relates the super-
critical contact process to a one-dependent percolation model,
with p close to one. This brief discussion follows Sec. 3, Ch.
VI of [29]. One again uses the existence and positivity of an
asymptotic drift, a()), for the “edge” process 7y, if A > A, as
previously discussed. Let @ = «a()), 0 < 8 < «/3, and choose
a parameter M > 0 such that M3/2 and M« are integers. For
(1,5) € 7.2 , let us define the event &£(; ;) as the set of those real-
izations in the graphical construction such that for each of given
parallelograms R; ;) and L; ;) there is a path lying completely
within the given parallelogram and connecting its bottom edge to
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the top one. R(; ;) and L(; ;) are translates by (Mi(a — 3), Mj)
of R0y and L(q,0), respectively, where:

Riow) = {(@:1) € Zx [0, M(1 + B/a)]:
at —3MpB/2 <z < at — MpB/2},
L0y = {(z,t): (—z,t) € R0}

Clearly P(&(; ;) is the same for each (i, j) € iﬁ_ The event & ;)
depends only on the portion of the graph inside the rectangle

Apigy =IMi(a— B) — M(a+ B/2), Mi(a — B) + M(a+ 8/2)]
x [Mj,M(j+1+ p/a)].

Since 0 < ﬁ < 04/3, A(Z,J)OA(Z’J’) = @ whenever |(Z,j)-(@l,jl)|1 >
2, implying condition (ii) in Definition 2.2 for variables Uy, j) :=
1g, ;- To escape away from criticality as previously mentioned,
one verifies that for fixed @ = a()\) and 0 < 8 < /3

The parallelograms L ; ;y, R jy for (i,5) € iﬁ_ were constructed
to “match” properly, cf. Figure 2.1, in such a way that the exis-
tence of an open oriented path (i1,71),.-., (¢m,Jm) in S implies
the existence of a path in the graph of the contact process from
the bottom of R;, ;) to the top of R, j,.) and of Ly j . In
particular, percolation from (0,0) guarantees the survival of the
contact process starting from A := [-3Mf3/2,3M /2] N Z, and
Remark 2.3 provides upper bound for P(T4 < +00), as one checks
straightforwardly. It remains to prove (2.1).
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Ma+£)

T2 '
M WO A Ma+D)

FIGURE 2.1

Proof of (2.1). For fixed @ and S as above, let £ be the set
of configurations exhibiting a path which lies inside Ry and
connects the bottom of R ) to its top. It suffices to show that
limpry 400 P(E) = 1. For n € Z, let 7 denote the right edge of the
contact process starting from &(0) = (—oo,n]NZ, so that r) = ry
and the processes (rp':¢t > 0) and (n + r4:t > 0) have the same
law. From this and the a.s. convergence of r;/t to «, as t — 400,
we see that taking e.g. My = [MpB/3]+ 1 and to = M (1 + 3/a),
one gets

lim P{r;MW‘M" <at-— %,Vt < to} =1,

M —+o00
as well
_ _ M
lim P{rt Mp/2=Mo o pro . PM +MO} =1.
M —+oco 0 2
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On the intersection of these two events the graph of r, MB/ 2_M°,
0 <t < 1o does not get to the right of R ) and reaches its top
at least M sites to the right of the left extreme.

To guarantee the existence of a path as desired, it suffices to im-
pose that 7~ MB/2=Mo does not touch the left boundary of R0,0)-
By itself this is the more complicated estimate of the lower tail of
r¢. An observation due to Gray transforms it into a control on the
upper tail: under the given conditions, if r=M8/2=Mo arrives to
the top of R g o) after touching its left boundary, the average drift
must be larger than a. To prove the statement let D,, be the set
of realizations of the graph such that there is a path connecting
the vertical space-time segment {—38M/2+n} x[(n—1)/a,n/a)
to the horizontal strip {(m,tp):m > Ma — M/2 + My}. The
intersection of

{ry MM < ot —BM /2,5t < to, . PPTMO S Ma—pM /24 M),

with ﬂﬂ/":((frﬁ )Dg is contained in &, and it remains to show that

Zﬁ/fz(?rmP(Dn) tends to zero as M — +oo. Looking at the
reversed graph from time ¢y we see that

P(Dp(a+p)y—n) = P(rs > My +n for some s € [n/a, (n+1)/a))
< P(rnjoq > 3Mo/4 +n)

+ P( sup Ts — Tn/a > Mo/4).
s€[n/a,(n+1)/a)

By the attractiveness ry4, < 7y + 74+ Where, cf. (1.38), 7y =
max (u)g(—owu]ﬂz(t) — 7y, is independent of r,, and has the same
law as r;. Using this and the comparison of r; with a Poisson
process with rate A, we immediately see that the second term of
the above decomposition decreases exponentially in M, uniformly
in n. It remains to prove that

M(a+p)

phm n; P(ry)a > 3Mo/4+n) = 0. (2.2)
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Since E'ry/t tends to o as t — 400, given € > 0 to be chosen later,
we can take t = t. so that Er; < (a + €)t. Previous observation
tells that the variable rg; is stochastically smaller than a sum of
k i.i.d random variables distributed as r;. But r; is dominated by
a Poisson random variable, so that E(e"*) < +oo for § > 0, and
we may see that if £ = ¢, is picked as above, there exists v, > 0
so that
P(rye > kt(a+¢)) < e 7=k,

for all £ > 1. From this and choosing ¢ so that (1 + 8/a) < 8/4
we see that given 6 > 0 we can take ns (independent of M) so
that the sum for n > ns in (2.2) is smaller than §. Taking M
large we control the remaining terms. [

Proof of Proposition 2.1. The existence of the limit is a con-
sequence of the previous observation that r;4, < ry + s, which
entails

P(rips <a(t+s)) > P(rs < as)P(r; < at).

We must check that the limit is strictly negative. With «, 3, and
M as in the previous construction and 7,, cf. Remark 2.3, we have
TaMm > (@ — B)M7, — 38M/2. 1t suffices to take 8 < «/3 so that
a < a — f, in which case we would take any afﬂ < a<1and
M large enough for the renormalized model to fit into item (ii) of
Remark 2.3, according to (2.1). For example, 8 < a/3A(a—a)/2

with the choice @ € (22-,1) works. O

a+ta’

The usefulness of the renormalization procedure is that the
choice of M large enough allows to successfully use simple contour
methods. As one sees it leads to a poor control on the limit in
Proposition 2.1.

Remark. The previous construction allows to see that if A >
{0}

i [0,+00)
survival, i.e., the two processes have the same critical parameter.

Ac also the restricted process & has positive probability of
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(For large p the related one-dependent oriented site percolation
model has positive probability of survival even if restricted to
{(i,5) € 2% i > 0}.)
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Chapter 3. Application of dynamical renormalization
to percolation.

The lectures covered by this chapter are based on Secs. 7.1 and
7.2 of [19].

In the previous chapter we have already seen examples of renor-
malization arguments applied to percolation models. The block
construction used there was fixed deterministically. Another pos-
sibility that has shown to be a very powerful tool, as consequence
of the flexibility it brings in, is the use of dynamically constructed
blocks.

In this chapter we learn how this method was used by Grim-
mett and Marstrand to get a better understanding of the multi-
dimensional (d > 3) supercritical phase in percolation. The basic
ideas in [20] are similar to those used by Barsky, Grimmett and
Newman in [6].

Let d > 3 and consider the two-dimensional slab of thickness &

Sk =7Z% x {0,...,k}472, (3.1)

We may consider the bond percolation problem on this graph,
that is, only the edges e € E? with endvertices in Sy, are consid-
ered, and let us write p.(Sg) for the critical parameter. We see at
once that pe(2) = pe(So) > pe(S1) > -+ > pe(d) = pe. We may

let

pilab := lim p.(Sk), (3.2)
k—oo

which automatically satisfies pf2® > p.. That equality indeed
holds constitutes one of the important results which has been
obtained with the help of a dynamical block construction.

Before getting into the proof, let us think a little on the in-
formation provided by this result: if p > p. then we can find &
so large that p > p.(Sk), which guarantees that almost surely an
infinite open cluster exists in S;. Using the translation invariance
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of the measure P, we get infinite open clusters on all translates of
Sk. This gives a good geometric information on the structure of
the open cluster in Z2.

The basic idea is to construct random blocks of a given size so
that:

(i) As the size tends to infinity, the probability of any given block
being “good” tends to one.

(ii) The events that distinct blocks are good/bad are independent.
(iii) An infinite path of good blocks implies percolation in the
original model.

Having this in mind and comparing with a two-dimensional site
percolation, one tries to prove that a successful path as in (iii)
can be constructed within S (k sufficiently large). Notation.
B(k) = {-k,...,k}%

Theorem 3.1 . (a) Let d > 2 and let F be an infinite connected
subset of Z% with p.(F) < 1. Then, for all 1 > 0 there exists a
positive integer k so that

Pe(2kF + B(k)) < pe(Z7) +1.
(b) If d > 3 then plab = p,..

Proof. We consider only the case F' = {(z1,...,2q):x3 = -+ =
xq = 0}, for simplicity. In this case 2kF + B(k) = {(x1,...,zq):
—k <az; <k,i=3,...,d} and so pc(2kF + B(k)) = pc(Sax). To
simplify further the notation we look at the details when d = 3,
but the arguments apply to general case.

The initial construction of the proof goes as follows:
1. Assume #(p) > 0. Given € > 0 we can take m so that

P,(B(m) > 00) > 1 —g¢, (3.3)

P,( an infinite open cluster intersects B(m)) >1—e.  (3.4)
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2. Let £ > 1. We can take n > 2m large so that

P,(B(m) is connected to at least k points in 0B(n)) > 1 — 2e.
(3.5)
3. If k is chosen large enough one can ensure that with probability
at least 1 — 3¢ there is a point z € 0B(n) so that B(m) <> = and
x is connected to another translate of B(m) lying on the surface
of B(n) and having all edges open (seed). This can be done for
each face of B(n) and it provides a first step of the procedure.
4. Starting from these new seeds adjacent to the faces of B(n)
one tries to iterate the procedure in a way that it stays restricted
to a suitable Sy, and being able to control the probability it fails
in each step. One of the main difficulty comes from the negative
information (closed edges found on the way) that one acquires
in the process, and which is handled with the help of coupling
arguments with a slightly larger density.

Before entering the details we fix some notation: (see Figure
3.1) e; denotes the jth ca @%ical unitary vector.

FIGURE 3.1
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F(n) ={z € 0B(n):z1 = n},
called face of B(n),
T(n)={z € 0B(n):z1 =n,z; > 0if j > 2},
and for m,n > 1:
T(m,n) = U;Z ™ {jer + T(n)}.

A box x + B(m) is said to be a seed (for a given configuration w)
if w(e) =1 for all edges e within this box.
If 2m < n, set

K(m,n) ={x € T(n):(x,z + e;1) is open, = + €1 (3.6)
lies in a seed within T'(m,n)}. '

With such ingredients we may state the first lemma: (See Figure
3.2)

FIGURE 3.2
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Lemma 3.2 . If6(p) > 0 andn > 0, there exist m = m(p,n),n =
n(p,n) such that n > 2m and®

P,(B(m) <> K(m,n) in B(n)) >1—. (3.7)

Proof. Since #(p) > 0, an infinite open cluster exists a.s., so that
P,(B(m) ¢»00) = 1 as m — oo.
Pick m so that
Py(B(m) ¢ 00) > 1 — (1/3)*,
and pick M so that
pP,(B(m) is a seed) > 1 — (n/2)*/M.

Assume 2n+1 = j(2m+1) for an integer j, and partition 7'(n) into
squares of length 2m. Let V(n) = {z € T(n):z <> B(m) in B(n)}.
If [V(n)| > (2m + 1)2M then there exist at least M such squares
to which B(m) is connected in B(n). Take M of them in a fixed
order; for each one (called S), let z be its smallest element in
V' (m) for some given order, and ask if the edge (z,z + e1) is open
and the box U?L”fl(jel + 5) is a seed. We get

P,(B(m) ¢+ K(m,n) in B(n))
(2m + 1)2M)(1 — (1 — pP,(B(m) is a seed))™)
(2m + 1)°M)(1 — n/2).

(3.8)

5B + C in D means that there is an open path contained in D and
connecting a point in B to a point in C.
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To bound from below the probability on the right hand side, we
recall that 0B(n) has 24 disjoint translates of T'(n). Thus, from
the FKG inequality:

Py([V(n)| < (2m +1)2M)** < P(|Z(n)| < 24(2m + 1)*M),

where Z(n) = {z € 0B(n):z +» 0B(m) in B(n)}.
Letting £ = 24(2m + 1)2M, we write
Pp(|Z2(n)| < &) < Bp(|Z(n)| < £, B(m) > 00) + Pp(B(m) #* o0)
< Bp(1<[Z(n)] < ) + (n/3)™".
On the event {|Z(n)| < £} there are at most 3/ edges exiting

B(n) from Z(n). If all of them are closed we have Z(n + 1) = ),
implying that

(1-p)*P,(1<|Z(n)| <) < Py(Z(n) #0,Z(n+1) =) =: ¢,
which tends to zero as n — co. Therefore

Py([V(n)] < (2m+1)*M) <(P(1Z(n)| < £)"/**
S((l _p)—3£€n + (77/3)24)1/24 (3.9)
<n/2

for n large (n = n(p,n) much larger than m = m(p,n)). From
(3.8) and (3.9) we get (3.7) and conclude the proof. [

Some care is needed when we want to iterate the procedure
since while searching for the seeds in T'(m, n) we collect both pos-
itive (open edges) as well as negative information (closed edges).
This prevents us from continuing just with FKG inequality. At
this point there is an important trick (called “sprinkling”) which
comes from considering slightly larger success probability p + 9.
To explain it we keep in mind the uniform coupling and the notion
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of p-openness set in Chapter 1: (X, B(X),P)) a space on which the
system of uniform variables {U(e)}ccrs is defined, and e said to
be p-open if and only if U(e) < p.

Notation. If V C Z3 we write 07V = {2z € Z3\ V:Iy € V, ||z —
y|| = 1}, the exterior vertex boundary. AV = {{x,y):z € V,y ¢

V,||x — y|| = 1}, also called the exterior edge boundary. Ey =
{(z,y):z,y €V, ||z —y|| = 1}. (By =E° when V =1Z3.)

Lemma 3.3 . If 6(p) > 0, given €,0 positive we can find inte-
gers m = m(p,e,0),n = n(p,e,9),n > 2m verifying the following
property:

Let R be a set such that B(m) C R C B(n), (RUOTR)NT (n) =
0 and let B: ARNEpgy — [0,1—0]. Set
G ={3 path joining R to K(m,n),p- open outside AR,

and (B(e) + d)-open at its unique edge e lying in AR}

H ={all edges e in ARNEpy,) are B(e)-closed}.

Then P(G | H) > 1—e.

a seed

B(n) (N‘ -
e*

B(m) T(m,n)

R

FIGURE 3.3
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Proof. (See Figure 3.3 for an illustration.) Let ¢ be an integer
large enough so that

(1-6)<e/2 (3.10)
and then pick 7 so that
0<n<ga—mﬁ (3.11)

Apply Lemma 3.2 for this n to get m,n such that n > 2m and
P,(B(m) +» K(m,n) in B(n)) > 1—1.

Fix R and f as in the statement. A path from B(m) to K(m,n)
must contain a path from OR to K(m,n). Thus

P,(0R +» K(m,n) in B(n)) >1—1.
Let K C T'(n) and

Z(K) ={{z,y)x € R,y € B(n)\ R, 3 open path from y to K
using no edges of Ep U AR}.
We want to see that if P,(0B(m) <+ K in B(n)) is large then
Z(K) must be large. This is clear, since any path from 0R to K
must pass by Z(K), and so
(1-p)'P,(|Z(K)| < t) <P,(all edges in Z(K) are closed)
<P,(0R ¢ K in B(n)).

We now apply this to K = K(m,n) defined by (3.6), and we get

Pp(|Z(K(m,n))| <1) p)""Py(OR # K(m,n) in B(n))

(1-
(1-p)~'n

ININ TN

e/2.
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Consider the coupling of various p models as before. Conditioned
on Z = Z(K(m,n)), the random variables U(e),e € Z indepen-
dent and uniformly distributed in [0, 1], so that

P(all edges e in Z are (B(e) + §)-closed | H)
<P(Z] <t | H) + (1 — 6"
P71 < t) + (1 o)
<e/2+¢e/2=¢.

O

The next ingredient for the proof of Theorem 3.1 is the con-
struction of a renormalized process, as indicated, and which will be
compared to the site percolation model. Before getting to it, one
should recall that if F is a connected subset of Z¢ then p.(F) < 1
if and only if ps*¢(F) < 1. More precisely (see [19], Sec. 1.6):

Lemma 3.4 . Let F be an infinite connected subset of Z*. Then

pe(d) < pe(F) < pe(F) <1 - (1 —pe(F))*. (3.12)

We now turn to the proof of Theorem 3.1 and describe the
renormalized construction. Let n > 0 be small so that 0 < n <
(1 = pe)pe and p = pe + /2, § = /12, € = (1 — p**(F))/24.

Thus p > p. and so §(p) > 0. We apply Lemma 3.3 for ¢, as
above and let m, n be given by that Lemma. Let N =m +n + 1.
2N will be the side-length of the blocks used in the renormaliza-
tion procedure, and we shall check the statement of Theorem 3.1
with £ = 2N. For this, let

B, = B,(N)=4Nz+ B(N) z€Z® (site-bozes) (3.13)

The set of vertices will be {4Nz:x € Z¢}. If x and y are adjacent
then B, and B, are named adjacent. Those Nz + B(N), with
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z € Z.% such that exactly one component of z is not divisible by 4
are called bond-bozes. If this component is divisible by 2 the box
is called half-way box. See Figure 3.4.

\
-
N
I\
X

<
1Y
®
g
=

site box St

N\

site box site bo.

L

§s

N

\ .

half-way box

\. \
N\
N

-
-

FIGURE 3.4

Site boxes will correspond to renormalized sites. They will
be examined recursively in an order which will depend on the
previous steps (random). For this reason the procedure is called
“dynamical renormalization”. A fixed ordering of the edges with
endvertices in F' is given as before {f1, f2,...}. The procedure
along which site boxes B, are to be examined will involve suitably
defined random variables {Y (z):x € F'}.

The event { By is occupied} is represented in Figure 3.6 (drawn
in two dimensions, but keeping in mind that d = 3). Its construc-
tion and the probability estimates involve an increasing family of
edge subsets £1,&,,...,E on which we are acquiring information
along the procedure. This information will be stored in the form
of Lemma 3.3, for suitable Bg,vx (e is Bk (e)-closed, v (e)-open),
and B T, | in k.

Let BO = Bo(N), 51 = EB(m)a and

~—
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Bi(e) =0, for all e € E3

pifee & (314)
71(e) = :
1 otherwise.

At the first step one requires B(m) to be a seed, or equivalently,
that B1(e) < U(e) < v1(e) for all e.

Notation. Two edges e, f are called adjacent, if they share one
endvertex. This is denoted by e &~ f, and it gives a graph (with
the associated notions). If £ C E* we write

AE ={f € B\ E: f~efor some e € E}.

For j =1,2,3 and 7 = %, let L}:Z* — Z® be an isometry of R®
that preserves Z3, and such that L70 =0, Lje; = Te;; assume LT
is the identity and that the set {L},7 = &,j = 1,2,3} is closed
under composition.
&, will be a random set of edges to be defined below. For this,
set
Zy=Bn)u |J Lj(T(m,n)) (3.15)

j=1,2,3
==

Consider all edge paths m with vertices in Z; such that:

e its first edge f lies in A&y, and it is B1(f) + 0-open;

e all other edges of 7 lie outside & U AE; and are p-open.
Writing & for the set of edges which belong to such paths, let

£ =E1UE, (3.16)

and let Ry be the set of endvertices of those edges belonging to
&s. Let also

Kj(m,n) = {z € L;(T(n)):(z,z + Te;) is p-open and lies

j
in some seed within L7 (T'(m,n))}.
(3.17)
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We can apply Lemma 3.3 to R = B(m) and 8 = 31 to get
P(Re N K] (m,n) # 0| B(m) is aseed ) > 1 —¢, (3.18)
so that
P(R2 N KJ (m,n) # 0,V7,5 | B(m) is a seed ) > 1 —6¢. (3.19)

Let us now set:

,61(6) if e ¢ EZl;
) Bile) +0 ife€e A&\ &y
IB2 (e) N p ifee (Agg \ Agl) N EZl; (320)

0 otherwise,

and

m1(e) ifee &y;

Bi(e)+6 ifee A& NEy;
p ifee &\ (E1UAE);

1 otherwise,

v2(e) = (3.21)

so that Ba(e) < U(e) < 7a(e) for all e, on the event [Ry N
K7 (m,n) # 0,VY7,4,7]. The occurrence of this event represents
the second step being successful.

Notice that if Ey is an arbitrary edge subset and Ry is the
corresponding vertex set, we can find A € o(U(e): e € Eg,) such
that

{0’ € X 51 == EB(m),SQ = E2}
=ANA{B2,6,=Ep(m) E:=E>(€) < Ul(e), for e € ARy}



RENORMALIZATION AND MULTI-SCALE ANALYSIS 73

FIGURE 3.5

If these first two steps of the procedure are successful (see
Figures 3.5 and 3.7) we proceed further trying to link the ob-
tained seed in each L7(T(m,n)) to a new seed in the half-way
box 27Ne; + B(N). If this is successful in all six directions, as
explained below, we will say that the renormalized site Bj is oc-
cupied. (See Figure 3.6.)
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FIGURE 3.6 OCCUPIED RENORMALIZED SITE

To fix ideas take 7 = +,5 = 1, so that we are looking at
2Ne; + B(N). Let by + B(m) be the earliest seed (smaller by
in lexicographic order) with all its edges in & N Er(y ). Then
by + B(m) C Ney+ B(IN). Since all coordinates of by are positive,
we see that by + T (m,n) ¢ 2Ne; + B(N). Therefore we replace
T(m,n) by

T*(m,n) = U?Zfrl(jel +T*(n)), where
T*(n) ={x € 0B(n):x1 = n,z; <0, for j = 2,3},

in such a way that by + T*(m,n) C 2Ne; + B(N). Then one sets
Zo = by + (B(n) uT* (m, n)) (3.22)

and defines the following random sets of edges and vertices.
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b2+T*(m,n)

2N

. FIGURE 3.7
&, will be the set of the edges that belong to paths in Z3, such
that:
e its first edge f lies in A&y and it is B2(f) + d-open;
e other edges are outside £ U A&, and are p-open.
One sets &3 = E3 U €, R3 is the set of endvertices for edges
belonging to &3, and
K*(m,n) ={z € bo +T*(m,n): (z,z + e1)is p-open, z + €1
lies in some seed contained in by + T (m,n)}.
Applying Lemma 3.3: condition on &1,&, and R = Ra N (by +
B(n)), with B(-) given by the restriction of 82(-) to ARNEy, 4 B(n),
and we see that
P(RgﬂK*(m,n) 75@ ‘81,52) >1—e. (323)
Thus, we may introduce the new functions S3(-) < y3(-):
Ba(e) ifed Ez uz,;
,62(6) +4 ifee (Ag2 \ 53) N EZ1UZZ;
p ifee (Agg \ Ag2) M EZ1UZ2;

0 otherwise,

Bs(e) = (3.24)
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and
va(e) if e € &y

ﬂl(e) +46 ifee AEyNEs;
p ifpe &\ (E2UAL);
1 otherwise.

v3(e) = (3.25)

It follows that given a set of edges E3 D E5 and the corresponding
set of vertices Rz there exists A € o(U(e): e € E3) such that

{&1 =Ep(m), &2 = E2,E3 = Es}
=AN {,33751:]]§B(m) Eo=F»,E3=F; (e) < U(e), for e € AR3}.

Proceeding with half-way boxes in the other directions, we say
that the renormalized site By is occupied if we succeed in all di-
rections, see Figure 3.5. From (3.19), (3.23), and its analogues in
the other directions, we see that

P(By is occupied | B(m) is a seed )
>(1—6e)(1 — €)% >1— 12 = (1 + pie(F))/2,

C

(3.26)

due to the definition of e (right after the statement of Lemma
3.4). It is important to observe that at the end of this procedure
we have

Bs(e) <~vg(e) <p+65 forecls. (3.27)

No edge lies in more than seven translates of B(n) and from the
construction one gets

Bs(e) < vs(e) <p+65=p+n/2 for e € &s. (3.28)

Since Ul(e) < ~vg(e) we see that it is (p + n/2)-open.

Having settled what it means for the renormalized site By to
be occupied, we see how this renormalized process can be dynam-
ically constructed so as to yield the comparison with a standard
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site percolation model on F. Such dynamical procedure® is now
sketched. (See Figure 3.8.)

Consider Er ordered in any fixed way: f1, f2,..., and construct
a sequence of pairs (Ag, Ax), k =1,2,... of subsets of F"

o Ay = {0}, A; = 0 if By is occupied.
oA =0,A4; = {0} if By is not occupied.

Having defined (A1, fll), ooy (Ag, flk), consider the subset E of
Er of :ohose edges with one endvertex in Ag and the other outside
A U Ag.

If E =0, then Apy1 = Ay, Agy1 = Ay, i.e., the process stops.

If E # 0, let f be its smallest element and let xry1 be the end-

vertex of f which is outside Ax U Ay. We then set:

o Api1 =AU {$k+1}7 Ak+1 = /ik, if B

° Ak;+1 = Ay, Ak—kl = Ak U {$k+1} if B$k+1
Thus Al CA2 C .. Al CAQ C ... and we let

zp41 18 OCCupied;

is not occupied.

Ao = Ups1 4k, Ao = Ups14s.

The set A, can be thought as part of the occupied renormalized
cluster of By and Ay, = 01 A, its exterior vertex boundary (with
the convention that 010 = {0}).

Remark 3.5

(a) If “B; is occupied” (or not) is replaced by “z is open” (or
closed) independently with probability p (1 — p, respectively), the
construction yields the site percolation cluster of the origin under
the Bernoulli measure on {0, 1} with parameter p.

(b) Given any family of {0, 1}-valued random variables (Y (z),z €
F) the construction is applicable with “B, is occupied” replaced
by “Y(z) =17.

6Very similar to the usual proof of the last inequality Lemma 3.4 that we
omitted.
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!

. site box

4

7

'

4Ne+B(N)

B(N)

FIGURE 3.8 DYNAMICAL CONSTRUCTION (RENORMAL-
IZED)

We need to examine the above construction and to establish
a comparison with the simple independent process. We start as-
suming that By is occupied, since otherwise the process stops at
once, and consider the smallest edge f which has endvertices 0
and z € F. To fix ideas we assume it to be (0, e;) and examine if
Be, is occupied, which is done as follows:

(i) try to link the seed in the half-way box 2Ne; + B(N) to the

site-box 4Ne; + B(N);

(ii) provided (i) is successful, we then try to link such seed to the

other five half-way boxes that touch 4Ne; + B(N).

We say that Be, is occupied if both (i) and (ii) are successful. The
procedure at each of these steps is as follows:

For step (i) we proceed in two sub-steps: in each of them we
first look for seeds of the type b + B(m) located on the proper
quarter faces of boxes, in order to compensate the effect resulting
from the fact that the starting seed is not at the center of the
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half-way box 2Ne; + B(N), in the first sub-step (of the bond-box
3Ne; + B(N), in the second sub-step).

In step (ii) we start from the seed b* + B(m) obtained in (i)
and try to construct the seeds in the other five half way boxes
in a suitable way: look for seeds on the surface of 4Ne; + B(N)
with vertices whose first coordinate is not smaller than that of b*
(to guarantee they have not being examined yet). If successful,
one tries to link this new seed to each of the five corresponding
half-way boxes.

From the previous analysis we get the following probability
estimate:

P(B., is occupied | By is occupied) > (1 + p5*¢(F))/2. (3.29)
The process is continued as described above. Calling v := (1 +
psite(F))/2 > p5e(F), we see that for k > 1, having constructed
(Aq, fll), cee (Ak,flk), then we have

P (Bml is occupied | (A1, A1), ..., (Ap, Ak)) >4, (3.30)
in the notation described above.

This allows us to use a comparison with an (independent) site
percolation model on F', and it is convenient to use the standard
coupling as in Section 1.2, now applied to site variables: consider
(U(z),xz € F) iid. random variables uniformly distributed on
the interval [0, 1].

The site 0 € F is declared to be red if U(0) < P(By is occupied),
and black otherwise, in which case the process stops. If 0 is de-
clared red, we start the construction described above with Ay as
the set of sites colored red, and Ay, the black ones up to the k-th
step, for each k. Given (A1, A1), ..., (Ag, Ag), the site 241 is col-
ored red or black according to U(zg4+1) < P(By,,, is occupied |
(A1, A1), ..., (Ax, Ag)), or not. In this way we clearly have the
distribution of these last random sets (A1, A1), (A2, A3), ... under
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P is the same as that of the previous ones. The set A, coincides
with the exterior vertex boundary of A, and moreover, for z € F
to belong to Ay, we must have U(z) > =, i.e. site x must be -
closed. Consequently we see that the cluster of y-open sites which
contains 0 cannot intersect ;100 and so it must be contained in
Ao. Since 7y > pe site(F') we have that

P(|Aco| = 00) > 0. (3.31)

Finally notice that (3.31) implies that 4NF + B(2N) contains
and infinite (p+ n)-open path, so that p.(4NF 4+ B(2N)) < p+n,
concluding the proof of Theorem 3.1. [

The comparison of this last step is usually summarized as fol-
lows:

Lemma 3.6 . Let Y(z),z € F be a family of {0,1}-valued ran-
dom variables, and consider the previous dynamical construction
(Ak, Ag),k > 1, ¢f. Remark 3.5 (b). If there exists a constant
v > psite(F) so that

P(Y(2341) = 1| (A1, By), ..., (A, By)) > v, for all k,
(3.32)
then P(|Ax| = 00) > 0.
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Chapter 4. Half-space percolation and multi-dimensional
contact process.

The conjecture that for ordinary percolation 6(p.) = 0 up to
now remains one of the major open problems for 3 < d < 18. How-
ever, multiple attempts to prove it brought to the interesting re-
sults on their own, and led to the development of new techniques.
Here we stop with an example, which played an important role in
the history of percolation theory, and served as a basis for further
developments, namely for the proof that multi-dimensional con-
tact process dies out at the critical point, and in particular was
the triggering work for the results of the preceding chapter.

In fact, the method of the last chapter comes close to proving
that 6(p.) = 0 for general d. Indeed, assume that #(p) > 0 and
7 > 0. Then there is an event, call it A, defined in a finite box B
such that:

i) Pp(A) > 1 — ¢, for some prescribed small € > 0;

ii) the fact i) implies that 6(p + n) > 0.

Assume, that one can prove this fact with n = 0, and assume also
that 8(p;) > 0. Then P, (A) > 1 —e. But since B is finite, it
implies that P,(A) is continuous function of p. Therefore there
exists p’ < p, such that Py (A) > 1 —e. It follows thus by ii)
that 6(p') > 0. This contradicts the definition of p., and therefore
0(pc) = 0.

Going back to the contact process, recall that several arguments
in the Chapter 2 (and in the quoted proofs) required that d =
1. Due to the planarity of the graphical construction, one could
take advantage of path intersection properties. Together with the
subadditive ergodic theorem, this was a key fact in the proof of
basic theorems. One example is the linear growth of 575{0} given its
survival, used in Durrett-Griffeath’s renormalization procedure.

The replacement of a priori fixed blocks in the renormaliza-
tion procedure by a more flexible dynamical construction repre-
sented a breakthrough in the analysis of percolative systems. It is
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due to Barsky, Grimmett and Newman [6], who considered high-
dimensional (non-oriented) percolation and to Bezuidenhout and
Grimmett [9], who constructed a variant of the procedure for the
higher dimensional contact process.

4.1. Percolation in half-spaces.

Barsky, Grimmett and Newman [6] considered the following
problem: Let d > 2, and let H = Z¢~! x Z,. H is called “half-
space”, and we write

Ou(p) = Pp(0 <> oo in H)
for the corresponding probability, and

pe(H) = sup{p : Ou(p) = 0}
for the critical probability of H. It follows from the main theorem
of the last Chapter, by taking F' = H that p.(H) = p..
Theorem 4.1 . Let d > 2. We have that 0y (p;) = 0.

We will outline basic steps of the proof. For simplicity take
d = 3.
Blocks. Let L, H be positive integers and define the block B(L, H)
by
B(La H) = [_L7 L]2 X [07 H]

We define “an underside” U, “a top” T', and “sides” S of the brick
in the following way:

U=U(L,H)=[-L, L) x {0},

T=T(L,H)=[-L,L* x {H},

S=S(L,H)={x € B(L,H) : |z;| = L for some j € {1,2}}.
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The top T may be divided into four congruent “subfacets”:

T, =1[0,L*x {H}, T»=[0,L] x[~L,0] x {H},
T3 =[-L,0*x {H}, Ty=[-L,0]x[0,L] x {H}.

Analogously, the set S may be divided into four “facets”, each of
which may be divided into two “sub-facets” congruent to {L} x
[0, L] x [0, H]. We will denote the eight corresponding regions by
S1,852,...,Ss.

Let m be a positive integer. We define the two-dimensional
region

bi(m) = [-m,m* " x {0} x [-m,m]>*™* for k=1,2,3,

and we designate as squares all translates z + bg(m) for z € Z3
and k = 1,2,3. A square z + bi(m) is called a seed if all edges
pairs of vertices in the square are open. To each x € SUU we
associate a square b(xz) = b(xz,m, L, H) having = at its center,
in the following manner: to any x € T we associate the square
b(x) =z + bg(m). If x € S\ T, we find some i, such that z € S;,
and we define k(z) such that b(z) = x + by(y)(m) is parallel to S;;
for x belonging to more than one S;, we pick one of these according
to some predetermined rule. Let b(0) = bg(m), a square having
the origin at its center.

Assume that L > m and H > 2m. The block B(L, H) is called
good if:

a) there exists z; € S; for 1 <7 <8 and y; € T for 1 < j < 4,
such that every b(x;) and every b(y;) is a seed;

b) for every i, there exists an open path of B(L, H) joining
b(x;) to b(0) using no edges in the underside U;

c) for every j, there exists an open path of B(L,H) joining
b(y;) to b(0) using no edges in the underside U.

Lemma 4.2 . Suppose that Oy(p.) > 0. If n > 0, there exist
integers m, L, H, satisfying m > 1,L > m, and H > 2m, such
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that
P, (B(L,H) is good) > 1 — 1.

Now, using the construction similar to the previous chapter, one
shows

Lemma 4.3 . There exists a strictly positive number v such that
the following holds. Let 0 < p < 1. Suppose that m,L, H, are
positive integers satisfyingm > 1, L > m, and H > 2m, such that

P, (B(L,H) is good) > 1 —v. (4.1)

Then
Ou (p) > 0.

Thoerem 4.1 is a consequence of Lemmas 4.2 and 4.3: suppose
Ou(p:) > 0, and let v be given as in Lemma 4.3. By Lemma 4.2,
there exist integers m, L, H, satisfying m > 1,L > m, and H >
2m, such that (4.1) holds with p = p.. The event { B(L, H) is good}
depends on the states of a finite set of edges only, whence its prob-
ability under P, is a continuous function of p. Therefore there
exists p’ < p. such that

P, {B(L,H)is good} > 1 —v.

By Lemma 4.3 we have that g (p’) > 0, and it follows by contra-
diction that Oy (p.) = 0.

4.2 Contact process.

Taking advantage of the flexibility of the construction in the
proof of Lemma 4.3, Bezuidenhout and Grimmett proved that
if the contact process survives on Z¢ x [0,+o0c) with positive
probability, the same holds on a sufficiently deep space-time slab
AL X 7 x [0, +00), where A = {—K,..., K} as before.
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The statement is based on the validity of a finite volume con-
dition: if A > A4, ¢ > 0, and M is any given (large) number,
one can find r, L, T so that starting from A2 x {0}, the (space-
time) process restricted to Br, v = A% x [0,T] not only survives
up to time T" with probability at least 1 — &, but also produces at
least M infected points on A4 x {T'} and at least M well sepa-
rated infected points on each side of By, 7, i.e., points connected
to A2 x {0} through a path contained in By 7. (In fact, one can
find such many points on each orthant of the top and of the sides
of B r.) Having many well separated points one is able to grow
again a suitable translate of A% x {0}, using only paths contained
in A%_l x [L,2L] x [0,2T]. (The FKG inequality plays an impor-
tant role in the verification of this property.)

Using this kind of estimate and successive restarting, one is able
to compare the process on a slab Agzl X Z x [0, +00) to a suitable
one-dependent oriented bond percolation on S = {(u,v) € Z X
Zy,u+ v is even}, each bond (u,v) = (u £ 1,v + 1) being open
with probability very near to one. For this, if £ € N, one considers
the sets

L L
L£E = AT x{(2,1):0 < t < (2k+2)T, =5l ot < < 5L:I:ﬁt},

and for each © € AST! x [—2L,2L] and t € [0,2T], let £*(x,t) be
the event that (z,t) + A% x {0} is connected inside £* to each
point in some translate (y,s) + A? x {0}, with (y,s) € ((£k —
2)L, (+k+ 2)L] x [2kT, (2k + 2)T]. The basic estimate iterated k
times tells us that given § > 0,k € N, we can take L and T so that
P(E%(z,t)) > 1-4, for all such (z,t). Using “seeds” (fully infected
translates of initial A% x {0}) located in (ukLeq, 2vkT) + A3~ x
Agp, x [0,2T], with (u,v) € S, one gets the previously mentioned
comparison, and the survival (with positive probability) in the
space-time region

L= U(um)eg{(ukLed, 20kT) + (£+ UL )}
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(eq denotes the canonical unit vector in R?)

We will not discuss this dynamical renormalization procedure
here, referring reader to the original article [9], or [30], where mod-
ified version is presented. An important feature is that once the
basic growth condition involves only a finite volume, it is contin-
uous in A. This implies one of the important conclusions in: the
critical contact process dies out.
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Chapter 5. Multi-scale analysis at work.

In this chapter we look at two examples where multi-scale
renormalization techniques are applied to the study of percola-
tive systems in the presence of disorder.

In usual situations the homogeneous system exhibits at least
two different types of behaviour (called phases), obtained by vary-
ing one or more parameters: an ordered phase, characterized by
the existence of long range order in the system, and a localized
phase, characterized by the decay of some correlation functions.
For instance, in the independent homogeneous percolation model,
by varying the parameter p we have either subcritical behaviour
(diameter of open cluster decays exponentially fast) or supercrit-
ical behaviour, with the presence of an infinite open cluster, and
finally the critical point p..

In the presence of disorder, each phase may manifest itself in
infinitely many arbitrarily large regions, where the system’s pa-
rameters will be in the range characteristic of these phases.

5.1 The percolation model in a dependent environment.

Let us consider the following oriented site percolation model:
on the graph

Z% ={(z,y) EZxZi:x+y iseven},

the lines H; := {(z,y) € Z2 ,y = i} are first declared to be bad or
good, independently of each other, with probabilities § and 1 — 4,
respectively; sites on good lines are open with probability pg, and
on bad lines they are open with probability pp, independently of
each other, given the configuration of lines. More formally: on a
suitable probability space (€2, A, P), we take a Bernoulli sequence
E=(&:1€ Zy) with P(§; =1) =6 =1— P(& = 0), which deter-
mines if H; is bad or good, accordingly. Given the configuration &
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we have occupation variables (n,:z € ii) which are conditionally
independent given &, and P(n, =1|¢{) =pp=1-P(n, =0]&)
ifze Hywith¢; =1, and P(n, =1|§) =pg=1—P(n, =0]¢)
if z € H; with §; = 0. If n, = 1 the site z is open, and otherwise
it is closed. We consider the oriented site model, i.e. an open
oriented path is a path directed upwards (northwest-northeast) all
of whose vertices (or sites) are open. (With respect to the usual
presentation of oriented percolation on Z4 x Z, as in Sec. 1.3,
there has been a rotation of w/4 counterclockwise.)

The interesting situation is when pg > p., the critical proba-
bility for homogeneous oriented site percolation on Z x Z, and
pp a small positive number. Given pg > p. and pg > 0 we ask
if § > 0 may be taken small enough so that there is percolation,
that is, a positive probability of percolating to infinity from the
origin. The answer is positive, as stated in the next theorem, due
to Kesten, Sidoravicius and Vares ([27]).

Theorem 5.1 . In the setup described above, let
G(pGapB76) = P(CO is mﬁmte )7

where Cy denotes the oriented open cluster of the origin. Then
if pg > pe and pg > 0 we can find 6y = do(pg,pB) > 0 so that
O©(pg,pB,0) > 0 for all § < ég.

The proof of this theorem has some quite involved features. To
avoid them but still discuss the main aspects of the multi-scale
renormalization method, in these lectures we consider a much
simpler model, where the configuration of bad/good lines is de-
terministic and has an hierarchical structure. Moreover, we prove
only a weaker version, for pg close to one. (The extension from
the case of large pg to any super-critical value is not hard.)
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The hierarchical model.

We begin with the description of the hierarchical binary se-
quence &L which gives the lines configuration, and where L is
a suitably large integer. We first consider the sequence EL =
{€L},51 € NY by setting:

- k if L*¥ | n, and L**! ¢ n;
& =
"o ifLtn

The binary sequence is defined as follows: ¢ = 0, and {¢F tn>1
is obtained from &~ by replacing each element & = k, k > 2
of €& by a string of k consecutive ones: at the place where it
appears an element (& = k, k > 2, we remove it, and insert
k consecutive ones, shifting the part {Ef}i2n+1 of the original
sequence §~L by k — 1 units to the right. The inserted string of k&
consecutive ones will be called cluster” of mass k, for any k > 1.
This is a convergent procedure and we define (& as the limiting
binary sequence. All clusters are labelled in increasing order as
{Ci}i>1, and m(C;) denotes the mass of the i*" cluster. Moreover
by a; = a;(C;) (resp. w; = w;(C;)) we denote the position of the
first (resp. the last) 1 in the cluster. If m(C;) = 1 we have o; = w;.
The following property is very important for the construction: for
any two clusters C and C’ one has

d(C,C') > Lm(C)/\m(C')-

Construction of renormalized lattices.

The goal of this step is to construct a sequence of partitions
{Hx}x>0 of Z2% into horizontal layers, which will be used for the

"Not to confuse with the notion of open cluster.
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definition of renormalized sites along the multi-scale procedure.
It is an iterative construction.

Level 0. To begin, we define 0-layers as the initial lines which
characterize the environment: Ho; = H; = {(2,y) € Z3 ,y = i},
for any j € Zy. 1f j € I' we say that O-layer Hy ; is bad, and
otherwise it is called good. These names are justified by the fact
that vertices which belong to good 0-layers are open with large
probability (namely, pg), and vertices which belong to bad 0-
layers are open with small probability (namely pg).

Level 1. Let {C;};>1 be the family of all clusters labelled in
increasing order, as before. Recall that a(C;) and w(C;) are re-
spectively, its start- and end- points. We set, for each 5 > 1:

4 { w(Cj) + 3, if m(C;) =1, (5.1)

w(cj)7 if m(cj) > 1,

a;,, = @;+1, and & = 2 (By the definition of ¢&', m(Cy) =1 and
a(C1) = L.) Thus, the intervals [@},w;],j > 1 give a partition of
{2,3,...}. For those j such that m(C;) > 1 we split the interval
(&}, ;] into [&}, a(C;) — 1] and [(C;), Wj], and we relabel the new
partition of {2,3,...} as (@1 j,w1 4],J > 1, in increasing order. To
complete the decomposition of Z_ we write o1 o = 0 and wy 9 = 1.

We then set, for j > 0:

Hl:j = [a17j7w17j] H17j = U HO 8-

s€lay j,w,5]

The layers H, ; are called 1-layers. Either the 1-layer contains
at most one bad 0-layer, in which case we call it a good 1-layer, or
it is the union of k£ > 2 consecutive bad 0-layers, and we call it a
bad 1-layer.

Level 2. Among all clusters {C;};>1 we now consider those which
have mass at least 2, and temporarily rename them as C;, j > 1 (al-
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ways in increasing order). Since m(C;) > 2, we know from the pre-
vious level that for each j there exist i; so that C; = [avi;, w1 4]
For 5 > 1, we then set:

—y wilj+3, it m(C;) =2;
wilj, it m(C;) > 2,
a2, =w?+1, and &5 = a3 (by the construction m(Cy) = 2).
For those j such that m(C;) > 2 we split the interval (&}, 7] into
[@2,a(C;) — 1] and [e(C;), @?], and consider the obtained partition
of {n € Zi:n > oy 3}, which we relabel in increasing order as
(g j,w25],5 > 1. To complete it to a partition of Z, we set

ag0 = 0,ws o = w1 2. We then set, for j > 0:

Ha,j = 02,5, w2,5] Hy; = U Ho,s.

s€las,j,w2,;]

The sets Hp j,j > 0 are called 2-layers, and each 2-layer is the
union of consecutive 1-layers. Analogously to the previous case,
a 2-layer H, ; with j > 1, may consist of m > 3 consecutive bad
lines, in which case we call it a bad 2-layer, or it contains at most
one pair of consecutive bad lines with all the remaining 1-layers
which form it been good ones, in which case it is called a good
2-layer. The 2-layer Hj( is kind of exceptional, being formed
by three 1-layers: the exceptional 1-layer H; o and two 1-layers
H, 1, H, >, which are necessarily good provided L > 3.

Level k. Having proceeded with the previous construction up to
level kK — 1, we now consider, among all clusters {C;};>1 those
which have mass at least k, and temporarily rename them as

C;,j > 1 (always in increasing order).

Since m(C;) > k, the previous construction shows that for each
J > 1 there exists i; so that C; = [ag_1,;;, wr—1,;;]. We then set,
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for j > 1:

ak . Wk—1,i;+39 if m(C}) = k;
Wk—1,i, if m(CNJ) > k,
ak

&

give a partition of {n € Z;:n > ak_1,3}. Again, when m(C;) > k
we split the interval [&¥, &%] into [&?,a(é’j) — 1] and [a(CNj),ZD;?].
We relabel the new intervals in increasing order as [a j, Wk, ], J >
1 and finally we complete the family to a partition of Z, by setting
k0 = 0,wk0 = wr—1,2. We then set for j > 0:

= &f + 1, and finally &% = ag_1,3. The sets [&;?,&V);?],j >1

Mij = lonjowng]  Hij= |J  Hos

s€lay, j,wk, ;]

The sets Hy, j,7 > 0 are called k-layers. Each k-layer is the union
of consecutive (k — 1)-layers. We recursively see that if j > 1
either the k-layer Hy ; is constituted by m > k + 1 consecutive
bad lines, in which case it is called a bad k-layer, or it contains at
most one set of k£ consecutive bad lines (a bad (k — 1)-layer), and
all the remaining (kK — 1)-layers which form it are good (k — 1)-
layers, in which case Hy, ; is called a good k-layer. Again as before
the k-layer Hy, o is exceptional, being formed by the exceptional
(k —1)-layer Hy_1 9 and two (k — 1)-layers Hy_1 1, Hx—1,2 which
are necessarily good if L > 3.

For any k£ > 1, the good k-layers are said to be of type 2 when
they do not contain any bad (k — 1)-layer. These are the layers
which are followed by a bad k-layer. The good k-layers which
contain one bad (k — 1)-layer are then said to be of type 1.

We now define renormalized sites Sf; with (i,7) € ii, also
called k-sites, for all k¥ > 0. (See Figure 5.1.)

For a constant ¢ > 0 to be fixed below (depending on pg) we
set:
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Level 0. Sp, ;y = (i, ), for (3,j) € Z3.
Level 1. For any (i,j) € Z3, we set

7—1 1+ 1
SGig) = (TCL’ — | X Hajt (5-2)

Level k (k > 2). We set, recursively, for any k > 2 and (4,5) €
72
+

k _ k—1, gk—1
S(i.5) = Yiaw) {S(z,y)' Stay) C (5:3)
i—1 o Lok 1L , .
c( o (eD)f = S (D)1, P2 L) ] X Hk,m}.

The constant c is taken to satisfy the condition ¢ < 3r(pg)/14,
where r(pg) > 0 is the asymptotic slope in homogeneous oriented
site percolation on Z2? with parameter pg > p., as in Section
1.3 (see [16]). For simplicity of writing we assume ¢! € N and

cL/2 € N.
Remark. The layers Hj, o, which correspond to the union of two
layers of each of the previous levels 0,. ..,k — 1 starting from the

origin, will be used to define what we call a (k—1)-seed (see below)

from which the system percolates into S(’)“,O with large probability.

(The number of 0-layers in Hy, o is bounded from above by caLF1,

where ¢4 is a suitable positive constant.)

The k-site S&j) is said to be good, when the corresponding
Hy jy1, cf. (5.3), is good. Similarly, a good k-site is said to be of
type 1 or type 2 also according to the corresponding k-layer that
contains it. Therefore, from the construction we have:

e A good k-site S* of type 1 contains L —4 (or L — 3, if contained
in Hy, 1) horizontal layers of good (k — 1)-sites, forming what
we call the kernel of S, denoted by K(S*). The kernel is
followed by an horizontal layer of bad (k — 1)-sites (part of the
k consecutive bad lines in the k-layer), which is then followed
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by three horizontal layers of good (k — 1)-sites. Observe that
among the first L —4 (or L — 3 according to the case) layers of
good (k—1)-sites, all but the last one are formed of type 1 good
(k — 1)-sites, i.e. they necessarily intersect a bad (k — 2)-layer,
and the last one is formed of type 2 good (k — 1)-sites, i.e. has
no layer of bad (k — 2)-sites.

e A good k-site S*of type 2 contains no layer of bad (k — 1)-sites.
In this case it contains only L — 4 layers of good (k — 1)-sites,
where again all layers but the last one are formed of type 1 good
(k —1)-sites, and the last is formed of type 2 good (k — 1)-sites.
In this situation K(S*) = S*¥. By previous observation, S¥ is
of type 2 if and only the k-layer where it is contained is followed
by a bad k-layer.

Notation.

(a) The O-site with the coordinates C* (Sé“i’j)) = ((cL)*, ag,j41),
will be called the central site of Sé“i’ i)

(b) B(SE ;) = (CF(SE )~ 3eLF=1, CF(S% )4+ 3eLF1) {41}
(c) The (k — 1)-sites S*~* C Sf; ;) such that S*~* N B(Sf ;) # 0
will be called centrally located sites in Sﬁ.’ i) (There are three such
(k — 1)-sites.)

(d) Let us also define
_ 1 1 = 1 _
B(S( ;) = |C*(SG ) — E(CL)’“ L CR(SE ;) + E(CL)’“ 1
X [Otk—1,ij+2,wk—1,ij+3} .

Observe, that B(S; ;) C Sf; ;_1)-
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(d) Finally we consider the following rectangles:

[ —1 1 7—1 2 1
it ) = |5 e+ enh, o eny 4 2 (e
X [ak—l,ij+1+2)wk—l,ij+1—‘r3] )
k [i+1 k2 R OV k|
D, (SG.5) = T(CL) - E(CL) - (cL)” — E(CL)

X [ak—l,ij+1+27 wk—l,ij+1+3:| )

[ 4 1 1 2
= | Z(eL k —(cL k ° T, k Z(cL k
X Hi—1,i;41-15

DE(Sh3) = |5+ DD — Tl (5 + D) - 15D

X Hrk—1,i;41-1

(€D + (L), (5 + D) = JoeD)]

K

X Hrk—1,i41-1,

= (L) + (L), ey + %(cL)k]

X Hk—l,ij+1-|-17

A [ 4 2 ) 1
D(Sh) = | (5 + DD = D (5 + D(e)* - (er)]
X Hk—l,ij+1—‘r17

1 1 1 1
E(CL)k + E(CL)k’ (5 +1)(cL)* - E(CL)k:|

X Hi—1,i541+1-

We now introduce several key definitions: seed, s-passability
(from a seed), and c-passability (from three centrally located sites).
See Figure 5.1 for an illustration.
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0-Seed. A 0-seed Q) is a set of three open sites in Z2 , disposed

as follows: Q) = {(i,5), (i +1,j+1), (i — 1,5 +1)}. (When the

location is not important we will eliminate the subscript.) The

sites (¢ — 1,7+ 1) and (i + 1,5 + 1) are called the active sites of

Q®, and we denote A(Q() = {(i—1,j+1), (i+1,5+1)}. Thesite

(1,7) is called the root of Q(®), and we write R(Q(®) = {(4,5)}.

Passability at level 1. A good 1-site S' is said to be passable

from a seed Q) if:

e There exist two rooted 0-seeds Q;(S') and Q,.(S'), located re-

spectively in D;(St) and D;(S?1).

o R(Q;(SY)) and R(Q,(S")) are connected to A(Q®) by an open

oriented path lying® in S'. (In the usual application, the sites

A(Q®) are supposed to be located just below the 1-site S*.)
Consequently R(Q;(S')) and R(Q,(S')) are also connected to

R(QM)).

1-18eed. A 1-seed consists of three good 1-sites S(lz.’j), S(li—l,j+1)’

S(i+1,j+1) in such a way that:

o S(li’j) is passable from a given seed Q(©) = Q;

° S(li—l,j+1) and S(1i+1’j+1) are passable from Ql(S(lm.)) and from

Qr (S(lZ 7))> Tespectively.
In this case,

QW = 5 ;U S{im1 41y U Siis1j41) U Q
is called a rooted 1-seed and we set

R(QW) =R(Q),
A(Q(l)) :A(Ql(S(li—l,j—}—l))) U A(QT(S(li—l,j+1)))
U A(Ql<s(1i+1,j+1))) U A(Q, (S(1i+1,j+1)))'

8except possibly by the initial vertex in the path
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The site R(Q) is called the root of Q(Y) and the sites in A(Q(M)
are called the active sites of Q(1).

Passability at level k. A good k-site Si’f ; 1s said to be passable
from the (k — 1)-seed Q~1) if;
e There exist two (k — 1)-seeds @Q;(S*) and Q,(S*), located re-
spectively at D;(S*) and D,.(S*) of S*.
e R(Q:(S*¥)) and R(Q,(S*)) are connected to A(Q¥*~1) by an
open oriented path of 0-sites lying entirely in S* (except possibly
by the first vertex of the path). (As before, for the applications
the sites A(Q*~1) are located just below S¥.)

Consequently, R(Q;(S*)) and R(Q,(S*)) are also connected to
R(Q%~1).

k-Seed. It consists of three good k-sites S¥ S

(i.d)’ and

k
(i—1,j+1)?

sz‘+1,j+1)’ in a way that:
° Sé“i ;) 1 passable from a given (k —1)-seed Q*—1);
o S@—1,j+1) and 5@+1,j+1) are passable from Ql(S&j)) and from

Q- (S g j)), respectively.
In this case,

QW =80, jy U Slic1j41) Y S(iy1,541) U QETY
is called a (rooted) k-seed, and we set
R(QW) =R@Q"7Y),
A(Q(k)) :A(Ql(sé_1,j+1))) U A(Qr(sg‘_uﬂ)))
U A(Ql(sé€i+1,j+1))) U A(Qr(séci+1,j+1)))-

The site R(Q*)) in Zi, called the root of Q(¥); the sites in A(Q®*))
are called the active sites of Q.

In the proof we still need the notion of centrally passable renor-
malized sites, which we define below.
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A 0O-site (4,4) € 21 is centrally passable if and only if it is open.

A good 1-site S! is centrally passable if there exist two 0-seeds
Q:(S?) and Q,.(S?) located respectively in D;(S!) and D;(S?), as
before, and such that R(Q;(S!)) and R(Q,(S')) are connected by
an open path lying in S! to at least one centrally located site of
St

A renormalized good k-site S* is centrally passable if:
e at least one centrally located (k — 1)-site SZ'“,_J} in S* is centrally
passable;
e there exist two (k — 1)-seeds, Q;(S*) and Q,(S*) located at
D;(S%) and D, (S*) respectively, and such that R(Q;(S*)) and

R(Q,(S*)) are connected to A(Ql(Sg,jjl.,))) or A(QT(SZ.T;,))).

We will say that two k-sites SF; and SF, ;.1 (SF_, ;4 resp.)
are connected, if Sf’j is s- or c-passable, and Sf+1,j+1 (Szk—l,j-l-l
resp.) is passable from QT(SZlfj) (Ql(SZlfj) resp.).

We also will say that Sk belongs to an open cluster of S* (de-
noted by Ugx )? if S¥ is s- or c-passable, and there exists a sequence
of k-sites S¥ = Sk, Sk ... Sk = S* such that S;-“ is connected to
S;-“_l forall 1 <j<n.

If Q is a fixed (k — 1)-seed from which we check if S* is s-
passable or not, we may use Qg(S¥) for Q, in order to emphasize
that.

The proof of existence of percolation for the hierarchical model
will be built through a very special way to achieve passability,
which will involve the next important concept.

Definition 5.2 Dense kernel Having fixed p € (1/2,1), we say
that:
Level 1. S! has dense kernel if

)
UQB(SI)|K(51) mDK(Sl)‘ > EPCLa

9Similarly for Ug, if Q is a seed.
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1
‘UQB(Sl)‘K(Sl) ND(SY)| > EPCL7

and

1
UQs(sh)|ge(sny) N DF (81| = 5 pcL.

Analogously we define c-dense kernel.
Level k. S* has dense kernel if

)
UQB(Sk)|K(Sk) mDK(Sk)‘ > apCLa

1
Uos(s%) | we(sny N D[ (S%)] > T

and .
|UQB(Sk)|K(Sk) N D (S%)| > T

Analogously we define c-dense kernel.

Notational Remark. From now on we say that S* is s-passable,
if it is s-passable and has dense kernel. Analogously for c-passable.

Observe, that if the k-site S* has dense kernel, then each (k—1)-
site that belongs to the cluster Ug sk) ‘ K(SH) is also s-passable, and

thus, each of these (k — 1)-sites S¥~! lying on the top layer of the
K (S*) (notice that in this case S¥~1 = K(S*~1)), has at least pcL
sites S*~2 on its top layer which are s-passable, etc.. Therefore
each S* with dense kernel has at least (pcL)¥ 0-sites on its top
layer, which are connected to the root of Q.

The good k-sites have been defined having in mind to achieve
high crossing probabilities when the upwards (northwest-northeast)
direction is considered. That is so because its piece of a bad (k—1)-
layer corresponding to k consecutive bad lines is located on the
top part of the k-site, so that process can grow well before meet-
ing a very hard environment. As we shall see next, the proof uses
a trick involving downwards crossing, and for this it is convenient
to consider a reversed partition.
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Passability in reversed direction.

Reversed sites. We begin with the horizonal layers at all scales.
Level 0. The 0-layers I/:\To,j = H;.

Level 1. Take {C;};>1 as before. We set, for each j > 1:

o= { O8I )= 51
T ale), i miey) > 1, ‘
and &; = 0j,; — 1, so that we have a partition of {n € Z :n >
@i} (recall that @ = L — 3). When m(C;) > 1 we split the
interval (@}, ;] into two pieces [}, w(C;)](= [a(C;),w(C;)]) and
[w(Cj)+1,@;j]. We rewrite the new partition in increasing order as
[1,5,01,5], > 1, and complete it to a partition of Z by setting

@1,0 = 0, al,o =L —4.
For each j7 > 0 we set

Hyj=[Grj,a1; Hiyj= |J  Hos

SE[alyj,aLj]

Level 2. As before, consider all clusters which have mass at least
2, and rename them as éj, j > 1 (always in increasing order).

From the previous construction, since m(éj) > 2 we know that
for each j there exist i; so that C; = [W1,i;,001,4;]. We define

9 Qri—s, if m(C;) =2
aLij , if m(ég) > 2,

and & = @3, , — 1, so that we have a partition of {n € Z :n >

@7}. When m(C;) > 2 we split the interval &7, @] into two pieces
03, w(C))](= [a(C)),w(Cy)]) and [w(C;) + 1,a7]. We rewrite the

J’
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new partition in increasing order as [Ws j, &2 ], 7 > 1 and complete
it to a partition of Z by setting Wa o = 0, Qg0 = W3.
For each 7 > 0 we set

Hyj=[@25,025] Haj= |J Hos

SE[GQJ,@Q’]‘]

Level k. Assuming the procedure completed up to level (k — 1)
we consider all clusters which have mass at least k, and rename
them as C;,j > 1 (always in increasing order).

From the previous construction, since m(C;) > k we know that
for each j there exist i; so that C; = [Wr_1,4;, Qr—1,q,]-

In this case we define

. {ak_l,ij_g,, it m(C;) = k;

UJJ = . . ~
Qk—1,i;, it m(C;) > k,

and @ = &%, — 1, so that we have a partition of {n € Z,:n >
&F}. When m(C;) > k we split the interval [@F, @%] into two pieces
[@;-“,w(Cj)](: [a(Cj),w(Cj)]) and [w(C;) + 1,&;?]. We rewrite the
new partition in increasing order as [@, ;, Q. ;], 7 > 1 and complete
it to a partition of Zy by setting & o = 0,ak,0 = @?. For each
7 > 0 we set

Hij = Orgoarg]  Hij= |J  Hos

SE[Wk,j,0k,;]

The renormalized reverse k-sites §fj with (z,7) € iﬁ_ are de-

fined as before, replacing Hy j+1 by ﬁk,jﬂ. The notions of seed,
and § or ¢- (reverse) passability are defined similarly.
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FIGURE 5.1 RENORMALIZED SITE

Probability estimates. Drilling.

Given p > p. we know from [16] (see also Sec. 1.3) that there
exists an asymptotic density p(p) for the oriented cluster in homo-
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geneous oriented percolation model with parameter p. Moreover,
lim,_,; p(p) = 1. Thus we may take p* < 1 so that p(p) > 1/2 for
all p > p*. (Of course p. < p* < 1. ) Our arguments yield a proof
of the theorem when pg > p*. (See Remark 5.4 below.) Let then
e > 0 be small so that p:= p(pg) —€ > 1/2, and set p=p—1/2.
Let
pr = Pp(S* is s-passable), k>1,

and let gx = 1 — px. The following Lemma is the key ingredient
of the proof:

Lemma 5.3 . Given pp > 0 and pg > p*, there exists L large
enough such that

aw < qr_, forall k > 1, (5.5)

and where gg =1 — pg.
The main idea and key steps of the proof will be discussed now.

The proof of the lemma is by induction on k. For any £ > 0
and any j > 1 we will say that sites Sg“i,j) and Sé“i,’j) are well
separated, if |’ —i| > 4.

If £k =1 we can choose L > 0, large enough, such that:

P(S! has s-dense kernel from Qp(S') |Qp(S?) is a seed )

2
>1- 20
(5.6)
Before we proceed just a simple observation on how to get (5.6):
given the 0-seed, one may use a standard Peierls argument for
survival, and then the shape theorem for the homogeneous model
with parameter pg, as mentioned in Sec. 1.3.(See Remark 5.4
below.)
If S has s-dense kernel, then each DX (S') and DX (S!) con-

tains at least 1—12 pcL 0-sites connected to the origin (by oriented
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path contained in S') and thus at least ﬁ pcL among them are
well separated. We fix N such that

2

(1-pp)" < %O (5.7)
and in both DE(S') and DX (S!), we group these well separated
sites into N disjoint sets in such a way that each set contains
at least 45+Nﬁ0L of such well separated 0-sites connected to the
origin. The second required condition on L is such that

2

2
N(1 _pB)Sg_N peL ~ 90

— 5 .

(The role of p? will become more transparent in the next step.)

[N

2
This gives 1 -4 as a lower bound for the conditional (conditioned
to the 0-seed) probability of the event:

Gpr(s1) =
[there exists at least one open path in each of N groups of well
separated sites in D{<(S'), and which starts at one of such
0-site S?Z-,j), goes through the bad line, and ends at the open

. 0

Denote by G DK (51) the set of sites S?Z. mentioned above, which

1
are connected through the bad line toj S 0;7 i) and then to the origin
by and open path. Observe that sites of ngK(Sl) are well sepa-
rated. This implies that for each site of G DK (1) lying after the
bad line, we can check independently, if there is 0-seed above each
of these sites or not. Thus if Gpx (g1 occurs from (5.7) we get

that
P (3 seed Q) with root S?i,j-l—l) € Gpx(s1) |QB(S") is a seed )

2
>1- 20
= 5



RENORMALIZATION AND MULTI-SCALE ANALYSIS 105

Collecting all together we get

P(S" is s-passable from Qp(S”) |Qp(S") is a seed )
=p1 >1—gqj.

Remark 5.4 The standard Peierls argument of counting the
blocking contours, gives ag3 (a fixed constant) as an upper bound
for the probability not to survive from a given 0-seed; this is com-
patible with (5.6) if go is small, so that putting together with the
shape theorem and the asymptotic density result of standard ori-
ented percolation we get (5.6). Thus, simply because we started
with a seed that contains only 3 sites we might need a larger pg
than just po > p* (since we want agi < ¢3/6 say). To be able to
go down to any pg > p* we have to take larger seeds, but there is
no essential difference. It is important that once (5.6) holds for a
given pg it holds for all p > pg, as one can see from comparison
(coupling arguments).

Assume now that (5.5) holds for (k — 1)-sites, that is:

P(S*7! is s-passable from
Qs(S* 1) | Qp(S* 1 isa (k—1)-seed ) (5.8)
=pr1>1—qps.

Estimate (5.8) and the choice of L > 0 at the first step imply, cf.
Remark 5.4, that:

P(S* has s-dense kernel
from Qp(S*1)) | Qp(S*!) is a (k — 1)-seed )

>1—q’%‘1.
5

(5.9)

If S* has s-dense kernel we can find at least é pcL well separated
(k —1)-sites S¥=1 in DJ(S*~1) as well as in DX (S*~1), which by
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themselves are s-dense (these sites coincide with their kernel). As
in the first step we group these well separated sites S*~! into N
disjoint sets in each D (S¥) and DX (S¥) in a way that each set
contains at least pcL well separated k — 1-sites connected to
the seed of S*.

_1
48N

Given Sé“_; in DJ(S*), the major difficulty is to produce with
probability large enough a site S¥~ (5.7 +2) on “the other side” of the
(k — 1)-bad layer, and which will play the role of s-passable site,
from which we could continue our procedure and check whether
there exists or not the (k — 1)-seed Q;(S*) starting either from

Qu(S(; 1)) or @r(S(4g)). Thus we would like that the event

T(S¥ 3 JJr2)) either root of the seed Qi(Sk G J+2)) or Q,(S* 3 JJr2))

is connected to the origin by an open path of O-sfnes]

has large enough (conditional) probability. To do so, consider for
each such (k—1)-site S7 -} located in DJ(S¥), the “forward” site

(4,9)
i+1) located in D;(S*). The site

Sé“ 112) and the reverse site Sé“

S(w) is separated from Sk, 12 and S(”H) by the bad (k — 1)-

layer which consists of k£ consecutive bad lines. From the definition

(()é for;v.ard ar51d2 r)everse partitions we have that S 8 i+1) C S 8 3{1_2)
ee Figure 5.2.
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S(i,j+1)
s wi

bad line ofimass k-2

_ reverse partition

k1
G, j+1)

il

bad line of mass k-1

forward partition

bad line of mass k-2

4 reverse partition
FIGURE 5.2
. . . k—1 - . Sk—1
We notice that if the site S(i,j) is s-dense and the site S(i,j +)

is c-dense (in reverse direction), then there are at least --pcL
pairs of (k — 2)-sites S¥=2 and Sk=2 on opposite sides of bad
layer, which are localized in D (SZ_J;) and Dl(S’ﬁ.’_le)) respec-
tively, and which are s- and S-dense, and moreover have the
same first coordinate. Each such pair S¥~2 and S¥~2 contains
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at least §pcL sites S¥~3 and S*=3 on opposite sides of the bad
line, which have the same first coordinate and are s- and s-dense.

Continuing the argument we conclude that each pair SZ_J; and
§g._jl+1), provided they are s- and c-dense respectively, contains
at least 3(gpcL)*~! distinct pairs of 0-sites which either have the
same (if k£ is odd), or different by —1 (if &k is even) first coor-

dinate. Denote this set of 0-sites by El(Séci};’géci_ji—l))’ and by
E;,_ (Sﬁ;;, S\Z_JIJFI)) C E'(SZ“Z_];, §€€z_g£rl)) the sites which belong to

k—1 k—1 Gk—1 k—1 Qk—1 . .
Se gy and B (S 0,86 1y) € E(S(; ), S(; j11)) the sites which

k-1
belong to S(i,j-l—l)‘
Now observe that if the site Séci_j{la) is c-passable and the site

gé‘;_jil) is c-dense then each 0-site of the set A(Ql(SZ._jlez))) is con-

nected by an open oriented path to each 0-site of the set Fy4 (S g_J])L,
§€€z_31|-1)) and each 0-site of the set A(QT(Sg,_jl_l_m)) is c?\nnected
by an open path to each O-site of the set E’r+(Sé_j;, Sé_jil)).
On the other side if S¥ has s dense kernel, then each 0-site of

E_ (SZ_];, Sé“i’_lerl)) and ET_(SZ.’_A, Sé’_jil)) is connected to the
origin by an open path. For each such pair S?i, i € El_(SZ._j;,
Qk—1 k—1 gGk—1 :
S j+1)) and S?i,,j,+k_|_1) € Ei(S; ;) S j+1)) (assuming that k
is oodd), we define the “straight” path TrV(S?é,’j,), S?i',j'(;i-k-i-l))
{S(i’—i—(—l)’",j’—i-r)’ r = 1,...,k} connecting Sy 10 SGr ki)
through the bad layer.

Observe also that if in each of N groups of (k —1)-sites at least

one pair of 0-sites from the set E’l(Sg“i_ji, :S’\g._jil)), for some (4, 7), is
connected through the bad layer, then it immediately implies that
either root of the seed QZ(SZ‘;._J.L”) or Q’“(Sg_lerz)) is connected to

the origin by an open path of 0-sites.

Taking into account that each group has at least 45+N pcL well
separated (k — 1)-sites, and the fact that the probability that for
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each such well separated site S( J) the site S*~ is c-passable

and the site Sk i+1)
we get that Wlth probability converging to 1 super-exponentially
2

(é J+2)
is ¢-dense is bounded from below by p%_l,

fast in k& we have at least 2 e 481N ﬁcL well separated triples of

(k — 1)-sites S( )’ S(Z j42) and S( j+1) Such that the second and
the third site are c-passable and ¢-dense respectively Each pair
of sites SZ“ ; and Sé“ ;1) from this triple has at least 3 3 (§pcL)k=
pairs of O-sites with the same first coordinate, we get that the
probability that at least one of “straight” paths 7V connecting
pairs of O-sites on opposite sites of the bad layer within the is
bounded from below by

pi 1 k
~ (§pcL)

1—(1—p%)32N ’

and thus the probability that in each of N blocks there exists at
least one connecting path is bounded from below by
pi7 2

1,14 .71k
1— N(1—pl) ™ @70 5 g Tet

On the other side from the choice of N we have:

(1 -V < 52

2
which implies that with probability at least 1 — 2=+ we will find a
(k —1)-seed among N sites S¥~1 which are located right after the
bad layer and have a seed whose root is connected to the origin.
All together this implies that

P(S* is s-passable from Qp(S*) | Qp(S*) is a k-seed ) > 1—q7_,.

and the lemma is proven by induction. [
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To complete the proof of analogue of Theorem 5.1 for the hier-
archical model, we observe that the probability to have the first
0-seed equals to p3. From this O-seed we get the passable 1-sites
with probability at least p; and thus the probability that to have
1-seed on the top of the first seed we equals p?. Continuing the
recursive procedure we get that

P(there exists an infinite cluster starting from the origin)
+oo
> [ >o,
k=0

which shows that if pg is large enough, pg > 0, and we take
L sufficiently large, then there is percolation in the hierarchical
model. Enlarging the seeds as mentioned above this argument
yields the result for pg > p*. One needs to work further to extend
it to all pg > pe.

5.2 The contact process in random environment.

The notes for this lecture are based on the article [10], by Bram-
son, Durrett and Schonmann.

Let us consider the following contact process on Z: each site is
independently declared to be bad or good with probabilities p and
1—p, respectively. The birth parameter is assumed to be constant
and equal to one at all sites, i.e., at an unoccupied site a particle
is born with rate given by the number of occupied neigbhours.
The death rate depends on the status of the site; a particle at a
bad site dies with rate A and at good sites the death rate is J.
That is, we have a random environment w = (§(z))zez given by
independent Bernoulli variables

PO(z)=A)=p PO(z)=0)=1-p
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and for any given realization w (fixed once for all) we consider
a inhomogeneous contact process & with birth rate A = 1 and
death rates given by the 6(x). The interesting situation corre-
sponds to § < 6. < A, where . is the critical parameter in the
homogeneous case. Thus, on the good regions we have a tendency
to grow (supercritical) while in the bad regions the process tends
to die out. Using a multi-scale analysis, Bramson, Durrett, and
Schonmann [10] proved that no matter how small is the density
of good sites, provided positive (any p < 1), and no matter how
bad are the bad sites (any finite value of A) it is possible to make
the good sites so good (i.e. one can take d so small) in a way that

t{o} survives with positive probability, for almost all realizations
of the environment. As a by-product this brings a region of val-
ues of the parameters (A, d, p) for which there is survival without
linear growth, in contrast with what we have seen to hold in the
standard homogeneous case. We concentrate only on their result
on survival, to learn how multi-scale analysis can be successfully
used for such problems. More general models can be considered
by allowing the birth rates to be random as well. Liggett [30]
and Klein [28] have given sufficient conditions for extinction, and
Liggett [31] gives sufficient conditions for survival with positive
probability, for almost 1l realizations of the environment. Never-
theless, these conditions do not apply to the region of parameters
considered in [10].

Theorem 5.5 . Foranyp < 1, any A < oo there exists 6o(A, p) >
0 so that if 6 < §o(A,p), then

Pl £9,vt) >0

for almost all w = (6(z))z, where P¥ is the law of the inhomoge-
neous process corresponding to w.

Remark. Before getting to the basic ideas of the proof given
in [10] it is instructive to compare this result with that stated in
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Theorem 5.1 of the previous section (and proven in a particular
case for the hierarchical model). In the situation of Theorem 5.1,
the good or bad regions are transversal to the direction of growth
(time). In that frame one proves that when the frequency of bad
lines is small there is survival. It is not hard to see that the result
of Theorem 5.5 is not valid in that frame. A natural question
(a hard exercise?) refers to an the analogue of Theorem 5.1 in
the present frame. That is, instead of improving the good sites
(making § small), the frequency p is made small, in the frame of
Theorem 5.5.

Basic idea of the proof.

The arguments of Bramson, Durrett and Schonmann, which
we now study, involve a sequence of rapidly increasing numbers
N1, Ns,... corresponding to spatial scales. IN; will be chosen such
that a single bad site surrounded by stretches of at least N; good
sites does not bring difficulty. This leads to a good level 1 site.
Each bad site not sharing this property originates what is called
a I-gap, and to deal with them one moves to the next scale: a
1-gap that is surrounded by at least No consecutive good level 1
sites, becomes a good level 2 site, and it should cause no problem.
When a 1-gap does not have this property we get a 2-gap, i.e. a
2-gap correspond to the situation of a 1-gap within less than Ny
good level 1 stretches), and one deals with them at the next scale.

By choosing the sequence (Ng) properly and reducing to the
case of a small p, which can be done without big difficulty, one gets
a situation where k-gaps eventually will stop to grow (at suitable
k) so that from some space point y* the picture will be that of
k-gaps surrounded by N good stretches of level £ —1. Fixing such
a situation on can prove that starting at y* the process survives
for all times with a probability bounded away from zero, provided
the sequence Ny was suitable chosen, and ¢ is small enough. Con-
trarily to the example in the previous section and following the
more standard pattern in multi-scale blocking arguments, a proper
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choice will be .
N = LD (5.10)

where L will be fixed and suitably large. Their argument has two
parts:

(a) Show that gaps stop to grow.

(b) Get the inductive probability statement.

We start by turning precise the definition of gaps and blocks at
all scales. To simplify the discussion we make the extra assump-
tion that p is suitably small. This can be released by a one-step
blocking argument:

Step 0. Given € > 0 (to be determined) we take s integer so
that p* < e, split Z into intervals I; = {(j — 1)k, ..., jk — 1},
for j =1,2,... and set

0 {G if 6,, = ¢ for some n € I;,
J

“IT\UB i, =Aforallnel,

In the following we assume that £ = 1, i.e. that p is small enough.
The extension to the general case requires replacing the state at
sites by the w? configuration. It brings some minor modifications
in the computations.

Thus, under the extra assumption:

n

o [ Gifo, =05
B if §, = A.
Step 1. Let 79 = 0,Y; = 0 and for n > 1,
T? = inf{m > T°_,:w = G},
X=7-7°  —1,Y!=1

n—1

That is, the random variables X} give the lengths of the successive
runs of G, understood to be zero if we have two consecutive B.
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We see at once that {X!,n > 1} are i.i.d. random variables.
(The same for the Y,!, identically equal to one.) To visualize
the definition, let us exemplify. If w® is given by a configuration
starting as

' =(G,6,6,6,6,8,B,G,G,G,G,B,B,B,G,G,B,...),
we see that
Xi=5 X;=0 X;=4, X3 =0, Xg =0, X3 =2,....

The intervals (T2_,T?) in Z, for n > 1, are called 1-blocks. A
single bad in between two blocks is called a 1-gap. At level 1 one
consider new variables

i ):{GifX,le;
Bif X} < Ny,

Step 2. From the configuration w?, take Ty = 0, and for n > 1,
one allows two attempts to start a 2-block,'? setting:

gl — { Ta+1ifwl(T,_, +1) =G
T! = inf{m > S}:w'(m) = B}
Ul — Tl _ Sl

(5.11)

so that U} gives the length of the nth G-run in w!. To fixate the
definitions let us take an example:

w'=(aG,6,6,8,B,G6,6,G,G,G,B,B,B,G,G,G,G,...)
for which one has:
St=1,8;=6,53=13; T} =4, T} =11,
T3 =13; UL =3, Uy =5, U3 =0,....

10This is an important feature.
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The 2-blocks are determined by the G-runs [S}, T} — 1], as the

union of all lower level blocks and gaps from the Slth to the

(T} — 1)th 1-blocks. (It contains U} 1-blocks.) A 2-gap is what
stays in between two consecutive 2-blocks. For n > 1 we set:
X2(n) =XY(SH +YI(SH + X (SE+ 1)+ VIS +1)+...
+ YN (T, -2)+ X' (T - 1),
(5.12)
YNT, - 1)+ XY Ty +YNTy) if S, =Ty+1;
Y3(n)=q YYT} - 1)+ X (T}) + YN(T})
+XMTa+1)+YYTr+1) if S, =Ty+2,
(5.13)
so that X2(n) is the number of sites in the nth 2-block, and Y?(n)
is the number of sites in the 2-gap that stays between the nth and
the (n + 1)th 2-block. We easily see that (X2(n):n > 1) and
(Y2(n):n > 1) are i.i.d. sequences. There may be a gap before
the first 2-block and we set

Yi(0) if S!=1;

Y2(0) = 5.14
(0) { YH0)+ X1 (1) +Yi(1) if Sf=2. ( )
The level 2 variables become
G if X2 > No;
w?(n) = { 1 2(n) ’ (5.15)
B if X*(n) < Nj.

From the configuration (w?,w3,...) we repeat the previous pro-

cedure, successively.
Step k + 1. Having defined the level k configuration (w¥ w%, ...)
we set T¥ = 0 and define T, S*¥ n > 1 by (5.11) with the super-
script 1 replaced by k. Similarly, X**+1(n), Y**+1(n), and Y*+1(0)
are then given by (5.12), (5.13) and (5.14) with the superscript 1
replaced by k.

A key step in the argument of [10] to control the growth of gaps
is given by the Lemma below, whose proof shows why one should
allow two attempts to start a k-block.
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Lemma 5.6 . If B;(k), i = 1,2 are defined through the relations

P(X*(1) < N) =L A®  p(X*(1) < Nypq) = L)
(5.16)
and € > 0 is chosen so that
B1(k) > 30(1.3)%, By(k) > 20(1.3)* (5.17)

for k =1 then indeed (5.17) holds for all k > 1.

Proof. The basic ingredient is: if (5.17) holds for a given k, then:
(@) Br(k+1) > 2Ba(k) and (II) B2(k +1) > 20(1.3)k*+1. (I) follows
after one checks that
LA =p(X*H(1) < Niga)
<P(X*(1) v X*(2)
<Nj+1)
:L—2,82 (k-l—l)’

where the first equality follows from the definition in (5.17), the
second equality comes from the definition and the fact that X*(1)
and X*(2) are i.i.d. The inequality is the main point and it follows
from the inclusion

[(XF(1) v X*(2) > Ny ] € [XFTH(1) > Nia]
which can be seen by splitting the event on the left according to:
(l) Xk(]_) > Nk+1, (ll) Nk < Xk(l) S Nk+1,Xk(2) > Nk_|_1, or
(iii) X*(1) < Ny, X*(2) > Niy1 and recalling, in the third case,
that one gives two chances to start a (k + 1)-block.

To check (II), since X*(1),X*(2),... are i.i.d. and Ny > 1,

one has
1, B2(k+1) _ P(Xk"'l(l) < Niy2)

< i ki) <
_P(lijgljlvlmX () < Ng)

< Niggo L9
< [(LD*2-30(1.3)F
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which implies that B2(k + 1) > 30(1.3)% — (1.1)k*2 > 20(1.3)%+1,

From (I) and (II) above we see that as soon as (5.17) holds for
k =1 it must hold for all k¥ > 1. To see that it holds for £k =1 it
suffices to have

JACE s

Having fixed L, this amounts to take p (or €) small enough. O

In the proof given in [10], L is chosen as L = 103% (huge).
From the previous lemma we see that

S P(XE(1) < Ny) < 30 LR09* <
k=1 k=1

and by Borel-Cantelli lemma: there exists K (w) < oo a.s. so that
XE(w) > Ny for all k > K(w), i.e. SF =1, Y*(0) = YE®)(0)
for all k¥ > K(w). The main estimate from [10] gives that if
y* =1+ YK( “) then taking 6 small one has

P& # 0,9t > 0) > 1/2 (5.19)

Size of blocks and gaps. Set v as the maximal number of
sites possible in a k-gap. The construction gives v1 = 1, vgy1 <
3uj,+2Ny, for any k > 1. We recall Ny = L, Ny = NX1, = LA-D*,
for ¥ > 1. With this in mind one easily checks the following
Lemma whose proof is left as exercise.

Lemma 5.7 . For L > 9'° one has vy < 3Nj_1, Nip_1 < Ni/9.
In particular, vy < Ni/3.

Remark. For the probability estimates involved in the proof of
(5.19) it may be technically convenient to break the k-blocks when
they contain a too large number of (k — 1)-blocks.
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Lemma 5.8 . Any k-block, with k > 1, may be broken into pieces
that start and end with (k—1)-blocks, with the length of each piece
being in the interval [Ny, 3Ng].

Proof. We proceed by induction. For £ = 1 the conclusion
is trivial, since a G run with length in [Ny, (j + 1)N1) can be
broken into (j — 1) strings of length N; and one string of length
in [N1,2N;). If a k-block has length larger than 3/Nj, we make
a cut at the endpoint of the first (k — 1)-block that stays after
Nj. Considering that N by be in a (k — 1)-gap we see that the
length to the left of the cut is at most Ny + v + 3Ng_1 (using
the induction assumption at the last point). We see that this is
bounded from above by Ni(1+1/27+3/9) = 31 Ni,. What is left to
the right of the cut is then of length at least (3 —38/27) Ny > N,
which allows to conclude the proof. [

Key probability estimates. In what follows let
My, = o Nk-1, for k > 1,

where a > 0 is taken suitably small:
(i) a<e?2(1-et),

(i) a < e V21,
(iii) @ < ap, with g to be determined from the estimates that

follow.
If the intervals [a,b] and [c,d]| are k-blocks separated by the
k-gap (c,d), consider the events:

Cr = {(a,0) = {b} x [0,3NxMk_1] in [a,b] x R}
Dy, = {[a,b] x {0} = [a,b] x {2M}} in [a,b] X R} (5.20)
Ex+1 = {{a} x [0, My] — {d} x [0, Mk] in [a, b] x R},
where S — T in [a,b] X R means that in the Harris graphical

representation of the contact process, there is a path form a point
in S to a point in T entirely contained in [a, b] x R.
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Remark. Under the above conditions

My, /My_y = o~ 8Wi-1=Ni=2) > o=5Ne—1 - 3N MGy < M.

Proposition 5.9 . For § > 0 small enough the following holds:
given the previous choice of L, 0 < a < 1/27, m; = 1/4 and
T = 36aNi~2/72 for j > 2, then for any k > 1

wiith the understanding that the estimates hold for any k-blocks
with size in the interval [Ny, 3Ny].

Remark. With the notation and the conditions of Proposition
5.9 one checks that »_ -, m; < 3/8, and so [];5,(1 — m;) > 5/8.
(L > 219 and 0 < a < 1/2 are sufficient here.)

Indeed, Nip1 = N;N}/'° > N;LY/10 > 2N; if L > 2!°, and
since N; > 72 we also have N;y1/72 > N;/72 + 1. Thus,

Zﬂ'j < 36a™N0/ 2 Zaj_2 = 360L/(1 — a)™?
i>2 i>2

<72 x 27L/T2 £ 9T9—L/100 L 9—3

It is convenient to see now that Theorem 5.5 will follow once
one has Proposition 5.9.

Proof of Theorem 5.5. Let y* be given by just before (5.19),
and k > 1. Applying Proposition 5.9 to the k-block that starts at
y*, simply called Cx = [y*,b], we have that P(Cy) > 5/8, cf. the
previous Remark. The same conditions on L, o guarantee that for
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the corresponding D§ one has P(D§) < o < 1/8. Since Cj and
Dy, are increasing events, the FKG inequality gives P(Cy, N Dy) >
1/2. But 3NyMj_1 < M, so that the crossing lemma (see Ch.
2) implies that &/ " survives up to My on Cy N Dy. The argument
works for any k > 1, so that the conclusion follows. [

Proof of Proposition 5.9. The proofis by induction, and it runs
as follows: having the estimates for P(Cy) and P(Dy) one gets the
estimate for P(Fg41). Putting together the estimates for P(Dy)
and P(E}).1) one gets those for P(Cky1), P(Dgy1) completing the
induction step. The basis of the induction goes as follows: notice
that if 6 = 0 (i.e. the process does not die at the good sites) we
would have P(D;) = 1, and also P(Cy) > 7/8 provided a < ay
small engouh. Given this, and since the events C'1, D1 depend on
a finite portion of Harris graphical construction, the probabilities
are continuous in J. In particular, we have the needed estimates,
if 0 is small enough.

Estimating rx41 from pg,gr. In the previous notation set £ =
¢ — b. One then checks:

Lemma 5.10 . P{(b,0) — {c} x {£—1,£}} > .

Proof. Let A,, be the event that there occurs a birth from m to
m+1 in the time interval [m,m+1), and no death during the time
interval ((m—1)", m+1). then Ay,..., As_; are independent and
P(A;) > aforeachi=0,...,4—1. O
We apply this last lemma and recall that the gap (b,¢) has
length bounded by vg. For each time interval [7jNpMy_1,7(5 +
1)NiMj,_1) one tries to go from a to d as follows:
e Try to go from a to b during [7jNxMy_1,(7j + 3)NpMj_1].
The probability of succeeding is at least 1/2.

e If one succeeds in the previous steo, then try to drill at once
through (b, ¢);
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e succeeding with the drilling we shall be at ¢ by time (75 +
3)NiMjy_1 + v, < (7j + 4) Ny My_1 and will then have proba-
bility at least 1/2 to cross [c, d] before time (75 + 7) N M _1.
The probability of succeeding in all the three steps is at least

o’k /4. The number of attempts at disposal is u(k) = My /TN My_1

> o 5Mk-1 /TNy so that we get:

Vg
i1 = 1 — P(Ejq1) < (1 — o /4)*®) < exp (—M(k)aj)

a_2Nk—1
< R —
= &P ( 28<Nk_1>1-1>

On the last term we now use that e¥ > y3/6 if y > 0 we get

SN, (log 1’ IV
< _ [0 — _ - 3
Tet1 < exp ( ET exp ( (log a) )

provided (log =)? > 21. For this we require o < e~ V2L,

Estimating pi1, gr+1 from gg, 7541

Given a (k+1)-block [a, b], let v be the number of k-blocks that
form it, so that

Nk+1/(3Nk + Vk) <v< 3Nk+1/Nk,

and recalling that Ny11 = N1, vp < Ni_1/3, we see that

3 ,1/10 1/10
SN <0 <3N (5.21)
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Let these k-blocks be written as [aq, b1], [az, ba], ..., [ay, by] listed
from left to right, so that a; = a and b, = b. As in previous chap-
ters, we may now consider a comparison with a one-dependent
site percolation on

Vi={(,):1<i<wv,j>1,i+j even },
where one declares (i, 7) to be open if

[ai, bi] X {(7 — 1)Mr} — [ai, bi] X {(7 + 1) Mg},
{bi} x [§Mg, (5 + 1)Mg] = {ai—1} X [1Mg, (5 + 1) Mg],
{ai} x [1Mg, (5 + 1)Mg] — {bit1} x [1Mg, (5 + 1) Mg],

with the understanding that when i = 1 (i = v) we omit the
second (third) condition. Otherwise one says that (i, ) is closed.
Then:

(A) p:= P((4,7) is closed ) < qx + 2rp41 < 3alVe-1.

(B) If |z — /| + |7 — j'| > 2 then the events “(z,7) is open” and
“(i',4") is open” are independent.

(C) If there exists an open path (i1,1),..., (in,n) in Vi such that
i1=14y...,0p = j, and |is —is_1| = 1,8 = 2,...,n, then in the
contact process graphical construction we have [a;, b;] X {0} —
[G,j,bj] X {(TL + 1)Mk} in [G,, b] x R.

Contours argument similar to those in [16], mentioned in Chap-
ter 2, may be used at this point to yield: (see [10] for the full
proof)

Lemma 5.11 . If p < 6736 then the probability that there is
no open path from {1,...,v} x {1} to {1,...,v} x {K} in V; is
bounded from above by 2K (3p*/36)v.

Remark. Recall: p < 3aNe-1 < 30l < 327L <6736 for a <
1/2 and L as previously chosen, and K = Myy1 > 2My1 /M.
Applying the last lemma we get:
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Gorr < 2Mjsq (3(3aNk,1)1/36)" < 9.0 6Nk337v/36,vNi 1 /36

Performing computations, and recalling (5.21) we see that

1/10 1/10
Gos1 < 2- 34N, ,—6N ,Nk—1N, /"% /120

1/10 1.11/1.1
—92. 34Nk Q 6NkaN

. /120

< 2(81)ME " 2Nk < oMk,

provided o < 1/81 and where we used that N,:'H/M/lZO—GNk

2Ny, or equivalently Np°/"" > 120 x 8 which is true if
1000190, This gives the estimate for gy 1.

To prove the validity of the estimate for P(Cky1) one uses
the auxiliary site percolation model on Vo = {(3,5):4,5 > 1,i +
jeven }, and the following analogous estimate whose proof is
omitted see [16] or [10]):

>
>

Lemma 5.12 . If p <6~ "2 and v < K/2 then
P((1,1) = {v} x [0, K] in V5) > 1 —12p'/32,
Notice that if in the graphical construction of the contact pro-
cess we have (a1,0) — {b1} x [0,3NxMj_1] in [a1, b1] x R (which
corresponds to an event of the type Cf) and

Fj+1 = {3 path from (1,1) to [v,00) X {3Ngy1} in Vo }

then again the property of crossing paths implies that Cx1 occurs
at the (k + 1)-block [a, b]:

Cror1 = {(a,0) — {b} x [0,3Ng+1My] in [a, 5] x R}
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and (4, 7) in Vs corresponds to [a;, b;] X [(j — 1) Mg, (5 + 1) Mj].
Since the events C}, Fi41 are increasing, we can apply the FKG

inequality, writing:

P(Ck41) > P(Cx N Fiy1) > P(Ck)P(Fr+1) > peP(Fry1)

Checking the conditions we see that p < 3aM-1 < 3(271) < 6772,
and v < 3Ng11/Ng < Niy1/2 so that

P(Fyy1) > 1—12(3aMe-1)1/72 > 1 — 36aNk-1/72

completing the proof. [
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