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Resumo

A radiagdo Hawking é um fenémeno que conecta a Relatividade Geral e a Mecénica
Quantica. Embora sua extrema fraqueza torne sua detecgao direta desafiadora, ela tem
gerado debates profundos sobre a compatibilidade entre essas duas teorias. Um exemplo
¢ o conhecido paradoxo da perda de informacao, onde um sistema quantico em um
espaco-tempo de buraco negro parece evoluir de um estado puro para um estado misto,
aparentemente apagando a informacao inicial contida nesse sistema. Uma suspeita é que
essa informacao nao é de fato perdida, mas sim codificada na radiacdo Hawking - o que

motiva estudos aprofundados sobre correlacoes quanticas em espagos-tempo curvos.

Duas abordagens principais tém sido utilizadas para investigar campos quanticos em
espacos-tempo curvos: A analise direta das fungoes de dois pontos do campo e o método
indireto de colheita de emaranhamento (entanglement harvesting), onde pares de detectores
extraem emaranhamento pré-existente do campo. Embora ambos os métodos tenham
produzido resultados significativos no espago-tempo de Schwarzschild (141)D - revelando
assinaturas da radiagao Hawking em correlagoes momento-momento e demonstrando a
possibilidade de colheita de emaranhamento através do horizonte - resultados semelhantes

em (3+1)D permanecem escassos, com excec¢ao do nosso trabalho publicado [IJ.

Esta tese contribui para preencher essa lacuna através de um estudo abrangente das corre-
lagoes quanticas nos vacuos de Boulware, Unruh e Hartle-Hawking de um campo escalar
sem massa no espago-tempo de Schwarzschild (3+1)D. Desenvolvemos e implementamos
um esquema numérico novo para calcular fun¢oes de Wightman de forma eficiente, obtendo
avancos significativos: (1) a revelagdo de uma estrutura de singularidade 2-fold na parte
real da fungao de Wightman em pontos causticos; (2) a identificagdo de uma assinatura
distinta (um comportamento degrau seguido de um minimo local) que pode representar a
impressao digital das correlagoes da radiagdo Hawking em (3+1)D; e (3) a descoberta de
singularidades previamente desconhecidas escondidas na fungdo de Wightman. Além disso,
demonstramos que o fenémeno de colheita de emaranhamento é amplificado préximo a
pontos causticos, permitindo que mesmo detectores separados por intervalos do tipo tempo
adquiram emaranhamento predominantemente através da colheita [I] - em contraste com
o caso (14+1)D. Esses resultados estabelecem ferramentas e ideias relevantes para futuros

estudos de campos quanticos no espago-tempo de Schwarzschild (3+1)D.

Palavras-chave: Radiagao Hawking, Buracos negros, Relatividade Geral, Emaranhamento.



Abstract

Hawking radiation is a phenomenon linking General relativity and Quantum mechanics.
While its extreme weakness makes direct detection challenging, it has sparked enduring
debates about the compatibility between Quantum mechanics and General relativity. An
example is the known information loss puzzle, where a quantum system on a black hole
spacetime seems to evolve from a pure state into a mixed state, effectively erasing the
initial information encoded in the quantum system. A suspicion is that such information
is not erased, but encoded in Hawking radiation instead. This motivates a deeper study of

quantum correlations in curved spacetimes.

Two principal approaches have emerged for such investigations in quantum fields on curved
spacetimes: direct analysis of the field’s two-point functions, and indirect probing via
entanglement harvesting — where detector pairs extract preexisting entanglement from
the field. While both methods have yielded significant insights in (1+1)D Schwarzschild
spacetime, demonstrating Hawking radiation signatures in momentum-momentum corre-
lators and horizon-crossing entanglement harvesting, comparable (3+1)D results remain

scarce beyond our published work [I].

This thesis helps bridging this gap through a comprehensive study of quantum correla-
tions in the Boulware, Unruh, and Hartle-Hawking vacua of a massless scalar field on
(3+1)D Schwarzschild spacetime. We develop and implement a novel numerical scheme
to compute Wightman functions efficiently, allowing several key advances: (1) revelation
of a 2-fold singularity structure in the Wightman function’s real part at caustic points,
(2) identification of a distinctive step-like feature followed by a local minimum — a pos-
sible (34-1)D imprint of Hawking radiation correlations, and (3) discovery of previously
unknown non-light-crossing singularities hidden in the Wightman function. Furthermore,
we demonstrate that entanglement harvesting is amplified near caustics, allowing for
timelike-separated detectors to acquire entanglement predominantly by harvesting from
the background field [1], in constrast to the (141)D case. These results establish relevant
tools and insights for, but not limited to, future studies of correlations in quantum fields
the (3-+1)D Schwarzschild spacetime.

Keywords: Hawking radiation, Black holes, General relativity, Entanglement.
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1 Introduction

Hawking’s paper [2] can be considered as the beginning of a scientific snowball that has
been rolling for the last 50 years. In it is the prediction that black holes emit thermal
radiation, which still strongly echoes in the community due to its developments.

From an experimental point of view, measuring Hawking radiation is challenging due
to its weakness: A Schwarzschild black hole of mass M would emit radiation equivalent to
that of a black body with temperature [2]

he?

T = S G (1.1)
where ¢ is the speed of light in vacuum, A is the reduced Planck constant, G is the
gravitational constant and kg is the Boltzmann constant. For the amusement of the reader,
this expression yields a temperature of ~ 10~7K which is seven orders of magnitude
below the cosmic microwave background temperature [3]. To the best of our knowledge
Hawking radiation has not yet been measured. However there are recent experimental
proposals to perform indirect measurements [4, [5]. Despite being extremely challenging,
a measurement that either confirms or dispute Hawking radiation from a gravitational
black hole can have far reaching consequences in the current understanding of quantum
gravity. For instance, a measurement that dispute Hawking radiation would imply that
the semi-classical approximation is not correct (or at least not consistent). This relates to
the significance of that phenomenon from the theoretical point of view.

From that point of view, the existence of Hawking radiation provides a mechanism
to subsidize the relation between black holes and thermodynamics formulated by Beken-
stein [6]. That is because until the prediction of Hawking radiation there was no known
phenomena to explain how black holes could emit radiation of any kind. Beyond that,
Hawking radiation is a quantum phenomenon which suggests that the entropy associated
to black holes is of quantum nature. Hence, in the absence of a complete quantum theory of
gravity, probing Hawking radiation represents a method to obtain insights into a possible
quantum nature of gravity.

An important development in that direction is the so-called information loss puzzle [7],
where a seemingly inconsistency between Quantum Mechanics and General Relativity is
brought into to the spotlight. It stems from the observation that on a black hole spacetime,
a quantum system evolves from a pure state into a mixed state due to the thermal radiation
emitted by the black hole. Hence, to advance in its understanding also provides a path
to insights into a possible quantum nature of gravity. Recent reviews on this issue are
available in [8] and [9].

To proceed in that direction, a possibility is to study the distribution and propagation

of correlations in a given state of a quantum field on a black hole spacetime. Within the
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scope of the semi-classical framework, where the gravitational field is not quantized, there
are two promising approaches to that issue: A direct one where one tries to learn about
these correlations from the field’s 2-point functions and an indirect one, where one uses
another quantum system as a probe for these correlations.

Using the first approach, [10, 11] showed that the field-field correlator (a two-point
function known as the Wightman function) of a quantum scalar field on a (141)D
Schwarzschild spacetime presents no clear signature of the correlations across the horizon.
On the other hand, they conclude that there is a signature of correlations across the horizon
in the form of a local maxima in the momentum-momentum correlator, that they attribute
to Hawking radiation. The same kind of signature also manifests as a local maximum in the
field energy density measured by freely-falling observers in opposite sides of the horizon [12].
This was experimentally verified for analogue black holes [13, 14, [15] [16] 17, 18]. Up to the
publication of this thesis, there were, to the best of our knowledge, no analogous results
regarding the Wightman function for the (3+1)D Schwarzschild spacetime.

Regarding the second approach, a common theoretical experiment consists in evaluating
the amount of entanglement acquired by two initially uncorrelated Unruh-DeWitt detectors
(2-level quantum systems) after interacting with the background quantum field in a given
state. By using the criteria from [19] one can assess if the acquired entanglement results from
communication between the detectors mediated by the field or from extracting preexisting
entanglement from the field. The second is known as entanglement harvesting [20, 21].
Hence, by studying the configurations that allow the detectors to harvest entanglement,
one can attest the existence of preexisting entanglement in the background field.

That method was used to study a massless quantum scalar field on the (1+1)D
Schwarzschild spacetime [22, 23], 24] and showed that it is possible to harvest entanglement
when both detectors are outside the horizon or on opposite sides of it. To the best of
our knowledge, the only result about harvesting in (3+1)D Schwarzschild is our work [1],
where we showed that detectors placed outside the horizon at antipodal points can acquire
entanglement predominantly by harvesting from the background field, even when the
detectors are timelike separated. This is in contrast to the results for (1+1)D, where the
entanglement acquired by timelike separated detectors is predominantly due to causal
communication through the field. This is an example that illustrates how the (3+1)D case
brings with it a richer correlation structure.

In this thesis the main object of study are the correlations in a massless quantum
scalar field on a (3+1)D Schwarzschild spacetime. The objective is to advance the current
understanding about how correlations are distributed and propagate within that quantum
field in scenarios with and without Hawking radiation. For that end, we use the semi-
classical framework to computed the Wightman function of that quantum scalar field
for the Boulware, Unruh and Hartle-Hawking states by using state-of-the-art numerical

methods. In addition, we employ the methods developed here to study entanglement
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harvesting outside the horizon of a (3+1)D Schwarzschild black hole.

This thesis is organized as follows: In Chapter [2] we provide an introduction to the
Schwarzschild spacetime and the coordinate systems that will be used throughout the text.
This is followed by a summary of the geodesic equations for null geodesics and an analysis
of their different behaviors.

In Chapter |3| we introduce the semi-classical framework and construct the massless
quantum scalar field é that will be used throughout this thesis using the formulation
in [25]. We then construct the Boulware, Unruh and Hartle-Hawking states, which we will
analyze in the course of this work. In the next step, we introduce the Wightman function
and present its relations with the advanced, retarded and Feynman Green functions as well
as its 4-fold singularity structure. Finally, we consider three setups: Both points outside de
horizon, both points inside the horizon, and points at opposite sides of the horizon. In each
of these, we present a derivation for the Wightman function in the Boulware (only in the
first setup), Unruh and Hartle-Hawking states for the (1+1)D and (3+1)D Schwarzschild
spacetimes.

In Chapter [4] we present the definitions of the radial Eddington-Finkelstein field modes
that are used to reconstruct the Boulware, Unruh and Hartle-Hawking states. To compute
them, we use the Jaffé series for the ingoing modes, the Frobenius series for the inside
modes and the numerical solution to the upgoing modes implemented in the Black Hole
Perturbation Toolkit [26]. With exception of the reflection amplitudes for the ingoing
and upgoing modes which were computed via Wronskian relations, all other scattering
amplitudes were obtained from the data of [27]. This is followed by a comprehensive
study of the reliability and self-consistence of the numerical results obtained in these
computations.

Chapter [9| is the largest one and contains our novel results about the Wightman
function of ¢ on a (34+1)D Schwarzschild spacetime. In its first part we construct the
numerical method and smoothing schemes used to compute that Wightman function. In
it, we also include commentaries on the limitations and possible improvements for that
method. We finish this part by reproducing known results for the Retarded Green Function
using our method. In the second part we present our results for the case when both points
are outside the horizon. The first is the Wightman function for ¢ in the Boulware, Unruh
and Hartle-Hawking states, with one point x fixed outside the horizon and another point x’
varying outside. The second one is the difference between the Wightman function for gg in
the Unruh and Hartle-Hawking states and the Wightman function for (/5 in the Boulware
state. The final result of the second part of this chapter is the Wightman function for ngS in
the Unruh and Hartle-Hawking states, with one point x fixed inside and x’ varying outside
the horizon. In the third and last part of this chapter, we consider a decomposition of the
Wightman function as a sum of two terms, one depending only on ingoing and another

on upgoing modes. We then consider two points x and x” are on the same r-coordinate
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outside the horizon. In that setup, we analyze how changing the value of r affects each
of those terms. With that we revealed, for the first time, the singularity structure of the
real part of the Wightman function for points on caustics, found a novel structure in the
Wightman Function that seems to be a signature of correlations between points on opposite
sides of the horizon carried by Hawking radiation and unveiled novel non-light-crossing
singularities hidden within the Wightman function.

In Chapter @ we study entanglement harvesting from ¢ on the (34+1)D Schwarzschild
spacetime. For that end, we consider, two initially uncorrelated and identical Unruh-
DeWitt detectors positioned at antipodal points of the black-hole. To quantify the resulting
entanglement between the detectors, we computed the negativity of their joint-state. To
leading order, it depends, up to properties of the detectors, on an integral of the Wightman
function of gg This allowed us to apply the method from Chapter |5 to evaluate these
integrals, and hence, the negativity of the joint-state of the detectors. The difference is that
here the smoothing function was prescribed by the physical setup. To obtain the results,
we considered detectors placed at different radial positions (always on antipodal points
around the horizon) and time intervals between the moments when they are maximally
turned on. The resulting work is published in [I] with my supervisor, Marc Casals, in
collaboration with Robert Jonsson, Achim Kempf and Eduardo-Martin-Martinez. Our key
finding here is that when placed on caustic points, the harvesting capacity of the detectors
is amplified to the point where it dominates the acquired entanglement even when these
detectors are timelike separated.

Unless explicitly stated otherwise, we will use geometrized units c=G=h=kg =1

and assume Einstein convention for summation over repeated indices throughout the text.
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2 The Schwarzschild spacetime

Throughout this chapter, general considerations about the Schwarzschild spacetime are
presented to introduce notation, fix conventions, and ensure partial self-containment for
this thesis. For an in-depth and mathematically rigorous exploration of this topic, see [25];
for a concise introduction with fewer technical details, [28] is recommended.

The exposition is structured as follows: Section presents the maximally extended
Schwarzschild spacetime and the Kruskal-Szekeres (KS) coordinates. Section [2.2|introduces
the Schwarzschild-Droste (SD) and Eddington-Finkelstein (EF) coordinate systems. Finally,
Section derives the conserved quantities associated with motion in this spacetime and

constructs the corresponding geodesic equations.

2.1 The Maximal extension

The maximally extended Schwarzschild spacetime is a 4-dimensional manifold equipped
with a metric g that is a vacuum solution to Einstein’s equations in (341) dimensions. In
Kruskal-Szekeres (KS) coordinates

(U V,0,0), UER, VER, 0€(0,7], p€l0,2r), (2.1)

it takes the form [25]

32M3
r

ds® =

PN AU AV + 12 (67 + sin®(6) dg?) (2.2)

Here, M denotes the black-hole mass, and r is implicitly defined as a function of U and V/

Via

UV = (1 - :) e/, (2.3)

where ry = 2M is the Schwarzschild radius.

As usual, a vector V of the tangent space to G at a point x € & is classified as: timelike
if g(V,V) < 0, null if g(V,V) = 0 and spacelike if g(V, V) > 0.

The conformal (Penrose-Carter) diagram of & is shown in Figure[I] Its construction is
well documented, with detailed treatments available in [29, Section 5.1.3] and [25] Section
6.4]. In this diagram, & is partitioned into four causal patches (I-1V). The asymptotic

regions are given by the union:
i Uiz Ui% U I USE Uit Ui Uit U U,

where the components are defined in terms of Kruskal-Szekeres (KS) coordinates in Table[l]
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iy r=20 Ip

Figure 1 — Penrose-Carter conformal diagram for the maximally extended Schwarzschild
spacetime. In this illustration, thin lines and circles are part of the boundary
S of the spacetime manifold while thick lines are part of the spacetime. The
thin dashed horizontal lines represent the singularities at » = 0, the thick lines
represent the horizons Hﬁ L the thin lines represent the null infinities fét/ L

and the circles represent the spacelike i% /L and timelike i}iz /L infinities. Regions
[-IV correspond to distinct causal patches of the spacetime.

Alongside the asymptotic infinities, the horizons
HiEUHz UHT UHE,

located at r = r; = 2M, and the curvature singularities at » = 0 are also represented in
the conformal diagram. Their definitions in terms of Kruskal-Szekeres (KS) coordinates
are summarized in Table 2| For a matter of convenience, the convention adopted in this
text is different from the one in [29], which refers to H} U H; as the event horizon H*
and to H} UH] as the past horizon H .

Finally, the definition of regions I-IV, in terms of KS coordinates is presented in
table [3]

While the KS coordinates are globally regular (non-singular) across &, the numerical
methods developed in Chapter [dto compute radial modes of a scalar field rely on Eddington-
Finkelstein ( EF) coordinates. This choice stems from the advantageous separability of
the field equations in EF coordinates, as detailed in Section [4.1] To establish the basis of
this framework, we introduce both EF and Schwarzschild-Droste (SD) coordinates in the

following section.
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Region Name Symbol Set

Future timelike infinity i% {x€ed&; V—=00,U—0_}

Future null infinity I4 {xed&;V - oo, U <0}

I Spacelike infinity i% {xed&;V—-00,U=-V}
Past null infinity I {x€eod6;V>0,U— —o0}
Past timelike infinity in {x€o6;V —=0;,U — —o0}

Future timelike infinity if {xed&; V—=0_,U— oo}

Future null infinity I {x€eods; V<0,U— oo}
I Spacelike infinity i {x€ed&;V — -0, U=-V}

Past null infinity I {x€ed6;V = —o0, U >0}

Past timelike infinity ir {x€06;V = -0, U — 0.}

Table 1 — The asymptotic infinities of the Schwarzschild spacetime. These are boundary
surfaces in the conformal compactification (not part of & itself), as illustrated
in figure . Specifically, the timelike iﬁ /L and spacelike % /L infinities are 3-
dimensional surfaces while the null infinities ., ;it/ ; are 3-dimensional null hyper-
surfaces. The definitions used here follow the conventions in [30, Section 5.1].

Region Name Symbol  Set
/ Future horizon ~ H} {x€&;V >0,U =0}
Past horizon Hp, {xe6;V=0,U<0}
I1 Singularity - {xe&;V>0,U0V=1}
I Future horizon ~ H} {xe&;V=0,U>0}
Past horizon H, {xe6;V<0,U=0}
A% Singularity - {xe6; V<0,UV=1}

Table 2 — The horizons and singularities of the Maximally extended Schwarzschild space-
time are presented in terms of KS-coordinates. The singularities are spacelike
hypersurfaces at » = 0 and the horizons are null hypersurfaces at r = r, defined
by U = 0 or V = 0 in KS-coordinates. The definitions used here follow the
conventions in [30), Section 5.1].
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Region Name Set
I Universe {xe&; V>0 U<0}
IT1 Black hole {xe&;V>0,U>0}
I1I  Parallel Universe {x€ &;V <0,U > 0}
IV White hole {xe6;V<0,U<0}

Table 3 — Definitions of the universe, black hole, parallel universe and white hole regions
of the maximally extended Schwarzschild spacetime in terms of KS coordiantes.

2.2 The Schwarzschild-Droste ( SD) and Eddington-Finkelstein
(EF) coordinates

Standard general relativity textbooks (e.g., [25, 31]) typically introduce SD-coordinates first,
followed by the maximal extension of the Schwarzschild spacetime using KS-coordinates,
with Eddington-Finkelstein (EF) coordinates appearing as intermediate tools. However,
SD and EF coordinates are not globally defined on &; covering the entire spacetime
requires four distinct coordinate patches of either system. To emphasize this limitation,
this work reverses the traditional order: Section begins with the singularity-free KS
coordinates, which are globally valid. We now turn to the SD and EF-coordinates. The
angular coordinates (6, ¢) are identical across KS, EF, and SD systems. For brevity, these
will be omitted in subsequent equations where no ambiguity arises

From the KS coordinates (U, V'), we define four coordinates u, u,v,v € R and construct
four patches of EF-coordinates that together cover &, as presented in table 4 When
expressed in EF-coordinates, the line element in region I takes the form

ds* = —f(r) dudv + 7 <d92 + sin?(0) dgpQ) : (2.4)

where f(r) = (1 — %) In regions I1-1V the metric can be obtained by substituting
du — du and dv — dv as needed, preserving the structure of across all patches.

To visualize the relationship between EF and KS-coordinates, Figure [2| illustrates their
axes on the conformal diagram of &. This diagram clarifies how the EF coordinates extend
across the horizons (r = ry) in each region. Specifically, coordinates v and v are continuous
across [ U Il and I'11 U IV, respectively; u and u similarly span T U IV and ITUIII.

We now turn to the SD-coordinates. As an accessory, we define an implicit function 7,

of (U, V) such that
dr, re\ !
=(1—-— 2.5
dr ( r ) ’ (2:5)

known as the tortoise-coordinate. This equation admits two distinct solutions: One for

r > r, that will be called r, and another for r < r, which will be referred to as 7..
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Covered region EF coordinates Definition
U= —e 4/ (2rs)
1 (u,v)
V = ev/(2rs)
[ — e/(2r)
I (u,v)
V = ev/(27‘3)
U = eﬂ/(2rs)
117 (u,v)
V = —e0/(2rs)
U = _e—u/(2r5)
v (u,v)
V = —e0/(2rs)

Table 4 — The four EF-coordinate patches covering the maximally extended Schwarzschild
spacetime are defined via KS-coordinates. Regions -1V correspond to those
in the conformal diagram in Fig. |1, We adopted the same convention as [32]
Section II.A] to define the EF-coordinates.

Figure 2 — Penrose-Carter conformal diagram for the maximally extended Schwarzschild
spacetime, showing the coordinate axes of Kruskal-Szekeres (KS) and Eddington-
Finkelstein (EF) coordinates.
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Covered region SD coordinates Definition
u = t[ — TurI
] (777 t[)
V=11 + Ty
U=t — Ter
I7 (rrrstin)
V=111 + Turr
U =171 — Ts111
I (rrerstoen) B
U =1r11 + TurIrI
u=try —Tv
A% (rrv,trv)

v =1y + rav

Table 5 — The four patches of Schwarzschild-Droste (SD) coordinates covering & are
defined in terms of Eddington-Finkelstein (EF) coordinates.

Explicitly, these solutions are

r*zr+rsln<r—1>,r>rs (2.6)
Ts

and
r*:r+r51n<1—r),7“<7’57 (2.7)

TS
where the integration constant has been set to zero for simplicity.

While many texts combine these cases using an absolute value inside the logarithm
(e.g., re = 7+ rsInf;- — 1]), this convention obscures the lack of bijectivity between
r, and r. Specifically, the absolute value renders the function non-invertible: distinct r
values (e.g., 7 > ry and r < r5) map to overlapping regions of r,, complicating coordinate
transformations. By separating the solutions into r, (exterior) and 7, (interior), we preserve
invertibility and maintain clarity in subsequent analyses.

Using the tortoise coordinate 7, (and its interior counterpart 7, defined in (2.6)-(2.7)),
we construct four SD-coordinate patches covering &. Each patch comprises a radial
coordinate r, € R>g and a time coordinate ¢, € R, where o € {I, 11, 111,1V} denotes the
spacetime region, together with the angular coordinates 6, . Specifically, rr,r; € (15, 00)
and r,rrv € (0,7)).

The explicit mappings between SD coordinates (t,,7,) and EF coordinates are sum-
marized in Table [5| where 7., and 7., are treated as functions of r,, ensuring invertibility
within their respective domains. In these coordinates, the line element in region [ takes
the form

ds* = —f(ry)dt;” + f(ry) "t dr® + 12 (d02 + sin®(9) dg02) : (2.8)

The expressions for the other regions can be obtained by substituting ¢; and r; by the ¢t and

r-coordinates of the desired region. For completeness, the lines of constant ¢, and r,, where
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Figure 3 — Penrose-Carter conformal diagram of the Schwarzschild spacetime. The lines of
constant t; 7 rr7,rv are the thin dashed lines and the arrowheads point towards
increasing 77 77777, 7v- The lines of constant r; ;7 777 v are the thin lines with
arrowheads indicating the direction of increasing ¢7 17 rrr,rv-

a € {I,I1,I11,1V}, are represented on a conformal diagram in figure . Throughout the
text the label indicating which region a given SD-coordinate describes will be suppressed

whenever no ambiguity arises.

2.3 Geodesics in Schwarzschild spacetime

Let V be a covariant derivative on &. A geodesic is defined as a curve v : R — &,

parametrized by b € R, such that its tangent vector ¥ = % obeys
VA = o, (2.)

for some scalar o € R. It is always possible to re-parametrize v by a parameter A € R in
such a way that
YV, = 0. (2.10)
In this case, A is called an affine-parameter. Following [25 Section 3.3], we define this
expression as the geodesic equation.
In an arbitrary coordinate system {z®} with o € {0,1,2,3}, the components of the
geodesic equation ([2.10]) are
d2z+ dz® da?
Ho——=0 2.11
o ey Y (2.11)
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where Fgﬁ are the Christoffel symbols which depend upon the choice of the covariant
derivative.

By [25] Theorem 3.1.1], there exists a unique choice of covariant derivative such that
V,8as = 0. (2.12)

This equation is known as the metric compatibility condition and uniquely determines the
Christoffel symbols

1 v
Fos = 58" (0a8us + O8ar — Ou8as) (2.13)

where 0,, = 9/0z®. Until the end of this thesis, this choice of covariant derivative operator
is assumed.

The geodesic equations on & constitute a system of four coupled second order differential
equations with solutions determined by eight boundary conditions. Due to the curvature
of & the uniqueness of a geodesic connecting two points x4 and xp of & is guaranteed only
when xp lies within x4’s normal neighborhood N (x4) - a region where every xz € N (x4)
is linked to x4 by a unique geodesic entirely contained in N (x4).

The symmetries of & yield four Killing vector fields, which imply four conserved

quantities along geodesics. Expressed in SD-coordinates for region I,
€ = O, (2.14)

is a Killing vector field that is timelike when r > r, and spacelike when r < r,. It reflects

the t-coordinate translation symmetry of &.

—

€, =0,, £, =-sin(p)dp+cot(f)cos(p)d, and &, = cos(p)dy—-cot(f)sin(y)d,, (2.15)

are spacelike Killing vector fields, which reflect the spherical symmetry of &. In the notation
adopted, the subscripts £, ¢, a, b label distinct Killing vectors, not tensor components. For
example, the py-component of &; is denoted (g,)*.

Each Killing vector £ yields a quantity n = e#, that is conserved along a geodesic

affinely parametrized by A € R. In &, they are

m= (@05 = 1) 35 (2.16)
Ny = (e4)", = r? sin(9)2jf, (2.17)
Na = (a)'Y, = 17 (sin(go)ji + cos(y) sin(6) cos(@)jf) (2.18)
and
m = (b)), = r° (cos(gp)j/e\ — sin(¢y) sin(6) sin(@)jf) : (2.19)

In addition to these quantities, by using equation (2.9) one can show that

€ = 44" = —f(r) (;1;)2 + f(r)7! (j:)z +1? (ji)Q +r?sin(6)? (?;)2 (2.20)
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is also conserved along . On a timelike (spacelike) geodesic one can always choose the
proper time (length) as the affine-parameter to get ¥ = —1(+41). On a null geodesic 7, is

a null vector by definition, hence € = 0.

2.3.1 The geodesic equations in Ingoing and Outgoing Eddington-Finkelstein

coordinates

Due to the spherical symmetry of & the study of geodesics can be confined to the § = 7/2
plane without loss of generality. Below the geodesic equations in Ingoing Eddington-
Finkelstein (IEF) and Outgoing Eddington-Finkelstein (OEF) coordinates are derived,

emphasizing their utility for trajectories crossing horizons.

2.3.1.1 Ingoing Eddington-Finkelstein (IEF) Coordinates

For geodesics traveling from the universe (region ) into the black hole (region IT) the
IEF-coordinates offer a convenient description due to its regularity across I U I1. In
this region, these coordinates consist in a combination of the EF-coordinate v with the
SD-coordinate r. Therefore, the IEF coordinates in I U IT are (v, 7,0, ¢).

In these coordinates, the conserved quantities (2.16]), (2.17) and (2.20)) are

dv dr
M = —f(T)a v (2.21)
Ny = 7“23(’)0\ and (2.22)
dv\? dv dr dep 2
— kel iy B 2.2
“=-I) <d)\> o T (d/\> (2.23)
Substituting these into the geodesic equations (2.11)) yields
oo (do\ o1,
a2 o2 \ax) Tl T
P or (02 N2
Ero s (1) el _ g (2.24)
d\? * 2r2 ( r2 f(r) r3
Lo 2drdp
dX?  rdAdh

2.3.1.2 Outgoing Eddington-Finkelstein (OEF) Coordinates

For geodesics traveling from the universe (region I) into the black hole (region /1) the
IEF-coordinates offer a convenient description due to its regularity across I U I1. In
this region, these coordinates consist in a combination of the EF-coordinate v with the
SD-coordinate r. Therefore, the IEF coordinates in I U IT are (v, 7,6, ¢).

For geodesics escaping the white hole (region V') into the universe (region ), the

OEF-coordinates are employed due to their regularity across IV U I. In this region, it
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consists in a combination of the EF-coordinate u with the SD-coordinate r. Hence, the
OEF coordinates in IV U I are (u,r,0,¢).

In these coordinates, the conserved quantities (2.16[), (2.17) and (2.20)) are

du dr
_ _ 2.2
de
,'790 = 7"25 and (226)
du)\?  _dudr o (dp 2
€ =—f(r) (dA> —2 (dA> . (2.27)

Substituting these into the geodesic equations ([2.11]) results in

@_Ts % 2_|_i 20
a2 22 \ax) Tl T

drors (0,2 N, (2.28)
Ry (w“g —Jr)s =0

Fo  2drde

a2 rdvay

2.3.2 The different behaviors of null geodesics

To characterize the behavior of the null geodesics in Schwarzschild, we use Equations ([2.16)), (2.17))
and (2.20) as in [33, Equation (5)] to write

> (dr 2+(1—r8)"§> (2.29)
L WD r/) r?’ ’

where A is an affine parameter. From this equation we can read the effective potential for

the r-coordinate of the null geodesics as

Vir) = (1 - T) s (2.30)

A plot of this effective potential is presented in Figure [4] It has a single local maxima of
24;7—}2 at r = 3ry/2 = 3M, a region known as the photonsphere, where there exists circular
nulsl geodesics. For the sake of simplicity, we define the impact parameter € = 7, /n;.

For the purpose of this thesis, we are interested in the null geodesics that are launched
from the horizon (r = ry) towards infinity (r — oo) or from infinity towards the singularity.

In both cases, equation ([2.29) implies that the effective potential at these points is zero

2 2
dr2 _ 2 L : . Ang 2 Ang _ o
and 51~ = n;. We now divide the further analyses in a three sub-cases: sz < gz = 1
d 41 2
an W > ng -

an? . .
The first case, 27"—:’2 < n?, can be re-stated in terms of the impact parameter as

g? < 27r2/4. When this condition is fulfilled, the the null geodesics launched from the
horizon do reach infinity and those launched from infinity ends up at the singularity. Hence,

in this case there is no turning point. In Figure [4] this is depicted by the yellow region.
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27r2

Figure 4 — The effective potential V' (r) (Equation ([2.30])) for the null geodesics. The value
2

of the peak (;7%) as well as its location (r = 3M) are marked by dashed lines.
The effective potential is zero at the horizon r = r, and decays to zero as
r — 00. Inside the horizon it decays to —oo as » — 0. There are three shaded
regions in the plot. The yellow region is where the null geodesics launched
from r = r; (r — 00) can reach r — oo (r = r5). In the blue region, the null
geodesics launched from r = r, are confined between a turning point below the
photonsphere and the singularity. Hence, these null geodesics are recaptured by
the black hole. In the red region, the null geodesics launched from r — oo are
confined between a turning point above the photonsphere and r — oo, these
null geodesics escape to infinity. This effective potential shows that if a null
geodesic (with non-zero impact parameter) crosses the photonsphere, it will
never meet a turning point.

The second case, 24%?; = n? can be re-written as €2 = 27r2/4. In this the case, the null
geodesics launched from§the horizon and from infinity reach an unstable equilibrium point
at the photonsphere and becomes trapped. In Figure [4] this is the local maximum of the
effective potential.

The third case, ;:—T% > n?, can be cast as €2 > 27r2/4. In this case the null geodesics
launched from the horiszon meet a turning point below the photonsphere and are deflected
back to the singularity. Hence, these geodesics are trapped below the photonsphere. In
Figure 4] this is depicted as a blue region. On the other hand, the null geodesics launched
from infinity meet a turning point above the photonsphere and are deflected back to
infinity. In contrast to the null geodesics launched from the horizon, the ones launched

from infinity are trapped above thhe photonsphere. This is depicted by the red region in
Figure
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3 Quantum Field Theory on Schwarzschild

spacetime

This chapter develops the quantization of a massless scalar field on the Schwarzschild
spacetime and the construction of the Wightman function. While this material is well-
trodden in foundational texts [34] 25] 35], the presentation here is tailored to also embrace
readers with less experience in quantum field theory in curved spacetimes.

This chapter is structured as follows: Section [3.1]introduces the semi-classical framework.
Section 7?7 summarizes the process of quantization of a massless scalar field presented
n [34]. Section introduces the field modes with which we to construct the Boulware,
Unruh and Hartle-Hawking vacua. Finally, Section defines the Wightman function
and derives its expression for several setups in the (14+1)D and (3+1)D versions of the

Schwarzschild spacetime.

3.1 The semi-classical framework

To clarify the interplay between quantum matter and spacetime geometry, we temporarily
restore dimensional constants (A, G, ¢) in this section.
In the paradigm of Classical General Relativity (GR), the Einstein Field Equations

(EFE) describe the relation between matter and the spacetime:

G = %Tw, (3.1)

A
where
1
ij = R“y — §Rg“y (32)
is the Einstein tensor, R, is the Ricci tensor, R = T'r(R,,) is the scalar curvature and

I
/g g

is the matter stress-energy tensor derived from the matter field action S,,.

(3.3)

In the absence of a complete quantum theory of gravity, one can resort to the semi-
classical framework, where only the matter field is quantized. To implement it, T}, is
substituted by <w|TW|@/)>, the expectation value of the renormalized stress-energy tensor

of the quantum matter field in a quantum state |¢). This yields the semi-classical EFE

&G
Guv = A <

1/1|Tm/’¢> . (3.4)

In an ideal world, such equations would be solved self-consistently but this is a very

difficult problem both from a technical and a computational perspective as pointed out
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in [36, Chapter 1]. These difficulties are circumvented as follows: First, considering a fixed
background spacetime, one evaluates (@/}|Tw|w) With that result at hand, one can find the
first-order quantum corrected background metric by solving the semi-classical EFE with a
fixed (1|}, 1) that was evaluated in the previous step. This establishes the program of
Quantum Field Theory on Curved Spacetimes (QFTCS), which should offer a reasonable
approximation to describe quantum phenomena in regions where the curvature invariants
of the spacetime are small enough, such that effects from quantum gravity are negligible.

More precisely, for any curvature invariant R,

1
R —, (3.5)
gp
where (, = /"5 ~ 10735m is the Planck length. In Schwarzschild spacetime — the case of

interest in this thesis — this approximation is satisfied in any region sufficiently far from
the singularity at r = 0. This restriction can be understood by the r=% behavior of the
Krestchmann scalar, which makes it divergent at r = 0.

Even tough the semi-classical formalism is not a full quantum theory of gravity, it
produces important results. Two examples of such results are [37], where it was shown that
quantum effects predicted by this formalism are capable of dressing a naked singularity
in the (24+1)D anti-deSitter spacetime and [3§] where the authors show that quantum
effects within the semi-classical framework converts the Cauchy horizon inside the Reissner-
Nordstrom-deSitter black hole into a singularity, thus enforcing the strong cosmic censorship
hypothesis.

This thesis focuses on the first part of the semi-classical program, specifically studying
the correlations in the quantized matter field that arise from the quantization process on

a fixed spacetime background.

3.2 Quantum scalar field

To define a quantum scalar field on the Schwarzschild spacetime, we follow the construction
presented in [34]. We begin by considering a classical, minimally coupled free massless
scalar field ¢ described by the Klein-Gordon (KG) action, which plays the role of the
matter action S,, on the Schwarzschild spacetime. In an arbitrary coordinate system {z®}
with a € {0, 1,2, 3},

S = —; /6 dix /Z8g"V .6V . (3.6)

By applying the principle of least action, we obtain the usual massless KG equation
V,.Vtg =0. (3.7)

For a given set of smooth initial conditions on a Cauchy surface ¥ C &, the uniqueness of

the corresponding solution to the KG equation is guaranteed because the Schwarzschild
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spacetime is globally hyperbolic [30, Section 7.4]. The set of smooth, spatially compactly
supported solutions to the KG equation will be denoted by s.
Given two of its solutions ¢, o € s, it is straightforward to show that the quantity

Ju (@1, 92) = G1V 2 — 42V (3.8)

is such that V,j# = 0. Consequently, on any Cauchy surface X, the integral

/E A, = [ AT (91V,60 = 629,67). (3.9)

where dX# = n#*dX with n* being the unit normal to ¥ and d¥ its volume element, yields
the same result if j,, vanishes at spatial infinity. To see that, let 2 C & be a compact region
of the spacetime bounded by two Cauchy surfaces Y1, ¥y C & and a timelike hypersurface
A, at spatial infinity. Then

/Q d*x\/=gV . j" = (3.10)

since V,,j# = 0. On the other hand, by using Gauss’ theorem,
/ dix\/ =gV, j* = / A, = / sy, — / dsry, +/ dA¥5,. (3.11)
Q da 1 o Ao

The last integral is a boundary term that is zero because j, is assumed to vanish at spatial

infinity. Therefore,

/d4x\/_—gvuj”:O:/ dE“jﬂ—/ sy, (3.12)
Q ¥ Yo

Hence,
dZ‘u' ——/ dZ“' . 3.13
) ]u , Jp, ( )

Finally, we conclude that the result of the integral (3.9) is independent of the particular
choice of Cauchy surface over which it is evaluated, provided that j, vanishes at spatial

infinity. This motivates the definition of the so-called KG inner product:
(,):sxs5—C

(3.14)
(61,62) =1 [ d2* (6], — 62V,67)

which is sesquilinealﬂ and Hermitianﬂ. Notice that despite its name, the KG inner product
is not an inner product on s because it is not positive-definite, i.e., (¢, ¢) # 0V ¢ € s.

To circumvent this difficulty and construct a Hilbert space availing the structure of s,
we split it into two subspaces, 7 and s~ such that the KG inner product is positive-definite

in the first one and negative-definite in the second oneE|. Within this perspective, consider

Antilinear in the first entry and linear in the second one.
That is, symmetric under complex conjugation: (¢1, ¢2)* = (d2, ¢1).

3 Tt is important to remark that these subspaces are not unique.
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a choice of s and an orthonormal basis {u;};, where j is a generic multi-index, for it.
From the definition of the KG inner product (3.14)) it follows that

(uf,up) = — (uj,up)” (3.15)

Hence, the set {u}}; is an orthonormal basis of s~. Therefore, the subspace s~ is fixed by
the choice of 7. Moreover, every element of s is orthogonal to every element of s~ with
respect to the KG inner product.
The elements of 57 and s~ are referred to as positive- and negative-frequency solutions
(of the KG equation), respectively. The value of the frequency is defined with respect to
some vector E in the following sense: A solution ¢ € s is said to be of frequency w with
respect to E if
Led = —iwg, (3.16)

where 92”5 denotes the Lie derivative along 5 If w > 0, then ¢ is a positive-frequency
solution. Conversely, if w < 0, then ¢ is a negative-frequency solution.
With this construction, the space of solutions factors as s = s @ s~ and a solution

¢ € s to the KG equation can be decomposed as

QZS - §b+ + Qs_ = Z a;U;j + b]u;‘ (317)

J

where ¢* € 57, ¢ € 57, a; = (uy,¢) and b; = —(u},¢). In particular, for real-valued

solutions these coefficients satisfy b; = a} and the decomposition reads
o(x) = Z aju;(x) + aju;(x). (3.18)
J

With that, we quantize the real scalar field by following the canonical quantization

procedure of promoting the coefficients of the expansion ([3.18) to operators
aj — a; and a; — d}, (3.19)
such that the canonical commutation relations

[a;,a}] = 01, [a,a4] = 0 and [a],af] = 0 (3.20)

are obeyed. As usual, we will refer to a; as the annihilation operator and &; as the creation

operator. The resulting field operatogg is given by
&= au;+ ahul. (3.21)
J
The corresponding vacuum state |0) is defined by the condition

aj|0) =0,V (3.22)

4 We remark that qg is an operator-valued distribution and not an operator in itself, i.e., it defines an

operator only when smeared against a suitable test-function.
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and from it, we define a single-particle state |j) as

j) = al|0). (3.23)

J

The collection of all single-particle states span the single-particle Hilbert space H and

from it we construct the Fock space §(#) of the theory as
SH)=CoHOHOH), D, (3.24)

where the sub-index s denotes symmetrization.

We remark that the field operator é presented in equation is a singular object
and should be understood as an operator-valued distribution since it is not a well-defined
operator on §(H). However, by smearing it against a test function f that is compactly
supported on & one obtains a well-defined operator (ﬁ( f) on §(H) which is commonly

referred to as the smeared field operator

3F) = [ d'x V=B IS (). (3.25)

For each choice of s, characterized by an orthonormal basis of positive-frequency
solutions {u;};, one obtains a different vacuum state. In general, there is no need for these
vacuum states to be related by a unitary operator and there are many possible unitarily
nonequivalent choices of vacuum, although not all of them model physically reasonable
situations. This ambiguity is particularly relevant in the Schwarzschild spacetime which
does not admit a global timelike Killing vector that could have been used to choose a
natural s and hence, construct a natural vacuum state. Given that, in this thesis we work
with three vacuum states: the Boulware |B), Unruh |U) and Hartle-Hawking |H) states.
These have different physical interpretations and are constructed through suitable choices
of complete sets of positive-frequency solutions to the KG equation, as presented in what

follows.

3.3 Field modes and quantum states

Throughout this section the KS 2.1, SD and EF coordinates [2.2] will be used. In any of
these, the spherical symmetry of & allows a solution 7, to the KG equation ([3.7)) to be

wlm
decomposed as
A 1 Fe(x1)

wzm(X)ZmYem(&@ P (3.26)

where w > 0, r is to be understood as the r-coordinate of SD-coordinates or the r-function
in the EF and KS coordinates; 6§ and ¢ are the angular coordinates of x; x, are the
non-angular coordinates of x; A € {in, R;up,R;R;L:in, L; up, R; IN: IN; UP; U_P} is a label
that will be used to identify the solution and 1/v/4mw is a normalization factor to ensure
that

(foms Fovims) = 8(w — w611 (3.27)

wlm
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In this decomposition, the multi-index ¢ of an element u; of the orthonormal basis of s is
to be understood as the combination of the three indices w, ¢ and m, that is, u; — fom.
With the intent to provide a better organization for the reader, the definitions of the

modes are divided in the following subsections.

3.3.1 The Eddington-Finkelstein modes

These modes are defined as the ones of positive frequency with respect to the timelike

Killing vector €; = 0y, in SD coordinates [2.2| For the sake of organization, they are divided

in,R fup,R fin7L fup,L R

wlm> Jwbm r» Jwbms Jwlm s Jwlm and

in 6 families: f, L.

The ones that establish a complete set of orthonormal positive frequency solutions on

region I, i.e., an orthonormal basis of s on I are f5% and f*>" defined by the initial

wbm
conditions
. 1 0,x = HpUH; U.Z
Fim ~ ——=Yem(0,9) X | noRmE (3.28)
dmw e I x = Sy
and
1 0,x =I5 UHS U2
fot ~ — =Y O) x ¢ (T (3.29)
W e x = Hp.

For convenience, we write below these expressions propagated to %, UHz UHL U .7

0,x—> 7, UH,

mn 1
fuem ™ = s (0 0) X plseT xS (3.30)
Toee ™ x — HE

and
0,x—= S, UH,

==Y (0,0) X { T ", x — I (3.31)

Pope Y x — Hi,

fup,R 1

wlm ™ \/R

where the coefficients T, pi%, pry € C were introduced to account for the scattering effect
produced by the radial effective potential that will be introduced in Section 4.1}
With respect to these coefficients, T, is the transmission amplitude across that

effective potential and is the same for both f% and f"2® The coefficients p and p>

in,R

wim s Tespectively.

are the reflection amplitudes across the effective potential for fm Roand f
The linear independence of these modes imply several relations between the amplitudes
(including the equality of the transmission amplitude for f3% and %) that can be

wlm

derived from the Wronskian relations that will be introduced in Section 4.2
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The orthonormal basis of s on I7 is given by f& —and fL, . defined by the initial
conditions
0,x = I3 UI
1
R s
~ ————=Ym(0,¢) X wv P 3.32
wlm T\/mf( 90) € 7X_>HR ( )
0, x— Hf
and

0,x = S5 UI
L 1

wam ~ T\/RYVZWKH SO) X O, X — HE (333)
e Wi x — HT.

On I1I, the orthonormal basis of s is given by f%" and f* defined by the
transformation

AU V,0,0) = AR (—U, -V, 0, 9), (3.34)

wlm

in terms of KS coordinates, with A € {in,up}. Explicitly, the intial conditions defining

these modes are

. 1 0,x =I5 UH, UH]
foom o Yo (0, ) x § T TR (3.35)
rv4mnw e x5 gF
and
1 0,x = 7 UHZU .7
fopl o Ym0, ) x § T T TR (3.36)
rvanw e Wi x — HT.

These modes have no support on region /. This can be understood as follows: Both f,,~ in, L

and ™" are zero on &5 U Hp, which is the past domain of dependence of region I.
Therefore, both these modes are also zero inside this region

More specifically, as will be important in Section the fln L modes have no support
on region /1. This is a consequence of being zero on HE (inherited from having no support
on region I) and H} (from its initial conditions). Since H} U H}; is the past domain of
dependence of 11, being zero on this hypersurface implies being zero everywhere inside
this region.

In this work we will not explore region IV and for this reason, no basis of s* on this

region will be provided.

3.3.2 The Unruh modes

Originally constructed by Unruh in [39], these modes are summarized in what follows.

IN

For organization, they are divided in 4 families: f,,, .,

wému f I fwgm The first two are
composed by modes of positive frequency with respect to dy on H; U HE defined by the

relations

T sW

€ in, —2TTrsw in, *
b (%) = —— (i (0) 077 f () (3.37)
2sinh(27r,w)
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and
emrsw

(%) = ST (Fhim () + €72 fI (x) ). (3.38)

The last two are composed by modes of positive frequency with respect to 9y on Hp UH ]
defined by

emrsw

wtm (X) = —— (F5000) + €72 f00 (x) ) (3-39)
2sinh(277r5w)
and
J] eTrrsw u —27rsw p£u *
wtm (%) = —— (fob () 4 €72 fR (x) ) (3.40)
2sinh(27rsw)

The collection of all Unruh modes compose an orthonormal basis of s on the whole’]
spacetime &. As a note that will be used in the next section, notice that one can also
construct different orthonormal basis of s by combining Unruh and Eddington-Finkelstein

modes.

3.3.3 The Quantum states

As pointed in the end of section ??, we are concerned about the Boulware |B), Unruh
|U) and Hartle-Hawking |H) vacuum states. Each of these have a different physical
interpretation and are obtained by different choices of basis of sT.

The Boulware state [40] |B) can be understood as a model of the vacuum around a
spherically symmetric non-rotating object such as a star or a black hole, a setup known
as cold star. This state is defined by using suitable Eddington-Finkelstein modes as the
basis of s in the region of interest. As a concrete example, the expression for the field QAS

in region I in terms of these modes is given by

S [ (PR 4 NS 4 e xe L (341
t=0m=—£
where h.c. is a short notation for hermitian conjugate. The Boulware state is known to be
irregular on the black hole and white hole horizons [41], Section 3] (see [34], Section 8.4]
for a textbook reference).
The Unruh state [39] |U) models a spherically symmetric, non-rotating black hole
emitting thermal radiation It is defined in region I U I1 by combining the Eddington-
Finkelstein modes £ and f"" with the Unruh modes fUF, and fUP, as the orthonormal

basis of s7. The field operator in this region is

R ~in,R ,L Ain,L A
5 [ (0 + £k ant + £, 000,

(=0 m=—(}) (3.42)
+ wém( )A5;m+hc)7X€IUI]

5 Provided that the fm/up R/L( ) modes are suitably extended into the r < r; region.

wlm
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In contrast to the Boulware state, the Unruh state is regular [4I] across the black-hole
horizon but still irregular across the white-hole horizon.

Finally, the Hartle-Hawking state [42] |H) models a black hole in thermal equilibrium
with the surrounding environment. It is defined in all of the spacetime & by using the
Unruh modes as the orthonormal basis of s. In particular, the expression for QAS in the

whole spacetime is

Z Z /dw wém Agl})m + wém( )Agl})m + f ( )Aclul\ém
(=0m=—£) (3.43)
+fwém( )Ag\llm—i_h’c) x € 6.

This state is regular through both the black hole and white hole horizons.

3.4 Wightman function

The Wightman function W¥ of the field ¢ in a quantum state |1) is defined as

WY (x) = (lo(x)e(x)) xx €QC8, (3.44)

where Q denotes the subset of the spacetime manifold & over which the state |¢) is defined.
Specifically, for the Boulware state, @ = I; for the Unruh state, @ = I U II; and for the
Hartle-Hawking state, Q = G.

The Wightman function encodes both classical and quantum correlations in the field for
a given state. Assuming that |¢)) is a vacuum state, we substitute the mode expansion

into this definition to obtain the mode-sum expansion
=) wi(x)ui(x), (3.45)

where u; is an element of the set of positive frequency orthonormal modes that form a

basis of s7. From the mode-sum expression it readily follows that
WY (xX;x) = W% (x;x). (3.46)

Using this property it is straightforward to derive a relation between the expectation value

of the field commutator and the imaginary part of the Wightman
(WIP)S) = W (x5X') = W (x:X') = 2im[W? (x;x')] (3.47)

and a relation between the expectation value of the field anti-commutator and the real

part of the Wightman function

(WHOC)G) M) = WY (X)) + WP (x:X') = 2Re[W (x:X')]. (3.48)



Chapter 3.  Quantum Field Theory on Schwarzschild spacetime 38

From this relations, it becomes evident that any correlations in the field between two
causally disconnected points should be encoded in the real part of the Wightman, since
the field commutator is expected to vanish at spacelike connected points.

All Green functions of @ can be derived from the Wightman function using the relations
provided in [35, Equation 4.9]. Thus, the Wightman function fully characterizes all two-
point correlation functions of ¢ in the state |¢). In particular, the Feynman Green Function
(FGF), the retarded Green Function (RGF) and the advanced Green Function (AGF) are

expressed as

GE(x,x) =iW¥ (x;x) Ot — ') — iW¥* (x;x) O(t' — 1), (3.49)
GY (x,x) = —2Im[W"¥ (x;x')]|O(t — t'), (3.50)

and
GY (x,x) = 2Im[W? (x;x) |0t — 1), (3.51)

respectively, where © denotes the Heaviside step function. These expressions will play a
key hole in Chapter

In the next subsection, we analyze the singularity structure of the Wightman function.
This discussion is followed by two subsections detailing the mode-sum expressions of the
Wightman function for the states |B), |U) and |H) in both (1+1)-dimensional and (3+1)-
dimensional Schwarzschild spacetime. For the (1+1)-dimensional case, these results are
well established [43]; we briefly review them here for completeness. The novel contributions
of this part of this work are the explicit expressions for the (3+1)-dimensional case where
one point lies inside the black hole and the other outside. A detailed derivation of these

new results is provided.

3.4.1 Singularity structure

Despite the generality of the definition of the Wightman function in Equation ([3.44)), its
local behavior is well-known [44], Chapter 2| for a class of states called Hadamard states,
which |B), |U), |H) are part of. For states of this class, the Wightman function W¥ (x; x’)
with ¢ € {B,U, H} in a normal neighborhood N (x) of x is given by

WY (x;x') = 615(1% 4;2 U—l—UieAt —Vin(o +ieAt) +w¥|, (3.52)
where U = U(x,x'), V = V(x,x) and w¥ = w¥(x,x’) are regular, real-valued bi-scalars.
The bi-scalar 0 = o(x, x’) is the Synge’s world function, defined as one-half of the square of
the distance between x and x’ on the unique geodesic connecting themf] Consequently, it
is positive/zero/negative whenever that geodesic is spacelike/null/timelike. The bi-scalars
U(x,x") and V(x,x’) are uniquely determined by the geometry of the underlying spacetime.

On the other hand w¥(x,x’) is not uniquely fixed by that geometry and depends on

6 Since x’ € N(x), there is only one geodesic connecting x and x’ that is entirely within N(x).
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the quantum state in question. Therefore, it is this last term that encodes information
particular to each quantum state.

By applying the distributional limits

lim

e—0t o i€ o e—0t

1
=P.V. <> Fird(o) and lim In(o +ie) =Injo| £irO(—0), (3.53)

where P.V. is the principal value distribution, to the Wightman function from Equa-

tion (3.52)), we get
1 1
WY (x;x') = {U {P.V. () —imd(o)

472 o

— V[l |o| + ir©(—0)] + w¢} L (354)

This form exposes the local singularity structure of the Wightman function: Whenever
o0 =0 (i.e., when x and x” are connected by a null geodesic) the real part of the Wightman
function is dominated by the P.V. (%) singularity with a — In |o| tail while its imaginary
part is dominated by a —d(¢) singularity. The ©(—o) tail only contributes to the imaginary
part when ¢ = —1 (i.e., when x and x" are connected by a timelike geodesic).

Despite the local validity of these expressions, it is known [45] [46] that the Wightman
function diverges whenever x and x" are connected by a null geodesic, even if x" is not
within a normal neighborhood of x. In particular, the global singularity structure of the
Wightman function in the Schwarzschild spacetime was calculated for the first time in [27]]
It presents a four-fold structure where the singularity changes its character whenever it
crosses a caustic point, with the dominant divergences in its real and imaginary parts

following the patternsﬁ

Re[IW¥ (x:x)] : P.V. (i) ~+ —6(0) = —P.V. (i) L 5(0) = P.V. (i) S (3.55)
and
Im[W¥ (x;x')] : —8(c) — —P.V. (i) s 5(0) = P.V. (i) S 8(0) = -, (3.56)

respectively. In these expression, Synge’s world is used in a global sense and x" ¢ N (z).
To make it well-posed in this scenario, it is necessary to indicate what is the geodesic on
which it is being evaluated, as constructed in [47].

For completeness, we mention that this reference also showed that the sub-leading
singularity structure of the imaginary part of the Wightman function is four-fold and
follows

—0(—0) > Inlo| - O(—0) > —In|o| - —O(—0) — --- (3.57)

and conjectured that for the real part it is also four-fold and follows

—In|o| - —O(—0) = In|o| = O(—0) = —In|o| — -+ . (3.58)

This reference calculated the FGF from which the Wightman function readily follows by using

Equation (3.49).
Except at the caustic points, where the singularities are stronger and the structure is two-fold (see [47,
Chapter V]).
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3.4.2 (1+1)D

The (141)D Schwarzschild spacetime is geometrically distinct from its (3+1)D counterpart
and we will refer to the former as G,. Its metric can be formally read directly from
equation - by setting df = 0 = d¢. The definitions of the EF, KS and SD coordinates
presented in sections 2.1 and [2.2] are still valid but without the angular coordinates.

A massless scalar field ¢ on &, described by the Klein-Gordon action will also
obey the K-G equation . The crucial difference with & is that on &g, the K-G equation

is just a free wave equation: In EF coordinates it reads
00y =0 (3.59)

and in KS coordinates, it is

dudv g = 0. (3.60)

In (141)D, the solutions to the K-G equation can be decomposed as

,/47T|w|

in a similar way to that was done in (3+1)D (Equation (3.26])): The only formal difference

o) = (), (3.61)

is that one has to remove the spherical harmonics and the »~! factor.

The corresponding EF and Unruh modes in (1+1)D are defined by initial conditions

analogous to the ones for the (3+1)D case, presented in sections |3.3.1land [3.3.2l To obtain
-1

the (141)D initial conditions, one has to remove the spherical harmonics and the r
factor from the (3+1)D initial conditions and consider T,,, = 1 and p, = 0 = p.}, because
in (14+1)D the modes propagate as free waves.

Despite the similarities, there is a remarkable difference between the massless scalar
field in these two cases: In (141)D its Wightman function is infra-red divergent, as will be
shown in what follows, while in (341)D it is not.

To construct the Wightman function of ngﬁ for the Boulware state we apply the (1+1)D
EF-modes in the mode-sum expansion to obtain

1

Wy (x;x') = o

/ (e () + SRS, kX € (3.62)

where A > 0 is a cutoff frequency to regulate the infra-red divergence of this correlator.

Since the modes are free waves,

d . , . ,
WL (x;x') = yo / ~ (e‘”(””) + g iwluu )>, x,x' € I. (3.63)
7r

w

In terms of exponential integrals E;(y) [48, Equation 6.2.1] this equation can be written as

WP (x:x) = 417T [By(IAA) + By (iAAW)] (3.64)
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where Av = v —2" and Au = u — u/. Expanding around small A using [49, Equation 5.1.11]
results in

L 295 + In(iAA0) + In(iAw)] + O(N), (3.65)

Wy (ax) =

where g is the Euler-Mascheroni constant. Notice that in the principal branch arg(iA\Awv)
is 7/2 if Av > 0 and —7/2 if Av <0, since A\ > 0. Therefore,

In(iAAw) = In(\) + In(|Av]) + i;(@(Av) — 6(-Av)). (3.66)

By performing an analogous analysis on arg(iAAu), we can write the Wightman function

as

WE (x;x') = ; [2%; + In(JAvAu|) + 2In(N)
m (3.67)
+ 5(@(&) + O(Au) — O(—Av) — @(-Au))] +O(N).

This expression is already known and more details about its properties are provided in [36],
Chapter 4].

To write the Wightman functions for the Unruh and Hartle-Hawking states, we remark
that W (x;x') is a solution to the homogeneous wave equation ([3.59)), that is,

0,0, WE (x;x') = 0. (3.68)

On the other hand the Wightman functions for the Unruh and Hartle-Hawking states are
solutions to, respectively,

Ou 0, WY (x;x') =0 (3.69)

and

Ou Oy W (x;x') = 0. (3.70)

Since all these equations are of the same form, one can infer that their solutions will also

be of the same form, therefore,

WY (xix) = [2%9 + In(|AvAU|) + 21n())
o (3.71)
+ %(@(Av) +O(AU) — O(—Av) — @(—AU))] +O(N).
and
Wil (x;x) = ;1 [QWE +In(JAVAUJ) 4 21n(A)
" (3.72)

+ Z(g(mx) +O(AU) — O(=AV) — @(-AU))] +O(N).
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343 (3+1)D

In the (3+1)D Schwarzschild spacetime, the mode-sum expressions for the Wightman
function are known in the |B) [40], |U) [39] and |H) [42] states when both points are
either outside or inside the black hole. These expressions can be derived from the results
about the field commutator, also known as the Hadamard elementary function, presented
n [32]. In what follows we present an alternative derivation of these expressions, in the
aforementioned quantum states, based on the Unruh modes defined in Section [3.3.2]
extending the mode-sum expressions for the Wightman function to the case where one of

the points is inside and another outside the black hole.

3.4.3.1 The Boulware state

To obtain the expression of the Wightman function for the Boulware state one can
substitute the Eddington-Finkelstein modes from Section [3.3.1] into the generic mode-sum
expression from Equation (3.45)) and use the decomposition from Equation (3.26)). This
yields

1 ¥ dw 1n R

S Vi Vi) [ DI D)+ ) ™ (¢ 0)

(=0 m=—t OW

~
(3.73)
with x,x" € I and x, are the non-angular coordinates of x (an analogous notation is used

for x"). Using the spherical harmonics addition theorem [50, Equation 16.57],

o0

T dw 1n in ru ru *x/
e S0 DRcos() [ (T o ™ )+ o) L™ (),
=0 0

WP (x;x') =
(3.74)
where v € [0, 7] is the angular separation between x and x’.

Despite being formally similar to its (1+1)D counterpart WL (x;x’), the expression
that was just derived is regular as w — 0 since in that limit, each term in the integrand
tends to a finite value, as demonstrated in Figures [I0] [1T], [12] and [T4]

Region I17 is also of interest for this thesis but the Boulware state is not regular across
H, therefore the Wightman function for the Boulware state with points in that region
does not reflect a physically reasonable situation and for that reason, is not included in

this text.

3.4.3.2 The Unruh state

To obtain the expression of the Wightman function for the Unruh state we use the generic
mode-sum expression form Equation (3.45) with a suitable combination of Eddington-
Finkelstein modes from Section and Unruh modes from Section [3.3.2] as prescribed
in Section , together with the decomposition from Equation . After using the
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spherical harmonics addition theorem the Wightman function for the Unruh state reads

0 T dw / ~ _ . _
WY (xx') = (47T)12W > (20 + 1) Py(cos(7)) / Uw(fi?R(XL)f;?R*(X'U + for () fr ()
=0 5

+ S ) ST ) + FSF ) (K1), %X e TUTLL
(3.75)
Using the expressions from Section to write the Unruh modes in terms of the
Eddington-Finkelstein modes,

1 o Oodw Tin Tin,Rx* 7in Tin,Lx
WY (x;x') = (o) > (20 + 1) Py(cos(y)) / " [fwe’R(XL)fwe’R (x) + £5" (x)EN " (x)
(=0 0

1 2 rup,R Tup,R _ Zup,R Zup.R
- - WTSWfUI% fup7 * ! 27rrswfup, * fup, / >
eit o (¢ DR 0 e T )T )

1
* 2sinh (27rsw)

Re|E27 " (xJEP (1) + B2 ()R (X1)

(eQﬂrSij;),L (XJ_)E:E’L* (X/J_> + ef2wrswﬂ£,L* (XJ_ﬁ(EE’L (X/J_)>

_ "elTull
sinh (277rw) ]’ XX e
(3.76)

When x,x" € I, the modes EJ“’L and fﬁp’L have no support and the result is

(e o]

dw

WY xix) = D20+ DPi(eos(7)) [ 2 (B ()
(4m)%rr’ = ) w (
eQwrsw e—27rrsw

—fup,R fup,R* / —fup,R* fuP’R ’ , I
* 2sinh(27raw) “* (et (1) + 2 sinh(27r,w) “* (xw)for (x L)) y X, X €

(3.77)

For the case x,x" € I, the f:f}L modes have no support (see Section D and the
Wightman is

/ 1 > Oodw rin rin,R* /7
Y (06) = (g 32004 DPeos(a)) [ 2] ()
=0 0

1 2 7up,R 7up,R _ Zup.R ~up.R
- - Tl'Tqufup, fup, * ! 27rrswfup, * fup, / )
* 2sinh (277,w) (e wt - (XUETT (L) +e we - (x0)fee (X L)

1 2 rup,L Fup,L _ Zup,L Zup.L
- - Wrswfupv fup, * ! 27r7"Soqup, * fup, / >
ot @ (O G O+ e T G )

Re F;;?R(XL)%;?L(X’L) + fgng(xL)%gng(x'L)”  x,x eIl

(3.78)

sinh (2775w)

. oy s . rinR 7 R FZin,L T L . T
For future convenience it is useful to write £, f55", £7, and 5" in terms of %,

and fgjg when considering points inside the black hole. This can be done by comparing

the initial conditions of these modes on H}, U H}. Since region IT can be understood
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as the future domain of dependence of that hypersurface, the intial conditions set on it
completely determine the modes in this region.
By definition, £} is zero on #; which makes it independent of f%,. On the other hand,

» twh

comparing the initial conditions of £%" and R, at 5 U H; yields
ELIZ’R(XL) = ngffj{z(XL> ,xe Il (379)

Similarly, "> is zero on H; and consequently, independent of f%,. By comparing its

initial conditions with the ones of f% at H}, we obtain
PR (xL) = pibtly(x1) , x € I1. (3.80)

As mentioned before, the f;" modes are zero on II (see Section [3.3.1)). Finally, the
"> are independent of f% because the former are zero on H}, by definition. Comparing

the initial conditions of f"'" and f&, at H} U #; results in
Bt = fhx), x e I1. (3.81)

Considering these expressions, one can rewrite the previous expression of the Wightman

function as

WY i) = (g 20+ DRdesso)) | f{\Twe\2f5e<xL>fz*<xu>

up,ref 2

p 2 R TRx(/ 9 FRx R,/ )
PR R R 7T’V‘Swf f ﬂ.,,.swf f
2sinh (27rsw) (e w7 (L) +e wt (X)L (X 1)

1 2175w FL TLo 1 —2mrswfL L1 >
- Trsw fLx mrsw fLx f
2sinh (27rsw) (e ()i (K1) +e we (}L)E5p (X 1)

1 e A
mRe {Pof; (fgz(xﬁfbe(xl) + fﬁe(&)f&(xl))] } x,x' €11,
(3.82)

which agrees with [32, Equation 3.11].
Finally, to obtain an expression for the case x € I, x" € Il we begin by using
Equation (3.76]) and the previously derived properties

/() =0, Vx € TUII and E7%(x)) =0, ¥x €1 (3.83)
to obtain
WY () = —— 3~ (20 + 1) Py(cos(7)) 7“ £ O (1)
' (4m)2rr! /=, ¢ J w wt +
1

2mrswfup,R fup,Rx* s —2nrswyup,R* r \Fup,R/_/
Ssinh (2mran e f “f f )
i 2sinh (277,w) (e wt - (XUETT (L) +e we OOET (X L)

Re [i%e(xL)fﬁi?’R(xu)H, xellx el

sinh (27r,w)

(3.84)
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In the next step we use Equations (3.79), (3.80) and (3.81) to write the Eddington-

Finkelstein modes inside the horizon in terms of f%, and f%,. This results in

oo ood .
WY (x;x) = (20 + 1) Py(cos(7)) / :jl Tooof B (x ) ER* (x' 1)
0

2/
(4 e /

S 271'7”50-1 fR f‘lp,R* / 2T 5w up*fR* fup,R / )
+ e Gy (P RS ) e e )

! mRe F“I:AXL)%EE’RML)H’ xell,x el
(3.85)

3.4.3.3 The Hartle-Hawking state

To write the mode-sum expression of the Wightman function for the Hartle-Hawking
state we apply the Unruh modes from Section [3.3.2] as prescribed in Section [3.3.3] in
the generic mode-sum expression from Equation and use the decomposition from
Equation . After using the spherical harmonics addition theorem the resulting
expression is

[e.e]

WH (x;x') = (4@1 5 i(% +1)Py(cos(7)) / ‘ij"(ﬂNuuﬂN*(xu) + N ()N (1)

PR (L) + PR (K1), %X € 8.
(3.86)

Writing the Unruh modes in terms of Eddington-Finkelstein modes yields

1 = 7 dw
H/,,.
W 66X) = i EZO (2 + 1) Py(cos()) / wl
0
2 mR in,R ¢/ -2 Fin,Rx Fin,R /s
- TI'T’SLUf f Wrswf R f ,
2 sinh ( 27r7“8 (e (x1) +e i (XL)E5 (X L))

2mrswgin,L in, L /s —9rr.wrin, Lk ~inL/ s
~ - 1 /N s f f _.I_ s f ) f ) >
2sinh (27r7°5w) (e (xu )b (1) +e ot (x)E (K1)

1 rswrup,R Tup,Rx —27rgw pup, R rup,R

* 2Smh(2ws>(ez Eor (X OE (X L) 4 e 2T f T (x )7 (XIJ_)>
1

(

i 2sinh (277,w)
Re|E27" (0 )EP(¢1) + P )RS ()|

(eQTI'TSwELIE,L (XL)fS?L* (X/L) + e—QWT.gwf:)llg,L* (XL)E;I?L (X/l)>

* sinh (27r,w)
1

S fin,R fin,L / fin,L fin,R ’
sinh (277 ,w) e{w ()™ (X ) + 5 (x)fe™ (X 1)

], x,x' € 6.

(3.87)
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When both points are in region /U I/, the modes fL?L(x 1) = 0 and the Wightman function
simplifies to
dw

1 & T
H (.
W (x;x') = (07 er’e ) (20 + 1) Py(cos(~y ))/wl

277 gw pin R 7in,Rx/ 1 —27rswpin, Rx 7in,R
(PR i iR (o Y
2sinh ( 27r7"S (e (1) +e wt (x ) (X L)>

2rrswup,R fup,Rx /s —9 ~up,R* ~up.R/ 1
_ m"éwf b, £UPs Trsw fup, fup; >
- 2sinh (27r,w) (e wt (XL (L) +e we (X (K1)

1 2 rup,L Fup,Lx _ ~up.Lx* ~up.L
- ﬂTswfup, fup7 / 27rr5wfup, fup, / )
T 2sinh (277,w) <e we (XL (X L) e we () (X 0)

Re|E27 ™ (0 JEP (1) + P ()R (1)

- "eTUII.
+sinh(27rrsw) ]’ X<

(3.88)

Specializing this expression to the case where both points are in region I (outside the
black hole) the modes fj;/ "l(x, ) = 0 and the Wightman function becomes

1 = 7 dw
H
W (x;x') = (G Z:O (20 + 1) Py(cos(vy >>/w[
- 0
1 2 1nR in,Rx -2 in,R* Fin,R/_/ >
- 7F7'swf f 7I'T‘30Jf s f s
2sinh (27rsw) (e (x'1) +e wt (xL)fgr (K1)

(2B P (x JEP () + 2 <xl>f:;5’f‘<x’i>)1y xx el

(3.89)

N 2sinh (27rsw)

On the other hand, when both points are in region 17, we use expressions (3.79)), (3.80))
and to write the Eddington-Finkelstein modes inside the horizon in terms of 5,

and fwe, which results in
[e'e} OOd
WH (x;x') (20 + 1) Py(cos(~y / w
( 2r7" = W
- 0
M(GQWHW%R@(XL)%R;(XIL) + GQWTSW%RE*(XJ_>fRe(XIJ_)>
2sinh (27rw) w w w w
|Pu2 2 ( 2 R TRkt —2 R R/ s )
Tt TrsW f frx mrsw fRx f
2sinh (27rw) ¢ (X )Eor (X1) +e we (x)E5e (X 1)
1 2mrsw L TLx/ ./ O w L% =1 ’ )
- 7TT5UJf f 7”’.st f
2sinh (277rsw) (e o (X (K1) +e we (X5 (X 1)
1
mRe [pr (fwé(xl)fwf(x i) + wa(XL)fwg(X L)) ‘| , X, X cll.
(3.90)

As a consequence of the Wronskian relations that will be introduced in Section (.2
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’de + |p.) ] = 1 and this expression is further simplified to
1 - T dw
H /.
0
2 R FR* (1 —27rswR* R
et (x o ) swf f )
2sinh (277,w) 27rrS (e ¢ (X)) e wt (X (X 1)

_—_— 27”’5wa fL* / —27rr5w'£‘L* 'f“-L / )
+ 2sinh (27rr5w) <e o(x )t (X1) +e we (x0)fge(X 1)

1 ol I
sinh(27rrsw)Re['0wlz <f5z(XL)f£z(Xll) +f£€(xL)f§£(x’L)>H, x,x €1I1I.
(3.91)

Finally, we specialize (3.88)) to the case where one point is inside and another outside
the black hole (x € I and X' € I]). For that, we use the property f2"(x) = 0Vx € I

then apply expressions (3.79)), (3.80) and (3.81]) to write the Eddington-Finkelstein modes
inside the horizon in terms of f L, and f%. This procedure results in

WH (x;x') =

! i 20+ 1) Py( cos(y))/dw[

(4m)%rr’ = w
= 0

Trsw Tin,Rx —2mrswrx pR* 7in,R
QSthmns( T e (L) + e 7T AR (x ) By (Xl¢)>

1 ) - -
- T sW fR fup7 *0 1 —27Trsw up*fR* fuP’ ’ >
- 2sinh (27r,w) ( Putlue (X L™ (X 1) + e Pt fwr (X0 )Eoe™ (X'1)

Re|E25" (TR (1)

< (O 1) II,x' el
+sinh(27rrsw) 1’ x € 1i,X

(3.92)
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4 Numerical evaluation of the Eddington-

Finkelstein modes

A number of challenges is involved in evaluating the Wightman function, as can be
anticipated from the expressions presented in Section [3.4] The absence of exact solutions to
the KG equation in the Schwarzschild spacetime implies that the field modes embroiled in
the quantization process must be determined through numerical methods. On top of that,
to evaluate the Wightman function W¥ (x;x’) of the quantum scalar field QAS in a quantum
state |¢) for a single pair of points x,x’ € &, one has to numerically perform an integral
over w € Ry and a sum over ¢ € N>, using sensible cut-offs in both operations. Achieving
a reasonable precision in these procedures requires a large amount of data to produce
a single result, i.e., the numerical value of WY (x;x’). Furthermore, even with sufficient
data available, the process of summing over ¢ and integrating over w is computationally
intensive.

These difficulties may explain why only a few prior works apply a similar procedure,
although in different setups and with different objectives. For example, in [27] the Feynman
Green function is evaluated with x’ fixed outside the black hole and x following a circular
timelike geodesic at 7 = 3rg. In [51] the response function, which is essentially the
Wightman function smeared against a smooth function, is evaluated along the world-line
of an Unruh-DeWitt detector (see Section freely falling to the horizon. Finally, [I]
evaluates a measure of entanglement called negativity (see Chapter @ for a system of two
static Unruh-DeWitt detectors placed at antipodal points around the horizon.

This chapter introduces the techniques used to compute the field modes and the
scattering amplitudes, together with an analysis of the results. This exposition is structured
as follows: Section [4.1] presents the radial component of the EF modes from Subsection [3.3.1]
and the details of the numerical methods used to compute them. Section 4.2 introduces the
Wronskian relations and Section presents the analysis of the reliability of the numerical

data for the field modes and scattering amplitudes.

4.1 The radial component of the Eddington-Finkelstein modes

The mode-sum expressions of the Wightman function in Section are written in terms
of EF modes because these are convenient to compute numerically. The reason is that
the modes f4, (with A € {in, R;up, R;R;L}) from the decomposition in Equation (3.26)),

wlm

can be factored out as

Z\em(XL) = L\E(T)v (4.1)
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A

Sem and x|

where the sign in the exponential is defined by the boundary conditions of
are the non-angular coordinates of x. Substituting this expression into (3.26|) and applying
the result in the KG equation leads to a Schrédinger-like equation for 17,:
d*95
dr?
where the effective potential is

V() = (1 _ 7“) (th) N 7’5) . (4.3)

r r 73

(W = V) vl =0, (4.2)

This equation is structurally identical to the well-known Regge-Wheeler equation from
black hole perturbation theory (See [52, Section 3.1] for a brief review) which can be
conveniently solved through the numerical methods that will be presented.

FA

oem and will

The boundary conditions defining each 3, are inherited from those of
be detailed in subsequent sections. All solutions were computed for Mw € [1073,10] in
steps of 1073 and ¢ € [0,100] in steps of 1. For future convenience these sets of values
for w and ¢ will be referred to as to and [, respectively. This frequency range enables
capturing both low- and high-energy contributions, while the fine step size ensures sufficient
sampling density for accurate numerical integration over the frequencies (w-integral) when
computing the Wightman function. The upper bound of £ = 100 in angular momentum has
two objectives: The first is to ensure the convergence of the sum over angular momentum
(¢-sum) when computing the Wightman function at two points that are out of coincidence
and not connected by null geodesics, i.e., where it is not expected to diverge. The second is
to smoothen the divergences that appear due to the /-sum when computing the Wightman
function at two points connected by a null geodesic, where divergences are expected. We
do not expect this method to be able to resolve the Wightman function near coincidence
or close to it since a very similar approach, used in [27] was not able to do it.

Outside the horizon the 9%, modes and their derivatives were evaluated for r, €
[—4 M, 24.4M] in increments of 0.2M; inside the horizon, we sampled 7, € [—14M, —0.1M]
with the same step size. For future convenience, these sets of values of r, will be referred to
as t, and t,, respectively. This computational effort generates approximately 720 million

data points, spanning the parameter space of w, ¢, and r,.

4.1.1 Ingoing modes

Applying the decomposition from Equation (&.1)) to £ yields

Im
Faim () = e (r), (4.4)
where wijnéR is defined by asymptotic boundary conditions near the horizon (r, — —o0)

and at infinity (r, — 00)

R T, e~ iwr Ty — —00
Vui ™ —i in i (45)
e W + ple ™ Ty — 00.
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For computational convenience, we define re-scaled modes satisfying

in,R —iwry _
gk Ve )T e (4.6)
wl T :
ng [ e —lwrs + pglgelwr*’ re — 00,

where I, = T,,,~* and pn, = Tt pn,. Throughout this text any mode re-scaled by Tt

iR 59 transmission-normalized.

will be classified as transmission-normalized; for example, w
For r > r, the ™ ®(r) solution to Equation (#.2)) is expressed via the Jaffé series [53,
Section TV.A]
_. . —iwrg 2iwrs 00 n
R = (Z-1) (D) Y (1- ) (@.7)
0 r

Ts Ts =

where the coefficients a,., obey the recurrence relation

Ut = — <B(n—1)w€a(n—l)w€ + ’Y(n—l)wa(n—2)w€> 7 (48)
A(n—1)w

with initial conditions ague = €72“", ane = 0 for n < 0, and coefficients

O = (n+ 1) (n+ 1 = 2iwry),
Bt = 8(wre)? + Sinwr, + diw — (0 +1) —2n(n +1) — 1, (4.9)

CN2
Tnw = (n — 2iwry)*.
The choice ags = e~ 2“"s ensures that

PR(r) ~eT o o —o0. (4.10)

wl

Had we chosen ag,¢ = 1, the solution would instead behave as e w(r+=2r5) in that limit.
The series is absolutely convergent for r € [r,, 00), and the convergence becomes slower
as r increases. A series representation for the derivative ¢/%%(r) of /"% (r) is readily
obtained by differentiating Equation (4.7)) with respect to 7.
In practice, a numerical implementation truncates the series at n = ng, which intro-
duces a relative error in the real (6%,) and imaginary (67, ) parts of /"% (r) estimated
by

Re/Im |:a(ncut+1)wf (1 — %)nwtﬂ

‘Re/Im [nit ot (1 — ’:)n} ‘

O/t = (4.11)

An analogous error estimation is applied to the series representation of wm R’( ).
To determine ney for r, € [—4M, 13M], we evaluated the slowest-converging case
= 13M with ¢ = 0 and Mw = 10, dynamically increasing ne, until 6%, < 1072
and 6 < 10722 for both " R and Wi R/ A safety margin of two orders of magnitude
was applied to the convergence criteria (targeting 20 significant digits, enforcing 22).
The same procedure established ney for r, € [13.2M, 24.4M], with stricter thresholds of
63 Jm < 107% to safeguard 64-digit precision. Results are presented in Table |§|
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Ty Neut 11%’1\}}—1,0(7“*) Execution time (s)
13M 2298  —0.3784442763432927 + 0.9256281869513429 i 0.05s
24.4M 10183  0.4918333004999262 + 0.87069003017631711 0.25s

Table 6 — Dynamically determined cutoff n.,; and computed modes wjféR(r*) at the slowest-

converging points in each interval. Tabulated values are truncated to 8 significant
digits; full precision was retained in calculations.

For the actual computation, we implemented these series in Mathematica using a
fixed ney = 5000 to ensure at least 20 significant digits for r, € [—4M, 13M] and a fixed
Newy = 11000 for 64 significant digits for r, € [13.2M,24.4M]. These distinct precision
levels reflect computational priorities at different stages of the project. The fixed number
of terms in the series reduces the small computational overhead caused by computing d .

and d{_, which would be necessary to dynamically update nys.

Im>

4.1.2 Upgoing modes

Similar to the treatment of the ingoing modes, applying the decomposition from Equa-

tion (&.1)) to f5 yields

Fubt(x) = e @ty R (), (4.12)

m wl

where wEE’R is defined by asymptotic boundary conditions near the horizon (r, — —o0)

and at infinity (r, — 00)

w.R eiwr* + polilze—iwr*’ r. — —00
ot ™~ (4.13)

T, Ty — 00.

For computational convenience we define the transmission-normalized version of these

modes which satisfy

wre | FUP—iwr.
L™ + pe” ™, r.— —00

wup,R ~

wl

' (4.14)
e Ty — 00,

where I, = T, " and pi% = T ' pl%.

To compute "™ and "™ numerically, we employed the NDSolve-based method
implemented in the ReggeWheeler Mathematica package from the Black Hole Perturbation
Toolkit (BHPToolkit)[26]. Specifically, the ReggeWheelerRadial command was executed
with 23 significant digits for w and r, in the interval r, € [—4M,13M], and 32 significant
digits for these parameters in the interval r, € [13.2M, 24.4M].

Unlike the Jaffé series method used for the ingoing modes—where truncation errors are

explicitly controlled via the cutoff n.,—the NDSolve-based approach relies on adaptive



Chapter 4. Numerical evaluation of the Eddington-Finkelstein modes 52

algorithms. Consequently, the precision in the resulting solutions and its derivatives can
only be coarsely estimated before evaluation. Therefore, post-testing is necessary to verify
the number of consistent significant digits. A summary of these tests and their results is
presented in Section [4.3]

4.1.3 Inside modes

Similar to the treatment of the ingoing and upgoing modes, applying the decomposition
from Equation (1)) to f%, and f&, yields

wlm
foom () = el (r) and - fl,, (x) = €“Tgl(r), (4.15)

where 1" is defined by the asymptotic boundary condition near the horizon (from inside,
Te = —00)
WS(r) ~ e W, — —00. (4.16)

R
wlm

fup,R

ol and fL, =~ share the same radial

Unlike the ingoing ffj}ni{ and upgoing modes,

dependence through 2. This arises from the timelike nature of the interior tortoise
coordinate 7., which causes hypersurfaces of constant r, to become spacelike. Specifically,
the limit r, — —oo defines a hypersurface whose future domain of dependence is region 11

(black hole interior). Therefore, data on it uniquely determines ™ inside the black hole.

wl
For r € (0,7y), the solution ¥ to Equation is expressed via the Frobenius series:
P (r) = 7Y bnge(r — 7)", (4.17)
n=0

where the coefficients b, obey the recurrence relation
2i(n — 3)w

n(n — 2iwr,)(rs

((l+1) = (n—2)(n—3— 6iwr;)
2w 4.1

+ n(n — 2iwr,)(r,)? =2yt (4.18)

N (+1)—5—02n+1)(n—3)+ (n — 1)6iwr;

n(n — 2iwrg)rs

bnw@ = )2 A(n—3)we

A(n—1)w>

with initial conditions ag,, = 1 and a,,, = 0 for all n < 0. A series representation of
ins’(r) is straightforwardly obtained by taking the r-derivative of Equation (4.17)).
While the Frobenius series can, in principle, be extended beyond the horizon, its radius
of convergence restricts its validity to 0 < r < 2r,. The full derivation of the series is
presented in great detail in [54, Section 4.3].
Similarly to the Jaffé series for the ingoing modes, the Frobenius series is truncated
at n = ney in numerical computations, introducing a relative error in the real (6%,) and

imaginary (6f ) parts of the solution. These are estimated by

F ’Re/Im [b(ncmﬂ)wz (r— rs)"cutﬂ} ‘
6Re/1m h Neut
Re/Im |:n2::0 bnwé (7” _ ,rs)n:|

(4.19)
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Table 7 — The Wronskian between combinations of 45", "> and their complex conju-

gates in the limits r, — 400 are presented.

An analogous approach was adopted for the error estimate in ™’ (r).
We implemented this series in Mathematica, dynamically increasing n.,; until dg. <
10718 and dp, < 10718 for all computations. A safety margin of two orders of magnitude

was applied to the convergence criteria (targeting 16 significant digits, enforcing 18).

4.2 The Wronskian relations

The Wronskian of two solutions ¢; and 1, to the Schrodinger-like equation (4.2)) is

W g, ] = S22 — gy OO

Ty dr,

(4.20)

Since that equation has no first derivative term, Abel’s theorem [55, Theorem 3.2.7]
guarantees that W [i1, 1] is independent of r,. Leveraging this r.-independence, we
evaluate the Wronskians

W['J}ijléR, _zléR*], W[J}ZléRy _up,R]’ [wup R7wup,R*] and M/[wup7 ¢in,R*]

wl wl

at the asymptotic boundaries r, — oo and r, — —o0o, using the boundary conditions
of the modes from Equations (4.6) and (4.14). The results are summarized in Table [7]
Additionally, we evaluated W[y )] at 7, — —oo using its boundary condition from

wl Fwl
Equation (4.16) to obtain
W ms )ins+] = 2iw. (4.21)

The so-called Wronskian relations are derived by equating the Wronskian at r, — —oo

and r, — 0o0. These are summarized below:

L= Ll = |, (4.22)
L= Ll — 183P, (4.23)

i = =7 (424)
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4.3 Reliability of the numerical solutions to the Schrodinger-like
equation

In this section the results obtained through the numerical procedures outlined in Section
are presented. For a matter of organization, we divided this exposition in four subsections,

each dedicated to a single group of results.

4.3.1 The ingoing modes

The @EiféR modes and their derivatives were evaluated through a numerical implementation
of the Jaffé series with convergence controlled by an estimate of its remainder. To test
these results we computed the left-hand side (L.h.s.) of (see the first line of Table [7)

1% [@ijﬁ, z/’;jj;R*] = 2iw (4.25)

and compared with the right-hand side (r.h.s.). The largest relative error obtained in this
test was 1072°, hence, these modes and derivatives are consistent to 20 digits, as originally

targeted.

4.3.2 The inside modes

Similarly to the @EiféR modes analyzed in the previous subsection, the

7,ins

o7 modes and their

derivatives were computed by a numerical implementation of the Frobenius series from
Equation (4.17) with precision controlled by an estimate of its remainder. To verify the
outcome of these numerical computations, we evaluated the Lh.s. of (see Equation (4.21))

Wi, ] = 2w (4.26)

wl

and compared with its r.h.s. . The largest relative error obtained in this test was 10716,
hence, the computed modes and derivatives are consistent to 16 digits, as originally

targeted.

4.3.3 The upgoing modes

In contrast to the ingoing and inside modes, the @ESE’R modes and their derivatives were not
computed via series expansions. Instead, they were obtained by solving Equation (4.2]) using
the ReggeWheelerRadial command, which employs an NDSolve-based algorithm from the
ReggeWheeler Mathematica package of the BHPToolkit [26]. This method introduces a
challenge in controlling output precision, as the number of correct significant digits in the
results can only be estimated after the computation is complete. More precisely, the number
of significant digits in the output as given by the command Precision[] is generally larger

than the number of correct significant digits as estimated by the self-consistency tests that
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Number of 4)">"(r) modes with a relative error larger than e in the Wronskian test
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Figure 5 — The number of upgoing modes with a relative error larger than e in the
Wronskian test is plotted as a function of e.

will be described. Consequently, achieving the upgoing modes at a target precision while
ensuring self-consistency necessitates an iterative refinement process.

In the first step, we computed the upgoing modes and their derivatives using 23
significant digits for the input to ReggeWheelerRadial over the range r, € [—4M, 13M],
and 32 significant digits for r, € [13.2M,24.4M]. In both cases, our intention was to obtain
approximately 16 correct significant digits in the results. To test them, we evaluated the
left-hand side (1.h.s.) of (see the third line of Table |7

W (3" 0] =~
and compared it with the right-hand side (r.h.s.).

For r, € [13.2M,24.4M], the largest relative error in the Wronskians up to ¢ = 88
was ~ 1072, For £ > 88, the largest relative error reached 10°. However, as will be argued
in Section [5.1.1], modes with ¢ > 12 are exponentially damped by the smoothing function
adopted to regulate the f-sum.

For r, € [13.2M,24.4M], an initial analysis is illustrated in Figure [5, which shows
the number of Wronskians with a relative error greater than e, plotted as a function of e.
Specifically, we found that ~ 39% of the Wronskians had a relative error exceeding 107!,
whereas only ~ 3% exceeded 107Y. The values of w and ¢ for these cases are shown in
Figure [0, where we see that the number of such cases increases with w and ¢, rising more
rapidly for ¢ = 70.
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Values of w and ¢ of modes with relative error > 1072 in the Wronskian test
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Figure 6 — The values of w and ¢ of the upgoing modes with a relative error greater than
1072 in the Wronskian test are represented by small black rectangles.

up,R

v (r) and its derivative in the Wronskian

To reduce the relative error of a given mode v
test, it is crucial to estimate the minimum number of significant digits required in these
quantities to ensure a Wronskian with at least n significant digits. This can be reasoned
as follows:

Let ¢"2% (1) and its derivative be of order 10* and 107, respectively. The Wronskian
involves subtracting two terms, each formed by the product of the mode and its derivative
(i.e., of order 10"#). Considering the exact expression for the Wronskian (see Table [7))
and the frequency range Mw € [1073,10] in our dataset, the smallest Wronskian across all
frequencies is of order 1073. To obtain a result of this magnitude from the subtraction

of two terms of order 10°#, a cancellation of «a + 5 + 3 digits is expected. Therefore,

up,R

2% (r) and its derivative have more than « + (5 + 3 significant digits would

ensuring that v
yield a Wronskian with at least one significant digit across all r,, w, and ¢ in our dataset.

Adopting a more conservative approach, we consider 2 max [«, 5]+ 3 instead of a+ 5 +3
as the estimated number of significant digits in ¢)"2®(r) and its derivative, such that
it produces a Wronskian with at least one significant digit across all r,, w, and ¢ in
our dataset. This results in a higher estimate whenever o # (. This adjustment serves
the practical purpose of mitigating precision degradation, as the ReggeWheelerRadial
command typically outputs solutions with fewer significant digits than the input. By
overestimating the required input precision (through 2 max [« 8] + 3), we create a safety
margin to help counteract this loss of precision. Furthermore, to guarantee at least n

significant digits in the Wronskian test we add n to this conservative estimate.
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Finally, to ensure that a given QZB}?’R (r) and its derivative produce a Wronskian with

a relative error of at most 107" — which is ensured to happen, provided that this
Wronskian have at least n significant digits— we estimate, based on the arguments
presented in the previous paragraph, the required number of significant digits for the input

to ReggeWheelerRadial as

prec(w, l,r,n) = [2 max [logl0 WSE’R(M ,logy ‘QLZIZ’R/(T)H +3+ nw : (4.27)

where the ceiling function guarantees that the estimated number of significant digits is an
integer value.

With this estimate at hand, consider the set of upgoing modes and their derivatives

{@zupvR(T) PR ) () € [~4M13M] C vy, w e, L € I} (4.28)

wl

previously evaluated with m = 23 significant digits in the input to ReggeWheelerRadial.
The refinement process to ensure these modes pass the Wronskian test with a relative

error of order 10" proceeds as follows:
1. Let ¢y € [ be a given value of ¢.

2. For each w, let A(w) = sup {prec(w, by, 7,n)|r.(r) € t,} be the largest estimated

number of significant digits across all r.

3. Since the current set of modes was produced by providing m significant digits in
the input to ReggeWheelerRadial, only modes where prec(w,?,r,n) > m need

refinement. The set of such modes for ¢, is

B(ty) = {@ZHP’R(T) | prec(w, o, r,n) > m, r(r) € [-4AM,13M] C t,, w € m} .

wlo

4. For each ¥">%(r) € B((y), recompute the mode and its derivative using A(w)

why

significant digits for w and prec(w, £y, r,n) digits for r.
5. Repeat for all other values of ¢y € I.

In principle, we could select any value of n and refine the existing results (initially
computed with m = 23 significant digits in the input to ReggeWheelerRadial). However,
this is impractical due to two constraints: The number of modes that should be re-evaluated
(i.e., the size of B) and the time required to re-evaluate each mode and its derivative
increase with n. On top of that, refining the modes with ¢ 2 12 offers a diminishing return,
since these are exponentially suppressed by the smoothing function introduced in the
(-sum (See . A pragmatic choice based on the Wronskian test results is n = 9 as this
would require re-evaluating at most ~ 3% of the modes. To incorporate a safety margin, we
added 6 additional orders of magnitude, resulting in n = 15. However, refining all modes

up to £ = 100 would demand a prohibitively long computational time. Consequently, we
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restricted the refinement process to modes with ¢ < 29, the highest feasible value given
our computational resources and time constraints.

Prior to refinement, 2,481,065 (~ 3%) Wronskians exhibited a relative error greater
than 107°. Among these, 9,489 corresponded to modes with ¢ < 29. By executing the
refinement process with n = 15, a total of 4,864, 549 modes with ¢ < 29 were re-evaluated
using input precisions ranging from 24 to 280 significant digits. While the primary goal was
to correct the 9,489 modes, the conservative error margin of 6 additional digits (n = 9+ 6)
necessitated refining 4,864,549 modes. After this process, all refined modes and their
derivatives produced Wronskians with relative errors below 1077.

In the next step, we re-ran the Wronskian test exclusively for the ¢ < 29 upgoing
modes and their derivatives of the complete dataset. We observed that 3,364 Wronskians
still exhibited a relative error greater than 107°. These modes were not addressed during
the refinement process because their estimated required input precision (< 23 significant
digits) fell within the original 23-digit precision already used. We fixed these 3,364 modes
by re-evaluating them with 64 significant digits in the input — despite the estimated
requirement prec(2.001M 1,7, —0.6M, 15) = 23 — which reduced their relative error in
the Wronskian’s relative error to below 10730 for them.

Summarizing, all the radial upgoing modes and their derivatives yield a relative error
of at most 107 within ¢ € {0,29} and Vw € 1 (the relevant regime for the numerical
method that will be presented in Section .

4.3.4 Scattering amplitudes

To evaluate the incidence amplitudes I,, we used data from [27] which was produced
through an implementation of the Mano-Suzuki-Takasugi (MST) method [56], where the
EF modes obey a normalization different from the ones we used up to now. Specifically, in
Section [3.3.1] we defined the incidence-normalized modes and in Sections [£.1.1] and 1.2

we introduced the transmission-normalized modes. The radial part of the EF modes in [27]

obeys the following boundary conditions

= Tingiwr. e — —00
DARSE S ' (4.29)

[ier 4+ pineirs, 1, — oo,
and

I'Pelwr= + plhe™r r, — —00

w

Yt~ (4.30)

T ye ™, re — 00.

From the modes in this data, the transmission-normalized incidence amplitude I, was

calculated in two independent ways:

[, = (4.31)
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and

i (4.32)

which ideally produces equal results since the transmission-normalized modes share the
same incidence amplitude, i.e., I, = I . For clarity, throughout this (and only
this) sub-subsection, the labels "in' and up" will be included as superscripts in the
transmission-normalized incidence amplitudes to indicate whether they were evaluated
using Equation or . Everywhere else in this text, these amplitudes will continue
to be denoted as I;.

The dataset from [27] did not include the values of p. or p'. Therefore, we evaluated

poy using the fourth line of Table [7] expressing it as

W™, ] |

2iw

—up __
wl

(4.33)

We computed this using the ¢/%" and " modes (and their derivatives) from our data
at r, = 13M as this is the farthest point from the horizon covered by our data[?]
Finally, the p% amplitudes were derived from p_, via the Wronskian relation in
Equation :
Poe = —Pur - (4.34)
Consequently, we expect p and p.y to share the same number of correct significant digits.
To test 71 v and 1 ug we used the fact that they should be equal:

in [ (4.35)

Hence, the relative difference between the lL.h.s. and the r.h.s. of this equation provides an
estimate of the number of correct significant digits in these amplitudes. For the reflection
amplitudes, we performed two tests based on the Wronskian relations in Equations
and . These tests consisted in evaluating the relative difference between the 1.h.s.
and r.h.s. of

1‘;‘5 =14 |p™)? (4.36)

and
7in
wl

2
=14 (p%| . (4.37)

Across all w and ¢ values in our dataset, the largest relative differences obtained when

testing 1'%, and ' were ~ 107°. For p'» and 5, the largest relative differences were

L Unfortunately, it was only after evaluating these amplitudes that we extended our data up to r, = 24.4M.

We verified that re-evaluating these amplitudes using these extended would potentially increase the
precision of the amplitudes up to three more orders of magnitude.

Due to the technique used when computing the 732’1{ modes and their derivatives, it is expected that
their number of correct significant digits increases with r, because it results in solutions closer to

where the boundary conditions are set.
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~ 10'. In all cases, the smallest relative difference was ~ 1072°. A detailed visualization of
the distribution of relative differences is shown in Figure [7]

The influence of ¢ on the frequency of relative errors > 1079 in these tests is shown
in Figure |8| From this figure, we infer that most errors occur for ¢ > 75, with a smaller
cluster near ¢ ~ 20.

Finally, Figure [0 highlights the w and ¢ values where the relative difference in the tests
exceeds 1079, It reveals that the errors near £ > 20 occur at large Mw = 10, while those
for ¢ 2 75 are distributed across all Mw values.

Summarizing, the ingoing and upgoing incidence amplitudes in our data are self-
consistent to a relative difference of at most 10~ in the Wronskian test across the span of
w and £ in our data. The ingoing and upgoing reflection amplitudes are self-consistent to
a relative difference of at most 107 in the Wronskian test for £ < 75 and Mw < 9.3M,
which covers more than enough the regime that is relevant for the numerical method that

will be presented in Section [5.1.1
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Number of relative differences > € between the L.h.s. and r.h.s.
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Figure 7 — The number of relative differences larger than or equal to € in the tests of the
amplitudes is plotted as a function of €. The red dots refer to the ingoing and
upgoing incidence amplitudes; the green dots refer to the ingoing and reflection
upgoing amplitudes; the blue dots refer to the incidence and reflection ingoing
amplitudes. In order to provide a better visualization of overlapping data, we
plotted the points with different sizes. Across the span of w and ¢ in our data,
the smallest relative difference for all amplitudes is ~ 10725, For the incidence
amplitudes, largest one is ~ 107 and for the reflection amplitudes it is ~ 10.
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Number of relative differences > 1072 between the 1.h.s. and the r.h.s. over all w
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Figure 8 — The number relative differences larger than or equal to 1079 in the tests of
the amplitudes over all w is plotted as a function of ¢. The red dots refer
to the ingoing and upgoing incidence amplitudes; the green dots refer to the
ingoing and reflection upgoing amplitudes; the blue dots refer to the incidence
and reflection ingoing amplitudes. In order to provide a better visualization of
overlapping data, we plotted the points with different sizes. It can be seen that

most occurrences are localized in the region ¢ 2 75 with a smaller cluster near
¢~ 20.
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Occurrences of relative differences > 107 between the Lh.s. and the r.h.s.
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Figure 9 — The values of w and ¢ of the amplitudes that presented a relative difference
larger than or equal to 107 in the tests is presented. The red dots (mixed
with the green ones in the bottom right corner) refer to the ingoing and
upgoing incidence amplitudes; the green dots refer to the ingoing and reflection
upgoing amplitudes; the purple dots refer to the incidence and reflection ingoing
amplitudes. The color of overlapping dots is combined. This plot shows that
the occurrences around ¢ = 20 happen only for large Mw =~ 10.
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5 Quantum correlations in a scalar field in the

Schwarzschild spacetime

In this chapter, we will apply the expressions of the Wightman function that were derived
for several setups in Section [3.4f Throughout, we will always consider x € & to be a fixed

point.

5.1 Outside the horizon

In this section, we consider both points to be outside the horizon, i.e., x,x’ € I.

5.1.1 The numerical method

To illustrate and justify the procedure we will use to compute the Wightman function in the
|B) (Boulware), |U) (Unruh) and |H) (Hartle-Hawking) states, we present a construction
of the computational method using |B) as an example.

In terms of the radial modes defined in Section [4.I, the Wightman function from

Equation (3.74) is expressed as

W (x:X) = M?% FDRAeosto) [

_'_wupR( )wupR*(T ))’
where At =t — .

To evaluate this expression we split it in two parts: One involving ingoing modes,

71wAt

1 Tdwe _ .
B /,. _ mR in,Rx*
Wi () = gy 224+ DPi(costy / o O CONN L)
and another involving upgoing modes,
WE ) = s 04+ DPdeost) | 2SR e. 6
X;X') = —F— cos(y — r'). .
up (4m)2rr! = “( ) w ‘]‘ ‘

The full Wightman function is obtained by evaluating and summing these contributions:

WP (x;x') = Wil (x;x') + W (x;X).. (5.4)

To simplify the description of the numerical implementation we define the auxiliary
functions:

GIHRIH R*(’I“, T',,LU) — @Em R( )¢1n R*(T’/) (55)

w\fw ]
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and

up,R;up,R* 1
G (
J4

rrw) =

(U (). (5.6)
|l

For given values of ¢, r and r/, these functions are evaluated for all w € to. Then, the
results are interpolated to obtain smooth functions over the domain Mw € [1073,10].
Throughout this process we use the Mathematica option InterpolationOrder— 8.

When selecting the interpolation order, it is critical to avoid extremes. Too small an
order fails to capture smooth variations between data points, while too large an order
introduces spurious oscillations near the interpolation limits due to Runge’s phenomenon
because our data points are evenly spaced in w. Both scenarios can propagate errors during
subsequent integration steps and should be carefully mitigated.

As a first example, Figure [10| shows the interpolation results for r = ' & 6.009M and
¢ = 2 using interpolation orders 8 and 45. Spurious oscillations are evident near the lower
limit Mw = 1073 for the larger interpolation order. The reader might argue that this case

] 1 i 7R;‘ 7R 7R; 7R
is special because both G, (r, 7/ w) and G,”""™(

r, 7’ w) are real-valued due to
r = r’. For this reason we present a second example with » ~ 6.009M,r" ~ 3.9M, and
¢ =2 in Figure In this example we observe that for the larger interpolation order the
spurious oscillations near Mw = 1073 persist even for r # /.

In addition to illustrating Runge’s phenomenon, these figures provide insight into
the convergence properties of the w-integral. As the low-frequency regime Mw — 0 is
approached, we verify that both terms decay at least linearly with w for all cases in
Figures [10] and At the other end, in the high-frequency regime Mw — oo, we confirm
that the magnitude of both G} ™™ (1 ' w) and Gy>™"™ ™ (1 1/ ©) decays as w™!, as
expected: In this limit, the effective potential in Equation becomes negligible for

all » > r, implying that the z/_Jif}’R/ up’R(r) modes behave as free waves and the decay of

the integrands is dictated by their oscillatory behavior with amplitude decaying as w=".

These two properties ensure the convergence of the w-integrals in Equations ((5.2)) and (5.3))
whenever At # 0 or At = 0 with r # 7. The case At = 0 with » = 7’ is more pathological

1

because in the high-frequency limit, the integrand scales as w™" without the oscillations

from e~4*, causing the integral to diverge as In(w) and some regularization technique
should be employed.

From a numerical perspective, there is a critical caveat regarding the convergence of
these integrals: accurate results require the cutoff frequency Mwey (set to 10 in this work)
up to which the w-integral ranges to be sufficiently large for the integrand to reach the
high-frequency asymptotic regime. The reason is that this regime marks the onset of the
oscillatory decay of the integrand (in the aforementioned cases). Once it is reached, the
integral presents residual oscillations that slowly diminishes towards its true value as Mwcy

in,R;in,R*
Gy (

increases. This behavior is illustrated in Figure , where we integrate r,r w)

and GyPP R (1 /) for At = 0,0 = 5,1 ~ 6.009M, " ~ 3.9M up to varying values of
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Figure 10 — The interpolated functions Gy ™®*(r ' w) (left) and Gy>H"R*(r 1/ W)
(right) for r = r’ &~ 6.009M and ¢ = 2, with interpolation orders 8 (blue)
and 45 (red-dashed). Oscillations near Mw = 1072 in the high-order (45)
interpolation are a classic manifestation of Runge’s phenomenon.

Mweys.

In this figure, we observe that the integrals begin to converge — oscillating around their
correct values — only after the high-frequency regime is reached. This regime initiates
once (Mw)? exceeds the peak value of the effective potential defined in Equation (4.2).
Since this peak is always located near 3r,/2, a coarse estimate for the frequency Mwy,

marking the onset of the high-frequency regime is

8+ 120(0 + 1
Mwyo =~V (3r,/2) = o ( ) (5.7)

For ¢ =5, used to produce Figure this estimate yields Mw,, ~ 1, consistent with the
plots in this figure.

It is important to remark that for ¢ > 52 the onset of the high-frequency regime
happens at frequencies larger than our cutoff frequency (Mwy > Mwey = 10). As a
consequence, the w-integrals are not expected to converge accurately for ¢ > 52. This issue
will be addressed during the /~-summation and we defer its resolution until the summation
process is discussed. Conversely, Figure [12| reveals another important issue: The w-integral
converges visually very slowly even when Mw,, (in this figure, Mw,, ~ 1) is an order
of magnitude smaller than Mwe,. This is quantified in Table [§], where the values of the
w-integrals are tabulated against Mw.,. The convergence is so sluggish that no consistent
significant figure can be reliably determined from the results.

To address the slow convergence, we multiply the integrands of Equations and
by a frequency-smoothing function n(w, wp) during the numerical integration process. While

these integrals are formally convergent without it, the frequency smoothing makes it faster
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Figure 11 — Real (top row) and imaginary (bottom row) parts of the interpolated functions
G (0 5) (left column) and GEP P R* (5 7 w) (right column) for 7 &
6.009M, 7" =~ 3.9M and ¢ = 2. Blue solid and red dashed lines correspond to
interpolation orders 8 and 45, respectively. Spurious oscillations near Mw =
1073 persist in both components when using an interpolation order of 45.

by suppressing high-frequency (w > wy) contributions, effectively acting as a window
function to accelerate numerical convergence.

While introducing n(w,wp) may appear ad-hoc, its use is physically motivated: the
Wightman function is a bi-distribution and must be smeared with a test function to yield
a physically meaningful quantity. This smearing reflects the finite resolution of measurable
quantities in realistic setups. For example, in models of point-like two-level quantum
systems (known as Unruh-DeWitt detectors), the temporal and spatial profile of the
interaction with the background quantum field inherently defines a test function n(w,wy),
which ensures faster integral convergence. A concrete example is seen in [I], which we will
analyze in detail in the next chapter.

To maximize the fidelity (i.e., how much of the original bi-distribution behavior is

preserved) of the Wightman function evaluation across Mw € [1073,10], the frequency-
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Figure 12 — First row: Auxiliary functions Gy*™ ™™ (7 ¢/ w) (left) and G (r 3/ o)
(right) for r ~ 6.009M,r" ~ 3.9M and ¢ = 5, plotted as functions of Mw.
Second row: Their w-integrals as functions of the cutoff frequency Mwey.
Oscillations around the value towards which the integrals converge begin for

M Weut Z

VEE(3r,/2) ~ 1, coinciding with the onset of the high-frequency

asymptotic regime as predicted by Equation ({5.7)).
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Mwews [ GL”’R;M’R* (r,r’ w)dw  fios GZP’R;UP’R*(T, r w)dw

1072 4.14 x 10726 3.44 x 10713

1071 7.03 x 1071 4.07 x 1071
1 0.580 — 0.0091 —0.001 + 0.0091
2 0.308 + 0.238i —0.227 — 0.238i1
3 0.231 4 0.0391 —0.304 — 0.039i
4 0.366 + 0.1121 —0.169 — 0.1121
5 0.247. + 0.123i —0.289 — 0.1231
6 0.326 + 0.0651 —0.209 — 0.0651
7 0.295 + 0.141i —0.244 — 0.0141i
8 0.287 + 0.069i —0.249 — 0.0691
9 0.320 + 0.123i —0.215 — 0.123i1
10 0.271 + 0.094i —0.264 — 0.094i

Table 8 -~ Numerical values of the w-integrals of G)"™™8(r 1/, w) and GyPR"PR* (1 ¢/ ()
from Mw = 1073 to Mwey for r = 6.009M 1" ~ 3.9M and ¢ = 5. Despite the
early (compared to Mwc,, = 10) onset of the high-frequency regime Mw,, = 1,
convergence is extremely slow, with no consistent significant figures obtainable.

smoothing function 7(w,wy) should suppress high-frequency contributions while retaining
lower frequencies. Following [27], we adopt

1 —erf(2(Mw — Muwy))
2 Y

n(w,wo) = (5.8)

where erf is the error function [48, Equation 7.2.1], and set Mwy = 8.5. This smoothing
profile is illustrated in Figure This choice suppresses frequencies Mw 2 8.5, effectively
acting as a soft cutoff for larger frequencies. Consequently, the w-integrals for £ > 44 (where
Muws, > 8.5) are not expected to converge accurately. This is because up to Mw = 8.5
their integrands have not yet entered the asymptotic Mw 2 Mw,, regime, where the
magnitude of the oscillatory integrand decays as w™! and the integral begins to converge
by oscillating around its correct value.

For completeness, Figure replicates the analysis of Figure but incorporates
the frequency-smoothing function from Equation . Notably, the amplitude of the
oscillations around the value towards which the integral is converging decays rapidly for
Muwey 2 8.5. As summarized in Table @, this allows us to extract results with three
significant figures for ¢ = 5.

We further verified that for ¢ = 44, the integrals converge to at least one significant

figure within the current settings. Since the convergence of the w-integrals slows down
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Figure 13 — Profile of the smoothing function defined in Equation . For Mw < 8, the
function is nearly unity (1 & 1), making it transparent to lower frequencies. For
Mw Z 8.5, contributions are sharply suppressed. The transition region (8 <
Mw < 8.5) is governed by the steepness of the error function in Equation ([5.8)).

with increasing ¢ (due to delayed onset of the w™' decay regime), we conservatively assert
that all integrals for ¢ < 44 converge to at least one significant figure, with up to three
achievable for lower /.

It is important to emphasize the inherent trade-off of the frequency-smoothing technique
we are using: lowering Mwy improves the precision (more significant figures) of the w-
integrals for the /-modes where Mw,, < Mwy, but reduces the maximum ¢ for which results
remain correct to at least one significant figure, as Mw,, increases with ¢. Conversely,
increasing Mwy extends the range of /-modes that converge to at least one significant figure,
but sacrifices precision (fewer significant figures) for lower ¢. For our choice Mw, = 8.5,
we balance these competing effects: ensuring integrals for ¢ < 42 converge to at least one
significant figure while retaining up to three figures for lower /.

We remark, however, that an increasing (finite) number of f-modes does not guarantee
better results in the /-sum: Excessively many /-modes amplify the Gibbs phenomenon near
the singularities of the Wightman function, manifesting as spurious oscillations around
them. Examples of this behavior will be provided during the discussion of the /-sum
process.

When performing the numerical integration in Mathematica, we allow the software to

automatically select its integration strategy based on the integrand’s structure. To optimize
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igure 14 — First row: Functions G, (r,7",w) (left) and G, (r,7’,w) (right) for

r & 6.009M, 7" ~ 3.9M and ¢ = 5, with frequency-smoothing (Equation (5.8)),
plotted as functions of Mw. Second row: Their w-integrals as a function of
the cutoff frequency Mwcy. Due to the frequency-smoothing with Mwy = 8.5,
the integrals converge rapidly for Mw.,; 2 8.5.

computational speed, we set SymbolicProcessing to 0: generating Table [J] takes ~ 0.5s
with this setting versus ~ 11s without it. Furthermore, we configure PrecisionGoal to
10 and AccuracyGoal to oo, instructing Mathematica to target a relative error of 10719
during integrations.

However, Mathematica’s internal error estimate does not reflect the actual relative
error in the final result. As shown in Table [J] only three consistent significant figures are
achieved, despite the stringent precision settings. This discrepancy arises from unaccounted
systematic errors due to the residual oscillations in the integrand for Mw 2 8.5. As
previously commented, these could be ameliorated by reducing Mwq (which also produces
the aforementioned side-effects). An alternative that would be free of these side-effects

would be to increase the values of Mw in our data which would allow for a larger Mweys.
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chut floacllg Gién,R;in,R* (T, 7”', w)dw fffffé GEP’R;UP’R* (7", 7“/, w)dw

1072 4.14 x 10726 3.44 x 10713

107! 7.03 x 1071 4.07 x 1071
1 0.580 — 0.0091 —0.001 + 0.009i
2 0.308 + 0.238i —0.227 — 0.2381
3 0.231 4 0.0391 —0.304 — 0.039i
4 0.366 + 0.1121 —0.169 — 0.112i
) 0.247. + 0.123i —0.289 — 0.1231
6 0.326 + 0.0651 —0.209 — 0.0651
7 0.291 + 0.141i —0.244 — 0.0141i
8 0.288 + 0.069i —0.247 — 0.0691
9 0.285 + 0.110i —0.250 — 0.1101
10 0.285 + 0.109i —0.250 — 0.109i

Table 9 — Numerical values of the frequency-smoothed (Equation (5.8))) w-integrals of
Gien’R;in’R*(r, r’,w) and GZP’R;HP’R*(T, ' w) from Mw = 1073 to Mwe, = 10 for
r &~ 6.009M,r" ~ 3.9M and ¢ = 5. With frequency-smoothing, the integrals
stabilize to three significant figures for Mwey > 8.

This integration protocol will be adopted throughout all calculations when both points
x and x" are outside the black hole (r,7" > ry) and a very similar procedure will be used in
the other cases.

The final step involves performing the f-sum to evaluate both contributions W.2 (x; x’)
and W (x;x’), which are then combined to reconstruct the Wightman function W7 (x; x').
As an initial test case, we evaluated the f-sum terms considering an angular separation of
v = 7/3 between x and x’. The results are plotted as a function of ¢ in Figure These
terms exhibit an oscillatory behavior with a slow decay in amplitude for ¢ < 44, followed
by a much sharper decay for larger values of /.

This transition in the decay rate arises because Mw,, — the frequency scale marking
the onset of the asymptotic w™! decay of the amplitudes of the oscillations in the integrand
— exceeds the smoothing threshold Mwy, = 8.5 for ¢ 2 44. Beyond this point, the w-
integrals are systematically underestimated because they fail to resolve the local extreme
at Mw ~ Muw,, that happens before the onset of the asymptotic w™! decaying regime.
Consequently, the frequency smoothing with Mwy = 8.5 inherently imposes a corresponding
cutoff in the f-sum at ¢ ~ 44.

With that, we proceed to evaluate the /-sum up to le, = 100 (the largest value of ¢
in our dataset). The results are tabulated in Table [10] and illustrated in Figure [16] The
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Figure 15 — Real part (blue), imaginary part (red), and magnitude (green) of the ¢-sum
terms for W7 (x;x’) (left) and W (x;x’) (right), computed for r ~ 6.009M,
" &~ 3.9M and angular separation v = 7/3. The abrupt decay for ¢ > 44
reflects the frequency smoothing with Mw 2 Mwy = 8.5 (Equation ((5.8)). For
the f-modes with ¢ 2> 44 the onset of the high-frequency decaying behavior
is not achieved because Mw,, > Mw, = 8.5, resulting in systematically
underestimated w-integrals.

summation exhibits an oscillatory behavior, with amplitude decaying as . increases. This
decay accelerates sharply beyond the soft cutoff (inherited from the frequency-smoothing)
at ¢ =~ 44, consistent with the behavior of the summand shown in Figure [15]

To estimate the relative error introduced by truncating the ¢-sum at £, we compute
the relative difference between successive partial sums (at f., and fey + 1). This error
oscillates around 107! for £ < 44, then decays rapidly for larger £.... However, this decay
is misleading: for (., = 44 the w-integrals themselves lose accuracy (they are accurate to
at least one significant figure for ¢ < 44), rendering the error estimates unreliable on this
interval. The relative error approaching zero at large £, reflects numerical underestimation
of contributions from ¢ 2 44 rather than true convergence.

Thus, with the current technique, the -sum should be trusted only to one significant
figure, given the 107! estimated relative error in the non-underestimated contributions to
the (-sum (¢ < 44).

Given these caveats, we proceed to evaluate the Wightman function. To optimize
efficiency, we reverse the computational order: instead of first computing the w-integrals
and then performing the ¢-sums, we first perform the /-sum and subsequently compute
the w-integral over the summed result. For the current example, this reordering yields
results identical to those in Table [I0] validating the consistency of the approach.

This reordering provides a substantial computational speedup: for each pair of points x

and x'; evaluating the Wightman function now requires only a single w-integral over the
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Figure 16 — First row: Real (blue) and imaginary (red) parts of the ¢-sums for W2 (x;x’)

(left) and W2 (x;x’) (right), computed for r ~ 6.009M, ' ~ 3.9M and
v = 7/3. Second row: Estimated relative errors in the f-sums (real part
in blue, imaginary part in red). As could be anticipated from Figure ,
the relative errors decay rapidly for (.., = 44, aligning with the frequency-
smoothing with Mwy, = 8.5. Discontinuities in the error curves arise from
numerical cancellation of all significant digits at large /... Crucially, the
w-integrals are accurate to at least a significant figure only for ¢ < 44. Beyond
this, the apparent decay in relative error reflects a systematic underestimation
of the w-integrals, not true convergence. Thus, the ¢-sum for £.,; = 100 should
be interpreted as accurate to a single significant figure, since the estimated
relative error in this sum oscillates around 10~ up to fey = 44, where the
w-integrals are accurate.
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WS (X WEGex) WP ()

0.000390 — 0.0002831  0.000398 + 0.0002831  0.000788

Table 10 - Numerical values of Wi (x;x), W.J (x;x’), and W? (x;x') for » ~ 6.009M,
" &~ 3.9M and angular separation 7 = 7/3. Results are truncated to three
significant figures — Although they should be trusted only to a single significant
figure, as the f-sum converges to a relative error of 107! when summing
up to ¢ = 44 (the largest value of ¢ with at least a significant figure after
w-integration). The absolute error introduced by the integration process is
~ 10713, corresponding to a relative error of ~ 1071, Despite the high internal
precision, systematic errors due to underestimation of the w-integrals for ¢ 2> 44
restrict the results a single significant figure.

(-summed integrand, rather than 100 separate integrals (one per ¢-mode). This reduces
both runtime and numerical complexity while preserving accuracy within the established
error bounds.

Following the outlined method, we proceed to evaluate WP (x;x’) for the points
x=(t=—TAM,r, =7TAM,0=0,p = 0) (5.9)

and
x' = (t',r, =3.8M,0 =0,¢ =7/3), (5.10)

where t’ varies from —147.4M up to 132.6 M, resulting in a time separation At = ¢ —t/
spanning —140M < At < 140M. The parameter ¢’ is sampled in increments of 0.1M,
yielding 2,801 data points.

These points are visualized in Figure [I7, shown in both Eddington-Finkelstein and
Penrose diagrams.

The computation required 2 minutes to perform the interpolations and approximately
48 minutes to evaluate all 2,801 distinct w-integrals. The results, shown in Figure [1§] reveal
several key features. First, the magnitude of the Wightman function exhibits an overall
decaying trend as |At/M]| increases, reflecting the intuitive expectation that correlations
diminish with increasing spacetime separation between x and x’. Superimposed on this
decay are localized structures: sharp peaks and valleys (zeroes in the Wightman function,
emphasized by the logarithmic scale), surrounded by an oscillatory behavior.

The localized structures in the Wightman function likely arise from its singularities,
which are smeared by the combined effect of the frequency-smoothing and the hard
cutoffs (Mwey, = 10 for the w-integral and ¢.,; = 100 for the ¢-sum) procedures. These
singularities occur when o(x,x") = (ﬂ, i.e., when x and x” are connected by a null geodesic
(See Subsection . To confirm this, we computed the null geodesics connecting x and

1

Here we refer to an extension of Synge’s world function beyond a normal neighborhood N'(x) of x, as
constructed in [47].
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Figure 17 — Spacetime points used to evaluate W? (x;x) in the first numerical example.
Left: Eddington-Finkelstein diagram. Right: Penrose diagram. Purple dot:
Fixed point x = (t = —74M,r, = 74M, 0 = 0, ¢ = 0). Orange dots:
xX' = ({t',r, =38M,0 =0, ¢ = 7/3), where t’ varies from —147.4M to
132.6 M in steps of 0.1M. The points x and x’ lie on distinct azimuthal planes
(p =0 vs. ¢’ =7/3), hence, no radial null geodesic connects them.

x" at an angular separation v = 37 after N € N half-orbits (with N = 0,1,...,8) by
numerically solving the geodesic equations . The first five of these null geodesics are
depicted in Figure [20|and connect x and x’ at different values of coordinate time separation
At=t—1.

By overlaying these At values as vertical lines on the Wightman function we produced
Figure [19] where we observe alignment between At on the computed null geodesics and
the localized structures (except zeroes). This offers an evidence that these structures are
the smeared singularities of W2 (x;x’), predicted to happen when x and x’ are light-like
connected (See [3.4.1]).

If the aforementioned sharply localized structures in the Wightman function correspond
to its singularities, then the oscillatory behavior around them is expected: these singularities
cause discontinuities in the unsmeared Wightman function (and steep variations in the
smeared version). Such features are encoded in arbitrarily high-¢ modes of the spherical
harmonics expansion of the unsmeared Wightman function (or modes with large-but-finite
¢ in the smeared version). However, the soft cutoff in the /-sum at ¢ = 42, induced by the
w-smoothing procedure, effectively dampens the contribution from arbitrarily high-¢ modes,
preventing these features near the singularities to be resolved. This introduces spurious
oscillations around the smoothed singularities, analogous to the Gibbs phenomenon in
Fourier analysis.

While the results remain mathematically consistent, these oscillations obscure the
precise nature of the singularities (and the behavior of the Wightman function around
them). For example, it becomes challenging to distinguish whether a sharp peak corresponds

to a delta-function singularity (6(¢)), a principal value distribution (P.V. (%)) or another
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functional form.

These spurious oscillations can be mitigated by introducing an explicit soft cutoff in
the ¢-sum. Specifically, we dampen high-¢ modes by multiplying the summand with a
Gaussian window function:

W, by) = /%), (5.11)

where ¢y = 12, following the methodology of [27]. This suppresses such oscillations while
preserving the localized structures associated with singularities. The results, shown in
Figure [21] clearly demonstrate reduced noise and clearer resolution of the behavior near
the smoothed singularities.

However, this approach introduces another trade-off: the overall magnitude of W2 (x; x’)
is slightly reduced, and its localized structures are blurred over broader intervals. This
loss of sharpness reflects the inherent tension between numerical stability and resolving
singular features in truncated mode sums. In short, increasing ¢, improves the sharpness
of the singularities at the cost of including spurious oscillations due to Gibbs phenomena.

On the other hand, the onset frequency of the asymptotic decay of the integrand is
Mws, = 2.4M for ¢ = 12, implying that the most relevant contributions to the /-sum will
come from more accurate w-integrals when using ¢y = 12. That is, decreasing ¢, improves
the overall convergence, increasing the number of consistent significant digits available
after the /-sum. Specifically, for £ = 12, the w-integrals converge to two significant figures
in the case where At = 0 (this takes x and x closer to coincidence and is likely to converge
slower). Therefore, in this approach it is reasonable to conservatively assume that the
results for the f-sum are correct to two significant figures.

While the logarithmic scale in Figure 21] enhances the visibility of localized structures
after (-smoothing, it obscures the sign of the real and imaginary parts of W2 (x;x') —
crucial information for verifying whether these structures correspond to the light-crossing.

To address this issue, we generated linear-scale plots with adjusted ranges to resolve
behavior near each localized structure. The results for the real and imaginary parts of
W38 (x;x') are shown in Figures and , respectively. These plots reveal a behavior
consistent with the predicted singularity structures in Equations and . Both the
location and functional form of the structures align with expectations, strongly suggesting
that they represent the smoothed singularities of the Wightman function. Given these
evidences, we find it reasonable to assume that this is the case from now on.

It is interesting to notice the distinct behaviors (away from the singularities) in the
Real and Imaginary parts of the Wightman, which become clear for At/M 2 110: The
imaginary part is linearly decreasing with At/M (and its magnitude is also decreasing, as
it asymptotes to zero) while the real part linearly increases with At/M (and its magnitude
also decreases, since it is a negative number that is asymptoting to zero).

To finish this exposition we remark that despite the complications related to caustics

for angular separations v = 0 and v = 7, where the numerical evaluation of the mode-sum
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Figure 18 — Absolute value of the real (top) and imaginary (middle) parts of W% (x;x’)
forx=(t=—-74M,r, =74M,0 =0, p=0) and X' = (¢, r, =3.8M, 0’ =
0, ¢’ = w/3), plotted as a function of At = t — ¢’. Bottom: Magnitude of
WP (x;x'). The decay with increasing |At/M]| reflects diminishing quantum
correlations with increasing spacetime separations. The sharp peaks align
with light-like connections between x and x’ (see Figure , as discussed in
Section B.4.11
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Figure 20 — Orbiting null geodesics (colored curves) connecting x at r ~ 6.009M (solid
black circle) to x” at " &~ 3.9M (dashed black circle) at an angular separation
of v = /3. The black dots represent the points x and x’. Each geodesic
completes N € N half-orbits around the black hole before connecting x and
x'. Legend shows |At| = |t — /| for each geodesic. These values align with the
localized structures in Figure [I9] Including larger values of N would crowd
the plot without adding insight on the behavior of these null geodesics. For
this reason we decided not to include them (N = 5,6, 7, 8) here.

expansion of the Wightman function is not expected to behave well due to enhanced
singularities (See [47]), we were able to reproduce the results for these angular separations
presented in Figure 13 of [57]. Our results are presented in Figure . Slight differences
between our results and those of [57] are expected because they use r = 6M with a gaussian
source while we use r ~ 6.009M with a delta source. Our method is not able to resolve
the behavior near At/M = 0, which is expected since this implies that we are trying to
take the coincidence limit x" — x, where the mode-sum expression we use diverges.
Despite being done as an example of the method, this calculation is already interesting:
To the best of our knowledge, this is the first time that the two-fold singularity structure
of the real part of the Wightman function is exposed for points on caustics. In [57] only
the Retarded Green Function (which depends only on the imaginary part of the Wightman
function, see Equation (3.50))) was evaluated. The shape of the singularities in the real part
are mirrored images of the shape of the singularities in the imaginary part. For instance,

in the first singularity, the imaginary part presents a shallow minima followed by a larger
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Figure 21 — Absolute value of the real (top) and imaginary (middle) parts of W2 (x;x’)
for x = (=7.4M, 7.4M, 0, 0) and x" = (¢, 3.8M, 0, 7/3), plotted as a function
of At =t —t'. Bottom: Magnitude of W? (x;x). These plots were produced
using the /-sum smoothing function from Equation ([5.11]). Dashed vertical
lines mark the values of At where x and x’ are connected by null geodesics.
These align with sharp structures (except zeroes) in the Wightman function,
reflecting its singularity structure (See Section . Compared to Figure
we are now able to see the behavior of the singularities without spurious
oscillations contaminating its surroundings.
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Figure 22 — The Real part of the Wightman function is plotted as a function of At/M
from At/M =0 to At/M = 140. In each of the plots, vertical lines mark the
value of At/M for which a null geodesic connects x to x" after N half-orbits
around the horizon. Notice how the singularities agree with the singularity
structure described in Equation . It is also interesting to notice the
roughly linear behavior for large At/M (2 110) in our case.

maxima while the real part presents a deep maxima followed by a smaller minima. This
relation holds for the next singularities in the plots.

However, given the complications related to the singularities at caustics, further
investigation is necessary to tighten the mathematical background of this result. Such
study is relegated to future works.

The method developed in this section will be used, with minor adjustments(to be
mentioned as needed), throughout all calculations of the Wightman function and related

quantities.

5.1.2 Maps of the Wightman function for the Unruh, Boulware and Hartle-

Hawking states

The expression of the Wightman function for Boulware state in terms of the radial modes
defined in Section was already presented in Equation (5.1)). Performing a similar
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Figure 23 — The Imgarinary part of the Wightman function is plotted as a function of
At/M from At/M = 0 to At/M = 140. In each of the plots, vertical lines
mark the value of At/M for which a null geodesic connects x to x" after N
half-orbits around the horizon. Notice how the singularities agree with the
singularity structure described in Equation . It is also interesting to
notice the roughly linear behavior for large At/M (2 110) in our case.

calculation for the Wightman function of the Unruh (Equation (3.77)) and Hartle-Hawking
(Equation ([3.89)) states, we obtain

1 [e.o] OO w . -
U . _ —jwAt 7in,R in,Rx
W (x;x') = WZ:O(%JJ Py(cos(y O/w f l Yo (r)gg " (r")

1

—iw Twrs, up,R Tup,Rx iw mwr, Tup, R —pR
i 2nh<2w>< ST Y () + ST ()l <r’>>]

(5.12)
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Figure 24 — The Retarded Green Function on caustic points at » = 7’ on v = 7. First
row: A log-scale plot of the absolute value of the RGF as a function of At/M.
Second row: The first and second (N = 0 and N = 1) singularities. Third row:
The third and fourth (N = 2 and N = 3) singularities. The plot in the first
row presents the same behavior of its equivalent in the first row of Figure 12
in [57]. The plots in the second row also match their equivalents, in the third
row of of Figure 12 in [57].
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Figure 25 — The Real part of the Wightman Function on caustic points at » = ' on v = 7.
First row: A log-scale plot of the absolute value of the Wightman function as
a function of At/M. Second row: The first and second caustic echoes. Third
row: The third and fourth caustic echoes. To the best of our knowledge, this
is the first time that these singularities on the Real part of the Wightman
function are exposed for caustic points.
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and
WH (x;x') = ;i(%%— 1) Py(cos(y 7w !
; (4m)2rr = dt ) w j ’ 2 sinh(27rwr;)

« [ <e27rwrs e—iwAtQZLijléR (T>1/;$R* (7,/> + e—27rw7"s eiwAtl/;gléR (T)@ELI?R* (,r,/)> (5 13)
+ <e27rwrse—1wAt¢up R(T)&EIZ,R* (7”/) + e—27rwrs lwAtd)up R (r)@/;zlg,R (T/)> ‘| ]

All terms in these integrals are similar to the ones in the expression for the Boulware
state. Consequently, these integrals converge at least as fast as the ones for the Boulware

state in the large-frequency limit. To understand why, notice that

e—?ﬂwrs

— =0 5.14
1500 2 sinh(27wr,) (5.14)

which cause the terms it multiplies to decay faster than those of the Boulware state, and

2TwWrs

e
— =1 5.15
7350 2 sinh(2rwrg) (5.15)

producing no effect with respect to the convergence of the integrals in the large-frequency
limit. Hence, the integrals for the Unruh and Hartle-Hawking states converge at least as
fast as those one of the Boulware state in this limit.

On the other end, in the low-frequency limit

e:i:?murs 1

2sinh(2mwry)  Arraw +OWY), (5.16)
At first sight it might seem to be a problem due to the diverging w™! behavior as w — 0.
However, the integrals remain regular in this limit because they consist of G ™** ()
and GUPFMPR* (1) (both of these scale at least as w' in the low-frequency limit, as can
be seen, for instance, in Figure multiplied by this factor. Therefore, the integrals for
the Unruh and Hartle-Hawking states Wightman functions have the same convergence
properties as the one for the Boulware state. We remark that this convergence analysis
holds as long as x and x" are not connected by a null geodesic (a case where a singularity
is known to appear) or at coincidence, where the large-frequency behavior is pathological.

With that, we proceed to evaluate the Wightman function for these states on several
surfaces of constant v’-coordinate to obtain a picture of the correlations across different
regions of the spacetime. Specifically, we fix the base point x = (v = 0M ,u = —14.8M, 6 =
0, ¢ = 0) and consider points x" at an angular separation of v = 7/3 with respect to x.
We vary the EF-coordinates v’ and u’ of x” from v" = —100M up to v" = 100M in steps of
Av' = 1M. For each v/, we vary u' = v — 2/, using all values of r/ in our dataset. The
result is the mesh of 28,743 points, represented in both an Eddington-Finkelstein and a
Penrose diagram in Figure [20]
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Figure 26 — Points where we will evaluate W7 (x;x’). Left: Eddington-Finkelstein dia-
gram. Right: Penrose diagram. Purple dot: Fixed point x = (v = 0M, u =
—14.8M, 0 = 0, p = 0). Orange dots: The points x’ with varying v" and u’'.
For each v', we vary u' = v' — 2r! to cover all values of 7/ in our dataset. All
x" are separated from x by an angle v = 7/3, hence, no radial null geodesic
connects them.

For each state, the complete computation takes approximately 1 hour and 45 minutes
using 6 parallel Mathematica kernels. The results for the Boulware state are presented
in Figures and 28] where we see, respectively, the real and imaginary parts of the
Wightman function across the several x' included in the evaluations. The plot of the real
part of the Wightman function for the Hartle-Hawking state is presented in Figure 29 We
omit this plot for the Unruh state because it is visually identical to that of the Boulware
state (only visually, as will be shown). We also omit the plots of the imaginary part of the
Wightman function for the Unruh and Hartle-Hawking states because they are visually
identical to that of the Boulware state. This is expected because the imaginary part of
the Wightman function can be written in terms of the Advanced and Retarded Green
Functions (see Equation (3.50))) which depend only on the geometry of the spacetime.

In all cases, we see the light-crossing manifesting whenever x’ is connected to x by a null
geodesic. There is also the interesting manifestation of the property that the commutator is
zero whenever x’ is spacelike connected to x, which shows as a steep decay in the magnitude
of the imaginary part of the Wightman function in the region between the singularities
that appear before a complete half-orbit (N = 0). These results, although interesting are
not something new, since these singularities and their locations are long known. Up to
now, the novelty is the possibility to evaluate the Wightman function on a massive amount
of spacetime points in a reasonably short time.

To illustrate the difference between the Wightman function in the three quantum states,
we calculated them on the r' &~ 2.7M strip of the mesh in Figure 26| (visually very close
to the photonsphere represented in Figure , varying v' = —100M up to v' = 100M in
steps of Av' = 0.1M for a finer grid. The result is presented in Figure [30] The imaginary
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Figure 27 — The real part of the Wightman function W2 (x;x') with x = (v = 0M, u =

—14.8M,60 = 0, p = 0) (r = 6.009M) separated by an angle of v = 7/3
from all points x' of Figure 26| The thin black-dashed line is 7’ = 3M, the
photonsphere. The thin blue-dashed lines are the points x’ connected to x by
null geodesics that complete N half-orbits around the black hole. Overall, the
magnitude of the real part of the Wightman function decays with increasing
At /M| = |(Au+ Av)/2M|, where Au = u — v’ and Av = v — ¢/, in line
with what is seen in Figure [21| which is the 7' & 3.9M slice of this plot. The
localized maxima are the manifestations of the singularities that appear when
x and x" are light-like connected, i.e., on the thin blue-dashed lines. The overall
structure of the plot do not change by choosing the fixed point x below the
photonsphere (r < 3M).
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Figure 28 — The imaginary part of the Wightman function W2 (x;x') with x = (v =

OM, u = —148M,0 =0, p = 0) (r ~

6.009M) separated by an angle of

v = /3 all points x’ from Figure [26] The thin black-dashed line is 7' = 3M,
the photonsphere. The thin blue-dashed lines are the points x’ connected to x
by a null geodesic that completes N half-orbits around the black hole. Overall,
the magnitude of the imaginary part of the Wightman function decays with
increasing |t'| = |(v/ + v’)/2|, in line with what is seen in Figure [21| which is
the r" ~ 3.9M slice of this plot. The localized maxima are the manifestations
of the singularities that appear when x and x” are light-like connected, i.e., on
the thin blue-dashed lines.
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Figure 29 — The real part of the Wightman function W (x;x’) with x = (v = 0M, u =
—14.8M, 0 = 0, ¢ = 0) separated by an angle of v = 7/3 from all points x’
of Figure [26] The thin black-dashed line is ' = 3M, the photonsphere. The
thin blue-dashed lines are the points x’ connected to x by a null geodesic
that completes N half-orbits around the black hole. Overall, the magnitude
of the real part of the Wightman function decays with increasing |At'/M| =
|(Au+ Av)/2M|, where Au = v — v and Av = v — ¢/, in line with what
is seen in Figure 21| which is the 7" &~ 3.9M slice of this plot. The localized
maxima are the manifestations of the singularities that appear when x and x’
are light-like connected, i.e., on the thin blue-dashed lines.
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part of the Wightman function across all three quantum states agree to a relative error
of at most 1073 when A¢/M = 0 and 10~® everywhere else. The oscillations seen near
At/M = 0 are likely explained by the fact that this point is closer to coincidence (X" = x)
than our method can currently resolve.

On the other hand, the real part of the Wightman function is overall different across
the three quantum states, except when it comes to the location of the singularities (as
expected, since these singularities are purely geometrical and happen whenever x and x’ are
light-like related). Moreover we see that, except at the singularities or large |v' /M| (where
(W5 (x;x)]| > [Re[WY (x;x)]| >

‘Re[WH (x; x’ )]‘ This is a manifestation of the nature of these quantum states: The

low-frequencies become increasingly important),

Boulware state models a cold star and contains no thermal radiation. The Unruh state
models a black hole emitting thermal radiation and the Hartle-Hawking state models a
black hole in thermal equilibrium with its environment. Since thermal radiation implies
less quantum correlations, it is sensible to expect that )Re[WB (x; %’ )]) > ‘Re[WU (x; %’ )]‘ >
[Re[WH (x;x)]|.

5.1.3 The quantum relative contribution W¥(x,x’)

To the best of our knowledge, there are no known methods to explicitly evaluate the
quantum state contribution that comes from the bi-scalar w¥(x,x’) of the Wightman
function in Equation (3.52). While we are also not able to evaluate w¥(x,x’) for each state,

we managed to calculate the overall behavior of the differences
WY B(x,x) = W¥(x,x') — W5 (x,x') (5.17)

between the state |1)) and the Boulware state |B), which we take as the reference. We will

refer to this quantity as the quantum relative contribution. It has the property that
WY B(x,x) = w?(x,x) —w?(x,x), X' € N(x). (5.18)

Which can be understood as a consequence of the fact the geometry-dependent terms are

the same for all quantum states. Such property allows to obtain information about the

relative behavior of the bi-scalar w¥(x,x’) with respect to w?(x,x’).

In terms of mode-sum expansions, it is straightforward to use Equations (/5.1)), (5.12))

and (5.13) to write

_ N 1
WU=B(x,x) = 7(4@ - gz(:)(% + 1) Py(cos(v))
ey le—iwﬂ%z%f‘(rwszﬂ* )]
) )

w sinh(2rwr; ‘f E‘Q
w.

(5.19)
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Figure 30 — The magnitudes of the real (first row) and imaginary (second row) parts
of the Wightman function W? (x;x’) are presented for the Boulware (red),
Unruh (green) and Hartle-Hawking states (blue) as a function of v'/M. Here
we fixed x = (v = 0M, r =~ 6.009M, § = 0, ¢ = 0) and varied x' = (v/, ' =~
2.TM, 0 = 0, p = w/3) with v'/M spanning the range [—100, 100] in steps
of 0.1M. The thin black-dashed line represents At/M = 0. In the imaginary
part, all curves overlap perfectly, as expected since this part depends only
on the spacetime geometry. At the numerical level, the relative difference
between Im|[WVY (x;x')] and Im[W? (x;x')] peaks at ~ 10~* when At = 0M
(v =r, —r.,=—6.8M) and is smaller than 1077 everywhere else. This is also
the case for the relative difference between Im[W# (x;x")] and Im[W? (x; x')].
The locations of the divergences are the same on all states, as expected,
since they depend only on the spacetime geometry. Notice that between two
successive singularities (except near At/M = 0 and large |v'/M]|), it holds
that ‘Re[WB (x;x’)]‘ > ‘Re[WU (x;x)]| > ‘Re[WH (x;x’)]’. Heuristically, this
means that the Boulware state contains overall more correlations than the
Unruh state, which in turn, contains overall more correlations than the Hartle-
Hawking states. This is justified by the fact the Boulware state models a cold
star, hence, contains no thermal radiation. On the other hand, the Unruh
state represents a black hole that emits thermal radiation, hence, it should
contain less correlations than the Boulware state (as we see) due to the thermal
radiation. Finally, the Hartle-Hawking state models a black hole in thermal
equilibrium with its environment, which implies a situation where there is
more thermal radiation than in the Unruh state, explaining why there are less
correlations in this state.
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and
WH=B(x x') = W éi(% + 1) Py(cos(7))

Y

[l e Re[e‘mtwi@ﬂ<r>wzlzvﬁ*<r’>+e‘”%i?ﬁ<r>wi?ﬁ*<r'>]
w sinh(2mwrs) ’_fwéf ‘_fwgf

(5.20)

where we assumed that x,x" € I.

By performing this subtraction we were able to evaluate W%~ (x;x’), which can be
understood as the difference between the quantum content of the states [¢)) and |B). We
have done this for x = (v =0M, r = 6.009M, § =0, ¢ =0) and X' = (', ' = 2.TM, § =
0, ¢ = 7/3), with v'/M spanning the range [—100, 100] in steps of 0.1M/. The results are
presented in Figure [31]

As seen in that figure, W¥=5 (x;x’) presents a local maxima at v/, = —6.8M for

|H) and v}, = —11.8M for |U), being symmetric around such local maxima for |H).

max
The locus of the local maxima of W# =5 (x;x’) can be understood as the point x’ where
At/M = 0. For WY=B (x;x'), we have not been able to figure out what sets the location of
the maxima from this analysis. However, we suspect that being displaced from At/M = 0
is a consequence of the asymmetry in the contributions from 3% and ¢">" (and their
complex conjugates) in the mode-sum expansion of the Wightman function , ie.,

there is no thermal factor multiplying the contribution from the zZ_Jifg’R (and its complex

up,R
wl

We suspect this displaces the axes of symmetry of WUV=F (x;x') from At/M = 0 to the
points where the integrand in Equation ([5.19) interferes constructively.

Overall, W¥=8 (x;x’) behaves in a very similar way for these quantum states: As

conjugate). Consequently, WU =7 (x;x’) depends only on ) (and its complex conjugate).

|Av' /M|, where Av' =" — v/ ., increases there is an exponential decay which transitions
into a polynomial decay as |Av' /M|~ once |Av' /M| is large enough. The location of this
transition seems to be roughly given by the arrival of null geodesic that connects x and x’
after a complete orbit, as observed in Figure [32, where we overlap these plots with the real
part of the Wightman function for each of the states in question. While a more careful
analysis is important to confirm if it holds for other choices of v and r’, we conjecture that
this transition occurs around the boundary of the normal neighborhood N (x) of x.

The reader might wonder how these local maxima in the quantum relative contribution
propagate as one changes . To answer this question, we evaluated a heat-map of this
quantity on the mesh of points presented in Figure 26| and tracked the local maxima on
each surface of constant r’. The results for the Unruh and Hartle-Hawking states are
presented in Figures [33] and [34] respectively.

In the Hartle-Hawking state, the local maxima tracks the line of At/M = 0. In the
Unruh state, on the other hand, we found that for At > 0, the local maxima remains

close to u = u’ as v’ increases, slowly bending towards v < v’ with increasing At and for
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Figure 31 — The quantum relative contribution W¥=5 (x;x’) is presented for the Unruh
(dark green) and Hartle-Hawking state (dark blue) states as a function of v/ /M
in a linear plot (top) and a log-plot (bottom). Here we fixed x = (v = 0M, r =~
6.009M, 0 =0, ¢ = 0) and varied X' = (v', ' = 2.7TM, 0 = 0, ¢ = 7/3) with
v'/M spanning the range [—100, 100] in steps of 0.1M. The thin black-dashed
line represents At/M = 0. Despite having the largest magnitude, the real part
of the Wightman function is a negative number, implying that the quantum
relative contributions are positive in the region —95 < v//M < 80. For both
states, Aw¥(x,x’) presents a local maxima, which is located at v/, /M = —6.8
and v), /M = —11.8 for the Hartle-Hawking and Unruh states, respectively.
In both cases, as one moves away from the local maxima, i.e., increasing
|Av' /M|, where Av' =" —v] ., the quantum relative contribution decays

exponentially and transitions into a polynomial decay of |Av'/M|™> once
|Av' /M| becomes large enough.
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Figure 32 — The plots from Figure [31| overlapped with the quantum relative contribu-
tion W¥=B (x;x’). Notice how the transition in decay of W¥5 (x;x’) from
exponential to polynomial roughly agrees with the location of the N = 2
singularity, which marks the arrival of the null geodesic connecting x and x’
after a complete orbit around the horizon.

At < 0 it bends away from this line, in a noticeable faster fashion, towards u' > u as At
decreases. We also found that it intersects the local maxima of the Hartle-Hawking state
at X' = (v =0M,u = —14.8M,0 = 0, p = 7/3), i.e., at the point x’ with the same u
and v coordinates of x. Heuristically, these local maxima are produced by constructive
interference in the integrand of . It is also interesting to notice that even for large
|Av' /M|, the quantum relative contribution persists in a region extending from the horizon

up to the photonsphere.

5.2 Across the horizon

We now turn to the scenario where one point lies inside the horizon and the other is
outside. Specifically, we consider x € I] and x’ € I and employ the numerical method
developed in the previous section to compute the Wightman function.

We begin by substituting the radial modes defined in Section into the equations of
Wightman function for the Unruh and Hartle-Hawking states. This allows us

to express the Wightman functions for all these states in terms of the radial modes n our
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Figure 33 — The logarithm of the absolute value of the quantum relative contribution
WVU=B (x;x') is presented as a function of v'/M and u'/M. Here we fixed
x = (v=0M,r=~6.009M, 0 =0, ¢ =0) and varied x' = (', v/, § =0, p =
7/3) across all points of the mesh in Figure 26| The thin black-dashed line
is v’ = 3M, the photonsphere. The thin blue-dashed lines are the points x’
connected to x by a null geodesic that completes N half-orbits around the
black hole. The brown line tracks the local maxima and is obtained by joining
the points where it happens for each r’ in our data. Above the photonsphere,
it moves closer to u’ = u as r’ increases.

dataset. The resulting expressions are as follows:

L& [ i (g™ ()
U / iwAt Y wl wl
X)= S (20+1)P / cw
= 0 wl
ins Jup,Rx g insx up, Ry
+ 1 ( —iwAte%rrsw 71112 wlt (r)¢wﬁ (T ) + eiwAte—Zﬂrswpulz* wlt (r),lvbwﬂ (T ))
2sinh (2771 ,w) @ ‘jwe‘Q @ ‘[we‘Q
1 Re |:eiwAt L%S(T)EEZIZ7R(T/) X € I.[ Xl c I
sinh (277 ,w) L ’ ’

(5.21)
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Figure 34 — The logarithm of the absolute value of the quantum relative contribution
WH=B (x;x') is presented as a function of v'/M and u'/M. Here we fixed
x = (v=0M,r =~ 6.009M, 6 = 0, p = 0) and varied X' = (v, v =, 0 =
0, ¢ = m/3) across all points of the mesh in Figure The thin black-dashed
line is " = 3M, the photonsphere. The thin blue-dashed lines are the points
x" connected to x by a null geodesic that completes N half-orbits around the
black hole. The brown line tracks the local maxima and is obtained by joining
the points where it happens for each 1’ in our data. Here, it was numerically
verified to be tracking At/M = 0.

and
1 s Fdw 1
H /
X)=—— S (2 +1)P, / B S
W (x) (47)2rr ;::0< + DF(eos(y)) J w 2sinh (277r,w)
ins Jin,Rx insk Jin,R /s
% [(e—iwAte%rrsw wl (r)fbwﬂz (T) +eiwAt —27rsw Ywl (r2¢u12€ (7‘ ))
Iwé’ ‘]wﬁ

i up,Rx ¢ s i up,R¢ s
+ (e—iwAteQﬂ'rsw —(1:12 aljlés (T)fbwg (T ) + eiwAte—27r7‘swﬁE}z* i.?és* (rzwwf (T ) >+
‘wa‘ ‘wa‘

ins Jup,Ry/
+2Re{eiwm WE(T);_DM (T)H, xell.x' el
wl

(5.22)

Except at the light-crossing singularities, the convergence of these integrals in the high-
frequency limit is guaranteed by the smoothing scheme as in the analysis in Section[5.1.2] In

the low-frequency regime, convergence follows from the behavior of the /-summed integrands
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{-summed integrand of W (x;x')
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Figure 35 — Log-plots of the absolute values of the real (left) and imaginary (right) parts
of the f-summed integrand of W¥ (x;x’) as a function of Mw are presented
for the Unruh (¢ = U, Equation (5.21)) and Hartle-Hawking (¢ = H, Equa-
tion (5.22)) states. Here, x = (v = 0M, r = 0.766M, § = 0, ¢ = 0), and
xX' = (v = 25M,r =~ 6.009M, 0 = 0, p = 7/3). As w — 0 the real and
imaginary parts approach finite values. Notably, the imaginary parts of the
plots overlap across all states, which is consistent with the state-independence
of the imaginary component of the Wightman function for Hadamard states
(including |U), and |H)). The relative difference between the imaginary parts
of the integrands peaks at ~ 1073 over the plotted frequency range.

of W¥ (x;x'), ¢ € {U, H}, which tends to finite values as w — 0, as demonstrated in
Figure We remark that the coincidence limit is, by construction, excluded from this
analysis because x is a point inside the horizon and x’ is a point outside the horizon.
With convergence established, we compute the Wightman function for the |U) and |H)
states across surfaces of constant v" (the outgoing EF-coordinate outside the horizon). This
allows us to map correlations between a fixed interior point and multiple exterior points.
We fix the base point x € IT at (V =1, r = 0.766M, § = 0, ¢ = 0), and select exterior
points x' € I with an angular separation v = 7/3 from it. The EF-coordinates «’ and v’

of X are varied as follows: v’ spans from —100M to 100M in increments of Av' = 1M.

/
*7

For each ¢/, v’ is determined through «' = v" — 2r., where 7/, iterates over all values in
our dataset. This procedure generates a mesh of 28, 743 points, shown as orange dots in
Figure |36, The purple dot is the interior point x.

The magnitude of the imaginary part of the Wightman function for the Unruh state
is presented in Figure [37 The corresponding result for the Hartle-Hawking is visually
identical and is omitted for this reason. This figure shows two expected features: The
first is the decay (w.r.t. v') in ‘Im [WU (x,x’)} ’ as X’ moves into the region where it is not

causally connected to x. The second is are the singularities tracing the past-directed null
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U, \Y

Figure 36 — Penrose diagram showing the mesh of points where W¥ (x;x’) ;v € {B,U, H}
will be computed.The fixed interior point x (purple dot) is located at (V =
1,7 =~ 0.766M,0 = 0, o = 0). The exterior points x' (orange dots) are
parameterized by EF-coordinates v" and u' = v — 2r/, with v/ ranging from
—100M to 100M and 7, spanning all values in our dataset. All x" points
maintain an angular separation of 7 = x/3 from x, hence, no radial null
geodesic connects them.

geodesics connecting x and x’ after N half-orbits around the horizon (we can see up to
N =6).

A more detailed view of the aforementioned features can be seen in Figure where we
plot the ' = 6.009M slice of Figure which was produced using a step of Av' = 0.1M to
obtain a smoother curve. In that figure we see that for v 2 —0.54 M, where x and x’ become

causally disconnected,

Im [WU (x, x’ )” exhibits a sharp exponential decay, stabilizing at
~ 107%. This is in contrast to the well-known property that Im [WU (x, x’ )} = 0 on non-
causally connected points (as can be inferred from its relation with the Retarded and
Advanced Green Functions). Such contradiction is expected because we are dealing with a
numerical computation that uses cutoff and smoothing techniques. In this context, the
~ 1079 residual value is to be understood as the numerical noise floor of our method.
This implies that any signal below ~ 1076 in the v’ > —0.54M region is indistinguishable
from numerical noise. Adjusting the numerical parameters — such as increasing the cutoff
frequency or employing weaker smoothing functions — could sharpen the exponential
decay and suppress the noise floor further (albeit with trade-offs detailed in Section .
However, these adjustments would not alter the qualitative behavior observed in Figure [38]
Nevertheless, this issue does not affect the validity of our results, as no physical signal is
theoretically expected in this causally disconnected regime.

Beyond the noise floor issue, this plot also shows an exponential decay in ‘Im {WU (x, x’ )} ‘
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as X' moves (w.r.t v') deeper into the region where it is causally connected to x. This
decay is similar to the one we observe in Figure [30| (which was produced considering both
points outside the horizon) and is noticeable slower than the one we observe when x’
becomes causally disconnected from x. Such decay in the region of causal connection is a
known property of the Retarded Green Function (RGF) of a scalar field in a Schwarzschild
spacetime, as presented in [57, Section II1.B].

Finally, the singularities we see in Figures 38 and [37|are compatible (in magnitude) with
the known singularity structure presented in Equation . To verify if there is complete
compatibility, we repeated the plot from Figure [38 but in a linear scale and using suitable
ranges to highlight the form of the singularities. The result is presented in Figure [39 and
shows that the predicted singularity structure (Equation (3.56)) is reproduced. We remark
that all these conclusions are also valid for the Hartle-Hawking state because the imaginary
part of the Wightman function is state independent. We verified that, numerically, the
corresponding plots from Figure [39 for the Hartle-Hawking state differs from the ones for
the Unruh state by a relative difference of at most 10719,

The magnitudes of the real part of the Wightman function for |U) and |H) are presented
in Figures [40] and [41], respectively. This figures shows the light-crossing tracing the past-
directed null geodesics connecting x and x’ after N half-orbits around the horizon (as
for the imaginary part, we see up to the N = 6 singularity). At least as importantly,
it also shows that the magnitude of the real part decays symmetrically with increasing
|v' /M| from the N = 0 singularity. In particular, it does not vanishing (or decay to some
noise floor) when x and x” are not causally connected, in contrast to the imaginary part.
This is expected since the real part of the Wightman function is related to the field anti-
commutator (Equation (3.48))) which need not to vanish on non causally-connected points.
What comes as an intriguing surprise (for both |U) and |H)) is the sharply localized zero
surrounded by two local maxima in the magnitude of the imaginary part of the Wightman
function. Before further exploring the regime where x and x” are not causally connected,
we will analyze the singularity structure to confirm if it follows the expected 4-fold pattern
(Equation (3.55])).

For this task, we plotted the ' =~ 6.009M slice of Figures 40| and as presented in
Figure 2] to show an overall visualization of the singularity structure. In this plot the
N = 0 singularity has an ambiguous shape that makes it very difficult to tell if it is a
P.V.(1/0) or a §(c). The other singularities in this Figure are compatible with the 4-fold
structure from Equation . What is left to do is verifying if each singularity has the
correct sign and resolving the ambiguity in the shape of the N = 0 singularity. This task
is accomplished by repeating the plots from Figures 0] and [41] on a linear scale, using
suitable ranges to highlight each singularity. The result is presented in Figure and
confirms that the 4-fold singularity structure is correctly reproduced.

We now begin to explore the regime where where x and x’ are not causally connected.
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Figure 37 —

x=(V=1r=0766M0=0,0=0),v=m/3
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log,o[Im [MZWU (x; x’)} |
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Plot of ]Im [WU” with x = (V = 1,7 ~ 0.766M, 6 = 0, ¢ = 0) and

x' = (v, u,0 = 0,p = 7/3) on the points of the mesh represented in
Figure The thin black-dashed line is v = 3M, the photonsphere. The
thin blue-dashed lines are the points x’ connected to x by a (past-directed)
null geodesic that completes N (blue numbers) half-orbits around the black
hole. The sharp darker curves for v < 0 are the zeroes of the Wightman
function. The localized peaks (sharp whiter curves) are manifestations of the
singularities that appear when x and x’ are light-like connected, i.e., on the
thin blue-dashed lines. Note that as v’ increases to the right of the N = 0
singularity, the magnitude of the imaginary part of the Wightman function
decays exponentially (see Figure , reflecting the lack of causal connection
between these points and x inside the horizon.
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Figure 38 — Log-plot of ‘Im {WUH onx = (V=11r~0766M,0 =0, =0); X =
(v, r' &= 6.009M, ¢ =0, ¢’ = 7/3) as a function of v'. For this plot we used a
step of Av' = 0.1M for a smoother presentation. The dashed lines represent
the values of v' such that x and x’ are connected by a null geodesic after
finishing V half-orbits around the horizon: The N = 0 singularity happens
at v = —0.54M and the N = 6 near v & —92M. The noticeable decay
with increasing [v'/M]| is exponential and presents two distinct regimes: For
v < 0 it is slower and reflects diminishing classical correlations with increasing
spacetime separation. For ' 2 0 it is much faster (the fact that it is not a
sharp, step-like, decay is due to the smoothing scheme and the cut-offs we
used, which remove the infinitely large-frequencies and ¢-modes that would
produce such discontinuity) and reflects the fact that for these values of v, x
and x" are not causally connected. The N = 0 singularity is surrounded by fast
oscillations that are likely due to its proximity to the v-coordinate coincidence
(v = v'), which increases the difficulty in the convergence of the numerical

integral and ¢-sum. The sharp peaks align with light-like connections between
x and x’, as discussed in Section m

Our first observation was that in such case, the real part of the Wightman function does
not decay to a noise floor (i.e., at a numerical level, it is non-zero), implying that there are
correlations in this regime. This is interesting because correlations in the field on causally
disconnected points cannot be reproduced in a classical system, meaning that these can
be understood as genuinely quantum correlations.

To obtain insights about the overall behavior of these correlations, we plot the real
part of the Wightman function for the Unruh and Hartle-Hawking states in several slices
of constant r’ to analyze the local maxima and the zero in its magnitude (see Figures
and . The result is presented in Figure where we see a curious behavior for both
states: Near the horizon only a local minima is visible but as ' increases, that minima
moves towards larger v" and a step-like structure is revealed. The center of such a step-like
structure is the sharply localized zero we see in Figures [41] and [40] We are then led to
suspect that this zero might have an actual physical interpretation because it consistently
follows the step-like structure that was just unveiled.

Continuing the investigation to understand the step-like behavior, we compared the

expressions of the Wightman function for the Unruh (Equation (5.21)) and Hartle-Haking



Chapter 5.  Quantum correlations in a scalar field in the Schwarzschild spacetime 103

10~ 1
107 1
~100 ~50 0 50 100
' /M
Im [M2WY (x;x')] Im [M*WY (x;X)]
8.x 1070} : I 8888; FRa SO
6.x 1070} | ' ! !

ol 0.0001 ! '
4.%10 ! 0.0000 v \/\
2.x107¢ I ~0.0001 : o

0f o W -0.0002 : .

100 —95 -90 -85 —80 —75 OO0 T T T T s

UI/M U//M
Im [M*WY (x;x)] Im [M*WY (x;X)]
0.002f ' ' ' ' : '
0.000
0.001 |
~0.005]
0.000 o010l
~0.001§ _0.0151
—-0.002¢ : : : 10,020 : : : :
-30 -25 -20 -15 10 10 -5 0 5 10
o' /M V' /M

Figure 39 — The imaginary part of the Wightman function on x = (V = 1,r =~
0.766M,0 =0, o =0) € II, X' = (v, = 6.000M, ¢ =0, ¢' =7/3) € I is
presented as a function of v'/M. For these plots we used a step of Av' = 0.1M.
First row: The plot from Figure 38| is repeated for reference. Second row: The
N = 6 and N = 5 singularities (left); the N = 4 and N = 3 singularities
(right). Third row: The N = 2 and N = 1 singularities (left); the N = 0
singularity (right). The singularities follow the 4-fold structure from equa-
tion . The small plots showing the singularities are smoother because
they were produced using a step-size of Av = 0.1 M for this purpose.
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Figure 40 — Plot of ‘Re {M2WU” onx=(V=1,r~0.766M, 0 =0, p =0) separated
by an angle of v = 7/3 from all points x" of Figure The thin black-dashed
line is ' = 3M, the photonsphere. The sharp darker curves are the zeroes
of the Wightman function and the sharp whiter curves are peaks in the
magnitude of the Wightman function. The thin blue-dashed lines are the
points x" connected to x by a (past-directed) null geodesic that completes N
(blue numbers) half-orbits around the black hole. Here we see all the features
that are also present in the Boulware state (See Figure) with the addition of
the N =5 and N = 6 singularities. However the behavior in the v" 2 0 region,
where x and x” are not causally connected is visually richer when compared to
the Boulware state.
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Figure 41 — Plot of ‘Re [MZWH” onx=(V=1,r~0.766M, 6 =0, ¢ = 0) separated
by an angle of v = 7/3 from all points x" of Figure The thin black-dashed
line is v’ = 3M, the photonsphere. The sharp darker curves are the zeroes
of the Wightman function and the sharp whiter curves are peaks in the
magnitude of the Wightman function. The thin blue-dashed lines are the
points x’ connected to x by a (past-directed) null geodesic that completes
N (blue numbers) half-orbits around the black hole. Here we see the same
features that are also present in the Unruh state (See Figure [40)).
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Figure 42 — Log-plot of ‘Re [WU” (top) and ‘Re [WH” (bottom) on x = (V =1, r =
0.766M, 0 =0, o =0); X' = (v/, ' = 6.009M, ' =0, ¢ = 7/3) as a function
of v'. For this plot we used a step of Av' = 0.1M for a smoother presentation.
The dashed lines represent the values of v" such that x and x” are connected
by a null geodesic after finishing N half-orbits around the horizon: The N = 0
singularity happens at v’ &~ —0.54M and the N = 6 near v' ~ —92M. Here
the decay with increasing |v'/M| is visually symmetric. The N = 0 singularity
is surrounded by fast oscillations that are likely due to its proximity to
the v-coordinate coincidence (v = v'), which increases the difficulty in the

convergence of the numerical integral and /-sum. The sharp peaks align with
light-like connections between x and x’, as discussed in Section [3.4.1|

(Equation ((5.22))) states and noticed that they share a common term:

1 00 Oodw 1 ) wins(r)q/_}UP:R(rl)
A 2 1P, / et iwAt Ywl s wl ]
Wa (X7 S ) (47’(’)27“7"/ EZ:O( C+ ) K(COS(V)) w sinh (27”"300) Rele I, )
= 0
xelIl,x el.

(5.23)

To understand its contrition to the Wightman function, we repeat the plots from Figure [44]
but subtracting Wa (x,x’) from each of them. The result is presented in Figure [45] It
shows that the step-like behavior does not appear. More specifically, the result for the
Hartle-Hawking state only shows a decaying behavior that stabilizes on a small constant
value that varies with /. The corresponding result for the Unruh state shows a local

minimum that spreads across a wider range of v' with increasing 7’ for then decaying to a
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Figure 43 — The real part of the Wightman function for the Unruh (red) and Hartle-
Hawking (green dashed) states on x = (V =1, r = 0.766 M, § =0, p = 0) €
I, X' = (v, r" = 6.000M, 0 =0, ¢’ =7/3) € I is presented as a function of
v'/M. For these plots, we used a step of Av' = 0.1M. First row: The plots
from Figures [40| and [41] are replicated and overleaped for reference. Second
row: The N = 6 and N = 5 singularities (left); the N = 4 and N = 3
singularities (right). Third row: The N = 2 and N = 1 singularities (left); the
N = 0 singularity (right). Here it is clear that the N = 0 singularity is the
expected P.V.(1/0), hence, the singularities follow the 4-fold structure from

equation (3.56)).
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Figure 44 — Plots of Re {MQWU (x; x’)} (red) and Re [MQ (WU (x;x') — Wa (x, x’))}

(dashed green) as a function of v' on three different slices of constant r’:
2.1M (top), 10.2M (middle) and 20.0M (bottom). Here x = (V =1, r =
0.766M, 8 = 0, ¢ = 0) is separated by an angle of v = 7/3 from all points
x'= (v, r', 60 =0, ¢ =0). For this plot we used a step-size of Av' = 0.1M.
For clarity, the plot ranges are adjusted so that only the N = 0 singularity is
partially visible. Only a shallow local minimum is visible when 7’ is close to
the horizon. On the other hand, as 7’ increases, the local maxima and minima
that we see in Figures [41| and [40| become clearly visible. The combined shape
of the local maxima and minima resemble a step-like behavior neighboring a
subtle local maximum and a shallow, yet visible, local minimum. In summary,
this figures show a stable step-like behavior (surrounded by a local maximum
and a minimum) moving towards larger values of v’ that only becomes visible
once 7' is large enough.
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small, constant, r’-dependent value. Numerically, that r’-dependent value is the same for
both states to a relative difference of 1072 (for the values of ' used in Figure . The
local minimum in the result for the Unruh state can be attributed to the asymmetric way
with which the ingoing and upgoing modes contribute to WY (x;x’).

Before proceeding with the exploration on W (x,x’), we find it important to give a
heuristic understanding of the local minimum that appeared in the results for the Unruh
state in Figure While being a manifestation of correlations across the horizon, they

are the product of the interference between the f'5 f*:%

Equation (3.84). The initial data defining 2% and " has support on Hy U .#5 (see
Equations (3.28) and (3.29)). On the other hand, the initial data defining f% has support

on M} but one can trace it back to Hp U #5 . Therefore, the information encoded in the

and f% modes as can be seen in

correlations that produced the local minimum can be traced back to Hy U .#5 . Hence, in
this case, the correlations we see between the field on x and x’ have its origin in dynamical
effects (such as the scattering by the effective potential from Equation (4 ) during the
propagation of the modes from Hy U .#; towards the singularity at r = 0 and .. In
summary, these correlations are not encoded in the initial conditions and are dynamically
generated.

We now return to the exploration of Wa (x,x’). By comparing Figures [44] and |45| we
can conclude that the step-like behavior is produced by W (x,x’). This term encodes
intrinsically quantum features that are independent of the classical spacetime geometry.
Specifically, no information about Wa (x,x’) is captured by the Retarded (RGF) or
Advanced (AGF) Green Functions — quantities fully determined by the classical spacetime
geometry. This distinction arises because the RGF and AGF are encoded in the imaginary
part of the Wightman function (via the field commutator), while Wa (x,x’) contributes
exclusively to the real part.

To obtain additional insight about Wa (x,x’), we work backwards from equation

to write it as

Wa (x,X') = Mei (204 1) Py(cos(v)) ?WRGF LR (X) ‘|7
x eIl x el.
(5.24)

This expression reveals that this term carries correlations between two modes: f%,, which
is defined by initial conditions on H} (see Equation (3.33])) that cannot be traced back to

fup’ which is defined by initial conditions on ‘Hy(see Equation (3.29))). Hence,

region [; and
Wa (x,x’) carries correlations between a field mode that originates inside the horizon (and
cannot be traced outside because it never crosses the horizon) and another that originates
outside the horizon. Moreover, the prescription (Equation (3.34])) used to defined the

modes on region I1] implies the existence of correlations. In summary, the correlations
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Figure 45 - Re [MQ (Ww (x;x") — Wa (x, x’))} for the Unruh (red) Hartle-Hawking
(dashed green) states is plotted as a function of v’ on three different slices
of constant r’: 2.1M (top), 10.2M (middle) and 20.0M (bottom). Here
x=(V=1,r~0.766M, § =0, p =0) is separated by an angle of v = /3
from all points x' = (u/, 7', 8 = 0, ¢ = 0). For this plot we used a step-size of
Av' = 0.1M. For clarity, the plot ranges are adjusted so that only the N =0
singularity is partially visible. The step-like structure from Figure [44] does not
appear. The plot for the Hartle-Hawking state shows no visible structure other
than a decaying behavior that stabilizes at a small constant value that varies
with 7’. The corresponding plot for the Unruh state shows a local minimum
that spreads across a wider range of v" with increasing /. This local minimum
can be attributed to the asymmetric way with which the ingoing and upgoing
modes contribute to WY (x;x').
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encoded in Wy (x,x’) are, at least partially, encoded in the boundary conditions defining
fL, and f"0F

Furthermore, the sinh (27T7’sw)_1 factor in Equation exponentially dampens the
large-frequency modes which are just oscillations with unit amplitude in that regime since
the effective potential from equation (4.2]) can be neglected for large-frequencies. Therefore,
the main contributions to Wa (x,x’) come from low-frequency modes. This is significant
because the mode fup R , which propagates from the horizon Hy towards .#5 , undergoes
partial scattering towards H%. This scattering is governed by the effective potential from
Equation ([£.3), which vanishes at the horizon and peaks near the photonsphere (r = 3M).

Consequently, low-frequency fﬁ?’R modes outside the horizon are predominantly confined
in the region r, < r < 3M. This confinement implies that the correlations encoded in
Wa (x,x") should be stronger in this region and should decay with increasing 7.

As a final observation before computing this term, we note that it can be expressed as

Fdw 1

ZZ (2¢ + 1) Py(cos(7)) / w 2sinh (27750)

Wa (x,X) = —5—
(4m)>rr! (5.25)

(f“pL*( YRR () g PR () IR )), xell.x el

The first term in the summation originates from fUF (x)fUF (x’), while the second term
arises from fUP (x)fUP (x'). Hence, these correlations are inherent to fUF and U7, as dictated
by the prescription from Equation (3.34] - for defining Boulware modes in region I11. Thus,
Wa (x,x') encodes correlations between the fUF and fUP modes. Summarizing, Wa (x,x)
encodes correlations across the horizon between the fUF and fg}) modes that are expected
to decay with increasing 7’ from the horizon.

We now analyze W (x,x’) numerically. First, we compute log;, [Wa (x,x’)| as a function
of x’, as shown in Figure 46| There we see the expected decay with increasing ' and a
sharply localized zero contour that visually tracks a line of constant u’. It is also important
to note that on surfaces of constant 7/, Wa (x,x’) has roughly the same order of magnitude,
except around the zero. In Figure [47] we plot the u’' coordinate of the zero as a function of
its v’ coordinate. It shows that its locus seems to move towards some constant u' with
increasing v’ but we are not able to conclusively tell if it is moving towards v’ = —u = 0.4M,
w =u=—0.4M or ' = 0M. To resolve this ambiguity, we evaluated Wa (x,x’) but with
x=(V=3,r~0.766M, § =0, o = 0), i.e., we changed the V coordinate of x from V' =1
to V' = 3, which changed u from —0.4M to ~ —4.8 M. This allowed us to observe, although
inconclusively, that the zero moves towards some some constant v’ which is arguably close
to u = —u = 4.8M as shown in Figure [8]

To investigate further, we computed W (x,x’) as a function of x’, as shown in Figure .
This shows that the zero of Wx (x,x’) traces the center of a smooth, step-like transition
from positive values (below the zero) to negative values (above the zero). To obtain a

closer view of this behavior we plotted Wiy (x,x’) as a function of x" on different surfaces
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Figure 46 — Plot of |Wx (x,x')] on x = (V =1, r =~ 0.766M, 6 = 0, ¢ = 0) separated
by an angle of v = 7/3 from all points x" of Figure . The thin black-
dashed line is 7" = 3M, the photonsphere. The green dots mark the points x’
where |Wa (x,x")| = 0 (and the logarithm becomes a large negative number).
These points were numerically checked to track a curve that travels from
u' > u = 0.4M towards some constant value of u’. Unfortunately, as can be seen
in Figure here it is unclear if the zero is moving towards v’ = —u = 0.4M,
u' =u=—0.4M or u' = 0M. Other than the zero, there is a clear decaying

behavior with increasing r’.
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x=(V=1,r=0.766M0=00=0),v=n/3
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Figure 47 — The track of the zero in the magnitude of Wa (x,x’) at V' = 0. The green dots
are the points where the zero appears. For clarity, they are joined by straight
blue lines. It is unclear if the zeroes are moving towards v’ = —u = 0.4M
(black dashed line), v’ = u = —0.4M (red dashed line) or v’ = 0M (orange
dashed line), since it is oscillating around these values.

x=(V=3r=0.766M,0=0,p=0),v=m/3
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Figure 48 — The track of the zero in the magnitude (the middle of the step-like structure)
of Wa (x,x’) with x at V' = 3. The green dots are the points where the zero
appears. For clarity, they are joined by straight blue lines. Their behavior
suggest, although inconclusively, that the zero moves towards some constant
v, which, as far as the domain of this plot is considered, oscillates around

u' ~ 4.4M, arguably close to v’ = —u = 4.8 M (black dashed line).
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of constant 7/, as shown in Figure [50} This figure shows that this term presents a step-like
behavior surround by a subtle local maximum and a pronounced local minimum. The
height of such step as well as the amplitude of the local minimum decay with increasing
r’. We also verified, as seen in the same figure, that the r’-dependence is not completely
encoded in the (rr’)~! factor Equation . In Figure |51| we repeated these plots but as
a function of v instead of u/. While complementing Figure 50| by presenting a different
point of view, it shows no new effects.

In summary, Wa (x,x’) encodes non-local correlations between modes originating on
opposite sides of the event horizon. These correlations decay with increasing r’ (the r-
coordinate of the outside point) from r, being stronger near the horizon and diminishing
outwards. Overall, they present a step-like transition near v’ = —u (u is the EF-coordinate
of the inside point) as well as the subtle local minimum and visible local maximum.
That local minimum becomes more pronounced with respect to the step-like behavior
as 1’ increases. This hints that such a local minimum can be associated to scattering
by the effective potential (Equation (4.3))): It is zero at the horizon and peaks near the
photonsphere, therefore, scattering effects become increasingly stronger as 7’ increases
from the horizon up to 3M, near its peak. For larger 7/, these effects become less important
as the effective potential asymptotes to zero. Therefore, we can understand that as »/
increases, the effect of the effective potential accumulates and becomes close to its peak as
soon as 1’ 2 3M. This is in line with the local minima becoming increasingly visible as
r" increases from 2.1M to 2.5M and roughly stabilizing for the larger values of 7’ in the
bottom plot of Figure [50L

The sharp localization of this transition near v’ = —u implies that 9,,Wa (x,x") and
OuWa (x,x") will exhibit localized correlations propagating near v’ = —u. This mirrors
results reported in Refs. [10] and [58] for (1+1)D Schwarzschild black holes, where analogous
derivative structures were tied to outgoing null trajectories. On the other hand, the local
minimum is a new structure that we conjectured to be associated to the effective potential.
This hypothesis would also explain why we do not see such effect in (14+1)D: In that case,
the field modes propagate as free waves.

In the full Wightman function W (x;x’), the contribution of Wa (x,x’) to the Hartle-
Hawking and Unruh states is subtle due to its small magnitude relative to the N = 0
singularity. When 7’ is near the horizon, W (x,x’) manifests itselfs as a shallow local
minimum at u/-values slightly larger than the one where the N = 0 singularity appears. In
this regime, the intensity of the singularity obscures the step-like transition of Wy (x,x’).

However, for larger 7/, the N = 0 singularity decays significantly earlier as a function of
u’. This allows the step-like transition of Wa (x,x’) to emerge distinctly, as the singularity
no longer dominates the local structure of the Wightman function. These contrasting
behaviors are illustrated for the Unruh state in Figure 52| and for the Hartle-Hawking
state in Figure 53]
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x=(V=1,r=0.766M,0=0,0=0),~v=7/3
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Figure 49 — Plot of W (x,x’) as a function of v'/M and u'/M. Here we fixed x = (V =
1, 7~ 0.766M, 0 =0, ¢ = 0) and varied x = (v', '8 = 0, ¢ = 7/3) across all
points of the mesh in Figure [36] The thin black-dashed line is ' = 3M, the
photonsphere. The green dots mark the points x” where Wx (x,x") = 0. Here
it is clear that this zero marks the transition between positive and negative
values of W (x,x'): For v’ above the zero, it is negative while for u’ below the
zero, it is positive. The center of such transition (the zero) seems to travel

from u' > u towards a constant value of v’ ~ —u = —0.4M with increasing v’
(as inferred from Figure [48).
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Figure 50 — Wa (x,x’) with x = (V = 1, r =~ 0.766M, § = 0, ¢ = 0) separated by
an angle of v = 7/3 from all points X' = (v/, 7', § = 0, ¢ = 0) is plotted
as a function of u' (top) plot for v ~ 2.1M (red), v’ ~ 2.52M (green),
r’ ~ 6.009M (blue), " ~ 10M (blue) and " ~ 20M (purple). The bottom
plot shows 71" x W (x,x") for the same setup. The zeroes seem to approach
W ~ —u = —0.4M (as inferred from Figure with increasing ' (Figures @
and . In all cases we see a step-like behavior which is surrounded by a
subtle local maxima and a visible local minima. The height of the step as
well as the amplitude of the local minimum diminish with increasing 7’ .The
bottom plot shows that there is r-dependence beyond the (rr’)~! factor from
Equation and that such r’-dependence makes these curves asymptote

towards a possible ' — oo limit.
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Figure 51 — Wx (x,x’) with x = (V = 1, r =~ 0.766M, § = 0, ¢ = 0) separated by an
angle of v = /3 from all points x' = (v/, 7/, 8§ = 0, ¢ = 0) is plotted as a
function of v (top) plot for ' &~ 2.1M (red), r’ ~ 2.52M (green), r’ ~ 6.009M
(blue), ' ~ 10M (blue) and " ~ 20M (purple). The bottom plot shows
rr’ x Wa (x,x’) for the same setup. Overall, the qualitative behavior of the
step-like transition, r’-dependence and local minima is identical to what we
see in Figure The difference is that the zeroes are not approaching some
constant v’, as expected, since we already seen that they are moving towards

a constant u'.
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WY (x;x' } (red), Re [MQ (WU (x;x') — Wa (x, x’))} (green),

and Wa (x,x") (blue) as a function of «’ on three different slices of constant

: 2.1M (top), 10.2M (middle) and 20M (bottom). Here x = (V =1, r =~
0.766M, 0 =0, ¢ = 0) is separated by an angle of v = 7/3 from all points
x' = (u,r", 0 =0, p =0). For clarity, the plot ranges are adjusted so that
only the N = 0 singularity is visible. Notice that when 7’ is too close to the
horizon, the step-like behavior from W (x,x’) is overwhelmed by the N =0
singularity. As a consequence, the localized zero that marks the center of the
step is lost and all that remains from this term is a subtle local minima at u’
larger than that where the N = 0 singularity happens. With increasing »’, the
N = 0 singularity moves towards smaller values of «’ while the step remains
~ —u = 0.4M. This leads to a visible manifestation of the

centered close to u/
step behavior introduced by Wa (x,x’) in the Wightman function.
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Figure 53 — The same as Figure (2] but for the Hartle-Hawking state. No qualitative
differences emerge when compared to the results for the Unruh state.
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The existence of a structure that behaves as a signature of correlations across the
horizon carried by Hawking radiation is known in (141)D Schwarzschild: It shows as
a local maximum in the field-field (Wightman function) and momentum-momentum
correlations [10] and [58]. Such a structure also seem to be present in (3+1)D Schwarzschild.
However, a key distinction emerges in this case: The correlations across the horizon encoded
in the Wightman function are significantly stronger, enabling their direct resolution without
recourse to momentum correlators (derivatives of the Wightman function). These are
manifest in the form of the step-like behavior followed by a local minimum. Our analysis
further suggests that momentum correlators — while not required here — would exhibit
a sharper spatial localization than the field correlator itself.

Notably, when both points reside outside the horizon, field correlators (Wightman
functions) display sharply localized correlations. Conversely, when one point lies inside
the horizon, the field correlator becomes less localized, while momentum correlators ——
as inferred from our results —should retain strong spatial localization. This dichotomy
underscores how causal separation across the horizon reshapes correlation structures in

quantum fields.

5.3 Singularities in the ingoing and upgoing sectors of the Wightman

function

During the explorations in Sections and [5.2] we wondered how each family of field
modes contributed to the Wightman function. This was motivated by [10} [68] 12} [11],
where the Wightman function for the Boulware, Unruh and Hartle-Hawking states in
(141)D Schwarzschild was written as a sum of two terms: one that depends only on Au
for the Boulware state (AU for the Unruh and Hartle-Hawking states) and another that
depends only on Aw for the Boulware and Unruh states (AV for the Hartle-Hawking state).
These can be read from Equations for the Boulware state, for the Unruh state
and for the Hartle-Hawking state. From these expressions, it is straightforward to see
that each of the Au-,Av-, AU- and AV-dependent parts of the Wightman function present
the known light-crossing singularities (Equations and (3.56)) of the Wightman
function.

The Av- and AV-dependent parts of the Wightman functions for the Boulware, Unruh
and Hartle-Hawking states arise from the ingoing modes while the Au- and AU-dependent
parts of the Wightman function arise from the upgoing modes. Therefore, these Wightman
functions can always be understood as a sum of two terms: One arising from ingoing
modes and another from upgoing modes. We will refer to these as the ingoing and upgoing
sectors of these Wightman function.

In this section we construct an analogous decomposition of the Wightman functions
for the Boulware, Unruh and Hartle-Hawking states in (3+1)D Schwarzschild in terms of
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its ingoing and upgoing sectors and analyze how each of these contribute to each of these
Wightman functions. For that purpose, we consider a fixed point x = (v = 0M,r,0 =
0, = 0) and x’ at the same r-coordinate outside the horizon (' = r > r,) separated by
an angle v = 7 /3 and vary its v’ coordinate.

Despite the simple setup, we found unanticipated behaviors that seem to depend on
wether 1" = r is above, on or below the photonsphere (r = 3M): When below or above the
photonsphere, we found that not all sectors of the decomposition of the Wightman function
present light-crossing singularities. On the other hand, we verified that all components of
that decomposition present weaker non-light-crossing singularities, which to the best of
our knowledge have not been reported before. When x and x’ are on the photonsphere
(r' =r = 3M), we found that both sectors of the Wightman functio present the light-
crossing singularities but none of the weaker non-light-crossing singularities.

While we figured out a heuristic explanation for the behavior of the light-crossing singu-
larities in the aforementioned situations, the nature of the non-light-crossing singularities
is still not completely understood.

With these considerations we proceed to the exposition of our results, which is structured
as follows: In Subsection [5.3.1] we construct the decomposition of the Wightman function
for a given state in its so-called ingoing and upgoing sectors. In Subsection we present
plots of the ingoing and upgoing sectors of the Wightman function for the Boulware state
in EF-coordinates. In Subsection we use a slice of these maps on a surface of constant
r" = r to characterize the functional form and the repeating pattern of non-light-crossing
singularities in the ingoing and upgoing sectors of the Wightman function for the Boulware
state. Finally, in Subsection[5.3.4 we show how the value of 7’ = r influences the magnitudes
and singularities of the ingoing and upgoing sectors of the Wightman function for the

Boulware state.

5.3.1 The ingoing and upgoing sectors of the Wightman function

To construct the (3+1)D analog of the (14+1)D Aw-dependent part of the Wightman
function for the Boulware and Unruh states, we note that the latter arises from the (1+1)D
fimR modes (see Equation (3.62)). Therefore, we define its (3+1)D analog as

- oodw 7i R R
Wing (% X) = 7—5—> (20 + 1) Py(cos(v)) | —fui L), x X €T, (5.26)
(4m)2rr’ = ) w

where x represents the non-angular coordinates of x. Following the same logic, the (3+1)D
analog of the Au-dependent part of the (14+1)D Wightman function for the Boulware

state is defined as

o0

T dw
Wapr (x;X) = ————> (20 + 1) Py(cos(y /— DR ), x,x € 1. (5.27)
P (4m)?rr' = ) w
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The AU-dependent term of the (1+1)D Wightman function for the Unruh and Hartle-

Hawking states arises from the fgp and fB—P modes. Therefore, we define its (341)D analog

as
Wup up (x;x') = W;)(% + 1) Py(cos(~y /w< :}JKP (1)
0
+ 50 (x0) :JJ;P*(X,J_)), x,x' €1
= — i(Qg + 1)P (COS(’7>> 7(1&]1 (eQTFT‘SUqup,R(X )%UD,R* (X/ )
(dm)2rr (5 ‘ ) w 2sinh (27r.w) wt L) we 1

e BRI (PR ) %K € T
(5.28)

Finally, we note that the AV-dependent term of the (1+1)D Wightman function for the
Hartle-Hawking state arises from the fiN and fUIJN modes. Hence, we define its (3+1)D

analog as
WIN,IN (X§X,) = W;)(%—'— 1) Py(cos(y 0/w< ilzf (x 1)
FIROOIE D) xx e 1
R — i@ﬁ + 1) Py(cos(7)) 7dwl (ezwswfimR(x )fimR*(X/ )
(471’)27“7'/ = {4 v J w 2sinh (2777"3(,0) wl 1) L

+ e—wswfgﬁ*‘<XL)fg;R(xg)>, w.x' el
(5.29)

In terms of these quantities, the Wightman function for the Boulware (Equation (3.74))),
Unruh (Equation (3.75))) and Hartle-Hawking states (Equation (3.86])) can be written as:

W5 (x;x) = Winr (x;x) + Wipr (X)), x,x' € 1, (5.30)
WY (x;x) = Wing (x;X) + Wypip (%), x,x" € (5.31)
and
wH (x;x') = Winin (x;x') + Wyp,up (;x), x,x" €1, (5.32)
respectively.

In these equations, the Wightman function for a given state can always be understood
as a sum of two terms: one that is defined by ingoing modes and another one by upgoing
modes. We will refer to them, respectively, as the ingoing and upgoing sectors of that
Wightman function. For instance, the ingoing sector of the Wightman function for the

Unruh state is Wiy r (x;x) and its upgoing sector is Wyp 1p (x;x').
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5.3.2 Overview of the ingoing and upgoing sectors of the Wightman function

To produce a map of the ingoing and upgoing sectors of the Wightman function, we
proceed as in Section [5.1.2} Let x = (v = OM, r ~ 6.009M, § = 0, ¢ = 0) and x" be
at an angular separation of v = 7/3 with respect to it. Then vary the EF-coordinates
v" and v’ of X' from v = —100M up to v = 100M in steps of Av' = 1M and for each
v, vary v/ = v' — 2r! using all values of r/ in our dataset. The corresponding mesh of
points is presented in an EF-diagram and a Penrose diagram in Figure [26 The numerical
computations are performed using the method described in Section [5.1.1}

In Figures |54] and [55 we plot the magnitudes of Re [Wi,r (x;x')] and Im [Wi, g (x;X')],
respectively, as a function of v’ and v'. These figures reveal bright curves indicating local
maxima and darker curves marking zero crossings. In this context, the zero crossings
correspond to ordinary zeroes of the Wightman function, lacking a particular physical
interpretation. The local maxima, however, carry physical significance.

To interpret these maxima, we include blue-dashed curves in those figures, representing
the points x” connected to x by a null geodesic that completes N half-orbits around the
black hole. For v 2 0M, there is a local maximum aligned with each of the blue-dashed
curves. For v' < 0M, however, these curves only track the local maxima located above the
photonsphere (7' > 3M).

Beyond the maxima traced by the blue-dashed curves, we also observe the green-
encircled local maxima. Despite not being tracked by these curves, the shape traced by
these local maxima is similar to that of the blue-dashed curves from the v' 2 0M region.

The local maxima following the blue-dashed curves are smoothed versions of the
Wightman function’s light-crossing singularities (see Figures [58] and . The local max-
ima encircled in green are generally smaller than those associated with these smoothed
singularities. It is for this reason that in Figures [54] and [55] they do not visibly extend
from r =~ 2.09M up to r ~ 20M for v" < OM.

However their magnitudes are still large enough to manifest in these figures alongside
the smoothed light-crossing singularities. Thus, we assume that they are smoothed versions
of an as-yet-unidentified singularity in Wi, (x;x’), weaker than P.V.(1/0) and d(0).
Because these singularities do not coincide with light-crossings, we refer to them as
non-light-crossing singularities.

In Figures 56{ and |57 we plot the magnitudes of Re [Wy,p r (x;x)] and Im [Wyp r (X5 X)]
as a function of ' and v’. The features revealed are similar to those observed in the
magnitudes of the real and imaginary parts of Wi, g (x;x’): bright curves indicating local
maxima and darker curves marking zero crossings. The differences lie in the location of
these features.

To facilitate analysis, we also include the aforementioned blue-dashed curves in these
figures and verify that they align with local maxima only below the photonsphere (' < 3M)

for v < 0M. This behavior is complementary to that we observed in the real and imaginary



Chapter 5.  Quantum correlations in a scalar field in the Schwarzschild spacetime 124

log,,|Re [MQI/VimR (x; x’)] |

X:(U:OM,U:—148M,9:0,¢:O) ’7277/3

100
L -3
50
I -4
O =
= 5
"3
-50
I -6
-100 g
L -7
-150 I I 17 -8

v'/M

Figure 54 — Plot of |Re [M*W,r]| on x = (v = 0M, r &~ 6.009M, 6 = 0, ¢ = 0) separated
by an angle of v = 7/3 from all points x" of Figure The thin black-dashed
line is 7' = 3M, the photonsphere. The sharp darker curves are zeroes of the
Wightman function and the sharp whiter curves are peaks in its magnitude.
The thin blue-dashed lines are the points x’ connected to x by a null geodesic
that completes N (blue numbers) half-orbits around the black hole. In this plot
we see several local maxima. The ones tracked by the blue-dashed lines coincide
with the location of the Wightman function light-crossing singularities. The
rest of them (circled in green) are not tracked by the blue-dashed lines. We will
refer to them as non-light-crossing singularities. These are more pronounced
in the region v < 0M and seem to stem from the blue-dashed line near the
photonsphere (r = 3M).
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Figure 55 — Plot of [Im [M?*W,r]| on x = (v = 0M, r &~ 6.009M, 6 = 0, ¢ = 0) separated
by an angle of v = 7/3 from all points x" of Figure The thin black-dashed
line is " = 3M, the photonsphere. The sharp darker curves are zeroes of the
Wightman function and the sharp whiter curves are peaks in its magnitude.
The thin blue-dashed lines are the points x’ connected to x by a null geodesic
that completes N (blue numbers) half-orbits around the black hole. The green
circles highlight the local maxima that are not tracked by the blue-dashed
lines. Here we see that |[Im [M?W;, ]| presents the same qualitative behavior

as |Re [M?Wi, r]| (Figure [p4)).

parts of Wi, g (x;x’), where the blue-dashed curves for v < 0M align exclusively with
local maxima above the photonsphere (' > 3M). For v" 2 OM these curves do not track
any local maxima in the magnitudes of Re [Wy, r (x;X')] and Im [Wy, g (x;x)]. This is in
contrast to what we observed in the real and imaginary parts of Wi, g (x;x"), where they
tracked local maxima for v' 2 0.

Similarly to the behavior observed in Figures [54] and [55] for the real and imaginary
parts of Wiy r (x;X’), here we also see local maxima that are not tracked by the blue-dashed
curves. However, in this case, they are more clearly visible across the full range of v/,
extending from r &~ 2.09M up to r =~ 20M. Once again, the shape traced by these local
maxima resembles that of the blue-dashed curves from the v' 2 0M region.

As was the case in those figures, the local maxima following the blue-dashed curves
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in Figures 56 and [57| for |Re [Wypr (x;X')]| and |Im [Wy, v (x;X')]|, respectively, also are
smoothed versions of the Wightman function’s light-crossing singularities. Moreover, the
local maxima in the magnitudes of Re [Wy,r (x;x')] and Im [Wy, g (x;x")] that are not
tracked by the blue-dashed curves are also assumed to be smoothed versions of an as-
yet-unidentified singularity in Wy, g (x;x’), weaker than a P.V.(1/0) and §(o). Here, this
assumption finds its justification in the fact that by summing Wi, g (x;x) and Wy, g (x;X')
we recover WP (x;x') (Equation ((5.30)), which has no non-light-crossing singularities
(see Figures 27 and [28). Therefore, Wy, g (x;x') must also contain non-light-crossing
singularities (with opposite behavior) in order to cancel those in Wi, g (x;x’). This also
implies that the non-light-crossing singularities in Wi, g (x;x’) and Wy, r (x;X') occur at
the same locations.

For brevity, we choose to omit the equivalent plots for Wiy iy (x;x") and Wyp yp (x5 X')
because in our setup no extra insights come from them: Wiy 1 (x; x’) is qualitatively similar
to Winr (x;x’), and visible differences only appear in the subtraction of these terms. An
analogous conclusion holds for the comparison between Wyp i7p (x;x) and Wypr (x;x').
For now we concentrate in the analysis of the non-light-crossing singularities and relegate
that of the differences for future work.

At this stage the reader might be wondering what is the functional form of the non-
light-crossing singularities and whether the light-crossing ones present the same form as
those of the Wightman function or just happen to appear at the same location but have a

different functional form. Both of these points are addressed in the next subsection.

5.3.3 The structure of the light-crossing and non-light-crossing singularities

To study the properties of the singularities in the magnitudes of the real and imaginary
parts of Wi, g (x;x') (Figures and and Wypr (x;x) (Figures and , we use
the slice of ¥’ = r ~ 6.009M from these plotsﬂ It provides a suitable tool to assess the
functional form of these singularities. We begin our analysis with log-plots that highlight
the symmetry properties of these quantities.

In Figures[58 and [59 we plot the magnitudes of the real and imaginary parts, respectively,
of Winr (x;X'), Wapr (x;x) and W5 (x;x’) on 1/ = r ~ 6.009M as a function of v'/M. As
expected, the magnitude of both parts of the Wightman function for the Boulware state is
symmetric about At = ¢’ —t = 0, which is equivalent to Av = v — v = 0 because here
r= T’E|. These figures also reveal that the magnitudes of the real and imaginary parts of
the ingoing and upgoing sectors of WP (x;x') are symmetric about At = 0 (equivalent to
Av =0).

2

Any other slice with 7/ = r > 3M would provide the same conclusions that will be drawn in this
subsection. This assertion is justified by the analysis presented in Subsection On the other hand,
the case where r’ # r demands a more careful treatment as many of the symmetries presented in the
course of this subsection are broken in this case. We relegate this investigation for future work.

3 For r' # r, the relation is Av = At + Ar,, where Ar, =7/, —r,.
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Figure 56 — Plot of |Re [M*W,,r]| onx = (v = 0M, r ~ 6.009M, § = 0, ¢ = 0) separated

by an angle of v = 7/3 from all points x" of Figure The thin black-dashed
line is 7" = 3M, the photonsphere. The sharp darker curves are zeroes of the
Wightman function and the sharp whiter curves are peaks in its magnitude.
The thin blue-dashed lines are the points x’ connected to x by a null geodesic
that completes N (blue numbers) half-orbits around the black hole. In this
figure we see several local maxima. The ones that happen at v < 0M and
below the photonsphere are tracked by the blue-dashed line (see the insets
for a zoomed in view) and coincide in location with the Wightman function
light-crossing singularities. The rest of the local maxima are not tracked by
the blue-dashed lines and will be referred to as non-light-crossing singularities.
They are evident for both positive and negative values of v and seem to stem
from the blue-dashed line near the photonsphere for v' < 0M.
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Figure 57 — Plot of [Im [M?W,, r]| onx = (v = 0M, r = 6.009M, § = 0, ¢ = 0) separated
by an angle of v = 7/3 from all points x" of Figure The thin black-dashed
line is ' = 3M, the photonsphere. The sharp darker curves are zeroes of the
Wightman function and the sharp whiter curves are peaks in its magnitude.
The thin blue-dashed lines are the points x’ connected to x by a null geodesic
that completes N (blue numbers) half-orbits around the black hole. This
plot shows that |Im [M?W,, r]| presents the same qualitative behavior as

[Re [M*W,,r]| (Figure [56).

In addition to these symmetry properties, Figures 58] and (9 show that the Wightman
function for the Boulware state is overall dominated by its ingoing sector. This dominance
is stronger near the light-crossing singularities because these do not appear in the upgoing
sector of that Wightman function. On the other hand the non-light-crossing singularities
manifest in both sectors of W7 (x;x), as can be seen in these figures. The non-light-
crossing singularities are more visible in the upgoing sector due to its absence of light-
crossing singularities for ' = r &~ 6.009M/. On the other hand, in the ingoing sector of
W38 (x;x'), the non-light-crossing singularities are obfuscated by the surrounding light-
crossing-singularities. In this sector, the non-light-crossing singularities manifest as small
peaks near the light-crossing singularities.

We now proceed to the linear plots that exhibit the functional form of the light-crossing

singularities and reveal that of the non-light-crossing singularities. Given the symmetry
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r=r"~6.009M

—— |Re [M*Wiur (;X)]| ===~ IRe [M*W7 (x;x)]|
——— |Re [M*Wyr (X)]| ====-- At =0M

Figure 58 — Log-plots of the magnitudes of Re [M?*Wi, r (x;x)] (red), Re [M2W,, r (x;X')]
(blue) and Re [M 2WEB (x; x! )} (green-dashed) as a function of v'. Here x =
(v =0M,r =~ 6.009M, 8§ = 0, p = 0) is separated by an angle of v = /3
from all points x' on " ~ 6.009M. The top plot shows Re [M*Wi, r (x;x)],
Re [M*Wy,r (x;x')] and Re {MQWB (x;x’)]. The bottom plot shows only
Re [M2Wi,r (x;x')] and Re [M2W,, r (x;X')] for a cleaner visualization. The
black-dashed line is At = 0M, here equivalent to v = 0M. These plots
show that Re [M?*W,r (x;x')] and Re [M?*Wy, r (x;x')] are symmetric about
At = 0 and present non-light-crossing singularities across the whole span of v'.
However only Re [M?Wi, r (x;x')] presents light-crossing singularities, which
are compatible in magnitude and location with the singularities in the real
part of the Wightman function.
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Figure 59 — Log-plots of the magnitudes of ITm [M?*Wi, g (x;x')] (red), Im [M?*W,, r (x; X')]
(blue) and Im [M 2WEB (x; x! )} (green-dashed) as a function of v’. Here x = (v =
OM, r ~ 6.009M, 6§ =0, ¢ = 0) is separated by an angle of v = 7/3 from all
points x’ on 1’ &~ 6.009M. The top plot shows the magnitude of the imaginary
parts of Wi, r (x;x'), Wipr (x;x') and W2 (x;x). In the bottom plot we omit
WB (x;x) for a cleaner visualization. The black-dashed line is At = 0M, here
equivalent to v = 0M. Both Im [M?*W, g (x;x')] and ITm [M?*W,r (x;x)]
are symmetric around At = 0M and present non-light-crossing singularities
throughout all values of v'. However only the ingoing sector presents light-
crossing singularities. These are compatible in magnitude with the singularities
of the imaginary part of the Wightman function.
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of Winr (x;X), Wapr (x;x) and WP (x;x’) about Av = 0, we will only include an explicit
analysis for Av > 0.

Figure 60| shows the real parts of Wi, g (x;x'), Wiypr (x;x') and WP (x;x’). From it, we
immediately conclude that the light-crossing singularities in Re {WB (x;x )} agree in both
functional form and location with the ones in the real part of its ingoing sector. It also shows
that both of its sectors present non-light-crossing singularities with opposite behaviors
at the same values of Av: when the non-light-crossing singularity in Re [Wi,r (x;X')] is a
local maximum (minimum), the one in Re [Wy, g (x;x)] is a local minimum (maximum).
This illustrates how they cancel out when combined.

When it comes to predicting the locations of the non-light-crossing singularities,
Figure [60] also provides a clue. To state it, we label the non-light-crossing singularities
by N, (in the same way we labeled the light-crossing ones by ). In this figure NV, and
N range from 0 (the singularity closest to Av = 0) to 5 (the singularity furthest from
Av = 0). We observe that each N, singularity always happens slightly before (w.r.t.
Awv) the corresponding N singularity (at least up to Av = 100M). More precisely, the
v-coordinate distance between the visible extreme valudﬂ of a given N, singularity and
the following extreme value of the corresponding N singularity are such that: the N, =0
singularity appears 1M before the N = 0 singularity; the odd N, > 0 singularity manifests
5M before the corresponding odd N > 0 singularity and the even N, > 0 singularity
happens 4M before from the corresponding even N > 0 singularity.

The observation that the Av interval between two successive even (or odd) N, sin-
gularities is well approximatedﬂ by the coordinate-time period of a null geodesic around
the horizon on the photonsphere, T,y = 6mvV3M ~ 32.7TM (which is equivalent to
Avgiy = 32.7TM because 1’ = r) suggests that the non-light-crossing singularities are
caused by signals orbiting the horizon on null geodesics, just like the light-crossing singu-
larities. This is further corroborated by the fact that shape traced by the non-light-crossing
singularities is the same as the one traced by orbiting null geodesics from the v' > 0M
region in Figures [4] [55] [56] and

Figure [60] also reveals a pattern in the functional form of the non-light-crossing
singularities (which will be further complemented by the analysis of Figure . In
Re [Winr (x;X')] (Re [Wypr (x;x')]), the N, = 0 singularity contains an increase (decay)

into a local maximum (minimum) followed by a subtly slower decay (increase)f’] The next

Figure |62 shows that each non-light-crossing singularity actually contains two local extrema.

From N, = 0 to N, = 1 this approximation becomes progressively worse as 7 and/or r’ move away from
the photonsphere at » = 3M. This happens for the light-crossing because the null geodesic that traces
N = 0 travels from x to x’ increasingly far away from the photonsphere, where that approximation is
performed. The explanation is likely similar for the non-light-crossing singularities, although we do not
yet understand their nature.

For Re [Wi, r (x;x)] this is arguably not visible in Figure however we can infer that from the
complementary behavior between it and Re [Wyp r (x;x")] that is observed for all other N,. Further
evidence is provided by the N, = 0 non-light-crossing singularity in [6I] There it is not obfuscated by
the more localized N = 0, which is a d(o).

5
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Figure 60 — Log-plot (top) of the magnitudes of Re[M*Wyr (x;x')] (red),

Re [M?Wy,r (x;x')] (blue) and Re [M 2WEB (x; x! )} (green-dashed) as a function

of Av =0 —v with Av > 0. Here x = (v = 0M, r = 6.009M, 6 =0, p = 0)
is separated by an angle of 7 = 7/3 from all points x’ on 7’ &~ 6.009M. The
smaller plots highlight the singularities in a linear scale. They show that
the light-crossing singularities in Re [M?*Wi, g (x;x')] and Re [M2Wy, r (x; X')]
agree in functional form with the light-crossing singularities of the Wightman
function. The non-light-crossing singularities in those terms are always close
w.r.t. Av to the light-crossing ones.
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singularity, N, = 1, has the same shape but its rate of change is mirrored w.r.t. Av: it
presents a subtle increase (decay) into a local maximum (minimum) followed by a faster
decay (increase). The N, = 2 has qualitatively the same behavior as the N, = 0 multiplied
by —1, that is, it presents a decay (increase) into a local minimum (maximum) followed by
a subtly slower increase (decay). The N, = 3 has qualitatively the same behavior as the
N, = 1 multiplied by —1: It presents a decay (increase) into a local minimum (maximum)
followed by a faster increase (decay). The N, = 4 and N, = 5 are qualitatively similar to
the N = 0 and the N, = 1 singularities, respectively. This establishes, on a qualitative
level, a 4-fold pattern for the non-light-crossing singularities in the real parts of the ingoing

and upgoing sectors, which we synthesize as

N, = 0 — mirror = N, = 1 — mirror x (—1) = N, = 2 — mirror = N,, = 3

— mirror X (=1) = N, =4~ N, =0 = mirror == N, =5~ N, =1— ..., (5:33)
where ~ denotes equivalence in the sense that, for instance, the N,, = 4 singularity presents
the same qualitative behavior as the N, = 0 singularity.

Analogous considerations follow for Av < 0 based on the symmetry of Re [Wi,r (x;x')],
Re [Wypr (x;X')] and Re [WB (x; x’)} about Av = 0.

As a brief summary, this analysis establishes that for v’ = r ~ 6.009M, the light-
crossing singularities of the Wightman function for the Boulware state agree with the ones
of its ingoing sector in functional form and location. Additionally, we observe that the
non-light-crossing singularities in the real parts of the ingoing and upgoing sectors of that
Wightman function obey a 4-fold singularity structure. Finally, we note that two successive
odd (or even) non-light-crossing singularities are separated by an interval At ~ 32.7M
which is the coordinate time interval a null geodesic takes to complete an orbit around the
horizon on the photonsphere.

These conclusions also apply to the imaginary parts of Wi, g (x;x") and Wy, r (x;X')
as can be verified by a similar analysis of Figure [61] We remark that, in a similar way
to what happens in the singularity structure of the Wightman function (Equations
and ([3.56)), the non-light-crossing singularities in Im [Wi, g (x;x')] and Im [Wyp g (x;X')]
are one fold ahead of the corresponding singularities in the real parts of these terms. For
instance, the N, = 1 non-light-crossing singularity in the imaginary part of Wi, g jupr (x;X’)
presents the same behavior as the NV, = 0 non-light-crossing singularity in the real part of
WinR/up,r (X;X).

We close this subsection with a more thorough analysis comparing the non-light-
crossing singularities in the real and imaginary parts of Wy, r (x;x"). We choose it because
in this case (1" = r &~ 6.009M) it presents no light-crossing singularities to obfuscate the
non-light-crossing ones we are trying to understand. In Figure [62| we plotted the real and
imaginary parts of Wy, g (x;x') as a function of Av/M. There we see a confirmation of the
singularity structure for the non-light-crossing singularities, summarized in Equation ({5.33).

Additionally, this plot offers a better visualization of the shape of these singularities when
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Figure 61 —

Im [M*Wyp g (x;x')]

Log-plot (top) of the magnitudes of Im[M?*Wi,r (x;x)] (red),
Im [M?*Wypr (x;x)] (blue) and Im [MQWB (x;x’)} (green-dashed) as a
function of Av = v’ — v with Av > 0. Here x = (v = 0M, r =~ 6.009M, 0 =
0, p = 0) is separated by an angle of v = 7/3 from all points x’ on
r" &~ 6.009M. The smaller plots highlight the singularities in a linear
scale. They show that the light-crossing singularities in Im [M2W;, g (x;x)]
and Im [M?W,, r (x;x')] agree in functional form with the singularities of
Im [M 2WB (x; x' )} The non-light-crossing singularities in those terms are
always close w.r.t. Av to the light-crossing ones.
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compared to the previous plots (Figures [60| and where we were only able to see the
larger maximum (or minimum) in each of the non-light-crossing singularities. Here we see
that each of them actually contains two extrema: a larger one, that we already spotted,
and a smaller one, that we can only see here — Even in this case, we needed an inset that
zoomed in the shallow minimum of the NV, = 0 singularity in Re [Wy, g (x;x)].

As can be seen in Figure [62] the functional form of the non-light-crossing singularities

is not a P.V.(1/0) or a §(o). However, its qualitative behavior can be modeled by

1 -2 (A
E(AU,O'std,Oé) = — ¢ 20204 ( vt Oé) , (534)

OstaV 2T a

where 04, is the standard deviation of the Gaussian (and should not be confused with
Synge’s world function) and «, 054 € Rsg. The midpoint between its extrema is Av = —a/2
and its behavior is illustrated in Figure (63|

Using that model, the 4-fold structure of the non-light-crossing singularities in Re [Wy,p g (X; X')]
and Im [Wy, v (x;x")] is more precisely (but still qualitatively) described by:

Re [Wupr (x;X)] :Z(Av, —0 44, @) = Z(Av, —0s14, —) = Z(AV, 0gq, ) = E(AV, 05, —) —
Z(Av, —ogq, ) — ...
(5.35)

and

Im [Wypr (X;X)] :Z2(Av, 0514, —) = E(AV, =044, ) = Z(Av, —0 514, —¢) = Z(AV, 0ga, ) —
E(Av, 044, —) — ...,
(5.36)

where each singularity is assumed to be suitably displaced so that it is correctly centered.
From the observation that the non-light-crossing singularities in Re [M?*Wi, r (x;x)] and
Im [M?Wi, g (x;x)] must cancel the ones in the upgoing sector, we can infer their singularity

structures as well:
Re [Winr (x;X)] :2(Av, 0514, @) = Z(AV, 0s14, —) = Z(AV, —0 g4, ) = Z(Av, —0 g4, —0) —
E(Av, 044, 0) = ...,
(5.37)

and

Im [Winr (x;X)] :Z2(Av, =044, —a) = Z(Av, 044, ) = Z(Av, 0gq, —) = E(Av, —0gq, ) —
E(Av, —0gq, —) — .. ..
(5.38)

In the following subsection, we analyze how the r-coordinate affects the relation between
Winr (x;x'), Wapr (x;x') and W5 (x;x').



Chapter 5.  Quantum correlations in a scalar field in the Schwarzschild spacetime 136

r=r =~ 6.000M

Av/M
0.0010f ]
0.00000
0.0005 ¢ ]
10}
0.0000 { —0.00005
~0.0005 ¢ 1 -0.00010] ]
0 ) 10 15 20 20 22 24 26 28 30 32 34
Av/M Av/M
— : -
0.00002 ] 3x10 .
0.00001 | 1 2.x107¢
0.00000 £ 1.x 10—6 L
—-0.00001 ] 0t
—-0.00002 £ ] Y-
~0.00003: V. ‘ g e T N—
35 40 45 50 55 56 58 60 62 64
A’U/M AU/M
_7““““““““““5 07“‘\“‘\“‘\“‘\“‘5
1.x107 Cact N
of | —2.x1077¢
] —3.><10—;f
1 -5.x107T :
-2.x1070¢ 1 -6.x107 \/ E
] T 107 U
65 70 75 80 8 90 90 92 94 96 98 100
Av/M Av/M
— Re [M*Wypr (x,X)] = Im [M*Wyr (x;X')]
Figure 62 — Log-plot (top) of the magnitudes of Re[M?*Wy,r (x;x')] (red) and

Im [M?*Wpr (x;x')] (blue) as a function of Av =o' — v with Av > 0. Here
x=(v=0M,r=~6.009M, 0 =0, ¢ = 0) is separated by an angle of v = /3
from all points x’ on r’ ~ 6.009M. The smaller plots highlight the singularities
in a linear scale. These plots show that the non-light-crossing singularities are
always composed by two extrema: a local maxima and a local minima and
follow a 4-fold pattern.
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Figure 63 — Plots of Z(Av, 0q, @) = ;5= 2 a (%) (Equation ([5.34))) for different
st

choices of sign for o4, and a. Here we used a« = 1 and o4y = 1, which is
sufficient to depict its behavior.

5.3.4 The dependence on the r-coordinate

In Figures 58| and |59 we saw that when r = r’ ~ 6.009M, the Wightman function for the
Boulware state and its singularities are dominated by Wi, g (x;x’) while Wy, g (x;x’) is
generally of smaller magnitude and contained only non-light-crossing singularities. Here
we present evidences that this behavior depends on wether x and x” are taken to be above
(r' =r >3M) or below (r' =r < 3M) the photonsphere. For that end, we repeated the
plots from the aforementioned figures but using ' = r ~ 2.1M and r’ = r ~ 2.995M.

The results for ' = r ~ 2.1M are presented in Figures and [65] There we see
that Wypr (x;x’) dominates the Wightman function for the Boulware state for almost
all v'/M, specially near its light-crossing singularities, while Wi, r (x;x’) contains only
non-light-crossing singularities and is overall of smaller magnitude. This is the opposite
of what we observed for ' = r ~ 6.009M. Given that, we conjecture that whenever
r"=r>3M (r' =r < 3M), the light-crossing singularities of the Wightman function for
a given state are dominated by its ingoing (upgoing) sector while its upgoing (ingoing)
sector contains only non-light-crossing singularities and is of overall smaller magnitude.
This hypothesis suggests that the photonsphere is a privileged place, in the sense that
when " = r = 3M the ingoing and upgoing sectors of the Wightman function for the
Boulware, Unruh and Hartle-Hawking states should provide equal contributions to its
light-crossing singularities.

This is almost what is observed in the Wightman function for the Boulware state in
our results for ' = r &~ 2.995M, which is the closest to the photonsphere we have data
for, presented in Figures [66] and [67} Moreover, as an intriguing surprise, we see no trace of
non-light-crossing singularities in this situation, making the photonsphere an even more
special place while also suggesting that the nature of these singularities is related to it.

The conjecture we presented can be heuristically understood through a simple analysis

of the propagation of the ingoing and upgoing field modes. To understand how, remember
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|Re [M*Wing (:X)]| ==--- |Re [M*W7F (x;x')]|

|Re [M*Wpr (x;x)]| ===== At =0M

Figure 64 — Log-plot (top) of the magnitudes of Re[M?*Wiyr (x;x)] (red),
Re [M?*W,pr (x;x')] (blue) and Re [M2WB (x; x’)} (green-dashed) as a func-
tion of Av = v — v with Av > 0. Here x = (v = 0M, r = 2.1M, 0 =0, p = 0)
is separated by an angle of v = 7/3 from all points x’ on " ~ 2.1M. Here
we see that for r = v’ < 3M, the real part of the Wightman function for the
Boulware state is dominated by its upgoing sector, in contrast to the case
r =1’ > 3M where it was dominated by its ingoing sector.

that the upgoing sector of the Wightman function for the Boulware, Unruh and Hartle-
Hawking states is composed by field modes launched from the horizon r = r, towards
r — oo and the ingoing sector is composed by field modes launched from r — oo towards
r — rs. Out of these modes, the ones that have a large enough frequency (so that the
effective potential from Equation can be neglected) propagate along null geodesics [59].
We will consider only these modes here. This simplification should be innocuous due to
the fact that the light-crossing singularities are produced by modes propagating along
null geodesics, hence, by large-frequency modes. Using this simplification, in the next
paragraph we assume that the ingoing and upgoing modes propagate along future-directed
ingoing and outgoing null geodesics, respectively.

For the first analysis, let x and x" be causally connected points at some ' = r < 3M.
Then consider a future-directed ingoing null geodesic that is launched from » — oo and

reaches x (or x') at r < 3M. There is no turning point for such a geodesic, as can be
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Figure 65 -~ Log-plot (top) of the magnitudes of Im[M?*Wi,r (x;x)] (red),
Im [M?*W,pr (x;x')] (blue) and Im [MQWB (x;x’)} (green-dashed) as a func-
tion of Av = v — v with Av > 0. Here x = (v = 0M, r = 2.1M, 0 =0, p = 0)
is separated by an angle of v = 7/3 from all points x’ on " ~ 2.1M. Here
we see that for r =1’ < 3M, the imaginary part of the Wightman function
for the Boulware is dominated by its upgoing sector, in contrast to the case
r =1’ > 3M where it was dominated by its ingoing sector.

seen in the effective potential for the null geodesics (Equation and Figure . Then,
that geodesic is bound to spiral down towards the singularity. As a side effect, it will
never be able to reach x” (or x). Hence, we conclude that no future-directed ingoing null
geodesic launched from r — oo can connect two points x and x" at some " = r < 3M.
This explains the absence of light-crossing singularities in Wi, g (x;x) for ' =r ~ 2.1M
(Figures [64] and : The (large-frequency) ingoing modes travel on null geodesics that
cannot connect x and x’. The caveat here is that despite not being able to connect x
to x’, these null geodesics can connect x to points that are increasingly close to x’ as
r = r’ approaches 3M. Since we are using smoothing functions in our calculations, the
light-crossing singularities are smeared across a region of the spacetime. This enables them
to be captured by the ingoing sector of the Wightman function if »' = r < 3M is close
enough to the photonsphere. An example of this behavior is observed in Figures 66| and

where we considered r = r’ ~ 2.995M.
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|Re [M*Winr (x;xX)]| |Re [M*W7F (x;x')]|

|Re [M*Wypr (x;x)]| ===== At = O0M

Figure 66 — Log-plot (top) of the magnitudes of Re[M?*Wyr (x;x)] (red),
Re [M2Wypr (x;x')] (blue) and Re [MZWB (x; x')} (green-dashed) as a func-
tion of Av = v — v with Av > 0. Here x = (v =0M, r =~ 3M, 0 =0, ¢ =0)
is separated by an angle of v = 7/3 from all points x’ on 1’ ~ 3M. Here we
see that for r = v’ &~ 3M both the ingoing and upgoing sectors provide similar
contributions to the real part of the Wightman function. We also note that in
this case no non-light-crossing singularities appear.

To finish the analysis of this case, consider a future-directed outgoing null geodesic
that is launched from r = r, towards » — oo and reaches x (or x’) at r < 3M. Since it
has not yet traveled past the photonsphere, that null geodesic can still meet a turning
point and travel back towards the singularity. For that turning process, the geodesic
can be fine-tuned to travel as close as needed to the photonsphere, so that it finishes as
many orbits as necessary to reach x’ (or x) on its way back to the singularity. Hence, the
light-crossing singularities in this situation should always figure in the upgoing sector of
the Wightman function for the Boulware, Unruh and Hartle-Hawking states. This is what
we see for the Boulware state in Figures [64] [65], [66] and [67]

Now consider x and x’ on r = ' = 3M. In this case there exists both, ingoing and
outgoing future-direct null geodesics connecting x and x’. This is because any ingoing or
outgoing null geodesic launched with a critical impact parameter (¢ = £31/3r,/2) will end

up orbiting forever around the photonsphere, allowing them to freely connect points on
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Figure 67 — Log-plot (top) of the magnitudes of Im[M?*Wir (x;x)] (red),
Im [M?*Wpr (x;x)] (blue) and Im [MQWB (x; x’)} (green-dashed) as a func-
tion of Av = v — v with Av > 0. Here x = (v = 0M, r = 3M, 0 =0, ¢ = 0)
is separated by an angle of v = 7/3 from all points x’ on 1’ ~ 3M. Here we
see that for r = v’ &~ 3M both the ingoing and upgoing sectors provide similar
contributions to the imaginary part of the Wightman function. We also note
that in this case no non-light-crossing singularities appear.

the photonsphere. Therefore, in this situation light-crossing singularities should appear in
both the ingoing and upgoing sectors of the Wightman function for the Boulware, Unruh
and Hartle-Hawking states, which is what Figures [66] and [67] illustrate.

Then consider x and x’ on " = r > 3M. Let a future-directed ingoing null geodesic
be launched from r — oo towards r = r,, such that it reaches x at » > 3M. Since this
null geodesic has not yet crossed the photonsphere, it can still meet a turning point and
escape back to r — oo. In that process, that geodesic can be fine-tuned to travel as close
as needed to the photonsphere, so that it completes as many orbits as necessary in order
to reach x' in its way back to r — oo. Therefore, the ingoing sector of the Wightman
function for the Boulware, Unruh and Hartle-Hawking states should always display the
light-crossing singularities, which is in line with Figures [58] and [59}

To complete the analysis of that case, consider a future-direct outgoing null geodesic

that is launched from r = r, towards » — oo and reaches x at » > 3M. Since it has
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already traveled past the photonsphere, it will not meet a turning point and is bound
to travel towards r — oo, never meeting x’ at ' = r on its way. Therefore, there are no
future-directed outgoing null geodesic that connect x and x" at r = r’ > 3M. This explains
the absence of light-crossing singularities in W, g (x;x’) for r =1’ ~ 6.009M (Figures
and . A caveat similar to that of the ingoing sector below the photonsphere also applies
here: If r = r’ > 3M becomes close enough to the photonsphere, the upgoing sector will

be able to capture the smeared light-crossing singularities.
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6 Lensing of entanglement harvesting near
Schwarzschild Black Holes

In this chapter we adapted our published work [I] to the structure of this thesis, making
partial use of its content (including figures) in the process.

In chapter {4 we constructed a method to analyze correlations in a quantum scalar
field é (as constructed in Section ?7) by directly evaluating its Wightman function which
encodes all two-point correlations in a given state of the field. With this method we studied
correlations in ngS on a (34+1)D Schwarzschild spacetime, as presented in Chapter . We
now turn to another method, that is based on a simple particle detector model known as
the Unruh-DeWitt (UdW) detector. With these detectors, we will explore entanglement in
gg via the effect of entanglement harvesting on a (3+1)D Schwarzschild spacetime.

This chapter is structured as follows: In Section [6.1] we introduce the formalism of
Unruh-DeWitt detectors. In Section we present the phenomenon of entanglement
harvesting. In Section we construct the setup with which we will treat the problem.
In Section we make a few considerations regarding how to differentiate harvested
entanglement from the entanglement that is generated by communication through the
field. Finally, in Section we present our results.

6.1 Unruh-DeWitt detectors

In a general curved spacetime, a global timelike Killing vector is not guaranteed to exist.
The lack of such vector leads to an issue when constructing a quantum field theory on a
curved spacetime: It implies that there is no preferred choice of time direction, therefore,
the very definition of vacuum is ambiguous in the sense that there are many physically
reasonable vacuum states that are not related by a unitary transformation. This is discussed
in Chapter [3| As a consequence, there are several non-equivalent notions of particle.

One approach to provide an operational meaning to the concept of particle in this
context was given by Unruh and DeWitt [39, [60] in the form of simple particle detector
model: A non-relativistic quantum system locally coupled to a quantum field. Such detector
interacts with field modes that are of positive frequency with respect to the detector’s
proper time. A comprehensive account of this particle detector model is presented in [34]
Chapter 3.3].

Despite its simplicity and non-relativistic nature, this detector model is covariantE],

causal [63, 62] [64], 61] and when angular momentum exchanges between its internal degrees

L For non-pointlike detectors, this is not strictly true. For details see Refs. [61] [62]
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of freedom and the field are negligible, it reproduces the main features of the light-matter
interaction [65].

In this work we make use of a perturbative approach that will follow the same notation
and conventions as those of [66]. For that end, we model a UdW detector D as a two-level
system with a ground state |g), and an excited state |e), separated by an energy gap €2p.
The interaction between the detector D and the quantum scalar field ng) along the detector’s

worldline x,(t) is given by the Hamiltonian [

dTD ~ I

fin(t) ® ¢(xo (1)), (6.1)

Hi -0
de "

int,D = )‘DnD (t)
where Ap is a dimensionless — in (3+1)D — coupling constant, 7(t) € [0, 1] is a real-valued

switching function, 7, is the detector’s proper time and
fin(t) = O e)(g|, + e ™0 g)e|, (6.2)

is the monopole operator. We remark that this Hamiltonian generates time-translations
with respect to the t-coordinate but not with respect to the detector’s proper time
(see [66] 64] for a detailed discussion).

6.2 A brief introduction to entanglement harvesting

That quantum scalar fields typically present entanglement is a well-known fact [67, [68], [69]
70]. In general, the structure of this entanglement is determined by both the geometry
of the underlying spacetime and the state of the quantum field. The influence of the
state on entanglement is heuristically straightforward to understand. What might be
slightly opaque is how a classical structure, such as the geometry of the underlying
spacetime (in the semiclassical framework) can contribute to the entanglement — which is
an inherently quantum feature — in a quantum field. At least for the Hadamard states,
one can shed light on this issue by observing the singularity structure of the real part
of the Wightman function (Equations , which contains information about quantum
correlations (including entanglement) in the quantum field: For the Hadamard states, we
can understand that geometry leaves its fingerprint in the entanglement structure of the
quantum field through these singularities and that this fingerprint is state independent
and as strong as these singularities. Examples of works exploring this issue are [71], [72] [73].

That entanglement structure plays a major role when studying phenomena that ranges
from holography to Hawking radiation, including the information loss problem [6] [74] [75]
70, (77, [42] 2], 178, [79, 80l BT, 82]. To probe the spacetime distribution of entanglement, a

possible method is to couple initially unentangled localized quantum systems (such as

2 In the context of the fully covariant formulation of [64], we can understand this as the result of

integrating the Hamiltonian density [64, Equation 16] with 6(xqD)/+/—g smearing over a spacelike
hypersurface of constant t-coordinate.
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UdW detectors) to the field at different spacetime regions. The entanglement acquired by
these local systems in this process can be quantified by standard methods [20], 21].

Such experiment is tightly connected to entanglement harvesting which is an effect
where the entanglement acquired by the localized quantum systems is extracted from
preexisting entanglement in the field. This was first hinted at in [83, 84], in both flat
and curved spacetimes. As the reader might have anticipated, this effect can capture the
geometry [85] and topology [86] of the underlying spacetime. These properties suggest
that entanglement harvesting is a promising tool to study entanglement in quantum fields.
However, entanglement harvesting in black hole spacetimes has only been studied in very
idealized scenarios such as (241)D Banados-Teitelboim-Zanelli (BTZ) black holes [87] and
(1+1)D spacetimes with horizons [23]. Exploring harvesting in (3+1)D black holes remained
an open issue until we published the work that is being described in this chapter. The
(3+1)D Schwarzschild spacetime is interesting because it provides a realistic description of
electrically uncharged non-spinning spherically symmetrical black holes and introduces
new phenomena due to the possibility of lensing [88] (due to orbiting null geodesics), the
presence of caustics and the existence of an effective potential near the horizon.

The issue of communication through quantum fields close to a Schwarzschild black hole
has already been explored in [89]. The work described throughout this chapter investigates
entanglement harvesting outside a Schwarzschild black hole for the quantum field ng) in the
Boulware (|B)), Unruh (|U)) and Hartle-Hawking states (|H)).

6.3 Setting up the theoretical experiment

As a remark before beginning the description of the setup, we note that in [I] we use a
slightly different form of the mode-sum expression of the Wightman function for the Boul-
ware, Unruh and Hartle-Hawking states in region I (Equations , and ,
respectively). More precisely, in [I] we write these expressions in terms of integrals from

—00 to oo in the frequencies, as in [41]:

1
(4m)?

> (20 + 1) Py(cos ) /Oo d—we_i“AtG}fw(r, 'y At), (6.3)
=0

WY (x;x') =

—o0 W

where ~y is the angular separation between x and x’ and At =t — t’. The integrand kernel
depends on the state of the quantum field. For the |B), |U) and |H) states, it takes the

forms

in,R in,Rx/ 4 up,R up,Rx*/
G (r,r') = () (W et ) ff o (Wi’ >> , (6.4)
VI i il L G Lt e ()
Gy, (r,r') = 0(w) ot + T o , (6.5)
in,R in,Rx/ up,R up,Rx*/
GZJ (7", ’T‘,) _ 1 ww@ (T)wwé (7” ) + ¢w€ (r)wwf (T ) ) (66)

1— e7471'wr5 7“7”
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We remark that the ¢5™"™™ modes defined in this thesis (Equations (@.5) and (@.13))
are related to the R/"" modes in [I] by

lw

in,R/up,R
d " ()

r

Rin/up(r) _

fw

(6.7)

To investigate entanglement harvesting in the Schwarzschild spacetime we make use of
two UdW detectors labeled by D € {A,B}. As usual in the literature, we refer to detector
A as Alice and B as Bob. Both are considered to be static, following world-lines x, () given
by

Xp(t) = (t, 70,0, ¥p) (6.8)
in SD-coordinates of region I (See table [5)). The relation between the proper time of
detector D and the coordinate time (t-coordinate) is given by

dmy
dt

where f(r) = (1 —ry/r)~" is defined in Equation (2.4]) (repeated here for the convenience

= f(TD)J (69)

of the reader) and r; = 2M is the Schwarzschild radius. We choose the integration constant
to be zero (i.e., 75(0) = 0), so that

To(t) = £/ f(rp)t. (6.10)
The switching functions 7,(t) are chosen as the Gaussians
Mp(t) = e~ (Ho)/ Do), (6.11)

where top, denotes the center of the switching function (the coordinate time when the
detector is completely turned on) and Tj, is the switching width (the coordinate time
interval within which the detector is considered to be turned on).

These detectors will interact with ¢ through the Hamiltonian ]:Ii’tnmD (Equation (6.1])).
We assume that initially (¢ — —o0) the state of the system is a product state between the
detectors in their ground state, represented by p,s = |g)(g], ® |9)(g], and the field in a
vacuum state py = [¢¥)(¢| with (¢ € {B,U, H}):

po = Pan,o @ ﬁw~ (612)

This means that initially there is no entanglement between the detectors A and B or
between each of them detectors and the field ¢.

The time evolved version up to ¢ — oo of this state is given by
Poe = UpoUT, (6.13)

+ H!. . We can obtain

where U is the time evolution operator generated by H., = H} -

int int,A

a perturbative expression for that operator by using the so-called Dyson series:

int

N o0 ~ o0 t A ALl
Uzl—i/ dtant—/ dt/ at fmt fl v (6.14)
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To simplify the notation, we define

N o] t
=—i / dtft, and 0@ =— /_ ot /_ At A (6.15)
Using this convention, the perturbative expansion of p., is written as
oo = po + PoU DT 4 poU T + UMW sy + TW p OO 4+ T 5,0 4 (6.16)

The state of the detectors after such a time evolution is given by the reduced density

matrix P, obtained by tracing over the field degrees of freedom:

ﬁAB,oo =Try [/300] : (6-17)

In terms of the perturbative expansion,

Pasoo = PO 4+ PG + p2 + P80 + oG+, (6.18)
where
Philhe = Trg [0 0] (6.19)

with (© = 1. In this expansion, the odd terms (1+ 7 =2n+1 with n € N>¢) vanish and

only the even terms contribute. To illustrate how, we compute ﬁ&%}ﬁo:

PO, = Tr, [0©p 0]
=Ty |po (i [ at 7t
= —1/ dt Tr¢[ OHHH
— =i [ auTy [po (Al + L)

= —j/_oo dt (Tr¢ [POHmt A:| + Try [pOHmt BD

dr, .

= i [t (M0 a0 T [ ()]

dry

+ )\BnB(t) dr ,OAB,UB( )Trd) [ﬁoéb%(ﬂ)})

= =i [t (A0 prk o) )l

drg .

a0 016 G010

Ak =0, (6.20)

+ /\BUB( )

since the field one-point function is zero for the |B), |U) and |H) vacuum states. By a

similar calculation it is straightforward to show that pr o)o =0.
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Therefore, the final perturbative expansion for p,g o is
Panoo = PG0 + PS5k + P + P, + O(AY), (6.21)

where \" is a short notation for A/, Using the straightforward result pr 0 = lg)Xg], ®

lg)Xgl,, we finally obtain
Panoo = Pan + P + P + Al + O(NY). (6.22)

Using the basis order |g), |9),, |€),19)s, 19) . 1€)s:]€), |€),, this state is represented by the

density matrix

1—LY =LY% 0 0 (MY
0 L L 0 \
ﬁAB,oo = + (9(/\ ), (623)
0 LY. LY 0
MY 0 0 0
where
d d o
)\ )\ / dt / dt/ (nA TA IQATA(t)T?nB(t/)GIQBTB(t )Ww (XA(t>, XB(tl))
1 1 (6.24)
(1) ST I (WYY (x, (1): %, ()
dt/ dt
and

dmp dry

EnDl(t/) BT e—lQDTD(t)+1QD/T /() szz( (t);XD/(t/)), (6.25)

o0 o0

LY, = My [ dt / at' mo (1)

—0  J—oo

where MY € C while LgD, € R>p when D = D’. For our case, where the detectors are
static and their switching functions are Gaussian, we can use the mode-sum expression
of the Wightman function for the Boulware, Unruh and Hartle-Hawking states in region
I (Equation (6.3)) to manipulate M* and LY., into forms that are more amenable to
numerical evaluation due to demanding only a single numerical integration. The resulting
expressions are Equations and , repeated here for the convenience of the

reader:
A Ay NNy Ty Ty &
by =D N (20 4+ 1) Py(cos )
1o = (6.26)
0o ¥ '
% / dow G (1o, o) ol (R Ny )t —i(Q0 No+w)ton— 3 (2 No+w)> T — 3 (2 Ny +w) * T,
w

LY
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and

_)\AABfAfBTATB > 0 1
20+ 1)P, / dw =
327 Z(:)( + ) €<COSV) —o0 ww

MIEHATE | Ty — pa T tos ¢
—SASAEEE i(vatontatoa) : Fea 0A 0B "
X {e e 1 —ierfi | =" + <_> GY (ra,r
( ( l 22 Ty (7o)

1
\/_
L R oo | VaTh — Ty 1 (tos  oa
+e el(V\tOA+HBt0B) 1 — lerﬁ _— ( - > Gw s, T )
2\/§ \/_ KUJ( B A)

MY =

(6.27)

where f, = f(rp), Np =/ fo, Vp = w+Qp Ny, pip = QpNp—w, erfi(z) = —ierf(z) and erf(z2)
is the error function ([48, Chapter 7.2(i)]). Details of the derivation of these expressions
are presented in Appendix [A] To perform the numerical evaluations, we fold these integrals
so that they run from 0 to oo.

As can be noticed, these integrals are of the same form as the ones we solved in
Chapter , hence, the same technique will be applied to solve them (but without /¢-
smoothing and here the w-smoothing is given by the setup). We also take the opportunity
to highlight that both MY and LDD, are integrals of the Wightman function smeared
against a smoothing function that is given by the setup — This is in contrast to the
arbitrary choice of smoothing function in Chapter

To quantify and study the entanglement between the two detectors in their final state
Pas,oo WE Use its negativityﬂ since we do not expect their joint-state to always be a pure
state (if this was the case, we could have used the entanglement entropy, for instance).

The negativity of a given quantum state represented by a density matrix p is defined
as the absolute value of the sum of the negative eigenvalues of its partial-transpose pPt
with respect to the first system. In our case, the partial transpose of p,s o With respect to
the basis of A is

1—LY — L% 0 0 LY
0 LY (M) 0
= - + O\ (6.28)
0 MY LY 0
LY, 0 0 0

and its only (possibly) negative eigenvalue (to O(A\*)) is

1 2 4
B = (LZA + LY, — \/(LfA — LE5)? + 4| MY| ) + O(\Y). (6.29)
The negativity of a quantum state is an example of an entanglement monotone. Entanglement
monotones are functions of state capable of quantifying entanglement. Another popular example is the
entanglement entropy. For a complete view on this topic, the reader is referred to [90, Section 16.8].

3
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For simplicity, we define N'*"?) = —E,. Therefore, the negativity of Pap,T 18
N¥ = max [J\/'w’@), 0} + 0O\

1
= max | (VL3 — Lin)? + 41M9P = LY, — L, ) 0] + O

(6.30)

This expression shows that there are three quantities involved in the quantification of
entanglement: MY, L,, and L. The first is a non-local term in the sense that it depends
on the histories of both detectors. Due to this property, we can understand MY as the
term that produces the entanglement. On the other hand, L,, and Ly, are local terms
because each of them depend only on the history of a single detector. For this reason, these
terms do not carry information about field correlations between the regions where the
detectors interact with the field. In the end, we see in Equation that what defines if
N? > 0 is a competition between these local terms and M?. In particular, it is clear that
L, and Lgg spoil the entanglement we are trying to measure. For this reason, we refer to
them as local noise terms.

For the case we are going to study in Section the local noise term is equal for
both detectors, L}fD = LffA = LgB. This will happen because we will assume identical
detectors that follow the same world-line and differ only by the coordinate time where

their switching-functions peak, i.e., tgy # tos. In this case the negativity simplifies to
N =max [|[M?] = L}, 0] + O(\Y), (6.31)

and intuitively shows that there will be entanglement between the detectors only if the

non-local term overcomes the local noise.

6.4 When is the entanglement extracted versus generated?

The phenomenon of entanglement harvesting, presented in Section [6.2], is a handy tool to
probe the entanglement structure of a quantum field in a given state as it can demonstrate
the existence of entanglement in that field across different spacetime regions. However, it
should be handled with care: Considering our setup, where a pair of initially uncorrelated
particle detectors become entangled after interacting with a quantum scalar field, one
cannot immediately conclude that this entanglement was harvested from the field. The
reason is that there are two ways through which these particle detectors can acquire
entanglement: By harvesting from the background field and/or by indirectly interacting
with one another via the field — we will refer to the last one as entanglement generated
by communication, since it is a byproduct of causal communication (through the field)
between the detectors.

When the detectors are causally disconnected (spacelike separated) it is immediate
to conclude that any entanglement they acquire is due to harvesting from the field

(see [84] 21] for examples on flat spacetime) because in this case causal communication
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between them is impossible. On the other hand, when the detectors are causally connected
(timelike separated), distinguishing harvested entanglement from that produced through
communication is a delicate task. For that end, we will anchor our arguments in the fact
that the real part of the Wightman function carries information about quantum correlations
(Equation (3.48))) while the imaginary part contains information about classical correlations
and is state-independent (Equation (3.47))).

With that in mind, we note that to leading order in the perturbative correction to
pasco (Equation (6.23)), the non-local term MY (Equation (6.24))) can be written as a

sum of a state-dependent and a state-independent quantity as in [19, Equation (31)],
MY = MY +iM?, (6.32)

where Mff is obtained by replacing W¥ by its real part (which is symmetric) on the
right-hand side of Equation , and MY by replacing it with its imaginary part (which
is antisymmetric). Note that, in general, Mjf and MY are complex-valued.

Considering this decomposition there are scenarios where the detectors become en-
tangled while M? is dominated by MY with MY (almost or exactly) vanishing. In this
case, most of the entanglement acquired by the detectors is state-independent and should
not to be attributed to preexisting entanglement in the field, that is, most of it was not
harvested. To see why, notice that in this scenario the entanglement between the detectors,
as measured by N'%?) remains (almost or exactly) unchanged if we replace the initial
field state p, by another state pys such that LffA and LffB also remain unchanged — Since
both LfA and LgB are local terms, this condition implies that the Wightman function for
pyr is equal to that of p, on the world-lines of A and B but can be different everywhere
clse. The value of M¥ =~ M? would remain almost (or exactly, if Mjf vanishes) unchanged
due to the fact that MY is state-independent.

Therefore, the entanglement acquired by the detectors in this situation is almost the
same, independently of the initial state of the field. Hence, it is reasonable to assume that
such entanglement is predominantly generated through causal communication instead of
being harvested from the field. This line of reasoning is analogous to that presented in [19]
to argue that in these cases where Mjf is (almost or exactly) vanishing, the entanglement
acquired by the detectors should not be attributed to “entanglement harvesting" from the
field.

On the other hand, when the detectors are not causally connected M¥ = MY because
MY depends on the field commutator, which is zero in this case. As pointed before, in this
situation all of the entanglement between the detectors was harvested from the field. In
this scenario we can understand that the entanglement was transferred from the field to
the detectors via the (state-dependent) field anti-commutator.

In addition, as pointed in [19], for causally connected (timelike-separated) detectors,

Mff encodes contributions to the resulting entanglement (between the detectors) that
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can be attributed to both, harvesting — due to its state-dependent nature — and causal
communication. This happens because the same process that allow causally connected
detectors to harvest entanglement also allows causal communication between them. In the
causal communication process, the field carries information between the detectors an can
get them entangled independently of any preexisting entanglement in the field. However,
to leading order in perturbation theory (which we are considering), the causal influence
that one detector has on the other is determined solely by the field’s commutator(see [63]
Equation 24]). Hence, as argued in [19], we find it reasonable to conclude that the detectors
are harvesting preexisting entanglement from the field if MY is dominated by contributions

arising from the anticommutator, that is, if M? ~ Mff

6.5 Harvesting of gravitationally lensed vacuum entanglement

(Disclaimer: In what follows, we reproduce the corresponding section from [I] in full.)

This section contains the main results which demonstrate the impact of gravitational
lensing — which at caustics refocuses null geodesics emanating from a common source —
on entanglement harvesting. To this end, we consider two static UdW detectors placed
close to the black hole horizon and compare their behavior with the well-studied case of
static detectors in flat spacetime.

As one would expect, an important parameter that decides if and to what extent two
detectors become entangled is their distance. The distance between (the static worldlines
of) the two detectors can be defined in terms of various meaningful measures (see [89]).
In the present context (of static observers in Schwarzschild or Minkowski spacetime),
the light propagation coordinate time is an intuitive choice of measure which we use
henceforth when referring to the distance between detectors. This is the minimal amount
of (Schwarzschild or Minkowski) coordinate time that it takes light to propagate from the
spatial position of one detector to that of the other detector along a null geodesic.

Once the spatial positions of the two detectors are chosen and, thus, their distance
is fixed, the interaction of the detectors with the field can still be made to happen at
spacelike, lightlike or timelike separation by introducing a switching delay; this means that
the switching function of the second detector is shifted with respect to the first one by a
certain amount of coordinate time. For example, in the following we will assume that both
detectors couple through the same switching function and introduce the switching
delay Agy, = tos — tos as the (coordinate time) difference between the centers of the
switching functions. The switching delay can then be used to maximize the entanglement
in the final state of the two detectors.

In Minkowski spacetime, as far as the impact of the switching delay is concerned, the
entanglement in the final state between two detectors at a fixed distance is maximized

when the switching functions are exactly null aligned [19], i.e., when the switching delay
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equals the light propagation timeﬁ As far as the impact of the distance between the
detectors is concerned, its impact on the final entanglement is straightforward: if the
distance between the detectors is increased (while allowing the switching delay to be
optimal and leaving other coupling parameters unchanged), the entanglement between the
detectors in their final state decreases and goes to zero beyond a certain distance. This
holds even if the switching delay is readjusted to uphold null alignment. Furthermore, in
(34+1)D Minkowski spacetime, the entanglement between exactly null aligned detectors is
dominated by correlations generated by communication rather than by harvesting, because
the MY term is dominated by MY rather than MY, as shown in [19].

This raises two questions regarding entanglement harvesting in Schwarzschild spacetime.
First: does the presence of caustics enhance the ability of detectors to become entan-
gled? What is more, can caustics make the harvested entanglement no longer decrease
monotonically with distance?

Second: does the singularity structure of the Wightman function allow for the entan-
glement to be dominated by harvesting rather than signaling if the detectors’ switching
instead of being aligned along a direct null geodesic is aligned along a secondary null
geodesic, i.e., a null geodesic that has passed through a caustic? As discussed in Sec-
tion |3.4.1] in this case the singularity structures of the real and imaginary parts of the
Wightman function are shifted, so that MY could dominate over MY because the real
part now carries the d(o) singularity. This would then constitute entanglement harvesting
between timelike-separated detectors, since the secondary null geodesics lie inside the
causal cone which is bounded by the direct null geodesics between detectors.

The following results answer both questions in the affirmative.

Figure |68 shows the gravitational lensing effect on the harvesting of entanglement by
two static detectors in Schwarzschild spacetime when the field is in the Boulware state. The
scenario is as follows: Two identical detectors, with detector gap Q,, = Qs = 5M ! and
A=A, = )\BE are placed on static worldlines at the same radial coordinate r ~ 6.009M.
The angular separation v between the two detectors varies along the horizontal axes
of each panel. Both detectors are coupled to the field through the Gaussian switching
function , but the difference between the two centers of the switching functions is
shifted by an amount of coordinate time Ay, = tos — to, Which varies between the panels
as indicated.

An inset in each panel visualizes how far null geodesics, emanating from detector A
at time tg,, propagate within the coordinate time interval Ag,: the black filled circle
represents the interior of the black hole horizon at » = ry, = 2M, a black ring around it

represents all points with radial coordinate r ~ 6.009M and the red dot represents the

4 This statement is not entirely precise, as in Minkowski spacetime the maximum is located very close to

— but not exactly at — null alignment of the switching functions, see [19].
Note that because A is dimensionless and all terms are of order O(A\?) the numerical value of A only
affects the result by an overall factor. We choose A = 1 for improved readability.

5
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Figure 68 — Gravitational lensing of entanglement harvesting from the Boulware state: the
plots show the entries |MPZ|, |MP| and |L5,| of the final detectors’ state
for two static detectors placed at radial coordinate r = 6.009M with varying
angular separation 7. Blue shading indicates where |[MZ| > LB i.e., the
negativity is positive and the detectors become entangled. All detector
parameters are equal (A, = 1, Q, = 5M 1, T, = 1M); only the delay Ay, =
top — toa between the switching functions varies between plots. The
insets indicate how far a null wave front propagates from the red point within
a coordinate time interval Ag,. In particular, at Ag, ~ 20.7386M at the
antipodal point of the red point, i.e., at v = 7, the wave front intersects itself
and the first caustic point forms.
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spatial location of detector A. The violet curve then indicates the spatial position of the
null wave front after propagation time Ag,. In particular, the different insets show the
formation of caustics located at angular separation v = 7 from the point of origin (which is
plotted in red) where the null wave front intersects itself. The caustic reaches r ~ 6.009M
at Ag,y ~ 20.7386)M.

The four different curves in each panel show the resulting contributions to the final
density matrix of the two detectors , when the field is in the Boulware state.
(Accordingly they are denoted with a superscript » = B.) The horizontal, red and dashed
line shows the single detector noise term L3 := LB = LB . Because it only depends on
the radial coordinate and the switching function’s width T}, it is equal for both detectors
and constant for all positions of detectors considered here. The blue solid curve shows
the absolute value |M?| resulting from the chosen value of the switching delay Ag,
in each panel, as a function of the angular separation between the detectors. The two
remaining dashed curves show the absolute values |M*| in green and |MP] in orange
which, as discussed in Section are obtained by replacing the Wightman function by its
imaginary and real parts, respectively. In particular, as discussed in Section , if |[MP] is
dominated by |M?| (obtained from the imaginary part), then the detectors’ entanglement
is predominantly generated in the sequential interaction of the detectors with the field.
On the other hand, if [M?| is dominated by |M¥| then final entanglement between the
detectors is predominantly harvested from preexisting entanglement in the vacuum of the
field.

Altogether the panels in Figure[68]|illustrate the lensing effect which appears in proximity
to the caustics. The first two panels show the settings with the shortest switching delay
Ag, between the switching functions. In these two plots, we see that the correlations
between the detectors, as captured by |MP], are largest when the centers of the intervals
during which the detectors couple to the field are connected by (direct) null geodesics.
In the first panel there is a certain interval of angular separations in which the blue line
for |[M®B| exceeds the noise term L5 and the detectors end up entangled. However, in the
second panel the detectors’ final state remains separable, even for null separated detectors,
because A, is increased. Note that here the contribution from M?” dominates the peaks
of MP%; hence entanglement between the detectors cannot be attributed to harvesting of
preexisting entanglement from the field but to entanglement generation due to sequential
interaction.

In flat spacetime no entanglement would be observed in the final detectors’ state for
larger switching delay between the detectors. Intuitively this is related to the growth of
the light cone’s surface area which dilutes the entanglement. In Schwarzschild spacetime,
however, where the light cone refocuses at caustics the opposite can happen. As seen in
the third through sixth panels (in order of increasing Ay, ), the detectors can become

entangled at larger switching delays Ag, again, at angular separations close to v = 7
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in the proximity of caustics. This answers in the affirmative the first of the two guiding
questions raised in the previous paragraphs.

The second of the two questions raised above pertains to the Wightman function’s
singularity structure described in Section [3.4.1] Its effect is easy to recognize when
comparing the last (bottom right) panel to the first (top left) panel of Figure [68 In both
panels the correlations between the two detectors, as captured by |M?|, are maximal
for null aligned detectors. However, in the first panel the detectors are connected by
primary null geodesics, whereas in the last panel they are connected by secondary null
geodesics. At secondary null geodesics, as discussed in Section [3.4.1] the singularity
structure of the Wightman function is shifted from primary null geodesics so that now the
real (anticommutator) part carries the §(o) singularity, which used to be carried instead by
the imaginary (commutator) part in the case of primary null geodesics. Accordingly, the
two contributions |M2| have a qualitatively similar overall shape in the first and the last
panels, except that the M f and M? have swapped places. For detectors aligned along a
secondary null geodesic, the real part contribution M f dominates over the imaginary part
contribution M?Z. So if these correlations overcame the noise, |M?| > |Lpp|, the detectors
would become entangled by harvested entanglement. However, the correlations in the
last panel are too weak for the detectors to end up entangled. To find detectors that get
entangled by genuinely harvested correlations around secondary null geodesics, we need to
position the detectors closer to caustics so as to make use of the overall enhancement of the
Wightman function there. Such a setting is seen in the fifth panel (for Ay, = 21.5M) of
Figure [68 In this and the following panels of Figure [68, the switching delay Ay, is larger
than the shortest light propagation (Schwarzschild coordinate) time between detectors
with angular separation v = 7, and the detectors (at r ~ 6.009M ) which are null aligned
here are aligned along a secondary null geodesic and timelike separated. With this we have
answered in the affirmative the second of the above questions, as we observe the genuine
harvesting of preexisting entanglement from the field by timelike-separated detectors,
aligned along secondary null geodesics. In the following, we will see further examples
allowing for entanglement harvesting between timelike-separated detectors with angular
separation vy = .

Complementary to Figure [68] the same scenario and effects are seen in Figure [69] from a
slightly different perspective. Here, the contributions to the detectors’ final density matrix
are plotted over the coordinate time switching delay Ag,, while the four different panels
correspond to four different angular separations. (Figure {70 provides a logarithmic plot of
the same data.) Note that these plots over Ay, are directly comparable to the plots also
found in [19] in (34-1)D Minkowski spacetime.

In the first panel of Figure , for angular separation v = 7/5, there are three peaks
appearing in |M?| which correspond to an alignment of the switching functions along

primary, secondary and tertiary null geodesics, respectively. The qualitative structure of
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Figure 69 — Same data as Figure from a different perspective: the switching delay
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with four different angular separations. (See Figure [70| for a logarithmic plot.)
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State Local noise term

Boulware state LB /(A As) = 9.82 x 1077
Unruh state LY /(AsAs) = 9.96 x 1077
Hartle-Hawking state | LI /(A A5) = 1.08 x 1076

Table 11 — Numerical values of the local noise terms in the three different states considered,
for the scenarios in Figure [68, Figure [71] and Figure [72] respectively.

the first peak and its contributions from |M%| and |M?| correspond to the structure found
in flat spacetime in [19]. However, in the secondary peak the qualitative roles of |AM£] and
|MB| are interchanged due to the shifted singularity structure of the Wightman function,
as is easy to see in the logarithmic plot in Figure [70] For the tertiary peak, together with
the singularity structure of the Wightman function, the qualitative structure of the peak
also shifts back to its primary form.

Even if there are three peaks appearing at angular separation 7 = 7/5, only the
first one corresponding to alignment along the direct, primary null geodesic exhibits
entanglement in the detectors’ final state. In an intermediate regime of angular separations,
for 0.647 < v < 0.817, not even the primary peak overcomes the noise and the detectors’
final state remains separable for all switching delays Ag,. An example of this is seen in
the third (bottom left) panel of Figure |69] for angular separation v = 37 /4. However, as
the angular separation approaches v = 7 both the primary and secondary peaks increase
their size again and they overcome the noise, thus, leaving the detectors in an entangled
state. Gradually, as v — 7, the primary and secondary peaks superpose and finally create
one joint peak aligned at the caustic for v = 7. Here we see that for switching delays that
are somewhat larger than the direct null alignment, the extracted entanglement can be
dominated by |M%| and thus can be attributed to entanglement harvesting from the field.

The results shown in Figure [68] are for the field in the Boulware state. As seen in
the analogous Figure [71] for the Unruh state and Figure |72 for the Hartle-Hawking state,
the same phenomena appear in these states as well. In fact, the quantitative differences
between the states (which may be difficult to see with the naked eye) are mostly due to the
difference in the noise term, which is given in Tab. [I1] The correlation terms, in particular
in the scenarios of detectors that harvest entanglement in the proximity of caustics, agree
to many digits for all three states, as can be seen in Figure [73] which shows their relative
differences.

We conclude this section with a study of entanglement harvesting from the Boulware
state between detectors at antipodal locations with the black hole exactly in the middle
between them, i.e., at identical radial coordinates r = r, = r, and with an angular
separation v = 7, for a range of detector locations reaching down very close to the horizon

at radial positions r &~ 2.095M.
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Figure 71 — Gravitational lensing of entanglement harvesting from the field in the Unruh
state: the entire setup is identical to the setup of Figure [68] except that
here the initial state for the field is the Unruh state. The plots show the
absolute values of MY, MY and LY in Eq. for two static detectors
placed at radial coordinate r = 6.009M with varying angular separation . All
detector parameters are equal (A, = 1, Q, = 5M 1, T;, = 1M); only the offset
Aga = tos — toa between the two switching functions varies between the
plots. The inset indicates how far a null wave front propagates from the red
point within a coordinate time interval Ag,.
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Figure 72 — Gravitational lensing of entanglement harvesting from the field in the Hartle-
Hawking state: the entire setup is identical to the setup of Figure[68] except that
here the initial state for the field is the Hartle-Hawking state. The plots show
the absolute values of M M and LI in Eq. for two static detectors
placed at radial coordinate r = 6.009M with varying angular separation . All
detector parameters are equal (A, = 1, Q, = 5M 1, T;, = 1M); only the offset
Aga = tos — toa between the two switching functions varies between the
plots. The inset indicates how far a null wave front propagates from the red
point within a coordinate time interval Ag,.
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At the different radial coordinates the detectors experience different gravitational
redshifts. To account for this, we adjust the width of the switching functions
to Tp(r) = Oo/\/m = Tw/y/1 —2M/r, such that, at all radial coordinates Ty(r),
corresponds to the same amount of proper time given by some value T,,. Analogous to
the plots above, Figure [74] shows the resulting contributions to the detectors’ final state
for T,, = 1M. It shows that at all radial coordinates considered, even close to the horizon,
the two detectors can become entangled and the entanglement can be dominated by
entanglement harvesting, when the switching delay Ay, = tos — toa is chosen appropriately.

To understand the structure of the plots and its dependence on Ay, it is useful
to consider the light propagation coordinate time At between the two detectors. This
is the coordinate time that it takes for a null geodesic starting at spatial coordinates
(r,0 = /2, ¢) to reach the antipodal point (r,0 = 7/2, ¢ + 7). Figure [75| shows this time
for the range of radial coordinates we consider. It shows that At is minimal at r = 3M
(the photonsphere). For this critical case, it takes the value At,;, = 3v/3wM. Setting the
switching delay equal to the light propagation time, i.e., setting Ay, = At, yields exact
null alignment of the detectors’ switching functions.

Around exact null alignment between the detectors we expect a peak in the final
detector entanglement, and this is, indeed, what we observe in Figure [74] At first, in the
panels showing the lower values of Ag,, one peak forms around r = 3M since the detectors
located at this radial coordinate are the first to be exactly null aligned. As Ag, is increased
in the following panels, a double-peak structure forms since for A, > 3v/37M there are
always two radial coordinate positions at which the detectors are exactly null aligned.
Regarding the relative size of the contributions M?P and MZ, we observe again that both
contributions are of comparable size when the detectors are exactly null aligned, as we
already observed in the panel of Figure[69] for v = 7. This is in contrast to scenarios where
the detectors are null aligned along primary null geodesics and sufficiently far away from
any caustics. There, just as in flat Minkowski spacetime, the correlations are dominated by
the M_ contribution when the detectors are exactly null aligned. However, at the caustics,
where a whole envelope of null geodesics connects the detectors at once, the singularity
structure of the two-point function is altered (see [91]). This results in the M contribution
dominating before exact null alignment and the M_ contribution dominating after exact

null alignment of the switching functions.
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Figure 74 — Entanglement harvesting from the Boulware state by static detectors at
antipodal positions close to a Schwarzschild black hole: the plots show the
entries of the final detectors’ state from Equation for two identical
detectors (A, = 1, = 5/M) which are placed at equal radial coordinates ry
at angular separation v = 7, i.e., with the black hole exactly in the middle
between them. To account for the different redshifts the width of the detector
switching functions in Equation is set to Ty, = M//1 —2M/r, i.e., kept
equal with respect to the detectors’ proper time. The different panels show
the results for different switching delays Ag, = tos — toa. Detectors placed at
r = 3M are the first for which the switching functions are exactly null aligned
at Agsy = 3371 M ~ 16.32M. Both for larger and lower radial coordinates the
light propagation time is longer, and hence two peaks form in the later panels
around the radial coordinates for which exact null alignment is achieved (see
Figure . The vertical purple lines indicate the radial coordinates at which
null alignment of the switching function is achieved, i.e., where Ay, = At (see

Figure .
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7 Conclusion

This work was motivated by the information loss puzzle, which the author considers an
intriguing issue. However we do not attempt to solve it or attack it directly in this work.
Instead, we choose to advance in the understanding of the distribution and propagation of
correlations in a massless scalar field ¢ on the (3+1)D Schwarzschild spacetime within the
semi-classical framework. While by no means solving the puzzle, the methods developed
in this thesis as well as the results obtained with it contribute to understanding what
happens to the initial information encoded in a given state of quﬁ as it propagates through
the spacetime. We attacked this problem — To the best of our knowledge, for the first time
in this setup — by performing an analysis of the Wightman function of qg for the Boulware
(|B)), Unruh (|U)) and Hartle-Hawking (|H)) states (which we will refer to, respectively,
as WB WU and W) considering the case with both points outside the horizon and the
one with one point inside and another outside it. As a positive outcome, the methods
developed here also allow to study the phenomenon of entanglement harvesting from qg on
|B), |U) and |H) on the (3+1)D Schwarzschild spacetime, a setup that was never explored
before our published paper [I] where we analyzed how angular separation between two
identical Unruh-DeWitt (UdW) detectors placed at the same radial position around the
horizon affects their capacity of harvesting entanglement from |B), |U) and |H). In what
follows, we provide a recap of each chapter and summarize the results obtained in the
course of this thesis. In the end, we present our perspective for future work.

Chapters [1] and [2| were written with the intent of presenting motivations, notations,
conventions and the concepts of General Relativity that will be used throughout the text.
Hence, no new results were introduced in these chapters.

Chapter [3| funnels towards the more specific prerequisites for this work. There we
constructed the quantum field ¢, as in [25], and defined |B) [40], |U) [39] and |H) [42]
states in terms of the Eddington-Finkelstein (EF) and Unruh modes. Then we presented
the Wightman function and its Hadamard form [44], together with its 4-fold singularity
structure [54], OI]. In what follows, we presented the well-known expressions [34] for the
Wightman function of ¢ for |B), |U) and |H) on the (14+1)D Schwarzschild spacetime.
Then this exercise is repeated on the (3+1)D Schwarzschild spacetime. In this case, the
expressions of WB WU and W# when both points are outside [54] the horizon and
inside [32] the horizon are already known. However, to the best of our knowledge, the one
for the case where one point is inside the horizon and another outside it have not been
presented before. We consider this as our first novel result.

Before using the expressions of these Wightman functions, we needed to compute the
ingoing, upgoing and inside EF-modes (and their derivatives) defined in Section [3.3.1] This
is done in Chapter . We applied the Jaffé-series [53] to compute the ingoing EF-modes, the
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integrator implemented in the Black Hole Perturbation Toolkit [26] to compute the upgoing
EF-modes and the Frobenius series to compute the inside EF-modes. With this approach,
we obtained a precision of 16 significant digits in all inside EF-modes, 20 digits in all
ingoing EF-modes and 9 digits in the upgoing modes within ¢ € [0,29] and Mw € [0, 10].

The incidence amplitudes for the ingoing and upgoing EF-modes were obtained directly
from the data of [54]. The reflection amplitudes for these modes were evaluated using our
data via the Wronskian relations in terms of the EF-modes. Then we used the Wronskian
relations in terms of the scattering amplitudes to conclude that all incidence amplitudes
were self-consistent to 9 significant digits while the reflection amplitudes were verified to
be self-consistent to 9 significant digits for ¢ € [0,~ 75] and Mw € [0,~ 9.3].

The set of these modes and amplitudes compose the dataset that was used throughout
the computations in the next chapters. We estimate that this data-production step
demanded a total of 1,5 months of uninterrupted computational work, spread across
several Mathematica kernels, making it the most computer-intensive part of this work. We
consider the time invested in this task to be worth it due to the multitude of potential
use-cases for the produced data, which is, to the best of our knowledge, not available
elsewhere.

Chapter [5| contains our new results regarding W2, WY and W#. We begin it by
constructing the method used to produce numerical results for these quantities from the
dataset generated in Chapter [l We managed to engineer it to allow us to go from raw
data to a map of these Wightman functions in a matter of hours. Moreover, we verified
that this method produces data, under a conservative estimate, correct to at least two
significant digits. This can be improved by including modes with larger frequencies in the
integrals. However the necessity of results with refined precision in any future work must
be carefully considered since this would demand another round of time-consuming data
generation.

To test the developed method, we conduced two tests with both points outside the
horizon: In the first one the these points were positioned out of caustics and we verified
that the computed W2, WY and W# reproduce the expected 4-fold singularity structure.
In the second one, we successfully reproduced known results [57] for the retarded Green
Function on caustics. This batch of tests finishes with a new result: The real part of W5
on caustics (two points separated by an angle of v = ), which show a 2-fold structure
analogous to the one described by [57] for the retarded Green Function in this setup.

In the second part of Chapter [5, we showcase the capabilities of the method we
developed by presenting maps of the real and imaginary parts of W2, WV and W#
with both points outside the horizon. These allow one to obtain, for the first time, a
birds-eye view of the Wightman function in this setup. From them we concluded that the
imaginary part of the Wightman function is visually indistinguishable across all of them —

as expected, since it is state-independent. By analyzing a strip of constant r-coordinate
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from these maps, which we consider to be representative for this purpose, we verified
that even numerically, the imaginary part of W2, WY and W agree to a relative error
of 1073 when both points lie on the same surface of constant coordinate time and 1078
everywhere else. The real maps of the real parts of W# are also visually indistinguishable
WU, however that of W# presented minor, yet visible, differences. These results represent
a major advance in the capacity of working with the Wightman function in this setup,
which was, in fact, not possible before this work. From these maps we managed to calculate
the difference between the real parts of these Wightman functions to extract important
differences between them.

This leads to the next section of that chapter, where we compare the correlations in
\U) and |H) using |B) as a reference. That is, we compute the difference W¥=5(x,x’)
between the Wightman function WY with ¢ € {U, H} and W5. We observed that WUY~5
presents a local maxima that seem to travel from « > u (the u-coordinate of the moving
x" and fixed x points) towards v’ ~ u with increasing v'. We interpret this as an out-flux
of quantum correlations between x and x’ that is carried by Hawking radiation from the
horizon towards infinity (r — 00). Unfortunately, we were not able to figure what curve is
tracking this local maxima. On the other hand W¥# =5 presents a local maxima that tracks
At = 0M, where At is the coordinate time separation between x and x’. We associate it to
a combination of an influx of correlations between x and a point x” that moves from infinity
towards the horizon and an the out-flux of correlations carried by Hawking radiation from
the horizon towards infinity. Finally, we note that on slices of constant r-coordinate, the
local maxima that manifested in WY~5 and W#~P decay exponentially as we move x’
away from x, up to around the arrival of the first null geodesic that connects x and x’
after a complete orbit. Beyond this point, that decay transitions into a polynomial regime.
We then conjecture that the transition from the exponential to polynomial decay in these
correlations happen around the boundary of the normal neighborhood of x.

In the following section of Chapter , we produced maps of WY and W# with one
point x fixed inside the horizon and another, x’, varying outside. As expected, the 4-fold
singularity structure of the Wightman function was manifest. Moreover, we also note that
the imaginary parts of WY and W# decay exponentially towards a residual value once
x" moves out of causal connection from x. This is nothing but the manifestation of the
lack of support of the advanced and retarded Green functions on spacelike connected
points. As a novel result, we noticed that the real parts of WY and W# | which carries
quantum correlations, manifest a structure composed by step-like behavior followed by
a local minimum when x’ is sufficiently far from the horizon. Both structures decay as
x" moves away from the horizon in such a way that the local minimum becomes more
evident compared to the step-like behavior. If X’ is too close to the horizon, that structure
merges with the light-crossing singularity on the direct null geodesic connecting x and

x'. We shown that the aforementioned structure is produced by correlations across the
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horizon encoded in the initial data that defines WY and W*. In particular, we noted that
the most relevant contributions to that structure raises from low-frequency modes. Finally,
by isolating that structure we noticed that the center of the step-like behavior travels from
some value of EF-coordinates v’ > u towards v’ ~ —u with increasing EF-coordinate v'.
This behavior is similar to the characteristic signature of Hawking radiation in (14+1)D
Schwarzschild [I1} [10, 12], however in (3+1)D it is already evident in the Wightman
functions while in (141)D it is only evident in the momentum-momentum and energy
density correlators, which are constructed from derivatives of the Wightman function. We
believe that such step-like behavior is the (34+1)D version of that signature.

In the final section of that chapter, we decomposed W%, WY and W# in two sectors,
one that depends only on ingoing EF-modes and another that depends only on upgoing EF-
modes. Then we considered two points outside the horizon, at the same radial coordinate,
separated by an angle of v = m/3. We observe that for all states both sectors present
non-light-crossing singularities which are different in both shape a location from the
standard, light-crossing singularities of the Wightman function. Then we showed that
these non-light-crossing singularities also follow a 4-fold structure, however we were not
able to determine the functional form of these singularities. On top of that, we noted that
the standard light-crossing singularities appear exclusively in the ingoing sector of the
Wightman function when both points are above the photonsphere and exclusively in its
upgoing sector when they are below it. Additionally, on the photonsphere no non-light-
crossing singularities appear. We concluded that the light-crossing singularities in each
sector do happen on null geodesics connecting x andx’ but with a tweak: These of the
ingoing sector appear on ingoing null geodesics connecting x and x” while these of the
upgoing sector appear on outgoing null geodesics connecting these points.

In Chapter @ we presented our published work [I]. We used two Unruh-DeWitt detectors
outside the horizon to study entanglement harvesting from a massless quantum scalar
field on the (3+1)D Schwarzschild spacetime. We placed these detectors at the same
radial coordinate and varied the angular separation between them to assess their ability
to harvest entanglement from the Boulware, Unruh and Hartle-Hawking vacua. We used
the method developed in Chapter [5| throughout the calculations, with the difference that
here the frequency smoothing naturally arises from the setup. Then we concluded that
the capacity of harvesting entanglement is amplified near caustic points. This effect is
intense enough to allow the entanglement acquired by the detectors to be dominated by
the harvested entanglement even when they are causally timelike connected. This effect
arises as a consequence of the change in the singularity of the Wightman function as the
field waves cross caustic points.

We finish by stating that there are a number of possible extensions of the work presented
in this thesis. An immediate one would be to study the correlations with both points

inside the horizon through maps of the Wightman function. Another one would be to
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evaluate the momentum-momentum correlator and compare it directly with [10, 111, 12] to
complement our findings on correlations across the horizon. Another possibility is to use
our method to compare the results obtained by [51] and [92] since they disagree about
the existence of a peak in the response function of a freely-falling Unruh-DeWitt detector
slightly after it crosses the horizon. We could use our data and knowledge to explore that
issue. Other than that, we could, for instance, evolve the Wightman function backwards
from .#7 while neglecting all modes from 4, to study how well an observer that could
collect all information that have not fallen through the horizon can reconstruct the initial
data on Hzp U #; . A bolder proposal would be to use our method to obtain maps of
the Wightman function for the Vaidya spacetime, which would allow us to follow the
history of correlations during (and after) the formation of the horizon. When it comes to
entanglement harvesting, we are in a unique position because we can effectively extend all
of the existing literature on (14-1)D Schwarzschild to (3+1)D Schwarzschild, analyzing,
for instance, if it is still possible to harvest entanglement across the horizon from the

Boulware, Unruh and Hartle-Hawking vacua in this spacetime.
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A Density matrix contributions

In this appendix, we give a detailed derivation of the expressions used for the calcula-
tion of the perturbative contributions to the final density state of the two detectors in
Equation . To evaluate the leading-order contributions to the detectors’ final density
matrix, we need certain Fourier-type integrals of the switching function ,

o (1) = e ()T, (A1)
First, we have
s . T 2 iv7T; —1
/ dtelytnD(t> _ \/z De— lljtoD <1 + eI‘f < V2 D + S T OD>) : (A2)
oo -
/ dte"'n,(t) = aTe 1T glvton (A.3)

where erf(z) = % Jidt e=* is the error function [48, Section 7.1 (i)]. Furthermore, we need
the integral
¢
/ dt’ e ny (1) / dt e™'n, (t). (A.4)
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For the t'-integral, we use |21, Equations (A3) and (A7)] to write
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For stationary detectors we use 7,,(t) = \/ f(rp)t as the relation between proper time
and coordinate time (see Equation . With this, and Equations (6.3)) and ( - the
single detector noise term L’ , in Equation (6.25 (6.25) takes the followmg form (denoting

r=1rp,7 =71y, fo = f(rp) and Ny = /fp):
Lgn/ = )‘D)\D’fAfB[ dt [ dt’ nD(t)WD’(t/)e_iQDNDHiQD'ND/t/Ww (XD(t)QXD’(t,))
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Analogously, for M¥ in Equation (6.24) we obtain using Equation (A.§)),
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with v, = w+Q, Ny, pp = 0, Ny —w. For practical evaluation purposes, one can manipulate
the integrals in Equations (A.10)) and (A.9) further so that the integration over w only

runs over 0 < w < 0.
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B Numerical techniques for the Wightman

function

In order to evaluate the Wightman function in the situations presented in this work,

in,R/up,R

integrals over 9,

(r) with respect to r are needed. However, there is no known
closed-form expression for 1/1523/ up’R(r). Hence, one has to use numerical techniques. For
evaluating these modes and their respective scattering amplitudes we used the methods
delineated in Chapter

In the following subsections, we provide the analysis of the convergence of the integrals
defining M¥ and LgD,, as well as specific details regarding the precision of their numerical

evaluation.

B.1 LY -terms

By setting b = D’ in Equation (A.9) and manipulating the integration range from

—00 < w < 00 to 0 <w < oo, we obtain the following expression for the LY, -terms:
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To verify the convergence of such an integral, one should analyze the large-|w| behavior
of the G¥,(rp, ), which varies among the quantum states as in Equations (6.4), (6.5)

and :
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The leading asymptotic behavior of [/ uP’R(rD)’ as |w| — oo is [93, Appendix D.2]

2

Yt PR )|~ L (B.4)

Hence, to leading order for large |wl|, G, (rp,7p) ~ 1.

L Such asymptotics are nonuniform and valid only when w > V;(r), as illustrated in Fig.
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Figure 76 — Integrand in Equation (B.1]) as a function of Mw and ¢ for the Boulware
state. The value of Mw where the asymptotic regime begins grows with
£. More precisely, the transition to the asymptotic regime begins around
wr ~ /(£ +1) (for £ > 0 and radii not too close to the horizon). Notice
that thanks to the f(w) in Equation (6.4)), the slowest decaying term in

. . . —l(QDDNDD L/.))2T2
Equation (B.1)) for the Boulware state is proportional to ~ 2= B

w

By substituting such a result into the integrand in Equation (B.1]), one concludes that

the slowest-decaying term of the integrand falls off as

ef%(QDNwa)QT]%

~

y (B.5)

Therefore, the integral in Equation is fast-converging — Indeed, it converges much
faster than the integrals involved in the evaluation of the Wightman function in Chapter [f]
Given that, we are able to numerically evaluate it accurately enough with a frequency
cutoff Mw.,; = 10. The asymptotic regime of the integrand and the convergence of the
integral are illustrated in Figs. [76) and [77]

In order to verify the convergence of the /-sum, we begin by evaluating the integrals in
Equation , multiplying by 2¢ + 1 and plotting the result against ¢. The outcome is
shown in Fig. [78 where we can see that such a quantity decays superexponentially. Given
this numerical evidence, the /-sum in that equation is expected to converge with a good
accuracy even with a cutoff lower than the /. = 100 we use. In fact, as presented in
Fig. [79] lcut = 30 is enough to converge to all ten significant digits used when evaluating
the Boulware integrals. Remarkably, this is achieved without using an f-smoothing, as

was necessary in the evaluations from Chapter [5| This is due to the strong w-smoothing
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rp = 6.009M, Qp, =5M L, T, = 1M
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Figure 77 — Relative difference between the integral in Equation for the Boulware
state when integrated up to wey; and up to weys + 9, with 6 = 1/10. The
reason to limit this plot to 107! is that those integrals where evaluated to ten
significant digits; hence, a relative difference of 107!° means that the integral
converged completely to all significant digits. Comparing with Fig. [70], we
see that exponentially fast convergence happens after Mw.,; becomes slightly
larger than the Mw where the asymptotic regime begins.

that is imposed by the setup.

B2 MY-terms

Since we already know the large-|w| asymptotics of G, (rp, ), to analyze the behavior of
the integrand in Equation ((A.10)) in that regime we have to study the factors that multiply

each of its terms. These factors are very similar and it suffices to analyze only one of them:

Q—Mei(moﬁmtm)er& [KVBTB _ MATA) _ L <t0A _ tOB)] 7 (B.G)

22 V2 \T, Ty

where erfc(z) = 1 — erf(2) is the complementary error function [48, Section 7.2(i)]. Ex-

panding the exponential functions, we obtain

;(T3+Tg)wze_%(NBTgszB—NATEQA)weiw(tortm)erfc [i(VBTB_MATA)_ 1 (toA tOB) 7

Qe 4
AB 2\/§ \/§

where

Qpp = e_i(NRQTRQQI%_‘_NETAQQg)ei(QBNBtOBJ"QANAtOA) (B 8)
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Figure 78 — Summand in Equation as a function of ¢ for the Boulware state. One
can notice from this figure that the summand decays superexponentially with
increasing £. In fact, for £ > 30, it has already converged to all 10 significant
digits that we got when evaluating the integrals.

ry = 6.009M, Q, =5M ', T, = 1M

Relative difference

gcut

Figure 79 — Relative difference between the ¢-sum in Equation for the Boulware
state when summed up to £ and . — 1. The reason to limit this plot to
1071 is that the integrals in the sums were to 10 digits of precision. Hence, a
relative difference that is smaller than 1071° should represent numerical noise
and not actual significant digits.
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Now we use an asymptotic approximation for the erfc(z)] [48, Section 7.12(i)],

2
erfe(z) ~ j\/%, z — 00, |ph(z)| < 37m/4, (B.9)

to conclude that as w — oo,

(T — paT 1 /t t
orte| 18T —maTy) 1 <0A . 0B> N (B.10)
22 V2 \T, T
eé(TA+TB)2¢U2ei(TA+TB)(NBTBQB*NATAQA)WQ_M%(TA+TH)(%_%)
Pas I(NoQp+w) T —(NaQa—w)Th) 1 <t07A _ @) . (BD)
2\/5 \/i Ty Ty
where
BAB _ (ﬂ_aAB)—l/Qe*% %*% Qe%(NATAQA%’FNBTBQB%)e_i(NATAQANBTHQH)' (Blz)
Putting everything together we conclude that
e_wei(”ﬁt"ﬁ““m)eﬁc (vpTs — paTh) B i <tOA B t03> N
2\/5 \/§ T, T3
o= LT =T )w? o 1 (Ta=T) (N T+ NaTa 02w o 3 (T =) (2 +02 ) (B.13)
apfar i(Np4w)Ts—(NaQa—w)Ty) 1 (@ _ @) ) W00,
2\/§ \/5 T Ty

which leads to the conclusion that, whenever T, # Ty, the whole term decays superexpo-
1

nentially as e~s8(T=T0%” On the other hand, if 7y = T} = T, which is the case we study
in this work, (B.13)) simplifies to

Wi+vHr? i(vg — T 1
e 1 elstostiton) g (vs = pia) + (tos — toa)| ~
2v/2 TV?2
(B.14)
OCABBAB
i(NBQB*NAQA+2W)T o (tOA*tOB) ) W = 0.
2V2 V2

Then both, the real and imaginary parts of this quantity decay linearly with w, since
the absolute value of the denominator grows linearly with the frequency. Given that, by
considering the extra w™' in the integrand in Equation , we conclude that it decays
as w™2. Hence, the integrals defining the MY¥-terms are convergent.

We remark that such leading asymptotic behavior in Equation (B.14]) is, in general,
not achieved by Mw = 10, but one can still perform the numerical integration to a good
accuracy because, before this leading asymptotic regime, there is an intermediary regime
where the integrand is exponentially decaying, as can be seen in Fig. [80, We can further
confirm that convergence by looking at the integral in Equation as a function of wey:
as can be seen in Fig. 81|, up to £ = 20 we have convergence up to four significant digits,
while for larger values of ¢, the convergence becomes worse, resulting in no significant
digits at all. Yet, since the resulting integral decays superexponentially with ¢, as presented

in Fig. |82 one can still obtain up to four significant digits, as can be seen in Fig. |83]
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Figure 80 — Boulware state integrand in Equation (A.10]) after rewriting the integral so
that it ranges from w = 0 to Mw = 10, as a function of Mw, for several

different ¢ = 0, 10, 20, 30.
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Figure 81 — Relative difference in the Boulware state integral in Eq. after rewriting
the integral so that it ranges from w = 0 to w = wey for several different
¢ =0,10,20,30. To evaluate the relative difference, we integrate up to weu
and then to we, + 0, with 6 = 1/10.
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Figure 82 — Boulware state integral in Equation (A.10)), after rewriting the integral so
that it ranges from w = 0 to w = wey for several different ¢ = 0, 10, 20, 30,
here integrated up to Mw.,; = 10.
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Figure 83 — Relative difference in the Boulware state integral from Equation , after
rewriting the integral so that it ranges from w = 0 to w = we,; for several
different ¢ = 0, 10, 20, 30. To evaluate the relative difference, we sum up to
Loyt and then to ., + 1, ranging form £.,; = 1 up to £, = 100. For £.,; > 45
all significant digits exactly cancel out when evaluating the relative difference.
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