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Abstract
In previous publications, the concepts of dressed coordinates and dressed states
have been introduced in the context of a harmonic oscillator linearly coupled
to an infinity set of other harmonic oscillators. In this paper, we show how
to generalize such dressed coordinates and states to a nonlinear version of the
mentioned system. Also, we clarify some misunderstandings about the concept
of dressed coordinates. Indeed, now we prefer to call them renormalized
coordinates to emphasize the analogy with the renormalized fields in quantum
field theory.

PACS numbers: 03.65.Ca, 32.80.Pj

1. Introduction

In recent works, the concepts of dressed coordinates and dressed states have been introduced
in the context of a harmonic oscillator linearly coupled to an infinite set of other harmonic
oscillators [1–5]. As explained in the next section, the introduction of dressed coordinates is
necessary in order to give physical consistence to the above system as a model to describe
some given physical system. In early works [1–5], the physical system studied through the
formalism of dressed coordinates and states was an atom–electromagnetic field system. In this
case, the introduction of dressed coordinates and states has shown twofold advantages. From
the physical viewpoint, the dressed states behave as expected for the physically measurable
states: excited atomic states are unstable whereas the atom in the ground state and no field
quanta is stable. On the other hand, it allows exact computations for the probability amplitudes
associated with the different radiation processes of the harmonic oscillator [4]. When applied
to a confined atom, approximated by the harmonic oscillator, in a spherical cavity of sufficiently
small diameter the method accounts for the experimentally observed inhibition of the decaying
processes [6, 7].
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In [8], an attempt to construct dressed coordinates and dressed states for a nonlinear
system has been made. However, the approach used there was more intuitive than formal.
The purpose of this paper is to develop a formal method to construct dressed coordinates in
nonlinear systems. We will do this by a perturbative expansion in the nonlinear coupling
constant. To be specific, we consider the model with Hamiltonian given by

H = 1

2

(
p2

0 + ω2
Bq2

0

)
+

1

2

N∑
k=1

(
p2

k + ω2
kq

2
k − 2ckqkq0

)
+

N∑
r=0

λrT (r)
µνρσ qµqνqρqσ

+
N∑

r=0

αrR(r)
µνρστεqµqνqρqσ qτ qε, (1.1)

where sums over repeated indices and the limit N → ∞ are understood. In equation (1.1),
the bare frequency of the harmonic oscillator, ωB , is related to the physical frequency, ω0,
by [9, 10]

ω2
B = ω2

0 +
N∑

k=1

c2
k

ω2
k

. (1.2)

The coefficients T (r)
µνρσ and R(r)

µνρστε are chosen in such a way that the Hamiltonian given by
equation (1.1) is defined as positive.

In [8], the quartic nonlinear model, αr = 0, has been treated. Here, we will also be
mainly interested in the quartic nonlinear model to compare with the early treatment. The
sextic nonlinear interaction will be considered only because for some values of λr and αr it
is possible to find the exact solution for the ground-state eigenfunction and, as explained at
the end of section 3, this fact will permit an exact construction of the dressed coordinates.
Then, this sextic model will allow us to test the validity of the strategy developed to obtain the
dressed coordinates in a general nonlinear system.

In this paper, we use natural units c = h̄ = 1.

2. Defining dressed (renormalized) coordinates and dressed states

The purpose of this section is twofold. First, to make this paper self-contained, we review
the concept of dressed coordinates and dressed states as introduced in [1–3]. Second, we
clarify some misunderstandings about the concept of dressed coordinates, as we explain
below. Indeed, now we prefer to call them renormalized coordinates to emphasize that these
coordinates are analogous to the renormalized fields in quantum field theory.

In previous works [1–3], dressed coordinates and states have been introduced in the
context in which the linear part of Hamiltonian (1.1) is used as a model to describe an atom–
electromagnetic field system. Here, we introduce dressed coordinates in the context of a
common situation frequently encountered in quantum optics, a field mode inside a cavity
interacting with the external modes (to the cavity) of the electromagnetic field [11, 12]. In
this case, the oscillator with coordinate q0 in equation (1.1) represents the field mode inside
the cavity and the external field modes are represented by the oscillators with coordinates
qk . If there are no interactions among the cavity field mode and the external ones, the free
Hamiltonian obtained from equation (1.1) by setting ck = λr = αr = 0 has the following
eigenfunctions:

ψn0n1...nN
(q) ≡ 〈q|n0, n1, . . . , nN 〉

=
N∏

µ=0

ψnµ
(qµ), (2.1)
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where |q〉 = |q0, q1, . . . , qN 〉 and ψnµ
(qµ) is the eigenfunction of a harmonic oscillator of

frequency ωµ,

ψnµ
(qµ) =

(ωµ

π

)1/4 Hnµ
(
√

ωµqµ)√
2nµnµ!

e− 1
2 ωµq2

µ . (2.2)

The physical meaning of ψn0n1...nN
(q) in this case is clear, it represents the state in which

there are n0 photons of frequency ω0 inside the cavity and nk photons of frequencies ωk

outside the cavity. Now, let us suppose that at some initial time, that we take as t = 0, we
prepare the system in the state ψ10...0(q) in which we have one photon inside the cavity and
no photons outside. From experience, it is known that after a time t, the photon inside the
cavity decays through the cavity walls, its initial energy inside the cavity being distributed
among the external field modes. In other words, the state ψ10...0(q) is unstable. We can
explain this phenomenology by introducing interacting terms between the cavity field mode
and the external ones. In our model, described by Hamiltonian (1.1), the interacting terms
between the cavity field mode and the external ones are given by the linear and nonlinear
couplings of q0 with qk , the simplest interacting term being the linear coupling that appears
in the second term of the right-hand side of equation (1.1). Obviously, by taking into account
these interactions any state of the type ψn00...0(q) is rendered unstable, since these states in
general are not eigenfunctions of the total interacting Hamiltonian. At this point, we have
to mention a problem, the state ψ00...0(q), that represents the state of no photons inside and
outside the cavity is also unstable. This is a serious problem, because it means that photons
could be created from nothing, in contradiction with experimental evidence. Obviously, the
wrong thing here is the model we are using to describe the physical system. Indeed, in
quantum optics the model used to describe the above system, in the case in which only the
linear interaction among the inside and outside modes is taken into account, is the rotating
wave approximation of Hamiltonian (1.1),

Hrwa = 1

2

N∑
µ=0

(
p2

µ + ω2
µq2

µ

)
+

N∑
k=1

(
αkâ

†
0âk + α∗

k â
†
kâ0
)
, (2.3)

where âµ and â†
µ are annihilation and creation operators. In this case, the state ψ00...0(q) is an

eigenfunction of Hrwa because â
†
0âkψ00...0(q) = 0 and â

†
kâ0ψ00...0(q) = 0. Then, if the model

with Hamiltonian (2.3) is used there is no problem with the stability of the state ψ00...0(q).
But what if no rotating wave approximation is used? How can we give a physical meaning
to the system described by Hamiltonian (1.1) as a model to describe the aforementioned
physical situation? The answer lies in the spirit of the renormalization programme in quantum
field theory: we maintain the model but redefine what the physical quantities, dynamical or
parametrical, must be. In our model, we redefine what the physical coordinates must be.
We suppose that the coordinates qµ that appear in the Hamiltonian given by equation (1.1)
are not the physical ones, they are bare coordinates. We introduce renormalized coordinates,
q ′

0 and q ′
k , respectively for the dressed photons inside and outside the cavity and define

them as the physical ones. In previous works, the renormalized coordinates were called
dressed coordinates [1–3]; for this reason, from now on we will take these denominations as
synonymous. In terms of renormalized coordinates, we introduce dressed states by

ψn0n1...nN
(q ′) ≡ 〈q ′|n0, n1, . . . , nN 〉d

=
N∏

µ=0

ψnµ
(q ′

µ), (2.4)
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where the subscript d means dressed state, |q ′〉 = |q ′
0, q

′
1, . . . , q

′
N 〉 and ψnµ

(q ′
µ) is given by

ψnµ
(q ′

µ) =
(ωµ

π

)1/4 Hnµ
(
√

ωµq ′
µ)√

2nµnµ!
e− 1

2 ωµ(q ′
µ)2

. (2.5)

The dressed states given by equation (2.4) are defined as the physically measurable states
and describe, in general, n0 physical photons of frequency ω0 inside the cavity and nk

physical photons of frequency ωk outside the cavity. Obviously, in the limit in which the
coupling constants ck, λr and αr vanish the renormalized coordinates q ′

µ must approach the
bare coordinates qµ.

As in quantum field theory, the dynamics of the system evolves in Hamiltonian form
through the bare coordinates. Then, in order to compute physical quantities, such as decay
rates, it will be necessary to obtain the relation between bare and renormalized coordinates.
To this end, we use the physical requirement of the stability of the state in which there are no
photons inside and outside the cavity. This state is described by the dressed state ψ00...0(q

′) and
this state must be stable if and only if it is defined as one of the eigenfunctions of the interacting
Hamiltonian (1.1). Also we require the state ψ00...0(q

′) to be the one of minimum energy,
then we define it as being identical (or proportional) to the ground-state eigenfunction of the
Hamiltonian (1.1). Denoting by φ00...0(q) the ground-state eigenfunction of the Hamiltonian
(1.1), then the dressed coordinates must be obtained from

ψ00...0(q
′) ∝ φ00...0(q). (2.6)

First, we explicitly construct the dressed coordinates for the linear model obtained from
equation (1.1) by setting λr = αr = 0,

Hlinear = 1

2

(
p2

0 + ω2
Bq2

0

)
+

1

2

N∑
k=1

(
p2

k + ω2
kq

2
k − 2ckqkq0

)
. (2.7)

Although the task of constructing dressed coordinates in linear systems has been done in
preceding works, we repeat here the calculation in order to make this paper self-contained.
In the next section, we will consider the nonlinear case. As is well known, the Hamiltonian
(2.7) can be diagonalized by means of the introduction of normal coordinates and momenta,
Qr and Pr ,

qµ =
N∑

r=0

t rµQr, pµ =
N∑

r=0

t rµPr, µ = (0, k), k = 1, 2, . . . , N, (2.8)

where
{
t rµ
}

is an orthogonal matrix whose elements are given by [13, 14]

t r0 =
[

1 +
N∑

k=1

c2
k(

ω2
k − �2

r

)2

]− 1
2

, t rk = ck(
ω2

k − �2
r

) t r0 . (2.9)

In normal coordinates, the Hamiltonian (2.7) reads

Hlinear = 1

2

N∑
r=0

(
P 2

r + �2
rQ

2
r

)
, (2.10)

where the �r are the normal frequencies, corresponding to the collective modes and given as
solutions of [13, 14]

ω2
0 − �2

r =
N∑

k=1

c2
k�

2
r

ω2
k

(
ω2

k − �2
r

) . (2.11)
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The eigenfunctions of the Hamiltonian (2.10) are given by

φn0n1...nN
(Q) ≡ 〈Q|n0, n1, . . . , nN 〉c

=
N∏

r=0

φnr
(Qr), (2.12)

where the subscript c means collective state, |Q〉 = |Q0,Q1, . . . ,QN 〉 and φnr
(Qr) are the

wavefunctions corresponding to one-dimensional harmonic oscillators of frequencies �r ,

φnr
(Qr) =

(
�r

π

)1/4
Hnr

(
√

�rQr)√
2nr nr !

e− 1
2 �rQ

2
r . (2.13)

Now, the dressed coordinates are obtained from the condition given by equation (2.6)
that in terms of normal coordinates can be written as ψ00...0(q

′) ∝ φ00...0(Q). Then, using
equations (2.4) and (2.12) in the above relation, we have

exp

(
−1

2

N∑
µ=0

ωµ(q ′
µ)2

)
∝ exp

(
−1

2

N∑
r=0

�rQ
2
r

)
, (2.14)

from which we obtain

q ′
µ =

N∑
r=0

√
�r

ωµ

trµQr, (2.15)

as can be seen by direct substitution in equation (2.14) and using the orthonormality property
of the matrix

{
t rµ
}
. Here, we have to remark that in principle any orthogonal matrix

{
ηr

µ

}
can

be used in equation (2.15) in order to accomplish equation (2.14), but because in the limit
ck → 0 the dressed coordinates must approach the bare ones it is natural to choose the matrix{
t rµ
}

in equation (2.15), since in the limit ck → 0, t rµ → δr
µ. Also, we would like to stress that

our dressed coordinates and states are not the same as the ones called by the same name in
other references [15–19] where the authors called dressed coordinates and states, respectively,
the collective coordinates and states.

The introduction of the renormalized coordinates through equation (2.15) guarantees the
stability of the dressed state ψ00...0(q

′); however, since the other dressed states are not energy
eigenfunctions, they will not remain stable. For example, ψ10...0(q

′), the state in which there
is one photon inside the cavity and no photons outside, will decay to a state in which there is
no photon inside the cavity but there is a photon of some given frequency outside the cavity,
ψ00...01k0...0(q

′). Then we see that our dressed coordinates are useful to describe the decay of
an initial photon inside the cavity through the cavity walls.

We have to remark that the dressed coordinates here introduced are not a simple change of
variables, they are new coordinates in their own right and are introduced by the physical
consistence requirement of the model. Equation (2.15) cannot be seen as a coordinate
transformation, the coordinates q ′

µ and qµ do not represent, geometrically, the same point in
configuration space. The situation is analogous to what happens in quantum field theory. In this
case, not only the dynamical variables, the fields, are redefined but also the parametrical ones,
such as the masses and coupling constants. At this point, we have to call attention to the fact that
in expression (1.1) a frequency renormalization has already been performed. As can be seen
in equation (1.2), the frequency of the photon inside the cavity has already been renormalized.
Then, in the linear model given by equation (2.7) we have renormalized the frequency of the
photon inside the cavity and the coordinates of the field modes inside and outside the cavity.
When considering the nonlinear terms nothing guarantees that only these renormalizations
will be sufficient. Perhaps it will be necessary to renormalize the frequencies of the
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external modes and the coupling constants. Also the cavity mode frequency renormalization,
equation (1.2) and the renormalized coordinates could be modified. In particular, in the next
section we address the question of how the relation given by equation (2.15) is changed when
nonlinear terms are taken into account.

As already mentioned, in previous works [1–3], dressed coordinates and states have
been introduced in the context in which the system with Hamiltonian (2.7) is used as an
oversimplified model to describe an atom–electromagnetic field system. In this case, the
harmonic oscillator with index zero represents the bare atom and the other oscillators represent
the bare electromagnetic field modes. On the other hand, the renormalized coordinates q ′

0 and
q ′

k are defined, respectively, as the physical coordinates of the atom and electromagnetic field
modes. The dressed state ψn0,n1,...,nN

(q ′) represents the state in which the atom is in the n0th
excited level and there are nk photons of frequencies ωk . The state ψ00...0(q

′), in which the
atom is in its ground state and there are no photons, according to experience, must be stable.
The stability of ψ00...0(q

′) is guaranteed if one introduces the renormalized coordinates in the
way we have described above. Then, we have a unified way to study quite different physical
systems and because q ′

0 could be the coordinate of an (oversimplified) atom or the coordinate
of the electromagnetic field mode inside a cavity, from now on we will refer to the harmonic
oscillator with index zero simply as the particle oscillator.

Before leaving this section, it will be useful to establish the relation between
ψn0n1...nN

(q ′) = 〈q ′|n0, n1, . . . , nN 〉d and 〈Q|n0, n1, . . . , nN 〉d . To this end, we write

d〈n0, n1, . . . , nN |m0,m1, . . . , mN 〉d =
∫

dq ′
d〈n0, n1, . . . , nN |q ′〉〈q ′|m0,m1, . . . , mN 〉d

=
∫

dQ

∣∣∣∣ ∂q ′

∂Q

∣∣∣∣
d

〈n0, n1, . . . , nN |q ′〉〈q ′|m0,m1, . . . , mN 〉d

=
∫

dQ d〈n0, n1, . . . , nN |Q〉〈Q|m0,m1, . . . , mN 〉d , (2.16)

where dq ′ = ∏N
µ=0 dq ′

µ, dQ = ∏N
r=0 dQr and |∂q ′/∂Q| is the Jacobian associated with the

transformation q ′
µ → Qr . From equation (2.16), we get

〈Q|n0, n1, . . . , nN 〉d =
∣∣∣∣ ∂q ′

∂Q

∣∣∣∣
1/2

〈q ′|n0, n1, . . . , nN 〉d . (2.17)

Taking n0 = n1 = · · · = nN = 0 in equation (2.17) and using ψ00...0(q
′) ∝ φ00...0(Q), we get

|0, 0, . . . , 0〉d ∝
∫

dQ

∣∣∣∣ ∂q ′

∂Q

∣∣∣∣
1/2

|Q〉〈Q|0, 0, . . . , 0〉c. (2.18)

In the linear case, we easily get, from equation (2.15), |∂q ′/∂Q| = ∏N
r,µ=0

√
�r/ωµ and using

this result in equation (2.18), we obtain

|0, 0, . . . , 0〉d ∝ |0, 0, . . . , 0〉c. (2.19)

For a nonlinear system, certainly a relation of the type given by equation (2.19) will not hold.
In the next section, we construct dressed coordinates in the nonlinear model described by

the Hamiltonian given in equation (1.1).

3. Constructing renormalized coordinates in a nonlinear model

Now we are ready to construct dressed coordinates and dressed states in the nonlinear model
with Hamiltonian given by equation (1.1). For this purpose, we have to find first, the
eigenfunctions of this Hamiltonian, in particular its ground-state eigenfunction. In order
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to maintain things as simple as possible and to compare with the early treatment given to the
problem in [8], we consider the nonlinear quartic interaction obtained from the model with
Hamiltonian (1.1) by setting αr = 0. Following [8], we make the simplest choice for the
coefficients T (r)

µνρσ ,

T (r)
µνρσ = t rµt rν t

r
ρt

r
σ . (3.1)

Substituting equations (2.8) and (3.1) into equation (1.1), we get

H = 1

2

N∑
r=0

(
P 2

r + �2
rQ

2
r + 2λrQ

4
r

)
, (3.2)

that is, we obtain a system of uncoupled quartic anharmonic oscillators. In equation (3.2), it
can be seen that λr has dimension [frequency]3. Then we can write λr = λ�3

r , where λ is a
dimensionless coupling constant. The eigenfunctions of the Hamiltonian (3.2) can be written
as

φn0n1...nN
(Q; λ) ≡ 〈Q|n0, n1, . . . , nN ; λ〉c

=
N∏

r=0

φnr
(Qr; λ), (3.3)

where φnr
(Qr; λ) are eigenfunctions of

(
P 2

r +�2
rQ

2
r +2λ�3

rQ
4
r

)/
2 and can be written formally

as (see the appendix)

φnr
(Qr; λ) =

(
�r

π

)1/4
[

Hnr
(
√

�rQr)√
2nr nr !

+
∞∑
l=1

λlG(l)
nr

(
√

�rQr)

]
e− �r

2 Q2
r , (3.4)

where G(l)
nr

(
√

�rQr) are linear combinations of Hermite polynomials. The corresponding
eigenvalues of the Hamiltonian (3.2) are given by

En0n1...nN
(λ) =

N∑
r=0

Enr
(λ), (3.5)

where Enr
(λ) are the eigenvalues corresponding to the eigenstates given in equation (3.4),

Enr
(λ) =

(
nr +

1

2

)
�r +

∞∑
l=1

λlE(l)
nr

, (3.6)

with the E(l)
nr

obtained by using standard perturbation theory (see the appendix).
Taking n0 = n1 = · · · = nN = 0 in equation (3.3), we get for the ground-state

eigenfunction of the total system,

φ00...0(Q; λ) =
N∏

r=0

(
�r

π

)1/4
[

1 +
∞∑
l=1

λlG
(l)
0 (
√

�rQr)

]
e− �r

2 Q2
r . (3.7)

To properly define the dressed coordinates it is convenient to write the above equation as

φ00...0(Q; λ) =
N∏

r=0

(
�r

π

)1/4
[

1 +
∞∑
l=1

λlG
(l)
0 (0) +

∞∑
l=1

λl
(
G

(l)
0 (
√

�rQr) − G
(l)
0 (0)

)]
e− �r

2 Q2
r

∝
N∏

r=0

[
1 +

∞∑
n=0

(−1)n
∞∑

l0l1...ln=1

λl0+l1+···+ln
(
G

(l0)
0 (
√

�rQr) − G
(l0)
0 (0)

)
G

(l1)
0 (0) . . . G

(ln)
0 (0)

]
e− �r

2 Q2
r ,

(3.8)
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where in the second line we factored the term 1 +
∑∞

l=1 λlG
(l)
0 (0) and used (1 + x)−1 =∑∞

n=0(−1)nxn.
The physically measurable states, the dressed states, are defined by equations (2.4)–(2.5).

Hence, the dressed coordinates q ′
µ must be obtained from equation (2.6) that can be written

as ψ00...0(q
′) ∝ φ00...0(Q; λ), which by using equations (2.4), (2.5) and (3.8) can be written as

exp

(
−1

2

N∑
µ=0

ωµ(q ′
µ)2

)
=

N∏
r=0

[
1 +

∞∑
n=0

(−1)n
∞∑

l0l1...ln=1

λl0+l1+···+ln
(
G

(l0)
0 (
√

�rQr)

− G
(l0)
0 (0)

)
G

(l1)
0 (0) . . . G

(ln)
0 (0)

]
e− �r

2 Q2
r . (3.9)

Now, we write a perturbative expansion in λ for q ′
µ,

q ′
µ =

N∑
r=0

√
�r

ωµ

trµ

[
Qr +

1√
�r

∞∑
l=1

λlF (l)
r (
√

�rQr)

]
. (3.10)

Replacing equation (3.10) in equation (3.9) and using the orthonormality property of the
matrix

{
t rµ
}
, we get

exp

[
−

∞∑
l=1

λl
√

�rQrF
(l)
r (
√

�rQr) − 1

2

∞∑
l,m=1

λl+mF (l)
r (
√

�rQr)F
(m)
r (

√
�rQr)

]

= 1 +
∞∑

n=0

(−1)n
∞∑

l0l1...ln=1

λl0+l1+···+ln
(
G

(l0)
0 (
√

�rQr) − G
(l0)
0 (0)

)
G

(l1)
0 (0) . . . G

(ln)
0 (0).

(3.11)

Expanding the exponential in the left-hand side of equation (3.11) and identifying equal powers
of λ, we can obtain all the F (l)

r (
√

�rQ). The general expression is very complicated, here we
only write the first three terms:

F (1)
r (ξr ) = − 1

ξr

(
G

(1)
0 (ξr) − G

(1)
0 (0)

)
, (3.12)

F (2)
r (ξr ) = − 1

ξr

[
1

2
(1 − ξ 2

r )
(
F (1)

r (ξr )
)2

+ G
(1)
0 (0)ξrF

(1)
r (ξr ) + G

(2)
0 (ξr) − G

(2)
0 (0)

]
(3.13)

and

F (3)
r (ξr ) = − 1

ξr

[(
1 − ξ 2

r

)
F (1)

r (ξr )F
(2)
r (ξr ) + ξr

(
ξ 2
r

3!
− 1

2

) (
F (1)

r (ξr )
)3

+ ξrF
(1)
r (ξr )

(
G

(2)
0 (0) − (

G
(1)
0 (0)

)2)− (
G

(2)
0 (ξr)

−G
(2)
0 (0)

)
G

(1)
0 (0) + G

(3)
0 (ξr) − G

(3)
0 (0)

]
, (3.14)

where ξr = √
�rQr . From the appendix, using equations (A.11)–(A.14) in equations (3.12)

and (3.13) we get, respectively,

F (1)
r (ξr ) = 1

4

(
3ξr + ξ 3

r

)
(3.15)

and

F (2)
r (ξr ) = − 1

16

(
93
2 ξr + 14ξ 3

r + 11
6 ξ 5

r

)
. (3.16)
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Replacing the above equations in equation (3.10), we obtain, at order λ2,

ξ ′
µ =

N∑
r=0

t rµ

[
ξr +

λ

4

(
3ξr + ξ 3

r

)− λ2

16

(
93

2
ξr + 14ξ 3

r +
11

6
ξ 5
r

)]
+ O(λ3), (3.17)

where we have introduced the dimensionless dressed coordinate ξ ′
µ = √

ωµq ′
µ.

Before concluding this section we would like to comment about why we factored the
term 1 +

∑∞
l=1 λlG

(l)
0 (0) in equation (3.8). Note that we define the dressed coordinates q ′

µ by
means of the proportionality ψ00...0(q

′) ∝ φ00...0(Q; λ). To promote this proportionality into
an equality we have to take care in order to obtain a well-behaved relation between dressed
and collective coordinates, for example, it would be undesirable for any singular relation. To
see how the above undesirable situation could happen, define the dressed coordinates through
equation (3.7) without the factorization of the term 1 +

∑∞
l=1 λlG

(l)
0 (0). It is easy to show that

in this case the relation between q ′
µ and Qr is singular. For example, computing F 1

r (ξr ) and
F 2

r (ξr ) it is obtained that

F (1)
r (ξr ) = − 1

ξr

G
(1)
0 (ξr), (3.18)

F (2)
r (ξr ) = − 1

ξr

[
1

2

(
1 − ξ 2

r

)(
F (1)

r (ξr )
)2

+ G
(2)
0 (ξr)

]
. (3.19)

Since G
(1)
0 (ξr) and G

(2)
0 (ξr) are nonhomogeneous functions of ξr (see the appendix,

equations (A.11) and (A.12)) then equations (3.18) and (3.19) are singular in ξr = 0.
Consequently, the dressed coordinates defined through this prescription are not well defined.
To understand what is happening and how to remedy the problem, note that such singularity
means that ξrF

(l)
r (ξr ) is nonhomogeneous in ξr . But the effect of this nonhomogeneous term on

the wavefunction (that contains terms of the type e−λlξrF
(l)
r (ξr ), see equation (3.11)) is just equal

to a constant factorization term. Then, to remedy the problem we have to make a convenient
factorization in ψ00..0(q

′) or, equivalently, in φ00..0(Q) before promoting the proportionality
into an equality. That our choice, the factorization of 1 +

∑∞
l=1 λlG

(l)
0 (0) in equation (3.8), is

the correct one is supported by the fact that we have obtained a well-behaved relation between
dressed and normal coordinates. To further support our choice, we consider a system in which
we can solve exactly for the ground-state eigenfunction of the system, allowing us to obtain
exact dressed coordinates. Comparing these exact dressed coordinates and the perturbative
ones, we have to get the same answer. The model is the one whose Hamiltonian is given by
equation (1.1) with coupling constants defined by

λrT (r)
µνρσ = λ�3

r

(1 − 3λ)3/2
t rµt rν t

r
ρ t

r
σ , αrR(r)

µνρστε = λ2�4
r

2(1 − 3λ)2
t rµt rν t

r
ρ t

r
σ t rτ t

r
ε . (3.20)

Using the above expression in equation (1.1), we get a system of uncoupled sextic anharmonic
oscillators,

H = 1

2

N∑
r=0

(
P 2

r + �2
rQ

2
r +

2λ�3
r

(1 − 3λ)3/2
Q4

r +
λ2�4

r

(1 − 3λ)2
Q6

r

)
. (3.21)

By direct substitution it is easy to show that the above Hamiltonian as ground-state
eigenfunction has the following solution [20]:

φ(Q; λ) = N exp

(
−

N∑
r=0

(
βrQ

2
r + λβ2

r Q
4
r

))
, (3.22)
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where N is a normalization constant,

βr = �r

2
√

1 − 3λ
(3.23)

and the corresponding ground-state energy is given by

E(λ) =
N∑

r=0

βr . (3.24)

Now, the dressed coordinates can be defined by

exp


−

N∑
µ=0

ωµ(q ′
µ)2


 = exp

(
−

N∑
r=0

(
βrQ

2
r + λβ2

r Q
4
r

))
, (3.25)

from which we obtain

ξ ′
µ =

N∑
r=0

t rµξr

(
1√

1 − 3λ
+

λξ 2
r

2(1 − 3λ)

)1/2

. (3.26)

Note that at order λ both the quartic and sextic anharmonic Hamiltonians, given respectively
by equations (3.2) and (3.21), are equivalent. Then, if our strategy to define the dressed
coordinates perturbatively is the correct one, at order λ equation (3.17) must be identical to
equation (3.26). Expanding equation (3.26) at order λ, we can see that it is indeed the case.
Then we conclude that our strategy to construct the dressed coordinates perturbatively is the
correct one.

4. The decay process of the first excited state

In [8], the probability of the particle oscillator remaining in the first excited state has been
computed at first order for the nonlinear quartic interaction. However, as we have already
mentioned, the approach used there was more intuitive than formal. In order to see to what
extent such a calculation is correct, in this section we compute the same quantity by using
the formalism presented in the last section. To maintain reasoning as general as possible,
we present the steps necessary to compute the probability amplitude associated with the most
general transition,

Am0m1...mN

n0n1...nN
(t) = d〈m0,m1, . . . , mN | e−iHt |n0, n1, . . . , nN 〉d , (4.1)

that is, if we prepare the system initially at time t = 0 in the dressed state |n0, n1, . . . , nN 〉d ,
then equation (4.1) gives the probability amplitude of finding, in a measurement performed
at time t, the dressed state |m0,m1, . . . , mN 〉d . Introducing a complete set of eigenstates of
the total Hamiltonian H, given by equation (3.3), in equation (4.1) we find

Am0m1...mN

n0n1...nN
(t)

=
∞∑

l0l1...lN=0d

〈m0,m1, . . . , mN | e−iHt |l0, l1, . . . , lN ; λ〉c c〈l0, l1, . . . , lN ; λ|n0, n1, . . . , nN 〉d

=
∞∑

l0l1...lN=0

T l0l1...lN
n0n1...nN

(λ)T l0l1...lN
m0m1...mN

(λ) e−itEl0 l1 ...lN
(λ), (4.2)

where

T l0l1...lN
n0n1...nN

(λ) =
∫

dQc〈l0, l1, . . . , lN ; λ|Q〉〈Q|n0, n1, . . . , nN 〉d

=
∫

dQ

∣∣∣∣ ∂q ′

∂Q

∣∣∣∣
1/2

φl0l1...lN (Q; λ)ψn0n1...nN
(q ′). (4.3)
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In the second line of the above expression, we have used equation (2.17). From equation
(3.10) we easily get the Jacobian |∂q ′/∂Q|,∣∣∣∣ ∂q ′

∂Q

∣∣∣∣ =
N∏

r,µ=0

∣∣∣∣∣
√

�r

ωµ

(
1 +

1√
�r

∞∑
l=1

λl ∂

∂Qr

F (l)
r (
√

�rQr)

)∣∣∣∣∣ . (4.4)

Now we evaluate, at first order in λ, the probability amplitude for the particle oscillator
to remain at time t in the first excited state if it has been prepared in that state at time t = 0.
This quantity is obtained by taking n0 = m0 = 1 and nk = mk = 0 in equation (4.2),

A10...0
10...0(t) =

∞∑
l0l1...lN =0

[
T

l0l1...lN
10...0 (λ)

]2
e−itEl0 l1 ...lN

(λ). (4.5)

Note that to compute A10...0
10...0(t) to first order in λ we have to find T

l0l1...lN
10...0 (λ), defined in

equation (4.3), at order λ. Replacing equation (3.15) in equation (4.4), we get

∣∣∣∣ ∂q ′

∂Q

∣∣∣∣ =

 N∏

µ,r=0

�r

ωµ




1/4 [
1 +

3λ

32

N∑
s=0

(6H0(
√

�sQs) + H2(
√

�sQs)

]
+ O(λ2). (4.6)

At order λ, from equation (3.3), we have, for φl0l1...lN (Q, λ),

φl0l1...lN (Q, λ) =
N∏

r=0

φlr (Qr) + λ

N∑
r=0


(�r

π

)1/4

G
(1)
lr

(
√

�rQr) e− �r
2 Q2

r

∏
s 
=r

φls (Qs)


 + O(λ2),

(4.7)

where φlr (Qr) is given by equation (2.13),

G
(1)
lr

(
√

�rQr) = alr Hlr−4(
√

�rQr) + blr Hlr−2(
√

�rQr)

+ clr Hlr +2(
√

�rQr) + dlr Hlr +4(
√

�rQr), (4.8)

and alr , blr , clr and dlr are given in the appendix, equation (A.13). Using equation (3.9) and
equation (3.10), we have for ψ10...0(q

′),

ψ10...0(q
′) =


 N∏

µ=0

ωµ

π




1/4

H1(
√

ω0q
′
0)√

2
exp


−1

2

N∑
µ=0

ωµ(q ′
µ)2




=

 N∏

µ=0

ωµ

π




1/4
N∑

r=0

t r0√
2

[
H1(

√
�rQr) + 2λF (1)

r (
√

�rQr) − λH1(
√

�rQr)

×
N∑

s=0

√
�sQsF

(1)
s (
√

�sQs)

]
exp

(
−1

2

N∑
u=0

�uQ
2
u

)
+ O(λ2). (4.9)

Replacing equations (4.6), (4.7) and (4.9) in equation (4.3), we obtain after a long, but
straightforward, calculation

T
l0l1...lN

10...0 (λ) =
N∑

r=0

t r0δlr 1

∏
s 
=r

δls0 + 9

√
6

16
λ

N∑
r=0

t r0δlr 3

∏
s 
=r

δls0

+ 3

√
2

16
λ
∑
r 
=s

t r0δlr 1δls2

∏
u 
=r,s

δlu0 + O(λ2), (4.10)
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from which we get

[
T

l0l1...lN
10...0 (λ)

]2 =
N∑

r=0

(
t r0
)2

δlr 1

∏
s 
=r

δls0 + O(λ2). (4.11)

Replacing equation (4.11) in equation (4.5) we obtain for A10...0
10...0(t), which we denote as

f00(t; λ),

f00(t; λ) = exp

(
− it

2

N∑
r=0

�r

)
N∑

r=0

(
t r0
)2

exp

{
−it

[
E1r

(λ) − �r

2

]}
+ O(λ2), (4.12)

where we have from the appendix E1r
(λ) = 3

2�r + 15
4 λ�r + O(λ2) and substituting in

equation (4.12) we get

f00(t; λ) =
N∑

r=0

(
t r0
)2
(

1 − 15

4
iλt�r

)
e−it�r + O(λ2), (4.13)

where we have discarded a phase factor that does not contribute to the probability. From the
above equation, we get the probability for the particle oscillator to remain in the first excited
level,

|f00(t; λ)|2 = |f00(t)|2 +
15λt

4

∂

∂t
|f00(t)|2 + O(λ2), (4.14)

where

f00(t) =
N∑

r=0

(
t r0
)2

e−i�r t . (4.15)

Equation (4.14) is the same as the one obtained in [8]. In this reference, it has been
supposed that the dressed coordinates are not affected by the nonlinear interactions and then
the only correction for the probability amplitude comes from the corrections to the first excited
eigenenergies, that is, we assumed equation (4.12) as our starting point. We obtained the same
result because at order λ the square of T

l0l1...lN
10...0 is given only by the square of the first term in

equation (4.10), that does not depend on λ.
To see the effect of the last term in equation (4.14) consider the situation in which the

frequencies ωk are continuously distributed. In this case, as shown in [1], the first term in
equation (4.14), the probability for the particle oscillator to remain in the first excited level
in the absence of nonlinearities, |f00(t)|2, is a decreasing, almost exponentially, function of
time. Then, the last term is a negative quantity, from which we can conclude that the effect of
the nonlinearity, at first order in the coupling constant, is the enhancement of the decay of the
first excited level of the particle oscillator.

5. Conclusions

In this paper, after clarifying what we understand by dressed coordinates and dressed states, we
have developed a formal method to construct perturbatively dressed coordinates in nonlinear
systems. Although we restricted our calculations to a very special quartic nonlinear term,
we have pointed out the necessity of factoring a term in order to avoid artificial singularities
which otherwise would appear if we do not make such factorization. That this factorization is
the correct one has been checked by using an exactly solvable sextic nonlinear model. Then,
in more general nonlinear systems, one can follow the same procedure to construct dressed
coordinates.
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At the end of section 2, we remarked that for nonlinear systems, in the number
representation, the dressed ground state is not equivalent to the ground state of the total
system, see equation (2.18). This fact must not be seen as in contradiction with our definition
of dressed coordinates, since we have defined them by requiring the equivalence of the dressed
ground state in dressed coordinates representation and the ground state of the system in normal
coordinates representation. We can understand the mentioned non-equivalence by noting that
although the dressed ground state is an eigenstate of the dressed number operators (associated
with the dressed coordinates) the ground state of the system, in general, is not an eigenstate
of the collective number operators. For example, in the quartic nonlinear case, one can easily
verify that the ground state of the system is not an eigenstate of collective number operators,
but a linear superposition of eigenstates of these operators (see the appendix, equation (A.5)).

Finally, we considered the computation of the probability of the particle oscillator to
remain excited in the first excited level, and showed that our result coincides with that obtained
in [8] at first order in the coupling constant. However, at higher orders in the coupling constant
the treatment given in [8] will give incorrect results, since equation (4.12) is only valid at first
order in the coupling constant.
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Appendix A. The perturbed eigenfunctions and eigenvalues

It is easy to see that the eigenfunctions of the quartic anharmonic oscillator can be written
formally as those given in equation (3.4). We have to note only that any wavefunction can
be expanded in the basis φn(Q) (we omit here the index r), given by the eigenvalues of the
linear part of the Hamiltonian. And since φn(Q) are given by exp(−�Q2/2) times a Hermite
polynomial of degree n, we see that an expression of the type given in equation (3.4) follows.
In what follows, we compute G(1)

n (
√

�Q) and G(2)
n (

√
�Q) by using standard perturbation

theory.
At second order in standard perturbation theory, the eigenfunctions and eigenvalues of a

Hamiltonian Ĥ = Ĥ 0 + λV̂ are given, respectively, by

|n, λ〉 = |n〉 + λ
∑
k 
=n

Vkn|k〉
En − Ek

+ λ2


∑

k,l 
=n

VklVln|k〉
(En − Ek)(En − El)

− Vnn

∑
k 
=n

Vkn|k〉
(En − Ek)2


 + O(λ3) (A.1)

and

En(λ) = En + λVnn + λ2
∑
k 
=n

|Vnk|2
En − Ek

+ O(λ3), (A.2)

where

Vkn = 〈k|V̂ |n〉 (A.3)

and |n〉 and En are, respectively, eigenfunctions and eigenvalues of the unperturbed
Hamiltonian Ĥ 0.
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For the anharmonic oscillator with V̂ = �3Q̂4, we easily obtain

Vkn = �

4
[
√

k4δk,n−4 + 2(2n − 1)
√

k2δk,n−2 + 3(2n2 + 2n + 1)δk,n

+ 2(2n + 3)
√

n2δk,n+2 +
√

n4δk,n+4], (A.4)

where kn = (k + 1)(k + 2) · · · (k + n). Replacing equation (A.4) in equations (A.1) and (A.2)
we obtain, respectively,

|n, λ〉 = |n〉 + λ(a′
n|n − 4〉 + b′

n|n − 2〉 + c′
n|n + 2〉 + d ′

n|n + 4〉)
+ λ2(e′

n|n − 8〉 + f ′
n|n − 6〉 + g′

n|n − 4〉 + h′
n|n − 2〉

+ t ′n|n + 2〉 + u′
n|n + 4〉 + v′

n|n + 6〉 + w′
n|n + 8〉) + O(λ3) (A.5)

and

En(λ) =
(

n +
1

2

)
� + λE(1)

n + λ2E(2)
n + O(λ3), (A.6)

where

a′
n = 1

16

√
(n − 4)4, b′

n = (2n − 1)

4

√
(n − 2)2,

(A.7)

c′
n = − (2n + 3)

4

√
n2, d ′

n = − 1

16

√
n4;

e′
n = 1

512

√
(n − 8)8, f ′

n = (6n − 11)

192

√
(n − 6)6,

g′
n = 1

16
(2n2 − 9n + 7)

√
(n − 4)4, h′

n = − 1

64
(2n3 + 93n2 − 107n + 66)

√
(n − 2)2,

t ′n = − 1

64
(2n3 − 123n2 − 359n − 300)

√
n2, u′

n = 1

16
(2n2 + 13n + 18)

√
n4,

v′
n = (6n + 17)

192

√
n6, w′

n = 1

512

√
n8; (A.8)

E(1)
n = 3

4
(2n2 + 2n + 1)� (A.9)

and

E(2)
n = − 1

8 (34n3 + 51n2 + 59n + 21)�. (A.10)

Writing equation (A.5), in coordinate representation, in the form given in equation (3.4) we
get for G(1)

n (
√

�Q) and G(2)
n (

√
�Q), respectively,

G(1)
n (ξ) = anHn−4(ξ) + bnHn−2(ξ) + cnHn+2(ξ) + dnHn+4(ξ) (A.11)

and

G(2)
n (ξ) = enHn−8(ξ) + fnHn−6(ξ) + gnHn−4(ξ) + hnHn−2(ξ)

+ tnHn+2(ξ) + unHn+4(ξ) + vnHn+6(ξ) + wnHn+8(ξ), (A.12)

where ξ = √
�Q,

an = a′
n√

2n−4(n − 4)!
, bn = b′

n√
2n−2(n − 2)!

,

(A.13)

cn = c′
n√

2n+2(n + 2)!
, dn = d ′

n√
2n+4(n + 4)!
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and

en = e′
n√

2n−8(n − 8)!
, fn = f ′

n√
2n−6(n − 6)!

,

gn = g′
n√

2n−4(n − 4)!
, hn = h′

n√
2n−2(n − 2)!

,

(A.14)

tn = t ′n√
2n+2(n + 2)!

, un = u′
n√

2n+4(n + 4)!
,

vn = v′
n√

2n+6(n + 6)!
, wn = w′

n√
2n+8(n + 8)!

.
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