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Abstract

In this thesis, we study some important problems related to the transport
properties of many body systems. It is divided in three parts.

First we investigate the effect of dissipation and time - dependent external
sources in the phase diagram of a superconducting film at zero and finite
temperature. In the presence of time-dependent perturbations, dissipation is
essential for the system to attain a steady, time independent state. In order
to treat this time dependent problem, we use a Keldysh approach within an
adiabatic approximation that allows us to study the phase diagram of this
system as a function of the external parameters, including temperature. We
also discuss the nature of the quantum phase transitions of the system.

Next, we study an important concept in the physics of metallic multi-
band systems, that of hybridization, and how it affects the superconducting
properties of a material. A constant or symmetric k-dependent hybridization
in general acts in detriment of superconductivity. We show here that when
hybridization between orbitals in different sites assumes an anti-symmetric
character having odd-parity it enhances superconductivity. In chapter 3, we
make use of the anti-symmetric property of hybridization to propose a new
mechanism to generate Majorana fermions in a superconducting wire, even
in the absence of spin-orbit interactions.

In the last part of this thesis we study the effect of spin-orbit coupling
(SOC) on transport properties in magnetic nanostructures. In this system
SOC plays an important role, because surfaces (or interfaces) introduce sym-
metry breaking which is a source of spin-orbit interaction. We study the
role of Dzyaloshinskii-Moriya (DM) interaction on spin-transport in a 3 layer
system. We show that there is a DM interaction between magnetics ions
in the layers and spin of conduction electrons. We study the influence of
this DM interaction on transport within a simple model where each layer is
represented by a point.
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Resumo

Nós estudamos alguns problemas relacionados as propriedades de transporte
de sistemas de muitos corpos. Essa tese pode ser dividida em três partes,
cada uma focada em um tópico espećıfico. Os resultados obtidos ajudam a
entender melhor os problemas aqui abordados.

Nós investigamos o efeito da dissipação e de fontes externas dependentes
do tempo no diagrama de fase de um sistema a temperatura zero e finita.
Na presença das perturbações dependentes do tempo, a dissipação é essen-
cial para a obtenção de um estado estático independente do tempo. Para
tratar esse problema, nós usamos o formalismo de Keldysh com uma aprox-
imação adiabática. Isso nos permite estudar o diagrama de fase como função
dos parâmetros do sistema e da temperatura. Nós também investigamos a
natureza das transições de fases quânticas do sistema.

Depois, realizamos estudos sobre hibridização, um conceito importante
na f́ısica de sistemas multi bandas. Uma hibridização constante ou simétrica
em k atua destruindo as propriedades supercondutoras de um material. Nós
mostramos aqui que se a hibridização possuir paridade ı́mpar, ela atua re-
forçando a supercondutividade. Nós estudamos um problema em que a hi-
bridização anti-simétrica nos permite propor um novo sistema para estudar
férmions de Majorana, mesmo da ausência de interações de spin-órbita.

Na última parte nós estudamos o efeito do acoplamento spin-órbita (SOC)
nas propriedades de transporte em nano estruturas magnéticas. Nesses sis-
temas o SOC tem uma grande importância pois superf́ıcies introduzem que-
bra de simetria, que é uma fonte do SOC. Mais especificamente, nós estu-
damos a interação de Dzyaloshinskii-Moriya (DM) no transporte de spin em
um sistema de 3 camadas. Nós consideramos a interação de DM entre os ı́ons
magnéticos e os spins dos elétrons de condução. Nós propusemos um modelo
simples para estudar como a interação de DM influencia o transporte de spin
nesse sistema de 3 camadas.
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Résumé

Nous étudions plusieurs problémes reliés aux propriétés de transport dans
les systèmes corrélés. La thèse contient 3 parties distinctes, chacune d’entre
elles décrivant un aspect particulier. Nous avons obtenu dans chacun des cas
des résultats qui permettent une meilleure compréhension du transport.

Nous étudions l’effet de la dissipation et d’une perturbation extérieure
dépendant du temps sur le diagramme de phases d’un systèmes à N corps
à température nulle et à température finie. En présence de perturbation
dépendant du temps, la dissipation joue un rôle important dans l’évolution
vers un état stable indépendant du temps. Nous utilisons le formalisme de
Keldysh dans l’approximation adiabatique qui permet d’étudier le diagramme
de phases du système en fonction de paramètre et de la température.

Dans la 2ième partie, nous étudions un concept important pour la physique
des systèmes métalliques à plusieurs bandes, le concept d’hybridation, et la
façon dont l’hybridation affecte la supraconductivité du métal. De façon
générale, une hybridation dépendante ou non du vecteur d’onde k a tendance
à détruire la supraconductivité. Nous montrons dans ce chapitre qu’une
hybridation antisymétrique a l’effet inverse et renforce la supraconductivité.
Nous montrons que si l’hybridation est antisymétrique, la supraconductivité
a des propriétés non-triviales. Nous proposons que dans un tel système,
il puisse exister des fermions de Majorana, même en l’absence de couplage
spin-orbite.

Le dernier chapitre de la thèse porte sur les effets du couplage spin-orbite
sur le transport dans les nanostructures magnétiques. Dans les nanostruc-
tures, le couplage spin-orbite joue un rôle important en raison de la brisure
de symmétrie à la surface ou aux interfaces. En particulier, nous étudions
l’effet de l’interaction Dzyaloshinskii-Moriya (DM) sur le transport de spin
dans un système tri-couche. Nous montrons qu’il existe une interaction DM
entre les moments des couches et les électrons de conduction, et l’influence
de cette interaction sur le transport est étudiée dans un modèle simplifié où
chaque couche est représentée par un point.
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Chapter 1

Introduction

The quantum theory of many-particle systems is a powerful tool to under-
stand the properties of real systems that deal with interacting particles. This
theory enable us to solve the many-particle Schrödinger equation with inter-
particle potential through some special techniques, such as linear response
[1], non-equilibrium Green’s function method (Keldysh formalism) [2, 3],
density functional theory (DFT) [4], etc. Among many-particle systems, we
can mention some important problems as for example Bose-Einstein conden-
sation (BEC), superconductivity, superfluity, etc [5]. The development of
this field is crucial for the advance of electronics devices and also of sophis-
ticated engineering instruments. Almost all new technological equipments,
like cell phones, TVs, microscopes, lasers, etc., makes use of some properties
of many-particle systems (magnetism, superconductivity). However there
are still some open problems and behaviors not entirely understood in this
field. Motived by this, we have studied some important problems related
with transport properties of many body systems.

The superconductivity was discovered by H. Kamerlingh Onnes in 1911
[6]. A fundamental understanding of this phenomenon was only possible
during the 1950’s when Ginzburg and Landau proposed the phenomeno-
logical theory known as Ginzburg-Landau theory (1950) [7] and Bardeen,
Cooper and Schrieffer proposed a microscopic BCS theory (1957) [8]. How-
ever, in 1986, Bednorz and Müller [9] discovered a new class of superconduc-
tors which, because of the basic microscopic mechanism, cannot be described
by BCS theory. Until today there are many open problems with respect to
the understanding of superconductivity and after more than 100 years after
the discovery of superconductivity, this topic remains fascinating. In this
thesis we devote two chapters to superconducting systems.

The first problem that we have investigated is presented in chapter 2.
Motivated by the interest to understand decoherence that arises from the

1



coupling between nano-systems and the surrounding, we investigate the prob-
lem of a superconducting film submitted to a electric field, that gives rise to
a time dependent vector potential in the Hamiltonian, that acts exclusively
in the layer that is coupled to a metallic substrate. We study this problem
near a superconductor-metal quantum critical point (QCP). The coupling
between the superconducting layer and the bath is the source of dissipation
that is related with decoherence. The behavior of nanomaterials under the
action of external time-dependent perturbations is also an interesting prob-
lem. Here, the combination between the time-dependent perturbation and
the dissipation is essential to attain a steady-state, time-independent situ-
ation. We explore the effects of dissipation and of an electric field on the
phase diagram of the system.

The system proposed in this work was studied by others authors us-
ing phenomenological effective theories, like Landau theory using the non-
equilibrium Schwinger round-trip Green’s function formalism [10] and scaling
arguments when there is no extrinsic dissipation [11]. Another work develop
a fully microscopic derivation of the Keldysh effective theory using a men-
field treatment out of equilibrium [12]. Here we also use a non-equilibrium
Keldysh approach [2, 3] and develop a formalism that allows to obtain the
time dependence of the Green’s functions necessary to calculate the super-
conducting order parameter, for an arbitrary time dependence of the vector
potential under an adiabatic condition. The knowledge of these functions is
fundamental in the time-dependent problem because, if the perturbation is
strong enough, the ground state properties can be modified. Besides intro-
ducing the method, we will be mainly concerned with the phase diagram of
the superconducting layer, and its modifications by dissipation and pertur-
bation (the external applied electrical field introduced in the Hamiltonian by
the time-dependent vector potential) in a steady state regime.

The nature of the phase transition in the presence of the time-dependent
external perturbation it also examined here. However our method does not
resort to the time dependent Landau-Guinzburg equation neither to Boltz-
mann’s equation. To deal with this problem we introduce an alternative
approach that allow us to include fluctuations to the zero order solution [13]
(in our approach fluctuations only appear in first order solution). The big
advantage to use this alternative approach is that we have now a full dy-
namic description of the quantum phase transition, so that we can write an
effective action, at the Gaussian level, which describes this QCP. Thus we
fully characterize the quantum critical point associated with the dissipation
induced superconductor-normal metal transition.

In chapter 3 we focus on another important many body problem related
with superconductivity. We investigate a two-band metal with an attractive

2



interaction between quasi-particles in different bands and an attractive intra-
band interaction in one of these bands. The hybridization is assumed to be
anti-symmetric. We show that the metal has non-trivial superconducting
properties if the hybridization is anti-symmetric. The study of the effects of
hybridization is quite common in literature since it can be easily controlled
externally, by doping or applying pressure in the system [14, 15, 16]. In su-
perconductors, for example, hybridization strongly affects the properties of a
material and it can change the phase diagram on the superconductor. When
hybridization is constant or has even-parity in k-space, it acts in detriment
of superconductivity and can even destroy it at a superconducting quantum
critical point (SQCP) [15, 17, 18]. However, the effect of an anti-symmetric
hybridization is not a widely studied topic. We will dedicate chapter 3 to
understand the effects of hybridization with odd-parity symmetry in the su-
perconducting properties of multi-band systems.

Based on the work of Drzazga and Zipper [19], we discuss under which
conditions the hybridization assumes an anti-symmetric character. We con-
clude that the odd-parity hybridization occurs when it mixes orbitals with
different parities in neighboring lattice site, i.e., when the crystalline poten-
tial mixes orbitals with angular momentum l and l + n, where n is any odd
number. There are some results in literature considering this anti-symmetric
character in the hybridization [20, 21]. Here we studied the direct effect of
the odd-parity hybridization in superconductivity properties. We calculate
the order parameters and total occupation number in both strong and weak
coupling regime and we find a remarkable result: the superconductivity is
enhanced when the hybridization is anti-symmetric. This result opens new
possibilities in the study of superconductors.

This anti-symmetric hybridization implies another important result. The
combination of odd-parity hybridization and the proximity effect gives rise to
attractive interactions in the originally non-interacting band. It is possible
to calculate a parameter that we called “induced order parameter” and ob-
serve that, under certain conditions, it is proportional to the anti-symmetric
hybridization, i.e., the spacial space part of the induced order parameter is
anti-symmetric. This property is related with p-wave superconductivity [22].
Kitaev proposed a model for a p-wave superconducting chain that presents
a non-trivial topological phase with Majorana fermions at its ends [23]. The
combination between our results and the outcome of Kitaev allows us to pro-
pose a new mechanism to produce a Kitaev’s chain without the necessity of
spin orbit coupling or an external magnetic field.

The spintronics is a relative new field in physics and also can be consid-
ered as a many-body problem. It emerges from some important discoveries
in 1980’s, such as the observation of spin polarized electron injection from
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a ferromagnetic metal to a normal metal [24] or the discovery of the giant
magnetoresistance [25, 26]. Spintronics incorporates the electronic spin mo-
ment in the description of the system. It has a universal goal to develop a
broad range of applications in electronics and nanoscale devices [27]. How-
ever to use all the potential of spintronics it is important to understand all
possible effects that occurs in this process of miniaturization. The Spin Orbit
Coupling (SOC), for example, is a small effect that plays an important role
in magnetic nanostructures since space inversion symmetry is broken near
surface and interfaces. For example, it was shown that spin-orbit coupling
induces some changes of magneto-crystalline anisotropy [28] at surfaces and
that Dzyaloshinskii-Moriya (DM) interactions exist near the surface [29]. We
focus on the study of DM interaction and some consequences of this interac-
tion in magnetic nanostructures.

The Dzyaloshinskii-Moriya [30, 31] interaction is driven by SOC and only
appears in structures that lack inversion symmetry. In this thesis we consid-
ered a system composed by a non-magnetic layer between two ferromagnetic
layers. At each interface breaking of symmetry occurs. We propose a very
simple model where each layer is replaced by a site, taking account conduc-
tion electrons. On the magnetic sites, a classical spin represents the mag-
netization of the ferromagnetic layer while the non-magnetic site has only
conduction electrons. Our purpose is to study the role of DM interaction
on spin transport in this three-layer system. Usually, studies of SOC on
transport is made by including Rashba interaction [32]. The effect of DM
interaction has not been yet studied in this type of system.

Zarea et al. [33] have shown that DM interaction between magnetic ions
and conduction electrons may exist. Based in this work, we can write the
correct expression for the DM Hamiltonian and solve a three sites problem
that represents the three layers system. Thus we can find the wave functions
and solve the time-independent Schrödinger equation. Once the wave func-
tions are well determined, we can calculate the spin current. We conclude
that the DM interaction affects the spin current and should be taken account
in nanostructures.

This work was done in four years, three years in CBPF - Brazil and the
other one in Institute Néel - France. We studied this three problems and
found some interesting new results, but there are still many issues to be
studied in the three problems presented here. Thus in the last chapter we
present our general conclusions and perspectives.
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Chapter 2

Dissipative and
Non-equilibrium Effects Near a
Superconductor-Metal
Quantum Critical Point

Recently with the advent of nanotechnology, great interest and effort have
been devoted to the study of decoherence in nanosystems that arise from its
coupling to the environment [34]. This coupling is also a crucial feature since
it gives rise to dissipation. Due to the small sizes of the studied materials
and consequently reduced degrees of freedom decoherence and dissipation,
there are fundamental aspects that are going to determine their properties
and eventual applications. Equally important is to understand the behavior
of these nanomaterials under the action of external perturbations.

It turns out that, even in macroscopic many-body systems, if the strength
of the perturbation is sufficiently strong, its ground state properties and
phase diagram can be severely modified. If a physical system is subjected to a
time-dependent perturbation, dissipation is essential to attain a steady-state,
time-independent situation [35]. In this case, the non-equilibrium properties
depend on the intensity of the perturbation and on how strong is the coupling
of the system to the outside world.

Another important and substantial question concerns the nature of the
phase transitions in non-equilibrium systems, both classical and quantum.
In the quantum case, due to the entanglement of time and space dimensions,
including dissipation, it is sometimes essential to give a correct description
of the quantum critical phenomena.

It is important to emphasize that when we consider the effect of time
dependent perturbations, beyond the regime of linear response, it is necessary
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to appeal for more unconventional mathematical approaches in order to deal
with the non-equilibrium situation, even in the steady state. In this case,
there is a breakdown of the fluctuation-dissipation theorem [50] due to the
explicit time dependence of the parameters in the Hamiltonian describing
the system. The mathematical approach that we used in this work is the
non-equilibrium Keldysh formalism [2, 3].

In the next sections we present in detail all progress we have made con-
cerning this topic.

2.1 Model

We focus on a system consisting of a superconducting layer under the action
of an external electric field, that arises from a time dependent vector poten-
tial that acts exclusively in the superconducting layer. The layer is coupled
to a metallic substrate, representing a source of dissipation and allowing the
perturbed system to attain a non-equilibrium steady state, time-independent
situation. The microscopic mechanism for dissipation is the transfer of elec-
trons between the two systems [36], the same type of coupling which gives
rise to the proximity effect. We show in Fig. (2.1) a schematic picture of the
system that we will study.

This system is described by the following Hamiltonian [12]

H = Hlayer +Hbath +Hbath−layer, (2.1)

where Hlayer describes the two-dimensional (2D) superconductor whose phys-
ical properties we are interested in. Hbath takes into account the reservoir
and Hbath−layer in an obvious notation describes the coupling between the 2D
superconductor and the bulk metal. This coupling represents a source for
dissipation. Explicitly, these Hamiltonians are given by,

Hlayer =
∑

k,σ

1

2m

(
∇⃗
i
− e

!cA⃗(t)
)2

d†k,σdk,σ−λ
∑

k

d†k,↑d
†
k,↓d−k,↓d−k,↑;(2.2)

Hbath =
∑

kzkσ

ϵbkz ,k,σc
†
kz ,k,σ

ckz ,k,σ; (2.3)

Hbath−layer =
∑

kzkσ

(
tzc

†
kz ,k,σ

dk,σ +H.c.
)
. (2.4)

Notice that c(†) and d(†) are electron destruction (creation) operators in metal-
lic bath and in superconductivity layer, respectively. The vector potential
A⃗(t) = −cE⃗t (! = 1) gives rise to an electric field E⃗ = −1/c(∂A⃗/∂t) that acts
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Metal

Superconductor

A

Figure 2.1: Schematic picture of the system. Superconducting layer coupled
to a metallic bath. The external electric field is applied only in the layer.

only in the superconducting layer. The quantity ϵbkz ,k,σ is the kinetic energy

of the electrons in the metallic bath (substrate). Notice that k⃗ = (k⊥, kz)
and for simplicity we write k⊥ = k. The coupling between the layer and
substrate [Eq. (2.4)] has an intensity tz and transfers electrons from the layer
to the substrate and vice-versa. It does not conserve momentum since the
superconductor is strictly 2D [37].

Applying a BCS decoupling to Hlayer [8], we get

Hlayer =
∑

k,σ

ϵ

(
k − eA⃗(t)

!c

)
d†kσdkσ −

1

2

∑

k

(
∆k d

†
k↑d

†
−k↓ +H.c.

)
, (2.5)

where k = k⊥ and

∆k = λ
〈
d†k↑d

†
−k↓

〉
(2.6)

is the superconducting order parameter of the layer. This Hamiltonian has
also been recently studied by Mitra [12].

The system considered above is a classical one in the study of supercon-
ductivity from both experimental and theoretical aspects. It has been treated
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in the literature by many authors and at different times [36, 37, 38, 39, 40,
41, 42], always with renewed interest [10, 11, 12, 43, 44, 45, 46, 47]. As fabri-
cation and experimental techniques improve, new aspects of this problem are
revealed, requiring more sophisticated theoretical approaches. The present
work introduces a novel theoretical treatment and focuses on the new aspects
of quantum criticality in this paradigmatic system.

2.2 The Non-equilibrium Keldysh Formalism

Based on experience from previous works [48, 49], in this section we introduce
the Keldysh formalism [2, 3] in order to obtain the normal and anomalous
Green’s functions, relevant to solve the problem. We use this type of for-
malism to deal with the explicit time dependence of the kinetic term in the
Hamiltonian Hlayer when the potential vector is present – remember that the
potential vector is directly related to the electric field. A direct consequence
of this time dependence is that the Green’s function is now function of (t, t′)
and not of (t− t′), as in the case A⃗ = 0 → E⃗ = 0.

We can define the time-dependent Green’s functions according with the
temporal evolution of operators as follows

Gr
AB(t, t

′
) = ⟨⟨A(t)|B(t′)⟩⟩r = θ(t− t′)⟨[A(t), B(t′)]η⟩,

Ga
AB(t, t

′
) = ⟨⟨A(t)|B(t′)⟩⟩a = θ(t′ − t)⟨[A(t), B(t′)]η⟩, (2.7)

G<
AB(t, t

′
) = ⟨⟨A(t)|B(t′)⟩⟩< = ⟨Tη A(t)B(t′)⟩,

where r is the retarded component, a is the advanced component and < is
the lesser Green’s function. We use the following definition:

[A(t), B(t′)]η = A(t)B(t′)− ηB(t′)A(t)

Tη A(t)B(t′) = θ(t− t′)A(t)B(t′) + ηθ(t′ − t)B(t′)A(t),

(2.8)

where η = 1 is used for bosons and η = −1 is for fermions. Here we deal
with electrons, so we always assume η = −1.

The normal and anomalous Green’s functions are given respectively by

GL(t, t
′
) ≡ ⟨⟨dkσ(t)|d†kσ(t

′
)⟩⟩, (2.9)

F(t, t
′
) ≡ ⟨⟨d†−k−σ(t)|d

†
kσ(t

′
)⟩⟩, (2.10)

where we follow the notation of Tyablikov [50]. In this definition GL(t, t
′
) and

F(t, t
′
) can be r, a or < components. We will specify in the future which of
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these components are dealing according with the calculations. Notice thatGL

is the Green’s function related to the layer and F is the anomalous Green’s
function related to the Cooper pairs involved with the superconducting state.

We use the equation of motion method [50] to write

i! ∂
∂t

⟨⟨dk′σ′ (t)|d†
k′σ′ (t

′
)⟩⟩ = δ(t− t

′
)⟨{dk′σ′ (t), d†

k′σ′ (t
′
)}⟩+

+⟨⟨[dk′σ′ (t), H]|d†
k′σ′ (t

′
)⟩⟩,

(2.11)

i! ∂
∂t

⟨⟨d†−k′−σ′ (t)|d†k′σ′ (t
′
)⟩⟩ = δ(t− t

′
)⟨{d†−k′−σ′ (t), d

†
k′σ′ (t

′
)}⟩+

+ ⟨⟨[d†−k′−σ′ (t), H], d†
k′σ′ (t

′
)⟩⟩. (2.12)

By calculating the commutators (in Ref. [48] see the calculation of similar
commutators in detail), we have

(
i! ∂
∂t

+ϵk(t)

)
F(t, t

′
)=−∆k(t)GL(t, t

′
)−

∑

kz

tz⟨⟨c†kz−k−σ(t)|d
†
kσ(t

′
)⟩⟩,

(
i! ∂
∂t

− ϵk(t)

)
GL(t, t

′
) = δ(t− t

′
)−∆k(t)F(t, t

′
) +

+
∑

kz

t∗z⟨⟨ckzkσ(t)|d
†
kσ(t

′
)⟩⟩,

where we defined

ϵ

(
k − eA⃗(t)

!c

)
≡ ϵk(t), (2.13)

remember that k = k⊥.
Notice that we generate two new Green’s functions. We repeat the process

and write the equation of motion for these two new Green’s functions:

i! ∂
∂t

⟨⟨c†
k′z−k′−σ′ (t)|d†k′σ′ (t

′
)⟩⟩ = δ(t− t

′
)⟨{c†

k′z−k′−σ′ (t), d
†
k′σ′ (t

′
)}⟩+

+⟨⟨[c†
k′z−k′−σ′ (t), H]|d†

k′σ′ (t
′
)⟩⟩, (2.14)

i! ∂
∂t

⟨⟨ck′zk′σ′ (t)|d†kσ(t
′
)⟩⟩ = δ(t− t

′
)⟨{ck′zk′σ′ (t), d†

k′σ′ (t
′
)}⟩+

+ ⟨⟨[ck′zk′σ′ (t), H], d†
k′σ′ (t

′
)⟩⟩. (2.15)
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Or
(
i! ∂
∂t

+ ϵbkz ,k,σ

)
⟨⟨c†kz−k−σ(t)|d

†
kσ(t

′
)⟩⟩ = −t∗zF(t, t

′
),

(
i! ∂
∂t

− ϵbkz ,k,σ

)
⟨⟨ckzkσ(t)|d

†
kσ(t

′
)⟩⟩ = tzGL(t, t

′
).

where ϵbkz ,k,σ is the kinetic energy of the electrons in the metallic bath.
In order to solve the system above, we need to introduce four auxiliary

Green’s functions through their equations of motion:
(
i! ∂
∂t

+ ϵbkz ,k,σ

)
gkzkσ(t− t

′
) ≡ δ(t− t

′
), (2.16)

(
i! ∂
∂t

− ϵbkz ,k,σ

)
g

′

kzkσ(t− t
′
) ≡ δ(t− t

′
), (2.17)

(
i! ∂
∂t

+ ϵk(t)

)
F (t, t

′
) ≡ δ(t− t

′
), (2.18)

(
i! ∂
∂t

− ϵk(t)

)
gL(t, t

′
) ≡ δ(t− t

′
). (2.19)

Notice that this four Green’s functions are the Green’s functions of the de-
coupled bath [Eqs. (2.16) and (2.17)] and decoupled layer [Eqs. (2.18) and
(2.19)]. Again we can use the definitions (2.7) and we will specify which
function we are dealing in the calculations.

Using the following property of Green’s function:

If we have two equation such that:
[∂t + A(t)] g (t, t′) = δ(t− t′)

and
[∂t + A(t)]G (t, t′) = h(t, t′)

We have:
G (t, t′) =

∫
dt1 g (t, t1) h (t1, t′) .
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We can write

⟨⟨c†kz−k−σ(t)|d
†
kσ(t

′
)⟩⟩ = −

∫
dt1 t∗zgkzkσ(t, t1)F(t1, t

′
), (2.20)

⟨⟨ckzkσ(t)|d
†
kσ(t

′
)⟩⟩ =

∫
dt1 tzg

′

kzkσ(t, t1)GL(t1, t
′
), (2.21)

F(t, t
′
) = −

∫
dt1 F (t, t1)∆k(t1)GL(t1, t

′
)−

−
∑

kz

tz

∫
dt1 F (t, t1)⟨⟨c†kz−k−σ(t1)|d

†
kσ(t

′
)⟩⟩, (2.22)

GL(t, t
′
) = gL(t, t

′
)−

∫
dt1 t∗zgL(t, t1)∆k(t1)F(t1, t

′
) +

+
∑

kz

t∗z

∫
dt1 gL(t, t1)⟨⟨ckzkσ(t1)|d

†
kσ(t

′
)⟩⟩. (2.23)

Using the results above, we define two self-energies

Σ(t1, t2) =
∑

kz

|tz|2gkzkσ(t1, t2), (2.24)

Σ̄(t1, t2) =
∑

kz

|tz|2g
′

kzkσ(t1, t2). (2.25)

Further on, we will assume that Σ(t, t′) = Σ̄(t, t′) Ref. [12]. This is equivalent,
in reciprocal space, to ρ(ω) = ρ(−ω), where ρ(ω) is the density of states of
the metallic bath. This approach facilitates posterior calculations and does
not significantly alter our results.

Once the self-energy is defined, we reduce our system to two equations
that link anomalous and normal Green’s functions,

F(t, t
′
) = −

∫
dt1 F (t, t1)∆k(t1)GL(t1, t

′
) +

+

∫
dt1

∫
dt2 F (t, t1)Σ(t1, t2)F(t2, t

′
), (2.26)

GL(t, t
′
) = gL(t, t

′
)−
∫

dt1 gL(t, t1)∆k(t1)F(t1, t
′
) +

+

∫
dt1

∫
dt2 gL(t, t1)Σ(t1, t2)GL(t2, t

′
). (2.27)

In the next section, we introduce an adiabatic approximation. This ap-
proximation will restrict our result to the limit of validity of the approach,
and without this, it is impossible to continue our calculations.
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2.3 Adiabatic Approximation

Before doing the approximation, it is convenient to write the functions ac-
cording to other characteristic time of the problem. A convenient choice is
to introduce a slow time: (t+ t

′
)/2 and a fast time: t− t

′
[51], such that,

(t, t
′
) →

(
t− t′,

t+ t
′

2

)
= (t− t

′
, t̄).

In terms of this time scale, equations (2.26) and (2.27) become,

F(t−t
′
, t̄)=−

∫
dt1F

(
t−t1,

t+t1
2

)
∆k(t1)GL

(
t1−t

′
,
t1+t

′

2

)
+

+

∫
dt1

∫
dt2F

(
t−t1,

t+t1
2

)
Σ

(
t1−t2,

t1+t2
2

)
F
(
t2−t

′
,
t2+t

′

2

)
,

(2.28)

GL(t−t
′
, t̄)=gL(t−t

′
, t̄)−

∫
dt1gL

(
t−t1,

t+t1
2

)
∆k(t1)F

(
t1−t

′
,
t1+t

′

2

)

+

∫
dt1

∫
dt2gL

(
t− t1,

t+ t1
2

)
Σ

(
t1 − t2,

t1 + t2
2

)
GL

(
t2 − t

′
,
t2 + t

′

2

)
.

(2.29)

Once we have distinguished between the fast and the slow time scales,
we can implement an adiabatic approximation [51, 49] which, in our case,
consists in taking into account terms up to the linear order in the variables as-
sociated with the slow time scale. The validity of this approximation requires
the characteristic time associated with the change of the external parameter
(the vector potential) to be large compared to the lifetime of an electron
in the superconducting layer before it is scattered to the metallic substrate.
Since the time derivative of the vector potential is related to the electric field,
the adiabatic condition turns out to involve the electric field. This condition
will be given and discussed in more details below.

Mathematically, the adiabatic approximation tells us how to expand the
relevant Green’s functions to linear order in deviation from the slow time
scale up to first order,

G

(
t− t

′
,
t+t

′

2

)
≈ G(t− t

′
, t)+

(
t
′ − t

2

)
∂

∂ t̄
G(t−t

′
, t̄)
∣∣∣
t̄=t

+O[(t̄−t)2],

(2.30)
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which is rewritten as,

G(t− t′, t) = G(0)(t− t′, t̄) +G(1)(t− t′, t̄), (2.31)

where the zeroth order term refers to equilibrium quantities and the first
order terms refer to first corrections in slow time scale.

Using the expansion (2.30) in equations (2.28) and (2.29), up to linear
order in the slow variable [In Appendix A we show how to process this ex-
pansion], we get,

F(t− t
′
, t̄) = −

∫
dt1

[
F (t− t1, t̄)∆k (t̄)GL (t1 − t′, t̄) +

+

(
t1 − t

2

)
F (t− t1, t̄)∆k (t̄)

∂GL

∂ t̄
(t1 − t′, t̄) +

+ (t′ − t1) F (t1 − t̄, t̄)
∂∆k

∂ t̄
(t̄) GL (t1 − t′, t̄) +

+

(
t1− t′

2

)
∂F

∂ t̄
(t− t1, t̄)∆k (t̄)GL (t1 − t′, t̄)

]
+

+

∫
dt1

∫
dt2

[
F (t− t1, t̄)Σ (t1 − t2, t̄)F (t2 − t′, t̄) +

+

(
t1−t

2
+
t2−t′

2

)
F (t−t1, t̄)

∂Σ

∂ t̄
(t1−t2, t̄)F(t2 − t′, t̄) +

+

(
t1 − t′

2

)
∂F

∂ t̄
(t− t1, t̄)Σ (t1 − t2, t̄)F (t2 − t′, t̄) +

+

(
t2 − t

2

)
F (t− t1, t̄)Σ (t1 − t2, t̄)

∂F
∂ t̄

(t2 − t′, t̄)

(2.32)
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and

GL(t− t
′
, t̄) = gL(t− t′, t̄)−

∫
dt1

[
gL (t− t1, t̄)∆k (t̄)F

(
t1 − t′, t̄

)
+

+

(
t1 − t

2

)
gL (t− t1, t̄)∆k (t̄)

∂F
∂ t̄

(
t1 − t′, t̄

)
+

+
(
t′ − t1

)
gL (t1 − t̄, t̄)

∂∆k

∂ t̄
(t̄) F

(
t1 − t′, t̄

)
+

+

(
t1− t′

2

)
∂gL
∂ t̄

(t− t1, t̄)∆k (t̄)F
(
t1 − t′, t̄

)]
+

+

∫
dt1

∫
dt2

[
gL (t− t1, t̄)Σ (t1 − t2, t̄)GL

(
t2 − t′, t̄

)
+

+

(
t1−t

2
+
t2−t′

2

)
gL(t−t1, t̄)

∂Σ

∂ t̄
(t1−t2, t̄)GL

(
t2 − t′, t̄

)
+

+

(
t1 − t′

2

)
∂gL
∂ t̄

(t− t1, t̄)Σ (t1 − t2, t̄)GL
(
t2 − t′, t̄

)
+

+

(
t2 − t

2

)
gL (t− t1, t̄)Σ (t1 − t2, t̄)

∂GL

∂ t̄

(
t2 − t′, t̄

)
.

(2.33)

Our next step is to do a Fourier transform in the fast time. We use the
following definition for the Fourier transform [52]

h(ω, t̄) = ℑ
[
h
(
t− t

′
, t̄
)]

=

∫ ∞

−∞
d
(
t− t

′
)
e
iω

(
t−t

′)

h
(
t− t

′
, t̄
)
. (2.34)

It is also important to remember the concept of convolution [52]:

(f ∗ g) (x) = h(x) =

∫ ∞

−∞
f(u)g(x− u)du. (2.35)

Now, we can invoke the convolution theorem to write the Fourier transform
of this new function h(x)

ℑ [h(x)] = ℑ [(f ∗ g)(x)] = ℑ [f(x)] .ℑ [g(x)] . (2.36)

Equations (2.32) and (2.33) can be rewritten doing the Fourier transform
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in fast time:

F(ω, t̄) = −
[
F (ω, t̄)∆k (t̄)GL (ω, t̄)− i

2

∂F

∂ω
(ω, t̄)∆k (t̄)

∂GL

∂ t̄
(ω, t̄)−

− i

2

∂F

∂ω
(ω, t̄)

∂∆k

∂ t̄
(t̄)GL (ω, t̄) +

i

2
F (ω, t̄)

∂∆k

∂ t̄
(t̄)

∂GL

∂ω
(ω, t̄) +

+
i

2

∂F

∂ t̄
(ω, t̄)∆k (t̄)

∂GL

∂ω
(ω, t̄)

]
+ F (ω, t̄)Σ (ω, t̄)F (ω, t̄)−

− i

2

∂F

∂ω
(ω, t̄)

∂Σ

∂ t̄
(ω, t̄)F(ω, t̄) +

i

2
F (ω, t̄)

∂Σ

∂ t̄
(ω, t̄)

∂F
∂ω

(ω, t̄) +

+
i

2

∂F

∂ t̄
(ω, t̄)

∂Σ

∂ω
(ω, t̄)F (ω, t̄) +

i

2

∂F

∂ t̄
(ω, t̄)Σ (ω, t̄)

∂F
∂ω

(ω, t̄)−

− i

2
F (ω, t̄)

∂Σ

∂ω
(ω, t̄)

∂F
∂ t̄

(ω, t̄)− i

2

∂F

∂ω
(ω, t̄)Σ (ω, t̄)

∂F
∂ t̄

(ω, t̄)

and

GL(ω, t̄)=gL (ω, t̄)−
[
gL (ω, t̄)∆k (t̄)F (ω, t̄)− i

2

∂gL
∂ω

(ω, t̄)∆k (t̄)
∂F
∂ t̄

(ω, t̄)−

− i

2

∂gL
∂ω

(ω, t̄)
∂∆k

∂ t̄
(t̄)F (ω, t̄) +

i

2
gL (ω, t̄)

∂∆k

∂ t̄
(t̄)

∂F
∂ω

(ω, t̄) +

+
i

2

∂gL
∂ t̄

(ω, t̄)∆k (t̄)
∂F
∂ω

(ω, t̄)

]
+ gL (ω, t̄)Σ (ω, t̄)F (ω, t̄)−

− i

2

∂gL
∂ω

(ω, t̄)
∂Σ

∂ t̄
(ω, t̄)GL(ω, t̄) +

i

2
gL (ω, t̄)

∂Σ

∂ t̄
(ω, t̄)

∂GL

∂ω
(ω, t̄) +

+
i

2

∂gL
∂ t̄

(ω, t̄)
∂Σ

∂ω
(ω, t̄)GL (ω, t̄) +

i

2

∂gL
∂ t̄

(ω, t̄)Σ (ω, t̄)
∂GL

∂ω
(ω, t̄)−

− i

2
gL (ω, t̄)

∂Σ

∂ω
(ω, t̄)

∂GL

∂ t̄
(ω, t̄)− i

2

∂gL
∂ω

(ω, t̄)Σ (ω, t̄)
∂GL

∂ t̄
(ω, t̄) .

In Ref. [48], it is possible to see the transformation as done previously in
detail. The two equations above can be further simplified:

F = FΣF − F∆k (t̄)GL +
i

2

∂F

∂ω

∂

∂ t̄
[∆k (t̄)GL]−

i

2

∂

∂ t̄
[F∆k (t̄)]

∂GL

∂ω
+

+
i

2

∂F

∂ t̄

∂

∂ω
[ΣF ]− i

2

∂

∂ω
[FΣ]

∂F
∂ t̄

− i

2

∂F

∂ω

∂Σ

∂ t̄
F +

i

2
F
∂Σ

∂ t̄

∂F
∂ω

(2.37)

and

GL = gL − gL∆k (t̄)F + gLΣGL +
i

2

∂gL
∂ω

∂

∂ t̄
[∆k (t̄)F ]− i

2

∂

∂ t̄
[gL∆k (t̄)]

∂F
∂ω

+

+
i

2

∂gL
∂ t̄

∂

∂ω
[ΣGL]−

i

2

∂

∂ω
[gLΣ]

∂GL

∂ t̄
− i

2

∂gL
∂ω

∂Σ

∂ t̄
GL +

i

2
gL
∂Σ

∂ t̄

∂GL

∂ω
,

(2.38)
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where we do not explicitly write the dependence on (ω, t̄), for simplicity.
Now, we use equation (2.31). This allows us to separate the Green’s

functions and the order parameter in two contributions, respectively, in zero
order and first order in the slow variable t̄:

gL (ω, t̄) ≈ g(0)L (ω, t̄ = 0) + g(1)L (ω, t̄) ,

F (ω, t̄) ≈ F (0) (ω, t̄ = 0) + F (1) (ω, t̄) ,

GL (ω, t̄)G
(0)
L (ω, t̄ = 0) +G(1)

L (ω, t̄) ,

F (ω, t̄) ≈ F (0) (ω, t̄ = 0) + F (1) (ω, t̄) ,

∆k (t̄) ≈ ∆(0)
k +∆(1)

k (t̄) . (2.39)

Multiplying the terms and considering only terms up to the first order in
(t− t′), we can write the contributions of zero and first order separately

F (0) = F (0)ΣF (0) − F (0)∆(0)
k G(0)

L , (2.40)

where the functions F0, F 0 and Σ are only ω-dependent.

F (1) = F (0)ΣF (1) + F (1)ΣF (0) − F (0)∆(1)
k (t̄)G(0)

L −

−F (1)∆(0)
k G(0)

L −F (0)∆(0)
k G(1)

L +
i

2

∂F (0)

∂ω

∂

∂ t̄

[
∆(0)

k G(0)
L

]
−

− i

2

∂

∂ω

[
F (0)Σ

] ∂F (0)

∂ t̄
− i

2

∂F (0)

∂ω

∂Σ

∂ t̄
F (0) +

i

2
F (0)∂Σ

∂ t̄

∂F (0)

∂ω
−

− i

2

∂

∂ t̄

[
F (0)∆(0)

k

] ∂G(0)
L

∂ω
+

i

2

∂F (0)

∂ t̄

∂

∂ω

[
ΣF (0)

]
.

(2.41)

where zero order contributions of Green’s functions and self-energy are ω-
dependent and first order contributions has dependence on (ω, t̄). And

G(0)
L = g(0)L + g(0)L ΣG(0)

L − g(0)L ∆(0)
k F (0), (2.42)

G(1)
L = g(1)L + g(0)L ΣG(1)

L + g(1)L ΣG(0)
L − g(0)L ∆(1)

k (t̄)F (0) −

− g(1)L ∆(0)
k F (0) − g(0)L ∆(0)

k F (1) +
i

2

∂g(0)L

∂ω

∂

∂ t̄

[
∆(0)

k F (0)
]
−

− i

2

∂

∂ω

[
g(0)L Σ

] ∂G(0)
L

∂ t̄
− i

2

∂g(0)L

∂ω

∂Σ

∂ t̄
G(0)

L +
i

2
g(0)L

∂Σ

∂ t̄

∂G(0)
L

∂ω
−

− i

2

∂

∂ t̄

[
g(0)L ∆(0)

k

] ∂F (0)

∂ω
+

i

2

∂g(0)L

∂ t̄

∂

∂ω

[
ΣG(0)

L

]
,

(2.43)
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remembering that the zero order Green’s functions and the self-energy are
ω-dependent and the first order functions depend on (ω, t̄).

In the next section, we will present the calculations considering terms of
the same order separately.

2.4 Zero-order Solution

We shall consider first the zero order problem. At this level of approximation,
the slow time is taken as fixed at an arbitrary time t̄ = t0, which for simplicity
we take as zero (t0 = 0). This corresponds to taking the electric field as zero,
such that, there is no explicit time dependence in the problem. We want
to obtain the retarded, advanced and Keldysh (lesser) components of the
Green’s functions [5]. For the retarded and advanced Green’s functions in
zero order, we get:

{
F (0)r(a)=F (0)r(a)Σr(a)F (0)r(a) −∆(0)

k F (0)r(a)G(0)r(a)
L

G(0)r(a)
L = g(0)r(a)L −∆(0)

k g(0)r(a)L F (0)r(a) + g(0)r(a)L Σr(a)G(0)r(a)
L ,

(2.44)

which are ω-dependent. Notice that we have a system of two equations and
two unknown variables that can be easily solved:

F (0)r(a) = − g(0)r(a)L F (0)r(a)∆(0)
k(

1− g(0)r(a)L Σr(a)
)
(1− F (0)r(a)Σr(a))−∆(0)2

k g(0)r(a)L F (0)r(a)
,

G(0)r(a)
L =

(
1− F (0)r(a)Σr(a)

)
g(0)r(a)L(

1− g(0)r(a)L Σr(a)
)
(1− F (0)r(a)Σr(a))−∆(0)2

k g(0)r(a)L F (0)r(a)
.

(2.45)

Notice that F and gL are defined in equations (2.18) and (2.19). By
solving these two equations, we find the explicit expression for these two
functions:

F (0)r(a) =
1

ω + ϵk(t̄ = 0)± iδ
and g(0)r(a)L =

1

ω − ϵk(t̄ = 0)± iδ
, (2.46)

where δ is an infinitesimal parameter, such that δ → 0. Substituting this
result at (2.44), we write

F (0)r(a) = − ∆(0)
k

(ω ± iδ − Σr(a))2 − ϵ2k(t̄ = 0)−∆(0)2
k

,

G(0)r(a)
L =

ω ± iδ − Σr(a)

(ω ± iδ − Σr(a))2 − ϵ2k(t̄ = 0)−∆(0)2
k

. (2.47)
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Actually, we want to find the lesser component of the Green’s func-
tion. This is related to the retarded and advanced components through
the fluctuation-dissipation theorem [50]:

F (<) (ω, t̄) = f(ω)
[
F (a) (ω, t̄)− F (r) (ω, t̄)

]
,

G(<)
L (ω, t̄) = f(ω)

[
G(a)

L (ω, t̄)−G(r)
L (ω, t̄)

]
, (2.48)

where f(ω) is the Fermi-Dirac distribution. This theorem is valid to any
correlation function. Using this, we can conclude that

F (0)< = 2πif(ω)δ (ω − ϵk(t̄ = 0)) and g(0)<L = 2πif(ω)δ (ω + ϵk(t̄ = 0)) .

(2.49)

This result will be useful later.
The self-energy was defined by equation (2.39). We want to find an

expression for this self-energy. First, we need the analytical expression for
the function gkzkσ defined by equation (2.16):

gr(a)kzkσ
= P

(
1

ω + ϵbkzkσ

)
∓ iπδ

(
ω − ϵbkzkσ

)
.

The main part can be neglected and
∑

k δ
(
ω − ϵbkzkσ

)
= ρ(ω), where ρ(ω) is

the density os state of metallic bath. So,
∑

kzkσ
gkzkσ ≈ ∓iπρ(ω). Replacing

this result in (2.24), we get

Σr(a)(ω) = ∓iπ|tz|2ρ(ω),

where − is the retarded component and + is the advanced one. We can
replace the density of states by the density of states in the Fermi level:
ρ(EF ) = ν. So,

Σr(a) = ∓iπ|tz|2ρ(EF ).

Now, we will define

Γ ≡ π|tz|2ρ(EF ), (2.50)

and we can write the self-energy in a very common way

Σr(a) (ω, t̄) = ∓i
Γ

2
, (2.51)

Σ< (ω, t̄) = if(ω)Γ, (2.52)
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where we use the fluctuation-dissipation theorem to find the lesser component
of the self-energy.

Now we have all the ingredients to calculate the lesser component of
normal and anomalous Green’s functions:

F (0)< (ω, t̄ = 0) = − 2if(ω)ωΓ∆(0)
k(

ω2 − ϵ2k −∆(0)2
k − Γ2/4

)2
+ ω2Γ2

(2.53)

and

G(0)<
L (ω, t̄ = 0) =

if(ω)Γ
(
ω2 + ω − ϵ2k −∆(0)2

k + Γ2/4
)

(
ω2 − ϵ2k −∆(0)2

k − Γ2/4
)2

+ ω2Γ2

. (2.54)

We are interested in obtaining the phase diagram of the system. We need
to calculate ∆(0)

k in order to find this diagram. We relate the gap equation

for ∆(0)
k to the anomalous correlation function throughout the relation:

∆(0)
k =

∑

k

∫
λ

2πi
F (0)< (ω, t̄ = 0) dω. (2.55)

So,

∆(0)
k =

1

π

∑

k

∫
dω

f(ω)λ∆(0)
k

4Ek

[
Γ

(ω + Ek)
2 + Γ2/4

− Γ

(ω − Ek)
2 + Γ2/4

]
,

(2.56)

where Ek ≡
√
ϵ2k +∆(0)2

k .
Here, we will make a parenthesis to test the limit of Γ → 0 from the above

equation. We rewrite the equation (2.56) considering ∆(0)
k independent of k,

as follows

1

λ
=

1

π

∑

k

∫
dω

f(ω)

4Ek

[
Γ

(ω + Ek)
2 + Γ2/4

− Γ

(ω − Ek)
2 + Γ2/4

] ∣∣∣∣∣
Γ→0

.

1

λ
=

1

π

∑

k

∫
dω

f(ω)

2Ek
[δ (ω − Ek)− δ (ω + Ek)]

1

λ
=

1

π

∑

k

1

2Ek
[f (−Ek)− f (Ek)] .
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The Fermi-Dirac distribution obeys the relation:

f(−Ek)− f(Ek) = π tanh (βEk/2) .

So, we can write

1

λ
=
∑

k

1

Ek
tanh

(
βEk

2

)
, (2.57)

where β = 1/kBT and kB is the Boltzmann constant. This result is the usual
equation for the transition temperature in mean field BCS theory [53].

Now, we go back to equation (2.56) and focus on the case of T = 0K. In
this case, the Fermi-Dirac distribution is equal to 1 when ω → [−∞, µ] and
we can write

∆(0)
k =

1

π

∑

k

∫ µ

−∞
dω
λ∆(0)

k

4Ek

[
Γ

(ω + Ek)
2 + Γ2/4

− Γ

(ω − Ek)
2 + Γ2/4

]
.

(2.58)

The significant events which occur near µ we need not integrate across the
limit [−∞, µ]. It is enough to integrate a region [µ− ΩBCS, µ+ ΩBCS]. We
can consider, without loss of generality µ = 0. This equation can be solved
to yield the superconducting order parameter as a function of temperature
and of the coupling to the metallic substrate through the damping parameter
Γ.

∆(0)
k =

1

π

∑

k

λ∆(0)
k

2Ek

[
arctan

(
ω + Ek

Γ/2

)
− arctan

(
ω − Ek

Γ/2

)] ∣∣∣∣∣

ΩBCS

−ΩBCS

.

(2.59)

We take ∆(0)
k independent of k, i.e., ∆(0)

k = ∆(0). So,

1

λ
=

1

π

∑

k

1

2Ek

[
2 arctan

(
Ek

Γ/2

)
−

− arctan

(
ΩBCS+Ek

Γ/2

)
+arctan

(
ΩBCS−Ek

Γ/2

)]
. (2.60)

Now, we take the limit ΩBCS → ∞

1

λ
=

1

π

∑

k

1

Ek
arctan

(
Ek

Γ/2

)
. (2.61)
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We can consider k continuous. This allows us to use the following trans-
formation

∑

k

−→ A

2π
kF

∫ kF+δ

kF−δ
dk, (2.62)

where kF is the 2D Fermi vector and kF = 2πνvF/A, being vF the Fermi
velocity and ν is the density of state in the Fermi level. So

1

λν
=

vF
π

∫ kF+δ

kF−δ
dk

1

Ek
arctan

(
Ek

Γ/2

)
, (2.63)

from this equation we can find the phase diagram at T = 0K.
Finally, to find the critical coupling, Γc, we assume ∆(0) = 0. We also use

that: ϵk = vF (k − kF ):

1

λν
=

1

π

∫ kF+δ

kF−δ
dk

1

k − kF
arctan

(
vF (k − kF )

Γc/2

)
. (2.64)

The solution of the integral (2.64) converges to a series of functions with
the argument ΩBCS/Γc. This series does not bring us much information
about Γc. So, we will expand that series considering ΩBCS/Γ → ∞:

1

λν
=

1

π

[
−π ln

(
Γc

ΩBCS

)
+ 2

(
Γc

ΩBCS

)
+O

(
Γc

ΩBCS

)2
]
,

and we consider only the dominant term of expansion

1

λν
= ln

(
ΩBCS

Γc

)
, (2.65)

where remember that ν is the density of state in the Fermi level. Considering
that the gap in the 2D layer in equilibrium is ∆0 = 2ΩBCSe−1/λν we can write

Γc =
∆0

2
. (2.66)

The result (2.66) coincide with the result obtained by Mitra [12]. This
is expected because until here both description, in this thesis and Mitra’s
paper, is the same.
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2.4.1 Nature of the dissipation induced transition when
A⃗ = 0⃗

We have shown above that, for a sufficiently strong coupling between the
layer and the normal substrate, superconductivity can be suppressed at a
quantum critical point (QCP) at Γc. An important question, for which the
mean-field approach above cannot give an appropriate answer, concerns the
nature of this transition. Which is the universality class of the dissipation
induced QCP and in particular, the value of its associated dynamic exponent
z?

To investigate this problem we need to include fluctuations to the zero or-
der solution. For this purpose, we use an alternative approach which consists
of calculating the response of the layer, in the absence of the vector potential,
to a fictitious, frequency and wave-vector dependent field of intensity h that
couples to the superconducting order parameter [13]. This response is given
in terms of a generalized susceptibility χ(q,ω), such that,

δ∆(0)
k (ω) =

χ(q,ω)

1− λχ(q,ω)
h. (2.67)

The condition

1− λχ(q = 0,ω = 0) = 0, (2.68)

signals an instability to a homogeneous superconducting state, since ∆(0)

can be finite even in the absence of the fictitious field. On the other hand,
considering the frequency and wave vector dependence of the generalized
susceptibility amounts to take into account the fluctuations close to this
instability.

The quantity χ(q,ω) is the q-dependent dynamic pair susceptibility [54]
of the layer, that we generalize here to include a finite lifetime of the quasi-
particles in the normal phase. It is given by:

χ(q,ω) =
1

2

∑

k

[
tanh(βϵk/2)

ϵk+q + ϵk − (ω + iτ−1
SC/2)

+
tanh(βϵk/2)

ϵk−q + ϵk − (ω + iτ−1
SC/2)

]
,

(2.69)

where β = (kBT )−1. Dissipation is included in the term iτ−1
SC . We take

τSC = τ = Γ−1 which is the lifetime of the quasi-particles in the layer due to
the coupling with the metallic substrate.

When T = 0 and close to q = 0 and ω = 0, we can calculate this
susceptibility and obtain:

χ(q ≈ 0,ω ≈ 0) =
ν

4
ln

(
Ω4

BCS

Γ4

)
− ν(qvF )2

2Γ2
+ i

νω

Γ
. (2.70)

22



Notice that the relevant wave-vector to expand is near q = 0 since we are
interested in an instability to a uniform superconducting state. The Thouless
condition 1− λℜeχ(q = 0,ω = 0) = 0 yields,

1

λν
= ln

(
ΩBCS

Γc

)
, (2.71)

which coincides with Eq. (2.65) obtained previously. Consequently, the
present approach that incorporates the finite lifetime of the quasi-particles
in the layer through the dynamic pair susceptibility yields the same dissipa-
tion induced quantum critical point obtained previously. The advantage, of
course, is that we have now a full dynamic description of the quantum phase
transition. Following the approach of Hertz [35], we can write an effective
action, at the Gaussian level, which describes this QCP,

S =

∫
dq

∫
dω

[(
Γ− Γc

Γc

)
+

(qvF )2

2Γ2
+

|ω|
Γ

]
|∆(0)(q,ω)|2, (2.72)

where Γc = ∆0/2 as before. The dynamic exponent turns out to be z = 2
and the effective dimension of the QCP, deff = d + z = 4 [55]. Then, the
quantum normal-to-superconductor phase transition in the layer when its
coupling to the metallic substrate is reduced occurs at the upper critical
dimension dc = 4, in which case logarithmic corrections to the Gaussian or
mean-field critical behavior are expected.

2.5 First Order Approach

Let us now consider the first order terms of the Green’s functions and of the
order parameter. First, we notice that due to the time re-parametrization,
we can show that

gr (t, t′) = − i

!θ (t− t′) exp

[
− i

!

∫ t

t′
dt1 ϵk(t1)

]
.
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Solving the integration expanding ϵk(t1) near t̄→ ϵk(t1) ≈ ϵk(t̄)+(t1 − t̄) ϵ̇k(t̄)
∫ t

t′
dt1 ϵk(t1) =

∫ t

t′
[ϵk(t̄) + (t1 − t̄) ϵ̇k(t̄)]

= t1ϵk(t̄) +
t21
2
ϵ̇k(t̄)− t̄ t1ϵ̇k(t̄) +O (ϵ̈k)

∣∣∣∣∣

t

t′

= (t− t′) ϵk(t̄) +

(
t2 − t′2

2

)
ϵ̇k(t̄)− t̄ (t− t′) ϵ̇k(t̄) +O (ϵ̈k)

= (t− t′) ϵk(t̄) +

(
t2 − t′2

2

)
ϵ̇k(t̄)−

(
t2 − t′2

2

)
ϵ̇k(t̄) +O (ϵ̈k)

= (t− t′) ϵk(t̄) +O (ϵ̈k) , (2.73)

this procedure can be repeated for all components: retarded, advanced and
lesser. So we can affirm that F (1) = g(1)L = 0. Using this simplification and
the Langreth rule 1 [56] to write the advanced and retarded component of
anomalous and normal Green’s function, we find

F (1)r(a) = F (0)r(a)Σr(a)F (1)r(a) − F (0)r(a)∆(1)
k (t̄)G(0)r(a)

L +

+
i

2

∂F (0)r(a)

∂ω

∂

∂ t̄

[
∆(0)

k G(0)r(a)
L

]
− i

2

∂

∂ω

[
F (0)r(a)Σr(a)

] ∂F (0)r(a)

∂ t̄
−

−i

2

∂

∂ t̄

[
F (0)r(a)∆(0)

k

] ∂G(0)r(a)
L

∂ω
+
i

2

∂F (0)r(a)

∂ t̄

∂

∂ω

[
Σr(a)F (0)r(a)

]
−

− i

2

∂F (0)r(a)

∂ω

∂Σr(a)

∂ t̄
F (0)r(a) +

i

2
F (0)r(a)∂Σ

r(a)

∂ t̄

∂F (0)r(a)

∂ω
−

−F (0)r(a)∆(0)
k G(1)r(a)

L (2.74)

and

G(1)r(a)
L = g(0)r(a)L Σr(a)G(1)r(a)

L − g(0)r(a)L ∆(1)
k (t̄)F (0)r(a) +

+
i

2

∂g(0)r(a)L

∂ω

∂

∂ t̄

[
∆(0)

k F (0)r(a)
]
− i

2

∂

∂ω

[
g(0)r(a)L Σr(a)

] ∂G(0)r(a)
L

∂ t̄
−

− i

2

∂

∂ t̄

[
g(0)r(a)L ∆(0)

k

] ∂F (0)r(a)

∂ω
+

i

2

∂g(0)r(a)L

∂ t̄

∂

∂ω

[
Σr(a)G(0)r(a)

L

]
−

− i

2

∂g(0)r(a)L

∂ω

∂Σr(a)

∂ t̄
G(0)r(a)

L +
i

2
g(0)r(a)L

∂Σr(a)

∂ t̄

∂G(0)r(a)
L

∂ω
−

− g(0)r(a)L ∆(0)
k F (1)r(a) . (2.75)

1Langreth rule to find advanced and retarded correlation function is very simple: A =∫
c BCD → Ar(a) =

∫
t B

r(a)Cr(a)Dr(a). As we will show below, this is not the case for the
lesser Green’s function.
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Again, we have a system of equations. The terms highlighted are the un-
known variables of the system of equations. This system is much more com-
plicated to solve, but it is feasible. We show the solutions in Appendix B.
We will not write the result of the system because later we will study some
specific limits of these equations.

We will use the Langreth rules [56] to find the lesser component of normal
and anomalous Green’s function. We can summarize these rules for two
functions

C =

∫

c

AB → C< =

∫

t

ArB< + A<Ba (2.76)

and in the case of three functions

D =

∫

c

ABC → D< =

∫

t

ArBrC< + ArB<Ca + A<BaCa. (2.77)

It is important to remember that now we are dealing with the time dependent
part of the problem. So, we can not use the fluctuation-dissipation theorem.

Applying the rule described below, we have

F (1)< = F (0)rΣ<F (1)a + F (0)<ΣaF (1)a − F (0)r∆(1)
k (t̄)G(0)<

L −

− F (0)<∆(1)
k (t̄)G(0)a

L − F (0)r∆(0)
k G(1)<

L + F (0)rΣr F (1)< −

− F (0)<∆(0)
k G(1)a

L +
i

2

∂F (0)r

∂ω

∂

∂ t̄

(
∆(0)

k G(0)<
L

)
+

+
i

2

∂F (0)<

∂ω

∂

∂ t̄

(
∆(0)

k G(0)a
L

)
− i

2

∂

∂ω

(
F (0)rΣr

) ∂F (0)<

∂ t̄
−

− i

2

∂

∂ω

(
F (0)rΣ<

) ∂F (0)a

∂ t̄
− i

2

∂

∂ω

(
F (0)<Σa

) ∂F (0)a

∂ t̄
−

− i

2

∂

∂ t̄

(
F (0)r∆(0)

k

) ∂G(0)<
L

∂ω
− i

2

∂

∂ t̄

(
F (0)<∆(0)

k

) ∂G(0)a
L

∂ω
+

+
i

2

∂F (0)r

∂ t̄

∂

∂ω

(
ΣrF (0)<

)
+

i

2

∂F (0)r

∂ t̄

∂

∂ω

(
Σ<F (0)a

)
+

+
i

2

∂F (0)<

∂ t̄

∂

∂ω

(
ΣaF (0)a

)
− i

2

∂F (0)r

∂ω

∂Σr

∂ t̄
F (0)< −

− i

2

∂F (0)r

∂ω

∂Σ<

∂ t̄
F (0)a− i

2

∂F (0)<

∂ω

∂Σa

∂ t̄
F (0)a+

+
i

2
F (0)r ∂Σ

r

∂ t̄

∂F (0)<

∂ω
+
i

2
F (0)r ∂Σ

<

∂ t̄

∂F (0)a

∂ω
+
i

2
F (0)<∂Σ

a

∂ t̄

∂F (0)a

∂ω
(2.78)
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and

G(1)<
L = g(0)rL Σ<G(1)a

L + g(0)<L ΣaG(1)a
L − g(0)rL ∆(1)

k (t̄)F (0)< −

− g(0)<L ∆(1)
k (t̄)F (0)a − g(0)rL ∆(0)

k F (1)< + g(0)rL Σr G(1)<
L −

− g(0)<L ∆(0)
k F (1)a +

i

2

∂g(0)rL

∂ω

∂

∂ t̄

(
∆(0)

k F (0)<
)

+

+
i

2

∂g(0)<L

∂ω

∂

∂ t̄

(
∆(0)

k F (0)a
)
− i

2

∂

∂ω

(
g(0)rL Σr

) ∂G(0)<
L

∂ t̄
−

− i

2

∂

∂ω

(
g(0)rL Σ<

) ∂G(0)a
L

∂ t̄
− i

2

∂

∂ω

(
g(0)<L Σa

) ∂G(0)a
L

∂ t̄
−

− i

2

∂

∂ t̄

(
g(0)rL ∆(0)

k

) ∂F (0)<

∂ω
− i

2

∂

∂ t̄

(
g(0)<L ∆(0)

k

) ∂F (0)a

∂ω
+

+
i

2

∂g(0)rL

∂ t̄

∂

∂ω

(
ΣrG(0)<

L

)
+

i

2

∂g(0)rL

∂ t̄

∂

∂ω

(
Σ<G(0)a

L

)
+

+
i

2

∂g(0)<L

∂ t̄

∂

∂ω

(
ΣaG(0)a

L

)
− i

2

∂g(0)rL

∂ω

∂Σr

∂ t̄
G(0)<

L −

− i

2

∂g(0)rL

∂ω

∂Σ<

∂ t̄
G(0)a

L − i

2

∂g(0)<L

∂ω

∂Σa

∂ t̄
G(0)a

L +

+
i

2
g(0)rL

∂Σr

∂ t̄

∂G(0)<
L

∂ω
+
i

2
g(0)rL

∂Σ<

∂ t̄

∂G(0)a
L

∂ω
+
i

2
g(0)<L

∂Σa

∂ t̄

∂G(0)a
L

∂ω
.

(2.79)

Equations (2.78) and (2.79) form a closed set of equations where the high-
lighted terms need to be determined.

The first order contribution to the order parameter ∆(1)
k is obtained from

the equation:

∆(1)
k (t̄) = λ

∑

k

∫
1

2πi
F (1)<(ω, t̄)dω. (2.80)

The equations above provide a fully self-consistent solution for the time
dependent order parameter in the adiabatic approximation for an arbitrary
time dependence of the vector potential. It can be obtained numerically, as
a function of temperature and of the electric field.

Now that we will introduce the lifetime τ of the electrons in the layer,
we can discuss and obtain the adiabatic condition under which the results
above are valid. The relevant time scales to be compared are the electronic
lifetime τ and the characteristic time associated with the time variation of
the vector potential (∝ (∂A⃗/∂t)−1) in the layer. This adiabatic condition
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requires that the time variation of the vector potential is much slower than the
relaxation time of the electrons. Mathematically, this implies that the first
order adiabatic corrections that involve the time and frequency derivatives
of all quantities appearing in the expression for the lesser Green’s function
F (1)< are small compared to the zero order terms. Ultimately, due to the
equality E⃗ = (−1/c)∂A⃗/∂t, the adiabatic condition involves a constraint
on the electric field in the film. This implies that the time variation of
the potential is slow compared to the characteristic relaxation time of the
electrons in the layer and guarantees that the first order correction is small
with respect to the zeroth order term.

In the next section, using the first order correction for the order param-
eter, we calculate the phase diagram of the dissipative superconducting film
under the action of the electric field when the system has reached a steady
state regime. In this stationary regime, the properties of the system remain
unchanged in time and the time t̄ can be replaced by the lifetime τ of the
electrons in the layer (t̄ = τ = 1/Γ). This is the actual time the current
carriers remain under the action of the electric field before being scattered
to different quasi-particle states.

2.5.1 Zero Temperature Phase Diagram

In order to obtain the quantum critical points and critical lines separating
the normal and superconducting phases, we take ∆k = ∆(0)

k +∆(1)
k = 0 and

T = 0. Here ∆k is the actual (measurable) value of the order parameter in
the presence of the electric field, under the conditions of validity of the first
order adiabatic approximation. We take initially ∆(0)

k = 0 and T = 0K:

F (1)< = F (0)rΣ<F (1)a − F (0)<ΣrF (1)a − F (0)r∆(1)
k (t̄)G(0)<

L −

− F (0)<∆(1)
k G(0)a

L + F (0)rΣrF (1)< − i

2

∂F (0)r

∂ω
Σr ∂F (0)<

∂ t̄
−

− i

2

∂

∂ω

(
F (0)rΣ<

) ∂F (0)a

∂ t̄
+

i

2

∂F (0)<

∂ω
Σr ∂F (0)a

∂ t̄
−

+
i

2

∂F (0)r

∂ t̄
Σr ∂F (0)<

∂ω
+

i

2

∂F (0)r

∂ t̄

∂

∂ω

(
Σ<F (0)a

)
−

− i

2

∂F (0)<

∂ t̄
Σr ∂F (0)a

∂ω
. (2.81)
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By simplifying this equation, we get

F (1)<=
∆(1)

k

[Γ2 + (ω − ϵk(t̄))2] [Γ2 + (ω + ϵk(t̄))2]

(
−2Γπ[ω+ϵk(t̄)]

2δ(ω+ϵk(t̄))+

+2i
[
2Γω+π(ω−ϵk(t̄))(ω+ϵk(t̄))

2δ(ω+ϵk(t̄))
])

.

(2.82)

Making use of the delta functions, the integral (2.80) is simplified and we
get,

∆(1)
k (t̄) =

∑

k

λΓ∆(1)
k (t̄)

π

∫ ΩBCS

−ΩBCS

dω
ω

[Γ2/4+(ω−ϵk(t̄))2] [Γ2/4+(ω+ϵk(t̄))2]
.

(2.83)

We use the transformation (2.62) and replace the average or slow time by
the electronic lifetime in the layer (t̄ → τ) to describe the steady state

∆(1)
k (τ) =

A

2π
kF

∫ kF+δ

kF−δ
dk
λΓ∆(1)

k (τ)

π
×

×
∫ ΩBCS

−ΩBCS

dω
ω

[Γ2/4+(ω−ϵk(τ))2] [Γ2/4+(ω+ϵk(τ))2]
.

Using that kF = 2πνvF/A,

∆(1)
k (τ) =

λνvFΓ

π

∫ kF+δ

kF−δ
dk∆(1)

k (τ)×

×
∫ 0

ΩBCS

dω
ω

[Γ2/4+(ω−ϵk(τ))2] [Γ2/4+(ω+ϵk(τ))2]
.

Considering ∆(1)
k independent of k, this quantity, which also vanishes at the

phase transition, cancels out. Solving the ω integration, we can simplify

1

λν
=

∫ kF+δ

kF−δ
dk

vF
2πϵk

(
−2 arctan

(
ϵk(τ)

Γ/2

)
+

+ arctan

(
ϵk(τ)−ΩBCS

Γ/2

)
+arctan

(
ϵk(τ)+ΩBCS

Γ/2

))
.

Now, we assume that ΩBCS → ∞. So,

1

λν
=

∫ π

−π
dθ

∫ kF+δ

kF−δ

dk

(2π)2
vF

π(k−kF )−πeEτ cos θ
×

×
(
− arctan

(
vF (k−kF )−vF eEτ cos θ

Γ/2

))
.

(2.84)
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where we use that ϵk(t̄) =
1
2m(k⃗− eE⃗t̄)2 − 1

2mk2
F ≈ vF (k− kF )− eEvF τ cos θ.

Notice that in transformation (2.57), there is no integration in θ. This hap-
pens because such integration has been done resulting in (2π)2. Now, our
function depends on θ. So, the result of this integration is not simply (2π)2.
Therefore, we include in the equation above.

It is interesting to consider first the limit Γ → 0 of this expression, but
with the product Eτ = E/Γ finite, when the layer decouples from the sub-
strate. In this limit, performing the integrations, first in θ and then in k, we
get:

1

λν
=

1

2
ln

∣∣∣∣∣∣

√
1− (T̂ 0

c /Ω)
2 + 1

√
1− (T̂ 0

c /Ω)
2 − 1

∣∣∣∣∣∣
, (2.85)

where T̂ 0
c = eEvF τ is finite, since the electric field E → 0 to keep the

product E/Γ = Eτ finite. For (T̂ 0
c /Ω) ≪ 1, this equation yields the following

condition for the boundary of the superconducting phase:

T̂ 0
c = ∆0. (2.86)

In a superconducting film the depairing current density is defined as that for
which the kinetic energy of the current carriers exceeds the binding energy
of the Cooper pairs. It is then energetically favorable for the electrons to
separate and cease to be superconducting. This occurs when the energy bal-
ance δE = 2∆0 − 2mvDvF becomes negative [37, 38]. The quantity vD is the
drift velocity and it can be easily verified that spontaneous depairing occurs
at the critical drift velocity vcD = ∆0/mvF . In our case, the drift velocity
is given by vD = eEτ/m, such that, the condition vcD = ∆0/mvF implies
T̂ 0
c = ∆0 as obtained above. For current densities, such that, (eEvF τ) > ∆0,

the superconducting order parameter vanishes[41]. Then, when Γ → 0, and
the film is decoupled from the substrate, it presents a depairing transition
[38] from the superconducting to the normal state for T̂ 0 > ∆0, i.e., for a
critical electric field E0

c = ∆0/evF τ . This result relies on a correspondence,
within the two fluid model, between a state with a finite normal but a zero
superfluid one, and another state with a finite superfluid but zero normal
component [37].

Let us now turn to the coupling Γ of the layer to the substrate. We get
the linear order in Γ (O(Γ)), we get after performing the integrations and
using that 1/ν = ln(2Ω/∆0),

ln
2Ω

∆0
= ln

2Ω

T̂c

+
2

π

Γ/Ω√
1− (T̂c/Ω)2

. (2.87)
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Neglecting the terms of O[(Γ/Ω)(T̂ 2
c /Ω

2)], we get:

T̂c = ∆0 exp

(
2Γ

πΩ

)
. (2.88)

Then, the coupling of the layer to the metallic substrate increases the critical
electric field to destroy superconductivity in the layer. The physical reason
for this interesting phenomenon can be that the quantity Γ and consequently
the lifetime τ are determined by the coupling tz between the layer and the
substrate (see the Hamiltonian – eq. (2.1)). This coupling is responsible for
the proximity effect, which induces pairing in the metallic substrate reinforc-
ing superconductivity in the whole system, at least for small tz.

Finally, we consider Eq. (2.84) in the limit that eEvF τ → 0 and for small
Γ. After integration in k, we are left with the following angular integral:

1

λν
=

1

2π

∫ π

−π
ln

[
1− y2 cos2(θ)

(Γ/Ω)2

]
dθ, (2.89)

where y = (eEvF τ/Ω). Performing the integral, we get

1

λν
= ln

⎛

⎜⎜⎜⎝

1
4

[
1 +

√
1− (T̂c/Ω)2

]2

Γ/Ω

⎞

⎟⎟⎟⎠
, (2.90)

which yields,

T̂c = 2Ω

[(
1−

√
Γ

Γc

)√
Γ

Γc

]1/2
, (2.91)

for Γ/Γc ≥ 1/4. The parameter Γc = ∆0/2 represents the critical value of
dissipation for destroying superconductivity in the layer in the absence of the
electric field. Then in mean-field we find a critical line T̂c(Γ) separating the
normal from the superconducting phase. If this line is to survive fluctuations,
its non-mean-field forms, close to the dissipation, induced quantum critical
point that can be obtained from a scaling approach using the properties
of this QCP at T̂c = 0, Γ = Γc. We use the electric field (or T̂ ) as a
relevant perturbation at this QCP, together with standard renormalization
group arguments to obtain, T̂c ∝ |Γ − Γc|ψ, where the shift exponent, ψ =
z/(d+ z − 2) [55, 57]. For a nearly 2D system, using z = 2 as found before,
we get ψ = 1 (see Fig. (2.2)). The crossover line between the quantum
disordered and quantum critical regime, T̂x ∝ |Γ− Γc|νz is also linear on the
distance to the QCP, since νz = 1 (see Fig. (2.2)).
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Figure 2.2: Mean-field critical line T̂c(Γ) (full line) separating the normal
and the superconducting phases, for λν = 0.25. For convenience we used the
variable T̂ = eEvF/Γc or T̂ = (Γ/Γc)T̂ . The dotted line, T̂f ∝ |g|ψ, with
ψ = 1 for Γ/Γc < 1, represents the expected shape of the critical line when
fluctuations are included. The dashed line, T̂x ∝ |g|νz, with νz = 1 is the
crossover line separating the quantum critical from the quantum disordered,
low field, regimes. The transition at Γ = 0, T̂c = ∆0 corresponding to the
critical current in a dissipationless film (see text) appears in the variable T̂
at T̂ = 0.

A most relevant question concerns the nature of the quantum phase tran-
sition driven by the electric field along the line T̂f (Γ) in Fig. (2.2). Since the
electric field is a relevant perturbation close to the QCP at Γ = Γc, T̂c = 0,
the critical behavior along this line is not governed by the dissipation induced
QCP. Mitra et al. [58] argues that this transition is in the universality class
of a thermal phase transition and, consequently, governed by 2D thermal ex-
ponents. Indeed, in the non-equilibrium Keldysh effective action approach of
this problem, when frequency goes to zero, which is the relevant limit for the
critical behavior, it can be neglected with respect to the effective tempera-
ture T̂ associated with the electric field and the problem becomes essentially
classical [58].

In figure (2.2), we show the mean-field phase diagram T̂c(Γ) as obtained
in the present work. In the limit Γ → 0, but with the product E.Γ finite,
we recover the standard result for the critical current in a superconducting
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film as discussed before. The phase transition in this limit is discontinuous
[41] and the order parameter vanishes abruptly at the critical current. An
interesting possibility is that the renormalization group (RG) flow, along the
critical line of the electric field-driven phase transition in the presence of
dissipation, is towards this point (in the variables of Fig. (2.2) this is located
at T̂c = 0, Γ = 0). If this is the case, this point is a tri-critical point and the
exponents along the line T̂c(Γ) should be tri-critical (thermal) exponents.

2.5.2 Phase Diagram for T ̸= 0K

Taking ∆(0)
k = 0 and T ̸= 0K we get

F (1)<(ω, t̄) = −2πΓ∆(1)
k

f(ω)[ω + ϵk(t̄)]2δ(ω + ϵk)

[Γ2+(ω−ϵk(t̄))2] [Γ2+(ω+ϵk(t̄))2]
+

+4iΓ∆(1)
k

f(ω)ωδ(ω + ϵk)

[Γ2+(ω−ϵk(t̄))2] [Γ2+(ω+ϵk(t̄))2]
+

+2i∆(1)
k

f(ω)[ω − ϵk(t̄)][ω + ϵk(t̄)]2δ(ω + ϵk)

[Γ2+(ω−ϵk(t̄))2] [Γ2+(ω+ϵk(t̄))2]
. (2.92)

Making use of the delta functions, the integral (2.80) simplifies and we
get:

∆(1)
k =

∑

k

2λΓ∆(1)
k

π

∫ 0

−ΩBCS

dωf(ω)
ω

[Γ2+(ω−ϵk(t̄))2] [Γ2+(ω+ϵk(t̄))2]

(2.93)

or using that kF = 2πνvF/A and considering ∆(1)
k k-independent, i.e., ∆(1)

k =
∆(1):

1

λν
=

vFΓ

π2

∫ +π

−π
dθ

∫ kF+δ

kF−δ
dk

∫ 0

−ΩBCS

dωf(ω)
ω

[Γ2+(ω−ϵk(t̄))2] [Γ2+(ω+ϵk(t̄))2]
.

(2.94)

From the equation above, we can obtain the phase diagram of the system at
finite temperatures as a function of the field and dissipation as shown in Fig.
(2.3).

2.6 Conclusions

In this chapter we used the Keldysh formalism to treat many-body systems
close to quantum criticality. We choose Keldysh approach because previously
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Figure 2.3: Finite temperature phase diagram T/ΩBCS versus T̂c/ΩBCS =
eEvF τ/ΩBCS for fixed Γ/Γc = 0.7 and λν = 0.25.

use used it for time dependent impurity problems [49]. This approach allows
us to obtain the time dependence of the order parameter for an arbitrary time
dependence of the external parameter, if an adiabatic condition is satisfied.
These expression was the first contributions of this work. We have used this
method to study the normal to superconductor quantum phase transition in
the presence of dissipation and time dependent perturbations. Specifically,
we considered a superconducting layer, under the action of a time dependent
vector potential and deposited over a metallic substrate with which it can
interchange electrons through a momentum non-conserving process. This
same system was study by Mitra [12]. So we could compare our results with
Mitra results.

Initially, the dissipation induced quantum critical point was obtained in
the mean field approximation yielding results in agreement with those ob-
tained previously by Mitra [12]. Next, we used an alternative approach to
include fluctuations close to the QCP using a Thouless criterion general-
ized to include dissipation. We were able to fully characterize the dissipa-
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tion induced QCP, obtaining its dynamic exponent, effective dimension and
universality class. This is the second contribution of this work. For the
two-dimensional film, the quantum phase transition turns out to be at the
upper critical dimension and the scaling behavior in its vicinity is expected
to present logarithmic contributions.

After that, we treated the effect of an electric field, arising from a min-
imally coupled time dependent vector potential. Our approach yields the
time dependence of the order parameter in the ordered phase. We proposed
a phase diagram in the presence of the electric field and dissipation in the
non-equilibrium stationary state and study it. Within the BCS and adiabatic
approximations, we have obtained the full electric field versus temperature,
versus dissipation phase diagram.

Here we study a paradigmatic problem in superconductivity. By using a
powerful method to treat a time dependent problem, we revisit a problem
studied by Mitra confirming their results and adding new pieces of infor-
mation. This work was published in Philosophical Magazine [59], winning a
honorable mention in “The James Clerk Maxwell Young Writers Prize” given
by Taylor & Francis Group in 2013.
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Chapter 3

Influence of an Odd-Parity
Hybridization in the
Superconducting State

Hybridization is an important concept in the physics of metallic multi-band
systems. In these systems electrons arising from different atomic orbitals
coexist at a common Fermi surface. In superconductors, for example, hy-
bridization strongly affects the properties of a material. Since hybridization
arises from the overlap of wave functions it can be controlled externally, by
doping or applying pressure in the system. In this way it acts as an important
control parameter which allows to explore the phase diagram of the mate-
rial. It is well known that when hybridization is constant or has even-parity
in k-space, it acts in detriment of superconductivity and can even destroy
it at a superconducting quantum critical point (SQCP). This behavior was
verified both, experimentally [17, 60, 61] and theoretically [62, 63]. However,
anti-symmetric or odd-parity hybridization also can be considered. It occurs
when the hybridization mixes orbitals with different parities in neighboring
lattice sites. It turns out to be very important since it includes the cases of
s-p, p-d and d-f orbitals relevant for semiconductors, oxide superconductors
and metallic rare-earths as a few examples.

In the first section of this chapter we will discuss under which conditions
hybridization has an anti-symmetric character. There are some interesting
results when the hybridization is considered anti-symmetric [20, 64, 65]. The
most remarkable one is the enhancement of superconductivity when the hy-
bridization has odd-parity character. This result is presented in this chapter
and was published in an important scientific magazine: Annals of Physics
[66].

Another important topic that has recently attracted a lot of attention
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is that of Majorana fermions [67, 68]. This interest is due to the fact that
these quasi-particles are candidates to act as q-bits in quantum computers
[69]. There are some necessary conditions to obtain these Majorana fermions,
that in one-dimensional p-wave superconductors appear at the ends of a finite
chain [23, 70, 71]. The possibility of achieving induced p-wave superconduc-
tivity in a normal superconductor has been demonstrated by considering the
spin-orbit interaction [70, 71] in systems with broken inversion symmetry
[70, 72].

In this chapter we show that a two-band metal with an attractive inter-
band interaction has non-trivial superconducting properties if the hybridiza-
tion is anti-symmetric. Our approach based on the equations of motion
method [50] allows us to consider also the case of strong attractive interac-
tions. We find among other results that anti-symmetric hybridization en-
hances superconductivity. We also show that it gives rise, via proximity
effect, to an induced order parameter with p-wave symmetry.

A similar behavior was discussed in the literature [70] associated with a
Rashba spin-orbit coupling (SOC) in semiconductors with a s-wave super-
conductor deposited on top. In this case, they consider a 2D layer and via
proximity effect, an intra-band px± ipy paring appears due to SOC. Here, we
study a system without SOC that generates, also via proximity effect, a p-
wave paring. We can do a mapping between the problem with anti-symmetric
hybridization studied in this thesis and that of material with Rashba type
of SOC. The most remarkable proposition made in this chapter is that this
system can produce a p-wave superconducting chain. It is known that in the
ends of this chain exist Majorana fermions [23].

3.1 Origin of an Odd-Parity Hybridization

In this section, we will discuss the origin of an anti-symmetric hybridization.
We will follow some assumptions used by M. Drzazga and E. Zipper in Ref.
[19]. They assume that Wannier functions [73, 74] of the s, p, d or f electrons
of the solid have the same parities as the corresponding atomic functions.

We consider that the hybridization is caused by a periodic lattice poten-
tial, called as v(r⃗ ). This lattice has inversion symmetry, i.e., v(−r⃗ ) = v(r⃗ ).
The matrix elements of hybridization are written in the form of

Vll′(r⃗1 − r⃗2) =

∫ ∞

−∞
dr⃗ ′ψ∗

lm(r⃗
′ − r⃗1)v(r⃗

′)ψl′m′(r⃗ ′ − r⃗2),

where ψlm(lm′) is the wave function of lm(l′m′) orbital. We can take r⃗1 = 0
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and r⃗2 = −r⃗. So,

Vll′(r⃗ ) =

∫ ∞

−∞
dr⃗ ′ψ∗

lm(r⃗
′)v(r⃗ ′)ψl′m′(r⃗ ′ + r⃗ ). (3.1)

The wave function ψ, in spherical coordinates, can be written as [75]:

ψlm(r⃗ ) = ψlm(r, θ,φ) = R(r)Y m
l (θ,φ), (3.2)

where R(r) is the radial solution of Laplace’s equation and Y m
l (θ,φ) is the

angular solution, known as spherical harmonics. The indexes l and m are
quantum numbers, such that l > 0 and m = −l, ..., 0, ...,+l.
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Figure 3.1: Schematic picture of an inversion of coordinates in spherical
coordinates.

We want to investigate the parity of the equation (3.1). This is possible
by doing an inversion of coordinates: r⃗ → −r⃗. In spherical coordinates, this
is more complicated than in Cartesian coordinates. In Fig. (3.1) we show a
schematic picture that help us to obtain the following relation

r −→ r

θ −→ π − θ

φ −→ π + φ. (3.3)

Notice that: r⃗ = (x, y, z) → r⃗ = (r sin θ cosφ, r sin θ sinφ, r cos θ) with |r⃗ | =
r ≥ 0, φ ∈ [0, 2π] and θ ∈ [0, π].

Doing an inversion of coordinates: r⃗ → −r⃗ in equation (3.2) we write

ψlm(−r⃗ ) = ψlm(r, π − θ, π + φ) = R(r)Y m
l (π − θ, π + φ)
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The parity of the Y m
l , the spherical harmonics, depends of l by the following

expression

Y m
l (π − θ, π + φ) = (−1)lY m

l (θ,φ). (3.4)

So,

ψlm(−r⃗ ) = ψlm(r, π − θ, π + φ) = (−1)lR(r)Y m
l (θ,φ)

= (−1)lψlm(r⃗ ). (3.5)

Another important information that we will need is

ψ∗
lm(−r⃗ ) = ψ∗

lm(r, π − θ, π + φ) = (−1)−lR∗(r)Y m
l (θ,φ)

= (−1)−lψ∗
lm(r⃗ ). (3.6)

Now we are able to investigate the parity of the equation (3.1). Doing
the following inversion r⃗ → −r⃗ we can write

Vll′(−r⃗ ) =

∫ ∞

−∞
dr⃗ ′ψ∗

lm(r⃗
′)v(r⃗ ′)ψl′m′(r⃗ ′ − r⃗ ),

taking

r⃗ ′ = −r⃗ ′′ −→ dr⃗ ′ = −dr⃗ ′′ and r⃗ ′′ ∈ [∞,−∞].

We get

Vll′(−r⃗ ) = −
∫ −∞

∞
dr⃗ ′′ψ∗

lm(−r⃗ ′′)v(−r⃗ ′′)ψl′m′(−r⃗ ′′ − r⃗ )

=

∫ ∞

−∞
dr⃗ ′′ψ∗

lm(−r⃗ ′′)v(r⃗ ′′)ψl′m′ (− [r⃗ ′′ + r⃗ ]) .

Using equations (3.5) and (3.6), we finally write

Vll′(−r⃗ ) =

∫ ∞

−∞
dr⃗ ′′(−1)−lψ∗

lm(r⃗
′′)v(r⃗ ′′)(−1)l

′
ψl′m′ (r⃗ ′′ + r⃗ )

= (−1)l
′−l

∫ ∞

−∞
dr⃗ ′′ψ∗

lm(r⃗
′′)v(r⃗ ′′)ψl′m′ (r⃗ ′′ + r⃗ )

= (−1)l
′−lVll′(r⃗ ). (3.7)

We can conclude that the parity of the hybridization depends on the differ-
ence l′ − l. Remember that l is always positive, we have even parity of Vll′ ,
if l′ − l is an even number and odd parity of Vll′ if l′ − l is a odd number.
Further,
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• If l′ = l + 1 −→ l + 1− l = 1 is always an odd number;

• If l′ = l + 2 −→ l + 2− l = 2 is always an even number;

Then every time we mix orbitals with different parities, like those with angu-
lar momentum l and l+1 in neighboring sites, we need to consider odd-parity
hybridization. Generically, every time we mix orbitals with angular momen-
tum l and l + n, where n is a odd (even) number, the hybridization has odd
(even)-parity. The anti-symmetric relation in real space is V (−r⃗ ) = −V (r⃗ ).
We will show that in momentum space the anti-symmetry property of hy-
bridization is given by: V (−k) = −V (k). In one-dimension lattice, if the
hybridization is anti-symmetric, one gets V (k) ∝ sin ka with a the lattice
spacing, for example.

Notice that the case of anti-symmetric V (r⃗ ) is of great relevance for
condensed matter physics as it includes the d − p type of mixing, relevant
for the copper oxides, for example, and d−f mixing that encompasses many
rare-earth systems, the actinides and their compounds.

Another important property of the hybridization is the behavior at k = 0.
This can be obtained by writing the hybridization in k-space:

Vk⃗ =

∫ ∞

−∞
dr⃗ V (r⃗ )eik⃗.r⃗

=

∫ 0

−∞
dr⃗ V (r⃗ )eik⃗.r⃗ +

∫ ∞

0

dr⃗ V (r⃗ )eik⃗.r⃗.

In the first integral on the right side, we take r⃗ → −r⃗ ′:

Vk⃗ = −
∫ 0

∞
dr⃗ ′ V (−r⃗ ′)e−ik⃗.r⃗ ′

+

∫ ∞

0

dr⃗ V (r⃗ )eik⃗.r⃗

=

∫ ∞

0

dr⃗ ′ V (−r⃗ ′)e−ik⃗.r⃗ ′
+

∫ ∞

0

dr⃗ V (r⃗ )eik⃗.r⃗.

In the first integral on the right side, we now take r⃗ ′ → r⃗:

Vk⃗ =

∫ ∞

0

dr⃗ V (−r⃗ )e−ik⃗.r⃗ +

∫ ∞

0

dr⃗ V (r⃗ )eik⃗.r⃗

=

∫ ∞

0

dr⃗
(
V (−r⃗ )e−ik⃗.r⃗ + V (r⃗ )eik⃗.r⃗

)
. (3.8)

We must find when Vk has an odd parity. So, we take k⃗ → −k⃗:

V−k⃗ =

∫ ∞

0

dr⃗
(
V (−r⃗ )eik⃗.r⃗ + V (r⃗ )e−ik⃗.r⃗

)
.
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Consider l′ − l an odd number, thus the hybridization in real space is anti-
symmetric: V (−r⃗ ) = −V (r⃗ ). We get,

V−k⃗ =

∫ ∞

0

dr⃗
(
−V (r⃗ )eik⃗.r⃗ − V (−r⃗ )e−ik⃗.r⃗

)

= −
∫ ∞

0

dr⃗
(
V (−r⃗ )e−ik⃗.r⃗ + V (r⃗ )eik⃗.r⃗

)
.

So,

V−k⃗ = −Vk⃗, (3.9)

when l′ − l is an odd number. A similar calculation can be done for l′ − l an
even number and we find V−k⃗ = Vk⃗.

Now, taking k⃗ = 0:

Vk⃗=0 =

∫ ∞

0

dr⃗ (V (−r⃗ ) + V (r⃗ )) . (3.10)

Notice that, if V (−r⃗ ) has odd-parity necessarily Vk⃗=0 = 0. The same thing
does not happen if V (r⃗ ) is symmetric in r⃗.

3.2 Model

We focus our study on a two-band system with an odd-parity hybridization
between these bands, an attractive interaction between them, and also an
attractive interaction in one of the bands. This hybridization is k-dependent
since it mixes different orbitals in neighboring sites through the crystalline
potential. It is anti-symmetric since we consider that it mixes orbitals with
angular momentum l and l + 1, as we showed in section (3.1). In terms of
symmetry, we can say that we will investigate a system with parity symmetry
breaking.

The Hamiltonian of this problem can be written as

H =
∑

k,σ

(
ϵaka

†
kσakσ + ϵbkb

†
kσbkσ

)
−
∑

kσ

(
∆aba

†
kσb

†
−k−σ +∆∗

abb−k−σakσ
)
−

− 1

2

∑

kσ

(
∆bb(k, σ) b

†
kσb

†
−k−σ +∆∗

bb(k, σ) b−k−σbkσ
)
+

+
∑

kσ

(
Vka

†
kσbkσ + V ∗

k b
†
kσakσ

)
, (3.11)
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where ϵa,bk are the energies of the electron in the a and b bands. In an obvious

notation, a(†)kσ and b(†)kσ annihilate (create) electrons in these bands respectively.
As pointed out before, the hybridization has odd parity, so V (−r⃗) = −V (r⃗),
in real space or in k-space, V−k = −Vk.

The order parameters that characterizes the superconducting phase are
given by,

∆ab ≡ gab
∑

kσ

⟨akσb−k−σ⟩ (3.12)

is the inter-band superconducting order parameter and

∆bb(k, σ) ≡ gbb⟨bkσb−k−σ⟩
∆bb =

∑

k,σ

∆bb(k, σ) (3.13)

is the intra-band superconducting order parameter. Since we will investigate
the existence of induced superconductivity in the band a, we will also define
the k-dependent anomalous correlation function in the a-band:

∆aa(k, σ) = ⟨akσa−k−σ⟩. (3.14)

This anomalous correlation function will appear because of the influence of
hybridization and/or inter-band interactions, even in the absence of interac-
tions in b-band.

It is important to find these three Green’s functions:

⟨⟨b†−k−σ|a
†
kσ⟩⟩, ⟨⟨b†−k−σ|b

†
kσ⟩⟩, ⟨⟨a†−k−σ|a

†
kσ⟩⟩,

as they form a closed set of equations, which allow to calculate the order
parameters defined above.

The expectation values of the operators can be calculated through the
fluctuation dissipation theorem, which can be written as:

⟨a†kσb
†
−k−σ⟩ =

1

π

∫
dωf(ω)Im

(
⟨⟨b†−k−σ|a

†
kσ⟩⟩

r
)
, (3.15)

when we want to find ∆ab, for example. Notice that in our notation, the
⟨⟨...|...⟩⟩ is the Green’s function of two operators, like used in Re. [50]. Here,
we have f(ω) = 1/

(
e(ω−EF )/kBT + 1

)
is the Fermi-Dirac distribution, Im(...)

is the imaginary part of (...), and the index r is the retarded component of
the Green’s function – defined in equation (2.7) when we consider that the
function are (t− t′)-dependent.

In the next sections, we will show some calculations to determine the
important parameters.
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3.3 Calculations

In this section, we will calculate the Green’s functions necessary to find the
intra-band and inter-band order parameters, and the occupations in a and b
bands. We will use the equation of motion method [50].

We start writing the equation of motion for the ⟨⟨b†−k−σ|a
†
kσ⟩⟩ Green’s

function:

ω⟨⟨b†−k−σ|a
†
kσ⟩⟩ = {b−k−σ, akσ}+ ⟨⟨[b†−k−σ, H]|akσ⟩⟩,

where a and b are fermionic operators, so the anti-commutation rules must
be respected,

{c†i , cj} = δij

{c(†)i , c(†)j } = 0,

where c is any fermionic operator. So, we get,
(
ω + ϵb−k

)
⟨⟨b†−k−σ|a

†
kσ⟩⟩+∆∗

ab⟨⟨akσ|a
†
kσ⟩⟩+

+
1

2

(
−∆∗

bb(−k,−σ)⟨⟨b†kσ|a
†
kσ⟩⟩+∆∗

bb(k, σ)⟨⟨b
†
−k−σ|a

†
kσ⟩⟩

)
+

+V−k⟨⟨a†−k−σ|a
†
kσ⟩⟩ = 0.

Here, we need to use a property of the Hamiltonian (3.11). The b and
a − b bands are like singlet, that has symmetry in k-space: ∆bb(−k) =
∆bb(k). However this decoupling is anti-symmetric in spin space: ∆bb(−σ) =
−∆bb(σ), given a anti-symmetric total wave function for the electron pair 1.
Put all this information together, we get the following property for the order
parameter

∆bb(±k,−σ) = −∆bb(±k, σ). (3.16)

Using this relation, we can re-write the equation of motion
(
ω + ϵb−k

)
⟨⟨b†−k−σ|a

†
kσ⟩⟩+∆∗

ab⟨⟨akσ|a
†
kσ⟩⟩+∆∗

bb⟨⟨b
†
−kσ|a

†
−kσ⟩⟩+

+V−k⟨⟨a†−k−σ|a
†
kσ⟩⟩ = 0.

We generate two new Green’s functions for which we write the equations
of motion

(ω − ϵak) ⟨⟨akσ|a
†
kσ⟩⟩+∆ab⟨⟨b†−k−σ|a

†
kσ⟩⟩ − Vk⟨⟨bkσ|a†kσ⟩⟩ = 1

1Notice that if our decoupling is a triplet one this relation should be different. In the
triplet case the wave function is symmetric in spin but is anti-symmetric in k-space
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(
ω − ϵbk

)
⟨⟨bkσ|a†kσ⟩⟩ −∆ab⟨⟨a†−k−σ|a

†
kσ⟩⟩+

+
1

2

(
−∆bb(−k,−σ)⟨⟨b†−k−σ|a

†
kσ⟩⟩+∆bb(k, σ)⟨⟨b†−k−σ|a

†
kσ⟩⟩

)
−

−V ∗
k ⟨⟨akσ|a

†
kσ⟩⟩ = 0

or
(
ω − ϵbk

)
⟨⟨bkσ|a†kσ⟩⟩ −∆ab⟨⟨a†−k−σ|a

†
kσ⟩⟩+∆bb⟨⟨b†−k−σ|a

†
kσ⟩⟩ −

−V ∗
k ⟨⟨akσ|a

†
kσ⟩⟩ = 0.

Again, we generate one new Green’s function, ⟨⟨a†−k−σ|a
†
kσ⟩⟩. It obeys the

equation of motion
(
ω + ϵa−k

)
⟨⟨a†−k−σ|a

†
kσ⟩⟩ −∆∗

ab⟨⟨bkσ|a
†
kσ⟩⟩+ V ∗

−k⟨⟨b
†
−k−σ|a

†
kσ⟩⟩.

Now, we have obtained a closed set of equation. It is helpful to write the
system in matrix form,

D.

⎛

⎜⎜⎝

x1 = ⟨⟨akσ|a†kσ⟩⟩
y1 = ⟨⟨b†−k−σ|a

†
kσ⟩⟩

z1 = ⟨⟨bkσ|a†kσ⟩⟩
u1 = ⟨⟨a†−k−σ|a

†
kσ⟩⟩

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

1
0
0
0

⎞

⎟⎟⎠ (3.17)

where,

D =

⎛

⎜⎜⎝

(ω − ϵak) ∆ab −Vk 0
∆∗

ab

(
ω + ϵb−k

)
∆∗

bb V−k

−V ∗
k ∆bb

(
ω − ϵbk

)
−∆ab

0 V ∗
−k −∆∗

ab

(
ω + ϵa−k

)

⎞

⎟⎟⎠ . (3.18)

Notice that, from this system of equations we can compute the correlation
function initially desired. We could also calculate the Green’s function related
to the induced order parameter and the occupation number of the band a. It
is interesting to know the occupation of a and b bands for future calculations.

We extract the results by calculating

x1 =
det(Dx1)

det(D)
,

related to the occupation number in a band (we will define this in subsection
3.3.4),

y1 =
det(Dy1)

det(D)
,
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related to the inter-band order parameter, ∆ab,

u1 =
det(Du1)

det(D)
,

related to the induced order parameter, ∆aa. Where, we define

Dx1 =

⎛

⎜⎜⎝

1 ∆ab −Vk 0
0
(
ω + ϵbk

)
∆∗

bb V−k

0 ∆bb

(
ω − ϵbk

)
−∆ab

0 V ∗
−k −∆∗

ab (ω + ϵak)

⎞

⎟⎟⎠ , (3.19)

Dy1 =

⎛

⎜⎜⎝

(ω − ϵak) 1 −Vk 0
∆∗

ab 0 ∆∗
bb V−k

−V ∗
k 0

(
ω − ϵbk

)
−∆ab

0 0 −∆∗
ab (ω + ϵak)

⎞

⎟⎟⎠ , (3.20)

Du1 =

⎛

⎜⎜⎝

(ω − ϵak) ∆ab −Vk 1
∆∗

ab

(
ω + ϵbk

)
∆∗

bb 0
−V ∗

k ∆bb

(
ω − ϵbk

)
0

0 V ∗
−k −∆∗

ab 0

⎞

⎟⎟⎠ . (3.21)

Notice that, as the electron energy is ϵik = (k2/2m) − µi, we assume the
following fact:

ϵa,bk = ϵa,b−k. (3.22)

Now we will calculate the anomalous correlation function related to the
intra-band order parameter, ∆bb. Using the same method, we write

ω⟨⟨b†−k−σ|b
†
kσ⟩⟩ =

1

2π
{b†−k−σ, bkσ}+ ⟨⟨[b†−k−σ, H]|bkσ⟩⟩.

Calculating the commutator and anti-commutator,
(
ω + ϵb−k

)
⟨⟨b†−k−σ|b

†
kσ⟩⟩+∆∗

ab⟨⟨a
†
kσ|b

†
kσ⟩⟩+∆∗

bb⟨⟨bkσ|b
†
kσ⟩⟩+

+V−k⟨⟨a†−k−σ|b
†
kσ⟩⟩ = 0.

The equation of motion for the two new Green’s functions are

(ω − ϵak) ⟨⟨akσ|b
†
kσ⟩⟩+∆ab⟨⟨b†−k−σ|b

†
kσ⟩⟩ − Vk⟨⟨bkσ|b†kσ⟩⟩ = 0

(
ω − ϵbk

)
⟨⟨bkσ|b†kσ⟩⟩ −∆ab⟨⟨a†−k−σ|b

†
kσ⟩⟩+∆bb⟨⟨b†−k−σ|b

†
kσ⟩⟩ −

−V ∗
k ⟨⟨akσ|b

†
kσ⟩⟩ = 1.
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The last equation of motion is

(
ω + ϵa−k

)
⟨⟨a†−k−σ|b

†
kσ⟩⟩ −∆∗

ab⟨⟨bkσ|b
†
kσ⟩⟩+ V ∗

−k⟨⟨b
†
−k−σ|b

†
kσ⟩⟩ = 0.

Again, we can write the system of equations in matrix form

D.

⎛

⎜⎜⎝

x2 = ⟨⟨akσ|b†kσ⟩⟩
y2 = ⟨⟨b†−k−σ|b

†
kσ⟩⟩

z2 = ⟨⟨bkσ|b†kσ⟩⟩
u2 = ⟨⟨a†−k−σ|b

†
kσ⟩⟩

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

0
0
1
0

⎞

⎟⎟⎠ . (3.23)

This system of equations enables us to determine the correlation function
related to the intra-band order parameter, ∆bb, and to the occupation number
in b band (we will also define this in subsection 3.3.4) given by

y2 =
det(Dy2)

det(D)
,

related to the intra-band order parameter,

z2 =
det(Dz2)

det(D)
,

associated with the occupation number. Where

Dy2 =

⎛

⎜⎜⎝

(ω − ϵak) 0 −Vk 0
∆∗

ab 0 ∆∗
bb V−k

−V ∗
k 1

(
ω − ϵbk

)
−∆ab

0 0 −∆∗
ab (ω + ϵak)

⎞

⎟⎟⎠ , (3.24)

Dz2 =

⎛

⎜⎜⎝

(ω − ϵak) ∆ab 0 0
∆∗

ab

(
ω + ϵbk

)
0 V−k

−V ∗
k ∆bb 1 −∆ab

0 V ∗
−k 0 (ω + ϵak)

⎞

⎟⎟⎠ . (3.25)

Until now the results presented are valid for odd or even-parity hybridiza-
tion. The next results are specific to anti-symmetric hybridization. In the
next subsections, we will calculate the relevant correlation functions and also
the excitation energies of the system.

We will assume here that the order parameters ∆ab and ∆bb that appear
in the Hamiltonian are real. The hybridization Vk that appears in this same
Hamiltonian has to be purely imaginary to preserve time reversal symmetry.
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3.3.1 Excitation Energies

The excitation energies of the system are given by the poles of the Green’s
functions. These poles are obtained from the equation det(D) = 0. So, we
find the following fourth degree equation

ω4 − 2Akω
2 +Bk = 0 (3.26)

with

Ak =
ϵa2k + ϵb2k +∆2

bb

2
+∆2

ab + |Vk|2

Bk =
(
ϵakϵ

b
k +∆2

ab + |Vk|2
)2 − 4ϵakϵ

b
k|Vk|2 + ϵa2k ∆2

bb (3.27)

where we consider V−k = −Vk as mentioned before and ϵa,b−k = ϵa,bk .
The excitation energies are given by,

ω1 =

√
Ak +

√
A2

k − Bk = −ω3

ω2 =

√
Ak −

√
A2

k − Bk = −ω4. (3.28)

We can write det(D) as

det(D) = (ω + ω1) (ω + ω2) (ω + ω3) (ω + ω4) =
(
ω2 − ω2

1

) (
ω2 − ω2

2

)
.

In fact, it is interesting for future calculations to write 1/ det(D) as:

1

det(D)
=

1

(ω2
1−ω2

2)

[
1

2ω1

(
1

ω−ω1
− 1

ω+ω1

)
+

1

2ω2

(
1

ω+ω2
− 1

ω−ω2

)]
,

where ω = ω± iδ and δ → 0, with (+) for the retarded component of Green’s
function and (−) for the advanced. Considering the limit δ → 0, we can write

1

det(D)
= Re

(
1

det(D)

)
∓

∓ iπ

(ω2
1−ω2

2)

[
1

2ω1
(δ(ω+ω1)−δ(ω−ω1))+

1

2ω2
(δ(ω−ω2)−δ(ω+ω2))

]
.

(3.29)

Now,with (−) is for the retarded component and (+) is for the advanced
component. We will use these results in next subsection.
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3.3.2 Inter-band Order Parameter - ∆ab

The inter-band order parameter defined by equation (3.12) is obtained using
for:

Im (yr1)=− π

ω2
1−ω2

2

[
1

2ω1
(δ(ω+ω1)−δ(ω−ω1))+

1

2ω2
(δ(ω−ω2)−δ(ω+ω2))

]

×
[
−
(
∆abω

2+
(
ϵak∆ab−ϵbk∆ab

)
ω− ϵakϵ

b
k∆ab − |Vk|2∆ab −∆3

ab

)]
.

We can use the fluctuation-dissipation theorem, written in a convenient way,
to find the following relation

∆ab = gab
∑

kσ

1

π

∫
dωf(ω)Im (yr1) .

Using the properties of the delta function on the integral, we can perform
the ω integral. Also, we will use the following properties of the Fermi-Dirac
function

f(−x)− f(x) = tanh βx/2

f(−x) + f(x) = 1. (3.30)

So

∆ab =
gab
2

∑

kσ

[
∆ab (ω1 tanh(βω1/2)− ω2 tanh(βω2/2))

ω2
1 − ω2

2

+

−
(
∆abϵakϵ

b
k +∆ab|Vk|2 +∆3

ab

)

ω2
1 − ω2

2

(
tanh(βω1/2)

ω1
− tanh(βω2/2)

ω2

)]
.

(3.31)

By considering T = 0K in equation (3.31) and using the definition (3.12),
we get

∆ab =
gab
2

∑

kσ

[
∆ab

ω1 + ω2
+

(
∆abϵakϵ

b
k +∆ab|Vk|2 +∆ab

)

ω1ω2(ω1 + ω2)

]

(3.32)

We want to be able to extend our calculations to the strong coupling
regime. To do so, it is necessary to solve self-consistently three equations,
namely those of the occupation number, inter-band order parameter and
intra-band one. The equation for the inter-band order parameter is given by
(3.32), but we must regulate the ultraviolet divergence in this equation. So
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the definition of low energy limit of the two-body problem in the vacuum
[78] for a three dimensional system must be used:

1

gab
= − m∗

4πas
+
∑

kσ

[f1 (k)− f1 (k → ∞)] . (3.33)

where as are the s-wave scattering length. We assume that the bands are
homothetic, so

ϵak = ϵk − µ and (3.34)

ϵbk = αϵk − µ (3.35)

where ϵk = k2/2ma, and ma/mb = α. Notice that m∗ = ma/(1 + α). The
Fermi energy can be written as EF = k2

Fa(b)/2ma(b), where we can obtain the

relation kF,b = kF,a/
√
α

We define

f1 (k) =

[
1

ω1 + ω2
+

(
ϵakϵ

b
k + |Vk|2 +∆2

ab

)

ω1ω2(ω1 + ω2)

]
.

So,

− m∗

4πas
=

1

2

∑

kσ

[
1

ω1 + ω2
+
ϵakϵ

b
k + |Vk|2 +∆2

ab

ω1ω2(ω1 + ω2)
−f1 (k→∞)

]

calculating the limit f1(k → ∞) = 2/(1 + α)ϵk.
The sum can be transformed in an integral using,

∑

kσ

→ 1

(2π)3
k3
F,a

∫ ∞

−∞
dk̃x

∫ ∞

−∞
dk̃y

∫ ∞

−∞
dk̃z (3.36)

due to the regulation procedure, where the limits now can be extended to
infinity. The tilde means normalization by the Fermi energy. Finally, we get

− 1

kFas
=

1 + α

(2π)2

∫ ∞

−∞
dk̃x

∫ ∞

−∞
dk̃y

∫ ∞

−∞
dk̃z

[
1

(ω̃1 + ω̃2)
+

+

(
∆̃2

ab + ϵ̃ak ϵ̃
b
k + Ṽ 2

k

)

ω̃1ω̃2 (ω̃1 + ω̃2)
− 2

(1 + α)(k̃2
x + k̃2

y + k̃2
z)

⎤

⎦ .

(3.37)
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3.3.3 Intra-band Order Parameter - ∆bb

Now we will find the intra-band order parameter. It is related to Im (yr2):

Im (yr2) = − π

ω2
1 − ω2

2

×

×
[

1

2ω1
(δ(ω + ω1)δ(ω−ω1)) +

1

2ω2
(δ(ω − ω2)− δ(ω + ω2))

]
×

×
[
−
(
∆bbω

2 −∆bbϵ
a2
k

)]
.

We have

∆bb = gbb
∑

kσ

1

π

∫
dωf(ω)Im (yr2) .

Using the properties of the delta function on the frequency integral, we can
write the solution of the ω integral. Also using (3.30), we can write

∆bb =
gbb
2

∑

kσ

[
∆bb (ω1 tanh(βω1/2)ω2 tanh(βω2/2))

ω2
1−ω2

2

− ∆bbϵa2k
ω2
1−ω2

2

(
tanh(βω1/2)

ω1
− tanh(βω2/2)

ω2

)]
.

(3.38)

At T = 0K, we get

∆bb =
gbb
2

∑

kσ

[
∆bb

ω1 + ω2
+

∆bbϵa2k
ω1ω2 (ω1 + ω2)

]
(3.39)

We use again the following regularization relation

1

gbb
= − mb

4πasb
+
∑

kσ

[f2 (k)− f2 (k → ∞)] (3.40)

where mb = ma/α and now asb is the s-wave scattering length in b-band.
Being

f2 (k) =

[
1

ω1 + ω2
+

ϵa2k
ω1ω2 (ω1 + ω2)

]
.

So

− mb

4πasb
=

1

2

∑

kσ

[
1

ω1 + ω2
+

ϵa2k
ω1ω2 (ω1 + ω2)

− f2 (k → ∞)

]
,
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calculating the limit f2(k → ∞) = 1/αϵk.
We used the transformation (3.36) and write

− 1

kFasb
=

α

(2π)2

∫ ∞

−∞
dk̃x

∫ ∞

−∞
dk̃y

∫ ∞

−∞
dk̃z ×

×
[

1

(ω̃1 + ω̃2)
+

ϵ̃a2k
ω̃1ω̃2 (ω̃1 + ω̃2)

− 1

α(k̃2
x + k̃2

y + k2
z)

]
.

(3.41)

3.3.4 Occupation Number

In this section, the total occupation number will be calculated. This in-
formation is crucial to find the order parameter specially in strong coupling
regime. The total occupation number, intra-band order parameter and inter-
band order parameter expressions form a closed set of equations that should
be solved self-consistently.

The total occupation number is given by the sum of occupation numbers
in a and b bands:

na =
∑

kσ

⟨a†kσakσ⟩

nb =
∑

kσ

⟨b†kσbkσ⟩. (3.42)

Therefore, the total occupation number is

n = na + nb

n =
∑

kσ

(
⟨a†kσakσ⟩+ ⟨b†kσbkσ⟩

)
. (3.43)

We will start by calculating na. The occupation in a band is related to
the imaginary part of x1 given by

Im (xr
1)=− π

ω2
1−ω2

2

[
1

2ω1
(δ(ω+ω1)−δ(ω−ω1))+

1

2ω2
(δ(ω−ω2)−δ(ω+ω2))

]

×
(
ω3 + ϵakω

2 −
(
ϵb2k + |Vk|2 +∆2

bb +∆2
ab

)
ω − ϵakϵ

b2
k + ϵbk|Vk|2 − ϵak∆

2
bb + ϵbk∆

2
ab

)
.

We can use the following relation

na =
∑

kσ

1

π

∫
dωf(ω)Im (xr

1)
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and find the occupation number in a band. Using the properties of the delta
function on integral, we can write the solution of ω integral. Also using
(3.30), we can write

na = −1

2

∑

kσ

{
− 1 +

(
ω2
1 − ω2

2

)
+

+
ϵak

ω2
1 − ω2

2

(
ω1 tanh

(
βω1

2

)
− ω2 tanh

(
βω2

2

))
−

−
[
ϵakϵ

b2
k − ϵbk|Vk|2 + ϵak∆

2
bb − ϵbk∆

2
ab

ω2
1 − ω2

2

] (
tanh(βω1/2)

ω1
− tanh(βω2/2)

ω2

)}
.

(3.44)

At T = 0K, we get

na =
1

2

∑

kσ

{
1 +

ϵak
ω1+ω2

+
ϵakϵ

b2
k −ϵbk|Vk|2+ϵak∆2

bb − ϵbk∆
2
ab

ω1ω2 (ω1 + ω2)

}
. (3.45)

Now, we will repeat the same procedure done before to find the occupation
number in the b band. First we find the imaginary part of z2:

Im (zr2)=− π

ω2
1−ω2

2

[
1

2ω1
(δ(ω+ω1)−δ(ω−ω1))+

1

2ω2
(δ(ω−ω2)−δ(ω+ω2))

]

×
(
ω3 + ϵbkω

2 −
(
ϵb2k + |Vk|2 +∆2

ab

)
ω − ϵa2k ϵ

b
k + ϵak|Vk|2 − ϵak∆

2
ab

)
.

Then, we use the following expression

nb =
∑

kσ

1

π

∫
dωf(ω)Im (zr2) ,

to find nb. Again, using the properties of the delta function on integral, we
can perform the ω integral. Also, by using (3.30), we can write

nb =
∑

kσ

1

2

{
1 +

ϵbk
ω2
1 − ω2

2

(
ω1 tanh

(
βω1

2

)
− ω2 tanh

(
βω2

2

))
+

+
ϵa2k ϵ

b
k−ϵak|Vk|2+ϵak∆2

ab

ω2
1 − ω2

2

(
tanh(βω1/2)

ω1
− tanh(βω2/2)

ω2

)}
.

(3.46)

At T = 0K, we get

nb =
∑

kσ

1

2

{
1 +

ϵbk
ω1 + ω2

+
ϵa2k ϵ

b
k−ϵak|Vk|2+ϵak∆2

ab

ω1ω2 (ω2
1 + ω2

2)

}
.

(3.47)
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Once we know na and nb we can use equation (3.43) to write the total
occupation number for T = 0K,

n =
1

2

∑

kσ

[
2− ϵak + ϵbk

ω1 + ω2
−
(
ϵak + ϵbk

) (
ϵakϵ

b
k − |Vk|2 +∆2

ab

)
+ ϵak∆

2
bb

ω1ω2 (ω1 + ω2)

]

(3.48)

Using the transformation (3.36) and the relation:

n =
1

(2π)3
4

3
πk3

F,a +
1

(2π)3
4

3
πk3

F,b

n =
k3
F,a

6π2

(
α3/2 + 1

α3/2

)
, (3.49)

we write

1 =
3

8π

α3/2

α3/2 + 1

∫ ∞

−∞
dk̃x

∫ ∞

−∞
dk̃y

∫ ∞

−∞
dk̃z ×

⎡

⎣2− ϵ̃ak+ϵ̃
b
k

ω̃1 + ω̃2
−

(
ϵ̃ak+ϵ̃

b
k

) (
ϵ̃ak ϵ̃

b
k−|Ṽk|2+∆̃2

ab

)
+ϵ̃ak∆̃

2
bb

ω̃1ω̃2 (ω̃1 + ω̃2)

⎤

⎦ .

(3.50)

3.3.5 Induced Order Parameter - ∆aa

The anomalous correlation function ∆aa is a new feature in the problem. It
is induced by hybridization and inter-band interactions since there are no
interactions in a-band. Here we will investigate if ∆aa is different from zero
for this anti-symmetric hybridization case. We will also indicate what is
essential to induce this correlation.

The induced order parameter is calculated by the expression

∆∗
aa(k, σ) =

1

π

∫
dωf(ω) (ur

1 − ua
1) ,

where

ur
1 =

∆bb (∆2
ab − V ∗2

k ) + 2ϵbk∆abV ∗
k

((ω + iδ)2 − ω2
1) ((ω + iδ)2 − ω2

2)
(3.51)

and

ua
1 =

∆bb (∆2
ab − V ∗2

k ) + 2ϵbk∆abV ∗
k

((ω − iδ)2 − ω2
1) ((ω − iδ)2 − ω2

2)
, (3.52)
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where δ → ∞.
Solving the integral, we can write

∆∗
aa(k) = −1

2

[
2ϵbkV

∗
k ∆ab −∆bb (V ∗2

k −∆2
ab)

ω2
1 − ω2

2

×

×
(
tanh(βω1/2)

ω1
− tanh(βω2/2)

ω2

)]
.

(3.53)

At T = 0K, we get

∆∗
aa(k, σ) =

1

4π

[
2ϵbkV

∗
k ∆ab −∆bb (V ∗2

k −∆∗2
ab)

ω1ω2 (ω1 + ω2)

]
. (3.54)

or

∆aa(k, σ) =
1

4π

[
2ϵbkVk∆ab −∆bb(k, σ) (V 2

k −∆2
ab)

ω1ω2 (ω1 + ω2)

]
. (3.55)

Notice that this anomalous correlation function appears due to the influ-
ence of hybridization and/or inter-band interactions even in the absence of
attractive interactions in a-band.

There is an special behavior when the second term in the right side of
equation (3.55) is neglected, i.e., when 2ϵbkVk∆ab ≫ ∆bb(k, σ) (V 2

k −∆2
ab). If

it is true, we can write

∆aa(k, σ) ≈
1

2π

[
ϵbkVk∆ab

ω1ω2 (ω1 + ω2)

]
. (3.56)

Equation (3.56) give to us an interesting information about the induced pa-
rameter: ∆aa follows the parity of Vk. In this thesis we assume that Vk is
anti-symmetric in k-space, thus ∆aa has odd-parity in k-space.

The induced order parameter ∆aa should be anti-symmetric. This can be
written as a product of a spin part and a spatial part (Fourier transformed)
as,

∆aa = R(k)S(σ). (3.57)

If the spacial contribution is anti-symmetric and the total function is nec-
essarily anti-symmetric due to the fermionic character of the pair, the spin
contributions must be symmetric. This indicates that the induced order
parameter has triplet character. In fact, since ∆aa relates σ and −σ, we
conclude that this induced order parameter is related with the momentum
angular component l = 1 and m = 0: (| ↑↓⟩+ | ↓↑⟩) /2.
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This anti-symmetric spacial behavior of ∆aa is expected in p-wave super-
conductors. One of most remarkable work using p-wave superconductors was
done by Kitaev [23], he shows that Majorana fermions exist in the ends of
p-wave superconductor chain. The Kitaev Hamiltonian is written as

HK =
∑

i,j

tijc
†
icj +

∑

i,j

∆ij

(
c†ic

†
j + cicj

)
, (3.58)

where the order parameter has the important characteristic: ∆ji = −∆ij or
∆−k = −∆k, the same property of ∆aa.

So, in the limit 2ϵbkVk∆ab ≫ ∆bb(k, σ) (V 2
k −∆2

ab), we can propose that
this block of a metal superconductor with a p-metal superconductor studied
here produces, via proximity effects, a Kitaev’s chain. This system is very
interesting because we do not need any external magnetic field, as in Alicea
[70], to produce this anti-symmetric behavior in the induced order parameter.

3.4 Self Consistent Equations

Now we can summarize the results obtained in the last subsection – equations
(3.37), (3.41) and (3.50). These equations should be solved together in the
self-consistent way, using numerical methods. In order to implement these
numerical methods we need write:

ϵak = ϵk − µ and ϵbk = αϵk − µ

ϵ̃k = EF

(
k̃2
z + k̃2

⊥

)
(3.59)

Ṽk = iγ̃ (kx + ky) .

We assumed that the bands are homotetic, i.e., the dispersion relations for the
a and b quasi-particles differ only in their effective masses, with their ratio,
ma/mb = α. Also, it was assumed here that the hybridization is mostly
effective in a plane xy as for tetragonal systems. This allows us to write the
a and b energies as above. Remember that we consider EF = k2

F,a(b)/2ma(b)

the Fermi energy.
The complete case considers attractive interactions in the b band and

between the a − b band, and also anti-symmetric hybridization between a
and b bands. Solve it is numerically costly, so we will study some particular
cases in the next section.
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3.5 Particular Case

3.5.1 Special Case I - gbb = 0

In this section we will study a special case of our problem. If we “ turn
of ” the attractive interaction in b-band, consider only inter-band attractive
interactions, we recover results find by Alicea and shows in appendix C.

If we consider gbb = 0 in equation (3.11) we get a new simplified Hamil-
tonian:

H =
∑

k,σ

(
ϵaka

†
kσakσ + ϵbkb

†
kσbkσ

)
−
∑

kσ

(
∆aba

†
kσb

†
−k−σ +∆∗

abb−k−σakσ
)
+

+
∑

kσ

(
Vka

†
kσbkσ + V ∗

k b
†
kσakσ

)
, (3.60)

where we can define the inter-band order parameter, ∆ab, as in equation
(3.12) and the induced parameter, ∆aa, as in equation (3.14), but there will
be one more induced parameter that we define as

∆′
bb(k, σ) = ⟨bkσb−k−σ⟩. (3.61)

Using results previous calculated we can write

∆ab =
gab
4π

∑

kσ

[
∆ab

ω′
1 + ω′

2

+

(
∆abϵakϵ

b
k+∆ab|Vk|2+∆ab|∆ab|2

)

ω′
1ω

′
2(ω

′
1 + ω′

2)

]
,

(3.62)

∆′
bb(k, σ) = − 1

2π

[
ϵakV

∗
k ∆ab

ω′
1ω

′
2 (ω

′
1 + ω′

2)

]
, (3.63)

and

∆aa(k, σ) =
1

2π

[
ϵbkVk∆ab

ω′
1ω

′
2 (ω

′
1 + ω′

2)

]
. (3.64)

Where ω′
1 and ω′

2 are the energies (3.29) with gbb = 0.
Notice that the inter-band order parameter, ∆ab, is symmetric even if Vk

is anti-symmetric, that is equivalent to expression (C.28). We also generate,
via proximity effect, two “order parameters” ∆aa and ∆′

bb that have px ± ipy
paring with opposite chirality for upper/lower bands, like equations (C.26)
and (C.27). So, putting gbb = 0, we find the same results from Alicea [70].
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In this limit, gbb = 0, our problem maps onto that of spinless fermions
with Spin Orbit Coupling (SOC) and px + ipy paring. This mapping can be
easily seen when we make the following associations:

ϵak ≡ ξk↑ = ϵk − µ↑

ϵbk ≡ ξk↓ = ϵk − µ↓ (3.65)

Vk ≡ λk⊥e
−iφk ,

where ϵk = k2/2m, µ↑(↓) is the chemical potential of up (down) spin band,
λ is the strength of Rashba spin-orbit coupling and φk = arg (kx + iky). We
can write (3.60) as

H =
∑

k

(
ξk↑a

†
kak + ξk↓b

†
kbk
)
−
∑

k

(
∆aba

†
kb

†
−k +∆∗

abb−kak
)
+

+
∑

k

λk⊥
(
e−iφka†kbkσ + eiφkb†kakσ

)
. (3.66)

It is easy to see that the a band represents the up spin band while the b band
represent the down spin band.

This mapping is interesting because this spinless fermions with px + ipy
paring problem is the canonical example of a topological superconductor
supporting a single Majorana bound state [79, 80]. This is a 2-D interesting
system, but here we focus only in an 1-D problem.

We present in the Figure (3.2) the self-consistent solution for the chem-
ical potential and the inter-band order parameter. This figure show us an
interesting property of this type of system with odd-parity hybridization: the
hybridization enhances the superconductivity.
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(a) Chemical potential

(b) Inter-band Order Parameter

Figure 3.2: We present here the solution of the two self-consistent equations
for α = 0.5 and 1/kFas = −0.25.
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3.5.2 Special Case II - gab = 0

Considering gab = 0 we find a “new” Hamiltonian:

H =
∑

k,σ

(
ϵaka

†
kσakσ + ϵbkb

†
kσbkσ

)
−

−1

2

∑

kσ

(
∆bb(k)b

†
kσb

†
−k−σ+∆∗

bb(k)b−k−σbkσ
)
+
∑

kσ

(
Vka

†
kσbkσ+V ∗

k bkσakσ
)
.

(3.67)

The order parameter that characterizes the superconductivity in the b-band
is the intra-band order parameter ∆bb, that is defined in equation (3.13).

Our intention is to find the intra-band superconductivity order parameter
and the occupation number. We can use the results previously calculated
putting gab = 0, i.e., ∆ab = 0. The intra-band order parameter is given by
the equation (3.39):

∆bb =
∑

kσ

[
∆bb

ω1 + ω2
+

∆bbϵa2k
ω1ω2 (ω1 + ω2)

]
,

with gab = 0. Or we can use equation (3.41), with ∆ab = 0, and find the
equation for intra-band order parameter when we consider strong coupling

− 1

kFasb
=

=
α

(2π)2

∫ ∞

0

dk̃z

∫ ∞

0

dd̃⊥k̃⊥

⎡

⎣ 1

ω̃1 + ω̃2
+

ϵ̃a2k
ω̃1ω̃2 (ω̃1 + ω̃2)

− 1

α
(
k̃2
z + k̃2

⊥

)

⎤

⎦ .

(3.68)

Now, from equation (3.50), we can write

1 =
3

8π

α3/2

α3/2 + 1

∫ ∞

0

dk̃z

∫ ∞

0

dk̃⊥k̃⊥ ×

×

⎡

⎣2− ϵ̃ak + ϵ̃bk
ω̃1 + ω̃2

−

(
ϵ̃ak + ϵ̃bk

) (
ϵ̃ak ϵ̃

b
k − |Ṽk|2

)
+ ϵ̃ak|∆̃bb|2

ω̃1ω̃2 (ω̃1 + ω̃2)

⎤

⎦ .

(3.69)

Again, we have a self-consistent system with only two equations, that
must be solved numerically. We present the self-consistent solution for the
chemical potential in terms of γ/vF = γ̃ in Fig. (3.3).

You can notice that the behavior of ∆bb is the same both for even or odd
parity, i.e., the hybridization destroy the superconductivity.
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(a) The chemical potential.

(b) The intra-band order parameter.

Figure 3.3: We present here the solution of the two self-consistent equations
for α = 0.5 and two values of 1/kFasb: 1/kFasb = −0.5 and 1/kFasb = −0.25.
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3.6 Conclusion

In this chapter, we studied the influence of an odd-parity hybridization in the
superconducting state. First, when discussing the origin of an odd-parity hy-
bridization, we showed that the anti-symmetric hybridization appears when
it mixes orbitals with angular momentum differing by an odd number as for
l and l + 1.

Next, we studied a two-band model with an odd-parity hybridization be-
tween the two bands and an attractive interaction in one of the bands. We
solved this problem using the Green’s function formalism. We found the
intra-band order parameter, the inter-band order parameter and the occu-
pation number equations and we solved them self-consistently. We saw that
an induced order parameter appears due proximity effect. We can conclude
that this induced order parameter has an anti-symmetric character in k-space
allowing us to propose that the mechanism studied here is one possible way
to produce a Kitaev’s chain [23] without the necessity of spin orbit coupling
or any external parameters, such as an external magnetic field. This is very
interesting because in the ends of a Kitaev chain there are exist Majorana
[23, 77]. This conclusion is one of most remarkable result os this thesis be-
cause the Majorana fermions are promising candidates to acts as a q-bits in
quantum computers.

We also studied two special cases. In the first, we turned off the intra-
band attractive interaction. First we noticed that we recover the results from
Alicea [70] using a different formalism. We find two induced parameters with
opposite chirality for a and b bands. We also saw that in this case it is possible
to map our problem onto that of spinless fermions with SOC, where the a
band is the ↑ band and the b band is the ↓ band.

The second special case studied is when we only consider intra-band at-
tractive interactions. This case is simpler than the complete problem and
gives a surprising behavior of the superconductivity parameter. Unlike when
hybridization is symmetric, if we consider odd-parity hybridization we con-
clude that the hybridization enhances superconductivity [66].
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Chapter 4

Spin Current in the Presence of
Dzyaloshinskii-Moriya
Interaction

Magnetic properties of low dimensional metallic magnets in general is under-
stood by the competition of three main interactions: the exchange interac-
tion designed by Heisenberg model (ferro- or antiferromagnetic, long or short
range), the magneto-crystalline anisotropy (which induces easy axes or easy
planes for the magnetic moments) and the dipole-dipole interaction which
plays a big role in nanostructures [81]. However, for a correct description of
these materials, it is also necessary to consider other types of interactions,
like Spin-Orbit Coupling (SOC).

The spin orbit coupling is not only the origin of the magnetocrystalline
anisotropy in bulk systems, but it also has large effects in nanostructures.
The SOC is known to play an important role in nanostructures since inver-
sion symmetry is broken near surfaces and interfaces. It is a small effect
but with important consequences both on the magnetic arrangement near a
surface and on transport properties. Concerning magnetic arrangement, it
was shown that magneto-crystalline anisotropy can be different at surfaces
and in the volume, inducing some possible reorientation of the magnetic
moments. Another consequence of SOC is the existence of anti-symmetric
Dzyaloshinskii-Moriya exchange near the surface [29].

In this chapter we will discuss about the Dzyaloshinskii-Moriya (DM)
interaction. It is driven by SOC and only appears in structures that lack
inversion symmetry. This interaction has important consequences on mag-
netic structures both in bulk systems and nanomaterials where it can lead
to non-collinear chiral magnetic structures [82, 83] or to the stabilization of
skyrmions [84].
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Concerning transport, SOC has also important consequences, e. g. anoma-
lous Hall effect in bulk systems [85]. In nanostructures, the effect of SOC is
usually introduced through Rashba coupling at interfaces [86]. However there
is no study of the influence of DM coupling on transport in nanostructures.
So, in this chapter we will propose a simple model to study this influence.
After introducing a possible mechanism responsible for this DM interaction,
we study its effect using a toy model which has the advantage of providing a
simple solution.

4.1 Introduction: Spin-Orbit Coupling (SOC)

An important part of the technology developed today in the field of sensors or
data storage is based on the control of the spin degree of freedom. The most
important spin-dependent effect in metallic systems is the giant magneto-
resistance (GMR) effect [25, 26], discovered in 1988. After this discovery,
appeared a new interesting field that aims at identifying, understanding,
controlling and utilizing spin-dependent phenomena, known as Spintronics.

A very important interaction influencing magnetism in nanostructures is
the spin-orbit coupling. The spin-orbit coupling plays an important role in
magnetic nanostructures, both on the magnetic arrangement and on trans-
port. In fact SOC was shown by Dirac to result from the relativistic gener-
alization of Schrödinger equation for electrons [87]. It can be written as

HSOC =
e!

2 (mc)2
(p⃗×∇V (r)) . s⃗, (4.1)

where p⃗ is the momentum of the electron, V (r) is the potential and s⃗ is the
spin operator. In atomic physics, V (r) is the atomic potential seen by one
electron and it has spherical symmetry. In this case the expression of spin-
orbit Hamiltonian can easily be transformed into the following expression:

HSOC = λ
(
l⃗ . s⃗

)
, (4.2)

where l⃗ is the orbital momentum of the electron and λ is known as spin-orbit
constant.

The consequences of SOC in magnetic systems are several. In a bulk
material, even if the spin-orbit energy is very small, the atomic SOC gives rise
to important effects such as Hund’s rule, magnetic anisotropy or Hall effect.
Even in a bulk system it is also necessary to consider other contributions
since the potential V (r) has no longer spherical symmetry. In particular in
solids without inversion symmetry, SOC leads to the Bychkov-Rashba effect
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[88] and Dresselhaus effect [89]. In 2D systems, inversion symmetry is always
broken and the Rashba interaction can be written as :

HR = α
(
s⃗× k⃗

)
. n⃗, (4.3)

where α is the Rashba coupling constant, k⃗ is the wave-vector of the con-
duction electron and n⃗ is a unit vector perpendicular to the 2D system. In
magnetic nanostructures, Rashba effect is expected to be present at surfaces
or interfaces [86], since symmetry is always broken.

The SOC has consequences on spin transport in nanostructures, the study
of this consequences is the subject of this chapter. Obviously, spin-orbit
interaction also influences the magnetic arrangement in magnetic systems
mainly through two different mechanisms:

• Magnetic Anisotropy: in presence of SOC, rotational invariance is de-
stroyed and the “atomic” spin-orbit interaction, Equation (4.2), gives
rise to magnetic anisotropy [90, 91, 92]. This magnetic anisotropy cor-
responds to the direction dependence of magnetization (existence of
easy axis or easy plane).

• Dzyaloshinskii-Moriya (DM) interaction: this interaction is described
in more detail in the next section. It is an interaction between spins
which exists if there is no inversion center between these two spins
[30, 31]. This type of interaction is always present at surfaces and
interfaces.

Spin-orbit coupling plays also an important role in transport properties :
anomalous Hall effect is a consequence of spin-orbit coupling [85], in magnetic
bulk materials and nanostructures. Rashba effect also affects transport in
nanostructures [93].

In the thesis I have studied the effect of DM interactions on spin trans-
port properties. In the next sections we will further study the origin of
Dzyaloshinskii-Moriya Interaction and its effect on spin transport .

4.2 Dzyaloshinskii-Moriya Interaction

Dzyaloshinskii and Moriya observed that, beyond the bilinear exchange be-
tween magnetic moments, an anti-symmetric interaction might be present in
crystals with low symmetry. In 1958, Dzyaloshinskii [30] predicted, based on
symmetry arguments, that this interaction can be written as D⃗.(S⃗1×S⃗2). Two
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years later, in 1960, Moriya [31] proposed a microscopic mechanism based
on superexchange in presence of SOC, which allowed him to calculate explic-
itly the vector D⃗. Nowadays this phenomenon is known as anti-symmetric
exchange or Dzyaloshinskii-Moriya interaction (DM).

This interaction gives a contribution to the total magnetic exchange inter-
action between two magnetic spins, S⃗i and S⃗j. DM interaction is a relativistic
effect, because spin-orbit coupling (SOC) – meaning that the intrinsic spin
degree of freedom of an electron is coupled to its orbital motion – is cru-
cial for its occurrence. We can write the Dzyaloshinskii-Moriya interaction
mathematically as

HDM = D⃗ij.
(
S⃗i × S⃗j

)
, (4.4)

where D⃗ij is the DM vector between magnetic spins at sites i and j. One
should notice that this DM vector obeys the relation: D⃗ij = −D⃗ji. The DM
interaction occurs between two spins and it is mediated by the DM vector.
Figure (4.1) shows schematically the DM interaction. This will be described
in more details in the next section. Notice that DM interaction promotes
canted spin structures because it favors perpendicular configuration of S⃗i

and S⃗j , while ordinary bilinear exchange favors collinear structures.
A DM interaction can only occur when spin-orbit coupling is taken into

account. In the absence of SOC, the spin space is not coupled to the real
space, and a rotation of all spins in real space can be made without changing
the energy of the system, i.e., the Hamiltonian of the system is invariant
under unitary rotation transformation such as U †HU = H, where U is a
unitary matrix rotation in real space. Not only SOC is crucial for the ex-
istence of Dzyaloshinkii-Moriya interaction, but also is needed an inversion
anti-symmetric environment (e. g. anti-symmetry introduced by a surface)
to obtain an interaction of the form of equation (4.4).

Notice that symmetry breaking is always present when we treat interfaces
problems, as for example, in magnetic multi-layers. However when we are
dealing with bulk material this inversion symmetry breaking occurs only
when the material has some peculiar crystal structure, or contains some
impurities.

Both the value and direction of the DM vector have to be determined.
Of course they depend on the microscopic mechanism, but the direction can
be partly determined by symmetry considerations. In bulk material, the
symmetry can be broken by several factors as crystal structure or presence
of impurities. Moriya [31] gives in his paper some rules to find the direction
of the DM vector. We summarize this rules below.
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Figure 4.1: DM interaction between two Fe (dark and light grey) ions medi-
ated by a nearby oxygen ion (red). Red arrows represent two adjacent spins
S⃗i and S⃗j lying in a plane (yellow). The DM coupling vector D⃗ lies a different
plane (blue), the orientation of which depends on local symmetry.

Consider two spins located at R⃗1 and R⃗2; the middle is labeled as R⃗ =(
R⃗1 + R⃗2

)
/2 :

• If a center of inversion is located at R⃗, then D⃗ = 0.

• If a mirror plane perpendicular to
(
R⃗1 − R⃗2

)
includes R⃗, then D⃗ is

perpendicular to
(
R⃗1 − R⃗2

)
.

• If a mirror plane includes R⃗1 and R⃗2, then D⃗ is perpendicular to this
mirror plane.

• If a two-fold rotation axis perpendicular to
(
R⃗1 − R⃗2

)
includes R⃗, then

D⃗ is perpendicular to the rotation axis.
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• If a n-fold rotation axis (n ≥ 2) includes R⃗1 and R⃗2 then D⃗ is parallel

to
(
R⃗1 − R⃗2

)
.

We presented in this section the main properties of DM interaction. Equa-
tion (4.4) gives the general expression of the DM interaction, between S⃗i and
S⃗j. In magnetic nanostructures such interaction is expected to be present:
for example Ref. [94] studies the DM interaction between magnetic moments
both located at a surface or interface, or between magnetic moment at a sur-
face and a moment on the 1st layer below the surface. Interlayer DM interac-
tion can also exist when the two layers are made with a different materials.
Besides Moriya’s mechanism (superexchange with SOC) other mechanisms
have been proposed, more adapted for metallic systems [95, 96, 97] and DM
interaction can also be induced by Rashba interaction [98].

Such intra or interlayer DM interaction may affect magnetic arrange-
ments. However rearrangement of magnetic structure will not be considered
here. In the thesis we are interested by looking at transport in a 3-layer sys-
tem made of 2 ferromagnetic layers FL and FR separated by a non-magnetic
layer NM . We will not consider the effect of DM interaction on the magnetic
arrangements (either inside each layer or possible global reorientation of mag-
netizations of the layers), but since we are interested by transport, we will
study the influence on transport of DM interaction between magnetic ions
in one of the ferromagnetic layers and spin of conduction electrons located
near the interface (either in the ferromagnetic layer, or in the paramagnetic
one). Such an interaction can be written as: D⃗.(S⃗ × s⃗ ) [33]. We will first
show that such an interaction exists and describe a possible mechanism for
it. Then we will study the influence of this interaction on transport in a
simplified model. In other words, we will study the effect of DM interaction
on the conduction electron states, and how this interaction modifies the spin
current.

4.3 DM Interaction between Magnetic Ions
and Conduction Electrons

In this section we derive a possible mechanism for DM interaction between
magnetic ions at the surface of a ferromagnetic layer and spin of conduction
electrons located near this surface (or interface). Moriya’s rules cannot help
in this case, since the 2 magnetic moments involved in the interaction are of
different type. We generalize to our case the Moryia’s mecanism based on
superexchange, using a formulation derived by Herzog and Wegewijs (2010)
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[99] that gives an analytical expression of the DM’s vector between two ions
which may have a different nature.

The case considered here is the following: we have one ‘magnetic’ ion
located at the surface. We suppose that this ion has one localized d-electron
in a t2g orbital (these t2g orbitals are threefold degenerate in cubic symmetry)
and the surface is parallel to the x-z plane. At the surface, the crystal field
has no longer cubic symmetry and the orbital degeneracy is partially lifted
in the following way:

• 1 → |1⟩ = − 1√
2
(|2, 1⟩ − |2,−1⟩) corresponds to the dxz level with en-

ergy ϵ. This level is supposed to be the ground state.

• 1′ → |1′⟩ = i√
2
(|2, 1⟩ − |2,−1⟩) corresponds to the dyz level with energy

δ.

• 1′′ → |1′′⟩ = − i√
2
(|2, 2⟩ − |2,−2⟩) corresponds to the dxy level with

energy δ.

Notice that dyz and dxy are still degenerate. In these expressions the
notation |l,m⟩ corresponds for the t2g electrons to the orbitals with l = 2.

The 2nd site that we consider is a site with one s-electron (conduction
electron), in the vicinity of the 1st one. This situation is shown schematically
on figure (4.2). Adapting the calculation of Herzog et al. [99] to our case
leads to the following expression for D⃗:

D⃗ = 2
iλ1l⃗1′1
ϵ1′ − ϵ1

(
t12t21′

U
+ v1221′

)
+ 2

iλ1l⃗1′′1
ϵ1′′ − ϵ1

(
t12t21′′

U
+ v1221′′

)
(4.5)

where l⃗ab = ⟨a|⃗l|b⟩, is the matrix element of the angular momentum operator
l⃗ between 2 states a and b, (a and b are the states 1, 1’ and 1”), λ1 is the
spin-orbit amplitude of the t2g electrons, the ϵi are the crystal field energies
on the magnetic site (site 1), U is the Coulomb repulsion between d-electrons
on the magnetic site, ta2 is the hopping integral between a orbital (a can be
1 or 1′′) on 1st site and s-orbital on 2nd site and v122a (a can be 1 or 1′′) is an
exchange energy corresponding to an effective orbital excitation associated
to spin flip as explained by Herzog [99].

The direction of D⃗ depends on the matrix elements l⃗1′1 and l⃗1′′1. Calcu-
lation of these matrix elements is performed using the following relations for
the angular momentum :

L±|l,m⟩ = !
√

l(l + 1)−m(m± 1)|l,m± 1⟩
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Figure 4.2: Site 1 is the magnetic site, site 2 corresponds to the conduction
electron. In (a) is shown the superexchange process and in (b) the direct
exchange one.

and

Lz|l,m⟩ = !m|l,m⟩.

For our case, we get the following expressions:

(l1′1)x =

[
− i√

2
(⟨2, 1|− ⟨2,−1|)

] [
1

2
(L+ + L−)

] [
− 1√

2
(|2, 1⟩ − |2,−1⟩)

]

=
i

2
(⟨1, 2|− ⟨−1, 2|)

(
2!|2, 2⟩ −

√
6!|2, 0⟩+

√
6!|2, 0⟩ − 2!|2,−2⟩

)

= 0,

(l1′1)y =

[
− i√

2
(⟨2, 1|− ⟨2,−1|)

] [
1

2i
(L+ − L−)

] [
− 1√

2
(|2, 1⟩ − |2,−1⟩)

]

=
1

4
(⟨1, 2|− ⟨−1, 2|)

(
2!|2, 2⟩ −

√
6!|2, 0⟩ −

√
6!|2, 0⟩+ 2!|2,−2⟩

)

= 0,

(l1′1)z =

[
− i√

2
(⟨2, 1|− ⟨2,−1|)

]
Lz

[
− 1√

2
(|2, 1⟩ − |2,−1⟩)

]

=
i

2
(⟨1, 2|− ⟨−1, 2|) (!|2, 1⟩ − !|2,−1⟩) = i!

2
+

i!
2

= i!,

(l1′′1)x =

[
i√
2
(⟨2, 2|− ⟨−2, 2|)

] [
1

2
(L+ + L−)

] [
− 1√

2
(|2, 1⟩ − |2,−1⟩)

]

= − i

4
(⟨2, 2|− ⟨−2, 2|)

(
2!|2, 2⟩ −

√
6!|2, 0⟩+

√
6!|2, 0⟩ − 2!|2,−2⟩

)

= −i!,
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(l1′′1)y =

[
i√
2
(⟨2, 2|− ⟨−2, 2|)

] [
1

2i
(L+ − L−)

] [
− 1√

2
(|2, 1⟩ − |2,−1⟩)

]

= − i

4
(⟨2, 2|− ⟨−2, 2|)

(
2!|2, 2⟩ −

√
6!|2, 0⟩ −

√
6!|2, 0⟩+ 2!|2,−2⟩

)

= −1

4
(2!− 2!) = 0,

(l1′′1)z =

[
i√
2
(⟨2, 2|− ⟨−2, 2|)

]
Lz

[
− 1√

2
(|2, 1⟩ − |2,−1⟩)

]

= − i

2
(⟨2, 2|− ⟨−2, 2|) (!|2, 1⟩+ !|2,−1⟩)

= 0.

(4.6)

Using these results – (4.6) – we arrive to the following expression for D⃗ :

D⃗ =
λ1A

∆
x̂+

λ1B

∆
ẑ, (4.7)

where A ≡ 2!
( t12t21′

U + v1221′
)
and B ≡ 2!

( t12t21′′
U + v1221′′

)
and ∆ = δ − ϵ,

where δ and ϵ are the crystal field energies of the t2g as explained above. It
is clear from equation (4.7) that the DM vector is pointing in the x-z plane,
i.e. it is parallel to the surface. In the following, we will write the DM vector
in spherical coordinates as follows

D⃗ =
(
|D⃗| sin θD, 0, |D⃗| cos θD

)
, (4.8)

where |D⃗| is the intensity of vector D⃗ and θD is the angle between the vector
and the coordinate axis.

Thus we have shown that DM interaction between a magnetic moment
and the spin of conduction electron may occur near the surface, when crystal
field is modified due to the symmetry change. This interaction occurs with
all conduction electrons which are in the vicinity of this magnetic ion; A and
B should be non zero, .if the hopping integrals t12 or the the exchange energy
v in eq. (4.7) are different from zero.

Finally it is interesting to remark that the same kind of DM interaction
between a magnetic impurity and conduction electrons was derived by Zarea
et al. [33] in the context of the Kondo effect in presence of Rashba interaction.
They show in their paper that this DM interaction writes as:

HZarea
DM = iλkFC(k⃗ − k⃗′).

(
s⃗k⃗k⃗′ × S⃗

)
, (4.9)
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where

s⃗k⃗k⃗′ =
1

2

(
c†
k⃗s
σ̄ss′ck⃗′s′

)
,

where σ̄ is the Pauli matrices. S⃗ is the impurity spin vector, C(k⃗ − k⃗′) is
a function that was calculated in Ref. [33] , kF is the Fermi wave vector
and λ is the spin-orbit constant. Thus using a completely different model,
they obtained the same kind of interaction when spin-orbit is present in a
2-dimensional system (notice that this was obtained in the context of Kondo
effect, but remains valid for any magnetic impurity).

4.4 Model

In this section we will introduce the two “toy models” that we have studied.
These toy models can be viewed as simplified description of a three layers
nanostructure consisting of two ferromagnetic (FM) layers, FL and FR,
separated by a paramagnetic layer, NM , as shown in Figure (4.3).

We suppose that the magnetization of the FM layers is uniform, and
we neglect any interlayer coupling between magnetizations on the R and L
layers. Since magnetization is uniform, we will consider a simple toy model
where each layer is replaced by a site on 1-D chain. We show below that,
despite this model is simple, one can get interesting results. Bruno [90]
introduced a similar 2 sites toy model to study the effect of inhomogeneous
magnetization on spin current.

Within this approximation the three layers nanostructure will be de-
scribed by 3-sites: L and R for the magnetic “layers” and NM for the inter-
mediate non-magnetic “layer”. The magnetization of FR and FL layers will
be represented by classical vectors S⃗L and S⃗R on the sites R and L, see Fig.
(4.4). There are also conduction electrons propagating both in ferromagnetic
and in non-magnetic layers. In the real system there is a DM interaction be-
tween magnetic moments and conduction electrons spins located both in the
magnetic layer and in the NM layer (close enough to the interface).

In the absence of spin-orbit interaction, the Hamiltonian of this model is

H0 = HTB +Hs−d, (4.10)

where HTB describes the conduction electrons in tight binding approxima-
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Figure 4.3: A physical system with three layers: two ferromagnetic layers (FL
and FR) and a non-magnetic one (NM). Dzyaloshinskii-Moriya interaction
is considered at both interfaces FL/NM and FR/NM .

tion:

HTB = tRL

(
c†L↑cR↑+ c†L↓cR↓+ c†R↑cL↑+ c†R↓cL↓

)
+

+τ
(
c†L↑cNM↑+ c†L↓cNM↓+ c†NM↑cL↑+ c†L↓cNM↓

)
+

+τ
(
c†R↑cNM↑+ c†R↓cNM↓+ c†NM↑cR↑+ c†R↓cNM↓

)
+

+ V
(
c†NM↑cNM↑ + c†NM↓cNM↓

)
(4.11)

where c(†) are the annihilation (creation) operators that represent the con-
duction electron in left (L), middle (NM) and right (R) sites, tLR is a direct
hopping between L and R sites, τ is the hopping integral between magnetic
(L and R) sites and non-magnetic (NM) site, and V is a potential on the
non-magnetic site. Hs−d is the usual s− d interaction:

Hs−d = −J0
(
S⃗L.s⃗L + S⃗R.s⃗R

)
, (4.12)

where J0 is the exchange parameter and s⃗i is written in terms of the operators
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c(†) as follows

si;x =
1

2

(
c†i↑ci↓ + c†i↓ci↑

)
, (4.13)

si;y =
1

2i

(
c†i↑ci↓ − c†i↓ci↑

)
, (4.14)

si;z =
1

2

(
c†i↑ci↑ + c†i↓ci↓

)
, (4.15)

where i = L, R and NM . Here we assume that the two magnetic layers
are made of the same material, thus S⃗L and S⃗R have the same length, the
exchange parameter, J0, is the same on both layers and the hopping between
L−NM and NM −R are equal, tL−NM = tNM−R = τ .

!

L M R

SR

SR

x

y

z

D
!D

Figure 4.4: A schematic picture of the three sites approximation. S⃗L rep-
resents the left (FL) and S⃗R the right (FR) ferromagnetic layer. A non-
magnetic layer is represented by the central site NM . Conduction electrons
can travel on all sites.

Now we will discuss how the DM interaction will be incorporated in the
3-sites approximation. Notice that in our toy model Rashba effect cannot be
included since conduction electrons can only move in the perpendicular direc-
tion. Thus conduction electrons do not move in the magnetic site. However,
we have shown in the previous section that SOC gives rise to DM interaction
between magnetic sites and conduction electrons. In our 3 sites model, there
can be two kind of DM interactions:

(i) between local spin, S⃗L and S⃗R, and spin of conduction electrons in the
NM site, s⃗NM ;
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(ii) between local spins S⃗L and S⃗R and conduction electrons inside the
ferromagnetic layers, i.e., s⃗L and s⃗R .

In our case, this last interaction will be local, which of course is not possible
for real DM interaction. DM interaction needs in principle 2 different sites,
but this description allows us to describe and compare both DM interactions
in the toy model.

In this model the DM Hamiltonian is written as:

HDM = D⃗.
(
S⃗L × s⃗NM

)
+ D⃗.

(
S⃗R × s⃗NM

)
+

+ D⃗′.
(
S⃗L × s⃗L

)
+ D⃗′.

(
S⃗R × s⃗R

)
. (4.16)

where D⃗′ and D⃗ are different vectors, both lying in the x-z plane (y-direction
is chosen as the L-R direction as shown on the figure 4.4). D⃗′ is the ‘intralayer’
DM coupling, while D⃗ is the ‘interlayer’ DM coupling. Notice that in this
model, DM interaction between S⃗L and S⃗R vanishes since the site NM is an
inversion center for this toy model.

Our aim in this work is to study how the DM interaction can influence
the spin transport for different configurations of the local spins S⃗L and S⃗R.
We will perform this study by calculating the spin current which is given by
the following expression:

ĵx,i→j =
iτij
2

(
c†i↑cj↓+ c†i↓cj↑− c†j↓ci↑− c†j↑ci↓

)

ĵy,i→j =
τij
2

(
c†i↑cj↓− c†i↓cj↑+ c†j↓ci↑− c†j↑ci↓

)

ĵz,i→j =
iτij
2

(
c†i↑cj↑− c†i↓cj↓− c†j↑ci↑+ c†j↓ci↓

)
,

(4.17)

where τij is the hopping between i and j sites. It is important to point out
that, in these expressions, x, y and z refer to the spin space. In general, the
spin current operator is a tensor in both real space and spin space. In our
case, the current (spin or charge) can only flow along the y-direction in real
space, but all spin components participate to the spin current.

This is a very simple system that can be solved in any mathematical
software. We use the software Wolfram Mathematica to discover the eigen-
values and eigenvectors of the model. In order to discovery which is the
lowest energy state, we plot a graphic with the all eigenvalues and choose
the eigenvector with respect to the lowest eigenvalue.
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Once all parameters are well defined, we can start the calculation. The
effect of D⃗ and D⃗′ will be studied separately using two different models that
we briefly describe below.

4.4.1 Model I: Three Sites Problem for the study of
interlayer DM

We first study the interlayer DM alone (D⃗ in eq. (4.16)). The total Hamil-
tonian that we consider is

H1 = HTB +Hs−d +HDM , (4.18)

where HTB is given by equation (4.11). Notice that the potential V on the
non-magnetic site can be positive or negative. When V is large and positive,
the central site represents a situation where the electrons can only flow by
tunneling (potential barrier). When V is positive the layer behaves as a
potential well. The term Hs−d are given in Equation (4.12). We only consider
here the D⃗ term (‘interlayer’ DM coupling) in DM Hamiltonian (4.16).

In this work we use Schrödinger formalism to solve the problem, but other
methods are also possible. In fact in non-equilibrium situation, we should
use Heisenberg equation for the temporal evolution of the operators1. The
local spins S⃗L and S⃗R are supposed to be fixed in some direction. In this
three sites case the system is described by three spin operators: s⃗L, s⃗NM and
s⃗R. Writing the Heisenberg equation for each of these operators we can find
three “continuity equations”:

! ∂
∂t

s⃗L = −j⃗L→R − j⃗L→NM + J0
(
s⃗L × S⃗L

)

! ∂
∂t

s⃗R = j⃗L→R + j⃗NM→R + J0
(
s⃗R × S⃗R

)

! ∂
∂t

s⃗NM = −
(
j⃗L→NM + j⃗NM→R

)
+ s⃗NM ×

(
S⃗L × D⃗

)
+ s⃗NM ×

(
S⃗R × D⃗

)
,

(4.19)

One can notice that j⃗L→NM + j⃗NM→R ̸= j⃗L→R indicating that there can be
direct current from L to R sites: the current flowing from left to central
site and from central to right, is proportional to τ , while the current flowing

1The Heisenberg equation for operator is

d

dt
A(t) =

i

! [H,A(t)],

where A(t) is the operator evolves in time
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directly from the left to the right site is proportional to tLR. We will show
how to calculate each of this spin current.

We consider only the steady states, thus the time derivatives on the left
hand side of the equations (4.19) vanish. Then it is convenient to calculate
the spin current using the Schrödinger formalism. What we need to know
are the eigenfunctions of the Hamiltonian. In this 3-sites problem, up to
6 conduction electrons can be injected in the system, according to Pauli’s
principle. For one conduction electron the wave function can be written as
a combination of the 6 possible states of this electron:

|ψ⟩ = d1c
†
L↑ |0⟩+ d2c

†
L↓ |0⟩+ d3c

†
R↑ |0⟩+

+d4c
†
R↓ |0⟩+ d5c

†
NM↑ |0⟩+ d6c

†
NM↓ |0⟩ , (4.20)

where |0⟩ is the vacuum state.
The Schrödinger equation in a matrix form is

Ĥ |ψ⟩ = Ê |ψ⟩ ,

where Ê is the diagonal matrix of the eigenvalues and

Ĥ =

⎛

⎜⎜⎜⎜⎜⎜⎝

−J0
2 SLz F ∗

1 tLR 0 τ 0
F1

J0
2 SLz 0 tLR 0 τ

tLR 0 −J0
2 SRz F ∗

2 τ 0
0 tLR F2

J0
2 SRz 0 τ

τ 0 τ 0 V + χ F3

0 τ 0 τ F ∗
3 V − χ

⎞

⎟⎟⎟⎟⎟⎟⎠
(4.21)

where

χ =
Dx

2
SLy −

Dy

2
SLx +

Dx

2
SRy −

Dy

2
SLx,

F1 = −J0
2
(SLx + iSLx) ,

F2 = −J0
2
(SRx + iSRx) ,

F3 =
SLz

2
(Dy − iDx)−

Dz

2
(SLy − iSLx)−

−SRz

2
(Dy − iDx)−

Dz

2
(SRy − iSRx) .

In principle a similar calculation can be done for other occupation num-
bers: for 2 electrons, there are 15 possible states, and it is necessary to solve
a 15× 15 matrix.
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In the following calculation we will specify more precisely the compo-
nents of the local spins and the DM vector. As we discussed before in this
three sites case there will be three spin currents. The way to calculate the
three components is: first we find the lowest eigenvalue and corresponding
eigenvector using Schrödinger equation and this will give the ground state
wave function. Once we know the ground state wave function, we calculate
the average value of spin current operator: ⟨ψ|⃗jij|ψ⟩. The results of this
calculation will be presented in section (4.5).

4.4.2 Model II: Two Sites Problem

In this section we introduce a further simplification : we do not consider the
central site, but only the two magnetic sites. This model is well adapted for
studying the ‘intra-layer’ DM coupling (D’ term in eq. (4.16) ). Furthermore,
since it is simpler, we can also study the spin current for different occupation
numbers.

In this case the tight-binding Hamiltonian is also simpler (there is no
potential V in NM site and no τ hopping) and is given by:

H ′
TB = tRL

(
c†L↑cR↑+ c†L↓cR↓+ c†R↑cL↑+ c†R↓cL↓

)
. (4.22)

The total Hamiltonian that describes this two sites problem is

H2 = H ′
TB +Hs−d +HDM (4.23)

where Hs−d is given by Equation (4.12) and HDM by Equation (4.16) now
with D⃗ = 0.

We will solve the problem using Schrödinger formalism as before. Again
we need to know the wave function to do the calculations. This wave function
is written using properties of quantum mechanics: we can occupy two sites
with, at maximum, four electrons respecting the Pauli’s exclusion principle.
Here we will study the case with occupation numbers equal to one or two
electrons. The case of 3 (4) electrons is similar to 1 (2) electron, due to
electron-hole symmetry

First we write the wave function for one electron in the 2-sites model:

|ψ⟩ = a1c
†
L↑ |0⟩+ a2c

†
L↓ |0⟩+ a3c

†
R↑ |0⟩+ a4c

†
R↓ |0⟩ , (4.24)

where |0⟩ is the vacuum state. The coefficients a′s will be determined by
solving the Schrödinger equation:

H2 |ψ⟩ = E |ψ⟩ ,
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where H2 is the Hamiltonian determined above (eq. (4.23)) and E is the
eigenvalue of the system. Solving this equation, we get

⎛

⎜⎜⎝

β1 B1 tLR 0
B∗

1 −β1 0 tLR
tLR 0 β2 B2

0 tLR B∗
2 −β2

⎞

⎟⎟⎠

⎛

⎜⎜⎝

a1
a2
a3
a4

⎞

⎟⎟⎠ = E

⎛

⎜⎜⎝

a1
a2
a3
a4

⎞

⎟⎟⎠ (4.25)

where

β1 = −J0
2
SLz +

D′
x

2
SLy −

D′
y

2
SLx

β2 = −J0
2
SRz +

D′
x

2
SRy −

D′
y

2
SRx

B1=−
J0
2
(SLx−iSLy)+

SLz

2

(
D′

y+iD′
x

)
−D′

z

2
(SLy+iSLx)

B2=−J0
2
(SRx−iSRy)+

SRz

2

(
D′

y+iD′
x

)
−D′

z

2
(SRy+iSRx) .

In Figure (4.5) we show an example which indicates the 4 energy levels for
one specific value of |D⃗′| and θD. We choose the lowest one that e represents
the fundamental energy level.

0 Π

2
Π 3 Π

2
2 Π

"1.5

"1

"0.5

0

0.5

1

1.5

Θ

E

Figure 4.5: This graphic shows the 4 energy levels in model II, the lowest
one is represented by the blue curve. θ is the angle between the 2 spins S⃗L

and S⃗R . Here, J0/tLR= 0.5, |D⃗′|/tLR = 0.05 and θD = π/4.

For two electrons we can use the same procedure. There are 6 possible
states, thus it is necessary to diagonalize a 6× 6 matrix. The wave function
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is written as:

|ψ⟩ = b1c
†
L↑c

†
R↑ |0⟩+ b2c

†
L↑c

†
R↓ |0⟩+ b3c

†
L↓c

†
R↑ |0⟩+

+b4c
†
L↓c

†
R↓ |0⟩+ b5c

†
L↑c

†
L↓ |0⟩+ b6c

†
R↑c

†
R↓ |0⟩ , (4.26)

where |0⟩ is the vacuum state.
The coefficients b′s are determined by solving the Schrödinger equation

H |ψ⟩ = E |ψ⟩. In a matrix form, we can write
⎛

⎜⎜⎜⎜⎜⎜⎝

δ1 D2 D1 0 0 0
D∗

2 δ2 0 D1 tLR tLR
D∗

1 0 −δ2 D2 −tLR −tLR
0 D∗

1 D∗
2 −δ1 0 0

0 tLR tLR 0 0 0
0 tLR tLR 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

b1
b2
b3
b4
b5
b6

⎞

⎟⎟⎟⎟⎟⎟⎠
= E

⎛

⎜⎜⎜⎜⎜⎜⎝

b1
b2
b3
b4
b5
b6

⎞

⎟⎟⎟⎟⎟⎟⎠
, (4.27)

where

δ1=−J0
2
SLz−

J0
2
SRz+

D′
x

2
SLy−

D′
y

2
SLx+

D′
x

2
SRy−

D′
y

2
SRx

δ2=−J0
2
SLz+

J0
2
SRz+

D′
x

2
SLy−

D′
y

2
SLx−

D′
x

2
SRy+

D′
y

2
SRx

D1=−J0
2
(SLx−iSLy)+

SLz

2

(
D′

y+iD′
x

)
−D′

z

2
(SLy+iSLx)

D2=−J0
2
(SRx−iSRy)+

SRz

2

(
D′

y+iD′
x

)
−D′

z

2
(SRy+iSRx) .

We can plot the same type of graphic as in the 1-electron case – Fig.
(4.5) –, but now there are 6 eigenvalues. We choose the lowest one and
find the corresponding eigenvector. This eigenvector has six components,
determining the b′s coefficients. Once the coefficients of the wave function
are determined, we calculate the spin current.

In this case we can also write a continuity equation using Heisenberg
formalism:

!∂s⃗L
∂t

= −j⃗L→R + J0
(
s⃗L × S⃗L

)
+ s⃗L ×

(
S⃗L × D⃗′

)

!∂s⃗R
∂t

= j⃗L→R + J0
(
s⃗R × S⃗R

)
+ s⃗R ×

(
S⃗R × D⃗′

)
,

(4.28)

where the term j⃗L→R is the spin current flowing from the left to the right
site, proportional to tLR. The problem is time independent, so the left side
vanishes. This equation gives another way for calculating the spin current.
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4.5 Results and Discussion

In this section we present the results obtained for the spin currents for both
models. In all the following, we considered that S⃗R is fixed along the z-axis

S⃗R = (0, 0, 1), (4.29)

D⃗ is making an angle of θD, written as in equation (4.7), and the spin current
will be calculated as a function of the angle θ of the spin S⃗L, which can be
rotated in the z-x plane

S⃗L = (sin θ, 0, cos θ). (4.30)

First we present the results for the three sites model, model I, and then
the results for the two sites model, model II.

4.5.1 Model I

We calculate the three components of the spin current, following the method
described in section IV-4 . These components are shown on figures (4.6),
(4.7) and (4.8) as a function of the angle θ between the 2 spins S⃗L and S⃗R.

In Fig. (4.6) we show the current flowing from the left to right site. This
component is smaller than the others because it is proportional to the second
neighbor hopping, tLR. Notice that DM interaction has a different effect on
the y component compared to the x and z components: while increasing
the interaction, the y component decreases. For the x and z components
the behavior is opposite: when D⃗ = 0 there is no transverse component of
the spin current, only a longitudinal one when S⃗L and S⃗R are non-collinear.
jy vanishes only when θ = 0 or π. However if DM interaction increases,
the transverse components of the spin current increase. We can also see
that both transverse components jx and jz vanish when θ = 0 or π. All
components of spin current vary with the angle θ between S⃗L and S⃗R. Thus,
if DM interaction is considered, the three components of the spin current are
different from zero, and they vary with angle θ between spins S⃗L and S⃗R.
The variation of the x and z components are far from a sinusoidal behavior,
they are even not symmetric around θ = π. This is due to the fact that D⃗ is
making an angle of π/4 with S⃗R. For other geometries, different variation of
the spin current components would be obtained.

Figures (4.7) and (4.8) show the spin current flowing from left to central
site and from the central to right site, respectively. The magnitude of this
two currents is bigger since it is proportional to first neighboring hopping, τ .
The component y in both Figs. (4.7 - b) and (4.8 - b) has the same behavior,
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Figure 4.6: Model I: The x, y and z components of the spin current flowing
from the left (L) to the right (R) site for occupation number of one electron.
Parameters are: J0/τ = 0.5, tLR/τ = 0.1, θD = π/4 and V/τ = 1. Here, each
line represents one value of |D⃗|/τ : Red thick line is |D⃗|/τ = 0, Blue dotted
line is |D⃗|/τ = 0.1, Green dot dashed line is |D⃗|/τ = 0.4 and Black dotted
line is |D⃗|/τ = 1.0.

DM interaction almost does not affect it. The qualitative behavior of the x
and z components of the two spin currents is the same, when there is no DM
interaction these components are zero. When DM interaction increases, the
x and z components of spin current appear.
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Figure 4.7: Model I: The x, y and z components of the spin current flow-
ing from the left (L) to the central non-magnetic (NM) site for occupation
number of one electron. Parameters are: J0/τ = 0.5, tLR/τ = 0.1, θD = π/4
and V/τ = 1. Here, each line represents one value of |D⃗|/τ : Red thick line
is |D⃗|/τ = 0, Blue dotted line is |D⃗|/τ = 0.1, Green dot dashed line is
|D⃗|/τ = 0.4 and Black dotted line is |D⃗|/τ = 1.0
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Figure 4.8: Model I: The x, y and z components of the spin current flowing
from the central non-magnetic (NM) to right (R) site for occupation number
of one electron. Parameters are: J0/τ = 0.5, tLR/τ = 0.1, θD = π/4 and
V/τ = 1. Here, each line represents one value of |D⃗|/τ : Red thick line
is |D⃗|/τ = 0, Blue dotted line is |D⃗|/τ = 0.1, Green dot dashed line is
|D⃗|/τ = 0.4 and Black dotted line is |D⃗|/τ = 1.0.
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We also can study the effect of V on spin current. In Fig. (4.9) we
calculate again the spin current flowing from left to right site with a fixed
value of |D⃗|/J0 = 1 (we choose the largest DM value to better see the effect
of V ) and varied V considering a large negative or positive and zero value.
We can see that V V affects mainly the magnitude of spin current, not the
shape. But we can notice that all components are reduced if the potential
V is negative. This is a consequence of the localization of the charge on the
NM site in this case. On the contrary, a positive V enhances the current: in
the case of a marge potential barrier, electrons are localized mainly on the
magnetic sites, and they can tunnel from one site to the other.
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Figure 4.9: Model I: The three components of spin current flowing from the
left (L) to the right (R) site when the occupation is one electron. Parameters
are: J0/τ = 0.5, tLR/τ = 0.1, θD = π/4 and |D⃗|/J0 = 1. Here, each line
represents one value of V/τ : Red line is V/τ = 5.0, Blue dashed lines V/τ = 0
and Green dot dashed line is V/τ = −5.0

We have only studied the case of 1 electron in this model I, the effect of
a different band filling has been studied within model II.
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4.5.2 Model II

Now we present the results for the case where we represent the three layers
system by two sites, as shown in section IV (model II). The number of possible
states is smaller and this allows us to find the solution for different occupation
numbers. So we can compare how the band filling influences the spin current
when we consider DM interaction. We present our results for occupation
equal to one or two electrons.

One Electron

First we present the case where the ‘band’ contains only one electron. In
Figure (4.10) we present the three figures that represent the 3 components
of the spin current. These figures are done for a fixed angle (θD) of D⃗, and
a fixed exchange parameter, J0, as a function of the angle θ between S⃗L and
S⃗R. We present, for each component, five curves corresponding to different
values of |D⃗′|.

One can see that the DM interaction changes the behavior of all com-
ponents of the spin current, as in model I. Also with this model, we can
see that when DM interaction is absent, spin current appears only in the
y direction [Fig. (4.10-b)]. When DM increases, the y component slightly
decreases and spin current in x and z direction appear. The angle at which
the y component vanishes changes significantly with |D⃗′|.

Analyzing Figures (4.10-a) and (4.10-c) we observe the same qualitative
behavior as for the three sites case [Fig. (4.6 - a and c)]. We notice that
the DM interaction causes an increase in these two components. The θ angle
where jx and jz are zero, is well defined for both components it is exactly in
π.
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Figure 4.10: Model II - One Electron Occupation: The three components of
the spin current. Parameters are: J0/tLR = 0.5 and θD = π/4. Here, each
line represents one value of |D⃗|/τ : Red thick line is |D⃗|/τ = 0, Blue dotted
line is |D⃗|/τ = 0.1, Green dot dashed line is |D⃗|/τ = 0.4 and Black dotted
line is |D⃗|/τ = 1.0.
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Two Electrons

Now we present in Fig. (4.11) the results for two electrons. Here again x and
z components of spin current increase with the DM interaction. However
if we compare the x (z) components for the one electron case with the two
electrons case, we see that the sign of the x and z components is opposite,
and most importantly, the absolute value is much smaller when there are
2 electrons (in our case, it is smaller by a factor 3 approximatively). This
indicates that the ‘band filling’ plays an important role on the transverse
components of spin current. On the other hand the longitudinal component
(Fig. (4.11-b)) is almost not affected by DM interaction.
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Figure 4.11: Model II - Two Electrons Occupation: The x, y and z compo-
nents of spin current. Where J0/tLR = 0.5 and θD = π/4. Here, each line
represents one value of |D⃗|/τ : Red thick line is |D⃗|/τ = 0, Blue dotted line
is |D⃗|/τ = 0.1, Green dot dashed line is |D⃗|/τ = 0.4 and Black dotted line
is |D⃗|/τ = 1.0.

Our results allow to conclude :

• in the presence of DM interaction, transverse spin components appear,
while the longitudinal component is modified;
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• the behavior of spin current as a function of the angle between the 2
local spins, θ, is far from sinusoidal;

• the absolute value of the transverse components depends on many fac-
tors as : the value of the potential of the intermediate layer (V ), the
occupation number and all other parameters of the model (hopping in-
tegral, s-d exchange, etc.);

• All components vanish at θ = π, but on the current is not symmetric
for θ = π; this is due to the fact that the angle θD is π/4.

4.5.3 Spin Accumulation

In this section we will discuss the spin accumulation in each site. We will
define the spin accumulation on site i only by the average value of spin in site
i ⟨s⃗i⟩, i.e., ⟨s⃗i⟩ is the average value of the s⃗i (the three components are given
by equations (4.13), (4.14) and (4.15)). We calculate the spin accumulation
only in Model I. The results are presented in figures (4.12), (4.13) and (4.14).
Spin accumulation can be related to spin current by the continuity equations
– eqs. (4.19) in the 3-sites description or eqs. (4.28) in the 2-sites model –
and we can check that a calculation of this spin accumulation through the
continuity equations would give the same results as the direct calculation that
can be done from the electron wave function. In this model spin accumulation
is rather large, but a more realistic model would certainly give smaller values.
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Figure 4.12: Model I - This figure shows the spin accumulation in site L.
Parameters are: J0/τ = 0.5, tLR/τ = 0.1, θD = π/4 and V/τ = 1. Here, each
line represents one value of |D⃗|/τ : Red thick line is |D⃗|/τ = 0, Blue dotted
line is |D⃗|/τ = 0.1, Green dot dashed line is |D⃗|/τ = 0.4 and Black dotted
line is |D⃗|/τ = 1.0
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Figure 4.13: Model I - The spin accumulation in site R. Parameters are: J0/τ
= 0.5, tLR/τ = 0.1, θD = π/4 and V/τ = 1. Here, each line represents one
value of |D⃗|/τ : Red thick line is |D⃗|/τ = 0, Blue dotted line is |D⃗|/τ = 0.1,
Green dot dashed line is |D⃗|/τ = 0.4 and Black dotted line is |D⃗|/τ = 1.0.
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Figure 4.14: Model I - This figure shows the spin accumulation in site R.
Parameters are: J0/τ = 0.5, tLR/τ = 0.1, θD = π/4 and V/τ = 1. Here, each
line represents one value of |D⃗|/τ : Red thick line is |D⃗|/τ = 0, Blue dotted
line is |D⃗|/τ = 0.1, Green dot dashed line is |D⃗|/τ = 0.4 and Black dotted
line is |D⃗|/τ = 1.0.
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4.6 Perspective: A More Realistic Descrip-
tion

Throughout the last section we present several results for the 3-layers prob-
lem in two very simple approximation. Our goal was discovery if the DM
interaction could influences the spin current. Even in these simple models
we can verify that the Dzyaloshinskii-Moriya interaction induces some spin
current. However we know that this a limited description, we cannot com-
pare the results obtained in this thesis with experimental ones. So, in this
section we present the idea of a more sophisticated theoretical model that
incorporates some new elements in the model.

A more realistic description of the system can be performed where mag-
netic layers will be represented as semi-infinite chains, each point of the chain
representing an atomic plane while the non-magnetic layer will be represented
by n sites on this chain, n measuring the width of this intermediate layer.

The spin current between 2 sites A and B is now given by

I⃗AB = Tr

[∫
dω (G<

AB(ω)−G<
BA(ω)) σ̄

]
(4.31)

Here G<
ij is the Green’s function between sites i and j and σ̄ are the Pauli

matrices. We choose to write Dyson equations and solve the set of equations
that close a system. In 1 dimension, the model can be solved following the
technique developed for spin transfer torque [100].

We started do some investigation in this path, but this description request
a mathematical and computational apparatus much more complex than the
one we used here. In future work we will present this new description of the
problem.
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Chapter 5

Conclusions and Perspectives

First we investigated the dissipative and non - equilibrium effects near a
superconductor - metal quantum critical point. We considered a supercon-
ducting layer, submitted tof a time dependent vector potential and deposited
over a metallic substrate. The superconducting layer and the substrate can
exchange electrons through a momentum non-conserving process. First we
found that a dissipation induced quantum critical point appears. Next, we
treated the effect of an electric field. We have shown that the phase diagram
is modified both by the electric field and dissipation in a non-equilibrium
stationary state. We also included fluctuations close to this quantum critical
point (QCP), and we were able to fully characterize the dissipation induced
QCP, obtaining its dynamic exponent, effective dimension and universality
class. We proposed that the quantum normal-to-superconductor phase tran-
sition in the layer when its coupling to the metallic substrate has mean-field
critical behavior.

The microscopic mechanism for the dissipation is the transfer of electrons
between the two systems. This is the same type of coupling that gives rise
to the proximity effect. So, as a future step, we want investigate how this
proximity effect can affect the metallic bath. Maybe an induced supercon-
ductivity will appear in the substrate.

Next we studied the influence of an odd-parity hybridization on a super-
conducting state. The specific system was a two-band metal with an attrac-
tive interaction between quasi-particles in different bands and an attractive
intra-band interaction in one of these bands. The hybridization between
the two bands is assumed to be anti-symmetric. We noticed that, when
we consider anti-symmetric hybridization, it enhances the superconducting
properties. This behavior is unexpected if we compare to the case of sym-
metric hybridization. Another important result was that, in this problem,
an induced order parameter appears that has an anti-symmetric spatial part.
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Due this property we can propose a new mechanism to produce a Kitaev’s
chain without introducing spin orbit coupling or any external parameters,
such as magnetic field. This is an important result since this Kitaev’s chain
presents a non-trivial topological phase with Majorana fermions at it ends.

The last problem discussed was related to the effect of Dzyaloshinskii-
Moriya interactions on the spin current. We studied a 3-layer system com-
posed by a non-magnetic layer between two ferromagnetics layers. In order
to investigate this problem we proposed a simple toy model where each layer
was described by one site. We concluded that the DM interaction affects the
spin current and should be taken into account in the description of magnetic
nanostructures. To continue this work we proposed to study a more realistic
1-dimensional model that can describe this 3-layer system.
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Appendix A

Adiabatic Expansion of Green’s
Function

In this appendix we show explicitly the adiabatic expansion of terms similar
to those that appear in the equations (2.26) and (2.27).

F

(
t− t1,

t+ t1
2

)
= F (t− t1, t̄) +

(
t+ t1
2

− t+ t′

2

)
∂F

∂ t̄
(t− t1, t̄)

= F (t− t1, t̄) +

(
t1 − t′

2

)
∂F

∂ t̄
(t− t1, t̄) .

(A.1)

gL

(
t− t1,

t+ t1
2
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= gL (t− t1, t̄) +

(
t+ t1
2

− t+ t′

2

)
∂gL
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(t− t1, t̄)
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(
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2
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∂gL
∂ t̄
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(A.2)

∆k (t1) = ∆k (t̄) + (t1 − t̄)
∂∆k

∂ t̄
(t̄)

= ∆k (t̄) +

(
t1 − t

2
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(A.4)
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Multiplying the terms and neglecting terms above first order with t − t′

we got the equations (2.30) and (2.31).
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Appendix B

Retarded Green’s Function

Solving the system composed by equations (2.69) and (2.70) we find
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Appendix C

Spin Orbit Coupling Induces
p-wave Superconductors

Here we will follow the paper from Alicea [70] to show the existence of px±ipy
pairing with opposite chirality for upper/lower bands.

The model considers an isolated zinc-blende semiconductor quantum well
grown along the (100) direction. Coupled to a ferromagnetic insulator whose
magnetization points perpendicular to the two-dimensional layer, that in-
duces a Zeeman interaction. We can summarize this problem in the following
Hamiltonian:

H = H0 +HZeeman +HSOC , (C.1)

with

H0 =
∑

k⃗

(
ϵkc

†
k⃗↑
ck⃗↑ + ϵkc

†
k⃗↓
ck⃗↓

)
, (C.2)

where k⃗ = (kx, ky) and k =
√

k2
x + k2

y, ϵk =
k2

2m−µ is the energy of an electron

and c(†)ij creates (annihilates) an electron with momentum i and spin j.

HZeeman =
∑

k⃗

h
(
c†
k⃗↑
ck⃗↑ − c†

k⃗↓
ck⃗↓

)
, (C.3)

where h is a magnetic field.

HSOC =
∑

k⃗

(
Vk⃗c

†
k⃗↑
ck⃗↓ + V ∗

k⃗
c†
k⃗↓
ck⃗↑

)
, (C.4)

where Vk⃗ = λke−iφk⃗ and φk⃗ = arctan(kx/ky).
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We can write Schrödinger equation for this problem in a matrix way

(
ϵk↑ Vk⃗

V ∗
k⃗

ϵk↓

)
ψ⃗ = Eψ̃, (C.5)

where ϵk↑,↓ = ϵk±h. We can calculate the eigenvalues E through the equation
det(H − EI) = 0, where I is the identity matrix. Doing this calculation we
find the excitation energies:

E± = ϵk ±
√

h2 + |Vk⃗|2. (C.6)

This same result is shown by Alicea [70] in equation (9).
Once we calculate the eigenvalues, it is also possible to find the eigenvec-

tors:

v⃗1 =
|Vk⃗|√(
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√

h2 + |Vk⃗|2
)2

+ |Vk⃗|2

(
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√

h2+|Vk⃗|2

V ∗
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1

)
(C.7)

and

v⃗2 =
|Vk⃗|√(
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√

h2 + |Vk⃗|2
)2

+ |Vk⃗|2

(
1

−h+
√

h2+|Vk⃗|2

Vk⃗

)
. (C.8)

And this two eigenvectors constitute the matrix:

p =
|Vk⃗|√(
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√
h2 + |Vk⃗|2

)2
+ |Vk⃗|2

⎛
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1
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k⃗

−h+
√

h2+|Vk⃗|2

Vk⃗
1

⎞

⎟⎠ . (C.9)

The procedure done is necessary to find a set of basis that diagonalize
the Hamiltonian H0 +HZeeman. The last step is calculate:

(
ψ+(k⃗)

ψ−(k⃗)

)
= p−1

(
ck⃗↑
ck⃗↓

)
, (C.10)

where

ψ+(k⃗) = f+(k⃗)

(
1
0

)
, (C.11)

ψ−(k⃗) = f−(k⃗)

(
0
1

)
(C.12)
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and p−1 is the matrix inverse of p, such as,

p−1 =

(
ak⃗ −b∗

k⃗
bk⃗ ak⃗

)
, (C.13)

with

ak⃗ ≡
|Vk⃗|√(

h+
√
h2 + |Vk⃗|2

)2
+ |Vk⃗|2

(C.14)

and

bk⃗ ≡
|Vk⃗|

(
h+

√
h2 + |Vk⃗|2

)

Vk⃗

√(
h+

√
h2 + |Vk⃗|2

)2
+ |Vk⃗|2

. (C.15)

Equation (C.10) can be write now as
(
ψ+(k⃗)

ψ−(k⃗)

)
=

(
ak⃗ −b∗

k⃗
bk⃗ ak⃗

)(
ck⃗↑
ck⃗↓

)
. (C.16)

Thus

ck↑ =
ak⃗

a2
k⃗
+ |bk⃗|2

ψ+(k⃗) +
b∗
k⃗

a2
k⃗
+ |bk⃗|2

ψ−(k⃗)

ck↓ =
ak⃗

a2
k⃗
+ |bk⃗|2

ψ−(k⃗)−
bk⃗

a2
k⃗
+ |bk⃗|2

ψ+(k⃗).

Notice that,

a2
k⃗
+ |bk⃗|

2 =
|Vk⃗|2(

h+
√

h2 + |Vk⃗|2
)2

+ |Vk⃗|2
+

|Vk⃗|2
(
h+

√
h2 + |Vk⃗|2

)

|Vk⃗|2
[(
h+

√
h2 + |Vk⃗|2

)2
+ |Vk⃗|2

]

= 1.

So

ck↑ = ak⃗ψ+(k⃗) + b∗
k⃗
ψ−(k⃗)

ck↓ = ak⃗ψ−(k⃗)− bk⃗ψ+(k⃗). (C.17)

Alicea considers that the semiconductor comes into contact with an s-
wave superconductor. Now the Hamiltonian is

H ′ = H0 +HZeeman +HSC , (C.18)
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where

HSC =
∑

k

∆ (c−k↓ck↑ +H.c.) . (C.19)

We can write the Hamiltonian of the superconductor using (C.17):

∆
(
a−k⃗ψ−(−k⃗)− b−k⃗ψ+(−k⃗)

)(
ak⃗ψ+(k⃗) + b∗

k⃗
ψ−(k⃗)

)
=

∆
(
a−⃗kak⃗ψ−(−k⃗)ψ+(k⃗)−b−⃗kak⃗ψ+(−⃗k)ψ+(k⃗)−b−⃗kb

∗
k⃗
ψ+(−⃗k)ψ−(k⃗)+a−k⃗b

∗
k⃗
ψ−(−⃗k)ψ−(k⃗)

)
.

(C.20)

Consider k⃗ → −k⃗

∆
(
−bk⃗a−k⃗ψ+(k⃗)ψ+(−k⃗) +ak⃗b

∗
−k⃗
ψ−(⃗k)ψ−(−k⃗)−

(
a−k⃗ak⃗ + bk⃗b

∗
−k⃗

)
ψ+(⃗k)ψ−(−k⃗)

)
,

(C.21)

where we use the property: ψ−(−k⃗)ψ+(k⃗) = −ψ+(k⃗)ψ−(−k⃗).

y

x

-ky

!k

!-k kx-kx

ky

Figure C.1: Schematic picture of how k-inversion affects φ.

Before calculating the coefficients in the new base, we analyze Vk. Look
at Figure (C.1), we can conclude that φ−k⃗ = φk⃗. However when we do

k⃗ → −k⃗ the system acquires a π-phase difference. So Vk⃗ has a character
anti-symmetric, such as, V−k⃗ = −Vk⃗.

Returning to the calculation we can write

−bk⃗a−k⃗ = −
V ∗
k⃗

2
√
h2 + |Vk⃗|2

= − λk

2
√
h2 + (λk)2

eiφk⃗ (C.22)
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ak⃗b
∗
−k⃗

=
V−k⃗

2
√
h2 + |Vk⃗|2

= − λk

2
√

h2 + (λk)2
e−iφk⃗ . (C.23)

The last coefficient is

−
(
a−k⃗ak⃗ + bk⃗b

∗
−k⃗

)
=

h√
h2 + |Vk⃗|2

=
h√

h2 + (λk)2
(C.24)

Using the notation from Alicea:

fp(k) ≡ − λk

2
√

h2 + (λk)2
(C.25)

and

fs(k) ≡
h√

h2 + (λk)2
, (C.26)

that only depends of k =
√
k2
x + k2

y.
Finally, equation (C.19) can be written as

HSC =
∑

k

(
∆++(k⃗)ψ+(k⃗)ψ+(−k⃗) +∆−−(k⃗)ψ−(k⃗)ψ−(−k⃗)+

+ ∆+−(k)ψ+(k⃗)ψ−(−k⃗) +H.c.
)
, (C.27)

where

∆++(k⃗) = fp(k)∆eiφk⃗ (C.28)

∆−−(k⃗) = fp(k)∆e−iφk⃗ (C.29)

∆+−(k) = fs(k)∆. (C.30)

The ∆++(k⃗) and ∆−−(k⃗) are generated via proximity effect and have
px ± ipy paring with opposite chirality for upper/lower bands.
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Appendix D

List of Publications

• Fernanda Deus, Alexis R. Hernández and Mucio A. Continentino,
Adiabatic charge and spin pumping through interacting quantum dots,
J. Phys.: Condens. Matter 24, 356001 (2012).

• Fernanda Deus and Mucio A. Continentino, Superconductor-normal
metal quantum phase transition in dissipative and non-equilibrium sys-
tems, Philosophical Magazine 93, 3062-3080 (2013).

• Mucio A. Continentino, Fernanda Deus, Igor T. Padilha and Heron
Caldas, Topological transitions in multi-band superconductors, Annals
of Physics 348, 1-14 (2014).

• Mucio A. Continentino, Fernanda Deus and Heron Caldas, Renor-
malization group appoach to a p-wave superconducting model, Physics
Letters A 378, 1561-1565 (2014).
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