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Abstract

In this comprehensive study, we explore the theoretical frameworks of quan-
tum field theory and statistical field theory, addressing both foundational prin-
ciples and advanced methodologies across multiple chapters. The manuscript
begins with a detailed exposition of the mathematical underpinnings of quan-
tum theories, establishing the essential groundwork for introducing quantum
mechanics and axiomatic quantum field theory. Within the context of axiomatic
quantum field theory, we present novel results on the Casimir effect in dielectric
materials and on the detection of zero-point fluctuations. We then introduce the
functional integral formalism, encompassing both constructive field theory and
statistical field theory. A dedicated section presents the distributional zeta func-
tion method, which is employed to investigate disordered systems. Furthermore,
a wide array of applications, several of which are novel, of the distributional
zeta function are discussed, expanding the formalism’s utility and deepening our
physical understanding of disordered systems.

Keywords: Functional methods, Quantum field theory, Disordered systems.



Resumo

Neste estudo abrangente, exploramos os fundamentos tedricos da teoria quan-
tica de campos e da teoria estatistica de campos, abordando tanto os princi-
pios fundamentais quanto metodologias avangadas ao longo de multiplos capi-
tulos. O manuscrito comeca com uma exposicao detalhada das bases matemati-
cas das teorias quanticas, estabelecendo o alicerce essencial para a introdugio
da mecéanica quantica e da teoria quantica de campos axiomatica. No contexto
da teoria quantica de campos axiomatica, apresentamos resultados inéditos so-
bre o efeito Casimir em materiais dielétricos e sobre a deteccdo de flutuacdes
do ponto zero. Em seguida, introduzimos o formalismo do integral funcional,
abrangendo tanto a teoria construtiva de campos quanto a teoria estatistica de
campos. Uma secdo dedicada apresenta o método da funcio zeta distribucional,
que é empregado para investigar sistemas desordenados. Além disso, é discutida
uma ampla gama de aplicagdes, varias delas inéditas, da fungéo zeta distribu-
cional, ampliando a utilidade do formalismo e aprofundando nossa compreensao
fisica de sistemas desordenados.

Palavras-chave: Métodos funcionais, Teoria quantica de campos, Sistemas des-
ordenados.
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Chapter 1

Introduction

The study of quantum and statistical field theory has long been central to our un-
derstanding of the fundamental interactions of nature and the collective behavior
of matter. From the early developments of quantum mechanics to modern formu-
lations of quantum field theory, the central goal has been to provide a consistent
and predictive framework for describing particles and fields across microscopic
and macroscopic scales. Over the past century, this pursuit has not only shaped
high-energy physics, culminating in the Standard Model, but has also permeated
condensed matter physics, statistical mechanics, and even interdisciplinary do-
mains such as information theory and complex systems.

One of the milestones in this development was the formulation of quantum
electrodynamics, the first successful quantum field theory combining quantum
mechanics and special relativity. Its principles were later extended to the elec-
troweak and strong interactions, leading to the construction of the Standard
Model. Despite its success, the Standard Model leaves many open questions,
such as the incorporation of gravity, the origin of dark matter and dark energy,
and the mechanisms underlying neutrino and Higgs masses. These open prob-
lems continue to motivate the development of new field-theoretic approaches
that go beyond perturbation theory and that extend into regimes of strong cou-
pling, critical phenomena, and disordered systems.

In parallel, statistical field theory has emerged as a unifying framework for
the study of collective phenomena in condensed matter physics. The functional
integral formalism provides a natural bridge between quantum fields and statis-
tical mechanics, allowing one to describe partition functions, correlation func-
tions, and fluctuation-driven effects within a common language. This connec-
tion has been particularly fruitful in the study of phase transitions and critical
phenomena, where renormalization group methods have revealed the deep con-
cept of universality: the insensitivity of large-scale behavior to microscopic de-
tails. Such insights, initially motivated by equilibrium statistical mechanics, have
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since been extended to systems ranging from turbulent fluids to early-universe
cosmology.

Disorder is ubiquitous in real materials and manifests in many forms: ran-
dom impurities in solids, spatially varying couplings, quenched external fields,
and inhomogeneous boundary conditions. Physically, disorder can profoundly
alter transport properties, shift critical points, generate glassy dynamics and in-
duce localization of excitations. Seminal examples include Anderson localization
of electronic waves [1] and glassy phases in spin systems; in the latter context the
Edwards—Anderson model and the associated replica methods set the paradigm
for theoretical investigations [2, 3]. Beyond condensed matter, disorder-like ef-
fects appear in classical and quantum models of fluids, soft condensed matter,
and can be used to construct analog models related to cosmology and black-hole
physics. The ubiquity and diversity of disorder make it a central topic for any
comprehensive understanding of many-body physics.

From a theoretical viewpoint, quenched disorder presents two main techni-
cal challenges. First, physical observables generally require averaging nonlinear
functionals of the partition function (for example the quenched free energy in-
volves E[In Z]), which complicates analytic treatment. Second, disorder often en-
hances the role of rare configurations and non-perturbative effects; consequently,
methods that rely solely on naive perturbation theory can fail or be misleading.
Traditional analytic approaches include the replica trick and supersymmetric for-
mulations that trade disorder averages for integrals over commuting and anti-
commuting fields [4]. While successful in many contexts, these techniques have
mathematical subtleties (notably analytic continuation in the replica limit) and
may obscure the spectral character of certain problems.

This thesis advocates and develops an alternative perspective based on the
distributional zeta-function (DZF), a method which expresses disorder averages
through zeta-like integrals over partition functions. The DZF offers several com-
plementary advantages: (i) it emphasizes the statistical distribution of the parti-
tion function across disorder realizations, (ii) it bypasses the need for a replica
analytic continuation in many cases, and (iii) it admits natural connections to
spectral zeta functions and random-matrix techniques. In Chapters 4 and 5 we de-
velop the mathematical foundations of this approach and apply it to paradigmatic
models of quenched disorder (random-mass and random-field models), obtaining
both new bounds and concrete computations of thermodynamic and Casimir-like
observables.

The primary aims of the thesis are to review and unify functional approaches
to quantum and statistical field theory with careful attention to mathematical
foundations, and to develop and apply the distributional zeta-function method
to physically relevant disordered models.

The remainder of this thesis is organized as follows: Chapter 2 we discuss the
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similarities and differences between Classical and Quantum mechanics, fixing
the notation and language that we use in this thesis. The Chapther 3 is dedicated
to Axiomatic Quantum Field Theory, with a lengthy discussion about zero-point
energies, finishing with a brief discussion of the interaction theory. In Chap-
ter 4, we introduce Constructive Quantum Field Theory in the formulation of
functional integrals. Chapter 5 introduces statistical field theory and presents
disordered systems. The distributional zeta-function method, with applications,
is also presented in this chapter. Finally, in Chapter 6, we present the general
conclusions of this thesis. The Appendix A, present the fundamental mathemat-
ical background that guides us through this thesis.



Chapter 2

Quantum Mechanics

The goal of this chapter is to explore physical applications of the basic ideas of
functionasl analysis (see Appendix A), establishing a connection between the for-
mal mathematical theory and well-known physical results. For this, we assume
that the reader has some familiarity with basic results in quantum mechanics.
We begin our construction with very simple aspects that are widely known in
the physics community. However, we do not intend to cover all aspects that fall
under the “Quantum Mechanics” umbrella. For those without prior knowledge of
the subject, we recommend any good book from the vast literature, particularly
[5, 6]. For those eager for a formal collection of results and an in-depth discus-
sion, Reference [7] is a great option. Here, we present a qualitative discussion
emphasizing the construction and mathematical results. For the sake of brevity,
we choose to begin directly with the canonical quantization procedure and omit
the Heisenberg-Born-Jordan matrix approach. In what follows, we assume that
the reader is familiar with the Lagrangian and Hamiltonian approaches to clas-
sical mechanics [8, 9]. However, to introduce the necessary formalism, we start
with a brief review of the fundamental ideas of classical mechanics. Moreover,
we would like to clarify that the same set of mathematical ideas used to obtain re-
sults in quantum mechanics can, with suitable modifications, be applied to treat
a non-commutative algebra instead of a commutative one. Many of the results
presented here can be found scattered in the mathematical literature; a useful
collection that covers many of these results is Reference [10].



CLrAssICAL MECHANICS: OBSERVABLES AND
STATES S

2.1 Classical Mechanics: Observables and
States

As usual, a physical system can be defined in terms of generalized coordinates
and their time derivative (g, ¢). In such a coordinate system, the physical sys-
tem is characterized by its number of degrees of freedom. The time derivative
of the generalized coordinates defines the generalized velocities. For example,
a system consisting of a free point particle moving along a line has only one
degree of freedom, and its combination with the generalized velocity forms a
two-dimensional space (a plane), it is usual to refer to such a space as configura-
tion space. Given the generalized coordinates and velocities of a system, one can
construct its “Lagrangian.” In general, the Lagrangian is a function of the gener-
alized coordinates, lets assume N of them, the respective generalized velocities,
and time, L : R?N*1 — R, and can be expressed in terms of the kinetic energy
(K) and the potential energy (V) as

L (q(®),4(0),1) = K(g(®), 4(), 1) — V(q(®), 4(t).1). (2.1)

In the simplest case, a free point particle of mass m moving on a line, the La-
grangian consists only of the kinetic energy expressed in terms of the generalized
velocity:

1) = K@) = 5m*?. (2.2)

If we consider a free particle in three-dimensional space, we obtain a six-dimensional
space, and the Lagrangian must account for ¢ = ¢% + g5 + ¢%. Although the free
point particle scenario is trivial, adding a non-trivial potential reveals the advan-
tages of the Lagrangian formulation.

At first glance, the Lagrangian formulation may appear to be just another
coordinate-based approach to Newtonian mechanics. However, its computa-
tional advantages become evident when one introduces the concept of the action

functional,
t

S[L;t;,t¢] = J; L(q(),q(),t)dt. (2.3)
Asits name suggests, the action functional is a linear functional of the Lagrangian
and a function of the parameters f; (initial time) and ¢ ¢ (final time). This functional
plays a central role in the development of Quantum Field Theory, as will become
explicit in the next chapter. For now, the introduction of the action is useful for
obtaining the equations of motion used to describe physical systems. Applying
Hamilton’s principle, which states that between the times t; and t¢, a physical
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system follows the path from q, to g, for which the action is stationary, i. e.
dS[Ls;ti,t¢] = 0. (2.4)

From that, one can take the variation of the action (2.3) with respect to each
generalized coordinate to obtain the so-called Euler-Lagrange Equations

= - ===, (2.5)

where, for the sake of clarity, we have specified that this equation must be ap-
plied to each degree of freedom of the system, i.e, n = 1,2,...,N. Returning
to our simple example, we find that our Euler-Lagrange equation results in the
following second-order ordinary differential equation; for the free particle

m? = 0, (2.6)

In such a simple situation, one can solve the equation of motion directly to obtain
a function for the generalized velocity of the system:

q(t) = go + #(t — 1), 2.7)

where ¢ is a constant determined by the initial conditions at #;, and c is an arbi-
trary integration constant. Further integration results in a function of the gen-
eralized coordinate in terms of time and initial parameters. It is interesting to
note that solving the equation of motion at a given time allows us to determine
the system at any time in the past or future. This deterministic behavior is not
merely a feature of the free particle but holds for any case in classical mechanics.
Moreover, systems in which the total energy is conserved are those in which the
Lagrangian has no explicit dependence on time, that is,

oL _,

=~ (2.8)

Before proceeding further, let us examine the instructive case of a harmonic
oscillator. First, we consider the usual harmonic oscillator by adding the potential
V(g) = %qu to the free particle, where k is a system-dependent constant (for
example, the stiffness of a spring). In this case, the Lagrangian and the equation
of motion of the system are given by

1 ., 1
Lg.9) = 5m*q" = Skq",
m?§ +kq = 0. (2.9)



CLrAssICAL MECHANICS: OBSERVABLES AND
STATES 7

Before solving the equation, we observe that this is a system with conserved
energy and that we have an elliptic second-order ordinary differential equation.
There are many ways to solve such an equation, and the solution is given by

q(t) = Asin (J%t + 9) , (2.10)

where the amplitude, A, and the phase, 6, are determined by the initial conditions.

Now, we introduce another formalism in classical mechanics that is useful
for quantum systems. The Hamiltonian is a function of the generalized coor-
dinates, conjugate momenta, and time, H : R2N+1 R, given by the Legendre
transform in the generalized velocities of the Lagrangian. By definition, it can
be written as

H(q, p,t) = sup [(¢, p) — L(g. ¢, 1)], (2.11)
GgeRN

where (g, p) = ZnNzl Gn pn> and the conjugate momentum is given by

= 9L (2.12)
9Gn
In particular, if the Lagrangian has no explicit time dependence, the Hamilto-
nian will also share this property. Unless explicitly stated otherwise, we assume
that we are dealing only with conservative systems. The 2N-dimensional space
generated by the generalized coordinates and conjugate momenta is called phase
space. By analyzing the trajectories of a physical system in phase space, one
can obtain many insights. For the harmonic oscillator, we obtain the following
Hamiltonian:
P,
H(g,p) = — + ~kq", (2.13)
2m= 2

which represents an ellipse in phase space, due its energy conservation. The
graph of the Hamiltonian in the phase space of a periodic system is characterized
by closed curves. Taking the differential of the definition of the Hamiltonian and
using the definition of conjugate momenta, one obtains
% = ﬁ, % = —ﬁ, and oL _ @ (2.19)
d ap, dt  aq, at ot

This system of equations is known as Hamilton’s Equations, which are the
equations of motion in this formalism. Returning to the harmonic oscillator, we
get

q= %, and p = —kq, (2.15)
m
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which are two first-order differential equations. For linear systems, the usual be-
havior is as follows: while the Lagrangian formalism yields N differential equa-
tions of order 2, the Hamiltonian formalism results in a system of 2N first-order
differential equations.

Definition 2.1. For two dynamical functions, u = u(q, p,t) and v = v(q, p, ), the
Poisson bracket is defined by the bilinear, skew-symmetric relation (over the
usual product and sum)

N

ou ov u Jdv

[u,v]p = (—— — ——) (2.16)
nZ::l aqn apn apn aqn

Straight from the previous definition!, one can find the fundamental Poisson
brackets, which are given by:

[Pns Gmlp = [Pn: Pmlp = 0, and  [q;, pjlp = 6. (2.17)

With the fundamental relations and some algebraic manipulations, one finds di-
rectly for any dynamical function u that

ou
[w, pilp = ——. (2.18)
9q;
Setting u = H and analyzing Hamilton’s equations ( 2.14), one can see directly
that oH oH
,H = — = S d ’H = —— =
[qn ]P E qn, an [pn ]P g,
Such relations confirm that our definition of the Poisson bracket in Eq. ( 2.16) is
dynamically consistent.
Moreover, if u = u(q(t), p(¢),t), we can use the Poisson bracket and the previ-

ous relations to write the usual total derivative of u with respect to time as

Pn- (2.19)

u
u,H|p+—, 2.20
[u, H]p o (2.20)

du _

dt

if u does not have any explicit time dependence, the total derivative is simply
the Poisson bracket with H. Thus, one can say that the Hamiltonian of a system
generates time translations. If the Poisson bracket of a dynamical function with
the Hamiltonian vanishes, we say that the function is a constant of motion.

'One can also define the Poisson bracket for any set of canonical variables (variables that
relate to each other via Hamilton’s equations ( 2.14)). Here we only use the set (g, p), choosing not
to discuss canonical transformations. However, it can be easily shown that the Poisson bracket
is invariant under canonical transformations. For those interested, see Refs. [8, 9].
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It is interesting to notice that the Poisson bracket can be regarded as a first-
order linear operator. Take the dynamical functions u and v, and define the fol-
lowing first-order linear operator

N
P, = Z (a_ui - ﬂi) , (2.21)

it is straightforward to see that
[u,v]p = P,v. (2.22)
From this point of view, it is clear that
P,(vh) = (P,v)h + vP,h = [u,vh]p = [u,v]ph + v[u, h]p, (2.23)

for any dynamical functions u, v, and h. Applying the Poisson bracket recursively
and using the skew-symmetric property, one can write that

[u> [V, h]P]P + [V, [ha u]P]P = (Pqu - PVPu)h’ (224)

which contains second-order derivatives in the phase space coordinates. Thus,
the only second derivatives that can appear are due to the application of the
Poisson bracket. But a linear combination of first-order differential operators is
itself a first-order differential operator, so there are no second-order derivatives
of h in the previous equation. This means that the second-order derivatives that
appear must vanish identically, leading to the following expression:

al d d
P,P, —P,P,)h = Ay— —B,— | h. 2.25
(PP, = P,P,) Zl( "5 naqn) (2.25)

The coefficients A,, and B, cannot depend on A, since they are determined by
differential equations. So we can choose h for convenience. First, take h = p;
and use Eq. ( 2.18) to write

PPy~ PP = PP, - p 2 pyy =4
9q; 9q; 2T —
~ Aa=2py, (2.26)
9q;

now, taking h = ¢; and proceeding with the same manipulations, one finds

0
B =——P,w. 2.27
R (2.27)



CLAssICAL MECHANICS: OBSERVABLES AND
10 STATES

Returning to Eq. ( 2.25), we can write

(PyP, — P,P)h = [u,[v,h]plp + [v,[w, hlp]p = [[u, v]p, hlp, (2.28)

or, in a more enlightening form,

[u: ['V, h]P]P + [V, [u’ h]P]P + [ha [ua V]P]P =0, (229)

which is the Jacobi identity. Now, it is interesting to remember that our defini-
tion of the Poisson bracket in Eq. (2.16) is skew-symmetric and bilinear under the
usual multiplication by a scalar and under the usual addition by a function. With
this definition and the fact that the Poisson bracket satisfies the Jacobi identity,
we can affirm that the operation

[« ]p (2.30)

defines a Lie algebra over the phase space. This Lie algebra is known as the
algebra of observables, O, in classical mechanics. If, in the phase space &, we
define a one-parameter commutative group T; : &P — 9, the family of trans-
formations generated by T;, denoted by Uj, preserves the algebra of observables,
ie,U; : O — O. In other words, if the evolution in phase space is governed by
a single parameter (e.g., time), then time evolution preserves the properties of
the Poisson brackets. In particular, if we define any function in the phase space
in terms of initial coordinates gy and py, such as f(qq, py), its time evolution is
given by 2

Ut f(po>q0) = fi(Po,90) = f(a(qo, po- 1), P(qo, po, 1)) = fi(q, p), (2.31)

and it follows directly that f;(q, p) satisfies the differential equation

S @32)
which is not only another way of expressing Eq. (2.20) but also highlights why
the Hamiltonian is the time evolution generator of the algebra of observables.
From this, we see that time evolution is an automorphism of the algebra of oper-
ators. With these clarifications, we can now formally define what an observable
in classical mechanics is: An observable is a real-valued smooth function defined
on the phase space.

To fully describe a physical system, we must define not only observables but
also states. Loosely speaking (and we will formalize this shortly), a state is what

2One can also consider functions with explicit time dependence. However, this leads to longer
expressions, which we do not consider in this text.
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is measured in an experiment. Thus, one could say that a state corresponds to
the numerical outcome displayed by laboratory equipment. In this view, when
the same physical experiment is performed multiple times, there are two possi-
bilities:

1. If the experiments are exactly replicated, the measured states remain the
same in every repetition. This means that if we collect all possible experimental
outcomes into a set, that set contains only a single element, and the experiment
always selects that element. In other words, the experiment uniquely determines
the state of the system.

2. Even if the experiments are precisely replicated, they yield different results.
That is, the non-uniqueness of the state is an intrinsic property of the system, in-
dependent of the experiment. In this case, collecting all possible states into a set
results in a set with multiple elements, meaning that different experimental runs
may select different elements from this set. In other words, a series of experi-
ments determines the set of possible states of a system, and each experiment
may yield a different state.

Next, we will formalize these two types of physical systems.

Regardless of the preceding scenario, the state of the system is the element
selected from the set of possible states. The probability of selecting a particular
state is not necessarily fixed and depends on the system. However, for any ob-
servable f in the algebra of observables O, the probability of measuring a state
u follows a probability distribution. To formalize this concept, we assert:

A state, 1, defined over the algebra of observables, determines the probability
distribution (measure) for each observable. Since we are dealing only with classical
quantities, this measure must be defined on the real line, i.e., as a Borel measure
(see the discussion after Theorem A.23), as defined in Section A.1.

We are now ready to define a state:

Definition 2.2. A state y is a linear map, p : O — R, acting on an observable
f € 0 and a Borel set B C R, thereby defining a measure u(f)|g = p(B).

From this definition, it follows directly that y¢(B) defines a probability mea-
sure (see the discussion after Eq. (A.67)). Since the algebra of observables con-
sists of continuous functions, the state over ¢ can be intuitively expressed as

pip()(B) = py (¢~ (B)), (2.33)

where ¢! is the inverse map and ¢~ (B) is an open set, given that ¢ is continuous
and Bis a Borel set. As discussed in the Appendix (see Definition A.15), a measure
can be expressed as a linear combination of measures. In particular, a convex
combination of states,

p=am+Q—-a), 0<a<l, (2.34)
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may yield a corresponding convex combination of measures. If a state cannot
be represented as in Eq. (2.34), i.e., if 4y = p, = p, we say it is a pure state;
otherwise, it is called a mixed state.

It is common to determine the probability that an observable f does not ex-
ceed a certain value A when measured in state p. We define this as ,uf((OO, A =
yf()t)3. With the state, the observable, and the associated probability measure
defined, we ask: what is the probability of the observable f taking values less
than A in state p?

The answer is given by the mean value with respect to the appropriate prob-

ability measure:
+o00

(flu= J N Adpg(A), (2.35)

which must be interpreted as a Riemann-Stieltjes integral, Eq. (A.67). The three
key properties of the mean value are:

Proposition 2.3. For any arbitrary constant ¢ € R and any functions f, g € O,
the mean values satisfy:

(@) <C>y =6
(ii) <f + Cg>y = <f>p + C<g>p»
(iii) (f%), > 0.
Proof. (i) follows from the fact that pr(R) = 1. (ii) follows from the linearity
of the integral. For the proof of (iii), we can first decompose f into measurable

functions and use Lemma A.14 to show that f2 is integrable. To get the non-
negative values of the mean value of f2, we observe that f2 > |f], so

(= fhu=0. (2.36)
[ |

Now, in order to grasp more properties, we can use the properties of the mean
value to interpret such a quantity as a positive linear functional acting over O.
We can represent such a functional in the phase space as follows:

(), = [@ £p.q) dv,(p.q), (2.37)

with dv,(p, q) being the differential of the measure on the phase space. Straight
from our definitions and using (i), we can check that

(1), = J@ dv,(p.q) = v (P) =1, (2.38)

30f course, we have py(=00) = 0 and pp(+o0) = pp(R) = 1.
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that is, the mean value of the identity is normalized. From the last integral, we
can infer also that the “volume” of the phase space is unity. Soon we will return
to the analysis of the volume of the phase space.

Using the fact that the measure dv,(p, q) is o-finite, we can make use of the
Radon-Nikodym theorem (Theorem A.35) to rewrite the mean value of an ob-
servable f as

), = [@ Fp.9)pu(p.q) dq dp, (2.39)

where dq and dp are properly Lebesgue measures and p,(p, q) is a distribution
function (the Radon-Nikodym derivatives of v,(p, q)). Worth noting that, in gen-
eral, p,(p,q) is a positive definite generalized function, as the ones analyzed in
Section A.4. With that in mind, now we can use the same notation as before
and see the mean value of an observable as the linear functional generated by
the distribution function’s action over them in the phase space, that is, as a map
py : O — R, defined by
(P ) = Py (2.40)
Physically, the last discussion can be translated as saying that a state in clas-
sical mechanics is described by the corresponding probability distribution on
the phase space. Because of that, we drop the subscript yz whenever there is no
risk of confusion. Now we can go back to the previous discussion about pure and
mixed states. For pure states, the element of the phase space is fixed uniquely, i.e.,
the probability distribution is entirely concentrated at one point. In our mean-
ingless notation of Section A.4, we get that

p(p.q) = 8(q —q0)5(p — po), (2.41)
which receives its meaning acting over an observable:
(f)= (. f) = f(q0, Po)- (2.42)

Usually, in classical mechanics, only pure states are investigated. The mixed
states are objects of statistical mechanics, which one possible formulation is re-
viewed in Section 5.1. For now, we are only to show that the variance of a pure
state is zero. The variance is defined by

Vary(f) = <(f - <f>;1)2>y = <f2>/1 - <f>;21 (2.43)

Using the previous notation and the fact that we are in a pure state, we get

Var(f) = (p. f*) = (p. )* = f*(g0- po) — (f (go. p0))* = 0. (2.44)

It is easy to see, and we show later, that the variance is greater than zero if we
are in a mixed state. Finally, we will state and prove an important theorem of
classical mechanics and discuss some of its implications.



CLAssICAL MECHANICS: OBSERVABLES AND
14 STATES

Theorem 2.4 (Liouville’s theorem). Let Q be a domain in the phase space &. Set
Q(t) as the image under the one-parameter transformations T}, that is T,y € Q(t),
for p € Q. Denote by V() the volume of the domain Q(¢), then

Vo

¥ (2.45)

Proof. Let us denote by dv the product of the Lebesgue measures dq and dp. The
volume of Q(t) can be written as

v<t>=j dv = j (T dv, (2.46)
Q) Q

with J,(T,v) denoting the Jacobian of the transformation with respect to the orig-
inal set of coordinates v. From that, it is direct to see that to prove the theo-
rem, it is enough to show that the time derivative of the Jacobian determinant
vanishes identically. Of course, if t = 0, we get that J,(Tov) = 1, and the theo-
rem holds. Now, let us suppose t # 0. An arbitrary one-parameter transforma-
tion can be written as the application of two consecutive transformations, that
is Ty, v = T;T,v, so the Jacobian determinant can be written as

J(Tysv) = ]TtV(Tt+SV)]V(TtV)' (2.47)

Taking the derivative with respect to s, one can write

4y T = oGt +9).plt +5)) gt +5).pt +5) _ 94t +5)  9p(t +5)
ds? v tts a(q@), p(t)) a(q(@), p(t)) aq(t) ap((é)%;

setting s = 0 and using Hamilton’s Equations (2.14), we get that

oqt) opt)  9’°H 9*°H

+ _ _ —0, 2.49)
oq(t) op(t) 9gdp Ipdq (
which implies that
d
a]v(TH-sV) = 0. (2.50)
|

As we had seen, the time evolution of an observable can be obtained by equa-
tion (2.20). From such a point of view, we have that the mean value will be given

by
) = [@ o) dv = [@ FT)pu(v) . (251)
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One should notice that it is equivalent to say that the states, determined by the
probability distribution, do not depend on time, so we have that

dfi dp,
o m d -2 =
& [H, f;lp an m

which is called the Hamiltonian picture. However, alternatively, one can write

0, (2.52)

[ sonma=[ fampma = [ o mie sl
[ f0n® =Py @3

where the coordinates transformations T,y — v were performed, p,(T_;v) =
ppt(v) was defined, and Theorem 2.4 was used. From that, it is straightforward

to obtain that q
df Py,
i 0 and i —[H, py,1p, (2.54)

which means that the observables are constants in time while the states evolve.
Such a point of view is called the Liouville’s picture. Of course, we have that

<ft>;1 = <f>,uza (2.55)

the equivalence between the two pictures of motion.

2.2 Canonical Quantization: Observables and
States

Once we have seen that classical mechanics can be formulated in terms of prob-
abilities and mean values, it is completely natural to ask yourselves what the
differences are when we change from a macroscopic “deterministic” (at least, for
pure states) physics to a microscopic inherently probabilistic physics. We hope
that we are able to make clear the differences and similarities along this section.
Once it is assumed that the reader has a background in some Quantum Mechanics
courses, we do not take a long time with much physical reasoning or justifying
some foundations of quantum theory, such as black body radiation and the Stern-
Gerlach experiment. Unless stated otherwise, we assume that # = 1, the natural
system of units.

First, just like before, we need to define what the quantum observables and
the quantum states are. It is important to point out that the previous construction
of the Lagrangian and Hamiltonian formalisms remains valid with some suitable
changes that we are going to clarify in a while.
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Definition 2.5. A quantum pure state is a vector in a complex Hilbert space
Z . Such a quantum pure state can also have components in different Hilbert
spaces, if its linear combination preserves the algebraic separability of the total
Hilbert space, i.e., # = @?:1 #;. A quantum mixed state, or entangled state,
defines an algebraically non-separable Hilbert space.

Usually, for some regularity properties of the Schrédinger equation, the Hilbert
space taken to accommodate the quantum states is the space of complex-valued
square integrable functions over RY, that is, # = &2 (]Rd). So, any pure quan-
tum state is just a vector. A composite vector of pure states can be constructed
by copies of the complex-valued square integrable functions space. For exam-
ple, for a non-relativistic spin-1/2 system, the Hilbert space is given by # =
F? (JRd) o Z? (]Rd), which preserves the algebraic separability. The most used
example for an entangled state is the Bell state for a system of two spin-1/2 par-
ticles. The Hilbert space of such a system cannot be expressed as an analogous
form to the ones before. Here we are not interested in entangled states, but such
a subject will emerge later. For notation clarity, we will work with #2(R) instead
of Z2(R?), but all the results can be carried out trivially.

Definition 2.6. An quantum observable is a essentially self-adjoint operator
over Z .

Such operators are often unbounded. Due to the unboundedness and the
Hellinger-Toeplitz theorem (Theorem A.66), such operators cannot be defined
everywhere, only in a dense domain in # . This leads us into some difficulties
in dealing with algebraic operations in the context of those operators. Later, we
will return to this subject.

Just like in the previous section, we can assume that a measurement is the
mean value of a observable in a given state, or expectation value of an observable.
This means that the measurable value of the observable A is going to be the
application of the linear functional defined on the dual Hilbert space, #*, by ¢
over the state Ay,

(A) =¥(Ay), (2.56)

where ¥ : #* — R is the linear functional associated with i/. Of course, the
weak-* (or vague) topology is taken in order for any functional ¥ on #* to be
continuous. The properties of Proposition 2.3 are naturally extended to the com-
plex case.

Using the result from Theorem A.60, we can write the mean value of the
observable A as

(4) = Y(AY) = (¥, Ay), (2.57)
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as is usually used. One should remember that we are, in general, in a complex
Hilbert space, so the inner product is a sesquilinear form*. Two important ob-
servables in quantum mechanics are the position operator, Q, and the momentum
operator, P.

In the coordinates representation, the position operator, Q(x), is the multipli-
cation by the coordinates x, i.e.,

Q)Y (x) = xy(x), x€R (2.58)

If we take the domain, D,(Q), of such an operator in the Hilbert space # =
Z%(R) given by

D(Q) = {w ex UM Yo dx < oo}, (2.59)

we clearly see that we get an unbounded operator. Such a class of operators
can present some issues. The main one is due to the Hellinger-Toeplitz theorem,
which ensures that an everywhere-defined operator A that satisfies (A¢, ) =
(¢, Ay) is bounded. This implies that an unbounded operator, such as Q(x), is
defined only in a dense linear subset of the Hilbert space #°. Such a subset is
called a domain, D. Of course, xi/(x) for any (x) € Z%(R) is meaningful as a
function, but it is not in #2(R). To ensure the definiteness of such operators, we
must choose the domain D carefully. In particular, if we define the subspace K
as

K = {lﬁ(x) | ‘x"t//(“)(x)‘ <Gy Vne ]R}, (2.60)

then K is the space of all infinitely differentiable functions that decay faster than
any power of x. It is clear that K is dense in Z?(R). So, if we take D,(Q) = K, it
is possible to ensure that x/(x) € Z?(R).

Now that we are in the appropriate domain, we can observe that K ¢ £ (N £?
C %2, which means that the usual Fourier transform and its inverse are well de-
fined, allowing us to write

I =5 @ = o= | e dp, 261

21

now, using the coordinates representation of Q(x), Eq. (2.58), and the Fourier
representation of y € K, we obtain

7 Q= 5= [ xeryrap= - [ (iZ)e P ypap. (2o

The rule for multiplication by numbers a, f € C is: (a¢, fy) = o f(¢, ).

>The Fourier transform on %2 can also be obtained directly (Carleson’s theorem [11]) or using
density and some regularity arguments. But it is a more sensitive subject, and we do not need
to touch it here. Fourier transform on Z? spaces can also be obtained, this is known as the
Carleson-Hunt theorem [12].
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The previous equation allows us to identify the so-called momentum representa-
tion of the position operator, Q(p), namely

Q(p)(p) = i%rp(p). (2.63)

In the momentum representation, the momentum operator, P, is given by

P(p)y(p)=py(p), pER (2.64)

Using the same procedure, but now with the Fourier transform, &, one can find
the coordinates representation of the momentum operator, P(x), which is

PGI(x) =~ (). (2.65)
X

The unitarity equivalence of those representations can be checked in different
ways. We will return to this question at the end of this section.

With the coordinate and momentum representation of both operators, we
are able to obtain their commutator. If now we assume that x € RY, that is, Q(x)
and P(x) are vector-valued operators, we can obtain the so-called canonical
commutation relations, which are given by

[0(x), QGO ¥(x) = [P(), P P(x) = 0, and [ Qx), ()] $(x) = idy9/ (),
(2.66)
which encapsulates the non-commutative characteristic of quantum systems. One
should remember that we are in the natural system of units. A direct comparison
with the fundamental Poisson brackets, Eq. (2.17), allows us to establish a direct
link between the two quantities. While in classical systems we use the Poisson
bracket, see definition 2.1, which is a differential operator to define the algebra
of observables, in quantum mechanics the algebra of observables, O, is defined
by the usual commutator®
[o,¢]. (2.67)
Clearly, the commutator defines the Lie Algebra of the quantum observables.
Using the definition of the mean-value from Eq. (2.57), one can verify that
(Q) = (P) = 0. Using the definition of variance, Eq. (2.43), we can write that

Var(Q)Var(P) = (Q?)(P?) > [(QP)|*, (2.68)

where the last inequality follows from the Schwarz inequality. Using the fact
that, for any z € C, we have

—\ 2
Mzzam@D2=(z;z), (2.69)

®We denote the algebra of operators of classical and quantum mechanics by the same letter
0. Hopefully, the context will clarify any doubts that this may raise.
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we can set z = QP and use the linearity of the inner product to write

2

M) _1

. 2.70
2i 4 ( )

2

o)’ = (

In the last equality, the canonical commutation relation, Eq. (2.66), was used.
Then we get that the product of the variances has a natural bound given by

Var(Q)Var(P) > i (2.71)

which is known in the literature as the Heisenberg uncertainty relation. As
one can see from its direct derivation, such a result is a direct manifestation of
the canonical commutation relation. If one goes back and performs a similar
calculation in the classical case, the information that will be extracted from the
product of the variances is that it must be greater than or equal to zero, which is
a triviality. In other words, the main difference between classical and quantum
physics is that a quantum pure state can, at best, be characterized by the values
of a complete set of commutating observables, and not all observables. So, the
canonical commutation relations (2.66) determine a minimum value for the states
in the phase space. The non-commutative aspect of such a theory is intrinsically
related to its probabilistic interpretation, since measures on the phase space can
be interpreted as a probability measure. Such a lower bound can be improved
and it is known as the Robertson-Schrodinger uncertainty relation [13, 14].

Given a classical Hamiltonian, see Eq. (2.11), it is straightforward to obtain its
quantum mechanical counterpart. The quantum mechanical Hamiltonian can be
obtained by making a simple substitution in the representation of the variables.
For concreteness, let us use the free particle Hamiltonian. If we take the coor-
dinates representation, the quantum mechanical one-dimensional free particle
is obtained by the substitutions: ¢ — x and p — —id/dx, which gives us the
following Hamiltonian:

1 9
H=-—2_ (2.72)

2m 9x2
To verify that such a Hamiltonian is a quantum observable, one needs to prove
that there exists a domain where such an operator is self-adjoint. Depending on
the Hamiltonian, this can be very hard. In our case, one can verify that such
a Hamiltonian is essentially self-adjoint on the domain K defined in Eq. (2.60).
So, in order to obtain a measurable quantity from the Hamiltonian, we need to
compute (H), for some ¥ € D(H) = K. Such a calculation can be simplified if
we use the Spectral Theorem for unbounded operators. There are many different
formulations of this theorem, however, here we present the that we are going to

use more frequently in this thesis.
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Theorem 2.7. (Spectral theorem — multiplication operator form). Let A be a self-
adjoint operator on a separable Hilbert space # with domain D(A). Then there
is a measure space (M, y), with p a finite measure, a unitary operator U : # —
Z%(M, dy), and a real-valued function f on M which is finite almost everywhere
so that

(a) ¥ € D(A) if and only if f(s) (UY) (+) € L*(M, dp)
(b) If ¢ € U[D(A)], then (UAU1¢) (m) = f(m)¢(m)

Proof. First, we will show that Ran(A +il) = # and that (A +il) and (A —il) are
one-to-one. This follows if we can prove that Ran(A + il) is dense and closed.

A is a self-adjoint operator, so take ¢ € D(A) = D(A”) such that A*¢p = id.
Thus, A¢p = i¢, and therefore

—i(¢,¢) = (ip, §) = (Ad.§) = (¢, A*¢) = (§,i¢p) = i(¢, §), (2.73)

such an equation is satisfied only if ¢ = 0. Similarly, A*¢ = —i¢ will have
only the trivial solution. This implies that Ker(A* +iI) = {0}. From this result,
we can show that Ran(A =+ il) is dense. Now, take i € Ran(A — il)*, so from
orthogonality, we have that ((A —il)$,)) = 0V ¢ € D(A). Thus, ¥ € D(A"),
and then (A — il)*y = (A* + i)y = 0, but since A"y = —iy has no solution, this
equality is impossible. Therefore, Ran(A —iI) is dense. One should note that the
condition Ker(A +iI) = {0} can be used to verify if an operator is self-adjoint. In
some cases, this is called the basic criterion of self-adjointness.

To prove that Ran(A =+ iI) is closed, we note that ¥ ¢ € D(A); (A —il)@|* =
IAGI? + |p|?. Now, take the sequence ¢, € D(A) such that (A — il)¢, — V.
Thus, ¢, converges to some vector ¢, and A¢, also converges. Since A is a
closed operator, we have that ¢, € D(A) and (A — il)¢y = 1y, which proves that
Ran(A —iI) is closed. The fact that Ran(A + i) is also closed follows similarly.
Thus, Ran(A +il) are closed, and Ran(A = il) = % .

Once (A =+ iI) are closed, the closed graph theorem (Theorem A.51) can be
used to conclude that (A +iI)~! are closed and bounded. Using the first resolvent
formula (Theorem A.73), we conclude that (A —iI)™! and (A +i)~' commute.

Now, we note that

((A=iDy, (A+ DA +iDg) = (A—iD"HA—-iDy, (A + i)
= ((A+iD™) =(A-iD, (2.74)
which shows that (A + i)~! is a normal operator. Similarly, one proves that
(A +iD)7!is also normal.

In possession of the spectral theorem for self-adjoint bounded operators (The-
orem A.83), we can extend it to bounded normal operators. For such, take any
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bounded normal operator T, we can construct the operators 5; = %(T + T*) and

Sy = %(T — T7) such that S; 5 are self-adjoint and T = S; + iS,. Using the fact
that T is normal, it follows that S; and S, are spectral measures. Therefore, the
spectral theorem for bounded normal operators follows by applying the spectral
theorem for bounded self-adjoint operators on S; and S,.

Now, we can start the proof of (a). By the last reasoning, we can conclude that
there is a measure space (M, y), where p is a finite measure, a unitary operator
U : I - F*M, dp), and a measurable, bounded, complex-valued function
g(m) such that

UA+iD) U g(m) = g(m)p(m) ¥V ¢ € L2(M,dp). (2.75)

Once that Ker(A +iI)~! is empty, we have that g(m) # 0 a.e. y, which implies
that g(m)~! is finite a.e. p.

Now, take f(m) = g(m)~! — i and suppose that iy € D(A). This implies that
i = (A+il)~ ¢ for some ¢ € ¥, and by Eq.(2.75), we have that Uy = gU¢. Notice
that the product fg is bounded, so, by the last equality, f(Uy) € £*(M, dp).

Conversely, assume that f(Uy) € £?(M,dy). Then there is a ¢ € # such
that U¢ = (f +i)Uy. Thus, we have that gU¢ = g(f+i)Uy = Uy, and comparing
with Eq. (2.75), we conclude that ¢y = (A +il)"1¢ = ¢y € D(A).

To prove (b), we take ¥ € D(A). By (a), we have that y = (A + iI)"!¢ for
some ¢ € # . This implies that Ay = ¢ — i/, and then

(UAY)(m) = (Ug)(m) — i(U)(m)
= (g(m)™ —iI) (Uy)(m)
= f(m)UY)(m). (2.76)

If f is a complex-valued function in a set of non-zero measure, there is a
bounded set B on the upper half-complex plane so that S = {x|f(x) € B} has non-
zero measure. Take ys as the indicator function of S, then fys € Z(M, dy), and
Im(ys, fxs) > 0. However, this contradicts the self-adjointness of multiplication
by f. Thus, f is a real-valued function.

|

Why such a theorem is important for quantum mechanics follows almost
directly. Suppose that we have a physical system described by a self-adjoint
Hamiltonian acting over a state 1/.We can use the spectral theorem to write

Hy(x) = E(x)y(x), (2.77)

which is directly identified as the time-independent Schrodinger equation. Plug-
ging the Hamiltonian of one-dimensional free particle, Eq. (2.72), we get

_ L2 40 = By (2.78)
2m 9x? ' '



22 CANoNIcAL QUANTIZATION: OBSERVABLES AND STATES

There are many ways to solve the last equation if we impose boundary conditions
over Y(x). If we consider that we have Dirichlet boundary conditions, (0) =
¥(L) = 0, or, equivalently, that we restricted the problem to a compact domain
of length L. The solution is directly obtained as a linear combination of sine and
cosine. Using the boundary conditions we get that
Y(x) = Yp(x) = \/Zsin (n—ﬂx), and E(x)=E, = ﬁ, (2.79)
L L 2mlL?

where n € {0,1,...}. Now we can in fact compute (H) using Eq. (2.57) and the
time-independent Schrédinger equation

(S¢] o0

Z J Y COH Y (x)dx = (Y, HYp) = Wi Entln) = En(Yrs Yn)
nn'=0+--%
B 3 nzn,z
=(H)=E, = —— (2.80)

So, by using the spectral theorem, it is enough to find the spectrum of an operator
in order to find the mean-value of an observable.

Before we introduce another formulation of the spectral theorem let us prove
the following

Lemma 2.8. Let 7, #, #3, ..., #;, ... be a sequence of subspaces of the Hilbert
space # which are pairwise orthogonal and span the entire space Z'. If  is an
arbitrary element of #, we denote its projection on #; by ;. Let A{, As, ..., A, ...

be a given sequence of linear transformations with the property that A; reduces
in Z; to a bounded self-adjoint transformation of 7#; into itself. Then there is
a unique self-adjoint transformation A of #, in general not bounded, which re-
duces in each 7 to A;. Its domain consists of the elements i/ for which the series

A2 (2.81)
i=1
converges, and for these ¢
Ay =" Ay (2.82)
i=1

Proof. First we notice that the domain of A, D(A), is dense, since it contains all
elements of the form ) ; f;. Also, we have that

(AY,¢) = ) (A ) = Z(% Aipr) = (Y, Ad), (2.83)

i
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which implies that A is symmetric for all {, ¢ € D(A). Now we are able to prove
that A is self-adjoint. For that, take ¢ € D(A*) and y € D(A); then

(Ay,g) = (f,A"g)
= > (A ) = Y (i (A%P))), (2.84)
i=1 i=1

once each #; is orthogonal to an arbitrary element ¢ of #; must have y; = 0 if
i # j, using the assumption that each A; is self-adjoint in 7, we get that

(A, ¢) = (¥, (A"9);)
= (A*g[))j = Ajp;. (2.85)

From the last equation follows that

DA = I(A* )12 = A%, (2.86)
i=1 i=1

so ¢ also belongs to D(A) and we also have that Ap = A*¢ which, with the fact
that A is symmetric, proves that A = A*, that is A is self-adjoint.

To prove uniqueness let A” be an arbitrary self-adjoint transformation which
reduces to A; in each #;. A’ is closed and defined for all elements ¢/ such that
the series

i A’y (2.87)
i=1

converges. The sum of this series is equal to A’y). We have that A’¢; = A;¥/, and
since we are summing orthogonal elements, this implies that the elements i also
belong to D(A). For such elements we can define A’y — Ay. But A is self-adjoint,
hence A is maximal symmetric, so A” = A. [ |

The previous lemma ensures that we can decompose unbounded operators
and vectors in the Hilbert space into orthogonal components. A useful and prac-
tical result.

Theorem 2.9. (Spectral theorem - spectral family form) Every self-adjoint op-
erator A has the representation

A= J ME,, (2.88)
where {E, } is a spectral family which is uniquely determined by the operator A;

E; commutes with A, as well as with all the bounded operators which commute
with A.
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Proof. To start, let us define the following operator
R, =(A—zD)7}, (2.89)

from the first part of the proof of the spectral theorem in its multiplication form
(theorem 2.7), we know that R,; exists and is closed. We also know that its inverse
exists, and that D(R,;) = Ran(A +il) = #. From the same proof we obtained
that

ICA =iy > [y (2.90)
=[¢l = |Ruigl. ¥4 € D(Ryy). (2.91)

The same properties are true for R, = Ryy;,, for y # 0, since

-1

(A-(x+ipD) ' = i (A ;XI - iI) . (2.92)

From Eq. (2.90), we obtain that

ICA =Dy = (A +iDy|
= [(A=iD(A+iD™ ¢l = [Vl = 4l (2.93)
where the operator V = (A — il)(A + i)™ is called the Cayley transformation
of A. This transformation is isometric and is defined for elements in the form
¢ = (A+iDy by V¢ = (A — i)y such that ¥ € D(A). One should notice that
both ¢ and V¢ are elements of #, which implies that V is an isomorphism and,

therefore, a unitary transformation.
It is direct to see that

I+V)p=2A¢y, and, (I-V)p=_2iy, (2.94)
if(I-V)p=0,theny =0,and ¢ =0, so (I — V)1 exists and

2AY = (1 + V)T - V) L2iy
= A=il+V)(I-V)L (2.95)
The last expression shows us how to recover A from V.

Once V is unitary, we can represent it in terms of its spectral decomposition
(Theorem A.84)

21 .
V= J ¢?dF,, (2.96)
0

where Fy = 0 and F,,; = 1. So, by the relation between V and A, we expect to
be able to obtain the spectral decomposition of A. For that, we notice that Fy
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is a continuous function of 6. In particular, Fy is continuous at § = 0 and also
at 0 = 2. Now we decompose the interval [0, 277] into infinite pieces using 6,
where the two endpoints are limit points. For such, we take

0
— cot 7"1 =m, meZ. (2.97)

Now construct the pairwise orthogonal projections as

Pn=Fy —F (2.98)

note that
P,=1lm Fp—-1lmF=I-0=1. 2.99
Zme—mee—me (2.99)

m=—oo

Note that P,, commutes with both V and A. So, the space #, corresponding
to P, reduces the operators A and V. For a y € #,,, we have that

Ay = AP,y = i1+ V)I -V) P,y
0,

= | ity (1) any

On—1

g

m 0
- Lm_l <_ cot 5) dFyy, (2.100)

or m
Ay = MEsy, (2.101)
m—1

where we set E; = F_,_.-1,, with {E;} being the spectral family of A over
(—00,00). To recover the spectral representation of the operator, we sum over
all the projections, recovering

A= J ME;, (2.102)

It is worth noting that, in the same way we present here, von Neumann first
proved the spectral theorem for unbounded operators [15, 16]. An obvious, but
necessary, disclaimer about the last result is that our integral in the spectral the-
orem must be understood as the Riemann-Stieltjes integral.

Now let us go back to the free particle. In light of this version of the spectral
theorem, we can use the spectrum given in Eq. (2.79) to write

H:J AdE; = Tn (2.103)
—00 n:z—:oo 2mL2
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obviously, such a result is divergent, but we must remember that the Hamiltonian
is an operator and the measurable quantities are the mean value of the operators.
Once we compute (H), only a finite number of contributions will remain in the
sum (depending of the stucture of the state, see Definition 2.5), and the final
result is finite (for finite n), which agrees with Eq. (2.80). This last theorem
makes clear that our measurables are the averages of the operator’s spectrum,
where the probability measure is given by the inner product between the state
and the probability family.

Evidently, all the previous discussion was general and holds for any operator.
However, in physics, we have some operators that are more interesting than oth-
ers. In particular, we would like to have an operator that can evolve the system
in time. From the time-dependent Schrodinger equation,

Hy(x,£) = %lp(x, 0, (2.104)
we can formally obtain that
P(x,t) =U®DY(x,0), U®E) =e (2.105)

In this picture, U(¢) is the operator responsible for the time evolution. However,
we should remember that, in general, the Hamiltonian is an unbounded operator
and, therefore, we must take care to ensure that our formal expressions have a
practical meaning. Another possible question is whether this is the only possible
way to evolve our system in time.

In order to answer the previous questions, we must be able to define functions
of self-adjoint operators. Before investigating the general case, let us prove two
results for polynomials.

Lemma 2.10. Let P(x) = an:o a,x". Let P(A) = anzo a,A". Then
o (P(A)) ={P(V) | A € o(A)} (2.106)

Proof. Take A € 0(A). So, x = A is a root of P(x) — P(A). From that, it follows
that P(x) — P(1) = (x — 1)Q(x). Using our hypothesis, we can write

P(A) — P(D) = (A — DO(A), (2.107)

once A € 6(A), (A— A1) does not have an inverse. Thus, P(A) — P(1) cannot have
an inverse, so P(1) € o(P(A)).

Now, let 4 € o(P(A)) and Ay, ..., A, be the roots of P(x) — 1. Then P(x) — p =
a(x —Ay)...(x = A,). If A4,..., A, & 0(A), we have that

(PA) - t=al(A-2)1..(A-1)71, (2.108)

which is a contradiction with the fact that u € o(P(A)). So, some A; € 0(A), that
is, u = P(A) for some A € o(A). |
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Lemma 2.11. Let A be a bounded self-adjoint operator. Then

IPCA)| = sup |P(A)| (2.109)
A€a(A)
Proof. First, we note that
[PA)I? = [P(A)*P(A)] = |(PP) (4)]. (2.110)

Now, using Theorem (Theorem A.80) and Lemma 2.10, we can write

2
P) )= sp W= sup \(ﬁp)<A>|:< sup |P(A)|) e

Aec(PP(A)) A€a(A) 1€a(A)
[ |

With these two results, we can construct the functional calculus for continu-
ous functions, that is, we can prove that continuous functions of operators have
the following properties:

Theorem 2.12. (Properties of the continuous functional calculus) Let A be a
self-adjoint operator in a Hilbert space #°. Then, there exists a unique map f :
C(0(A)) » ZL(&) with the following properties:

(i) f is an algebraic *-homomorphism, that is:
flab) = f(@)f®), f(Aa) = 1f(a),

f=1 f(a)=f@*
for any a,b € C(6(A)) and any A € C;

(ii) f is continuous, that is, | f(a)] (%) < Claleo;
(iii) Let a be the function a(x) = x, then f(a) = A;
(iv) If Ay = Ay, then f(a)y = a(A)y, for any ¥ € I and any A € o(A);
V) o[f(@] = {a(DIA € o(A)};
(vi) Ifa > 0, then, f(a) > 0;

(vii) | f(@)] = llale.
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Proof. First, take f(P) = P(A), where P stands for a polynomial. Thus, | f(P)|% =
IPllcsa)), by the B.L.T. theorem (theorem A.38). This implies that f has a unique
linear extension to the closure of the polynomial in C(c6(A)). The polynomials
form an algebra containing 1, containing complex conjugates, and separating
points, so its closure is all of C(c(A)).

Denote the extension of f by f f satisfies (i), (ii), (iii), and (vii). Addition-
ally, it agrees with f on the polynomials, which are dense in C(c(A)) (Stone-
Weierstrass theorem). By continuity, it agrees on all of C(c(A)). Hence, (i), (ii),
(iii), and (vii) follow.

To prove (iv), we first note that, if f(P)}y = P(1){, then by continuity, we
have that f(a)y = a(1)y.

(v). Set f(a) = f(P), where P is a polynomial. By lemma 2.10, we have that
o[f(P)] = {P(D)|A € o(A)}. By the Stone-Weierstrass theorem and continuity,
we have that o [ f(a)] = {a(1)|A € a(A)}.

We can prove (vi) by setting a = b* > 0, where bis real and b € C(c(A)). Thus,
f(a) = f(b)?, which implies that f(b) is self-adjoint. Therefore, f(b) > 0. [ |

The last properties establish the fundamental building blocks to work with
functions of self-adjoint operators. Worth noting that the functional calculus
provides almost immediately another formulation of the spectral theorem.

Theorem 2.13. Let A be a self-adjoint operator and define U(t) = ¢4, Then:

(i) For each t € R, U(¢) is a unitary operator and U(t + s) = U(t)U(s) for all
s,t € R;

(i) Ify € # and t — ty, then Ut)y — U(ty)y;
(iii) For ¢ € D(A),

U(t)ZS—¢._,iA¢, as t— 0; (2.112)

(iv) Tflim,_o Y92 exists, then ¢ € D(A).

Proof. To prove (i), it is sufficient to use property (i) of theorem 2.12. Since f isa
*~homomorphism, we have that f(ab) = f(a)f(b). Take f; = €', so f,(A) = elt4,
then

F(A) fi(A) = eltAesA = A — ;4 ). (2.113)

Unitarity follows from the same expression.

(ii) follows from the spectral theorem and some arguments of convergence.
Observe that, for y € D(A)

Jerty ol = [ o =1 a2y (2.114)
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but we know that |e”t/1 - 1|2 < g(d) =2and ‘eim - 1‘2 —0ast — 0,YA € R. So,
by the Lebesgue dominated convergence theorem (Theorem A.32), we get that
[U@®)y — > = 0. Thus, t — U(t) is strongly continuous at t = 0, and by item (i),
it is continuous everywhere.

(iii) follows similarly. First, we note that

2
J e
]R
itA

T_l‘ < |A|, which is integrable. Also, we have that

itA _ 1

2
—| 4, P29) (2.115)

H uit)g —¢
t

but ‘eiM — 1‘ < |tAl, so

et _q '
}E% " <A =lidl = A (2.116)
This implies that
U@ —¢ :
lim | 27— = LR AR, Prg) = A1 (2.117)

To prove (iv), we define D(B) = {¢| lim;_, w exists}, and let

Ut)g—¢
By = lim ——. 2.118
iB¢ tl—% t ( )
Since B is symmetric, B = A, and ¢ € D(A). |

Definition 2.14. An operator-valued function U(¢) satisfying (i) and (ii) of the-
orem 2.13 is called a strongly continuous one-parameter unitary group.

Theorem 2.15. (Stone’s theorem) Let U(#) be a strongly continuous one-parameter

unitary group on a Hilbert space #°. Then there is a unique self-adjoint operator
A on ¥ such that U(t) = €l'4.

Proof. Take f € C;°(R), and for each ¢ € 7, define

b= _rovosa (.119)

where, since U(t) is strongly continuous, this integral can be taken as a Riemann
integral. Define D as the set of all linear combinations of such ¢¢. Now define
the approximate identity as

jo(x) = el (f) (2.120)
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where j € C;°(—1,1) € C;°(R) and J_oooo j(x)dx = 1. Then

o0

jg(t)dt> sup UG — ¢l. (2121)

te[—e,e]

-9t = || _iowes-gia] < (|

Since U(t) is strongly continuous, we get that D is dense in # .
Take gbf e D, so

(U(s) — I>¢f = [; f® (w)gbdt = r (f(T — Sz_ f(T))U(r)qﬁdr,

N —00
(2.122)

We know that ( w> converges uniformly to the derivative of f ass — 0,
SO

f’ (f (r - SZ —f (T)> U(r)pdr — — f f@OU@$dr =¢_p,  (2.123)

as s — 0.
Now, for any ¢f € D, define Ad)f = i_lgé_f/. Thus, we have thatU : D — D,
A : D — D, such that U(t)A¢y = AU@t)¢y. If ¢, dg € D, then

oot = (S5 ) = i (01 (52) )
_ (¢f, %gs_g,) = (7, Ady), (2.124)

which implies that A is a symmetric operator.
Now suppose there is a u € D(A*) such that A*u = ju. Then, for each
¢ € D = D(A), we have that

£ UOP0) = (AU, 1) =~ A"
= —iU, i) = VO = g (2129)

So we have a complex-valued function g(¢), which satisfies the equation g’ = g,
so g(t) = g(0)e'. But since U(t) has norm one, |g(t)| is bounded, and this can only
happen if g(0) = (¢,u) = 0. This is only satisfied if u = 0. Similarly, defining
A*u = —iu, one can verify that the only solution is = 0. Therefore, we have
that Ker(A™ + i) = {0}, so by the first part of the proof of theorem 2.7, we have
that A is essentially self-adjoint on D.

To prove uniqueness, let V(t) = ¢#B. Take ¢ € D and also ¢ € D(B). Then,
V(t)$ € D(B) and, by (iii) of theorem 2.13, V' (t)¢ = iAV(t)¢. Since U(t)p € D C
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D(B) Vt, we can let w(t) = U(t)¢p — V(t)@h, so
w’(t) = iAU(t)¢ — iBV (t)¢ = iBw(t)

= %Hw(t)”2 = —i(Bw(t), w(t)) + i(w(t), Bw(t)) = 0, (2.126)

since w(0) = 0, then w(t) = 0, Vt. This implies that U(t)¢ = V(¢)¢, V¢t € R and
¢ € D. But D is dense, soU(t) = V(t) = A=B. [ |

So, by the functional calculus and by Stone’s theorem, we can ensure that our
time evolution given by U(t) = e is not only well-defined but also unique for
each self-adjoint Hamiltonian. With a further definition, we can explore more
applications of Stone’s theorem in quantum mechanics.

Definition 2.16. If U(¢) is a strongly continuous one-parameter unitary group,
then the self-adjoint operator A with U(t) = € is called the infinitesimal
generator of U(¢).

In other words, we can say that the Hamiltonian is the time-evolution infinites-
imal generator in quantum systems. This is a scenario very similar to classical
mechanics, as discussed previously. The case where the Hamiltonian is time-
dependent can be easily obtained. However, we ask ourselves whether we can
evolve the observable in time instead of the state i/, as in Eq. (2.105). Using the
fact that our measurables are expected values of observables, consider that we

have an observable A and the time evolution operator U(t) = e 50 we can
write
(A) = (AY(x, 1), ¥ (x, 1)) = U@ (x), AU (x)) = ((x), U(-t)AU()y(x))
= (A(D)), (2.127)

where we have defined A(t) = U(—t)AU(t). Taking the derivative of A(t) and
using the properties of U(t), we can obtain

d .
SA® = ilH, AL (2.128)

This is called the Heisenberg equation. Such an equation has an astonishing
similarity with the time evolution in classical mechanics; see Eq. (2.32). In our
system of units, the difference is just that instead of working with the Poisson
bracket (see definition 2.1 ), we work with the complex unity times the commuta-
tor. These two different time evolutions define the so-called pictures of motion
in quantum mechanics. When we consider the evolution of the state (Eq. (2.105)),
we say that we are in the Schrodinger picture, while the time evolution of the
operators (Eq. (2.128)) is referred to as the Heisenberg picture. The two pic-
tures are completely equivalent.
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As we believe that it is clear at this point, dealing with unbounded operators,
like P and Q, is, in general, difficult. However, Stone’s theorem allows us to
deal with bounded and unitary operators instead of the self-adjoint unbounded
operators. Defining U(a) = ¢* and V(s) = ¢*9. In order to find how these
operators act over a function we formally write

V@) = g = 37 L )
n=0 :

V@ = #99) = 3, ) (2129)
n=0 :

now, using the coordinate representation, we get

X n dr

V@4 = 3 T () = 6 + )

VP = (is,f,) $(x) = €(x). (2.130)
n=0 :

Such a relation allows us to identify the momentum as the infinitesimal genera-
tor of space translations. An analogous computation, but using the momentum
representation, shows that the position operator is the infinitesimal generator of
the momentum translation.

Our realization of the canonical commutation relations given at Eq. (2.66) is
called Schrodinger representation. Once that we are dealing with functions
of the operators P and Q, it is interesting to ask how the canonical commutation
relation behaves under such a map. For that, we first notice that

U(@)V(s)p(x) = e%eS*$(x + a)
V(U (@(x) = e ¢(x + a)
= U(a)V(s) = €V (s)U(a), (2.131)
The last equation is called Weyl relation. We are going to show that any real-

ization of the Weyl relation is also a realization of the canonical commutation
relation. Before that, let us construct some auxiliary machinery.

Proposition 2.17. (i) All operators defined by
W(s.t) = e UGV, (2.132)
are unitary, and, for all s;, s5,#,2, € R we have
W(sp, t)W(spt) = exC W (s 45, 1 +8).  (2.133)
In particular, W(0,0) = 1 and W*(s,t) = W(-s, —t);
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(ii) for any h € Z(R?) we define
Wy, = Jh(s, HW (s, t)dsdt, (2.134)

if h # 0 then W}, = 0;

(iii) take hq,h, € Z(R?) and define h € Z(R?) by
h(s,t) = J ei(St/_s’t)hl(s — 5", t =t )hy(s’,t")ds’dt’, (2.135)

then Wthh2 =W;.

Proof. Parts (i) and (iii) follow from direct computation.
To prove (ii), first assume that W), = 0. Then, for any x,y € R we have that
W(—x,—y)W,W(x,y) = 0. Using the definitions, one obtains that

0= Jh(s, DelSY=IW (s, £)dsdt, (2.136)

but this needs to be true for any ¢y € #, that is, (, W(s,t){) = 0. However,
W(s,t) is unitary, so [W¢/| = |¢| # 0 if  # 0. Thus, W), # 0 if h = 0. [ |

Theorem 2.18. (Stone-von Neumann theorem) Any representation of the Weyl
relations is unitarily equivalent to an at most countable direct sum of Schrédinger
representations. In particular, any irreducible representation of the Weyl relation
is unitarily equivalent to the Schrodinger representation.

i e—}}(s2+t2)

Proof. First, we set h(s,t) = to construct the following object:

1
P=wW, = i J W(s, t)e_Z(SZthz)dsdt. (2.137)

Now we will prove that P is an orthogonal projection, that is, P = P* and P? = P.
The self-adjointness follows from

1 1
pr=L J W*(s, t)e_Z(szﬂz)dsdt == J W(=s, —t)e_Z(SZHZ)det
2 2

1
zi J W(s, e 1S ) dsdr = P, (2.138)
T

Using the definitions, proposition 2.17, and with some algebraic manipulations,

1,2, .2
one can recover that PW(x, y)P = e4(x 79 P, which is P2 = P when x = y = 0.
Thus, P is indeed an orthogonal projection operator.
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From (ii) of proposition 2.17, we know that P is not the zero operator, so
P # 0. In the subspace P, take an orthonormal basis {Q,}_,, where N =
{1,2,...}. For 1 < n < N, take %, = span{W(s,1)Q,|s,t € R}.

Using (i) of proposition 2.17, we obtain that W (sy, t; )W (sy,1,)Q,, = elsitz=sat1)
W(sy + sp, 11 + 15)Q,,, so each %, is invariant under W(s,t). Also, using the fact
that each subspace is invariant under projection into itself, and the properties of
proposition 2.17, we can compute the following property:

(W(x, y)Qu, W(s, )Qp) = (W (x, y)PQy, W(s, 1) PQyp,)

= (Qp, PW(—x, —y)W (s, )PQy,) = e: T 39esl 6= =00
e D (G e D Py (2.139)

The last equality follows from the fact that we chose an orthonormal basis system.
This last result shows us that the spaces #,, and #,, are orthogonal for n = m.
To finish the first part of the proof, we need to show that the direct sum of our

projections reconstructs the whole Hilbert space. For that, take D = EDnN:l 7
and assume that D C . Then {W(s,t)}|p- is a representation of the Weyl rela-
tions, and the respective projection is given by P|p., which is not the zero oper-
ator. Now take f # 0 € D* such that Pf = f, but Ran(Pf) = D, so D* = {0}.
This means that D = #.

To prove that all representations are unitarily equivalent, we fix some Q,, and
define f(s,t) = W(s,1)Q € 7, for some s,t € R. We have that

W(x,y)f(s,t) = eé(Xt_ys)W(x +s5,y+H)Q, = eé(Xt_ys)f(x +s,y+1t), (2.140)
and

(f(x, ), f(s,1)) = W(x, )2, W(s, 1)) = (W(x, y)PQp, W(s, 1)PQ,)
— (Qy, PW(—x, —y)W (s, )PQ,) = e 395l (=== (o pqy

i

_ it e —ey] 2141

The important fact about the last two equations is that the action of the operator
W and the inner product in 7, are entirely determined by the properties of W.
This means that, if we have a second representation, say %, and define f’(s,t) =
W’ (s,1)Q,,, we get the same action of the operator and the same inner product
in the Hilbert space #,,. Thus, the map between the two representations must
be given by a unitary operator, in order to preserve the inner product. Once
we know that the Schrodinger representation satisfies the Weyl relations, we
can affirm that all representations are unitarily equivalent to the Schrédinger
representation. |
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It is important to notice that the last theorem and its proof can be directly
extended to any finite number of degrees of freedom. In the case of an infinite
number of degrees of freedom, not only the proof but the theorem is not true
anymore. As we are going to explore in the next section and chapters, the non-
unique representations of the canonical commutation relations will be responsi-
ble for many interesting mechanisms in quantum field theory.

Let us use the liberty of representation choice to discuss the last example
that will be useful throughout this thesis: The Harmonic Oscillator. Its classical
Hamiltonian in one dimension has been presented in Eq. (2.13), and in order to
obtain its quantum version, we use the maps p — P and ¢ — Q. For convenience,

we setm = 1 and k = w?,

H= %sz + %a)zQz. (2.142)

We wish to verify how these operators evolve in time, so using the Heisenberg
equation (Eq. (2.128)), we easily get that

d
Q_, dr_

- — = —w?0. 2.14
dt T dt ©Q (2.143)

Instead of working in the coordinate or momentum representation, we are going
to use the liberty that the Stone-von Neumann theorem gives to us to choose a
more convenient representation’. Let us define

_ L ; t— L wo—i
a= m(wQ +iP), a m(wQ iP), (2.144)
Q= \/g(a +a"), P=-iv2w(a—a"). (2.145)

Using the canonical commutation relation, one finds that
[a,aT] = 1. (2.146)

It is worth noting that a, al are not self-adjoint, so, by our definition 2.6, they
are not observables. From the equations of motion for Q and P and the previous
definitions, we obtain that

da da'

T —iwa, e —~iwa’, (2.147)

’Some care must be taken here. The Stone-von Neumann theorem ensures that any repre-
sentation of the Weyl relation obeys the canonical commutation relation, however, its converse
may not be true. That is, not all representations that obey the canonical commutation relation
obey the Weyl relation. We are going to use a well-known representation, and for this reason,
we ignore such a technical feature.
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The solution can be obtained easily and reads

a(t) = e q(0), al(t) = é“ta(0), (2.148)
o(t) = i [a(0)e " +a' (0)e!] (2.149)
P(t) = —ie [a(0)e ™" — aT(0)e" | . (2.150)

We can investigate what we can get from this representation further. First, let
us consider only the static case, that is, t = 0, fix a = a(0), at = aT(0) and denote
N = a'a. In this representation we can use the definitions and the commutation
relations to write the harmonic oscillator Hamiltonian as follows

H=ow (aTa + %1) = a)(N + %I) (2.151)
from the spectral theorem 2.7, we get that

Hyp, = By = w<N + %I> Vs (2.152)

SO
E, = wo <N 4 %1) N, = Eyh. (2.153)

So, to find the expectation value of H we only need to find the spectrum of the
operator N. For that let us define the ground state of our system. The ground
state will be the vector of a, such that,

ayy =0 = ﬁ(w2Q+iP)l//0 = ﬁ (a)zx+

the solution of this differential equation gives to us

d

dx) Yo(x) = 0, (2.154)

Yo (x) = Ce™"*", (2.155)

where C is a normalization constant that can be fixed by imposing (¥, o) = 1.
Now we can verify successive actions of al over the ground state

o = —— (20 — iPYp = —— (w?x — L) ceos®
"o = 2= (PQ=iPWo = = (o~ 1) e
- %wx%(x) = C;Hey(0x)yo(x) = Cy (x)
3

aTyy = 2(Bwx? — Dy = C;Hey(wx)(x) = Coy(x)

2

a'y,_1 = GHep(wx)(x) = Cup(x), (2.156)
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where Cy, ..., C, are normalizations and He,, is the n-th Hermite polynomial. In
the last equation we can note that 1 is always an eigenfunction of the operator
(a")",n = 1,2, ... Therefore, we could define the ground state as the cyclic vector
of a’®. Also, with the appropriate normalization of the Hermite polynomials, we
can choose to have the normalization constants C, as

"y = Vn+ 1y (%), (2.157)

in this normalization we get that

af, = Jnip_1(x). (2.158)

Once that we know how the operators act, we can analyse the action of N over
these vectors,

Ny, = aTalpn = aT\/ﬁ‘;bn—l = nip. (2.159)

We have found that the complete set of eigenfunctions of N is {{;,},—, this
allows to identify that o(N) = {0, 1,2, ... }. The action of these operators justifies
the respective name: a' is the creation operator, a the annihilation operator,
and N the number operator. One possible interpretation for each of those is
that one creates a particle in a state, another annihilates a particle, and the last
one counts the total number of particles in a given state.

Back to the Hamiltonian, Eq. (2.152), we can fix a vector , to get

1
E,=w (n + 5), (2.160)
it is interesting to notice that
E, = % (2.161)

which means that the ground state has a non-zero energy. Later, this fact will
emerge again in a quantum field theory scenario.

It is worth mentioning that this solution can be obtained more rigorously
using the idea of generalized functions and a family of seminorms, see [17]. Due
to the number of concepts that need to be fully developed to obtain this solution,
we choose not to present such a beautiful construction.

As we have noticed, the Stone-von Neumann theorem allows us to use those
operators to solve the problem, and it also guarantees that the solution is well
posed, once we could solve it, for example, in the coordinate representation and
obtain the same result. In the next section we see that the situation where this
theorem does not hold is even more interesting.

8An operator A on a Hilbert space is said to have a cyclic vector ¢, if
span{g, Ap, A%p,...,A"¢,..} = F



Chapter 3

Axiomatic Quantum Field Theory

In this chapter, we introduce Quantum Field Theory in its first stage of develop-
ment. First, we would like to establish that the physical justification for the math-
ematical objects we call “Quantum Fields” arises naturally once we use two basic
concepts of quantum theory and relativity. These concepts are that quantum
systems are described by a space of functions belonging to a Hilbert space (par-
ticularly square-integrable functions) and that relativistic systems should con-
serve their total momentum. A well-structured but not entirely clear, physically
oriented exposition of how these two ideas can be combined to conclude that
Quantum Fields are inevitable can be found in Reference [18].

While the necessary mathematics for fully understanding both concepts is
not particularly complicated, the physics literature has primarily focused on
group theory, which suffices to treat classical relativistic systems. To gain a
deeper understanding of a quantum relativistic system, such as Quantum Fields,
it is necessary to delve further into the mathematical aspects of measure the-
ory, Hilbert spaces, and Banach spaces. Since there is a substantial amount of
literature presenting group theory for physicists, e.g., References [19, 20], the
literature on measure theory, Hilbert spaces, and Banach spaces for physicists
exists but is relatively limited [17]. For this reason, the reader which is unfalim-
iar with some basic notions of functional analysis can be vastly favored reading
Appendix A.

In Section 3.1, we justify the title of this chapter by introducing the concept
of quantum fields and the well-known Wightman axioms. Following this devel-
opment, we present Section 3.2 with the simplest, yet one of the most elegant,
applications of Quantum Field Theory: the zero-point energy and the Casimir ef-
fect. In particular, we discuss cases involving perfect conductors and dielectrics.
In the dielectric case, we present two novel contributions of this thesis: how
to obtain finite corrections to the Casimir energy using approximate functional
equations for slab and rectangular geometries, and how to apply the surface wave
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approach in a rectangular waveguide. Still within the context of zero-point fluc-
tuations, we also propose that a charge in the vicinity of a dielectric can act as
a sensor for zero-point fluctuations, with the velocity induced by the zero-point
fluctuations exceeding that due to thermal motion.

For the remainder of this chapter, Section 3.3, we dedicate ourselves to dis-
cussing interacting fields.

3.1 Quantum Fields and Wightman Axioms

As we stressed out previously, the quantum fields represent the culmination of
the ideas of special relativity and quantum mechanics. Since the construction
that generalizes quantum systems to systems with an uncountable number of
degrees of freedom, resulting in relativistic wave mechanics, is well presented in
the literature (see, e.g., [18]), we do not devote further pages and time to it.

The mathematical principles of any quantum field theory are derived from
those of nonrelativistic quantum mechanics of particles. That is, quantum field
theory also relies on Hilbert spaces and operators acting on such spaces. How-
ever, some fundamental changes in previously presented formalism are needed
to deal with states with a non-fixed number of particles, as imposed by the en-
ergy conservation of the relativity. A more formal construction of the fields from
the particle point of view can be found in Reference [21].

Just like in the last chapter, we are not interested in constructing our theory
from first principles. Rather, we aim only to present and justify some known
results and constructions. Many other approaches to achieve the same results
can be found in the literature [22-24].

Unless stated otherwise, in this section we use the metric with signature
(+,—,—, —), the natural system of units (c = 2 = kg = 1), and the Einstein summa-
tion convention. In general, Greek letters refer to space-time indices. Space-time
functions are denoted solely by f(x); we distinguish between space and time only
when necessary.

3.1.1 Free Scalar Field

To start our construction, we choose the simplest case of a field theory: the
neutral scalar field. The quantity that we generically refer to as a “field” is an
operator-valued generalized function; we hope to clarify this throughout the sec-
tion. Such a field is governed by the following Lagrangian density

L= Z0M(x)a,9(x) — mPg(x ), (1)
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where m?

is a spectral (mass) parameter. From this Lagrangian, we can apply
the same steps as in Sec. 2 to derive both the equation of motion, known as the

Klein-Gordon equation
Op(x) + m?p(x) = 0, (3.2)

where J = a#au is the d’Alembertian operator, and the Hamiltonian
1 1 1
H = 27200 + S (V) + -, (33)

with 7(x) = dL/d¢(x), the conjugate momentum of the field variable ¢(x). As
can be directly verified, the Lagrangian, and therefore the equation of motion
and the Hamiltonian, are all Poincaré invariant. That is, they are scalars under
Poincaré transformations. It also follows that the Hamiltonian is an unbounded
self-adjoint operator.

We can now proceed in two ways. We can analyze the equation of motion
directly and then impose commutation relations on a more fundamental oper-
ator from which the fields can be constructed, or we can impose commutation
relations directly on ¢(x) and 7(x). The second approach is more natural, given
the development in the previous chapter.

Let us assume now that m? = 0. Then the Hamiltonian of the neutral scalar
field resembles the Hamiltonian of the harmonic oscillator of Eq. (2.142). For
that reason, let us impose the following commutation relations in the same si-
multaniety surface (t =t’)

[p(x,1), n(x,1)] =i6(x — x’), [p(x,1),p(X’,1)] = [n(x,1), (x",t)] =0, (3.4)

which, in analogy to Eq. (2.66), are referred to as the canonical commutation
relations. The process of imposing commutation relations to fields is sometimes
referred to as second quantization.

As we prove in Sec. A.2.2, every Hilbert space has an orthonormal basis (see
theorem A.62). Therefore, we can expand each ¢(x) and 7(x) in terms of the
components of the orthonormal basis. Let us assume that

6 = Y a0, () = Y 0 pi(x), (3.5)
n l

By a direct computation using the fact that an orthonormal basis forms a com-
plete set, we obtain

[apa)1 =6, lapal = [ar.a ] = 0. (3.6)
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From here, we can define the number operator and analyze the spectrum of the
Hamiltonian. However, before proceeding further, let us return to the equation
of motion, Eq. (3.2). Inspired by the discussion on coordinate and momentum
representations in the previous section, let us use the following Fourier represen-

tation of the field
1

(2m)*
where px = pot — x - p is the Lorentzian product. Back to Eq. (3.2), we obtain

that
p2+m2=0:p§=\/p2+m2 (3.8)

which is the relativistic condition of energy conservation. Now if we perform
only a spatial Fourier representation,

$(x) =

[[ersgmay (37)

1

Jox) = s

[ erim.00p 39
we obtain the following equation of motion

9 2 2\ 7

7 T @ +m) ) dp.1) =0, (3.10)

which is a harmonic oscillator for each p, with frequency a)lz, = p®+m?. We have
already solved the case of a harmonic oscillator in the last section; therefore, we
can identify that

1 1 —ipx ipx
P(x,t) = (2n) J \/Z_wp [a(p)e px 4 aT(p)ep ] Ep=d.(x)+¢_(x). (3.11)

Where the integral arises from the fact that there are infinitely many momenta
over which we sum. The contribution of ¢, is called the positive frequencies
modes, while ¢_ is called negative frequencies modes. Now we turn to the conju-
gate momentum, 7(x), to write

w . . .
n(x,t) = _i(2;11)3 J \/g (a(p)elpx —a' (p)e_’Px) d3p. (3.12)

By imposing the canonical commutation relation of Eq. (3.4), we can verify that

[a(p),a"(p")] = (2m)*5(p — ),  [a(p),a(p))] = [a'(p).a"(p)] = 0. (3.13)
T

Thus, the a(p) and aT(p) are the continuum limit of the g, and a, that we used
as coefficients in the orthonormal basis expansion of our field, where the basis is
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given by the exponential. Instead of investigating the action of the field operator
itself, we can turn our attention to a(p) and aT(p).

If we wish to express the Hamiltonian operator in terms of the operators a(p),
a’(p) we can substitute the expansions of ¢(x) and (x) into Eq. (3.3) to obtain

@p
(2n)?

= %J (26;):)3 [a(P)aT(p) + aT(p)a(p)] d3p _ %J

|a(p)a®(p) + N, | &°p,

(3.14)
where we have defined N, = aT(p)a(p). Like in the quantum harmonic oscillator,
we can define a vector Q, which we call the vacuum, for which the operator a(p)
vanishes

a(p)Q = 0. (3.15)

This might tempt us to proceed as in the harmonic oscillator; however, the sce-
nario differs significantly. Note that, in the quantum harmonic oscillator, we
describe a one-dimensional particle with distinct excitation states, labeled by n,
and we interpret a and a as operators that, respectively, annihilate and create
an excitation of the particle. In the quantum harmonic oscillator, we have con-
structed the Hilbert space # = Z? for one particle using its excited states.

In the present description of fields, so far, we have no particles. Furthermore,
because we require the number of particles to be not fixed, we cannot restrict
the Hilbert space to that of one, two, or n particles. We must allow the number
of particles to be indefinite and, for that, choose the Hilbert space wisely. To do
that, let us take a few steps back. By construction, quantum fields are intrinsi-
cally noncommutative and probabilistic. Let us say that ¢;(j;) € £? represents
one particle in the state j;, and |¢~)1(jl)| is the probability density for finding the
particle in that state. Now, if we have a state of two particles, which we represent
by ¢5(j1, j»), then by analogy, $o(ir, o) € L? ® L2 represents the probability of
finding the first particle in the state j; and the second particle in the state j,. How-
ever, we know from quantum mechanics that particles of the same type (bosons
or fermions) are indistinguishable; thus, we must have |¢;2 (1, Jo)l = |<,z§2 Gas j)IY, sO
the correct space for the two-particle system is not Z?® %2, but the symmetrized
tensor product 20 F? = E3 2 | 2 For fields that represent spinors (half-integer
spins), we must have the antisymmetrized tensor product * N £? = E4 2] "

Since we expect our field operator to be able to generate states with any

number of particles, and to be consistent with relativity, such an operator must
act on a space that is a linear combination of states with varying particle numbers.

o}
Let us define [32] = C; then we write the symmetric Fock space as the

'Here we use the fact that the scalar field behaves as a scalar under the Poincaré group, and
therefore represents states of spin 0, which are bosons and have symmetric wave functions in
quantum mechanics.
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following

o0

F=c@P[z?” = é [22]°" (3.16)
=1

n n=0

Analogously, one can define the antisymmetric Fock space. In this thesis, we
are only interested in the symmetric case; therefore, we call it the Fock space.
One should notice that the Fock space is a Hilbert space.

An element of the Fock space, @, is given by

q>:{QZ;O’le(jl)’---’an(jl’---,jn)’---}: (317)

~ On .
where, for eachn = 1,2, ..., we have ¢, € [3 2] . We remark that the quantity
¢y, is not the field operator. Let us take the element Q that we defined in Eq. (3.15).
This element represents the state of no particles and, as an element of the Fock

space, is represented by
Q=1{1,0,0,...}, (3.18)

and is called the vacuum state.

Since each [fZ 2 ] Cn is a Hilbert space, we can choose a basis for each of them
and construct the basis of ther Fock space. With this particle-oriented construc-
tion, we see that, in addition to the similarity with the harmonic oscillator, the
operators a(p) and a'(p) serve as the operators of annihilation and creation
of particles. Therefore, the action of a'(p) is to create a particle in the state p?.
As one can directly show, the state Q is Poincaré invariant. Therefore, we have
shown that the scalar field satisfies the following axioms

Axiom 3.1. (0 Wightman axiom - Relativistic quantum mechanics) The field’s
equations of motion are invariant under the Poincaré group. The energy-momentum
spectrum is contained within the forward cone, and there is a unique state, called
the vacuum state, which is invariant under the Poincaré group.

Axiom 3.2. (1th Wightman axiom — The domain of fields) There is a set of opera-
tors which, together with their adjoints, are defined on the Hilbert space contain-
ing the vacuum. The Hilbert space can be reconstructed by successive actions of
these operators.

The set of operators is, evidently, a(p), aT(p).

Axiom 3.3. (2" Wightman axiom — Transformation law of the field) The fields
are covariant under the Poincaré group and transform according to some repre-
sentation of the Lorentz group.

Note that in our case, the field is a scalar under Lorentz transformations.

2We use the label p to represent any number that distinguishes one state from another.
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Axiom 3.4. (3t Wightman axiom — Microscopic causality or microcausality) If
the supports of two fields are space-like separated, then the fields either commute
or anticommute.

The third Wightman axiom is the only one that we need to check. To do
that, let us choose the normalization constant such that a(p)¢gn = \/ﬁ¢;n_1 and
aT(p)gz;n = Jn+ 1¢41, s0 aT(p)Q = ¢,. Now we fix some simultaneity surface at
t, then we have

P = (271r)3 Jr zlwp [a(p)Qe7P* + a™ (p)QeiP*| d°p
) (271r)3 ; zlwp [a" @] d*p (3.19)
o= (271r)3 ; J217p [a(pe 'Y + at (p)e?'Y]" a3y
“@r) \/zl_wp [¢" e &p (3.20)

Therefore, we can use the last two equations in conjunction with the commuta-
tion relation of Eq. (3.13)

(¢(»)P(0)Q, Q) = ($(x)€, ($())* Q) = (¢(y)(x))

_ 1 T too sy 13 13
~ (2n)° Ty [(“ (p)Q,a'(p )Q)] ePXi V3 pd3p
) (2711)6 \/7 [(a(P,)aT(P)Q Q)] P Y3 p 3 p
= (2717)3 \/7 [(a(p/)aT(p)Q Q) ( T(p)a(p’)Q’ Q)] eipx_ip,yd3p &y
) (271r)6 Ji |([a®"), a(P)IQ, Q)| P& p &% p’
(2m)3 [ , o
" (2 | \/40)75@ p)(QQe Bpdp
— (2;)3 ﬁ Eelp(x y)d3p A, (x, y) o

This expectation value is the correlation function of the field at two separated
points; such a function is called the Wightman positive frequency two-point
function. Using the analogous calculation, one shows that

A_(x,y) = Ay (y,x) = (21)3 J NP, (3.22)
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which is called the Wightman negative frequency two-point function. As
expected, such a function is Lorentz invariant. If we take a spacelike case, (x —
y)z < 0,and fix t = t’, a direct calculation shows that

amr e "

1 1 m
AL (x,y) = — PPy = LK (mr) > |
+(07) (2n)3j2wp P 472r 1(m.r) 2 472

asrm > 1,

(3.23)
where we have defined r = |x — y|, so the Wightman function goes to zero.
Now we can directly obtain the so-called Pauli-Jordan function

([¢(x), p(W]Q, Q) = Ay (x,y) — AL (y, x)

_ _(2;)3 J wi sin[ p(x — y)]d*p. (3.24)
P

It is straightforward to observe that for x; = y, the last integral vanishes. How-
ever, if we fix (x — y)? < 0, this quantity also vanishes. Therefore, we have found
the microcausality condition of axiom 3.4. This is the basis of the free scalar
field in axiomatic quantum field theory.

Before finishing our general discussion about the scalar field, let us connect
the idea of the Green’s function with the Wightman function. We know that
the Green’s function, G(x, ), of an operator is the integral kernel of the inverse
operator; therefore, for the Klein-Gordon equation (Eq. (3.2))

(O +m?)G(x,y) = 8(x — y), (3.25)

3

performing a Fourier transform” over x we get

(p? + m))G(w, p; y) = €PY
1 J e~ ip(x—y)

G(x,y)=G(x—-y) = Qo) 2 —pr+m

3
~dod’p, (3.26)

Thus, the Green’s function has poles at w = +./ p2 + m2 = +M. Hence, we
can choose how to contour the poles. This possibility leads to an ambiguity in
defining the Green’s function. Some of these choices are more common than
others. Here we present some of them.

For x, < y we can contour over the poles and close the curve on the lower-
half plane; see Fig. 3.1a. In this case we have the Retarded Green’s function, given

by
Gret(x,y) = J wi sin [ wp(x) = 30)] 600 = y0)d*p. (3.27)
P

3Some care must be taken here. As we discuss in Sec. A.4, the §-function is not a function, it is
an irregular generalized function. The same may be true for G(x, y), depending on the operator.
Therefore, the Fourier transform must be taken in the sense of generalized functions.
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Re(w) Re(w)
73\ ?.\ Im(w)
M M M M
g g'/ Im(w)
(a) Contour of retarded Green’s function. (b) Contour of advanced Green’s function.
Re(w)
Re(w)
—-IXI ﬁ.\ Im(w)
l o] l‘ ! Im(®) N +M
M M

(c) Contour which gives the Cauchy principal
value. (d) Contour of causal Green’s function.

Figure 3.1: Different complex plane contours.

If yy < xy we can contour the poles from below and close the curve on the
upper-half plane; see Fig. 3.1b. Thus, we have the Advanced Green’s function,
given by

Gadv(x,y) = —J wi sin [wp(xo - YO)] 0(y0 — %0)d’p. (3.28)
P

If we go right through the poles, see Fig.3.1c, we must take the Cauchy prin-
cipal values of each divergent integral; this gives us

Gx.3) = 3 (Grea(.9) + Gua) (5.29)

Passing under the left pole but over the right one (see Fig. 3.1d), we obtain
the Causal (or Feynman) Green’s function given by

Gr(x,y) = iJ Le_"p(x_y)d‘lp. (3.30)
20p

If we choose a contour that encloses only the right pole, we obtain the Wight-
man positive two-point function (see Eq. (3.21) and Fig. 3.2a). In contrast, a
contour that encloses only the left pole yields the Wightman negative frequency
two-point function (see Eq. (3.22) and Fig. 3.2b). We note that

Gr(x,y) = 0(x° — YA (x, ) + 0(y° — x)A_(x, ). (3.31)
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If we take the contour around both poles counterclockwise (see Fig. 3.2c), we
obtain the commutator, that is, the Pauli-Jordan function given in Eq. (3.24).

Taking a clockwise contour around the left pole and a counterclockwise con-
tour around the right pole (see Fig. 3.2d), we obtain the Hadamard function, given

by
GV(x,y) = —2i(Gp — G) (3.32)

Re(w) Re(w)

Im(w —e Im(w)
+M

(a) Contour of Wightman positive function.  (b) Contour of Wightman negative function.

O

Re(w) Re(w)
/ 4\ Im(® /\/Q'\ Im(w)
k/ - w
(c) Contour of the commutator. (d) Contour of Hadamard function.

Figure 3.2: Different complex plane contours.

Naturally, all these Green’s functions are solutions of the Klein-Gordon Equa-
tion (for x # y). To finish the discussion about the scalar field, we note that the
support of the commutator is inside the light cone, while the support of the causal
Green’s function is the entire Minkowski spacetime.

3.1.2 Electromagnetic field

Vector fields are very similar to scalar fields, since both of them represent bosons.
However, when we follow the quantization procedure described in the last sec-
tion for vector fields, some peculiarities must be handled. Here we follow Ref.
[25].

The Lagrangian density of classical electrodynamics is given by

L= —ZFWF”V (3.33)
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where F, is the electromagnetic field tensor given in terms of the four-potential
A, by
Epy = 9,4, — ,A, (3.34)

If one tries to quantize the electromagnetic field using the procedure of the
last section with this Lagrangian, one finds that the conjugate momentum of A4
vanishes identically; thus, the method does not work.

So, instead of working with the original Lagrangian, we adopt the following
Lagrangian density

L=—2Fu P = ~0'A,0A, (3.35)

and impose the additional initial condition that, for some fixed time x, = ¢, we
have
MA, =03"(0"A,) =0, (3.36)

for all x. Using this Lagrangian, we obtain the following equation of motion
(8" A,) = 0. (3.37)

From the initial condition, we obtain that " A, must vanish for all times, which
reflects the invariance under gauge transformations that arises when imposing
Lorentz invariance on the equation of motion derived from Eq. (3.33); thus, the
usual electromagnetism is recovered. Therefore, the equation of motion is the
usual one, given by

A, = 0. (3.38)

We return to the problem of gauge invariance at the end of this section.
Proceeding with the Lagrangian of Eq. (3.35), we can construct the conjugate
momenta
m(x) = iFy; = 9pAi(x) — 3;A¢(x), my =id,A". (3.39)

Now we impose the commutation relation at equal times

[00A,(x,1), A (X', 1)] = §,,0(x — X), (3.40)
[A,(x,1), A, (X", 1)] = [m,(x,1), m,(x’, )] = 0.

We wish to decompose the vector field A, on a basis in the Hilbert space, simi-
larly to the procedure that led us to Eq. (3.11). We notice from the equation of
motion (3.38) that each component behaves like a massless harmonic oscillator®.
However, for each p we have four possible directions; therefore, it is convenient

“Recall that we require the equation of motion to be Lorentz invariant (axiom 3.1). Therefore,
the vector A, transforms as a vector, and its components do not necessarily transform as scalars
by themselves.
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to introduce an orthonormal basis for each possible direction of the vector p. Let

(1) (1)

us denote this basis by e;; *, where A = 0,1, 2,3, and refer to e;;* as polarization

vectors. The vector e,(fD satisfies the following conditions

e(()l) = ei(()) = ef,o) =0

ei(l)ki _ ei(z)ki —0,

5

e-(3) K (3.41)
©_
e =1,
e,(ﬂ)e,(fv) = (3.42)

This choice justifies calling the polarizations associated with A = 1,2 the trans-
verse polarizations, the polarization corresponding to A = 3 the longitudinal
polarization, and that corresponding to A = 0 the scalar polarization. It also
follows directly that ), e,(,/l)eg,) = 8,,. Within such a picture, the most general
solution of the equation of motion is given by

, 3 A - . )
Ay(x) = o J ;) % [P (p)e* + aDF (p)el*| d3p = A (x) + A5 (x).
(3.43)
Directly from this expansion and the commutation relation given in Eq. (3.40)
(at equal times), it follows that

[aD(p), ad®T(p)] = 832 8pp- (3.44)

From this, we can assume the second part of axiom 3.1 to define the vacuum Q
and, by an analysis similar to that for the scalar field and the quantum harmonic
oscillator, we can define the Fock space of the system and interpret the action
of a¥(p) and a¥T(p) as the annihilation and creation of a photon with po-
larization [ = 1, 2,3 and momentum p. It also follows that the vacuum state is
a cyclic vector for a’. However, now the scalar polarization introduces some
differences. For example, the creation operator is a(o)(p) while the annihilation
operator is a(O)T(p). This occurs because the operators of the scalar polarization
are anti-self-adjoint”.

Now, if we compute the Hamiltonian density associated with the Lagrangian
in Eq. (3.35) and use the expansion of A, we obtain

3
H = % J 1) Z [a(/l)(p)a(/l)'?(p) + a(A)T(p)a(A)(P)] &3p. (3.45)
A=0

5 A is anti-self-adjoint if A* = —A.
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Also, we can now compute the commutation relation for arbitrary times. Straight
from the expansion of A, we get

4,00, Ay(x)] = j L sin[p(x — )13 (3.46)
W0 AN = 5 | 2 sinlp(e = )Idp, :

which is just the Pauli-Jordan function with an additional Kronecker §. There-
fore, the microcausality condition is satisfied. Actually, to be historically precise,
the first quantization of a field is the quantization of the electromagnetic field
by M. Born, W. Heisenberg, and P. Jordan in Ref. [26], which follows the ideas
developed some months earlier by M. Born and P. Jordan in Ref. [27]. This last
equation was first obtained in the electromagnetic case, and Wightman used it
to propose the third axiom (axiom 3.4).

As in the scalar case, the commutator is a solution of the equation of motion
and also serves as a Green’s function. In fact, all the previous contours of the
complex plane that we presented in Fig. 3.1 and Fig. 3.2 can be discussed here
by setting m? = 0.

Let us suppose that we have a system with only scalar polarization. Consider-
ing that the respective creation and annihilation operators are anti-self-adjoint,
we have that for a system with n “scalar” photons the relation

a1 gOgm = g (3.47)

holds, and the Hamiltonian of such a system will have negative energy contribu-
tions (see Eq. (3.45)); therefore, we must eliminate such scalar-polarized photons.

Up to now, we have ignored the condition that ensures the theory is gauge in-
variant; that is, we have ignored that the correct equations of motion (Maxwell’s
equations) follow from the Lagrangian given in Eq. (3.35) only if we ensure that
d,A# = 0. In order to do that, we first change the representation of the cre-
ation and annihilation operators for the scalar polarization to ensure that they
are self-adjoint and behave as the other operators,®

(a(o)wﬁo),gﬂfto)) = (qgﬁo),a(o)gi,(,o)) N (3.48)

This ensures that A, is a self-adjoint operator; however, it contradicts the reality
requirements for the classical electromagnetic potentials. Through direct calcu-
lation, one can check that it leads to states with negative norm, which is not a
desirable property in any mathematical or physical theory. But this leads us to a
clue about what is happening. If we have some undesirable states, it may happen

®Remember that gzg,(lo) stands for an element of the respective Fock space, which can be inter-
preted as “n photons with scalar polarization”.
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that the induced norm is not appropriate. Let us take any ¢ in the Fock space;
now we define the norm of ¢ by

11y = G, ), (3.49)

where 7 is some unitary self-adjoint operator. Now the expectation value of any
operator will be given by

(F)y = Fy, ). (3.50)

Within this definition, a self-adjoint operator may have a non-real expectation
value. Of course, even within this norm, we impose that any physical state has
a positive norm.

Computing the expectation value of A, one immediately finds that

[Ai(x),n] =0, (3.51)
{Ao(x). n} = 0. (3.52)

Alternatively, using the expansion of A given in Eq. (3.43), we obtain

[a®D(p),n] = o, (3.53)
{aO(p).n} = 0. (3.54)

Now we notice that the condition 9" A, does not need to be satisfied as an
operator equation; we require only that its expectation value vanishes, that is
(0VA,), = 0. Therefore, we can rewrite this condition as

A, (x)y =0, and ("Af(x)n)y =0, (3.55)
or [a(3)(p) + ia(o)(p)] =0 (3.56)

and it follows that
(3" Ay, ) = (¥, (3" Ay (on) ) + (" Ay (), ) = 0. (3.57)

Thus, our connection with the classical theory is ensured by any state that satis-
fies Eq. (3.56). Let us construct a general state given by

v=yr [ [ ®p. (3.58)
P

such that on ¢ only the operators related to the transverse polarization act, and
on @, = o 4 > ¢,(p)®")(p) the operators of the longitudinal and scalar po-

larizations act. On each <I>(”), a® and a(© act as usual; that is,

a®o™ = no D and a0 = jnet-, (3.59)
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Let us choose the quantities ™ to be orthogonal in the inner product induced
by 1 and with norm
[0, = Snp- (3.60)

If we assume that there are no transverse photons, we obtain

(A ll>’7 = )3 J { sz[ (3)(1762(3)([))(1) (Dp) +ep )(Ua(o)(P)‘Dp ch)]

+e X [e/(, )(na(O)T(p)CD ,@p) + e )(iya(o)T(p)d)p <I>p)] } d3p, (3.61)
and using the action of the annihilation operators, we get
(A, = 9,AX), (3.62)
where
*(1 1 =i 3
A = L L S e Omer - et . e

Therefore, the gauge condition 9,A(x) = 0 ensures the connection with the clas-
sical equation of motion.

Within this scenario, we can compute the expectation value of the Hamilto-
nian in a state with only scalar and transverse photons; it will be given by

(H), = Ja) [a(l)(p)a(m(p) + N(l)(p) + a(z)(p)a(Z)T(p) + N(z)(p)] d3p, (3.64)

where N (1)(p) and N (2)(p) are the number operators of the transverse polariza-
tions. Therefore, in practice, the last procedure uses the longitudinal polarization
to cancel out the scalar polarization. Thus, such polarizations do not contribute.
This procedure is known in the literature as the Gupta-Bleuler approach [28, 29].

As we have seen, the scalar and the electromagnetic fields have many similar-
ities. Most of the applications in this thesis are developed in terms of the scalar
field, but some of them can be extended to the electromagnetic case. The next
section is one of these cases; we are going to explore the simplest observable
feature of quantum fields in both the scalar and electromagnetic cases.

3.2 Zero-Point Energy

Let’s compute the expectation value of the Hamiltonian of Eq. (3.14) in the vac-
uum state

= 0.0 -1 |

(w ; |(a)a’ ()2, Q) + (N,Q, Q)| &®p

1 % s 1 P
zj(zn)3dp_zj(2n)3d P (3.69)



ZERO-POINT ENERGY 53

Performing a change of variables to a spherical coordinate system, we have that

d®p = 4nr’dr, where r = |p| = Jp - p. so it follows that

o0

! J, r3dr — oo. (3.66)
0

" (2n)?

(H)

Of course, the physical interpretation of a divergent quantity must be taken with
some care. We can see directly from the previous equations that such a problem
arises from the contribution of a(p)a7L in the Hamiltonian. A simple way to solve
that is to consider that only differences of energy are measurable and then sub-
tract a(p)a’ from the Hamiltonian so that the expected value of the energy in the
vacuum becomes zero. However, one may also suspect that such a divergence
appears because we have not used any boundary condition to obtain the field
expansion Eq. (3.11), and therefore, the differential equation is ill-posed.

As we have seen from the application of the spectral theorem (see theorem
2.9), the energy of the system can be obtained from its eigenvalues. Since the
Hamiltonian (3.14) and the Klein-Gordon equation (Eq. (3.2)) describe the same
system, let us analyze the massless Klein-Gordon equation

Oe(x) = 0, (3.67)

and in order for the differential equation to be well-posed, we need to impose
some boundary conditions on the fields. Let’s say that we have the field between
two plates, one located at x = 0 and another at x = L; for simplicity, let’s take
the system in one spatial dimension with Dirichlet boundary conditions, that is,
#(0) = #(L) = 0. With these boundary conditions, the momentum is now a
discrete variable given by

p=—x, n=12,.. (3.68)

With this new set of momenta, the energy of the system per unit area between
the plates is given by

E(L) = % Z; % (3.69)

which remains a divergent quantity. But, as we prove in Sec. A.4, this kind of
divergence can be regularized in the context of generalized functions. Let us
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—Ann/L

choose the test function as e where n € IN \ {0}, so we have

(n_ﬂ',e—/lmr/L> _ J n_”e—/lmr/Ldn _ Z ne—nm/L
2L 2L 2L =

19 S —Anz/L
=—=— > e
e

190 1

2001 — g—nn/L
—Anr/L
S S —— 1)) (3.70)
2L (e—/lnn'/L _ 1)2

Expanding it into a power series, we can write the first two terms as

L = (3.71)

E(L,)) = )
(L.4) 2mA2  24L

Now, if we compute in a similar way the vacuum energy outside the two plates,
we get
x—1L b1

E(x—L,A) = - , 3.72
(x ) 2A2 24(x— L) (3.72)
Then, the total energy is given by
1 1

Ec = E(LA)+E —L,A:L—£<—+ ) 3.73
c=BLA+Ec- LA = Y oL (3.73)

and the force between the plates is given by
Fo=-3p T Lomx), (3.74)

dL 2412

Therefore, in the limit A — 0 and x — oo, the force between the plates is finite.
With a similar calculation, in 1948 Casimir in Ref. [30] showed that there is a
measurable quantum field effect associated solely with the vacuum. In fact, the
existence of this force has been experimentally verified in many ways over the
years; see Refs. [31-33]. This effect has been called the Casimir effect.

3.2.1 Casimir effect

As we have explicitly shown, the last procedure is able to recover a finite force,
but not a finite energy. Can we use some mathematical method to obtain the
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energy as a finite quantity? To do that, let us take Eq. (3.69) and introduce a
parameter s as follows

T - 1
E(L;s) = — —, 3.75
(L:9) 2L Z n® (3.75)
n=1
noting that we recover the previous equation if s = —1; however, the series

converges only if R(s) > 0. Now, we notice that using a Mellin transform, % can
be represented as

s/2 [
1_= J x2 e X gy, (3.76)
0

" T()

where I'(z) is the Gamma function. Therefore, we have that

S41 0o 00
E(L;s) = = . J xe Yy e Q. (3.77)
21 (5) Jo =t
Let us analyze the last series by denoting
Yo=Y e, (3.78)
n=1

Using the Poisson summation formula (see Ref. [34]), one can prove that

- —ﬂnzx —_ 1 - —77.71
Ox)= ) e = THZZ ﬁ(a (;) (3.79)

n—=—oo —

so the © function is a modular function of weight 1/2. It follows directly that

(w( ) ) (3.80)

O(x) =2¢(x)+ 1=

-
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If we use this in Eq. (3.77), we obtain

341
T2

2Lr (3)
_ 77;§+1 ! 5 4 « 51
= F(%) Uo x2 Y(x)dx + L x2 Y(x)dx

S

21 s
e

o [ L1, le;—zlp(i) dx + jl""xz—lﬂx)dx]

E(L;s) = LO" x%_ltﬁ(x) dx

dx + J"" x§_1¢(x) dx}
1

N—"

2LF(%) s—1 s
_ 71'%"_1 1 00 s 1 s
") [“3__1)4-J; (x 272 4 x0 )¢(x)dx], (3.81)

which converges for all R(s) # 1. For easier recognition, let us write

Y, = =) (3.82)
n=1
so the last procedure gives us
(=2 r(1=3)a - (3.83)
o)
or
{(s) = I(s){(1 —s), (3.84)
where we define )
) == 21‘(1;S>. (3.85)

S

r(3)

Equation (3.83), or equivalently Eq. (3.84), is known as the reflection for-

mula (or functional equation) for the {-function, and {(s) is known as the Rie-

mann zeta function, obtained by B. Riemann in 1859 (see Ref. [35]).

Back to the expression for the energy, in the new notation we have that

1

ﬂs+§

S

2Lr (3

BLis) = 24(5) = )r(1 —*)a-9), (3.86)
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and the Casimir energy follows for s = —1; therefore,

Ee= (1) ==

: 3.87
1L (3.87)

which recovers the force given by Eq. (3.74). The last procedure shows that using
analytical continuation we can recover the Casimir force when we have Dirichlet
boundary conditions. In fact, this is just an application of a more general theory
of the Laplacian with Dirichlet boundary conditions, which allows us to renor-
malize zero-point energies. Let us now briefly discuss these properties, following
the Ref.[36].

Consider the eigenfunctions and eigenvalues of the negative Laplacian oper-
ator (—A) on a bounded (open connected) domain D in Euclidean space R?. The
eigenvalues form a countable sequence. Using A; fork = 1, 2, ..., they are ordered
as

0< <A< <A< (3.88)

when k — oo, with possible multiplicities. The eigenfunctions {#};—, form a
basis in Z?(D) with the boundary conditions. For simplicity, let us assume the
Dirichlet boundary conditions. Each ¢ has eigenvalue A (—A) = Ag.

In spectral theory, the asymptotic behaviour of the Dirichlet Laplacian eigen-
values in the analytic regularization procedure plays a fundamental role. This
behavior was first investigated by Weyl [37]. Applying the Fredholm-Hilbert
formalism of linear integral equations, it was proved that for D C R, (d=2,3)

Vol (D
lim £ = Yola(D) (3.89)
k—oo Ay 41
where Voly(D) is the volume of the region D.
We begin our discussion by defining the density of eigenvalues as a sum of
delta functions:

g =" 84— A (3.90)
k
and the counting function N(1) := #{A,, : A, < A}, defined as
A
NQA) = J g(A)HdX, (3.91)
0

which gives the number of elements in the sequence of eigenvalues that are
smaller than A. The asymptotic behavior of the counting function is given by

NG = F(@pa( @27, (4 — oo), (3.92)
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where f(d) is an entire function of d. Furthermore, the additional asymptotic
terms also provide information about the boundary of the domain. For example,
for D C R®, we obtain a contribution proportional to the surface area of D.

Our first observation concerns the renormalization of the zero-point energy.
Let us define the Minakshisundaram-Pleijel bilocal zeta-function Z (x, y;s) for
seCas

¢k(X)</>k(J/)

yis) = Z : (3.93)
k=1

which converges uniformly in x and y for R(s) > sy and was originally defined in

a connected compact Riemannian manifold [38]. From this bilocal zeta-function,

it is possible to define a spectral zeta-function associated with the eigenvalues of
the Laplacian in D C RY. We define Z(s) = Tr(—A) ™S, where

m

Z(s)= Y A= lim Y A (3.94)
k:] m—00

Using the counting function N(1) and the definition of the Riemann-Stieltjes
integral, we obtain

b

m k—1
D= A+ J tSdN(2) ; (3.95)
n=1 n=1 a
Ak—l S a< Ak, /1m S b < /1m+1.
Thus, the spectral zeta-function can be expressed as

k-1

Z(s) = A+ J; N()td. (3.96)
n=1 k

In principle, this formula is valid in the region of the complex plane where
the original sum converges. As the sum on the right-hand side is analytic over
the entire complex s-plane, the qualitative behavior of its analytic continuation is
determined by the Riemann-Stieltjes integral expressed in terms of Weyl’s count-
ing function.

To determine the polar structure of the spectral zeta-function, let us consider
an evolution equation in #?(D), formulated as the following initial-boundary
problem in (0,00) x D. For D C R?, we have

ou = Au,
ot
u(0,x) = f(x), (397)

u(t’ x)|anD = 0.
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The weak solution u(t, x), which satisfies the diffusion equation in the sense of
generalized functions, is given by

u(t,x) = j Pt % 9) AU, (3.98)

where du(y) is the volume element of the domain, and pp(t, x, ) is the diffusion
kernel, i.e., the positive fundamental solution to the heat equation. For a generic
boundary condition, the spectral decomposition of the diffusion kernel can be
represented as

Pt x,y) = ) e My ()i(y). (3.99)
k=1

Using a Mellin transform and the definition of the Minakshisundaram-Pleijel
zeta-function Z (x, y; s), we obtain

I(s)Z (x,y;s) = JOOO 571 pp(t, x, y)dt. (3.100)

For x = y, I(s)Z (x, y;s) is a regular function of s in the entire complex plane.
For x = y, there is a pole at s = 1. Since we are interested in global issues, let us
define the trace of the diffusion kernel, written as ©(t) = Tr (etA), where, using
the Riemann-Stieltjes integral, we can write

o) = J eMAN() = Y e M, >0, (3.101)
0 k=1

The spectral zeta-function can be represented as

o0

1 -
Z(s):@L 1ot dr. (3.102)

Its polar structure in the extended complex plane is determined by the classical
spectral invariants, which are the expansion coefficients at t — 0" of the diffu-
sion kernel trace.

When oD # @, the coefficients of the asymptotic expansion of the heat trace
have been calculated for a variety of boundary conditions:

d K
_d jd K+
lim ©(t) = (47) 2| Y c,(D)tz +o(t 2 )|, (3.103)
t—0*

p=0
where the coefficients cp(D) are related to the geometric characteristics of the
bounded domain. Useful information on the heat kernel coefficients in mathe-
matical and physical literature can be found in Ref. [39-41]. By a Tauberian
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theorem, we are able to connect the first term of the above asymptotic expan-
sion with Weyl’s asymptotic behavior of the Laplace operator spectrum.

For the case of vacuum energy, Fulling has stressed the need to study the
cylinder kernel [42, 43]. See, for example, [44]. To implement this idea, let us
define the zeta-function { /7(s) constructed with the energies @ of each normal
mode:

L) =), is R(s) > s1. (3.104)
k=1 “k

The renormalized vacuum energy is defined as (E), = { 77(s)ls=—1. Using a Mellin
transform again, we obtain

o0

— 1 1 (7 s ot
— = t2 e “ktdt. 3.105

k=1

The zeta-function { /(s) is a meromorphic function of s with simple poles. In the
case where s = —1 is a pole, we can obtain a representation in a neighborhood
of the pole, including some regular part known as the renormalized vacuum en-
ergy. We emphasize that the measurable Casimir energy is obtained from this
mathematical formalism based on analytic continuation, where undesirable po-
lar contributions must be removed through a renormalization procedure, as we
have shown in Eq. (3.87). A straightforward calculation shows that the Casimir
energy for the slab geometry in d dimensions (R x [0, L]) gives us the Casimir
energy per unit of hyperarea of the surfaces:

wr(-5)

all) == 2(2L)?

{(—d). (3.106)

At this point, it is clear that the Casimir energy depends on the geometry of
the manifold. Different geometries have been considered in the literature; see,
e.g., Ref. [45].

Now, let us obtain the Casimir energy for the electromagnetic field inside
a perfect d-dimensional waveguide with sides a, b, with the same procedure of
Ref.[46]. That is, our manifold is RZ2 x [0,a] x [0, b]. Now we recast the speed
of light, ¢, and the reduced Planck constant, #. In a future application where we
use this result, it will be useful to have ¢ and % explicitly in the result. Using
the equation of motion (Eq. (3.38)) and the spectral theorem, we have the energy
denoted by E;(Ly, Lo, ..., Ly_5, a, b), given by the Riemann-Stieltjes integral of the
spectral measure of the Hamiltonian operator in such a domain. Assuming that
L;>»a,bforalli=1,...,d — 2, one can write this quantity as
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Ay - _
Filly i gab) = 2 [ 3 hom(@d g (G107
(27) m,n=1
where we have used the following definition of the hyper-area
d—2
Ay =]]L (3.108)
i=1
with the frequencies given by
mr\*  (nr)?
Omn(q) = ¢ q2 + <_) + (7) ) (3.109)
a
and the continuous momenta
=g+ +q, (3.110)

It is clear that we need to regularize expression (3.107). As in the previous exam-
ple, we apply an analytic regularization procedure by introducing a parameter,
s € C, and our Casimir energy will be given by an analytic extension. With some
straightforward manipulations and inserting the parameter for analytic continu-
ation, Equation (3.107) can be rewritten in a more illuminating form:

eq(a, b;s) = A: E4(Lq,...,Ly_y,a,b;s)
—2
h J, c ! —s - —s - —s d-2
= — (P =2 ) won (@) =2 ), wyo(q) [d* g,
2(2”)(1_2 [m,nz::—oo ™ nZ::l " mzzll "

(3.111)

where the prime over the summation sign means that the term withm =n =0
is removed from the double series. To proceed with the calculations, we perform
a change of variables in the continuum momenta to a spherical coordinate sys-
tem, with radial variable given by q and angular element dQ4_,. The angular
integration leads to the factor
d-2
27 2
d-2\’
r(F)

and the integration over q can also be performed, leading to

J de_z = (3112)

d
hcar_il“(1+ s_d

k)| PRI

2 (3) @b

eqa, b;s) =

- (ad—12—s " bd—12—s) {(s—d+ 2)] . (3.113)
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where we have used the definition of the Epstein zeta-function

o

Zo(x,y;8) = Z, [(xm)2 + (yn)z]_s/z. (3.114)

m,n=—oo

Using the reflection formula for the Epstein zeta-function [45], we can write

T (d s)
1 1 ab
zz( —d+ z) Zy(a,b;d - s), (3.115)
e - (2 “ds )
T2 2
and for the Riemann zeta-function, we use the reflection formula given in Eq.

(3.83) to obtain
T (d—l—s)

Zd “Ld=1-5). (3.116)

ST

F(1+%—g>§(s—d+2)_

One can derive a general expression for €;(a, b; s) employing the analytic exten-
sion procedure. The Casimir energy for the waveguide is obtained for s = —1:

eq(a, b;—

d“)zz( bid+1)

d
— — y . .
ad-1  pd-1 3t
This expression remains finite for d > 3. In the case of d = 3, we obtain
he < 1

1 h
abi-)= =55+ b—2> [(3) - S—;abZZ (a.b;4). (3.118)

The sign difference between the two contributions ensures the well-known be-
havior of the change of sign of the Casimir force in a box geometry [47].

In the last two examples of explicit calculation of the Casimir force, we have
assumed Dirichlet boundary conditions. In the electromagnetic case, this is equiv-
alent to considering a perfect conductor. In the next section, we explore the case
of non-ideal boundary conditions to approach a dielectric material.

3.2.2 Non-ideal Boundary Conditions

The Casimir effect in real materials is an important topic of modern research. In
this context, the work of Lifshitz serves as a cornerstone that advanced the analy-
sis of the Casimir effect in real material media [48]. The basic idea is to model vac-
uum quantum fluctuations as a stochastic fluctuating electromagnetic field and
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to use the fluctuation-dissipation theorem to determine the frequency-dependent
Casimir energy. The general result obtained by Lifshitz provides a formula for
the Casimir energy density and pressure in a plane geometry filled with different
dielectric media. Other approaches have enriched the discussion and reinforced
Lifshitz’s result. For instance, using the Green’s function approach, Dzyaloshin-
skii et al. obtained the same result for the Casimir effect in dielectrics [49]. We
also mention the approach proposed by Van Kampen et al., where the physical
effect of the dielectric is carried by the so-called surface stationary modes of the
electromagnetic field [50]. The discrepancy between the dissipationless plasma
model of dielectric materials and the dissipative Drude model has also been dis-
cussed in the literature, e.g., Ref. [51].

In Ref.[36], we propose a new way to explore the finite conductivity scenario
for the slab geometry and also for the bidimensional box. This approach is based
on the spectral theory presented in the previous section and on approximate
functional equations.

Later in this section, we introduce the Van Kampen method of surface modes
to calculate the Casimir energy of a three-dimensional waveguide filled with a
dielectric. This result has been obtained by the author and collaborators in Ref.
[46]. Although finite-sized cavities with perfect conductors have been discussed
before (see Ref. [45]), the inclusion of the dielectric leads to highly non-trivial
problems. The case of a dielectric cylinder was discussed in Ref. [52]. However,
the rectangular waveguide has not been discussed, we believe, because ensuring
the consistency of boundary conditions at the corners is problematic.

Finite conductivity via approximate functional equations

Here, we present the calculations and results of Ref. [36].

Our main objective is to discuss the Casimir energy of a massless scalar field
at zero temperature satisfying non-ideal boundary conditions. Due to the similar-
ity between the quantized electromagnetic field and massless scalar fields satis-
fying Dirichlet and Neumann boundary conditions, our problem has formal sim-
ilarities with the conductivity correction to the Casimir force of the quantized
electromagnetic field. One initial approach is to describe finite conductivity us-
ing microscopic models. A microscopic approach has been extensively studied
by G. Barton (see, e.g., Refs. [53-55]). The case of QED in a dielectric matter back-
ground has also been analyzed, with various quantization schemes proposed. For
the nonlinear case, see Refs. [56-58], and for the dispersive case, see Ref. [59].

Instead of addressing the nonlinear problem of microscopic modeling of finite
conductivity, i.e., non-ideal boundary conditions, we confine ourselves to using
the spectral theory of elliptic differential operators. Corrections to the Casimir
force can be discussed using an analytic regularization procedure and approxi-
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mate functional equations of spectral zeta-functions. These functional equations
express the Riemann and Epstein zeta-functions as finite sums outside their orig-
inal domain of convergence. Connections between number theory and quantum
field theory have been explored in the literature, as seen in arithmetic quantum
theory [60-65].

Using our methodology, the total renormalized energy of scalar fields in the
presence of bounded domains can always be derived using an analytic regular-
ization procedure, where the Dirichlet and Neumann Laplacian are used, as pre-
sented in Sec. 3.2. In Eq.(3.86), we have shown that the vacuum energy in the
slab geometry R4~ x [0, L] with Dirichlet boundary conditions can be written
in terms of the Riemann zeta-function. To calculate its correction due to non-
ideal boundary conditions, we represent the energy density using an asymptotic
expansion derived by Hardy and Littlewood. They obtained an approximate func-
tional equation for the Riemann zeta-function expressed as finite sums beyond
their original domain of convergence [66]. Next, we generalize this result to the
case of a field in the presence of a rectangular box with lengths L; and L, with
non-ideal boundary conditions. Other generalizations of the Riemann functional
equation have been presented in the literature. Recently, the introduction of dif-
ferent cut-offs in the integral representation of the zeta-function, which remain
invariant under the transformation x +— 1/x, has been discussed. It has been
shown that the Riemann functional equation can be generalized with the same
symmetry s — (1 —s) in the critical strip [67].

In the Lifshitz approach, the dispersion forces between dissipative media
arise from the fluctuating electromagnetic field defined both within and outside
the media. Using the fluctuation-dissipation theorem, the Lifshitz expression for
the force between plates depends on the dielectric functions of the surfaces and
the medium in which they are immersed. The finite conductivity correction to
the ideal Casimir calculation is obtained using the frequency dependence of the
dielectric function. The imperfect conductivity at high frequencies can be mod-
eled by introducing only the plasma frequency w), of the plates. It is important
to note that the Casimir result is recovered at distances larger than the plasma
wavelength.

In our case, we discuss the vacuum energy of a quantized scalar field in the
presence of classical surfaces, where the field satisfies non-ideal boundary con-
ditions. These can be understood as finite conductivity conditions, which we
refer to as ideal high-pass Dirichlet boundary conditions. To clarify, our boundary
condition applies to frequencies: for frequencies smaller than some @y , we have
the usual Dirichlet boundary conditions; otherwise, the plates are transparent to
the field. However, a crucial point is that it is not convenient to simply calculate
the correction to the renormalized vacuum energy by separating the effects of
the low-energy vacuum modes from the high-energy modes using a sharp cut-
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off. Since the energy density is a sum of positive terms, one always obtains a
positive energy density.

ke
(L) =) >0, (3.119)
k=1

where wy ;1 is plasma frequence of the material.

We start by using an analytic regularization procedure and the fact that,
for Dirichlet boundary conditions, the eigenvalues vary continuously under a
smooth deformation of the domain (spectral stability of the elliptic operator un-
der domain deformation). Moreover, the minimax principle states that the eigen-
values monotonically decrease when the domain is enlarged,

O'm(Dl) 2 O'm(Dz), Dl C Dz. (3120)

By the above arguments, we can use an approximate functional equation that
expresses the Riemann zeta-function as finite sums outside its original domain
of convergence.

Initially, we use a classical result by Hardy and Littlewood, following the
derivation discussed in Ref. [68]. Let us write the Riemann zeta-function as

{(s) = Z n*+ Z n*
n<n, n>n,
1 o0
= nS+ — x5! e ™ |dx
n;c I'(s) Jo n;c
® s—1 _,-n.x
= Y n+ ! J ———dx, (3.121)
nm, I'(s) Jo e -1

where the absolute convergence justifies the inversion of the order of summation
and integration. To proceed, we analyze the following integral I(s). We have

s—1 ,—n.z

1(s) =J L 4 (3.122)
c e -1

where the contour C starts at infinity on the positive real axis, encircles the origin
once in the positive direction, excluding the points +27i, +4ri, ..., and returns to
infinity. We obtain

. © _s—1 ,-n.x
I(s) = (ez’”s - 1)J r ¢ gx (3.123)
0

eX—1
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Using the analytic continuation principle, we can write

)=y ns+

n<n,

dz. (3.124)

e—m’sr(l _ S) J Zs—l e Te?
27T c € -1

From the above equation, we find an approximate representation of the zeta-
function in terms of finite sums. Once can prove that (see Ref. [68])

g(s) =

27)’T (1 - 3
l+ (27)°T ( s) Z 1 +0(x79) + O(t2 Gyg_l), (3.125)
ns (1 s T S nl—s
e T(1=3)r(3)

for 0 < o < 1, which holds for given x, y,t > C > 0 satisfying 2xxy = t where
t > 1. This is known as an approximate functional equation.

For simplicity, using the approximate functional equation, we discuss the case
of a slab geometry RY1x[o, L]. Drawing a parallel with the electromagnetic case,
in the scalar field scenario, we define the plasma frequency w, and the plasma
wavelength A, = 27/w,,. Next, we define a “critical” mode index n., which will
be related to the plasma wavelength.

In order to find an adequate maximum number of states n, for a single com-
pactified direction, we first introduce the notion of the density of states p(k) in
the phase space and the number of states AN = p(k)d?k that lie between k and
k + dk. In the d-dimensional space, where all the directions are finite and have
lengths Ly, Lo, ..., Lj_1, L, the density of states is simply

d—1
p(k) = (ﬁ)gu (3.126)

we can find the number of states inside a volume that possess the maximum value
of momentum k;,,, as

/2
NOonar) = | Kottt = p 2—
<Ky r( +1)

k. (3.127)

where we have used the definition of the volume of a sphere in d dimensions. On
the other hand, we are interested in obtaining the maximum number of states in
a single compactified direction n.. We have that

/2

= d—ngl. (3.128)

N (kmax )
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Therefore, we identify ngi = pkf,l,ax. Now, we relate the maximum wave number
with the plasma frequency of the material in such a manner that k., = 27/,
With all this, after some algebra, we conclude that

<L1/d) HLl/d (3.129)

since all the directions L; from i = {1,2,...,d — 1} are much larger than L. The
only dependence of the maximum number of states is of the form

N
n.(L) = (—) ) (3.130)
AP
In the Hardy and Littlewood approximate functional equation, we choose
1/d 2/d
x=y= L =n, = t=2rx L = 27n? . (3.131)
/IP )LP

Using the asymptotic expansion, Eq. (3.125), and the definition in Eq. (3.85), we
obtain the Casimir energy as

iy

(L) = - 22L)

|H, (=d) + 3(~d)H, (d + 1)] . (3.132)

The quantities Hy(s) are the generalized harmonic numbers, defined by
-1
H,(s) = Z = (3.133)

Since Eq. (3.132) only makes sense as an analytic continuation, these finite sums
must be understood in that context. Moreover, we emphasize that the equality
holds by analytic continuation outside the strip 0 < o < 1. This can be demon-
strated using an analytic continuation of the asymptotic expansion.

Each generalized harmonic number has an expression for its domain of inter-
est in the complex plane. Let us start with the second term in the sum, H, (d +1).
Formally, this quantity is given by

H,(d+1)= Z . (3.134)

n=1MN
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However, since we start from Eq. (3.106), which is an analytic continuation, the
finite sum should be considered in the range of interest. In this situation, we can
use a known expression:

(- )

d
H,(d+1)={@d+1)+ lpd(nc +1), (3.135)

which holds for n, € R\ {-1,-2,-3,...} and d € N (see, e.g., [69]). Here, ;,,(x)
is the polygamma function. Using a recurrence relation and an expression for
large arguments, we can write the polygamma function as

_ (_l)dd! d+1 - (k+d—-1)! B
Yane +1) = ——+ (D™ ) o — (3.136)
e k=0 e

where By are the Bernoulli numbers (we take the convention B; = 1/2). Using
the definition of n, and considering the limit L/ )Lp > 1, we can write

1

d

)L )L
Ya(n +1) = (- 1)d+1< ) (d—-1)!— —d' ( L) , (3.137)

which allows us to express H, (d + 1) in powers of 1, /L.
For the first term in Eq. (3.132), we formally have

e

H,(-d)= ) — 1 — (3.138)

n=1n

Using elementary operations and the uniqueness of analytic continuation, it is
straightforward to see that

Hy, (=d) = {(=d) — {u(=d;n. + 1), (3.139)

where ((—d;n, + 1) is the Hurwitz zeta-function, defined by

{u(s;a) = Z

o )S (3.140)

for R(s) >1anda#0,-1,-2,....
Let us define the Casimir energy per unit area with non-ideal boundary con-

ditions, i.e., finite conductivity (f.c.), as

1 74 /2

Ld d+1

C( )_

(%) Gr-din + ). (3.141)
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Once this is established, we can identify the contribution from the ideal boundary
conditions, while the remaining term can be regarded as a correction due to the
dielectric properties. We obtain

1

r(1+d)Ap< 1 )d 1 A

f.c.
€; (L) = (L) + -
2T (1 + g) 4./ Ld'Hd 2Ld-i—1+§

(3.142)

As observed, in the slab geometry, the Casimir force is a negative quantity
(e4(L) < 0), while the second contribution in the above equation is positive.
We have successfully derived the Casimir energy per unit area with non-ideal
boundary conditions. It is worth noting that the first finite conductivity correc-
tion to the electromagnetic Casimir energy has the same order as the correc-
tion obtained using the Lifshitz calculations. In contrast, the second correction

is smaller: while the Lifshitz formula gives a second correction as L™, our ap-
13

proach yields L 3. Fixing d = 3 and disregarding the second correction we find
that

0.007 , 0:0022,

L3 L4

where the correction term in slighlty smaller than the one obtained in the Lif-
shitz’s formula. This means that some refinement in the choice of n, may be
needed. However this does not shed shadows in the remarkable fact that the
power law of the correction is obtained from the approximate functional equa-
tion. A fundamental aspect that requires careful investigation is the discussion
of vacuum energy in a bounded domain.

Now let us apply the same set of ideas to the case of a finite volume box in the
bidimensional case. To that end, let us now discuss the eigenvalues of a second-
order elliptic self-adjoint partial differential operator acting on scalar functions
on a bounded domain. We consider the eigenvalues of —A on a connected open
set D in Euclidean space R%. We assume that the massless scalar field is confined
in a rectangular box, with lengths L; and L,, obeying Dirichlet boundary condi-
tions. The eigenfrequencies that we use to expand the field operator are given

by

%?f.c.(L) ~_

, (3.143)

o | =

nyw 2 nyJt 2
Onyn, = (L—) +(L—) D onpny =1,2, ... (3.144)
1 2

The unrenormalized vacuum energy in this case is

1 (o]
ULy, Ly) = 5 > oy (3.145)

ni,n,=1
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Using an analytic regularization procedure, the divergent expression can be writ-
ten as

E(Ly, Ly s) = & > o, (3.146)
2 nl,n2=1
for s € C. Observe that the vacuum energy is obtained when s = —%. The above

double series converges absolutely and uniformly for R(s) > 1. An analytic func-
tion, which plays an important role in algebraic number theory, is the Epstein
zeta-function associated with quadratic forms [70]. Suppose that

$(a,b,c;x,y) = ax® + cxy + by?, (3.147)

where a,band ¢ € R, a > 0, and = 4ab — ¢ > 0. Let us define the function </(s)
by the series

A(a,b,c;s) = Z’ ¢ *(a,b,c;nq,ny), (3.148)

ny,Ny=—00

The above series defines an analytic function for s = ¢ +it, (c € Randt € R),
with ¢ > 1, where we adopt the notation that the prime sign in the summation
indicates that the contribution n; = n, = 0 (the origin of the mode space) must be
excluded. This particular case of the Epstein zeta-function can be analytically
continued to the whole complex plane, except for a simple pole at s = 1 [71]. This
double series exhibits a functional equation that can be obtained using properties
of the theta-function or the Poisson summation formula. The functional equation

reads yet
N
I'(1-
A(a,b,c;s) = n ( s)ﬂ (1, 1, l; 1- s) (3.149)
1 I'(s) abc
We are interested in the case where ¢ = 0. Let us define the function Z (Li’ Li; s)
1 2
by
(o] 2 2 —S
’ n n
Z(i, i;s) = > <—1 + —2> : (3.150)
Ly Ly om0 \L1 L2

We can find that the vacuum energy is written as

2 2 —2s —2s
E(Ly,Ly;s) = %Z (Z—% ’LT—%;S) - i [(Lil) + (Liz) lg(zs). (3.151)

As discussed, E(Lq, Ly, s) is analyticins € C \ {% 1}. Using the analytic con-
tinuation of the Epstein and the Riemann zeta-functions, we obtain the vacuum
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energy U(Ly, Ly) = E(Ly, Ly;s = —1/2) for the system with Dirichlet boundary
conditions. We get

48\L, L,/ 32n

ny,Ny=—

LiLy, _3
U(Ly, Ly) = £( L, i) -2 N (B2 +ndLd) 2. (3.152)

The next step involves discussing the scalar case, similar to the electromag-
netic case of imperfect conductors, where there is a plasma frequency w,,. Using
the same approach discussed in the previous section, we aim to determine the
approximate functional equation for the Epstein zeta-function.

Potter [72] has derived the following approximate functional equation for the
Epstein zeta-function:

dabes)= Y ¢ @ben,n) +X(s) Y, ¢ aben,n),  (3.153)
$<x P<y

for t > 1, and the condition 472xy = nt? must be satisfied. The quantity X(s) is

defined by ,
s—1
X(s) = (2—”) ra-s (3.154)
J I'(s)
Henceforth, we take &/(a,b,0;s) = &/(a,b; s) and similarly for ¢.

Of course, to obtain the correction to the Casimir energy via an asymptotic
series, we will need to use the Potter approximate functional equation for the
Epstein zeta-function, but also the Hatree-Littlewood approximate functional
equation for the Riemann zeta-function. Let’s start analyzing the Epstein zeta-
function. It is convenient to introduce a A, term in the expression to only have
dimensionless quantities and establish a parallel with the Casimir energy in a
finite conductivity scenario. In this case, we have

212 242
NS TeA
P P ’ ’ e
Q{( 2 12 ?3) = >+ X(s) ), oy, (3.155)
Ly ILj d<x o<y
where to lighten the notation, we defined
292 242 242 242
meAS TeA TeA meA
p p P 2 P o
Dy = ¢( , ;nl,nz) = n? + n3, (3.156)
2 2 2 2
LY Ly Ly Ly

once that 47%xy = nt* with

2 2

212 2

mA A

n= 4<L Lp) = xy = (ﬁ) 2, (3.157)
12 12
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Since

2s—1
_ L1L2 I‘(l - S)
X(s) = (—M% ) R (3.158)

using a similar argument to the one we used before, but now all dimensions
remain compact, we can define the quantities

1/2 1/2
ne = |— and ng ' ==
AP AP

2

= xy=|—2—|# (3.159)

(A0

which, considering the fact that we do not have a preferred direction, indicates
that the natural choice for ¢ should be

2
= 1 (nEl)nEZ)) =>x=y= ngl)ngz). (3.160)
s
So, looking back at Eq. (3.155), we see that the sums are over all modes inside
the ellipse defined by

2
" + n% —< ! ) = constant (3.161)
Llngl)ngz) LGél)nﬁz) Ap

in the (n, ny)-plane with the origin removed.
For the Riemann zeta-function contributions that are present in Eq. (3.151),
we have

[2)=Y — + (@ry"ra - 2) YL (3.162)

= TA-9T(6) SZin

for @ > 1 where 27uv = a. Proceeding exactly as in the slab bag geometry case,
we find that

1/2

o [L L

u=v=n =\|— sag=21—; i=1, 2, (3.163)
AP AP

continuing from the previous case, we employ an analogous method. Using the
same harmonic number definitions, once the range in the complex plane will be
the same. Considering the case where s = —1/2 and manipulating the equations,
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it is possible to find that

2s—1
/123 L (1 — /123
P . 1L2 (1—3s)"p re
Bllibaio) == D, ‘DIZS*( ) o s 2%
d>§n§1)ngz) ]TAP ¥ @Sngl)ngz)

Ags 2 1 —2s .
B oo

s @DFTA =29 1 (A _33_1 Ap -5
+(-1)7HF L(1-s)T(s) 23( ) .

L;

. (3.164
. (3.1649)

We define the vacuum energy for finite conductivity (f.c.) as

Uf.C.(Ll’Lz) — Ef.C. (LI’LZ’S — _%)

1 2
1 5 1ol ; 1
By D, ®h- 1 >, I [§H(—1;ngl) +1) - g] . (3.165)

Therefore

213 5
ﬂ)tp _3

R P. .2
2 Z 12
32(LyLy) FNORC)

C C

R RT L
132} -i(Z2) |
2A,2m)* S [\ Li 2\ L

(3.166)

Ute(Ly, Ly) = U(Ly, Ly) —

is the Casimir energy for a rectangular box with non-ideal boundary conditions.

Finite conductivity in electromagnetic case via stationary modes

In order to present the stationary modes approach, we follow Ref. [73]. Here we
use Gaussian units.

Let us consider a system composed of three dielectrics. The first dielectric,
¢1(w), lies in the region z < 0, the second, &(w), in the region z > d, and the third
dielectric, &3(w), is in between the other two, that is, 0 < z < d, as shown in Fig.
3.3.
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z=0 z=d

Figure 3.3: Configuration of three dielectrics in a slab geometry.

First, we must compute the relevant modes in the system. To achieve this,
we note that a possible set of solutions to Maxwell’s equations

V-D=0,

V-B =0,

VxE = —1@

c ot
vxB=1 (3.167)
c ot
is
E(r,t) = Eo(r)e ™", (3.168)

B(r,t) = By(r)e ™.
Assuming that the media are isotropic, we have D(r,t) = &(w)Ey(r)e ™" for

all the dielectrics. Maxwell’s equations are satisfied if, in each dielectric, we have
V-Ey =V-B, = 0, which implies that

2
AEg + -e(w)Eq = 0, (3.169)
c
W2
ABO + —ZE(Q))BO =0.
c
The boundary conditions require that the normal and tangential components of

E and B are continuous, and the derivative of the transverse component of E is
zero. We assume a solution of the following form:

Ey(r) = [ex(z)fc +ey(2)y + ez(z)i] gk tkyy) (3.170)
By(r) = [by(2)% + by (2)7 + b,(2)4] (e k).
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which implies that the momentum must satisfy the following equation:

de;

i K?%e; =0, (3.171)
dz

db,

2 _ K%, =0,

dz !

where we have defined K? = k2 + k}z, - g(a))cc‘)—z2 and i = {x, y, z}. Let us assume a
coordinate system where k,, = 0 and denote k, by k. Requiring the continuity of
the normal component of D(r), we find that e(w)e,(z) must be continuous for all
w,and V- Ey = 0 implies that

ike, + de: _, (3.172)

dz

Using the fact that VxEj =i %BO, it is straightforward to obtain that V-By = 0 is
satisfied, and the continuity of the normal component implies that ej, is continu-
ous. Continuity of e, follows from the last equation. To analyze the continuity
of the tangential component of B, we use the previous equation and Eq. (3.171)
to obtain

dz

and the continuity of this quantity follows from the continuity of the normal
component of D(r).

Therefore, to satisfy all the boundary conditions, it is sufficient to require the
continuity of ee,, d,e,, ey, and d,e,. The solution to Eq. (3.171) can be written as

d 2
ke, + X — % [e(w)‘:—z] e, (3.173)

e,(z) = A1efKi7 + Aye K07, (3.174)

and by setting the constants of unphysical exponentially growing modes to zero,
we can write the solution for all three regions as

Aekiz, ifz<0,
e,(z) = {Befs? + Ce X% ifo<z<d, (3.175)
De Koz, if z>d.
2
where K; =  [k? — ei(a))‘c"—z, fori = 1,2,3. The continuity of e, and d,e, leads to

algebraic equations for A, B, C, and D. The nontrivial solutions of these equations
impose that

(55K1 + 6 K3)(e3 K, + 52K3)62K3d _

F =
@) (55K — 1K3)(63Ky — 6,K3)

1=0. (3.176)
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The continuity of e, and d,e), is satisfied if

(Ky + K3)(K; + K3)e2K3d
(K; — K3)(Kz — K3)
Usually, we cannot satisfy both equations simultaneously, but if we impose

e, = 0, we can satisfy Eq. (3.176). If we impose e, = 0, we can satisfy Eq. (3.177).
This leads to two types of modes:

(a) Solutions of Eq. (3.176) with e), = 0;

Fp(w) =

—1=0. (3.177)

(b) Solutions of Eq. (3.177) with e, = 0.

These two kinds of modes are called surface modes. Now we can compute
the vacuum energy associated with such modes, which will be given by

By = "L j [Z RRCEWHCIE

where w,, are modes of type (a), w,;, are modes of type (b), and L is the size of
the x, y direction. We suppose that L > d. Using the argument principle of
complex numbers, we can identify the sum of the modes as the sum of zeros of
F, () subtracted from the sum of the poles of F,;(w). The poles of F, ;(w) are
independent of d, therefore they do not contribute to the force. Thus, we can

write
Bi? 1 Fw @) ]
Ed) = 2m H Flo) flgc F) |k BT

where the curve C is given by the imaginary axis and a semicircle on the right
side of the complex w-plane (see Fig. 3.4). The integral along the semicircle is d-
independent and does not contribute to the force. To analyze the integral along
the imaginary axis, we define w = i¢ and define %, ;,(i¢) = F,;(¢) to obtain

(3.178)

© F @) ®
—ij_ F2b :—iJ 4 nE, b(g*)df—zj InF,p(€)de.  (3.180)

Fa,b(g) df —0o
Therefore, our energy is given by
E@) = o k In F, (&) d¢ + In F,(¢) d¢ | dk, (3.181)
T Jo —00 —00
Explicitly, we have
E(2) = (e3K; + £1K3)(e3K; + £,K3) (2Kad _ 1 (3.182)
(e5K; — 1K )(e3K; — £Ks)
Ki + K3)(K; + K:
Fy(¢) = Ky + KXWy + K5) oy, (3.183)

(K1 — K3)(K; — K3)
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Imw

Re w

A\

Figure 3.4: Contour of integration C.

with g = g(i¢) and the corresponding changes in the definition of K;. With that,
one can directly compute the force

_ aE(d) __i o0 0 1 1
F(d)——w =27 o ka K3[Fa(k,§) + Fb(k,f)] dg} dk.  (3.184)

Now let us rewrite the previous equation in terms of p, defined by k? =
e3(p — 1)E%/c. From it, it follows that K3 = J&p/p and K7, = e3(£%/c*)[p* -
1+ ¢ /¢3], then the force is written as

00 00 3 J 1
F(d) = — Z 3 J pzzj §3€32 <(5331 +e1p)(e382 + €2P)e2§p\/§; B 1)
2ne” 1 0 (351 — £1p)(e382 — €2)

(14 P)s2 + D) apyet _ )_1
! ((51 —p)(sy — P)e ! dey dp.

(3.185)

which is the Lifshitz formula, obtained in 1956 by E. Lifshitz in Ref. [48].

With the general theory developed, we now present the results of Ref. [46],
where we are able to generalize the Lifshitz formula to a dielectric waveguide.
Now we consider a system with the geometry given by a waveguide along the
z-direction that has a length a in the x-direction and b in the y-direction. That is,
the waveguide is defined by the set of ordered pairs {(x, y); x € [0,a], y € [0,b]}.
The non-perfect conducting materials have dielectric constants ¢; inside and ¢,
outside the waveguide, as shown in Fig. (3.5).

Starting from Maxwell’s equations (Eq. (3.167)), we again look for stationary
mode solutions in the form of Eq. (3.168). By the translation symmetry along the
z-axis, we expect that the electric and magnetic fields only depend on coordinates
x and y, while in the z direction we expect a free plane wave term. Hence, we
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Figure 3.5: Top view of the rectangular waveguide filled with two distinct dielectrics.

look for a solution of the form

Eo(r) = (ec(x, )i + ey(x. y)j + e,(x, )k) €2, (3.186)
Bo(r) = (bx(r, )i + by, y)J + by, k) 5. (3.187)
By using the Gauss law in the electric displacement field, one finds that
P de
%x L Y ke, = 0. (3.188)
ox  dy

From the Faraday law, we have that the spatial dependence of the magnetic field
is By = —i(c/w)V x E(, and therefore we can write

p] R 9 R de 0 ~) .
By = —i (3) %= ke, )i+ (ikex - ﬁ)j + (—y - ﬁ) ez (3.189)
w ay ox ox  dy

From this equation, it follows immediately that the Gauss law for the magnetic
field is satisfied, i.e., V-B( = 0. Also, after some manipulations, we have straight-
forward that V x B, = —i(c/w)V x (V x Eq) = i(c/w)AE,. Replacing this into
Ampére’s law, we obtain the wave equation

2
AEq + - e(w)Eq = 0. (3.190)
c
By substituting Eq. (3.187) into Eq. (3.190), we find that the components of the
electric field must satisfy
(9261' (9261'

S R B T
2t > K%¢ =0, (3.191)
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where the index is i = {x,y,z} and we have defined the wave number on the
transverse section of the waveguide as

2 2 w*
K=k —c—ze(a)). (3.192)

Now we must analyze the boundary conditions. To do so, let us define the
vertical and horizontal surfaces of the dielectric. The two vertical surfaces of
the dielectric are defined by V; = {(x,y) € [0,0] x [0,b]} and V,, = {(x,y) €
[a,a] x [0, b]}, while the horizontal ones are the sets H; = {(x, y) € [0,a] x [0, 0]}
and Hy = {(x,y) € [0,a] x [b,b]}.

Let us now start with the boundary conditions for the vertical surfaces V;
and Vs.

The normal component of the electric displacement vector D must be con-
tinuous across these surfaces. Therefore, this implies the continuity of e(w) e, at
the vertical surfaces V; and V,. The continuity of the tangential components of
the electric field implies that e, and e, must also be continuous. The continuity
of the z-component, together with Eq. (3.188), implies that dye, + 9) e, must be
continuous. This final result can be satisfied if, independently, we require that
dxey and dye,, are also continuous.

The continuity of the normal component of the magnetic field indicates that
on the vertical surfaces, the term (ayez — ikey) must be continuous, which would
add the continuity condition for de,. The continuity of the tangent component
of the magnetic field in the z-direction implies that (9)e, — dye)) is continuous.
We can satisfy this condition if d,e, and dye), are continuous. The continuity
of the tangent component of the magnetic field in the y-direction indicates that
(ike, — dye,) must be continuous. We can rewrite this term by using Eq. (3.188),
as follows:

. . 1
ike, — dye, = ike, + %8x(8xex +9)ey)

= i(—kzex + 92, + a,%,yex)

2
= i (—C:—zg(a))ex +9)(9xey — ayex)> , (3.193)
where we have used the wave equation Eq. (3.191). This last condition is satisfied
since €(w)e, is already continuous.

Now turning to the boundary conditions on the horizontal surfaces H; and
H,.

The continuity of the normal component of D implies the continuity of e(w)e,,
at the horizontal surfaces of the waveguide. The continuity of the tangential
components of the electric field implies that e, and e, must also be continuous.
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The continuity of the z-component, together with Eq. (3.188), implies that d,e, +
dye, must also be continuous. This result can be satisfied if, independently, we
require that d,e, and e, are continuous on the frontier.

For the magnetic field, the continuity of the normal component at the hori-
zontal surfaces implies the continuity of (ike, — d,e,), which would be satisfied
only if d,e,. The continuity of the tangent component of the magnetic field in
the z-direction implies that (9)e, — dxey) is continuous. We can satisfy this con-
dition if, independently, dye, and dye), are continuous. The continuity of the
tangent x-component of the magnetic field on the horizontal surfaces indicates
that (9) e, —ike),) must be continuous. We can rewrite this term using Eq. (3.188),
as:

. 1 .
dye, — ikey, = —an(axex +9yey) — ike,,
1
= —%(%z,ey — kzey + 8325’y€x)

2
= i (—%s(w)ey +0,(dy e, — 8xey)) , (3.194)
where we have used the wave equation Eq. (3.191). This last condition is satisfied
since g(w)ey is already continuous on these horizontal surfaces.

From the previous discussion about the boundary conditions, we conclude
that there are some conditions that are incompatible. The origin of this prob-
lem lies in the impossibility of defining a normal and tangential component at
the corners of the rectangular waveguide. For example, the y-component of the
electric field is normal to the horizontal surfaces H; and Hy, so that e(w)e, must be
continuous at those surfaces. However, the same y-direction is tangential when
referring to the vertical surfaces V; and V, where only e, must be continuous. In
this case, we conclude that, to satisfy both conditions at the four corners of the
waveguide, (x, y) € {(0,0), (a,0), (0, ), (a, b)}, it must be that the transverse com-
ponents should vanish, i.e., e, = ey = 0. We can extend this observation and seek
stationary solutions where e,,(x, y) = 0 for all points in space, and this condition
will define our X-mode solution. Similarly, we can search for and independently
solve where e, (x, y) = 0, and these conditions will define the Y-mode.

First, let us discuss the surface stationary X-modes. For these modes, we as-
sume that the electric field only has e, and e, components, while we sete, = 0. By
using Gauss’ equation, Eq. (3.188), we note that the z-component is completely
determined by the e, component:

_idey
“kox
so that the only degree of freedom is e,. By considering the boundary condi-
tions on the waveguide surfaces, we find that for the vertical surfaces V; and V,,

(3.195)
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the components &(w)ey, dxey, and dye, must be continuous. For the horizontal
surfaces H; and Hy, the components ey, dyey, and d)e, must be continuous.

Here we note an apparent contradiction. From the continuity of the normal
component of the electric field, we have that ¢(w)e, must be continuous at the
vertical surfaces V; and V,. However, from the continuity of the tangential com-
ponent of the electric field, only e, must be continuous at the horizontal surfaces
H,; and H,. But we know that it is impossible for both e, and &(w)e, to be con-
tinuous at the interface between dielectrics with different properties. In order to
fulfill both requirements independently, we have two possibilities: these define
the mode X, solutions and the mode Xj, solutions.

For the mode X, solutions, the components &(w)ey, dxey, and de, must be
continuous. Also, it is required that, at the horizontal surfaces of the waveguide,
the transverse component of the electric field vanishes, i.e., e,(x,0) = e,(x,b) = 0
for all values 0 < x < a. The wave equation given by Eq. (3.191) can be solved
by the separation of variables method. Hence, we look for solutions of the form
ex(x,y) = f(x)g(y) such that these functions satisfy

fll(x) + gll(y) B
fx) g

By considering explicitly the boundary conditions for X,-modes and avoiding
nonphysical exponentially growing solutions, we find oscillatory solutions in the
y-direction and exponentially decaying functions in the x-direction. This means

that the X,;-modes solutions are given by e§”)(x, y) = fu(x)g,(y) with

K% =0. (3.196)

. (nrx
gn(y) = sin (7)/), (3.197)
where n = 1,2,3,.... We have a surface-decaying behavior from the waveguide
surfaces in the x-direction:
AeleX, x <0,
fo(x) = Be ™ MX 4 ceMX) 0 < x < aq, (3.198)
De A2 x> a,

where we have defined the wave numbers

2 2
Mgy = \/ (”f) +k2— C;)—zgl,z(a)). (3.199)

These wave numbers indeed depend on integer n, wave number k, and wave
frequency w. This means that Ay, = A 5(n, k, w). However, we have omitted an
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explicit dependence on these parameters to emphasize the dependence of A,
on the different dielectric constants of the materials ¢ 5.

Now, considering the continuity of e(w)e, and the derivative dye, at the ver-
tical surfaces V; and V,, we obtain the following condition in order to obtain
non-trivial solutions for the X,-modes:

2
Arg + Apey ) _ oM — . (3.200)

Fyw (n,k,w :e“A1<
X ) A&y — Mg

This equation gives us all the values of the allowed frequencies w that contribute
to the zero-point energy.

Let us now discuss the Xj-mode solutions. Now, the components e,, dyey,
and dye, must be continuous, and the transverse electric field must vanish at
the vertical surfaces of the waveguide, i.e., e,(0,y) = e,(a,y) = 0 for all values
0 < y < b. As before, we look for solutions that are exponentially decaying from
the waveguide surface. By using the separation of variables method, we note
that it must refer to oscillatory solutions in the x-direction and exponentially
decaying solutions in the y-direction. For the Xj-modes, we have solutions of

the form e§") (x,y) = f1(x)g.(y), where in this case

Ja(x) = sin <n§x> , (3.201)

wheren = 1,2,3,..., and in the y-direction, it is found an exponentially decaying
behavior:

A2V, y <0,
gn(y) =1 Be XY +C&Y, 0<y <, (3.202)
e Koy, y >b.
Here we have defined the wave numbers
nm\? w?
Kiz = <—> +k? — —281,2(0)), (3.203)
a c

where K; ; = K; 5(n, k, ). Now, considering that for the X;-modes, we need to
ensure the continuity of e,(x, y) and of 9 e.(x, ¥), we find the condition to have
non-trivial solutions for the Xj-mode as

2

_ K
k) = 0 (L2

(3.204)

This condition gives us some normal frequencies that contribute to the zero-point
energy.
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Now;, let us focus on the surface stationary Y-modes. In this case, we look for
stationary field solutions where the electric field has only e,, and e, components,
while e, = 0. By using Gauss’s law, Eq. (3.188), we see that e, is not indepen-
dent, and therefore, ey is the only degree of freedom for the Y-modes. In turn,
this component must satisfy the boundary conditions at the waveguide interface
between the dielectrics. For the vertical surfaces V; and V,: the components ey,
dxey, and 9y e, must be continuous. While for the horizontal surfaces H; and Hy:
the components e(w)e,, axey, and ayey must be continuous. In order to accom-
plish this, we need to add some supplementary conditions that define two kinds
of modes for the Y-solutions.

Analogous to the X-modes case, the mode Y, solution will be given by the
components ey, dye), and d)e,, being continuous, with the supplementary condi-
tion that the transverse component of the electric field is null at the horizontal
surfaces of the waveguide, i.e., ey(x, 0) = ey(x, b) = 0 for all values 0 < x < a.
By using these conditions and looking for non-null solutions, one obtains an
equation for the frequencies of the electromagnetic wave inside the waveguide,

2
Fy (n,k, w) = e <—A1 hl A2> —e % =, (3.205)
‘ A=Ay
Finally, for the mode Y}, solution, the components e(w)e,, Oxey, and dye, must
be continuous with the additional condition ey(O, y) = y(a, y) = 0, for all values
0 < y < b. In this case, we find that the condition that defines the frequency for
the surface modes of type Y}, is given by

2

Fyv.(n,k,w :ebK1<
e ) Kie — Koeg

where A, and K ; have been defined in Eq. (3.199) and Eq. (3.203). As in the
slab geometry case, we find that the expressions in Eq. (3.200) and Egs. (3.204-
3.206) give us all the possible values of the surface mode frequencies for the
electromagnetic field inside the dielectric cavity. With this result, we are able to
calculate the zero-point energy inside the waveguide and, consequently, analyze
the Casimir effect.

The zero-point energy can be evaluated by a similar expression to the slab
case, now considering that we have four types of surface modes. It follows that

h
Ezp = ( 4L )J Z Z (wrx(n k) + o (n, k)) (3.207)

where a)% and a)}(, are all the allowed frequencies for the X-mode and Y-mode.
Again, considering the argument principle, we interpret each sum over r as a
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sum over the poles of Fy y; therefore, it can be recast as a complex integral:

hL,\ 1 Fx(n,k, a)) Fy(n,k, co)
Ezp = (E) 27Ti J, [§ JX(n k, a)) Jy(n k, a)) ] dk,
(3.208)

where the prime denotes the derivative with respect to w. As in the slab geometry
case, we assume that the contour C is given by Fig. 3.4. In the limit of infinite
radius for the contour C, the only non-zero contribution to the complex integral
above comes from the imaginary axis o = i£, where ¢ € (400, —0). By a change
of variables, we define Fx (&) = Fx(i).

Performing an integration by parts and some manipulations, we find

hL,
Ezp = (
7T

>J 3 J [In Fx(n,k, &) + In Fy(n, k, &)] dfl dk. (3.209)

Now, we have to consider that there are two contributions for each X-mode
and Y-mode. Hence, by using explicitly the boundary equations for all the surface
modes, Eq. (3.200) and Egs. (3.204-3.206), we obtain the zero-point energy in the
dielectric waveguide as

hL © > © /1162 + /1261 2
- (B[l () -
P \8n?) ) oo ,,Zi oo M€y — Ao
2 2
+ ln (ebvl <M) — e_bvl> + ln (ebvl (M) — e_bvl>
L ) U1€2 — 26

2
+1n ea)ﬂ (M) _ _aAI
A — Ay

where we have denoted the wave numbers for imaginary frequencies by

d,gi dk, (3.210)

2 2
M= J(%ﬂ) + K2+ i—zsl,z(ig), (3.211)
and
2 2
vy = J(%) + k% + i—zfl,z(if)’ (3.212)

These variables depend on the integer n, the wave number in the z-direction,
k, and on the imaginary frequency &. It is worth noting that, in general, the
dielectric constant depends on the wave frequency.
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The Eq. (3.210) is the main result of Ref. [46]. This equation generalizes
the Lifshitz formula for a rectangular waveguide. The original Lifshitz result, in
the case of two parallel plates, can be recovered from our result if we keep one
direction of the waveguide fixed and allow the others to go to infinity. More
specifically, in this limit, we can consider that a is finite while L,,b > a. In order
to take this limit, we use the following relation:

i ()= (2) ks

and define the variable

N 2
I<i = \/kz + k2 + —2€l(l§)
C

In this manner, we can write

K + K, \2
Egl}"ltes = NJ gln ((—1 2) e?aki _ 1)
K; - K;

2
+1In ((M> e2aKy _ 1) }dk dk d. (3.213)
Kie; — Kzeq

where N = hL,b/167>. This expression is obtained by considering the limits of
the contributions of the first and fourth terms inside the integral of the general
result Eq. (3.210). This is because the dependence of the second and third terms
inside the integral in Eq. (3.210) only depends on the length b through the ex-
ponential factor, which gives us an infinite (constant) term in the limit b — oo.
In the above integral, we have that all the limits of integration are from —oo to
+oo. By considering k and k as coordinates of a two-dimensional space, defining

Kk = Vk2 + k2, and performing the angular integration, we obtain

(e K + K, \?
Egﬁgtes = NJ {KJ lln <(¥> eaky _ 1)
0 —c0 K; - K;

2
+1n ((M) ¢2aK: _ 1) l d§§ dc,  (3.214)
Kie; — Kyeq

where N = hL,b/8r%. The above equation is exactly the Lifshitz formula, for
the case of two parallel plates (separated by a finite distance a) with a medium
of dielectric constant ¢; between two media of dielectric constant ¢, in a slab
configuration.
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Let us discuss the general result given by Eq. (3.210) for the case where the
surfaces are perfect conductors. To do this, one can first rewrite the expression
for the zero-point energy in a more compact way:

Ezp = (Z%) Lo:o { i J_o:ol In (fl”lea’ll - e_a’ll) +1n (52”261’”1 - e_bvl)

n=1

+1n (%1€ — e71) + In (Yoeh — e70M) ]dg} dk,

(3.215)
where the reflectivity indices are defined as follows:
2
1,1 :(Al€2+/1261> , ,%‘2 _ <U1+Uz)2’
Mé — hae )
2 2
+ AM+A
Y, = (M) L Yy = ( L 2) . (3.216)
Ui€2 — U261 A=Ay

In the ideal case, the medium inside the waveguide is a perfect vacuum with
€1 = 1, whereas the boundaries are perfect reflecting surfaces with &, — co. From
this follows that the wave numbers inside the waveguide are given by 4; — 2©)

and v; — ) , with
2 2
A0 = \/<n—”> +k2 4+ 2,
b c?

o0 — J(E)Z e % (3.217)

a c

Outside the waveguide, one has a perfect conductor with ¢y, — oo, and conse-
quently, Ay, v, — oo. It can be shown that in this limit all the reflectivity indexes,
Eq. (3.216), tend to unity, and hence, the zero-point energy for the ideal conduct-
ing waveguide is given by

AL\ [ (= 7
E%zal = (4_712) .[_m { Z J_oo [a)t(o) +5© +1n (1 - e_z“/l(o))

n=1

+In(1- e_Zb”(O)) ] dg} dk. (3.218)

The above expression is symmetric under the permutation of the cavity length,

SO we can write beL
Egp = (2> (I(a, b) + 1(b, a)>, (3.219)
4572
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with the integral

I(a,b) = iJ' [a\ /(%)2 +p% + ln<1 _e (%) +p2ﬂ d?p, (3.220)

n=1

where we have defined the bidimensional vector g = (k,&/c) with p? = k? +
£2/c%. The ideal result of the zero-point energy given by Eq. (3.218) needs to be
regularized. Here we use dimensional regularization [74-76]. In this manner,
let us define the s-dimensional integrals

I b)-azj\/( TV e,

Kia,b)= )" J In (1 _e2(F) +p2) dp, (3.221)

n=1

from these expressions, we see that the zero-point energy Eq. (3.218) can be
recovered when s = 2, since it is clear that I(a,b) = J,(a,b) + K,(a, b). The terms
in Eq. (3.221) only depend on the modulus of the s-dimensional vector p. One can
perform the general solid angle integration with Eq. (3.112). On the other hand,
the integration over the modulus p can be realized by using the Beta function
representations

I(e)I(y)

Bley) = I'(a+y)

= J Y1+ y)"* Y dy. (3.222)
0

Finally, by using the reflection formula of the Riemann zeta function, analogous

to Eq. (3.116), one can prove that

J.(a,b) = 78/271p (s ; 2) {(s +2). (3.223)

bs—i—l

The second regularized integral K, in Eq. (3.221), can be rewritten by using
the Taylor expansion of the logarithm function as follows:

>k
In(1-x) =- Z X for x| < 1. (3.224)
k=1 k
Hence, we can write
2ma ("”)2+p2
K (a,b) = J s7le 0 dp. (3.225)
: r( /z) Zl mZ P

A more detailed application of this technique is given in Sec. 4.3
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In order to perform the integration above, we use the integral representation of
the modified Bessel function [77]

Jr (£>v J'°° tZVe—xW ”
Tv+3) 22/ Jo 2y 72

K, (xz) = (3.226)
hence, one obtains that

3s—1

00 00 s—1
27 2 1d 2n\ 2z
K@h === 2, ), M(K%“’”(W) )

n=1m=1

where we have defined A = 2mna/b. Now, by using the following recursion
formula of the modified Bessel function

(2L) K@) = 1K), (3227)

and also considering the series expansion

. 1 A n . 1 1
;KO(An) = <C+ln(a)) R > (W - an>’ (3.228)

p=1

one can obtain that

K.(a,b) = z;ﬁiér(” 1)§(s+ 1)+ %r(” 2>g(s+ 2)-2

2 \/E 2 bs+1
1 s+ 2
——r( >bZ s+ 2)b
sir \ 2 )¢ 2(a.bis )}

(3.229)

where we have used the definition of the Epstein zeta function, Eq. (3.114). Now,
putting everything together, one can recast Eq. (3.219) as

hcL 1 1

which is the Eq. (3.118). By using the variable r = a/b, one can express this
energy as
heL
e = (2 ), (3.231)

with the dimensionless function

3
E(r) = ég@) (1+r%) - ;?Zz(r, 1,4). (3.232)
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With the Casimir energy at hand, one can find the Casimir force

aEIdeal
plded - _“°C 3.233
C Py (3.233)

We can write it in terms of the adimensional variable r as

where (3 5 3
2
S0= T =S * 210 70 42

and we have defined the function z(r) given by

z(r) = i % (3.236)

m,p=1 [(mr)2 + p2]3

In Fig. 3.6, we show the graph of the Casimir energy and the Casimir force
for a perfectly conducting waveguide of rectangular cross-section. The Casimir
energy is always negative but exhibits a maximum value for some critical value r,
of the ratio between the waveguide lengths, r = a/b. Near that point, the Casimir
force is null and changes its behavior from attractive for r < r. to repulsive for
r > r.. The dependence of the attractive-repulsive nature of the Casimir force
on the length ratio of the cavity shape is well-known in the literature and is
recovered in the limit of perfect conductivity [78, 79].

We conclude this section by presenting the corrections to the zero-point en-
ergy due to the finite conductivity of the waveguide material. First, we define
some useful variables. Instead of working with the variables 4; » and v; 5, see Eq.
(3.211) and Eq. (3.212), we define the variables p and p given by

2 2
2 2
(22) i = b= (- 1), (3.237)
a C

and we define the variables s and § as
&
P-1+2=¢
&

- & N
P14+ 2=3 (3.238)
&
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Figure 3.6: Casimir energy and force in the case of a waveguide with perfect conducting
surfaces. These quantities are plotted as a function of the ratio r = a/b between the
lengths of the waveguide cross-section. The energy is measured in units of AcL,/a?,
while force units are ficL,/a®. Graph taken of Ref. [46].

With these variables, one can show that A; = [eép/c, 1y = Jeés/c, vy =
Jeép/e, and v, = [e1E5/c. Hence, the reflectivity index, Eq. (3.216), can be

rewritten as
2 ~ ~\ 2
€y + S€ +s
e%-1:(1)2 1), 5[2:<’i ),

pEs — S€ p—S5
~ - 2 2
+ +
V= (—’fgz fgl) . Y= (p S) . (3.239)
pé‘z — 8&1 p — S

We showed in the previous section that these reflectivity indexes tend to unity in
the case of a vacuum waveguide with perfect conductors on the outside: 27 5, % 2
— 1. For the case of an imperfect conducting surface, we expect a behavior that
gives us some finite corrections to the ideal perfect conducting case, such as

L12=1+AT1,, Y12 =1+AY1,. (3.240)

Considering small corrections, we can expand the zero-point energy for the im-
perfect conductor case as

EZP = Eédlsal + AEZP, (3.241)

where the ideal case is given by Eq. (3.218) or equivalently by Eq. (3.230). The
correction due to finite conductivity of the dielectric is given by the term AE,p.
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Explicitly, in this case, we assume vacuum inside the waveguide with dielectric
constant ¢; = 1, while for the outside, we consider that the dielectric constant
follows the plasma model and is given by & = ¢(w), where

2
Wp

ew)=1- (3.242)

—5
@®
and the plasma frequency w,, is a specific characteristic of the material. Consid-
ering this, we have that in terms of the imaginary frequency, &, = 1 + cof, JE2.

Since inside the waveguide we have vacuum, the wave number there is A; —
A0 see Eq. (3.217), and one can define p, such that A0 = Epo/c, and s =

NI a)f, /&2. By expanding s up to first order in £/w,, we obtain

a) 2
N 11 (3.243)
& 2w,
By using the above expansion together with Eq. (3.242) and that ¢; — 1 with
p — po, one finds the corrections to the reflectivity indexes:
4 4
AZ, ~ £ LAYy~ Po'f.
Po @p Wp

(3.244)

In a very similar way, we have that inside the waveguide, v; — v(o), and with

this, we define the variable p, such that V@ = Epo/c, and § = |[pE + colz, JE2.

Performing the expansion, one obtains the first corrections to the reflectivity

indexes: A "
AY, ~ — 3 ., AL, =~ Pot (3.245)
Po @p Wp

By considering these finite conductivity corrections, one can write the zero-point
energy correction as given by

hL,

AEp = (Q) f:o { i JZ[(A&} + 0% (1- e—zmo))—l

n=17-
o1
+ (AL, +AY) (1-e727) ] d§§ dk. (3.246)

By exploring the symmetry of this energy correction under the permutation of
the cavity lengths a and b, one can express this as a function of only the scale
a and the ratio r = a/b. Also, considering that the plasma wavelength of the
material is )lp = 2rc/ wp, We can write

u@  ueh

AEyp = hLZC)Lp (a—3 + T) . (3.247)
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where we have defined the dimensionless function

00 .00 2
1 X 1
Ur) = — J () + % + ( ) dy,
2m? ,;1 0 X ( & 2\/(nmr)? + x2 ) \1 — e=2Jr)*+x° x

(3.248)
as expected, this integral needs to be regularized. We use dimensional regular-
ization in the same manner as done previously for the case of the ideal perfect
conducting waveguide. We find that

(OO

Ulr)=- + + —z(r), 3.249
") 3272 167m3r 273 ") ( )
and one can express
hL,cA,
AEZP = 3 AE(}’), (3.250)
a

where AE(r) = U(r) + UG ).
This allows us to write the Casimir-Lifshitz energy for the dielectric waveg-
uide in the plasma model as

A
Eo = (hcfz) (E(r) + ;pAE(r)). (3.251)
a

The Casimir-Lifshitz energy is shown in Fig. (3.7a) for different values of the
plasma wavelength A, measured in units of the length a. In this figure, we note
that the effect of the finite conductivity correction is to change the concavity
of the Casimir energy for large values of r. This leads to the appearance of a
local minimum of the zero-point energy near some value r*. Near this point, the
Casimir-Lifshitz energy behaves as an effective potential well. In this case, the
Casimir force is shown in Fig. (3.7b). In that figure, a second inversion in the
attractive-repulsive nature of the Casimir force occurs at r*. This second point is
also an equilibrium point with zero Casimir force, but it corresponds to a stable
equilibrium, whereas the initial critical point, 7, is an unstable equilibrium.

3.2.3 Phonons

For future convenience, we assume Gaussian units in this section.

Before introducing interactions between the fields, let us explore a useful
theory of quasi-particles. To introduce these quasi-particles, let us start with an
ideal fluid obeying the free Euler’s equation

iv +(v-V)v= —le (3.252)
ot P



ZERO-POINT ENERGY 93

Fc

10 H

4l 5 \

(a) The final Casimir energy corrected by the (b) The final Casimir force corrected by the finite
finite dielectric properties of the material. The dielectric properties of the material. The correc-
correction depend on the plasma wave length tion depend on the plasma wave length 4, with
A, with respect to a. respect to a.

Figure 3.7: Plots for the aharmonic Casimir oscilator. The energies and forces are in
units of icL,/a? and r = a/b is the ratio between the length of the cross-section. Both
graphs have been taken of Ref. [46].

where p(x,t) is the mass density, p(x,t) is the local pressure, and v(x, ¢t) is the lo-
cal velocity. Assuming there is no loss of mass, the fluid also obeys the continuity
equation

% p=—-(pv). (3.253)

We know that small perturbations, like sound, inside liquids or solids, can
propagate without generating significant changes in the mean values of the medium.
Therefore, let us consider a small perturbation propagating in this ideal fluid.
This small perturbation is characterized by the following local variations:

p(x,t) = py+op(x,t), (3.254)
p(x,t) = pg+dp(x,t), (3.255)
v(x,t) = ov(x,t), (3.256)

where we denote by the index 0 the mean quantities that are static in time and
position-independent. Making this change of variables in Eq. (3.252), using a
Taylor expansion to first order in 1/(py +Jp), and disregarding products of small
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perturbations, i.e., contributions of order 0(52), we obtain
95y =—Lysp, (3.257)
ot Po

Now we observe that, in a fixed volume, any variation in the pressure can be
directly related to a variation in the density of the system, and that the square
root of the variation of pressure in terms of the density is the speed of sound, cs,
inside a material. Therefore, we have

d
vsp = Loys, = 2usp, (3.258)
9po
which implies that the perturbations satisfy the following equation:

2
C
9 5v=—Sysp. (3.259)
ot Po

With an analogous procedure in the continuity equation (Eq. (3.253)), we obtain
d
55/) = —poVov. (3.260)

Now let us consider that the perturbation of the velocity is a gradient of a
scalar potential, i.e., v = V@(x,t). In terms of the scalar potential, the previous
two equations become

2

0 Cs
g4 =—-Sysp, (3.261)
ot Po
%5,) = _ . (3.262)

Taking the time derivative of Eq. (3.261) and using Eq. (3.262), we get

1 9
9 _Alg=o, 3.263
(cg ot? ) ¢ ( )
and, taking the gradient of Eq. (3.262) and using Eq. (3.261), we obtain
i‘9—2—A Sp=0 (3.264)
052* ot? P ' .

Thus, ¢(x,t) and 5 p(x, t) satisfy wave equations. With this remarkable result, we
now can construct the associated Lagrangian, the Hamiltonian, then impose the
canonical commutation relation (Eq. (3.4)), and then proceed with the analogous
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procedure discussed in Sec. 3.1.1, but now we have the speed of sound instead of
the speed of light®. Following similar steps that lead us to Eq. (3.11), we obtain
the following expansion of the operator §p:

hpyw . .
op(t,x) = L (geellkr—ot) _ o pmilkr—ot) , (3.265)
p %: 2Vc§ (Ck k )
where V is some quantization volume, k = |k|, @ = ¢k, and ck,clt are the

phonon annihilation and creation operators. Therefore, we have obtained a
quantum description of the perturbations in the fluid. These collective behaviors
that we call phonons are quasi-particles and are important for many transport
properties of materials [80, 81].

The correlation function of the phonons can be directly calculated, renaming
Sp as p;’ and transitioning to the continuous momentum, we have

3.2
Cs

hpo (x’ — %)% + 3c3(t’ —t)?

" 2nes [(x — %)+ o5t — O] [es(t D) — (¢~ )]

h i ,
(D1 1) = (o1 )P (D2, D) = — - J sk I OOZGKED)
127

(3.266)

this is the same form of the correlation function for the time derivative of a mass-
less scalar field, apart from the factor p, and changing the speed of sound by the
speed of light.

Using a limit of the previous expression, Ref. [82] showed that phonons in
the vacuum state induce a correction in the cross-section of light scattering, pro-
portional to the fifth power of the light frequency. Compared to scattering by
thermal density fluctuations, it is found that this correction can be of order 0.5%
for water at room temperature and optical frequencies. Many studies have con-
sidered the previous equation and its implications. Since near a boundary, the
correlation function of the phonons resembles the behavior of the electric and
magnetic fields, it was proposed that the phononic Casimir effect [83] could be
used to search for an observable effect related to quantum fields near boundaries.
Some geometries and their effects on the correlation function have also been in-
vestigated [84].

More recently, it has become clear that the space and time average of the
phonon-phonon correlation fucntion plays a fundamental role in its understand-
ing and potential observation. Additionally, it is argued that the comprehension

8Remember that in Sec. 3.1.1 we had ¢ = 1.
*Therefore, the total density is given by p = p, + p;.
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of zero-point fluctuations may shed light on the measurement problem in quan-
tum mechanics; see Ref. [85] and the references therein.

Zero-point fluctuations sensor

As we said, light scattering can be affected by the zero-point fluctuations due
to the phonons in a material. However, such a measurement may be difficult to
realize due to the non-static behaviors of the fluctuations. Therefore, instead of
trying to “see” the fluctuations directly, we may use some kind of external sensor
to measure their effects remotely. First, let us set up our model.

A charge in the vicinity of a diluted dielectric, let’s say at some distance d
along the z-axis, can have its dynamics computed using the image method [86].
Alternatively, we can decompose the dielectric into the sum of electric dipoles.
Denoting the polarizability of one molecule by «,,, the mass density of the di-
electric by p, the mass of the molecule by m, and |dZ — x’| = r as the distance
between the charge and the dipole, the force of one dipole on the electric charge

q is given by
"\ (dz—-x’
Fiq = —2¢%a, (p(x ))( £ 6X ), (3.267)
m r

using that p(x’,t) = py + p1(x’,t), with p; given by Eq. (3.265), and integrating
over the semi-infinite dielectric V. = {(x",y’,z’)| — o0 < x’ < 00, —00 < y' <
0o, —oco < z’ < 0}, we obtain the electric force due to the diluted dielectric

2 s ’
<@> ot J o DX gy C R 4 F. (3.268)
2d> \m m Jy ré

Thus, using the phonons and the diluted dielectric approximation, we expect to
obtain a correction to the classical force due to the zero-point fluctuations. Since
this force is now an operator, we need to compute its average. However, it follows
directly that (F;) = 0, but (Ff) # 0. Therefore, the effects of the phonons are on
the root mean square of the force.

The effects of the fluctuations need to be averaged for a proper description
of the observable effect, since the time-energy uncertainty principle allows large
fluctuations in a short time. Therefore, we need to choose a sampling function,
say g(t), such that

[gdt =E[1] =1,
[ e dr = §(w), (3.269)
15(w) = 0, if w> 1,

to evaluate our time averages, denoted by E[«]. Since in Ff only p; is time-
dependent, we shall compute the time average of p;(x’,t)p;(x’,t). But first, we
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notice that we expect the momentum that contributes to the integral of p; to be
of order k > d~!. Therefore, we have a typical time scale in our system given
by 7 = d/cs. Thus, any high-momentum divergences that may appear are sup-
pressed by the time average. Then we have that

(E[piex0]) =)

2
k 2VCS

hwpy

g(w)?, (3.270)

in the continuous momentum, it follows

(E[o?x,0)]) [ olarra

_ Mo
2(27{)30_%

- e (3.271)

where we have defined C, = r fooo ©®|g(w)?dw. Therefore, we can recast the

root mean square of the force of one dipole, | /(Ff) = |F4|, as

2 |hp,C
o Po
R N =
T m g vr
_ g’ |PoCy (3.272)
3422 cg ' '

Defining 7 = ad/cg, for some a > 1, we find

2 tipyC
&g Pot-g
Fq| = . 3.273

Now, we can divide the root mean square of the force due to the phonons by the
root mean square of the classical force to compare its intensity. Thus, we have

F C
Bl_2 | A e (3.274)
[Fol 37\ pocs a’d?
In order to properly estimate the fluctuations, we need to fix a dielectric, an
electric charge, and the function g(w). Let’s say that we have an electron as
the test charge and the diluted dielectric is He*, so we still need the specifics of
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g(w). There are many choices of the sampling function that satisfy the desired
properties of Eq. (3.269). For example, if we set 7 = 1, then g = e’ /4 gives us
Cgy = 8. Instead of picking a Gaussian distribution, we choose the function that
gives the best numeric fitting from Ref. [87]. This function is given by the sum

of

Ere(0r) = 1 - 0.0378271 (wr)? — 0.000429218 (w1)* + 0.000875262 (c7)°
— 0.0000485667 (w7)® — 2.61062 x 10719 ()10 + 1.9601 x 10713 (wr)'?, (3.275)

for wt < 9.92, and
Zasy(wr) = 2.9324¢ V29T for wr > 9.92 (3.276)
If we set g(wr) = gir(wr) + Zasy(wr), we obtain C, = 9.3. Fixing a = 1, it follows

Ll 1352 x 10 Bem2 L | (3.277)
[Fol d?

For the phonon description to be valid, we need the characteristic distances of
the system to be greater than the interatomic distances of the dielectric. There-
fore, assuming that the interatomic distance is of the order of 1 A (10_8 cm), the
minimum value that we can allow for d is around 10 A. In this minimum distance,
the force due to the phonons is maximum and contributes around 10% of the to-
tal force on the charge. Even in the more conservative scenario, with d = 100 A,
the contribution of the phonon force is around 1% of the total force. Therefore,
it may have an observable effect on the charge.

Associated with these fluctuating forces due to the phonons, our electric
charge will acquire a velocity v; = |Fy|r/my, with m, being the mass of the charge.
The ratio between this velocity and the thermal velocity'? of the charge is given
by

v qzama hpg Cg

vr 3m kBquCS d3

(3.278)

Now, with the charge as an electron, the dielectric as He*atT = 4K,a =1, and

Cg = 9.3, we obtain
v
A 1476 x 107 Yem3 L, (3.279)
vr d3
Therefore, in the case of d = 10A, we have the velocity induced by the fluctua-
tions around a hundred times greater than the thermal velocity, and at d = 100

ORemember that v = / ]:_T with kg as the Boltzmann constant.
q
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A, v, is around 10 times greater than vr. The implications of this are immediate.
The electron will exhibit an effective temperature greater than the 4 K at which
the system is maintained.

In the case of a free electron near the diluted dielectric, the fluctuations may
induce a classically unexpected deviation from the z-axis. Let the force due to
the fluctuations be denoted by F; = F, +F,, where F, contains the contribution
of the force in the x and y directions. If we compute separately the root mean
square of each contribution, we can obtain the following ratio:

.l _ z (3.280)

[E,| 4
which means that the perpendicular contributions to the mean root square of the
fluctuating force are non-vanishing, raising the possibility of movement out of
the z-plane.

3.3 Interacting Fields

Up to now, we have discussed only linear equations of motion, which arise from
a Lagrangian that is at most quadratic in the field variables. Such theories are
able to describe fields in free space, without interaction with themselves or other
fields. From a particle perspective, this corresponds to the description of a free
quantum particle. In this section, we will introduce interactions into the theory,
following Refs. [22-24, 88].

Let us suppose that any interacting theory can be written as the sum of a free
Hamiltonian and an interacting part, i.e.

H = H, + Hj, (3.281)

where H is the free Hamiltonian, which we have considered so far, and Hj is the
interacting part. Now, we mimic the case of quantum mechanics and define the
evolution of an operator as

A(t) = et Ae !, (3.282)

where A = A(t = 0). This relation is called the interaction picture. The
connection with the Heisenberg picture follows directly:

A(t) = eltotgmiHE A oiHEg=1HT (3.283)

where Ay is the operator A in the Heisenberg picture. If t = 0, it follows directly
that all three pictures (Schrodinger, Heisenberg, and interaction) are the same.
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Since all pictures are linked by unitary transformations, they all have the same
expectation value.
The expansion of the scalar field given by Eq. (3.11) can be obtained by!!

P(x, 1) = et p(x)e ht, (3.284)

Before we continue with the discussion of fields, let us take a step back and
analyze the interaction picture in a state, i/, of a Hilbert space. To connect the
state (/(¢,) at time £, to the state (/(¢,) at time ¢;, we can use the interaction picture
for the states, which follows directly from the definition:

Y(t) = Ut 1)y (t), (3.285)
Formally, the solution to this equation is
U(ty, ty) = et g=tH(ti—t)g=1Holo (3.286)

Note that, in general, Hy and H do not commute. From the previous relation, it
follows directly that the operator U satisfies:

(i) U(t,tp) is unitary;

(i) U(ty.ty) =1I;
(iii) U(ty, t)U(t1,t9) = Ulta, t);
(iv) UT(ty,t1) = Uty to).

We notice that U(¢,0) is the operator that links the interaction picture and the
Heisenberg picture in Eq. (3.283). U(t, t) is called the time-evolution operator
and it satisfies

i%U(t, t0) = Hi(OU(t, 1o), (3.287)
which can be recast as the following integral equation:

t
U(t,ty) =1+ (_i),[ H; (U, ty) dt’. (3.288)

o
Now, let us pick a time t, € [ty,t]. Applying the previous reasoning, we get

t t ot
Hl(t’)dt’+(—i)2JJ Hy(t")U@”,ty)dt’ dt”,  (3.289)
17

fy Jtp

Ut ty) =1+ (—i) J

ly

UThis is just an application of the Baker-Campbell-Hausdorff relation.
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If we go further and divide the interval [£,t] into n+ 1 intervals, we are left with
the identity plus n + 1 multiple integrals, where the n-th term is given by

i1 ch fn—1
(—i)”L [ L L Hy(t;)H;(ty) ... Hi(t,) dt, dt,_q ... dty | dty, (3.290)
0 0 0

Solving this integral is quite complicated. However, we can introduce the tem-
poral ordering to simplify the computation. The temporal ordering is defined
as

T (A(X)A®Y)) = 009 — Y0)A)AY) + 0(y — x0)A(Y)A(x), (3.291)
Thus, ift; > t, > -+ > t,,, we have
I (H(t))H(ty) ... H(t,)) = H(t;)H(ty) ... H(t,). (3.292)

Let us analyze the n = 2 contribution. Changing the order of integration and
renaming the variables, we have

t ot t ety t ety
j j Hy () Hi () dty diy :j Hy () Hi(ty)dtydty = j Hy (k) Hy (4 )dbydty
to tO

) foJto fo

t ot t o t ot
-~ zj Hy(t)Hi(t)dtydty :j Hy(t)Hi(t)dbdty +J J Hy(t)Hi(t)dbdt,
N ty Ity t Ity
t ~t
- j J T (Hi () Hi () diy iy, (3.293)
ty Jto

Thus, the time-ordering allows us to rewrite the integrals over the entire interval.
Generalizing the previous result to all n, we can rewrite the perturbative series for
the time-evolution operator as the following Neumann series (see Eq. (A.165)):

(=i
|

0 t
Ut.tp) = ). . L T (H () ... Hi(t,)) dt; ... dt,. (3.294)
n=0 :

0

Formally, we can sum this series to write
ot ,
Utt)) = T (e_l Jip HiCt )dt) , (3.295)

If we are dealing with Hamiltonian density, as is usual in quantum field theory,
the integral is taken over spacetime, and the Hamiltonian is the respective den-
sity.

Here we do not discuss the properties and difficulties of the S-matrix; we limit
ourselves to saying that the elements of such a matrix are spacetime integrals of
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the expectation values of the time-ordered products of the fields. Therefore, our
observables are elements of the S-matrix. Next, we explicitly compute some time-
ordered expectation values.

Now we notice that the divergence of the energy from the last section (see
Eq. (3.66)) can be solved in another way. Let us define the normal ordering,
:o:, of the field operators by moving all annihilation operators to the right in
the frequency decomposition, Eq. (3.11). This leads us to define it as

POP(y): = P(0)P(y) — (P(x)(¥)€2, Q), (3.296)

12

equivalently, for the bosonic case'”, we have

P0)P(y): = 14_()P-_(¥): + : ()¢ (V)1 + 19 ()P (¥): + 144 ()P (¥):
$-()P-(¥) + ()P (V) + ()P (V) + ¢-(¥)p+ (x),  (3.297)

therefore, it follows that the normal-ordered Hamiltonian, : H:, has zero ex-
pected value: (:H:) = 0. This means that the normal ordering procedure is
equivalent to the subtraction of a (formally) infinite energy.

Assume that x; > y, so by direct computation, we have that

T (d(x)()) = ¢_(x0)p_(¥) + ¢_(x)p(¥) + _(x), (¥) + ¢_(¥)d(x)
+ [¢4(x), o-(V)], (3.298)

it follows that

T ($()P()) = : p()P(y): +[ps(x), p-(¥)]- (3.299)

Now let us define the contraction (or Wick contraction) as

) [9eGo, o], if x>y,

YD =1 16,06, 90 > 0. (3.300)
From direct computation, it follows that

(TGP = (PP)) = Ge(x, y), (3:301)

where Gg(x, y) is the causal propagator, given by Eq. (3.30).

Theorem 3.5. (Wick’s theorem) The time-ordered product of a set of operators
can be decomposed into the corresponding sum of contractions of the normal-
ordered products. All contractions of the operators must be considered.

2Note that for a fermionic field, we must use the anti-commutator. This leads us to a minus
sign in the last term of Eq. (3.297)
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Proof. We use mathematical induction. We have shown that it is true in the case
of the product of two operators. Therefore, we suppose that it is true for the
product of m — 1 operators. Suppose that x) > xJ > - > xY and denote by
& = ¢(x) foralli=1,2,...,m. So

97(@519{72 ---¢m) = 9192 P = ¢1(¢2 ---¢m)
= ¢y (:¢z o ¥ et hapsy i

—F= 1

—
+ 1 PaP3PsPs5Ps -t + i PaP3Padsds ...t .

+ :all triple contractions: + :all quadruple contractions: + )

= @1+ +91) Con s +.00), (3.302)
we note that ¢1_ : ¢y ... 0 = :d1_Py ... ¢, 1, while

Pre 1Po Pt = 1P Pt Prp F [Prgs P2 Pyt ]
= 1 h14Pr o Pt + P Do IP3 o P
+ ol 3] Pt o+ i hads [, P ]

= Gribp b + 1o

1

+ WWTZ?% P+ P P3Pt (3.303)

Thus, ¢4 :¢s ... ¢, generates all the single contractions that involve the field

Ll
¢1. Using the same procedure, it is direct to obtain that ¢, :¢,¢s ... : generates
all the double contractions with ¢, and so on. Therefore, we obtain that

T (P19 ... Pm) = P10 ...+ + :all possible contractions: . (3.304)

The simplest case of a non-linear theory is the so-called A¢* theory. Such a
theory is described by a Lagrangian given by

L= %8”¢(x)8y¢(x) - %mzqsz(x) + 4&!954(3() =Lo+ L. (3.305)

The interaction Hamiltonian density is H; = —L;. In order to appreciate Wick’s
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theorem, let us compute the time-ordered product of four fields:

T (PP Ce) () = = $a)POe)dCe)dxg) : + e P(er) P )poxy)
)PP )p(x) - + : e )P o))

PGP xy)

+ (o )p(x2) (3 )p(xg) :

1 1 ﬁ
+ 1P (o) P63 )p(xx4) : + = P(ox1 )Pp(362) P23 ) () :
[ — | — 1
+ 1 () P(x2)Pp (63 )p(x4) = + (o1 )P (o2 )P (63 )p(x4)
(3.306)

+

taking its expected value, it follows that

(T (P(x1)p(o2)p(3)p(x4))) = Gy, x2)Gr(2x3, x4) + Gy, x4)Gr(2x2, x3)
+ Gp(ax1, x3)Gp(x2, X4).- (3.307)

Now let us analyze the time evolution of a state with two scalar particles
propagating through the space from the point x to the point y in the interval
[0,¢], with the Lagrangian of Eq. (3.305). Up to the first order in perturbation

theory, it will be given by

U0p0I2.0) = (7 |#0) + 400 (i | @) | e.0)
= (T [P 2, Q)
+ (7[00 () [ se@pae:|o.0)

= G+ 3 () Gr(x ) [ Gtz G 21
+12 (;-l?) J Gp(x, 2)Gp(z, 2)Gp(y, 2)d*z, (3.308)

where, in the last equality, we use the fact that only fully contracted terms are
non-vanishing and the factors of 3 and 12 arise from equal contractions.

Let us suppose that we have four fixed points in space, as shown in Fig. 3.8,
then we can schematically represent Eq. (3.307) as

1 2 1 2 1 2
(T (P (x)p(x3 ) (x4))) = + I I + X (3.309)
— % 3 4 3
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Figure 3.8: Four fixed points in space.

where each line represents a Gg. Using these diagrams, Eq. (3.308) can be written
as

(U, 0)p(x)p(y)Q, Q) = (U(t, 0)p(x)p(y))
e 8“&’ (3.310)
X y X z y

again, each full line represents Gy while the intersection of four lines contains the
r
factor that encapsulates the number of ways we can obtain each diagram. These
diagrams are called Feynman diagrams, and the rules to compute them explic-
itly are called Feynman rules. In the next chapter, it will be clear that the first
diagram in Eq. (3.310) must be canceled in order to obtain physical observables.
Also, we will obtain these diagrams in the momentum representation, which has
some computational advantages.

Before finishing this section, we must comment that, mathematically, the in-
teraction picture does not exist. This result is a consequence of the so-called
Haag’s Theorem [89]. Roughly speaking, this theorem says that the basis of the
Hilbert space of an interacting theory cannot be the same, nor unitarily equiv-
alent, to the basis of the Hilbert space of the free theory. A nice review of the
history and discussions about Haag’s theorem can be found in Ref. [90].

However, it is a matter of fact the success of perturbation theory in many
models in quantum field theory. This apparent contradiction raises some in-
triguing questions about the mathematics and philosophy of quantum field the-
ory. My interpretation to reconcile these two results is as follows: we know that
every Hilbert space has an orthonormal basis (Theorem A.62), the basis of the
interacting theory in the coordinate representation can, in principle, be obtained;
it corresponds to the Hermite polynomials. However, the computations become
messy and sometimes ill-defined. Therefore, the role of perturbation theory is to
smoothly deform the basis of the free theory in order to obtain the basis of the
interacting theory.

prefactor ( ), and each loop is an integral. Each diagram carries a multiplicity



Chapter 4

Constructive Quantum Field Theory

As we have mentioned before, quantum field theory has two main formulations.
In the last chapter, we discussed the axiomatic formulation, and in this chap-
ter, we discuss constructive field theory. While there are many computational
advantages in the constructive scenario, discussions about it are common in
many books on quantum field theory [91-95]. Here, we provide a brief con-
struction of functional integrals and emphasize their computational advantages.
Unless stated otherwise, we assume the natural system of units in this chapter
(c=h=kg=1).

We begin this section with a discussion on how to obtain quantum mechanics
in the functional integral representation and then generalize the results to field
theory. We primarily follow Refs. [93, 95].

4.1 Functional Integrals and Quantum Me-
chanics

As discussed in Sec. 2.2, the quantity (i, Ay’) defines the probability amplitude
of the observable A in the state {/. Now, let us suppose that we wish to compute
the amplitude probability of a state with momenta g, at time t,, y;, (¢,), evolving
to the momenta g at time t;, ¢, (,). To compute (¢ _(t,), ¥y, (t)), we use the time
evolution operator defined in Sec. 2.2:

W, (ta): Vg, (1)) = (e H By, 1y Y, (4.1)

If we assume that the variation of the momenta from g, to g is continuous, we
can divide the interval of time [t,,#,] into N + 1 intervals with equal length ¢ and
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associate some momenta to each interval. This allows us to write

N
(Y, () Y, (1)) = j (W, () Yo, (1) W (), Vi (1)) - o ) ¥, o)) T | gy
i=1

(4.2)
Let us now examine any inner product of the integral. Using the fact thatt;, —t; =
¢, we have, to first order in ¢,

(w%ﬂ(t”l)’ l//%(ti)) - (U N ng) l//%‘+1’ l//61i+1) = —ieH) (w%ﬂ’ [//%ﬂ) ’ (4:3)

using that (%Hl’ l//qm) = 8(¢i11 —q;) and the Fourier transform of the generalized
function § [34], we find, to first order, that

Wi, Wi 1)s Y, (1)) = é J (I — ieH(q;, py))eP %1~ dp;. (4.4)

Thus, defining gy = q, and qn 11 = qp, We obtain

N

)Yy ) = 5- T

i=1

NN -
J H i€ iz [£1(g1+1-9)e™ ~H(qi.p)] dp;dg;, (4.5)
i=0

Now, taking the limit N — oo while the size of the interval [¢,,#,] remains finite,
we define [dg] = [I,er dg and [dp] = [T ,er dp/(27), and we can write

W, (t)s Ve, (8)) = f I i HPDW 414 g1 (4.6)

where ¢ represents the time derivative. Clearly, the previous integral is mean-
ingless, as the measures do not converge. To be precise, [dp] and [dq] are not
the usual Lebesgue measures; rather, they are functional measures. Functional
integrals can only be performed symbolically; however, to obtain a convergent
result, we need a well-defined function of the variables. This is not the case for
the integral in Eq. (4.6). To make this meaningful, we perform the change of
variables t — 7 = it, which allows us to obtain

(), Y, 85)) = j ¢ P H DN 410 (47)

2
Now, suppose the Hamiltonian has the form 5—m + V(Q). The functional inte-
gral over p can be evaluated! to yield

UtV @) = [ 109 aq) = [ mnliag), o)

This is just a Gaussian integral. We absorb the numerical factor into the measure.
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where L(g, ¢) is the classical Lagrangian and S is the classical % action functional
(see Egs.(2.1) and (2.3)). We note that the change of variablest — 7 = it has a
deeper meaning. This change of variables is an analytic continuation from the
Lorentzian metric of Minkowski space to the Euclidean space with the usual met-
ric. That is, its transforms the Lorentz group into the Euclidean group. Such an
analytic continuation is called Wick rotation, and in the literature, 7 is referred
to as Euclidean time or imaginary time [91, 93, 95]. If one applies the same ana-
lytic continuation to the Schrédinger equation (Eq. (2.104)) with the free-particle
Hamiltonian, one recovers the diffusion equation, which is solved by the Wiener
paths. To deal with meaningful quantities, we assume that we always use Eu-
clidean time in the context of path integrals. For this reason, we use the lettert
instead of T in this thesis.

From the classical theory, we know that the equations of motion are un-
affected if we add a total time derivative or a constant contribution to the La-
grangian. Therefore, we define the following:

Z17] = J ¢~SILtaty [+ T OGOt gq (4.9)

Now, let us compute the expectation value of the position operator Q(t). Using
the same reasoning that led to Eq. (4.6), but with t;, - —co and t;, — 400, we
obtain

() = 2, Q) = j g5 dg, (4.10)

therefore, we can write

6Z1J]

8T |j)=0
where §/8J(t) denotes the functional derivative with respect to J(¢). It follows
directly that the expectation value of any time-ordered product of Q(¢) is given
by

={Q(®)). (4.11)

8"Z[J]
8J(t) .. 8Tt jiy=0
therefore, all the expected values of products of Q are generated by Z[ J], and for
this reason, Z[ J] is sometimes called the generating functional.

Before finishing this section, we will link the generating functional with the
partition function in statistical mechanics. The partition function is defined as

Zg = Z e PEn = Z(e_ﬂH%,l//n) = Tre PH, (4.13)

(T(Q(tn) ... Q1)) = (4.12)

?This means that the variables g, g are classical variables and commute with each other.
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With the partition function, we can obtain thermal averages. For example, the
average free energy is given by

(E)g = —% In Zp, (4.14)

and the free energy
F,B = —%anﬁ. (4.15)

Now notice that if we take q, = g, and choose t,—t, = fin Eq. (4.1), and integrate
it in g, it becomes the same expression as in Eq. (4.13). For the correspondence
to be complete, we must impose that the Euclidean time is periodic with period f,
to satisfy the Kubo-Martin-Schwinger (KMS) condition, which is derived in the
context of quantum statistical mechanics [96-98]. For this reason, sometimes
we may refer to Z[J] as the partition function as well. We return to this link
between quantum fields and statistical mechanics in the next chapter.

4.2 Quantum Field Theory

As we have discussed in Sec. 3.3, the many observables of quantum field theory
are given by the expectation value of the time-ordered products of the fields.
Therefore, by an analogous construction to the preceding section, we can write

8"Z[J]

GOt w1 3) = (T (F01) G0 = o570 J®=0

(4.16)

But we know that this expected value is the n-point Green’s function®. Now, we
can express the generating functional of all Green’s functions as

o0

Z11=3 % J GOxy, ooy )]y oo J(c)d by .. dix,. (4.17)

n=0

Through derivatives of the previous equations, one can obtain the Euclidean ver-
sion of Egs. (3.307) and (3.308). It is usual to call these Green’s functions by
Schwinger functions, which are the Euclidean counterpart of the Wightman func-
tions of the previous chapter.

Analysing Egs. (3.309 - 3.310), we notice that the expectation value of the
time-ordered products gives rise to two types of diagrams: those that can be di-
vided into subdiagrams (Eq. (3.309) and the second diagram of Eq. (3.310), called

SRemember that we are in Euclidean time, therefore dp, — —idp,, and the d’Alembert opera-
tor becomes just the 4-Laplacian, [ — A.
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disconnected or reductible diagrams), and those that cannot be divided into
subdiagrams, called irreducible or connected diagrams. From the expressions
that generate such diagrams, Egs. (3.307 - 3.308), we observe that disconnected
diagrams are simple products of Green’s functions and their integrals, while
connected diagrams are the Green'’s function and the integral of the product of
Green’s functions. Therefore, disconnected diagrams can be reconstructed from
the connected ones. From a direct computation of the relation (4.16), we observe
that we obtain all (connected and disconnected) Green’s functions.
In order to obtain only the connected Green’s functions, we define

w[J]=nZ[J]. (4.18)

For practical purposes, let us fix the free scalar field; then we have a Gaussian
functional integral that can be directly evaluated:

ZlJ1= Je‘s[qﬁ’f][dgs] = J ¢~ 3 J19C(=D+m)ge-T (P d'x g 41

_ L rin(aem?) 3 [[JGO(-a+m?) " G0 |t dtx
— Ne~ 3 JUGEG 0 oldx dix (4.19)

_1 2 —-1/2
where we have used that e 2 Trin(A+m®) _ Det (—A + mz) / = N. Now, taking

the second functional derivative of W[ J] and setting J = 0, we obtain
SwiJl 1 8z[Jl 1 8z1)) 821J]
8 (x1)J (xz)

o [zm 51Ge)I () Z2[J187Ge) 870 | 1o

(T L g R
= m<J (P(x1)P(x2))) Z[0]<J (¢(X1))>Z[O]<J ($(x2)))

_ ﬁwmxlwxg)»  Gelrxy) = Gelnxy).  (4.20)

Therefore, from the second line of the last equation, we see that the disconnected
pieces are subtracted from the expected value of the time-ordered product?. We
will also verify this explicitly for the A¢* theory at the end of this chapter. The
prefactor Z71[0] can be chosen to ensure that W[0] = 1. By our previous dis-
cussion, we also know that Z[0] is the vacuum-vacuum transition; therefore, the
division by Z[0] also cancels out the contribution due to this kind of transition.

For this reason, W[ J] is called the generating functional of the connected
Green’s functions, since sometimes the connected Green’s functions are re-
ferred to as correlation functions. Thus, W[J] can also be called the generating
functional of the correlation functions.

*The free scalar theory is a special case where the only non-vanishing Green’s function is the
even ones.
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Now, if we exponentiate Eq. (4.18), we can define the following functional of

J(x): Wi
Ul 4.21
4. = 5505 @.21)
therefore, the vacuum-expectation value of any field, ¢ (not necessarily a scalar
field), can be obtained by

(9 = jim Pe(x). (4.22)

By a Legendre transform from the variables J(x) to the variables ¢.(x), we obtain

Igo(0)] = WIJ] - j JOd(x)d . (4.23)

which is the effective action. We note that, by comparing Eq. (4.18) with Eq.
(4.15), we see that W[J] is a non-thermal free energy, and comparing the last
equation with the thermodynamic internal energy (E = F + TS), we observe
a clear correspondence between them. The effective action is also called the
generating functional of the one-particle irreducible Green’s functions.
We note that in the case of (¢) = 0, the effective action and the free energy
coincide.
In the case of the free scalar field, from our definitions it follows that

Pe(x) = — J Gp(x, x")J (x")d*x’, (4.24)

then we have
(=0 +m?*)g(x) = J(x), (4.25)

which is the classical equation of motion in the presence of the source J(x). This
justifies calling ¢.(x) the classical field. In the case of the free scalar field, the
effective action is

Ml = -1 [ 4o [0+ m] o, (426

which is the action of the free field.
For interacting theories, we are unable to compute the effective action exactly,
so we use a Taylor functional expansion:

o0

Tlgel = ), j T ey, ooy 2 (1) .. e (ay)d xy dx,. (4.27)

n=1

Each coefficient I'™ is an n-point one-particle irreducible Green’s function. All
the Feynman diagrams generated by these Green’s functions are connected. In
scalar free theory, only the two-point Green’s function is non-vanishing.



112 QUANTUM FIELD THEORY

Performing a Fourier representation, we have

o0

o 1 ~ ~ ~
Plge(pl = 3, — J 8(pr +  + p TP (P1, e p)Pe(p1) - e(p)d* py ... d* .
n=0""
(4.28)
Performing a Fourier transform in the two-point Green’s function of the free
scalar field in Euclidean space (see Eq. (4.79)), we have

1
p2+m2'

G(p) = (4.29)

An expansion of the effective action in terms of the derivatives of ¢, gives us

14001 = [ [~Ver@) + Sagioige + - aP. (430)

where Vg is function of ¢,. Vs is referred to as the effective potential. It
follows directly that

LA/ R, (4.31)
e | 1=0
For the free scalar field, we have
1
V(ge) = Sm?¢e, (4.32)

which is consistent with the fact that the free scalar field has a vacuum expecta-
tion value of zero.

Supposing that the classical field is invariant under translations, we can ex-
pand the effective potential in terms of the zero-momentum Green’s function:

Verrd) = = ). ~ 4T (p? = ). (@33)
n=0"""

In the interacting case, we can see that the effective potential will be the sum of
the classical potential (coming from the Lagrangian) and radiative corrections.

One should notice that a more formal development of constructive field the-
ory is possible in terms of random functionals and by exploring the idea of
Wiener measures [99, 100]. As emphasized by A. S. Wightman in Ref. [101], the
Euclidean/constructive formulation of field theory was “almost single-handedly
carried’by K. Symanzik [102]. However, we must also emphasize the work of
K. Osterwalder and R. Schrader, who provided the necessary conditions for the
Schwinger functions of the theory to be analytically continued to the Wightman
functions [103, 104].
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We should notice that, in this chapter, we did not impose the canonical com-
mutation relation on our field variables. Within this framework, the probabil-
ities obtained from derivatives of W[ J]| (or Z[J]) are classical probabilities, in
the sense that they are not probability amplitudes. Therefore, the quantization
process occurs in the evaluation of the functional integral, and the tools of prob-
ability theory can be applied.

4.2.1 Casimir Effect

Since we claim that constructive field theory can recover the results of axiomatic
field theory, the simplest case to check is to impose some boundary conditions
on the free massless scalar field. In this case, using Eq. (4.19), we write

Z[o] = Det(—A)_%, (4.34)

however we need to give a meaning for the functional determinant of an operator
is. Since A is a self-adjoint operator, its eigenvalues, A;, are real, and by analogy
with matrices, we may define

Det(-A) = [ ] 4 (4.35)

However, the range of i is continuous; therefore, the last equation diverges. To
make sense of it, we notice that if we take the spectral zeta function defined in
Eq. (3.104), one can show that

d (o]
— = - In A;. 4.36
500, =~ X (4.36)
Thus, it follows that [105]
Z[0] = exp 1 i Inj | =exp (l igVD(s)‘ ) ) (4.37)
24 2 ds =0

So, the value of the determinant follows from the evaluation of the spectral
zeta function. To obtain the spectral zeta function, we must know the spectrum
of the theory. Let us fix the manifold as a slab geometry with one compactified
dimension, Q; = RA-1 x [0,L]. For simplicity, we assume Dirichlet boundary
conditions:

gb(xl, s Xd—15 0) = ¢(x1, ,Xd_l,L) =0. (438)
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To proceed with the calculations, we must construct the appropriate {5 (s).
It can be constructed using the appropriate spectral measure in the Riemann-
Stieltjes integral. All the information about the domain Q; and the boundary
conditions is taken into account by the spectral measure. So, in the continuous
limit, one obtains {5 (s) as:

2A11 [+ amn\2]" d-
a0 = J Z[P“(T) ] dd-1p (4.39)

n=1

where p? = p? + - + pg_l and Ay, is the area of the hypersurface in d — 1
dimensions:

d—1
Aii=T] lim L (4.40)
i=1 %

where this limit must be understood as L; > L, Vi=1,---,d — 1. From here, one
could proceed with the exact calculations of Ref. [106]; see also Ref. [107]. In
the following, we introduce in the calculation a method that we will use later.

Such a method will reproduce the result in the literature via direct calcula-
tions. To proceed, let us use that

441y = 2z p*2dp, (4.41)

and the Mellin representation of a™*,

(&)

1
a = —J 5 leteqt, 4.42
) J 4
to rewrite Eq. (4.39) as
E 2 S o0 [}
[\(s) = Agy7 2 (L_) J {ts—l Ze—mzn
(zn)d—lr(ﬂ)r(s) 7/ Jo =t
2
* —t1?
x J dp p?2exp [— (pz)]gdt. (4.43)
0 T

The integration over the continuum modes can be readily performed. Per-
forming the integral, one obtains:

I(s) = Cy(L,5) Loo £71@Dy)ar, (4.44)
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where we define the following quantities:

=_;ﬁtg__ﬁf
Cy(L,s) = DT ( I (4.45)

y(t) = i e n'T (4.46)
n=1

As one can see, the contribution of /() decreases rapidly as t — co. However,
depending on the values of s and d, singularities arise at t — 0 that need to be
addressed. As discussed in Ref. [106], the singularity can be removed by assum-
ing the system is confined to a large but finite box, which introduces an infrared
cutoff in the p-integrals above. Rather than introducing an explicit infrared cut-
off, we extract the finite part of the integral using the relations between ¢/(¢) and
the weight 1/2 modular form given in Eq. (3.80).
Following similar steps as in Eq. (3.81), we obtain

Cd(L, S)
2

{a(s) = [211 4(s) + L a(s) — I3 4(5)] , (4.47)

with I 4, ... being the integrals:

r° 4

LaGs)= | 27 y(@de, (4.48)
JO
(~ 4 51

L 4(s) = t2 dt, and, (4.49)
JO
[ d_ 3

Lg(s)=| tz " 2dt (4.50)
Jo

The integral I; 4(s) is convergent for any values of s and d, while I, 4(s) diverges
for Re(2s) < d and L 4(s) diverges for Re(2s) < d — 1. As seen in Eq. (4.45), we
have that Cy(L,s) — 0 as s — 0, implying that

da(s) dcy(L,s)
gcAlss 0 :% dds : o [21,4(0) + L,4(0) — I 4(0)] . (4.51)

The integral I; 4(0) is finite, positive definite, and independent of the plate
separation L; it depends only on the dimension d and can be performed ana-
lytically. On the other hand, the divergent integrals I, ;(0) and I 4(0) are inde-
pendent of the plate separation and can be dropped considering that we have a
large box, which implies a large but finite wavelength, as argued in Ref. [106]
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and mentioned above. These divergences would not arise if my # 0. After some
simplifications, one obtains that

doa(s)| Ay Al 1 e 1
- d-1 h,4(0) = d—19,7 £4 4
ds =0 (2L) Ly 127 ;= n
Ay d
_ Aaa {D) (4.52)
(2L)4-1 2r¢

Using that F = E — TS and the fact that T = 0 in our case, one concludes that

d
ZeeFoefopo 13O (4.53)
2 ds |
Now we can define the energy density and find that
d
E%ugz___i__gil (4.54)
Ad— 2(2L)4"1 27

which evidently has the correct sign and power law with L, agreeing with previ-
ous results.
For d = 3, Eq. (4.54) results in

{(3)
167L2’

e(L) = — (4.55)

which is the “universal” amplitude of the Goldstone modes [108]. The reason for
the quotation marks will become clear in a further application. The Casimir force
per unit of area (Casimir pressure) can be calculated as the negative derivative
with respect to L of Eq. (4.54).

4.3 Interacting Fields
One of the biggest advantages of the constructive approach to quantum fields is

its applicability to interacting theories. Taking a theory in which the Lagrangian
allows decomposition into free and interacting parts, that is,

SlLl = | L@t = | L@+ | Lty =siltol + sl @50)
we obtain that the partition function with the source J is given by

217 = J e=S=SrH] J@Pd'x (4] (4.57)
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Since the functional integral is just a formal integration, the non-Gaussian case
(interacting theories) cannot be evaluated directly. However, we can construct a
perturbation theory similar to that of Sec. 3.3.

We know that

5 =14 Y 0 = 1= [ gt s 3 [LGEILGON Sty + ..
(4.58)

which implies that
Z17] = J [e—so+f JEGdx _ J Li(g(x)) =St TG x gy (4.59)

+ | LOEILGON e ST sttty + | [4g]. (@60

Now let us suppose that any interaction of the field is given by a polynomial in
the field variable, that is,

N

Li($) = P($) = D, cudp™ (), (4.61)

n=1

then Eq. (4.59) turns into a series of expectation values of products of ¢°>. How-
ever, we know that such expectation values can be generated by applying func-
tional derivatives over the partition function. Therefore, we can represent each
¢(x) of L; as §/5 J(x), so the previous equation becomes

N

L (%) =3 cn% =P (%). (4.62)

n=1
Since that now the interacting Lagrangian is independent of the field vari-
able, it can be taken out of the functional integral. Resumming the series of
polynomials of L; as §/5 J(x), we can rewrite Eq. (4.59) as
5

Z[J] = e‘P<W)ZoUL (4.63)

where Z| J] is the partition function of the free theory. Note that if we consider
an interaction given by ¢,¢""?(x), where ¢, < 1, we can truncate the exponential
series to a finite order for an approximation, as is the case in many theories.
Also, it is worth noting that if we wish to deal with the interaction of two or
more different fields, we must introduce a source J for each field, and then the
polynomial interaction will be a product of derivatives with respect to different
sources.

Note that contributions of ¢(x) and ¢?(x) can be absorbed into the free Lagrangian by a
redefinition of variables.
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4.3.1 The A¢* Theory

Let us apply the previous construction to the simplest case of an interacting the-
ory, the 1¢* theory. The Euclidean action of such a theory is given by

S= J [¢(x)(—A + mA)p(x) + 4i!¢4(x)] dPx. (4.64)

Instead of dealing with a four-dimensional Euclidean space, let us consider the
D-dimensional case.

Let us start the pertubative computation at first order in A. The partition
function of the interacting theory is given by

4
201= 2004 [ (505 2L (465)

Using Eq. (4.19), the derivative with respect to J(x) follows directly and reads

8Zy[J]
5] (x)

= —JGF(X/,X)](X)dXZO[]], (466)

which allows us to express the first-order correction to the partition function as
follows:

Z21=2% m{l— 2 [[3 Gt 00+ 660 GG 106G 1) T T

+JGF(x, YGE(x, y2)Gr(x, y3)Gr(x, y) J(y1) T (v2) ) (v3) ] (ya)dyy dyzdysdy4] dxg-
(4.67)

Now, we remember that the correlation functions of the model are given by func-
tional derivatives of the partition function, setting J = 0 (see Eq. (4.16)). Defining
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Zo[0] = 1, we have

GO =z[0]=1- £ J (Ge(x, x))° dx, (4.68)
(1) — 52[]] —
G(x) R ’]:O , (4.69)
52
6O (xy, ) = ﬁf]](]xz) =) - 224 1 G 006 00 )
(4.70)
3) B §*Z[]]
G ) = e e TG (*71)

§'z1J]
8 (1) J (62) ] (63) ] (34) | 7=0
= Gp(x1, x2)Gr(x3, X4), +Gr(ox1, x3)Gp(2x2, x4) + G271, x4)Gp(xg, X3)

_ 1 [GF(xl,xz) J Gg(3, x)Gg(x, x)Gp(x, x4 )dx + all permutations of {1, 2, 3, 4}

GH (xy, x3, X3, %4) =

2“ JGF<x1,x>GF<x2,x)GF(xg,x>GF<x4,x>dx (4.72)

® Notice also that the product G(O)G(z)(xl, Xy) is also a Green’s function. There-
fore, we have that Eq. (4.70) corresponds to the first and second contributions of
Eq. (3.310) and that the product G(O)G(Z)(xl, Xy), at first order in 4, is the second
contribution. Thus, such a contribution is not a new one. Also, the second line
of Eq. (4.72) is the same as Eq. (3.309). The diagrammatic representation of the
previous equations follows just like in Eqgs. (3.309 - 3.310).

As we have argued before, not all Green’s functions obtained by the deriva-
tives of Z[ J] are independent. Therefore, we must now compute the independent
ones up to first order. For that, we must take the derivatives of the generating
functional of connected Green’s functions, which is the free energy (Eq. (4.18)).

SRemember that Gg(x, y) = Gp(y, x).
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Up to first order in A, we obtain

6 =wiol =tn[1- 2 [ (G 0" x| = 2 [ et 00 ax, (479

Wl :[ 1 8zl 1 871 821
SJ(x) ] j=0  LZITT16T ()T () Z2[J16(x1) 8T (x2) | =g

= ﬁG(z)(xl,xz) + ﬁ(}(l)(xl)ﬁ(}(l)(xz)

= G(z)(xl, x7) = Gp(xq, %) — ﬁ J Gr(x1, x)Gp(x, x)Gp(x, xp)dx.

(4.74)

G (xy,x) =

For G(4), the calculations become messy, with a total of 15 contributions to be
evaluated. After taking the limit J — 0, the nonvanishing contributions are

@ S*wiJl @ @)
GO (1. %, 33, x4) = = ——2 6@ (x,. )G (x,
¢ G, 25, 34) 5J(x1)J(xz)J(X3)J(X4) Z (1, 2)G (5, 14)
[ ] x3)G( )(xz: [ ] x4)G(z)(x2,x3)
Zzl[ ]G( (xl,xz,x3,x4). (475)
Up to order A, it becomes
24/1

j GeGxr, %)Ge(y, %G5, X)Gp(eg, ). (4.76)

4
Gé)(xl,xg,x3,x4) = 41

There are significant computational advantages to working with Green’s func-
tions in momentum space. Thus, similarly to Eq. (4.28), we can write

CD(py, ..., py) = JG(”)(xl, e x)e Pt d dx, (4.77)

(2r )D

Since Green’s functions in coordinate space are invariant under translations, the
sum of the momenta must vanish, i.e., ), p, = 0. In momentum space, it follows
that

G (p) =

1 A1 J ! ! L k. (4.78)

Prm? 200l ) pPmP i +m? p?+m?

In momentum space, the Feynman rules for constructing diagrams are as
follows: for the propagator, we have

= (4.79)
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>< = —4&! (4.80)

It follows that at each vertex, the total momentum must be zero. Additionally,
one must integrate each closed loop with the factor (27)P. Therefore, we can
recast the two-point correlation function at order A as

GAp)= —+ Q (4.81)

From the definition of the classical field, Eq. (4.21), we obtain

and each vertex is given by

$o(x) = J Gp(x, y1)J(y1)dy + % I Gr(x, y1)Gr(y1, y1)Gr (1, ¥2)J (¥2)dy1 dys

- % J Gr(x, yDGE(Y1, ¥2)Gr (Y1, ¥3)Gr (V1> y4) T (12)J (¥3) ] (va)dy1dyndysdys,
(4.82)

Thus, the generating functional of the one-particle irreducible Green’s function
at first order in A7, given by Eq. (4.23), is

Tl = InN = 2 1GeCx 01 dx = 1 [ -+ mdg )
A A
-2 [ 16ete 0P - £ [ 18601, (49

which results in the following one-particle irreducible Green’s function up to
order A in momentum space:

5(2) 0y 2 2 A1 1
I@(p)=p*+m 2(2n)DJk2+m2dk’ (4.84)

4
£4) (Z b= o) — 2 (4.85)
i=1

If we compare Eq. (4.84) with Eq. (4.78), we notice that the difference is that
the one-particle irreducible Green’s function does not contain the propagator of
the external (out of any loop) legs. For this reason, some textbooks state that
the effective action “amputates” the external legs of the Feynman diagrams. In

’Solve Eq. (4.82) perturbatively in J(x) and then perform some integration by parts. Use the
result in Eq. (4.23).
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the literature, it is common to use the generating functional of the connected
correlation function to build the theory and then ignore the external legs, without
explicitly calculating the effective action. We follow this same procedure, and for
this reason, we use G™(p) to refer to the n-point one-particle irreducible Green’s
function, without distinguishing it from I,

Each diagram has a symmetry factor, which corresponds to the number of
ways one can construct the same diagram. Consider, for example, the second
diagram of the two-point Green’s function in Eq. (4.82). This diagram, known
as a tadpole, is directly constructed from the vertex. Consider the vertex of Eq.
(5.29) and label each leg from one to four, as in Eq. (3.309). To construct a two-
point diagram, we must fix two legs. First, we have four legs to choose from; let
us fix leg 4. Then, we need to fix one of the three remaining legs—say, leg 3. To
complete the tadpole, we must link the remaining legs to each other, connecting
1 to 2. Multiplying all these choices, we obtain 4 x 3 x 1 = 12. Dividing by the 4!
factor from the Feynman rule for the vertex, we obtain the factor 1/2 present in
Eq. (4.78). For a complete discussion on symmetry factors, see Ref. [109].

If now we wish to compute the second-order contribution in A for the two-
point function, we must ask ourselves how many ways we can link the legs of
two vertices, keeping two of them fixed. The result of this is two diagrams:

and -@- (4.86)

This demonstrates the remarkable usefulness of the diagrammatic representation:
we are able to construct all the perturbation contributions without getting lost
in a sea of functional derivatives and series expansions.

An inspection of Eq. (4.84) reveals that the tadpole contribution may diverge.
In fact, we have:

S ? A1 1 r’ pP!
== d —dp, 4.87
Z(Zﬁ)DJp2+m2 b= o p>+m? P (4.87)

and it follows that, depending on the dimension D, it may diverge as p — oo.
Such a divergence is called ultraviolet. If we have the massless scalar field (m? =
0), it would also diverge at p = 0; this divergence is called infrared. There are
many ways to regularize this algebraic divergence, for example, see Sec. A.4.
One can also use a cut-off in the integral. Another way to deal with such a
divergence is using dimensional regularization [74]. As a matter of fact, we have
already used it to regularize Eq. (3.221); here we just present it in more detail for
those who are not familiar with this technique. Using a polar representation of
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the last integral, we can write:

[o0]

I(D) = 1 J 1 dPp = 1 J P> dp, (4.88)
@mP ) p* +m? (4m)P/21(D/2) Jo p* + m?

so0, using the Beta function (see Eq. (3.222)), defining p? = ym?, we have:

_ (mz)D/2—1 - D/2—1 -1
I(D) = @D D) JO y (1+y) 'dy
_ (m»P/' 1(D/2)r(1 - D/2)
"~ (4m)P/21(D/2) (1)
~ (mZ)D/Z—l
= I(1-D/2), (4.89)

From this equation, we see that this diagram diverges for even dimensions. In
order to regularize it, let us suppose that D is even. Then, the dimensional reg-
ularization is applied by considering D — D — 2¢. To avoid changing the units
of the diagram, we also need to simultaneously make A — Au%, where y has the
same units as mass and is called the renormalization parameter. It follows

that:
Au€ (m2)P/2—e-1
Q: p(m) T(1-D/2 +£). (4.90)

2 (4”)D/2—e

From the last result, we may fix a number of dimensions and then expand the
expression around ¢ = 0. For concreteness, let us take D = 2. Then it follows:

2
Q = A + A lln(4ﬂ) +1n (,u_) —YE+ O(S)] . (4.91)
8me 8 m?

where the yg = 0.577216 is the Euler-Mascheroni constant. We note that, as
expected, the diagram diverges if ¢ = 0. However, such a divergence can be
renormalized if we add to the theory a contribution that generates a term in

the 2-point function of the form —#. Such an additional contribution is called
counterterms. Using the counterterms, we can also eliminate constants like

% In 47 and yg. Therefore, the renormalized tadpole is given by:

2
Q - ém(%) (4.92)
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This procedure shares many similarities with the one discussed in Sec. A.4. Both
methods can be used for the same type of divergences (algebraic), and in both
cases, we subtract the divergences term-by-term.

The divergences and the renormalization procedure are consequences of field
theory. Different theories are classified in terms of their divergences and, there-
fore, by the possibility of renormalization. Analyzing the units of the model
(we are in natural units, so we use length as the fundamental unit), a model in
which the coupling constant is some negative power of L is said to be super-
renormalizable. If the units of the coupling constant are L°, the theory is said
to be renormalizable, and if the units of the coupling constant are a positive
power of length, the theory is said to be non-renormalizable. It is straightfor-
ward to verify that the A¢* theory is super-renormalizable in 2 and 3 dimensions,
renormalizable in 4 dimensions, and non-renormalizable for D > 4 dimensions.
Detailed calculations of second-order diagrams in A¢* theory can be found in Ref.
[110].

As one can observe, the finite result for the tadpole is given with a depen-
dence on the renormalization parameter. While observables are given by the
Green’s function of the theory, such objects should not depend on this parame-
ter once it is introduced “by hand”. Therefore, we must have:

dI‘(”)(m2 A 1)
p——r

=0, 4.93
i (4.93)
or, equivalently:
orm ar"
p—— +y(m®, A)— p(m? A= (4.94)
o
where:
oA
p(m?, /1)—/1—# (4.95)
2
y(m?, 2) =y (4.96)
ou

The Eq. (4.94) is known as the Callan-Symanzik equation [111-113]. One way
to interpret the parameter y is that it fixes the energy scale of the theory. With
this interpretation in mind and using the f-function given in Eq. (4.95), D. Gross,
F. Wilczek, and H. Politzer proved that quantum chromodynamics (QCD) has a
regime of high energies in which it is perturbatively well-behaved. Nowadays,
this result is known as asymptotic freedom [114, 115].
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We must emphasize that even in renormalizable theories, there can be high
energy regimes where the theory is not perturbatively well-behaved. Such diver-
gent behavior is known as a Landau pole, and it has been found in various cases,
e.g., quantum electrodynamics (QED) [116] and in the A¢* theory [117].

A lot more can be discussed in the context of interacting theories and in the
constructive approach. However, to keep the chapter as brief as possible, we
leave these discussions to the references cited at the beginning of this chapter.



Chapter 5

Disordered Fields Theory

The statistical physics is one of the most successful theories in physics and it re-
lies on the average treatment of systems, instead of dealing with the properties of
every single component of it. The main achievement of statistical physics is be-
ginning with a microscopic description of a system, given by some Hamiltonian,
and being able to predict its macroscopic behavior. Among the successful pre-
dictions of statistical physics, phase transitions are one of the most important.
However, even in the simplest model with a phase transition, the exact treat-
ment of it can be cumbersome, and in some cases, impossible. Therefore, a way
to approximate its behavior is necessary. It is in this scenario that the Landau
theory of phase transitions emerges [118]. Furthermore, the Landau theory also
allows us to build a bridge between the discrete models of traditional statistical
mechanics and the constructive approach of quantum field theory.

After advancing our comprehension about homogeneous systems, the sta-
tistical physicists turned their attention to systems with impurities, as such im-
purities introduce many difficulties in the physical reasoning and mathematical
framework of the theory.

In this chapter, we investigate the long-known connection between statisti-
cal physics systems and quantum field theory [80]. After that, we introduce dis-
ordered systems and the distributional zeta function method to deal with such
systems, and then we discuss some original results. Here we follow Ref. [119-
121]. Unless stated otherwise, we have a natural system of units, # = ¢ = kg = 1.

5.1 Statistical Field Theory

Our aim in this section is to tighten the relation between constructive field theory
and statistical field theory more than we have briefly discussed at the end of Sec
4.1. We assume that the reader is familiar with the basic results and properties
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of statistical mechanics and take their validity as given.

We will show, with some details, how to start with the Ising model and
obtain its corresponding quantum field theory. The Ising model is given by spins
s; = =1 located on a lattice with N sites. Its Hamiltonian is written as

H=- Z Si]iij — Z hisi’ (51)
i,j i

where h; is an external magnetic field at site i and Jj; is the coupling between the
spins. If ] is positive, we have a ferromagnetic coupling. If ] is negative, we have
an antiferromagnetic coupling.

The probability of a given configuration s; is given by the Boltzmann weight

P(s) = e PH, (5.2)

where = T™!, and follows that the partition function is

zZ=Y elH, (5.3)

where the sum is taken over all configurations. From the usual statistical mechan-
ics, we know that all the statistical averages (correlation functions) are obtained
from derivatives of the partition function.

Now, consider the following Gaussian integral:

00 N
J e—i Yy Vi Ut X st H dys = Ceii $iVisS;. (5.4)
—oo i=1

therefore, the partition function of the Ising model can be rewritten as

N ) N
5 Z e—ﬂ(Zi,j s st hisi) _ Z J_OO e_4_1ﬂ i Uiy i Wi Bh)si H dy;
S ¥ ]

XS G BR UBh) s T
= e Y v eVisi dys, (5.5)
J.. Zen ]

Si 1

we note that, since the spins s; are independent, the sum over the configurations
can be performed:

3 etisi = ]2 cosh ) = CeZilnteoshh) (5.6)

S; 1
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Defining ¢; = % ]U_ll//l, we can write

N
7 - Ceéhi]iflhj J P Y (=410 + X In cosh(2 )+ X; hidy H dg;, (5.7)
i=1
where C is a normalization constant.

As one can expect, we wish to rewrite the argument of the exponential as
some Lagrangian. For that, we write the following Fourier representations:

1 —ipx; 58
b= 7= ; e PXig(p) (5.8)
b:%szkwﬂm (5.9)
p
In terms of the Fourier representation, and using a series expansion for In cosh x =
%xz - %x‘*, we have that
bty = 3, 9@)I(P)P(—p) (5.10)
P
> Incosh(2J¢) = 2 ) $(p)J(p)J(—p)p(—p) — % > PP THP) T (—p)d(—p).
i P p

(5.11)

Now expand the J(p) up to second order in p = |p|:
J(p) = J(1 - p*p?), (5.12)

where, assuming that we have only first-neighborhood interactions, J = y S,
and y is the number of nearest neighbors. Now, for the p? term in the first-
neighborhood approximation, we get

Jp*p? = Ja*p?, (5.13)

therefore, p = a, the lattice spacing constant. This results in the following La-
grangian:

BL= B> ¢(P)J[(1-2))+ (4] — Da*p?] $(-p)
P

_ % Z ¢2(P)J4(1 _ 4a2p2)¢2(_p)
P

= PLo — Ly, (5.14)
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analyzing only the free Lagrangian, we see that for T = 2y J,, the theory becomes
unstable. Therefore, if we expand each contribution of the free Lagrangian in
powers of T to first order, we get

T -T
1-2] = 9 (5.15)
Ty
4] —1=1, (5.16)
1
pI =7 (5.17)
Therefore, it follows that
1 T —T
Plo =1 360 (T2 + @) 6 (5.18
P 0
performing the change of variables m? = a—lz T;TO and ¢ — a®¢ we obtain
0
1
BLo = B D 9(@) (¢ +m?) $(-p), (5.19)
P

It is straightforward to note that, up to the f§ pre-factor, it is a momentum repre-
sentation of the following Lagrangian

Lo = %gb(x) (A +m?) ¢(x), (5.20)

which is the Euclidean Lagrangian of the free scalar theory. To deal with the
interacting Lagrangian

b= 2 #@1a - satpp) 621
p

we notice that the contribution of the momenta arises from a Laplacian acting
over the ¢(x), and since we are interested in using J* as a perturbative parameter,
the contribution J*A¢(x) is subleading and therefore can be disregarded. So by
the change of variables % Jt = A/4!, we have that

A
PL = =p;"(0). (5.22)
Then it follows that the partition function can be written as

Z[h] = Je—ﬂf[%¢(x)(A+m2)¢(x)+%¢4(x)]dx+J h(x)$(x)dx [d¢] (5.23)
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which, up to the factor of f3, is the partition function of the A¢* theory discussed
in Sec. 3.3 and in Sec.4.3.1. We note that, as expected, the resulting Lagrangian
has the same symmetries as the Ising model, that is, the symmetry Z,. This
field theoretical description of the statistical/condensed matter systems is usually
referred to as the soft spin approach or soft model.

By a direct computation, we have that (¢) = 0, and comparing this to the re-
sults of the Ising model, we see that the field variable, in this case, represents the
magnetization of the system, and its expected value going to zero corresponds
to a system without persistent magnetization. For a system that presents persis-
tent magnetization, we have that (¢) # 0, which means that the ground state
(vacuum) of the theory must be shifted in order to ensure that we have a min-
imum value. Such a situation is achieved if we have m?> < 0. Then we have
(¢) = v = \J-m?/A as the ground state. Defining a new variable, ¢ = ¢ — v,
which has zero expected value, we obtain an effective m% = 31v% + m?, and the
interacting Lagrangian is modified to

A
I = —p*(0) + 2040, (5.24)

where we defined p, = 4!Av. Such a procedure is called spontaneous symme-
try breaking. We notice that both theories, with and without persistent magne-
tization, have the same Z, symmetry. The difference is that to ensure we have
the ground state, one of the field variables must be shifted. The change in the
potential of the theory can be verified in the Figs. 5.1.

N

<$>=0, M0 <¢>=v, m*<0
(a) Sketch of the potential for (b) Sketch of the potential for
m? > 0 and (@) = 0. m? < 0 and (¢) = v.

Figure 5.1: Two potentials, without and with persistent magnetization.

One may be puzzled by the previous fact, since we have shown that all rep-
resentations of quantum systems should be unitarily equivalent to the canonical
commutation relations, and, therefore, the vacuum should be the same (see the
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Stone-von Neumann theorem, theorem 2.18). But the previous two vacuums are
not the same and are not unitarily equivalent, and we are talking about the same
system in different starting points (without and with persistent magnetization).
However, we remark that the Stone-von Neumann theorem holds only in a fi-
nite number of dimensions of the phase space. In quantum field theory, we deal
with an infinite number of degrees of freedom, which leads us to an infinite-
dimensional phase space, and the Stone-von Neumann theorem cannot be used
to ensure the uniqueness of the vacuum (up to unitary transformations).

The many possible vacuums of quantum fields are an interesting feature that
leads to different fascinating phenomena. Among them are: phase transitions,
the Unruh effect [122] (see also, Ref. [123]), and Hawking radiation [124].

Before we end this section, we note that if we have a bidimensional Heisen-
berg spin S = {sy, s, } instead of the Ising spin in Eq. (5.1), the same steps can be
performed to obtain the following soft version action:

2
o) = | [Z BEND+my+ A0+ P dx. (.29
i=1 :

This model is invariant under the group O(2), that is, it is invariant under bidi-
mensional rotations. Like in the Ising model, we can have the case of persistent
magnetization. Performing the same steps as before, assuming m? < 0 and re-
naming the variables as ¢ = ¢; — v, v = 4!m? /A, m2, ¢ = ¢, and p = v, we
obtain

560.) = [ | 009 (-84 ) 00+ 2 (4700 + 200

+ ) MY + Lo (0P00 + ¢2<x>)]dx. (5.26)

We readily notice that the spontaneous symmetry breaking introduces a massless
field, ¢, in our description. Such a field is commonly referred to as the Goldstone
field or Goldstone modes. In general, one can prove that the breaking of a
continuous symmetry introduces a Goldstone field in the theory. Such a result is
known as the Goldstone theorem.

5.1.1 Second order phase transition in the A¢* theory

As we know, a second-order phase transition in a system is characterized by
the divergence of the free energy or by its on-shell 2-point correlation function
(sometimes referred just as mass). In the case of the Ising or Heisenberg model, it
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is the magnetization, becoming zero or increasing smoothly from zero in terms of
some parameter. If this parameter has a thermodynamical origin (temperature,
pressure, ...), we have a thermal phase transition. However, we can also have
phase transitions due to non-thermal parameters, like the self-interaction of a
theory raised by quantum fluctuations, see for example Refs. [110, 125, 126] and
the references therein.

The usual phase transitons are closely related to the symmetries of a system.
For example, consider a ferromagnet system without any persistent magnetiza-
tion at some temperature T. Such a system is invariant under all rotations in
the space and, therefore, is invariant under the group 0(3). If we slowly lower
the temperature, the spins of the system start to align, generating a non-zero
magnetization. This magnetized system is invariant under rotations around the
magnetization axis, that is, it is invariant under the group 0(2), and we say that a
symmetry breaking occurs. Conversely, if we start with a system with persistent
magnetization and then raise the temperature, the magnetization becomes zero
and we have restored the symmetry.

If we wish to obtain the filed variables depending on the temperatrure, we
must recover the Euclidean time explicitly, ¢(x, 7), also spliting the laplacian to
separate the Euclidean time, Ap, — 92/9t? + Ap_; = 9%/9r? + A, and impose
the KMS condition over the field variables, that is ¢(x, 7 + ) = ¢(x, 7). For more
details about field theory in finte temperature scenario, see Ref. [127]. With
this explicit dependence, we write the action functional, in a slightly different
notation, as

B 2
S(¢) = %L J [¢(T, x)(—;? -A+ p§>¢(r, X) + %¢4(x, T)] dxdr. (5.27)

Now we suppose that the system has some persistent magnetization making
the 2 — — i, therefore we can use the end of preceeding section to obtain the

theory around the correct ground state, v = /i /A. Therefore, the shifted action
reads

B 2
1 ) A
S(p) = —J J o(x, 1) —— A+ m3 Jo(x,7) — po> + Zo*(x,7)| dxdr.
2Jo or 2
(5.28)
where py = 2Av, m§ = 30v? — i3, and ¢ = ¢ — v.
As we have seen, this introduces a new interacting contribution to the action.

Applying the same structure constructed in the last chapter (see Sec. 4.3.1), this
new interaction generates a new vertex in the Feynman diagrams, given by

{ = po. (5.29)
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then, the correlation functions of the theory include the contribution of this new
vertex. Diagrammatically, at one loop level, the mass of the theory is given by

GAp?=-m¥)=mh= ——+ Q +—CO— (5.30)

Instead of using the dimensional regularization in these diagrams, we use the
analytic regularization, introduced in Sec. 3.2.1 and also applied in Sec. 4.2.1.
For that, let us write

mi(B) = mé + Smé + 6 Am3(B) + 18 Am2(B), (5.31)

where we denote Aml(ﬁ) and Am% (p) as the contributions of the tadpole and the
self-energy diagram of Eq. (5.30), 6 and 18 are symmetry factors, and m3 is a
d-dependent mass counterterm. We define d = D —1 and omit the d-dependence
in the Am(f) functions to simplify the notation. Let us first discuss the tadpole
contribution.

We note that now one of the dimensions is periodic due to the KMS con-
dition; therefore, the spectrum in this dimension will be discrete. This discrete
spectrum is called Matsubara frequencies. Different procedures are used in the
literature to evaluate the Matsubara sum of the tadpole. One can use a method
where the Matsubara frequency sum separates into temperature-independent
and temperature-dependent parts. An alternative procedure is to use a mix of
dimensional and analytic regularization [74, 128-130]. Here we will use an ana-
lytic regularization procedure, where the number of dimensions of the space is
not treated as a complex continuous variable [131]. A detailed study comparing
an analytic regularization procedure and a cut-off method in the Casimir effect
can be found in Refs. [47, 132-134]. The analytic regularization procedure aims
to replace divergent integrals with analytic functions of certain regularization
parameters.

We denote the thermal contribution from the tadpole, after analytic contin-
uation, by Am#(B, 1, s)|s—1. By performing the angular part of the integral over
the continuous momenta of the non-compact d-dimensional space, for s € C, the
quantity Am#() can be written as Am?(, y, s), where

)

Aml(ﬂ A, s) B * d 1 Z

5.32
2d+1ﬂ.§+1r(d) neZz ( )
2

mn? (p +m0>

with A(p, s) = Ag(#?)*~!, where y has mass dimension. The function Am?(, , s)
is defined in the region Where the above integral converges, R(s) > s,.
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The self-energy contribution to the mass, Amg(ﬂ), can be obtained from the
tadpole as:

p*(p, )
A(u, s)
where p(1, s) = po(u?)* 2. Therefore, one can focus on the Am2(f, 1, s) function.

After a Mellin transform and reordering of some quantities, we can write

A (B, 1, ) as:

A, s) 1 =1 d—1 ~ -1 —(mn®+ri4md p* /an)t
1 s 7T RS +re4+mg T)tdr | d
Am3(B, p, s)= —ZnF( g)l“(s)( ﬁ) Jo [r Jo t ,g:ze t|dr,

ami(p) = |-G g (533)

(5.34)

where we made the change of variable r? = p2p?/4n. The integral over r is
straightforward. Using the ©-function defined on Eq. (3.79), we can split the
t-integral into two

Am2(B, 1,5)=Cy(B, #,s)“ 5 Lem /AT @) dr+ J ts_g_le_mgﬂzt/‘l”@(t)dtl
1
(5.35)

with Cy(B, i1, s) defined as

A , d—1
Ca(B. p,5) = ;&3(%) : (5.36)

Next, by making a change of variable t — 1/t in the first integral and using the
modular property of the ©-function, one can write Am?(f, y, s) as a sum of four
integrals:

AmE(B, 1 5) = Ca(, 21 (B9) + 217 (B, ) IV (B.5) + 1T (B )], (5.37)

where
159(.5) = :o £ T ), (5.38)
17(p,s) = r e P/ y(p)d, (5.39)
17p.s) = ﬂw syl gmip gy, (5.40)
1$9¢8,s) = T el —mif/ant gy, (5.41)
J1
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in which ¥/(v) is given by Eq. (3.78).

Now we can use the standard result that a function that is analytic on a do-
main Q C C has a unique extension to a function defined in C, except for a
discrete set of points. Using the fact that /(t) = O(e™™") ast — oo, the integrals

I 6Sl)(s, f)and I Cgz)(s, ) represent everywhere regular functions of s for m2* € R,
The upper bound ensures uniform convergence of the integrals on every bounded

domain in C. On the other hand, at low temperatures, the integrals 53)(3, B) and

1654)(3, p) are finite too. Therefore, one can take the limit s — 1 to obtain the tad-
pole contribution to the thermal correction to the mass. Note that the thermal
correction from the self-energy contribution is also finite; recall that to obtain
this contribution we have to evaluate the four integrals for s = 2. We stress that
these results are valid only in the low-temperature situation.

We note that we are left with an ultraviolet divergence that needs to be nor-
malized. The divergence comes from the integral 154) (B, s). The renormalization

)

is done by introducing a mass counterterm of the form —émj = Cy(B, , $)I;
This is a temperature-dependent counterterm coming from the subtraction at
zero momentum of the self-energy diagram. Going beyond one-loop approxima-
tion, one can show that the counterterms of a finite temperature field theory are
the same as those of the zero temperature theory. The final result is then:

Am2(B) = Cy(p. 1)[215”(@ )+ 20208,1) + I2(8.1) + 0B, 1)], (5.42)

2
AmE(B) = —Ca(B.2) H% 210(8.2) + 219(8.2) + 198, 2) + 195, z)],
0
(5.43)

Finally, the critical temperature of this pure system is given by the value of
for which the renormalized mass squared vanishes. Fig. 5.2 presents the results
for renormalized squared mass m}zz(/f) for d = 3 as a function of m, and selected
values of Aj.

Therefore we have that, in the context of the Ising model, the magnetization
becomes zero smoothly as we increase the temperature. This is what we expected
in the context of a second order phase transition.

5.2 Quenched Disorder

As we said before, most real systems have some kind of impurities that may or
may not affect the physical properties of the system. These impurities can be
modeled in many ways. Here we are interested in the impurities that can be
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Figure 5.2: The renormalized squared mass as a function of (m, )%, for different values
of the coupling constant A, for d = 3. We set y? = mj.

modeled by disorder, that is, some additional degree of freedom that we have not
added in our description of the system.

Disordered systems are characterized by some random function, h(x). The
function h(x) can model different situations, such as impurities in the lattice
and inhomogeneities in the crystal. The usual way to choose the random func-
tion h(x) is to take a function with mean zero and a non-vanishing covariance.
Therefore, this information must be taken into the partition function, and we
may write

Z = Tre P50, (5.44)

where S(¢, h) is the action of the degrees of freedom and the disorder. If the dis-
order of the system is in thermal equilibrium with the other degrees of freedom,
we can take the disorder average before summing up all the degrees of freedom,
that is, we can write

e_ﬁseﬁ(¢) = Trh e_ﬁs(¢’h) =F [e—ﬁ5(¢,h)] y (545)

where Trj, denotes the trace over h(x). Therefore, we can define the free energy
and obtain the thermodynamic properties of the system. When we can proceed
in the preceding way, that is, when the disorder is in equilibrium with the whole
system, we say that we have a annealed disorder.

Now, if the disorder is not in equilibrium with the other degrees of freedom,
or the probability distribution is independent of the other degrees of freedom, we
cannot take the total trace as in Eq. (5.44). Instead, we have a partition function
for each realization of the disorder, that is

Z[h] = Try e PSGN. (5.46)
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Therefore, we have a free energy for each realization of the disorder
WIh] = —In Z[h]. (5.47)

In order to obtain the physical properties of the system, we need to take the
average of the free energy with respect to the disorder; then it follows that

F = E[W[h]] = —E[In Z[A]]. (5.48)

This kind of disorder is called quenched disorder or static disorder, and it is the
case that we are interested in in this thesis. Static disorder, for instance, manifests
in many condensed-matter systems, such as disordered metals, impure semicon-
ductors, and classical or quantum spin systems [3, 121, 135, 136]. The effects of
random couplings on second-order phase transitions in d-dimensional systems,
driven by thermal and disorder fluctuations, are controlled by the Harris crite-
rion [137]. Under coarse-graining of fluctuations, which is the usual approach
in the treatment of disordered systems, one can identify two distinct behaviors
of the system’s criticality under disorder. Namely, if the correlation length ex-

ponent of the pure system v satisfies the inequality v > g, the effects of disorder

may be disregarded in the physics of large length scales. Otherwise, for v < %
the disorder-induced fluctuations modify the critical behavior. In the latter case,
the critical exponents must change under the coarse-graining procedure, that is,
when one integrates over the disorder. There are two dimensions of particular
relevance in pure and quenched disordered models. The first one is the lower
critical dimension d. , which is the lowest spatial dimension at which there is no
long-range order. The second one is the upper critical dimension d.", which is
the dimension above which the model is Gaussian in the infrared.

As we know, the logarithm diverges at the origin; such a divergence is not al-
gebraic and introduces difficulties in the computation of averages. These compli-
cations have been known since the 70’s [138] and, over the years, many proposals
have been used to compute this average. As a matter of fact, we have the replica
trick [138, 139], the dynamic [140, 141] and supersymmetric approaches [4]. An-
other way to find the quenched free energy is the distributional zeta-function
method [142, 143], which is the one we use in this thesis.

The disorder can be coupled in different ways to our degrees of freedom;
mainly, there are two cases that are most common in the literature: additive and
multiplicative disorder. The additive disorder is intended to model randomness
in the structure or internal degrees of freedom that we did not take into account
in the pure Hamiltonian. The multiplicative disorder can be viewed as an exter-
nal random effect acting on the system, like a force.

One of the principal models of disordered systems is the so-called Edwards-
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Anderson model, given by

H=— Z siJijsi — Z his;, (5.49)
i

i,j

where J;; is now a random variable with mean zero and non-vanishing covariance.
Note that, apart from the random nature of Jj;, it is the Ising model. If ; is random
and not J;;, we have a model with additive disorder called the Random Field
Ising Model. The Edwards-Anderson model was the first to attempt to explain
the spin-glass phase of some materials.

The spin-glass phase appears when a system is not able to satisfy the condi-
tions that minimize the energy at every site. For example, take the Ising model on
a triangular lattice; if we fix J; < 0, the state of minimum energy is to anti-align
the spins. However, due to the nature of the triangular lattice, this cannot be sat-
isfied at every site of the lattice simultaneously; this effect is called frustration.
This leads to clusters of frustrated states in a spin-glass phase.

The Edwards-Anderson model cannot be solved exactly; however, its long-
range version called the Sherrington-Kirkpatrick model [144], was solved
using the replica trick, and most of its results can be found in Ref. [3].

The soft/continuous version of the Sherrington-Kirkpatrick model can be ob-
tained in the same way as given in Sec. 5.1, and it reads

S(¢.h) = J [%sb(x) (=0 + mg) ¢(x) = h(x)$*(x) + %@54(96) dx, (5.50)

where h(x) is a random function; note that we keep the notation dPx = dx from
the last chapter. In this thesis, we refer to the preceding action as the random
mass model. For the random field Ising model, or simply random field model,
we have the continuous action given by

A
5. = [ [ 3669 (-8 +m) 600~ hp + 2o ax s

In Ref. [145] the following two results were presented for the RFIM, which
is dominated by disorder fluctuations. Using Peierls’ arguments [146], these au-
thors proved that d;” = 2. Using renormalization group techniques, they also
proved that d," = 6. The first result was discussed by Imbrie [147] and the latter
was confirmed by Aizenman and Wehr [148, 149]. Concerning the existence of
the phase transition, in Refs. [150, 151] it was proved that there is an ordered
phase for d > 3. See also Ref. [152]. Other important results discussing the be-
havior of the pure and the disordered models were obtained by many authors. It
was proved that the critical exponents of the system with quenched disorder are
identical to the critical exponents of the pure system in (d — 2) dimensions [153—
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158]. While this dimensional reduction breaks down at low dimensions (d < 5),
recent high-precision numerical studies [159] have demonstrated that it holds
with remarkable accuracy at d = 5. This suggests that the dimensional reduc-
tion becomes valid above a critical dimension, where non-perturbative effects
associated with multiple energy minima become less relevant [158].

In this thesis we investigate the application of the distributional zeta-function
method to the previous two actions, mostly in the case of the random field, where
we have most of our original results.

5.2.1 Distributional zeta-function method

As we have stressed, it is not trivial to calculate the average of the logarithm. Let
us assume that we have an action S(¢, h) where h is a random function coupled,
in some way, to the variable ¢.

Now take a measure space (x, 2, ) (see after definition A.15),and f : X —
(0, 00) any integrable function. Then we define the generalized zeta function as

G, /(s) = JQ FGOduC), (5.52)

for any s € C. We have that f~* = ¢~*I"f, by the principal branch of the log-
arithm. If we set f(x) = x, X = N, and y as the counting measure, we obtain
the Riemann zeta function, defined in Eq. (3.82). Now if f(x) = x, X =R, and y
counts the eigenvalues of an operator, with the respective multiplicity, we obtain
the spectral zeta function of Eq. (3.104).

In our case, let us define f(x) = Z[h], where Z[h] is the partition function
of S(¢, h) for one realization of the disorder (see Eq. (5.46)), and du = [dh]P(h),
that is, the probability distribution of the disorder field. In this case we write the
distributional zeta-function (or DZF) as

1 1
o(s) = J S POOldn] = B [Zs[ h]] . (5.53)

Noticing that Z[h] = (Z[h] + Z[—h])/2, we have

Z[h] = j cosh [ j h(x)gb”(x)dx] e~S@O 4], (5.54)

therefore it follows that Z[h] > Z[0] and

J

1
Z*[h]

1
7R(s) [0] <

o0, (5.55)

\P(h)[dh] <
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for R(s) > 0. Thus the integral in Eq. (5.53) converges in the upper half-complex
plane R(s) > 0; we notice that this means that there is no need to perform an
analytical continuation over ®(s).

It is direct to compute that

Z7h -1 d

— lim —Z73[h] =1InZ[h], (5.56)
s—0+ S ds s=0"
then, using Eq. (5.48), it follows
F=-— J Aol pdn). (5.57)
ds s=0*
We notice that we can interpret P(h)[dh] = [dP(h)] in the sense of a Radon-
Nikodym derivative (see theorem A.35), that is, P(h) = [d[zgj)]. Since Z[h] >

Z|0], we can use the Lebesgue dominated convergence theorem (theorem A.32)
to write

d
F=—& .
ds ) s=0"

Then we have that the quenched free energy is given by the derivative of the
distributional zeta function evaluated at s = 0, similar to the case of the spectral
zeta function that gives Eq. (4.37). To obtain a more practical expression, we
must choose a representation of the distributional zeta function; for that, let us
take a Mellin transform

(5.58)

1 _ 1 - —Z[h]t ;51
Zs[h] F(s) J;) e e (5.59)
Therefore it follows
O(s) = —— J [ J e—Zlhlfts—ldt] P(h)[dh], (5.60)
I'(s) 0

now we choose some positive real number a and split the distributional zeta
function as & = ®; + ®,, where

®,(s) = %J UO e—Z[hlfts—ldt] P(h)[dh], (5.61)
Dy(s) = %J U e_Z[h]ttS_ldt] P(h)[dh]. (5.62)

The function ®, is entire!. For the function ®;, we can use a series represen-
tation of the exponential to write

I'(s)

'Holomorphic in the whole complex plane.

o= L g GO k
D,(s) = J [ Lt kgo o [Z[h]t] dt] P(h)[dh], (5.63)
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and once the series converges, we can write

k a
i) = r(ls) J Z( 1) 1* P(h)[dn] L tkts=1dy
1 (_1)kak+s L
- F(s)J RS [R1P(WLdA]
1 (- 1)k k+s k
T T() Z k!(k + s) E|Z*R]] . (5.64)

For k = 0, we have a singularity at s = 0; however, using sI'(s) = I'(s + 1), we can
write

1 ( 1)k k+s
By(s) = Z
F( +1) F(s) k!'(k +s)

E|z¥[h]], (5.65)

which is finite for all R(s) > 0. Now we can compute the derivative of ®;

)k k+s
k'k

d

—®4(s) o =(lna+yg) + Z (-1 [Zk[h]] , (5.66)

ds

where we use the fact that I'(s) has a pole of order one at s = 0 and yg is the
Euler-Mascheroni constant.
For ®@,, we have

%Qz(s) T J U %e‘z[h]tdt] P(h)[dh] = R(a), (5.67)
and using, again, Z[h] > Z[0], we obtain
- —Z(O)a
|R(a)| < J Ua tdt] P(h)[dh] < ~ (0) , (5.68)

therefore, R(a) — 0 as a increases.
Reuniting all these results, we have the following representation of the quenched
free energy

F= kz (TE |Z¥[h]] - (na + ) + R(a). (5.69)
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Once the thermodynamic properties are derivatives of the free energy and we
can take a large enough, the last three contributions can be neglected and we

can write

( 1)k k+s .
F= Z s E|Zz*[n]] . (5.70)

The set of these last results was first derived in Ref. [142], where N. F. Svaiter
and B. F. Svaiter introduced the DZF method. Since its derivation, the distribu-
tional zeta function has been used to recover the known results obtained by the
replica trick [160-164], without relying on dubious mathematical manipulations,
and to further our understanding of disordered systems.

The quantity E[Z¥[h]] can be directly computed once the probability distri-
bution of the disorder is fixed; it is given by

k

BLZ5G.0) = | Z5G.memlan = [ [T @agn,

i=1

where St (gzﬁlk ) denotes the effective action, which is obtained through the coarse
graining over the disordered variable h(x).

5.3 Applications of the DFZ method

In this section, we apply the distributional zeta function to different scenarios of
the random mass model (Eq. (5.50)) and the random field model (Eq. (5.51)) to
obtain both novel results and confirmations of the distributional zeta function
method.

5.3.1 Random Mass Model

To introduce key terminology related to the distributional zeta function, we first
present the random mass model described by Eq. (5.50). To obtain practical
results, we fix a disorder probability distribution. For simplicity, we consider a
Gaussian distribution, given by

P(h) = py exp [—2—;2 J (h(x))z] dx, (5.72)

where p is a positive parameter and p, is a normalization constant. In this case,
we have a delta-correlated disorder:

E[h(x)h(y)] = 0*5(x — ). (5.73)
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The explicit form of the effective action can be written as

k

k
Seft(¢") = J {% > BEG) (—A +md) ¢ (x) + % > g [¢lk(X)¢>]I'C(x)]2 dx, (5.74)
i=1

ij=1

where g;; = Aodj; — 0®. One can notice that such an action is invariant under
the exchange of indices i <> j. To proceed from this action, we have two main
approaches: the replica symmetric method and the overlap matrix method. First,
we show that in the replica symmetric approach, we recover the free-energy
landscape of a glass phase. Subsequently, we demonstrate that the overlap matrix
approach allows us to obtain the partition function as an average over random
matrices. Within this approach, one can employ the method known as the Parisi
ansatz.

Diagonal Ansatz and Glass Phase

From Eq. (5.74), we observe that there is a value of k for which the interaction has
a negative sign. This would lead to an instability in the free energy. However,
revisiting the expansion of Incosh x (Eq. (5.11)), we note that we can select a
term of order x°. This allows us to write

k

Sen @) = | 3 [2kCo(-a +md)gkc) (5.75)

=1

k
+ iz 8ij (¢,~k(x))2 (¢F (x))2 + g (;zsik(x))6 dx,  (5.76)
=1

which ensures the boundedness from below of the free energy. Now, we assume
that ¢ = ¢;, meaning that all fields are equal. This approach is called the replica
symmetric or diagonal ansatz. This leads to the following action:

k

Sar (8= [ 35 [ SEG (=0 -+ m )0+ 2 (2= ke?) (90042 (90 ax
i=1

(5.77)

Using the preceding action, we observe that the potential of the theory exhibits
multiple minima. Ref. [162] proves that the free energy possesses many ground
states, a characteristic feature of glass-like phases.

Within the replica trick, this replica symmetric ansatz leads to negative en-
tropy and does not exhibit a glass-like phase. To obtain the glass phase in the
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replica trick, the artificial construction known as replica symmetry breaking is
necessary.

However, one may argue that our diagonal ansatz is also artificial, as there is
no fundamental reason to impose such an assumption. In the next application,
we explore the overlap matrix approach.

Overlap Matrix Approach

We begin by analyzing the interacting contribution of the effective action given
in Eq. (5.74). First, we have

k k k
Y g [okosko] = Y gy [k eogko] + Y e [ d@)] L 578)
ij=1 <ij>=1 i=1

where the symbol < i, j > denotes the sum over all i # j. At this point, we note a
significant difference between discrete and continuous systems. In the discrete
case, apart from a summation over all sites and a pre-factor, we essentially deal
with the product of two Ising spins (or even Heisenberg spins). Since Ising spins
take values *1, the square of two of them is always unity, while the product
of two spins in different “replicas” is referred to as an overlap. A more general
approach that retains this property states that the self-overlap does not depend on
the state [3].
In this framework, we can rewrite the interaction contribution as follows:

k k
Y g [tk @] =0t Y [#F@et@] + k- [¢k)] . (5.79)
ij=1

<i,j>=1

2
where we have used the fact that gblk(x)qﬁlk(x) = [¢If(x)] Vi, and the explicit

form of the matrix g;;. To simplify the notation, let us define g{)’f(x) = ¢(x); also,
the limits of the sums will be omitted from now on.

As can be explicitly seen, the interaction action of the theory is decomposed
into two different contributions. First, the sum of the squares of all self-overlaps,
which takes the form of a self-interacting field theory. Second, the sum of the
remaining squared overlaps between two “replicas”. Using the fact that the action
will appear in the argument of the exponential, we can make use of the Hubbard-
Stratonovich identity,

0{2
e = 1 J dae 2™, (5.80)
2ma
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to introduce an auxiliary variable. Using a suitable change of variables?, we can
write

<ijs=1 V2rm
(5.81)

k
eé 2<i,j> [szk(x)qsf(x)]z — J e‘% Z<i,j>(Qij(x))2+Z<i,j> Qij(x)¢i(x)¢j(x) [inj]

In this scenario, the effective action can be written as
1
Seff((]sik, Qij) = J {5 Z ‘Pik(x) [_A + m(2) - zQij(x)] ¢]k(x)
Lj

+ 00— -3 Y (@) [dx (658)

<ij>

A saddle point of Ser with respect to Q;; shows us that

5Seff(¢ik’Qij) _ 1
oo YT %; ()i (), (5.83)

which means that Q;; = Q;; and Q;; = 0, so the matrix Q, whose components are
Q;j, must have zeros on all diagonal elements and be symmetric.

In the replica trick, it is customary to apply the replica ansatz over the matrix
Q.

In the overlap interpretation, one can define such a matrix as follows:
Q=0 - diag[® ® D], (5.84)

where ® denotes the vector with components ¢lk and diag[A] is the diagonal
matrix formed from the diagonal elements of the matrix A. Thus, the sum over
<1i,j > acting on Qj; can be replaced by the sum over i, j with the condition that
Qi =0.

To simplify the final form of the partition function, further manipulations
can be performed on the last term of Eq. (5.82):

> (Qij(x))z = Z Q;j(x)Q;(x) = Z lz Qij(x)jS(x)] =tr;) [Q%].  (5.85)
L] 1 J

<ij>

?Tt is natural to understand that the strength of the disorder can influence the overlap. Thus,
we can absorb g into the new variables, which will later be identified as components of the overlap
matrix.



146 APPLICATIONS OF THE DFZ METHOD

where tr(;) denotes the trace over the indices i. If we define the matrix G as the

matrix with components given by %(—A+m0 )3;j, we can write the effective action
entirely in terms of matrices:

Sett(®, Q) = J {CD(X) [G + Q] @(x) + %(/10 — )¢ (O)trgy [Tpkc ] — %tr(i) [Qz]}dx

= 5(®.Q) + $($) + 5o(Q). (5.86)
Now we are able to write the partition function:
ko @,0.]) k [d Ql/
E[ZF( )] = | e 5@Q H[d¢ ] H (5.87)
<i,j>=1

where ] is the vector with components given by the source j; k(x). Now we have
two different and independent variables in the partition function: the field vari-
ables, which are components of the vector ®, and the overlap variables, which
are the components of the matrix Q. Since there is no interaction term combin-
ing both variables, we can proceed with the usual perturbation theory developed
in Sec. 4.3. We have:

k k
ki) = [|eso@eB(3) @D TT1agkl| T [49;]
E[Z*(j,h)] J[e Q%) oy Je L] [de ]]<i’j>:1 — (5.88)

4
6
where we defined P, (5]> ;(/10 -0) (m) .
To make the calculations more explicit, let us focus only on the last integral:

k

k
J e—So(fD,QJ)H[qulk] :J exp {— J’ [@(x) (G+Q) P(x)+ J(x)P(x)] dx} H d¢,
i=1 i=1
(5.89)

It is a Gaussian functional integral over the variables qSlk . Such integrals can be
performed, and the result is:

k 1
J e SI@QD Tdgk] = ez THNG+Q eXp[ J TG + Q) 1 J(x)dx|. (5.90)
i=1

Due to the nature of Q, the operator in the last equation is non-diagonal in the
RK space. However, as previously shown, the Q must be a symmetric matrix, and
an ansatz over the non-diagonal elements can be taken. The literature has been
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investigating such ansitze. The two most popular are the Replica Symmetric
ansatz and the Parisi ansatz, both of which give a matrix Q that is symmetric (by
definition) and real. Due to the Spectral Theorem of linear algebra, we know that
a symmetric and real matrix can be diagonalized by an orthogonal transforma-
tion. Let S be the orthogonal transformation that diagonalizes (G + Q)~?, then
choose the source to be J(x) = J/(x)S:

JE(G + Q)™ (%) = J'(x)S(G+ Q1T J'(x) = ' ()DD J'(x),  (5.91)

where D(Q) denotes the matrix of eigenvalues of (G + Q)~!. To exemplify, take
the replica symmetric ansatz, where Q;; = (1 — §;;)q. We have

[La+md)—kg] o 0 ‘
D®RS) — O [%(—A + m(z)) — q]_l 0
L 0 [farm—a]” L,
(5.92)

It is important to keep in mind that the matrix D@ depends on the ansatz of Q.
However, Eq. (5.91) is satisfied for any ansatz of Q over R.

Using the previous results and the identity Tr[In A] = In[det A], we can
rewrite the k-th moment of the partition function as

E[Z*()",h)] = j feri D)o

|dQ; ]
<11> 1 \/_”

= <e_P4(515(x))exp[ J J()DQ I (x) dx]> , (5.93)
Q

x e—P4(5j2x))eXp[ JJ (D@ J(x) dx ”

which means that the local quantities obtained by the evaluation of E [Z k(1, )]
are obtained after averaging over the overlaps configurations, given by the ansatz
of Q. We note that if one does not wish to make any ansatz over the matrix Q,
one could perform the average in the sense of random matrices.

Now let us explore the Parisi ansatz and the so-called "Replica Symmetry
Breaking” (RSB). RSB will be called any ansatz in which two off-diagonal non-
symmetric elements of the matrix Q cannot be permuted in the series in which
the mean of the logarithm is represented, Eq. (5.74).
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To clarify what this means, let us particularize a simple ansatz for the k x k-
dimensional Q matrix:

q i [1]=|4] andi=j
Q= . . : (5.94)
9 if [iJ * liJ and i # j
always with Q; = 0, where | x| denotes the greatest integer less than or equal to
x. This is a RSB ansatz. In such a situation, we have

0 g 0 g1 q
Qax2 = [ % 0 ] Qs=| a1 0 q |, (5.95)
9% 9 0 ]
0 a1 1~ @1 q |
a1 0 @1 @1 9
Qixk = 3 (5.96)
Q1 0
9o 9 0 |

With the additional imposition that gy, g; are real-valued functions, all the pre-
ceding constructions can be applied to every term in the series of the DZF (see
Eq. (5.70)). As one can see, all non-diagonal elements are equal except those in
the last row and column. The choice made in Eq.(5.94) is a simple one; however,
when we analyze the action of Eq. (5.74), we can notice that the components of
the matrix Q in the second term of the series (k = 2) are completely different
from those in the third contribution of the series (k = 3). Specifically, Q15 = qo
for k = 2, while Q5 = ¢, for k = 3. Therefore, RSB means that we do not have,
necessarily, a symmetry between two terms of the sum; however, the intrinsic
symmetry Q;; = Qj; is preserved term by term.

With the precise meaning of RSB established, aside from the misleading nomen-
clature, we can go further and implement the so-called “one-step Parisi ansatz”
[3, 121]. First, let us break the series over the average of the logarithm of the
partition function into two contributions:

m 00
E[lnZ[hjl] = Y aE[(ZG.M] + )Y «E[(ZG. )] = sy +5w.  (5.97)
k=1 k=m+1
Each IE[(Z 3, h))k] is given by Eq. (5.87). Now, assume the following ansatz for
Q:
if [L]=[L] andi =],
O R Tl e (5.98)
9 if [E—I * [Z] andi # s
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where [x] denotes the smallest integer greater than or equal to x [3]. Evidently,
each term in s,, has the following matrix for Q:

0 ¢ ~ @
RS 0 -
Quea = Qi = | A (5.99)
@ ¢ 0

where a = 1,2,---,m. A component description of such a matrix is:
Q= (1 =0p)q1; ab=1,2,-,m, (5.100)

which is the RS ansatz in the s,, contribution. Assuming that q; is a real-valued
function, the diagonalization previously discussed is the same as presented in Eq.
(5.91). Foratermk =m+1, m+2,--in ]E[ln Z[h,j]] , we have the matrix Q given
by:

[ 0 1 - ¢ g 9 |
@1 0 - g1 9 - 9o
: i ogy e 0

Que=| o — @ 0 g0 - % |_ QU QO (5.101)
* 9 - % 0 ¢ - ¢ r(z(>)<)m lelii) ’

qQ - 9 @1 0 - ¢
Qw0 Qo 3

L do 9 91 - @1 0 |

where Q,(,?x)n is the m x n matrix with every entry equal to qq, and n = k — m. The
other component of the action is the trace over the squared matrix Q. In the s,
contribution, this quantity is given by:

tr(;) [nga] =ala— 1)qf, (5.102)
while in each term of s.,, we have:
tr(;) [szk] = [m(m—1)+n(n—1)] g% + 2mng3
= [(m —k)? +m? - kz] q% + 2m(k — m)qg. (5.103)
To be clear, let us analyze the integral over the components of the matrix
Q. Such integrals are ansatz-dependent, as each ansatz has a different number

of independent entries in the matrix. For now, denote the entire Q-dependent
function in E[In Z[h, j]| by f(Q;). Roughly speaking, we have:

k
B[4 = | TT [a05] @y (5.104)

<i,j>=1
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If not all components of the matrix Q are independent, we will get a (divergent)
factor due to the volume of the functional space where such functions are defined
3. For example, take the case k = 2. Since Q;; = Qy; = ¢1(x) and Qy; = Oy, = 0,
we get:

E[(Z(,h)*]

J (40121 [0y ] f(Q1)
j [dqs) [day] £(g1)
Sy, [ 1] =Na @y G105

Such (divergent) volume factors are not new in the functional integral approach,
and they can be easily dropped out if we “normalize” the functional integral,
which is strictly necessary for a probabilistic interpretation of such quantities.
Even if we keep all Q; j different and independent, we will have, due to the intrin-
sic symmetry of Q;;, at least k(k —1) /2 volume factors in a k xk matrix Q, and this
number increases with the ansatz choice. Thus, for now, we will keep in mind
this normalization and disregard the pure volume contribution of the functional
space.

In this scenario, it is easy to see that in the one-step ansatz, Eq. (5.98), we have
at most two different entries in the matrix Q, namely, ¢;(x) and gy(x). Depending
on the region in the series, all terms in s, only involve the integral over g;(x),
while terms in s, involve an extra integral over go(x). Therefore, apart from the
normalization, all contributions in s,, are the averages taken with respect to the
function ¢;(x), while the contributions in s, are the averages over both ¢;(x)
and go(x).

The so-called “Parisi ansatz” is obtained by successive applications of the first
step (second step, third step, etc.). In our context, the next steps are immediately
obtained: take some m < m, split the series of the average of the logarithm into
Sis Sm»> and S0, and fix Qj; = go(x) if [#] = [#] Continue in this manner to
obtain an infinite tower of matrices Qq, Q,, Q3, --. Each step breaks the series of
the distributional zeta-function into more contributions, sarting with the replia
symmetric ansatz and introducing additional averages.

The generalization of this procedure leads us again to the notion of averaging
over an ensemble of random matrices.

’It is important to note that, from the beginning, we are omitting the x-dependence of Q.
This has been focused in the internal space. However, such dependence is evident in the saddle
point for Q, Eq. (5.83), and the fact that we denote the measure over Q; in the same way as a
functional measure.
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5.3.2 Random field model

Now we will look for some results obtained in the random field model, Eq. (5.51).
Assuming again a d-correlation, i.e., Eq. (5.73), we obtain the following effective
action:

k k
Sefi($) = J 3% $FC) (A +md) f () — 0? ) gF0)k(x)
i=1

i= i,j=1
20 ST ko kg T?
+ 5 Z [¢i (%) (x)] dx. (5.106)
i=1

Through simple inspection, one can notice that, unlike the random mass, the
modification due to the disorder does not directly affect the interaction part; in-
stead, it affects the Gaussian part of the action functional. This can be understood
as a modification in the differential operator.

A prototype model that can be studied as a continuous field in the presence
of a random field is the binary fluid in a porous medium [165]. When the binary-
fluid correlation length is smaller than the porous radius, one has a system for
studying finite-size effects in the presence of a surface field. When the binary
fluid correlation length is much larger than the porous radius, the random porous
medium can exert a random field effect. Even in this situation, one can introduce
boundaries, obtaining a Casimir-like effect [166], known as the statistical or crit-
ical Casimir effect [167-169].

Similarly to the random mass case, we explore the random field model in
two cases: the diagonal ansatz and the diagonalization approach. We present the
results of the diagonal ansatz when the disorder is kept at low temperatures. For
the diagonalization approach, we explore some novel results.

Diagonal ansatz in the critical Casimir effect

As we have shown explicitly, the zero-point energy of a massless system has an
associated Casimir effect, which is characterized by the induced force between
classical surfaces due to quantum effects. The physical reason behind the Casimir
effect can be traced to the presence of massless excitations and the change in the
thermodynamic equilibrium of the vacuum (state with zero number occupation)
due to the presence of boundaries that change the fluctuating spectrum of the
theory [21].

Given the physical interpretation of Casimir forces, one can expect that a
similar effect occurs for critical systems with infinite correlation lengths in the
presence of boundaries. Such a situation was first discussed in fluids by Fisher
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and de Gennes [167]. As a matter of fact, thermal fluctuations can induce Casimir-
like long-ranged forces in any correlated medium, with a critical system being
one such example. In such a situation, the massless excitations are not associated
with photons but with some other quasi-particles, e.g., phonons or Goldstone
bosons. This effect is referred to as the critical or statistical Casimir effect. So far,
the critical Casimir effect has been reviewed only a few times, e.g., in Refs. [168—
172].

The quantum Nyquist theorem [173] allows one to identify regimes where
thermal fluctuations dominate over those of quantum origin, with the possibility
of systems becoming critical. Such situations are the subject of statistical field
theory. When a system reaches the critical regime, correlations become long-
ranged, and critical Casimir forces appear. In addition to thermal fluctuations,
disorder fluctuations can also drive a system to criticality [174].

Therefore, the simplest application of the random field model of Eq. (5.106) is
to study when the system reaches criticality due to the disorder effects. The ap-
plication of the distributional zeta function method in this scenario first appears
in Ref. [175]. Analyzing Eq. (5.106), we notice that the ¢* term is necessary to
stabilize the ground state of the system since the disorder average introduces a
negative contribution, quadratic in the fields.

Here, we assume the diagonal ansatz gblk(x) = gbjk(x) for the function space;
in which case the effective action becomes:

k

S = | 3

i=1

k
24 (<0 + b — k) ) + 2 Y (¢h00) | dx. (5107)

i=1

One can see in Eq. (5.107) that there exists a combination of m3, k and p for
which m3—kp? < 0, signaling the spontaneous breaking of the discrete symmetry
nglk - —(;SJ]-‘ . As usual, one can move from the “false” vacuum to the “true” vacuum
by an appropriate shift of the fields, as presented at the end of Sec. 5.1, and
identify the mass in the Gaussian contribution to the action.

m5 = 2(kp* —mg) > 0. (5.108)

To discuss the Casimir energy, it is sufficient to consider the Gaussian contribu-
tion. This is because, as shown by several studies within quantum field theory
scenarios [176-179], radiative corrections are always subleading compared to the
free-field contribution. Since the critical Casimir effect studied here is formally
identical to the quantum scalar case, as discussed in Secs. 3.2-4.2.1, the scenario
is the same. Therefore, we drop the non-Gaussian terms in the action.

Now, compactifying one dimension and assuming Dirichlet boundary condi-
tions, we can recast the mean over the k-th moment, Eq. (5.71), as

E[Z¥(h)] = [det(~A +m2)q, ] *. (5.109)
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From now on, we consider the situation where mf, > 0. Using the spectral
zeta-function regularization, Sec. 4.2.1, we can write the functional determinant
as:

ELZ0] = e[S $56)]_ ] (5110
The {,(s) can be constructed as
— - n 217
é’p()—mjdd lprl; p2+m,%+(7) ] . (5.111)

Following the same steps as those between Egs. (4.39) and (4.51), but for a
nonzero mass, we obtain:

dgp(s) 1 dCy(L,s)
== =27 2 (0)+ 17 (0)-I7 (0)], 5.112
e it R IN L PORS OB O] (5.112)
with
~ 00 L2 2
I /(s) = ) dr 275 e yio), (5.113)
dr-OO d 1 —Lzm%
D)= detz"eTm (5.114)
: Jo
r d 3 —thmp
Bs)=| detz""ze 7 . (5.115)

Since we now have a nonzero mass, all integrals are convergent. Some care
must be taken to define the energy of the system. First of all, we recall that at
zero temperature, the quenched free energy can be written as

Fq(L) = Eq(L) =-E [W(] h)]

(- l)k k
= Z o ELZG )k, (5.116)

Using the previous results and exponentiating the d*, we obtain the Casimir
energy in the presence of quenched disorder. From now on, we will refer to this
quantity as the quenched Casimir energy:

(D" kd
E (L) = Z pr exp[klnaJrE agp s .~

O], (5.117)
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with k, defined as

mg
ke=|—|. (5.118)
p

where | x| is the greatest integer less than or equal to x.

Analyzing the behavior of the integrals in Eq. (5.113)-(5.115), it is immediate
to see that for each k > k,, the exponential damping makes their contributions
subleading. Therefore, the main contribution in the expression for the Casimir
energy will be

(—nk

Ey(L) =
(D) Tkl

exp | k. 1na+— §p

]. (5.119)

Clearly, from the last equation, we can see the connection between a and the
thermodynamic limit: since {,(s) is an extensive quantity, a must be chosen to
maximize the exponential. Therefore, the Casimir force is given by:

3Eq(L) D15 d

L)=-
fa(L) oL 2k,! oL ds

=4 (s (5.120)

With the results obtained so far, we have that

Ag_q (DR
i) = S - [ + 40 - ,0]
L1 < 9
d 1 0L

[217,(0) + I£,4(0) — I£ ,(0)] }
(5.121)

The derivative of Il/; deserves closer attention. All of these integrals have an

exponential that depends on L2, and thanks to the exponential and the y/(t) term,
their derivatives with respect to L/2 do not change their convergence properties.
In a power series expansion in L/2, the contribution of the second term of Eq.
(5.121) has a global contribution proportional to —L?~%, which ensures that this
contribution is the leading one in powers of L/2. Now, defining the quenched
Casimir pressure as the quenched Casimir force per unit area (or d — 1 volume),
we can write
(=D

pd(L) - 2d+1kc!Ld
where B;(0) and Dy(0) are defined by

LZ
[ - 1Bd(0) + Dd(O)], (5.122)

Bd(o)————[z P(0) +]1 ,d(o)—lgfd(o)], (5.123)

D4(0) = 217 ,(0) + I ;(0) — I} ,(0), (5.124)
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which are positive constants. Clearly, for m% = 0, the B;(0) term vanishes,
and the well-known behavior is recovered. The most interesting feature of Egs.
(5.120) and (5.122) is the fact that the factor of (—1)% can change the force or
pressure from repulsive to attractive depending on the values of mZ and p?.

Diagonal ansatz in the low temperature case

Here we present the results and calculations of Ref. [180].

Recent experimental and theoretical advances have driven increased inter-
est in low-temperature physics and quantum phase transitions [125, 126, 181-
183]. The intersection of these two areas of research—the physics of systems with
quenched disorder and low temperatures—leads to the following questions [184—
187]: 1) What is the effect of randomness in models at low temperatures in the
broken symmetry phases? 2) How is the link between nonlocality (anisotropy)
and the appearance of generic scale invariance* in systems with continuous and
discrete symmetry? It is well known that models with continuous symmetry
can exhibit generic scale invariance due to the Goldstone theorem [188]. Never-
theless, even in the case of discrete symmetry, the presence of quenched disor-
der also leads to generic scale invariance. This behavior agrees with Garrido et
al. [189], who claim that a necessary, but not sufficient, condition for generic
scale invariance is an anisotropic system. Later on, Vespignani and Zapperi [190]
showed that the breakdown of locality is essential to the emergence of generic
scale invariance. A well-known fact is that low temperatures in quenched dis-
ordered systems introduce spatial non-locality. Thus, one can merge the previ-
ous questions into a single one: how is the link between low temperatures and
generic scale invariance in such systems?

As we have seen in Sec. 5.1.1, a finite-temperature quantum field theory is
similar to a field theory defined over R? x S!. As a matter of fact, in Euclidean
scalar quantum field theories, finite temperature effects and periodic boundary
conditions in one of the spatial dimensions are on the same footing. That is, the
scalar theory defined on a RY x S space is formally equivalent to the thermal
scalar field theory since the momentum variable associated with one of the spa-
tial coordinates runs over discrete values, multiples of 277 /L, where L is the length
of one of the compactified spatial dimensions, which is similar to the Matsubara
frequencies when one replaces L with f.

The behavior of a system in which quantum and disorder fluctuations domi-
nate can be described either by a d-dimensional Euclidean quantum field theory
(with f — o0) or a statistical field theory in (d + 1) dimensions. Here, we use this

*A system presents generic scale invariance when its 2-point correlation function is algebri-
cally decaying.
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equivalence to avoid misunderstandings, since we will use stochastic differen-
tial equations with Markov time. In addition, we assume that the disorder field
is strongly correlated in the compactified dimension (imaginary time). This as-
sumption implies a spatially non-uniform disorder field in the (d+1)-dimensional
classical Euclidean field theory, which we assume to be delta-correlated:

E[h(z,x)h(z’,y)] = 925d(x -y). (5.125)

In this case, we get a (d + 1) Euclidean space with fields obeying periodic bound-
ary conditions in one spatial coordinate and already on the true ground state’.
As in the finite-temperature case, the series representation of the quenched free
energy leads to an effective action for each moment of the partition function,
namely:

k

L 2
sarlo- ) =5 [ | (ot Z5 - 5 mete )+ (o)

2 i=1

1 L k
] oo

r,s=1

2 L (L k
Q J J “ Zq’f(z,xwi‘(f,x)dx] dz’dz, (5.126)
0 Jo

YE
2L r,s=1

with (pi(k)(O,X) = (pl-(k)(L, x) and ji(k)(O, x) = jl-(k)(L, x). One sees that the last term
in this expression is spatially non-local. Such a non-local contribution also ap-
pears in other models. For example, using renormalization group techniques
and the replica trick in a random mass model, Refs. [191, 192] find non-isotropic
scaling behavior. In our approach, because the disorder is anisotropic, we find
similarly that the critical behavior of the system is different for the compactified
and non-compactified directions.

In order to avoid unnecessary complications, once we already have a non-
local action, and for practical purposes, we assume the diagonal ansatz over the
fields: qol-k(z, x) = q)J’-‘(z, x) in the function space and also jl-k(z, x) = jlk(z, x) Vi, j.
For simplicity, we redefine ¢; (z,x) = ﬁ(pf(z, x) and Aj = Agk. All the terms
of the series have the same structure, and one minimizes each term of the series
one by one.

Instead of computing correlation functions directly from the functional inte-
gral for the effective action in Eq. (5.126), we sample the corresponding field con-
figurations with a linear, nonlocal stochastic partial differential equation with

SJust apply the technique of Sec. 5.1.1 in the action of Eq. (5.106).
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additive noise. This generalizes the commonly used stochastic equations in equi-
librium Landau-Ginzburg theories [193-196] to this spatially anisotropic non-
equilibrium case, allowing us to discuss the temporal behavior of the system;
see, for example, Ref. [197]. Specifically, we assume that &(t, z, x) is genuine
Gaussian-Markovian noise:

(rfik(t, z, x)f]k(t’, Z/,x")) = 2Y§;0(t —t')8(z — 2’) §4(x — x7), (5.127)

where (...) denotes an average over all possible realizations of the noise. The
corresponding stochastic equation sampling the field configurations (pl-k(t, Z,X)

with weight S.¢ (q)l-k, ]lk) is then given by the generalized Langevin equation:

(k
—o(t,z,x) =Y ———= + & (t, z,x). (5.128)

k
LSO WO

This equation is similar to the one that, after a coarse-grained procedure, de-
scribes the relaxational dynamics of classical non-equilibrium systems. In our
case, Y = 1. Performing the functional derivatives, the generalized Langevin
equation can be written as:

9 k 0 2\ k o &t k
“tz,x)+ | — —A+m f(t,z,x) — L, x)dv’
P ACERY) (az2 0)%( ) LZELL%( )

= &(t, 2, x) + jF(t 2, %),
(5.129)

To deal with the nonlocal term, we employ a fractional derivative formalism,
similar to the one used in studies of anomalous diffusion in transport processes
through a disordered medium [198]. Specifically, we use the Riemann-Liouville
fractional integrodifferential operator of order a, D¥ [199]. Let f € Z1[a,b]
and 0 < @ < 1; then DY f exists almost everywhere in [a, b], with DJ f defined
by [199]:

v
D f(v) = —— j F(8)(w = 5)1ds. (5.130)
I(e) Ja
Therefore, the nonlinear term is given in terms of DJ as:
k
Df |gftzx)+ ), ohtzx)|. (5.131)
s=1,s#i

The operator DY f = %ﬁf) possesses a well-defined Fourier transform, namely

o[£
d|x|*

= —|k|*f(k), for 1<pu<a2. (5.132)
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We define the Fourier transform on the time and spatial coordinates of a generic
function g(t, z, x) by §(®, q,,q1) = F1, x[8g(t, z, x)], where g, = q,(n) = nw /L, n €
Z. The Langevin equation in terms of the Fourier-transformed functions is then
given by:

[—iw - (qi +qZ +mf+ kezlqzl)] F(0,4,,9.) = E(0,9,,9.) + (0,42, 90),
(5.133)

in which we again assume the diagonal ansatz, gblk(x) = (f)Jk(x) and jl-k(x) = ]Jk(x)
From this, one can compute the dynamic susceptibility )((’f(a), .4z, q.), which is
given by the response propagator Gg(a), qz,91):

1
i+ (g% + g2 + md + ko?lq.|)

Gy (@,4zq.) = (5.134)

Near criticality in the pure system, i.e., for o = 0, three critical exponents
of the Gaussian model can be obtained: the two static exponents v = 1 and
n = 0, and the dynamical exponent z = 2. Using the principle of causality, for
the G(I)C (t,q9,.9,) = %_lGl(f (t,q,q, ), contour integration leads to:

Gi(t.qz.q1) = F'GE(t, qz.q9))
=0(t) e—(qi+q§+m§+kgz|qz|)t’ (5.135)

where 0(t) is the Heaviside theta function. Clearly, the function GX(t,q,,q,) de-
cays exponentially to zero ast — oo.

The next step is to find the Gaussian dynamic correlation function. Using the
noise correlator in Fourier space for large L, we get

(P, 4, )PP, ¢ g1y = @O (0 + 0)3(g; + (gL + L)
k
X C(() )(w’ 9291 (5.136)

where

C(,4:0.) = 2(67(,4:,9.)° (5137)
is called the dynamical structure factor. The temporal correlation decays expo-
nentially, with a modified relaxation rate due to the disorder. An experimentally
accessible quantity is the static structure factor Cék)(qz, q,), defined as

k 1 ® k
CS )(qz,qL)=§J Cé )(w,qzdw,qL), (5.138)

—00
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from which one can find the correlation lengths in the model. Since the disorder
is anisotropic, the behavior of the system is different for distinct directions. In
the Gaussian approximation in four-dimensional space, using a Fourier represen-

tation for Gék)(z —2’,x — y), one can show that

Gék)(z -7z, x—y)= ! L e~y e +mitke’; cos(q,(z — 2z'))dq,.
(2m)? |x =yl Jo
(5.139)

Defining the quantity ¢ = 0%/2mj, we can write

G(gk)(z -z, x—y)= (21 7 —| ™o le_m0|x_y| J eNUuHZkeut oo (mou(z — z’)) du.
)X =Y 0
(5.140)

It is not possible to express this integral in terms of known functions, but we can
circumvent this difficulty in the following way. We recall that the contribution
of the terms of the series representation for the quenched free energy is given by

(ee]

E[W(i.h)| = ). () E[(Z(, )", (5.141)

k=1

k+
where c(k) = %6. For small k such that k¢ — 0, we can write, for large

(|x — y|? + |z — 2’|?), that the correlation function in a specific moment is given

by
1 \/m_oe_moxf|z_zl|2+|x_3’|z
\ 872 ( :

o2+ x - y)°

G(()k)(z -2/, x—-y)= (5.142)

The contributions of these terms are the usual ones, for which the bulk cor-
relation length & = my! can be defined. However, since m3 > 0, there is no long-
range order. Nevertheless, the existence of long-range order can be obtained
from the series representation of the quenched free energy.

For any real number «, let |x| denote the largest integer < «, that is, the
integer r for which r < k < r + 1. We are interested in the critical moment of the

partition function, which is the k, = [%J moment. For this k,-th moment, the

two-point correlation function has the form

—mg|x—y|
G(()kC)(Z—Z',x—y): 1 e Mo

. 5.143
@m)? |z =2’ + |x = yI? (5:14)

Note that a is assumed large enough, therefore we absorb it in the normalization.
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This expression reflects the spatial anisotropy due to disorder. In the k.-th mo-
ment, it is an explicit manifestation of generic scale invariance.

A direct question that this result raises is: what is the effect of the generic
scale invariance over the mass (2-point correlation function) in perturbation the-
ory? Using the static (w = 0) propagator obtained in Eq. (5.134), we try to answer
such a question at the one-loop level. Once we have the system in the ordered
phase (with persistent magnetization), the loop contributions here are the same
as in Sec. 5.1.1, that is, we must compute the diagrams of Eq. (5.30) with the
propagator of Eq. (5.134), algebraically:

mlzz(L, 0,k) = m& + mi + 6 Am3(L, 0,k) + 18 Am5(L, 0, k), (5.144)

where 6 and 18 are symmetry factors, and again a mass counterterm §mg was in-
troduced. Let us first discuss the contribution from the tadpole diagram Am?(L, o, k)
using the analytic regularization procedure discussed in Sec. 5.1.1. For s € C,
Am% (L, o, k) can be obtained by the analytic continuation of Am% (L, 0,k, i, $)|s=1,
with

AL [, L 12 -
Am3(L, 0, k, 1, s):l;—J p1 Z nn2+5k92|n|+4—<p2+m(2)> dp,
2d+1ﬂ.§+1r(%) 0 nez T
(5.145)
where a trivial angular part of the integral was performed, and A(y, s) = A¢( /12)3_1,

where p has the dimension of mass. As in the case o = 0, this function is defined
in the region where the above integral converges, R(s) > s;. Comparing the
previous equation with Eq. (5.32), one can notice that the anisotropic disorder
introduces a contribution proportional to |n| into the correlation function. Then
the formalism discussed in Sec. 5.1.1 must be adapted. Again, the contribution
from the bubble diagram (self-energy) can be obtained from the tadpole:

2
.S
P - )Am%(l,, ok, u,8)| (5.146)

Am3(L, 0,k) =
20 A ) 2

where p(y,s) = po(u?)* 2.
After a Mellin transform and performing the p integral, Eq.(5.144) can be

written as:

d—1 o0 d
Am%(L, ok 1 5) = A(P» s) <l> J ts—g—l Z e—(nn2+§kg2|n|+mgL2/4r[)tdt.
4]TF(S) L 0 ne”,

(5.147)
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Next, we split the summation into the n = 0 and n # 0 contributions. For
simplicity, we write Am%(L, 0.k, 11, 8) =0 = Am%(L, 1y $)|n=0:

Ap,s) (1)
Am?(L, 1, _:—(—> A(s,d), 14
where
© d
As,d) = J 7o LemoLit/An gy (5.149)
0

For some d and s, this integral has infrared divergence. Different methods for in-
frared regularization have been discussed in the literature; see, for example, Ref.
[200]. Here we implement another approach to deal with this infrared diver-

gence [34]. The integral A(s,d) is defined for R(s) > % and can be analytically
continued to R(s) > g —1fors # % We write a regularized quantity Ag(s,d) as

1

o0

Ag(s,d) = J

d d
e (e"”SLZt/ _ 1) dr J ¢ lemiti/ar L,
0

! -9
(5.150)

which is valid for R(s) > % For R(s) > % —lands # %, the right-hand

side exists and defines a regularization of the original integral. The contribution
Am%(L, 0.k, 11, )| 1s written as

Mu, s d=l oo 4 &
Am3(L, 0.k, 1, 8)|neo = 2:&3(%) L £y e kL 2L 4 ) gy

n=1

(5.151)

As we can expect, this integral cannot be directly evaluated, however, there
are some values of k which dominate this integral. To obtain such values, we
write

A ) {1\ [ smiey 2 124 na
A ¢ L’ :ka 5 = —<_> J' ts _t(mO_k o /4)L /47T
mi(L, 0, k, 1, $)|n=0o 2T\ L . 2 e

by 2
x Y e ke /An) 1dr (5.152)
n=1

This can be split into three contributions:

Ms) (1)¢ &
27T(s) <Z> ;It(L,Q,k,u,S)- (5.153)

Am%(L, ok, H, S)|n¢0 =
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where

(% =91 272

L(L, ok, p1,5) = ££72 et (Mol /4”)dt, (5.154)
JO
FOO d o0

L(L ok, 5) = ts—g—le—t (m§—k*0*/4)L? /4n Z e—][t(n—LkQZ/47T)2dt’ (5.155)
JO n=1
[ s—91 Lsz 21204 /4)2

L(L, ok, p1,5) = £ 2 @(t,4—)e‘t(m0_ o' /4)L* [4r 4. (5.156)
JO T

We used the theta-series (or Jacobi theta) defined by

Oa)= ), emmar, (5.157)

n=—oo

for any a, t € C with R(t) > 0. Note that the ©-function defined at Eq. (3.79) is a
particular case for « = 0. It is clear that ©(t; «) = O(t; @ + 1), and by the Poisson
summation formula, we have

1 - 2 i
@(-;0() — \/Z e t+2ring
, 2.

n=—oo
=Vt O (1;—ia/t). (5.158)
Let us split the integral (L, o, k, 1, s) into two regions. Since the theta-series
O(t; @) is holomorphic in the half-plane R(t) > 0, the L(L, o, k, 11, s) contribution

must be written as

L(L, ok, p,s) = Igl)(L, o, k, i1, s) + Igz)(L, o, k, 11, s), (5.159)

where Igl)(L, o,k, 11, s) is given by

él)(L, 0.k, 1,5) = J t%—s—%e—(m(z)—k294/4)L2/(47rt) Z e_””zt”kLQZ”/zdt, (5.160)
1 n=—oo
® ol Lko*

1L, 0.k, p5) = J £ 1@(t; 4—Q)e‘t(m§"<294/ °L* /4 gy, (5.161)
1 JT

The integral I3(2)(L, o, k, 1, s) converges absolutely for any s and converges uni-
formly with respect to s in any bounded part of the plane. Hence, the inte-
gral represents an everywhere regular function of s. Concerning the integral

Igl) (L, 0,k, i, s), to guarantee the convergence we must choose k(q) =1 ZLLq)?J,
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where q is a natural number. Therefore, in the series representation for the free
energy with k = 1,2,... we have that for the moments of the partition function
such that k) = [(%)%J, where (%) are the positive Matsubara frequencies

g, the system is critical. This is an interesting result: there is a critical set of
moments in the series representation for the free energy, after averaging over
the quenched disorder, instead of only one as in the case of an isotropic disorder.
A more general proof using generalized Hurwitz-zeta functions is based on the
fact that zeta function regularization with a meromorphic extension to the whole
complex plane needs an eligible sequence of numbers [201].

This result is similar to the one obtained in the Dicke model, where there is a
quantum phase transition when the couplings between the raising and lowering
off-diagonal operators and the bosonic mode, the energy gap between the energy
eigenstates of the two-level atoms, and the frequency of the bosonic mode satisfy
a specific constraint [202-206]. Once we are interested in the critical behavior,
we will focus on the set of the critical moments. Substituting the above-discussed
result in Eq. (5.151), one gets that

Ap,s) (1 d=1 (e s—9_1 212 142 2V 2
Am3(L, q, i, $)lpzo = —(—) J $$73 e (miL? /an*=g*)t N o=m(n+q)*t gy
27r1“(s) L 0 n;l

(5.162)

Finally, let us show that Am2(L, q, 11, s)|p=0 and also Am3(L, q, j1, 5|0 are writ-
ten in terms of the Hurwitz-zeta function, see Eq. (3.140). A simple calculation
shows that choosing g such that gy = ['Z—ZLJ, the quantity Am2(L,q, 11, $)|n=0 i
given by

M s) (1\ ™ i S )
AmZ(L, o, 1 o = F(S)<Z> L £ lZe LGrORKTS (5.163)
n=1

With the special choice gy = [";—‘;TLJ, we obtain the critical value of k., which was
used to obtain Eq. (5.143). We interpret this result in the following way: in the
infinite number of moments that define the free energy, we obtain a subset of
critical moments. In this subset, there is a particular set, for a specific value of
g, that generates the tree-level behavior. Going back to the above integral, this
simplification allows one to write Am?(L, gg, 11, $)|p=o as

M) (1)
A (L, Gor s Sz = ( )

(o) d 0 2
1 ts———l —f[(n+qo) tdt — A DI
2T\ L J ’ nz::ge r(sd)

0
(5.164)
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Let us analyze the quantity F;(L,, qq, 1, s), defined by

A(u, s)

d—1
1
— (s)<f) Ag(s,d). (5.165)

Fy(L,qo, p1,5) = Am%(L, qos Hs Slnzo +

Using an inverse Mellin transform, we can write F;(L, qo, i, $) as:

d
VTG = Dy ™
) {r(2s—d, q), (5.166)

Fa(L, o, p,s) = Ap, S)<f 2T°(s)

where the {(z, a) is the Hurwitz-zeta function defined in Eq. (3.140). For d = 3,
the contribution from the tadpole is finite, but the contribution from the self-
energy is divergent. An important formula that must be used in the renormaliza-
tion procedure is

tim| ez, - == | = (@), (5.167)

where ¥/(a) is the digamma function defined as ¥/(z) = %[ln F(z)]. Using the
Hurwitz-zeta function and the integral Ax(s, d), we can write:

A, s)

A 2 L, b 5 = — <
ml( qO lu s)|n¢0 Zr(s)

d-1p
(1) 715_3_11“(3 - é){H(ZS —d,q) — lAR(S, d)|.
L 2 T
(5.168)
Next, we prove that for a fixed value of g, the renormalized squared mass
vanishes for a family of L’s. In low-temperature field theory we get the same
result, i.e, there are critical temperatures where the renormalized squared mass
vanishes, namely:
m&(L, qo) = mZ + dmé + 6 Am2(L, 1)|,=q + 18 Am3(L, 2)|,=g + 6 Am2(L, ¢, 1)lpo
+ 18 Am3(L, g, 2)|po- (5.169)

Defining the dimensionless quantities b = myL, A; = 61, and p, = py/18, we
can write the latter equation as:

p-1 p3 , Az’ d b
—— — —Ap(1,d) + ——=Ap(2,d) + 6 F(l——) <2—d,—)
mg—3 47 r(Ld)+ 4oy R(2,d) + Omg -+ 2 2 SH T
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Let us discuss the case d = 3, in which case Eq. (5.170) becomes:

p T AN 3) = Ml (-12)

A
b? — —AR(l 3)+
27

2

a lim {p <4—d,i>+5m§=0. (5.171)
2 p? d—3 27

The contribution coming from Ag(s,d) is irrelevant for large myL, as one can
verify in Eq. (5.150). Using the identity (n + 1){y(—n,a) = —B,;1(a), where the
B,,+1(a) are the Bernoulli polynomials, we rewrite the Hurwitz-zeta function as

b ¥oob o1
2 (2S5 1) 5.172
gH( ’zfr) <8n 4n+12> (5.172)

We use the Eq. (5.167) we fix the counterterm contribution in the renormalization
procedure. Then, we have that Eq. (5.171) becomes:

2 2
b+ ) b_2_£+i + pzzz,b(i):o. (5.173)
8 4T 12 2 21

Since qy = [ b J we can write the digamma function as

¥(go +0) =y(o) + Z ot (5.174)

where o is the non-integer part of % With ¢ < 1 we can use a Taylor’s series
and write Eq. (5.173) as:

b1 Py (1 2
Pl|l—-—+=]+ —— —y+—0+H,(1)+0H,(2)]| =
1(871'2 4r 12) 2 \ o Y 60- qo() o %()

(5.175)

where qu(l) and HqO(Z) are the generalized harmonic numbers, defined in Eq.
(3.133). The Eq. (5.175) has zeros for different values of L as showed in Fig. 5.3.

In one-loop approximation we proved that in the set of moments that defines
the quenched free energy there is a denumerable collection of moments that can
develop critical behavior. With the bulk in the ordered phase, in these moments
temperature or finite size effects lead the moments from the ordered to a disor-
dered phase. Also, in the set of moments, there appears a large number of critical
temperatures.
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Eq. (6.175)

Figure 5.3: Plot of Eq. (5.175) as a function of b = myL for two different values of A,
(once p2 = 2mZA,): Ay = 1 (continuous black) and A, = 3 (dashed red). We set y* = mj.

In the study of complex spatial patterns and structure in nature there ap-
pears the idea of self-organized criticality [207, 208]. The authors of these ref-
erences suggest fractal structures and 1/ f-noise are common characteristics of
irreversible dynamics of a critical state, without a fine tuning of external parame-
ters. The algebraic decay of the correlation function in space and time for generic
parameters is called generic scale invariance. Our Egs. (5.143), (5.175) and Fig.
5.3 are a manifestation of generic scale invariance in an equilibrium system.

As showed in Ref. [209] the prescense of Goldstone modes does not change
the behavior of this system. Therefore, in a system with a continuous symmetry,
we have both, the direct scale invariance (due the Goldstone modes) and the
indirect scale invariance, due the disorder in low temperatures.

Diagonalization procedure and bounds in the partiton functions

Here we present the calculations and results of Ref. [210]
Let us recast the coarse-grained action of the random field model, Eq. (5.106),
as the following:

i 1 k Ao k IRE
@ = [13° #C0[2 (a+mb)dy -] o+ 2 Y [#he)] ' ax
ij=1 i=1

(5.176)
Such an action has a non-diagonal propagator. The literature has some different
approaches to deal with it, as in some of the minimal supersymmetric standard
model extensions [211, 212], or one can use a Hubbard-Stratonovich identity as
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in the Bose-Hubbard model [213]. Still, another way is to use the ansatz gblk = ¢k,
as discussed previously. Although such an ansatz leads to consistent results, it
is an unnecessary simplification, as one can use the spectral theorem of linear
algebra to formally diagonalize the propagator.

Let us focus only on the quadratic part of the effective action, that is:

k

k
Y S04 = 2 D Jébi(x) (G) - 0?) ¢y(x) dx, (5.177)
=1

2=

where Gg =(-A+ mg) djj- Such an action can be equivalently represented by:

k
Y Sond) = 3 | dlx @.Ge) (5179
ij=1

where G is the k x k full matrix with components Gg- — o2, ®(x) is the vector with

components ¢;(x), and (, +) is the natural inner product in R¥. Now noticing that
G is real and symmetric, one can find its diagonalization by an orthogonal matrix
O:

G —ke? 0 - 0
0 o
D =(0,G0O) = ? Gzz . ? (5.179)
0
0 G i

Foremost, we should notice that, from the start, in JRk, which appears as a
result of the average, does not have any special properties. Besides the usual
vector space properties, Eq. (5.176) does not impose any other qualities in this
space. Then, to keep the formulation as general as possible, we shall assume
minimal properties over R. Now, defining that ®(x) = O®(x) is the vector with
components ® = (¢, ¢y, ..., pr_1 ), we are able to present a third expression of the
free effective action:

k k-1
3 500 =2 [+~ koo e+ 2 Y [0+ ma o)
I,j=1 a=1

(5.180)

which is clearly the sum of k free actions with two distinct differential operators.

As we have seen, there is no problem in the application of the diagonalization
approach, Eq. (5.176), for the free effective action. The functional measure is
also well-behaved under the diagonalization, since the matrix which performs
the transformation is orthogonal and the absolute value of the Jacobian will be
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unity. The source j;, introduced to generate the correlation functions, can always
be chosen in such a way that it transforms with the inverse transformation of the
vector @, and it is also well-behaved. From now on, we discuss the source-free
case. So, for free actions, the diagonalization approach is able to describe the
system without any ansatz over functional space. A problem emerges once we
turn on the interaction.

From Eq. (5.179), there is always a set of k — 1 degenerate eigenvalues, which
means that one needs to orthogonalize the respective eigenvectors, which are
columns of O. This feature of the matrix O introduces difficulties in the interact-
ing part. As one can see from Eq. (5.176), after the disorder average, the effective
interaction is not symmetric under rotations in RF. Such an interaction is known
in the literature as cubic anisotropic interaction [214-216].

Technical difficulties arise when k increases. Such a feature can be directly
related to the non-perturbative behavior of the RFIM. However, here the non-
perturbative behavior is of a different kind than the usual one that appears in field
theories. It is non-perturbative due to the impossibility of writing explicitly the
interaction for any value of k after taking the quenched average. This situation
is similar to the case of the Bose-Hubbard model [217].

Nevertheless, we show that the effective action given by Eq. (5.176) has an
upper and a lower bound, which are rotationally symmetric. We will construct
two effective actions in which the diagonalization procedure does not affect the
interacting part, and such actions will establish an upper and a lower bound for
the partition function of RFIM.

Once the free case has been treated and presents no problems, let us focus on
the cubic anisotropic interaction:

*) o [ < )
B =5 | Swcoras G.181)

We adopt the notation | « |, for the p-normin Rk, so that | ®(x))| = [> loi()IP] Yp

for any x € R?; hence, the interaction can be recast as:
®) gy = 20 4
ScA(®) = o |P(x)||4 dxx. (5.182)

With that in mind, we can go further. Observe that for any a € ]Rk,
laly < Vk lal,  lal < lal;. (5.183)

The first inequality above can be proved by writing ||a| = (a, s) withs; = 1ifq; > 0,
s; = —1 otherwise, and applying the Cauchy-Schwarz inequality, corollary A.55.
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The second inequality can be verified by direct computation of ||a||§ — ||a||§. Fix
x € R? and set ¢; = gi(x)? fori=1,....,kand a = (ay, ..., a). Since |ja|; = ||<I>(x)||§
and |al, = ||<I>(x)||i, it follows from the above inequalities that

ool
ko

This inequality can be used to obtain a bound for the cubic anisotropic interac-
tion:

< [o()l; < o). (5.184)

1
£500(®) < sB@) < So) (D), (5.185)

where we have defined the interaction action
Ao 4
Sow (@ = 22 | 1eGoliax. (5.136)

Such a result is useful since, for all x € R?, the norm | - | is invariant under
orthogonal transformations in R

()l = (@), () = \J(OTb(x), OTd(x))
= J(@(x), 00Td(x)) = \J(d(x), d(x)) = |

(5.187)

for any orthogonal matrix O, that is, 070 = I, with O denoting the transpose of
O. Now it is clear why the label O(k) is chosen in Eq. (5.186). This denotes that
the interaction is invariant under the orthogonal transformations O(k). From
this, one can use the actions given by Eqgs. (5.178) and (5.186) to construct the
following actions:

sP@ =1 [@, 6000 ax + 2 [ Jotia (5.188)
sW@) = L J(@(x) GO(x)) dx + A— J [ 0G0 A, (5.189)

These actions are natural upper and lower limits for the effective action given by
Eq. (5.176), that is,

sP@) < sB(@) < sP(), (5.190)

and also, due to the property of the norm | - ||,, both actions exhibit nicer orthog-
onal transformations in R".
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Using the same orthogonal matrix that was used to diagonalize G, Eq. (5.179),
we can write the diagonalized action in terms of the components of ¢ as

sPg, ¢a>— [ ~P()(—~A + m — ka®)p(x)

k-1 k-1
42 2 B + () + % (¢2<x> + 3 ¢2<x>) ] dx
a=1 : a=1
(5.191)

with S(k) S[(Jk), and SIEk), adopting Ay = Ay, and Ay /k, respectively. Analyzing
such an action, we can verify that it represents the action for two different kinds
of scalar fields, with different masses. The underlying symmetry of this action
is Zy x O(k — 1). In different contexts, such actions have been studied [126, 218].
One interesting feature is that, considering any phase transitions, this action
intrinsically preserves the no-go theorems of Mermin-Wagner, Hohenberg, and
Coleman [219-221].

Now we can construct the partition function for each of these actions. Due
to the monotonicity of the exponential, we get that

20 <[5 < 2P, (5.192)

where

PARE J

z® = J

That is, without any ad hoc choice of subsets in ]Rk, we are able to obtain partition
functions that are bounds in each term of the series of Eq. (5.70).

The fundamental question that can be answered with these results is the na-
ture of the phase transition of the continuous RFIM. This problem can be exam-
ined using the concepts of the lower critical dimension of the RFIM and no-go
theorems. The model is bounded by two theories Z, x O(k — 1). In these the-
ories, there are two different phase transitions: (i) Z, x O(k — 1) - O(k — 1),
and (i) Z, x O(k — 1) —» O(k — 2) [126]. Since the lower critical dimension for
the RFIM is two, case (i) cannot represent a phase transition due to disorder. We
have thus obtained a new result. The phase transition of the continuous RFIM
can be restricted by a Z, x O(k — 1) - O(k — 2) phase transition. The situation

[doy]exp (557 (@))., (5.193)

= 1=

[dg;] exp ( ka)(CD)) - (5.194)

Il
—_

i
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is similar to that of the cubic anisotropic model, which is confined between the
Ising model and the Heisenberg model. A question that can be answered by this
method is whether the nature of the phase transition depends on the particu-
lar choice of the probability distribution for the random field [159, 222]. In the
case of a different probability distribution, the symmetry of the bounds can shed
some light on such a question. Also, it is possible to elucidate the nature of the
phase transition in the continuous RFIM by connecting the bounds established in
the distributional zeta-function approach using the interpolation method similar
to the one pioneered by Guerra [223]. An interpolation between the diagonal
ansatz and the bounds can be made as follows. Noting that the interaction in the
diagonal approximation resembles the self-interaction of the field variable ¢(x)
in Eq. (5.191), we may define a new field variable l/;(x) = Ad(x), with Ay; = 1,
Agy = toy, Ay = Agy = 0 for a,b € {2,...,k}, and t € [0,1], so that the new
action interpolates between the bounds and the diagonal ansatz.

Critical Casimir effect via diagonalization approach

Here we present the calculations and results of Ref. [224].

Here we revisit the Casimir effect in disordered systems, now considering
a continuous symmetry. More specifically, we consider continuous fields that
model order parameters possessing a continuous symmetry in scenarios where
the disorder fluctuations dominate over the thermal fluctuations. Examples of
systems realizing such a scenario include a binary fluid in the presence of an
external random field in the critical regime, superfluids, and liquid crystals. In
such a situation, when the criticality is reached, one has to take into account the
soft modes (Goldstone bosons) due to the symmetry breaking [108, 225]. Another
difference from the previous approach is that now we use the diagonalization
procedure, previously presented. Our primary aim is to answer whether the soft
modes associated with the Goldstone boson favor or suppress the Casimir force
and whether they affect the sign of the force. The result that we obtain for such
a question is that the soft modes do not affect the change of the sign of the force.
However, an interesting effect due to the disorder arises. In the regime of strong
disorder, where we only have the Casimir effect due to the presence of the soft
mode, the Goldstone mode contribution may change from attractive to repulsive.
In other words, the presence of disorder may change the sign of the “universal
amplitude” due to the Goldstone modes.

To start, let us consider the action

5.7 = 3 [ 19760 (-2 4 1) 60) + V(6.4 + I + h" ()] i
(5.195)
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as before, mg is the bare mass, A is a strictly positive constant, and V(¢,$*) is
a polynomial in the field variables. Here we would like to point out that in the
case of interacting field theories confined in compact domains, it is necessary to
introduce surface counterterms [226-230] The main difference here is that h(x)
is now a complex random field [100, 209, 231], with a probability distribution
P(h,h*). Again, to simplify the problem, we consider a Gaussian distribution,

_1 2
P(h,h*) = ppe 7 JhGIT 4 (5.196)
The k-th moment in the series, Eq. (5.70), with j(x) = 0, generalizes to:
k k k S f kx
E[250] = | [T 1dgkllagh &St (5.197)
ij=1
with
Seft(8 #1) = Y [So(gf, ¢F) + ASi (85, 6] (5.198)
Lj
Here, So(qﬁllc , gb]k*) is the quadratic action:
% 1 *
So(df- 457) = 3 J $* () (G — p?) ¢ (x)dx, (5.199)
in which, for later convenience, we defined
Gj = (A +mf) &y, (5.200)

and S;(¢;, (ﬁ]*) is the interaction action corresponding to V(¢, ¢*). The propagator
corresponding to So(gbi,(;ﬁ;) is not diagonal in RF. To circumvent this nagging
feature, we use the diagonalization procedure. Defining the vector ®(x) as the
vector which has components ¢;(x), we can rewrite the sum of the quadratic
actions as

k
> 5o )) = 3 [ (@0, 60* G
i=1

1

2
1 = Tk

= 5J(CID(x), D®*(x))dx (5.201)

where ®(x) = O®(x), O is the matrix that diagonalizes G, and D is the diagonal
matrix given by Eq. (5.179). Let ¢;(x) denote the components of ®(x). Using the
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component notation, one can write the diagonal form of the quadratic action in
Eq. (5.201) as

k
3% 50647 = 2 | 07O+~ k(o)
ij=1

Z J 0a ()(=A + m)py(x)dx, (5.202)

NI»—A

where, to simplify the notation henceforth, we defined ¢;(x) = ¢(x) and also
changed the dummy index in the second line. Since O is an orthogonal matrix,

one has that
k

k—1
[ 1d:11dg;1 = [dellde*] T | [deallde;]. (5.203)

Lj=1 ab=1
Therefore, using Eqs. (5.202) and (5.203) in Eq. (5.197), we obtain:

k-1
]E[Zk(h)] = J ¢ Sp @0 S0(ut) 251000 [ dyp] [ dp™ ] H [dga][de} ], (5.204)
ab=1

where S,(¢, ¢*) is the action carrying the information on the strength p of the
disorder,

Sy ") = & j 0" (A + it — kpP)p(x)dx, (5.205)

and Sp(¢,, ¢;) is a O(k — 1)-symmetric action, independent of the strength of the
disorder, given by:

Sogwl) = j 2 (A + md)pa(x)dx. (5.206)

The action S;(¢,, ;) will not be needed in our study of the Casimir effect, but its
presence with a A > 0 is required to guarantee the action’s boundness.

We proceed recalling that each moment of the partition function contributes
to the total quenched free energy, Eq. (5.70). To obtain the Casimir energy we
compactify one of the dimensions, R? — RI1 x [0, L], and impose some bound—
ary conditions. As can be seen in Eq. (5 205), there is a combination of k, m% and
p for which the effective mass m2 — kp? becomes negative, indicating the symme-
try breaking U(1) — Z,, giving rise to a Goldstone (soft) mode. Of course, the
Casimir force is present even for those terms in the sum with a positive effective
mass, as the condition for its presence is that the correlation length becomes of
the order of the system’s compactified size L. That is, the total energy receives
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contributions from symmetry-preserving and symmetry-breaking terms. Our
interest in this application of the distributional zeta-function method is to study
the interplay between the contributions to the energy of the symmetry-breaking
soft mode and the critical mode, both induced by the disorder. Therefore, we
neglect the symmetry-preserving modes. We assess this interplay by first per-
forming a shift in the field ¢(x) to expose the symmetry breaking, then neglect
all non-Gaussian terms, and finally, take the large L limit.

We perform the symmetry-breaking field shift for the situation with m3 —
kp? < 0 in Eq. (5.205), proceeding analogous to the procedure at the end of Sec.
5.1 and Sec. 5.1.1. In the Cartesian representation of the fields ¢(x) and ¢*(x),
we have that

1

p(x) = NG [Y1(x) + ia(x)], (5.207)
9 (x) = % [11(x) — i ()], (5.208)
The minima of the action lie on the circle
2 2
Ui +ys = 2"~ my) 7 ) _ 2 (5.209)

Defining the shifted fields y = y; —v and ¢ = i, the Gaussian part of the action
becomes

S ¥) = % j dx | xCo)(=A + m2) x () + Y ()(=Ay(x)],  (5.210)

where we defined mz = 2(kp? — m3). In the new variables, after dropping all
non-Gaussian terms, Eq. (5.204) assumes the following enlightening form:

E[Z®W)] = 2,26 1201, (5.211)
where
Z, = [[dy] ¢ 3/ 4 xAemG). (5.212)
Zo = T[dgﬁ] e‘%fddXIﬁ(X)(—A)!//(X)’ (5.213)
Zo = T[dt/}][dq)*] ¢z [ X" A me ), (5.214)

are the partition functions corresponding to the contributions of the disorder, the
Goldstone mode, and a O(k — 1) symmetric model, respectively.
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Now, we take a slab geometry with one compactified dimension, Q; = R*!x
[0, L], and impose Dirichlet boundary conditions on all fields

Aa(xl, L Xd—1s 0) = Aa(xl, s Xd—1s L) = 0, (5215)

with o = {p,G, O} and {Ap, Ag, Ao} = {x, ¥, ¢}, respectively. Using the result in
Eq. (4.34) for each of the partition functions in Eqgs. (5.212), (5.213), and (5.214),
we obtain for the k-th moment of the partition function, Eq. (5.211), the following
expression:

k-1

1 1
E[Z¥h)| = [det(-A +m2)o, | *[det(-A)g, | ? [det(-A+md)o,] 2 .
(5.216)
The last term contributes neither to the critical nor to the soft Goldstone
modes. As such, it can be dropped by redefining the energy.
The relevant contributions to the Casimir energy can be regularized using
the spectral zeta regularization

k _ 1d
E[Z50)] = exp{ 22 [0, + 6| _ }- (5.217)
By the same arguments used to obtain Eq. (5.119), one concludes that the main
contribution to the total quenched Casimir energy is given by

—1 kc

El = (kckz! exp {kc Ina+ %% [gp(s) + {G(s)] ’3:0}' (5.218)

We define the following zeta function

_ Ag
L= | =

n=1

—S

2
e+ mi+ (%”) ] dp, (5.219)

with @ = {p, G} and mé = 0. Using the same definitions and arguments in Sec.
4.2.1, one can rewrite {,(s) as

o0 —t12
,(s) = Cy(L, s) J £ DM (. (5.220)
0

Following the same steps taken between Eqs. (4.44) and (4.47), it is straightfor-
ward to obtain that

Lu(8) = Cy(L, 8) [2I74(8) + I y(s) — I8y (5)] . (5.221)
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(b) Plot of the quenched Casimir pressure,
Eq. (5.225), for dimensions 2,3, and 4 and

(a) Plot of the quenched Casimir pressure,
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Figure 5.4: Critical Casimir force for different parameters.
where
00 2,
I8,() = | 27 e My, (5.222)
(~ 4 1 ;Lzmz
Fas) = 12 e Mt (5.223)
a [ d_ 3 i o
I4(s) = . t2 " 2e n odt, (5.224)

and Cy(L, s) is given in Eq. (4.45).

One obtains the quenched Casimir force analogously to Eq. (5.121). Such a
force receives contributions from the spectral zeta functions of soft and critical
modes. In the case of @ = G, we have the same situation of Sec. 4.2.1 for my = 0,
i.e., the contribution of the soft modes to the Casimir force is given by Eq. (4.52).
For a = p, we have the calculation of our first application of the distributional
zeta-function and the corresponding contribution is given by Eq. (5.112). Putting
all together, we obtain for the total quenched Casimir pressure of the system the
following expression:

D% [ 12
kek 1247114 | d -

27

4O

pi(L) ~B4(0) + Dy(0) +

(5.225)
Such a result can be plotted as a function of L for different dimensions and values

of k.. Figs. 5.4a and 5.4b display pg(L) for dimensions 2, 3, and 4 for different
values of k.. Note the different scales in the axes of the two figures.
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This result has some interesting features. First of all, if we ignore the Gold-
stone mode contributions, the resulting equation differs from Eq. (5.122) by a
multiplicative factor, 4/k,. This factor comes from the exact diagonalization of
the quadratic actions; when one uses the ansatz g[)lk (x) = ngJk (x) Vi, j, as used pre-
viously, the multiplicative factor does not appear. Of course, such a difference
is irrelevant to gathering qualitative understanding. However, the qualitative
similarity between the results holds only when one can neglect the contribution
from the partition function Zy, Eq. (5.214). This is the case whenever the cor-
responding action does not reach criticality, a situation that can occur due to
nonzero temperature or finite-size effects. Another feature of Eq. (5.225) is that
the critical and the soft mode effects are noncompetitive; they are of the same
sign. Still another interesting feature is that, when k,p > m?, one can neglect
the contribution of Z,, Eq. (5.212), to the Casimir energy; in practice, one can set
B;(0) = D4(0) = 01in Eq. (5.225). This is interesting because then only soft modes
contribute, but with a factor proportional to (-=1)%, which means that a change
of sign may occur. In other words, there is a universal constant due to the soft
modes, given by {(3)/16, with an overall sign that can be either negative (as
usual) or positive, depending on the value of k..

Analog model for Euclidean Wormholes

Here, we present the main calculations and results of Refs. [232, 233].

The program of describing the gravitational field using quantum theory faces
many conceptual difficulties, mainly related to causality and locality. Quantum
field theory, formulated on a classical gravitational background spacetime, is an
intermediate step toward such a program [234-236]. A problem that permeates
this approach is the absence of a specific vacuum state associated with matter
fields in a generic spacetime. However, in globally hyperbolic spacetimes, this
issue is circumvented by the use of Hadamard states. To go further, one can dis-
cuss the effects of the fluctuations of the metric fields on the quantum matter
fields. It has been shown that a bath of gravitons in a squeezed state induces
fluctuations of light cones [237-239]. Ref. [240] proposed an analog model for
fluctuating light cones induced by quantum gravity effects. The model builds
on the fact that acoustic waves in a disordered medium propagate with a ran-
dom speed of sound. Further studies discussing analog models can be found in
Refs. [241-244]. Here, we build on similar ideas to propose an analog model for
Euclidean wormbhole effects on a real scalar field.

In recent years, there has been a growing perception [245] that long-distance
physics issues are as important in quantum gravity as the most-discussed short-
distance physics issues. A central, open question in this respect is: How does
the nonlocality of quantum gravity affect the expectation value of a measurable
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observable? Returning to local quantum field theory, one can define Schwinger
functions from the expectation values of operator products in Minkowski space-
time. These are the corresponding analytically continued vacuum expectation
values in Euclidean space, as we have seen in Chaps. 3-4.

In the functional integral formalism [246] in Euclidean space, the Schwinger
functions are moments of a measure in the functional space of classical fields.
In such a functional integral scenario, one can discuss topology fluctuations and
wormbholes [247-250], which are quantum gravity features particularly relevant
to the issue of quantum coherence loss in Hawking black hole evaporation.

The basic feature of wormholes in Euclidean field theory is the existence
of nonlocal physics in a connected manifold or geometry that connects discon-
nected boundaries. The contribution to the free energy from these connected
topologies was discussed in Ref. [251] using the replica trick. The replica trick
provides a convenient way to compute averages of the free energy (the log of the
partition function) [138]. In a related study, Ref. [252] proposes an integral repre-
sentation of In x to compute the free energy of spacetime D-branes. The author
of that reference argues that the bulk gravity picture of such an integral represen-
tation involves wormholes connecting multiple asymptotic boundaries. Replica
wormholes also play a role in the computation of the von Neumann entropy of
Hawking radiation [253].

Two of the most fundamental questions facing Euclidean quantum gravity
are the following: 1) What is the empirical support for the mathematical formal-
ism of Euclidean quantum gravity? 2) What are the physical effects of topologi-
cal fluctuations on the Euclidean quantum fields? In the absence of cosmological
experiments, we propose a condensed matter analog model that might provide
insight into these questions. We propose an analog model for topological fluc-
tuations in Euclidean fields based on external disordered fields described by a
statistical field theory.

As we have seen previously, low temperatures or anisotropic disorder induce
nonlocal terms in the resulting effective action (see Eq. (5.126)).

We briefly discuss matter fields in a generic Riemannian manifold. Suppose
a compact manifold with Riemannian signature .#. The space of fields is the
space C*(4,R) of smooth functions defined on /#. Let S : C*(,R) — R be
an action functional of the gravitational g and matter ¢ fields. Using a functional
measure for the gravitational and matter fields, the partition function is given

by:
Z = J[dg] [dgp] e=5(8)-5($) (5.226)

where S(g) and S(¢) are the gravitational field and matter field actions, respec-
tively. For simplicity, we take a single scalar field to represent the matter degrees
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of freedom. The gravitational field action is given by:

1 d 1 d-1
S(g) = ———— d R—2A)— — Kd= ' +C. 5.227
(g) 167G ,[/% x\/g( ) 811G L% ( )
As usual, g = det(gij), G is Newton’s constant, R is the Ricci-scalar, A is the
cosmological constant, K is the trace of the second fundamental form on the
boundary, and C is a constant that can be tuned to achieve a convenient on-shell

configuration, e.g., in flat space S(g) = 0. For the matter field action, we take:

A
S(¢) = % J ddx Jg p(x) (A +m?) () + ZO J ddx g ¢4 (x). (5.228)

Many authors [248-250, 254] have emphasized that the effects of wormholes
and topology fluctuations are encoded in a nonlocal matter-field contribution to
the Euclidean partition function, namely

Z = J[dg][d¢] exp [—5@5’ g+ % J d%x J dly > $i(x) Gy(x. y) ¢j(y)] . (5.229)
i

in which G;j(x, y) encodes the space nonlocality, with each pair i, j representing a
wormbhole. In the next section, we show that such a nonlocal term arises naturally
in a matter system in the presence of disorder.

As mentioned above, in a Euclidean quantum gravity scenario, many authors
have stressed the necessity of performing the average of the free energy or the
generating functional of connected correlation functions of the system [251, 252].

Here, our main assumption is that the topology fluctuations in the Euclidean
path integral in Eq. (5.227) can be effectively modeled by coupling a quenched
disorder field to the matter field ¢. In practice, one removes the functional mea-
sure of the metric from the functional integral and takes the disorder average of
the corresponding free energy over ensembles of disorder realizations. Proceed-
ing in this way, the Euclidean wormbholes’ effective action is readily identified.
The topology fluctuation information is then effectively accounted for by the
quenched disorder field.

Let us suppose that we have the random field action, Eq. (5.51), with the
probability distribution of the disorder given by

P(h) = py exp {—% J ddxj d%y h(x)F'(x - y)h(y)}, (5.230)

where o is a positive parameter associated with the strength of the disorder,
po is a normalization constant, and F(x — y) defines the disorder correlation

E[h(x)h(y)] = o (x — y).
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For the random field case, the effective actions Seg defining the k-th moment
of the partition function in Eq. (5.71) are given by:

k
@) = [ a'x [ @y 3 M6 W - go). G
ij=1

where [G_l(k)]l-j(x — y) is the inverse of the two-point correlation function

(G ®)y(x =) = [(-8 +m*) 6D(x = )8 =’ Fyx - p)| . (5232)

where Fjj(x — y) is the matrix with all entries equal to F(x — y). The term pro-
portional to o?> comes from averaging over the random field & and contains a
nonlocal contribution when F(x — y) is not §-correlated in (x, y). The nonlocal
contribution is analogous to the nonlocal term in Eq. (5.229). The first term in
this last equation gives the bare contribution to the connected two-point correla-
tion function even in the absence of disorder averaging, whereas the second term
is normally a disconnected contribution but, due to the averaging, it becomes a
connected contribution [121].
Proceeding with the diagonalization approach, we can write

k-1

E[Zk(h)] = J 11 [445] ¢So(#) J[d¢] 5 @) (5.233)
a=1
with
k—1
o) = [ @' 3. 2k (-0 +m?) o) (5.254)
a=1

s0) = [ atx | aty 2000[65" - ) - kPG - ] 9. (5259

How does this result relate to the original works about Euclidean wormholes?
First, as already mentioned, the Gaussian disorder correlation leads to a probabil-
ity distribution similar to that obtained in Coleman’s work in Ref. [248]. Second,
instead of calculating the mean value of the partition function with the wormhole
contributions integrated out with non- Gaussian distributions for the topologi-
cal fluctuations, as done by Preskill [250] and Gonzalez-Diaz [255], here we are
analyzing those effects on the disorder average of the free energy (the log of the
partition function). As mentioned after Eq. (5.232), such an average leads to con-
nected correlation functions that would be disconnected correlation functions in
the absence of disorder. This feature leads to the interpretation that the quenched
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field induces topology fluctuations, fluctuations that have “propagators” associ-
ated with them, in Preskill’s [250] sense. Said differently, the disorder average
of the free energy in Eq. (5.233) is actually a superposition of the contributions
given by (infinitely) many universes connected by Euclidean wormholes. This is
the analog to the proposal by Klebanov, Susskind, and Banks [249] that our uni-
verse was in a thermal bath with many (possibly infinite) universes. Finally, a
similar interpretation of the average of the free energy was presented in a recent
work by Okuyama [252], in which a different method was used to compute the
average free energy.

It is important to point out that a single term in the series does not define a
brane (universe); rather, the brane interpretation applies only to the entire series.
After the diagonalization and the redefinition of the fields in the functional space,
a single term of the series has no direct interpretation at all. The entire series is
needed to obtain physical quantities. Figure 5.5 provides a visualization of our
result, in that all topology fluctuations are, in fact, Euclidean wormholes. As
evinced by Eq. (5.235), we have two kinds of fluctuations: those that connect
different branes (different universes), and those located on the same brane (same
universe).

Figure 5.5: Visualization of the topology fluctuations obtained from the disorder-
averaged free energy of the model.

A link with condensed matter physics is almost trivial. A disordered sys-
tem at low temperatures, or for an anisotropic disorder, leads to a model with
the same mathematical structure regarding the nonlocality induced by quantum
gravity effects on matter fields. The series in Eq. (5.70) takes into account all
possible configurations of the disorder. However, those configurations are not
independent, since the disorder average is taken over the free energy, the gener-
ating functional of the connected correlation functions.

This concludes the formulation of the analog model. Physical quantities,
such as the dynamic and static structure factors, can be readily computed by
using a mean-field approximation to obtain the necessary matter-field correla-
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tion functions. We recall that the static structure factor is proportional to the
total intensity of light scattered by the fluid [256]. As such, the effects of the
disorder-induced nonlocality should leave signals on the scattered light.

In summary, we have proposed an analog model for Euclidean wormholes
and topological fluctuation effects in a Riemannian space. We aimed at modeling
the effects of a quantum theory of gravitation on a matter field. The idea of
modeling the internal degrees of freedom by a random field has logical appeal
and historical background. Although we based our derivations using a scalar
field, the formalism can be easily adapted to other fields, such as vector and
spinor fields.

As a matter of fact, we know that, in a Bose-Einstein condensate (BEC), one
has around 10% of the system as a non-condensed cloud of atomic gas surround-
ing the condensate [257, 258]. Such an atomic cloud affects the physical proper-
ties of the condensate.

Starting from the Hamiltonian of the condensate and the non-condensed
cloud, one can construct the soft action as (for details, see Ref. [233])

So(¢,¢") + 51 = J lcb*(X) (—% + mg(x) + U(x)> $(x) + gglpCol*

+ $EOR*(x) + ¢*(Oh(x) + F2(0m* (x) + ¢**()m(x) | dx,
(5.236)

where ¢ are the condensate field variables, while 5(r), h(r), and m(r) are related
to the non-condensed cloud and are functions that only exist in the interface
between the condensate and the non-condensed cloud.

Disregarding the second line of the action in Eq. (5.236) is equivalent to as-
suming the so-called Hartree-Fock-Bogoliubov-Popov approximation, which re-
covers the Gross-Pitaevskii action functional. Let us suppose that our system is
in three dimensions and the condensate is confined in some semi-finite region.
A bidimensional representation of the system is given in Fig. 5.6.

Then, it follows that the Gross-Pitaevskii action is given by

L
S(#. 9% 1) =J L {gb*(x, Z)[_Aqs +mi(x,z) + n(x, 2) |p(x, 2) + gpld(x, 2)[*tdzdx.

2m
(5.237)

We note that the interaction between the cloud and the BEC can be complex to
model, since at the interface, we can have condensation of elements of the cloud
and decondensation of part of the BEC. Therefore, we will model this interaction
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Figure 5.6: Bidimensional visualization of the BEC confined between non-condensed
clouds.

by a quenched disorder. Take the probability distribution as

L L
P(n) = pyexp (—# J JO J L n(x, 2)F 1 (x, z; x", 2 )n(x’, z’)) dzdz’ dx dx’,

(5.238)
where p is the strength of the multiplicative disorder 5(x, z) and F(x, z; x’,2z) is
the correlation function of the disorder. Therefore, the correlation of the disorder
n(x, z) is E[n(x, 2)n(x’, 2")] = p?F(x, z;x’,2"). It follows that the effective action
is given by

L k \ 2
Ser($.97) = 1O .2) |¢i(x.2) dzd
(4, 9°) J'JO ;sﬁ (x z)l 2y +md(x z)l¢(x 2)dz dx
L oL k
+JJ0 Jo Z (5ijg¢ _sz(x’Z;x,’Z/)) ¢;~‘2(x, )¢ (x',2') dz’ dz dx’ dx.
i,j=1

(5.239)

Such an action shares similarities with the effective action of Eq. (5.126) (just
take F(x, z; x’,2") = 6%(x—x") [8(z) + 8(z — L)]), which is also non-local. This ef-
fective action is similar to the one that appears in the study of spin-glass systems
at low temperatures and it is highly non-trivial [217]. However, this gives us that,
in fact, the interaction between the non-condensed cloud can be interpreted as a
quenched disorder in terms of knowed systems.

For simplicity, let us now disregard the non-linear couplings between the
condensate and the non-condensate in Eq. (5.236) and the non-Gaussian contri-
butions. That is, we disregard the contributions of 7, m, and ¢* and keep only
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h. Supposing the covariance of h(x, z) as E[h*(x, 2)h(x",2")] = 0?F(x,z;x",2"),
where ¢ is the strength of the additive disorder, the effective action reads

L L k
Sefr(@. ™) = J L L i; 7 (x, z)l (—% + md(x, z)> 8;0(x — x")3(z = 2")

— 0%F(x,z;x’, z’)]gbi(x’, z’)dzdz’ dx dx’,
(5.240)

If we define G;; = (—% + mg(x, z)) 5,-]-5(x —x")8(z — 2’) — 0?F(x,z;x",2"), we
(4

obtain the same action as in Eq. (5.231), and therefore the same diagonalization
procedure can be implemented to reproduce the Egs. (5.234)-(5.235).

Therefore, we conclude that the system of a BEC and the non-condensed
cloud can be a realization of the analog model for Euclidean wormholes. Ob-
jectively, a measurable quantity that can be obtained from this BEC model with
dirty surfaces is the Casimir force, which will behaves like the the one plotted in
Figure 5.4.

Generalized entropy of a Black Hole

Here we reproduce the main results of Ref. [259]. Details about quantum fields
in curved space-time can be found in Refs. [21, 260, 261].

The limits of applicability of quantum field theory were tested through the
formulation of quantum fields in curved spacetime, where problems of a differ-
ent nature arise [262, 263]. After the introduction of the concept of black hole
entropy by Bekenstein [264, 265], Hawking studied free quantum fields in a fixed
curved background spacetime geometry. It was shown that a black hole of mass
M, emits thermal radiation at a temperature !, which is proportional to the
surface gravity of the horizon (a null hypersurface generated by a congruence of
null geodesics) [266, 267]. This effect, initially derived for a non-rotating neutral
black hole, remains a topic of ongoing debate and continues to be a fertile ground
for testing new ideas and techniques.

However, one can ask: In Euclidean quantum field theory, how do disorder
fields affect the generalized entropy of a Schwarzschild black hole? Here, we in-
clude disorder fields in addition to the external matter and radiation fields. The
microscopic degrees of freedom that are thought to contribute additional terms
to a complete theory of black hole entropy have yet to be adequately identified
[268]. Significant efforts have been made to explain the origin and behavior of
these unknown contributions to entropy. Several common perspectives exist, in-
cluding the statistical origin of Einstein’s equations and the quantum properties
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of the gravitational field. For example, in Ref. [269], it is argued that an accu-
rate interpretation of entropy does not necessarily require additional degrees of
freedom but arises solely from the quantum nature of gravity.

There are approaches that include the degrees of freedom of the black hole’s
interior [270]. These results, using the topological structure of replica worm-
holes, demonstrate why the black hole interior should be included in the compu-
tation of radiation entropy [271-274].

Based on Refs. [275-279], we define an effective model with disorder in Eu-
clidean geometry. To account for the influence of disorder fields on matter fields
and their contribution to generalized entropy, we study a self-interacting /1403
theory defined in a Euclidean section of the Schwarzschild manifold.

The Birkhoff theorem on manifolds ensures that any vacuum spherically
symmetric solution of the Einstein equation is locally isometric to a region in
Schwarzschild spacetime. Therefore, we start with the pseudo-Riemannian man-
ifold that possesses the Schwarzschild metric in a d-dimensional spacetime [280].
The line element reads:

-1

2 s\ 3 2 s\ 2, 2102
as? = —(1-(2) e+ (1-(2) dr? +72dQ2_,. (5.241)

r r

The Schwarzschild radius r is proportional to the product of the d-dimensional
Newton’s constant and the black hole mass M;:

3 (F)
S L A ¢ O) VS (5.242)

d-3

d-2)r 2

For simplicity, we use the notation GDM, = M, so that in four dimensions, M
has units of length.

After a Wick rotation, t — ir, in the time coordinate, we obtain the d-dimensional
Hawking instanton, i.e., a positive definite Euclidean metric for r > r;:

1

royd=3 royd=3\"
ds = (1_<_S) )drz+<l—<—s) ) dr? +r2dQ2 . (5.243)

r r

This manifold has a conic singularity. The singularity at r = r; is removed by
assuming that the imaginary time coordinate, 7, is periodic with period 47r,/(d —
3). The bifurcate Killing horizon then becomes a rotation axis. This Euclidean
section of the Schwarzschild solution, with compactified imaginary time, is home-
omorphic to R? x §2.

In this manifold, the Israel-Hawking-Hartle vacuum state is defined. Any
quantum field defined in this manifold behaves as if it is held at a temperature
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B! = (d — 3)/4nr,. In the Matsubara formalism, the periodicity in imaginary
time corresponds to finite-temperature states, with the Euclidean space homeo-
morphic to S'xR? [281, 282]. Since, in principle, we do not have full mathematical
control over expressions in the infinite volume limit, we must enclose the black
hole within a finite-volume box and impose boundary conditions. From now on,
we assume Dirichlet boundary conditions on the surface of the confining box.
The total volume of the system is given by Vol;(Q) = fV,_;.

We also note that for Euclidean interacting field theories confined to compact
domains, it is necessary to introduce surface counterterms to make the interact-
ing field theory perturbatively renormalizable [227-230, 283].

In the following, we define operators on the Riemannian manifold. Since we
are considering a scalar field, we need to define the Laplace-Beltrami operator.
In any smooth connected d-dimensional Riemannian manifold, .# d, the operator

is defined by:

NN
Tog T = oyl
\/gl,]Zl X

where (g¥) = (gij)_l, and g = det(g;;). We are working in a local arbitrary
curvilinear coordinate system x, = (xq, xa, ..., X7). As usual, we define the Rie-
mannian d-volume p by dy = /g, dx;dx; ... dx;. In general, we are interested in
the Hilbert space of square-integrable functions defined on a compact domain,
ie, Z =L*Q, dp), where Q C M is compact.

Using the fact that, in an interacting field theory, the black hole can remain
in thermal equilibrium with a thermal bath [284], we consider a Euclidean self-
interacting scalar model. The action functional for a single self-interacting scalar
field is given by:

(\/Egij%) , (5.244)

A
s@ =3 | dnloo Caemiyao ool s

where —A; denotes the Laplace-Beltrami operator in the Euclidean section of
the Schwarzschild manifold MZ, 1, is the bare coupling constant, and m3 is the
spectral parameter of the model. The notation Jﬂ indicates that the imaginary
time coordinate x; = 7 is periodic, with 0 < x; < 47r,/(d—3), so ¢(x1, X, ..., Xg) =
o(x1 + P, x9, ..., xg). We define x, = r as the radial coordinate. In this manifold,
the Laplace-Beltrami operator is explicitly given by:

—Asp = Dod(x3, ..., Xg)

-1
d-3 2 d-3
r. d T, a
+ 1—(—S> —(/2+Li xd-2 1—(—3) %) (5.246)
X9 axl x2d_2 8x2 X9 8x2



APPLICATIONS OF THE DFZ METHOD 187

where Ay denotes the Laplace-Beltrami operator on the (d — 2)-dimensional unit
sphere $%72, corresponding to the contribution from the angular part. Finally, as
previously mentioned, we assume Dirichlet boundary conditions, i.e., p(x)|, ,a =
0, since we consider the entire system inside a reflecting wall. This procedilre
is necessary to ensure that the system has finite volume and that the spatially
cut-off Schwinger function is well-defined.

By introducing an external source j(x), we can proceed as in Sec. 4.2 to define
the generating functional for all n-point correlation functions Z(j) as:

Z(j) = J exp (—5(¢) + Jﬁ j(X)fP(X)du) [dg]. (5.247)

where [d¢] is a functional measure, defined symbolically as [d¢] = [ ], cq1xgs dp(x).
By adding a random field A, coupled to the field variable, we can use the distri-
butional zeta-function method, Eq. (5.70).

Once the average is taken, one must carefully choose the covariance of the
disorder field. If one chooses a Gaussian disorder, all points on the Euclidean
manifold will experience its effects uniformly. However, as discussed earlier, the
disorder field attempts to represent degrees of freedom not included in this meso-
scopic approach. Consequently, the disorder must encode information about
fast-mode processes; in some sense, this information is captured by the disorder
covariance. Since we know that Euclidean quantum field theory exhibits diver-
gences near the boundary due to fast modes [226], we assume in this model that
the disorder covariance also diverges near the boundary. Therefore, to preserve
the system’s symmetry, the disorder covariance increases as x, — 0. For this
reason, we choose the covariance of the disorder to be given by

U(xz)

E[A(x)h(y)] = = 5(x - y), (5.248)

where we are assuming that the functional form of U(x,) is
U(xy) = b*2(x,) % (5.249)

for positive definite &, and where b is a constant with units of length. Note that
xy = r; hence, Eq. 5.249 exhibits spherical symmetry. This covariance leads us
to the effective action given by

k
A
Wi =] | 323009 (e m o + 3 6’)

U(xy)
2

k k
PREINOEDY ¢i<x)j,-<x)] dp. (5.250)
i,j=1 i=1
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Since we are interested solely in the thermodynamic properties of the model, we
do not need to generate the correlation functions. Thus, we set ji(x) = 0 for all i
and omit the j = 0 argument in all quantities.

We now discuss the Gaussian contribution to the action given by Eq. (5.250),
which suffices to capture the thermodynamic properties. The free part of the
effective action can be recast as

k
@ =5 | an X pLA+ i) Vel 400 625
ij=1

therefore we can proceed with the diagonalization procedure. After diagonaliza-
tion, it follows that

k
E[250] = [ exp (-59@) ol [ exp (-s00) [T 1], 5252)
=2
where we denote ¢; = ¢,
§®(p) = % Jﬁ o) [~ + m2 — kU(x)] o(o)dg, (5.253)
and
k
0G0 =3 | Y 0 (- m) s (5259
Bi=

Performing all the Gaussian integrations, we can recast our quenched Gibbs free
energy, Eq. (5.70), as

1k
2

E[W(h)] = i o [det (—Ag + m(z))] [det (—A; + m3 — kU (x,))] - . (5.255)
k=1

Notice that the first determinant is standard, as expected in the analysis of scalar
fields on a Riemannian manifold. The regularity and self-adjointness of this oper-
ator follow from the properties of the Laplace-Beltrami operator. However, the
second determinant describes a more complex situation, as it corresponds to a
Schrédinger operator on a Riemannian manifold.

One must determine the self-adjointness and spectral properties of the Schro-
dinger operator on a Riemannian manifold within a Hilbert space. For —A in
L%(RY), the Fourier transform establishes self-adjointness on the domain D(—A) =
H%(RY), which corresponds to a Sobolev space. If the Schrodinger operator is
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not proven to be essentially self-adjoint, there may exist an infinite set of self-
adjoint extensions, making it challenging to identify the physically correct one
[285-287].

An important result was obtained by Oleinik [288]. The author proved that
for non-bounded manifolds, in the absence of local singularities in the potential,
the Schrédinger operator on a Riemannian manifold is essentially self-adjoint.
In the case of bounded manifolds in R?, the result of Ref. [289] ensures that for
potentials with algebraic divergences of order > 2, the Schrodinger operator is
self-adjoint. Note that U(x,) is a real-valued function that is locally summable
in L? and globally semi-bounded, i.e., U(x;) > —C for x, € MZ, with a constant
C € R. Therefore, we have a self-adjoint operator in the Hilbert space L2 (M%) =
L2(ME, dp).

To preserve the universality of the second law of thermodynamics [290],
Bekenstein conjectured that the total entropy of the system must satisfy the gen-
eralized second law

ASgen = ASW + AP > 0, (5.256)

where SO denotes the Bekenstein-Hawking entropy, which is proportional to
the horizon area, and N represents corrections from matter and radiation fields.
We now proceed to discuss the contribution of S@.

Since, in our case, we have a system with infinitely many degrees of freedom,
we must use the concept of mean entropy, i.e., the entropy per unit (d—1)-volume

(B~1Voly(Q)) [291],

5
@ P57

VoL (5.257)

Using the fact that S = InZ + BE, in Euclidean quantum field theory, we can
derive the generalized entropy density from the Gibbs free energy. In the case of
a compact Riemannian manifold, the contribution of the quantum fields to the
generalized entropy in the absence of disorder is

= g (P~ #35)

where Z(j)|j=¢ is the partition function. Here, we have the Gibbs entropy of a
classical probability distribution.

In the presence of disorder, the contribution of external matter fields to the
generalized entropy density s@ s

, (5.258)
=0

§@ =

Vold(Q) (ﬁ B? ﬁ)E[W(h)]. (5.259)
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The form of Eq. 5.259 results from the assumption that the total volume and
the temperature are not affected by the disorder. Using Egs. (5.255) and (??), we
obtain that

1

> _k det (—A + mé 2
@ =3 k (ﬁ - /32£) [det(—As +md)] ( — o) ,
=1 Volg(Q) ap det (—AS +mg — kU(xz))
(5.260)
k
where ¢ = % Notice that a is assumed large enough due to its relation with

the thermodynamic limit of disordered systems.

The entropy, on physical grounds, depends on the covariance of the disorder.
It becomes necessary to specify U(x,) in order to obtain s®_ As we shall clar-
ify below, we will obtain the values of the functional determinants using their
eigenfunctions. One can verify in Eq. (5.246) that the operator A always con-
tains the angular Laplace-Beltrami operator, —Ay. Since U(x,) does not depend
on the angular variables, we shall ignore such an angular operator. In practice,
it is equivalent to work in d = 2. In the neighborhood of the event horizon,
the effects of the internal degrees of freedom are expected to become more rele-
vant. In such a region, where x, = r = 2M, we can define the radial coordinate
p = +J8M(r — 2M), and the line element can be written as

0

16M2

where the horizon is located at p = 0. The equation of motion for the free field
in the Euclidean Rindler space is given by

ds? = dr? + dp?, (5.261)

2 42 2
(=Ag + md)p = (16];4 3—2 + 8—2 +19, mg) ¢ =0, (5.262)
pe or= dp* pap
where —Ay stands for the Laplace-Beltrami operator in the Rindler coordinates
given by the line element (5.261). Therefore, we can observe that this operator
is —Ag near the horizon after the angular part is disregarded.
In the near-horizon approximation, i.e., p = 0, the potential of the Schrédinger

operator can be recast as

U(p, M) = 1- . 5.263
(- M) = Gy ( 16M2) (5.263)

Using the fact that the coordinate 7 is periodic, the total entropy density will
be a sum over all Matsubara modes:

(o8]

s@ =3 D), (5.264)

n—=——oo
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where s (n) is given by Eq. (5.260) in the near-horizon approximation with the
angular part disregarded.

Note that for small p, and defining f(a, M) =
contains the potential can be written as

W’ the determinant that

_ ka%~2
det [—AR + ka* 2 p? f(at, M) + m§ — (2M)“] (5.265)
oa—2
We define an effective mass for each effective action as mgﬁ(k, M) = mg - (kzaT)a

To continue, let us discuss the solution of the differential equation for each
Matsubara mode. We have that R,(p) satisfies

d? d
[p F + pa + mégp® — nz] R,(p) = 0. (5.266)

Defining w = mgﬁpz, the general solution of the above equation is written as
Ry(x) = AJ,(w) + BY,(w), (5.267)

where J,(w) is the Bessel function of the first kind, and Y,,(w) is the Bessel func-
tion of the second kind. Using the fact that the large n Matsubara modes give the
main contribution to the generalized entropy [292], we can write an asymptotic
expansion for J,(w) and Y, (w). Since mgﬁ(k, M) can be negative for some k, we

write s@(n) as
s@ ) = SI(<2<)k (n) + sl(<2>)k (n). (5.268)
Denoting by |m| the largest integer less than or equal to m, we define a critical

k given by k, = [%J Using f = 87M, we have

1
det(—Ag + meﬁ)

k.—1 ’
31(<2<)k (n)=8xn (M M? a‘j\/{) Z Volc (Q)[det( AR +m0)] l

(5.269)
and
1
det(—Ag +
s,(<2>)k(n) 87T<M M2 9 )Z det( AR+m0)] [ et(-Ax mo)l
k=k, det(—AR +m eff)

(5.270)

where mlgﬁ‘ = —ZmEﬂ is the shifted effective mass.
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The spectrum of the Schrédinger operator is unknown. Therefore, we use an
alternative procedure to calculate the above expression. It can be shown that the
derivative of the spectral zeta function can be expressed in terms of the eigen-
functions as follows:

[ R(0)
=In
0

(5.271)

c0) |’

where R denotes the respective eigenfunctions. This is known as the Gel’fand-
Yaglom method, which involves manipulating the eigenfunctions instead of the
eigenvalues. Using this procedure, it is possible to evaluate the generalized en-
tropy density. We can see that an eigenfunction that is repeating in both lim-
its will cancel out. This justifies the fact that we have disregarded the angular
Laplace-Beltrami in Eq. (5.261). Since the eigenfunctions of such an operator are
spherical harmonics, they are p-independent. For ¢ = 2, we obtain the following
expression for the first contribution of Eq. 5.268:

k.—1
(2) _x % | 27kn
i () = Z Vol l 2, " Ml (5.272)

A similar result is obtained for the second contribution of Eq. 5.268:

(2) K3 l 2mkn l( mg )”
spor (n) = + 81 M - . (5.273)
K2k kzk Voly Mm’sz M eff

The generalized second law was introduced to ensure that the total entropy
of the system also increases (ASD + AS@ > o). Starting from Eq. 5.268, we have

that S(z)(n) IE2<)k (n)+S IE2>)k (n). Thus, the expressions for both contributions to
the entropy are as “follows:

n
ooty )
n +1 , 5.274
ke (1) = Z 4M2 2 ] Meff (5274
for k < k., and
,Ei)k (n) = Z [ kn — + 1] ( it )n, (5.275)
K=k, L4MPmig Meff

for k > k. If we consider the two angular variables that were disregarded, the re-
sult is preserved, as shown by Eq. (5.271). Further corrections must be analyzed.
To determine the numerical validity of our results, we evaluate our expressions
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under different scenarios. In Fig. 5.7, we plot the contributions for the sum of
Eq. (5.274) and Eq. (5.275) for large Matsubara modes, which represent the main
contribution to the entropy of the matter fields, as a function of the dimension-
less parameter Mm,. We observe the entropy reaching a steady value, which is a
trend followed by all large Matsubara modes. Since we have redefined the mass
of the black hole as M = G(d)MO, we can conclude that, for a fixed scalar-field
mass, the matter contribution agrees with the generalized second law, and the
stable value is driven by the black hole mass. The approach to a constant value
for the entropy contribution from the matter fields could be interpreted as a po-
tential saturation of information on the black hole horizon [293-296]. The stabi-
lization of entropy for large Matsubara modes suggests that high-energy modes
contribute less significantly to the overall entropy, which is consistent with the
ultraviolet cutoff often encountered in different field theory schemes [297, 298].

2.25
v
2.000 o=
Vo n =90
Vi
= 1.75F \x n =100

Figure 5.7: Behavior of the matter entropy as a function of the dimensionless parameter
Mmy for different Matsubara modes n. We remark the redefinition of M as M = G M.

In Fig. 5.8, we examine the validity of the generalized second law of ther-
modynamics for different scalar fields, as expressed in Eq. (5.256), in black hole
physics. In other words, we have added the Bekenstein-Hawking entropy to the
matter fields’” entropy described by Eq. (5.274) and Eq. (5.275), obtaining the ex-
pected results. The signature of black hole evaporation is the decrease of its mass,
and we compare the total entropy of the system for different mass values. For
a range of scalar-field mass values, our findings once again confirm the general-
ized second law, highlighting the robustness of our approach. This demonstrates
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that the law holds not only for specific cases but across a broad spectrum of phys-
ical parameters. Furthermore, the interaction between the Bekenstein-Hawking
entropy and the matter field entropy reveals the intricate balance between geom-
etry and matter in determining the total entropy of the system [299, 300]. This
balance is crucial for understanding the randomness of the degrees of freedom
and the thermodynamic properties of black holes within a more comprehensive
framework that incorporates both gravitational and quantum effects.
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Figure 5.8: Behavior of the total black hole entropy S, as a function of the dimension-

less parameter Mm; for different scaled field masses v'Gm,. We remark the redefinition
of Mas M = GDM,.

This stabilization, influenced by the black hole mass, suggests a potential in-
terpretation of information saturation. The addition of the Bekenstein-Hawking
entropy to the matter field entropy confirms the generalized second law, where
the model introduces a quenched disorder field.



Chapter 6

Conclusions

In this thesis, we have examined the fundamental principles and applications of
quantum and statistical field theory. By exploring the mathematical structures
underlying these theories, we have gained insight into how field-theoretic meth-
ods can be used to describe a wide range of physical phenomena.

Our discussion began with an overview of the mathematical foundations of
the quantum field theory, highlighting its role in describing particle interactions
and fundamental forces. We reviewed key concepts such as the Lagrangian for-
malism, path integrals, and Feynman diagrams, demonstrating how these tools
enable precise calculations of scattering amplitudes and correlation functions.

We then turned our attention to statistical field theory, emphasizing its rele-
vance in studying phase transitions, critical phenomena, and condensed matter
systems. Using the partition function and correlation functions, we explored
how statistical mechanics and quantum field theory are deeply interconnected,
particularly through the renormalization group framework.

A significant portion of our study has been devoted to disordered systems
and their impact on physical observables. Disorder plays a crucial role in various
condensed matter systems, leading to intriguing phenomena such as Anderson
localization, spin glass behavior, and quantum chaos. Traditional approaches
such as replica symmetry breaking and supersymmetric techniques have been
developed to address these challenges, but recent advancements in the distribu-
tional zeta function method offer a novel perspective.

The distributional zeta function method has proven to be a powerful analyt-
ical tool in extracting spectral properties of disordered operators. By analyzing
the asymptotic properties of spectral densities, this method enables a deeper un-
derstanding of a wide range of phenomena and posses a natural link with random
matrix theory and applications. Its applications can be extend to fields such as
topological physics, quantum chaos, and even aspects of quantum gravity, mak-
ing it an essential tool in modern theoretical physics.
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One of the key insights gained from our study is the power of field-theoretic
methods in describing systems at different scales. The renormalization group,
in particular, provides a systematic approach for understanding how physical
theories change as one moves from microscopic to macroscopic scales. This idea
has found applications in diverse areas, from condensed matter physics to high-
energy particle physics and cosmology.

The study of disordered systems is also important in computational physics,
where numerical methods such as Monte Carlo simulations and tensor network
techniques are employed to investigate complex systems. The distributional zeta
function method complements these numerical approaches by offering analytic
insights into spectral properties and phase transitions.

Despite the significant progress made in the field, many open questions re-
main. The quest for a unified theory that incorporates gravity, the nature of
dark matter, and the resolution of the hierarchy problem are among the pressing
challenges in modern theoretical physics. Additionally, non-perturbative meth-
ods, such as lattice field theory, continue to be active areas of research, offering
potential breakthroughs in our understanding of strongly interacting systems.

Future research directions in quantum and statistical field theory may involve
further developments in computational techniques, new experimental insights,
and the exploration of novel theoretical frameworks. The interplay between field
theory and other disciplines, such as machine learning and complex systems,
may also yield new perspectives and methodologies for tackling long-standing
problems. Furthermore, extending the distributional zeta function method to
broader classes of disordered systems and complex networks could unlock new
possibilities in statistical physics and beyond.

In conclusion, the study of quantum and statistical field theory remains a
vibrant and evolving field of research. The concepts and methods developed
within these frameworks continue to shape our understanding of the fundamen-
tal forces of nature and the emergent properties of complex systems. As new
discoveries unfold, field theory will undoubtedly remain a cornerstone of theo-
retical physics.
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Appendix A

Rudiments of Functional Analysis

Before starting with a bunch of definitions, lemmas, theorems, etc., it seems nice
to mention that a reader with some previous knowledge in real analysis and set
theory will be greatly favored in understanding this section. On top of that, we
do not believe that such previous topics are strictly necessary to understand the
underlying ideas that we are going to present here.

Of course, there is not enough room to cover the entire field of mathematics
encapsulated by functional analysis. Because of that, we opt to present the main
topics that we believe are most useful for our objectives. This means that we are
going to present some of the most basic and general results of functional analysis.
The topics that we would like to cover here are basic aspects of measure theory,
Hilbert and Banach spaces, the spectral theorem for bounded operators, and also
some aspects of the theory of generalized functions.

A.1  Measure Theory

While simple, measure theory is of fundamental importance for mathematics and
physics. Such a construction provides us with useful generalizations and a robust
framework for basic concepts that are used on a daily basis.

A self-contained presentation of measure theory would need to be presented
with some developments of set theory. However, set theory is intrinsically en-
tangled with the foundations of mathematics, and thinking too much about such
a topic can be both entertaining and nerve-racking. To avoid the hard discussion,
we just present some definitions, basic properties, and results of set theory. The
basis of our analysis follows Refs. [301, 302].

After establishing what a set is, we can briefly discuss functions and metric
spaces. After that, we are allowed to study measures, which are just a type of set
function. Following this, we will define the integral in measure theory and some
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special kinds of measures. It is important to note that our presentation is far
from complete; we are focusing on the development of ideas that are of interest
to us. A far more complete presentation can be found in the aforementioned
bibliography.

Our main objective in this section is to construct the well-known Riemann
integral and its generalization, while also presenting some fundamental results
in measure theory.

Generically, we can say that a set E is a collection of elements x that satisfies
some property P. Such a construction will be denoted by

E = {x| x has property P}. (A1)

If E has a small countable number of elements, we may write E = {x;, x, X3, x4 }.
If a set contains a single element, e.g., E = {x}, we may denote the set E simply
as {x}.
The set that contains no elements is called the empty set and can be defined
as
o ={x|x # x}. (A.2)

Any affirmation about the empty set is both true and false at the same time. By
these properties, @ belongs to any other set.
We use the double bar notation for the most usual sets, that is:

« IN = set of natural numbers;
« Z = set of integer numbers;

« R = set of real numbers;

« C = set of complex numbers.

Itis possible to define sets of sets, which we call classes, and also sets of classes,
called collections. A set which is contained by another set is called a subset, and
is usually denoted by A C E, where one reads “A is a subset of E” or “E contains
A”. Two sets are equal if and only if A C E and E C A. In such a situation, we
may write A = E.

If we have at least two sets Ej, E,, we can define operations between sets. If
we wish to pick elements that belong to E; or E,, we have a union of the sets E;
and E,, such an operation is denoted by E; U E,. Now, an operation that picks
elements that belong to E; and E, is called intersection and denoted by E; N E,.
The elements of a set E that do not belong to E; are called the complement of E;,
and are denoted by (E—E;). To represent the set of elements that are in E; but not
in E,, we use E; \ E,. The set of elements that are in one of E; or E,, but not in both,
is given by the symmetric difference and denoted by E;AE, = (E;\E,) U (E;\Ey).
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The previous operations can be proved to satisfy the following known alge-
braic properties:

Proposition A.1. Take A, B, and C as any sets, then
(i) AUB=BUA,AnB=BnA;
(i) (AUB)UC=AUBUC),(AnB)NC=An(BNC);

(iiil) AN(BUC)=(ANnB)U(ANCO),
AUBNC)=(AUB)N(AUC);

(iv) AU =A,ANQ =,
(v) ifAc X,thenAnX=A,AuX =X,
(vi) AU B = (AAB)A(A N B), A\B = AA(A N B);

Denote every subset of a given class & by E. The union of the class, | JE| E €
&}, is the set of elements that are in at least one set E € &. Its intersection,
(ME|E € &}, is the set of elements that are in every set E € &. If we can
index the class & such that & = {E, |a € I}, we can use the notations | ¢ E,,

ﬂae[ Eq.
Now we can prove two useful results

Lemma A.2. (de Morgan’s law) Suppose E,, @ € I is a class of subsets of X, and
E; is one set of the class, then

(i) mael Ea - El - UaEI Ea;
(i) X — UaEI E, = ﬂaEI(X - E(x);
(i) X — ﬂael Ey = Uae[ (X = Ep).

Proof. (i) follows from the definitions of union and intersection.

For (ii), take x € X —Jyer Eq- thenx € X, x & Jpe Ex = x € Eja € L
But, xe X —Ej,a €l = x€(),e;(X —Ep).

If x € (per(X — Ey), then, foralla € I, x € X and x & E,, so x & Uyes Ea-
So, x € X —Uger Ea-

(iii) follows similarly to (ii). [ |

Two sets that have no common elements are said disjoint, and naturally, if
AN B = @ then A and B are disjoint. We can form a disjoint class by picking
the set of disjoint sets, and the unions of disjoint classes can be called a disjoint
union.
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Lemma A.3. Given a finite or enumerable union of sets Ulpzl E; (p can be infi-
nite), there are subsets F; C E; such that the sets F; are disjoint and Ule E, =

P
Uiz1 B

Proof. We prove for p infinite; for p finite, only obvious changes are needed.

Assume C = ﬂlp;l E; and define F; = E;, and F, = E,\ U;:ll E; where n =
1,2,3,.... By our definition, we always have that F, C E,, and, ifi < j, FNE; = @.
So, N F=0.

Take x € C and n as the smallest integer such that x € E,, then x & E; ifi < n.
Thus, x € Fy,and x € | Jio; = C c -, E.

Now assume x € F, then x € E; and x ¢ E_;. Thus, x € {J, E and
xe Uz F=UZ FcC.So,C= Uz F. n

This last lemma allows us to say that any class that is enumerable can be
represented as a disjoint union of sets.

To finish our discussion of set theory, let us define the convergence of a se-
quence of sets. Take a sequence of sets {E;} = E;, E, ..., and define

limsup E; = ﬁ (O En>, liminf E; = O (ﬁ E,,), (A3)
i i=n

i=1 \i=n i=1

if imsup E; = liminfE; = E, it is said that the sequence converges to the set
E. The interpretation of such objects for any sequence {E;} is the following:
lim sup E; is the set of those elements which are in E; for infinitely many E;, and
lim inf E; is the set of those elements which are in all but a finite number of sets
E;. If, for each n positive integer, E, C E,,;, the sequence is said increasing, if
E, D E,.q, the sequence is said decreasing. Sequences that satisfy any of the
previous cases are called monotone sequences.

Monotone sequences always converge. Take {E;} increasing, then Uzn E =
Ui E and iop E; = E, for all n. So, limsup E; = liminfE = (Ji; E;. Now
take {E;} decreasing, then (o, E; = (o E; and ;o Ei = E, for all n. Thus,
lim sup E; = liminf E; = (-, E;.

Another important thing to understand in measure theory is to be able to
define functions between elements of sets. Take two sets A and B, a mapping
f : A — B establishes a relation between an element of A and an element of
B. In such a map, A is called the domain of f, sometimes denoted as D(f). The
subset of B consisting of f(x) for x € A is called the range of f, and is sometimes
denoted by Ran(f) or f(A). If f(A) = B, f is a function from A onto B. One
can also define the function f_l : B — o, where & and AB are the classes of
subsets of A and B. This function is defined as f~}(F) = {x € A| f(x) € F}, for
each F C B. f(F) is called the inverse image of F under f. If y € B— f(A), then
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Fl{yh) =.If f : A— Bisone-to-one, y € f(A), then f({y}) is a one-point
set of A. Only in this last situation can we consider f~! : f(A) — A.

Let us assume that f : A — Buniquely determines an element of B for each
x € A. So, if x1,xp € Aand x; # x5 = f(x) # f(x3), f is said to be a one-to-one
function. The inverse function exists only if ! : A — B is onto and one-to-
one, so f~! : B — A is the inverse function such that f~!(y) = x if and only if
y = fx).

At this point, the most important set function that we can define is the in-
dicator (or characteristic) function. Take a subset A C X, then y4 : X — Riis
defined as

1, ifxeA
A P A4l
The correspondence between subsets of X (not elements) and the indicator func-
tion is one-to-one.

Before going further into functions, let us give our abstract sets more struc-

ture.

Definition A.4. Take a non-empty set X with the functionp : X xX - R X
is said to be a metric space if it satisfies:

@) p(x,y)=p(y.,x) 20, Vx,y€EX;

(i) p(x,y) =0, if and only if x = y;

(iii) p(x,y) < p(x,2) + p(z,y), Vx,y,z€X.

The function p agrees with our notion of distance in many spaces. On a
metric space (X, p), the open sphere of center x and radius » > 0 is a set given
by S(x,r) = {y| p(x,y) < r}. We say that a set E on a metric space (X, p) is open
if, for each x € E, there is an r > 0 such that S(x,r) C E. From this definition,
it follows that open spheres are open sets'. With the definition of open sets, we
can also define the closed sets. A set E C X is said to be closed if (X — E) is
open. We can also define the closed sphere of center x € E C X and radius r > 0:
S(x,r) = {y| p(x,y) <r}, which is a closed set.

Definition A.5. On a metric space (X, p), a sequence {x;,} is said to be a Cauchy
sequence if given ¢ > 0, there is an integer N such that

n,m> N = p(x,,%,) < € (A.5)

'y € S(x,r), then p(x,y) =r, <r. So, 0 <r, <r—r such that S(y,r,) C S(x,7).
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On a metric space (X, p), any sequence {x,} that converges to x € X is a
Cauchy sequence. A metric space is said to be complete if for each Cauchy
sequence {x,} in X, there is a point x € X such that x = lim x,,.

With the idea of open sets, we can construct the class of all open sets of X,
denoted such a class as €, then we have that

Theorem A.6. In a metric space X, the class & of open sets satisfies
(i) .X e g;
(ii) Ay, Ag, ..., A, € €, then (L, 4 € ;
(iii) Ay € Efora el thenl,c; Ay €F.

Proof. For (i), we first notice that any statement about @ is true, then @ € &.
Note that S(x,r) ¢ X forany x € X,s0 X € &.

(ii) Take x € ﬂ?zl Aj,s0x € A;, i = 1,2,...,n. By construction, each A; is
open, thus there exists 0 < r; € R such that S(x,r;) € A;. Fixr = min;;,, r;, then
S(x,r) C ﬂ?:l A

(iii) Let x € Uyer Ag, so, for some o € I, x € A,. A, is open, so there is
r; > 0 such that S(x,r) € Ay, € Uper Ax € E. [ |

Worth noting that (ii) cannot be extended for infinite intersections?. We
could start from the class & and then define it as the open sets. The set X and
the class & are said to form a topological space. The topology of a space can
vary with the choices of the open sets that form &.

Definition A.7. In a topological space (X, &), any open set containing x € X is
said to be a neighbourhood of x. If E C X, a point x € X is said to be a limit
point or point of accumulation of E if every neighbourhood of x contains a
point of E other than x.

The closure of a set E C X, denoted by E, is the intersection of all closed sets
that contain E. E is a closed set, and it contains all limit points of E.

Definition A.8. A set S in a metric space M is called nowhere dense if S has

an empty interior®.

Theorem A.9. (Baire category theorem) A complete metric space is never the
union of a countable of nowhere dense sets.

Take R and the open intervals (0,1 + i) ﬂ:’:l(o,l + i) = (0, 1], which contains no open
sphere with center at 1.
%S contains no open set besides the empty set.
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Proof. Take M a complete metric space such that M = U;ozl A, where each A,
is nowhere dense. So, there is some x; & Zl. Construct the open sphere at
centre at x; and radius less than the unity, r;, S(x;,r;). By definition we have
that S(x;,r;) N A; = @. A, is also nowhere dense, so there is x, & A, and x, €
B;\A,. Construct the open sphere S(xy,r,), with r, < 1/2, s0 S(x3, %) C S(xy,77)
and S(xy,r) N A, = @. Proceeding n steps, we have x, & A,, x, € B,_1\A,.
Construct the open sphere S(x,,r,), with r, < 27", s0 S(x,, x,) C S(%,_1,7—1)
and S(x,,r,) N A, = @.

The previous construction says that {x,} is a Cauchy sequence since for m,n >
N we have x;,, x,,, € S(xn, N ), such that

(0, %) < 217N £ 217N = 9272N g0 49N — oo, (A.6)

Denote x = lim,_, X,, such that x, € B,, n > N. So x € By C By_;. But
x & An_q for any N. This contradicts M = U;o:l A,,. So some A, is not nowhere
dense. |

Back to functions, we can say that, for given two metric spaces (X, px) and
(Y, py), a function f : X — Y is said to be continuous at x = a if, given ¢ > 0,
there is a § > 0 such that

px(x,a) <6 = py(f(x), f(a)) <e. (A7)

We say that f is continuous on E C X if f is continuous on each point of E.
Saying that f : X — Y is continuous means that f is continuous at each point
of X.

Lemma A.10. If (X, px) and (Y, py) are metric spaces, a function f : X — Y is
continuous if and only if f~(G) is an open set in X for each open set Gin Y.

Proof. Suppose f is continuous and G € Y is open. If f1(G) = @, it is open.
Now let a € f}(G), f(a) € G, then, there is a ¢ > 0 for which the sphere
S(f(a),e) € G. Then we can find § > 0 such that

px(x,a) <6 = f(x) € S(f(a),e) CG. (A.8)
So S(a,8) C f~1(G), that is, f~1(G) is open.

Now take f at the point a € X. For each ¢ > 0, S(f(a),¢) = H is an open set
in Y. If f~1(H) is open, we can find § > 0 for which S(a,§) C f~}(H), then

px(x,a) <8 = py(f(x), f(a)) <e, (A.9)

so f is continuous. |



MEASURE THEORY 205

Definition A.11. A class & of subsets of a set X is said to be a g-algebra (or
o-field) if it satisfies

(i) @, X belong to X’;
(ii) If A belongs to &', then the complement X — A belongs to X’;
(iii) If {A,}is a sequence of sets in 2, then the union U;ozl A, belongs to X

In a topological space X, the o-algebra 9" generated by the open sets is
called the class of Borel sets.

Lemma A.12. The class 2" of half-open intervals in R"” generates the o-algebra
PB" of Borel sets in R".

Proof. Denote by " the o-algebra generated by 9". Any set in 9" is given by
P (x5, X9, x) g <X < by; 1= 1,2,...,n}, (A.10)

such sets can be obtained by a countable intersection

o0 1 [ee]
P . {x,x,...,x a-<x-<b-+—;i:1,2,...,n}: R A.11
IQ (1 2 n)l ( i i k ]Q k ( )

but each R} is an open rectangle, that is, R} € B". So "' ¢ B" = F" C B".
Any open set G € R" is the union of rectangles of " with boundaries at a;, b;
rational numbers, that is ;,b; € Q, but by lemma A.3, Q = U;ozl E,, where E, is
the set of real numbers of the form p/n, with p € Z. So E, is countable, so Q is
also countable. Then there are only a countable number of rectangles. Thus G is
a countable union of sets in ", It follows that " ¢ " = B" c F".
Thus B" = F" ]

A set with the corresponding o-algebra, (X, Z'), is called a measurable space.
So, the real line, R, with the Borel sets, (R, %), is a measurable space.

With the previous basic concepts developed, we now can define what is mea-
surability of a function.

Definition A.13. A function f : X — R s said to be £ -measurable (or mea-
surable) if for every real number «, the set

{xe X| f(x)>a} (A.12)

belongs to X'
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Lemma A.14. Let f and g be measurable real-valued functions and let c,a € R.
Then the functions

cf. f% f+g f& Ifl. (A.13)

are also measurable.

Proof. If ¢ = 0, cf = 0 then the statement follows trivially. Take ¢ > 0, then
{xeX|cf(x)>al={xe X| f(x)>a/c} (A.14)

If ¢ < 0, it follows similarly.
If & > 0, then {x € X |(f(x))? > a} = X;if « < 0, then

fre X|(FOO? > a} = fx € X| f(x) > @} Ufx € X| f(x) > —Ja@}  (A.15)

Take r a rational number and define S, = {x € X | f(x) >r}U{x € X | g(x) >
a—r} e X. So,
xeX|(f+9x)>a={Js X (A.16)

Write fg = i [(f + &)? — (f — g)?]. so fg is measurable.
Ifa <0, then {x € X||f(x)| >a}=X.Ifa > 0, then

xeX||fx)|>at={xe X| f(x) >atu{x e X]|f(x)>—a}. (A.17)
[

For any function f : X — R, we can define

[0 = sup{f(x),0}, f~ = sup{—f(x),0}. (A.18)

Where f*(x) is called positive part of f and f~(x) is the negative part of f. Of
course we have that

f=f =1 fl=fr g
fr=U+ 0 f =500 D, (a.19)

From the last lemma, one concludes that f is measurable if and only if f* and
f~ are measurable.

The previous discusion and results can be easily translated to compex-valued
functions. If f is a complex values function we can write it as f = f; +ifs, so f
is measurable if and only if its real and imaginary parts are measurable.

After such a lenghty disscusion, we have some familiarity with the main
structures tha we need to push further our construnction. Now we can sit tight
and define what is a measure.
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Definition A.15. A measure is a extended real-valued function* y defined on
a o-algebra 2 of subsets of X such that

(i) p(@) = 0;
(i) p(E) >0 forall Ee X;

(iii) p is contably additive, that is, if {E, } is a disjoint sequence o sets in ', then

p (U E) = u(Ey). (A.20)
n=1 n=1

Note that y may be +oo, this means that for some set E, on the Eq. (A.20) we
have p(E,) = oo, or the series of positive numbers diverges. A set X, a o-algebra
&, and a measure p form a measure space, denoted by (X, ', p1), or simply (X, p).

Theorem A.16. Suppose y : £ — R* is a measure defined on the o-algebra &
and E,F € 2. Then

(i) if F C E and p(F) is finite
W(E — F) = p(E) — pu(F); (A21)
(ii) if F C E and u(F) is infinite

W(E) = p(F); (A.22)

Proof. (i) X is a o-algebra, so E—F € X, using the countably additivity of y and
the fact that F N (E — F) = @ we have that

p(E) = p(E — F) + p(F), (A.23)

we can subtract the finite real number p(F) from both sides to obtain u(E — F) =
u(E) — p(P).

(ii) if u(F) = oo, the expression u(E — F) = p(E) — p(F) has meaning only if
U(E — F) # —o0, s0 u(E) = oo. [ |

Like in the case of functions, we can define the continuity of measures.

*Extendend real numbers are a compactification of real numbers adding the points {+oo}, that
is, R* = R U {#o0}. The operations of multiplication and sum with the symbols *co follows the
natural operations of reals. We adopt the convention that 0(xc0) = 0. Division by +eco is not
allowed.
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Definition A.17. Suppose 2 is ao-algebra, and p : 2 — R is a measure. Then
for all E € & we say that

(i) pis continuous from below at E if
Lim pi(E,) = p(E) (A.24)

for every monotone increasing sequence {E,} of sets in 2 which converges
to E;

(ii) p is continuous from above at E if lim,,_,, u (E,) = p(E) is satisfied for
any monotone decreasing sequence {E,} in 2 with limit E which is such
that u(E,) < oo for some n;

(iii) p is continuous at E if it is continuous at E from below and from above
(when E = @ the first requirement is trivially satisfied).

In the next theorem we show that our definition of measure (definition A.15)
ensures the continuity of any measure.

Theorem A.18. Suppose I is a o-algebra, and y : & — R* is additive® set
function with p(E) > —oo.

(i) If p is countably additive, then y is continuous at E for all E € X;

(i) if p is continuous from below at every set E € X, then p is countably
additive;

(iii) if p is finite and continuous from above at @, then y is countably additive.

Proof. (i) Take p(E,) = oo for some n = N, and assume that {E,} is monotone
increasing. So, u(E) = oo and u(E,) = oo for n > N. Then p(E,) — u(E), as
n — oo,

Now assume that p(E,) < oo for all n and {E,} is monotone increasing to E.
Then take the following disjoint decomposition of E

E=E () Epii\En), (A.25)
n=1

5Additive means that, for {E;} a disjoint sequence, y (., E) =Y, u(E), for n finite.
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by hypothesis, u is countably additive, so

p(E) = p(Ey) + Y p(Epi1 — Ey)

n=1
N
= p(E) + lim 3 p(Eyyy — Ey)
n=1

= lim u(Ey), (A.26)

so u is continuous from below at E.

Now take {E,} as a monotone decreasing sequence that converges to E and
assume that g(Ey) < oo. Define F, = Ey—E,,, such thatn > N. By (ii) of theorem
A.16, we have that u(F,) < oo and the sequence {F,} is monotone increasing to
Ex — E, so

As n— oo, (Fy) = p(En — E) = p(En) — p(E). (A.27)

On the other hand, p(F,) = p(Exn)— u(E), so u(E,) — u(E) asn — oo, since u(Ey)
is finite. Then, p is continuous from above at E. Thus, y is continuous at E.

To prove (ii), we take E € X', and E; € X, (i = 1,2,...) such that E = U;Zl E;
and E; are disjoint. Define F, = | J_, E;, so {F,} is an increasing sequence which
converges to E.

By hypothesis, p is additive and continuous from below at E, so

2 HE) = p(F) — p(E),  as n— e
i=1

= p(E) = Y. p(E), (A.28)
i=1
so u is countably additive and, by (i), y is continuous at E.
(iii) follows from denoting G, = E — F, € &, such that F,, = U?:l E; and

noticing that {G,} is a decreasing sequence converging to @. So, once again, by
hypothesis u is continuous from above at @, we have that

p(E) = Y w(Ey) + p(Gy)
i=1

u(G,) >0 as n—
= u(E) = Y u(E), (A.29)
i=1

thus p is countably additive and, therefore, u is continuous. ]
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So we have proved our claim that the definition A.15 ensures the continuity
of measures. In light of the last theorem, we could define measures as the non-
negative continuous additive maps p : £ — R*, where 2 is a o-algebra.

Before we start the construction that leads us to the integral, let us make one
more definition and prove one more useful theorem.

Definition A.19. A measure y : 2 — R” is said to be o-finite if, for each E €
I, there is a unique sequence of sets G; € 2, (i = 1,2,...) such that E C Uf:l G
and p(G) is finite for all i.

One should notice that a measure that is o-finite may be infinite. But a finite
measure is always o-finite.

Theorem A.20. (Hahn-Jordan Decomposition) Given a countably additive set
function p : & — R*, on a o-algebra &, there are measures p, and py_ on &
and subsets P, N in & suchthat PUN = X, PN N = @, and for each E € X,

pi(E) = p(ENP) 20, p(E)=-p(ENN)2>0,
H(E) = py(E) — p—(E), (A.30)

so that p is the difference of two measures p, and p_ on . At least one of y, or
y_ is finite, and if y is finite or o-finite, so are both p, and pu_.

Proof. First, we observe that u does not satisfy (ii) of definition A.15. Without
loss of generality, we can assume that —co < py(E) < +oo forall E € X.

We begin by proving that if E € & and A(E) = infg-g peg p(B), then A(X) #
oo,

If our last statement is false, there exists a By € & such that u(B;) < —1.
Then, at least one of A(B;) or A(X — B;) must be —oo; by our definitions, we have
that A(A U B) > A(A) + A(B), for disjoint sets A, B in . Define

X — By, if A(X —B;) = —co.

A= (A.31)
By induction, for each integer n, take B,,; C A, such that p(B,,;) < —(n + 1)
and
By, if A(Byy1) = —o0,
Ay = Bpyy, i A(Ap — Byyq) = —oo,
0, A(Ap41) = —o0. We have two possibilities: (i) infinitely many integers n, such
that A, = A,,_; — B, (ii) for some n > ny, A,, = B,,.

If (i) holds, there is a subsequence of disjoint sets {B, }, and by the countable
additivity of p l

Al = (A.32)

p (U Bn,.) =Y u(B,) < Y —(m+1) = —oo, (A.33)
i=1 i=1 i=1
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so y(E) = —oo for E = Uzl B, € &, which contradicts the assumption that
—00 < p(E) < +oo.
If (ii) is true, take E = ﬂ;ozno B, € &, where {B,} is a decreasing sequence of
sets. Then
p(E) = lim p(By) = —oo, (A.34)

which also contradicts our assumption.

We conclude that A(X) # —oo.

We have that p(@) = 0, and A(X) <0, so A = A(X) is finite. Take a sequence
of sets {C,,} in & such that u(C,) < A+27". We note that, using (vi) of proposition
A.1, we can write

Cn U Cn+1 = (Cn\(Cn n Cn+1)) U (Cn+1\(Cn N Cn—i—l)) U (Cn N Cn—i—l) > (A-35)

and notice that the right-hand side is a disjoint decomposition of the left-hand
side. By the countable additivity of y, we have that

.U(Cn N Cn—i—l) = .U(Cn) + .U(Cn+1) - .U(Cn U Cn+l)
<A+2 M A+27M A=+ 2 M 427 L (A.36)

The same argument can be repeated for the intersection of (C, N C,,.1) with G5,
proceeding by induction, one gets that

P P
I (ﬂ c,) <A+ Yy 2T< a2 (A.37)
r=n r=n

Now define D, = ﬂ:in C,,s0 D, € X'. By (i) of theorem A.18, our set function
pt is continuous, so u(D,) < A — 2™ which shows that {D,} is a monotone
increasing sequence in 2'. Take N = lim,_,,, D, = liminf, ,,,C, € Z, so one
gets that y(N) = A = infycx yeg p(N).

Now take P = X — N. If E € & and E C P, we must have that u(E) > 0,
otherwise y(EU N) = u(E) + y(N) < A. f E € & and E C N, then u(E) < 0,
otherwise (N — E) = u(N) — pu(E) < A. Then, for any E C X and E € X, define

pe(E) = f(ENP), p(E)=puENN), (A.38)
so the theorem is satisfied. |

The decomposition y = py — p_ is called the Jordan decomposition and is
unique. The decomposition of X into P and N is sometimes called the Hahn de-
composition, and it is not unique. From our proof of the theorem, we can deduce
that

(E)=— inf u(B), E)= B). A.39
p_(E) Bcg}gezu( ), 1 (E) Bczl,gf’e%ﬂ( ) (A.39)

Now we are able to continue along the path that culminates in the integral.
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Definition A.21. A real-valued function is called simple if it has only a finite
number of values. If Eq, E,, ..., E, are disjoint subsets of X, a simple function can
be represented as

f@) =Y axe. (A.40)
i=1

where g; € Rfori=1,2,...,nand XE, is the indicator function.

Just applying the previous representation shows that the sum and product of
simple functions are simple functions. Now, using our definition of measurability,
definition A.13, we can show that

Lemma A.22. Any simple function is measurable.

Proof. Using that f = ¥, a; X we have that E. = {x| f(x) > c}. Such a set E,
is the finite union of sets E; € &', with a; > ¢, so E, € &. By our definition, f is
measurable. |

Theorem A.23. Any non-negative measurable function f : X — R" is the limit
of a monotone increasing sequence of non-negative simple functions.

Proof. For each positive integer s, define

QOps = sz p2—31 < f(x) < 22} (p=1,2,..,2%)
225

Qos =X — | = x| f(x) > 2%, (A.41)
p=1

f is measurable, Qps € X, and Qp.s (p=0,1,2,..., 22%) are disjoint. The function

L, ifxeQp (p=12..,2%)

J5(x) =z 2’

2 (A.42)
2°, if x € Qs

is a simple function. It follows directly that 0 < f; < f. If x € Q,, then either

. 2
X € Qzp1,541 OF X € Qpp 11, s0 that, either fi(x) = fi11(x) or fi(x) + T =

fo1(x0).

If x € Qps, then fi(x) = 2° < f(x), so that, in either case x € Qp4q or
x € Qpgsy1 for some p > 22571 1 1. In either case, we have that for each inte-
gers, fsy1(x) > fi(x) V x € X. Thus, the sequence {f;} of simple functions is
monotone increasing,.

Take x such that f(x) is finite and 2° > f(x), then

0< f(x)— filx) <27° (A.43)
= f(x) = f(x), ass— oo (A.44)

If f(x) = oo, then fi(x) =2° = f(x) — f(x)ass— . |
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It is important to notice that the previous theorem does not establish the
uniqueness of the monotone increasing sequence of simple functions that con-
verges to the non-negative measurable function. There are many sequences of
simple functions that may converge to f.

In a topological space, a function that is measurable with respect to the Borel
sets is said to be Borel measurable.

Lemma A.24. Any continuous function f : X — R on a topological space X is
Borel measurable.

Proof. f is continuous, so the inverse image of an open set in R is an open set in
X. So {x| f(x) < ¢} is open for all ¢ € R, and by the definition of Borel sets, it
belongs to %. |

Before we define what an integral is, a final definition that will prove its
importance later.

Definition A.25. We say that a function f(x) has the property P almost every-
where with respect to y, if there is a set E € 2" with p(E) = 0 such that f(x) has
the property for all x € X — E. We then write

f(x) has property P a.e. (p). (A.45)

If it raises no ambiguity, we may omit (p).
Now we have all the ingredients to define the integral in measure theory.

Definition A.26. If f is a non-negative simple function, we define the integral
of f with respect to y to be the extended real number

[ sau= 3 ance, (A46)
i=1

where the sequence {E;} is disjoint.
The expected linearity of the integral follows from the definition of simple
functions, definition A.21, and from the definition of a measure, definition A.15.

Definition A.27. If f is a non-negative measurable function, we define the in-
tegral of f with respect to p to be the extended real number

J fdp = sup J fsdp, (A.47)

where f; is a simple function and the supremum is taken over all simple functions
that satisfy 0 < f,(x) < f(x) for all x € X. If f is non-negative and measurable
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and E € 2, then f yg is non-negative and measurable, and we define the integral
of f over E with respect to u to be the extended real number

L fdp = J fxedp. (A.48)

Again, the linearity of the integral follows from the definitions. We observe
that if we have f, g two non-negative measurable functions such that f > g, we
may write f = g+ (f — g), such that (f — g) >0, so

J fdp= J gdu + J(f —gdp > J gdp. (A.49)

So the integral is a monotone operation.

We say that a function is integrable if its integral is finite. Note that a function
can be measurable but not integrable.

Now we give some theorems about the continuity of the integral.

Theorem A.28. (Monotone convergence theorem) Suppose {f,} is a monotone
increasing sequence of non-negative measurable functions: X - R* and f,, —» f
for all x € X, then

| rau= tim [ e (450)

in the sense that, if f is integrable, the integrals | f,du converge to | fdy; while if
f is not integrable, either f, is integrable for all n and [ f,dy — +o0 asn — +oo,
or there is an integer N such that fy is not integrable so that [ f,dy = oo for
n>N.

Proof. For each n = 1,2,... choose an increasing sequence {fnk} k =1,2..)
of non-negative simple functions converging to f,. Set gy = max,<i fy, such
that {g;} is a non-decreasing sequence of non-negative simple functions, so g =
limy_, o gk, and g is non-negative and measurable. But f, ; < g < fx < f,n <k,
so f, < g < f,ask - c0o = f = gasn — oo. Using the fact that the integral is
monotone, Eq. (A.49), we may write that

[ e < [ < [ i mse

andp < Jgd,u < klim Jfkd,u, as k — oo, and n fixed,
lim and,u < Jgdy < klim Jfkdp, as n — oo,

n—o0 —00

lingo J fodp = Jgd,u = de,u. (A.51)

n—
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Corollary A.29. (Absolute continuity) If f is integrable over X, then, for A € X,

J fdp—0 as p(A) -0 (A.52)
A
Proof. Take
N iffI <,
fa(x) = in’ if |[f| > n. (A.53)

so | f,| is monotonic increasing to |f| as n — co. By Egs. (A.19), it follows that | f|
is integrable and

[ rauf=|[ au= | rauf < | faws [ ran=[1nan @s0

Once |f] is integrable, we have that [ |f,|dy — [ |fldpu asn — c.
Given ¢ > 0, take N such that

dey < J |fldy + % as n> N, (A.55)

if Ae X is such that p(A) < /2, then

UAfdu‘ < L | fldy = L | fnldp + JA(IfI —fwD du < % + JX(|f| CfvDdu<e.
(A.56)
[ |

Theorem A.30. (Fatou’s lemma) If {f,} is a sequence of measurable functions
which is bounded below by an integrable function, then

J liminf f,dy < lim infj fndp. (A.57)
n—oo n—o0

Proof. First, we notice that lim inf picks out the smallest value of a sequence. So
the theorem says that if we pick the smallest values and integrate, it is smaller
or equal to the integral of the smallest values.

Set g as the integrable function that bounds from below the sequence {f,}.
Without loss of generality, we can assume that f, > 0 for all n. So define h,, =

fm—g82>0ae
[ = [ = | gt
liminfh, = liminf f, — g ae., (A.58)
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Define g, = liminfy>, fi, so g is an increasing sequence of measurable functions
and lim,_,. g, = liminf, ., f,. But f, > g, for all n, so, using the monotone
convergence theorem (Theorem A.28), we get

lim ian fudy > lim Jgndy = J lim g,dy = Jlim inf f,dpu. (A.59)
n—oo n—oo n—oo n—oo
[

Repeating the last proof but setting g, = —f, (n = 1,2, ... ), we can prove that

Corollary A.31. If {f,} is a sequence of measurable functions which is bounded
above by an integrable function, then

J lim sup f,,dy > lim sup J fndp. (A.60)

n—oo n—oo
Theorem A.32. (Lebesgue dominated convergence theorem)

(@) If g : X — R" is integrable, {f,} is a sequence of measurable functions
X — R*, such that |f,| < g(n=1,2,...) and f, > f asn — oo, then f is
integrable and

and,u - dep, as n — oo; (A.61)
(ii) Suppose g : X — R" is integrable, —co < a < b < +o0, and for each

t € (a,b), f; is a measurable function X to R*. Then if [f;| < g for all
t€(a,b)and f, > fast - a' ort — b, then f is integrable and

J frdp — J fdp. (A.62)

Proof. For (i), first consider the case where f, > 0 and f,, = 0 as n — oo. Using
Fatou’s Lemma and its corollary (theorems A.30 and A.31), we obtain that

lim sup J fodp < Jlim sup f,dy = J 0dpy =0
Jlim inf f,dy =0 < lim inf[ fndp < lim sup J fudp

= lim J fodp = 0. (A.63)

In the general case, take h, = | f,— f|, such that 0 < h,, < 2g, where g is integrable.
Thus, h,, is integrable and h,, — 0 as n — oo, and

U fudp — Ifd#‘ < I |fp— fldu—>0 as n— oo, (A.64)



MEASURE THEORY 217

hence [ f,dyu — [ fduasn — oo, and f is measurable.
For (ii), suppose that f; — f ast — a*. Then take f;, = f;,» where {t,} is any
sequence in (a, b) converging to a. Thus, f = lim f,, and by (i) we obtain that

and,u - J'fd[l, as n — oo, for any {t,}. (A.65)

Therefore, | f;du approaches | fdy ast — a through values in (a, b). |

We end this section with a short discussion about Lebesgue measure, culmi-
nating in the Riemann-Stieltjes integral. We also present one final theorem (in
this section) and analyze its consequences. We note that we have not developed
enough concepts to give a proper construction of such objects, so some of our
conclusions can be proved using a more detailed construction.

First, we observe that we can define over the real line, R, the class & of all
finite unions of sets of the forms (a, b], (—o0, b], (a, +0), and (—o0, +o0), and we
can define the measure [ as the length of the interval. Similarly to the proof of
proposition A.12, we can show that & generates the o-algebra F*. Sets that
are measurable in the #* are said to be Lebesgue measurable. We can restrict
the measure [ to the Borel sets &, which are all # *-measurable. When such a
restriction is adopted, [ is called Borel or Lebesgue measure. An analogous
argument can be used to construct the Lebesgue measure in R¥.

Instead of using the notation d! for integration with the Lebesgue measure,
we use dx, and in the case of an integral over a single interval E = (a, b], we use
the endpoints of the interval in the integral. That is,

we useJ f(x)dx instead of J fdl

b
we useJ f(x)dx instead of J fdl
a E

The Lebesgue measure is not the unique measure possible in RK. Suppose
F : R — R is a monotone increasing function which is everywhere continuous
on the right. Such a function can be used to define a measure of an interval by
setting

pr(a,b] = F(b) — F(a) (A.66)

for each (a,b] € &. Such a measure is called Stieltjes measure. This measure
can be used to define the Riemann-Stieltjes integral, which is denoted by

[ s6ome = [ sarco A7)
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It can also be directly generalized if F is a multivariable function, that is, if
F : R¥ - R. In addition, if we have that de = 1, F(x) is said a probabil-
ity measure and the space (X, ', F) is called a probability space.

All the previous theorems have been proved for any measure, so all of them
hold in the case of either Lebesgue or Stieltjes measures.

Definition A.33. Take 2 as a o-algebra of subsets of X and p as a measure on
Z. The set function v : & — R” is said to be absolutely continuous with
respect to p if v(E) = 0 for every E € & with p(E) = 0. In this case, we write
v < p. Furthermore, we say that v is singular with respect to y if there exists a
set Eg € & such that u(Ey) = 0 and v(E) = v(EN Ey) forall E€ .

Clearly, any function which is p-integrable is also v-integrable if v < p.

Lemma A.34. If (X, 2, y) is a measure space and v : & — R is finite-valued,
countably additive, and v < p, then for any ¢ > 0, there exists a § > 0 such that
forall Ee X,

u(E) < = |v(E)| < e. (A.68)

Proof. From the Hahn-Jordan decomposition (theorem A.20), any such v is the
difference of two finite measures. Thus, it is enough to consider v as a measure.
Suppose that Eq. (A.68) is false, so there exists an ¢ > 0 and a sequence {E,} of
sets in & such that v(E,) > ¢ and p(E,) < 27". Take E = lim sup E,. Then,

(E) < ( U E) < Y uE)<2™, (A.69)
r=n+1 r=n+1
so that p(E) = 0, while
v(E) = limv ( U Er) > lim sup v(E,), (A.70)
r=n+1
which leads to v(E) > ¢, contradicting v < p. Thus, Eq. (A.68) holds. [ |

Theorem A.35. (Radon-Nikodym theorem) Given a o-finite measure space (X, 2, y1)
and a countably additive, o-finite set function v, there exists a unique decompo-
sition

V= + 1, (A.71)
into countably additive set functions v; which are o-finite and such that v; is
singular with respect to p and v, < p. Furthermore, there exists a finite-valued
measurable function f : X — R such that

w(E) = J fdu, forall Ee X. (A.72)
E
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The function f is unique in the sense that if we also have

1y (E) = L 2dp, (A.73)

for all E € 2, then f(x) = g(x) except in a set of zero measure.

Proof. We can express X as a union of a countable set of disjoint sets on which
both p and v are finite, so we can consider them both finite on X. This applies to
both the existence and uniqueness proofs. We start by proving that the decom-
position is unique.
Let

V=1 + vy =v3 4y, (A.74)
where v; and v3 are singular and v, and v, are absolutely continuous. Then v; —
v3 = V4 — V5. The union of the support sets of v; and v3 gives a set E; such that

(1 —w)(E) = (v —vs)(EN Ey), p(Ey) = 0. (A.75)

But (v4 — 1) is absolutely continuous and therefore zero on any null set, so

(11 —=v3)(E) = (vg = w)(E) = (vy —v)(EN Ey) = (vy —w)(EN E)) = 0. (A.76)

Thus, v; = 13 and v4 = v,. The uniqueness of the integral representation of v,
follows trivially from Eq. (A.49). Now, we must find the decomposition and the
integral representation.

From Theorem A.20, we can decompose v into the difference of two measures,
so it is enough to prove the theorem assuming v is a measure. Let .# be the class
of non-negative measurable functions f : X — R such that

v(E) > L fduy, VEeX. (A.77)

and define
a = sup {J, fdul f e ﬂ} (A.78)

Consider a sequence { f,} of functions in .# such that

J Fdp>a— % (A.79)

Define g, = max{f;(x), f2(x), ..., f,(x)}. Then, for any E € & and fixed n, we
can decompose E into a disjoint union of sets E = E; U E; U - U E, € & such

that g, = f; on E;. Hence,

i=1 i=1

[ enti= Y L g = L s BB =B, (480
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so that g, €  for all n. Since g, is monotone increasing, by the Monotone
Convergence Theorem (Theorem A.28), fy(x) = lim, . g,(x) € . Since
fo(x) > fu(x) for all n, we must have

a= Jfo(x)dy. (A.81)

For each E € &, define
1y(E) = L fodu, () = WE) - vy(E). (A82)

Then v, < 1, and it remains to show that v; is singular.

Take the countably additive set function A4, = v; — % u and use Theorem A.20
to decompose X into positive and negative sets N,, P, such that P, U N, = X,
P,NN,=@,ECP,= A,(E) >0,and E C N,, = A,(E) < 0. Take E C P,:

WB) = n(® @ 2@ + 2@ = [ (h+ D) sy
n E n

Thus, f = fyon N, and f = (fy + %) on P,, which belongs to .#. This gives an

integral less than a, by the definition of &, unless u(P,) = 0. If P = | -, P,, then
u(P) = 0. Further, X — P C N,, for all n, so that v(X — P) = 0 and

w(E)=vw(EnP), YEeX. (A.84)
That is, v; is singular. u

If (X, 2, ) is a o-finite measure space and
v(E) = J fdpy for E€ X, (A.85)
E

then we write f = j—; and call f the Radon-Nikodym derivative of v with respect

to p.

A.2 Different Kinds of Spaces

In this section, we intend to present some spaces and their principal properties
that will be useful in later constructions. At present, we focus on normed linear
and inner-product spaces and their key properties for the further development of
physical concepts. More detailed references on such subjects can be easily found;
for example, see Refs. [16, 17, 303].
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A.2.1  Banach Spaces

Definition A.36. A normed linear space is a vector space V, over R (or C), and
a function | « || from V to R which satisfies

(i) [v| >o0forallveV;

)
(ii) [v| = 0 if and only if v = 0;
(iii) ||ev| = |al|vl, for all v € V and for all « € R (or C);
@iv) v+ w| < vl + |wl], for all v,w € V.

If we drop condition (ii), the function | « | is said to be a semi-norm or pseudo-
norm for V.

It is direct to see that if we define our metric, from definition A.4, as p(v, w) =
[v—w], then the normed linear space (V, | «|) is a metric space. If the metric space
induced by (V, | « ), denoted by X, is incomplete in the Cauchy sense (definition
A.5), we can add the missing Cauchy sequences, denoted by C, = {x = lim x;, | x ¢
X, x, € X}, and define the completion of the space as X = X U C,. Since by
construction, every Cauchy sequence of X converges to some element of X, we
say that X is dense in X. Using the metric now defined over X, we can make it
into a normed linear space, say (V, | « |). We say that V is the completion of V.

We say that a normed linear space (V, | « |) is complete if its metric-induced
space is complete.

Definition A.37. A bounded linear transformation (or bounded operator)
from a normed linear space (V7, |+ |;) to a normed linear space (V5, || +|,) is a map,
T : Vi — V,, which satisfies

(i) T(av+ pw) = aT(v) + BT (w) for all v, w € V and for all ¢, f € R (or C);
(ii) For some C > 0, [|Tv|, < C|v|;.
We say that the smallest C is the norm of T, so
1Tl = 1"nf Il (A.86)

Ivl;=1
With these definitions, we now present an important theorem of functional
analysis.

Theorem A.38. (Bounded Linear Transformation Theorem, or B.L.T. Theorem)
Suppose T is a bounded linear transformation from a normed linear space (V7, || «
[1) to a complete normed linear space (V,,] « |;). Then T can be uniquely ex-
tended to a bounded linear transformation (with the same bound), T, from the
completion of V; to (Va, | « [2).
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Proof. Denote by V; the completion of V;. For each x € Vj, there is a Cauchy
sequence {x,} € V; such that x,, > x as n — oo. That is, for some N, there exist
n,m < N and a € = ¢/|T|| > 0 such that

"xn - xm"l < (A-87)

£

I

By the linearity and boundedness of the transformation T, we can write that
"Txn - Txm"2 = "T(xn - xm)"Z < "T”"xn - xm"l <g, (A-SS)

so it is a Cauchy sequence in V,. Since V, is complete, we have Tx,, —» y € V,.

Define Tx = y. Take two sequences that converge to the same element:
{x,} = x, {x;} = x. Then, the sequence {x,, x;} also converges to x. By the
boundedness of T, we have that {Tx,,, Tx;;} — y’ and lim,,_,., Tx;,, = lim,,_,o, Tx;, =
y’. So, our definition does not depend on the sequence.

Observing that |Tx|, = lim,_,e [|Tx,], < lim SUpP, 00 Clx, | = Cllx[l;, we con-
clude that T is bounded and has the same bound as T.

Linearity of T follows directly, noting that T(ax + fx’) = lim,_,.(aT(x,) +
FTC)). ~

To prove uniqueness, take T’x = y’, such that Tx, — y’ as {x,} — x. But
limy, 0o Tx, =y = Tlim, X, =Tx =y,s0y =y =T’ =T. |

Since, from now on, we are interested in integrable functions, it is convenient
to use set notation for functions that are Borel integrable. For that, we define

L\(R) = i £ J F(x)dx < o0, x € ]R} (A.89)

as the set of real-valued integrable functions. Now assume that we fix the norm
1
onL" as

Ifl; = j 1G] d (A.90)

From the linearity and monotonicity of the integral, it follows directly that L!(R)
is a linear normed space. We must check if such a space is complete. For that,
take the following sequence g,(x) = min[n, —In(x)]. If m > n, it follows that

1gn = &ml = I 18n(x) = gm(x)] dx < J |gn()] dx — 1, (A.91)

g, = —1In(x) ®, as n — o0 and — In(x) & L?, so L!(R) is not a complete space.

%See definition A.25.
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In order to obtain a complete space preserving integrability, we must con-
sider the space of equivalence classes’. We say that two functions f, g € L'(R)
are equivalent if f = g ae., equivalently, if [ |f — g|dx = 0. Since there are
many functions that can be taken and are equal almost everywhere, we must
choose a representative. Since we will only work with the set of equivalence
classes, we will not distinguish the representative of a function from the function
itself. However, we define the set of equivalence classes of integrable functions
as Z1(R). With the norm defined in Eq. (A.90), it is direct to prove that the space
(ZY(R),| + 1) is a linear normed space, usually denoted only by £!. Soon we
will also prove that Z! is complete. Before that, let us introduce a more general
notion.

Definition A.39. If 1 < p < oo, the space Z? = (ZP(R),| « |,) of all equivalent
Borel measurable real-valued functions f for which |f|? has a finite integral. We

set
1

It =| | 11| (A.92)

Before analyzing the completeness of this space, let us prove a set of impor-
tant inequalities.

Theorem A.40. (i) (Holder’s inequality) Let f € &P and g € Z9, where
p>tland1/p+1/q=1 Then fg € £ and|fgly <Ifl,lgl,.

ii) (Schwarz’s inequality) If f an elong to , then is integrable an
(ii) (Sch ’ quality) If d g belong Z2 th g grabl d

U fody < j feldx < IflLlel. (A.93)

(i) (Minkowski’s inequality) If f and h belong to Z?, p > 1, then f+hbelongs
to ZPand |f +hl, < Ifl, + Ihl,.

Proof. (i): Take @ € (0,1) and define the function ¢(¢) = at —t*. It is immediate
that ¢’(¢) < 0,if 0 < ¢t < 1 and ¢’(¢t) > 0, if t > 0. From the mean value theorem
of calculus, one takes that ¢(t) > ¢(1), from that follows, for ¢ > 0,

t* <at+(1-a). (A.94)
For any a, b non-negative numbers, take t = a/b and multiply the last expression

by b to get
a®b' ™% < aa+ (1 — a)b. (A.95)

7An equivalence relation must be reflexive, symmetric, and transitive.
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Choose p, q satistfying 1/p+1/q = 1,1 < p < co. Take y = xP~! and compute
the area of this function between (0, A),

a
p

Al = I xP~1dx = A— (A.96)
0 p

Similarly, we can take the area of x = y/(P~1) = 19=1 between (0, B):

a
Ay = J xPldx = =—. (A.97)
0 p

Clearly, the area of the rectangle AB is greater than or equal to A; + Aj, so for
any two nonnegative real numbers, we obtain:

AB< = + —. (A.98)

Using this previous result and fixing « = 1/p, we can take f € ZP and

ge Y9 andset A = If(x)l, B= () to write:
I£1, Iglq

FDCl _ [FCIIP | g0l

< . (A.99)
Iflplgly = plslh — alslg
Both sides are integrable, so fg € &!. Integrating both sides:
FeCls 1 1_,
Iflplely —p g
= [f)gGlr < 111 ,lglg- (A.100)

(ii) follows by taking p = g = 2 in Holder’s inequality.
In (iii), the case for p = 1 follows directly from |f + h| < |f] + |h|. Assume
p > 1, since

|f + AP <[2sup{lf1. IA}]P < 2P[|fIP + [hIP]. (A.101)

f + h is measurable by lemma A.14. Moreover, we notice that
[f + AP = f + Rl f +BIPTT<IFIf + AP+ TRIf + RIPTY (A.102)

sof+he ZPand|f+hP e P Taking1/p+1/qg=1= p=(p—1)q, we
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have that |f + h|P~! € 29, so by (i), we get:

1 1

J FIf + hlP dx <1, U f+ h|<P—1>q]" ~ IfIIf + kI3

2 1
j BILF + K dx < I, U f+ h|<P—1>q]q = Jhl,Lf + Bl

1 1 P
If + RS < WAIIf + Bl + WhlpLf + A5 = [1£1, + IRl ) 1f + RI.
(A.103)

If | f + A, = 0, the relation is trivially satisfied. If | f + k|, # 0, we can divide the
last relation by | f + h||£/ 7 to obtain:

If+ Al <1f1p + 1A, (A.104)

|

With this last set of results, in particular with Minkowski’s inequality, it is
trivial to show that #? with the norm from Eq. (A.92) is complete. The following
theorem proves its completeness.

Theorem A.41. (Riesz-Fischer Theorem or Completeness Theorem) If 1 < p <
oo, then the space &7 is a complete normed linear space under the norm given
by Eq. (A.92).

Proof. &P with the norm from Eq. (A.92) is a linear normed space. To prove
completeness, we need to show that for a sequence {f,}, there exists an ¢ > 0 and
a N such that for m,n > N, we have

J fin = fulPdx = I fon = fullp < P (A.105)

Take a subsequence {gi} of {f,} such that |gr1 — gl, < 2% k € N, and
define the Borel measurable function g(x) as

g() = gl + Y lgre1(x) — g (). (A.106)
k=1

Using Fatou’s lemma (Theorem A.30), we have that

w© P
J |glPdx < lirllgglfj \|g1| + > 1gke1 — gk|] dx, (A.107)
k=1
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taking the pth root and using Minkowski’s inequality ((iii) of Theorem A.40) we
have that

1

p L -
[ 1teax| < hrllgglf[llgl lp+ 3 lgeer — i
<lgi,+ 1, (A.108)

where we have used the fact that Y r_, |gkr1 — gkl » < Y1 27K = 1. Take the
set E as the set where g is Borel measurable and gy € ZP. So the Lebesgue
measure of R — E is zero.

Now define f on R as

= iEt ket gt — gl ifxeE 4109
0, it f&E,
but we know that |g| < |g| + Z;:ll |gji+1 — gjl and {gi} converges to f a.e., so,
by the Lebesgue dominated convergence theorem (Theorem A.32) we have that
f e ZP. Since |f — gi| < 2PgP by the Lebesgue dominated theorem, we get
limy_,o | f — gkllp = 0. So {gi} converges to f in Z?.
Take m,k > M, so [ |f,, — gk[Pdx < eP. Using Fatou’s lemma

Jlfm—f|de£1i]?1ian | fn — gr|Pdx < €P, (A.110)

for any m > M. So f, converges to f in the £ norm. Therefore, 7 is complete.
[

All the previous discussion of #? spaces has been focused on the functions
defined over R with the usual Lebesgue measure. We choose such an approach be-
cause such functions are going to appear in the main applications. However, all
the previous discussion can be directly generalized to any space ? = ZP(X, Z, ),
that is, the space of functions defined over a measure space (X, 2, p).

Definition A.42. A complete linear normed space is called a Banach space.

Denote the set of all bounded linear functionals from X to Y by £ (X,Y) and
assume that for any A € Z(X,Y), the operator norm is given by
| Axlly

xeX,x20 Ixlx

A = (A.111)

where | «| x y denotes the norm in X and Y. We then have the following theorem.
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Theorem A.43. If Y is complete, then £(X,Y) is a Banach space.

Proof. Linear combinations of bounded operators are bounded operators, so Z(X,Y)
is a vector space. Our definition of | « | in Eq. (A.111) trivially satisfies (i), (ii),
and (iii) of definition A.36. To verify (iv) of definition A.36, we write

A+ B)x Ax|y + |Bx
[A+B| = IC )xlly < |Ax|ly + [Bx|y
xeX, x#0 "x"X xeX, x#0 "x"X
|Ax]y  [Bxly
< ( ) = Al + IBI. (A112)
xex,x=0 \ Ixlx  lxlx

so £(X,Y) is a normed linear space under the norm | « |.

Take {A,} as a Cauchy sequence in the operator norm. For each x € X, {A,x}
is a Cauchy sequence in Y. By hypothesis, Y is complete, so A,x — y € Y.
Define Ax = y, where A is a linear operator. By the triangle inequality, we have
that | |A,| — 1Al | < 1A, — Ayl Therefore, {|A,|} is a Cauchy sequence of real
numbers that converge to some real number C. Thus,

|Axly = lim [Axly < lim |A,]lx]x = Clx]x. (A.113)

which shows that A is a bounded operator.
We have that (A — A,)x|y = lim,,,_, [|(A;;, — Ap)xly, which implies that

A—A
My S
(A-Apx .
14— Ayl = sup KAZ A iy g
S U 13

< lim |A,l - Al = lim |A,| —C <e arbitrary. (A.114)
m,n— oo m—oo

So, |A| = C. n

IfY = C, the space Z(X, C) is denoted by X and is called the Dual Space
of X. Since the complex numbers, C, are completeg, the last theorem shows that
X* is complete, and therefore we can define its dual, denoted by X™*, which is
called the double dual.

Lemma A.44. Let X and Y be linear normed spaces. Thenalinearmap T : X —
Y is bounded if and only if T~} [{y||lyly < 1}] has nonempty interior.

8Take z, = x, + iy, an ¢ > 0, and m,n > N, so |z, — z,| < ¢ is a Cauchy sequence. But
|2, — 24| = |%, — x,| and |z, — 2,| = | — Vul> 50 {x,}, {3} € R and are Cauchy sequences. Reals are
complete, so x, = x and y, — y, therefore z, - x +iy =z € C.
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Proof. Suppose that T is given and that the set contains the open sphere {x | |x —
xollx < e} If x| < &, we have that |Tx| < [T(x + xo)| + [T(x)| < 1+ [Txl. So,
forall x € X,

ITxl < ™' (ITxo]l + 1) [1xl (A.115)

thus, T is bounded.

Now assume that T is bounded. By definition A.37, |Tx| < C|x|. Take x €
{x|llx — xllx < ¢} € X, then |Tx| = |T(x + xy)| < C|x|. Denote Tx = y and
T(x + xp) = ¥p, by our last relation,

Iyl = lyoll < Clix|
= [ly — 0l < Clix|, (A.116)

which is a (closed) sphere of center y, and radius C|x|. So, T~ [{y|lyly < 1}]
has nonempty interior. |

Theorem A.45. (Open mapping theorem) Let T : X — Y be a bounded linear
transformation from one Banach space to another Banach space Y. Then, if M is
an open set in X, T[M] is open inY.

Proof. We need to show that for any neighbourhood N of x, T[N] is a neighbour-
hood of T(x). T is linear, so T[x+ N| = T[x] + T[N], then we need only prove for
a neighbourhood of x = 0. Since the neighbourhoods contain open spheres, it is
enough to prove that S(y,r”) C T[S(x,r)] for some r’. But T[S(x,r)] = rT[S(x, 1)],
so we must prove that T[S(x,r)] is a neighbourhood of zero for some r. Using
the result of lemma A.44, we must show that T[S(x,r)] has nonempty interior
for some r.

T is onto, so Y = U;ozl T[S(0,r,)]. By the Baire category theorem (theorem
A.9), some T[S(0,r,)] has nonempty interior. Suppose that S(0,¢) C T[S(0,r)].
Take y € T[S(0,r7)]. If x; € S(0,r7), then y — Tx; € S(0,¢/2) C T[S(0,r1/2)]. If
x; € S(0,r1/2), then y — Tx; — Txy, € S(0,¢/4) C T[S(0,r1/4)]. If x, € S(0,r,),
then y — Z;Zl Tx; € S(0,2' ).

Set x = 2;11 xj € 5(0,r/2), thus y = 2;11 Tx; = Tx,soy € T[S(0,r/2)], so
some T[S(x,r)] has nonempty interior and the theorem follows. [ |

Corollary A.46. (Inverse mapping theorem) A continuous bijection from one
Banach space to another has a continuous inverse.

Proof. By the last theorem, if T is open, T~} is continuous. |

Banach spaces are useful to construct functionals with some desired prop-
erties. In order to understand why it is useful to define functionals on Banach
spaces, the next important theorem is necessary.
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Theorem A.47. (Hahn-Banach theorem) Let X be a real vector space, p a real
valued function defined on X satisfying p(ax + (1 — @)y) < ap(x) + (1 — a)p(y)
for all x,y € X and all « € [0, 1]. Suppose that A is a linear functional defined
on a subspace Y of X which satisfies A(x) < p(x) for all x € Y. Then, there is a
linear functional A, defined on X, satisfying A(x) < p(x) for all x € X, such that
A(x) = A(x) forall x € Y.

Proof. Denote the space spanned by z and Y by Y. The extension of A, defined
on Y satisfying A(y) < p(y) forall y € Y, to Y is denoted by 2. Define A(z) using
Maz + y) = al(z) + Ay).

Take y;,y» € Y and @, > 0, so

PO + aA02) = AP + ) = a+ P2 (Ao + )

s(mﬁ)p(afﬁwaiﬁyz)
S(a+/3)p(

ap ap )

a
+ + -
0(+ﬂy1 a+ﬁy2 a+ﬁz a+ﬂz

<(a+Pp (im a2+ ﬁz))

a+p a+p
< By — az) +ap(y, + Bz), (A.117)

therefore, for alla, f > 0and y;, ), €Y

é[—p(yl —az) + A(n)] < %[—P()’z + Bz) + A(m)]. (A.118)

We can always find a real number a such that

1 . 1
sup —[-p(yy —az) + Ayl <a< inf  =[-p(y, + Bz) + A()2)], (A.119)
yeY,a>0 & yeY,a>0 8

which means that we can thus define ;1(2) = a. Thus, A can be extended “one
direction at a time”.

It remains to show that A can be extended to the whole space X. Take & as
the collection of extensions e of A, which satisfies e(x) < p(x) on each subspace.
Define a partial order in & by setting that e;(x) < ey(x) if e5(x) is defined on a
larger set than e;(x), and e;(x) = e5(x) where they are both defined.

Take {e;}4ca as a partially ordered subset of &. Define e on | J,c4 X, by
e(x) = ey(x)if x € X,. Soe, <X efor any e, € &, therefore, each partially
ordered subset of & has an upper bound in &. By Zorn’s lemma, & has a maximal
element, A, defined in some subset X’ and satisfying A(x) < p(x) for x € X’.
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But, if X’ is not the whole X, we can extend it to A by the previous procedure.
This contradicts the maximality of A; therefore X’ = X, and the extension A is
defined everywhere in X. |

The extension of the Hahn-Banach theorem to a complex vector space X is
straightforward.

Now we can see why Banach spaces are useful. If we need a functional with
some properties, we need only to define it on a subspace of the Banach space,
then we use the Hahn-Banach theorem to extend it to the whole space.

Corollary A.48. Let X be a normed linear space, Y a subset of X, and A an
element of Y*. Then there exists a A € X* extending A and satisfying |A] x+ =

IAly+.
Proof. Take p(x) = | Aly+| x| in the Hahn-Banach theorem. |

Corollary A.49. Let y be an element of a normed linear space X. Then there is
a nonzero A € X™ such that A(y) = | X| x|yl

Proof. Take Y as the subspace of all scalar multiples of y and define A(ay) = a|y]|.
By the last corollary, we can construct A, such that |A| = |A|, which extends A
for the whole X. But A(y) = |y|, once that |A|| = 1, thus, A(y) = [Allx=[yl. ®

We finish our brief discussion about Banach spaces with the definition of a
graph and a theorem which has future use.

Definition A.50. Let T be a mapping of a normed linear space X into another
linear normed space Y. The graph of T, denoted by I'(T), is defined by

I(T) ={(x,y) | (x,y) € X xY, y=Tx}. (A.120)

Theorem A.51. (Closed graph theorem) Let X and Y be Banach spaces and T a
linear map of X into Y. Then T is bounded if and only if the graph of T is closed.

Proof. Suppose that T'(T) is closed. T is linear, therefore, I'(T) is a subspace of the
Banach space X x Y. Since I'(T) is closed’, it is a Banach space in the norm

[Ge, T = Il + [ T]. (A.121)

Now consider the maps IT; : (x,Tx) - x and II, : (x,Tx) — Tx. I is
a bijection, so by the inverse map theorem (corollary A.46), IT;! is continuous.
Since T = II, o IT; 1, T is continuous and bounded.

“Remember that a closed set contains all its limit points.
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Conversely, assume that T is bounded. Then, |Tx| < C|x], so

ITCDOI = I{x, T = flxll + |Tx]| < x](1 + C)

(T
| "( ")” <1+4C, (A.122)
X

thus I'(T) is closed. [ |

Of course, there are many results that could be obtained in the context of
Banach spaces. However, we believe that the set of results that we have chosen
to present has a low level of difficulty and is useful in physics, especially those
involving integrable functions.

A.2.2  Hilbert spaces

Vector and metric spaces have a plethora of physics literature due to their appli-
cability in the physical world. However, the inner-product space, which is used
as the basis of quantum mechanics and some classical physics as well, does not
receive that much attention. Many quantum mechanics books do not even give
a proper definition of what a Hilbert space is. To avoid repeating the same over-
sight, let us analyze with care the main properties and results of inner product
spaces.

Definition A.52. A complex vector space V is called an inner product space
if there is a complex-valued function (s, +), called the inner product, on V x V
that satisfies the following conditions for any x,y,z € Vanda € C

(i) (x,x) > 0and (x,x) = 0 if and only if x = 0;
(i) (x,y+2)=(x,y)+ (x,2);
(iii) (ax,y) = a(x,y);

(iv) (r,y) = (%),

We can use the same geometrical nomenclature of vectors in the inner prod-
uct space. That is, if (x,y) = 0 they are said to be orthogonal, and if we have a
collection of vectors {x;}jc 4, such that (x;, x;) = 1 for all i € A and (x;, x;) = 0 for
alli,j € A, we say that we have an orthonormal set. We directly see that if we
fix |x| = /(x, x), then (i), (ii), and (iii) of definition A.36 are directly satisfied. To
prove that | « | = \/(s, ¢) is @ norm, we need only check (iv) of definition A.36.
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Theorem A.53. (Pythagorean theorem) Let {x,}, n = 1,2,..., N be an orthonor-
mal set in an inner product space V. Then for all x € V

2

N N
Iel? = 3 1Ge )l + = Y (s )%, (A.123)
n=1 n=1

Proof. First we note that

N N N N N
(Z(anx)xmx - Z(xnsx)xn) = (Z(xmx)xnsx) - (Z(xnax)xns Z(xnsx)xn)
n=1 n=1 n=1 n=1 n=1

N _ N -
= Z(xn’ x) (%, X) — Z(xn’ x) (%, )
n=1 n=1
=0, (A.124)
N N . o
$0, x = > 1(%,, x)x, + <x - Zn=1(xn,x)xn> is a decomposition of any x € V

into two orthogonal components. Now we use this decomposition to directly
compute

N 2 N 2
(x,x) = Z(xn,x)xn + [x — Z(xn,x)xn
n=1 n=1
N N 2
= Dl x) + |x = (o 1), (A.125)
n=1 n=1
[ |

Corollary A.54. (Bessel’s inequality) Let {x,},n = 1, 2,..., N be an orthonormal
set in an inner product space V. Then for all x € V

N
2
el > ) 1 x)l” (A.126)
n=1
Proof. Follows directly from the Pythagorean theorem. |

Corollary A.55. (Cauchy-Schwarz’s inequality) Let x and y be any elements of
an inner product space V, then |(x, y)| < [lx][y.
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Proof. If y = 0 it is trivial. Suppose y # 0, then y/|y| is an orthonormal set. Take
x € V and apply Bessel’s inequality to obtain

2 2
y |Cx, Y
Il > \(x—)‘ ==
Iyl Iyl

= |G I < [yl (A.127)

Now we can directly calculate

Ix + ylI? = (x, %) + (6, ) + (1, %) + (1, ) (A.128)
= (x,x) + 2R(x, y) + (1, ¥),

1 1
but, R(x, y) < |(x, y)| and by Schwarz’s inequality |(x, y)| < (x,x)2(y, y)z, there-
fore

1 1
Ix + yI? < (x, x) + 2(x, x)2(y, )2 + (3, ),

=[x + I < x| + Iyl (A.129)

which is item (iv) of definition A.36. That is, we have proved the following theo-
rem.

Theorem A.56. Every inner product space is a linear normed space with the
norm | « | = (s, ).

By the last theorem, it is direct to see that we have a natural definition of a
metric on the inner product space

plx,y) = (x =y, x = ). (A.130)

That is, all the construction of Section A.1 can be applied.

Definition A.57. A complete inner product space is called Hilbert space.
It is worth noting that, if we sum up the following expression

lx — yI* = (e, %) = (e, 3) = (3.0 + (3. ) (A.131)
with Eq. (A.128) we obtain that for any x, y in a Hilbert space we have
Il + 17 + Ix =yl = 2lx]* + 20yl (A.132)

which is the Parallelogram law. This law is satisfied whenever the norm is ob-
tained by an inner product. The emergence of such a law is a consequence of
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the fact that in Hilbert spaces, we have a geometric notion, making it easier to
handle than Banach spaces.

Assume that we have f = y[o1)(x) and g = y|; 21(x), where yg is the indicator
function. It is direct to check that f, g € £?, and it follows that | f]| »=lgl, =1,

1
and | f + gl, = f — gl, = 27. So, applying the parallelogram law, we have that
2

4 = 2(2)r. This relation is satisfied only if p = 2. This quick analysis shows us
that #? is a Hilbert space only if p = 2. That is, £? is the only one of the #?
spaces whose norm is obtained by an inner product.

As we have explained, the geometric properties of Hilbert spaces are useful.
In particular, if we have a Hilbert space 7, we can construct a closed subspace
A with the same inner product. Now denote by .#~ the set of all elements that
are orthogonal to .#. Now take the subspace .# as the following set /# = {¢} C
F , then, for any y € M+, we have that (¢,1))g = 0. Let ¥ = ¢; + 1, with
Y1.Yp € M+, then (§,9) = 0 = ($,11) + ($.¥2), s0 (¢.Y1) = (4,4,) = 0 and
(W1, ¥n) r = (Y1, 1) g9, and all the linearity properties follow. So, /" is a linear
subspace of Z .

Further, take the open sphere S(y»,r) = {1 |Yy € #, p(Y1,¥,) < r}, with

p(Yr, 1) = (1 — Yo, Y1 — ). Assume that ¢, 1, € A+ and write Yy = ¢ + ¢,
then

P ) =W + 9 — Yo Y + 9 — ) <r
=W -+ =)+ W =+ YY) <7
=W+ )+ s+ 9 Y <r
=JWs+y Y +y)<r, (A.133)

where we have defined 3 = ¥/ — 1,. By the last equation, we have that {5 €
S(»,r), and by the linearity of .4 *, y5 € M. Therefore, S(Y,r) N M* + @, so
15 is a limit point of ./, once the decomposition 1/; = ¢ + ¢/’ is arbitrary, also
it is y5, so L+ is closed. We conclude that .#~ is a closed linear subspace of .

Lemma A.58. Let # be a Hilbert space, .# a closed linear subspace of #’, and
suppose that ¢ € #. Then, there is a unique {y € ./ closest to ¢.

Proof. Letd = infyc 4 |¢— | and take a sequence {y,} € .4 such that |¢—,[ —
d, then, using the parallelogram law (Eq. (A.132)), we get that

[Wn = Yl = 1 = ) = Wi = DI = 20 = I + 20 — GI° = | = 20 + Yy + Yl

2
= 2l = 91 + 2 — 91 = 4|+ 2 W + Vi)

< 2[¢h — O + 2 — 9I° — 4d?
—2d%+2d* —4d®* =0, asn— oo and m — oo, (A.134)
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once that ./ is closed, {;,} is Cauchy. Take {¢,} — ¢/, then ||x — z| = d.
Now take a different sequence {/j;}, all the calculations follow as the same.
We conclude that {¢;} is Cauchy and {y5} — ¢’ € M and |$ — ¢’| = d. But

l¢ =91 =l — ¢l = 0, then ¢ = y". ]

Theorem A.59. (Projection theorem) Let # be a Hilbert space, and # C # a
closed subspace. Then, every ¢ € # can be uniquely written as ¢ =/ +¢&, where
Y € M and & € M+

Proof. Take ¢ € # . By the last lemma, there is a unique ¥ € ./ closest to ¢.
Define ¢ = ¢ — . Take any ¢’ € M andt € R, if d = |¢ — || = ||, then

& <=+t =15 -1y’
< 1P = 2tR(Ey) + 21/ |P = d* — 2eR(E97) + 2y 1%, (A.135)

therefore it follows that —2R(&,1") + t|’|> > 0, this can only be satisfied if
R(,¢Y’) = 0. Repeating the same thing but with it, we get (&, ¢’). So we
conclude that (¢,9’) = 0,s0 & € M+

Repeating the same procedure but with ¢’ = ¢ — ¢/, we get (£,¢") = 0, so
& € M*. But d? = |£]? = |¢’|?, on the other hand d? = |p —¢/|%, s0oE=¢/. A

This last theorem indicates that we can write any Hilbert space as 7 = ./ &
M.

Just like in the case of Banach spaces (see the discussion of Eq. (A.111)), we
can define the set of bounded linear transformations from % to #’ by L (%, "),
and the theorem A.43 ensures that this space is complete. Again, if 7’ = C, the
space L (¥, C) is denoted by #* and called the dual space of #. The elements
of Z* are called continuous linear functionals.

Theorem A.60. (Riesz’s Representation theorem in Hilbert spaces) Any linear
functional ®(¢’) in the Hilbert space # can be represented uniquely in the form

o) = (9. 9), (A.136)

where (s, ) denotes the inner-product in #, and ¢ is defined uniquely by the
functional ®. Moreover,
12l =l (A.137)

Proof. Let ®(¢) be a continuous linear functional acting over the complex Hilbert
space # . Denote by L the set of zeros of this functional, that is,

L={yeZ|o@) =0} (A.138)
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L is a subspace of # . Linearity and continuity of ®(i) implies that L is a linear
and closed manifold.

For any ¢ € #, let yj; be the projection of ¢ into the subspace #\L. Then,
®(Yp) = C, and C # 0. Set ¥; = )/C, by the linearity of the functional we have
that ®(i;) = 1. For any ¢ € # we have ®() = C’, again using the linearity of
the functional, we can write that

®(y) - C’'2(@1) = (Y - C'y) = 0, (A.139)

from which one can conclude that y —C’y; = &, € € L, equivalently ¢y = C’y; +¢&.
So we get that # is the sum of two orthogonal spaces, one of them is L and the

other is the space spanned by /.
Once ¢ L &, follows that (Y4,¥) = C’|[¢4, since C’ = ®(y) we can write

_ (N
a()) = (“ ” H,w). (A140)
Set ¢ = 1 /Il then
oY) = (4. 9). (A.141)

Suppose that &) = (w, ), then 0 = (¢ — w,¥), V¢ € Z, which implies that
¢ = w. Taking the absolute value of the previous equation, one gets that

W) = 1@, I < gl Iyl = 2] < [l (A.142)

However, ®(¢) = (¢,4) = [4]*, then || > |¢], hence |@] = 4] u
Theorem A.61. Let # be a Hilbert space, and let A € L (). If

. 9) = (Ag. ), (A.143)

then f is a bounded sesquilinear'? functional and | f|| = | A|. Conversely, if f is

a bounded sesquilinear functional, there exists a unique A € £ (%) such that

(. 9) = (Ad. ).

Proof. Two linear transformations A; and A,, each mapping # into itself, satisfy
(A19,¥) = (Ay9,¢) for all ¢, € H, then A = A,. If A; and A, satisfy the
weaker condition (A1¢,¢) = (A0, ), this also implies that A; = A,. Let us
consider two sesquilinear functionals (¢, ) = (A1h,¢) and g(¢, V) = (AP, ¥).
Therefore, f = g, and then A; = A, forall ¢,y € 7.

Now let A € ZL () and consider f(p,y) = (A¢,¥). Using the Cauchy-

Schwarz inequality (corollary A.55), we have

[f(. ¥l = 1(Ag, )l < [ Allgll (A.144)

See footnote 4 on page 16.
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so f is a bounded sesquilinear functional and || f|| < |A|. For any ¢ € #, we have

|AGI? = (Ag, Ap) = f(¢, Ad) = | (g, Ap)| < I fllIPNIASI, (A.145)

so it follows that [Ag| < [ fll¢ = |Al < [f]. Therefore, |A] = | f].
Conversely, suppose that f is a bounded sesquilinear functional and consider

the functional g,(y) = f(#,). It directly follows that g4 is a linear functional,
The fact that gy is bounded follows directly from the definition and the Cauchy-
Schwarz inequality. By Riesz’s Representation theorem, there exists a unique

& € Z such that
g = f(g.¥) = (.5, (A.146)

and [ gg| = [£]. If we denote £ = Ag, we have that f($, ) = (Ag, V). It remains
to show that A is a bounded linear transformation. From linearity, we have that
8p,+4, (V) = (¢, A($y + ¢2)), and from the definition of g, it follows immediately
that A(¢; +¢,) = Ad; + Apy. The multiplication by scalar follows similarly. Then
A is linear. Its boundedness follows from

lgsl = 11 = 1AgI < 1 £Nll- (A.147)
|

To push further the ideas of finite-dimensional spaces into an infinite-dimen-
sional space like Hilbert spaces, we must ask ourselves if it is possible to define
a set of orthonormal basis.

We say that if S is an orthonormal subset of a Hilbert space and there is no
other orthogonal set which contains S as a proper subset, then we say that S is
an orthonormal basis for 7.

Theorem A.62. Every Hilbert space has an orthonormal basis.

Proof. Take € as the collection of orthonormal sets of 7. Partially order € by
inclusion, that is §; < S, if S; C S,. Since for any ¢ € #, we have that ¢/ /||| is
an orthonormal set, & is a nonempty collection.

Take {S,}oc as any partially ordered subset of €, so | J,e 4 Sy is an orthonor-
mal set which contains each S,, also, it is an upper bound for {S,},c 4. Each par-
tially ordered subset of € has an upper bound, so we can apply Zorn’s Lemma,
therefore € has a maximal element. That is, € contains an orthonormal system
which is not contained by any other orthonormal system. |

Theorem A.63. Let # be a Hilbert space and s = {¢),},c 4 an orthonormal basis.
Then, for each ¢y € #

U= (b0 )be (A.148)

acEA
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where the equality means that the sum (independent of the order) converges to

Y € X, and
1% =) (e I (A.149)

aEA

Conversely, if Y ,c4lc,/? < oo, with ¢, € C, then Y, 4 cz¢ converges to an
element of 7.

Proof. Using Bessel’s inequality (corollary A.54), we have that for any finite sub-
set A C A, Y pen (@as WI2 < W2 If (¢g, ) # 0, there is at most a countable
number of a’s in A for which we can establish an order in some way: ay, ay, ....

Since Z]Ail |(¢» ¥)|? is monotone increasing and bounded, it converges to a finite

quantity as N — oo. Assume that ¢, = Z;lzl(gbaj, lp)qﬁaj, then, for any n > m

2

= Y 1 I (A.150)

j=m+1

> o 900,

j=m+1

[ = vml® =

thus, {¢,} is a Cauchy sequence that converges to some ¢y’ € % . Therefore, we
have that

-y, leal) = nh_)n;lo <¢ - Z(Qbaj’ ¢)¢aj’ ¢0q)
j=1

J

=, ¢a) — (. ¢g) = O, (A.151)

the previous holds for any a # ¢, which means that we have ( — ¢, ¢,) = 0,
so i —y’ is orthogonal to all ¢, € S. But S is a complete orthonormal set, then
¥ — ¢’ = 0 and it follows that

EDNCRO. (A.152)

aEA

Furthermore, we have that

2 n
= lim (Ilyll2 SN y)lz)
j=1

o=‘¢— > (e Ve

aEA
= yl* - Z (B W, (A.153)
acA
and Eq. (A.149) follows. [ ]

The Eq. (A.149) is sometimes called Parseval’s relation.
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Definition A.64. A metric space which has a countable dense subset is said to
be topologically separable.

Theorem A.65. A Hilbert space # is separable if and only if it has a countable
orthonormal basis S. If there are N < oo elements in S, then # is isomorphic to
CN. If there are countably many elements in S, then & is isomorphic to 1.

Proof. Suppose # is separable and take {¢,} as a countable dense set. Take out of
the sequence some of the ¢, to get a subcollection of independent vectors. Such
a subcollection spans the same dense space as {¢,}. Apply the Gram-Schmidt
procedure to obtain a countable orthonormal system.

Now take {/,} as a complete orthonormal system of #. By the theorem A.63,
the set of finite linear combinations of ¢, is dense in 7, such a set is countable,
therefore # is separable.

Take # separable and {{,}, n = 1, 2,..., a complete orthonormal system. De-
fine% : X > Lby ¥ : ¢ > {{UYn,P)}, n = 1,2,.... By the theorem A.63 it is
well defined and onto, by Parseval’s relation, it is unitary:.

In the case N < oo, an analogous map can be defined. ]

Using the fact that #? is a Hilbert space and the last theorem, we have that
Z? is isomorphic to .
We end the discussion about Hilbert spaces with an important theorem in

mathematical physics. First, we say that an operator A : X — Y is everywhere
defined if D(A) = X.

Theorem A.66. (Hellinger-Toeplitz theorem) Let A be an everywhere defined

linear operator on a Hilbert space # with (Ad, ) = (¢, AY), for all §, ¥ € Z.
Then A is bounded.

Proof. Suppose that (¢, Ad,) — (¢, V). Then, for any ¢ € # we have that
(.9) = lim . Ady) = lim (AL, )
= (AL, 9) = (£, A9), (A.154)

thus A¢ = ¢, which means that I'(A) is a closed graph. By the closed graph
theorem (theorem A.51), A is bounded. [ ]

1], is the set of sequences {x,}, n = 1,2, .., of complex numbers which satisfy Y, |x,|> < co.
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A.3  Spectral Theorem

We dedicate this section to explore constructions about bounded operators that
allow us to culminate into the spectral theorem. For such a section do not extend
too much, we focus only on the minimum concepts needed to prove the spectral
theorem for bounded operators.

Definition A.67. Let X and Y be Banach spaces, T : X — Y a bounded linear
operator. The Banach space adjoint of T, denoted by T’, is the bounded linear
operator from Y™ to X* defined by

(T’D(x) = I(Tx) (A.155)
forallleY* x € X.

Theorem A.68. Let X and Y be Banach spaces. The map T — T’ is an isomor-
phism of Z(X,Y) into L(X*,Y™).

Proof. The linearity of T — T’ follows from the definition of T’. To prove the
isometry'? we use the operator norm, Eq. (A.111) and the corollary A.48 to get

ITlzxyy = sup ITxlly = sup [i{Tx)[ly- = sup (Sup Il(Tx)I)
Ixl<1 Ixl<1 Iel<1 \JII<1

= sup (Sup I(T’l)(X)|> = sup [T’

l<1 \Ix|<1 l<1

= |Tl#xy) = IT | 2x+y) (A.156)
[ |

Most of the time we are concerned about operators which map a Hilbert
space # into itself, thatis T : #Z — # . The Banach space adjoint does the map
T : X" — H*. Let us consider C : # — ', by the Riesz representation
theorem (theorem A.60), C is the functional (¢, «) acting on 7.

Define T* : # — H as T* = C"IT’C, so we have that

(T, ) = (CY)TP) = (T'CY)(¢p) = (¢,C~'T'CY) = (§, T*Y), (A.157)

T* is called the Hilbert space adjoint of T. Since we are mostly interested in
the Hilbert space case, we will call it only the adjoint and let ” and = differentiate
the cases.

12T is said to be an isometry if |Tx| = |x].
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Proposition A.69. Any adjoint operators A, B € Z(X), satisfies the following
properties

@) 1A"A] = |A%
(i) (AB) = B’ A’;
(iii) (A+B) = A’ + B.

Proof. To prove (i) we note that |A’ A < |A’[|A] = |Al|A] = |A|%. On the other
hand we have

2
lAI? = (Sup ||A¢||) = sup |Ag|* = sup (Ag, Ag)

I¢l=1 I¢l=1 I¢l=1
= ”;‘HIP (A”Ad, ) < ”3)‘”1]9 A7 Agllllgll = [ A” Al (A.158)
=1 =1

therefore, |A’ A = | A]?.
In order to show (ii), assume A, B adjoint and define & = B¢, then it follows

(AL, ¢) = (& A'Y) = (Bp, A'Y) = (¢, B'AY), (A.159)
but ((AB)¢, V) = (¢, (AB)'¢/). Thus, (AB)’ = B’A’.
(iii) follows similarly to (ii). |

Definition A.70. A bounded operator A on a Hilbert space is called self-adjoint
if A= A"
Another important kind of operators are the projections.

Definition A.71. If P € £(%) and P? = P, then P is called a projection. If in
addition P = P”, then P is called an orthogonal projection.

Definition A.72. If the range of Al — A, Ran(AI — A), is dense in # and if AT — A
has a bounded inverse on Ran(AI — A), then A is said to belong to the resolvent
set of A, p(A).

Theorem A.73. Let X be a Banach space and suppose that A € . Then p(A) is
an open subset of C and (A — A)™! is an analytic £ (X)-valued function on each

component (maximal connected subset) of D. For any two points A, p € p(A),
(AI — A)~!and (uI — A)™! commute and

A=A —(ul = A= (u—=)(ul — A YA - A)7! (A.160)
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Proof. Let us take Ay € p(A) and, momentarily, ignore questions about conver-
gence, then we can write

1 1 1 1

M—A 1-Jl+(o—A) Al—A\_ A
To—A

-1 +i</10—/1>” (A.161)
S I-A| E\Q-A) [ '
this last equation suggests us to define
(AL=A) " = QoI = A I+ > (g = V" [(RI - A" (A.162)
n=1

The previous series converges if |1 — Ag| < [(Ao] — A)~!|7%, in such a scenario,
(AI — A)7! is well defined. Therefore, A € p(A) if |1 — Ay| < [(Ag] — A)7!|7! and
p(A) is open. Once that (AI — A)™! has a convergent power series expansion,
(AI — A)~!is analytic.

By direct computation of the following expression

AI=A) "' =(ul=A)™" = (AI-A) " (pl-A)(uI-A) " —(AI-A) " (AT-A)(ul-A) 7,
(A.163)

we conclude that (A — A)~! and (uI — A)~! commute and the Eq. (A.160) follows.
[

Sometimes the quantity (AI — A)™! is called the resolvent of A, denoted
Ry (A) = (AI — A)71, and the Eq. (A.160) is called the first resolvent formula.
Note that, if we take formally

1 1\ 1 1 — [ A\"
A —A (/1)[_% /1[ ;(A) ( )
it suggests that we have
1 — (A"
Ry(A)==|1+ (—) , A.165
2A) = = [ ; > (A.165)

such a series is called the Neumann series for (Al — A)™L.

Theorem A.74. The resolvent of A, Rj(A), is analytic in the set of regular
pointsl3.

13Set of numbers x € C for which an operator has a bounded inverse.
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Proof. Take A and A, to be regular points. By the first resolvent formula, Eq.
(A.160), we have that
Ry (A) — R;,(A)

li = lim Ry (A)R,(A) = Ry (A) lim Ry(A).  (A.166
Am PR Am 1,(AR(A) = Ry, ( )Agrllo A(A). )

Let{R) ,(A)}be a sequence which converges to R)(A). Then R (AR an(A) =
I, and for any ¢ > 0, there must exist an n > N such that

IRA(A) 'Ry u(A) — I < e. (A.167)

Now take Nj such that forn > N; we have |Ry(A)"'R 2n(A)—I| < 1, and consider
the series

1+ 3 [1= Ry(A Ry (4)] " (A.168)
k=1

By the same argument used in the proof of theorem A.73, and since |R;(A) 'Ry ,(A)—

-1
I| < 1, the series must converge to (RA(A)_lR,Ln(A)) = R;Ln(A)_lR,l(A).
Therefore, we have

IR Ry () = T < i [l - R R (] |
HRA(A) Ry (A) = Ryn(W)]|

|R,1(A) 1| H Ri(A) = Ry n(A)] H 5, (A169)

Once that Rj(A) — R ;Ln(A), we can take N, such that n > N, will make ¢ as
small as desired; hence

|1 = Ryn(A)'Ry(A)| — 0
Ryn(A)Ry(A) > 1
Ryn(A)7 = Ry(A)™, (A.170)

therefore, taking the inverse is continuous.
Using the continuity of taking the inverse, we can write

lim R;(A) = lim (Al — A)" = (JoI — A)"" = Ry (A), (A.171)
A=A, A=A

thus, the limit of Eq. (A.166) exists, and symbolically we have that R}(A)[ =5, =
R} (A). |
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Remembering that every Hilbert space is a Banach space, we can define some
important quantities.

Definition A.75. If the range of AI — A, Ran(A — A), is dense in # and if Al — A
has an unbounded inverse, then A is said to belong to the continuous spectrum
of A, o.(A).

Definition A.76. If the range of AI — A, Ran(A— A), is not dense in # but Al — A
has an inverse, bounded or unbounded, then A is said to belong to the residual
spectrum of A, o.(A).

Definition A.77. If (AI — A)™! does not exist, then A is said to belong to the
point spectrum (or discrete spectrum) of A, o,
Note that the set o}, is just the eigenvalues of A.

Definition A.78. The set 0(A) = 0.(A) U 0;(A) U 0,(A) is called the spectrum
of A.

Definition A.79. Let

r(T) = sup |4 (A.172)
A€a(T)

r(T) is called the spectral radius of T.

1
Theorem A.80. Let X be a Banach space, T € & (X). Then lim,,_,, [T"| exists
and is equal to r(T).

Proof. Take a, = In|T"|, then we have

min = I [T < In(ITIT"]) = In | T™] + In | T7,
= Apin < Ay + ay. (A.173)

Setting n = mq + r where m, g and r are positive integers such that 0 <r <m—1,
we obtain the following

@y < g + ay, (A.174)
Amg+r < Amg + 4y, (A.175)
a, < ay, +a_q < ay, (A.176)

therefore, for any n € [m, 2m — 1], we have that

a a
limsup — < . (A.177)
n m
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Once that a, > %, we have

lim 2 — inf % (A.178)

n—oo n n

Then lim,,_,., In |T"| exists, and lim,,_,, ||T”||% exists.

Once that R)(T) is analytic in p(T), and {A | |A| > r(T)} C p(T), the conver-
gence of the Neumann series (Eq. A.165) cannot be smaller than r~!(T). Using
the Cauchy-Hadamard theorem, we have that the radius of convergence of the
Neumann series is the inverse of lim sup,, |T|t/" = lim,,_, 00 IT|}/", therefore

1
P(T) = lim |T|>. (A.179)
n—oo

If X =% and T = A is a self-adjoint operator, we can use the property (i) of
proposition A.69 to see that

1 n —n
r(4) = lim |AF| = lim A% = |A]
—>00 n—00
=r(A) = |A|. (A.180)
Theorem A.81. (Phillips’ Theorem) Let X be a Banach space, T € Z(X). Then

g(T) = 0(T”) and Ry(T) = Ry(T’). If X = # is a Hilbert space, then o(T") = {1 |
A€ o(T)} and RI(T*) = Ry(T)".

Proof. First, we use property (ii) of proposition A.69 and notice that
’ -1 -1
Iy=Iy =(T7'T) =17/ (1Y) = (117 =(1T7") 71" (A.181)

Then, T being an isomorphism implies that 77 is an isomorphism, and p(T) C
p(T"). Repeating the same reasoning, we get that p(T’) = p(T). Therefore,
o(T) = o(T").

Now we notice that

Ly = [RA(TX(T = Ax)]" = (T = Alx) Ry(T) = (T" = AIx )Ry(T").  (A.182)

Thus, Ry(T) = Ry(T").
The case for Hilbert spaces follows similarly using that I = I*. ]

Assume that A is a self-adjoint operator acting over a Hilbert space. By the
last theorem, we have that ¢(A*) = {1 | 1 € a(A)}, but o(A*) = o(A), therefore
{A] 1€ o(A)} ={A| A e o(A)} Then, SA = FA, which implies that 1 € R
and 0(A) C R. Actually, we can restrict the spectrum of a bounded self-adjoint
operator to an interval of R.
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Theorem A.82. Let A be a bounded self-adjoint operator A € Z (). Then,
there exist m and M real numbers such that c(A) C [m, M]. Furthermore, m and
M belong to o(A).

Proof. We have that |A| = SUP|gj=1 |(A@, P)|, so we define

m = inf (Ag,¢), M = sup (Ad, ), (A.183)
Igl=1 lpl=1

then | A = max(|m|,|M|). Now assume that ¢ = 0, then (A@/|Pl,¢/|Pl) < M.
Then, for every ¢ we have (A¢, p) < M(Q, P).

Suppose that A ¢ [m,M],so A < mor A > M. Take A > M, so there is ¢ > 0
such that A = M + ¢. Thus

((A=Dp,¢) < M($,¢) — Ap, $) < —e(¢, $) <0 (A.184)
or, in terms of absolute values
(A= D¢, Pl > elgll®. (A.185)

By the Cauchy-Schwarz inequality (Corollary A.55), we have |((A — 1)@, ¢)| <

ICA = D)lll#ll, which implies [|(A — A)@| > ||¢|l. It is worth noting that the values

p which satisty [|(A—p)g|| > €| ¢| are sometimes called approximate eigenvalues of

A. Now take the set of all approximated eigenvalues of A and denote it by 7(A),

called the approximate spectrum of A. Then, it follows directly that A & 7(A).
Now take any complex number y and any ¢ # 0, then

0 < |u—Hllgl* = (A~ g, ¢) = (A=, $) = (A~ . 9) — ($. (A" = p)$)
= (A= ¢, ¢) = (¢, (A = 1)$) < 2[(A = ] (A.186)

If u = 0 and p € o(A), there is some ¢, such that [|(A — p)@,| — 0, therefore
m(A) = o(A).

So, by the last result, A ¢ o(A). This is a contradiction, so A < M. It follows
similarly that A > m, therefore A € [m, M].

There is some real number v such that M — v > m —v > 0. So we have that

||Z)l||lp (A=), p) =M —v=[A-v| (A.187)
=1

We need to show that M € o(A). There must exist a sequence of ¢, |¢,| = 1 for
every n such that (A¢,, ¢,) — M. By the definition of M, the sequence {(A¢,, $,)}
must approach from below

(Ap,, dy) = M —¢,, where ¢, > 0 and ¢, > 0, Vn. (A.188)
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Consider

”A¢n - M¢n" = ”A¢n"2 - 2M(A¢n’¢n) + M2||¢n"2
< |A|2M(A,, ¢,) + M? = 2Me, — 0. (A.189)

Which implies that M € 7(A) = 0(A). Analogously, one shows that m € o(A).
[ |

Theorem A.83. (Spectral Decomposition Theorem) To every bounded self-adjoint
transformation A in a Hilbert space, such that | A| = max(|m|, |M|), we can assign
a spectral family on the interval [m, M]. That is, a family of projections {E}
depending on the real parameter A such that

(i) Ey < E,, or equivalently EjE,, = Ej for A < p;
(i) Ejyo = Ex
(iii) Ey =0for A <mand E; = I for A > M.
In such a way that we have y
A= J AdE;. (A.190)
m

Moreover, these properties uniquely determine the family {E,}. For every fixed
value of the parameter, E) is the limit of a sequence of polynomials in A.

Proof. Take the function e,(1) depending on the real parameter y, which is 1
it A < pand 0 for A > p. This function is a projection and is a continuous
function. Denote then the analogous projection e, (A) by E,. It is clear that
e (Me, (1) = e, (A) for u < v, therefore E,E, = E,. Once that we havem < 1 < M,
we have E, = 0if y <mand E, for u > M.

To prove that our map E, is meaningful, it needs to be continuous from the
right. For that, let’s pick a sequence of polynomials p,(1) which decrease in
[m, M] to e,, and in addition satisfy

Pa(A) 2 g1, 1 (A). (A.191)

Then we have

(A.192)

A2 E, 1 2 E,

Since p,(A) — p, we have that Eﬂ .1 = E,asn — oo, E, is a monotone function

of p,s0 E;;y, —> E as e > 0. If,u<;l/wehave

ple (D) — e, (D] < Ae, (D) — e, (D] < v[e, (D) — e, (D], (A.193)
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then
plE, — E,] < A[E, — E,] <V[E, — E,]. (A.194)

Take a sequence g <m < py < = < ply_1 <M < p,. Take p = py_q and v = g
(k = 1,2,...n) in the previous equation, taking its sum

n n n
Z 'uk—l(EHk - EHIH) <4 Z(E/lk - E/lkfl) < Z 'uk(EHk - EHIH)’ (A.195)
k=1 k=1 k=1

in the middle we have A(E, — E, ) = A(I —0) = A. If max(y — f—1) < ¢, the
difference of the first and third members is less than ¢I. Take A as any point
between py._; and j, so

<e. (A.196)

n
A- kZ(EHk - Ellk—l)
=1

Now, increasing the number n of the decomposition of the intervals (g_1, i),
in such a way that the maximum length tends to zero, the sums 22:1 M(E, —
EMH) tend to A in norm. Since E) is constant for A > M and for A < m, we can
use the Riemann-Stieltjes integral (see Eq (A.67)) to write

00 M
A= J ME) :J dE;. (A.197)
—oo m

Remains to prove the uniqueness. For that, let us explore the last representa-

tion of A further. Since [Zzzl M(E,, — Eﬂkfl)]r = Ae(Ey, — Ey ), we have
that

M
AT = J MrdE;. (A.198)
m

That ensures that for any polynomial p(1) we can write

M
p(A) = J p(L)dE;. (A.199)
m
Using the fact that polynomials are dense in the set of continuous functions
u(A) in the interval [m, M], we can extend this result to any u(1). Given any ¢,
we can find a polynomial p(A) such that —¢/3 < u(d) — p(A) < ¢/3 in [m, M];
therefore
%I < u(A) - p(A) < gI, (A.200)

hence [[u(A) — p(A)| < &/3.
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For every decomposition on the A-axis we must have

Su= Y u(y)(E, —E, ). (A.201)
k=1

and analogous S, for p(1). Hence, by the same argument, we have
€
1S, = Spll < 3 (A.202)
If the decomposition has enough parts, we shall have |p(A) — S, | < ¢/3. Thus
[uCA) = Syl < [uCA) — p(A)] + Ip(A) = Spl + 1Sy = Sul < e (A.203)

Then, for every continuous function u(1), we have

M

u(A) = J u(A)dE;. (A.204)
So, for any ¢,y € #, we have that
M
@A) = | uOddErg. (A.205)

It is clear that the right-hand side of the last equation does not depend on the
choice of {E;}. Therefore (E;¢, 1) is determined. Such a function is continuous
from the right and has the value (f, g) at M, then it is uniquely determined ev-
erywhere. ]

Just in the study of bounded self-adjoint operators, we could spend a lot of
time and pages. However, to keep it as brief as possible, we wrap up this section
with a final case of the spectral theorem.

Theorem A.84. Every unitary'* transformation U has a spectral decomposition
2 .
U= J é?dE, (A.206)
0

where {Ep} is a spectral family over the segment 0 < < 2. We can require that
Ey be continuous at the point 8 = 0, that is, E, = 0; {Ey} will then be determined
uniquely by U. Moreover, Ey is the limit of a sequence of polynomials in U and
vt

14We call a unitary transformation one such that its inverse coincides with its adjoint, that is,
U'U =1
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Proof. First, we take the trigonometric polynomial
. n .
plet) = Z crelkH, (A.207)
k=—n

and assign it to
n
pU) = > qU*. (A.208)
k=—n

We admit ¢, to be complex. Such a correspondence is obviously linear. The

conjugate polynomial, p(e/#) = Zrklz_n Eke_ik”, is the adjoint of p(e'*). If p(e'#) is
real, then p(U) is self-adjoint. And if we have p(e’#) > 0, then p(U) > 0.

Now take the function ey(y), which depends on the parameter 0 < 6 < 27,
and is defined as

1, if 2kr < p<2kr+0,

- A.209
() 0, if 2kr+0< p<2(k+ ), (A.209)

where k = 0, £1, %2, .... These functions are equal to their squares, so the corre-
sponding transformation E, is a projection. In particular, Ey = 0 and E,; = I,
and if y <v, then E E, = E,,.

The function Ey is continuous on the right. Consider 0 < 6 < 2, the func-
tions e/,(0) = e,,(0) +¢;(0), where €j(0) is equal to 1 at § = 2k and zero elsewhere.
Then, for each fixed 6, we can construct trigonometric polynomials p,(e/*) which
decrease to e)(y), and for n large enough, p,(e'*) > e(;+ 1 (). So, the correspond-

ing transformations E;,1+1 — E[ll” more generally, we have lim§_> ut Eg = Ey.

Thus, the transform.;tion E/l forms a spectral family over [0, 2], and E, = 0.
By the construction, E,, is the limit of polynomials in U and U” = Ul

Now consider a decomposition of the interval [0, 27| using the points 0 =
Oy < 60; < -+ < 0, = 2m, such that max(g — 6_;) < ¢. Take any 6 such that
O_1 <0 < 6, so we have

n
e — > e[ (0)a—eg_ ()] = e — %] < 10— G <e. (A.210)
k=1

The analogous follows for 6 = 0. Then, for any value of 8, we have

0< [eiG _ zn: ek [eek(e)a - egk_l(g)]‘ leie _ Zn: itk [eek(e)a ~ e, 1] < &2,
k= k=
1 1 (A.211)
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Using the corresponding transformations, we get

U= e*E, —E, )|<e (A.212)

n

k=1

Which, in the limit, is the desired representation. By the same way that in the
previous theorem, it follows that

2 ]
U" = J e dE,. (A.213)
0

Also, using the same construction, we have for any continuous function u

21
u(U) = L u(e®)dE,, (A.214)

from which it follows for any ¢, € 7, that

21
(u(U)qs,w):jo u(@)d(Egd. ). (A.215)

And the uniqueness follows from the same reasoning.

A.4 Generalized Functions

Roughly speaking, the theory of generalized functions is the theory of how to
work with “functions” that diverge at some point. Here we base our discussion on
Ref. [34] to provide just an introductory and intuitive notion about such objects.
For this reason, we relax the mathematical rigor of this section. However, we
must bear in mind that all the results presented here have rigorous theorems
that ensure their validity. We choose not to develop these here because their
side constructions would greatly enlarge the previous sections. These theorems
and the main ingredients needed for a proper construction of the generalized
functions can be found in Ref. [304].

The simplest case of a singular function is given by a function that is zero
everywhere except at the point, say x;, where it diverges. If we have in mind
that the following equation is meaningless, we can represent such a singular
function by

0, ifx=#ux

O(x —xg) = o fxex (A.216)
3 — AQ-
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To give a proper meaning to the last equation, we must integrate it with a “suffi-
ciently good” function.

By a sufficiently good function, we must require that the function has a
bounded support!® and with derivatives of all orders. We call these functions
test functions and represent their space by K. It is direct to see that the space K
is a linear space.

We can define linear functionals over the space K by using an inner product.
So, f is a linear functional on K if for all #(x) € K, the real number (f, §) exists,
satisfying the linearity and continuity conditions. If f is absolutely integrable in
every bounded region of R", we can represent our inner product by

(F) = | o900 (217

We remark that this is a special kind of continuous linear functional; there are
others. We have two kinds of continuous linear functionals. In order to be clear,
let us search for a locally summable!® function that evaluates ¢(x) € K at x = 0,
that is, let us find an f, such that

[ s =5 (a218)

If such a function does exist, it should act in the same way for all functions ¢ € K.
Denote x? = x? + - + x? and take

a2

p(x,a)=J¢ < ifx<a (A.219)
0, if x > aq,

then we have that ¢(0,a) = e 1 however,

lim J f(x)P(x,a) = J f(x) lim ¢(x,a) = 0 # e L. (A.220)
a—0 Jgn R® a—0

Therefore, such a summable function does not exist. The function that acts as we
desire is called the §-function (remember that it is not a function) and is defined
by its action on ¢ € K

(8(x), g(x)) = $(0), (A.221)
or its translated version (8(x — xp), p(x)) = d(xp).

>The support of the function f is the region where f(x) # 0. Therefore, a bounded support
means that the function is nonzero in a finite region.

18Can also be referred to as locally integrable. A function is locally summable if it is integrable
in each compact subset.
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So, with the previous discussion, we fix some nomenclature. We call a gen-
eralized function any functional defined on K. Functionals associated with
locally summable functions are called regular generalized functions. Func-
tionals which are defined by their action, similar to the d-function, are called
irregular generalized functions.

Clearly, for an irregular generalized function, say (x), the representation

(6(x), ¢(x)) = J}Rn 8(x)¢(x) dx, (A.222)

is meaningless and must be taken just as symbolic manipulation.

As we can see, it is meaningless to talk about the values of a generalized
function at a given point. They need always to be “smeared out” by the test
functions. The value of generalized functions in a neighborhood N of a point can
be taken. If a generalized function vanishes in the neighborhood of every point,
it vanishes, (f,¢) = 0. If two generalized functions coincide on the open set G,
f — g vanishes in G. That is, any generalized function is uniquely determined
by its local properties. The linear properties of generalized functions are defined
straightforwardly using the integral representation.

We can also define the derivative and the integral of generalized functions.
Worth noting is that not all ordinary functions have derivatives, but all general-
ized functions have derivatives of all orders, which are also generalized functions.
To see that, let us first consider a regular generalized function defined by some
continuous function f(x) with a continuous first derivative and ¢ € K. Then,
integrating by parts, we have

(9) = fge0| - j FGF () dx = (f, ¢/ (), (A.223)

where the first contribution vanishes because ¢ has compact support. We can use
the previous relation to define the derivative of generalized functions. Consider
any generalized function (regular or irregular) f in K. Define the functional g
by

(g.¢) = (f.—¢). (A.224)
Then g is the derivative of f. The continuity and linearity of g follows trivially,
so g is a generalized function. Usually, it is denoted by f” or 4 The rules of

dx’
differentiation are preserved.
In particular, let us compute the derivative of the step function defined by

0, ifx<0
0(x)=1" A.225
) 1, if x> 0. ( )
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using our previous definition, for any ¢ € K, we get

wumﬂmw4awr¢u»:—J aﬂﬂww=—ﬁ)www=¢m>

= (0"(x), p(x)) = (6(x), ¢(x)). (A.226)

Thus, 6’(x) = 5(x). By the same manipulations, one recovers that §’(x + h) =
O(x + h).

Using the same construction that we used for the first derivative, we can
define the k-th derivative of a generalized function by

(F®.¢) = (f.(-1)¢®). (A.227)

Using this definition, it is straightforward to compute the k-th derivative of the
d-function

(6®(x = h). ¢(x)) = (8(x = B). (-1 ¢B(x)) = (-1 ¢p® () (A.228)

Once we have the possibility of functionals defined by non-locally summable
functions f, the integral representation may diverge. Let’s say that the function
f is not locally summable at x;, then if we take ¢ € K such that it vanishes
in the neighborhood of x;, we can make the integral representation finite. The
procedure of making the integrals finite is called regularization.

We shall introduce the regularization procedure using an example. Consider
the function f(x) = 1/x, so

(f,¢) = J @dx (A.229)

—00

diverges at x = 0. So, the procedure that we described in the last paragraph can
be implemented if we ensure that our test function is zero in the neighborhood
of x = 0. If in the interval [—a, b] we subtract ¢(0), we ensure that ¢(x) — ¢(0)
vanishes in a neighborhood of zero. Therefore, the last divergent integral can be
represented by

—a b o0
@dx + J —gb(x) — ¢ dx + J @dx,

_a X b X

¢-|

—00

(A.230)

which is convergent and agrees with the previous expression everywhere except
in the neighborhood of zero.

It is just a matter of repeating the same reasoning to conclude that any alge-
braic singularity can be regularized by an analogous procedure. That is, if f(x)x™
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(x =X xl-2> is locally summable for some m > 0, we can regularize (f, ¢) by

= [ s [s0+ B2 wanr TEY M- n).
X1 lx=0 X lx=0 T

(A.231)
Therefore, the last expression is the meaningful version of any irregular general-
ized function with algebraic singularities.
Now let us consider the following regular functional: define the generalized
function x? by

2 0, if x <0
xt = ‘ (A.232)
x*, if x>0,

For RA > —1. So the functional given by (xﬁ}, ¢) is regular for RA > —1. However,

we notice that

o0

(. ¢)

1 %)
Ap(x)dx = J Ap(x)dx + J A p(x)dx
JO
1

= [ 90 - g0 dx + j A¢(o>dx+j )

1
= | x*[¢(x) - $(0)] dx +J AP(x)dx + —— #(0) (A.233)

Jo A+1

this last expression is regular for RA > —2 and A # —1. Therefore, we have
an analytic extension of the functional xﬁ}. By successive applications of the
previous reasoning, we can obtain the following expression

(xi,¢)=j [¢(x)_z 1),¢<k R )] j g dx

()
+,§1(k—1)!(/1+k)’ (A.234)

whichisregular for RA > —m—1and A # —1,—2,..., —m. The previous expression
is the regularization of the generalized function as a function of A, and it follows
directly that for any A = —k, it has a pole with residue

g D0 _ Dt
(k—1! (k-1

(8%, ¢(x)) . (A.235)

which means that the functional has a pole at A = —k with residue ((k - o 5(k 1)(x).
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With that, we finish the discussion about generalized functions. One must
bear in mind that we only discussed simple examples and properties to avoid
extending ourselves. As we can notice, some of the concepts that are key ideas
of quantum field theory have already appeared in the generalized functions. Be-
sides this direct connection, the theory of generalized functions is also useful to
obtain practical results; for example, the Cauchy problem can be solved using
such objects.
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