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Abstract

In this comprehensive study, we explore the theoretical frameworks of quan-
tum field theory and statistical field theory, addressing both foundational prin-
ciples and advanced methodologies across multiple chapters. The manuscript
begins with a detailed exposition of the mathematical underpinnings of quan-
tum theories, establishing the essential groundwork for introducing quantum
mechanics and axiomatic quantum field theory. Within the context of axiomatic
quantum field theory, we present novel results on the Casimir effect in dielectric
materials and on the detection of zero-point fluctuations. We then introduce the
functional integral formalism, encompassing both constructive field theory and
statistical field theory. A dedicated section presents the distributional zeta func-
tion method, which is employed to investigate disordered systems. Furthermore,
a wide array of applications, several of which are novel, of the distributional
zeta function are discussed, expanding the formalism’s utility and deepening our
physical understanding of disordered systems.

Keywords: Functional methods, Quantum field theory, Disordered systems.



Resumo

Neste estudo abrangente, exploramos os fundamentos teóricos da teoria quân-
tica de campos e da teoria estatística de campos, abordando tanto os princí-
pios fundamentais quanto metodologias avançadas ao longo de múltiplos capí-
tulos. O manuscrito começa com uma exposição detalhada das bases matemáti-
cas das teorias quânticas, estabelecendo o alicerce essencial para a introdução
da mecânica quântica e da teoria quântica de campos axiomática. No contexto
da teoria quântica de campos axiomática, apresentamos resultados inéditos so-
bre o efeito Casimir em materiais dielétricos e sobre a detecção de flutuações
do ponto zero. Em seguida, introduzimos o formalismo do integral funcional,
abrangendo tanto a teoria construtiva de campos quanto a teoria estatística de
campos. Uma seção dedicada apresenta o método da função zeta distribucional,
que é empregado para investigar sistemas desordenados. Além disso, é discutida
uma ampla gama de aplicações, várias delas inéditas, da função zeta distribu-
cional, ampliando a utilidade do formalismo e aprofundando nossa compreensão
física de sistemas desordenados.

Palavras-chave: Métodos funcionais, Teoria quântica de campos, Sistemas des-
ordenados.
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Chapter 1

Introduction

The study of quantum and statistical field theory has long been central to our un-
derstanding of the fundamental interactions of nature and the collective behavior
of matter. From the early developments of quantummechanics to modern formu-
lations of quantum field theory, the central goal has been to provide a consistent
and predictive framework for describing particles and fields across microscopic
and macroscopic scales. Over the past century, this pursuit has not only shaped
high-energy physics, culminating in the Standard Model, but has also permeated
condensed matter physics, statistical mechanics, and even interdisciplinary do-
mains such as information theory and complex systems.

One of the milestones in this development was the formulation of quantum
electrodynamics, the first successful quantum field theory combining quantum
mechanics and special relativity. Its principles were later extended to the elec-
troweak and strong interactions, leading to the construction of the Standard
Model. Despite its success, the Standard Model leaves many open questions,
such as the incorporation of gravity, the origin of dark matter and dark energy,
and the mechanisms underlying neutrino and Higgs masses. These open prob-
lems continue to motivate the development of new field-theoretic approaches
that go beyond perturbation theory and that extend into regimes of strong cou-
pling, critical phenomena, and disordered systems.

In parallel, statistical field theory has emerged as a unifying framework for
the study of collective phenomena in condensed matter physics. The functional
integral formalism provides a natural bridge between quantum fields and statis-
tical mechanics, allowing one to describe partition functions, correlation func-
tions, and fluctuation-driven effects within a common language. This connec-
tion has been particularly fruitful in the study of phase transitions and critical
phenomena, where renormalization group methods have revealed the deep con-
cept of universality: the insensitivity of large-scale behavior to microscopic de-
tails. Such insights, initially motivated by equilibrium statistical mechanics, have
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since been extended to systems ranging from turbulent fluids to early-universe
cosmology.

Disorder is ubiquitous in real materials and manifests in many forms: ran-
dom impurities in solids, spatially varying couplings, quenched external fields,
and inhomogeneous boundary conditions. Physically, disorder can profoundly
alter transport properties, shift critical points, generate glassy dynamics and in-
duce localization of excitations. Seminal examples include Anderson localization
of electronic waves [1] and glassy phases in spin systems; in the latter context the
Edwards–Anderson model and the associated replica methods set the paradigm
for theoretical investigations [2, 3]. Beyond condensed matter, disorder-like ef-
fects appear in classical and quantum models of fluids, soft condensed matter,
and can be used to construct analog models related to cosmology and black-hole
physics. The ubiquity and diversity of disorder make it a central topic for any
comprehensive understanding of many-body physics.

From a theoretical viewpoint, quenched disorder presents two main techni-
cal challenges. First, physical observables generally require averaging nonlinear
functionals of the partition function (for example the quenched free energy in-
volves 𝔼[ln𝑍]), which complicates analytic treatment. Second, disorder often en-
hances the role of rare configurations and non-perturbative effects; consequently,
methods that rely solely on naive perturbation theory can fail or be misleading.
Traditional analytic approaches include the replica trick and supersymmetric for-
mulations that trade disorder averages for integrals over commuting and anti-
commuting fields [4]. While successful in many contexts, these techniques have
mathematical subtleties (notably analytic continuation in the replica limit) and
may obscure the spectral character of certain problems.

This thesis advocates and develops an alternative perspective based on the
distributional zeta-function (DZF), a method which expresses disorder averages
through zeta-like integrals over partition functions. The DZF offers several com-
plementary advantages: (i) it emphasizes the statistical distribution of the parti-
tion function across disorder realizations, (ii) it bypasses the need for a replica
analytic continuation in many cases, and (iii) it admits natural connections to
spectral zeta functions and random-matrix techniques. In Chapters 4 and 5we de-
velop themathematical foundations of this approach and apply it to paradigmatic
models of quenched disorder (random-mass and random-field models), obtaining
both new bounds and concrete computations of thermodynamic and Casimir-like
observables.

The primary aims of the thesis are to review and unify functional approaches
to quantum and statistical field theory with careful attention to mathematical
foundations, and to develop and apply the distributional zeta-function method
to physically relevant disordered models.

The remainder of this thesis is organized as follows: Chapter 2 we discuss the
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similarities and differences between Classical and Quantum mechanics, fixing
the notation and language that we use in this thesis. The Chapther 3 is dedicated
to Axiomatic Quantum Field Theory, with a lengthy discussion about zero-point
energies, finishing with a brief discussion of the interaction theory. In Chap-
ter 4, we introduce Constructive Quantum Field Theory in the formulation of
functional integrals. Chapter 5 introduces statistical field theory and presents
disordered systems. The distributional zeta-function method, with applications,
is also presented in this chapter. Finally, in Chapter 6, we present the general
conclusions of this thesis. The Appendix A, present the fundamental mathemat-
ical background that guides us through this thesis.



Chapter 2

Quantum Mechanics

The goal of this chapter is to explore physical applications of the basic ideas of
functionasl analysis (see Appendix A), establishing a connection between the for-
mal mathematical theory and well-known physical results. For this, we assume
that the reader has some familiarity with basic results in quantum mechanics.
We begin our construction with very simple aspects that are widely known in
the physics community. However, we do not intend to cover all aspects that fall
under the “QuantumMechanics” umbrella. For thosewithout prior knowledge of
the subject, we recommend any good book from the vast literature, particularly
[5, 6]. For those eager for a formal collection of results and an in-depth discus-
sion, Reference [7] is a great option. Here, we present a qualitative discussion
emphasizing the construction and mathematical results. For the sake of brevity,
we choose to begin directly with the canonical quantization procedure and omit
the Heisenberg-Born-Jordan matrix approach. In what follows, we assume that
the reader is familiar with the Lagrangian and Hamiltonian approaches to clas-
sical mechanics [8, 9]. However, to introduce the necessary formalism, we start
with a brief review of the fundamental ideas of classical mechanics. Moreover,
we would like to clarify that the same set of mathematical ideas used to obtain re-
sults in quantum mechanics can, with suitable modifications, be applied to treat
a non-commutative algebra instead of a commutative one. Many of the results
presented here can be found scattered in the mathematical literature; a useful
collection that covers many of these results is Reference [10].
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2.1 Classical Mechanics: Observables and
States

As usual, a physical system can be defined in terms of generalized coordinates
and their time derivative (𝑞, ̇𝑞). In such a coordinate system, the physical sys-
tem is characterized by its number of degrees of freedom. The time derivative
of the generalized coordinates defines the generalized velocities. For example,
a system consisting of a free point particle moving along a line has only one
degree of freedom, and its combination with the generalized velocity forms a
two-dimensional space (a plane), it is usual to refer to such a space as configura-
tion space. Given the generalized coordinates and velocities of a system, one can
construct its “Lagrangian.” In general, the Lagrangian is a function of the gener-
alized coordinates, lets assume 𝑁 of them, the respective generalized velocities,
and time, 𝐿 ∶ ℝ2𝑁+1 → ℝ, and can be expressed in terms of the kinetic energy
(𝐾 ) and the potential energy (𝑉 ) as

𝐿 (𝑞(𝑡), ̇𝑞(𝑡), 𝑡) ≡ 𝐾(𝑞(𝑡), ̇𝑞(𝑡), 𝑡) − 𝑉 (𝑞(𝑡), ̇𝑞(𝑡), 𝑡). (2.1)

In the simplest case, a free point particle of mass 𝑚 moving on a line, the La-
grangian consists only of the kinetic energy expressed in terms of the generalized
velocity:

𝐿( ̇𝑞) = 𝐾( ̇𝑞) = 1
2𝑚

2 ̇𝑞2. (2.2)

If we consider a free particle in three-dimensional space, we obtain a six-dimensional
space, and the Lagrangian must account for ̇𝑞2 ≡ ̇𝑞21 + ̇𝑞22 + ̇𝑞23 . Although the free
point particle scenario is trivial, adding a non-trivial potential reveals the advan-
tages of the Lagrangian formulation.

At first glance, the Lagrangian formulation may appear to be just another
coordinate-based approach to Newtonian mechanics. However, its computa-
tional advantages become evident when one introduces the concept of the action
functional,

𝑆[𝐿; 𝑡𝑖, 𝑡𝑓 ] ≡ ∫
𝑡𝑓

𝑡𝑖
𝐿 (𝑞(𝑡), ̇𝑞(𝑡), 𝑡) d𝑡 . (2.3)

As its name suggests, the action functional is a linear functional of the Lagrangian
and a function of the parameters 𝑡𝑖 (initial time) and 𝑡𝑓 (final time). This functional
plays a central role in the development of Quantum Field Theory, as will become
explicit in the next chapter. For now, the introduction of the action is useful for
obtaining the equations of motion used to describe physical systems. Applying
Hamilton’s principle, which states that between the times 𝑡𝑖 and 𝑡𝑓 , a physical
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system follows the path from 𝑞1 to 𝑞2 for which the action is stationary, i. e.

𝛿𝑆[𝐿; 𝑡𝑖, 𝑡𝑓 ] = 0. (2.4)

From that, one can take the variation of the action (2.3) with respect to each
generalized coordinate to obtain the so-called Euler-Lagrange Equations

𝜕𝐿
𝜕𝑞𝑛

− d
d𝑡

𝜕𝐿
𝜕 ̇𝑞𝑛

= 0, (2.5)

where, for the sake of clarity, we have specified that this equation must be ap-
plied to each degree of freedom of the system, i.e., 𝑛 = 1, 2, … , 𝑁 . Returning
to our simple example, we find that our Euler-Lagrange equation results in the
following second-order ordinary differential equation; for the free particle

𝑚2 ̈𝑞 = 0, (2.6)

In such a simple situation, one can solve the equation of motion directly to obtain
a function for the generalized velocity of the system:

̇𝑞(𝑡) = ̇𝑞0 + 𝑐
𝑚2 (𝑡 − 𝑡𝑖), (2.7)

where ̇𝑞0 is a constant determined by the initial conditions at 𝑡𝑖, and 𝑐 is an arbi-
trary integration constant. Further integration results in a function of the gen-
eralized coordinate in terms of time and initial parameters. It is interesting to
note that solving the equation of motion at a given time allows us to determine
the system at any time in the past or future. This deterministic behavior is not
merely a feature of the free particle but holds for any case in classical mechanics.
Moreover, systems in which the total energy is conserved are those in which the
Lagrangian has no explicit dependence on time, that is,

𝜕𝐿
𝜕𝑡 = 0. (2.8)

Before proceeding further, let us examine the instructive case of a harmonic
oscillator. First, we consider the usual harmonic oscillator by adding the potential
𝑉 (𝑞) = 1

2𝑘𝑞2 to the free particle, where 𝑘 is a system-dependent constant (for
example, the stiffness of a spring). In this case, the Lagrangian and the equation
of motion of the system are given by

𝐿(𝑞, ̇𝑞) = 1
2𝑚

2 ̇𝑞2 − 1
2𝑘𝑞

2,
𝑚2 ̈𝑞 + 𝑘𝑞 = 0. (2.9)
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Before solving the equation, we observe that this is a system with conserved
energy and that we have an elliptic second-order ordinary differential equation.
There are many ways to solve such an equation, and the solution is given by

𝑞(𝑡) = 𝐴 sin (√
𝑘
𝑚2 𝑡 + 𝜃) , (2.10)

where the amplitude,𝐴, and the phase, 𝜃 , are determined by the initial conditions.
Now, we introduce another formalism in classical mechanics that is useful

for quantum systems. The Hamiltonian is a function of the generalized coor-
dinates, conjugate momenta, and time, 𝐻 ∶ ℝ2𝑁+1 → ℝ, given by the Legendre
transform in the generalized velocities of the Lagrangian. By definition, it can
be written as

𝐻(𝑞, 𝑝, 𝑡) ≡ sup
̇𝑞∈ℝ𝑁

[( ̇𝑞, 𝑝) − 𝐿(𝑞, ̇𝑞, 𝑡)] , (2.11)

where ( ̇𝑞, 𝑝) = ∑𝑁
𝑛=1 ̇𝑞𝑛𝑝𝑛, and the conjugate momentum is given by

𝑝𝑛 ≡ 𝜕𝐿
𝜕 ̇𝑞𝑛

. (2.12)

In particular, if the Lagrangian has no explicit time dependence, the Hamilto-
nian will also share this property. Unless explicitly stated otherwise, we assume
that we are dealing only with conservative systems. The 2𝑁 -dimensional space
generated by the generalized coordinates and conjugatemomenta is calledphase
space. By analyzing the trajectories of a physical system in phase space, one
can obtain many insights. For the harmonic oscillator, we obtain the following
Hamiltonian:

𝐻(𝑞, 𝑝) = 𝑝2
2𝑚2 + 1

2𝑘𝑞
2, (2.13)

which represents an ellipse in phase space, due its energy conservation. The
graph of the Hamiltonian in the phase space of a periodic system is characterized
by closed curves. Taking the differential of the definition of the Hamiltonian and
using the definition of conjugate momenta, one obtains

d𝑞𝑛
d𝑡 = 𝜕𝐻

𝜕𝑝𝑛
, d𝑝𝑛

d𝑡 = −𝜕𝐻
𝜕𝑞𝑛

, and 𝜕𝐿
𝜕𝑡 = 𝜕𝐻

𝜕𝑡 . (2.14)

This system of equations is known as Hamilton’s Equations, which are the
equations of motion in this formalism. Returning to the harmonic oscillator, we
get

̇𝑞 = 𝑝
𝑚2 , and ̇𝑝 = −𝑘𝑞, (2.15)
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which are two first-order differential equations. For linear systems, the usual be-
havior is as follows: while the Lagrangian formalism yields 𝑁 differential equa-
tions of order 2, the Hamiltonian formalism results in a system of 2𝑁 first-order
differential equations.

Definition 2.1. For two dynamical functions, 𝑢 = 𝑢(𝑞, 𝑝, 𝑡) and 𝑣 = 𝑣(𝑞, 𝑝, 𝑡), the
Poisson bracket is defined by the bilinear, skew-symmetric relation (over the
usual product and sum)

[𝑢, 𝑣]𝑃 ≡
𝑁
∑
𝑛=1

( 𝜕𝑢
𝜕𝑞𝑛

𝜕𝑣
𝜕𝑝𝑛

− 𝜕𝑢
𝜕𝑝𝑛

𝜕𝑣
𝜕𝑞𝑛

) . (2.16)

Straight from the previous definition1, one can find the fundamental Poisson
brackets, which are given by:

[𝑝𝑛, 𝑞𝑚]𝑃 = [𝑝𝑛, 𝑝𝑚]𝑃 = 0, and [𝑞𝑖, 𝑝𝑗]𝑃 = 𝛿𝑖𝑗 . (2.17)

With the fundamental relations and some algebraic manipulations, one finds di-
rectly for any dynamical function 𝑢 that

[𝑢, 𝑝𝑖]𝑃 = 𝜕𝑢
𝜕𝑞𝑖

. (2.18)

Setting 𝑢 = 𝐻 and analyzing Hamilton’s equations ( 2.14), one can see directly
that

[𝑞𝑛, 𝐻 ]𝑃 = 𝜕𝐻
𝜕𝑝𝑛

= ̇𝑞𝑛, and [𝑝𝑛, 𝐻 ]𝑃 = −𝜕𝐻
𝜕𝑞𝑛

= ̇𝑝𝑛. (2.19)

Such relations confirm that our definition of the Poisson bracket in Eq. ( 2.16) is
dynamically consistent.

Moreover, if 𝑢 = 𝑢(𝑞(𝑡), 𝑝(𝑡), 𝑡), we can use the Poisson bracket and the previ-
ous relations to write the usual total derivative of 𝑢 with respect to time as

d𝑢
d𝑡 = [𝑢, 𝐻]𝑃 + 𝜕𝑢

𝜕𝑡 , (2.20)

if 𝑢 does not have any explicit time dependence, the total derivative is simply
the Poisson bracket with 𝐻 . Thus, one can say that the Hamiltonian of a system
generates time translations. If the Poisson bracket of a dynamical function with
the Hamiltonian vanishes, we say that the function is a constant of motion.

1One can also define the Poisson bracket for any set of canonical variables (variables that
relate to each other via Hamilton’s equations ( 2.14)). Herewe only use the set (𝑞, 𝑝), choosing not
to discuss canonical transformations. However, it can be easily shown that the Poisson bracket
is invariant under canonical transformations. For those interested, see Refs. [8, 9].



Classical Mechanics: Observables and
States 9

It is interesting to notice that the Poisson bracket can be regarded as a first-
order linear operator. Take the dynamical functions 𝑢 and 𝑣 , and define the fol-
lowing first-order linear operator

𝑃𝑢 ≡
𝑁
∑
𝑛=1

( 𝜕𝑢
𝜕𝑞𝑛

𝜕
𝜕𝑝𝑛

− 𝜕𝑢
𝜕𝑝𝑛

𝜕
𝜕𝑞𝑛

) , (2.21)

it is straightforward to see that

[𝑢, 𝑣]𝑃 = 𝑃𝑢𝑣 . (2.22)

From this point of view, it is clear that

𝑃𝑢(𝑣ℎ) = (𝑃𝑢𝑣)ℎ + 𝑣𝑃𝑢ℎ ⇒ [𝑢, 𝑣ℎ]𝑃 = [𝑢, 𝑣]𝑃ℎ + 𝑣[𝑢, ℎ]𝑃 , (2.23)

for any dynamical functions 𝑢, 𝑣 , and ℎ. Applying the Poisson bracket recursively
and using the skew-symmetric property, one can write that

[𝑢, [𝑣 , ℎ]𝑃 ]𝑃 + [𝑣, [ℎ, 𝑢]𝑃 ]𝑃 = (𝑃𝑢𝑃𝑣 − 𝑃𝑣𝑃𝑢)ℎ, (2.24)

which contains second-order derivatives in the phase space coordinates. Thus,
the only second derivatives that can appear are due to the application of the
Poisson bracket. But a linear combination of first-order differential operators is
itself a first-order differential operator, so there are no second-order derivatives
of ℎ in the previous equation. This means that the second-order derivatives that
appear must vanish identically, leading to the following expression:

(𝑃𝑢𝑃𝑣 − 𝑃𝑣𝑃𝑢)ℎ =
𝑁
∑
𝑛=1

(𝐴𝑛
𝜕
𝜕𝑝𝑘

− 𝐵𝑛 𝜕
𝜕𝑞𝑛

) ℎ. (2.25)

The coefficients 𝐴𝑛 and 𝐵𝑛 cannot depend on ℎ, since they are determined by
differential equations. So we can choose ℎ for convenience. First, take ℎ = 𝑝𝑖
and use Eq. ( 2.18) to write

(𝑃𝑢𝑃𝑣 − 𝑃𝑣𝑃𝑢)𝑝𝑖 = 𝑃𝑢 𝜕𝑣𝜕𝑞𝑖
− 𝑃𝑣 𝜕𝑢𝜕𝑞𝑖

= 𝑃𝑢 𝜕𝑣𝜕𝑞𝑖
+ 𝑃 𝜕𝑢

𝜕𝑞𝑖
𝑣 = 𝐴𝑖

⇒ 𝐴𝑖 = 𝜕
𝜕𝑞𝑖

𝑃𝑢𝑣 , (2.26)

now, taking ℎ = 𝑞𝑖 and proceeding with the same manipulations, one finds

𝐵𝑖 = − 𝜕
𝜕𝑝𝑖

𝑃𝑢𝑣 . (2.27)
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Returning to Eq. ( 2.25), we can write

(𝑃𝑢𝑃𝑣 − 𝑃𝑣𝑃𝑢)ℎ = [𝑢, [𝑣 , ℎ]𝑃 ]𝑃 + [𝑣, [𝑢, ℎ]𝑃 ]𝑃 = [[𝑢, 𝑣]𝑃 , ℎ]𝑃 , (2.28)

or, in a more enlightening form,

[𝑢, [𝑣 , ℎ]𝑃 ]𝑃 + [𝑣, [𝑢, ℎ]𝑃 ]𝑃 + [ℎ, [𝑢, 𝑣]𝑃 ]𝑃 = 0, (2.29)

which is the Jacobi identity. Now, it is interesting to remember that our defini-
tion of the Poisson bracket in Eq. (2.16) is skew-symmetric and bilinear under the
usual multiplication by a scalar and under the usual addition by a function. With
this definition and the fact that the Poisson bracket satisfies the Jacobi identity,
we can affirm that the operation

[•, •]𝑃 (2.30)

defines a Lie algebra over the phase space. This Lie algebra is known as the
algebra of observables, 𝒪 , in classical mechanics. If, in the phase space 𝒫 , we
define a one-parameter commutative group 𝑇𝑡 ∶ 𝒫 → 𝒫 , the family of trans-
formations generated by 𝑇𝑡 , denoted by 𝑈𝑡 , preserves the algebra of observables,
i.e., 𝑈𝑡 ∶ 𝒪 → 𝒪 . In other words, if the evolution in phase space is governed by
a single parameter (e.g., time), then time evolution preserves the properties of
the Poisson brackets. In particular, if we define any function in the phase space
in terms of initial coordinates 𝑞0 and 𝑝0, such as 𝑓 (𝑞0, 𝑝0), its time evolution is
given by 2

𝑈𝑡𝑓 (𝑝0, 𝑞0) = 𝑓𝑡(𝑝0, 𝑞0) = 𝑓 (𝑞(𝑞0, 𝑝0, 𝑡), 𝑝(𝑞0, 𝑝0, 𝑡)) ≡ 𝑓𝑡(𝑞, 𝑝), (2.31)

and it follows directly that 𝑓𝑡(𝑞, 𝑝) satisfies the differential equation

d𝑓𝑡
d𝑡 = [𝐻 , 𝑓𝑡]𝑃 , (2.32)

which is not only another way of expressing Eq. (2.20) but also highlights why
the Hamiltonian is the time evolution generator of the algebra of observables.
From this, we see that time evolution is an automorphism of the algebra of oper-
ators. With these clarifications, we can now formally define what an observable
in classical mechanics is: An observable is a real-valued smooth function defined
on the phase space.

To fully describe a physical system, we must define not only observables but
also states. Loosely speaking (and we will formalize this shortly), a state is what

2One can also consider functions with explicit time dependence. However, this leads to longer
expressions, which we do not consider in this text.
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is measured in an experiment. Thus, one could say that a state corresponds to
the numerical outcome displayed by laboratory equipment. In this view, when
the same physical experiment is performed multiple times, there are two possi-
bilities:

1. If the experiments are exactly replicated, the measured states remain the
same in every repetition. This means that if we collect all possible experimental
outcomes into a set, that set contains only a single element, and the experiment
always selects that element. In other words, the experiment uniquely determines
the state of the system.

2. Even if the experiments are precisely replicated, they yield different results.
That is, the non-uniqueness of the state is an intrinsic property of the system, in-
dependent of the experiment. In this case, collecting all possible states into a set
results in a set with multiple elements, meaning that different experimental runs
may select different elements from this set. In other words, a series of experi-
ments determines the set of possible states of a system, and each experiment
may yield a different state.

Next, we will formalize these two types of physical systems.
Regardless of the preceding scenario, the state of the system is the element

selected from the set of possible states. The probability of selecting a particular
state is not necessarily fixed and depends on the system. However, for any ob-
servable 𝑓 in the algebra of observables 𝒪 , the probability of measuring a state
𝜇 follows a probability distribution. To formalize this concept, we assert:

A state, 𝜇, defined over the algebra of observables, determines the probability
distribution (measure) for each observable. Sincewe are dealing onlywith classical
quantities, this measure must be defined on the real line, i.e., as a Borel measure
(see the discussion after Theorem A.23), as defined in Section A.1.

We are now ready to define a state:

Definition 2.2. A state 𝜇 is a linear map, 𝜇 ∶ 𝒪 → ℝ, acting on an observable
𝑓 ∈ 𝒪 and a Borel set 𝐵 ⊂ ℝ, thereby defining a measure 𝜇(𝑓 )|𝐵 ≡ 𝜇𝑓 (𝐵).

From this definition, it follows directly that 𝜇𝑓 (𝐵) defines a probability mea-
sure (see the discussion after Eq. (A.67)). Since the algebra of observables con-
sists of continuous functions, the state over 𝜙 can be intuitively expressed as

𝜇𝜙(𝑓 )(𝐵) = 𝜇𝑓 (𝜙−1(𝐵)), (2.33)

where 𝜙−1 is the inversemap and 𝜙−1(𝐵) is an open set, given that 𝜙 is continuous
and 𝐵 is a Borel set. As discussed in theAppendix (see DefinitionA.15), ameasure
can be expressed as a linear combination of measures. In particular, a convex
combination of states,

𝜇 = 𝛼𝜇1 + (1 − 𝛼)𝜇2, 0 < 𝛼 < 1, (2.34)
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may yield a corresponding convex combination of measures. If a state cannot
be represented as in Eq. (2.34), i.e., if 𝜇1 = 𝜇2 = 𝜇, we say it is a pure state;
otherwise, it is called a mixed state.

It is common to determine the probability that an observable 𝑓 does not ex-
ceed a certain value 𝜆 when measured in state 𝜇. We define this as 𝜇𝑓 ((∞, 𝜆]) ≡
𝜇𝑓 (𝜆)3. With the state, the observable, and the associated probability measure
defined, we ask: what is the probability of the observable 𝑓 taking values less
than 𝜆 in state 𝜇?

The answer is given by themean valuewith respect to the appropriate prob-
ability measure:

⟨𝑓 ⟩𝜇 ≡ ∫
+∞

−∞
𝜆d𝜇𝑓 (𝜆), (2.35)

which must be interpreted as a Riemann-Stieltjes integral, Eq. (A.67). The three
key properties of the mean value are:
Proposition 2.3. For any arbitrary constant 𝑐 ∈ ℝ and any functions 𝑓 , 𝑔 ∈ 𝒪 ,
the mean values satisfy:

(i) ⟨𝑐⟩𝜇 = 𝑐,
(ii) ⟨𝑓 + 𝑐𝑔⟩𝜇 = ⟨𝑓 ⟩𝜇 + 𝑐⟨𝑔⟩𝜇 ,
(iii) ⟨𝑓 2⟩𝜇 ≥ 0.

Proof. (i) follows from the fact that 𝜇𝑓 (ℝ) = 1. (ii) follows from the linearity
of the integral. For the proof of (iii), we can first decompose 𝑓 into measurable
functions and use Lemma A.14 to show that 𝑓 2 is integrable. To get the non-
negative values of the mean value of 𝑓 2, we observe that 𝑓 2 ≥ |𝑓 |, so

⟨𝑓 2⟩𝜇 ≥ ⟨|𝑓 |⟩𝜇 ≥ 0. (2.36)

■

Now, in order to graspmore properties, we can use the properties of themean
value to interpret such a quantity as a positive linear functional acting over 𝒪 .
We can represent such a functional in the phase space as follows:

⟨𝑓 ⟩𝜇 = ∫𝒫 𝑓 (𝑝, 𝑞) d𝜈𝜇(𝑝, 𝑞), (2.37)

with d𝜈𝜇(𝑝, 𝑞) being the differential of the measure on the phase space. Straight
from our definitions and using (i), we can check that

⟨1⟩𝜇 = ∫𝒫 d𝜈𝜇(𝑝, 𝑞) = 𝜈𝜇(𝒫 ) = 1, (2.38)

3Of course, we have 𝜇𝑓 (−∞) = 0 and 𝜇𝑓 (+∞) = 𝜇𝑓 (ℝ) = 1.
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that is, the mean value of the identity is normalized. From the last integral, we
can infer also that the “volume” of the phase space is unity. Soon we will return
to the analysis of the volume of the phase space.

Using the fact that the measure d𝜈𝜇(𝑝, 𝑞) is 𝜎-finite, we can make use of the
Radon-Nikodým theorem (Theorem A.35) to rewrite the mean value of an ob-
servable 𝑓 as

⟨𝑓 ⟩𝜇 = ∫𝒫 𝑓 (𝑝, 𝑞)𝜌𝜇(𝑝, 𝑞) d𝑞 d𝑝, (2.39)

where d𝑞 and d𝑝 are properly Lebesgue measures and 𝜌𝜇(𝑝, 𝑞) is a distribution
function (the Radon-Nikodým derivatives of 𝜈𝜇(𝑝, 𝑞)). Worth noting that, in gen-
eral, 𝜌𝜇(𝑝, 𝑞) is a positive definite generalized function, as the ones analyzed in
Section A.4. With that in mind, now we can use the same notation as before
and see the mean value of an observable as the linear functional generated by
the distribution function’s action over them in the phase space, that is, as a map
𝜌𝜇 ∶ 𝒪 → ℝ+, defined by

(𝜌𝜇 , 𝑓 ) = ⟨𝑓 ⟩𝜇 . (2.40)
Physically, the last discussion can be translated as saying that a state in clas-

sical mechanics is described by the corresponding probability distribution on
the phase space. Because of that, we drop the subscript 𝜇 whenever there is no
risk of confusion. Nowwe can go back to the previous discussion about pure and
mixed states. For pure states, the element of the phase space is fixed uniquely, i.e.,
the probability distribution is entirely concentrated at one point. In our mean-
ingless notation of Section A.4, we get that

𝜌(𝑝, 𝑞) = 𝛿(𝑞 − 𝑞0)𝛿(𝑝 − 𝑝0), (2.41)

which receives its meaning acting over an observable:

⟨𝑓 ⟩ = (𝜌, 𝑓 ) = 𝑓 (𝑞0, 𝑝0). (2.42)

Usually, in classical mechanics, only pure states are investigated. The mixed
states are objects of statistical mechanics, which one possible formulation is re-
viewed in Section 5.1. For now, we are only to show that the variance of a pure
state is zero. The variance is defined by

Var𝜇(𝑓 ) = ⟨(𝑓 − ⟨𝑓 ⟩𝜇)2⟩𝜇 = ⟨𝑓 2⟩𝜇 − ⟨𝑓 ⟩2𝜇 . (2.43)

Using the previous notation and the fact that we are in a pure state, we get

Var(𝑓 ) = (𝜌, 𝑓 2) − (𝜌, 𝑓 )2 = 𝑓 2(𝑞0, 𝑝0) − (𝑓 (𝑞0, 𝑝0))2 = 0. (2.44)

It is easy to see, and we show later, that the variance is greater than zero if we
are in a mixed state. Finally, we will state and prove an important theorem of
classical mechanics and discuss some of its implications.
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Theorem 2.4 (Liouville’s theorem). LetΩ be a domain in the phase space𝒫 . Set
Ω(𝑡) as the image under the one-parameter transformations 𝑇𝑡 , that is 𝑇𝑡𝜇 ∈ Ω(𝑡),
for 𝜇 ∈ Ω. Denote by 𝑉 (𝑡) the volume of the domain Ω(𝑡), then

d𝑉 (𝑡)
d𝑡 = 0. (2.45)

Proof. Let us denote by d𝜈 the product of the Lebesgue measures d𝑞 and d𝑝. The
volume of Ω(𝑡) can be written as

𝑉 (𝑡) = ∫Ω(𝑡) d𝜈 = ∫Ω |𝐽𝜈(𝑇𝑡𝜈)| d𝜈, (2.46)

with 𝐽𝜈(𝑇𝑡𝜈) denoting the Jacobian of the transformation with respect to the orig-
inal set of coordinates 𝜈 . From that, it is direct to see that to prove the theo-
rem, it is enough to show that the time derivative of the Jacobian determinant
vanishes identically. Of course, if 𝑡 = 0, we get that 𝐽𝜈(𝑇0𝜈) = 1, and the theo-
rem holds. Now, let us suppose 𝑡 ≠ 0. An arbitrary one-parameter transforma-
tion can be written as the application of two consecutive transformations, that
is 𝑇𝑡+𝑠𝜈 = 𝑇𝑠𝑇𝑡𝜈 , so the Jacobian determinant can be written as

𝐽𝜈(𝑇𝑡+𝑠𝜈) = 𝐽𝑇𝑡 𝜈(𝑇𝑡+𝑠𝜈)𝐽𝜈(𝑇𝑡𝜈). (2.47)

Taking the derivative with respect to 𝑠, one can write

d
d𝑠 𝐽𝑇𝑡 𝜈(𝑇𝑡+𝑠𝜈) =

𝜕( ̇𝑞(𝑡 + 𝑠), 𝑝(𝑡 + 𝑠))
𝜕(𝑞(𝑡), 𝑝(𝑡)) + 𝜕(𝑞(𝑡 + 𝑠), ̇𝑝(𝑡 + 𝑠))

𝜕(𝑞(𝑡), 𝑝(𝑡)) = 𝜕 ̇𝑞(𝑡 + 𝑠)
𝜕𝑞(𝑡) + 𝜕 ̇𝑝(𝑡 + 𝑠)

𝜕𝑝(𝑡) ,
(2.48)

setting 𝑠 = 0 and using Hamilton’s Equations (2.14), we get that

𝜕 ̇𝑞(𝑡)
𝜕𝑞(𝑡) +

𝜕 ̇𝑝(𝑡)
𝜕𝑝(𝑡) =

𝜕2𝐻
𝜕𝑞𝜕𝑝 − 𝜕2𝐻

𝜕𝑝𝜕𝑞 = 0, (2.49)

which implies that
d
d𝑡 𝐽𝜈(𝑇𝑡+𝑠𝜈) = 0. (2.50)

■

As we had seen, the time evolution of an observable can be obtained by equa-
tion (2.20). From such a point of view, we have that the mean value will be given
by

⟨𝑓𝑡⟩ = ∫𝒫 𝑓𝑡(𝜈)𝜌𝜇(𝜈) d𝜈 = ∫𝒫 𝑓 (𝑇𝑡𝜈)𝜌𝜇(𝜈) d𝜈. (2.51)
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One should notice that it is equivalent to say that the states, determined by the
probability distribution, do not depend on time, so we have that

d𝑓𝑡
d𝑡 = [𝐻 , 𝑓𝑡]𝑃 and

d𝜌𝜇
d𝑡 = 0, (2.52)

which is called the Hamiltonian picture. However, alternatively, one can write

∫𝒫 𝑓𝑡(𝜈)𝜌𝜇(𝜈) d𝜈 = ∫𝒫 𝑓 (𝑇𝑡𝜈)𝜌𝜇(𝜈) d𝜈 = ∫𝒫 𝑓 (𝜈)𝜌𝜇(𝑇−𝑡𝜈) |𝐽𝜈(𝑇−𝑡𝜈)| d𝜈

= ∫𝒫 𝑓 (𝜇)𝜌𝜇𝑡 (𝜈) = ⟨𝑓 ⟩𝜇𝑡 . (2.53)

where the coordinates transformations 𝑇𝑡𝜈 → 𝜈 were performed, 𝜌𝜇(𝑇−𝑡𝜈) =
𝜌𝜇𝑡 (𝜈) was defined, and Theorem 2.4 was used. From that, it is straightforward
to obtain that

d𝑓
d𝑡 = 0 and

d𝜌𝜇𝑡
d𝑡 = −[𝐻 , 𝜌𝜇𝑡 ]𝑃 , (2.54)

which means that the observables are constants in time while the states evolve.
Such a point of view is called the Liouville’s picture. Of course, we have that

⟨𝑓𝑡⟩𝜇 = ⟨𝑓 ⟩𝜇𝑡 , (2.55)

the equivalence between the two pictures of motion.

2.2 Canonical Quantization: Observables and
States

Once we have seen that classical mechanics can be formulated in terms of prob-
abilities and mean values, it is completely natural to ask yourselves what the
differences are when we change from a macroscopic “deterministic” (at least, for
pure states) physics to a microscopic inherently probabilistic physics. We hope
that we are able to make clear the differences and similarities along this section.
Once it is assumed that the reader has a background in someQuantumMechanics
courses, we do not take a long time with much physical reasoning or justifying
some foundations of quantum theory, such as black body radiation and the Stern-
Gerlach experiment. Unless stated otherwise, we assume that ℏ = 1, the natural
system of units.

First, just like before, we need to define what the quantum observables and
the quantum states are. It is important to point out that the previous construction
of the Lagrangian and Hamiltonian formalisms remains valid with some suitable
changes that we are going to clarify in a while.
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Definition 2.5. A quantum pure state is a vector in a complex Hilbert space
ℋ . Such a quantum pure state can also have components in different Hilbert
spaces, if its linear combination preserves the algebraic separability of the total
Hilbert space, i.e.,ℋ = ⨁𝑛

𝑖=1ℋ𝑖. A quantummixed state, or entangled state,
defines an algebraically non-separable Hilbert space.

Usually, for some regularity properties of the Schrödinger equation, theHilbert
space taken to accommodate the quantum states is the space of complex-valued
square integrable functions over ℝ𝑑 , that is, ℋ = ℒ 2 (ℝ𝑑). So, any pure quan-
tum state is just a vector. A composite vector of pure states can be constructed
by copies of the complex-valued square integrable functions space. For exam-
ple, for a non-relativistic spin-1/2 system, the Hilbert space is given by ℋ =
ℒ 2 (ℝ𝑑) ⊕ ℒ 2 (ℝ𝑑), which preserves the algebraic separability. The most used
example for an entangled state is the Bell state for a system of two spin-1/2 par-
ticles. The Hilbert space of such a system cannot be expressed as an analogous
form to the ones before. Here we are not interested in entangled states, but such
a subject will emerge later. For notation clarity, we will work withℒ 2(ℝ) instead
of ℒ 2(ℝ𝑑), but all the results can be carried out trivially.

Definition 2.6. An quantum observable is a essentially self-adjoint operator
over ℋ .

Such operators are often unbounded. Due to the unboundedness and the
Hellinger-Toeplitz theorem (Theorem A.66), such operators cannot be defined
everywhere, only in a dense domain in ℋ . This leads us into some difficulties
in dealing with algebraic operations in the context of those operators. Later, we
will return to this subject.

Just like in the previous section, we can assume that a measurement is the
mean value of a observable in a given state, or expectation value of an observable.
This means that the measurable value of the observable 𝐴 is going to be the
application of the linear functional defined on the dual Hilbert space, ℋ ∗, by 𝜓
over the state 𝐴𝜓 ,

⟨𝐴⟩ = Ψ(𝐴𝜓), (2.56)

where Ψ ∶ ℋ ∗ → ℝ is the linear functional associated with 𝜓 . Of course, the
weak-* (or vague) topology is taken in order for any functional Ψ on ℋ ∗ to be
continuous. The properties of Proposition 2.3 are naturally extended to the com-
plex case.

Using the result from Theorem A.60, we can write the mean value of the
observable 𝐴 as

⟨𝐴⟩ = Ψ(𝐴𝜓) = (𝜓 , 𝐴𝜓), (2.57)
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as is usually used. One should remember that we are, in general, in a complex
Hilbert space, so the inner product is a sesquilinear form4. Two important ob-
servables in quantum mechanics are the position operator, 𝑄, and themomentum
operator, 𝑃 .

In the coordinates representation, the position operator, 𝑄(𝑥), is the multipli-
cation by the coordinates 𝑥 , i.e.,

𝑄(𝑥)𝜓 (𝑥) = 𝑥𝜓(𝑥), 𝑥 ∈ ℝ. (2.58)

If we take the domain, 𝐷𝑥(𝑄), of such an operator in the Hilbert space ℋ =
ℒ 2(ℝ) given by

𝐷𝑥(𝑄) = {𝜓 ∈ ℋ |∫
∞

−∞
𝑥2|𝜓 (𝑥)|2 d𝑥 < ∞} , (2.59)

we clearly see that we get an unbounded operator. Such a class of operators
can present some issues. The main one is due to the Hellinger-Toeplitz theorem,
which ensures that an everywhere-defined operator 𝐴 that satisfies (𝐴𝜙, 𝜓 ) =
(𝜙, 𝐴𝜓) is bounded. This implies that an unbounded operator, such as 𝑄(𝑥), is
defined only in a dense linear subset of the Hilbert space ℋ . Such a subset is
called a domain, 𝐷. Of course, 𝑥𝜓(𝑥) for any 𝜓(𝑥) ∈ ℒ 2(ℝ) is meaningful as a
function, but it is not inℒ 2(ℝ). To ensure the definiteness of such operators, we
must choose the domain 𝐷 carefully. In particular, if we define the subspace 𝐾
as

𝐾 = {𝜓(𝑥) | |𝑥𝑛𝜓 (𝛼)(𝑥)| ≤ 𝐶𝑛𝛼 , ∀𝑛 ∈ ℝ} , (2.60)
then 𝐾 is the space of all infinitely differentiable functions that decay faster than
any power of 𝑥 . It is clear that 𝐾 is dense in ℒ 2(ℝ). So, if we take 𝐷𝑥(𝑄) = 𝐾 , it
is possible to ensure that 𝑥𝜓(𝑥) ∈ ℒ 2(ℝ).

Now thatwe are in the appropriate domain, we can observe that𝐾 ⊂ ℒ 1⋂ℒ 2
⊂ ℒ 2, which means that the usual Fourier transform and its inverse are well de-
fined5, allowing us to write

𝜓(𝑥) = ℱ −1(𝜓 )(𝑥) = 1
2𝜋 ∫

∞

−∞
𝑒−𝑖𝑝𝑥𝜓(𝑝) d𝑝, (2.61)

now, using the coordinates representation of 𝑄(𝑥), Eq. (2.58), and the Fourier
representation of 𝜓 ∈ 𝐾 , we obtain

ℱ −1 (𝑄(𝑥)𝜓 ) (𝑥) = 1
2𝜋 ∫

∞

−∞
𝑥𝑒−𝑖𝑝𝑥𝜓(𝑝) d𝑝 = 1

2𝜋 ∫
∞

−∞
(𝑖 𝜕𝜕𝑝) 𝑒

−𝑖𝑝𝑥𝜓(𝑝) d𝑝. (2.62)

4The rule for multiplication by numbers 𝛼, 𝛽 ∈ ℂ is: (𝛼𝜙, 𝛽𝜓 ) = 𝛼∗𝛽(𝜙, 𝜓 ).
5The Fourier transform onℒ 2 can also be obtained directly (Carleson’s theorem [11]) or using

density and some regularity arguments. But it is a more sensitive subject, and we do not need
to touch it here. Fourier transform on ℒ 𝑝 spaces can also be obtained, this is known as the
Carleson-Hunt theorem [12].
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The previous equation allows us to identify the so-called momentum representa-
tion of the position operator, 𝑄(𝑝), namely

𝑄(𝑝)𝜓(𝑝) = 𝑖 𝜕𝜕𝑝𝜓(𝑝). (2.63)

In the momentum representation, the momentum operator, 𝑃 , is given by

𝑃(𝑝)𝜓 (𝑝) = 𝑝𝜓(𝑝), 𝑝 ∈ ℝ. (2.64)

Using the same procedure, but now with the Fourier transform, ℱ , one can find
the coordinates representation of the momentum operator, 𝑃(𝑥), which is

𝑃(𝑥)𝜓 (𝑥) = −𝑖 𝜕𝜕𝑥 𝜓(𝑥). (2.65)

The unitarity equivalence of those representations can be checked in different
ways. We will return to this question at the end of this section.

With the coordinate and momentum representation of both operators, we
are able to obtain their commutator. If now we assume that 𝑥 ∈ ℝ𝑑 , that is, 𝑄(𝑥)
and 𝑃(𝑥) are vector-valued operators, we can obtain the so-called canonical
commutation relations, which are given by

[𝑄(𝑥), 𝑄(𝑥)] 𝜓 (𝑥) = [𝑃(𝑥), 𝑃(𝑥)] 𝜓 (𝑥) = 0, and [𝑄𝑖(𝑥), 𝑃𝑗(𝑥)] 𝜓 (𝑥) = 𝑖𝛿𝑖𝑗𝜓(𝑥),
(2.66)

which encapsulates the non-commutative characteristic of quantum systems. One
should remember that we are in the natural system of units. A direct comparison
with the fundamental Poisson brackets, Eq. (2.17), allows us to establish a direct
link between the two quantities. While in classical systems we use the Poisson
bracket, see definition 2.1, which is a differential operator to define the algebra
of observables, in quantum mechanics the algebra of observables, 𝒪 , is defined
by the usual commutator6

[•, •]. (2.67)
Clearly, the commutator defines the Lie Algebra of the quantum observables.

Using the definition of the mean-value from Eq. (2.57), one can verify that
⟨𝑄⟩ = ⟨𝑃⟩ = 0. Using the definition of variance, Eq. (2.43), we can write that

Var(𝑄)Var(𝑃) = ⟨𝑄2⟩⟨𝑃2⟩ ≥ |⟨𝑄𝑃⟩|2, (2.68)

where the last inequality follows from the Schwarz inequality. Using the fact
that, for any 𝑧 ∈ ℂ, we have

|𝑧|2 ≥ (Im(𝑧))2 = (𝑧 − 𝑧
2𝑖 )

2
, (2.69)

6We denote the algebra of operators of classical and quantum mechanics by the same letter
𝒪 . Hopefully, the context will clarify any doubts that this may raise.



Canonical Quantization: Observables and States 19

we can set 𝑧 = 𝑄𝑃 and use the linearity of the inner product to write

|⟨𝑄𝑃⟩|2 ≥ (⟨[𝑄, 𝑃]⟩2𝑖 )
2
= 1

4. (2.70)

In the last equality, the canonical commutation relation, Eq. (2.66), was used.
Then we get that the product of the variances has a natural bound given by

Var(𝑄)Var(𝑃) ≥ 1
4, (2.71)

which is known in the literature as the Heisenberg uncertainty relation. As
one can see from its direct derivation, such a result is a direct manifestation of
the canonical commutation relation. If one goes back and performs a similar
calculation in the classical case, the information that will be extracted from the
product of the variances is that it must be greater than or equal to zero, which is
a triviality. In other words, the main difference between classical and quantum
physics is that a quantum pure state can, at best, be characterized by the values
of a complete set of commutating observables, and not all observables. So, the
canonical commutation relations (2.66) determine aminimum value for the states
in the phase space. The non-commutative aspect of such a theory is intrinsically
related to its probabilistic interpretation, since measures on the phase space can
be interpreted as a probability measure. Such a lower bound can be improved
and it is known as the Robertson-Schrödinger uncertainty relation [13, 14].

Given a classical Hamiltonian, see Eq. (2.11), it is straightforward to obtain its
quantummechanical counterpart. The quantummechanical Hamiltonian can be
obtained by making a simple substitution in the representation of the variables.
For concreteness, let us use the free particle Hamiltonian. If we take the coor-
dinates representation, the quantum mechanical one-dimensional free particle
is obtained by the substitutions: 𝑞 → 𝑥 and 𝑝 → −𝑖𝜕/𝜕𝑥 , which gives us the
following Hamiltonian:

𝐻 = − 1
2𝑚

𝜕2
𝜕𝑥2 . (2.72)

To verify that such a Hamiltonian is a quantum observable, one needs to prove
that there exists a domain where such an operator is self-adjoint. Depending on
the Hamiltonian, this can be very hard. In our case, one can verify that such
a Hamiltonian is essentially self-adjoint on the domain 𝐾 defined in Eq. (2.60).
So, in order to obtain a measurable quantity from the Hamiltonian, we need to
compute ⟨𝐻⟩, for some 𝜓 ∈ 𝐷(𝐻) = 𝐾 . Such a calculation can be simplified if
we use the Spectral Theorem for unbounded operators. There are many different
formulations of this theorem, however, here we present the that we are going to
use more frequently in this thesis.
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Theorem 2.7. (Spectral theorem –multiplication operator form). Let𝐴 be a self-
adjoint operator on a separable Hilbert space ℋ with domain 𝐷(𝐴). Then there
is a measure space ⟨𝑀, 𝜇⟩, with 𝜇 a finite measure, a unitary operator 𝑈 ∶ ℋ →
ℒ 2(𝑀, d𝜇), and a real-valued function 𝑓 on𝑀 which is finite almost everywhere
so that

(a) 𝜓 ∈ 𝐷(𝐴) if and only if 𝑓 (•) (𝑈 𝜓) (•) ∈ ℒ 2(𝑀, d𝜇)
(b) If 𝜙 ∈ 𝑈 [𝐷(𝐴)], then (𝑈𝐴𝑈−1𝜙) (𝑚) = 𝑓 (𝑚)𝜙(𝑚)

Proof. First, we will show that Ran(𝐴± 𝑖𝐼 ) = ℋ and that (𝐴+ 𝑖𝐼 ) and (𝐴− 𝑖𝐼 ) are
one-to-one. This follows if we can prove that Ran(𝐴 ± 𝑖𝐼 ) is dense and closed.

𝐴 is a self-adjoint operator, so take 𝜙 ∈ 𝐷(𝐴) = 𝐷(𝐴∗) such that 𝐴∗𝜙 = 𝑖𝜙.
Thus, 𝐴𝜙 = 𝑖𝜙, and therefore

−𝑖(𝜙, 𝜙) = (𝑖𝜙, 𝜙) = (𝐴𝜙, 𝜙) = (𝜙, 𝐴∗𝜙) = (𝜙, 𝑖𝜙) = 𝑖(𝜙, 𝜙), (2.73)

such an equation is satisfied only if 𝜙 = 0. Similarly, 𝐴∗𝜙 = −𝑖𝜙 will have
only the trivial solution. This implies that Ker(𝐴∗ ± 𝑖𝐼 ) = {0}. From this result,
we can show that Ran(𝐴 ± 𝑖𝐼 ) is dense. Now, take 𝜓 ∈ Ran(𝐴 − 𝑖𝐼 )⟂, so from
orthogonality, we have that ((𝐴 − 𝑖𝐼 )𝜙, 𝜓 ) = 0 ∀ 𝜙 ∈ 𝐷(𝐴). Thus, 𝜓 ∈ 𝐷(𝐴∗),
and then (𝐴 − 𝑖𝐼 )∗𝜓 = (𝐴∗ + 𝑖)𝜓 = 0, but since 𝐴∗𝜓 = −𝑖𝜓 has no solution, this
equality is impossible. Therefore, Ran(𝐴− 𝑖𝐼 ) is dense. One should note that the
condition Ker(𝐴 ± 𝑖𝐼 ) = {0} can be used to verify if an operator is self-adjoint. In
some cases, this is called the basic criterion of self-adjointness.

To prove that Ran(𝐴 ± 𝑖𝐼 ) is closed, we note that ∀ 𝜙 ∈ 𝐷(𝐴); ‖(𝐴 − 𝑖𝐼 )𝜙‖2 =
‖𝐴𝜙‖2 + ‖𝜙‖2. Now, take the sequence 𝜙𝑛 ∈ 𝐷(𝐴) such that (𝐴 − 𝑖𝐼 )𝜙𝑛 → 𝜓0.
Thus, 𝜙𝑛 converges to some vector 𝜙0, and 𝐴𝜙𝑛 also converges. Since 𝐴 is a
closed operator, we have that 𝜙0 ∈ 𝐷(𝐴) and (𝐴 − 𝑖𝐼 )𝜙0 = 𝜓0, which proves that
Ran(𝐴 − 𝑖𝐼 ) is closed. The fact that Ran(𝐴 + 𝑖𝐼 ) is also closed follows similarly.
Thus, Ran(𝐴 ± 𝑖𝐼 ) are closed, and Ran(𝐴 ± 𝑖𝐼 ) = ℋ .

Once (𝐴 ± 𝑖𝐼 ) are closed, the closed graph theorem (Theorem A.51) can be
used to conclude that (𝐴± 𝑖𝐼 )−1 are closed and bounded. Using the first resolvent
formula (Theorem A.73), we conclude that (𝐴 − 𝑖𝐼 )−1 and (𝐴 + 𝑖𝐼 )−1 commute.

Now, we note that

((𝐴 − 𝑖𝐼 )𝜓 , (𝐴 + 𝑖)−1(𝐴 + 𝑖𝐼 )𝜙) = ((𝐴 − 𝑖𝐼 )−1(𝐴 − 𝑖𝐼 )𝜓 , (𝐴 + 𝑖𝐼 )𝜙)
⇒ ((𝐴 + 𝑖𝐼 )−1)∗ = (𝐴 − 𝑖𝐼 )−1, (2.74)

which shows that (𝐴 + 𝑖𝐼 )−1 is a normal operator. Similarly, one proves that
(𝐴 + 𝑖𝐼 )−1 is also normal.

In possession of the spectral theorem for self-adjoint bounded operators (The-
orem A.83), we can extend it to bounded normal operators. For such, take any
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bounded normal operator 𝑇 , we can construct the operators 𝑆1 = 1
2(𝑇 + 𝑇 ∗) and

𝑆2 = 1
2𝑖(𝑇 − 𝑇 ∗) such that 𝑆1,2 are self-adjoint and 𝑇 = 𝑆1 + 𝑖𝑆2. Using the fact

that 𝑇 is normal, it follows that 𝑆1 and 𝑆2 are spectral measures. Therefore, the
spectral theorem for bounded normal operators follows by applying the spectral
theorem for bounded self-adjoint operators on 𝑆1 and 𝑆2.

Now, we can start the proof of (a). By the last reasoning, we can conclude that
there is a measure space ⟨𝑀, 𝜇⟩, where 𝜇 is a finite measure, a unitary operator
𝑈 ∶ ℋ → ℒ 2(𝑀, d𝜇), and a measurable, bounded, complex-valued function
𝑔(𝑚) such that

𝑈 (𝐴 + 𝑖𝐼 )−1𝑈−1𝜙(𝑚) = 𝑔(𝑚)𝜙(𝑚) ∀ 𝜙 ∈ ℒ 2(𝑀, d𝜇). (2.75)

Once that Ker(𝐴 + 𝑖𝐼 )−1 is empty, we have that 𝑔(𝑚) ≠ 0 a.e. 𝜇, which implies
that 𝑔(𝑚)−1 is finite a.e. 𝜇.

Now, take 𝑓 (𝑚) = 𝑔(𝑚)−1 − 𝑖 and suppose that 𝜓 ∈ 𝐷(𝐴). This implies that
𝜓 = (𝐴+𝑖𝐼 )−1𝜙 for some 𝜙 ∈ ℋ , and by Eq.(2.75), we have that 𝑈𝜓 = 𝑔𝑈𝜙. Notice
that the product 𝑓 𝑔 is bounded, so, by the last equality, 𝑓 (𝑈 𝜓) ∈ ℒ 2(𝑀, d𝜇).

Conversely, assume that 𝑓 (𝑈 𝜓) ∈ ℒ 2(𝑀, d𝜇). Then there is a 𝜙 ∈ ℋ such
that 𝑈𝜙 = (𝑓 +𝑖)𝑈 𝜓 . Thus, we have that 𝑔𝑈𝜙 = 𝑔(𝑓 +𝑖)𝑈 𝜓 = 𝑈𝜓 , and comparing
with Eq. (2.75), we conclude that 𝜓 = (𝐴 + 𝑖𝐼 )−1𝜙 ⇒ 𝜓 ∈ 𝐷(𝐴).

To prove (b), we take 𝜓 ∈ 𝐷(𝐴). By (a), we have that 𝜓 = (𝐴 + 𝑖𝐼 )−1𝜙 for
some 𝜙 ∈ ℋ . This implies that 𝐴𝜓 = 𝜙 − 𝑖𝜓 , and then

(𝑈𝐴𝜓)(𝑚) = (𝑈𝜙)(𝑚) − 𝑖(𝑈 𝜙)(𝑚)
= (𝑔(𝑚)−1 − 𝑖𝐼 ) (𝑈 𝜓)(𝑚)
= 𝑓 (𝑚)(𝑈 𝜓)(𝑚). (2.76)

If 𝑓 is a complex-valued function in a set of non-zero measure, there is a
bounded set 𝐵 on the upper half-complex plane so that 𝑆 = {𝑥|𝑓 (𝑥) ∈ 𝐵} has non-
zero measure. Take 𝜒𝑆 as the indicator function of 𝑆, then 𝑓 𝜒𝑆 ∈ ℒ 2(𝑀, d𝜇), and
Im(𝜒𝑆 , 𝑓 𝜒𝑆) > 0. However, this contradicts the self-adjointness of multiplication
by 𝑓 . Thus, 𝑓 is a real-valued function.

■
Why such a theorem is important for quantum mechanics follows almost

directly. Suppose that we have a physical system described by a self-adjoint
Hamiltonian acting over a state 𝜓 .We can use the spectral theorem to write

𝐻𝜓(𝑥) = 𝐸(𝑥)𝜓 (𝑥), (2.77)

which is directly identified as the time-independent Schrödinger equation. Plug-
ging the Hamiltonian of one-dimensional free particle, Eq. (2.72), we get

− 1
2𝑚

𝜕2
𝜕𝑥2𝜓(𝑥) = 𝐸(𝑥)𝜓 (𝑥). (2.78)



22 Canonical Quantization: Observables and States

There aremanyways to solve the last equation if we impose boundary conditions
over 𝜓(𝑥). If we consider that we have Dirichlet boundary conditions, 𝜓(0) =
𝜓(𝐿) = 0, or, equivalently, that we restricted the problem to a compact domain
of length 𝐿. The solution is directly obtained as a linear combination of sine and
cosine. Using the boundary conditions we get that

𝜓(𝑥) = 𝜓𝑛(𝑥) = √
2
𝐿 sin (𝑛𝜋𝐿 𝑥) , and 𝐸(𝑥) = 𝐸𝑛 = 𝑛2𝜋2

2𝑚𝐿2 , (2.79)

where 𝑛 ∈ {0, 1, … }. Now we can in fact compute ⟨𝐻⟩ using Eq. (2.57) and the
time-independent Schrödinger equation

∞
∑

𝑛,𝑛′=0
∫
∞

−∞
𝜓𝑛′(𝑥)𝐻𝜓𝑛(𝑥)d𝑥 = (𝜓𝑛′ , 𝐻𝜓𝑛) = (𝜓𝑛′ , 𝐸𝑛𝜓𝑛) = 𝐸𝑛(𝜓𝑛′ , 𝜓𝑛)

⇒⟨𝐻⟩ = 𝐸𝑛 = 𝑛2𝜋2
2𝑚𝐿2 . (2.80)

So, by using the spectral theorem, it is enough to find the spectrum of an operator
in order to find the mean-value of an observable.

Before we introduce another formulation of the spectral theorem let us prove
the following

Lemma 2.8. Letℋ1,ℋ2,ℋ3, … ,ℋ𝑖, … be a sequence of subspaces of the Hilbert
space ℋ which are pairwise orthogonal and span the entire space ℋ . If 𝜓 is an
arbitrary element ofℋ , we denote its projection onℋ𝑖 by 𝜓𝑖. Let𝐴1, 𝐴2, … , 𝐴𝑖, …
be a given sequence of linear transformations with the property that 𝐴𝑖 reduces
in ℋ𝑖 to a bounded self-adjoint transformation of ℋ𝑖 into itself. Then there is
a unique self-adjoint transformation 𝐴 of ℋ , in general not bounded, which re-
duces in eachℋ𝑖 to𝐴𝑖. Its domain consists of the elements 𝜓 for which the series

∞
∑
𝑖=1

‖𝐴𝑖𝜓𝑖‖2 (2.81)

converges, and for these 𝜓
𝐴𝜓 =

∞
∑
𝑖=1

𝐴𝑖𝜓𝑖. (2.82)

Proof. First we notice that the domain of 𝐴, 𝐷(𝐴), is dense, since it contains all
elements of the form ∑𝑖 𝑓𝑖. Also, we have that

(𝐴𝜓 , 𝜙) = ∑
𝑖
(𝐴𝑖𝜓𝑖, 𝜙𝑖) = ∑

𝑖
(𝜓𝑖, 𝐴𝑖𝜙𝑖) = (𝜓 , 𝐴𝜙), (2.83)
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which implies that 𝐴 is symmetric for all 𝜓 , 𝜙 ∈ 𝐷(𝐴). Now we are able to prove
that 𝐴 is self-adjoint. For that, take 𝜙 ∈ 𝐷(𝐴∗) and 𝜓 ∈ 𝐷(𝐴); then

(𝐴𝜓 , 𝑔) = (𝑓 , 𝐴∗𝑔)

⇒
∞
∑
𝑖=1

(𝐴𝑖𝜓𝑖, 𝜙𝑖) =
∞
∑
𝑖=1

(𝜓𝑖, (𝐴∗𝜙)𝑖), (2.84)

once each ℋ𝑗 is orthogonal to an arbitrary element 𝜓 of ℋ𝑗 must have 𝜓𝑖 = 0 if
𝑖 ≠ 𝑗, using the assumption that each 𝐴𝑗 is self-adjoint in ℋ𝑗 , we get that

(𝐴𝑗𝜓𝑗 , 𝜙𝑗) = (𝜓𝑗 , (𝐴∗𝜙)𝑗)
⇒ (𝐴∗𝜙)𝑗 = 𝐴𝑗𝜙𝑗 . (2.85)

From the last equation follows that
∞
∑
𝑖=1

‖𝐴𝑗𝜙𝑗‖2 =
∞
∑
𝑖=1

‖(𝐴∗𝜙)𝑗‖2 = ‖𝐴∗𝜙‖2, (2.86)

so 𝜙 also belongs to 𝐷(𝐴) and we also have that 𝐴𝜙 = 𝐴∗𝜙 which, with the fact
that 𝐴 is symmetric, proves that 𝐴 = 𝐴∗, that is 𝐴 is self-adjoint.

To prove uniqueness let 𝐴′ be an arbitrary self-adjoint transformation which
reduces to 𝐴𝑖 in each ℋ𝑖. 𝐴′ is closed and defined for all elements 𝜓 such that
the series ∞

∑
𝑖=1

𝐴′𝜓𝑖 (2.87)

converges. The sum of this series is equal to 𝐴′𝜓 . We have that 𝐴′𝜓𝑖 = 𝐴𝑖𝜓 , and
since we are summing orthogonal elements, this implies that the elements 𝜓 also
belong to 𝐷(𝐴). For such elements we can define 𝐴′𝜓 −𝐴𝜓 . But 𝐴 is self-adjoint,
hence 𝐴 is maximal symmetric, so 𝐴′ = 𝐴. ■

The previous lemma ensures that we can decompose unbounded operators
and vectors in the Hilbert space into orthogonal components. A useful and prac-
tical result.

Theorem 2.9. (Spectral theorem – spectral family form) Every self-adjoint op-
erator 𝐴 has the representation

𝐴 = ∫
∞

−∞
𝜆d𝐸𝜆, (2.88)

where {𝐸𝜆} is a spectral family which is uniquely determined by the operator 𝐴;
𝐸𝜆 commutes with 𝐴, as well as with all the bounded operators which commute
with 𝐴.
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Proof. To start, let us define the following operator

𝑅𝑧 = (𝐴 − 𝑧𝐼 )−1, (2.89)

from the first part of the proof of the spectral theorem in its multiplication form
(theorem 2.7), we know that𝑅±𝑖 exists and is closed. We also know that its inverse
exists, and that 𝐷(𝑅±𝑖) = Ran(𝐴 ± 𝑖𝐼 ) = ℋ . From the same proof we obtained
that

‖(𝐴 ± 𝑖𝐼 )𝜓 ‖ ≥ ‖𝜓 ‖ (2.90)
⇒‖𝜙‖ ≥ ‖𝑅±𝑖𝜙‖, ∀𝜙 ∈ 𝐷(𝑅±𝑖). (2.91)

The same properties are true for 𝑅𝑧 = 𝑅𝑥+𝑖𝑦 , for 𝑦 ≠ 0, since

(𝐴 − (𝑥 + 𝑖𝑦)𝐼 )−1 = 1
𝑦 (𝐴 − 𝑥𝐼

𝑦 − 𝑖𝐼)
−1

. (2.92)

From Eq. (2.90), we obtain that

‖(𝐴 − 𝑖𝐼 )𝜓 ‖ = ‖(𝐴 + 𝑖𝐼 )𝜓 ‖
⇒ ‖(𝐴 − 𝑖𝐼 )(𝐴 + 𝑖𝐼 )−1𝜙‖ = ‖𝑉 𝜙‖ = ‖𝜙‖, (2.93)

where the operator 𝑉 = (𝐴 − 𝑖𝐼 )(𝐴 + 𝑖𝐼 )−1 is called the Cayley transformation
of 𝐴. This transformation is isometric and is defined for elements in the form
𝜙 = (𝐴 + 𝑖𝐼 )𝜓 by 𝑉𝜙 = (𝐴 − 𝑖𝐼 )𝜓 such that 𝜓 ∈ 𝐷(𝐴). One should notice that
both 𝜙 and 𝑉𝜙 are elements of ℋ , which implies that 𝑉 is an isomorphism and,
therefore, a unitary transformation.

It is direct to see that

(𝐼 + 𝑉 )𝜙 = 2𝐴𝜓 , and, (𝐼 − 𝑉 )𝜙 = 2𝑖𝜓 , (2.94)

if (𝐼 − 𝑉 )𝜙 = 0, then 𝜓 = 0, and 𝜙 = 0, so (𝐼 − 𝑉 )−1 exists and

2𝐴𝜓 = (𝐼 + 𝑉 )(𝐼 − 𝑉 )−12𝑖𝜓
⇒ 𝐴 = 𝑖(𝐼 + 𝑉 )(𝐼 − 𝑉 )−1. (2.95)

The last expression shows us how to recover 𝐴 from 𝑉 .
Once 𝑉 is unitary, we can represent it in terms of its spectral decomposition

(Theorem A.84)

𝑉 = ∫
2𝜋

0
𝑒𝑖𝜃d𝐹𝜃 , (2.96)

where 𝐹0 = 0 and 𝐹2𝜋 = 1. So, by the relation between 𝑉 and 𝐴, we expect to
be able to obtain the spectral decomposition of 𝐴. For that, we notice that 𝐹𝜃
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is a continuous function of 𝜃 . In particular, 𝐹𝜃 is continuous at 𝜃 = 0 and also
at 𝜃 = 2𝜋 . Now we decompose the interval [0, 2𝜋] into infinite pieces using 𝜃𝑚,
where the two endpoints are limit points. For such, we take

− cot
𝜃𝑚
2 = 𝑚, 𝑚 ∈ ℤ. (2.97)

Now construct the pairwise orthogonal projections as

𝑃𝑚 = 𝐹𝜃𝑚 − 𝐹𝜃𝑚−1 , (2.98)

note that ∞
∑

𝑚=−∞
𝑃𝑚 = lim𝜃→2𝜋 𝐹𝜃 − lim𝜃→0 𝐹𝜃 = 𝐼 − 0 = 𝐼 . (2.99)

Note that 𝑃𝑚 commutes with both 𝑉 and 𝐴. So, the space ℋ𝑚 corresponding
to 𝑃𝑚 reduces the operators 𝐴 and 𝑉 . For a 𝜓 ∈ ℋ𝑚, we have that

𝐴𝜓 = 𝐴𝑃𝑚𝜓 = 𝑖(𝐼 + 𝑉 )(𝐼 − 𝑉 )−1𝑃𝑚𝜓

= ∫
𝜃𝑚

𝜃𝑚−1
𝑖 (1 + 𝑒𝑖𝜙) (1 − 𝑒𝑖𝜙)−1 d𝐹𝜃𝜓

= ∫
𝜃𝑚

𝜃𝑚−1
(− cot 𝜃2) d𝐹𝜃𝜓 , (2.100)

or
𝐴𝜓 = ∫

𝑚

𝑚−1
𝜆d𝐸𝜆𝜓 , (2.101)

where we set 𝐸𝜆 = 𝐹−2 cot−1 𝜆, with {𝐸𝜆} being the spectral family of 𝐴 over
(−∞,∞). To recover the spectral representation of the operator, we sum over
all the projections, recovering

𝐴 = ∫
∞

−∞
𝜆d𝐸𝜆, (2.102)

■

It is worth noting that, in the same way we present here, von Neumann first
proved the spectral theorem for unbounded operators [15, 16]. An obvious, but
necessary, disclaimer about the last result is that our integral in the spectral the-
orem must be understood as the Riemann-Stieltjes integral.

Now let us go back to the free particle. In light of this version of the spectral
theorem, we can use the spectrum given in Eq. (2.79) to write

𝐻 = ∫
∞

−∞
𝜆 d𝐸𝜆 =

∞
∑
𝑛=−∞

𝜋2𝑛2
2𝑚𝐿2 , (2.103)
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obviously, such a result is divergent, but wemust remember that the Hamiltonian
is an operator and the measurable quantities are the mean value of the operators.
Once we compute ⟨𝐻⟩, only a finite number of contributions will remain in the
sum (depending of the stucture of the state, see Definition 2.5), and the final
result is finite (for finite 𝑛), which agrees with Eq. (2.80). This last theorem
makes clear that our measurables are the averages of the operator’s spectrum,
where the probability measure is given by the inner product between the state
and the probability family.

Evidently, all the previous discussion was general and holds for any operator.
However, in physics, we have some operators that are more interesting than oth-
ers. In particular, we would like to have an operator that can evolve the system
in time. From the time-dependent Schrödinger equation,

𝐻𝜓(𝑥, 𝑡) = 𝑖 𝜕𝜕𝑡 𝜓 (𝑥, 𝑡), (2.104)

we can formally obtain that

𝜓(𝑥, 𝑡) = 𝑈 (𝑡)𝜓 (𝑥, 0), 𝑈 (𝑡) = 𝑒−𝑖𝑡𝐻 . (2.105)

In this picture, 𝑈 (𝑡) is the operator responsible for the time evolution. However,
we should remember that, in general, the Hamiltonian is an unbounded operator
and, therefore, we must take care to ensure that our formal expressions have a
practical meaning. Another possible question is whether this is the only possible
way to evolve our system in time.

In order to answer the previous questions, wemust be able to define functions
of self-adjoint operators. Before investigating the general case, let us prove two
results for polynomials.

Lemma 2.10. Let 𝑃(𝑥) = ∑𝑁
𝑛=0 𝑎𝑛𝑥𝑛. Let 𝑃(𝐴) = ∑𝑁

𝑛=0 𝑎𝑛𝐴𝑛. Then

𝜎 (𝑃(𝐴)) = {𝑃(𝜆) ∣ 𝜆 ∈ 𝜎(𝐴)} (2.106)

Proof. Take 𝜆 ∈ 𝜎(𝐴). So, 𝑥 = 𝜆 is a root of 𝑃(𝑥) − 𝑃(𝜆). From that, it follows
that 𝑃(𝑥) − 𝑃(𝜆) = (𝑥 − 𝜆)𝑄(𝑥). Using our hypothesis, we can write

𝑃(𝐴) − 𝑃(𝜆) = (𝐴 − 𝜆)𝑄(𝐴), (2.107)

once 𝜆 ∈ 𝜎(𝐴), (𝐴− 𝜆) does not have an inverse. Thus, 𝑃(𝐴)− 𝑃(𝜆) cannot have
an inverse, so 𝑃(𝜆) ∈ 𝜎(𝑃(𝐴)).

Now, let 𝜇 ∈ 𝜎(𝑃(𝐴)) and 𝜆1, … , 𝜆𝑛 be the roots of 𝑃(𝑥) − 𝜇. Then 𝑃(𝑥) − 𝜇 =
𝑎(𝑥 − 𝜆1) … (𝑥 − 𝜆𝑛). If 𝜆1, … , 𝜆𝑛 ∉ 𝜎(𝐴), we have that

(𝑃(𝐴) − 𝜇)−1 = 𝑎−1(𝐴 − 𝜆1)−1… (𝐴 − 𝜆𝑛)−1, (2.108)

which is a contradiction with the fact that 𝜇 ∈ 𝜎(𝑃(𝐴)). So, some 𝜆𝑖 ∈ 𝜎(𝐴), that
is, 𝜇 = 𝑃(𝜆) for some 𝜆 ∈ 𝜎(𝐴). ■
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Lemma 2.11. Let 𝐴 be a bounded self-adjoint operator. Then

‖𝑃(𝐴)‖ = sup
𝜆∈𝜎(𝐴)

|𝑃(𝜆)| (2.109)

Proof. First, we note that

‖𝑃(𝐴)‖2 = ‖𝑃(𝐴)∗𝑃(𝐴)‖ = ‖( ̅𝑃𝑃) (𝐴)‖ . (2.110)

Now, using Theorem (Theorem A.80) and Lemma 2.10, we can write

‖( ̅𝑃𝑃) (𝐴)‖ = sup
𝜆∈𝜎( ̅𝑃𝑃(𝐴))

|𝜆| = sup
𝜆∈𝜎(𝐴)

|( ̅𝑃𝑃) (𝐴)| = ( sup
𝜆∈𝜎(𝐴)

|𝑃(𝐴)|)
2

(2.111)

■

With these two results, we can construct the functional calculus for continu-
ous functions, that is, we can prove that continuous functions of operators have
the following properties:

Theorem 2.12. (Properties of the continuous functional calculus) Let 𝐴 be a
self-adjoint operator in a Hilbert space ℋ . Then, there exists a unique map 𝑓 ∶
𝐶(𝜎(𝐴)) → ℒ(ℋ) with the following properties:

(i) 𝑓 is an algebraic *-homomorphism, that is:

𝑓 (𝑎𝑏) = 𝑓 (𝑎)𝑓 (𝑏), 𝑓 (𝜆𝑎) = 𝜆𝑓 (𝑎),
𝑓 (1) = 𝐼 , 𝑓 ( ̅𝑎) = 𝑓 (𝑎)∗
for any 𝑎, 𝑏 ∈ 𝐶(𝜎(𝐴)) and any 𝜆 ∈ ℂ;

(ii) 𝑓 is continuous, that is, ‖𝑓 (𝑎)‖ℒ(ℋ) ≤ 𝐶‖𝑎‖∞;

(iii) Let 𝑎 be the function 𝑎(𝑥) = 𝑥 , then 𝑓 (𝑎) = 𝐴;

(iv) If 𝐴𝜓 = 𝜆𝜓 , then 𝑓 (𝑎)𝜓 = 𝑎(𝜆)𝜓 , for any 𝜓 ∈ ℋ and any 𝜆 ∈ 𝜎(𝐴);

(v) 𝜎 [𝑓 (𝑎)] = {𝑎(𝜆)|𝜆 ∈ 𝜎(𝐴)};

(vi) If 𝑎 ≥ 0, then, 𝑓 (𝑎) ≥ 0;

(vii) ‖𝑓 (𝑎)‖ = ‖𝑎‖∞.
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Proof. First, take 𝑓 (𝑃) = 𝑃(𝐴), where 𝑃 stands for a polynomial. Thus, ‖𝑓 (𝑃)‖ℋ =
‖𝑃‖𝐶(𝜎(𝐴)), by the B.L.T. theorem (theoremA.38). This implies that 𝑓 has a unique
linear extension to the closure of the polynomial in 𝐶(𝜎(𝐴)). The polynomials
form an algebra containing 1, containing complex conjugates, and separating
points, so its closure is all of 𝐶(𝜎(𝐴)).

Denote the extension of 𝑓 by ̃𝑓 . ̃𝑓 satisfies (i), (ii), (iii), and (vii). Addition-
ally, it agrees with 𝑓 on the polynomials, which are dense in 𝐶(𝜎(𝐴)) (Stone-
Weierstrass theorem). By continuity, it agrees on all of 𝐶(𝜎(𝐴)). Hence, (i), (ii),
(iii), and (vii) follow.

To prove (iv), we first note that, if 𝑓 (𝑃)𝜓 = 𝑃(𝜆)𝜓 , then by continuity, we
have that 𝑓 (𝑎)𝜓 = 𝑎(𝜆)𝜓 .

(v). Set 𝑓 (𝑎) = 𝑓 (𝑃), where 𝑃 is a polynomial. By lemma 2.10, we have that
𝜎 [𝑓 (𝑃)] = {𝑃(𝜆)|𝜆 ∈ 𝜎(𝐴)}. By the Stone-Weierstrass theorem and continuity,
we have that 𝜎 [𝑓 (𝑎)] = {𝑎(𝜆)|𝜆 ∈ 𝜎(𝐴)}.

We can prove (vi) by setting 𝑎 = 𝑏2 ≥ 0, where 𝑏 is real and 𝑏 ∈ 𝐶(𝜎(𝐴)). Thus,
𝑓 (𝑎) = 𝑓 (𝑏)2, which implies that 𝑓 (𝑏) is self-adjoint. Therefore, 𝑓 (𝑏) ≥ 0. ■

The last properties establish the fundamental building blocks to work with
functions of self-adjoint operators. Worth noting that the functional calculus
provides almost immediately another formulation of the spectral theorem.

Theorem 2.13. Let 𝐴 be a self-adjoint operator and define 𝑈 (𝑡) = 𝑒𝑖𝑡𝐴. Then:
(i) For each 𝑡 ∈ ℝ, 𝑈 (𝑡) is a unitary operator and 𝑈 (𝑡 + 𝑠) = 𝑈 (𝑡)𝑈 (𝑠) for all

𝑠, 𝑡 ∈ ℝ;
(ii) If 𝜓 ∈ ℋ and 𝑡 → 𝑡0, then 𝑈 (𝑡)𝜓 → 𝑈 (𝑡0)𝜓 ;
(iii) For 𝜙 ∈ 𝐷(𝐴),

𝑈 (𝑡)𝜙 − 𝜙
𝑡 → 𝑖𝐴𝜙, as 𝑡 → 0; (2.112)

(iv) If lim𝑡→0
𝑈 (𝑡)𝜙−𝜙

𝑡 exists, then 𝜙 ∈ 𝐷(𝐴).
Proof. To prove (i), it is sufficient to use property (i) of theorem 2.12. Since 𝑓 is a
*-homomorphism, we have that 𝑓 (𝑎𝑏) = 𝑓 (𝑎)𝑓 (𝑏). Take 𝑓𝑡 = 𝑒𝑖𝑡 , so 𝑓𝑡(𝐴) = 𝑒𝑖𝑡𝐴,
then

𝑓𝑡(𝐴)𝑓𝑠(𝐴) = 𝑒𝑖𝑡𝐴𝑒𝑖𝑠𝐴 = 𝑒𝑖(𝑡+𝑠)𝐴 = 𝑈 (𝑡 + 𝑠). (2.113)
Unitarity follows from the same expression.

(ii) follows from the spectral theorem and some arguments of convergence.
Observe that, for 𝜓 ∈ 𝐷(𝐴)

‖𝑒𝑖𝑡𝐴𝜓 − 𝜓‖2 = ∫ℝ |𝑒
𝑖𝑡𝜆 − 1|2 d(𝜓 , 𝑃𝜆𝜓), (2.114)
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but we know that |𝑒𝑖𝑡𝜆 − 1|2 < 𝑔(𝜆) = 2 and |𝑒𝑖𝑡𝜆 − 1|2 → 0 as 𝑡 → 0, ∀𝜆 ∈ ℝ. So,
by the Lebesgue dominated convergence theorem (Theorem A.32), we get that
‖𝑈 (𝑡)𝜓 − 𝜓‖2 → 0. Thus, 𝑡 → 𝑈 (𝑡) is strongly continuous at 𝑡 = 0, and by item (i),
it is continuous everywhere.

(iii) follows similarly. First, we note that

‖𝑈 (𝑡)𝜙 − 𝜙
𝑡 ‖

2
= ∫ℝ |

𝑒𝑖𝑡𝜆 − 1
𝑡 |

2
d(𝜙, 𝑃𝜆𝜙) (2.115)

but |𝑒𝑖𝑡𝜆 − 1| ≤ |𝑡𝜆|, so | 𝑒𝑖𝑡𝜆−1𝑡 | ≤ |𝜆|, which is integrable. Also, we have that

lim𝑡→0 |
𝑒𝑖𝑡𝜆 − 1

𝑡 | ≤ |𝜆| = |𝑖𝜆| = |𝜆| (2.116)

This implies that

lim𝑡→0 ‖
𝑈 (𝑡)𝜙 − 𝜙

𝑡 ‖ = ∫ℝ |𝜆|
2d(𝜙, 𝑃𝜆𝜙) = ‖𝑖𝐴𝜙‖2. (2.117)

To prove (iv), we define 𝐷(𝐵) = {𝜙| lim𝑡→0
𝑈 (𝑡)𝜙−𝜙

𝑡 exists}, and let

𝑖𝐵𝜙 = lim𝑡→0
𝑈 (𝑡)𝜙 − 𝜙

𝑡 . (2.118)

Since 𝐵 is symmetric, 𝐵 = 𝐴, and 𝜙 ∈ 𝐷(𝐴). ■

Definition 2.14. An operator-valued function 𝑈 (𝑡) satisfying (i) and (ii) of the-
orem 2.13 is called a strongly continuous one-parameter unitary group.

Theorem2.15. (Stone’s theorem) Let 𝑈 (𝑡) be a strongly continuous one-parameter
unitary group on a Hilbert spaceℋ . Then there is a unique self-adjoint operator
𝐴 on ℋ such that 𝑈 (𝑡) = 𝑒𝑖𝑡𝐴.
Proof. Take 𝑓 ∈ 𝐶∞0 (ℝ), and for each 𝜙 ∈ ℋ , define

𝜙𝑓 = ∫
∞

−∞
𝑓 (𝑡)𝑈 (𝑡)𝜙 d𝑡 , (2.119)

where, since 𝑈 (𝑡) is strongly continuous, this integral can be taken as a Riemann
integral. Define 𝐷 as the set of all linear combinations of such 𝜙𝑓 . Now define
the approximate identity as

𝑗𝜀(𝑥) = 𝜀−1𝑗 (𝑥𝜀 ) , (2.120)
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where 𝑗 ∈ 𝐶∞0 (−1, 1) ⊂ 𝐶∞0 (ℝ) and ∫∞−∞ 𝑗(𝑥) d𝑥 = 1. Then

‖𝜙𝑗𝜀 − 𝜙‖ = ‖∫
∞

−∞
𝑗𝜀(𝑡)[𝑈 (𝑡)𝜙 − 𝜙] d𝑡‖ ≤ (∫

∞

−∞
𝑗𝜀(𝑡) d𝑡) sup

𝑡∈[−𝜀,𝜀]
‖𝑈 (𝑡)𝜙 − 𝜙‖, (2.121)

Since 𝑈 (𝑡) is strongly continuous, we get that 𝐷 is dense in ℋ .
Take 𝜙𝑓 ∈ 𝐷, so

(𝑈 (𝑠) − 𝐼
𝑠 ) 𝜙𝑓 = ∫

∞

−∞
𝑓 (𝑡) (𝑈 (𝑠 + 𝑡) − 𝑈 (𝑡)

𝑠 ) 𝜙 d𝑡 = ∫
∞

−∞
(𝑓 (𝜏 − 𝑠) − 𝑓 (𝜏)

𝑠 ) 𝑈 (𝜏)𝜙 d𝜏 ,
(2.122)

We know that (𝑓 (𝜏−𝑠)−𝑓 (𝜏)𝑠 ) converges uniformly to the derivative of 𝑓 as 𝑠 → 0,
so

∫
∞

−∞
(𝑓 (𝜏 − 𝑠) − 𝑓 (𝜏)

𝑠 ) 𝑈 (𝜏)𝜙 d𝜏 → −∫
∞

−∞
𝑓 ′(𝜏 )𝑈 (𝜏)𝜙 d𝜏 = 𝜙−𝑓 ′ , (2.123)

as 𝑠 → 0.
Now, for any 𝜙𝑓 ∈ 𝐷, define 𝐴𝜙𝑓 = 𝑖−1𝜙−𝑓 ′ . Thus, we have that 𝑈 ∶ 𝐷 → 𝐷,

𝐴 ∶ 𝐷 → 𝐷, such that 𝑈 (𝑡)𝐴𝜙𝑓 = 𝐴𝑈 (𝑡)𝜙𝑓 . If 𝜙𝑓 , 𝜙𝑔 ∈ 𝐷, then

(𝐴𝜙𝑓 , 𝜙𝑔) = lim𝑠→0 ((
𝑈 (𝑠) − 𝐼

𝑖𝑠 ) 𝜙𝑓 , 𝜙𝑔) = lim𝑠→0 (𝜙𝑓 , (
𝐼 − 𝑈 (−𝑠)

𝑖𝑠 ) 𝜙𝑔)

= (𝜙𝑓 , 1𝑖 𝜙−𝑔′) = (𝜙𝑓 , 𝐴𝜙𝑔), (2.124)

which implies that 𝐴 is a symmetric operator.
Now suppose there is a 𝑢 ∈ 𝐷(𝐴∗) such that 𝐴∗𝑢 = 𝑖𝑢. Then, for each

𝜙 ∈ 𝐷 = 𝐷(𝐴), we have that

d
d𝑡 (𝑈 (𝑡)𝜙, 𝑢) = (𝑖𝐴𝑈 (𝑡)𝜙, 𝑢) = −𝑖(𝑈 (𝑡)𝜙, 𝐴∗𝑢)

= −𝑖(𝑈 (𝑡)𝜙, 𝑖𝑢) = (𝑈 (𝑡)𝜙, 𝑢) = 𝑔(𝑡). (2.125)

So we have a complex-valued function 𝑔(𝑡), which satisfies the equation 𝑔′ = 𝑔,
so 𝑔(𝑡) = 𝑔(0)𝑒𝑡 . But since 𝑈 (𝑡) has norm one, |𝑔(𝑡)| is bounded, and this can only
happen if 𝑔(0) = (𝜙, 𝑢) = 0. This is only satisfied if 𝑢 = 0. Similarly, defining
𝐴∗𝑢 = −𝑖𝑢, one can verify that the only solution is 𝑢 = 0. Therefore, we have
that Ker(𝐴∗ ± 𝑖𝐼 ) = {0}, so by the first part of the proof of theorem 2.7, we have
that 𝐴 is essentially self-adjoint on 𝐷.

To prove uniqueness, let 𝑉 (𝑡) = 𝑒𝑖𝑡𝐵. Take 𝜙 ∈ 𝐷 and also 𝜙 ∈ 𝐷(𝐵). Then,
𝑉 (𝑡)𝜙 ∈ 𝐷(𝐵) and, by (iii) of theorem 2.13, 𝑉 ′(𝑡)𝜙 = 𝑖𝐴𝑉 (𝑡)𝜙. Since 𝑈 (𝑡)𝜙 ∈ 𝐷 ⊂
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𝐷(𝐵) ∀𝑡 , we can let 𝑤(𝑡) = 𝑈 (𝑡)𝜙 − 𝑉 (𝑡)𝜙, so
𝑤 ′(𝑡) = 𝑖𝐴𝑈 (𝑡)𝜙 − 𝑖𝐵𝑉 (𝑡)𝜙 = 𝑖𝐵𝑤(𝑡)

⇒ d
d𝑡 ‖𝑤(𝑡)‖

2 = −𝑖(𝐵𝑤(𝑡), 𝑤(𝑡)) + 𝑖(𝑤(𝑡), 𝐵𝑤(𝑡)) = 0, (2.126)

since 𝑤(0) = 0, then 𝑤(𝑡) = 0, ∀𝑡 . This implies that 𝑈 (𝑡)𝜙 = 𝑉 (𝑡)𝜙, ∀𝑡 ∈ ℝ and
𝜙 ∈ 𝐷. But 𝐷 is dense, so 𝑈 (𝑡) = 𝑉 (𝑡) ⇒ 𝐴 = 𝐵. ■

So, by the functional calculus and by Stone’s theorem, we can ensure that our
time evolution given by 𝑈 (𝑡) = 𝑒−𝑖𝑡𝐻 is not only well-defined but also unique for
each self-adjoint Hamiltonian. With a further definition, we can explore more
applications of Stone’s theorem in quantum mechanics.

Definition 2.16. If 𝑈 (𝑡) is a strongly continuous one-parameter unitary group,
then the self-adjoint operator 𝐴 with 𝑈 (𝑡) = 𝑒𝑖𝑡𝐴 is called the infinitesimal
generator of 𝑈 (𝑡).

In other words, we can say that theHamiltonian is the time-evolution infinites-
imal generator in quantum systems. This is a scenario very similar to classical
mechanics, as discussed previously. The case where the Hamiltonian is time-
dependent can be easily obtained. However, we ask ourselves whether we can
evolve the observable in time instead of the state 𝜓 , as in Eq. (2.105). Using the
fact that our measurables are expected values of observables, consider that we
have an observable 𝐴 and the time evolution operator 𝑈 (𝑡) = 𝑒−𝑖𝑡𝐻 , so we can
write

⟨𝐴⟩ = (𝐴𝜓(𝑥, 𝑡), 𝜓 (𝑥, 𝑡)) = (𝑈 (𝑡)𝜓 (𝑥), 𝐴𝑈 (𝑡)𝜓 (𝑥)) = (𝜓(𝑥), 𝑈 (−𝑡)𝐴𝑈 (𝑡)𝜓 (𝑥))
= ⟨𝐴(𝑡)⟩, (2.127)

where we have defined 𝐴(𝑡) = 𝑈 (−𝑡)𝐴𝑈 (𝑡). Taking the derivative of 𝐴(𝑡) and
using the properties of 𝑈 (𝑡), we can obtain

d
d𝑡 𝐴(𝑡) = 𝑖[𝐻 , 𝐴]. (2.128)

This is called the Heisenberg equation. Such an equation has an astonishing
similarity with the time evolution in classical mechanics; see Eq. (2.32). In our
system of units, the difference is just that instead of working with the Poisson
bracket (see definition 2.1 ), we work with the complex unity times the commuta-
tor. These two different time evolutions define the so-called pictures of motion
in quantummechanics. Whenwe consider the evolution of the state (Eq. (2.105)),
we say that we are in the Schrödinger picture, while the time evolution of the
operators (Eq. (2.128)) is referred to as the Heisenberg picture. The two pic-
tures are completely equivalent.
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As we believe that it is clear at this point, dealing with unbounded operators,
like 𝑃 and 𝑄, is, in general, difficult. However, Stone’s theorem allows us to
deal with bounded and unitary operators instead of the self-adjoint unbounded
operators. Defining 𝑈 (𝑎) = 𝑒𝑖𝑎𝑃 and 𝑉 (𝑠) = 𝑒𝑖𝑠𝑄 . In order to find how these
operators act over a function we formally write

𝑈 (𝑎)𝜙(𝑥) = 𝑒𝑖𝑎𝑃𝜙(𝑥) =
∞
∑
𝑛=0

(𝑖𝑎𝑃)𝑛
𝑛! 𝜙(𝑥),

𝑉 (𝑠)𝜙(𝑥) = 𝑒𝑖𝑠𝑄𝜙(𝑥) =
∞
∑
𝑛=0

(𝑖𝑠𝑄)𝑛
𝑛! 𝜙(𝑥), (2.129)

now, using the coordinate representation, we get

𝑈 (𝑎)𝜙(𝑥) =
∞
∑
𝑛=0

𝑎𝑛
𝑛!

d𝑛
d𝑥𝑛 𝜙(𝑥) = 𝜙(𝑥 + 𝑎),

𝑉 (𝑠)𝜙(𝑥) =
∞
∑
𝑛=0

(𝑖𝑠𝑥)𝑛
𝑛! 𝜙(𝑥) = 𝑒𝑖𝑠𝑥𝜙(𝑥). (2.130)

Such a relation allows us to identify the momentum as the infinitesimal genera-
tor of space translations. An analogous computation, but using the momentum
representation, shows that the position operator is the infinitesimal generator of
the momentum translation.

Our realization of the canonical commutation relations given at Eq. (2.66) is
called Schrödinger representation. Once that we are dealing with functions
of the operators 𝑃 and 𝑄, it is interesting to ask how the canonical commutation
relation behaves under such a map. For that, we first notice that

𝑈 (𝑎)𝑉 (𝑠)𝜙(𝑥) = 𝑒𝑖𝑎𝑠𝑒𝑖𝑠𝑥𝜙(𝑥 + 𝑎)
𝑉 (𝑠)𝑈 (𝑎)𝜙(𝑥) = 𝑒𝑖𝑠𝑥𝜙(𝑥 + 𝑎)
⇒ 𝑈 (𝑎)𝑉 (𝑠) = 𝑒𝑖𝑎𝑠𝑉 (𝑠)𝑈 (𝑎), (2.131)

The last equation is called Weyl relation. We are going to show that any real-
ization of the Weyl relation is also a realization of the canonical commutation
relation. Before that, let us construct some auxiliary machinery.
Proposition 2.17. (i) All operators defined by

𝑊(𝑠, 𝑡) = 𝑒− 𝑖
2 𝑠𝑡𝑈 (𝑠)𝑉 (𝑡), (2.132)

are unitary, and, for all 𝑠1, 𝑠2, 𝑡1, 𝑡2 ∈ ℝ we have

𝑊(𝑠1, 𝑡1)𝑊 (𝑠2, 𝑡2) = 𝑒 𝑖
2 (𝑠1𝑡2−𝑠2𝑡1)𝑊(𝑠1 + 𝑠2, 𝑡1 + 𝑡2). (2.133)

In particular, 𝑊(0, 0) = 1 and 𝑊 ∗(𝑠, 𝑡) = 𝑊 (−𝑠, −𝑡);
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(ii) for any ℎ ∈ ℒ(ℝ2) we define

𝑊ℎ = ∫ℎ(𝑠, 𝑡)𝑊 (𝑠, 𝑡)d𝑠d𝑡 , (2.134)

if ℎ ≠ 0 then 𝑊ℎ ≠ 0;
(iii) take ℎ1, ℎ2 ∈ ℒ(ℝ2) and define ℎ ∈ ℒ(ℝ2) by

ℎ(𝑠, 𝑡) = ∫ 𝑒𝑖(𝑠𝑡′−𝑠′𝑡)ℎ1(𝑠 − 𝑠′, 𝑡 − 𝑡′)ℎ2(𝑠′, 𝑡′)d𝑠′d𝑡′, (2.135)

then 𝑊ℎ1𝑊ℎ2 = 𝑊ℎ.

Proof. Parts (i) and (iii) follow from direct computation.
To prove (ii), first assume that 𝑊ℎ = 0. Then, for any 𝑥, 𝑦 ∈ ℝ we have that

𝑊(−𝑥, −𝑦)𝑊ℎ𝑊(𝑥, 𝑦) = 0. Using the definitions, one obtains that

0 = ∫ℎ(𝑠, 𝑡)𝑒𝑖(𝑠𝑦−𝑡𝑥)𝑊(𝑠, 𝑡)d𝑠d𝑡 , (2.136)

but this needs to be true for any 𝜓 ∈ ℋ , that is, (𝜓 ,𝑊 (𝑠, 𝑡)𝜓 ) = 0. However,
𝑊(𝑠, 𝑡) is unitary, so ‖𝑊𝜓‖ = ‖𝜓 ‖ ≠ 0 if 𝜓 ≠ 0. Thus, 𝑊ℎ ≠ 0 if ℎ ≠ 0. ■

Theorem 2.18. (Stone-von Neumann theorem) Any representation of the Weyl
relations is unitarily equivalent to an atmost countable direct sum of Schrödinger
representations. In particular, any irreducible representation of theWeyl relation
is unitarily equivalent to the Schrödinger representation.

Proof. First, we set ℎ(𝑠, 𝑡) = 1
2𝜋 𝑒

− 1
4 (𝑠2+𝑡2) to construct the following object:

𝑃 = 𝑊ℎ = 1
2𝜋 ∫𝑊(𝑠, 𝑡)𝑒− 1

4 (𝑠2+𝑡2)d𝑠d𝑡 . (2.137)

Now we will prove that 𝑃 is an orthogonal projection, that is, 𝑃 = 𝑃∗ and 𝑃2 = 𝑃 .
The self-adjointness follows from

𝑃∗ = 1
2𝜋 ∫𝑊 ∗(𝑠, 𝑡)𝑒− 1

4 (𝑠2+𝑡2)d𝑠d𝑡 = 1
2𝜋 ∫𝑊(−𝑠, −𝑡)𝑒− 1

4 (𝑠2+𝑡2)d𝑠d𝑡

= 1
2𝜋 ∫𝑊(𝑠, 𝑡)𝑒− 1

4 (𝑠2+𝑡2)d𝑠d𝑡 = 𝑃. (2.138)

Using the definitions, proposition 2.17, and with some algebraic manipulations,
one can recover that 𝑃𝑊 (𝑥, 𝑦)𝑃 = 𝑒 14 (𝑥2+𝑦2)𝑃 , which is 𝑃2 = 𝑃 when 𝑥 = 𝑦 = 0.
Thus, 𝑃 is indeed an orthogonal projection operator.
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From (ii) of proposition 2.17, we know that 𝑃 is not the zero operator, so
𝑃ℋ ≠ 0. In the subspace 𝑃ℋ , take an orthonormal basis {Ω𝑛}𝑁𝑛=1, where 𝑁 =
{1, 2, … }. For 1 ≤ 𝑛 ≤ 𝑁 , take ℋ𝑛 = span{𝑊 (𝑠, 𝑡)Ω𝑛|𝑠, 𝑡 ∈ ℝ}.

Using (i) of proposition 2.17, we obtain that𝑊(𝑠1, 𝑡1)𝑊 (𝑠2, 𝑡2)Ω𝑛 = 𝑒𝑖(𝑠1𝑡2−𝑠2𝑡1)×
𝑊(𝑠1 + 𝑠2, 𝑡1 + 𝑡2)Ω𝑛, so each ℋ𝑛 is invariant under 𝑊(𝑠, 𝑡). Also, using the fact
that each subspace is invariant under projection into itself, and the properties of
proposition 2.17, we can compute the following property:

(𝑊 (𝑥, 𝑦)Ω𝑛, 𝑊 (𝑠, 𝑡)Ω𝑚) = (𝑊 (𝑥, 𝑦)𝑃Ω𝑛, 𝑊 (𝑠, 𝑡)𝑃Ω𝑚)
= (Ω𝑛, 𝑃𝑊 (−𝑥, −𝑦)𝑊 (𝑠, 𝑡)𝑃Ω𝑚) = 𝑒 𝑖

2 (−𝑥𝑡+𝑦𝑠)𝑒 14 [(𝑠−𝑥)2−(𝑡−𝑦)2](Ω𝑛, Ω𝑚)
= 𝑒 𝑖

2 (−𝑥𝑡+𝑦𝑠)𝑒 14 [(𝑠−𝑥)2−(𝑡−𝑦)2]𝛿𝑛𝑚 (2.139)

The last equality follows from the fact that we chose an orthonormal basis system.
This last result shows us that the spaces ℋ𝑛 and ℋ𝑚 are orthogonal for 𝑛 ≠ 𝑚.

To finish the first part of the proof, we need to show that the direct sum of our
projections reconstructs the whole Hilbert space. For that, take 𝐷 = ⨁𝑁

𝑛=1ℋ𝑛
and assume that 𝐷 ⊂ ℋ . Then {𝑊 (𝑠, 𝑡)}|𝐷⟂ is a representation of the Weyl rela-
tions, and the respective projection is given by 𝑃|𝐷⟂ , which is not the zero oper-
ator. Now take 𝑓 ≠ 0 ∈ 𝐷⟂ such that 𝑃𝑓 = 𝑓 , but Ran(𝑃𝑓 ) = 𝐷, so 𝐷⟂ = {0}.
This means that 𝐷 = ℋ .

To prove that all representations are unitarily equivalent, we fix someΩ𝑛 and
define 𝑓 (𝑠, 𝑡) = 𝑊 (𝑠, 𝑡)Ω ∈ ℋ𝑛 for some 𝑠, 𝑡 ∈ ℝ. We have that

𝑊(𝑥, 𝑦)𝑓 (𝑠, 𝑡) = 𝑒 𝑖
2 (𝑥𝑡−𝑦𝑠)𝑊(𝑥 + 𝑠, 𝑦 + 𝑡)Ω𝑛 = 𝑒 𝑖

2 (𝑥𝑡−𝑦𝑠)𝑓 (𝑥 + 𝑠, 𝑦 + 𝑡), (2.140)

and

(𝑓 (𝑥, 𝑦), 𝑓 (𝑠, 𝑡)) = (𝑊 (𝑥, 𝑦)Ω𝑛, 𝑊 (𝑠, 𝑡)Ω𝑛) = (𝑊 (𝑥, 𝑦)𝑃Ω𝑛, 𝑊 (𝑠, 𝑡)𝑃Ω𝑛)
= (Ω𝑛, 𝑃𝑊 (−𝑥, −𝑦)𝑊 (𝑠, 𝑡)𝑃Ω𝑛) = 𝑒 𝑖

2 (−𝑥𝑡+𝑦𝑠)𝑒 14 [(𝑠−𝑥)2−(𝑡−𝑦)2](Ω𝑛, 𝑃Ω𝑚)
= 𝑒 𝑖

2 (−𝑥𝑡+𝑦𝑠)𝑒 14 [(𝑠−𝑥)2−(𝑡−𝑦)2]. (2.141)

The important fact about the last two equations is that the action of the operator
𝑊 and the inner product in ℋ𝑛 are entirely determined by the properties of 𝑊 .
This means that, if we have a second representation, sayℋ𝑚, and define 𝑓 ′(𝑠, 𝑡) =
𝑊 ′(𝑠, 𝑡)Ω𝑚, we get the same action of the operator and the same inner product
in the Hilbert space ℋ𝑚. Thus, the map between the two representations must
be given by a unitary operator, in order to preserve the inner product. Once
we know that the Schrödinger representation satisfies the Weyl relations, we
can affirm that all representations are unitarily equivalent to the Schrödinger
representation. ■
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It is important to notice that the last theorem and its proof can be directly
extended to any finite number of degrees of freedom. In the case of an infinite
number of degrees of freedom, not only the proof but the theorem is not true
anymore. As we are going to explore in the next section and chapters, the non-
unique representations of the canonical commutation relations will be responsi-
ble for many interesting mechanisms in quantum field theory.

Let us use the liberty of representation choice to discuss the last example
that will be useful throughout this thesis: The Harmonic Oscillator. Its classical
Hamiltonian in one dimension has been presented in Eq. (2.13), and in order to
obtain its quantum version, we use the maps 𝑝 → 𝑃 and 𝑞 → 𝑄. For convenience,
we set 𝑚 = 1 and 𝑘 = 𝜔2,

𝐻 = 1
2𝑃

2 + 1
2𝜔

2𝑄2. (2.142)

We wish to verify how these operators evolve in time, so using the Heisenberg
equation (Eq. (2.128)), we easily get that

d𝑄
d𝑡 = 𝑃, d𝑃

d𝑡 = −𝜔2𝑄. (2.143)

Instead of working in the coordinate or momentum representation, we are going
to use the liberty that the Stone-von Neumann theorem gives to us to choose a
more convenient representation7. Let us define

𝑎 = 1
√2𝜔

(𝜔𝑄 + 𝑖𝑃), 𝑎† = 1
√2𝜔

(𝜔𝑄 − 𝑖𝑃), (2.144)

𝑄 = √
2
𝜔 (𝑎 + 𝑎†), 𝑃 = −𝑖√2𝜔(𝑎 − 𝑎†). (2.145)

Using the canonical commutation relation, one finds that

[𝑎, 𝑎†] = 1. (2.146)

It is worth noting that 𝑎, 𝑎† are not self-adjoint, so, by our definition 2.6, they
are not observables. From the equations of motion for 𝑄 and 𝑃 and the previous
definitions, we obtain that

d𝑎
d𝑡 = −𝑖𝜔𝑎, d𝑎†

d𝑡 = −𝑖𝜔𝑎†, (2.147)

7Some care must be taken here. The Stone-von Neumann theorem ensures that any repre-
sentation of the Weyl relation obeys the canonical commutation relation, however, its converse
may not be true. That is, not all representations that obey the canonical commutation relation
obey the Weyl relation. We are going to use a well-known representation, and for this reason,
we ignore such a technical feature.
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The solution can be obtained easily and reads

𝑎(𝑡) = 𝑒−𝑖𝜔𝑡𝑎(0), 𝑎†(𝑡) = 𝑒𝑖𝜔𝑡𝑎†(0), (2.148)

𝑄(𝑡) = 1
𝜔 [𝑎(0)𝑒−𝑖𝜔𝑡 + 𝑎†(0)𝑒𝑖𝜔𝑡] , (2.149)

𝑃(𝑡) = −𝑖𝜔 [𝑎(0)𝑒−𝑖𝜔𝑡 − 𝑎†(0)𝑒𝑖𝜔𝑡] . (2.150)

We can investigate what we can get from this representation further. First, let
us consider only the static case, that is, 𝑡 = 0, fix 𝑎 = 𝑎(0), 𝑎† = 𝑎†(0) and denote
𝑁 = 𝑎†𝑎. In this representation we can use the definitions and the commutation
relations to write the harmonic oscillator Hamiltonian as follows

𝐻 = 𝜔 (𝑎†𝑎 + 1
2𝐼) = 𝜔 (𝑁 + 1

2𝐼) , (2.151)

from the spectral theorem 2.7, we get that

𝐻𝜓𝑛 = 𝐸𝑛𝜓𝑛 = 𝜔 (𝑁 + 1
2𝐼) 𝜓𝑛, (2.152)

so
𝐸𝑛 = 𝜔𝜎 (𝑁 + 1

2𝐼) , 𝑁𝜓𝑛 = 𝐹𝑛𝜓𝑛. (2.153)

So, to find the expectation value of 𝐻 we only need to find the spectrum of the
operator 𝑁 . For that let us define the ground state of our system. The ground
state will be the vector of 𝑎, such that,

𝑎𝜓0 = 0 = 1
√2𝜔

(𝜔2𝑄 + 𝑖𝑃)𝜓0 = 1
√2𝜔

(𝜔2𝑥 + d
d𝑥 ) 𝜓0(𝑥) = 0, (2.154)

the solution of this differential equation gives to us

𝜓0(𝑥) = 𝐶𝑒−𝜔2𝑥2 , (2.155)

where 𝐶 is a normalization constant that can be fixed by imposing (𝜓0, 𝜓0) = 1.
Now we can verify successive actions of 𝑎† over the ground state

𝑎†𝜓0 = 1
√2𝜔

(𝜔2𝑄 − 𝑖𝑃)𝜓0 = 1
√2𝜔

(𝜔2𝑥 − d
d𝑥 ) 𝐶𝑒

−𝜔2𝑥2

= 3
√2

𝜔𝑥𝜓0(𝑥) = 𝐶1He1(𝜔𝑥)𝜓0(𝑥) = 𝐶1𝜓1(𝑥)

𝑎†𝜓1 = 3
2(3𝜔

2𝑥2 − 1)𝜓0 = 𝐶2He2(𝜔𝑥)𝜓0(𝑥) = 𝐶2𝜓2(𝑥)
⋮

𝑎†𝜓𝑛−1 = 𝐶𝑛He𝑛(𝜔𝑥)𝜓0(𝑥) = 𝐶𝑛𝜓𝑛(𝑥), (2.156)
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where 𝐶1, … , 𝐶𝑛 are normalizations and He𝑛 is the 𝑛-th Hermite polynomial. In
the last equation we can note that 𝜓0 is always an eigenfunction of the operator
(𝑎†)𝑛, 𝑛 = 1, 2, … . Therefore, we could define the ground state as the cyclic vector
of 𝑎†8. Also, with the appropriate normalization of the Hermite polynomials, we
can choose to have the normalization constants 𝐶𝑛 as

𝑎†𝜓𝑛 = √𝑛 + 1𝜓𝑛+1(𝑥), (2.157)

in this normalization we get that

𝑎𝜓𝑛 = √𝑛 𝜓𝑛−1(𝑥). (2.158)

Once that we know how the operators act, we can analyse the action of 𝑁 over
these vectors,

𝑁𝜓𝑛 = 𝑎†𝑎𝜓𝑛 = 𝑎†√𝑛 𝜓𝑛−1 = 𝑛 𝜓𝑛. (2.159)

We have found that the complete set of eigenfunctions of 𝑁 is {𝜓𝑛}∞𝑛=0, this
allows to identify that 𝜎(𝑁 ) = {0, 1, 2, … }. The action of these operators justifies
the respective name: 𝑎† is the creation operator, 𝑎 the annihilation operator,
and 𝑁 the number operator. One possible interpretation for each of those is
that one creates a particle in a state, another annihilates a particle, and the last
one counts the total number of particles in a given state.

Back to the Hamiltonian, Eq. (2.152), we can fix a vector 𝜓𝑛 to get

𝐸𝑛 = 𝜔 (𝑛 + 1
2) , (2.160)

it is interesting to notice that
𝐸0 = 𝜔

2 , (2.161)

which means that the ground state has a non-zero energy. Later, this fact will
emerge again in a quantum field theory scenario.

It is worth mentioning that this solution can be obtained more rigorously
using the idea of generalized functions and a family of seminorms, see [17]. Due
to the number of concepts that need to be fully developed to obtain this solution,
we choose not to present such a beautiful construction.

As we have noticed, the Stone-von Neumann theorem allows us to use those
operators to solve the problem, and it also guarantees that the solution is well
posed, once we could solve it, for example, in the coordinate representation and
obtain the same result. In the next section we see that the situation where this
theorem does not hold is even more interesting.

8An operator 𝐴 on a Hilbert space is said to have a cyclic vector 𝜙, if
span{𝜙, 𝐴𝜙, 𝐴2𝜙, … , 𝐴𝑛𝜙, … } = ℋ



Chapter 3

Axiomatic Quantum Field Theory

In this chapter, we introduce Quantum Field Theory in its first stage of develop-
ment. First, we would like to establish that the physical justification for the math-
ematical objects we call “Quantum Fields” arises naturally once we use two basic
concepts of quantum theory and relativity. These concepts are that quantum
systems are described by a space of functions belonging to a Hilbert space (par-
ticularly square-integrable functions) and that relativistic systems should con-
serve their total momentum. A well-structured but not entirely clear, physically
oriented exposition of how these two ideas can be combined to conclude that
Quantum Fields are inevitable can be found in Reference [18].

While the necessary mathematics for fully understanding both concepts is
not particularly complicated, the physics literature has primarily focused on
group theory, which suffices to treat classical relativistic systems. To gain a
deeper understanding of a quantum relativistic system, such as Quantum Fields,
it is necessary to delve further into the mathematical aspects of measure the-
ory, Hilbert spaces, and Banach spaces. Since there is a substantial amount of
literature presenting group theory for physicists, e.g., References [19, 20], the
literature on measure theory, Hilbert spaces, and Banach spaces for physicists
exists but is relatively limited [17]. For this reason, the reader which is unfalim-
iar with some basic notions of functional analysis can be vastly favored reading
Appendix A.

In Section 3.1, we justify the title of this chapter by introducing the concept
of quantum fields and the well-known Wightman axioms. Following this devel-
opment, we present Section 3.2 with the simplest, yet one of the most elegant,
applications of Quantum Field Theory: the zero-point energy and the Casimir ef-
fect. In particular, we discuss cases involving perfect conductors and dielectrics.
In the dielectric case, we present two novel contributions of this thesis: how
to obtain finite corrections to the Casimir energy using approximate functional
equations for slab and rectangular geometries, and how to apply the surfacewave
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approach in a rectangular waveguide. Still within the context of zero-point fluc-
tuations, we also propose that a charge in the vicinity of a dielectric can act as
a sensor for zero-point fluctuations, with the velocity induced by the zero-point
fluctuations exceeding that due to thermal motion.

For the remainder of this chapter, Section 3.3, we dedicate ourselves to dis-
cussing interacting fields.

3.1 Quantum Fields and Wightman Axioms
As we stressed out previously, the quantum fields represent the culmination of
the ideas of special relativity and quantum mechanics. Since the construction
that generalizes quantum systems to systems with an uncountable number of
degrees of freedom, resulting in relativistic wave mechanics, is well presented in
the literature (see, e.g., [18]), we do not devote further pages and time to it.

The mathematical principles of any quantum field theory are derived from
those of nonrelativistic quantum mechanics of particles. That is, quantum field
theory also relies on Hilbert spaces and operators acting on such spaces. How-
ever, some fundamental changes in previously presented formalism are needed
to deal with states with a non-fixed number of particles, as imposed by the en-
ergy conservation of the relativity. A more formal construction of the fields from
the particle point of view can be found in Reference [21].

Just like in the last chapter, we are not interested in constructing our theory
from first principles. Rather, we aim only to present and justify some known
results and constructions. Many other approaches to achieve the same results
can be found in the literature [22–24].

Unless stated otherwise, in this section we use the metric with signature
(+, −, −, −), the natural system of units (𝑐 = ℏ = 𝑘𝐵 = 1), and the Einstein summa-
tion convention. In general, Greek letters refer to space-time indices. Space-time
functions are denoted solely by 𝑓 (𝑥); we distinguish between space and time only
when necessary.

3.1.1 Free Scalar Field
To start our construction, we choose the simplest case of a field theory: the
neutral scalar field. The quantity that we generically refer to as a “field” is an
operator-valued generalized function; we hope to clarify this throughout the sec-
tion. Such a field is governed by the following Lagrangian density

𝐿 = 1
2𝜕

𝜇𝜙(𝑥)𝜕𝜇𝜙(𝑥) − 1
2𝑚

2𝜙(𝑥)2, (3.1)
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where 𝑚2 is a spectral (mass) parameter. From this Lagrangian, we can apply
the same steps as in Sec. 2 to derive both the equation of motion, known as the
Klein-Gordon equation

□𝜙(𝑥) + 𝑚2𝜙(𝑥) = 0, (3.2)

where □ = 𝜕𝜇𝜕𝜇 is the d’Alembertian operator, and the Hamiltonian

𝐻 = 1
2𝜋

2(𝑥) + 1
2(∇𝜙(𝑥))

2 + 1
2𝑚

2𝜙2(𝑥), (3.3)

with 𝜋(𝑥) = 𝜕𝐿/𝜕 ̇𝜙(𝑥), the conjugate momentum of the field variable 𝜙(𝑥). As
can be directly verified, the Lagrangian, and therefore the equation of motion
and the Hamiltonian, are all Poincaré invariant. That is, they are scalars under
Poincaré transformations. It also follows that the Hamiltonian is an unbounded
self-adjoint operator.

We can now proceed in two ways. We can analyze the equation of motion
directly and then impose commutation relations on a more fundamental oper-
ator from which the fields can be constructed, or we can impose commutation
relations directly on 𝜙(𝑥) and 𝜋(𝑥). The second approach is more natural, given
the development in the previous chapter.

Let us assume now that 𝑚2 = 0. Then the Hamiltonian of the neutral scalar
field resembles the Hamiltonian of the harmonic oscillator of Eq. (2.142). For
that reason, let us impose the following commutation relations in the same si-
multaniety surface (𝑡 = 𝑡′)

[𝜙(x, 𝑡), 𝜋(x′, 𝑡)] = 𝑖𝛿(x − x′), [𝜙(x, 𝑡), 𝜙(x′, 𝑡)] = [𝜋(x, 𝑡), 𝜋(x′, 𝑡)] = 0, (3.4)

which, in analogy to Eq. (2.66), are referred to as the canonical commutation
relations. The process of imposing commutation relations to fields is sometimes
referred to as second quantization.

As we prove in Sec. A.2.2, every Hilbert space has an orthonormal basis (see
theorem A.62). Therefore, we can expand each 𝜙(𝑥) and 𝜋(𝑥) in terms of the
components of the orthonormal basis. Let us assume that

𝜙(𝑥) = ∑
𝑛
𝑎𝑛𝜑𝑛(𝑥), 𝜋(𝑥) = ∑

𝑙
𝑎†𝑙 𝜑𝑙(𝑥), (3.5)

By a direct computation using the fact that an orthonormal basis forms a com-
plete set, we obtain

[𝑎𝑛, 𝑎†𝑙 ] = 𝛿𝑛,𝑙 , [𝑎𝑛, 𝑎𝑙] = [𝑎†𝑛 , 𝑎†𝑙 ] = 0. (3.6)
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From here, we can define the number operator and analyze the spectrum of the
Hamiltonian. However, before proceeding further, let us return to the equation
of motion, Eq. (3.2). Inspired by the discussion on coordinate and momentum
representations in the previous section, let us use the following Fourier represen-
tation of the field

𝜙(𝑥) = 1
(2𝜋)4 ∫ 𝑒𝑖𝑝𝑥 ̃𝜙(𝑝)d4𝑝 (3.7)

where 𝑝𝑥 = 𝑝0𝑡 − x ⋅ p is the Lorentzian product. Back to Eq. (3.2), we obtain
that

𝑝2 + 𝑚2 = 0 ⇒ 𝑝20 = √p2 + 𝑚2 (3.8)

which is the relativistic condition of energy conservation. Now if we perform
only a spatial Fourier representation,

𝜙(x, 𝑡) = 1
(2𝜋)3 ∫ 𝑒𝑖p⋅x ̃𝜙(p, 𝑡)d3𝑝, (3.9)

we obtain the following equation of motion

( 𝜕2
𝜕𝑡2 + (p2 + 𝑚2)) ̃𝜙(p, 𝑡) = 0, (3.10)

which is a harmonic oscillator for each p, with frequency 𝜔2
p = p2+𝑚2. We have

already solved the case of a harmonic oscillator in the last section; therefore, we
can identify that

𝜙(x, 𝑡) = 1
(2𝜋)3 ∫

1
√2𝜔p

[𝑎(p)𝑒−𝑖𝑝𝑥 + 𝑎†(p)𝑒𝑖𝑝𝑥] d3𝑝 = 𝜙+(𝑥) + 𝜙−(𝑥). (3.11)

Where the integral arises from the fact that there are infinitely many momenta
over which we sum. The contribution of 𝜙+ is called the positive frequencies
modes, while 𝜙− is called negative frequencies modes. Now we turn to the conju-
gate momentum, 𝜋(𝑥), to write

𝜋(x, 𝑡) = −𝑖 1
(2𝜋)3 ∫√

𝜔p

2 (𝑎(p)𝑒𝑖𝑝𝑥 − 𝑎†(p)𝑒−𝑖𝑝𝑥) d3𝑝. (3.12)

By imposing the canonical commutation relation of Eq. (3.4), we can verify that

[𝑎(p), 𝑎†(p′)] = (2𝜋)3𝛿(p − p′), [𝑎(p), 𝑎(p′)] = [𝑎†(p), 𝑎†(p′)] = 0. (3.13)

Thus, the 𝑎(p) and 𝑎†(p) are the continuum limit of the 𝑎𝑛 and 𝑎†𝑛 that we used
as coefficients in the orthonormal basis expansion of our field, where the basis is
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given by the exponential. Instead of investigating the action of the field operator
itself, we can turn our attention to 𝑎(p) and 𝑎†(p).

If we wish to express the Hamiltonian operator in terms of the operators 𝑎(p),
𝑎†(p) we can substitute the expansions of 𝜙(𝑥) and 𝜋(𝑥) into Eq. (3.3) to obtain

𝐻 = 1
2 ∫

𝜔p

(2𝜋)3 [𝑎(p)𝑎
†(p) + 𝑎†(p)𝑎(p)] d3𝑝 = 1

2 ∫
𝜔p

(2𝜋)3 [𝑎(p)𝑎
†(p) + 𝑁p] d3𝑝,

(3.14)
where we have defined𝑁p = 𝑎†(p)𝑎(p). Like in the quantum harmonic oscillator,
we can define a vector Ω, which we call the vacuum, for which the operator 𝑎(p)
vanishes

𝑎(p)Ω = 0. (3.15)

This might tempt us to proceed as in the harmonic oscillator; however, the sce-
nario differs significantly. Note that, in the quantum harmonic oscillator, we
describe a one-dimensional particle with distinct excitation states, labeled by 𝑛,
and we interpret 𝑎 and 𝑎† as operators that, respectively, annihilate and create
an excitation of the particle. In the quantum harmonic oscillator, we have con-
structed the Hilbert space ℋ = ℒ 2 for one particle using its excited states.

In the present description of fields, so far, we have no particles. Furthermore,
because we require the number of particles to be not fixed, we cannot restrict
the Hilbert space to that of one, two, or 𝑛 particles. We must allow the number
of particles to be indefinite and, for that, choose the Hilbert space wisely. To do
that, let us take a few steps back. By construction, quantum fields are intrinsi-
cally noncommutative and probabilistic. Let us say that ̃𝜙1(𝑗1) ∈ ℒ 2 represents
one particle in the state 𝑗1, and | ̃𝜙1(𝑗1)| is the probability density for finding the
particle in that state. Now, if we have a state of two particles, which we represent
by ̃𝜙2(𝑗1, 𝑗2), then by analogy, ̃𝜙2(𝑗1, 𝑗2) ∈ ℒ 2 ⊗ℒ 2 represents the probability of
finding the first particle in the state 𝑗1 and the second particle in the state 𝑗2. How-
ever, we know from quantum mechanics that particles of the same type (bosons
or fermions) are indistinguishable; thus, wemust have | ̃𝜙2(𝑗1, 𝑗2)| = | ̃𝜙2(𝑗2, 𝑗1)|1, so
the correct space for the two-particle system is notℒ 2⊗ℒ 2, but the symmetrized
tensor product ℒ 2⊙ℒ 2 = [ℒ 2]⊙2 . For fields that represent spinors (half-integer
spins), we must have the antisymmetrized tensor product ℒ 2 ∧ℒ 2 = [ℒ 2]∧2 .

Since we expect our field operator to be able to generate states with any
number of particles, and to be consistent with relativity, such an operator must
act on a space that is a linear combination of states with varying particle numbers.
Let us define [ℒ 2]⊙0 = ℂ; then we write the symmetric Fock space as the

1Here we use the fact that the scalar field behaves as a scalar under the Poincaré group, and
therefore represents states of spin 0, which are bosons and have symmetric wave functions in
quantum mechanics.
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following

ℱ = ℂ
∞
⨁
𝑛=1

[ℒ 2]⊙𝑛 =
∞
⨁
𝑛=0

[ℒ 2]⊙𝑛 . (3.16)

Analogously, one can define the antisymmetric Fock space. In this thesis, we
are only interested in the symmetric case; therefore, we call it the Fock space.
One should notice that the Fock space is a Hilbert space.

An element of the Fock space, Φ, is given by

Φ = { ̃𝜙0, ̃𝜙1(𝑗1), … , ̃𝜙𝑛(𝑗1, … , 𝑗𝑛), … }, (3.17)

where, for each 𝑛 = 1, 2, … , we have ̃𝜙𝑛 ∈ [ℒ 2]⊙𝑛 . We remark that the quantity
̃𝜙𝑛 is not the field operator. Let us take the elementΩ that we defined in Eq. (3.15).

This element represents the state of no particles and, as an element of the Fock
space, is represented by

Ω = {1, 0, 0, … }, (3.18)

and is called the vacuum state.
Since each [ℒ 2]⊙𝑛 is a Hilbert space, we can choose a basis for each of them

and construct the basis of ther Fock space. With this particle-oriented construc-
tion, we see that, in addition to the similarity with the harmonic oscillator, the
operators 𝑎(p) and 𝑎†(p) serve as the operators of annihilation and creation
of particles. Therefore, the action of 𝑎†(p) is to create a particle in the state p2.
As one can directly show, the state Ω is Poincaré invariant. Therefore, we have
shown that the scalar field satisfies the following axioms

Axiom 3.1. (0th Wightman axiom – Relativistic quantummechanics) The field’s
equations ofmotion are invariant under the Poincaré group. The energy-momentum
spectrum is contained within the forward cone, and there is a unique state, called
the vacuum state, which is invariant under the Poincaré group.

Axiom 3.2. (1th Wightman axiom – The domain of fields) There is a set of opera-
tors which, together with their adjoints, are defined on the Hilbert space contain-
ing the vacuum. The Hilbert space can be reconstructed by successive actions of
these operators.

The set of operators is, evidently, 𝑎(p), 𝑎†(p).
Axiom 3.3. (2th Wightman axiom – Transformation law of the field) The fields
are covariant under the Poincaré group and transform according to some repre-
sentation of the Lorentz group.

Note that in our case, the field is a scalar under Lorentz transformations.
2We use the label p to represent any number that distinguishes one state from another.
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Axiom 3.4. (3th Wightman axiom – Microscopic causality or microcausality) If
the supports of two fields are space-like separated, then the fields either commute
or anticommute.

The third Wightman axiom is the only one that we need to check. To do
that, let us choose the normalization constant such that 𝑎(p) ̃𝜙𝑛 = √𝑛 ̃𝜙𝑛−1 and
𝑎†(p) ̃𝜙𝑛 = √𝑛 + 1 ̃𝜙𝑛+1, so 𝑎†(p)Ω = ̃𝜙1. Now we fix some simultaneity surface at
𝑡 , then we have

𝜙(𝑥)Ω = 1
(2𝜋)3 ∫

1
√2𝜔p

[𝑎(p)Ω𝑒−𝑖𝑝𝑥 + 𝑎†(p)Ω𝑒𝑖𝑝𝑥] d3𝑝

= 1
(2𝜋)3 ∫

1
√2𝜔p

[𝑎†(p)Ω𝑒𝑖𝑝𝑥] d3𝑝 (3.19)

(𝜙(𝑦))∗Ω = 1
(2𝜋)3 ∫

1
√2𝜔p

[𝑎(p′)𝑒−𝑖𝑝′𝑦 + 𝑎†(p′)𝑒𝑖𝑝′𝑦]∗Ωd3𝑝′

= 1
(2𝜋)3 ∫

1
√2𝜔′p

[𝑎†(p′)Ω𝑒−𝑖𝑝′𝑦] d3𝑝′. (3.20)

Therefore, we can use the last two equations in conjunction with the commuta-
tion relation of Eq. (3.13)

(𝜙(𝑦)𝜙(𝑥)Ω, Ω) = (𝜙(𝑥)Ω, (𝜙(𝑦))∗Ω) ≡ ⟨𝜙(𝑦)𝜙(𝑥)⟩
= 1

(2𝜋)6 ∫
1

√4𝜔p𝜔p′
[(𝑎†(p)Ω, 𝑎†(p′)Ω)] 𝑒𝑖𝑝𝑥−𝑖𝑝′𝑦d3𝑝 d3𝑝′

= 1
(2𝜋)6 ∫

1
√4𝜔p𝜔p′

[(𝑎(p′)𝑎†(p)Ω, Ω)] 𝑒𝑖𝑝𝑥−𝑖𝑝′𝑦d3𝑝 d3𝑝′

= 1
(2𝜋)3 ∫

1
√4𝜔p𝜔p′

[(𝑎(p′)𝑎†(p)Ω, Ω) − (𝑎†(p)𝑎(p′)Ω, Ω)] 𝑒𝑖𝑝𝑥−𝑖𝑝′𝑦d3𝑝 d3𝑝′

= 1
(2𝜋)6 ∫

1
√4𝜔p𝜔p′

[([𝑎(p′), 𝑎†(p)]Ω, Ω)] 𝑒𝑖𝑝𝑥−𝑖𝑝′𝑦d3𝑝 d3𝑝′

= (2𝜋)3
(2𝜋)6 ∫

1
√4𝜔p𝜔p′

𝛿(p − p′) (Ω, Ω) 𝑒𝑖𝑝𝑥−𝑖𝑝′𝑦d3𝑝 d3𝑝′

= 1
(2𝜋)3 ∫

1
2𝜔p

𝑒𝑖𝑝(𝑥−𝑦)d3𝑝 = Δ+(𝑥, 𝑦) (3.21)

This expectation value is the correlation function of the field at two separated
points; such a function is called theWightman positive frequency two-point
function. Using the analogous calculation, one shows that

Δ−(𝑥, 𝑦) = Δ+(𝑦 , 𝑥) = 1
(2𝜋)3 ∫

1
2𝜔p

𝑒−𝑖𝑝(𝑥−𝑦)d3𝑝, (3.22)
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which is called the Wightman negative frequency two-point function. As
expected, such a function is Lorentz invariant. If we take a spacelike case, (𝑥 −
𝑦)2 < 0, and fix 𝑡 = 𝑡′, a direct calculation shows that

Δ+(𝑥, 𝑦) = 1
(2𝜋)3 ∫

1
2𝜔p

𝑒𝑖𝑝(𝑥−𝑦)d3𝑝 = 𝑚
4𝜋2𝑟 𝐾1(𝑚, 𝑟) → √

𝜋𝑚𝑟
2

𝑒−𝑚𝑟
4𝜋2𝑟2 as 𝑟𝑚 ≫ 1,

(3.23)
where we have defined 𝑟 = |x − y|, so the Wightman function goes to zero.

Now we can directly obtain the so-called Pauli-Jordan function

([𝜙(𝑥), 𝜙(𝑦)]Ω, Ω) = Δ+(𝑥, 𝑦) − Δ+(𝑦 , 𝑥)
= − 1

(2𝜋)3 ∫
1
𝜔p

sin[𝑝(𝑥 − 𝑦)]d3𝑝. (3.24)

It is straightforward to observe that for 𝑥0 = 𝑦0, the last integral vanishes. How-
ever, if we fix (𝑥 −𝑦)2 < 0, this quantity also vanishes. Therefore, we have found
the microcausality condition of axiom 3.4. This is the basis of the free scalar
field in axiomatic quantum field theory.

Before finishing our general discussion about the scalar field, let us connect
the idea of the Green’s function with the Wightman function. We know that
the Green’s function, 𝐺(𝑥, 𝑦), of an operator is the integral kernel of the inverse
operator; therefore, for the Klein-Gordon equation (Eq. (3.2))

(□ + 𝑚2)𝐺(𝑥, 𝑦) = 𝛿(𝑥 − 𝑦), (3.25)

performing a Fourier transform3 over 𝑥 we get

(𝑝2 + 𝑚2)𝐺̃(𝜔,p; 𝑦) = 𝑒𝑖𝑝𝑦

𝐺(𝑥, 𝑦) = 𝐺(𝑥 − 𝑦) = 1
(2𝜋)4 ∫

𝑒−𝑖𝑝(𝑥−𝑦)
𝜔2 − 𝑝2 + 𝑚2d𝜔 d3𝑝, (3.26)

Thus, the Green’s function has poles at 𝜔 = ±√𝑝2 + 𝑚2 = ±𝑀 . Hence, we
can choose how to contour the poles. This possibility leads to an ambiguity in
defining the Green’s function. Some of these choices are more common than
others. Here we present some of them.

For 𝑥0 < 𝑦0 we can contour over the poles and close the curve on the lower-
half plane; see Fig. 3.1a. In this case we have the Retarded Green’s function, given
by

𝐺ret(𝑥, 𝑦) = ∫ 1
𝜔p

sin [𝜔p(𝑥0 − 𝑦0)] 𝜃(𝑥0 − 𝑦0)d3p. (3.27)

3Some care must be taken here. As we discuss in Sec. A.4, the 𝛿-function is not a function, it is
an irregular generalized function. The same may be true for 𝐺(𝑥, 𝑦), depending on the operator.
Therefore, the Fourier transform must be taken in the sense of generalized functions.
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Figure 3.1: Different complex plane contours.

If 𝑦0 < 𝑥0 we can contour the poles from below and close the curve on the
upper-half plane; see Fig. 3.1b. Thus, we have the Advanced Green’s function,
given by

𝐺adv(𝑥, 𝑦) = −∫ 1
𝜔p

sin [𝜔p(𝑥0 − 𝑦0)] 𝜃(𝑦0 − 𝑥0)d3p. (3.28)

If we go right through the poles, see Fig.3.1c, we must take the Cauchy prin-
cipal values of each divergent integral; this gives us

𝐺(𝑥, 𝑦) = 1
2 (𝐺ret(𝑥, 𝑦) + 𝐺adv) . (3.29)

Passing under the left pole but over the right one (see Fig. 3.1d), we obtain
the Causal (or Feynman) Green’s function given by

𝐺F(𝑥, 𝑦) = 𝑖 ∫ 1
2𝜔p

𝑒−𝑖𝑝(𝑥−𝑦)d4𝑝. (3.30)

If we choose a contour that encloses only the right pole, we obtain theWight-
man positive two-point function (see Eq. (3.21) and Fig. 3.2a). In contrast, a
contour that encloses only the left pole yields the Wightman negative frequency
two-point function (see Eq. (3.22) and Fig. 3.2b). We note that

𝐺F(𝑥, 𝑦) = 𝜃(𝑥0 − 𝑦0)Δ+(𝑥, 𝑦) + 𝜃(𝑦0 − 𝑥0)Δ−(𝑥, 𝑦). (3.31)
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If we take the contour around both poles counterclockwise (see Fig. 3.2c), we
obtain the commutator, that is, the Pauli-Jordan function given in Eq. (3.24).

Taking a clockwise contour around the left pole and a counterclockwise con-
tour around the right pole (see Fig. 3.2d), we obtain theHadamard function, given
by

𝐺(1)(𝑥, 𝑦) = −2𝑖(𝐺𝐹 − 𝐺) (3.32)

-M +M
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Im(ω)

(a) Contour of Wightman positive function.

-M +M

Re(ω)

Im(ω)

(b) Contour of Wightman negative function.
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Re(ω)

Im(ω)

(c) Contour of the commutator.

-M +M

Re(ω)

Im(ω)

(d) Contour of Hadamard function.

Figure 3.2: Different complex plane contours.

Naturally, all these Green’s functions are solutions of the Klein-Gordon Equa-
tion (for 𝑥 ≠ 𝑦 ). To finish the discussion about the scalar field, we note that the
support of the commutator is inside the light cone, while the support of the causal
Green’s function is the entire Minkowski spacetime.

3.1.2 Electromagnetic field
Vector fields are very similar to scalar fields, since both of them represent bosons.
However, when we follow the quantization procedure described in the last sec-
tion for vector fields, some peculiarities must be handled. Here we follow Ref.
[25].

The Lagrangian density of classical electrodynamics is given by

𝐿 = −14𝐹𝜇𝜈𝐹
𝜇𝜈 , (3.33)
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where 𝐹𝜇𝜈 is the electromagnetic field tensor given in terms of the four-potential
𝐴𝜇 by

𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇 . (3.34)

If one tries to quantize the electromagnetic field using the procedure of the
last section with this Lagrangian, one finds that the conjugate momentum of 𝐴4
vanishes identically; thus, the method does not work.

So, instead of working with the original Lagrangian, we adopt the following
Lagrangian density

𝐿 = −14𝐹𝜇𝜈𝐹
𝜇𝜈 − 1

2𝜕
𝜇𝐴𝜇𝜕𝜈𝐴𝜈 , (3.35)

and impose the additional initial condition that, for some fixed time 𝑥0 = 𝑡 , we
have

𝜕𝜇𝐴𝜇 = 𝜕0 (𝜕𝜈𝐴𝜈) = 0, (3.36)

for all x. Using this Lagrangian, we obtain the following equation of motion

□ (𝜕𝜈𝐴𝜈) = 0. (3.37)

From the initial condition, we obtain that 𝜕𝜈𝐴𝜈 must vanish for all times, which
reflects the invariance under gauge transformations that arises when imposing
Lorentz invariance on the equation of motion derived from Eq. (3.33); thus, the
usual electromagnetism is recovered. Therefore, the equation of motion is the
usual one, given by

□𝐴𝜈 = 0. (3.38)

We return to the problem of gauge invariance at the end of this section.
Proceeding with the Lagrangian of Eq. (3.35), we can construct the conjugate

momenta
𝜋𝑖(𝑥) = 𝑖𝐹0𝑖 = 𝜕0𝐴𝑖(𝑥) − 𝜕𝑖𝐴0(𝑥), 𝜋0 = 𝑖𝜕𝜈𝐴𝜈 . (3.39)

Now we impose the commutation relation at equal times

[𝜕0𝐴𝜇(x, 𝑡), 𝐴𝜈(x′, 𝑡)] = 𝛿𝜇𝜈𝛿(x − x′), (3.40)
[𝐴𝜇(x, 𝑡), 𝐴𝜈(x′, 𝑡)] = [𝜋𝜇(x, 𝑡), 𝜋𝜈(x′, 𝑡)] = 0.

We wish to decompose the vector field 𝐴𝜇 on a basis in the Hilbert space, simi-
larly to the procedure that led us to Eq. (3.11). We notice from the equation of
motion (3.38) that each component behaves like a massless harmonic oscillator4.
However, for each 𝑝 we have four possible directions; therefore, it is convenient

4Recall that we require the equation of motion to be Lorentz invariant (axiom 3.1). Therefore,
the vector 𝐴𝜇 transforms as a vector, and its components do not necessarily transform as scalars
by themselves.
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to introduce an orthonormal basis for each possible direction of the vector 𝑝. Let
us denote this basis by 𝑒(𝜆)𝜇 , where 𝜆 = 0, 1, 2, 3, and refer to 𝑒(𝜆)𝜇 as polarization
vectors. The vector 𝑒(𝜆)𝜇 satisfies the following conditions

⎧⎪
⎨⎪
⎩

𝑒(𝜆)0 = 𝑒(0)𝑖 = 𝑒(0)𝜇 = 0,
𝑒(1)𝑖 𝑘𝑖 = 𝑒(2)𝑖 𝑘𝑖 = 0,
𝑒(3)𝑖 = 𝑘𝑖

𝜔 ,
𝑒(0)0 = 1,

(3.41)

𝑒(𝜆)𝜇 𝑒(𝜆′)𝜇 = 𝛿𝜆𝜆′ . (3.42)
This choice justifies calling the polarizations associated with 𝜆 = 1, 2 the trans-
verse polarizations, the polarization corresponding to 𝜆 = 3 the longitudinal
polarization, and that corresponding to 𝜆 = 0 the scalar polarization. It also
follows directly that ∑𝜆 𝑒(𝜆)𝜇 𝑒(𝜆′)𝜈 = 𝛿𝜇𝜈 . Within such a picture, the most general
solution of the equation of motion is given by

𝐴𝜇(𝑥) = 1
(2𝜋)3 ∫

3
∑
𝜆=0

𝑒(𝜆)𝜇
√2𝜔

[𝑎(𝜆)(p)𝑒−𝑖𝑝𝑥 + 𝑎(𝜆)†(p)𝑒𝑖𝑝𝑥] d3𝑝 = 𝐴+𝜇 (𝑥) + 𝐴−𝜇 (𝑥).
(3.43)

Directly from this expansion and the commutation relation given in Eq. (3.40)
(at equal times), it follows that

[𝑎(𝜆)(p), 𝑎(𝜆′)†(p′)] = 𝛿𝜆𝜆′𝛿pp′ . (3.44)

From this, we can assume the second part of axiom 3.1 to define the vacuum Ω
and, by an analysis similar to that for the scalar field and the quantum harmonic
oscillator, we can define the Fock space of the system and interpret the action
of 𝑎(𝑙)(p) and 𝑎(𝑙)†(p) as the annihilation and creation of a photon with po-
larization 𝑙 = 1, 2, 3 and momentum p. It also follows that the vacuum state is
a cyclic vector for 𝑎†. However, now the scalar polarization introduces some
differences. For example, the creation operator is 𝑎(0)(p) while the annihilation
operator is 𝑎(0)†(p). This occurs because the operators of the scalar polarization
are anti-self-adjoint5.

Now, if we compute the Hamiltonian density associated with the Lagrangian
in Eq. (3.35) and use the expansion of 𝐴𝜇 , we obtain

𝐻 = 1
2 ∫𝜔

3
∑
𝜆=0

[𝑎(𝜆)(p)𝑎(𝜆)†(p) + 𝑎(𝜆)†(p)𝑎(𝜆)(p)] d3𝑝. (3.45)

5𝐴 is anti-self-adjoint if 𝐴∗ = −𝐴.
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Also, we can now compute the commutation relation for arbitrary times. Straight
from the expansion of 𝐴𝜇 , we get

[𝐴𝜇(𝑥), 𝐴𝜈(𝑥′)] =
𝛿𝜇𝜈
(2𝜋)3 ∫

1
𝜔 sin[𝑝(𝑥 − 𝑦)]d3𝑝, (3.46)

which is just the Pauli-Jordan function with an additional Kronecker 𝛿 . There-
fore, the microcausality condition is satisfied. Actually, to be historically precise,
the first quantization of a field is the quantization of the electromagnetic field
by M. Born, W. Heisenberg, and P. Jordan in Ref. [26], which follows the ideas
developed some months earlier by M. Born and P. Jordan in Ref. [27]. This last
equation was first obtained in the electromagnetic case, and Wightman used it
to propose the third axiom (axiom 3.4).

As in the scalar case, the commutator is a solution of the equation of motion
and also serves as a Green’s function. In fact, all the previous contours of the
complex plane that we presented in Fig. 3.1 and Fig. 3.2 can be discussed here
by setting 𝑚2 = 0.

Let us suppose that we have a systemwith only scalar polarization. Consider-
ing that the respective creation and annihilation operators are anti-self-adjoint,
we have that for a system with 𝑛 “scalar” photons the relation

𝑎(0)†𝑎(0) ̃𝜙(𝑛) = −𝑛 ̃𝜙(𝑛), (3.47)

holds, and the Hamiltonian of such a system will have negative energy contribu-
tions (see Eq. (3.45)); therefore, we must eliminate such scalar-polarized photons.

Up to now, we have ignored the condition that ensures the theory is gauge in-
variant; that is, we have ignored that the correct equations of motion (Maxwell’s
equations) follow from the Lagrangian given in Eq. (3.35) only if we ensure that
𝜕𝜇𝐴𝜇 = 0. In order to do that, we first change the representation of the cre-
ation and annihilation operators for the scalar polarization to ensure that they
are self-adjoint and behave as the other operators,6

(𝑎(0)† ̃𝜙(0)𝑛 , ̃𝜙(0)𝑛 ) = ( ̃𝜙(0)𝑛 , 𝑎(0) ̃𝜙(0)𝑛 ) = √𝑛 + 1, (3.48)

This ensures that 𝐴𝜇 is a self-adjoint operator; however, it contradicts the reality
requirements for the classical electromagnetic potentials. Through direct calcu-
lation, one can check that it leads to states with negative norm, which is not a
desirable property in any mathematical or physical theory. But this leads us to a
clue about what is happening. If we have some undesirable states, it may happen

6Remember that ̃𝜙(0)𝑛 stands for an element of the respective Fock space, which can be inter-
preted as “𝑛 photons with scalar polarization”.
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that the induced norm is not appropriate. Let us take any 𝜓 in the Fock space;
now we define the norm of 𝜓 by

‖𝜓 ‖𝜂 = (𝜂𝜓 , 𝜓 ), (3.49)

where 𝜂 is some unitary self-adjoint operator. Now the expectation value of any
operator will be given by

⟨𝐹⟩𝜂 = (𝜂𝐹𝜓 , 𝜓 ). (3.50)
Within this definition, a self-adjoint operator may have a non-real expectation
value. Of course, even within this norm, we impose that any physical state has
a positive norm.

Computing the expectation value of 𝐴𝜇 , one immediately finds that

[𝐴𝑖(𝑥), 𝜂] = 0, (3.51)
{𝐴0(𝑥), 𝜂} = 0. (3.52)

Alternatively, using the expansion of 𝐴𝜇 given in Eq. (3.43), we obtain

[𝑎(𝑖)(p), 𝜂] = 0, (3.53)
{𝑎(0)(p), 𝜂} = 0. (3.54)

Now we notice that the condition 𝜕𝜈𝐴𝜈 does not need to be satisfied as an
operator equation; we require only that its expectation value vanishes, that is
⟨𝜕𝜈𝐴𝜈⟩𝜂 = 0. Therefore, we can rewrite this condition as

𝜕𝜈𝐴−𝜈 (𝑥)𝜓 = 0, and (𝜕𝜈𝐴+𝜈 (𝑥)𝜂) 𝜓 = 0, (3.55)
or [𝑎(3)(p) + 𝑖𝑎(0)(p)] 𝜓 = 0 (3.56)

and it follows that

(𝜂𝜕𝜈𝐴𝜈(𝑥)𝜓 , 𝜓 ) = (𝜓 , (𝜕𝜈𝐴+𝜈 (𝑥)𝜂) 𝜓) + (𝜂𝜕𝜈𝐴−𝜈 (𝑥)𝜓 , 𝜓 ) = 0. (3.57)

Thus, our connection with the classical theory is ensured by any state that satis-
fies Eq. (3.56). Let us construct a general state given by

𝜓 = 𝜓𝑇 ∏
p

Φp, (3.58)

such that on 𝜓𝑇 only the operators related to the transverse polarization act, and
on Φp = Φ(0) + ∑𝑟 𝑐𝑟 (p)Φ(𝑟)(p) the operators of the longitudinal and scalar po-
larizations act. On each Φ(𝑛), 𝑎(3) and 𝑎(0) act as usual; that is,

𝑎(3)Φ(𝑛) = √𝑛 Φ(𝑛−1) and 𝑎(0)Φ(𝑛) = 𝑖√𝑛 Φ(𝑛−1). (3.59)
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Let us choose the quantities Φ(𝑛) to be orthogonal in the inner product induced
by 𝜂 and with norm

‖Φ(𝑛)‖𝜂 = 𝛿𝑛0. (3.60)
If we assume that there are no transverse photons, we obtain

⟨𝐴𝜇⟩𝜂 = 1
(2𝜋)3 ∫

1
2𝜔 {𝑒𝑖𝑝𝑥 [𝑒(3)𝜇 (𝜂𝑎(3)(p)Φp, Φp) + 𝑒(0)𝜇 (𝜂𝑎(0)(p)Φp, Φp)]

+𝑒−𝑖𝑝𝑥 [𝑒(3)𝜇 (𝜂𝑎(0)†(p)Φp, Φp) + 𝑒(4)𝜇 (𝜂𝑎(0)†(p)Φp, Φp)]} d3𝑝, (3.61)

and using the action of the annihilation operators, we get

⟨𝐴𝜇⟩𝜂 = 𝜕𝜇Λ(x), (3.62)

where
Λ(x) = 1

(2𝜋)3 ∫
1

2𝜔3 [𝑐∗(1)(p)𝑒𝑖𝑝𝑥 − 𝑐(1)(p)𝑒−𝑖𝑝𝑥] d3𝑝. (3.63)

Therefore, the gauge condition 𝜕𝜇Λ(x) = 0 ensures the connection with the clas-
sical equation of motion.

Within this scenario, we can compute the expectation value of the Hamilto-
nian in a state with only scalar and transverse photons; it will be given by

⟨𝐻⟩𝜂 = ∫𝜔 [𝑎(1)(p)𝑎(1)†(p) + 𝑁 (1)(p) + 𝑎(2)(p)𝑎(2)†(p) + 𝑁 (2)(p)] d3𝑝, (3.64)

where 𝑁 (1)(p) and 𝑁 (2)(p) are the number operators of the transverse polariza-
tions. Therefore, in practice, the last procedure uses the longitudinal polarization
to cancel out the scalar polarization. Thus, such polarizations do not contribute.
This procedure is known in the literature as the Gupta-Bleuler approach [28, 29].

As we have seen, the scalar and the electromagnetic fields have many similar-
ities. Most of the applications in this thesis are developed in terms of the scalar
field, but some of them can be extended to the electromagnetic case. The next
section is one of these cases; we are going to explore the simplest observable
feature of quantum fields in both the scalar and electromagnetic cases.

3.2 Zero-Point Energy
Let’s compute the expectation value of the Hamiltonian of Eq. (3.14) in the vac-
uum state

⟨𝐻⟩ = (𝐻Ω,Ω) = 1
2 ∫

𝜔p

(2𝜋)3 [(𝑎(p)𝑎
†(p)Ω, Ω) + (𝑁pΩ,Ω)] d3𝑝

= 1
2 ∫

𝜔p

(2𝜋)3d
3𝑝 = 1

2 ∫
𝑝2

(2𝜋)3d
3𝑝, (3.65)
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Performing a change of variables to a spherical coordinate system, we have that
d3𝑝 = 4𝜋𝑟2d𝑟 , where 𝑟 = ‖p‖ = √p ⋅ p, so it follows that

⟨𝐻⟩ = 1
(2𝜋)2 ∫

∞

0
𝑟3d𝑟 → ∞. (3.66)

Of course, the physical interpretation of a divergent quantity must be taken with
some care. We can see directly from the previous equations that such a problem
arises from the contribution of 𝑎(p)𝑎† in the Hamiltonian. A simple way to solve
that is to consider that only differences of energy are measurable and then sub-
tract 𝑎(p)𝑎† from the Hamiltonian so that the expected value of the energy in the
vacuum becomes zero. However, one may also suspect that such a divergence
appears because we have not used any boundary condition to obtain the field
expansion Eq. (3.11), and therefore, the differential equation is ill-posed.

As we have seen from the application of the spectral theorem (see theorem
2.9), the energy of the system can be obtained from its eigenvalues. Since the
Hamiltonian (3.14) and the Klein-Gordon equation (Eq. (3.2)) describe the same
system, let us analyze the massless Klein-Gordon equation

□𝜙(𝑥) = 0, (3.67)

and in order for the differential equation to be well-posed, we need to impose
some boundary conditions on the fields. Let’s say that we have the field between
two plates, one located at 𝑥 = 0 and another at 𝑥 = 𝐿; for simplicity, let’s take
the system in one spatial dimension with Dirichlet boundary conditions, that is,
𝜙(0) = 𝜙(𝐿) = 0. With these boundary conditions, the momentum is now a
discrete variable given by

p = 𝑛𝜋
𝐿 𝑥̂, 𝑛 = 1, 2, … (3.68)

With this new set of momenta, the energy of the system per unit area between
the plates is given by

𝐸(𝐿) = 1
2

∞
∑
𝑛=1

𝑛𝜋
𝐿 , (3.69)

which remains a divergent quantity. But, as we prove in Sec. A.4, this kind of
divergence can be regularized in the context of generalized functions. Let us
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choose the test function as 𝑒−𝜆𝑛𝜋/𝐿 where 𝑛 ∈ ℕ ∖ {0}, so we have

(𝑛𝜋2𝐿 , 𝑒
−𝜆𝑛𝜋/𝐿) = ∫ 𝑛𝜋

2𝐿 𝑒
−𝜆𝑛𝜋/𝐿d𝑛 = 𝜋

2𝐿
∞
∑
𝑛=1

𝑛𝑒−𝜆𝑛𝜋/𝐿

= −12
𝜕
𝜕𝜆

∞
∑
𝑛=1

𝑒−𝜆𝑛𝜋/𝐿

= −12
𝜕
𝜕𝜆

1
1 − 𝑒−𝜆𝑛𝜋/𝐿

= 𝜋
2𝐿

𝑒−𝜆𝑛𝜋/𝐿
(𝑒−𝜆𝑛𝜋/𝐿 − 1)2

= 𝐸(𝐿, 𝜆), (3.70)

Expanding it into a power series, we can write the first two terms as

𝐸(𝐿, 𝜆) = 𝐿
2𝜋𝜆2 − 𝜋

24𝐿. (3.71)

Now, if we compute in a similar way the vacuum energy outside the two plates,
we get

𝐸(𝑥 − 𝐿, 𝜆) = 𝑥 − 𝐿
2𝜋𝜆2 − 𝜋

24(𝑥 − 𝐿) , (3.72)

Then, the total energy is given by

𝐸𝐶 = 𝐸(𝐿, 𝜆) + 𝐸(𝑥 − 𝐿, 𝜆) = 𝑥
2𝜋𝜆2 − 𝜋

24 (
1
𝐿 + 1

𝑥 − 𝐿) , (3.73)

and the force between the plates is given by

𝐹𝐶 = − d
d𝐿𝐸𝐶 = − 𝜋

24𝐿2 + 𝑂(𝜆, 𝑥−1), (3.74)

Therefore, in the limit 𝜆 → 0 and 𝑥 → ∞, the force between the plates is finite.
With a similar calculation, in 1948 Casimir in Ref. [30] showed that there is a
measurable quantum field effect associated solely with the vacuum. In fact, the
existence of this force has been experimentally verified in many ways over the
years; see Refs. [31–33]. This effect has been called the Casimir effect.

3.2.1 Casimir effect
As we have explicitly shown, the last procedure is able to recover a finite force,
but not a finite energy. Can we use some mathematical method to obtain the
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energy as a finite quantity? To do that, let us take Eq. (3.69) and introduce a
parameter 𝑠 as follows

𝐸(𝐿; 𝑠) = 𝜋
2𝐿

∞
∑
𝑛=1

1
𝑛𝑠 , (3.75)

noting that we recover the previous equation if 𝑠 = −1; however, the series
converges only ifℜ(𝑠) > 0. Now, we notice that using a Mellin transform, 1

𝑛𝑠 can
be represented as

1
𝑛𝑠 =

𝜋 𝑠/2
Γ ( 𝑠2)

∫
∞

0
𝑥 𝑠

2−1𝑒−𝑛2𝜋𝑥 d𝑥, (3.76)

where Γ(𝑧) is the Gamma function. Therefore, we have that

𝐸(𝐿; 𝑠) = 𝜋 𝑠
2+1

2𝐿Γ ( 𝑠2)
∫
∞

0
𝑥 𝑠

2−1
∞
∑
𝑛=1

𝑒−𝑛2𝜋𝑥 d𝑥. (3.77)

Let us analyze the last series by denoting

𝜓(𝑥) =
∞
∑
𝑛=1

𝑒−𝑛2𝜋𝑥 . (3.78)

Using the Poisson summation formula (see Ref. [34]), one can prove that

Θ(𝑥) =
∞
∑
𝑛=−∞

𝑒−𝜋𝑛2𝑥 = 1
√𝑥

∞
∑
𝑛=−∞

𝑒−𝜋𝑛2/𝑥 = 1
√𝑥

Θ (1𝑥 ) , (3.79)

so the Θ function is a modular function of weight 1/2. It follows directly that

Θ(𝑥) = 2𝜓(𝑥) + 1 = 1
√𝑥

(2𝜓 (1𝑥 ) + 1) . (3.80)
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If we use this in Eq. (3.77), we obtain

𝐸(𝐿; 𝑠) = 𝜋 𝑠
2+1

2𝐿Γ ( 𝑠2)
∫
∞

0
𝑥 𝑠

2−1𝜓(𝑥) d𝑥

= 𝜋 𝑠
2+1

2𝐿Γ ( 𝑠2)
[∫

1

0
𝑥 𝑠

2−1𝜓(𝑥) d𝑥 + ∫
∞

1
𝑥 𝑠

2−1𝜓(𝑥) d𝑥]

= 𝜋 𝑠
2+1

2𝐿Γ ( 𝑠2)
{∫

1

0
𝑥 𝑠

2−1 [ 1
√𝑥

𝜓 (1𝑥 ) +
1

2√𝑥
− 1
2] d𝑥 + ∫

∞

1
𝑥 𝑠

2−1𝜓(𝑥) d𝑥}

= 𝜋 𝑠
2+1

2𝐿Γ ( 𝑠2)
[ 1
𝑠 − 1 − 1

𝑠 + ∫
1

0
𝑥 𝑠

2−
3
2𝜓 (1𝑥 ) d𝑥 + ∫

∞

1
𝑥 𝑠

2−1𝜓(𝑥) d𝑥]

= 𝜋 𝑠
2+1

2𝐿Γ ( 𝑠2)
[ 1
𝑠(𝑠 − 1) + ∫

∞

1
(𝑥−

𝑠
2−

1
2 + 𝑥 𝑠

2−1) 𝜓(𝑥) d𝑥] , (3.81)

which converges for all ℜ(𝑠) ≠ 1. For easier recognition, let us write

∞
∑
𝑛=1

1
𝑛𝑠 = 𝜁 (𝑠), (3.82)

so the last procedure gives us

𝜁 (𝑠) = 𝜋 𝑠− 1
2

Γ ( 𝑠2)
Γ (1 − 𝑠

2 ) 𝜁 (1 − 𝑠), (3.83)

or
𝜁 (𝑠) = 𝜗(𝑠)𝜁 (1 − 𝑠), (3.84)

where we define

𝜗(𝑠) = 𝜋 𝑠− 1
2

Γ ( 𝑠2)
Γ (1 − 𝑠

2 ) . (3.85)

Equation (3.83), or equivalently Eq. (3.84), is known as the reflection for-
mula (or functional equation) for the 𝜁 -function, and 𝜁 (𝑠) is known as the Rie-
mann zeta function, obtained by B. Riemann in 1859 (see Ref. [35]).

Back to the expression for the energy, in the new notation we have that

𝐸(𝐿; 𝑠) = 𝜋
2𝐿𝜁 (𝑠) =

𝜋 𝑠+ 1
2

2𝐿Γ ( 𝑠2)
Γ (1 − 𝑠

2 ) 𝜁 (1 − 𝑠), (3.86)
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and the Casimir energy follows for 𝑠 = −1; therefore,

𝐸𝐶 = 𝜋
2𝐿𝜁 (−1) = − 𝜋

24𝐿, (3.87)

which recovers the force given by Eq. (3.74). The last procedure shows that using
analytical continuation we can recover the Casimir force whenwe have Dirichlet
boundary conditions. In fact, this is just an application of a more general theory
of the Laplacian with Dirichlet boundary conditions, which allows us to renor-
malize zero-point energies. Let us now briefly discuss these properties, following
the Ref.[36].

Consider the eigenfunctions and eigenvalues of the negative Laplacian oper-
ator (−Δ) on a bounded (open connected) domain 𝐷 in Euclidean space ℝ𝑑 . The
eigenvalues form a countable sequence. Using 𝜆𝑘 for 𝑘 = 1, 2, … , they are ordered
as

0 < 𝜆1 < 𝜆2 ≤ … ≤ 𝜆𝑘 ≤ … (3.88)

when 𝑘 → ∞, with possible multiplicities. The eigenfunctions {𝜙𝑘}∞𝑘=1 form a
basis in ℒ 2(𝐷) with the boundary conditions. For simplicity, let us assume the
Dirichlet boundary conditions. Each 𝜙𝑘 has eigenvalue 𝜆𝑘(−Δ) ≡ 𝜆𝑘 .

In spectral theory, the asymptotic behaviour of the Dirichlet Laplacian eigen-
values in the analytic regularization procedure plays a fundamental role. This
behavior was first investigated by Weyl [37]. Applying the Fredholm-Hilbert
formalism of linear integral equations, it was proved that for 𝐷 ⊂ ℝ𝑑 , (𝑑 = 2, 3)

lim𝑘→∞
𝑘
𝜆𝑘

= Vol𝑑(𝐷)
4𝜋 , (3.89)

where Vol𝑑(𝐷) is the volume of the region 𝐷.
We begin our discussion by defining the density of eigenvalues as a sum of

delta functions:
𝑔(𝜆) = ∑

𝑘
𝛿(𝜆 − 𝜆𝑘), (3.90)

and the counting function 𝑁(𝜆) ∶= #{𝜆𝑚 ∶ 𝜆𝑚 < 𝜆}, defined as

𝑁(𝜆) = ∫
𝜆

0
𝑔(𝜆′)d𝜆′, (3.91)

which gives the number of elements in the sequence of eigenvalues that are
smaller than 𝜆. The asymptotic behavior of the counting function is given by

𝑁(𝜆) = 𝑓 (𝑑)𝜇𝑑(Ω)𝜆
𝑑
2 , (𝜆 → ∞), (3.92)
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where 𝑓 (𝑑) is an entire function of 𝑑 . Furthermore, the additional asymptotic
terms also provide information about the boundary of the domain. For example,
for 𝐷 ⊂ ℝ3, we obtain a contribution proportional to the surface area of 𝐷.

Our first observation concerns the renormalization of the zero-point energy.
Let us define the Minakshisundaram-Pleijel bilocal zeta-function 𝒵(𝑥, 𝑦; 𝑠) for
𝑠 ∈ ℂ as

𝒵(𝑥, 𝑦; 𝑠) =
∞
∑
𝑘=1

𝜙𝑘(𝑥)𝜙𝑘(𝑦)
𝜆𝑠𝑘

, (3.93)

which converges uniformly in 𝑥 and 𝑦 forℜ(𝑠) > 𝑠0 and was originally defined in
a connected compact Riemannian manifold [38]. From this bilocal zeta-function,
it is possible to define a spectral zeta-function associated with the eigenvalues of
the Laplacian in 𝐷 ⊂ ℝ𝑑 . We define Z(𝑠) = Tr(−Δ)−𝑠 , where

Z(𝑠) =
∞
∑
𝑘=1

𝜆−𝑠𝑘 = lim𝑚→∞

𝑚
∑
𝑘=1

𝜆−𝑠𝑘 . (3.94)

Using the counting function 𝑁(𝜆) and the definition of the Riemann-Stieltjes
integral, we obtain

𝑚
∑
𝑛=1

𝜆−𝑠𝑛 =
𝑘−1
∑
𝑛=1

𝜆−𝑠𝑛 + ∫
𝑏

𝑎
𝑡−𝑠d𝑁(𝑡) ; (3.95)

𝜆𝑘−1 ≤ 𝑎 < 𝜆𝑘 , 𝜆𝑚 ≤ 𝑏 < 𝜆𝑚+1.
Thus, the spectral zeta-function can be expressed as

Z(𝑠) =
𝑘−1
∑
𝑛=1

𝜆−𝑠𝑛 + ∫
∞

𝜆𝑘
𝑁(𝑡)𝑡−𝑠d. (3.96)

In principle, this formula is valid in the region of the complex plane where
the original sum converges. As the sum on the right-hand side is analytic over
the entire complex 𝑠-plane, the qualitative behavior of its analytic continuation is
determined by the Riemann-Stieltjes integral expressed in terms ofWeyl’s count-
ing function.

To determine the polar structure of the spectral zeta-function, let us consider
an evolution equation in ℒ 2(𝐷), formulated as the following initial-boundary
problem in (0, ∞) × 𝐷. For 𝐷 ⊂ ℝ𝑑 , we have

⎧⎪
⎨⎪⎩

𝜕𝑢
𝜕𝑡 = Δ𝑢 ,
𝑢(0, 𝑥) = 𝑓 (𝑥) ,
𝑢(𝑡, 𝑥)|𝑥∈𝜕𝐷 = 0.

(3.97)
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The weak solution 𝑢(𝑡, 𝑥), which satisfies the diffusion equation in the sense of
generalized functions, is given by

𝑢(𝑡, 𝑥) = ∫𝑝𝐷(𝑡, 𝑥, 𝑦)𝑓 (𝑦)d𝜇(𝑦), (3.98)

where d𝜇(𝑦) is the volume element of the domain, and 𝑝𝐷(𝑡, 𝑥, 𝑦) is the diffusion
kernel, i.e., the positive fundamental solution to the heat equation. For a generic
boundary condition, the spectral decomposition of the diffusion kernel can be
represented as

𝑝𝐷(𝑡, 𝑥, 𝑦) =
∞
∑
𝑘=1

𝑒−𝑡𝜆𝑘𝜙𝑘(𝑥)𝜙𝑘(𝑦). (3.99)

Using a Mellin transform and the definition of the Minakshisundaram-Pleijel
zeta-function 𝒵(𝑥, 𝑦; 𝑠), we obtain

Γ(𝑠)𝒵(𝑥, 𝑦 ; 𝑠) = ∫
∞

0
𝑡 𝑠−1 𝑝𝐷(𝑡, 𝑥, 𝑦)d𝑡 . (3.100)

For 𝑥 ≠ 𝑦 , Γ(𝑠)𝒵(𝑥, 𝑦 ; 𝑠) is a regular function of 𝑠 in the entire complex plane.
For 𝑥 = 𝑦 , there is a pole at 𝑠 = 1. Since we are interested in global issues, let us
define the trace of the diffusion kernel, written as Θ(𝑡) = Tr (𝑒𝑡Δ), where, using
the Riemann-Stieltjes integral, we can write

Θ(𝑡) = ∫
∞

0
𝑒−𝜆𝑡 d𝑁(𝜆) =

∞
∑
𝑘=1

𝑒−𝜆𝑘 𝑡 , 𝑡 > 0. (3.101)

The spectral zeta-function can be represented as

Z(𝑠) = 1
Γ(𝑠) ∫

∞

0
𝑡 𝑠−1Θ(𝑡)d𝑡 . (3.102)

Its polar structure in the extended complex plane is determined by the classical
spectral invariants, which are the expansion coefficients at 𝑡 → 0+ of the diffu-
sion kernel trace.

When 𝜕𝐷 ≠ ∅, the coefficients of the asymptotic expansion of the heat trace
have been calculated for a variety of boundary conditions:

lim
𝑡→0+

Θ(𝑡) = (4𝜋𝑡)− 𝑑
2 [

𝐾
∑
𝑝=0

𝑐𝑝(𝐷)𝑡
𝑝
2 + 𝑜(𝑡 𝐾+12 )], (3.103)

where the coefficients 𝑐𝑝(𝐷) are related to the geometric characteristics of the
bounded domain. Useful information on the heat kernel coefficients in mathe-
matical and physical literature can be found in Ref. [39–41]. By a Tauberian
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theorem, we are able to connect the first term of the above asymptotic expan-
sion with Weyl’s asymptotic behavior of the Laplace operator spectrum.

For the case of vacuum energy, Fulling has stressed the need to study the
cylinder kernel [42, 43]. See, for example, [44]. To implement this idea, let us
define the zeta-function 𝜁√𝐴(𝑠) constructed with the energies 𝜔𝑘 of each normal
mode:

𝜁√𝐴(𝑠) =
∞
∑
𝑘=1

1
𝜔𝑠
𝑘
, ℜ(𝑠) > 𝑠1. (3.104)

The renormalized vacuum energy is defined as ⟨𝐸⟩𝑟 = 𝜁√𝐴(𝑠)|𝑠=−1. Using aMellin
transform again, we obtain

∞
∑
𝑘=1

1
𝜔𝑠
𝑘
= 1

Γ( 𝑠2)
∫
∞

0
𝑡 𝑠2−1

∞
∑
𝑘=1

𝑒−𝜔2
𝑘 𝑡d𝑡 . (3.105)

The zeta-function 𝜁√𝐴(𝑠) is a meromorphic function of 𝑠 with simple poles. In the
case where 𝑠 = −1 is a pole, we can obtain a representation in a neighborhood
of the pole, including some regular part known as the renormalized vacuum en-
ergy. We emphasize that the measurable Casimir energy is obtained from this
mathematical formalism based on analytic continuation, where undesirable po-
lar contributions must be removed through a renormalization procedure, as we
have shown in Eq. (3.87). A straightforward calculation shows that the Casimir
energy for the slab geometry in 𝑑 dimensions (ℝ𝑑−1 × [0, 𝐿]) gives us the Casimir
energy per unit of hyperarea of the surfaces:

𝜖𝑑(𝐿) = −
𝜋 𝑑

2 Γ (−𝑑
2)

2(2𝐿)𝑑 𝜁 (−𝑑). (3.106)

At this point, it is clear that the Casimir energy depends on the geometry of
the manifold. Different geometries have been considered in the literature; see,
e.g., Ref. [45].

Now, let us obtain the Casimir energy for the electromagnetic field inside
a perfect 𝑑-dimensional waveguide with sides 𝑎, 𝑏, with the same procedure of
Ref.[46]. That is, our manifold is ℝ𝑑−2 × [0, 𝑎] × [0, 𝑏]. Now we recast the speed
of light, 𝑐, and the reduced Planck constant, ℏ. In a future application where we
use this result, it will be useful to have 𝑐 and ℏ explicitly in the result. Using
the equation of motion (Eq. (3.38)) and the spectral theorem, we have the energy
denoted by 𝐸𝑑(𝐿1, 𝐿2, … , 𝐿𝑑−2, 𝑎, 𝑏), given by the Riemann-Stieltjes integral of the
spectral measure of the Hamiltonian operator in such a domain. Assuming that
𝐿𝑖 ≫ 𝑎, 𝑏 for all 𝑖 = 1, … , 𝑑 − 2, one can write this quantity as
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𝐸𝑑(𝐿1, ..., 𝐿𝑑−2, 𝑎, 𝑏) =
𝐴𝑑−2

(2𝜋)𝑑−2 ∫
∞
∑
𝑚,𝑛=1

ℏ𝜔𝑚𝑛(𝑞)d𝑑−2𝑞 (3.107)

where we have used the following definition of the hyper-area

𝐴𝑑−2 =
𝑑−2
∏
𝑖=1

𝐿𝑖, (3.108)

with the frequencies given by

𝜔𝑚𝑛(𝑞) = 𝑐√𝑞2 + (𝑚𝜋𝑎 )
2
+ (𝑛𝜋𝑏 )

2
, (3.109)

and the continuous momenta
𝑞2 = 𝑞21 + ... + 𝑞2𝑑−2. (3.110)

It is clear that we need to regularize expression (3.107). As in the previous exam-
ple, we apply an analytic regularization procedure by introducing a parameter,
𝑠 ∈ ℂ, and our Casimir energy will be given by an analytic extension. With some
straightforward manipulations and inserting the parameter for analytic continu-
ation, Equation (3.107) can be rewritten in a more illuminating form:

𝜖𝑑(𝑎, 𝑏; 𝑠) = 1
𝐴𝑑−2

𝐸𝑑(𝐿1, ..., 𝐿𝑑−2, 𝑎, 𝑏; 𝑠)

= ℏ
2(2𝜋)𝑑−2 ∫[

∞
∑′

𝑚,𝑛=−∞
𝜔−𝑠𝑚𝑛(𝑞) − 2

∞
∑
𝑛=1

𝜔−𝑠0𝑛 (𝑞) − 2
∞
∑
𝑚=1

𝜔−𝑠𝑚0(𝑞)] d𝑑−2𝑞,

(3.111)
where the prime over the summation sign means that the term with 𝑚 = 𝑛 = 0
is removed from the double series. To proceed with the calculations, we perform
a change of variables in the continuum momenta to a spherical coordinate sys-
tem, with radial variable given by 𝑞 and angular element dΩd−2. The angular
integration leads to the factor

∫ dΩ𝑑−2 = 2𝜋 𝑑−2
2

Γ (𝑑−22 )
, (3.112)

and the integration over 𝑞 can also be performed, leading to

𝜖𝑑(𝑎, 𝑏; 𝑠) =
ℏ 𝑐 𝜋− 𝑑

2 Γ (1 + 𝑠
2 −

𝑑
2)

2𝑑−1Γ ( 𝑠2)
[𝑍2 (1𝑎 ,

1
𝑏 ; 𝑠 − 𝑑 + 2)

− ( 1
𝑎𝑑−2−𝑠 +

1
𝑏𝑑−2−𝑠 ) 𝜁 (𝑠 − 𝑑 + 2)] , (3.113)
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where we have used the definition of the Epstein zeta-function

𝑍2(𝑥, 𝑦 ; 𝑠) =
∞
∑′

𝑚,𝑛=−∞
[(𝑥𝑚)2 + (𝑦𝑛)2]−𝑠/2 . (3.114)

Using the reflection formula for the Epstein zeta-function [45], we can write

𝑍2 (1𝑎 ,
1
𝑏 ; 𝑠 − 𝑑 + 2) = 𝑎𝑏

𝜋 𝑠+ 𝑑−1
2

Γ (𝑑−𝑠2 )
Γ (2−𝑑+𝑠2 )

𝑍2(𝑎, 𝑏; 𝑑 − 𝑠), (3.115)

and for the Riemann zeta-function, we use the reflection formula given in Eq.
(3.83) to obtain

Γ (1 + 𝑠
2 − 𝑑

2) 𝜁 (𝑠 − 𝑑 + 2) =
Γ (𝑑−1−𝑠2 )

𝜋−𝑠+ 𝑑
2+1

𝜁 (𝑑 − 1 − 𝑠). (3.116)

One can derive a general expression for 𝜖𝑑(𝑎, 𝑏; 𝑠) employing the analytic exten-
sion procedure. The Casimir energy for the waveguide is obtained for 𝑠 = −1:

𝜖𝑑(𝑎, 𝑏; −1) = −𝜋
− 𝑑+1

2

2𝑑 [𝑎𝑏𝜋1−
𝑑−1
2 Γ (𝑑 + 1

2 ) 𝑍2 (𝑎, 𝑏; 𝑑 + 1)

− ( 1
𝑎𝑑−1 + 1

𝑏𝑑−1)
Γ (𝑑2)

𝜋 𝑑
2+2

𝜁 (𝑑)] . (3.117)

This expression remains finite for 𝑑 ≥ 3. In the case of 𝑑 = 3, we obtain

𝜖3(𝑎, 𝑏; −1) = ℏ 𝑐
16𝜋2 (

1
𝑎2 + 1

𝑏2) 𝜁 (3) −
ℏ 𝑐
8𝜋 𝑎𝑏 𝑍2 (𝑎, 𝑏; 4) . (3.118)

The sign difference between the two contributions ensures the well-known be-
havior of the change of sign of the Casimir force in a box geometry [47].

In the last two examples of explicit calculation of the Casimir force, we have
assumedDirichlet boundary conditions. In the electromagnetic case, this is equiv-
alent to considering a perfect conductor. In the next section, we explore the case
of non-ideal boundary conditions to approach a dielectric material.

3.2.2 Non-ideal Boundary Conditions
The Casimir effect in real materials is an important topic of modern research. In
this context, the work of Lifshitz serves as a cornerstone that advanced the analy-
sis of the Casimir effect in real material media [48]. The basic idea is tomodel vac-
uum quantum fluctuations as a stochastic fluctuating electromagnetic field and
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to use the fluctuation-dissipation theorem to determine the frequency-dependent
Casimir energy. The general result obtained by Lifshitz provides a formula for
the Casimir energy density and pressure in a plane geometry filled with different
dielectric media. Other approaches have enriched the discussion and reinforced
Lifshitz’s result. For instance, using the Green’s function approach, Dzyaloshin-
skii et al. obtained the same result for the Casimir effect in dielectrics [49]. We
also mention the approach proposed by Van Kampen et al., where the physical
effect of the dielectric is carried by the so-called surface stationary modes of the
electromagnetic field [50]. The discrepancy between the dissipationless plasma
model of dielectric materials and the dissipative Drude model has also been dis-
cussed in the literature, e.g., Ref. [51].

In Ref.[36], we propose a new way to explore the finite conductivity scenario
for the slab geometry and also for the bidimensional box. This approach is based
on the spectral theory presented in the previous section and on approximate
functional equations.

Later in this section, we introduce the Van Kampen method of surface modes
to calculate the Casimir energy of a three-dimensional waveguide filled with a
dielectric. This result has been obtained by the author and collaborators in Ref.
[46]. Although finite-sized cavities with perfect conductors have been discussed
before (see Ref. [45]), the inclusion of the dielectric leads to highly non-trivial
problems. The case of a dielectric cylinder was discussed in Ref. [52]. However,
the rectangular waveguide has not been discussed, we believe, because ensuring
the consistency of boundary conditions at the corners is problematic.

Finite conductivity via approximate functional equations

Here, we present the calculations and results of Ref. [36].
Our main objective is to discuss the Casimir energy of a massless scalar field

at zero temperature satisfying non-ideal boundary conditions. Due to the similar-
ity between the quantized electromagnetic field and massless scalar fields satis-
fying Dirichlet and Neumann boundary conditions, our problem has formal sim-
ilarities with the conductivity correction to the Casimir force of the quantized
electromagnetic field. One initial approach is to describe finite conductivity us-
ing microscopic models. A microscopic approach has been extensively studied
by G. Barton (see, e.g., Refs. [53–55]). The case of QED in a dielectric matter back-
ground has also been analyzed, with various quantization schemes proposed. For
the nonlinear case, see Refs. [56–58], and for the dispersive case, see Ref. [59].

Instead of addressing the nonlinear problem ofmicroscopicmodeling of finite
conductivity, i.e., non-ideal boundary conditions, we confine ourselves to using
the spectral theory of elliptic differential operators. Corrections to the Casimir
force can be discussed using an analytic regularization procedure and approxi-
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mate functional equations of spectral zeta-functions. These functional equations
express the Riemann and Epstein zeta-functions as finite sums outside their orig-
inal domain of convergence. Connections between number theory and quantum
field theory have been explored in the literature, as seen in arithmetic quantum
theory [60–65].

Using our methodology, the total renormalized energy of scalar fields in the
presence of bounded domains can always be derived using an analytic regular-
ization procedure, where the Dirichlet and Neumann Laplacian are used, as pre-
sented in Sec. 3.2. In Eq.(3.86), we have shown that the vacuum energy in the
slab geometry ℝ𝑑−1 × [0, 𝐿] with Dirichlet boundary conditions can be written
in terms of the Riemann zeta-function. To calculate its correction due to non-
ideal boundary conditions, we represent the energy density using an asymptotic
expansion derived byHardy and Littlewood. They obtained an approximate func-
tional equation for the Riemann zeta-function expressed as finite sums beyond
their original domain of convergence [66]. Next, we generalize this result to the
case of a field in the presence of a rectangular box with lengths 𝐿1 and 𝐿2 with
non-ideal boundary conditions. Other generalizations of the Riemann functional
equation have been presented in the literature. Recently, the introduction of dif-
ferent cut-offs in the integral representation of the zeta-function, which remain
invariant under the transformation 𝑥 ↦ 1/𝑥 , has been discussed. It has been
shown that the Riemann functional equation can be generalized with the same
symmetry 𝑠 → (1 − 𝑠) in the critical strip [67].

In the Lifshitz approach, the dispersion forces between dissipative media
arise from the fluctuating electromagnetic field defined both within and outside
the media. Using the fluctuation-dissipation theorem, the Lifshitz expression for
the force between plates depends on the dielectric functions of the surfaces and
the medium in which they are immersed. The finite conductivity correction to
the ideal Casimir calculation is obtained using the frequency dependence of the
dielectric function. The imperfect conductivity at high frequencies can be mod-
eled by introducing only the plasma frequency 𝜔𝑝 of the plates. It is important
to note that the Casimir result is recovered at distances larger than the plasma
wavelength.

In our case, we discuss the vacuum energy of a quantized scalar field in the
presence of classical surfaces, where the field satisfies non-ideal boundary con-
ditions. These can be understood as finite conductivity conditions, which we
refer to as ideal high-pass Dirichlet boundary conditions. To clarify, our boundary
condition applies to frequencies: for frequencies smaller than some 𝜔𝑘𝑐 , we have
the usual Dirichlet boundary conditions; otherwise, the plates are transparent to
the field. However, a crucial point is that it is not convenient to simply calculate
the correction to the renormalized vacuum energy by separating the effects of
the low-energy vacuum modes from the high-energy modes using a sharp cut-
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off. Since the energy density is a sum of positive terms, one always obtains a
positive energy density.

𝜖f.c.𝑑 (𝐿) =
𝑘𝑐
∑
𝑘=1

𝜔𝑘 > 0, (3.119)

where 𝜔𝑘𝑐+1 is plasma frequence of the material.
We start by using an analytic regularization procedure and the fact that,

for Dirichlet boundary conditions, the eigenvalues vary continuously under a
smooth deformation of the domain (spectral stability of the elliptic operator un-
der domain deformation). Moreover, the minimax principle states that the eigen-
values monotonically decrease when the domain is enlarged,

𝜎𝑚(𝐷1) ≥ 𝜎𝑚(𝐷2), 𝐷1 ⊂ 𝐷2. (3.120)

By the above arguments, we can use an approximate functional equation that
expresses the Riemann zeta-function as finite sums outside its original domain
of convergence.

Initially, we use a classical result by Hardy and Littlewood, following the
derivation discussed in Ref. [68]. Let us write the Riemann zeta-function as

𝜁 (𝑠) = ∑
𝑛≤𝑛𝑐

𝑛−𝑠 + ∑
𝑛>𝑛𝑐

𝑛−𝑠

= ∑
𝑛≤𝑛𝑐

𝑛−𝑠 + 1
Γ(𝑠) ∫

∞

0
𝑥 𝑠−1 (∑

𝑛>𝑛𝑐
𝑒−𝑛𝑥) d𝑥

= ∑
𝑛≤𝑛𝑐

𝑛−𝑠 + 1
Γ(𝑠) ∫

∞

0
𝑥 𝑠−1 𝑒−𝑛𝑐𝑥
𝑒𝑥 − 1 d𝑥, (3.121)

where the absolute convergence justifies the inversion of the order of summation
and integration. To proceed, we analyze the following integral 𝐼 (𝑠). We have

𝐼 (𝑠) = ∫𝐶
𝑧𝑠−1 𝑒−𝑛𝑐𝑧
𝑒𝑧 − 1 d𝑧, (3.122)

where the contour 𝐶 starts at infinity on the positive real axis, encircles the origin
once in the positive direction, excluding the points ±2𝜋𝑖, ±4𝜋𝑖, ..., and returns to
infinity. We obtain

𝐼 (𝑠) = (𝑒2𝜋 𝑖𝑠 − 1)∫
∞

0
𝑥 𝑠−1 𝑒−𝑛𝑐𝑥
𝑒𝑥 − 1 d𝑥. (3.123)



66 Zero-Point Energy

Using the analytic continuation principle, we can write

𝜁 (𝑠) = ∑
𝑛≤𝑛𝑐

𝑛−𝑠 + 𝑒−𝜋𝑖𝑠Γ(1 − 𝑠)
2𝜋𝑖 ∫𝐶

𝑧𝑠−1 𝑒−𝑛𝑐𝑧
𝑒𝑧 − 1 d𝑧. (3.124)

From the above equation, we find an approximate representation of the zeta-
function in terms of finite sums. Once can prove that (see Ref. [68])

𝜁 (𝑠) = ∑
𝑛≤ 𝑥

1
𝑛𝑠 +

(2𝜋)𝑠Γ (1 − 𝑠)
Γ (1 − 𝑠

2) Γ (
𝑠
2)

∑
𝑛≤ 𝑦

1
𝑛1−𝑠 +𝑂(𝑥

−𝜎 ) + 𝑂(𝑡 12−𝜎 𝑦𝜎−1), (3.125)

for 0 ≤ 𝜎 < 1, which holds for given 𝑥, 𝑦 , 𝑡 > 𝐶 > 0 satisfying 2𝜋𝑥𝑦 = 𝑡 where
𝑡 ≫ 1. This is known as an approximate functional equation.

For simplicity, using the approximate functional equation, we discuss the case
of a slab geometry ℝ𝑑−1×[0, 𝐿]. Drawing a parallel with the electromagnetic case,
in the scalar field scenario, we define the plasma frequency 𝜔𝑝 and the plasma
wavelength 𝜆𝑝 = 2𝜋/𝜔𝑝 . Next, we define a “critical” mode index 𝑛𝑐 , which will
be related to the plasma wavelength.

In order to find an adequate maximum number of states 𝑛𝑐 for a single com-
pactified direction, we first introduce the notion of the density of states 𝜌(𝑘) in
the phase space and the number of states d𝑁 = 𝜌(𝑘)𝑑𝑑𝑘 that lie between 𝑘 and
𝑘 + 𝑑𝑘. In the 𝑑-dimensional space, where all the directions are finite and have
lengths 𝐿1, 𝐿2, ..., 𝐿𝑑−1, 𝐿, the density of states is simply

𝜌(𝑘) = ( 𝐿
𝜋𝑑 )

𝑑−1
∏
𝑖=1

𝐿𝑖 , (3.126)

we can find the number of states inside a volume that possess themaximum value
of momentum 𝑘𝑚𝑎𝑥 as

𝑁(𝑘𝑚𝑎𝑥 ) = ∫|𝑘|<𝑘𝑚𝑎𝑥
𝑘𝜌(𝑘)d𝑘 = 𝜌 𝜋𝑑/2

Γ(𝑑2 + 1)
𝑘𝑑𝑚𝑎𝑥 , (3.127)

where we have used the definition of the volume of a sphere in 𝑑 dimensions. On
the other hand, we are interested in obtaining the maximum number of states in
a single compactified direction 𝑛𝑐 . We have that

𝑁(𝑘𝑚𝑎𝑥) = 𝜋𝑑/2
Γ(𝑑2 + 1)

𝑛𝑑𝑐 . (3.128)
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Therefore, we identify 𝑛𝑑𝑐 = 𝜌𝑘𝑑𝑚𝑎𝑥 . Now, we relate the maximum wave number
with the plasma frequency of the material in such a manner that 𝑘𝑚𝑎𝑥 = 2𝜋/𝜆𝑝 .
With all this, after some algebra, we conclude that

𝑛𝑐 = 2 (𝐿
1/𝑑
𝜆𝑝

)
𝑑−1
∏
𝑖=1

𝐿1/𝑑𝑖 , (3.129)

since all the directions 𝐿𝑖 from 𝑖 = {1, 2, ..., 𝑑 − 1} are much larger than 𝐿. The
only dependence of the maximum number of states is of the form

𝑛𝑐(𝐿) ≡ ( 𝐿
𝜆𝑝

)
1/𝑑

. (3.130)

In the Hardy and Littlewood approximate functional equation, we choose

𝑥 = 𝑦 = ( 𝐿
𝜆𝑝

)
1/𝑑

= 𝑛𝑐 ⇒ 𝑡 = 2𝜋 ( 𝐿
𝜆𝑝

)
2/𝑑

= 2𝜋𝑛2𝑐 . (3.131)

Using the asymptotic expansion, Eq. (3.125), and the definition in Eq. (3.85), we
obtain the Casimir energy as

𝜖𝑑(𝐿) = −
𝜋 𝑑

2 Γ (−𝑑
2)

2(2𝐿)𝑑 [𝐻𝑛𝑐 (−𝑑) + 𝜗(−𝑑)𝐻𝑛𝑐 (𝑑 + 1)] . (3.132)

The quantities 𝐻𝑛(𝑠) are the generalized harmonic numbers, defined by

𝐻𝑛(𝑠) =
𝑛
∑
𝑘=1

1
𝑘𝑠 . (3.133)

Since Eq. (3.132) only makes sense as an analytic continuation, these finite sums
must be understood in that context. Moreover, we emphasize that the equality
holds by analytic continuation outside the strip 0 < 𝜎 < 1. This can be demon-
strated using an analytic continuation of the asymptotic expansion.

Each generalized harmonic number has an expression for its domain of inter-
est in the complex plane. Let us start with the second term in the sum, 𝐻𝑛𝑐 (𝑑 +1).
Formally, this quantity is given by

𝐻𝑛𝑐 (𝑑 + 1) ≡
𝑛𝑐
∑
𝑛=1

1
𝑛𝑑+1 . (3.134)
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However, since we start from Eq. (3.106), which is an analytic continuation, the
finite sum should be considered in the range of interest. In this situation, we can
use a known expression:

𝐻𝑛𝑐 (𝑑 + 1) = 𝜁 (𝑑 + 1) + (−1)𝑑
𝑑! 𝜓𝑑(𝑛𝑐 + 1), (3.135)

which holds for 𝑛𝑐 ∈ ℝ ∖ {−1, −2, −3, … } and 𝑑 ∈ ℕ (see, e.g., [69]). Here, 𝜓𝑚(𝑥)
is the polygamma function. Using a recurrence relation and an expression for
large arguments, we can write the polygamma function as

𝜓𝑑(𝑛𝑐 + 1) = (−1)𝑑𝑑!
𝑛𝑑+1𝑐

+ (−1)𝑑+1
∞
∑
𝑘=0

(𝑘 + 𝑑 − 1)!
𝑘!

𝐵𝑘
𝑛𝑑+𝑘𝑐

, (3.136)

where 𝐵𝑘 are the Bernoulli numbers (we take the convention 𝐵1 = 1/2). Using
the definition of 𝑛𝑐 and considering the limit 𝐿/𝜆𝑝 ≫ 1, we can write

𝜓𝑑(𝑛𝑐 + 1) ≈ (−1)𝑑+1 (
𝜆𝑝
𝐿 ) [(𝑑 − 1)! − 1

2𝑑! (
𝜆𝑝
𝐿 )

1
𝑑
] , (3.137)

which allows us to express 𝐻𝑛𝑐 (𝑑 + 1) in powers of 𝜆𝑝/𝐿.
For the first term in Eq. (3.132), we formally have

𝐻𝑛𝑐 (−𝑑) ≡
𝑛𝑐
∑
𝑛=1

1
𝑛−𝑑 . (3.138)

Using elementary operations and the uniqueness of analytic continuation, it is
straightforward to see that

𝐻𝑛𝑐 (−𝑑) = 𝜁 (−𝑑) − 𝜁𝐻 (−𝑑; 𝑛𝑐 + 1), (3.139)

where 𝜁𝐻 (−𝑑; 𝑛𝑐 + 1) is the Hurwitz zeta-function, defined by

𝜁𝐻 (𝑠; 𝑎) ≡
∞
∑
𝑛=0

1
(𝑛 + 𝑎)𝑠 , (3.140)

for ℜ(𝑠) > 1 and 𝑎 ≠ 0, −1, −2, … .
Let us define the Casimir energy per unit area with non-ideal boundary con-

ditions, i.e., finite conductivity (f.c.), as

𝜖f.c.𝑑 (𝐿) ≡ − 1
𝐿𝑑

𝜋𝑑/2
2𝑑+1 Γ (−

𝑑
2) 𝜁𝐻 (−𝑑; 𝑛𝑐 + 1). (3.141)
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Once this is established, we can identify the contribution from the ideal boundary
conditions, while the remaining term can be regarded as a correction due to the
dielectric properties. We obtain

𝜖f.c.𝑑 (𝐿) = 𝜖𝑑(𝐿) +
Γ(1 + 𝑑)𝜆𝑝
2 Γ (1 + 𝑑

2)
( 1
4√𝜋

)
𝑑
[ 1
𝐿𝑑+1𝑑 − 𝜆

1
𝑑𝑝

2𝐿𝑑+1+
1
𝑑
] . (3.142)

As observed, in the slab geometry, the Casimir force is a negative quantity
(𝜖𝑑(𝐿) < 0), while the second contribution in the above equation is positive.
We have successfully derived the Casimir energy per unit area with non-ideal
boundary conditions. It is worth noting that the first finite conductivity correc-
tion to the electromagnetic Casimir energy has the same order as the correc-
tion obtained using the Lifshitz calculations. In contrast, the second correction
is smaller: while the Lifshitz formula gives a second correction as 𝐿−5, our ap-
proach yields 𝐿−

13
3 . Fixing 𝑑 = 3 and disregarding the second correction we find

that
ℰ f.c.3 (𝐿) ≈ −0.007𝐿3 + 0.002𝜆𝑝

𝐿4 , (3.143)

where the correction term in slighlty smaller than the one obtained in the Lif-
shitz’s formula. This means that some refinement in the choice of 𝑛𝑐 may be
needed. However this does not shed shadows in the remarkable fact that the
power law of the correction is obtained from the approximate functional equa-
tion. A fundamental aspect that requires careful investigation is the discussion
of vacuum energy in a bounded domain.

Now let us apply the same set of ideas to the case of a finite volume box in the
bidimensional case. To that end, let us now discuss the eigenvalues of a second-
order elliptic self-adjoint partial differential operator acting on scalar functions
on a bounded domain. We consider the eigenvalues of −Δ on a connected open
set 𝐷 in Euclidean space ℝ2. We assume that the massless scalar field is confined
in a rectangular box, with lengths 𝐿1 and 𝐿2, obeying Dirichlet boundary condi-
tions. The eigenfrequencies that we use to expand the field operator are given
by

𝜔𝑛1𝑛2 = [(𝑛1𝜋𝐿1
)
2
+ (𝑛2𝜋𝐿2

)
2
]
1
2
; 𝑛1, 𝑛2 = 1, 2, … (3.144)

The unrenormalized vacuum energy in this case is

𝑈 (𝐿1, 𝐿2) = 1
2

∞
∑

𝑛1,𝑛2=1
𝜔𝑛1𝑛2 . (3.145)
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Using an analytic regularization procedure, the divergent expression can be writ-
ten as

𝐸(𝐿1, 𝐿2, 𝑠) = 1
2

∞
∑

𝑛1,𝑛2=1
𝜔−2𝑠𝑛1𝑛2 , (3.146)

for 𝑠 ∈ ℂ. Observe that the vacuum energy is obtained when 𝑠 = −1
2 . The above

double series converges absolutely and uniformly forℜ(𝑠) > 1. An analytic func-
tion, which plays an important role in algebraic number theory, is the Epstein
zeta-function associated with quadratic forms [70]. Suppose that

𝜙(𝑎, 𝑏, 𝑐; 𝑥, 𝑦) = 𝑎𝑥2 + 𝑐𝑥𝑦 + 𝑏𝑦2, (3.147)

where 𝑎, 𝑏 and 𝑐 ∈ ℝ, 𝑎 > 0, and 𝜂 = 4𝑎𝑏 − 𝑐2 > 0. Let us define the function 𝒜(𝑠)
by the series

𝒜(𝑎, 𝑏, 𝑐; 𝑠) =
∞
∑′

𝑛1,𝑛2=−∞
𝜙−𝑠(𝑎, 𝑏, 𝑐; 𝑛1, 𝑛2), (3.148)

The above series defines an analytic function for 𝑠 = 𝜎 + 𝑖𝑡 , (𝜎 ∈ ℝ and 𝑡 ∈ ℝ),
with 𝜎 > 1, where we adopt the notation that the prime sign in the summation
indicates that the contribution 𝑛1 = 𝑛2 = 0 (the origin of the mode space) must be
excluded. This particular case of the Epstein zeta-function can be analytically
continued to the whole complex plane, except for a simple pole at 𝑠 = 1 [71]. This
double series exhibits a functional equation that can be obtained using properties
of the theta-function or the Poisson summation formula. The functional equation
reads

𝒜(𝑎, 𝑏, 𝑐; 𝑠) = (2𝜋
√𝜂

)
2𝑠−1 Γ(1 − 𝑠)

Γ(𝑠) 𝒜 (1𝑎 ,
1
𝑏 ,

1
𝑐 ; 1 − 𝑠) (3.149)

We are interested in the case where 𝑐 = 0. Let us define the function 𝑍 ( 1
𝐿1 ,

1
𝐿2 ; 𝑠)

by

𝑍 ( 1
𝐿1

, 1𝐿2
; 𝑠) =

∞
∑′

𝑛1,𝑛2=−∞
(𝑛

21
𝐿1

+ 𝑛22
𝐿2

)
−𝑠

, (3.150)

We can find that the vacuum energy is written as

𝐸(𝐿1, 𝐿2; 𝑠) = 1
8𝑍 (𝜋

2

𝐿21
, 𝜋

2

𝐿22
; 𝑠) − 1

4 [(
𝜋
𝐿1

)
−2𝑠

+ ( 𝜋
𝐿2

)
−2𝑠

] 𝜁 (2𝑠). (3.151)

As discussed, 𝐸(𝐿1, 𝐿2, 𝑠) is analytic in 𝑠 ∈ ℂ ∖ {12 , 1}. Using the analytic con-
tinuation of the Epstein and the Riemann zeta-functions, we obtain the vacuum
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energy 𝑈 (𝐿1, 𝐿2) = 𝐸(𝐿1, 𝐿2; 𝑠 = −1/2) for the system with Dirichlet boundary
conditions. We get

𝑈 (𝐿1, 𝐿2) = 𝜋
48 (

1
𝐿1

+ 1
𝐿2

) 𝐿1𝐿2
32𝜋

∞
∑′

𝑛1,𝑛2=−∞
(𝑛21𝐿21 + 𝑛22𝐿22)

− 3
2 . (3.152)

The next step involves discussing the scalar case, similar to the electromag-
netic case of imperfect conductors, where there is a plasma frequency 𝜔𝑝 . Using
the same approach discussed in the previous section, we aim to determine the
approximate functional equation for the Epstein zeta-function.

Potter [72] has derived the following approximate functional equation for the
Epstein zeta-function:

𝒜(𝑎, 𝑏, 𝑐; 𝑠) = ∑′

𝜙≤𝑥
𝜙−𝑠(𝑎, 𝑏, 𝑐; 𝑛1, 𝑛2) + 𝑋(𝑠)∑′

𝜙≤𝑦
𝜙𝑠−1(𝑎, 𝑏, 𝑐; 𝑛1, 𝑛2), (3.153)

for 𝑡 ≫ 1, and the condition 4𝜋2𝑥𝑦 = 𝜂 𝑡2 must be satisfied. The quantity 𝑋(𝑠) is
defined by

𝑋(𝑠) = (2𝜋
√𝜂

)
2𝑠−1 Γ(1 − 𝑠)

Γ(𝑠) . (3.154)

Henceforth, we take 𝒜(𝑎, 𝑏, 0; 𝑠) ≡ 𝒜(𝑎, 𝑏; 𝑠) and similarly for 𝜙.
Of course, to obtain the correction to the Casimir energy via an asymptotic

series, we will need to use the Potter approximate functional equation for the
Epstein zeta-function, but also the Hatree-Littlewood approximate functional
equation for the Riemann zeta-function. Let’s start analyzing the Epstein zeta-
function. It is convenient to introduce a 𝜆𝑝 term in the expression to only have
dimensionless quantities and establish a parallel with the Casimir energy in a
finite conductivity scenario. In this case, we have

𝒜 (
𝜋2𝜆2𝑝
𝐿21

, 𝜋
2𝜆2𝑝
𝐿22

; 𝑠) = ∑′

Φ≤𝑥
Φ−𝑠12 + 𝑋(𝑠)∑′

Φ≤𝑦
Φ𝑠−112 , (3.155)

where to lighten the notation, we defined

Φ12 = 𝜙 (
𝜋2𝜆2𝑝
𝐿21

, 𝜋
2𝜆2𝑝
𝐿22

; 𝑛1, 𝑛2) = 𝜋2𝜆2𝑝
𝐿21

𝑛21 +
𝜋2𝜆2𝑝
𝐿22

𝑛22 , (3.156)

once that 4𝜋2𝑥𝑦 = 𝜂 𝑡2 with

𝜂 = 4 (
𝜋2𝜆2𝑝
𝐿1𝐿2

)
2
⇒ 𝑥𝑦 = (

𝜋𝜆2𝑝
𝐿1𝐿2

)
2
𝑡2. (3.157)
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Since

𝑋(𝑠) = (𝐿1𝐿2𝜋𝜆2𝑝
)
2𝑠−1 Γ(1 − 𝑠)

Γ(𝑠) , (3.158)

using a similar argument to the one we used before, but now all dimensions
remain compact, we can define the quantities

𝑛(1)𝑐 ≡ (𝐿1𝜆𝑝
)
1/2

and 𝑛(2)𝑐 ≡ (𝐿2𝜆𝑝
)
1/2

⇒ 𝑥𝑦 =
⎡⎢⎢
⎣

𝜋
(𝑛(1)𝑐 𝑛(2)𝑐 )

2
⎤⎥⎥
⎦

2

𝑡2, (3.159)

which, considering the fact that we do not have a preferred direction, indicates
that the natural choice for 𝑡 should be

𝑡 = 1
𝜋 (𝑛(1)𝑐 𝑛(2)𝑐 )

2
⇒ 𝑥 = 𝑦 = 𝑛(1)𝑐 𝑛(2)𝑐 . (3.160)

So, looking back at Eq. (3.155), we see that the sums are over all modes inside
the ellipse defined by

𝑛21
𝐿1𝑛(1)𝑐 𝑛(2)𝑐

+ 𝑛22
𝐿2𝑛(1)𝑐 𝑛(2)𝑐

= ( 1
𝜋𝜆𝑝

)
2
= constant, (3.161)

in the (𝑛1, 𝑛2)-plane with the origin removed.
For the Riemann zeta-function contributions that are present in Eq. (3.151),

we have

𝜁 (2𝑠) = ∑
𝑛≤𝑢

1
𝑛2𝑠 +

(2𝜋)2𝑠Γ (1 − 2𝑠)
Γ (1 − 𝑠) Γ (𝑠) ∑

𝑛≤𝑣
1

𝑛1−2𝑠 , (3.162)

for 𝛼 ≫ 1 where 2𝜋𝑢𝑣 = 𝛼 . Proceeding exactly as in the slab bag geometry case,
we find that

𝑢 = 𝑣 ≡ 𝑛(𝑖)𝑐 = ( 𝐿𝑖𝜆𝑝
)
1/2

⇒ 𝛼 = 2𝜋 𝐿𝑖
𝜆𝑝

; 𝑖 = 1, 2, (3.163)

continuing from the previous case, we employ an analogous method. Using the
same harmonic number definitions, once the range in the complex plane will be
the same. Considering the case where 𝑠 = −1/2 and manipulating the equations,
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it is possible to find that

𝐸(𝐿1, 𝐿2; 𝑠) =
𝜆2𝑠𝑝
8 ∑′

Φ≤𝑛(1)𝑐 𝑛(2)𝑐

Φ−𝑠12 + (𝐿1𝐿2𝜋𝜆2𝑝
)
2𝑠−1 Γ(1 − 𝑠)

Γ(𝑠)
𝜆2𝑠𝑝
8 ∑′

Φ≤𝑛(1)𝑐 𝑛(2)𝑐

Φ𝑠−112

− 𝜆2𝑠𝑝
4

2
∑
𝑖=1

{(
𝜆𝑝
𝐿𝑖
)
−2𝑠

[2𝜁 (2𝑠) − 𝜁𝐻 (2𝑠; 𝑛(𝑖)𝑐 + 1)]

+(−1)−4𝑠+1 (2𝜋)
2𝑠Γ (1 − 2𝑠)

Γ (1 − 𝑠) Γ (𝑠) [ 1
2𝑠 (

𝜆𝑝
𝐿𝑖
)
−3𝑠

− 1
2 (

𝜆𝑝
𝐿𝑖
)

−6𝑠+1
2

]} . (3.164)

We define the vacuum energy for finite conductivity (f.c.) as

𝑈 f.c.(𝐿1, 𝐿2) = 𝐸f.c. (𝐿1, 𝐿2, 𝑠 = −12)

= 1
8𝜆𝑝

∑
Φ≤𝑛(1)𝑐 𝑛(2)𝑐

Φ
1
212 − 1

4
2
∑
𝑖=1

1
𝐿𝑖

[𝜁𝐻 (−1; 𝑛(𝑖)𝑐 + 1) − 1
6] . (3.165)

Therefore

𝑈 f.c.(𝐿1, 𝐿2) = 𝑈 (𝐿1, 𝐿2) −
𝜋2𝜆3𝑝

32(𝐿1𝐿2)2
∑

Φ≤𝑛(1)𝑐 𝑛(2)𝑐

Φ− 3
212

+ 1
2𝜆𝑝(2𝜋)2

2
∑
𝑖=1

[(
𝜆𝑝
𝐿𝑖
)
3/2

− 1
2 (

𝜆𝑝
𝐿𝑖
)
2
] ,

(3.166)

is the Casimir energy for a rectangular box with non-ideal boundary conditions.

Finite conductivity in electromagnetic case via stationary modes

In order to present the stationary modes approach, we follow Ref. [73]. Here we
use Gaussian units.

Let us consider a system composed of three dielectrics. The first dielectric,
𝜀1(𝜔), lies in the region 𝑧 < 0, the second, 𝜀2(𝜔), in the region 𝑧 > 𝑑 , and the third
dielectric, 𝜀3(𝜔), is in between the other two, that is, 0 < 𝑧 < 𝑑 , as shown in Fig.
3.3.
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ε εε1

z=0 z=d

23

Figure 3.3: Configuration of three dielectrics in a slab geometry.

First, we must compute the relevant modes in the system. To achieve this,
we note that a possible set of solutions to Maxwell’s equations

∇ ⋅ D = 0,
∇ ⋅ B = 0,
∇ × E = −1𝑐

𝜕B
𝜕𝑡 ,

∇ × B = 1
𝑐
𝜕D
𝜕𝑡 , (3.167)

is

E(r, 𝑡) = E0(r)𝑒−𝑖𝜔𝑡 , (3.168)
B(r, 𝑡) = B0(r)𝑒−𝑖𝜔𝑡 .

Assuming that the media are isotropic, we have 𝐷(r, 𝑡) = 𝜀(𝜔)𝐸0(r)𝑒−𝑖𝜔𝑡 for
all the dielectrics. Maxwell’s equations are satisfied if, in each dielectric, we have
∇ ⋅ E0 = ∇ ⋅ B0 = 0, which implies that

ΔE0 + 𝜔2
𝑐2 𝜀(𝜔)E0 = 0, (3.169)

ΔB0 + 𝜔2
𝑐2 𝜀(𝜔)B0 = 0.

The boundary conditions require that the normal and tangential components of
E and B are continuous, and the derivative of the transverse component of E is
zero. We assume a solution of the following form:

E0(r) = [𝑒𝑥(𝑧)𝑥̂ + 𝑒𝑦 (𝑧) ̂𝑦 + 𝑒𝑧(𝑧) ̂𝑧] 𝑒𝑖(𝑘𝑥𝑥+𝑘𝑦𝑦), (3.170)

B0(r) = [𝑏𝑥(𝑧)𝑥̂ + 𝑏𝑦 (𝑧) ̂𝑦 + 𝑏𝑧(𝑧) ̂𝑧] 𝑒𝑖(𝑘𝑥𝑥+𝑘𝑦𝑦),
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which implies that the momentum must satisfy the following equation:

𝑑𝑒𝑖
𝑑𝑧 − 𝐾2𝑒𝑖 = 0, (3.171)

𝑑𝑏𝑖
𝑑𝑧 − 𝐾2𝑏𝑖 = 0,

where we have defined 𝐾2 = 𝑘2𝑥 + 𝑘2𝑦 − 𝜀(𝜔)𝜔2
𝑐2 and 𝑖 = {𝑥, 𝑦 , 𝑧}. Let us assume a

coordinate system where 𝑘𝑦 = 0 and denote 𝑘𝑥 by 𝑘. Requiring the continuity of
the normal component of D(r), we find that 𝜀(𝜔)𝑒𝑧(𝑧)must be continuous for all
𝜔, and ∇ ⋅ E0 = 0 implies that

𝑖𝑘𝑒𝑥 +
𝑑𝑒𝑧
𝑑𝑧 = 0. (3.172)

Using the fact that ∇×E0 = 𝑖𝜔𝑐 B0, it is straightforward to obtain that ∇ ⋅B0 = 0 is
satisfied, and the continuity of the normal component implies that 𝑒𝑦 is continu-
ous. Continuity of 𝑒𝑥 follows from the last equation. To analyze the continuity
of the tangential component of B, we use the previous equation and Eq. (3.171)
to obtain

𝑘𝑒𝑧 + 𝑖𝑑𝑒𝑥𝑑𝑧 = 1
𝑘 [𝜀(𝜔)𝜔

2
𝑐2 ] 𝑒𝑧 , (3.173)

and the continuity of this quantity follows from the continuity of the normal
component of D(r).

Therefore, to satisfy all the boundary conditions, it is sufficient to require the
continuity of 𝜀𝑒𝑧 , 𝜕𝑧𝑒𝑧 , 𝑒𝑦 , and 𝜕𝑧𝑒𝑦 . The solution to Eq. (3.171) can be written as

𝑒𝑧(𝑧) = 𝐴1𝑒𝐾1𝑧 + 𝐴2𝑒−𝐾1𝑧 , (3.174)

and by setting the constants of unphysical exponentially growing modes to zero,
we can write the solution for all three regions as

𝑒𝑧(𝑧) =
⎧
⎨
⎩

𝐴𝑒𝐾1𝑧 , if 𝑧 < 0,
𝐵𝑒𝐾3𝑧 + 𝐶𝑒−𝐾3𝑧 , if 0 ≤ 𝑧 ≤ 𝑑,
𝐷𝑒−𝐾2𝑧 , if 𝑧 > 𝑑.

(3.175)

where 𝐾𝑖 = √𝑘2 − 𝜀𝑖(𝜔)𝜔
2

𝑐2 , for 𝑖 = 1, 2, 3. The continuity of 𝜀𝑒𝑧 and 𝜕𝑧𝑒𝑧 leads to
algebraic equations for𝐴, 𝐵, 𝐶 , and𝐷. The nontrivial solutions of these equations
impose that

ℱ𝑎(𝜔) =
(𝜀3𝐾1 + 𝜀1𝐾3)(𝜀3𝐾2 + 𝜀2𝐾3)
(𝜀3𝐾1 − 𝜀1𝐾3)(𝜀3𝐾2 − 𝜀2𝐾3)

𝑒2𝐾3𝑑 − 1 = 0. (3.176)
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The continuity of 𝑒𝑦 and 𝜕𝑧𝑒𝑦 is satisfied if

ℱ𝑏(𝜔) =
(𝐾1 + 𝐾3)(𝐾2 + 𝐾3)
(𝐾1 − 𝐾3)(𝐾2 − 𝐾3)

𝑒2𝐾3𝑑 − 1 = 0. (3.177)

Usually, we cannot satisfy both equations simultaneously, but if we impose
𝑒𝑦 = 0, we can satisfy Eq. (3.176). If we impose 𝑒𝑧 = 0, we can satisfy Eq. (3.177).
This leads to two types of modes:

(a) Solutions of Eq. (3.176) with 𝑒𝑦 = 0;
(b) Solutions of Eq. (3.177) with 𝑒𝑧 = 0.
These two kinds of modes are called surface modes. Now we can compute

the vacuum energy associated with such modes, which will be given by

𝐸(𝑑) = ℏ𝐿2
4𝜋 ∫

∞

0
𝑘 [∑

𝑛
𝜔𝑛𝑎(𝑘) +∑

𝑛
𝜔𝑛𝑏(𝑘)] d𝑘, (3.178)

where 𝜔𝑛𝑎 are modes of type (a), 𝜔𝑛𝑏 are modes of type (b), and 𝐿 is the size of
the 𝑥, 𝑦 direction. We suppose that 𝐿 ≫ 𝑑 . Using the argument principle of
complex numbers, we can identify the sum of the modes as the sum of zeros of
𝐹𝑎,𝑏(𝜔) subtracted from the sum of the poles of 𝐹𝑎,𝑏(𝜔). The poles of 𝐹𝑎,𝑏(𝜔) are
independent of 𝑑 , therefore they do not contribute to the force. Thus, we can
write

𝐸(𝑑) = ℏ𝐿2
4𝜋

1
2𝜋𝑖 ∫

∞

0
𝑘 [∮𝐶 𝜔

ℱ ′𝑎 (𝜔)
ℱ𝑎(𝜔)

d𝜔 + ∮𝐶 𝜔
ℱ ′𝑏 (𝜔)
ℱ𝑏(𝜔)

d𝜔] d𝑘, (3.179)

where the curve 𝐶 is given by the imaginary axis and a semicircle on the right
side of the complex 𝜔-plane (see Fig. 3.4). The integral along the semicircle is 𝑑-
independent and does not contribute to the force. To analyze the integral along
the imaginary axis, we define 𝜔 = 𝑖𝜉 and define ℱ𝑎,𝑏(𝑖𝜉 ) = 𝐹𝑎,𝑏(𝜉 ) to obtain

−𝑖∫
∞

−∞
𝜉
𝐹 ′𝑎,𝑏(𝜉 )
𝐹𝑎,𝑏(𝜉 )

= −𝑖 ∫
∞

−∞
𝜉 d
d𝜉 ln 𝐹𝑎,𝑏(𝜉 ) d𝜉 = 𝑖 ∫

∞

−∞
ln 𝐹𝑎,𝑏(𝜉 ) d𝜉 . (3.180)

Therefore, our energy is given by

𝐸(𝑑) = ℏ𝐿2
8𝜋 ∫

∞

0
𝑘 [∫

∞

−∞
ln 𝐹𝑎(𝜉 ) d𝜉 + ∫

∞

−∞
ln 𝐹𝑏(𝜉 ) d𝜉 ] d𝑘, (3.181)

Explicitly, we have

𝐹𝑎(𝜉 ) =
(𝜀3𝐾1 + 𝜀1𝐾3)(𝜀3𝐾2 + 𝜀2𝐾3)
(𝜀3𝐾1 − 𝜀1𝐾3)(𝜀3𝐾2 − 𝜀2𝐾3)

𝑒2𝐾3𝑑 − 1, (3.182)

𝐹𝑏(𝜉 ) =
(𝐾1 + 𝐾3)(𝐾2 + 𝐾3)
(𝐾1 − 𝐾3)(𝐾2 − 𝐾3)

𝑒2𝐾3𝑑 − 1, (3.183)
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Re ω

Im ω
C

Figure 3.4: Contour of integration 𝐶 .

with 𝜀𝑖 = 𝜀𝑖(𝑖𝜉 ) and the corresponding changes in the definition of 𝐾𝑖. With that,
one can directly compute the force

𝐹(𝑑) = −𝜕𝐸(𝑑)𝜕𝑑 = − ℏ
2𝜋2 ∫

∞

0
𝑘 {∫

∞

0
𝐾3 [ 1

𝐹𝑎(𝑘, 𝜉 )
+ 1
𝐹𝑏(𝑘, 𝜉 )

] d𝜉 } d𝑘. (3.184)

Now let us rewrite the previous equation in terms of 𝑝, defined by 𝑘2 =
𝜀3(𝑝 − 1)𝜉 2/𝑐2. From it, it follows that 𝐾3 = √𝜀3𝑝𝜉/𝑝 and 𝐾21,2 = 𝜀3(𝜉 2/𝑐2)[𝑝2 −
1 + 𝜀1,2/𝜀3], then the force is written as

𝐹(𝑑) = − ℏ
2𝜋2𝑐3 ∫

∞

1
𝑝2{∫

∞

0
𝜉 3𝜀

3
23 [((𝜀3𝑠1 + 𝜀1𝑝)(𝜀3𝑠2 + 𝜀2𝑝)

(𝜀3𝑠1 − 𝜀1𝑝)(𝜀3𝑠2 − 𝜀2𝑝)
𝑒2𝜉𝑝√𝜀3

𝑑
𝑐 − 1)

−1

+((𝑠1 + 𝑝)(𝑠2 + 𝑝)
(𝑠1 − 𝑝)(𝑠2 − 𝑝)𝑒

2𝜉𝑝√𝜀3 𝑑𝑐 − 1)
−1
] d𝜉 } d𝑝,

(3.185)

which is the Lifshitz formula, obtained in 1956 by E. Lifshitz in Ref. [48].
With the general theory developed, we now present the results of Ref. [46],

where we are able to generalize the Lifshitz formula to a dielectric waveguide.
Now we consider a system with the geometry given by a waveguide along the
𝑧-direction that has a length 𝑎 in the 𝑥-direction and 𝑏 in the 𝑦-direction. That is,
the waveguide is defined by the set of ordered pairs {(𝑥, 𝑦); 𝑥 ∈ [0, 𝑎], 𝑦 ∈ [0, 𝑏]}.
The non-perfect conducting materials have dielectric constants 𝜀1 inside and 𝜀2
outside the waveguide, as shown in Fig. (3.5).

Starting from Maxwell’s equations (Eq. (3.167)), we again look for stationary
mode solutions in the form of Eq. (3.168). By the translation symmetry along the
𝑧-axis, we expect that the electric andmagnetic fields only depend on coordinates
𝑥 and 𝑦 , while in the 𝑧 direction we expect a free plane wave term. Hence, we
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Figure 3.5: Top view of the rectangular waveguide filled with two distinct dielectrics.

look for a solution of the form

E0(r) = (𝑒𝑥(𝑥, 𝑦) ̂𝑖 + 𝑒𝑦 (𝑥, 𝑦) ̂𝑗 + 𝑒𝑧(𝑥, 𝑦)𝑘̂) 𝑒𝑖𝑘𝑧 , (3.186)

B0(r) = (𝑏𝑥(𝑥, 𝑦) ̂𝑖 + 𝑏𝑦 (𝑥, 𝑦) ̂𝑗 + 𝑏𝑧(𝑥, 𝑦)𝑘̂) 𝑒𝑖𝑘𝑧 . (3.187)

By using the Gauss law in the electric displacement field, one finds that

𝜕𝑒𝑥
𝜕𝑥 + 𝜕𝑒𝑦

𝜕𝑦 + 𝑖𝑘 𝑒𝑧 = 0. (3.188)

From the Faraday law, we have that the spatial dependence of the magnetic field
is B0 = −𝑖(𝑐/𝜔)∇ × E0, and therefore we can write

B0 = −𝑖 ( 𝑐𝜔) {(
𝜕𝑒𝑧
𝜕𝑦 − 𝑖𝑘𝑒𝑦) ̂𝑖 + (𝑖𝑘𝑒𝑥 −

𝜕𝑒𝑧
𝜕𝑥 ) ̂𝑗 + (

𝜕𝑒𝑦
𝜕𝑥 − 𝜕𝑒𝑥

𝜕𝑦 ) 𝑘̂} 𝑒𝑖𝑘𝑧 , (3.189)

From this equation, it follows immediately that the Gauss law for the magnetic
field is satisfied, i.e., ∇ ⋅B0 = 0. Also, after some manipulations, we have straight-
forward that ∇ × B0 = −𝑖(𝑐/𝜔)∇ × (∇ × E0) = 𝑖(𝑐/𝜔)ΔE0. Replacing this into
Ampère’s law, we obtain the wave equation

ΔE0 + 𝜔2
𝑐2 𝜀(𝜔)E0 = 0. (3.190)

By substituting Eq. (3.187) into Eq. (3.190), we find that the components of the
electric field must satisfy

𝜕2𝑒𝑖
𝜕𝑥2 + 𝜕2𝑒𝑖

𝜕𝑦2 − 𝐾2 𝑒𝑖 = 0, (3.191)
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where the index is 𝑖 = {𝑥, 𝑦 , 𝑧} and we have defined the wave number on the
transverse section of the waveguide as

𝐾2 = 𝑘2 − 𝜔2
𝑐2 𝜀(𝜔). (3.192)

Now we must analyze the boundary conditions. To do so, let us define the
vertical and horizontal surfaces of the dielectric. The two vertical surfaces of
the dielectric are defined by 𝑉1 = {(𝑥, 𝑦) ∈ [0, 0] × [0, 𝑏]} and 𝑉2 = {(𝑥, 𝑦) ∈
[𝑎, 𝑎] × [0, 𝑏]}, while the horizontal ones are the sets 𝐻1 = {(𝑥, 𝑦) ∈ [0, 𝑎] × [0, 0]}
and 𝐻2 = {(𝑥, 𝑦) ∈ [0, 𝑎] × [𝑏, 𝑏]}.

Let us now start with the boundary conditions for the vertical surfaces 𝑉1
and 𝑉2.

The normal component of the electric displacement vector D must be con-
tinuous across these surfaces. Therefore, this implies the continuity of 𝜀(𝜔) 𝑒𝑥 at
the vertical surfaces 𝑉1 and 𝑉2. The continuity of the tangential components of
the electric field implies that 𝑒𝑦 and 𝑒𝑧 must also be continuous. The continuity
of the 𝑧-component, together with Eq. (3.188), implies that 𝜕𝑥 𝑒𝑥 + 𝜕𝑦 𝑒𝑦 must be
continuous. This final result can be satisfied if, independently, we require that
𝜕𝑥 𝑒𝑥 and 𝜕𝑦 𝑒𝑦 are also continuous.

The continuity of the normal component of the magnetic field indicates that
on the vertical surfaces, the term (𝜕𝑦 𝑒𝑧 − 𝑖𝑘𝑒𝑦 ) must be continuous, which would
add the continuity condition for 𝜕𝑦 𝑒𝑧 . The continuity of the tangent component
of the magnetic field in the 𝑧-direction implies that (𝜕𝑦 𝑒𝑥 − 𝜕𝑥 𝑒𝑦 ) is continuous.
We can satisfy this condition if 𝜕𝑦 𝑒𝑥 and 𝜕𝑥 𝑒𝑦 are continuous. The continuity
of the tangent component of the magnetic field in the 𝑦-direction indicates that
(𝑖𝑘𝑒𝑥 − 𝜕𝑥 𝑒𝑧) must be continuous. We can rewrite this term by using Eq. (3.188),
as follows:

𝑖𝑘𝑒𝑥 − 𝜕𝑥 𝑒𝑧 = 𝑖𝑘𝑒𝑥 + 1
𝑖𝑘 𝜕𝑥(𝜕𝑥 𝑒𝑥 + 𝜕𝑦 𝑒𝑦 )

= 1
𝑖𝑘 (−𝑘

2𝑒𝑥 + 𝜕2𝑥 𝑒𝑥 + 𝜕2𝑥,𝑦 𝑒𝑥)

= 1
𝑖𝑘 (−𝜔

2
𝑐2 𝜀(𝜔)𝑒𝑥 + 𝜕𝑦 (𝜕𝑥 𝑒𝑦 − 𝜕𝑦 𝑒𝑥)) , (3.193)

where we have used the wave equation Eq. (3.191). This last condition is satisfied
since 𝜀(𝜔)𝑒𝑥 is already continuous.

Now turning to the boundary conditions on the horizontal surfaces 𝐻1 and
𝐻2.

The continuity of the normal component ofD implies the continuity of 𝜀(𝜔)𝑒𝑦
at the horizontal surfaces of the waveguide. The continuity of the tangential
components of the electric field implies that 𝑒𝑥 and 𝑒𝑧 must also be continuous.
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The continuity of the 𝑧-component, together with Eq. (3.188), implies that 𝜕𝑥 𝑒𝑥 +
𝜕𝑦 𝑒𝑦 must also be continuous. This result can be satisfied if, independently, we
require that 𝜕𝑥 𝑒𝑥 and 𝜕𝑦 𝑒𝑦 are continuous on the frontier.

For the magnetic field, the continuity of the normal component at the hori-
zontal surfaces implies the continuity of (𝑖𝑘𝑒𝑥 − 𝜕𝑥 𝑒𝑧), which would be satisfied
only if 𝜕𝑥 𝑒𝑧 . The continuity of the tangent component of the magnetic field in
the 𝑧-direction implies that (𝜕𝑦 𝑒𝑥 − 𝜕𝑥 𝑒𝑦 ) is continuous. We can satisfy this con-
dition if, independently, 𝜕𝑦 𝑒𝑥 and 𝜕𝑥 𝑒𝑦 are continuous. The continuity of the
tangent 𝑥-component of the magnetic field on the horizontal surfaces indicates
that (𝜕𝑦 𝑒𝑧 − 𝑖𝑘𝑒𝑦 )must be continuous. We can rewrite this term using Eq. (3.188),
as:

𝜕𝑦 𝑒𝑧 − 𝑖𝑘𝑒𝑦 = − 1
𝑖𝑘 𝜕𝑦 (𝜕𝑥 𝑒𝑥 + 𝜕𝑦 𝑒𝑦 ) − 𝑖𝑘𝑒𝑦

= − 1
𝑖𝑘 (𝜕

2𝑦 𝑒𝑦 − 𝑘2𝑒𝑦 + 𝜕2𝑥,𝑦 𝑒𝑥)

= 1
𝑖𝑘 (−𝜔

2
𝑐2 𝜀(𝜔)𝑒𝑦 + 𝜕𝑥(𝜕𝑦 𝑒𝑥 − 𝜕𝑥 𝑒𝑦 )) , (3.194)

where we have used the wave equation Eq. (3.191). This last condition is satisfied
since 𝜀(𝜔)𝑒𝑦 is already continuous on these horizontal surfaces.

From the previous discussion about the boundary conditions, we conclude
that there are some conditions that are incompatible. The origin of this prob-
lem lies in the impossibility of defining a normal and tangential component at
the corners of the rectangular waveguide. For example, the 𝑦-component of the
electric field is normal to the horizontal surfaces𝐻1 and𝐻2, so that 𝜀(𝜔)𝑒𝑦 must be
continuous at those surfaces. However, the same 𝑦-direction is tangential when
referring to the vertical surfaces 𝑉1 and 𝑉2, where only 𝑒𝑦 must be continuous. In
this case, we conclude that, to satisfy both conditions at the four corners of the
waveguide, (𝑥, 𝑦) ∈ {(0, 0), (𝑎, 0), (0, 𝑏), (𝑎, 𝑏)}, it must be that the transverse com-
ponents should vanish, i.e., 𝑒𝑥 = 𝑒𝑦 = 0. We can extend this observation and seek
stationary solutions where 𝑒𝑦 (𝑥, 𝑦) ≡ 0 for all points in space, and this condition
will define our 𝑋 -mode solution. Similarly, we can search for and independently
solve where 𝑒𝑥(𝑥, 𝑦) ≡ 0, and these conditions will define the 𝑌 -mode.

First, let us discuss the surface stationary 𝑋 -modes. For these modes, we as-
sume that the electric field only has 𝑒𝑥 and 𝑒𝑧 components, while we set 𝑒𝑦 = 0. By
using Gauss’ equation, Eq. (3.188), we note that the 𝑧-component is completely
determined by the 𝑒𝑥 component:

𝑒𝑧 = 𝑖
𝑘
𝜕𝑒𝑥
𝜕𝑥 , (3.195)

so that the only degree of freedom is 𝑒𝑥 . By considering the boundary condi-
tions on the waveguide surfaces, we find that for the vertical surfaces 𝑉1 and 𝑉2,
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the components 𝜀(𝜔)𝑒𝑥 , 𝜕𝑥 𝑒𝑥 , and 𝜕𝑦 𝑒𝑥 must be continuous. For the horizontal
surfaces 𝐻1 and 𝐻2, the components 𝑒𝑥 , 𝜕𝑥 𝑒𝑥 , and 𝜕𝑦 𝑒𝑥 must be continuous.

Here we note an apparent contradiction. From the continuity of the normal
component of the electric field, we have that 𝜀(𝜔)𝑒𝑥 must be continuous at the
vertical surfaces 𝑉1 and 𝑉2. However, from the continuity of the tangential com-
ponent of the electric field, only 𝑒𝑥 must be continuous at the horizontal surfaces
𝐻1 and 𝐻2. But we know that it is impossible for both 𝑒𝑥 and 𝜀(𝜔)𝑒𝑥 to be con-
tinuous at the interface between dielectrics with different properties. In order to
fulfill both requirements independently, we have two possibilities: these define
the mode 𝑋𝑎 solutions and the mode 𝑋𝑏 solutions.

For the mode 𝑋𝑎 solutions, the components 𝜀(𝜔)𝑒𝑥 , 𝜕𝑥 𝑒𝑥 , and 𝜕𝑦 𝑒𝑥 must be
continuous. Also, it is required that, at the horizontal surfaces of the waveguide,
the transverse component of the electric field vanishes, i.e., 𝑒𝑥(𝑥, 0) = 𝑒𝑥(𝑥, 𝑏) = 0
for all values 0 ≤ 𝑥 ≤ 𝑎. The wave equation given by Eq. (3.191) can be solved
by the separation of variables method. Hence, we look for solutions of the form
𝑒𝑥(𝑥, 𝑦) = 𝑓 (𝑥)𝑔(𝑦) such that these functions satisfy

𝑓 ″(𝑥)
𝑓 (𝑥) + 𝑔″(𝑦)

𝑔(𝑦) − 𝐾2 = 0. (3.196)

By considering explicitly the boundary conditions for𝑋𝑎-modes and avoiding
nonphysical exponentially growing solutions, we find oscillatory solutions in the
𝑦-direction and exponentially decaying functions in the 𝑥-direction. This means
that the 𝑋𝑎-modes solutions are given by 𝑒(𝑛)𝑥 (𝑥, 𝑦) = 𝑓𝑛(𝑥)𝑔𝑛(𝑦) with

𝑔𝑛(𝑦) = sin (𝑛𝜋𝑏 𝑦) , (3.197)

where 𝑛 = 1, 2, 3, … . We have a surface-decaying behavior from the waveguide
surfaces in the 𝑥-direction:

𝑓𝑛(𝑥) =
⎧
⎨
⎩

𝐴𝑒Λ2𝑥 , 𝑥 < 0,
𝐵𝑒−Λ1𝑥 + 𝐶𝑒Λ1𝑥 , 0 < 𝑥 < 𝑎,
𝐷𝑒−Λ2𝑥 , 𝑥 > 𝑎,

(3.198)

where we have defined the wave numbers

Λ1,2 = √
(𝑛𝜋𝑏 )

2
+ 𝑘2 − 𝜔2

𝑐2 𝜀1,2(𝜔). (3.199)

These wave numbers indeed depend on integer 𝑛, wave number 𝑘, and wave
frequency 𝜔. This means that Λ1,2 = Λ1,2(𝑛, 𝑘, 𝜔). However, we have omitted an



82 Zero-Point Energy

explicit dependence on these parameters to emphasize the dependence of Λ1,2
on the different dielectric constants of the materials 𝜀1,2.

Now, considering the continuity of 𝜀(𝜔)𝑒𝑥 and the derivative 𝜕𝑥 𝑒𝑥 at the ver-
tical surfaces 𝑉1 and 𝑉2, we obtain the following condition in order to obtain
non-trivial solutions for the 𝑋𝑎-modes:

ℱ𝑋𝑎(𝑛, 𝑘, 𝜔) = 𝑒𝑎Λ1 (Λ1𝜀2 + Λ2𝜀1
Λ1𝜀2 − Λ2𝜀1

)
2
− 𝑒−𝑎Λ1 = 0. (3.200)

This equation gives us all the values of the allowed frequencies 𝜔 that contribute
to the zero-point energy.

Let us now discuss the 𝑋𝑏-mode solutions. Now, the components 𝑒𝑥 , 𝜕𝑥 𝑒𝑥 ,
and 𝜕𝑦 𝑒𝑥 must be continuous, and the transverse electric field must vanish at
the vertical surfaces of the waveguide, i.e., 𝑒𝑥(0, 𝑦) = 𝑒𝑥(𝑎, 𝑦) = 0 for all values
0 ≤ 𝑦 ≤ 𝑏. As before, we look for solutions that are exponentially decaying from
the waveguide surface. By using the separation of variables method, we note
that it must refer to oscillatory solutions in the 𝑥-direction and exponentially
decaying solutions in the 𝑦-direction. For the 𝑋𝑏-modes, we have solutions of
the form 𝑒(𝑛)𝑥 (𝑥, 𝑦) = 𝑓𝑛(𝑥)𝑔𝑛(𝑦), where in this case

𝑓𝑛(𝑥) = sin (𝑛𝜋𝑎 𝑥) , (3.201)

where 𝑛 = 1, 2, 3, … , and in the 𝑦-direction, it is found an exponentially decaying
behavior:

𝑔𝑛(𝑦) =
⎧
⎨
⎩

𝒜𝑒Κ2𝑦 , 𝑦 < 0,
ℬ𝑒−Κ1𝑦 + 𝐶𝑒Κ1𝑦 , 0 < 𝑦 < 𝑏,
𝒟𝑒−Κ2𝑦 , 𝑦 > 𝑏.

(3.202)

Here we have defined the wave numbers

Κ1,2 = √
(𝑛𝜋𝑎 )

2
+ 𝑘2 − 𝜔2

𝑐2 𝜀1,2(𝜔), (3.203)

where Κ1,2 = Κ1,2(𝑛, 𝑘, 𝜔). Now, considering that for the 𝑋𝑏-modes, we need to
ensure the continuity of 𝑒𝑥(𝑥, 𝑦) and of 𝜕𝑦 𝑒𝑥(𝑥, 𝑦), we find the condition to have
non-trivial solutions for the 𝑋𝑏-mode as

ℱ𝑋𝑏(𝑛, 𝑘, 𝜔) = 𝑒𝑏Κ1 (Κ1 + Κ2
Κ1 − Κ2

)
2
− 𝑒−𝑏Κ1 = 0, (3.204)

This condition gives us some normal frequencies that contribute to the zero-point
energy.
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Now, let us focus on the surface stationary 𝑌 -modes. In this case, we look for
stationary field solutions where the electric field has only 𝑒𝑦 and 𝑒𝑧 components,
while 𝑒𝑥 = 0. By using Gauss’s law, Eq. (3.188), we see that 𝑒𝑧 is not indepen-
dent, and therefore, 𝑒𝑦 is the only degree of freedom for the 𝑌 -modes. In turn,
this component must satisfy the boundary conditions at the waveguide interface
between the dielectrics. For the vertical surfaces 𝑉1 and 𝑉2: the components 𝑒𝑦 ,
𝜕𝑥 𝑒𝑦 , and 𝜕𝑦 𝑒𝑦 must be continuous. While for the horizontal surfaces 𝐻1 and 𝐻2:
the components 𝜀(𝜔)𝑒𝑦 , 𝜕𝑥 𝑒𝑦 , and 𝜕𝑦 𝑒𝑦 must be continuous. In order to accom-
plish this, we need to add some supplementary conditions that define two kinds
of modes for the 𝑌 -solutions.

Analogous to the 𝑋 -modes case, the mode 𝑌𝑎 solution will be given by the
components 𝑒𝑦 , 𝜕𝑥 𝑒𝑦 , and 𝜕𝑦 𝑒𝑦 being continuous, with the supplementary condi-
tion that the transverse component of the electric field is null at the horizontal
surfaces of the waveguide, i.e., 𝑒𝑦 (𝑥, 0) = 𝑒𝑦 (𝑥, 𝑏) = 0 for all values 0 ≤ 𝑥 ≤ 𝑎.
By using these conditions and looking for non-null solutions, one obtains an
equation for the frequencies of the electromagnetic wave inside the waveguide,

ℱ𝑌𝑎(𝑛, 𝑘, 𝜔) = 𝑒𝑎Λ1 (Λ1 + Λ2
Λ1 − Λ2

)
2
− 𝑒−𝑎Λ1 = 0. (3.205)

Finally, for the mode 𝑌𝑏 solution, the components 𝜀(𝜔)𝑒𝑦 , 𝜕𝑥 𝑒𝑦 , and 𝜕𝑦 𝑒𝑦 must
be continuous with the additional condition 𝑒𝑦 (0, 𝑦) = 𝑒𝑦 (𝑎, 𝑦) = 0, for all values
0 ≤ 𝑦 ≤ 𝑏. In this case, we find that the condition that defines the frequency for
the surface modes of type 𝑌𝑏 is given by

ℱ𝑌𝑏(𝑛, 𝑘, 𝜔) = 𝑒𝑏Κ1 (Κ1𝜖2 + Κ2𝜖1
Κ1𝜖2 − Κ2𝜖1

)
2
− 𝑒−𝑏Κ1 = 0, (3.206)

where Λ1,2 and Κ1,2 have been defined in Eq. (3.199) and Eq. (3.203). As in the
slab geometry case, we find that the expressions in Eq. (3.200) and Eqs. (3.204-
3.206) give us all the possible values of the surface mode frequencies for the
electromagnetic field inside the dielectric cavity. With this result, we are able to
calculate the zero-point energy inside the waveguide and, consequently, analyze
the Casimir effect.

The zero-point energy can be evaluated by a similar expression to the slab
case, now considering that we have four types of surface modes. It follows that

𝐸𝑍𝑃 = (ℏ𝐿𝑧4𝜋 )∫
∞

−∞

∞
∑
𝑛=1

∑
𝑟
(𝜔𝑋𝑟 (𝑛, 𝑘) + 𝜔𝑌𝑟 (𝑛, 𝑘)) d𝑘, (3.207)

where 𝜔𝑋𝑁 and 𝜔𝑌𝑁 are all the allowed frequencies for the 𝑋 -mode and 𝑌 -mode.
Again, considering the argument principle, we interpret each sum over 𝑟 as a
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sum over the poles of ℱ𝑌 ,𝑋 ; therefore, it can be recast as a complex integral:

𝐸𝑍𝑃 = (ℏ𝐿𝑧4𝜋 ) 1
2𝜋𝑖 ∫

∞

−∞

∞
∑
𝑛=1

[∮𝐶 𝜔
ℱ ′𝑋 (𝑛, 𝑘, 𝜔)
ℱ𝑋 (𝑛, 𝑘, 𝜔)

𝑑𝜔 + ∮𝐶 𝜔
ℱ ′𝑌 (𝑛, 𝑘, 𝜔)
ℱ𝑌 (𝑛, 𝑘, 𝜔)

𝑑𝜔] d𝑘,
(3.208)

where the prime denotes the derivative with respect to 𝜔. As in the slab geometry
case, we assume that the contour 𝐶 is given by Fig. 3.4. In the limit of infinite
radius for the contour 𝐶 , the only non-zero contribution to the complex integral
above comes from the imaginary axis 𝜔 = 𝑖𝜉 , where 𝜉 ∈ (+∞, −∞). By a change
of variables, we define 𝐹𝑋 (𝜉 ) = ℱ𝑋 (𝑖𝜉 ).

Performing an integration by parts and some manipulations, we find

𝐸𝑍𝑃 = (ℏ𝐿𝑧8𝜋2)∫
∞

−∞
{
∞
∑
𝑛=1

∫
∞

−∞
[ln 𝐹𝑋 (𝑛, 𝑘, 𝜉 ) + ln 𝐹𝑌 (𝑛, 𝑘, 𝜉 )] d𝜉 } d𝑘. (3.209)

Now, we have to consider that there are two contributions for each 𝑋 -mode
and 𝑌 -mode. Hence, by using explicitly the boundary equations for all the surface
modes, Eq. (3.200) and Eqs. (3.204-3.206), we obtain the zero-point energy in the
dielectric waveguide as

𝐸𝑍𝑃 = (ℏ𝐿𝑧8𝜋2)∫
∞

−∞
{

∞
∑
𝑛=1

∫
∞

−∞
[ ln (𝑒𝑎𝜆1 (𝜆1𝜖2 + 𝜆2𝜖1

𝜆1𝜖2 − 𝜆2𝜖1
)
2
− 𝑒−𝑎𝜆1)

+ ln (𝑒𝑏𝜐1 (𝜐1 + 𝜐2
𝜐1 − 𝜐2

)
2
− 𝑒−𝑏𝜐1) + ln (𝑒𝑏𝜐1 (𝜐1𝜖2 + 𝜐2𝜖1

𝜐1𝜖2 − 𝜐2𝜖1
)
2
− 𝑒−𝑏𝜐1)

+ ln (𝑒𝑎𝜆1 (𝜆1 + 𝜆2
𝜆1 − 𝜆2

)
2
− 𝑒−𝑎𝜆1) ] d𝜉 } d𝑘, (3.210)

where we have denoted the wave numbers for imaginary frequencies by

𝜆1,2 = √
(𝑛𝜋𝑏 )

2
+ 𝑘2 + 𝜉 2

𝑐2 𝜀1,2(𝑖𝜉 ), (3.211)

and

𝜐1,2 = √
(𝑛𝜋𝑎 )

2
+ 𝑘2 + 𝜉 2

𝑐2 𝜀1,2(𝑖𝜉 ), (3.212)

These variables depend on the integer 𝑛, the wave number in the 𝑧-direction,
𝑘, and on the imaginary frequency 𝜉 . It is worth noting that, in general, the
dielectric constant depends on the wave frequency.
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The Eq. (3.210) is the main result of Ref. [46]. This equation generalizes
the Lifshitz formula for a rectangular waveguide. The original Lifshitz result, in
the case of two parallel plates, can be recovered from our result if we keep one
direction of the waveguide fixed and allow the others to go to infinity. More
specifically, in this limit, we can consider that 𝑎 is finite while 𝐿𝑧 , 𝑏 ≫ 𝑎. In order
to take this limit, we use the following relation:

lim𝑏→∞

∞
∑
𝑛=1

𝑓 (𝑛𝜋𝑏 ) = ( 𝑏
2𝜋 )∫

∞

−∞
𝑑𝑘̃ 𝑓 (𝑘̃)

and define the variable

𝐾𝑖 = √
𝑘̃2 + 𝑘2 + 𝜉 2

𝑐2 𝜀𝑖(𝑖𝜉 ).

In this manner, we can write

𝐸𝑝𝑙𝑎𝑡𝑒𝑠𝑍𝑃 = 𝑁 ∫ { ln ((𝐾1 + 𝐾2
𝐾1 − 𝐾2

)
2
𝑒2𝑎𝐾1 − 1)

+ ln ((𝐾1𝜖2 + 𝐾2𝜖1
𝐾1𝜖2 − 𝐾2𝜖1

)
2
𝑒2𝑎𝐾1 − 1) } 𝑑𝑘 𝑑𝑘̃ 𝑑𝜉 . (3.213)

where 𝑁 = ℏ𝐿𝑧𝑏/16𝜋3. This expression is obtained by considering the limits of
the contributions of the first and fourth terms inside the integral of the general
result Eq. (3.210). This is because the dependence of the second and third terms
inside the integral in Eq. (3.210) only depends on the length 𝑏 through the ex-
ponential factor, which gives us an infinite (constant) term in the limit 𝑏 → ∞.
In the above integral, we have that all the limits of integration are from −∞ to
+∞. By considering 𝑘 and 𝑘̃ as coordinates of a two-dimensional space, defining
𝜅 = √𝑘2 + 𝑘̃2, and performing the angular integration, we obtain

𝐸𝑝𝑙𝑎𝑡𝑒𝑠𝑍𝑃 = 𝑁̃ ∫
∞

0
{𝜅 ∫

∞

−∞
[ ln ((𝐾1 + 𝐾2

𝐾1 − 𝐾2
)
2
𝑒2𝑎𝐾1 − 1)

+ ln ((𝐾1𝜖2 + 𝐾2𝜖1
𝐾1𝜖2 − 𝐾2𝜖1

)
2
𝑒2𝑎𝐾1 − 1) ] 𝑑𝜉 } 𝑑𝜅, (3.214)

where 𝑁̃ = ℏ𝐿𝑧𝑏/8𝜋2. The above equation is exactly the Lifshitz formula, for
the case of two parallel plates (separated by a finite distance 𝑎) with a medium
of dielectric constant 𝜀1 between two media of dielectric constant 𝜀2 in a slab
configuration.
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Let us discuss the general result given by Eq. (3.210) for the case where the
surfaces are perfect conductors. To do this, one can first rewrite the expression
for the zero-point energy in a more compact way:

𝐸𝑍𝑃 = (ℏ𝐿𝑧8𝜋2)∫
∞

−∞
{

∞
∑
𝑛=1

∫
∞

−∞
[ ln (𝒳1𝑒𝑎𝜆1 − 𝑒−𝑎𝜆1) + ln (𝒳2𝑒𝑏𝜐1 − 𝑒−𝑏𝜐1)

+ ln (𝒴1𝑒𝑏𝜐1 − 𝑒−𝑏𝜐1) + ln (𝒴2𝑒𝑎𝜆1 − 𝑒−𝑎𝜆1) ]d𝜉 } 𝑑𝑘,
(3.215)

where the reflectivity indices are defined as follows:

𝒳1 = (𝜆1𝜖2 + 𝜆2𝜖1
𝜆1𝜖2 − 𝜆2𝜖1

)
2
, 𝒳2 = (𝜐1 + 𝜐2

𝜐1 − 𝜐2
)
2
,

𝒴1 = (𝜐1𝜖2 + 𝜐2𝜖1
𝜐1𝜖2 − 𝜐2𝜖1

)
2
, 𝒴2 = (𝜆1 + 𝜆2

𝜆1 − 𝜆2
)
2
. (3.216)

In the ideal case, the medium inside the waveguide is a perfect vacuum with
𝜀1 = 1, whereas the boundaries are perfect reflecting surfaces with 𝜀2 → ∞. From
this follows that the wave numbers inside the waveguide are given by 𝜆1 → 𝜆(0)
and 𝜐1 → 𝜐(0), with

𝜆(0) =
√
(𝑛𝜋𝑏 )

2
+ 𝑘2 + 𝜉 2

𝑐2 ,

𝜐(0) =
√
(𝑛𝜋𝑎 )

2
+ 𝑘2 + 𝜉 2

𝑐2 . (3.217)

Outside the waveguide, one has a perfect conductor with 𝜀2 → ∞, and conse-
quently, 𝜆2, 𝜐2 → ∞. It can be shown that in this limit all the reflectivity indexes,
Eq. (3.216), tend to unity, and hence, the zero-point energy for the ideal conduct-
ing waveguide is given by

𝐸𝐼 𝑑𝑒𝑎𝑙𝑍𝑃 = (ℏ𝐿𝑧4𝜋2)∫
∞

−∞
{

∞
∑
𝑛=1

∫
∞

−∞
[𝑎𝜆(0) + 𝑏𝜐(0) + ln (1 − 𝑒−2𝑎𝜆(0))

+ ln (1 − 𝑒−2𝑏𝜐(0)) ] 𝑑𝜉 } 𝑑𝑘. (3.218)

The above expression is symmetric under the permutation of the cavity length,
so we can write

𝐸𝑖𝑑𝑒𝑎𝑙𝑍𝑃 = (ℏ𝑐𝐿𝑧4𝜋2 ) (𝐼 (𝑎, 𝑏) + 𝐼 (𝑏, 𝑎)), (3.219)
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with the integral

𝐼 (𝑎, 𝑏) =
∞
∑
𝑛=1

∫[𝑎√(𝑛𝜋𝑏 )
2
+ 𝜌2 + ln(1 − 𝑒−2𝑎√( 𝑛𝜋𝑏 )

2+𝜌2)] 𝑑2𝜌, (3.220)

where we have defined the bidimensional vector 𝜌 = (𝑘, 𝜉/𝑐) with 𝜌2 = 𝑘2 +
𝜉 2/𝑐2. The ideal result of the zero-point energy given by Eq. (3.218) needs to be
regularized. Here we use dimensional regularization [74–76]7. In this manner,
let us define the 𝑠-dimensional integrals

𝐽𝑠(𝑎, 𝑏) = 𝑎
∞
∑
𝑛=1

∫ √(𝑛𝜋𝑏 )
2
+ 𝜌2 𝑑 𝑠𝜌,

𝐾𝑠(𝑎, 𝑏) =
∞
∑
𝑛=1

∫ ln(1 − 𝑒−2𝑎√( 𝑛𝜋𝑏 )
2+𝜌2) 𝑑 𝑠𝜌, (3.221)

from these expressions, we see that the zero-point energy Eq. (3.218) can be
recovered when 𝑠 = 2, since it is clear that 𝐼 (𝑎, 𝑏) = 𝐽2(𝑎, 𝑏) + 𝐾2(𝑎, 𝑏). The terms
in Eq. (3.221) only depend on themodulus of the 𝑠-dimensional vector 𝜌. One can
perform the general solid angle integration with Eq. (3.112). On the other hand,
the integration over the modulus 𝜌 can be realized by using the Beta function
representations

𝐵(𝑥, 𝑦) = Γ(𝛼)Γ(𝛾 )
Γ(𝛼 + 𝛾) = ∫

∞

0
𝑦𝛼−1(1 + 𝑦)−𝛼−𝛾 𝑑𝑦. (3.222)

Finally, by using the reflection formula of the Riemann zeta function, analogous
to Eq. (3.116), one can prove that

𝐽𝑠(𝑎, 𝑏) = − 𝑎
2𝑏𝑠+1𝜋

𝑠/2−1Γ (𝑠 + 2
2 ) 𝜁 (𝑠 + 2). (3.223)

The second regularized integral 𝐾𝑠 , in Eq. (3.221), can be rewritten by using
the Taylor expansion of the logarithm function as follows:

ln(1 − 𝑥) = −
∞
∑
𝑘=1

𝑥𝑘
𝑘 , for |𝑥| < 1. (3.224)

Hence, we can write

𝐾𝑠(𝑎, 𝑏) = − 2𝜋 𝑠/2
Γ(𝑠/2)

∞
∑
𝑛=1

∞
∑
𝑚=1

1
𝑚 ∫

∞

0
𝜌𝑠−1𝑒−2𝑚𝑎√( 𝑛𝜋𝑏 )

2+𝜌2 𝑑𝜌. (3.225)

7A more detailed application of this technique is given in Sec. 4.3
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In order to perform the integration above, we use the integral representation of
the modified Bessel function [77]

𝐾𝜈(𝑥𝑧) = √𝜋
Γ(𝜈 + 1

2)
( 𝑥
2𝑧 )

𝜈
∫
∞

0
𝑡2𝜈 𝑒

−𝑥√𝑡2+𝑧2

√𝑡2 + 𝑧2
𝑑𝑡, (3.226)

hence, one obtains that

𝐾𝑠(𝑎, 𝑏) = 2𝜋 3𝑠−1
2

𝑏𝑠
∞
∑
𝑛=1

∞
∑
𝑚=1

1
𝑚

𝑑
𝑑𝜆 (𝐾 𝑠−1

2
(𝜆𝑛) (2𝑛𝜆 )

𝑠−1
2 ) ,

where we have defined 𝜆 = 2𝑚𝜋𝑎/𝑏. Now, by using the following recursion
formula of the modified Bessel function

(1𝑧
𝑑
𝑑𝑧 )

𝑚
𝐾0(𝑧) = (−1)𝑚𝑧−𝑚𝐾𝑚(𝑧), (3.227)

and also considering the series expansion
∞
∑
𝑛=1

𝐾0(𝜆𝑛) = 1
2 (𝐶 + ln ( 𝜆

4𝜋 )) +
𝜋
2𝜆 + 𝜋

∞
∑
𝑝=1

( 1
√𝜆2 + (2𝜋𝑝)2

− 1
2𝜋𝑝) , (3.228)

one can obtain that

𝐾𝑠(𝑎, 𝑏) = 2𝜋 𝑠−1
2 { 1

4𝑎𝑠 Γ (
𝑠 + 1
2 ) 𝜁 (𝑠 + 1) + 1

4√𝜋
Γ (𝑠 + 2

2 ) 𝜁 (𝑠 + 2) 𝑎
𝑏𝑠+1

− 1
8√𝜋

Γ (𝑠 + 2
2 ) 𝑎𝑏 𝑍2(𝑎, 𝑏; 𝑠 + 2)},

(3.229)

where we have used the definition of the Epstein zeta function, Eq. (3.114). Now,
putting everything together, one can recast Eq. (3.219) as

𝐸𝐼 𝑑𝑒𝑎𝑙𝐶 = ℏ𝑐𝐿𝑧
8𝜋2 (𝜋2 𝜁 (3) (

1
𝑎2 + 1

𝑏2) − 𝑎𝑏𝑍2(𝑎, 𝑏, 4)) , (3.230)

which is the Eq. (3.118). By using the variable 𝑟 = 𝑎/𝑏, one can express this
energy as

𝐸𝐼 𝑑𝑒𝑎𝑙𝐶 = (ℏ𝑐𝐿𝑧𝑎2 ) 𝐸(𝑟), (3.231)

with the dimensionless function

𝐸(𝑟) = 1
16𝜋 𝜁 (3) (1 + 𝑟2) − 𝑟3

8𝜋2𝑍2(𝑟 , 1, 4). (3.232)
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With the Casimir energy at hand, one can find the Casimir force

𝐹 𝐼 𝑑𝑒𝑎𝑙𝐶 = −𝜕𝐸
𝐼 𝑑𝑒𝑎𝑙𝐶
𝜕𝑎 . (3.233)

We can write it in terms of the adimensional variable 𝑟 as

𝐹 𝐼 𝑑𝑒𝑎𝑙𝐶 = (ℏ𝑐𝐿𝑧𝑎3 ) 𝑓 (𝑟), (3.234)

where
𝑓 (𝑟) = 𝜁 (3)

8𝜋 − 𝜁 (4)
𝜋2𝑟 + 𝑟3

8𝜋2𝑍2(𝑟 , 1, 4) −
2𝑟3
𝜋2 𝑧(𝑟), (3.235)

and we have defined the function 𝑧(𝑟) given by

𝑧(𝑟) =
∞
∑

𝑚,𝑝=1
(𝑚𝑟)2

[(𝑚𝑟)2 + 𝑝2]3
. (3.236)

In Fig. 3.6, we show the graph of the Casimir energy and the Casimir force
for a perfectly conducting waveguide of rectangular cross-section. The Casimir
energy is always negative but exhibits a maximum value for some critical value 𝑟𝑐
of the ratio between the waveguide lengths, 𝑟 = 𝑎/𝑏. Near that point, the Casimir
force is null and changes its behavior from attractive for 𝑟 < 𝑟𝑐 to repulsive for
𝑟 > 𝑟𝑐 . The dependence of the attractive-repulsive nature of the Casimir force
on the length ratio of the cavity shape is well-known in the literature and is
recovered in the limit of perfect conductivity [78, 79].

We conclude this section by presenting the corrections to the zero-point en-
ergy due to the finite conductivity of the waveguide material. First, we define
some useful variables. Instead of working with the variables 𝜆1,2 and 𝜐1,2, see Eq.
(3.211) and Eq. (3.212), we define the variables 𝑝 and ̃𝑝 given by

(𝑛𝜋𝑏 )
2
+ 𝑘2 = 𝜀1

𝜉 2
𝑐2 (𝑝

2 − 1),

(𝑛𝜋𝑎 )
2
+ 𝑘2 = 𝜀1

𝜉 2
𝑐2 ( ̃𝑝2 − 1), (3.237)

and we define the variables 𝑠 and ̃𝑠 as

𝑝2 − 1 + 𝜀2
𝜀1

= 𝑠2,

̃𝑝2 − 1 + 𝜀2
𝜀1

= ̃𝑠2. (3.238)
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Figure 3.6: Casimir energy and force in the case of a waveguide with perfect conducting
surfaces. These quantities are plotted as a function of the ratio 𝑟 = 𝑎/𝑏 between the
lengths of the waveguide cross-section. The energy is measured in units of ℏ𝑐𝐿𝑧/𝑎2,
while force units are ℏ𝑐𝐿𝑧/𝑎3. Graph taken of Ref. [46].

With these variables, one can show that 𝜆1 = √𝜀1𝜉𝑝/𝑐, 𝜆2 = √𝜀1𝜉 𝑠/𝑐, 𝜐1 =
√𝜀1𝜉 ̃𝑝/𝑐, and 𝜐2 = √𝜀1𝜉 ̃𝑠/𝑐. Hence, the reflectivity index, Eq. (3.216), can be
rewritten as

𝒳1 = (𝑝𝜖2 + 𝑠𝜖1
𝑝𝜖2 − 𝑠𝜖1

)
2
, 𝒳2 = ( ̃𝑝 + ̃𝑠

̃𝑝 − ̃𝑠 )
2
,

𝒴1 = ( ̃𝑝𝜀2 + ̃𝑠𝜀1
̃𝑝𝜀2 − ̃𝑠𝜀1

)
2
, 𝒴2 = (𝑝 + 𝑠

𝑝 − 𝑠 )
2
. (3.239)

We showed in the previous section that these reflectivity indexes tend to unity in
the case of a vacuumwaveguidewith perfect conductors on the outside: 𝒳1,2, 𝒴1,2
→ 1. For the case of an imperfect conducting surface, we expect a behavior that
gives us some finite corrections to the ideal perfect conducting case, such as

𝒳1,2 = 1 + Δ𝒳1,2, 𝒴1,2 = 1 + Δ𝒴1,2. (3.240)

Considering small corrections, we can expand the zero-point energy for the im-
perfect conductor case as

𝐸𝑍𝑃 = 𝐸𝐼 𝑑𝑒𝑎𝑙𝑍𝑃 + Δ𝐸𝑍𝑃 , (3.241)

where the ideal case is given by Eq. (3.218) or equivalently by Eq. (3.230). The
correction due to finite conductivity of the dielectric is given by the term Δ𝐸𝑍𝑃 .
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Explicitly, in this case, we assume vacuum inside the waveguide with dielectric
constant 𝜀1 = 1, while for the outside, we consider that the dielectric constant
follows the plasma model and is given by 𝜀2 = 𝜀(𝜔), where

𝜀(𝜔) = 1 − 𝜔2𝑝
𝜔2 , (3.242)

and the plasma frequency 𝜔𝑝 is a specific characteristic of the material. Consid-
ering this, we have that in terms of the imaginary frequency, 𝜀2 = 1 + 𝜔2𝑝/𝜉 2.

Since inside the waveguide we have vacuum, the wave number there is 𝜆1 →
𝜆(0), see Eq. (3.217), and one can define 𝑝0 such that 𝜆(0) = 𝜉𝑝0/𝑐, and 𝑠 =
√𝑝20 + 𝜔2𝑝/𝜉 2. By expanding 𝑠 up to first order in 𝜉/𝜔𝑝 , we obtain

𝑠 ≈ 𝜔𝑝
𝜉 + 𝑝20 𝜉

2𝜔𝑝
. (3.243)

By using the above expansion together with Eq. (3.242) and that 𝜀1 → 1 with
𝑝 → 𝑝0, one finds the corrections to the reflectivity indexes:

Δ𝒳1 ≈
4𝜉

𝑝0 𝜔𝑝
, Δ𝒴2 ≈

4𝑝0 𝜉
𝜔𝑝

. (3.244)

In a very similar way, we have that inside the waveguide, 𝜐1 → 𝜐(0), and with
this, we define the variable ̃𝑝0 such that 𝜐(0) = 𝜉 ̃𝑝0/𝑐, and ̃𝑠 = √ ̃𝑝20 + 𝜔2𝑝/𝜉 2.
Performing the expansion, one obtains the first corrections to the reflectivity
indexes:

Δ𝒴1 ≈
4𝜉
̃𝑝0 𝜔𝑝

, Δ𝒳2 ≈
4 ̃𝑝0 𝜉
𝜔𝑝

. (3.245)

By considering these finite conductivity corrections, one canwrite the zero-point
energy correction as given by

Δ𝐸𝑍𝑃 = (ℏ𝐿𝑧8𝜋2)∫
∞

−∞
{

∞
∑
𝑛=1

∫
∞

−∞
[(Δ𝒳1 + Δ𝒴2) (1 − 𝑒−2𝑎𝜆(0))

−1

+ (Δ𝒳2 + Δ𝒴1) (1 − 𝑒−2𝑏𝜆0)
−1

] d𝜉 } d𝑘. (3.246)

By exploring the symmetry of this energy correction under the permutation of
the cavity lengths 𝑎 and 𝑏, one can express this as a function of only the scale
𝑎 and the ratio 𝑟 = 𝑎/𝑏. Also, considering that the plasma wavelength of the
material is 𝜆𝑝 = 2𝜋𝑐/𝜔𝑝 , we can write

Δ𝐸𝑍𝑃 = ℏ𝐿𝑧𝑐𝜆𝑝 (𝑈 (𝑟)𝑎3 + 𝑈 (𝑟−1)
𝑏3 ) . (3.247)
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where we have defined the dimensionless function

𝑈 (𝑟) = 1
2𝜋2

∞
∑
𝑛=1

∫
∞

0
𝜒 (√(𝑛𝜋𝑟)2 + 𝜒2 + 𝜒2

2√(𝑛𝜋𝑟)2 + 𝜒2) (
1

1 − 𝑒−2√(𝑛𝜋𝑟)2+𝜒 2 ) d𝜒,
(3.248)

as expected, this integral needs to be regularized. We use dimensional regular-
ization in the same manner as done previously for the case of the ideal perfect
conducting waveguide. We find that

𝑈 (𝑟) = −3𝜁 (3)32𝜋2 + 𝜁 (4)
16𝜋3𝑟 +

𝑟3
2𝜋3 𝑧(𝑟), (3.249)

and one can express

Δ𝐸𝑍𝑃 = (
ℏ𝐿𝑧𝑐𝜆𝑝
𝑎3 )Δ𝐸(𝑟), (3.250)

where Δ𝐸(𝑟) = 𝑈 (𝑟) + 𝑟3𝑈 (𝑟−1).
This allows us to write the Casimir-Lifshitz energy for the dielectric waveg-

uide in the plasma model as

𝐸𝐶 = (ℏ𝑐𝐿𝑧𝑎2 ) (𝐸(𝑟) +
𝜆𝑝
𝑎 Δ𝐸(𝑟)) . (3.251)

The Casimir-Lifshitz energy is shown in Fig. (3.7a) for different values of the
plasma wavelength 𝜆𝑝 , measured in units of the length 𝑎. In this figure, we note
that the effect of the finite conductivity correction is to change the concavity
of the Casimir energy for large values of 𝑟 . This leads to the appearance of a
local minimum of the zero-point energy near some value 𝑟∗. Near this point, the
Casimir-Lifshitz energy behaves as an effective potential well. In this case, the
Casimir force is shown in Fig. (3.7b). In that figure, a second inversion in the
attractive-repulsive nature of the Casimir force occurs at 𝑟∗. This second point is
also an equilibrium point with zero Casimir force, but it corresponds to a stable
equilibrium, whereas the initial critical point, 𝑟𝑐 , is an unstable equilibrium.

3.2.3 Phonons
For future convenience, we assume Gaussian units in this section.

Before introducing interactions between the fields, let us explore a useful
theory of quasi-particles. To introduce these quasi-particles, let us start with an
ideal fluid obeying the free Euler’s equation

𝜕
𝜕𝑡 v + (v ⋅ ∇)v = −1

𝜌∇𝑝 (3.252)
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(a) The final Casimir energy corrected by the
finite dielectric properties of the material. The
correction depend on the plasma wave length
𝜆𝑝 with respect to 𝑎.

(b)The final Casimir force corrected by the finite
dielectric properties of the material. The correc-
tion depend on the plasma wave length 𝜆𝑝 with
respect to 𝑎.

Figure 3.7: Plots for the aharmonic Casimir oscilator. The energies and forces are in
units of ℏ𝑐𝐿𝑧/𝑎2 and 𝑟 = 𝑎/𝑏 is the ratio between the length of the cross-section. Both
graphs have been taken of Ref. [46].

where 𝜌(x, 𝑡) is the mass density, 𝑝(x, 𝑡) is the local pressure, and v(x, 𝑡) is the lo-
cal velocity. Assuming there is no loss of mass, the fluid also obeys the continuity
equation

𝜕
𝜕𝑡 𝜌 = −∇ ⋅ (𝜌v). (3.253)

We know that small perturbations, like sound, inside liquids or solids, can
propagatewithout generating significant changes in themean values of themedium.
Therefore, let us consider a small perturbation propagating in this ideal fluid.
This small perturbation is characterized by the following local variations:

𝑝(x, 𝑡) = 𝑝0 + 𝛿𝑝(x, 𝑡), (3.254)
𝜌(x, 𝑡) = 𝜌0 + 𝛿𝜌(x, 𝑡), (3.255)
v(x, 𝑡) = 𝛿v(x, 𝑡), (3.256)

where we denote by the index 0 the mean quantities that are static in time and
position-independent. Making this change of variables in Eq. (3.252), using a
Taylor expansion to first order in 1/(𝜌0+𝛿𝜌), and disregarding products of small
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perturbations, i.e., contributions of order 𝑂(𝛿2), we obtain

𝜕
𝜕𝑡 𝛿v = − 1

𝜌0
∇𝛿𝑝, (3.257)

Now we observe that, in a fixed volume, any variation in the pressure can be
directly related to a variation in the density of the system, and that the square
root of the variation of pressure in terms of the density is the speed of sound, 𝑐𝑆 ,
inside a material. Therefore, we have

∇𝛿𝜌 = 𝜕𝑝0
𝜕𝜌0

∇𝛿𝜌 = 𝑐2𝑠 ∇𝛿𝜌, (3.258)

which implies that the perturbations satisfy the following equation:

𝜕
𝜕𝑡 𝛿v = − 𝑐2𝑆

𝜌0
∇𝛿𝜌. (3.259)

With an analogous procedure in the continuity equation (Eq. (3.253)), we obtain

𝜕
𝜕𝑡 𝛿𝜌 = −𝜌0∇𝛿v. (3.260)

Now let us consider that the perturbation of the velocity is a gradient of a
scalar potential, i.e., 𝛿v = ∇𝜙(x, 𝑡). In terms of the scalar potential, the previous
two equations become

𝜕
𝜕𝑡 ∇𝜙 = − 𝑐2𝑆

𝜌0
∇𝛿𝜌, (3.261)

𝜕
𝜕𝑡 𝛿𝜌 = −𝜌0Δ𝜙. (3.262)

Taking the time derivative of Eq. (3.261) and using Eq. (3.262), we get

( 1
𝑐2𝑆

𝜕2
𝜕𝑡2 − Δ) 𝜙 = 0, (3.263)

and, taking the gradient of Eq. (3.262) and using Eq. (3.261), we obtain

( 1
𝑐2𝑆

𝜕2
𝜕𝑡2 − Δ) 𝛿𝜌 = 0. (3.264)

Thus, 𝜙(x, 𝑡) and 𝛿𝜌(x, 𝑡) satisfy wave equations. With this remarkable result, we
now can construct the associated Lagrangian, the Hamiltonian, then impose the
canonical commutation relation (Eq. (3.4)), and then proceed with the analogous
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procedure discussed in Sec. 3.1.1, but now we have the speed of sound instead of
the speed of light8. Following similar steps that lead us to Eq. (3.11), we obtain
the following expansion of the operator 𝛿𝜌:

𝛿𝜌(𝑡,x) = ∑
k √

ℏ𝜌0𝜔
2𝑉 𝑐2𝑆

(𝑐k𝑒𝑖(k⋅r−𝜔𝑡) − 𝑐†k𝑒−𝑖(k⋅r−𝜔𝑡)) , (3.265)

where 𝑉 is some quantization volume, 𝑘 = ‖k‖, 𝜔 = 𝑐𝑆𝑘, and 𝑐k, 𝑐†k are the
phonon annihilation and creation operators. Therefore, we have obtained a
quantum description of the perturbations in the fluid. These collective behaviors
that we call phonons are quasi-particles and are important for many transport
properties of materials [80, 81].

The correlation function of the phonons can be directly calculated, renaming
𝛿𝜌 as 𝜌19 and transitioning to the continuous momentum, we have

⟨𝜌1(x, 𝑡)𝜌1(x′, 𝑡′)⟩ = (𝜌1(x′, 𝑡′)𝜌1(x, 𝑡)Ω, Ω) =
ℏ𝜌0

12𝜋3𝑐2𝑆 ∫ 𝑐𝑆𝑘𝑒𝑖(k⋅(x′−x)−𝑐𝑆𝑘(𝑡′−𝑡)) d3𝑘

= ℏ𝜌0
2𝜋2𝑐𝑆

(x′ − x)2 + 3𝑐2𝑆 (𝑡′ − 𝑡)2
[(x′ − x) + 𝑐𝑆(𝑡′ − 𝑡)]3 [𝑐𝑆(𝑡′ − 𝑡) − (x′ − x)]3

,
(3.266)

this is the same form of the correlation function for the time derivative of a mass-
less scalar field, apart from the factor 𝜌0 and changing the speed of sound by the
speed of light.

Using a limit of the previous expression, Ref. [82] showed that phonons in
the vacuum state induce a correction in the cross-section of light scattering, pro-
portional to the fifth power of the light frequency. Compared to scattering by
thermal density fluctuations, it is found that this correction can be of order 0.5%
for water at room temperature and optical frequencies. Many studies have con-
sidered the previous equation and its implications. Since near a boundary, the
correlation function of the phonons resembles the behavior of the electric and
magnetic fields, it was proposed that the phononic Casimir effect [83] could be
used to search for an observable effect related to quantum fields near boundaries.
Some geometries and their effects on the correlation function have also been in-
vestigated [84].

More recently, it has become clear that the space and time average of the
phonon-phonon correlation fucntion plays a fundamental role in its understand-
ing and potential observation. Additionally, it is argued that the comprehension

8Remember that in Sec. 3.1.1 we had 𝑐 = 1.
9Therefore, the total density is given by 𝜌 = 𝜌0 + 𝜌1.
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of zero-point fluctuations may shed light on the measurement problem in quan-
tum mechanics; see Ref. [85] and the references therein.

Zero-point fluctuations sensor

As we said, light scattering can be affected by the zero-point fluctuations due
to the phonons in a material. However, such a measurement may be difficult to
realize due to the non-static behaviors of the fluctuations. Therefore, instead of
trying to “see” the fluctuations directly, we may use some kind of external sensor
to measure their effects remotely. First, let us set up our model.

A charge in the vicinity of a diluted dielectric, let’s say at some distance 𝑑
along the 𝑧-axis, can have its dynamics computed using the image method [86].
Alternatively, we can decompose the dielectric into the sum of electric dipoles.
Denoting the polarizability of one molecule by 𝛼𝑚, the mass density of the di-
electric by 𝜌, the mass of the molecule by 𝑚, and |𝑑 ̂𝑧 − x′| = 𝑟 as the distance
between the charge and the dipole, the force of one dipole on the electric charge
𝑞 is given by

F1d = −2𝑞2𝛼𝑚 (𝜌(x
′, 𝑡)
𝑚 ) (𝑑 ̂𝑧 − x′)

𝑟6 , (3.267)

using that 𝜌(x′, 𝑡) = 𝜌0 + 𝜌1(x′, 𝑡), with 𝜌1 given by Eq. (3.265), and integrating
over the semi-infinite dielectric 𝑉 = {(𝑥′, 𝑦 ′, 𝑧′) | − ∞ < 𝑥′ < ∞, −∞ < 𝑦 ′ <
∞, −∞ < 𝑧′ ≤ 0}, we obtain the electric force due to the diluted dielectric

F = −𝜋𝛼𝑚𝑞
2

2𝑑2 (𝜌0𝑚 ) − 2𝑞2𝛼𝑚𝑚 ∫𝑉 𝜌1(x′, 𝑡) (𝑑 ̂𝑧 − x′)
𝑟6 d𝑉 = F0 + F1. (3.268)

Thus, using the phonons and the diluted dielectric approximation, we expect to
obtain a correction to the classical force due to the zero-point fluctuations. Since
this force is now an operator, we need to compute its average. However, it follows
directly that ⟨F1⟩ = 0, but ⟨F21⟩ ≠ 0. Therefore, the effects of the phonons are on
the root mean square of the force.

The effects of the fluctuations need to be averaged for a proper description
of the observable effect, since the time-energy uncertainty principle allows large
fluctuations in a short time. Therefore, we need to choose a sampling function,
say 𝑔(𝑡), such that

⎧
⎨
⎩

∫ 𝑔(𝑡)d𝑡 = 𝔼[1] = 1,
∫ 𝑔(𝑡)𝑒𝑖𝜔𝑡d𝑡 = 𝑔̃(𝜔),
|𝑔̃(𝜔)| → 0, if 𝜔 ≫ 1,

(3.269)

to evaluate our time averages, denoted by 𝔼[•]. Since in F21 only 𝜌1 is time-
dependent, we shall compute the time average of 𝜌1(x′, 𝑡)𝜌1(x′, 𝑡). But first, we
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notice that we expect the momentum that contributes to the integral of 𝜌1 to be
of order 𝑘 ≥ 𝑑−1. Therefore, we have a typical time scale in our system given
by 𝜏 ≈ 𝑑/𝑐𝑆 . Thus, any high-momentum divergences that may appear are sup-
pressed by the time average. Then we have that

⟨𝔼 [𝜌21(x, 𝑡)]⟩ = ∑
k

ℏ𝜔𝜌0
2𝑉 𝑐2𝑆

|𝑔̃(𝜔)|2, (3.270)

in the continuous momentum, it follows

⟨𝔼 [𝜌21(x, 𝑡)]⟩ =
ℏ𝜌0

2(2𝜋)3𝑐2𝑆 ∫𝜔|𝑔̃(𝜔)|2d3𝑘

= ℏ𝜌0
4𝜋2𝑐5𝑆 ∫

∞

0
𝜔3|𝑔̃(𝜔)|2d𝜔

= ℏ𝜌0
4𝜋2𝜏4𝑐5𝑆

𝐶𝑔 , (3.271)

where we have defined 𝐶𝑔 = 𝜏4 ∫∞0 𝜔3|𝑔̃(𝜔)|2d𝜔. Therefore, we can recast the
root mean square of the force of one dipole, √⟨F21⟩ = |F1|, as

|F1| =
𝛼𝑚𝑞2
𝜋𝜏2𝑚√

ℏ𝜌0𝐶𝑔
𝑐5𝑆 ∫𝑉

1
𝑟5d𝑉

= 𝛼𝑚𝑞2
3𝑑2𝜏2𝑚√

ℏ𝜌0𝐶𝑔
𝑐5𝑆

. (3.272)

Defining 𝜏 = 𝑎𝑑/𝑐𝑆 , for some 𝑎 ≥ 1, we find

|F1| =
𝛼𝑚𝑞2
3𝑑4𝑎2𝑚√

ℏ𝜌0𝐶𝑔
𝑐𝑆

. (3.273)

Now, we can divide the root mean square of the force due to the phonons by the
root mean square of the classical force to compare its intensity. Thus, we have

|F1|
|F0|

= 2
3𝜋 √

ℏ
𝜌0𝑐𝑆

𝐶𝑔
𝑎2𝑑2 . (3.274)

In order to properly estimate the fluctuations, we need to fix a dielectric, an
electric charge, and the function 𝑔̃(𝜔). Let’s say that we have an electron as
the test charge and the diluted dielectric is He4, so we still need the specifics of
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𝑔̃(𝜔). There are many choices of the sampling function that satisfy the desired
properties of Eq. (3.269). For example, if we set 𝜏 = 1, then 𝑔 = 𝑒−𝜔2/4 gives us
𝐶𝑔 ≈ 8. Instead of picking a Gaussian distribution, we choose the function that
gives the best numeric fitting from Ref. [87]. This function is given by the sum
of

𝑔̃fit(𝜔𝜏) = 1 − 0.0378271 (𝜔𝜏)2 − 0.000429218 (𝜔𝜏)4 + 0.000875262 (𝜔𝜏)6
− 0.0000485667 (𝜔𝜏)8 − 2.61062 × 10−10 (𝜔𝜏)10 + 1.9601 × 10−13 (𝜔𝜏)12, (3.275)

for 𝜔𝜏 < 9.92, and
𝑔̃asy(𝜔𝜏) = 2.9324𝑒−√2𝜔𝜏 , for 𝜔𝜏 ≥ 9.92 (3.276)

If we set 𝑔̃(𝜔𝜏) = 𝑔̃fit(𝜔𝜏) + 𝑔̃asy(𝜔𝜏), we obtain 𝐶𝑔 = 9.3. Fixing 𝑎 = 1, it follows

|F1|
|F0|

= 1.352 × 10−15cm2 1
𝑑2 . (3.277)

For the phonon description to be valid, we need the characteristic distances of
the system to be greater than the interatomic distances of the dielectric. There-
fore, assuming that the interatomic distance is of the order of 1 Å (10−8 cm), the
minimum value that we can allow for 𝑑 is around 10 Å. In this minimum distance,
the force due to the phonons is maximum and contributes around 10% of the to-
tal force on the charge. Even in the more conservative scenario, with 𝑑 = 100 Å,
the contribution of the phonon force is around 1% of the total force. Therefore,
it may have an observable effect on the charge.

Associated with these fluctuating forces due to the phonons, our electric
charge will acquire a velocity 𝑣1 = |F1|𝜏/𝑚𝑞 , with𝑚𝑞 being themass of the charge.
The ratio between this velocity and the thermal velocity10 of the charge is given
by

𝑣1
𝑣𝑇

= 𝑞2𝛼𝑚𝑎
3𝑚 √

ℏ𝜌0
𝑘𝐵𝑇𝑚𝑞𝑐3𝑆

𝐶𝑔
𝑑3 , (3.278)

Now, with the charge as an electron, the dielectric as He4 at 𝑇 = 4𝐾 , 𝑎 = 1, and
𝐶𝑔 = 9.3, we obtain

𝑣1
𝑣𝑇

= 1.476 × 10−19cm3 1
𝑑3 , (3.279)

Therefore, in the case of 𝑑 = 10Å, we have the velocity induced by the fluctua-
tions around a hundred times greater than the thermal velocity, and at 𝑑 = 100

10Remember that 𝑣𝑇 = √
𝑘𝐵𝑇
𝑚𝑞

, with 𝑘𝐵 as the Boltzmann constant.
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Å, 𝑣1 is around 10 times greater than 𝑣𝑇 . The implications of this are immediate.
The electron will exhibit an effective temperature greater than the 4 K at which
the system is maintained.

In the case of a free electron near the diluted dielectric, the fluctuations may
induce a classically unexpected deviation from the 𝑧-axis. Let the force due to
the fluctuations be denoted by F1 = F⟂ +F𝑧 , where F⟂ contains the contribution
of the force in the 𝑥 and 𝑦 directions. If we compute separately the root mean
square of each contribution, we can obtain the following ratio:

|F⟂|
|F𝑧 |

= 𝜋
4 , (3.280)

which means that the perpendicular contributions to the mean root square of the
fluctuating force are non-vanishing, raising the possibility of movement out of
the 𝑧-plane.

3.3 Interacting Fields
Up to now, we have discussed only linear equations of motion, which arise from
a Lagrangian that is at most quadratic in the field variables. Such theories are
able to describe fields in free space, without interaction with themselves or other
fields. From a particle perspective, this corresponds to the description of a free
quantum particle. In this section, we will introduce interactions into the theory,
following Refs. [22–24, 88].

Let us suppose that any interacting theory can be written as the sum of a free
Hamiltonian and an interacting part, i.e.

𝐻 = 𝐻0 + 𝐻𝐼 , (3.281)

where 𝐻0 is the free Hamiltonian, which we have considered so far, and 𝐻𝐼 is the
interacting part. Now, we mimic the case of quantum mechanics and define the
evolution of an operator as

𝐴(𝑡) = 𝑒𝑖𝐻0𝑡𝐴𝑒−𝑖𝐻0𝑡 , (3.282)

where 𝐴 = 𝐴(𝑡 = 0). This relation is called the interaction picture. The
connection with the Heisenberg picture follows directly:

𝐴(𝑡) = 𝑒𝑖𝐻0𝑡 𝑒−𝑖𝐻 𝑡𝐴H𝑒𝑖𝐻 𝑡 𝑒−𝑖𝐻0𝑡 , (3.283)

where 𝐴H is the operator 𝐴 in the Heisenberg picture. If 𝑡 = 0, it follows directly
that all three pictures (Schrödinger, Heisenberg, and interaction) are the same.
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Since all pictures are linked by unitary transformations, they all have the same
expectation value.

The expansion of the scalar field given by Eq. (3.11) can be obtained by11

𝜙(x, 𝑡) = 𝑒𝑖𝐻0𝑡𝜙(x)𝑒−𝑖𝐻0𝑡 . (3.284)

Before we continue with the discussion of fields, let us take a step back and
analyze the interaction picture in a state, 𝜓 , of a Hilbert space. To connect the
state 𝜓(𝑡0) at time 𝑡0 to the state 𝜓(𝑡1) at time 𝑡1, we can use the interaction picture
for the states, which follows directly from the definition:

𝜓(𝑡1) = 𝑈 (𝑡1, 𝑡0)𝜓 (𝑡0), (3.285)

Formally, the solution to this equation is

𝑈 (𝑡1, 𝑡0) = 𝑒𝑖𝐻0𝑡1𝑒−𝑖𝐻(𝑡1−𝑡0)𝑒−𝑖𝐻0𝑡0 , (3.286)

Note that, in general, 𝐻0 and 𝐻 do not commute. From the previous relation, it
follows directly that the operator 𝑈 satisfies:

(i) 𝑈 (𝑡, 𝑡0) is unitary;
(ii) 𝑈 (𝑡0, 𝑡0) = 𝐼 ;
(iii) 𝑈 (𝑡2, 𝑡1)𝑈 (𝑡1, 𝑡0) = 𝑈 (𝑡2, 𝑡0);
(iv) 𝑈 †(𝑡0, 𝑡1) = 𝑈 (𝑡1, 𝑡0).

We notice that 𝑈 (𝑡, 0) is the operator that links the interaction picture and the
Heisenberg picture in Eq. (3.283). 𝑈 (𝑡, 𝑡0) is called the time-evolution operator
and it satisfies

𝑖 𝜕𝜕𝑡 𝑈 (𝑡, 𝑡0) = 𝐻𝐼 (𝑡)𝑈 (𝑡, 𝑡0), (3.287)

which can be recast as the following integral equation:

𝑈 (𝑡, 𝑡0) = 𝐼 + (−𝑖) ∫
𝑡

𝑡0
𝐻𝐼 (𝑡′)𝑈 (𝑡′, 𝑡0) 𝑑𝑡′. (3.288)

Now, let us pick a time 𝑡2 ∈ [𝑡0, 𝑡]. Applying the previous reasoning, we get

𝑈 (𝑡, 𝑡0) = 𝐼 + (−𝑖) ∫
𝑡

𝑡0
𝐻𝐼 (𝑡′) 𝑑𝑡′ + (−𝑖)2 ∫

𝑡

𝑡0
∫
𝑡′

𝑡0
𝐻𝐼 (𝑡′)𝑈 (𝑡″, 𝑡0) 𝑑𝑡′ 𝑑𝑡″, (3.289)

11This is just an application of the Baker-Campbell-Hausdorff relation.
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If we go further and divide the interval [𝑡0, 𝑡] into 𝑛 +1 intervals, we are left with
the identity plus 𝑛 + 1 multiple integrals, where the 𝑛-th term is given by

(−𝑖)𝑛 ∫
𝑡

𝑡0
[∫

𝑡1

𝑡0
…∫

𝑡𝑛−1

𝑡0
𝐻𝐼 (𝑡1)𝐻𝐼 (𝑡2) …𝐻𝐼 (𝑡𝑛) 𝑑𝑡𝑛 𝑑𝑡𝑛−1… 𝑑𝑡2] 𝑑𝑡1, (3.290)

Solving this integral is quite complicated. However, we can introduce the tem-
poral ordering to simplify the computation. The temporal ordering is defined
as

𝒯 (𝐴(𝑥)𝐴(𝑦)) = 𝜃(𝑥0 − 𝑦0)𝐴(𝑥)𝐴(𝑦) + 𝜃(𝑦0 − 𝑥0)𝐴(𝑦)𝐴(𝑥), (3.291)

Thus, if 𝑡1 ≥ 𝑡2 ≥ ⋯ ≥ 𝑡𝑛, we have

𝒯 (𝐻(𝑡1)𝐻(𝑡2) …𝐻(𝑡𝑛)) = 𝐻(𝑡1)𝐻(𝑡2) …𝐻(𝑡𝑛). (3.292)

Let us analyze the 𝑛 = 2 contribution. Changing the order of integration and
renaming the variables, we have

∫
𝑡

𝑡0
∫
𝑡1

𝑡0
𝐻𝐼 (𝑡1)𝐻𝐼 (𝑡2) 𝑑𝑡2 𝑑𝑡1 = ∫

𝑡

𝑡0
∫
𝑡1

𝑡0
𝐻𝐼 (𝑡1)𝐻𝐼 (𝑡2)𝑑𝑡1𝑑𝑡2 =∫

𝑡

𝑡0
∫
𝑡1

𝑡0
𝐻𝐼 (𝑡2)𝐻𝐼 (𝑡1)𝑑𝑡2𝑑𝑡1

⇒ 2∫
𝑡

𝑡0
∫
𝑡1

𝑡0
𝐻𝐼 (𝑡1)𝐻𝐼 (𝑡2)𝑑𝑡2𝑑𝑡1 =∫

𝑡

𝑡0
∫
𝑡1

𝑡0
𝐻𝐼 (𝑡1)𝐻𝐼 (𝑡2)𝑑𝑡2𝑑𝑡1 + ∫

𝑡

𝑡0
∫
𝑡

𝑡1
𝐻𝐼 (𝑡1)𝐻𝐼 (𝑡2)𝑑𝑡2𝑑𝑡1

= ∫
𝑡

𝑡0
∫
𝑡

𝑡0
𝒯 (𝐻𝐼 (𝑡1)𝐻𝐼 (𝑡2)) 𝑑𝑡2 𝑑𝑡1, (3.293)

Thus, the time-ordering allows us to rewrite the integrals over the entire interval.
Generalizing the previous result to all 𝑛, we can rewrite the perturbative series for
the time-evolution operator as the following Neumann series (see Eq. (A.165)):

𝑈 (𝑡, 𝑡0) =
∞
∑
𝑛=0

(−𝑖)𝑛
𝑛! ∫

𝑡

𝑡0
𝒯 (𝐻𝐼 (𝑡1) …𝐻𝐼 (𝑡𝑛)) 𝑑𝑡1…𝑑𝑡𝑛. (3.294)

Formally, we can sum this series to write

𝑈 (𝑡, 𝑡0) = 𝒯 (𝑒−𝑖 ∫
𝑡
𝑡0 𝐻𝐼 (𝑡′) 𝑑𝑡) , (3.295)

If we are dealing with Hamiltonian density, as is usual in quantum field theory,
the integral is taken over spacetime, and the Hamiltonian is the respective den-
sity.

Here we do not discuss the properties and difficulties of the 𝑆-matrix; we limit
ourselves to saying that the elements of such a matrix are spacetime integrals of
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the expectation values of the time-ordered products of the fields. Therefore, our
observables are elements of the 𝑆-matrix. Next, we explicitly compute some time-
ordered expectation values.

Now we notice that the divergence of the energy from the last section (see
Eq. (3.66)) can be solved in another way. Let us define the normal ordering,
∶•∶, of the field operators by moving all annihilation operators to the right in
the frequency decomposition, Eq. (3.11). This leads us to define it as

∶𝜙(𝑥)𝜙(𝑦)∶ = 𝜙(𝑥)𝜙(𝑦) − (𝜙(𝑥)𝜙(𝑦)Ω, Ω), (3.296)

equivalently, for the bosonic case12, we have

∶𝜙(𝑥)𝜙(𝑦)∶ = ∶𝜙−(𝑥)𝜙−(𝑦)∶ + ∶𝜙−(𝑥)𝜙+(𝑦)∶ + ∶𝜙+(𝑥)𝜙+(𝑦)∶ + ∶𝜙+(𝑥)𝜙−(𝑦)∶
= 𝜙−(𝑥)𝜙−(𝑦) + 𝜙−(𝑥)𝜙+(𝑦) + 𝜙−(𝑥)𝜙+(𝑦) + 𝜙−(𝑦)𝜙+(𝑥), (3.297)

therefore, it follows that the normal-ordered Hamiltonian, ∶𝐻∶, has zero ex-
pected value: ⟨∶𝐻∶⟩ = 0. This means that the normal ordering procedure is
equivalent to the subtraction of a (formally) infinite energy.

Assume that 𝑥0 > 𝑦0, so by direct computation, we have that

𝒯 (𝜙(𝑥)𝜙(𝑦)) = 𝜙−(𝑥)𝜙−(𝑦) + 𝜙−(𝑥)𝜙+(𝑦) + 𝜙−(𝑥)𝜙+(𝑦) + 𝜙−(𝑦)𝜙+(𝑥)
+ [𝜙+(𝑥), 𝜙−(𝑦)], (3.298)

it follows that

𝒯 (𝜙(𝑥)𝜙(𝑦)) = ∶𝜙(𝑥)𝜙(𝑦)∶ +[𝜙+(𝑥), 𝜙−(𝑦)]. (3.299)

Now let us define the contraction (or Wick contraction) as

𝜙(𝑥)𝜙(𝑦) = { [𝜙+(𝑥), 𝜙−(𝑦)], if 𝑥0 > 𝑦0,
[𝜙+(𝑦), 𝜙−(𝑥)], if 𝑦0 > 𝑥0.

(3.300)

From direct computation, it follows that

⟨𝒯 (𝜙(𝑥)𝜙(𝑦))⟩ = ⟨𝜙(𝑥)𝜙(𝑦)⟩ = 𝐺F(𝑥, 𝑦), (3.301)

where 𝐺F(𝑥, 𝑦) is the causal propagator, given by Eq. (3.30).

Theorem 3.5. (Wick’s theorem) The time-ordered product of a set of operators
can be decomposed into the corresponding sum of contractions of the normal-
ordered products. All contractions of the operators must be considered.

12Note that for a fermionic field, we must use the anti-commutator. This leads us to a minus
sign in the last term of Eq. (3.297)
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Proof. We use mathematical induction. We have shown that it is true in the case
of the product of two operators. Therefore, we suppose that it is true for the
product of 𝑚 − 1 operators. Suppose that 𝑥01 > 𝑥02 > ⋯ > 𝑥0𝑚 and denote by
𝜙𝑖 = 𝜙(𝑥𝑖) for all 𝑖 = 1, 2, … , 𝑚. So

𝒯 (𝜙1𝜙2…𝜙𝑚) = 𝜙1𝜙2…𝜙𝑚 = 𝜙1(𝜙2…𝜙𝑚)
= 𝜙1 (∶𝜙2…𝜙𝑚∶+∶𝜙2𝜙3…∶+∶𝜙2𝜙3𝜙4…∶+…

+ ∶𝜙2𝜙3𝜙4𝜙5𝜙6…∶+∶𝜙2𝜙3𝜙4𝜙5𝜙6…∶+…
+ ∶all triple contractions∶+∶all quadruple contractions∶+…)
= (𝜙1+ + 𝜙1−) (∶𝜙2…𝜙𝑚∶+… ) , (3.302)

we note that 𝜙1− ∶𝜙2…𝜙𝑚∶ = ∶𝜙1−𝜙2…𝜙𝑚∶, while

𝜙1+ ∶𝜙2…𝜙𝑚∶ = ∶𝜙2…𝜙𝑚∶ 𝜙1+ + [𝜙1+, ∶𝜙2…𝜙𝑚∶]
= ∶𝜙1+𝜙2…𝜙𝑚∶+∶[𝜙1+, 𝜙2−]𝜙3…𝜙𝑚∶
+ ∶𝜙2[𝜙1+, 𝜙3−] … 𝜙𝑚∶+⋯ + ∶𝜙2𝜙3… [𝜙1+, 𝜙𝑚−]∶
= ∶𝜙1+𝜙2…𝜙𝑚∶+∶𝜙1𝜙2𝜙3…𝜙𝑚∶
+ ∶𝜙1𝜙2𝜙3…𝜙𝑚∶+∶𝜙1𝜙2𝜙3…𝜙𝑚∶ . (3.303)

Thus, 𝜙1+ ∶𝜙2…𝜙𝑚∶ generates all the single contractions that involve the field
𝜙1. Using the same procedure, it is direct to obtain that 𝜙1+ ∶𝜙2𝜙3…∶ generates
all the double contractions with 𝜙1, and so on. Therefore, we obtain that

𝒯 (𝜙1𝜙2…𝜙𝑚) = ∶𝜙1𝜙2…𝜙𝑚∶+∶all possible contractions∶ . (3.304)

■

The simplest case of a non-linear theory is the so-called 𝜆𝜙𝜆𝜙𝜆𝜙4 theory. Such a
theory is described by a Lagrangian given by

𝐿 = 1
2𝜕

𝜇𝜙(𝑥)𝜕𝜇𝜙(𝑥) − 1
2𝑚

2𝜙2(𝑥) + 𝜆
4!𝜙

4(𝑥) = 𝐿0 + 𝐿𝐼 . (3.305)

The interaction Hamiltonian density is 𝐻𝐼 = −𝐿𝐼 . In order to appreciate Wick’s
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theorem, let us compute the time-ordered product of four fields:

𝒯 (𝜙(𝑥1)𝜙(𝑥2)𝜙(𝑥3)𝜙(𝑥4)) = ∶𝜙(𝑥1)𝜙(𝑥2)𝜙(𝑥3)𝜙(𝑥4)∶ + ∶𝜙(𝑥1)𝜙(𝑥2)𝜙(𝑥3)𝜙(𝑥4)∶
+ ∶𝜙(𝑥1)𝜙(𝑥2)𝜙(𝑥3)𝜙(𝑥4)∶ + ∶𝜙(𝑥1)𝜙(𝑥2)𝜙(𝑥3)𝜙(𝑥4)∶
+ ∶𝜙(𝑥1)𝜙(𝑥2)𝜙(𝑥3)𝜙(𝑥4)∶ + ∶𝜙(𝑥1)𝜙(𝑥2)𝜙(𝑥3)𝜙(𝑥4)∶
+ ∶𝜙(𝑥1)𝜙(𝑥2)𝜙(𝑥3)𝜙(𝑥4)∶ + ∶𝜙(𝑥1)𝜙(𝑥2)𝜙(𝑥3)𝜙(𝑥4)∶
+ ∶𝜙(𝑥1)𝜙(𝑥2)𝜙(𝑥3)𝜙(𝑥4)∶ + ∶𝜙(𝑥1)𝜙(𝑥2)𝜙(𝑥3)𝜙(𝑥4)∶,

(3.306)

taking its expected value, it follows that

⟨𝒯 (𝜙(𝑥1)𝜙(𝑥2)𝜙(𝑥3)𝜙(𝑥4))⟩ = 𝐺F(𝑥1, 𝑥2)𝐺F(𝑥3, 𝑥4) + 𝐺F(𝑥1, 𝑥4)𝐺F(𝑥2, 𝑥3)
+ 𝐺F(𝑥1, 𝑥3)𝐺F(𝑥2, 𝑥4). (3.307)

Now let us analyze the time evolution of a state with two scalar particles
propagating through the space from the point x to the point y in the interval
[0, 𝑡], with the Lagrangian of Eq. (3.305). Up to the first order in perturbation
theory, it will be given by

(𝑈 (𝑡, 0)𝜙(𝑥)𝜙(𝑦)Ω, Ω) = (𝒯 [𝜙(𝑥)𝜙(𝑦) + 𝜙(𝑥)𝜙(𝑦) (−𝑖 ∫𝐻𝐼 (𝑧)d4𝑧)]Ω, Ω)
= (𝒯 [𝜙(𝑥)𝜙(𝑦)] Ω, Ω)
+ (𝒯 [𝜙(𝑥)𝜙(𝑦) (−𝑖𝜆4! )∫ 𝜙(𝑧)𝜙(𝑧)𝜙(𝑧)𝜙(𝑧)d𝑧] Ω, Ω)

= 𝐺F(𝑥, 𝑦) + 3 (−𝑖𝜆4! ) 𝐺F(𝑥, 𝑦) ∫𝐺F(𝑧, 𝑧)𝐺F(𝑧, 𝑧)d4𝑧

+ 12 (−𝑖𝜆4! )∫𝐺F(𝑥, 𝑧)𝐺F(𝑧, 𝑧)𝐺F(𝑦 , 𝑧)d4𝑧, (3.308)

where, in the last equality, we use the fact that only fully contracted terms are
non-vanishing and the factors of 3 and 12 arise from equal contractions.

Let us suppose that we have four fixed points in space, as shown in Fig. 3.8,
then we can schematically represent Eq. (3.307) as

⟨𝒯 (𝜙(𝑥1)𝜙(𝑥2)𝜙(𝑥3)𝜙(𝑥4))⟩ =
1 2

43

+
1 2

43

+
1 2

43

, (3.309)
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1 2

43

Figure 3.8: Four fixed points in space.

where each line represents a 𝐺F. Using these diagrams, Eq. (3.308) can be written
as

(𝑈 (𝑡, 0)𝜙(𝑥)𝜙(𝑦)Ω, Ω) = ⟨𝑈 (𝑡, 0)𝜙(𝑥)𝜙(𝑦)⟩

= yx + x y
z +

x yz
, (3.310)

again, each full line represents 𝐺F while the intersection of four lines contains the
prefactor (−𝑖𝜆4! ), and each loop is an integral. Each diagram carries a multiplicity
factor that encapsulates the number of ways we can obtain each diagram. These
diagrams are called Feynman diagrams, and the rules to compute them explic-
itly are called Feynman rules. In the next chapter, it will be clear that the first
diagram in Eq. (3.310) must be canceled in order to obtain physical observables.
Also, we will obtain these diagrams in the momentum representation, which has
some computational advantages.

Before finishing this section, we must comment that, mathematically, the in-
teraction picture does not exist. This result is a consequence of the so-called
Haag’s Theorem [89]. Roughly speaking, this theorem says that the basis of the
Hilbert space of an interacting theory cannot be the same, nor unitarily equiv-
alent, to the basis of the Hilbert space of the free theory. A nice review of the
history and discussions about Haag’s theorem can be found in Ref. [90].

However, it is a matter of fact the success of perturbation theory in many
models in quantum field theory. This apparent contradiction raises some in-
triguing questions about the mathematics and philosophy of quantum field the-
ory. My interpretation to reconcile these two results is as follows: we know that
every Hilbert space has an orthonormal basis (Theorem A.62), the basis of the
interacting theory in the coordinate representation can, in principle, be obtained;
it corresponds to the Hermite polynomials. However, the computations become
messy and sometimes ill-defined. Therefore, the role of perturbation theory is to
smoothly deform the basis of the free theory in order to obtain the basis of the
interacting theory.



Chapter 4

Constructive Quantum Field Theory

As we have mentioned before, quantum field theory has two main formulations.
In the last chapter, we discussed the axiomatic formulation, and in this chap-
ter, we discuss constructive field theory. While there are many computational
advantages in the constructive scenario, discussions about it are common in
many books on quantum field theory [91–95]. Here, we provide a brief con-
struction of functional integrals and emphasize their computational advantages.
Unless stated otherwise, we assume the natural system of units in this chapter
(𝑐 = ℏ = 𝑘𝐵 = 1).

We begin this section with a discussion on how to obtain quantummechanics
in the functional integral representation and then generalize the results to field
theory. We primarily follow Refs. [93, 95].

4.1 Functional Integrals and Quantum Me-
chanics

As discussed in Sec. 2.2, the quantity (𝜓 , 𝐴𝜓) defines the probability amplitude
of the observable 𝐴 in the state 𝜓 . Now, let us suppose that we wish to compute
the amplitude probability of a state with momenta 𝑞𝑎 at time 𝑡𝑎, 𝜓𝑞𝑎(𝑡𝑎), evolving
to the momenta 𝑞𝑏 at time 𝑡𝑏 , 𝜓𝑞𝑏(𝑡𝑏). To compute (𝜓𝑞𝑎(𝑡𝑎), 𝜓𝑞𝑏(𝑡𝑏)), we use the time
evolution operator defined in Sec. 2.2:

(𝜓𝑞𝑎(𝑡𝑎), 𝜓𝑞𝑏(𝑡𝑏)) = (𝑒−𝑖𝐻(𝑡𝑏−𝑡𝑎)𝜓𝑞𝑎 , 𝜓𝑞𝑏) , (4.1)

If we assume that the variation of the momenta from 𝑞𝑎 to 𝑞𝑏 is continuous, we
can divide the interval of time [𝑡𝑎, 𝑡𝑏] into 𝑁 +1 intervals with equal length 𝜀 and
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associate some momenta to each interval. This allows us to write

(𝜓𝑞𝑎(𝑡𝑎), 𝜓𝑞𝑏(𝑡𝑏)) = ∫(𝜓𝑞𝑎(𝑡𝑎), 𝜓𝑞1(𝑡1))(𝜓𝑞1(𝑡1), 𝜓𝑞2(𝑡2)) … (𝜓𝑞𝑁 (𝑡𝑁 ), 𝜓𝑞𝑏(𝑡𝑏))
𝑁
∏
𝑖=1

d𝑞𝑗 .
(4.2)

Let us now examine any inner product of the integral. Using the fact that 𝑡𝑖+1−𝑡𝑖 =
𝜀, we have, to first order in 𝜀,

(𝜓𝑞𝑖+1(𝑡𝑖+1), 𝜓𝑞𝑖(𝑡𝑖)) = ((𝐼 − 𝑖𝐻𝜀) 𝜓𝑞𝑖+1 , 𝜓𝑞𝑖+1) = (𝐼 − 𝑖𝜀𝐻) (𝜓𝑞𝑖+1 , 𝜓𝑞𝑖+1) , (4.3)

using that (𝜓𝑞𝑖+1 , 𝜓𝑞𝑖+1) = 𝛿(𝑞𝑖+1−𝑞𝑖) and the Fourier transform of the generalized
function 𝛿 [34], we find, to first order, that

(𝜓𝑞𝑖+1(𝑡𝑖+1), 𝜓𝑞𝑖(𝑡𝑖)) =
1
2𝜋 ∫(𝐼 − 𝑖𝜀𝐻(𝑞𝑖, 𝑝𝑖))𝑒𝑖𝑝𝑖(𝑞𝑖+1−𝑞𝑖)d𝑝𝑖. (4.4)

Thus, defining 𝑞0 = 𝑞𝑎 and 𝑞𝑁+1 = 𝑞𝑏 , we obtain

(𝜓𝑞𝑎(𝑡𝑎), 𝜓𝑞𝑏(𝑡𝑏)) =
1
2𝜋

𝑁
∏
𝑖=1

∫
𝑁
∏
𝑖=0

𝑒𝑖𝜀 ∑𝑁
𝑖=0[𝑝𝑖(𝑞𝑖+1−𝑞𝑖)𝜀−1−𝐻(𝑞𝑖,𝑝𝑖)]d𝑝𝑖d𝑞𝑖, (4.5)

Now, taking the limit 𝑁 → ∞ while the size of the interval [𝑡𝑎, 𝑡𝑏] remains finite,
we define [d𝑞] = ∏𝑞∈ℝ d𝑞 and [d𝑝] = ∏𝑝∈ℝ d𝑝/(2𝜋), and we can write

(𝜓𝑞𝑎(𝑡𝑎), 𝜓𝑞𝑏(𝑡𝑏)) = ∫ 𝑒𝑖 ∫
𝑡𝑏
𝑡𝑎 [𝑝 ̇𝑞−𝐻(𝑝,𝑞)]d𝑡[d𝑝][d𝑞], (4.6)

where ̇• represents the time derivative. Clearly, the previous integral is mean-
ingless, as the measures do not converge. To be precise, [d𝑝] and [d𝑞] are not
the usual Lebesgue measures; rather, they are functional measures. Functional
integrals can only be performed symbolically; however, to obtain a convergent
result, we need a well-defined function of the variables. This is not the case for
the integral in Eq. (4.6). To make this meaningful, we perform the change of
variables 𝑡 → 𝜏 = 𝑖𝑡 , which allows us to obtain

(𝜓𝑞𝑎(𝑡𝑎), 𝜓𝑞𝑏(𝑡𝑏)) = ∫ 𝑒−∫𝜏𝑏𝜏𝑎 [𝑝 ̇𝑞−𝐻(𝑝,𝑞)]d𝜏 [d𝑝][d𝑞]. (4.7)

Now, suppose the Hamiltonian has the form 𝑝2
2𝑚 + 𝑉 (𝑄). The functional inte-

gral over 𝑝 can be evaluated1 to yield

(𝜓𝑞𝑎(𝑡𝑎), 𝜓𝑞𝑏(𝑡𝑏)) = ∫ 𝑒−∫𝜏𝑏𝜏𝑎 𝐿(𝑞, ̇𝑞)d𝜏 [d𝑞] = ∫ 𝑒−𝑆[𝐿;𝜏𝑎 ,𝜏𝑏][d𝑞], (4.8)

1This is just a Gaussian integral. We absorb the numerical factor into the measure.
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where 𝐿(𝑞, ̇𝑞) is the classical Lagrangian and 𝑆 is the classical 2 action functional
(see Eqs.(2.1) and (2.3)). We note that the change of variables 𝑡 → 𝜏 = 𝑖𝑡 has a
deeper meaning. This change of variables is an analytic continuation from the
Lorentzian metric of Minkowski space to the Euclidean space with the usual met-
ric. That is, its transforms the Lorentz group into the Euclidean group. Such an
analytic continuation is called Wick rotation, and in the literature, 𝜏 is referred
to as Euclidean time or imaginary time [91, 93, 95]. If one applies the same ana-
lytic continuation to the Schrödinger equation (Eq. (2.104)) with the free-particle
Hamiltonian, one recovers the diffusion equation, which is solved by the Wiener
paths. To deal with meaningful quantities, we assume that we always use Eu-
clidean time in the context of path integrals. For this reason, we use the letter 𝑡
instead of 𝜏 in this thesis.

From the classical theory, we know that the equations of motion are un-
affected if we add a total time derivative or a constant contribution to the La-
grangian. Therefore, we define the following:

𝑍[𝐽 ] = ∫ 𝑒−𝑆[𝐿;𝑡𝑎 ,𝑡𝑏]+∫
𝑡𝑏
𝑡𝑎 𝐽 (𝑡)𝑞(𝑡)d𝑡[d𝑞]. (4.9)

Now, let us compute the expectation value of the position operator 𝑄(𝑡). Using
the same reasoning that led to Eq. (4.6), but with 𝑡𝑎 → −∞ and 𝑡𝑏 → +∞, we
obtain

⟨𝑄(𝑡)⟩ = (𝑄(𝑡)Ω, Ω) = ∫ 𝑞(𝑡)𝑒−𝑆[𝐿][d𝑞], (4.10)

therefore, we can write
𝛿𝑍[𝐽 ]
𝛿𝐽 (𝑡) |𝐽 (𝑡)=0

= ⟨𝑄(𝑡)⟩. (4.11)

where 𝛿/𝛿𝐽 (𝑡) denotes the functional derivative with respect to 𝐽 (𝑡). It follows
directly that the expectation value of any time-ordered product of 𝑄(𝑡) is given
by

⟨𝒯 (𝑄(𝑡𝑛) …𝑄(𝑡1))⟩ = 𝛿𝑛𝑍[𝐽 ]
𝛿𝐽 (𝑡𝑛) … 𝛿𝐽 (𝑡1)

|
𝐽 (𝑡)=0

, (4.12)

therefore, all the expected values of products of 𝑄 are generated by 𝑍[𝐽 ], and for
this reason, 𝑍[𝐽 ] is sometimes called the generating functional.

Before finishing this section, we will link the generating functional with the
partition function in statistical mechanics. The partition function is defined as

𝑍𝛽 = ∑
𝑛
𝑒−𝛽𝐸𝑛 = ∑

𝑛
(𝑒−𝛽𝐻𝜓𝑛, 𝜓𝑛) = Tr 𝑒−𝛽𝐻 . (4.13)

2This means that the variables 𝑞, ̇𝑞 are classical variables and commute with each other.
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With the partition function, we can obtain thermal averages. For example, the
average free energy is given by

⟨𝐸⟩𝛽 = − 𝜕
𝜕𝛽 ln𝑍𝛽 , (4.14)

and the free energy
𝐹𝛽 = −1

𝛽 ln𝑍𝛽 . (4.15)

Now notice that if we take 𝑞𝑎 = 𝑞𝑏 and choose 𝑡𝑏−𝑡𝑎 = 𝛽 in Eq. (4.1), and integrate
it in 𝑞𝑎, it becomes the same expression as in Eq. (4.13). For the correspondence
to be complete, we must impose that the Euclidean time is periodic with period 𝛽 ,
to satisfy the Kubo-Martin-Schwinger (KMS) condition, which is derived in the
context of quantum statistical mechanics [96–98]. For this reason, sometimes
we may refer to 𝑍[𝐽 ] as the partition function as well. We return to this link
between quantum fields and statistical mechanics in the next chapter.

4.2 Quantum Field Theory
As we have discussed in Sec. 3.3, the many observables of quantum field theory
are given by the expectation value of the time-ordered products of the fields.
Therefore, by an analogous construction to the preceding section, we can write

𝐺(𝑛)(𝑥1, … , 𝑥𝑛) = ⟨𝒯 (𝜙(𝑥1) … 𝜙(𝑥𝑛))⟩ = 𝛿𝑛𝑍[𝐽 ]
𝛿𝐽 (𝑡𝑛) … 𝛿𝐽 (𝑡𝑛)

|
𝐽 (𝑡)=0

. (4.16)

But we know that this expected value is the 𝑛-point Green’s function3. Now, we
can express the generating functional of all Green’s functions as

𝑍[𝐽 ] =
∞
∑
𝑛=0

1
𝑛! ∫𝐺(𝑥1, … , 𝑥𝑛)𝐽 (𝑥1) … 𝐽(𝑥𝑛)d4𝑥1… d4𝑥𝑛. (4.17)

Through derivatives of the previous equations, one can obtain the Euclidean ver-
sion of Eqs. (3.307) and (3.308). It is usual to call these Green’s functions by
Schwinger functions, which are the Euclidean counterpart of the Wightman func-
tions of the previous chapter.

Analysing Eqs. (3.309 - 3.310), we notice that the expectation value of the
time-ordered products gives rise to two types of diagrams: those that can be di-
vided into subdiagrams (Eq. (3.309) and the second diagram of Eq. (3.310), called

3Remember that we are in Euclidean time, therefore d𝑝0 → −𝑖d𝑝0, and the d’Alembert opera-
tor becomes just the 4-Laplacian, □ → Δ.
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disconnected or reductible diagrams), and those that cannot be divided into
subdiagrams, called irreducible or connected diagrams. From the expressions
that generate such diagrams, Eqs. (3.307 - 3.308), we observe that disconnected
diagrams are simple products of Green’s functions and their integrals, while
connected diagrams are the Green’s function and the integral of the product of
Green’s functions. Therefore, disconnected diagrams can be reconstructed from
the connected ones. From a direct computation of the relation (4.16), we observe
that we obtain all (connected and disconnected) Green’s functions.

In order to obtain only the connected Green’s functions, we define

𝑊[𝐽] = ln𝑍[𝐽 ]. (4.18)

For practical purposes, let us fix the free scalar field; then we have a Gaussian
functional integral that can be directly evaluated:

𝑍[𝐽 ] = ∫ 𝑒−𝑆[𝜙,𝐽 ][d𝜙] = ∫ 𝑒− 1
2 ∫[𝜙(𝑥)(−Δ+𝑚2)𝜙(𝑥)−𝐽 (𝑥)𝜙(𝑥)]d4𝑥 [d𝜙]

= 𝑒− 1
2 Tr ln(Δ+𝑚2)𝑒−

1
2 ∫[𝐽 (𝑥′)(−Δ+𝑚2)−1𝐽 (𝑥)]d4𝑥′d4𝑥

= 𝑁𝑒− 1
2 ∫[𝐽 (𝑥′)𝐺F(𝑥′,𝑥)𝐽 (𝑥)]d4𝑥′d4𝑥 , (4.19)

where we have used that 𝑒− 1
2 Tr ln(Δ+𝑚2) = Det (−Δ + 𝑚2)−1/2 = 𝑁 . Now, taking

the second functional derivative of 𝑊[𝐽] and setting 𝐽 = 0, we obtain

𝛿2𝑊[𝐽]
𝛿𝐽 (𝑥1)𝐽 (𝑥2)

|
𝐽=0

= [ 1
𝑍[𝐽 ]

𝛿2𝑍[𝐽 ]
𝛿𝐽 (𝑥1)𝐽 (𝑥2)

− 1
𝑍 2[𝐽 ]

𝛿𝑍[𝐽 ]
𝛿𝐽 (𝑥1)

𝛿𝑍[𝐽 ]
𝛿𝐽 (𝑥2)

]
𝐽=0

= 1
𝑍[0]⟨𝒯 (𝜙(𝑥1)𝜙(𝑥2))⟩ − 1

𝑍[0]⟨𝒯 (𝜙(𝑥1))⟩ 1
𝑍[0]⟨𝒯 (𝜙(𝑥2))⟩

= 1
𝑍[0]⟨𝒯 (𝜙(𝑥1)𝜙(𝑥2))⟩ = 𝐺𝐶(𝑥1, 𝑥2) = 𝐺F(𝑥1, 𝑥2). (4.20)

Therefore, from the second line of the last equation, we see that the disconnected
pieces are subtracted from the expected value of the time-ordered product4. We
will also verify this explicitly for the 𝜆𝜙4 theory at the end of this chapter. The
prefactor 𝑍−1[0] can be chosen to ensure that 𝑊[0] = 1. By our previous dis-
cussion, we also know that 𝑍[0] is the vacuum-vacuum transition; therefore, the
division by 𝑍[0] also cancels out the contribution due to this kind of transition.

For this reason,𝑊[𝐽] is called the generating functional of the connected
Green’s functions, since sometimes the connected Green’s functions are re-
ferred to as correlation functions. Thus, 𝑊[𝐽] can also be called the generating
functional of the correlation functions.

4The free scalar theory is a special case where the only non-vanishing Green’s function is the
even ones.
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Now, if we exponentiate Eq. (4.18), we can define the following functional of
𝐽 (𝑥):

𝜙𝑐(𝑥) = 𝛿𝑊 [𝐽 ]
𝛿𝐽 (𝑥) , (4.21)

therefore, the vacuum-expectation value of any field, 𝜙 (not necessarily a scalar
field), can be obtained by

⟨𝜙⟩ = lim
𝐽 (𝑥)→0

𝜙𝑐(𝑥). (4.22)

By a Legendre transform from the variables 𝐽 (𝑥) to the variables 𝜙𝑐(𝑥), we obtain

Γ[𝜙𝑐(𝑥)] = 𝑊 [𝐽 ] − ∫ 𝐽(𝑥)𝜙𝑐(𝑥)d4𝑥, (4.23)

which is the effective action. We note that, by comparing Eq. (4.18) with Eq.
(4.15), we see that 𝑊[𝐽] is a non-thermal free energy, and comparing the last
equation with the thermodynamic internal energy (𝐸 = 𝐹 + 𝑇𝑆), we observe
a clear correspondence between them. The effective action is also called the
generating functional of the one-particle irreducible Green’s functions.
We note that in the case of ⟨𝜙⟩ = 0, the effective action and the free energy
coincide.

In the case of the free scalar field, from our definitions it follows that

𝜙𝑐(𝑥) = −∫𝐺F(𝑥, 𝑥′)𝐽 (𝑥′)d4𝑥′, (4.24)

then we have
(−Δ + 𝑚2)𝜙𝑐(𝑥) = 𝐽 (𝑥), (4.25)

which is the classical equation of motion in the presence of the source 𝐽 (𝑥). This
justifies calling 𝜙𝑐(𝑥) the classical field. In the case of the free scalar field, the
effective action is

Γ[𝜙𝑐] = −12 ∫ 𝜙𝑐(𝑥) [−Δ + 𝑚2] 𝜙𝑐(𝑥)d4𝑥, (4.26)

which is the action of the free field.
For interacting theories, we are unable to compute the effective action exactly,

so we use a Taylor functional expansion:

Γ[𝜙𝑐] =
∞
∑
𝑛=1

∫Γ(𝑛)(𝑥1, … , 𝑥𝑛)𝜙𝑐(𝑥1) … 𝜙𝑐(𝑥𝑛)d4𝑥1d4𝑥𝑛. (4.27)

Each coefficient Γ(𝑛) is an 𝑛-point one-particle irreducible Green’s function. All
the Feynman diagrams generated by these Green’s functions are connected. In
scalar free theory, only the two-point Green’s function is non-vanishing.
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Performing a Fourier representation, we have

Γ̃[ ̃𝜙𝑐(𝑝)] =
∞
∑
𝑛=0

1
𝑛! ∫ 𝛿(𝑝1 + ⋯ + 𝑝𝑛)Γ̃(𝑛)(𝑝1, … , 𝑝𝑛) ̃𝜙𝑐(𝑝1) … ̃𝜙𝑐(𝑝𝑛)d4𝑝1… d4𝑝𝑛.

(4.28)
Performing a Fourier transform in the two-point Green’s function of the free
scalar field in Euclidean space (see Eq. (4.79)), we have

𝐺̃(𝑝) = 1
𝑝2 + 𝑚2 . (4.29)

An expansion of the effective action in terms of the derivatives of 𝜙𝑐 gives us

Γ[𝜙𝑐(𝑥)] = ∫ [−𝑉eff(𝜙𝑐) + 1
2𝜕𝑖𝜙𝑐𝜕

𝑖𝜙𝑐 + ⋯] d𝐷𝑥, (4.30)

where 𝑉eff is function of 𝜙𝑐 . 𝑉eff is referred to as the effective potential. It
follows directly that

𝜕𝑉
𝜕𝜙𝑐

|
𝐽=0

= 0. (4.31)

For the free scalar field, we have

𝑉 (𝜙𝑐) = 1
2𝑚

2𝜙2𝑐 , (4.32)

which is consistent with the fact that the free scalar field has a vacuum expecta-
tion value of zero.

Supposing that the classical field is invariant under translations, we can ex-
pand the effective potential in terms of the zero-momentum Green’s function:

𝑉eff(𝜙𝑐) = −
∞
∑
𝑛=0

1
𝑛!𝜙

𝑛𝑐 Γ(𝑛)(𝑝2 = 0). (4.33)

In the interacting case, we can see that the effective potential will be the sum of
the classical potential (coming from the Lagrangian) and radiative corrections.

One should notice that a more formal development of constructive field the-
ory is possible in terms of random functionals and by exploring the idea of
Wiener measures [99, 100]. As emphasized by A. S. Wightman in Ref. [101], the
Euclidean/constructive formulation of field theory was “almost single-handedly
carried”by K. Symanzik [102]. However, we must also emphasize the work of
K. Osterwalder and R. Schrader, who provided the necessary conditions for the
Schwinger functions of the theory to be analytically continued to the Wightman
functions [103, 104].
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We should notice that, in this chapter, we did not impose the canonical com-
mutation relation on our field variables. Within this framework, the probabil-
ities obtained from derivatives of 𝑊[𝐽] (or 𝑍[𝐽 ]) are classical probabilities, in
the sense that they are not probability amplitudes. Therefore, the quantization
process occurs in the evaluation of the functional integral, and the tools of prob-
ability theory can be applied.

4.2.1 Casimir Effect
Since we claim that constructive field theory can recover the results of axiomatic
field theory, the simplest case to check is to impose some boundary conditions
on the free massless scalar field. In this case, using Eq. (4.19), we write

𝑍[0] = Det(−Δ)− 1
2 , (4.34)

however we need to give a meaning for the functional determinant of an operator
is. Since Δ is a self-adjoint operator, its eigenvalues, 𝜆𝑖, are real, and by analogy
with matrices, we may define

Det(−Δ) = ∏
𝑖
𝜆𝑖. (4.35)

However, the range of 𝑖 is continuous; therefore, the last equation diverges. To
make sense of it, we notice that if we take the spectral zeta function defined in
Eq. (3.104), one can show that

d
d𝑠 𝜁Δ(𝑠)|𝑠=0 = −

∞
∑
𝑖=1

ln 𝜆𝑖. (4.36)

Thus, it follows that [105]

𝑍[0] = exp (−12
∞
∑
𝑖=1

ln 𝜆𝑖) = exp (12
d
d𝑠 𝜁𝐷(𝑠)|𝑠=0) . (4.37)

So, the value of the determinant follows from the evaluation of the spectral
zeta function. To obtain the spectral zeta function, we must know the spectrum
of the theory. Let us fix the manifold as a slab geometry with one compactified
dimension, Ω𝐿 ≡ ℝ𝑑−1 × [0, 𝐿]. For simplicity, we assume Dirichlet boundary
conditions:

𝜙(𝑥1, … , 𝑥𝑑−1, 0) = 𝜙(𝑥1, … , 𝑥𝑑−1, 𝐿) = 0. (4.38)
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To proceed with the calculations, we must construct the appropriate 𝜁Δ(𝑠).
It can be constructed using the appropriate spectral measure in the Riemann-
Stieltjes integral. All the information about the domain Ω𝐿 and the boundary
conditions is taken into account by the spectral measure. So, in the continuous
limit, one obtains 𝜁Δ(𝑠) as:

𝜁Δ(𝑠) =
2𝐴𝑑−1
(2𝜋)𝑑−1 ∫

∞
∑
𝑛=1

[𝑝2 + (𝜋𝑛𝐿 )
2
]
−𝑠

d𝑑−1𝑝, (4.39)

where 𝑝2 = 𝑝21 + ⋯ + 𝑝2𝑑−1 and 𝐴𝑑−1 is the area of the hypersurface in 𝑑 − 1
dimensions:

𝐴𝑑−1 ≡
𝑑−1
∏
𝑖=1

lim𝐿𝑖→∞ 𝐿𝑖, (4.40)

where this limit must be understood as 𝐿𝑖 ≫ 𝐿, ∀ 𝑖 = 1, ⋯ , 𝑑 − 1. From here, one
could proceed with the exact calculations of Ref. [106]; see also Ref. [107]. In
the following, we introduce in the calculation a method that we will use later.

Such a method will reproduce the result in the literature via direct calcula-
tions. To proceed, let us use that

d𝑑−1𝑝 = 2𝜋 𝑑−1
2

Γ (𝑑−12 )
𝑝𝑑−2d𝑝, (4.41)

and the Mellin representation of 𝑎−𝑠 ,

𝑎−𝑠 = 1
Γ(𝑠) ∫

∞

0
𝑡 𝑠−1𝑒−𝑡𝑎d𝑡 , (4.42)

to rewrite Eq. (4.39) as

𝜁Δ(𝑠) =
𝐴𝑑−1𝜋

𝑑−1
2

(2𝜋)𝑑−1Γ (𝑑−12 ) Γ(𝑠)
(𝐿

2
𝜋 )

𝑠
∫
∞

0
{𝑡 𝑠−1

∞
∑
𝑛=1

𝑒−𝑡𝑛2𝜋

× ∫
∞

0
d𝑝 𝑝𝑑−2 exp [−𝑡𝐿

2
𝜋 (𝑝2)]} d𝑡 . (4.43)

The integration over the continuum modes can be readily performed. Per-
forming the integral, one obtains:

𝜁Δ(𝑠) = 𝐶𝑑(𝐿, 𝑠) ∫
∞

0
𝑡 𝑠− 1

2 (𝑑+1)𝜓(𝑡)d𝑡 , (4.44)
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where we define the following quantities:

𝐶𝑑(𝐿, 𝑠) ≡
𝐴𝑑−1

(2𝐿)𝑑−1Γ(𝑠) (
𝐿2
𝜋 )

𝑠
, (4.45)

𝜓(𝑡) ≡
∞
∑
𝑛=1

𝑒−𝑡𝑛2𝜋 . (4.46)

As one can see, the contribution of 𝜓(𝑡) decreases rapidly as 𝑡 → ∞. However,
depending on the values of 𝑠 and 𝑑 , singularities arise at 𝑡 → 0 that need to be
addressed. As discussed in Ref. [106], the singularity can be removed by assum-
ing the system is confined to a large but finite box, which introduces an infrared
cutoff in the 𝑝-integrals above. Rather than introducing an explicit infrared cut-
off, we extract the finite part of the integral using the relations between 𝜓(𝑡) and
the weight 1/2 modular form given in Eq. (3.80).

Following similar steps as in Eq. (3.81), we obtain

𝜁Δ(𝑠) =
𝐶𝑑(𝐿, 𝑠)

2 [2𝐼1,𝑑(𝑠) + 𝐼2,𝑑(𝑠) − 𝐼3,𝑑(𝑠)] , (4.47)

with 𝐼1,𝑑 , … being the integrals:

𝐼1,𝑑(𝑠) = ∫
∞

0
𝑡 𝑑2−𝑠−1𝜓(𝑡)d𝑡 , (4.48)

𝐼2,𝑑(𝑠) = ∫
∞

0
𝑡 𝑑2−𝑠−1d𝑡 , and, (4.49)

𝐼3,𝑑(𝑠) = ∫
∞

0
𝑡 𝑑2−𝑠− 3

2d𝑡 . (4.50)

The integral 𝐼1,𝑑(𝑠) is convergent for any values of 𝑠 and 𝑑 , while 𝐼2,𝑑(𝑠) diverges
for Re(2𝑠) < 𝑑 and 𝐼3,𝑑(𝑠) diverges for Re(2𝑠) < 𝑑 − 1. As seen in Eq. (4.45), we
have that 𝐶𝑑(𝐿, 𝑠) → 0 as 𝑠 → 0, implying that

d𝜁Δ(𝑠)
d𝑠 |

𝑠=0
= 1

2
d𝐶𝑑(𝐿, 𝑠)

d𝑠 |
𝑠=0

[2𝐼1,𝑑(0) + 𝐼2,𝑑(0) − 𝐼3,𝑑(0)] . (4.51)

The integral 𝐼1,𝑑(0) is finite, positive definite, and independent of the plate
separation 𝐿; it depends only on the dimension 𝑑 and can be performed ana-
lytically. On the other hand, the divergent integrals 𝐼2,𝑑(0) and 𝐼3,𝑑(0) are inde-
pendent of the plate separation and can be dropped considering that we have a
large box, which implies a large but finite wavelength, as argued in Ref. [106]
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and mentioned above. These divergences would not arise if 𝑚0 ≠ 0. After some
simplifications, one obtains that

d𝜁Δ(𝑠)
d𝑠 |

𝑠=0
= 𝐴𝑑−1

(2𝐿)𝑑−1 𝐼1,𝑑(0) =
𝐴𝑑−1

(2𝐿)𝑑−1
1
2𝜋

∞
∑
𝑛=1

1
𝑛𝑑

= 𝐴𝑑−1
(2𝐿)𝑑−1

𝜁 (𝑑)
2𝜋 . (4.52)

Using that 𝐹 = 𝐸 − 𝑇𝑆 and the fact that 𝑇 = 0 in our case, one concludes that

𝑍 = 𝑒−𝐹 = 𝑒−𝐸 ⇒ 𝐸 = −12
d𝜁Δ(𝑠)
d𝑠 |

𝑠=0
. (4.53)

Now we can define the energy density and find that

𝐸
𝐴𝑑−1

≡ 𝜖𝑑(𝐿) = − 1
2(2𝐿)𝑑−1

𝜁 (𝑑)
2𝜋 , (4.54)

which evidently has the correct sign and power law with 𝐿, agreeing with previ-
ous results.

For 𝑑 = 3, Eq. (4.54) results in

𝜖3(𝐿) = − 𝜁 (3)
16𝜋𝐿2 , (4.55)

which is the “universal” amplitude of the Goldstone modes [108]. The reason for
the quotationmarks will become clear in a further application. The Casimir force
per unit of area (Casimir pressure) can be calculated as the negative derivative
with respect to 𝐿 of Eq. (4.54).

4.3 Interacting Fields
One of the biggest advantages of the constructive approach to quantum fields is
its applicability to interacting theories. Taking a theory in which the Lagrangian
allows decomposition into free and interacting parts, that is,

𝑆[𝐿] = ∫𝐿(𝜙)d4𝑥 = ∫𝐿0(𝜙)d4𝑥 + ∫𝐿𝐼 (𝜙)d4𝑥 = 𝑆0[𝐿0] + 𝑆𝐼 [𝐿𝐼 ], (4.56)

we obtain that the partition function with the source 𝐽 is given by

𝑍[𝐽 ] = ∫ 𝑒−𝑆0−𝑆𝐼+∫ 𝐽(𝑥)𝜙(𝑥)d4𝑥 [d𝜙] . (4.57)
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Since the functional integral is just a formal integration, the non-Gaussian case
(interacting theories) cannot be evaluated directly. However, we can construct a
perturbation theory similar to that of Sec. 3.3.

We know that

𝑒−𝑆𝐼 = 𝐼 +
∞
∑
𝑛=1

(−1)𝑛
𝑛! 𝑆𝑛𝐼 = 𝐼 − ∫𝐿𝐼 (𝜙(𝑥))d4𝑥 + 1

2! ∫ 𝐿𝐼 (𝜙(𝑥))𝐿𝐼 (𝜙(𝑦))d4𝑥d4𝑦 + … ,
(4.58)

which implies that

𝑍[𝐽 ] = ∫ [𝑒−𝑆0+∫ 𝐽(𝑥)𝜙(𝑥)d4𝑥 − ∫𝐿𝐼 (𝜙(𝑥)) 𝑒−𝑆0+∫ 𝐽(𝑥)𝜙(𝑥)d4𝑥d4𝑥 (4.59)

+ 1
2! ∫ 𝐿𝐼 (𝜙(𝑥))𝐿𝐼 (𝜙(𝑦)) 𝑒−𝑆0+∫ 𝐽(𝑥)𝜙(𝑥)d4𝑥d4𝑥d4𝑦 + … ] [d𝜙] . (4.60)

Now let us suppose that any interaction of the field is given by a polynomial in
the field variable, that is,

𝐿𝐼 (𝜙) = 𝑃(𝜙) =
𝑁
∑
𝑛=1

𝑐𝑛𝜙𝑛+2(𝑥), (4.61)

then Eq. (4.59) turns into a series of expectation values of products of 𝜙5. How-
ever, we know that such expectation values can be generated by applying func-
tional derivatives over the partition function. Therefore, we can represent each
𝜙(𝑥) of 𝐿𝐼 as 𝛿/𝛿𝐽 (𝑥), so the previous equation becomes

𝐿𝐼 ( 𝛿
𝛿𝐽 (𝑥)) =

𝑁
∑
𝑛=1

𝑐𝑛 𝛿𝑛+2
𝛿𝐽 (𝑥)𝑛+2 = 𝑃 ( 𝛿

𝛿𝐽 (𝑥)) . (4.62)

Since that now the interacting Lagrangian is independent of the field vari-
able, it can be taken out of the functional integral. Resumming the series of
polynomials of 𝐿𝐼 as 𝛿/𝛿𝐽 (𝑥), we can rewrite Eq. (4.59) as

𝑍[𝐽 ] = 𝑒−𝑃(
𝛿

𝛿𝐽 (𝑥))𝑍0[𝐽 ], (4.63)
where 𝑍0[𝐽 ] is the partition function of the free theory. Note that if we consider
an interaction given by 𝑐𝑛𝜙𝑛+2(𝑥), where 𝑐𝑛 < 1, we can truncate the exponential
series to a finite order for an approximation, as is the case in many theories.
Also, it is worth noting that if we wish to deal with the interaction of two or
more different fields, we must introduce a source 𝐽 for each field, and then the
polynomial interaction will be a product of derivatives with respect to different
sources.

5Note that contributions of 𝜙(𝑥) and 𝜙2(𝑥) can be absorbed into the free Lagrangian by a
redefinition of variables.
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4.3.1 The 𝜆𝜙4 Theory
Let us apply the previous construction to the simplest case of an interacting the-
ory, the 𝜆𝜙4 theory. The Euclidean action of such a theory is given by

𝑆 = ∫ [𝜙(𝑥)(−Δ + 𝑚2)𝜙(𝑥) + 𝜆
4!𝜙

4(𝑥)] d𝐷𝑥. (4.64)

Instead of dealing with a four-dimensional Euclidean space, let us consider the
𝐷-dimensional case.

Let us start the pertubative computation at first order in 𝜆. The partition
function of the interacting theory is given by

𝑍[𝐽 ] = 𝑍0[𝐽 ] − 𝜆
4! ∫ ( 𝛿

𝛿𝐽 (𝑥))
4
𝑍0[𝐽 ]d𝐷𝑥. (4.65)

Using Eq. (4.19), the derivative with respect to 𝐽 (𝑥) follows directly and reads

𝛿𝑍0[𝐽 ]
𝛿𝐽 (𝑥) = −∫𝐺F(𝑥′, 𝑥)𝐽 (𝑥)d𝑥𝑍0[𝐽 ], (4.66)

which allows us to express the first-order correction to the partition function as
follows:

𝑍[𝐽 ]=𝑍0[𝐽 ]{1− 𝜆
4!∫[3 (𝐺F(𝑥, 𝑥))2+6𝐺F(𝑥, 𝑥)∫𝐺F(𝑥, 𝑦1)𝐺F(𝑥, 𝑦2)𝐽 (𝑦1)𝐽 (𝑦2)d𝑦1d𝑦2

+∫𝐺F(𝑥, 𝑦1)𝐺F(𝑥, 𝑦2)𝐺F(𝑥, 𝑦3)𝐺F(𝑥, 𝑦4)𝐽 (𝑦1)𝐽 (𝑦2)𝐽 (𝑦3)𝐽 (𝑦4)d𝑦1d𝑦2d𝑦3d𝑦4]d𝑥}.
(4.67)

Now, we remember that the correlation functions of the model are given by func-
tional derivatives of the partition function, setting 𝐽 = 0 (see Eq. (4.16)). Defining
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𝑍0[0] = 1, we have

𝐺(0) = 𝑍[0] = 1 − 3𝜆
4! ∫ (𝐺F(𝑥, 𝑥))2 d𝑥, (4.68)

𝐺(1)(𝑥) = 𝛿𝑍[𝐽 ]
𝛿𝐽 |

𝐽=0
= 0, (4.69)

𝐺(2)(𝑥1, 𝑥2) = 𝛿2𝑍[𝐽 ]
𝛿𝐽 (𝑥1)𝐽 (𝑥2)

|
𝐽=0

= 𝐺F(𝑥1, 𝑥2) − 12𝜆
4! ∫𝐺F(𝑥1, 𝑥)𝐺F(𝑥, 𝑥)𝐺F(𝑥, 𝑥2)d𝑥,

(4.70)

𝐺(3)(𝑥1, 𝑥2, 𝑥3) = 𝛿3𝑍[𝐽 ]
𝛿𝐽 (𝑥1)𝐽 (𝑥2)𝐽 (𝑥3)

|
𝐽=0

= 0, (4.71)

𝐺(4)(𝑥1, 𝑥2, 𝑥3, 𝑥4) = 𝛿4𝑍[𝐽 ]
𝛿𝐽 (𝑥1)𝐽 (𝑥2)𝐽 (𝑥3)𝐽 (𝑥4)

|
𝐽=0

= 𝐺F(𝑥1, 𝑥2)𝐺F(𝑥3, 𝑥4), +𝐺F(𝑥1, 𝑥3)𝐺F(𝑥2, 𝑥4) + 𝐺F(𝑥1, 𝑥4)𝐺F(𝑥2, 𝑥3)
− 12𝜆

4! [𝐺F(𝑥1, 𝑥2) ∫𝐺F(𝑥3, 𝑥)𝐺F(𝑥, 𝑥)𝐺F(𝑥, 𝑥4)d𝑥 + all permutations of {1, 2, 3, 4}]

− 24𝜆
4! ∫𝐺F(𝑥1, 𝑥)𝐺F(𝑥2, 𝑥)𝐺F(𝑥3, 𝑥)𝐺F(𝑥4, 𝑥)d𝑥. (4.72)

6 Notice also that the product 𝐺(0)𝐺(2)(𝑥1, 𝑥2) is also a Green’s function. There-
fore, we have that Eq. (4.70) corresponds to the first and second contributions of
Eq. (3.310) and that the product 𝐺(0)𝐺(2)(𝑥1, 𝑥2), at first order in 𝜆, is the second
contribution. Thus, such a contribution is not a new one. Also, the second line
of Eq. (4.72) is the same as Eq. (3.309). The diagrammatic representation of the
previous equations follows just like in Eqs. (3.309 - 3.310).

As we have argued before, not all Green’s functions obtained by the deriva-
tives of 𝑍[𝐽 ] are independent. Therefore, wemust now compute the independent
ones up to first order. For that, we must take the derivatives of the generating
functional of connected Green’s functions, which is the free energy (Eq. (4.18)).

6Remember that 𝐺F(𝑥, 𝑦) = 𝐺F(𝑦 , 𝑥).
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Up to first order in 𝜆, we obtain

𝐺(0)
𝐶 = 𝑊[0] = ln [1 − 3𝜆

4! ∫ (𝐺F(𝑥, 𝑥))2 d𝑥] = 3𝜆
4! ∫ (𝐺F(𝑥, 𝑥))2 d𝑥, (4.73)

𝐺(2)
𝐶 (𝑥1, 𝑥2) = 𝛿2𝑊[𝐽]

𝛿𝐽 (𝑥1)𝐽 (𝑥2)
|
𝐽=0

= [ 1
𝑍[𝐽 ]

𝛿2𝑍[𝐽 ]
𝛿𝐽 (𝑥1)𝐽 (𝑥2)

− 1
𝑍 2[𝐽 ]

𝛿𝑍[𝐽 ]
𝛿𝐽 (𝑥1)

𝛿𝑍[𝐽 ]
𝛿𝐽 (𝑥2)

]
𝐽=0

= 1
𝑍[0]𝐺

(2)(𝑥1, 𝑥2) + 1
𝑍[0]𝐺

(1)(𝑥1) 1
𝑍[0]𝐺

(1)(𝑥2)

= 𝐺(2)(𝑥1, 𝑥2) = 𝐺F(𝑥1, 𝑥2) − 12𝜆
4! ∫𝐺F(𝑥1, 𝑥)𝐺F(𝑥, 𝑥)𝐺F(𝑥, 𝑥2)d𝑥.

(4.74)

For 𝐺(4)
𝐶 , the calculations become messy, with a total of 15 contributions to be

evaluated. After taking the limit 𝐽 → 0, the nonvanishing contributions are

𝐺(4)
𝐶 (𝑥1, 𝑥2, 𝑥3, 𝑥4) = 𝛿4𝑊[𝐽]

𝛿𝐽 (𝑥1)𝐽 (𝑥2)𝐽 (𝑥3)𝐽 (𝑥4)
|
𝐽=0

= − 2
𝑍 3[0]𝐺

(2)(𝑥1, 𝑥2)𝐺(2)(𝑥3, 𝑥4)

− 2
𝑍 2[0]𝐺

(2)(𝑥1, 𝑥3)𝐺(2)(𝑥2, 𝑥4) − 2
𝑍 2[0]𝐺

(2)(𝑥1, 𝑥4)𝐺(2)(𝑥2, 𝑥3)

− 1
𝑍 2[0]𝐺

(4)(𝑥1, 𝑥2, 𝑥3, 𝑥4). (4.75)

Up to order 𝜆, it becomes

𝐺(4)
𝐶 (𝑥1, 𝑥2, 𝑥3, 𝑥4) = −24𝜆4! ∫𝐺F(𝑥1, 𝑥)𝐺F(𝑥2, 𝑥)𝐺F(𝑥3, 𝑥)𝐺F(𝑥4, 𝑥)d𝑥. (4.76)

There are significant computational advantages toworkingwithGreen’s func-
tions in momentum space. Thus, similarly to Eq. (4.28), we can write

𝐺̃(𝑛)(𝑝1, … , 𝑝𝑛) = 1
(2𝜋)𝐷 ∫𝐺(𝑛)(𝑥1, … , 𝑥𝑛)𝑒−𝑖(𝑝1𝑥1+⋯+𝑝𝑛𝑥𝑛)d𝑥1… d𝑥𝑛, (4.77)

Since Green’s functions in coordinate space are invariant under translations, the
sum of the momenta must vanish, i.e.,∑𝑛 𝑝𝑛 = 0. In momentum space, it follows
that

𝐺̃(2)(𝑝) = 1
𝑝2 + 𝑚2 − 𝜆

2
1

(2𝜋)𝐷 ∫ 1
𝑝2 + 𝑚2

1
𝑘2 + 𝑚2

1
𝑝2 + 𝑚2d𝑘. (4.78)

In momentum space, the Feynman rules for constructing diagrams are as
follows: for the propagator, we have

= 1
𝑝2 + 𝑚2 (4.79)



Interacting Fields 121

and each vertex is given by

= − 𝜆
4! (4.80)

It follows that at each vertex, the total momentum must be zero. Additionally,
one must integrate each closed loop with the factor (2𝜋)−𝐷 . Therefore, we can
recast the two-point correlation function at order 𝜆 as

𝐺(2)(𝑝) = + . (4.81)

From the definition of the classical field, Eq. (4.21), we obtain

𝜙𝑐(𝑥) = ∫𝐺F(𝑥, 𝑦1)𝐽 (𝑦1)d𝑦1 + 𝜆
2 ∫𝐺F(𝑥, 𝑦1)𝐺F(𝑦1, 𝑦1)𝐺F(𝑦1, 𝑦2)𝐽 (𝑦2)d𝑦1d𝑦2

− 𝜆
6 ∫𝐺F(𝑥, 𝑦1)𝐺F(𝑦1, 𝑦2)𝐺F(𝑦1, 𝑦3)𝐺F(𝑦1, 𝑦4)𝐽 (𝑦2)𝐽 (𝑦3)𝐽 (𝑦4)d𝑦1d𝑦2d𝑦3d𝑦4,

(4.82)

Thus, the generating functional of the one-particle irreducible Green’s function
at first order in 𝜆7, given by Eq. (4.23), is

Γ[𝜙𝑐] = ln𝑁 − 𝜆
8 [𝐺F(𝑥, 𝑥)]2 d𝑥 − 1

2 ∫ 𝜙𝑐(𝑥)(−Δ + 𝑚2)𝜙𝑐(𝑥)

− 𝜆
4 ∫ [𝐺F(𝑥, 𝑥)𝜙𝑐(𝑥)]2 − 𝜆

4! ∫ [𝜙𝑐(𝑥)]4 , (4.83)

which results in the following one-particle irreducible Green’s function up to
order 𝜆 in momentum space:

Γ̃(2)(𝑝) = 𝑝2 + 𝑚2 − 𝜆
2

1
(2𝜋)𝐷 ∫ 1

𝑘2 + 𝑚2d𝑘, (4.84)

Γ̃(4) (
4
∑
𝑖=1

𝑝𝑖 = 0) = −𝜆. (4.85)

If we compare Eq. (4.84) with Eq. (4.78), we notice that the difference is that
the one-particle irreducible Green’s function does not contain the propagator of
the external (out of any loop) legs. For this reason, some textbooks state that
the effective action “amputates” the external legs of the Feynman diagrams. In

7Solve Eq. (4.82) perturbatively in 𝐽 (𝑥) and then perform some integration by parts. Use the
result in Eq. (4.23).
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the literature, it is common to use the generating functional of the connected
correlation function to build the theory and then ignore the external legs, without
explicitly calculating the effective action. We follow this same procedure, and for
this reason, we use 𝐺(𝑛)(𝑝) to refer to the 𝑛-point one-particle irreducible Green’s
function, without distinguishing it from Γ̃(𝑛).

Each diagram has a symmetry factor, which corresponds to the number of
ways one can construct the same diagram. Consider, for example, the second
diagram of the two-point Green’s function in Eq. (4.82). This diagram, known
as a tadpole, is directly constructed from the vertex. Consider the vertex of Eq.
(5.29) and label each leg from one to four, as in Eq. (3.309). To construct a two-
point diagram, we must fix two legs. First, we have four legs to choose from; let
us fix leg 4. Then, we need to fix one of the three remaining legs—say, leg 3. To
complete the tadpole, we must link the remaining legs to each other, connecting
1 to 2. Multiplying all these choices, we obtain 4 × 3 × 1 = 12. Dividing by the 4!
factor from the Feynman rule for the vertex, we obtain the factor 1/2 present in
Eq. (4.78). For a complete discussion on symmetry factors, see Ref. [109].

If now we wish to compute the second-order contribution in 𝜆 for the two-
point function, we must ask ourselves how many ways we can link the legs of
two vertices, keeping two of them fixed. The result of this is two diagrams:

and . (4.86)

This demonstrates the remarkable usefulness of the diagrammatic representation:
we are able to construct all the perturbation contributions without getting lost
in a sea of functional derivatives and series expansions.

An inspection of Eq. (4.84) reveals that the tadpole contribution may diverge.
In fact, we have:

= 𝜆
2

1
(2𝜋)𝐷 ∫ 1

𝑝2 + 𝑚2d
𝐷𝑝 ∝ ∫

∞

0
𝑝𝐷−1

𝑝2 + 𝑚2d𝑝, (4.87)

and it follows that, depending on the dimension 𝐷, it may diverge as 𝑝 → ∞.
Such a divergence is called ultraviolet. If we have the massless scalar field (𝑚2 =
0), it would also diverge at 𝑝 = 0; this divergence is called infrared. There are
many ways to regularize this algebraic divergence, for example, see Sec. A.4.
One can also use a cut-off in the integral. Another way to deal with such a
divergence is using dimensional regularization [74]. As a matter of fact, we have
already used it to regularize Eq. (3.221); here we just present it in more detail for
those who are not familiar with this technique. Using a polar representation of
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the last integral, we can write:

𝐼 (𝐷) = 1
(2𝜋)𝐷 ∫ 1

𝑝2 + 𝑚2d
𝐷𝑝 = 1

(4𝜋)𝐷/2Γ(𝐷/2) ∫
∞

0
𝑝𝐷−1

𝑝2 + 𝑚2d𝑝, (4.88)

so, using the Beta function (see Eq. (3.222)), defining 𝑝2 = 𝑦𝑚2, we have:

𝐼 (𝐷) = (𝑚2)𝐷/2−1
(4𝜋)𝐷/2Γ(𝐷/2) ∫

∞

0
𝑦𝐷/2−1(1 + 𝑦)−1d𝑦

= (𝑚2)𝐷/2−1
(4𝜋)𝐷/2Γ(𝐷/2)

Γ(𝐷/2)Γ(1 − 𝐷/2)
Γ(1)

= (𝑚2)𝐷/2−1
(4𝜋)𝐷/2 Γ(1 − 𝐷/2), (4.89)

From this equation, we see that this diagram diverges for even dimensions. In
order to regularize it, let us suppose that 𝐷 is even. Then, the dimensional reg-
ularization is applied by considering 𝐷 → 𝐷 − 2𝜀. To avoid changing the units
of the diagram, we also need to simultaneously make 𝜆 → 𝜆𝜇2𝜀 , where 𝜇 has the
same units as mass and is called the renormalization parameter. It follows
that:

= 𝜆𝜇2𝜀
2

(𝑚2)𝐷/2−𝜀−1
(4𝜋)𝐷/2−𝜀 Γ(1 − 𝐷/2 + 𝜀). (4.90)

From the last result, we may fix a number of dimensions and then expand the
expression around 𝜀 = 0. For concreteness, let us take 𝐷 = 2. Then it follows:

= 𝜆
8𝜋𝜀 +

𝜆
8𝜋 [ln(4𝜋) + ln ( 𝜇

2

𝑚2) − 𝛾𝐸 + 𝑂(𝜀)] . (4.91)

where the 𝛾𝐸 ≈ 0.577216 is the Euler-Mascheroni constant. We note that, as
expected, the diagram diverges if 𝜀 = 0. However, such a divergence can be
renormalized if we add to the theory a contribution that generates a term in
the 2-point function of the form − 𝜆

8𝜋𝜀 . Such an additional contribution is called
counterterms. Using the counterterms, we can also eliminate constants like
𝜆
8𝜋 ln 4𝜋 and 𝛾𝐸 . Therefore, the renormalized tadpole is given by:

= 𝜆
8𝜋 ln ( 𝜇

2

𝑚2) . (4.92)
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This procedure shares many similarities with the one discussed in Sec. A.4. Both
methods can be used for the same type of divergences (algebraic), and in both
cases, we subtract the divergences term-by-term.

The divergences and the renormalization procedure are consequences of field
theory. Different theories are classified in terms of their divergences and, there-
fore, by the possibility of renormalization. Analyzing the units of the model
(we are in natural units, so we use length as the fundamental unit), a model in
which the coupling constant is some negative power of 𝐿 is said to be super-
renormalizable. If the units of the coupling constant are 𝐿0, the theory is said
to be renormalizable, and if the units of the coupling constant are a positive
power of length, the theory is said to be non-renormalizable. It is straightfor-
ward to verify that the 𝜆𝜙4 theory is super-renormalizable in 2 and 3 dimensions,
renormalizable in 4 dimensions, and non-renormalizable for 𝐷 > 4 dimensions.
Detailed calculations of second-order diagrams in 𝜆𝜙4 theory can be found in Ref.
[110].

As one can observe, the finite result for the tadpole is given with a depen-
dence on the renormalization parameter. While observables are given by the
Green’s function of the theory, such objects should not depend on this parame-
ter once it is introduced “by hand”. Therefore, we must have:

𝜇dΓ
(𝑛)(𝑚2, 𝜆, 𝜇)

d𝜇 = 0, (4.93)

or, equivalently:

𝜇 𝜕Γ
(𝑛)
𝜕𝜇 + 𝛾(𝑚2, 𝜆)𝜕Γ

(𝑛)
𝜕𝑚2 + 𝛽(𝑚2, 𝜆)𝜕Γ

(𝑛)
𝜕𝜆 = 0, (4.94)

where:

𝛽(𝑚2, 𝜆) = 𝜇 𝜕𝜆𝜕𝜇 , (4.95)

𝛾 (𝑚2, 𝜆) = 𝜇 𝜕𝑚
2

𝜕𝜇 . (4.96)

The Eq. (4.94) is known as the Callan-Symanzik equation [111–113]. One way
to interpret the parameter 𝜇 is that it fixes the energy scale of the theory. With
this interpretation in mind and using the 𝛽-function given in Eq. (4.95), D. Gross,
F. Wilczek, and H. Politzer proved that quantum chromodynamics (QCD) has a
regime of high energies in which it is perturbatively well-behaved. Nowadays,
this result is known as asymptotic freedom [114, 115].
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We must emphasize that even in renormalizable theories, there can be high
energy regimes where the theory is not perturbatively well-behaved. Such diver-
gent behavior is known as a Landau pole, and it has been found in various cases,
e.g., quantum electrodynamics (QED) [116] and in the 𝜆𝜙4 theory [117].

A lot more can be discussed in the context of interacting theories and in the
constructive approach. However, to keep the chapter as brief as possible, we
leave these discussions to the references cited at the beginning of this chapter.



Chapter 5

Disordered Fields Theory

The statistical physics is one of the most successful theories in physics and it re-
lies on the average treatment of systems, instead of dealing with the properties of
every single component of it. The main achievement of statistical physics is be-
ginning with a microscopic description of a system, given by some Hamiltonian,
and being able to predict its macroscopic behavior. Among the successful pre-
dictions of statistical physics, phase transitions are one of the most important.
However, even in the simplest model with a phase transition, the exact treat-
ment of it can be cumbersome, and in some cases, impossible. Therefore, a way
to approximate its behavior is necessary. It is in this scenario that the Landau
theory of phase transitions emerges [118]. Furthermore, the Landau theory also
allows us to build a bridge between the discrete models of traditional statistical
mechanics and the constructive approach of quantum field theory.

After advancing our comprehension about homogeneous systems, the sta-
tistical physicists turned their attention to systems with impurities, as such im-
purities introduce many difficulties in the physical reasoning and mathematical
framework of the theory.

In this chapter, we investigate the long-known connection between statisti-
cal physics systems and quantum field theory [80]. After that, we introduce dis-
ordered systems and the distributional zeta function method to deal with such
systems, and then we discuss some original results. Here we follow Ref. [119–
121]. Unless stated otherwise, we have a natural system of units, ℏ = 𝑐 = 𝑘𝐵 = 1.

5.1 Statistical Field Theory
Our aim in this section is to tighten the relation between constructive field theory
and statistical field theory more than we have briefly discussed at the end of Sec
4.1. We assume that the reader is familiar with the basic results and properties
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of statistical mechanics and take their validity as given.
We will show, with some details, how to start with the Ising model and

obtain its corresponding quantum field theory. The Ising model is given by spins
𝑠𝑖 = ±1 located on a lattice with 𝑁 sites. Its Hamiltonian is written as

𝐻 = −∑
𝑖,𝑗

𝑠𝑖𝐽𝑖𝑗𝑠𝑗 −∑
𝑖
ℎ𝑖𝑠𝑖, (5.1)

where ℎ𝑖 is an external magnetic field at site 𝑖 and 𝐽𝑖𝑗 is the coupling between the
spins. If 𝐽 is positive, we have a ferromagnetic coupling. If 𝐽 is negative, we have
an antiferromagnetic coupling.

The probability of a given configuration 𝑠𝑖 is given by the Boltzmann weight

𝑃(𝑠𝑖) = 𝑒−𝛽𝐻 , (5.2)

where 𝛽 = 𝑇−1, and follows that the partition function is

𝑍 = ∑
𝑠𝑖

𝑒−𝛽𝐻 , (5.3)

where the sum is taken over all configurations. From the usual statistical mechan-
ics, we know that all the statistical averages (correlation functions) are obtained
from derivatives of the partition function.

Now, consider the following Gaussian integral:

∫
∞

−∞
𝑒− 1

4 ∑𝑖𝑗 𝜓𝑖𝑉 −1𝑖𝑗 𝜓𝑗+∑𝑖 𝑠𝑖𝜓𝑖
𝑁
∏
𝑖=1

d𝜓𝑖 = 𝐶𝑒∑𝑖𝑗 𝑠𝑖𝑉𝑖𝑗 𝑠𝑗 , (5.4)

therefore, the partition function of the Ising model can be rewritten as

𝑍 = ∑
𝑠𝑖

𝑒−𝛽(∑𝑖,𝑗 𝑠𝑖𝐽𝑖𝑗 𝑠𝑗+∑𝑖 ℎ𝑖𝑠𝑖) = ∑
𝑠𝑖

∫
∞

−∞
𝑒−

1
4𝛽 ∑𝑖𝑗 𝜓𝑖𝐽−1𝑖𝑗 𝜓𝑗+∑𝑖(𝜓𝑖+𝛽ℎ𝑖)𝑠𝑖

𝑁
∏
𝑖=1

d𝜓𝑖

= ∫
∞

−∞
𝑒−

1
4𝛽 ∑𝑖𝑗(𝜓𝑖−𝛽ℎ𝑖)𝐽−1𝑖𝑗 (𝜓𝑗−𝛽ℎ𝑗)∑

𝑠𝑖
𝑒𝜓𝑖𝑠𝑖

𝑁
∏
𝑖=1

d𝜓𝑖, (5.5)

we note that, since the spins 𝑠𝑖 are independent, the sum over the configurations
can be performed:

∑
𝑠𝑖

𝑒𝜓𝑖𝑠𝑖 = ∏
𝑖
(2 cosh 𝜓𝑖) = 𝐶𝑒∑𝑖 ln(cosh 𝜓𝑖). (5.6)



128 Statistical Field Theory

Defining 𝜙𝑖 = 1
2𝐽−1𝑖𝑗 𝜓𝑖, we can write

𝑍 = 𝐶𝑒
𝛽
4 ℎ𝑖𝐽−1𝑖𝑗 ℎ𝑗 ∫ 𝑒𝛽 ∑𝑖𝑗(−𝜙𝑖𝐽𝑖𝑗𝜙𝑗)+∑𝑖 ln cosh(2𝐽𝑖𝑗𝜙𝑗)+𝛽 ∑𝑖 ℎ𝑖𝜙𝑖

𝑁
∏
𝑖=1

d𝜙𝑖, (5.7)

where 𝐶 is a normalization constant.
As one can expect, we wish to rewrite the argument of the exponential as

some Lagrangian. For that, we write the following Fourier representations:

𝜙𝑖 = 1
√𝑁

∑
p

𝑒−𝑖p⋅x𝑖𝜙(p) (5.8)

𝐽𝑖𝑗 = 1
𝑁 ∑

p
𝑒−𝑖p⋅(x𝑖−x𝑗)𝐽 (p), (5.9)

In terms of the Fourier representation, and using a series expansion for ln cosh 𝑥 =
1
2𝑥2 −

1
12𝑥4, we have that

𝜙𝑖𝐽𝑖𝑗𝜙𝑗 = ∑
p

𝜙(p)𝐽 (p)𝜙(−p) (5.10)

∑
𝑖

ln cosh(2𝐽𝑖𝑗𝜙𝑖) = 2∑
p

𝜙(p)𝐽 (p)𝐽 (−p)𝜙(−p) − 4
3 ∑p

𝜙2(p)𝐽 2(p)𝐽 2(−p)𝜙2(−p).

(5.11)

Now expand the 𝐽 (p) up to second order in 𝑝 = ‖p‖:
𝐽 (p) = 𝐽 (1 − 𝜌2𝑝2), (5.12)

where, assuming that we have only first-neighborhood interactions, 𝐽 = 𝛾𝛽𝐽0,
and 𝛾 is the number of nearest neighbors. Now, for the 𝑝2 term in the first-
neighborhood approximation, we get

𝐽𝜌2𝑝2 ≈ 𝐽𝑎2𝑝2, (5.13)

therefore, 𝜌 ≈ 𝑎, the lattice spacing constant. This results in the following La-
grangian:

𝛽𝐿 = 𝛽∑
p

𝜙(p)𝐽 [(1 − 2𝐽 ) + (4𝐽 − 1)𝑎2𝑝2] 𝜙(−p)

− 4𝛽
3 ∑

p
𝜙2(p)𝐽 4(1 − 4𝑎2𝑝2)𝜙2(−p)

= 𝛽𝐿0 − 𝛽𝐿𝐼 , (5.14)
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analyzing only the free Lagrangian, we see that for 𝑇0 = 2𝛾𝐽0, the theory becomes
unstable. Therefore, if we expand each contribution of the free Lagrangian in
powers of 𝑇0 to first order, we get

1 − 2𝛽𝐽 = 𝑇 − 𝑇0
𝑇0

, (5.15)

4𝛽𝐽 − 1 = 1, (5.16)

𝛽𝐽 = 1
2, (5.17)

Therefore, it follows that

𝛽𝐿0 = 1
2 ∑p

𝜙(p) (𝑇 − 𝑇0
𝑇0

+ 𝑎2𝑝2) 𝜙(−p), (5.18)

performing the change of variables 𝑚2 = 1
𝑎2

𝑇−𝑇0
𝑇0 and 𝜙 → 𝑎2𝜙 we obtain

𝛽𝐿0 = 𝛽 12 ∑p
𝜙(p) (𝑝2 + 𝑚2) 𝜙(−p), (5.19)

It is straightforward to note that, up to the 𝛽 pre-factor, it is a momentum repre-
sentation of the following Lagrangian

𝐿0 = 1
2𝜙(𝑥) (Δ + 𝑚2) 𝜙(𝑥), (5.20)

which is the Euclidean Lagrangian of the free scalar theory. To deal with the
interacting Lagrangian

𝛽𝐿𝐼 =
4𝛽
3 ∑

p
𝜙2(p)𝐽 4(1 − 4𝑎2𝑝2)𝜙2(−p), (5.21)

we notice that the contribution of the momenta arises from a Laplacian acting
over the 𝜙(𝑥), and since we are interested in using 𝐽 4 as a perturbative parameter,
the contribution 𝐽 4Δ𝜙(𝑥) is subleading and therefore can be disregarded. So by
the change of variables 4

3𝐽 4 = 𝜆/4!, we have that

𝛽𝐿𝐼 = −𝛽 𝜆
4!𝜙

4(𝑥). (5.22)

Then it follows that the partition function can be written as

𝑍[ℎ] = ∫ 𝑒−𝛽 ∫[
1
2𝜙(𝑥)(Δ+𝑚2)𝜙(𝑥)+ 𝜆

4!𝜙4(𝑥)]d𝑥+∫ ℎ(𝑥)𝜙(𝑥)d𝑥 [d𝜙] , (5.23)
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which, up to the factor of 𝛽 , is the partition function of the 𝜆𝜙4 theory discussed
in Sec. 3.3 and in Sec.4.3.1. We note that, as expected, the resulting Lagrangian
has the same symmetries as the Ising model, that is, the symmetry ℤ2. This
field theoretical description of the statistical/condensedmatter systems is usually
referred to as the soft spin approach or soft model.

By a direct computation, we have that ⟨𝜙⟩ = 0, and comparing this to the re-
sults of the Ising model, we see that the field variable, in this case, represents the
magnetization of the system, and its expected value going to zero corresponds
to a system without persistent magnetization. For a system that presents persis-
tent magnetization, we have that ⟨𝜙⟩ ≠ 0, which means that the ground state
(vacuum) of the theory must be shifted in order to ensure that we have a min-
imum value. Such a situation is achieved if we have 𝑚2 < 0. Then we have
⟨𝜙⟩ = 𝑣 = √−𝑚2/𝜆 as the ground state. Defining a new variable, 𝜑 = 𝜙 − 𝑣 ,
which has zero expected value, we obtain an effective 𝑚22 = 3𝜆𝑣2 + 𝑚2, and the
interacting Lagrangian is modified to

𝐿(2)𝐼 = −𝜌𝜑3(𝑥) + 𝜆
4!𝜑

4(𝑥), (5.24)

where we defined 𝜌0 = 4!𝜆𝑣 . Such a procedure is called spontaneous symme-
try breaking. We notice that both theories, with and without persistent magne-
tization, have the same ℤ2 symmetry. The difference is that to ensure we have
the ground state, one of the field variables must be shifted. The change in the
potential of the theory can be verified in the Figs. 5.1.

<φ>=0, m²>0
(a) Sketch of the potential for
𝑚2 > 0 and ⟨𝜙⟩ = 0.

<φ>=v, m²<0
(b) Sketch of the potential for
𝑚2 < 0 and ⟨𝜙⟩ = 𝑣 .

Figure 5.1: Two potentials, without and with persistent magnetization.

One may be puzzled by the previous fact, since we have shown that all rep-
resentations of quantum systems should be unitarily equivalent to the canonical
commutation relations, and, therefore, the vacuum should be the same (see the
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Stone-von Neumann theorem, theorem 2.18). But the previous two vacuums are
not the same and are not unitarily equivalent, and we are talking about the same
system in different starting points (without and with persistent magnetization).
However, we remark that the Stone-von Neumann theorem holds only in a fi-
nite number of dimensions of the phase space. In quantum field theory, we deal
with an infinite number of degrees of freedom, which leads us to an infinite-
dimensional phase space, and the Stone-von Neumann theorem cannot be used
to ensure the uniqueness of the vacuum (up to unitary transformations).

The many possible vacuums of quantum fields are an interesting feature that
leads to different fascinating phenomena. Among them are: phase transitions,
the Unruh effect [122] (see also, Ref. [123]), and Hawking radiation [124].

Before we end this section, we note that if we have a bidimensional Heisen-
berg spin S = {𝑠𝑥 , 𝑠𝑦 } instead of the Ising spin in Eq. (5.1), the same steps can be
performed to obtain the following soft version action:

𝑆(𝜙1, 𝜙2) = ∫ [
2
∑
𝑖=1

𝜙𝑖(𝑥)(−Δ + 𝑚2)𝜙𝑖 + 𝜆
4!(𝜙

21(𝑥) + 𝜙22(𝑥))2] d𝑥. (5.25)

This model is invariant under the group 𝒪(2), that is, it is invariant under bidi-
mensional rotations. Like in the Ising model, we can have the case of persistent
magnetization. Performing the same steps as before, assuming 𝑚2 < 0 and re-
naming the variables as 𝜑 = 𝜙1 − 𝑣 , 𝑣2 = 4!𝑚2/𝜆, 𝑚21, 𝜓 = 𝜙2, and 𝜌 = 𝜆𝑣 , we
obtain

𝑆(𝜑, 𝜓 ) = ∫ [12𝜑(𝑥) (−Δ + 𝑚20) 𝜑(𝑥) + 𝜆
4!(𝜑

2(𝑥) + 𝜓 2(𝑥))
2

+ 1
2𝜓(𝑥) (−Δ) 𝜓(𝑥) +

𝜌
4!𝜑(𝑥)(𝜑

2(𝑥) + 𝜓 2(𝑥))]d𝑥. (5.26)

We readily notice that the spontaneous symmetry breaking introduces amassless
field, 𝜓 , in our description. Such a field is commonly referred to as theGoldstone
field or Goldstone modes. In general, one can prove that the breaking of a
continuous symmetry introduces a Goldstone field in the theory. Such a result is
known as the Goldstone theorem.

5.1.1 Second order phase transition in the 𝜆𝜙4 theory
As we know, a second-order phase transition in a system is characterized by
the divergence of the free energy or by its on-shell 2-point correlation function
(sometimes referred just asmass). In the case of the Ising or Heisenberg model, it
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is themagnetization, becoming zero or increasing smoothly from zero in terms of
some parameter. If this parameter has a thermodynamical origin (temperature,
pressure, ...), we have a thermal phase transition. However, we can also have
phase transitions due to non-thermal parameters, like the self-interaction of a
theory raised by quantum fluctuations, see for example Refs. [110, 125, 126] and
the references therein.

The usual phase transitons are closely related to the symmetries of a system.
For example, consider a ferromagnet system without any persistent magnetiza-
tion at some temperature 𝑇 . Such a system is invariant under all rotations in
the space and, therefore, is invariant under the group 𝒪(3). If we slowly lower
the temperature, the spins of the system start to align, generating a non-zero
magnetization. This magnetized system is invariant under rotations around the
magnetization axis, that is, it is invariant under the group 𝒪(2), and we say that a
symmetry breaking occurs. Conversely, if we start with a system with persistent
magnetization and then raise the temperature, the magnetization becomes zero
and we have restored the symmetry.

If we wish to obtain the filed variables depending on the temperatrure, we
must recover the Euclidean time explicitly, 𝜙(𝑥, 𝜏 ), also spliting the laplacian to
separate the Euclidean time, Δ𝐷 → 𝜕2/𝜕𝜏2 + Δ𝐷−1 = 𝜕2/𝜕𝜏2 + Δ, and impose
the KMS condition over the field variables, that is 𝜙(𝑥, 𝜏 + 𝛽) = 𝜙(𝑥, 𝜏 ). For more
details about field theory in finte temperature scenario, see Ref. [127]. With
this explicit dependence, we write the action functional, in a slightly different
notation, as

𝑆(𝜙) = 1
2∫

𝛽

0 ∫ [𝜙(𝜏 ,x)(− 𝜕2
𝜕𝜏2 − Δ + 𝜇20)𝜙(𝜏 ,x) + 𝜆

2𝜙
4(𝑥, 𝜏 )] d𝑥d𝜏 . (5.27)

Now we suppose that the system has some persistent magnetization making
the 𝜇20 → −𝜇20 , therefore we can use the end of preceeding section to obtain the
theory around the correct ground state, 𝑣 = √𝜇20/𝜆. Therefore, the shifted action
reads

𝑆(𝜑) = 1
2∫

𝛽

0 ∫[𝜑(𝑥, 𝜏 )(− 𝜕2
𝜕𝜏2 − Δ + 𝑚20)𝜑(𝑥, 𝜏 ) − 𝜌0𝜑3 + 𝜆

2𝜑
4(𝑥, 𝜏 )] d𝑥d𝜏 .

(5.28)

where 𝜌0 = 2𝜆𝑣 , 𝑚20 = 3𝜆𝑣2 − 𝜇20 , and 𝜑 = 𝜙 − 𝑣 .
As we have seen, this introduces a new interacting contribution to the action.

Applying the same structure constructed in the last chapter (see Sec. 4.3.1), this
new interaction generates a new vertex in the Feynman diagrams, given by

= 𝜌0, (5.29)
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then, the correlation functions of the theory include the contribution of this new
vertex. Diagrammatically, at one loop level, the mass of the theory is given by

𝐺(2)(𝑝2 = −𝑚2) = 𝑚2𝑅 = + + . (5.30)

Instead of using the dimensional regularization in these diagrams, we use the
analytic regularization, introduced in Sec. 3.2.1 and also applied in Sec. 4.2.1.
For that, let us write

𝑚2𝑅(𝛽) = 𝑚20 + 𝛿𝑚20 + 6Δ𝑚21(𝛽) + 18Δ𝑚22(𝛽), (5.31)

where we denote Δ𝑚21(𝛽) and Δ𝑚22(𝛽) as the contributions of the tadpole and the
self-energy diagram of Eq. (5.30), 6 and 18 are symmetry factors, and 𝛿𝑚20 is a
𝑑-dependent mass counterterm. We define 𝑑 = 𝐷−1 and omit the 𝑑-dependence
in the Δ𝑚(𝛽) functions to simplify the notation. Let us first discuss the tadpole
contribution.

We note that now one of the dimensions is periodic due to the KMS con-
dition; therefore, the spectrum in this dimension will be discrete. This discrete
spectrum is calledMatsubara frequencies. Different procedures are used in the
literature to evaluate the Matsubara sum of the tadpole. One can use a method
where the Matsubara frequency sum separates into temperature-independent
and temperature-dependent parts. An alternative procedure is to use a mix of
dimensional and analytic regularization [74, 128–130]. Here we will use an ana-
lytic regularization procedure, where the number of dimensions of the space is
not treated as a complex continuous variable [131]. A detailed study comparing
an analytic regularization procedure and a cut-off method in the Casimir effect
can be found in Refs. [47, 132–134]. The analytic regularization procedure aims
to replace divergent integrals with analytic functions of certain regularization
parameters.

We denote the thermal contribution from the tadpole, after analytic contin-
uation, by Δ𝑚21(𝛽, 𝜇, 𝑠)|𝑠=1. By performing the angular part of the integral over
the continuous momenta of the non-compact 𝑑-dimensional space, for 𝑠 ∈ ℂ, the
quantity Δ𝑚21(𝛽) can be written as Δ𝑚21(𝛽, 𝜇, 𝑠), where

Δ𝑚21(𝛽, 𝜇, 𝑠) =
𝜆(𝜇, 𝑠) 𝛽

2𝑑+1𝜋 𝑑
2+1Γ(𝑑2)

∫
∞

0
𝑑𝑝 𝑝𝑑−1 ∑

𝑛∈ℤ
[𝜋𝑛2 + 𝛽2

4𝜋 (𝑝
2 + 𝑚20)]

−𝑠
(5.32)

with 𝜆(𝜇, 𝑠) = 𝜆0(𝜇2)𝑠−1, where 𝜇 has mass dimension. The function Δ𝑚21(𝛽, 𝜇, 𝑠)
is defined in the region where the above integral converges, ℜ(𝑠) > 𝑠0.
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The self-energy contribution to the mass, Δ𝑚22(𝛽), can be obtained from the
tadpole as:

Δ𝑚22(𝛽) = [−𝜌
2(𝜇, 𝑠)
𝜆(𝜇, 𝑠) Δ𝑚21(𝛽, 𝜇, 𝑠)]𝑠=2, (5.33)

where 𝜌(𝜇, 𝑠) = 𝜌0(𝜇2)𝑠−2. Therefore, one can focus on the Δ𝑚21(𝛽, 𝜇, 𝑠) function.
After a Mellin transform and reordering of some quantities, we can write

Δ𝑚21(𝛽, 𝜇, 𝑠) as:

Δ𝑚21(𝛽, 𝜇, 𝑠)=
𝜆(𝜇, 𝑠)

2𝜋Γ(𝑑2 )Γ(𝑠)
( 1𝛽 )

𝑑−1
∫
∞

0
[ 𝑟𝑑−1∫

∞

0
𝑡 𝑠−1 ∑

𝑛∈ℤ
𝑒−(𝜋 𝑛2+𝑟2+𝑚20𝛽2/4𝜋)𝑡d𝑡 ] d𝑟 ,

(5.34)

where we made the change of variable 𝑟2 = 𝛽2𝑝2/4𝜋 . The integral over 𝑟 is
straightforward. Using the Θ-function defined on Eq. (3.79), we can split the
𝑡-integral into two

Δ𝑚21(𝛽, 𝜇, 𝑠)=𝐶𝑑(𝛽, 𝜇, 𝑠)[∫
1

0
𝑡 𝑠− 𝑑

2−1𝑒−𝑚20𝛽2𝑡/4𝜋 Θ(𝑡)d𝑡+∫
∞

1
𝑡 𝑠− 𝑑

2−1𝑒−𝑚20𝛽2𝑡/4𝜋Θ(𝑡)𝑑𝑡]
(5.35)

with 𝐶𝑑(𝛽, 𝜇, 𝑠) defined as

𝐶𝑑(𝛽, 𝜇, 𝑠) =
𝜆(𝜇, 𝑠)
4𝜋Γ(𝑠)(

1
𝛽 )

𝑑−1
. (5.36)

Next, by making a change of variable 𝑡 → 1/𝑡 in the first integral and using the
modular property of the Θ-function, one can write Δ𝑚21(𝛽, 𝜇, 𝑠) as a sum of four
integrals:

Δ𝑚21(𝛽, 𝜇, 𝑠) = 𝐶𝑑(𝛽, 𝜇, 𝑠)[2𝐼 (1)𝑑 (𝛽, 𝑠) + 2𝐼 (2)𝑑 (𝛽, 𝑠) 𝐼 (3)𝑑 (𝛽, 𝑠) + 𝐼 (4)𝑑 (𝛽, 𝑠)], (5.37)

where

𝐼 (1)𝑑 (𝛽, 𝑠) = ∫
∞

1
𝑡 𝑠− 𝑑

2−1 𝑒−𝑚20𝛽2𝑡/4𝜋 𝜓(𝑡)d𝑡 , (5.38)

𝐼 (2)𝑑 (𝛽, 𝑠) = ∫
∞

1
𝑡−𝑠+ 𝑑

2−
1
2 𝑒−𝑚20𝛽2/4𝜋𝑡 𝜓(𝑡)d𝑡 , (5.39)

𝐼 (3)𝑑 (𝛽, 𝑠) = ∫
∞

1
𝑡 𝑠− 𝑑

2−1𝑒−𝑚20𝛽2𝑡/4𝜋d𝑡 , (5.40)

𝐼 (4)𝑑 (𝛽, 𝑠) = ∫
∞

1
𝑡−𝑠+ 𝑑

2−
1
2 𝑒−𝑚20𝛽2/4𝜋𝑡d𝑡 , (5.41)
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in which 𝜓(𝑣) is given by Eq. (3.78).
Now we can use the standard result that a function that is analytic on a do-

main Ω ⊂ ℂ has a unique extension to a function defined in ℂ, except for a
discrete set of points. Using the fact that 𝜓(𝑡) = 𝑂(𝑒−𝜋𝑡) as 𝑡 → ∞, the integrals
𝐼 (1)𝑑 (𝑠, 𝛽) and 𝐼 (2)𝑑 (𝑠, 𝛽) represent everywhere regular functions of 𝑠 for𝑚20𝛽2 ∈ ℝ+.
The upper bound ensures uniform convergence of the integrals on every bounded
domain in ℂ. On the other hand, at low temperatures, the integrals 𝐼 (3)𝑑 (𝑠, 𝛽) and
𝐼 (4)𝑑 (𝑠, 𝛽) are finite too. Therefore, one can take the limit 𝑠 → 1 to obtain the tad-
pole contribution to the thermal correction to the mass. Note that the thermal
correction from the self-energy contribution is also finite; recall that to obtain
this contribution we have to evaluate the four integrals for 𝑠 = 2. We stress that
these results are valid only in the low-temperature situation.

We note that we are left with an ultraviolet divergence that needs to be nor-
malized. The divergence comes from the integral 𝐼 (4)𝑑 (𝛽, 𝑠). The renormalization
is done by introducing a mass counterterm of the form −𝛿𝑚20 = 𝐶𝑑(𝛽, 𝜇, 𝑠)𝐼 (4)𝑑 .
This is a temperature-dependent counterterm coming from the subtraction at
zero momentum of the self-energy diagram. Going beyond one-loop approxima-
tion, one can show that the counterterms of a finite temperature field theory are
the same as those of the zero temperature theory. The final result is then:

Δ𝑚21(𝛽) = 𝐶𝑑(𝛽, 1)[2𝐼 (1)𝑑 (𝛽, 1) + 2𝐼 (2)𝑑 (𝛽, 1) + 𝐼 (3)𝑑 (𝛽, 1) + 𝐼 (4)𝑑 (𝛽, 1)], (5.42)

Δ𝑚22(𝛽) = −𝐶𝑑(𝛽, 2)
𝜌20
𝜇2𝜆0

[2𝐼 (1)𝑑 (𝛽, 2) + 2𝐼 (2)𝑑 (𝛽, 2) + 𝐼 (3)𝑑 (𝛽, 2) + 𝐼 (4)𝑑 (𝛽, 2)],
(5.43)

Finally, the critical temperature of this pure system is given by the value of 𝛽
for which the renormalized mass squared vanishes. Fig. 5.2 presents the results
for renormalized squared mass 𝑚2𝑅(𝛽) for 𝑑 = 3 as a function of 𝑚0 and selected
values of 𝜆0.

Therefore we have that, in the context of the Ising model, the magnetization
becomes zero smoothly aswe increase the temperature. This is whatwe expected
in the context of a second order phase transition.

5.2 Quenched Disorder
As we said before, most real systems have some kind of impurities that may or
may not affect the physical properties of the system. These impurities can be
modeled in many ways. Here we are interested in the impurities that can be
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Figure 5.2: The renormalized squared mass as a function of (𝑚0𝛽)−1, for different values
of the coupling constant 𝜆0 for 𝑑 = 3. We set 𝜇2 = 𝑚20 .

modeled by disorder, that is, some additional degree of freedom that we have not
added in our description of the system.

Disordered systems are characterized by some random function, ℎ(𝑥). The
function ℎ(𝑥) can model different situations, such as impurities in the lattice
and inhomogeneities in the crystal. The usual way to choose the random func-
tion ℎ(𝑥) is to take a function with mean zero and a non-vanishing covariance.
Therefore, this information must be taken into the partition function, and we
may write

𝑍 = Tr 𝑒−𝛽𝑆(𝜙,ℎ), (5.44)
where 𝑆(𝜙, ℎ) is the action of the degrees of freedom and the disorder. If the dis-
order of the system is in thermal equilibrium with the other degrees of freedom,
we can take the disorder average before summing up all the degrees of freedom,
that is, we can write

𝑒−𝛽𝑆eff(𝜙) = Trℎ 𝑒−𝛽𝑆(𝜙,ℎ) = 𝔼 [𝑒−𝛽𝑆(𝜙,ℎ)] , (5.45)

where Trℎ denotes the trace over ℎ(𝑥). Therefore, we can define the free energy
and obtain the thermodynamic properties of the system. When we can proceed
in the preceding way, that is, when the disorder is in equilibrium with the whole
system, we say that we have a annealed disorder.

Now, if the disorder is not in equilibrium with the other degrees of freedom,
or the probability distribution is independent of the other degrees of freedom, we
cannot take the total trace as in Eq. (5.44). Instead, we have a partition function
for each realization of the disorder, that is

𝑍[ℎ] = Tr𝜙 𝑒−𝛽𝑆(𝜙,ℎ). (5.46)
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Therefore, we have a free energy for each realization of the disorder

𝑊[ℎ] = − ln𝑍[ℎ]. (5.47)

In order to obtain the physical properties of the system, we need to take the
average of the free energy with respect to the disorder; then it follows that

𝐹 = 𝔼[𝑊 [ℎ]] = −𝔼[ln𝑍[ℎ]]. (5.48)

This kind of disorder is called quenched disorder or static disorder, and it is the
case that we are interested in in this thesis. Static disorder, for instance, manifests
in many condensed-matter systems, such as disordered metals, impure semicon-
ductors, and classical or quantum spin systems [3, 121, 135, 136]. The effects of
random couplings on second-order phase transitions in 𝑑-dimensional systems,
driven by thermal and disorder fluctuations, are controlled by the Harris crite-
rion [137]. Under coarse-graining of fluctuations, which is the usual approach
in the treatment of disordered systems, one can identify two distinct behaviors
of the system’s criticality under disorder. Namely, if the correlation length ex-
ponent of the pure system 𝜈 satisfies the inequality 𝜈 ≥ 2

𝑑 , the effects of disorder
may be disregarded in the physics of large length scales. Otherwise, for 𝜈 < 2

𝑑
the disorder-induced fluctuations modify the critical behavior. In the latter case,
the critical exponents must change under the coarse-graining procedure, that is,
when one integrates over the disorder. There are two dimensions of particular
relevance in pure and quenched disordered models. The first one is the lower
critical dimension 𝑑 −𝑐 , which is the lowest spatial dimension at which there is no
long-range order. The second one is the upper critical dimension 𝑑 +𝑐 , which is
the dimension above which the model is Gaussian in the infrared.

As we know, the logarithm diverges at the origin; such a divergence is not al-
gebraic and introduces difficulties in the computation of averages. These compli-
cations have been known since the 70’s [138] and, over the years, many proposals
have been used to compute this average. As a matter of fact, we have the replica
trick [138, 139], the dynamic [140, 141] and supersymmetric approaches [4]. An-
other way to find the quenched free energy is the distributional zeta-function
method [142, 143], which is the one we use in this thesis.

The disorder can be coupled in different ways to our degrees of freedom;
mainly, there are two cases that are most common in the literature: additive and
multiplicative disorder. The additive disorder is intended to model randomness
in the structure or internal degrees of freedom that we did not take into account
in the pure Hamiltonian. The multiplicative disorder can be viewed as an exter-
nal random effect acting on the system, like a force.

One of the principal models of disordered systems is the so-called Edwards-
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Anderson model, given by

𝐻 = −∑
𝑖,𝑗

𝑠𝑖𝐽𝑖𝑗𝑠𝑗 −∑
𝑖
ℎ𝑖𝑠𝑖, (5.49)

where 𝐽𝑖𝑗 is now a randomvariablewithmean zero and non-vanishing covariance.
Note that, apart from the randomnature of 𝐽𝑖𝑗 , it is the Isingmodel. If ℎ𝑖 is random
and not 𝐽𝑖𝑗 , we have a model with additive disorder called the Random Field
Ising Model. The Edwards-Anderson model was the first to attempt to explain
the spin-glass phase of some materials.

The spin-glass phase appears when a system is not able to satisfy the condi-
tions that minimize the energy at every site. For example, take the Isingmodel on
a triangular lattice; if we fix 𝐽𝑖𝑗 < 0, the state of minimum energy is to anti-align
the spins. However, due to the nature of the triangular lattice, this cannot be sat-
isfied at every site of the lattice simultaneously; this effect is called frustration.
This leads to clusters of frustrated states in a spin-glass phase.

The Edwards-Anderson model cannot be solved exactly; however, its long-
range version called the Sherrington-Kirkpatrick model [144], was solved
using the replica trick, and most of its results can be found in Ref. [3].

The soft/continuous version of the Sherrington-Kirkpatrick model can be ob-
tained in the same way as given in Sec. 5.1, and it reads

𝑆(𝜙, ℎ) = ∫ [12𝜙(𝑥) (−Δ + 𝑚20) 𝜙(𝑥) − ℎ(𝑥)𝜙2(𝑥) + 𝜆0
2 𝜙4(𝑥)] d𝑥, (5.50)

where ℎ(𝑥) is a random function; note that we keep the notation d𝐷𝑥 = d𝑥 from
the last chapter. In this thesis, we refer to the preceding action as the random
mass model. For the random field Ising model, or simply random field model,
we have the continuous action given by

𝑆(𝜙, ℎ) = ∫ [12𝜙(𝑥) (−Δ + 𝑚20) 𝜙(𝑥) − ℎ(𝑥)𝜙(𝑥) + 𝜆0
2 𝜙4(𝑥)] d𝑥. (5.51)

In Ref. [145] the following two results were presented for the RFIM, which
is dominated by disorder fluctuations. Using Peierls’ arguments [146], these au-
thors proved that 𝑑 −𝑐 = 2. Using renormalization group techniques, they also
proved that 𝑑 +𝑐 = 6. The first result was discussed by Imbrie [147] and the latter
was confirmed by Aizenman and Wehr [148, 149]. Concerning the existence of
the phase transition, in Refs. [150, 151] it was proved that there is an ordered
phase for 𝑑 ≥ 3. See also Ref. [152]. Other important results discussing the be-
havior of the pure and the disordered models were obtained by many authors. It
was proved that the critical exponents of the system with quenched disorder are
identical to the critical exponents of the pure system in (𝑑 − 2) dimensions [153–
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158]. While this dimensional reduction breaks down at low dimensions (𝑑 < 5),
recent high-precision numerical studies [159] have demonstrated that it holds
with remarkable accuracy at 𝑑 = 5. This suggests that the dimensional reduc-
tion becomes valid above a critical dimension, where non-perturbative effects
associated with multiple energy minima become less relevant [158].

In this thesis we investigate the application of the distributional zeta-function
method to the previous two actions, mostly in the case of the random field, where
we have most of our original results.

5.2.1 Distributional zeta-function method
As we have stressed, it is not trivial to calculate the average of the logarithm. Let
us assume that we have an action 𝑆(𝜙, ℎ) where ℎ is a random function coupled,
in some way, to the variable 𝜙.

Now take a measure space (𝑥,𝒳 , 𝜇) (see after definition A.15), and 𝑓 ∶ 𝑋 →
(0,∞) any integrable function. Then we define the generalized zeta function as

𝜁𝜇,𝑓 (𝑠) = ∫Ω 𝑓 −𝑠(𝑥)d𝜇(𝑥), (5.52)

for any 𝑠 ∈ ℂ. We have that 𝑓 −𝑠 = 𝑒−𝑠 ln 𝑓 , by the principal branch of the log-
arithm. If we set 𝑓 (𝑥) = 𝑥 , 𝑋 = ℕ, and 𝜇 as the counting measure, we obtain
the Riemann zeta function, defined in Eq. (3.82). Now if 𝑓 (𝑥) = 𝑥 , 𝑋 = ℝ, and 𝜇
counts the eigenvalues of an operator, with the respective multiplicity, we obtain
the spectral zeta function of Eq. (3.104).

In our case, let us define 𝑓 (𝑥) = 𝑍[ℎ], where 𝑍[ℎ] is the partition function
of 𝑆(𝜙, ℎ) for one realization of the disorder (see Eq. (5.46)), and d𝜇 = [dℎ]𝑃(ℎ),
that is, the probability distribution of the disorder field. In this case we write the
distributional zeta-function (or DZF) as

Φ(𝑠) = ∫ 1
𝑍 𝑠[ℎ]𝑃(ℎ)[dℎ] = 𝔼 [ 1

𝑍 𝑠[ℎ]] . (5.53)

Noticing that 𝑍[ℎ] = (𝑍[ℎ] + 𝑍[−ℎ])/2, we have

𝑍[ℎ] = ∫ cosh [∫ ℎ(𝑥)𝜙𝑛(𝑥)d𝑥] 𝑒−𝑆(𝜙,0)[d𝜙], (5.54)

therefore it follows that 𝑍[ℎ] ≥ 𝑍[0] and

∫ | 1
𝑍 𝑠[ℎ] | 𝑃(ℎ)[dℎ] ≤

1
𝑍ℜ(𝑠)[0] < ∞, (5.55)
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forℜ(𝑠) ≥ 0. Thus the integral in Eq. (5.53) converges in the upper half-complex
plane ℜ(𝑠) ≥ 0; we notice that this means that there is no need to perform an
analytical continuation over Φ(𝑠).

It is direct to compute that

− lim
𝑠→0+

𝑍−𝑠[ℎ] − 1
𝑠 = − d

d𝑠 𝑍
−𝑠[ℎ]|

𝑠=0+
= ln𝑍[ℎ], (5.56)

then, using Eq. (5.48), it follows

𝐹 = −∫ − d
d𝑠 𝑍

−𝑠[ℎ]|
𝑠=0+

𝑃(ℎ)[dℎ]. (5.57)

We notice that we can interpret 𝑃(ℎ)[dℎ] = [d𝑃(ℎ)] in the sense of a Radon-
Nikodym derivative (see theorem A.35), that is, 𝑃(ℎ) = [d𝑃(ℎ)]

[dℎ] . Since 𝑍[ℎ] ≥
𝑍[0], we can use the Lebesgue dominated convergence theorem (theorem A.32)
to write

𝐹 = d
d𝑠 Φ(𝑠)|𝑠=0+ . (5.58)

Then we have that the quenched free energy is given by the derivative of the
distributional zeta function evaluated at 𝑠 = 0, similar to the case of the spectral
zeta function that gives Eq. (4.37). To obtain a more practical expression, we
must choose a representation of the distributional zeta function; for that, let us
take a Mellin transform

1
𝑍 𝑠[ℎ] =

1
Γ(𝑠) ∫

∞

0
𝑒−𝑍[ℎ]𝑡 𝑡 𝑠−1d𝑡 . (5.59)

Therefore it follows

Φ(𝑠) = 1
Γ(𝑠) ∫ [∫

∞

0
𝑒−𝑍[ℎ]𝑡 𝑡 𝑠−1d𝑡] 𝑃(ℎ)[dℎ], (5.60)

now we choose some positive real number 𝑎 and split the distributional zeta
function as Φ = Φ1 + Φ2, where

Φ1(𝑠) = 1
Γ(𝑠) ∫ [∫

𝑎

0
𝑒−𝑍[ℎ]𝑡 𝑡 𝑠−1d𝑡] 𝑃(ℎ)[dℎ], (5.61)

Φ2(𝑠) = 1
Γ(𝑠) ∫ [∫

∞

𝑎
𝑒−𝑍[ℎ]𝑡 𝑡 𝑠−1d𝑡] 𝑃(ℎ)[dℎ]. (5.62)

The function Φ2 is entire1. For the function Φ1, we can use a series represen-
tation of the exponential to write

Φ1(𝑠) = 1
Γ(𝑠) ∫ [∫

𝑎

0
𝑡 𝑠−1

∞
∑
𝑘=0

(−1)𝑘
𝑘! [𝑍[ℎ]𝑡]𝑘 d𝑡] 𝑃(ℎ)[dℎ], (5.63)

1Holomorphic in the whole complex plane.
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and once the series converges, we can write

Φ1(𝑠) = 1
Γ(𝑠) ∫

∞
∑
𝑘=0

(−1)𝑘
𝑘! [𝑍[ℎ]]𝑘 𝑃(ℎ)[dℎ]∫

𝑎

0
𝑡𝑘+𝑠−1d𝑡

= 1
Γ(𝑠) ∫

∞
∑
𝑘=0

(−1)𝑘𝑎𝑘+𝑠
𝑘!(𝑘 + 𝑠) 𝑍

𝑘[ℎ]𝑃(ℎ)[dℎ]

= 1
Γ(𝑠)

∞
∑
𝑘=0

(−1)𝑘𝑎𝑘+𝑠
𝑘!(𝑘 + 𝑠) 𝔼 [𝑍 𝑘[ℎ]] . (5.64)

For 𝑘 = 0, we have a singularity at 𝑠 = 0; however, using 𝑠Γ(𝑠) = Γ(𝑠 + 1), we can
write

Φ1(𝑠) = 𝑎𝑠
Γ(𝑠 + 1) +

1
Γ(𝑠)

∞
∑
𝑘=1

(−1)𝑘𝑎𝑘+𝑠
𝑘!(𝑘 + 𝑠) 𝔼 [𝑍 𝑘[ℎ]] , (5.65)

which is finite for all ℜ(𝑠) ≥ 0. Now we can compute the derivative of Φ1

d
d𝑠 Φ1(𝑠)|𝑠=0+ = (ln 𝑎 + 𝛾𝐸) +

∞
∑
𝑘=1

(−1)𝑘𝑎𝑘+𝑠
𝑘!𝑘 𝔼 [𝑍 𝑘[ℎ]] , (5.66)

where we use the fact that Γ(𝑠) has a pole of order one at 𝑠 = 0 and 𝛾𝐸 is the
Euler-Mascheroni constant.

For Φ2, we have

d
d𝑠 Φ2(𝑠)|𝑠=0+ = ∫ [∫

∞

𝑎
1
𝑡 𝑒

−𝑍[ℎ]𝑡d𝑡] 𝑃(ℎ)[dℎ] = 𝑅(𝑎), (5.67)

and using, again, 𝑍[ℎ] ≥ 𝑍[0], we obtain

|𝑅(𝑎)| ≤ ∫ [∫
∞

𝑎
1
𝑡 𝑒

−𝑍[0]𝑡d𝑡] 𝑃(ℎ)[dℎ] ≤ 1
𝑍(0)𝑎 𝑒

−𝑍(0)𝑎, (5.68)

therefore, 𝑅(𝑎) → 0 as 𝑎 increases.
Reuniting all these results, we have the following representation of the quenched

free energy

𝐹 =
∞
∑
𝑘=1

(−1)𝑘𝑎𝑘+𝑠
𝑘!𝑘 𝔼 [𝑍 𝑘[ℎ]] − (ln 𝑎 + 𝛾𝐸) + 𝑅(𝑎). (5.69)
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Once the thermodynamic properties are derivatives of the free energy and we
can take 𝑎 large enough, the last three contributions can be neglected and we
can write

𝐹 =
∞
∑
𝑘=1

(−1)𝑘𝑎𝑘+𝑠
𝑘!𝑘 𝔼 [𝑍 𝑘[ℎ]] . (5.70)

The set of these last results was first derived in Ref. [142], where N. F. Svaiter
and B. F. Svaiter introduced the DZF method. Since its derivation, the distribu-
tional zeta function has been used to recover the known results obtained by the
replica trick [160–164], without relying on dubious mathematical manipulations,
and to further our understanding of disordered systems.

The quantity 𝔼[𝑍 𝑘[ℎ]] can be directly computed once the probability distri-
bution of the disorder is fixed; it is given by

𝔼[𝑍 𝑘(𝑗, ℎ)] = ∫𝑍 𝑘(𝑗, ℎ)𝑃(ℎ)[dℎ] = ∫
𝑘

∏
𝑖=1

𝑒−𝑆eff(𝜙𝑘𝑖 )[d𝜙𝑘𝑖 ], (5.71)

where 𝑆eff (𝜙𝑘𝑖 ) denotes the effective action, which is obtained through the coarse
graining over the disordered variable ℎ(𝑥).

5.3 Applications of the DFZ method
In this section, we apply the distributional zeta function to different scenarios of
the random mass model (Eq. (5.50)) and the random field model (Eq. (5.51)) to
obtain both novel results and confirmations of the distributional zeta function
method.

5.3.1 Random Mass Model
To introduce key terminology related to the distributional zeta function, we first
present the random mass model described by Eq. (5.50). To obtain practical
results, we fix a disorder probability distribution. For simplicity, we consider a
Gaussian distribution, given by

𝑃(ℎ) = 𝑝0 exp [− 1
2𝜚2 ∫(ℎ(𝑥))

2] d𝑥, (5.72)

where 𝜚 is a positive parameter and 𝑝0 is a normalization constant. In this case,
we have a delta-correlated disorder:

𝔼[ℎ(𝑥)ℎ(𝑦)] = 𝜚2𝛿(𝑥 − 𝑦). (5.73)
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The explicit form of the effective action can be written as

𝑆eff(𝜙𝑘) = ∫ {12
𝑘
∑
𝑖=1

𝜙𝑘𝑖 (𝑥) (−Δ + 𝑚20) 𝜙𝑘𝑖 (𝑥) + 1
2

𝑘
∑
𝑖,𝑗=1

𝑔𝑖𝑗 [𝜙𝑘𝑖 (𝑥)𝜙𝑘𝑗 (𝑥)]
2} d𝑥, (5.74)

where 𝑔𝑖𝑗 ≡ 𝜆0𝛿𝑖𝑗 − 𝜚2. One can notice that such an action is invariant under
the exchange of indices 𝑖 ↔ 𝑗. To proceed from this action, we have two main
approaches: the replica symmetric method and the overlap matrix method. First,
we show that in the replica symmetric approach, we recover the free-energy
landscape of a glass phase. Subsequently, we demonstrate that the overlapmatrix
approach allows us to obtain the partition function as an average over random
matrices. Within this approach, one can employ the method known as the Parisi
ansatz.

Diagonal Ansatz and Glass Phase

From Eq. (5.74), we observe that there is a value of 𝑘 for which the interaction has
a negative sign. This would lead to an instability in the free energy. However,
revisiting the expansion of ln cosh 𝑥 (Eq. (5.11)), we note that we can select a
term of order 𝑥6. This allows us to write

𝑆eff(𝜙𝑘𝑖 ) = ∫
𝑘
∑
𝑖=1

[12𝜙
𝑘𝑖 (𝑥)(−Δ + 𝑚20)𝜙𝑘𝑖 (𝑥) (5.75)

+ 1
4

𝑘
∑
𝑗=1

𝑔𝑖𝑗 (𝜙𝑘𝑖 (𝑥))
2 (𝜙𝑘𝑗 (𝑥))

2 + 𝜌
6 (𝜙𝑘𝑖 (𝑥))

6] d𝑥, (5.76)

which ensures the boundedness from below of the free energy. Now, we assume
that 𝜙𝑖 = 𝜙𝑗 , meaning that all fields are equal. This approach is called the replica
symmetric or diagonal ansatz. This leads to the following action:

𝑆eff (𝜙𝑘𝑖 )=∫
𝑘
∑
𝑖=1

[12𝜙
𝑘𝑖 (𝑥)(−Δ + 𝑚20)𝜙𝑘𝑖 (𝑥)+ 1

4(𝜆 − 𝑘𝜚2) (𝜙𝑘𝑖 (𝑥))
4+𝜌

6 (𝜙𝑘𝑖 (𝑥))
6] d𝑥.
(5.77)

Using the preceding action, we observe that the potential of the theory exhibits
multiple minima. Ref. [162] proves that the free energy possesses many ground
states, a characteristic feature of glass-like phases.

Within the replica trick, this replica symmetric ansatz leads to negative en-
tropy and does not exhibit a glass-like phase. To obtain the glass phase in the
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replica trick, the artificial construction known as replica symmetry breaking is
necessary.

However, one may argue that our diagonal ansatz is also artificial, as there is
no fundamental reason to impose such an assumption. In the next application,
we explore the overlap matrix approach.

Overlap Matrix Approach

We begin by analyzing the interacting contribution of the effective action given
in Eq. (5.74). First, we have

𝑘
∑
𝑖,𝑗=1

𝑔𝑖𝑗 [𝜙𝑘𝑖 (𝑥)𝜙𝑘𝑗 (𝑥)]
2 =

𝑘
∑

<𝑖,𝑗>=1
𝑔𝑖𝑗 [𝜙𝑘𝑖 (𝑥)𝜙𝑘𝑗 (𝑥)]

2 +
𝑘
∑
𝑖=1

𝑔𝑖𝑖 [𝜙𝑘𝑖 (𝑥)𝜙𝑘𝑖 (𝑥)]
2 , (5.78)

where the symbol < 𝑖, 𝑗 > denotes the sum over all 𝑖 ≠ 𝑗. At this point, we note a
significant difference between discrete and continuous systems. In the discrete
case, apart from a summation over all sites and a pre-factor, we essentially deal
with the product of two Ising spins (or even Heisenberg spins). Since Ising spins
take values ±1, the square of two of them is always unity, while the product
of two spins in different “replicas” is referred to as an overlap. A more general
approach that retains this property states that the self-overlap does not depend on
the state [3].

In this framework, we can rewrite the interaction contribution as follows:

𝑘
∑
𝑖,𝑗=1

𝑔𝑖𝑗 [𝜙𝑘𝑖 (𝑥)𝜙𝑘𝑗 (𝑥)]
2 = −𝜚2

𝑘
∑

<𝑖,𝑗>=1
[𝜙𝑘𝑖 (𝑥)𝜙𝑘𝑗 (𝑥)]

2 + 𝑘(𝜆0 − 𝜚) [𝜙𝑘1(𝑥)]
4 , (5.79)

where we have used the fact that 𝜙𝑘𝑖 (𝑥)𝜙𝑘𝑖 (𝑥) ≡ [𝜙𝑘1(𝑥)]
2 ∀ 𝑖, and the explicit

form of the matrix 𝑔𝑖𝑗 . To simplify the notation, let us define 𝜙𝑘1(𝑥) ≡ 𝜙(𝑥); also,
the limits of the sums will be omitted from now on.

As can be explicitly seen, the interaction action of the theory is decomposed
into two different contributions. First, the sum of the squares of all self-overlaps,
which takes the form of a self-interacting field theory. Second, the sum of the
remaining squared overlaps between two “replicas”. Using the fact that the action
will appear in the argument of the exponential, we can make use of the Hubbard-
Stratonovich identity,

𝑒 𝑎2 𝑠2 = 1
√2𝜋𝑎 ∫

𝑑𝛼 𝑒−
𝛼2
2𝑎 +𝛼𝑠 , (5.80)
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to introduce an auxiliary variable. Using a suitable change of variables2, we can
write

𝑒
𝜚2
2 ∑<𝑖,𝑗>[𝜙𝑘𝑖 (𝑥)𝜙𝑘𝑗 (𝑥)]

2
= ∫ 𝑒− 1

2 ∑<𝑖,𝑗>(𝑄𝑖𝑗(𝑥))2+∑<𝑖,𝑗> 𝑄𝑖𝑗(𝑥)𝜙𝑖(𝑥)𝜙𝑗(𝑥)
𝑘

∏
<𝑖,𝑗>=1

[d𝑄𝑖𝑗]
√2𝜋

,
(5.81)

In this scenario, the effective action can be written as

𝑆eff(𝜙𝑘𝑖 , 𝑄𝑖𝑗) = ∫ {12 ∑𝑖,𝑗
𝜑𝑘𝑖 (𝑥) [−Δ + 𝑚20 − 2𝑄𝑖𝑗(𝑥)] 𝜙𝑘𝑗 (𝑥)

+ 𝑘
2(𝜆0 − 𝜚)𝜑4(𝑥) − 1

2 ∑
<𝑖,𝑗>

(𝑄𝑖𝑗(𝑥))2} d𝑥. (5.82)

A saddle point of 𝑆eff with respect to 𝑄𝑖𝑗 shows us that

𝛿𝑆eff(𝜙𝑘𝑖 , 𝑄𝑖𝑗)
𝛿𝑄𝑖𝑗(𝑥)

= 0 ⇒ 𝑄𝑖𝑗 = 1
2 ∑
<𝑖,𝑗>

𝜑𝑖(𝑥)𝜑𝑗(𝑥), (5.83)

which means that 𝑄𝑖𝑗 = 𝑄𝑗𝑖 and 𝑄𝑖𝑖 = 0, so the matrix Q, whose components are
𝑄𝑖𝑗 , must have zeros on all diagonal elements and be symmetric.

In the replica trick, it is customary to apply the replica ansatz over the matrix
Q.

In the overlap interpretation, one can define such a matrix as follows:

Q = Φ ⊗ Φ − diag [Φ ⊗ Φ] , (5.84)

where Φ denotes the vector with components 𝜙𝑘𝑖 and diag[𝐴] is the diagonal
matrix formed from the diagonal elements of the matrix 𝐴. Thus, the sum over
< 𝑖, 𝑗 > acting on 𝑄𝑖𝑗 can be replaced by the sum over 𝑖, 𝑗 with the condition that
𝑄𝑖𝑖 = 0.

To simplify the final form of the partition function, further manipulations
can be performed on the last term of Eq. (5.82):

∑
<𝑖,𝑗>

(𝑄𝑖𝑗(𝑥))2 = ∑
𝑖,𝑗

𝑄𝑖𝑗(𝑥)𝑄𝑖𝑗(𝑥) = ∑
𝑖
[∑

𝑗
𝑄𝑖𝑗(𝑥)𝑄𝑗𝑖(𝑥)] = tr(𝑖) [Q2] , (5.85)

2It is natural to understand that the strength of the disorder can influence the overlap. Thus,
we can absorb 𝜚 into the new variables, whichwill later be identified as components of the overlap
matrix.
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where tr(𝑖) denotes the trace over the indices 𝑖. If we define the matrix G as the
matrix with components given by 1

2(−Δ+𝑚20)𝛿𝑖𝑗 , we can write the effective action
entirely in terms of matrices:

𝑆eff(Φ,Q) = ∫ {Φ(𝑥) [G + Q] Φ(𝑥) + 1
2(𝜆0 − 𝜚)𝜙4(𝑥)tr(𝑖) [𝟙𝑘×𝑘] − 1

2 tr(𝑖) [Q
2]} d𝑥

= 𝑆0(Φ,Q) + 𝑆𝐼 (𝜙) + 𝑆Q(Q). (5.86)

Now we are able to write the partition function:

𝔼 [𝑍 𝑘(𝑗, ℎ)] = ∫ 𝑒−𝑆eff(Φ,Q,𝐽 )
𝑘

∏
𝑖=1

[d𝜙𝑘𝑖 ]
𝑘

∏
<𝑖,𝑗>=1

[d𝑄𝑖𝑗]
√2𝜋

, (5.87)

where 𝐽 is the vector with components given by the source 𝑗𝑘𝑖 (𝑥). Now we have
two different and independent variables in the partition function: the field vari-
ables, which are components of the vector Φ, and the overlap variables, which
are the components of the matrix Q. Since there is no interaction term combin-
ing both variables, we can proceed with the usual perturbation theory developed
in Sec. 4.3. We have:

𝔼[𝑍 𝑘(𝑗, ℎ)] = ∫ [𝑒−𝑆Q(Q)𝑒−𝑃4(
𝛿
𝛿𝐽 ) ∫ 𝑒−𝑆0(Φ,Q,𝐽 )

𝑘
∏
𝑖=1

[d𝜙𝑘𝑖 ]]
𝑘

∏
<𝑖,𝑗>=1

[d𝑄𝑖𝑗]
√2𝜋

, (5.88)

where we defined 𝑃4 ( 𝛿
𝛿𝐽 ) =

1
2(𝜆0 − 𝜚) ( 𝛿

𝛿𝐽 (𝑥))
4
.

To make the calculations more explicit, let us focus only on the last integral:

∫ 𝑒−𝑆0(Φ,Q,𝐽 )
𝑘

∏
𝑖=1

[d𝜙𝑘𝑖 ]=∫ exp {−∫ [Φ(𝑥) (G+Q) Φ(𝑥)+𝐽 (𝑥)Φ(𝑥)] d𝑥}
𝑘

∏
𝑖=1

[d𝜙𝑘𝑖 ].
(5.89)

It is a Gaussian functional integral over the variables 𝜙𝑘𝑖 . Such integrals can be
performed, and the result is:

∫ 𝑒−𝑆0(Φ,Q,𝐽 )
𝑘

∏
𝑖=1

[d𝜙𝑘𝑖 ] = 𝑒− 1
2Tr[ln(G+Q)] exp [12 ∫ 𝐽(𝑥)(G + Q)−1𝐽 (𝑥)d𝑥] . (5.90)

Due to the nature of Q, the operator in the last equation is non-diagonal in the
ℝ𝑘 space. However, as previously shown, theQmust be a symmetric matrix, and
an ansatz over the non-diagonal elements can be taken. The literature has been
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investigating such ansätze. The two most popular are the Replica Symmetric
ansatz and the Parisi ansatz, both of which give a matrix Q that is symmetric (by
definition) and real. Due to the Spectral Theorem of linear algebra, we know that
a symmetric and real matrix can be diagonalized by an orthogonal transforma-
tion. Let 𝑆 be the orthogonal transformation that diagonalizes (G + Q)−1, then
choose the source to be 𝐽 (𝑥) = 𝐽 ′(𝑥)𝑆:

𝐽 (𝑥)(G + Q)−1𝐽 (𝑥) = 𝐽 ′(𝑥)𝑆(G + Q)−1𝑆𝑇 𝐽 ′(𝑥) = 𝐽 ′(𝑥)D(Q)𝐽 ′(𝑥), (5.91)

where D(Q) denotes the matrix of eigenvalues of (G + Q)−1. To exemplify, take
the replica symmetric ansatz, where 𝑄𝑖𝑗 = (1 − 𝛿𝑖𝑗)𝑞. We have

D(RS)=
⎡
⎢
⎢
⎢
⎢
⎣

[12(−Δ + 𝑚20) − 𝑘𝑞]−1 0 ⋯ 0
0 [12(−Δ + 𝑚20) − 𝑞]−1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0 [12(−Δ + 𝑚20) − 𝑞]−1

⎤
⎥
⎥
⎥
⎥
⎦𝑘×𝑘
(5.92)

It is important to keep in mind that the matrix D(Q) depends on the ansatz of Q.
However, Eq. (5.91) is satisfied for any ansatz of Q over ℝ.

Using the previous results and the identity Tr [ln𝐴] = ln [det𝐴], we can
rewrite the 𝑘-th moment of the partition function as

𝔼 [𝑍 𝑘(𝐽 ′, ℎ)] = ∫ {𝑒−
1
2Tr[lnD(Q)]+∫ d𝑥 tr(𝑖)Q2

× 𝑒−𝑃4(
𝛿

𝛿𝐽 (𝑥)) exp [12 ∫ 𝐽 ′(𝑥)D(Q)𝐽 ′(𝑥) d𝑥]}
𝑘

∏
<𝑖,𝑗>=1

[d𝑄𝑖𝑗]
√2𝜋

= ⟨𝑒−𝑃4(
𝛿

𝛿𝐽 (𝑥)) exp [12 ∫ 𝐽 ′(𝑥)D(Q)𝐽 ′(𝑥) d𝑥]⟩
Q
, (5.93)

which means that the local quantities obtained by the evaluation of 𝔼 [𝑍 𝑘(𝐽 ′, ℎ)]
are obtained after averaging over the overlaps configurations, given by the ansatz
of Q. We note that if one does not wish to make any ansatz over the matrix Q,
one could perform the average in the sense of random matrices.

Now let us explore the Parisi ansatz and the so-called ”Replica Symmetry
Breaking” (RSB). RSB will be called any ansatz in which two off-diagonal non-
symmetric elements of the matrix Q cannot be permuted in the series in which
the mean of the logarithm is represented, Eq. (5.74).
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To clarify what this means, let us particularize a simple ansatz for the 𝑘 × 𝑘-
dimensional Q matrix:

𝑄𝑖𝑗 = {
𝑞1 if ⌊ 𝑖𝑘 ⌋ = ⌊ 𝑗𝑘 ⌋ and 𝑖 ≠ 𝑗

𝑞0 if ⌊ 𝑖𝑘 ⌋ ≠ ⌊ 𝑗𝑘 ⌋ and 𝑖 ≠ 𝑗
, (5.94)

always with 𝑄𝑖𝑖 = 0, where ⌊𝑥⌋ denotes the greatest integer less than or equal to
𝑥 . This is a RSB ansatz. In such a situation, we have

Q2×2 = [ 0 𝑞0
𝑞0 0 ] , Q3×3 = [

0 𝑞1 𝑞0
𝑞1 0 𝑞0
𝑞0 𝑞0 0

] , (5.95)

Q𝑘×𝑘 =
⎡⎢⎢⎢⎢
⎣

0 𝑞1 𝑞1 ⋯ 𝑞1 𝑞0
𝑞1 0 𝑞1 ⋯ 𝑞1 𝑞0
⋮ ⋱ ⋮
𝑞1 ⋯ 𝑞0
𝑞0 ⋯ 𝑞0 0

⎤⎥⎥⎥⎥
⎦

. (5.96)

With the additional imposition that 𝑞0, 𝑞1 are real-valued functions, all the pre-
ceding constructions can be applied to every term in the series of the DZF (see
Eq. (5.70)). As one can see, all non-diagonal elements are equal except those in
the last row and column. The choice made in Eq.(5.94) is a simple one; however,
when we analyze the action of Eq. (5.74), we can notice that the components of
the matrix Q in the second term of the series (𝑘 = 2) are completely different
from those in the third contribution of the series (𝑘 = 3). Specifically, 𝑄12 = 𝑞0
for 𝑘 = 2, while 𝑄12 = 𝑞1 for 𝑘 = 3. Therefore, RSB means that we do not have,
necessarily, a symmetry between two terms of the sum; however, the intrinsic
symmetry 𝑄𝑖𝑗 = 𝑄𝑗𝑖 is preserved term by term.

With the precisemeaning of RSB established, aside from themisleading nomen-
clature, we can go further and implement the so-called “one-step Parisi ansatz”
[3, 121]. First, let us break the series over the average of the logarithm of the
partition function into two contributions:

𝔼[ln𝑍[ℎ, 𝑗]] =
𝑚
∑
𝑘=1

𝑐𝑘𝔼[(𝑍(𝑗, ℎ)) 𝑘] +
∞
∑

𝑘=𝑚+1
𝑐𝑘𝔼[(𝑍(𝑗, ℎ)) 𝑘] ≡ 𝑠𝑚 + 𝑠∞. (5.97)

Each 𝔼[(𝑍(𝑗, ℎ)) 𝑘] is given by Eq. (5.87). Now, assume the following ansatz for
Q:

𝑄𝑖𝑗 = { 𝑞1 if ⌈ 𝑖
𝑚⌉ = ⌈ 𝑗

𝑚⌉ and 𝑖 ≠ 𝑗,
𝑞0 if ⌈ 𝑖

𝑚⌉ ≠ ⌈ 𝑗
𝑚⌉ and 𝑖 ≠ 𝑗, (5.98)
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where ⌈𝑥⌉ denotes the smallest integer greater than or equal to 𝑥 [3]. Evidently,
each term in 𝑠𝑚 has the following matrix for Q:

Q𝑎×𝑎 = Q(𝑅𝑆)
𝑎×𝑎 =

⎡⎢⎢⎢
⎣

0 𝑞1 ⋯ 𝑞1
𝑞1 0 ⋯ 𝑞1
⋮ ⋱ ⋮
𝑞1 ⋯ 𝑞1 0

⎤⎥⎥⎥
⎦
, (5.99)

where 𝑎 = 1, 2, ⋯ , 𝑚. A component description of such a matrix is:

𝑄𝑎𝑏 = (1 − 𝛿𝑎𝑏)𝑞1; 𝑎, 𝑏 = 1, 2, ⋯ , 𝑚, (5.100)

which is the RS ansatz in the 𝑠𝑚 contribution. Assuming that 𝑞1 is a real-valued
function, the diagonalization previously discussed is the same as presented in Eq.
(5.91). For a term 𝑘 = 𝑚+1, 𝑚+2,⋯ in 𝔼[ln𝑍[ℎ, 𝑗]], we have the matrixQ given
by:

Q𝑘×𝑘 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0 𝑞1 ⋯ 𝑞1 𝑞0 ⋯ 𝑞0
𝑞1 0 ⋯ 𝑞1 𝑞0 ⋯ 𝑞0
⋮ ⋱ ⋮ 𝑞0 ⋯ 𝑞0
𝑞1 ⋯ 𝑞1 0 𝑞0 ⋯ 𝑞0
𝑞0 ⋯ 𝑞0 0 𝑞1 ⋯ 𝑞1
𝑞0 ⋯ 𝑞0 𝑞1 0 ⋯ 𝑞1
𝑞0 ⋯ 𝑞0 ⋮ ⋱ ⋮
𝑞0 ⋯ 𝑞0 𝑞1 ⋯ 𝑞1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥
⎦

= [ Q(𝑅𝑆)
𝑚×𝑚 𝑄(0)𝑚×𝑛

𝑄(0)𝑛×𝑚 Q(𝑅𝑆)
𝑛×𝑛

] , (5.101)

where 𝑄(0)𝑚×𝑛 is the 𝑚 × 𝑛 matrix with every entry equal to 𝑞0, and 𝑛 ≡ 𝑘 − 𝑚. The
other component of the action is the trace over the squared matrix Q. In the 𝑠𝑚
contribution, this quantity is given by:

tr(𝑖) [Q2𝑎×𝑎] = 𝑎(𝑎 − 1)𝑞21 , (5.102)

while in each term of 𝑠∞, we have:

tr(𝑖) [Q2
𝑘×𝑘] = [𝑚(𝑚 − 1) + 𝑛(𝑛 − 1)] 𝑞21 + 2𝑚𝑛𝑞20

= [(𝑚 − 𝑘)2 + 𝑚2 − 𝑘2] 𝑞21 + 2𝑚(𝑘 − 𝑚)𝑞20 . (5.103)

To be clear, let us analyze the integral over the components of the matrix
Q. Such integrals are ansatz-dependent, as each ansatz has a different number
of independent entries in the matrix. For now, denote the entire 𝑄-dependent
function in 𝔼[ln𝑍[ℎ, 𝑗]] by 𝑓 (𝑄𝑖𝑗). Roughly speaking, we have:

𝔼[(𝑍(𝑗, ℎ)) 𝑘] = ∫
𝑘

∏
<𝑖,𝑗>=1

[𝑑𝑄𝑖𝑗] 𝑓 (𝑄𝑖𝑗), (5.104)
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If not all components of the matrix Q are independent, we will get a (divergent)
factor due to the volume of the functional space where such functions are defined
3. For example, take the case 𝑘 = 2. Since 𝑄12 = 𝑄21 ≡ 𝑞1(𝑥) and 𝑄11 = 𝑄22 = 0,
we get:

𝔼[(𝑍(𝑗, ℎ)) 𝑘] = ∫ [𝑑𝑄12] [𝑑𝑄21] 𝑓 (𝑄12)

= ∫ [𝑑𝑞1] [𝑑𝑞1] 𝑓 (𝑞1)

= ⟨𝑓 (𝑞1)⟩𝑞1 ∫ [𝑑𝑞1] = 𝑁∞ ⟨𝑓 (𝑞1)⟩𝑞1 . (5.105)

Such (divergent) volume factors are not new in the functional integral approach,
and they can be easily dropped out if we “normalize” the functional integral,
which is strictly necessary for a probabilistic interpretation of such quantities.
Even if we keep all 𝑄𝑖𝑗 different and independent, we will have, due to the intrin-
sic symmetry of 𝑄𝑖𝑗 , at least 𝑘(𝑘−1)/2 volume factors in a 𝑘 ×𝑘 matrixQ, and this
number increases with the ansatz choice. Thus, for now, we will keep in mind
this normalization and disregard the pure volume contribution of the functional
space.

In this scenario, it is easy to see that in the one-step ansatz, Eq. (5.98), we have
at most two different entries in thematrixQ, namely, 𝑞1(𝑥) and 𝑞0(𝑥). Depending
on the region in the series, all terms in 𝑠𝑚 only involve the integral over 𝑞1(𝑥),
while terms in 𝑠∞ involve an extra integral over 𝑞0(𝑥). Therefore, apart from the
normalization, all contributions in 𝑠𝑚 are the averages taken with respect to the
function 𝑞1(𝑥), while the contributions in 𝑠∞ are the averages over both 𝑞1(𝑥)
and 𝑞0(𝑥).

The so-called “Parisi ansatz” is obtained by successive applications of the first
step (second step, third step, etc.). In our context, the next steps are immediately
obtained: take some 𝑚̃ < 𝑚, split the series of the average of the logarithm into
𝑠𝑚̃, 𝑠𝑚, and 𝑠∞, and fix 𝑄𝑖𝑗 = 𝑞2(𝑥) if ⌈ 𝑖

𝑚̃⌉ = ⌈ 𝑗
𝑚̃⌉. Continue in this manner to

obtain an infinite tower of matrices Q1,Q2,Q3, ⋯. Each step breaks the series of
the distributional zeta-function into more contributions, sarting with the replia
symmetric ansatz and introducing additional averages.

The generalization of this procedure leads us again to the notion of averaging
over an ensemble of random matrices.

3It is important to note that, from the beginning, we are omitting the 𝑥-dependence of 𝑄𝑖𝑗 .
This has been focused in the internal space. However, such dependence is evident in the saddle
point for 𝑄, Eq. (5.83), and the fact that we denote the measure over 𝑄𝑖𝑗 in the same way as a
functional measure.
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5.3.2 Random field model
Now we will look for some results obtained in the random field model, Eq. (5.51).
Assuming again a 𝛿-correlation, i.e., Eq. (5.73), we obtain the following effective
action:

𝑆eff(𝜙) = ∫ {12
𝑘
∑
𝑖=1

𝜙𝑘𝑖 (𝑥) (−Δ + 𝑚20) 𝜙𝑘𝑖 (𝑥) − 𝜚2
𝑘
∑
𝑖,𝑗=1

𝜙𝑘𝑖 (𝑥)𝜙𝑘𝑗 (𝑥)

+ 𝜆0
2

𝑘
∑
𝑖=1

[𝜙𝑘𝑖 (𝑥)𝜙𝑘𝑖 (𝑥)]
2} d𝑥. (5.106)

Through simple inspection, one can notice that, unlike the random mass, the
modification due to the disorder does not directly affect the interaction part; in-
stead, it affects the Gaussian part of the action functional. This can be understood
as a modification in the differential operator.

A prototype model that can be studied as a continuous field in the presence
of a random field is the binary fluid in a porous medium [165]. When the binary-
fluid correlation length is smaller than the porous radius, one has a system for
studying finite-size effects in the presence of a surface field. When the binary
fluid correlation length is much larger than the porous radius, the random porous
medium can exert a random field effect. Even in this situation, one can introduce
boundaries, obtaining a Casimir-like effect [166], known as the statistical or crit-
ical Casimir effect [167–169].

Similarly to the random mass case, we explore the random field model in
two cases: the diagonal ansatz and the diagonalization approach. We present the
results of the diagonal ansatz when the disorder is kept at low temperatures. For
the diagonalization approach, we explore some novel results.

Diagonal ansatz in the critical Casimir effect

As we have shown explicitly, the zero-point energy of a massless system has an
associated Casimir effect, which is characterized by the induced force between
classical surfaces due to quantum effects. The physical reason behind the Casimir
effect can be traced to the presence of massless excitations and the change in the
thermodynamic equilibrium of the vacuum (state with zero number occupation)
due to the presence of boundaries that change the fluctuating spectrum of the
theory [21].

Given the physical interpretation of Casimir forces, one can expect that a
similar effect occurs for critical systems with infinite correlation lengths in the
presence of boundaries. Such a situation was first discussed in fluids by Fisher
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and deGennes [167]. As amatter of fact, thermal fluctuations can induce Casimir-
like long-ranged forces in any correlated medium, with a critical system being
one such example. In such a situation, the massless excitations are not associated
with photons but with some other quasi-particles, e.g., phonons or Goldstone
bosons. This effect is referred to as the critical or statistical Casimir effect. So far,
the critical Casimir effect has been reviewed only a few times, e.g., in Refs. [168–
172].

The quantum Nyquist theorem [173] allows one to identify regimes where
thermal fluctuations dominate over those of quantum origin, with the possibility
of systems becoming critical. Such situations are the subject of statistical field
theory. When a system reaches the critical regime, correlations become long-
ranged, and critical Casimir forces appear. In addition to thermal fluctuations,
disorder fluctuations can also drive a system to criticality [174].

Therefore, the simplest application of the random field model of Eq. (5.106) is
to study when the system reaches criticality due to the disorder effects. The ap-
plication of the distributional zeta function method in this scenario first appears
in Ref. [175]. Analyzing Eq. (5.106), we notice that the 𝜙4 term is necessary to
stabilize the ground state of the system since the disorder average introduces a
negative contribution, quadratic in the fields.

Here, we assume the diagonal ansatz 𝜙𝑘𝑖 (𝑥) = 𝜙𝑘𝑗 (𝑥) for the function space;
in which case the effective action becomes:

𝑆eff(𝜙𝑘𝑖 ) = ∫
𝑘
∑
𝑖=1

[12𝜙
𝑘𝑖 (𝑥) (−Δ + 𝑚20 − 𝑘𝜌2) 𝜙𝑘𝑖 (𝑥) + 𝜆

4
𝑘
∑
𝑖=1

(𝜙𝑘𝑖 (𝑥))
4] d𝑥. (5.107)

One can see in Eq. (5.107) that there exists a combination of 𝑚20, 𝑘 and 𝜌 for
which𝑚20−𝑘𝜌2 < 0, signaling the spontaneous breaking of the discrete symmetry
𝜙𝑘𝑖 → −𝜙𝑘𝑗 . As usual, one can move from the “false” vacuum to the “true” vacuum
by an appropriate shift of the fields, as presented at the end of Sec. 5.1, and
identify the mass in the Gaussian contribution to the action.

𝑚2𝜌 ≡ 2(𝑘𝜌2 − 𝑚20) > 0. (5.108)
To discuss the Casimir energy, it is sufficient to consider the Gaussian contribu-
tion. This is because, as shown by several studies within quantum field theory
scenarios [176–179], radiative corrections are always subleading compared to the
free-field contribution. Since the critical Casimir effect studied here is formally
identical to the quantum scalar case, as discussed in Secs. 3.2-4.2.1, the scenario
is the same. Therefore, we drop the non-Gaussian terms in the action.

Now, compactifying one dimension and assuming Dirichlet boundary condi-
tions, we can recast the mean over the 𝑘-th moment, Eq. (5.71), as

𝔼 [𝑍 𝑘(ℎ)] = [det(−Δ + 𝑚2𝜌)Ω𝐿]
− 𝑘

2 . (5.109)
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From now on, we consider the situation where 𝑚2𝜌 > 0. Using the spectral
zeta-function regularization, Sec. 4.2.1, we can write the functional determinant
as:

𝔼 [𝑍 𝑘(ℎ)] = exp [𝑘2
d
d𝑠 𝜁𝜌(𝑠)|𝑠=0] . (5.110)

The 𝜁𝜌(𝑠) can be constructed as

𝜁𝜌(𝑠) =
𝐴𝑑−1

(2𝜋)𝑑−1 ∫ d𝑑−1𝑝
∞
∑
𝑛=1

[𝑝2 + 𝑚2𝜌 + (𝜋𝑛𝐿 )
2
]
−𝑠

. (5.111)

Following the same steps as those between Eqs. (4.39) and (4.51), but for a
nonzero mass, we obtain:

d𝜁𝜌(𝑠)
d𝑠 |

𝑠=0
= 1

2
d𝐶𝑑(𝐿, 𝑠)

d𝑠 |
𝑠=0

[2𝐼 𝜌1,𝑑(0) + 𝐼 𝜌2,𝑑(0) − 𝐼 𝜌3,𝑑(0)] , (5.112)

with

𝐼 𝜌1,𝑑(𝑠) = ∫
∞

0
d𝑡 𝑡 𝑑2−𝑠−1𝑒

−𝐿2𝑚2𝜌
𝜋𝑡 𝜓(𝑡), (5.113)

𝐼 𝜌2,𝑑(𝑠) = ∫
∞

0
d𝑡 𝑡 𝑑2−𝑠−1𝑒

−𝐿2𝑚2𝜌
𝜋𝑡 , (5.114)

𝐼 𝜌3,𝑑(𝑠) = ∫
∞

0
d𝑡 𝑡 𝑑2−𝑠− 3

2 𝑒
−𝑡𝐿2𝑚2𝜌

𝜋 . (5.115)

Since we now have a nonzero mass, all integrals are convergent. Some care
must be taken to define the energy of the system. First of all, we recall that at
zero temperature, the quenched free energy can be written as

𝐹𝑞(𝐿) = 𝐸𝑞(𝐿) = −𝔼 [𝑊 (𝑗, ℎ)]

=
∞
∑
𝑘=1

(−1)𝑘𝑎𝑘
𝑘𝑘! 𝔼 [(𝑍(𝑗, ℎ)) 𝑘]. (5.116)

Using the previous results and exponentiating the 𝑎𝑘 , we obtain the Casimir
energy in the presence of quenched disorder. From now on, we will refer to this
quantity as the quenched Casimir energy:

𝐸𝑞(𝐿) =
∞
∑
𝑘=𝑘𝑐

(−1)𝑘
𝑘𝑘! exp [𝑘 ln 𝑎 + 𝑘

2
d
d𝑠 𝜁𝜌(𝑠)|𝑠=0] , (5.117)



154 Applications of the DFZ method

with 𝑘𝑐 defined as

𝑘𝑐 ≡ ⌊𝑚
20

𝜌2 ⌋ , (5.118)

where ⌊𝑥⌋ is the greatest integer less than or equal to 𝑥 .
Analyzing the behavior of the integrals in Eq. (5.113)-(5.115), it is immediate

to see that for each 𝑘 > 𝑘𝑐 , the exponential damping makes their contributions
subleading. Therefore, the main contribution in the expression for the Casimir
energy will be

𝐸𝑞(𝐿) = (−1)𝑘𝑐
𝑘𝑐𝑘𝑐!

exp [𝑘𝑐 ln 𝑎 +
𝑘𝑐
2

d
d𝑠 𝜁𝜌(𝑠)|𝑠=0] . (5.119)

Clearly, from the last equation, we can see the connection between 𝑎 and the
thermodynamic limit: since 𝜁𝜌(𝑠) is an extensive quantity, 𝑎 must be chosen to
maximize the exponential. Therefore, the Casimir force is given by:

𝑓𝑑(𝐿) ≡ −𝜕𝐸𝑞(𝐿)𝜕𝐿 = (−1)𝑘𝑐+1
2𝑘𝑐!

𝜕
𝜕𝐿

d
d𝑠 𝜁𝜌(𝑠)|𝑠=0 . (5.120)

With the results obtained so far, we have that

𝑓𝑑(𝐿) =
𝐴𝑑−1
2𝑑+1

(−1)𝑘𝑐+1
𝑘𝑐!

{− 1
𝐿𝑑 [2𝐼

𝜌
1,𝑑(0) + 𝐼 𝜌2,𝑑(0) − 𝐼 𝜌3,𝑑(0)]

+ 𝐿1−𝑑
𝑑 − 1

𝜕
𝜕𝐿 [2𝐼 𝜌1,𝑑(0) + 𝐼 𝜌2,𝑑(0) − 𝐼 𝜌3,𝑑(0)]} .

(5.121)

The derivative of 𝐼 𝜌𝑖,𝑑 deserves closer attention. All of these integrals have an
exponential that depends on 𝐿2, and thanks to the exponential and the 𝜓(𝑡) term,
their derivatives with respect to 𝐿/2 do not change their convergence properties.
In a power series expansion in 𝐿/2, the contribution of the second term of Eq.
(5.121) has a global contribution proportional to −𝐿2−𝑑 , which ensures that this
contribution is the leading one in powers of 𝐿/2. Now, defining the quenched
Casimir pressure as the quenched Casimir force per unit area (or 𝑑 − 1 volume),
we can write

𝑝𝑑(𝐿) = (−1)𝑘𝑐
2𝑑+1𝑘𝑐!𝐿𝑑

[ 𝐿2
𝑑 − 1𝐵𝑑(0) + 𝐷𝑑(0)] , (5.122)

where 𝐵𝑑(0) and 𝐷𝑑(0) are defined by

𝐵𝑑(0) = −1
𝐿

𝜕
𝜕𝐿[2𝐼

𝜌
1,𝑑(0) + 𝐼 𝜌2,𝑑(0) − 𝐼 𝜌3,𝑑(0)], (5.123)

𝐷𝑑(0) = 2𝐼 𝜌1,𝑑(0) + 𝐼 𝜌2,𝑑(0) − 𝐼 𝜌3,𝑑(0), (5.124)
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which are positive constants. Clearly, for 𝑚2𝜌 = 0, the 𝐵𝑑(0) term vanishes,
and the well-known behavior is recovered. The most interesting feature of Eqs.
(5.120) and (5.122) is the fact that the factor of (−1)𝑘𝑐 can change the force or
pressure from repulsive to attractive depending on the values of 𝑚20 and 𝜌2.

Diagonal ansatz in the low temperature case

Here we present the results and calculations of Ref. [180].
Recent experimental and theoretical advances have driven increased inter-

est in low-temperature physics and quantum phase transitions [125, 126, 181–
183]. The intersection of these two areas of research—the physics of systemswith
quenched disorder and low temperatures—leads to the following questions [184–
187]: 1) What is the effect of randomness in models at low temperatures in the
broken symmetry phases? 2) How is the link between nonlocality (anisotropy)
and the appearance of generic scale invariance4 in systems with continuous and
discrete symmetry? It is well known that models with continuous symmetry
can exhibit generic scale invariance due to the Goldstone theorem [188]. Never-
theless, even in the case of discrete symmetry, the presence of quenched disor-
der also leads to generic scale invariance. This behavior agrees with Garrido et
al. [189], who claim that a necessary, but not sufficient, condition for generic
scale invariance is an anisotropic system. Later on, Vespignani and Zapperi [190]
showed that the breakdown of locality is essential to the emergence of generic
scale invariance. A well-known fact is that low temperatures in quenched dis-
ordered systems introduce spatial non-locality. Thus, one can merge the previ-
ous questions into a single one: how is the link between low temperatures and
generic scale invariance in such systems?

As we have seen in Sec. 5.1.1, a finite-temperature quantum field theory is
similar to a field theory defined over ℝ𝑑 × 𝑆1. As a matter of fact, in Euclidean
scalar quantum field theories, finite temperature effects and periodic boundary
conditions in one of the spatial dimensions are on the same footing. That is, the
scalar theory defined on a ℝ𝑑 × 𝑆1 space is formally equivalent to the thermal
scalar field theory since the momentum variable associated with one of the spa-
tial coordinates runs over discrete values, multiples of 2𝜋/𝐿, where 𝐿 is the length
of one of the compactified spatial dimensions, which is similar to the Matsubara
frequencies when one replaces 𝐿 with 𝛽 .

The behavior of a system in which quantum and disorder fluctuations domi-
nate can be described either by a 𝑑-dimensional Euclidean quantum field theory
(with 𝛽 → ∞) or a statistical field theory in (𝑑 +1) dimensions. Here, we use this

4A system presents generic scale invariance when its 2-point correlation function is algebri-
cally decaying.
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equivalence to avoid misunderstandings, since we will use stochastic differen-
tial equations with Markov time. In addition, we assume that the disorder field
is strongly correlated in the compactified dimension (imaginary time). This as-
sumption implies a spatially non-uniform disorder field in the (𝑑+1)-dimensional
classical Euclidean field theory, which we assume to be delta-correlated:

𝔼[ℎ(𝑧,x)ℎ(𝑧′,y)] = 𝜚2𝛿𝑑(x − y). (5.125)

In this case, we get a (𝑑 + 1) Euclidean space with fields obeying periodic bound-
ary conditions in one spatial coordinate and already on the true ground state5.
As in the finite-temperature case, the series representation of the quenched free
energy leads to an effective action for each moment of the partition function,
namely:

𝑆eff (𝜑𝑘𝑖 , 𝑗𝑘𝑖 ) =12 ∫
𝐿

0
{∫[

𝑘
∑
𝑖=1

(𝜑𝑘𝑖 (𝑧, 𝑥)(− 𝜕2
𝜕𝑧2 − Δ + 𝑚20)𝜑𝑘𝑖 (𝑧, 𝑥) + 𝜌0(𝜑𝑘𝑖 (𝑧, 𝑥))

3

+ 𝜆0
2 (𝜑(𝑘)𝑖 (𝑧, 𝑥))4)]d𝑥}d𝑧 − 1

2 ∫
𝐿

0
[∫

𝑘
∑
𝑟 ,𝑠=1

𝜑𝑘𝑟 (𝑧, 𝑥)𝑗𝑘𝑠 (𝑧,x)d𝑥] d𝑧

− 𝜚2
2𝐿2 ∫

𝐿

0 ∫
𝐿

0
[∫

𝑘
∑
𝑟 ,𝑠=1

𝜑𝑘𝑟 (𝑧, 𝑥)𝜑𝑘𝑠 (𝑧′, 𝑥)d𝑥] d𝑧′d𝑧, (5.126)

with 𝜑(𝑘)𝑖 (0,x) = 𝜑(𝑘)𝑖 (𝐿, 𝑥) and 𝑗(𝑘)𝑖 (0, 𝑥) = 𝑗(𝑘)𝑖 (𝐿, 𝑥). One sees that the last term
in this expression is spatially non-local. Such a non-local contribution also ap-
pears in other models. For example, using renormalization group techniques
and the replica trick in a random mass model, Refs. [191, 192] find non-isotropic
scaling behavior. In our approach, because the disorder is anisotropic, we find
similarly that the critical behavior of the system is different for the compactified
and non-compactified directions.

In order to avoid unnecessary complications, once we already have a non-
local action, and for practical purposes, we assume the diagonal ansatz over the
fields: 𝜑𝑘𝑖 (𝑧, 𝑥) = 𝜑𝑘𝑗 (𝑧, 𝑥) in the function space and also 𝑗𝑘𝑖 (𝑧, 𝑥) = 𝑗𝑘𝑙 (𝑧, 𝑥) ∀ 𝑖, 𝑗.
For simplicity, we redefine 𝜑′𝑘𝑖 (𝑧, 𝑥) = 1

√𝑘𝜑
𝑘𝑖 (𝑧, 𝑥) and 𝜆′0 = 𝜆0𝑘. All the terms

of the series have the same structure, and one minimizes each term of the series
one by one.

Instead of computing correlation functions directly from the functional inte-
gral for the effective action in Eq. (5.126), we sample the corresponding field con-
figurations with a linear, nonlocal stochastic partial differential equation with

5Just apply the technique of Sec. 5.1.1 in the action of Eq. (5.106).
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additive noise. This generalizes the commonly used stochastic equations in equi-
librium Landau-Ginzburg theories [193–196] to this spatially anisotropic non-
equilibrium case, allowing us to discuss the temporal behavior of the system;
see, for example, Ref. [197]. Specifically, we assume that 𝜉𝑖(𝑡, 𝑧, 𝑥) is genuine
Gaussian-Markovian noise:

⟨𝜉 𝑘𝑖 (𝑡, 𝑧, 𝑥)𝜉 𝑘𝑗 (𝑡′, 𝑧′, 𝑥′)⟩ = 2Υ𝛿𝑖𝑗𝛿(𝑡 − 𝑡′)𝛿(𝑧 − 𝑧′) 𝛿𝑑(𝑥 − 𝑥′), (5.127)

where ⟨…⟩ denotes an average over all possible realizations of the noise. The
corresponding stochastic equation sampling the field configurations 𝜑𝑘𝑖 (𝑡, 𝑧, 𝑥)
with weight 𝑆eff (𝜑𝑘𝑖 , 𝑗𝑘𝑖 ) is then given by the generalized Langevin equation:

𝜕
𝜕𝑡 𝜑

𝑘𝑖 (𝑡, 𝑧, 𝑥) = −Υ
𝛿𝑆eff (𝜑𝑘𝑖 , 𝑗(𝑘)𝑖 )
𝛿𝜑𝑘𝑖 (𝑧,x)

|
𝜑𝑘𝑖 (𝑧,x)=𝜑𝑘𝑖 (𝑡,𝑧,x)

+ 𝜉 𝑘𝑖 (𝑡, 𝑧,x). (5.128)

This equation is similar to the one that, after a coarse-grained procedure, de-
scribes the relaxational dynamics of classical non-equilibrium systems. In our
case, Υ = 1. Performing the functional derivatives, the generalized Langevin
equation can be written as:

𝜕
𝜕𝑡 𝜑

𝑘𝑖 (𝑡, 𝑧, 𝑥) + (− 𝜕2
𝜕𝑧2 − Δ + 𝑚20) 𝜑𝑘𝑖 (𝑡, 𝑧, 𝑥) −

𝜚2
𝐿2

𝑘
∑
𝑠=1

∫
𝐿

0
𝜑𝑘𝑠 (𝑡, 𝑣 ′, 𝑥)d𝑣 ′

= 𝜉 𝑘𝑖 (𝑡, 𝑧, 𝑥) + 𝑗𝑘𝑖 (𝑡, 𝑧, 𝑥).
(5.129)

To deal with the nonlocal term, we employ a fractional derivative formalism,
similar to the one used in studies of anomalous diffusion in transport processes
through a disordered medium [198]. Specifically, we use the Riemann-Liouville
fractional integrodifferential operator of order 𝛼 , 𝐷𝛼𝑎 [199]. Let 𝑓 ∈ ℒ 1[𝑎, 𝑏]
and 0 < 𝛼 < 1; then 𝐷𝛼𝑎 𝑓 exists almost everywhere in [𝑎, 𝑏], with 𝐷𝛼𝑎 𝑓 defined
by [199]:

𝐷𝛼𝑎 𝑓 (𝑣) = 1
Γ(𝛼) ∫

𝑣

𝑎
𝑓 (𝑠)(𝑣 − 𝑠)𝛼−1d𝑠. (5.130)

Therefore, the nonlinear term is given in terms of 𝐷𝛼𝑎 as:

𝐷𝛼0 (𝜑𝑘𝑖 (𝑡, 𝑧, 𝑥) +
𝑘
∑

𝑠=1,𝑠≠𝑖
𝜑𝑘𝑠 (𝑡, 𝑧, 𝑥)) . (5.131)

The operator 𝐷𝛼𝑎 𝑓 ≡ 𝑑𝛼𝑓 (𝑥)
𝑑|𝑥|𝛼 possesses a well-defined Fourier transform, namely

ℱ [𝑑
𝛼𝑓 (𝑥)
𝑑|𝑥|𝛼 ] = −|𝑘|𝛼𝑓 (𝑘), for 1 ≤ 𝜇 < 2. (5.132)
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We define the Fourier transform on the time and spatial coordinates of a generic
function 𝑔(𝑡, 𝑧, 𝑥) by 𝑔̃(𝜔, 𝑞𝑧 , 𝑞⟂) = ℱ𝑡 ,𝑧,𝑥 [𝑔(𝑡, 𝑧, 𝑥)], where 𝑞𝑧 = 𝑞𝑧(𝑛) = 𝑛𝜋/𝐿, 𝑛 ∈
ℤ. The Langevin equation in terms of the Fourier-transformed functions is then
given by:

[−𝑖𝜔 + (q2⟂ + 𝑞2𝑧 + 𝑚20 + 𝑘𝜚2|𝑞𝑧 |)] 𝜑̃𝑘𝑖 (𝜔, 𝑞𝑧 , 𝑞⟂) = ̃𝜉 𝑘𝑖 (𝜔, 𝑞𝑧 , 𝑞⟂) + ̃𝑗𝑖(𝜔, 𝑞𝑧 , 𝑞⟂),
(5.133)

in which we again assume the diagonal ansatz, 𝜙𝑘𝑖 (𝑥) = 𝜙𝑘𝑗 (𝑥) and 𝑗𝑘𝑖 (𝑥) = 𝑗𝑘𝑗 (𝑥).
From this, one can compute the dynamic susceptibility 𝜒 𝑘0 (𝜔, , 𝑞𝑧 , 𝑞⟂), which is
given by the response propagator 𝐺𝑘0 (𝜔, 𝑞𝑧 , 𝑞⟂):

𝐺𝑘0 (𝜔, 𝑞𝑧 , 𝑞⟂) = 1
−𝑖𝜔 + (𝑞2⟂ + 𝑞2𝑧 + 𝑚20 + 𝑘𝜚2|𝑞𝑧 |)

. (5.134)

Near criticality in the pure system, i.e., for 𝜚 = 0, three critical exponents
of the Gaussian model can be obtained: the two static exponents 𝜈 = 1

2 and
𝜂 = 0, and the dynamical exponent 𝑧 = 2. Using the principle of causality, for
the 𝐺𝑘0 (𝑡, 𝑞𝑧 , 𝑞⟂) = ℱ −1𝑡 𝐺𝑘0 (𝑡, 𝑞𝑧 , 𝑞⟂), contour integration leads to:

𝐺𝑘0 (𝑡, 𝑞𝑧 , 𝑞⟂) = ℱ −1𝑡 𝐺𝑘0 (𝑡, 𝑞𝑧 , 𝑞⟂)
= 𝜃(𝑡) 𝑒−(𝑞2⟂+𝑞2𝑧+𝑚20+𝑘𝜚2|𝑞𝑧 |)𝑡 , (5.135)

where 𝜃(𝑡) is the Heaviside theta function. Clearly, the function 𝐺𝑘0 (𝑡, 𝑞𝑧 , 𝑞⟂) de-
cays exponentially to zero as 𝑡 → ∞.

The next step is to find the Gaussian dynamic correlation function. Using the
noise correlator in Fourier space for large 𝐿, we get

⟨𝜑̃(𝑘)(𝜔, 𝑞𝑧 , 𝑞⟂)𝜑̃(𝑘)(𝜔′, 𝑞′𝑧 , 𝑞′⟂)⟩ = (2𝜋)𝑑+1𝛿(𝜔 + 𝜔′)𝛿(𝑞𝑧 + 𝑞′𝑧)𝛿(𝑞⟂ + 𝑞′⟂)
× 𝐶(𝑘)0 (𝜔, 𝑞𝑧 , 𝑞⟂), (5.136)

where
𝐶(𝑘)0 (𝜔, 𝑞𝑧 , 𝑞⟂) = 2(𝐺(𝑘)

0 (𝜔, 𝑞𝑧 , 𝑞⟂))2 (5.137)

is called the dynamical structure factor. The temporal correlation decays expo-
nentially, with a modified relaxation rate due to the disorder. An experimentally
accessible quantity is the static structure factor 𝐶(𝑘)0 (𝑞𝑧 , 𝑞⟂), defined as

𝐶(𝑘)0 (𝑞𝑧 , 𝑞⟂) = 1
2𝜋 ∫

∞

−∞
𝐶(𝑘)0 (𝜔, 𝑞𝑧d𝜔, 𝑞⟂), (5.138)
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from which one can find the correlation lengths in the model. Since the disorder
is anisotropic, the behavior of the system is different for distinct directions. In
the Gaussian approximation in four-dimensional space, using a Fourier represen-
tation for 𝐺(𝑘)

0 (𝑧 − 𝑧′, 𝑥 − 𝑦), one can show that

𝐺(𝑘)
0 (𝑧 − 𝑧′, 𝑥 − 𝑦) = 1

(2𝜋)2
1

|𝑥 − 𝑦| ∫
∞

0
𝑒−|𝑥−𝑦|√𝑞2𝑧+𝑚20+𝑘𝜚2𝑞𝑧 cos(𝑞𝑧(𝑧 − 𝑧′))d𝑞𝑧 .

(5.139)

Defining the quantity 𝜍 = 𝜚2/2𝑚0, we can write

𝐺(𝑘)
0 (𝑧 − 𝑧′, 𝑥 − 𝑦) = 1

(2𝜋)2
𝑚0

|𝑥 − 𝑦|𝑒
−𝑚0|𝑥−𝑦| ∫

∞

0
𝑒√𝑢2+2𝑘𝜍𝑢+1 cos (𝑚0𝑢(𝑧 − 𝑧′)) d𝑢.

(5.140)

It is not possible to express this integral in terms of known functions, but we can
circumvent this difficulty in the following way. We recall that the contribution
of the terms of the series representation for the quenched free energy is given by

𝔼[𝑊(𝑗, ℎ)] =
∞
∑
𝑘=1

𝑐(𝑘) 𝔼 [(𝑍(𝑗, ℎ)) 𝑘], (5.141)

where 𝑐(𝑘) = (−1)𝑘+1
𝑘𝑘!

6. For small 𝑘 such that 𝑘𝜍 → 0, we can write, for large
(|𝑥 − 𝑦|2 + |𝑧 − 𝑧′|2), that the correlation function in a specific moment is given
by

𝐺(𝑘)
0 (𝑧 − 𝑧′,x − y) = 1

√8𝜋5
√𝑚0 𝑒−𝑚0√|𝑧−𝑧′|2+|x−y|2

(|𝑧 − 𝑧′|2 + |𝑥 − 𝑦|2)
3
4
. (5.142)

The contributions of these terms are the usual ones, for which the bulk cor-
relation length 𝜉 = 𝑚−10 can be defined. However, since 𝑚20 > 0, there is no long-
range order. Nevertheless, the existence of long-range order can be obtained
from the series representation of the quenched free energy.

For any real number 𝜅, let ⌊𝜅⌋ denote the largest integer ≤ 𝜅, that is, the
integer 𝑟 for which 𝑟 ≤ 𝜅 < 𝑟 + 1. We are interested in the critical moment of the
partition function, which is the 𝑘𝑐 = ⌊2𝑚0

𝜚2 ⌋ moment. For this 𝑘𝑐-th moment, the
two-point correlation function has the form

𝐺(𝑘𝑐)0 (𝑧 − 𝑧′, 𝑥 − 𝑦) = 1
(2𝜋)2

𝑒−𝑚0|𝑥−𝑦|
|𝑧 − 𝑧′|2 + |𝑥 − 𝑦|2 . (5.143)

6Note that 𝑎 is assumed large enough, therefore we absorb it in the normalization.
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This expression reflects the spatial anisotropy due to disorder. In the 𝑘𝑐-th mo-
ment, it is an explicit manifestation of generic scale invariance.

A direct question that this result raises is: what is the effect of the generic
scale invariance over the mass (2-point correlation function) in perturbation the-
ory? Using the static (𝜔 = 0) propagator obtained in Eq. (5.134), we try to answer
such a question at the one-loop level. Once we have the system in the ordered
phase (with persistent magnetization), the loop contributions here are the same
as in Sec. 5.1.1, that is, we must compute the diagrams of Eq. (5.30) with the
propagator of Eq. (5.134), algebraically:

𝑚2𝑅(𝐿, 𝜚, 𝑘) = 𝑚20 + 𝛿𝑚20 + 6Δ𝑚21(𝐿, 𝜚, 𝑘) + 18 Δ𝑚22(𝐿, 𝜚, 𝑘), (5.144)

where 6 and 18 are symmetry factors, and again a mass counterterm 𝛿𝑚20 was in-
troduced. Let us first discuss the contribution from the tadpole diagramΔ𝑚21(𝐿, 𝜚, 𝑘)
using the analytic regularization procedure discussed in Sec. 5.1.1. For 𝑠 ∈ ℂ,
Δ𝑚21(𝐿, 𝜚, 𝑘) can be obtained by the analytic continuation of Δ𝑚21(𝐿, 𝜚, 𝑘, 𝜇, 𝑠)|𝑠=1,
with

Δ𝑚21(𝐿, 𝜚, 𝑘, 𝜇, 𝑠)=
𝜆(𝜇, 𝑠)𝐿

2𝑑+1𝜋 𝑑
2+1Γ(𝑑2)

∫
∞

0
𝑝𝑑−1 ∑

𝑛∈ℤ
[𝜋𝑛2+𝐿

2𝑘𝜚
2|𝑛|+ 𝐿2

4𝜋 (𝑝
2+𝑚20)]

−𝑠
d𝑝,

(5.145)

where a trivial angular part of the integral was performed, and 𝜆(𝜇, 𝑠) = 𝜆0(𝜇2)𝑠−1,
where 𝜇 has the dimension of mass. As in the case 𝜚 = 0, this function is defined
in the region where the above integral converges, ℜ(𝑠) > 𝑠0. Comparing the
previous equation with Eq. (5.32), one can notice that the anisotropic disorder
introduces a contribution proportional to |𝑛| into the correlation function. Then
the formalism discussed in Sec. 5.1.1 must be adapted. Again, the contribution
from the bubble diagram (self-energy) can be obtained from the tadpole:

Δ𝑚22(𝐿, 𝜚, 𝑘) = [−𝜌
2(𝜇, 𝑠)
𝜆(𝜇, 𝑠) Δ𝑚21(𝐿, 𝜚, 𝑘, 𝜇, 𝑠)]𝑠=2, (5.146)

where 𝜌(𝜇, 𝑠) = 𝜌0(𝜇2)𝑠−2.
After a Mellin transform and performing the 𝑝 integral, Eq.(5.144) can be

written as:

Δ𝑚21(𝐿, 𝜚, 𝑘, 𝜇, 𝑠) =
𝜆(𝜇, 𝑠)
4𝜋Γ(𝑠)(

1
𝐿)

𝑑−1
∫
∞

0
𝑡 𝑠− 𝑑

2−1 ∑
𝑛∈ℤ

𝑒−(𝜋 𝑛2+ 𝐿
2 𝑘𝜚2|𝑛|+𝑚20𝐿2/4𝜋)𝑡d𝑡 .

(5.147)
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Next, we split the summation into the 𝑛 = 0 and 𝑛 ≠ 0 contributions. For
simplicity, we write Δ𝑚21(𝐿, 𝜚, 𝑘, 𝜇, 𝑠)|𝑛=0 = Δ𝑚21(𝐿, 𝜇, 𝑠)|𝑛=0:

Δ𝑚21(𝐿, 𝜇, 𝑠)|𝑛=0 =
𝜆(𝜇, 𝑠)
4𝜋Γ(𝑠)(

1
𝐿)

𝑑−1
𝐴(𝑠, 𝑑), (5.148)

where

𝐴(𝑠, 𝑑) = ∫
∞

0
𝑡 𝑠− 𝑑

2−1 𝑒−𝑚20𝐿2𝑡/4𝜋d𝑡 . (5.149)

For some 𝑑 and 𝑠, this integral has infrared divergence. Different methods for in-
frared regularization have been discussed in the literature; see, for example, Ref.
[200]. Here we implement another approach to deal with this infrared diver-
gence [34]. The integral 𝐴(𝑠, 𝑑) is defined for ℜ(𝑠) > 𝑑

2 , and can be analytically
continued to ℜ(𝑠) > 𝑑

2 − 1 for 𝑠 ≠ 𝑑
2 . We write a regularized quantity 𝐴𝑅(𝑠, 𝑑) as

𝐴𝑅(𝑠, 𝑑) = ∫
1

0
𝑡 𝑠− 𝑑

2−1 (𝑒−𝑚20𝐿2𝑡/4𝜋 − 1) d𝑡 + ∫
∞

1
𝑡 𝑠− 𝑑

2−1𝑒−𝑚20𝐿2𝑡/4𝜋 + 1
(𝑠 − 𝑑

2)
d𝑡 ,

(5.150)

which is valid for ℜ(𝑠) > 𝑑
2 . For ℜ(𝑠) > 𝑑

2 − 1 and 𝑠 ≠ 𝑑
2 , the right-hand

side exists and defines a regularization of the original integral. The contribution
Δ𝑚21(𝐿, 𝜚, 𝑘, 𝜇, 𝑠)|𝑛≠0 is written as

Δ𝑚21(𝐿, 𝜚, 𝑘, 𝜇, 𝑠)|𝑛≠0 =
𝜆(𝜇, 𝑠)
2𝜋Γ(𝑠)(

1
𝐿)

𝑑−1
∫
∞

0
𝑡 𝑠− 𝑑

2−1
∞
∑
𝑛=1

𝑒−𝜋(𝑛2+𝑘𝐿𝜚2𝑛/2𝜋+𝑚20𝐿2/4𝜋2)𝑡d𝑡 .
(5.151)

As we can expect, this integral cannot be directly evaluated, however, there
are some values of 𝑘 which dominate this integral. To obtain such values, we
write

Δ𝑚21(𝐿, 𝜚, 𝑘, 𝜇, 𝑠)|𝑛≠0 =
𝜆(𝜇, 𝑠)
2𝜋Γ(𝑠)(

1
𝐿)

𝑑−1
∫
∞

0
[𝑡 𝑠−

𝑑
2−1 𝑒−𝑡(𝑚20−𝑘2𝜚4/4)𝐿2/4𝜋

×
∞
∑
𝑛=1

𝑒−𝜋𝑡(𝑛+𝐿𝑘𝜚2/4𝜋)
2
]d𝑡 . (5.152)

This can be split into three contributions:

Δ𝑚21(𝐿, 𝜚, 𝑘, 𝜇, 𝑠)|𝑛≠0 = −𝜆(𝜇, 𝑠)
2𝜋Γ(𝑠) ( 1𝐿)

𝑑−1 3
∑
𝑖=1

𝐼𝑖(𝐿, 𝜚, 𝑘, 𝜇, 𝑠). (5.153)
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where

𝐼1(𝐿, 𝜚, 𝑘, 𝜇, 𝑠) = ∫
∞

0
𝑡 𝑠− 𝑑

2−1𝑒−𝑡 (𝑚20𝐿2/4𝜋)d𝑡 , (5.154)

𝐼2(𝐿, 𝜚, 𝑘, 𝜇, 𝑠) = ∫
∞

0
𝑡 𝑠− 𝑑

2−1𝑒−𝑡 (𝑚20−𝑘2𝜚2/4)𝐿2/4𝜋
∞
∑
𝑛=1

𝑒−𝜋𝑡(𝑛−𝐿𝑘𝜚2/4𝜋)
2
d𝑡 , (5.155)

𝐼3(𝐿, 𝜚, 𝑘, 𝜇, 𝑠) = ∫
∞

0
𝑡 𝑠− 𝑑

2−1Θ(𝑡, 𝐿𝑘𝜚
2

4𝜋 )𝑒−𝑡(𝑚20−𝑘2𝜚4/4)𝐿2/4𝜋d𝑡 . (5.156)

We used the theta-series (or Jacobi theta) defined by

Θ(𝑡; 𝛼) =
∞
∑
𝑛=−∞

𝑒−𝜋𝑡(𝑛+𝛼)2 . (5.157)

for any 𝛼 , 𝑡 ∈ ℂwithℜ(𝑡) > 0. Note that the Θ-function defined at Eq. (3.79) is a
particular case for 𝛼 = 0. It is clear that Θ(𝑡; 𝛼) = Θ(𝑡; 𝛼 + 1), and by the Poisson
summation formula, we have

Θ(1𝑡 ; 𝛼) = √𝑡
∞
∑
𝑛=−∞

𝑒−𝜋𝑛2𝑡+2𝜋𝑖𝑛𝛼

= √𝑡 𝑒−𝜋𝛼2/𝑡 Θ (𝑡; −𝑖𝛼/𝑡) . (5.158)

Let us split the integral 𝐼3(𝐿, 𝜚, 𝑘, 𝜇, 𝑠) into two regions. Since the theta-series
Θ(𝑡; 𝛼) is holomorphic in the half-plane ℜ(𝑡) > 0, the 𝐼3(𝐿, 𝜚, 𝑘, 𝜇, 𝑠) contribution
must be written as

𝐼3(𝐿, 𝜚, 𝑘, 𝜇, 𝑠) = 𝐼 (1)3 (𝐿, 𝜚, 𝑘, 𝜇, 𝑠) + 𝐼 (2)3 (𝐿, 𝜚, 𝑘, 𝜇, 𝑠), (5.159)

where 𝐼 (1)3 (𝐿, 𝜚, 𝑘, 𝜇, 𝑠) is given by

𝐼 (1)3 (𝐿, 𝜚, 𝑘, 𝜇, 𝑠) = ∫
∞

1
𝑡 𝑑2−𝑠− 1

2 𝑒−(𝑚20−𝑘2𝜚4/4)𝐿2/(4𝜋𝑡)
∞
∑
𝑛=−∞

𝑒−𝜋𝑛2𝑡+𝑖𝑘𝐿𝜚2𝑛/2d𝑡 , (5.160)

𝐼 (2)3 (𝐿, 𝜚, 𝑘, 𝜇, 𝑠) = ∫
∞

1
𝑡 𝑠− 𝑑

2−1Θ(𝑡; 𝐿𝑘𝜚
2

4𝜋 )𝑒−𝑡(𝑚20−𝑘2𝜚4/4)2𝐿2/4𝜋d𝑡 . (5.161)

The integral 𝐼 (2)3 (𝐿, 𝜚, 𝑘, 𝜇, 𝑠) converges absolutely for any 𝑠 and converges uni-
formly with respect to 𝑠 in any bounded part of the plane. Hence, the inte-
gral represents an everywhere regular function of 𝑠. Concerning the integral
𝐼 (1)3 (𝐿, 𝜚, 𝑘, 𝜇, 𝑠), to guarantee the convergence we must choose 𝑘(𝑞) = ⌊(2𝜋𝑞𝐿 ) 2𝜚2 ⌋,
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where 𝑞 is a natural number. Therefore, in the series representation for the free
energy with 𝑘 = 1, 2, … we have that for the moments of the partition function
such that 𝑘(𝑞) = ⌊(2𝜋𝑞𝐿 ) 2𝜚2 ⌋, where (2𝜋𝑞𝐿 ) are the positive Matsubara frequencies
𝜔𝑞 , the system is critical. This is an interesting result: there is a critical set of
moments in the series representation for the free energy, after averaging over
the quenched disorder, instead of only one as in the case of an isotropic disorder.
A more general proof using generalized Hurwitz-zeta functions is based on the
fact that zeta function regularization with a meromorphic extension to the whole
complex plane needs an eligible sequence of numbers [201].

This result is similar to the one obtained in the Dicke model, where there is a
quantum phase transition when the couplings between the raising and lowering
off-diagonal operators and the bosonic mode, the energy gap between the energy
eigenstates of the two-level atoms, and the frequency of the bosonic mode satisfy
a specific constraint [202–206]. Once we are interested in the critical behavior,
wewill focus on the set of the critical moments. Substituting the above-discussed
result in Eq. (5.151), one gets that

Δ𝑚21(𝐿, 𝑞, 𝜇, 𝑠)|𝑛≠0 =
𝜆(𝜇, 𝑠)
2𝜋Γ(𝑠)(

1
𝐿)

𝑑−1
∫
∞

0
𝑡 𝑠− 𝑑

2−1𝑒−𝜋(𝑚20𝐿2/4𝜋2−𝑞2)𝑡
∞
∑
𝑛=1

𝑒−𝜋(𝑛+𝑞)2𝑡d𝑡 .
(5.162)

Finally, let us show that Δ𝑚21(𝐿, 𝑞, 𝜇, 𝑠)|𝑛≠0 and also Δ𝑚22(𝐿, 𝑞, 𝜇, 𝑠)|𝑛≠0 are writ-
ten in terms of the Hurwitz-zeta function, see Eq. (3.140). A simple calculation
shows that choosing 𝑞 such that 𝑞0 = ⌊𝑚0𝐿

2𝜋 ⌋, the quantity Δ𝑚21(𝐿, 𝑞, 𝜇, 𝑠)|𝑛≠0 is
given by

Δ𝑚21(𝐿, 𝑞0, 𝜇, 𝑠)|𝑛≠0 =
𝜆(𝜇, 𝑠)
2𝜋Γ(𝑠)(

1
𝐿)

𝑑−1
∫
∞

0
𝑡 𝑠− 𝑑

2−1
∞
∑
𝑛=1

𝑒−𝜋(𝑛+𝑞0)2𝑡d𝑡 . (5.163)

With the special choice 𝑞0 = ⌊𝑚0𝐿
2𝜋 ⌋, we obtain the critical value of 𝑘𝑐 , which was

used to obtain Eq. (5.143). We interpret this result in the following way: in the
infinite number of moments that define the free energy, we obtain a subset of
critical moments. In this subset, there is a particular set, for a specific value of
𝑞, that generates the tree-level behavior. Going back to the above integral, this
simplification allows one to write Δ𝑚21(𝐿, 𝑞0, 𝜇, 𝑠)|𝑛≠0 as

Δ𝑚21(𝐿, 𝑞0, 𝜇, 𝑠)|𝑛≠0 =
𝜆(𝜇, 𝑠)
2𝜋Γ(𝑠)(

1
𝐿)

𝑑−1
[∫

∞

0
𝑡 𝑠− 𝑑

2−1
∞
∑
𝑛=0

𝑒−𝜋(𝑛+𝑞0)
2𝑡d𝑡 − 𝐴𝑅(𝑠, 𝑑)].

(5.164)
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Let us analyze the quantity 𝐹𝑑(𝐿, , 𝑞0, 𝜇, 𝑠), defined by

𝐹𝑑(𝐿, 𝑞0, 𝜇, 𝑠) = Δ𝑚21(𝐿, 𝑞0, 𝜇, 𝑠)|𝑛≠0 +
𝜆(𝜇, 𝑠)
2𝜋Γ(𝑠)(

1
𝐿)

𝑑−1
𝐴𝑅(𝑠, 𝑑). (5.165)

Using an inverse Mellin transform, we can write 𝐹𝑑(𝐿, 𝑞0, 𝜇, 𝑠) as:

𝐹𝑑(𝐿, 𝑞0, 𝜇, 𝑠) = 𝜆(𝜇, 𝑠)( 1𝐿)
𝑑−1Γ(𝑠 − 𝑑

2 )𝜋
𝑑
2−𝑠−1

2Γ(𝑠) 𝜁𝐻 (2𝑠 − 𝑑, 𝑞0), (5.166)

where the 𝜁𝐻 (𝑧, 𝑎) is the Hurwitz-zeta function defined in Eq. (3.140). For 𝑑 = 3,
the contribution from the tadpole is finite, but the contribution from the self-
energy is divergent. An important formula that must be used in the renormaliza-
tion procedure is

lim𝑧→1[𝜁𝐻 (𝑧, 𝑎) −
1

𝑧 − 1] = −𝜓(𝑎), (5.167)

where 𝜓(𝑎) is the digamma function defined as 𝜓(𝑧) = 𝑑
𝑑𝑧 [ln Γ(𝑧)]. Using the

Hurwitz-zeta function and the integral 𝐴𝑅(𝑠, 𝑑), we can write:

Δ𝑚21(𝐿, 𝑞0, 𝜇, 𝑠)|𝑛≠0 =
𝜆(𝜇, 𝑠)
2Γ(𝑠) (

1
𝐿)

𝑑−1
[𝜋

𝑑
2−𝑠−1Γ(𝑠 − 𝑑

2)𝜁𝐻 (2𝑠 − 𝑑, 𝑞0) − 1
𝜋 𝐴𝑅(𝑠, 𝑑)].

(5.168)

Next, we prove that for a fixed value of 𝑞0 the renormalized squared mass
vanishes for a family of 𝐿′𝑠. In low-temperature field theory we get the same
result, i.e, there are critical temperatures where the renormalized squared mass
vanishes, namely:

𝑚2𝑅(𝐿, 𝑞0) = 𝑚20 + 𝛿𝑚20 + 6Δ𝑚21(𝐿, 1)|𝑛=0 + 18Δ𝑚22(𝐿, 2)|𝑛=0 + 6Δ𝑚21(𝐿, 𝑞, 1)|𝑛≠0
+ 18Δ𝑚22(𝐿, 𝑞, 2)|𝑛≠0. (5.169)

Defining the dimensionless quantities 𝑏 = 𝑚0𝐿, 𝜆1 = 6𝜆0, and 𝜌2 = 𝜌0√18, we
can write the latter equation as:

𝑏𝑑−1
𝑚𝑑−30

− 𝜆1
4𝜋 𝐴𝑅(1, 𝑑) +

𝜌22
4𝜋𝜇2𝐴𝑅(2, 𝑑) + 𝛿𝑚20 +

𝜆1𝜋
𝑑
2−2

2 Γ (1 − 𝑑
2) 𝜁𝐻 (2 − 𝑑, 𝑏

2𝜋 )

− 𝜌22𝜋
𝑑
2−3

2𝜇2 Γ (2 − 𝑑
2) 𝜁𝐻 (4 − 𝑑, 𝑏

2𝜋 ) = 0.
(5.170)
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Let us discuss the case 𝑑 = 3, in which case Eq. (5.170) becomes:

𝑏2 − 𝜆1
4𝜋 𝐴𝑅(1, 3) +

𝜌22
4𝜋𝜇2𝐴𝑅(2, 3) − 𝜆1𝜁𝐻 (−1, 𝑏

2𝜋 )

− 𝜌22
2𝜋𝜇2 lim𝑑→3 𝜁𝐻 (4 − 𝑑, 𝑏

2𝜋 ) + 𝛿𝑚20 = 0. (5.171)

The contribution coming from 𝐴𝑅(𝑠, 𝑑) is irrelevant for large 𝑚0𝐿, as one can
verify in Eq. (5.150). Using the identity (𝑛 + 1)𝜁𝐻 (−𝑛, 𝑎) = −𝐵𝑛+1(𝑎), where the
𝐵𝑛+1(𝑎) are the Bernoulli polynomials, we rewrite the Hurwitz-zeta function as

𝜁𝐻 (−1, 𝑏
2𝜋 ) = −( 𝑏2

8𝜋2 − 𝑏
4𝜋 + 1

12) . (5.172)

We use the Eq. (5.167) we fix the counterterm contribution in the renormalization
procedure. Then, we have that Eq. (5.171) becomes:

𝑏2 + 𝜆1 ( 𝑏2
8𝜋2 − 𝑏

4𝜋 + 1
12) +

𝜌22
2𝜋𝜇2𝜓 ( 𝑏

2𝜋 ) = 0. (5.173)

Since 𝑞0 = ⌊ 𝑏
2𝜋 ⌋, we can write the digamma function as

𝜓(𝑞0 + 𝜎) = 𝜓(𝜎) +
𝑞0
∑
𝑞=1

1
𝜎 + 𝑞 , (5.174)

where 𝜎 is the non-integer part of 𝑏
2𝜋 . With 𝜎 < 1 we can use a Taylor’s series

and write Eq. (5.173) as:

𝑏2 + 𝜆1 ( 𝑏2
8𝜋2 − 𝑏

4𝜋 + 1
12) +

𝜌22
2𝜋𝜇2 (−

1
𝜎 − 𝛾 + 𝜋2

6 𝜎 + 𝐻𝑞0(1) + 𝜎𝐻𝑞0(2)) = 0,
(5.175)

where 𝐻𝑞0(1) and 𝐻𝑞0(2) are the generalized harmonic numbers, defined in Eq.
(3.133). The Eq. (5.175) has zeros for different values of 𝐿 as showed in Fig. 5.3.

In one-loop approximation we proved that in the set of moments that defines
the quenched free energy there is a denumerable collection of moments that can
develop critical behavior. With the bulk in the ordered phase, in these moments
temperature or finite size effects lead the moments from the ordered to a disor-
dered phase. Also, in the set of moments, there appears a large number of critical
temperatures.
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5.
17
5

Figure 5.3: Plot of Eq. (5.175) as a function of 𝑏 = 𝑚0𝐿 for two different values of 𝜆0
(once 𝜌20 = 2𝑚20𝜆0): 𝜆0 = 1 (continuous black) and 𝜆0 = 3 (dashed red). We set 𝜇2 = 𝑚20 .

In the study of complex spatial patterns and structure in nature there ap-
pears the idea of self-organized criticality [207, 208]. The authors of these ref-
erences suggest fractal structures and 1/𝑓 -noise are common characteristics of
irreversible dynamics of a critical state, without a fine tuning of external parame-
ters. The algebraic decay of the correlation function in space and time for generic
parameters is called generic scale invariance. Our Eqs. (5.143), (5.175) and Fig.
5.3 are a manifestation of generic scale invariance in an equilibrium system.

As showed in Ref. [209] the prescense of Goldstone modes does not change
the behavior of this system. Therefore, in a system with a continuous symmetry,
we have both, the direct scale invariance (due the Goldstone modes) and the
indirect scale invariance, due the disorder in low temperatures.

Diagonalization procedure and bounds in the partiton functions

Here we present the calculations and results of Ref. [210]
Let us recast the coarse-grained action of the random field model, Eq. (5.106),

as the following:

𝑆eff(𝜙) = ∫ {
𝑘
∑
𝑖,𝑗=1

𝜙𝑘𝑗 (𝑥) [12 (−Δ + 𝑚20) 𝛿𝑖𝑗 − 𝜚2] 𝜙𝑘𝑖 (𝑥) +
𝜆0
2

𝑘
∑
𝑖=1

[𝜙𝑘𝑖 (𝑥)]
4} d𝑥.

(5.176)
Such an action has a non-diagonal propagator. The literature has some different
approaches to deal with it, as in some of the minimal supersymmetric standard
model extensions [211, 212], or one can use a Hubbard-Stratonovich identity as
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in the Bose-Hubbard model [213]. Still, another way is to use the ansatz 𝜙𝑘𝑖 = 𝜙𝑘𝑗 ,
as discussed previously. Although such an ansatz leads to consistent results, it
is an unnecessary simplification, as one can use the spectral theorem of linear
algebra to formally diagonalize the propagator.

Let us focus only on the quadratic part of the effective action, that is:

𝑘
∑
𝑖,𝑗=1

𝑆0(𝜙𝑖, 𝜙𝑗) = 1
2

𝑘
∑
𝑖,𝑗=1

∫𝜙𝑖(𝑥) (𝐺0𝑖𝑗 − 𝜎2) 𝜙𝑗(𝑥) d𝑥, (5.177)

where 𝐺0𝑖𝑗 = (−Δ + 𝑚20) 𝛿𝑖𝑗 . Such an action can be equivalently represented by:

𝑘
∑
𝑖,𝑗=1

𝑆0(𝜙𝑖, 𝜙𝑗) = 1
2 ∫ d𝑑𝑥 (Φ, 𝐺Φ), (5.178)

where 𝐺 is the 𝑘 × 𝑘 full matrix with components 𝐺0𝑖𝑗 −𝜎2, Φ(𝑥) is the vector with
components 𝜑𝑖(𝑥), and (•, •) is the natural inner product in ℝ𝑘 . Now noticing that
𝐺 is real and symmetric, one can find its diagonalization by an orthogonal matrix
𝑂:

𝐷 = (𝑂, 𝐺𝑂) =
⎡⎢⎢⎢
⎣

𝐺011 − 𝑘𝜎2 0 ⋯ 0
0 𝐺022 ⋯ 0
⋮ ⋯ ⋱ ⋮
0 ⋯ 𝐺0

𝑘𝑘

⎤⎥⎥⎥
⎦𝑘×𝑘

. (5.179)

Foremost, we should notice that, from the start, in ℝ𝑘 , which appears as a
result of the average, does not have any special properties. Besides the usual
vector space properties, Eq. (5.176) does not impose any other qualities in this
space. Then, to keep the formulation as general as possible, we shall assume
minimal properties over ℝ𝑘 . Now, defining that Φ̃(𝑥) = 𝑂Φ(𝑥) is the vector with
components Φ̃ = (𝜑, 𝜑1, … , 𝜑𝑘−1), we are able to present a third expression of the
free effective action:

𝑘
∑
𝑖,𝑗=1

𝑆0(𝜙𝑖) = 1
2 ∫𝜑(𝑥)(−Δ + 𝑚20 − 𝑘𝜎2)𝜑(𝑥) d𝑥 + 1

2
𝑘−1
∑
𝑎=1

∫𝜑𝑎(𝑥)(−Δ + 𝑚20)𝜑𝑎(𝑥) d𝑥,

(5.180)

which is clearly the sum of 𝑘 free actions with two distinct differential operators.
As we have seen, there is no problem in the application of the diagonalization

approach, Eq. (5.176), for the free effective action. The functional measure is
also well-behaved under the diagonalization, since the matrix which performs
the transformation is orthogonal and the absolute value of the Jacobian will be
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unity. The source 𝑗𝑖, introduced to generate the correlation functions, can always
be chosen in such a way that it transforms with the inverse transformation of the
vector Φ, and it is also well-behaved. From now on, we discuss the source-free
case. So, for free actions, the diagonalization approach is able to describe the
system without any ansatz over functional space. A problem emerges once we
turn on the interaction.

From Eq. (5.179), there is always a set of 𝑘 −1 degenerate eigenvalues, which
means that one needs to orthogonalize the respective eigenvectors, which are
columns of 𝑂. This feature of the matrix 𝑂 introduces difficulties in the interact-
ing part. As one can see from Eq. (5.176), after the disorder average, the effective
interaction is not symmetric under rotations in ℝ𝑘 . Such an interaction is known
in the literature as cubic anisotropic interaction [214–216].

Technical difficulties arise when 𝑘 increases. Such a feature can be directly
related to the non-perturbative behavior of the RFIM. However, here the non-
perturbative behavior is of a different kind than the usual one that appears in field
theories. It is non-perturbative due to the impossibility of writing explicitly the
interaction for any value of 𝑘 after taking the quenched average. This situation
is similar to the case of the Bose-Hubbard model [217].

Nevertheless, we show that the effective action given by Eq. (5.176) has an
upper and a lower bound, which are rotationally symmetric. We will construct
two effective actions in which the diagonalization procedure does not affect the
interacting part, and such actions will establish an upper and a lower bound for
the partition function of RFIM.

Once the free case has been treated and presents no problems, let us focus on
the cubic anisotropic interaction:

𝑆(𝑘)CA(𝜙𝑖) =
𝜆0
4! ∫

𝑘
∑
𝑖=1

(𝜙𝑖(𝑥))4 d𝑥. (5.181)

We adopt the notation ‖ • ‖𝑝 for the 𝑝-norm inℝ𝑘 , so that ‖Φ(𝑥)‖𝑝 = [∑𝑖 |𝜑𝑖(𝑥)|𝑝]
1/𝑝

for any 𝑥 ∈ ℝ𝑑 ; hence, the interaction can be recast as:

𝑆(𝑘)CA(Φ) =
𝜆0
4! ∫ ‖Φ(𝑥)‖44 d𝑥. (5.182)

With that in mind, we can go further. Observe that for any 𝑎 ∈ ℝ𝑘 ,
‖𝑎‖1 ≤ √𝑘 ‖𝑎‖2, ‖𝑎‖2 ≤ ‖𝑎‖1. (5.183)

The first inequality above can be proved bywriting ‖𝑎‖ = (𝑎, 𝑠)with 𝑠𝑖 = 1 if 𝑎𝑖 ≥ 0,
𝑠𝑖 = −1 otherwise, and applying the Cauchy-Schwarz inequality, corollary A.55.
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The second inequality can be verified by direct computation of ‖𝑎‖21 − ‖𝑎‖22. Fix
𝑥 ∈ ℝ𝑑 and set 𝑎𝑖 = 𝜑𝑖(𝑥)2 for 𝑖 = 1, … , 𝑘 and 𝑎 = (𝑎1, … , 𝑎𝑘). Since ‖𝑎‖1 = ‖Φ(𝑥)‖22
and ‖𝑎‖2 = ‖Φ(𝑥)‖24, it follows from the above inequalities that

‖Φ(𝑥)‖22
√𝑘

≤ ‖Φ(𝑥)‖24 ≤ ‖Φ(𝑥)‖22. (5.184)

This inequality can be used to obtain a bound for the cubic anisotropic interac-
tion: 1

𝑘 𝑆𝒪(𝑘)(Φ) ≤ 𝑆(𝑘)CA(Φ) ≤ 𝑆𝒪(𝑘)(Φ), (5.185)

where we have defined the interaction action

𝑆𝒪(𝑘)(Φ) =
𝜆0
4! ∫ ‖Φ(𝑥)‖42d𝑥. (5.186)

Such a result is useful since, for all 𝑥 ∈ ℝ𝑑 , the norm ‖ ⋅ ‖2 is invariant under
orthogonal transformations in ℝ𝑘 :

‖Φ(𝑥)‖2 = √(Φ(𝑥), Φ(𝑥)) = √(𝑂𝑇 Φ̃(𝑥), 𝑂𝑇 Φ̃(𝑥))
= √(Φ̃(𝑥), 𝑂𝑂𝑇 Φ̃(𝑥)) = √(Φ̃(𝑥), Φ̃(𝑥)) = ‖Φ̃(𝑥)‖2, (5.187)

for any orthogonal matrix 𝑂, that is, 𝑂𝑇𝑂 = 𝐼 , with 𝑂𝑇 denoting the transpose of
𝑂. Now it is clear why the label 𝒪(𝑘) is chosen in Eq. (5.186). This denotes that
the interaction is invariant under the orthogonal transformations 𝒪(𝑘). From
this, one can use the actions given by Eqs. (5.178) and (5.186) to construct the
following actions:

𝑆(𝑘)U (Φ) = 1
2 ∫(Φ(𝑥), 𝐺Φ(𝑥)) d𝑥 + 𝜆0

4! ∫ ‖Φ(𝑥)‖42d𝑥, (5.188)

𝑆(𝑘)L (Φ) = 1
2 ∫(Φ(𝑥), 𝐺Φ(𝑥)) d𝑥 + 𝜆0

4!𝑘 ∫ ‖Φ(𝑥)‖42d𝑥, (5.189)

These actions are natural upper and lower limits for the effective action given by
Eq. (5.176), that is,

𝑆(𝑘)L (Φ) ≤ 𝑆(𝑘)eff (Φ) ≤ 𝑆(𝑘)U (Φ), (5.190)

and also, due to the property of the norm ‖ ⋅ ‖2, both actions exhibit nicer orthog-
onal transformations in ℝ𝑘 .
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Using the same orthogonal matrix that was used to diagonalize 𝐺, Eq. (5.179),
we can write the diagonalized action in terms of the components of Φ̃ as

𝑆(𝑘)# (𝜙, 𝜙𝑎) = ∫[12𝜙(𝑥)(−Δ + 𝑚20 − 𝑘𝜎2)𝜙(𝑥)

+ 1
2
𝑘−1
∑
𝑎=1

𝜙𝑎(𝑥)(−Δ + 𝑚20)𝜙𝑎(𝑥) +
𝜆#
4! (𝜙

2(𝑥) +
𝑘−1
∑
𝑎=1

𝜙2𝑎 (𝑥))
2
] d𝑥,
(5.191)

with 𝑆(𝑘)# = 𝑆(𝑘)U , and 𝑆(𝑘)L , adopting 𝜆# = 𝜆0, and 𝜆0/𝑘, respectively. Analyzing
such an action, we can verify that it represents the action for two different kinds
of scalar fields, with different masses. The underlying symmetry of this action
is ℤ2 × 𝒪(𝑘 − 1). In different contexts, such actions have been studied [126, 218].
One interesting feature is that, considering any phase transitions, this action
intrinsically preserves the no-go theorems of Mermin-Wagner, Hohenberg, and
Coleman [219–221].

Now we can construct the partition function for each of these actions. Due
to the monotonicity of the exponential, we get that

𝑍 (𝑘)
L ≤ 𝔼 [𝑍 𝑘(𝑗, ℎ)] ≤ 𝑍 (𝑘)

U , (5.192)

where

𝑍 (𝑘)
L = ∫

𝑘
∏
𝑖=1

[d𝜑𝑖] exp (−𝑆(𝑘)U (Φ)) , (5.193)

𝑍 (𝑘)
U = ∫

𝑘
∏
𝑖=1

[d𝜑𝑖] exp (−𝑆(𝑘)L (Φ)) . (5.194)

That is, without any ad hoc choice of subsets in ℝ𝑘 , we are able to obtain partition
functions that are bounds in each term of the series of Eq. (5.70).

The fundamental question that can be answered with these results is the na-
ture of the phase transition of the continuous RFIM. This problem can be exam-
ined using the concepts of the lower critical dimension of the RFIM and no-go
theorems. The model is bounded by two theories ℤ2 × 𝒪(𝑘 − 1). In these the-
ories, there are two different phase transitions: (i) ℤ2 × 𝒪(𝑘 − 1) → 𝒪(𝑘 − 1),
and (ii) ℤ2 × 𝒪(𝑘 − 1) → 𝒪(𝑘 − 2) [126]. Since the lower critical dimension for
the RFIM is two, case (i) cannot represent a phase transition due to disorder. We
have thus obtained a new result. The phase transition of the continuous RFIM
can be restricted by a ℤ2 × 𝒪(𝑘 − 1) → 𝒪(𝑘 − 2) phase transition. The situation
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is similar to that of the cubic anisotropic model, which is confined between the
Ising model and the Heisenberg model. A question that can be answered by this
method is whether the nature of the phase transition depends on the particu-
lar choice of the probability distribution for the random field [159, 222]. In the
case of a different probability distribution, the symmetry of the bounds can shed
some light on such a question. Also, it is possible to elucidate the nature of the
phase transition in the continuous RFIM by connecting the bounds established in
the distributional zeta-function approach using the interpolation method similar
to the one pioneered by Guerra [223]. An interpolation between the diagonal
ansatz and the bounds can be made as follows. Noting that the interaction in the
diagonal approximation resembles the self-interaction of the field variable 𝜙(𝑥)
in Eq. (5.191), we may define a new field variable ̃𝜓 (𝑥) = 𝐴Φ̃(𝑥), with 𝐴11 = 1,
𝐴𝑎𝑏 = √𝑡𝛿𝑎𝑏 , 𝐴1𝑎 = 𝐴𝑎1 = 0 for 𝑎, 𝑏 ∈ {2, … , 𝑘}, and 𝑡 ∈ [0, 1], so that the new
action interpolates between the bounds and the diagonal ansatz.

Critical Casimir effect via diagonalization approach

Here we present the calculations and results of Ref. [224].
Here we revisit the Casimir effect in disordered systems, now considering

a continuous symmetry. More specifically, we consider continuous fields that
model order parameters possessing a continuous symmetry in scenarios where
the disorder fluctuations dominate over the thermal fluctuations. Examples of
systems realizing such a scenario include a binary fluid in the presence of an
external random field in the critical regime, superfluids, and liquid crystals. In
such a situation, when the criticality is reached, one has to take into account the
softmodes (Goldstone bosons) due to the symmetry breaking [108, 225]. Another
difference from the previous approach is that now we use the diagonalization
procedure, previously presented. Our primary aim is to answer whether the soft
modes associated with the Goldstone boson favor or suppress the Casimir force
and whether they affect the sign of the force. The result that we obtain for such
a question is that the soft modes do not affect the change of the sign of the force.
However, an interesting effect due to the disorder arises. In the regime of strong
disorder, where we only have the Casimir effect due to the presence of the soft
mode, the Goldstone mode contribution may change from attractive to repulsive.
In other words, the presence of disorder may change the sign of the “universal
amplitude” due to the Goldstone modes.

To start, let us consider the action

𝑆(𝜙, 𝜙∗) = 1
2 ∫ [𝜙∗(𝑥) (−Δ + 𝑚20) 𝜙(𝑥) + 𝜆𝑉 (𝜙, 𝜙∗) + ℎ∗(𝑥)𝜙(𝑥) + ℎ(𝑥)𝜙∗(𝑥)] d𝑥;

(5.195)
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as before, 𝑚20 is the bare mass, 𝜆 is a strictly positive constant, and 𝑉 (𝜙, 𝜙∗) is
a polynomial in the field variables. Here we would like to point out that in the
case of interacting field theories confined in compact domains, it is necessary to
introduce surface counterterms [226–230] The main difference here is that ℎ(𝑥)
is now a complex random field [100, 209, 231], with a probability distribution
𝑃(ℎ, ℎ∗). Again, to simplify the problem, we consider a Gaussian distribution,

𝑃(ℎ, ℎ∗) ≡ 𝑝0𝑒−
1
𝜌2 ∫|ℎ(𝑥)|

2
d𝑥. (5.196)

The 𝑘-th moment in the series, Eq. (5.70), with 𝑗(𝑥) = 0, generalizes to:

𝔼 [𝑍 𝑘(ℎ)] = ∫
𝑘

∏
𝑖,𝑗=1

[d𝜙𝑘𝑖 ][d𝜙𝑘∗𝑗 ] 𝑒−𝑆eff(𝜙𝑘𝑖 ,𝜙𝑘∗𝑗 ), (5.197)

with
𝑆eff(𝜙𝑘𝑖 , 𝜙𝑘∗𝑗 ) = ∑

𝑖,𝑗
[𝑆0(𝜙𝑘𝑖 , 𝜙𝑘∗𝑗 ) + 𝜆𝑆𝐼 (𝜙𝑘𝑖 , 𝜙𝑘∗𝑗 )] . (5.198)

Here, 𝑆0(𝜙𝑘𝑖 , 𝜙𝑘∗𝑗 ) is the quadratic action:

𝑆0(𝜙𝑘𝑖 , 𝜙𝑘∗𝑗 ) = 1
2 ∫ 𝜙𝑘∗𝑖 (𝑥) (𝐺0𝑖𝑗 − 𝜌2) 𝜙𝑘𝑗 (𝑥)d𝑥, (5.199)

in which, for later convenience, we defined

𝐺0𝑖𝑗 ≡ (−Δ + 𝑚20) 𝛿𝑖𝑗 , (5.200)

and 𝑆𝐼 (𝜙𝑖, 𝜙∗𝑗 ) is the interaction action corresponding to 𝑉 (𝜙, 𝜙∗). The propagator
corresponding to 𝑆0(𝜙𝑖, 𝜙∗𝑗 ) is not diagonal in ℝ𝑘 . To circumvent this nagging
feature, we use the diagonalization procedure. Defining the vector Φ(𝑥) as the
vector which has components 𝜙𝑖(𝑥), we can rewrite the sum of the quadratic
actions as

𝑘
∑
𝑖,𝑗=1

𝑆0(𝜙𝑖, 𝜙∗𝑗 ) = 1
2 ∫(Φ(𝑥), 𝐺Φ

∗(𝑥))d𝑥

= 1
2 ∫(Φ̃(𝑥), 𝐷Φ̃

∗(𝑥))d𝑥 (5.201)

where Φ̃(𝑥) = 𝑂Φ(𝑥), 𝑂 is the matrix that diagonalizes 𝐺, and 𝐷 is the diagonal
matrix given by Eq. (5.179). Let 𝜑𝑖(𝑥) denote the components of Φ̃(𝑥). Using the
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component notation, one can write the diagonal form of the quadratic action in
Eq. (5.201) as

𝑘
∑
𝑖,𝑗=1

𝑆0(𝜙𝑖, 𝜙∗𝑗 ) = 1
2 ∫ 𝜑∗(𝑥)(−Δ + 𝑚20 − 𝑘𝜌2)𝜑(𝑥)d𝑥

+ 1
2
𝑘−1
∑
𝑎=1

∫𝜑∗𝑎 (𝑥)(−Δ + 𝑚20)𝜑𝑎(𝑥)d𝑥, (5.202)

where, to simplify the notation henceforth, we defined 𝜑1(𝑥) ≡ 𝜑(𝑥) and also
changed the dummy index in the second line. Since 𝑂 is an orthogonal matrix,
one has that

𝑘
∏
𝑖,𝑗=1

[d𝜙𝑖][d𝜙∗𝑗 ] = [d𝜑][d𝜑∗]
𝑘−1
∏
𝑎,𝑏=1

[d𝜑𝑎][d𝜑∗𝑏 ]. (5.203)

Therefore, using Eqs. (5.202) and (5.203) in Eq. (5.197), we obtain:

𝔼 [𝑍 𝑘(ℎ)] = ∫ 𝑒−𝑆𝜌(𝜑,𝜑∗)−∑𝑎 𝑆𝑂(𝜑𝑎 ,𝜑∗𝑎 )−𝜆𝑆𝐼 (𝜑𝑎 ,𝜑∗𝑎 )[d𝜑][d𝜑∗]
𝑘−1
∏
𝑎,𝑏=1

[d𝜑𝑎][d𝜑∗𝑏 ], (5.204)

where 𝑆𝜌(𝜑, 𝜑∗) is the action carrying the information on the strength 𝜌 of the
disorder,

𝑆𝜌(𝜑, 𝜑∗) = 1
2 ∫ 𝜑∗(𝑥)(−Δ + 𝑚20 − 𝑘𝜌2)𝜑(𝑥)d𝑥, (5.205)

and 𝑆𝑂(𝜑𝑎, 𝜑∗𝑎 ) is a 𝑂(𝑘 − 1)-symmetric action, independent of the strength of the
disorder, given by:

𝑆𝑂(𝜑𝑎, 𝜑∗𝑎 ) = 1
2 ∫ 𝜑∗𝑎 (𝑥)(−Δ + 𝑚20)𝜑𝑎(𝑥)d𝑥. (5.206)

The action 𝑆𝐼 (𝜑𝑎, 𝜑∗𝑎 )will not be needed in our study of the Casimir effect, but its
presence with a 𝜆 > 0 is required to guarantee the action’s boundness.

We proceed recalling that each moment of the partition function contributes
to the total quenched free energy, Eq. (5.70). To obtain the Casimir energy we
compactify one of the dimensions, ℝ𝑑 → ℝ𝑑−1 × [0, 𝐿], and impose some bound-
ary conditions. As can be seen in Eq. (5.205), there is a combination of 𝑘, 𝑚20 and
𝜌 for which the effective mass 𝑚20−𝑘𝜌2 becomes negative, indicating the symme-
try breaking 𝑈 (1) → ℤ2, giving rise to a Goldstone (soft) mode. Of course, the
Casimir force is present even for those terms in the sum with a positive effective
mass, as the condition for its presence is that the correlation length becomes of
the order of the system’s compactified size 𝐿. That is, the total energy receives
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contributions from symmetry-preserving and symmetry-breaking terms. Our
interest in this application of the distributional zeta-function method is to study
the interplay between the contributions to the energy of the symmetry-breaking
soft mode and the critical mode, both induced by the disorder. Therefore, we
neglect the symmetry-preserving modes. We assess this interplay by first per-
forming a shift in the field 𝜑(𝑥) to expose the symmetry breaking, then neglect
all non-Gaussian terms, and finally, take the large 𝐿 limit.

We perform the symmetry-breaking field shift for the situation with 𝑚20 −
𝑘𝜌2 < 0 in Eq. (5.205), proceeding analogous to the procedure at the end of Sec.
5.1 and Sec. 5.1.1. In the Cartesian representation of the fields 𝜑(𝑥) and 𝜑∗(𝑥),
we have that

𝜑(𝑥) = 1
√2

[𝜓1(𝑥) + 𝑖𝜓2(𝑥)] , (5.207)

𝜑∗(𝑥) = 1
√2

[𝜓1(𝑥) − 𝑖𝜓2(𝑥)] . (5.208)

The minima of the action lie on the circle

𝜓 21 + 𝜓 22 = 2(𝑘𝜌2 − 𝑚20)
𝜆 ≡ 𝑣2. (5.209)

Defining the shifted fields 𝜒 = 𝜓1 − 𝑣 and 𝜓 = 𝜓2, the Gaussian part of the action
becomes

𝑆𝜌(𝜒 , 𝜓 ) = 1
2 ∫ d𝑑𝑥 [𝜒(𝑥)(−Δ + 𝑚2𝜌)𝜒(𝑥) + 𝜓(𝑥)(−Δ)𝜓(𝑥)] , (5.210)

where we defined 𝑚2𝜌 = 2(𝑘𝜌2 − 𝑚20). In the new variables, after dropping all
non-Gaussian terms, Eq. (5.204) assumes the following enlightening form:

𝔼 [𝑍 𝑘(ℎ)] = 𝑍𝜌𝑍𝐺 [𝑍𝑂]𝑘−1 , (5.211)

where

𝑍𝜌 = ∫[d𝜒] 𝑒−
1
2 ∫ d𝑑𝑥 𝜒(𝑥)(−Δ+𝑚2𝜌)𝜒(𝑥), (5.212)

𝑍𝐺 = ∫[d𝜓] 𝑒−
1
2 ∫ d𝑑𝑥 𝜓(𝑥)(−Δ)𝜓(𝑥), (5.213)

𝑍𝑂 = ∫[d𝜑][d𝜑∗] 𝑒−
1
2 ∫ d𝑑𝑥 𝜑∗(𝑥)(−Δ+𝑚20)𝜑(𝑥), (5.214)

are the partition functions corresponding to the contributions of the disorder, the
Goldstone mode, and a 𝑂(𝑘 − 1) symmetric model, respectively.
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Now, we take a slab geometry with one compactified dimension, Ω𝐿 = ℝ𝑑−1×
[0, 𝐿], and impose Dirichlet boundary conditions on all fields

𝐴𝛼 (𝑥1, ⋯ , 𝑥𝑑−1, 0) = 𝐴𝛼 (𝑥1, ⋯ , 𝑥𝑑−1, 𝐿) = 0, (5.215)

with 𝛼 = {𝜌, 𝐺, 𝑂} and {𝐴𝜌 , 𝐴𝐺 , 𝐴𝑂} = {𝜒 , 𝜓 , 𝜑}, respectively. Using the result in
Eq. (4.34) for each of the partition functions in Eqs. (5.212), (5.213), and (5.214),
we obtain for the 𝑘-th moment of the partition function, Eq. (5.211), the following
expression:

𝔼 [𝑍 𝑘(ℎ)] = [det(−Δ + 𝑚2𝜌)Ω𝐿]
− 1

2 [det(−Δ)Ω𝐿]
− 1

2 [det(−Δ + 𝑚20)Ω𝐿]
− 𝑘−1

2 .
(5.216)

The last term contributes neither to the critical nor to the soft Goldstone
modes. As such, it can be dropped by redefining the energy.

The relevant contributions to the Casimir energy can be regularized using
the spectral zeta regularization

𝔼 [𝑍 𝑘(ℎ)] = exp { 12
d
d𝑠 [𝜁𝜌(𝑠) + 𝜁𝐺(𝑠)]|𝑠=0} . (5.217)

By the same arguments used to obtain Eq. (5.119), one concludes that the main
contribution to the total quenched Casimir energy is given by

𝐸𝑇𝑐 = (−1)𝑘𝑐
𝑘𝑐𝑘𝑐!

exp {𝑘𝑐 ln 𝑎 + 1
2
d
d𝑠 [𝜁𝜌(𝑠) + 𝜁𝐺(𝑠)]|𝑠=0} . (5.218)

We define the following zeta function

𝜁𝛼 (𝑠) =
𝐴𝑑−1

(2𝜋)𝑑−1 ∫∑
𝑛=1

[𝑝2 + 𝑚2𝛼 + (𝜋𝑛𝐿 )
2
]
−𝑠

d𝑝, (5.219)

with 𝛼 = {𝜌, 𝐺} and 𝑚2𝐺 = 0. Using the same definitions and arguments in Sec.
4.2.1, one can rewrite 𝜁𝛼 (𝑠) as

𝜁𝛼 (𝑠) = 𝐶𝑑(𝐿, 𝑠) ∫
∞

0
𝑡 𝑠− 1

2 (𝑑+1)𝑒
−𝑡𝐿2
𝜋 𝑚2𝛼𝜓(𝑡)d𝑡 . (5.220)

Following the same steps taken between Eqs. (4.44) and (4.47), it is straightfor-
ward to obtain that

𝜁𝛼 (𝑠) = 𝐶𝑑(𝐿, 𝑠) [2𝐼 𝛼1,𝑑(𝑠) + 𝐼 𝛼2,𝑑(𝑠) − 𝐼 𝛼3,𝑑(𝑠)] , (5.221)
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Figure 5.4: Critical Casimir force for different parameters.

where

𝐼 𝛼1,𝑑(𝑠) = ∫
∞

0
𝑡 𝑑2−𝑠−1𝑒

−𝐿2
𝜋𝑡 𝑚2𝛼𝜓(𝑡)d𝑡 , (5.222)

𝐼 𝛼2,𝑑(𝑠) = ∫
∞

0
𝑡 𝑑2−𝑠−1𝑒

−𝐿2
𝜋𝑡 𝑚2𝛼d𝑡 , (5.223)

𝐼 𝛼3,𝑑(𝑠) = ∫
∞

0
𝑡 𝑑2−𝑠− 3

2 𝑒
−𝑡𝐿2
𝜋 𝑚2𝛼d𝑡 , (5.224)

and 𝐶𝑑(𝐿, 𝑠) is given in Eq. (4.45).
One obtains the quenched Casimir force analogously to Eq. (5.121). Such a

force receives contributions from the spectral zeta functions of soft and critical
modes. In the case of 𝛼 = 𝐺, we have the same situation of Sec. 4.2.1 for 𝑚0 = 0,
i.e., the contribution of the soft modes to the Casimir force is given by Eq. (4.52).
For 𝛼 = 𝜌, we have the calculation of our first application of the distributional
zeta-function and the corresponding contribution is given by Eq. (5.112). Putting
all together, we obtain for the total quenched Casimir pressure of the system the
following expression:

𝑝𝑇𝑑 (𝐿) = (−1)𝑘𝑐
𝑘𝑐𝑘𝑐!2𝑑−1𝐿𝑑

[ 𝐿2
𝑑 − 1𝐵𝑑(0) + 𝐷𝑑(0) +

𝜁 (𝑑)
2𝜋 ] .

(5.225)

Such a result can be plotted as a function of 𝐿 for different dimensions and values
of 𝑘𝑐 . Figs. 5.4a and 5.4b display 𝑝𝑇𝑑 (𝐿) for dimensions 2, 3, and 4 for different
values of 𝑘𝑐 . Note the different scales in the axes of the two figures.
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This result has some interesting features. First of all, if we ignore the Gold-
stone mode contributions, the resulting equation differs from Eq. (5.122) by a
multiplicative factor, 4/𝑘𝑐 . This factor comes from the exact diagonalization of
the quadratic actions; when one uses the ansatz 𝜙𝑘𝑖 (𝑥) = 𝜙𝑘𝑗 (𝑥) ∀ 𝑖, 𝑗, as used pre-
viously, the multiplicative factor does not appear. Of course, such a difference
is irrelevant to gathering qualitative understanding. However, the qualitative
similarity between the results holds only when one can neglect the contribution
from the partition function 𝑍𝑂 , Eq. (5.214). This is the case whenever the cor-
responding action does not reach criticality, a situation that can occur due to
nonzero temperature or finite-size effects. Another feature of Eq. (5.225) is that
the critical and the soft mode effects are noncompetitive; they are of the same
sign. Still another interesting feature is that, when 𝑘𝑐𝜌 ≫ 𝑚20, one can neglect
the contribution of 𝑍𝜌 , Eq. (5.212), to the Casimir energy; in practice, one can set
𝐵𝑑(0) = 𝐷𝑑(0) = 0 in Eq. (5.225). This is interesting because then only softmodes
contribute, but with a factor proportional to (−1)𝑘𝑐 , which means that a change
of sign may occur. In other words, there is a universal constant due to the soft
modes, given by 𝜁 (3)/16𝜋 , with an overall sign that can be either negative (as
usual) or positive, depending on the value of 𝑘𝑐 .

Analog model for Euclidean Wormholes

Here, we present the main calculations and results of Refs. [232, 233].
The program of describing the gravitational field using quantum theory faces

many conceptual difficulties, mainly related to causality and locality. Quantum
field theory, formulated on a classical gravitational background spacetime, is an
intermediate step toward such a program [234–236]. A problem that permeates
this approach is the absence of a specific vacuum state associated with matter
fields in a generic spacetime. However, in globally hyperbolic spacetimes, this
issue is circumvented by the use of Hadamard states. To go further, one can dis-
cuss the effects of the fluctuations of the metric fields on the quantum matter
fields. It has been shown that a bath of gravitons in a squeezed state induces
fluctuations of light cones [237–239]. Ref. [240] proposed an analog model for
fluctuating light cones induced by quantum gravity effects. The model builds
on the fact that acoustic waves in a disordered medium propagate with a ran-
dom speed of sound. Further studies discussing analog models can be found in
Refs. [241–244]. Here, we build on similar ideas to propose an analog model for
Euclidean wormhole effects on a real scalar field.

In recent years, there has been a growing perception [245] that long-distance
physics issues are as important in quantum gravity as the most-discussed short-
distance physics issues. A central, open question in this respect is: How does
the nonlocality of quantum gravity affect the expectation value of a measurable
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observable? Returning to local quantum field theory, one can define Schwinger
functions from the expectation values of operator products in Minkowski space-
time. These are the corresponding analytically continued vacuum expectation
values in Euclidean space, as we have seen in Chaps. 3-4.

In the functional integral formalism [246] in Euclidean space, the Schwinger
functions are moments of a measure in the functional space of classical fields.
In such a functional integral scenario, one can discuss topology fluctuations and
wormholes [247–250], which are quantum gravity features particularly relevant
to the issue of quantum coherence loss in Hawking black hole evaporation.

The basic feature of wormholes in Euclidean field theory is the existence
of nonlocal physics in a connected manifold or geometry that connects discon-
nected boundaries. The contribution to the free energy from these connected
topologies was discussed in Ref. [251] using the replica trick. The replica trick
provides a convenient way to compute averages of the free energy (the log of the
partition function) [138]. In a related study, Ref. [252] proposes an integral repre-
sentation of ln 𝑥 to compute the free energy of spacetime 𝐷-branes. The author
of that reference argues that the bulk gravity picture of such an integral represen-
tation involves wormholes connecting multiple asymptotic boundaries. Replica
wormholes also play a role in the computation of the von Neumann entropy of
Hawking radiation [253].

Two of the most fundamental questions facing Euclidean quantum gravity
are the following: 1) What is the empirical support for the mathematical formal-
ism of Euclidean quantum gravity? 2) What are the physical effects of topologi-
cal fluctuations on the Euclidean quantum fields? In the absence of cosmological
experiments, we propose a condensed matter analog model that might provide
insight into these questions. We propose an analog model for topological fluc-
tuations in Euclidean fields based on external disordered fields described by a
statistical field theory.

As we have seen previously, low temperatures or anisotropic disorder induce
nonlocal terms in the resulting effective action (see Eq. (5.126)).

We briefly discuss matter fields in a generic Riemannian manifold. Suppose
a compact manifold with Riemannian signature ℳ. The space of fields is the
space 𝐶∞(ℳ, ℝ) of smooth functions defined on ℳ. Let 𝑆 ∶ 𝐶∞(ℳ, ℝ) → ℝ be
an action functional of the gravitational 𝑔 and matter 𝜙 fields. Using a functional
measure for the gravitational and matter fields, the partition function is given
by:

𝑍 = ∫[𝑑𝑔][𝑑𝜙] 𝑒−𝑆(𝑔)−𝑆(𝜙) (5.226)

where 𝑆(𝑔) and 𝑆(𝜙) are the gravitational field and matter field actions, respec-
tively. For simplicity, we take a single scalar field to represent the matter degrees



Applications of the DFZ method 179

of freedom. The gravitational field action is given by:

𝑆(𝑔) = − 1
16𝜋𝐺 ∫ℳ 𝑑d𝑥 √𝑔 (𝑅 − 2Λ) − 1

8𝜋𝐺 ∫𝜕ℳ 𝐾𝑑d−1Σ + 𝐶. (5.227)

As usual, 𝑔 = det(𝑔𝑖𝑗), 𝐺 is Newton’s constant, 𝑅 is the Ricci-scalar, Λ is the
cosmological constant, 𝐾 is the trace of the second fundamental form on the
boundary, and 𝐶 is a constant that can be tuned to achieve a convenient on-shell
configuration, e.g., in flat space 𝑆(𝑔) = 0. For the matter field action, we take:

𝑆(𝜙) = 1
2 ∫ 𝑑d𝑥 √𝑔 𝜙(𝑥) (−Δ + 𝑚2) 𝜙(𝑥) + 𝜆0

4 ∫ 𝑑d𝑥 √𝑔 𝜙4(𝑥). (5.228)

Many authors [248–250, 254] have emphasized that the effects of wormholes
and topology fluctuations are encoded in a nonlocal matter-field contribution to
the Euclidean partition function, namely

𝑍 = ∫[𝑑𝑔][𝑑𝜙] exp [−𝑆(𝜙, 𝑔) + 1
2 ∫ 𝑑d𝑥 ∫ 𝑑d𝑦 ∑

𝑖,𝑗
𝜙𝑖(𝑥) 𝐶𝑖𝑗(𝑥, 𝑦) 𝜙𝑗(𝑦)] , (5.229)

in which 𝐶𝑖𝑗(𝑥, 𝑦) encodes the space nonlocality, with each pair 𝑖, 𝑗 representing a
wormhole. In the next section, we show that such a nonlocal term arises naturally
in a matter system in the presence of disorder.

As mentioned above, in a Euclidean quantum gravity scenario, many authors
have stressed the necessity of performing the average of the free energy or the
generating functional of connected correlation functions of the system [251, 252].

Here, our main assumption is that the topology fluctuations in the Euclidean
path integral in Eq. (5.227) can be effectively modeled by coupling a quenched
disorder field to the matter field 𝜙. In practice, one removes the functional mea-
sure of the metric from the functional integral and takes the disorder average of
the corresponding free energy over ensembles of disorder realizations. Proceed-
ing in this way, the Euclidean wormholes’ effective action is readily identified.
The topology fluctuation information is then effectively accounted for by the
quenched disorder field.

Let us suppose that we have the random field action, Eq. (5.51), with the
probability distribution of the disorder given by

𝑃(ℎ) = 𝑝0 exp {− 1
2 𝜚2 ∫ 𝑑d𝑥 ∫ 𝑑d𝑦 ℎ(𝑥)𝐹−1(𝑥 − 𝑦)ℎ(𝑦)} , (5.230)

where 𝜚 is a positive parameter associated with the strength of the disorder,
𝑝0 is a normalization constant, and 𝐹(𝑥 − 𝑦) defines the disorder correlation
𝔼[ℎ(𝑥)ℎ(𝑦)] = 𝜚2 (𝑥 − 𝑦).
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For the random field case, the effective actions 𝑆eff defining the 𝑘-th moment
of the partition function in Eq. (5.71) are given by:

𝑆eff(𝜙𝑘𝑖 ) = ∫ 𝑑d𝑥 ∫ 𝑑d𝑦
𝑘
∑
𝑖,𝑗=1

1
2𝜙

𝑘𝑖 (𝑥) [𝐺−1(𝑘)]𝑖𝑗(𝑥 − 𝑦) 𝜙𝑘𝑗 (𝑦), (5.231)

where [𝐺−1(𝑘)]𝑖𝑗(𝑥 − 𝑦) is the inverse of the two-point correlation function

[𝐺−1(𝑘)]𝑖𝑗(𝑥 − 𝑦) = [(−Δ + 𝑚2) 𝛿 (d)(𝑥 − 𝑦)𝛿𝑖𝑗 − 𝜚2 𝐹𝑖𝑗(𝑥 − 𝑦)] , (5.232)

where 𝐹𝑖𝑗(𝑥 − 𝑦) is the matrix with all entries equal to 𝐹(𝑥 − 𝑦). The term pro-
portional to 𝜚2 comes from averaging over the random field ℎ and contains a
nonlocal contribution when 𝐹(𝑥 − 𝑦) is not 𝛿-correlated in (𝑥, 𝑦). The nonlocal
contribution is analogous to the nonlocal term in Eq. (5.229). The first term in
this last equation gives the bare contribution to the connected two-point correla-
tion function even in the absence of disorder averaging, whereas the second term
is normally a disconnected contribution but, due to the averaging, it becomes a
connected contribution [121].

Proceeding with the diagonalization approach, we can write

𝔼 [𝑍 𝑘(ℎ)] = ∫
𝑘−1
∏
𝑎=1

[𝑑𝜙𝑘𝑎] 𝑒−𝑆𝑂(𝜙𝑘𝑎 ) ∫[𝑑𝜙] 𝑒−𝑆
(𝑘)𝜚 (𝜙), (5.233)

with

𝑆𝑂(𝜙𝑘𝑎 ) = ∫ 𝑑d𝑥
𝑘−1
∑
𝑎=1

1
2𝜙

𝑘𝑎 (𝑥) (−Δ2 + 𝑚2) 𝜙𝑘𝑎 (𝑥), (5.234)

𝑆(𝑘)𝜚 (𝜙) = ∫ 𝑑d𝑥 ∫ 𝑑d𝑦 1
2𝜙(𝑥) [𝐺

−10 (𝑥 − 𝑦) − 𝑘𝜚2𝐹(𝑥 − 𝑦)] 𝜙(𝑥). (5.235)

How does this result relate to the original works about Euclideanwormholes?
First, as already mentioned, the Gaussian disorder correlation leads to a probabil-
ity distribution similar to that obtained in Coleman’s work in Ref. [248]. Second,
instead of calculating themean value of the partition functionwith thewormhole
contributions integrated out with non- Gaussian distributions for the topologi-
cal fluctuations, as done by Preskill [250] and González-Díaz [255], here we are
analyzing those effects on the disorder average of the free energy (the log of the
partition function). As mentioned after Eq. (5.232), such an average leads to con-
nected correlation functions that would be disconnected correlation functions in
the absence of disorder. This feature leads to the interpretation that the quenched
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field induces topology fluctuations, fluctuations that have “propagators” associ-
ated with them, in Preskill’s [250] sense. Said differently, the disorder average
of the free energy in Eq. (5.233) is actually a superposition of the contributions
given by (infinitely) many universes connected by Euclidean wormholes. This is
the analog to the proposal by Klebanov, Susskind, and Banks [249] that our uni-
verse was in a thermal bath with many (possibly infinite) universes. Finally, a
similar interpretation of the average of the free energy was presented in a recent
work by Okuyama [252], in which a different method was used to compute the
average free energy.

It is important to point out that a single term in the series does not define a
brane (universe); rather, the brane interpretation applies only to the entire series.
After the diagonalization and the redefinition of the fields in the functional space,
a single term of the series has no direct interpretation at all. The entire series is
needed to obtain physical quantities. Figure 5.5 provides a visualization of our
result, in that all topology fluctuations are, in fact, Euclidean wormholes. As
evinced by Eq. (5.235), we have two kinds of fluctuations: those that connect
different branes (different universes), and those located on the same brane (same
universe).

Figure 5.5: Visualization of the topology fluctuations obtained from the disorder-
averaged free energy of the model.

A link with condensed matter physics is almost trivial. A disordered sys-
tem at low temperatures, or for an anisotropic disorder, leads to a model with
the same mathematical structure regarding the nonlocality induced by quantum
gravity effects on matter fields. The series in Eq. (5.70) takes into account all
possible configurations of the disorder. However, those configurations are not
independent, since the disorder average is taken over the free energy, the gener-
ating functional of the connected correlation functions.

This concludes the formulation of the analog model. Physical quantities,
such as the dynamic and static structure factors, can be readily computed by
using a mean-field approximation to obtain the necessary matter-field correla-
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tion functions. We recall that the static structure factor is proportional to the
total intensity of light scattered by the fluid [256]. As such, the effects of the
disorder-induced nonlocality should leave signals on the scattered light.

In summary, we have proposed an analog model for Euclidean wormholes
and topological fluctuation effects in a Riemannian space. We aimed at modeling
the effects of a quantum theory of gravitation on a matter field. The idea of
modeling the internal degrees of freedom by a random field has logical appeal
and historical background. Although we based our derivations using a scalar
field, the formalism can be easily adapted to other fields, such as vector and
spinor fields.

As a matter of fact, we know that, in a Bose-Einstein condensate (BEC), one
has around 10% of the system as a non-condensed cloud of atomic gas surround-
ing the condensate [257, 258]. Such an atomic cloud affects the physical proper-
ties of the condensate.

Starting from the Hamiltonian of the condensate and the non-condensed
cloud, one can construct the soft action as (for details, see Ref. [233])

𝑆0(𝜙, 𝜙∗) + 𝑆1 = ∫[𝜙∗(𝑥) (− Δ
2𝑚𝜙

+ 𝑚20(𝑥) + 𝜂(𝑥)) 𝜙(𝑥) + 𝑔𝜙 |𝜙(𝑥)|4

+ 𝜙(𝑥)ℎ∗(𝑥) + 𝜙∗(𝑥)ℎ(𝑥) + 𝜙2(𝑥)𝑚∗(𝑥) + 𝜙∗2(𝑥)𝑚(𝑥)] d𝑥,
(5.236)

where 𝜙 are the condensate field variables, while 𝜂(𝑟), ℎ(𝑟), and 𝑚(𝑟) are related
to the non-condensed cloud and are functions that only exist in the interface
between the condensate and the non-condensed cloud.

Disregarding the second line of the action in Eq. (5.236) is equivalent to as-
suming the so-called Hartree-Fock-Bogoliubov-Popov approximation, which re-
covers the Gross-Pitaevskii action functional. Let us suppose that our system is
in three dimensions and the condensate is confined in some semi-finite region.
A bidimensional representation of the system is given in Fig. 5.6.

Then, it follows that the Gross-Pitaevskii action is given by

𝑆 (𝜙, 𝜙∗, 𝜂)=∫∫
𝐿

0
{𝜙∗(𝑥, 𝑧)[− Δ

2𝑚𝜙
+ 𝑚20(𝑥, 𝑧) + 𝜂(𝑥, 𝑧)]𝜙(𝑥, 𝑧) + 𝑔𝜙 |𝜙(𝑥, 𝑧)|4}d𝑧d𝑥.

(5.237)

We note that the interaction between the cloud and the BEC can be complex to
model, since at the interface, we can have condensation of elements of the cloud
and decondensation of part of the BEC. Therefore, we will model this interaction
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Figure 5.6: Bidimensional visualization of the BEC confined between non-condensed
clouds.

by a quenched disorder. Take the probability distribution as

𝑃(𝜂) = 𝑝0 exp (− 1
2𝜌2 ∫∫

𝐿

0 ∫∫
𝐿

0
𝜂(𝑥, 𝑧)𝐹−1(𝑥, 𝑧; 𝑥′, 𝑧′)𝜂(𝑥′, 𝑧′)) d𝑧 d𝑧′ d𝑥 d𝑥′,

(5.238)
where 𝜌 is the strength of the multiplicative disorder 𝜂(𝑥, 𝑧) and 𝐹(𝑥, 𝑧; 𝑥′, 𝑧′) is
the correlation function of the disorder. Therefore, the correlation of the disorder
𝜂(𝑥, 𝑧) is 𝔼[𝜂(𝑥, 𝑧)𝜂(𝑥′, 𝑧′)] = 𝜌2𝐹(𝑥, 𝑧; 𝑥′, 𝑧′). It follows that the effective action
is given by

𝑆eff(𝜙, 𝜙∗) = ∫∫
𝐿

0

𝑘
∑
𝑖=1

𝜙∗𝑖 (𝑥, 𝑧)[ − Δ
2𝑚𝜙

+ 𝑚20(𝑥, 𝑧)]𝜙𝑖(𝑥, 𝑧) d𝑧 d𝑥

+ ∫∫
𝐿

0 ∫
𝐿

0

𝑘
∑
𝑖,𝑗=1

(𝛿𝑖𝑗𝑔𝜙 − 𝜌2𝐹(𝑥, 𝑧; 𝑥′, 𝑧′)) 𝜙∗𝑗 2(𝑥, 𝑧)𝜙𝑖2(𝑥′, 𝑧′) d𝑧′ d𝑧 d𝑥′ d𝑥.

(5.239)

Such an action shares similarities with the effective action of Eq. (5.126) (just
take 𝐹(𝑥, 𝑧; 𝑥′, 𝑧′) = 𝛿2(𝑥 −𝑥′) [𝛿(𝑧) + 𝛿(𝑧 − 𝐿)]), which is also non-local. This ef-
fective action is similar to the one that appears in the study of spin-glass systems
at low temperatures and it is highly non-trivial [217]. However, this gives us that,
in fact, the interaction between the non-condensed cloud can be interpreted as a
quenched disorder in terms of knowed systems.

For simplicity, let us now disregard the non-linear couplings between the
condensate and the non-condensate in Eq. (5.236) and the non-Gaussian contri-
butions. That is, we disregard the contributions of 𝜂, 𝑚, and 𝜙4 and keep only
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ℎ. Supposing the covariance of ℎ(𝑥, 𝑧) as 𝔼[ℎ∗(𝑥, 𝑧)ℎ(𝑥′, 𝑧′)] = 𝜎2𝐹(𝑥, 𝑧; 𝑥′, 𝑧′),
where 𝜎 is the strength of the additive disorder, the effective action reads

𝑆eff(𝜑, 𝜑∗) = ∫∫
𝐿

0 ∫
𝐿

0

𝑘
∑
𝑖,𝑗=1

𝜙∗𝑗 (𝑥, 𝑧)[ (− Δ
2𝑚𝜑

+ 𝑚20(𝑥, 𝑧)) 𝛿𝑖𝑗𝛿(𝑥 − 𝑥′)𝛿(𝑧 − 𝑧′)

− 𝜎2𝐹(𝑥, 𝑧; 𝑥′, 𝑧′)]𝜙𝑖(𝑥′, 𝑧′) d𝑧 d𝑧′ d𝑥 d𝑥′,
(5.240)

If we define 𝐺𝑖𝑗 = (− Δ
2𝑚𝜑

+ 𝑚20(𝑥, 𝑧)) 𝛿𝑖𝑗𝛿(𝑥 − 𝑥′)𝛿(𝑧 − 𝑧′) − 𝜎2𝐹(𝑥, 𝑧; 𝑥′, 𝑧′), we
obtain the same action as in Eq. (5.231), and therefore the same diagonalization
procedure can be implemented to reproduce the Eqs. (5.234)-(5.235).

Therefore, we conclude that the system of a BEC and the non-condensed
cloud can be a realization of the analog model for Euclidean wormholes. Ob-
jectively, a measurable quantity that can be obtained from this BEC model with
dirty surfaces is the Casimir force, which will behaves like the the one plotted in
Figure 5.4.

Generalized entropy of a Black Hole

Here we reproduce the main results of Ref. [259]. Details about quantum fields
in curved space-time can be found in Refs. [21, 260, 261].

The limits of applicability of quantum field theory were tested through the
formulation of quantum fields in curved spacetime, where problems of a differ-
ent nature arise [262, 263]. After the introduction of the concept of black hole
entropy by Bekenstein [264, 265], Hawking studied free quantum fields in a fixed
curved background spacetime geometry. It was shown that a black hole of mass
𝑀0 emits thermal radiation at a temperature 𝛽−1, which is proportional to the
surface gravity of the horizon (a null hypersurface generated by a congruence of
null geodesics) [266, 267]. This effect, initially derived for a non-rotating neutral
black hole, remains a topic of ongoing debate and continues to be a fertile ground
for testing new ideas and techniques.

However, one can ask: In Euclidean quantum field theory, how do disorder
fields affect the generalized entropy of a Schwarzschild black hole? Here, we in-
clude disorder fields in addition to the external matter and radiation fields. The
microscopic degrees of freedom that are thought to contribute additional terms
to a complete theory of black hole entropy have yet to be adequately identified
[268]. Significant efforts have been made to explain the origin and behavior of
these unknown contributions to entropy. Several common perspectives exist, in-
cluding the statistical origin of Einstein’s equations and the quantum properties
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of the gravitational field. For example, in Ref. [269], it is argued that an accu-
rate interpretation of entropy does not necessarily require additional degrees of
freedom but arises solely from the quantum nature of gravity.

There are approaches that include the degrees of freedom of the black hole’s
interior [270]. These results, using the topological structure of replica worm-
holes, demonstrate why the black hole interior should be included in the compu-
tation of radiation entropy [271–274].

Based on Refs. [275–279], we define an effective model with disorder in Eu-
clidean geometry. To account for the influence of disorder fields on matter fields
and their contribution to generalized entropy, we study a self-interacting 𝜆𝜑4𝑑
theory defined in a Euclidean section of the Schwarzschild manifold.

The Birkhoff theorem on manifolds ensures that any vacuum spherically
symmetric solution of the Einstein equation is locally isometric to a region in
Schwarzschild spacetime. Therefore, we start with the pseudo-Riemannian man-
ifold that possesses the Schwarzschild metric in a 𝑑-dimensional spacetime [280].
The line element reads:

d𝑠2 = −(1 − (𝑟𝑠𝑟 )
𝑑−3

) d𝑡2 + (1 − (𝑟𝑠𝑟 )
𝑑−3

)
−1

d𝑟2 + 𝑟2dΩ2𝑑−2. (5.241)

The Schwarzschild radius 𝑟𝑠 is proportional to the product of the 𝑑-dimensional
Newton’s constant and the black hole mass 𝑀0:

𝑟𝑑−3𝑠 =
8Γ (𝑑−12 )

(𝑑 − 2)𝜋 𝑑−3
2
𝐺(𝑑)𝑀0. (5.242)

For simplicity, we use the notation 𝐺(𝑑)𝑀0 = 𝑀 , so that in four dimensions, 𝑀
has units of length.

After aWick rotation, 𝑡 → 𝑖𝜏 , in the time coordinate, we obtain the 𝑑-dimensional
Hawking instanton, i.e., a positive definite Euclidean metric for 𝑟 > 𝑟𝑠 :

d𝑠2𝐸 = (1 − (𝑟𝑠𝑟 )
𝑑−3

) d𝜏2 + (1 − (𝑟𝑠𝑟 )
𝑑−3

)
−1

d𝑟2 + 𝑟2dΩ2𝑑−2. (5.243)

This manifold has a conic singularity. The singularity at 𝑟 = 𝑟𝑠 is removed by
assuming that the imaginary time coordinate, 𝜏 , is periodic with period 4𝜋𝑟𝑠/(𝑑−
3). The bifurcate Killing horizon then becomes a rotation axis. This Euclidean
section of the Schwarzschild solution, with compactified imaginary time, is home-
omorphic to ℝ2 × 𝑆2.

In this manifold, the Israel-Hawking-Hartle vacuum state is defined. Any
quantum field defined in this manifold behaves as if it is held at a temperature
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𝛽−1 = (𝑑 − 3)/4𝜋𝑟𝑠 . In the Matsubara formalism, the periodicity in imaginary
time corresponds to finite-temperature states, with the Euclidean space homeo-
morphic to 𝑆1×ℝ3 [281, 282]. Since, in principle, we do not have full mathematical
control over expressions in the infinite volume limit, we must enclose the black
hole within a finite-volume box and impose boundary conditions. From now on,
we assume Dirichlet boundary conditions on the surface of the confining box.
The total volume of the system is given by Vol𝑑(Ω) = 𝛽𝑉𝑑−1.

We also note that for Euclidean interacting field theories confined to compact
domains, it is necessary to introduce surface counterterms to make the interact-
ing field theory perturbatively renormalizable [227–230, 283].

In the following, we define operators on the Riemannian manifold. Since we
are considering a scalar field, we need to define the Laplace-Beltrami operator.
In any smooth connected 𝑑-dimensional Riemannian manifold,ℳ𝑑 , the operator
is defined by:

−Δ𝑔 = − 1
√𝑔

𝑑
∑
𝑖,𝑗=1

𝜕
𝜕𝑥 𝑖 (√𝑔𝑔

𝑖𝑗 𝜕
𝜕𝑥 𝑗 ) , (5.244)

where (𝑔 𝑖𝑗) = (𝑔𝑖𝑗)−1, and 𝑔 = det(𝑔𝑖𝑗). We are working in a local arbitrary
curvilinear coordinate system 𝑥𝜈 = (𝑥1, 𝑥2, … , 𝑥𝑑). As usual, we define the Rie-
mannian 𝑑-volume 𝜇 by d𝜇 = √𝑔, d𝑥1d𝑥2… d𝑥𝑑 . In general, we are interested in
the Hilbert space of square-integrable functions defined on a compact domain,
i.e., ℋ = 𝐿2(Ω, 𝑑𝜇), where Ω ⊆ ℳ𝑑 is compact.

Using the fact that, in an interacting field theory, the black hole can remain
in thermal equilibrium with a thermal bath [284], we consider a Euclidean self-
interacting scalar model. The action functional for a single self-interacting scalar
field is given by:

𝑆(𝜙) = 1
2 ∫𝛽 𝑑𝜇 [𝜙(𝑥) (−Δ𝑠 + 𝑚20) 𝜙(𝑥) +

𝜆0
12𝜙

4(𝑥)] , (5.245)

where −Δ𝑠 denotes the Laplace-Beltrami operator in the Euclidean section of
the Schwarzschild manifold 𝑀𝑑𝑠 , 𝜆0 is the bare coupling constant, and 𝑚20 is the
spectral parameter of the model. The notation ∫𝛽 indicates that the imaginary
time coordinate 𝑥1 = 𝜏 is periodic, with 0 ≤ 𝑥1 ≤ 4𝜋𝑟𝑠/(𝑑−3), so 𝜑(𝑥1, 𝑥2, … , 𝑥𝑑) =
𝜑(𝑥1 + 𝛽, 𝑥2, … , 𝑥𝑑). We define 𝑥2 = 𝑟 as the radial coordinate. In this manifold,
the Laplace-Beltrami operator is explicitly given by:

−Δ𝑠𝜙 = Δ𝜃𝜙(𝑥3, … , 𝑥𝑑)

+ (1 − ( 𝑟𝑠𝑥2
)
𝑑−3

)
−1 𝜕2𝜙

𝜕𝑥21
+ 1
𝑥𝑑−22

𝜕
𝜕𝑥2

(𝑥𝑑−22 (1 − ( 𝑟𝑠𝑥2
)
𝑑−3

) 𝜕𝜙
𝜕𝑥2

) , (5.246)
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where Δ𝜃 denotes the Laplace-Beltrami operator on the (𝑑 − 2)-dimensional unit
sphere 𝑆𝑑−2, corresponding to the contribution from the angular part. Finally, as
previouslymentioned, we assumeDirichlet boundary conditions, i.e., 𝜑(𝑥)|𝜕ℳ𝑑𝑠 =
0, since we consider the entire system inside a reflecting wall. This procedure
is necessary to ensure that the system has finite volume and that the spatially
cut-off Schwinger function is well-defined.

By introducing an external source 𝑗(𝑥), we can proceed as in Sec. 4.2 to define
the generating functional for all 𝑛-point correlation functions 𝑍(𝑗) as:

𝑍(𝑗) = ∫ exp (−𝑆(𝜙) + ∫𝛽 𝑗(𝑥)𝜑(𝑥)d𝜇) [d𝜙], (5.247)

where [d𝜙] is a functionalmeasure, defined symbolically as [d𝜙] = ∏𝑥∈𝑆1×ℝ3 d𝜙(𝑥).
By adding a random field ℎ, coupled to the field variable, we can use the distri-
butional zeta-function method, Eq. (5.70).

Once the average is taken, one must carefully choose the covariance of the
disorder field. If one chooses a Gaussian disorder, all points on the Euclidean
manifold will experience its effects uniformly. However, as discussed earlier, the
disorder field attempts to represent degrees of freedom not included in this meso-
scopic approach. Consequently, the disorder must encode information about
fast-mode processes; in some sense, this information is captured by the disorder
covariance. Since we know that Euclidean quantum field theory exhibits diver-
gences near the boundary due to fast modes [226], we assume in this model that
the disorder covariance also diverges near the boundary. Therefore, to preserve
the system’s symmetry, the disorder covariance increases as 𝑥2 → 0. For this
reason, we choose the covariance of the disorder to be given by

𝔼[ℎ(𝑥)ℎ(𝑦)] = 𝑈 (𝑥2)
√𝑔

𝛿𝑑(𝑥 − 𝑦), (5.248)

where we are assuming that the functional form of 𝑈 (𝑥2) is
𝑈 (𝑥2) = 𝑏𝛼−2(𝑥2)−𝛼 (5.249)

for positive definite 𝛼 , and where 𝑏 is a constant with units of length. Note that
𝑥2 = 𝑟 ; hence, Eq. 5.249 exhibits spherical symmetry. This covariance leads us
to the effective action given by

𝑆(𝑘)eff (𝜙𝑖, 𝑗𝑖) = ∫𝛽 [
𝑘
∑
𝑖=1

(12𝜙𝑖(𝑥) (−Δ𝑠 + 𝑚20) 𝜙𝑖(𝑥) +
𝜆0
4! (𝜙𝑖(𝑥))

4)

−𝑈 (𝑥2)2
𝑘
∑
𝑖,𝑗=1

𝜙𝑖(𝑥)𝜙𝑗(𝑥) −
𝑘
∑
𝑖=1

𝜙𝑖(𝑥)𝑗𝑖(𝑥)] d𝜇. (5.250)
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Since we are interested solely in the thermodynamic properties of the model, we
do not need to generate the correlation functions. Thus, we set 𝑗𝑖(𝑥) = 0 for all 𝑖
and omit the 𝑗 = 0 argument in all quantities.

We now discuss the Gaussian contribution to the action given by Eq. (5.250),
which suffices to capture the thermodynamic properties. The free part of the
effective action can be recast as

𝑆(𝑘)0 (𝜙𝑖) = 1
2 ∫𝛽 d𝜇

𝑘
∑
𝑖,𝑗=1

𝜙𝑖(𝑥) [(−Δ𝑠 + 𝑚20) 𝛿𝑖𝑗 − 𝑈 (𝑥2)] 𝜙𝑗(𝑥), (5.251)

therefore we can proceed with the diagonalization procedure. After diagonaliza-
tion, it follows that

𝔼 [𝑍 𝑘(ℎ)] = ∫ exp (−𝑆(𝑘)(𝜑)) [d𝜑] ∫ exp (−𝑆(𝑘)0 (𝜑𝑙))
𝑘

∏
𝑙=2

[d𝜑𝑙] , (5.252)

where we denote 𝜑1 = 𝜑,

𝑆(𝑘)(𝜑) = 1
2 ∫𝛽 𝜑(𝑥) [−Δ𝑠 + 𝑚20 − 𝑘𝑈 (𝑥2)] 𝜑(𝑥)d𝜇, (5.253)

and

𝑆(𝑘)0 (𝜑𝑙) = 1
2 ∫𝛽

𝑘
∑
𝑙=2

𝜑𝑙(𝑥) (−Δ𝑠 + 𝑚20) 𝜑𝑙(𝑥)d𝜇. (5.254)

Performing all the Gaussian integrations, we can recast our quenched Gibbs free
energy, Eq. (5.70), as

𝔼 [𝑊 (ℎ)] =
∞
∑
𝑘=1

𝑐𝑘 [det (−Δ𝑠 + 𝑚20)]
1−𝑘
2 [det (−Δ𝑠 + 𝑚20 − 𝑘𝑈 (𝑥2))]

− 1
2 . (5.255)

Notice that the first determinant is standard, as expected in the analysis of scalar
fields on a Riemannianmanifold. The regularity and self-adjointness of this oper-
ator follow from the properties of the Laplace-Beltrami operator. However, the
second determinant describes a more complex situation, as it corresponds to a
Schrödinger operator on a Riemannian manifold.

One must determine the self-adjointness and spectral properties of the Schrö-
dinger operator on a Riemannian manifold within a Hilbert space. For −Δ in
𝐿2(ℝ𝑑), the Fourier transform establishes self-adjointness on the domain𝐷(−Δ) =
𝐻 2(ℝ𝑑), which corresponds to a Sobolev space. If the Schrödinger operator is
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not proven to be essentially self-adjoint, there may exist an infinite set of self-
adjoint extensions, making it challenging to identify the physically correct one
[285–287].

An important result was obtained by Oleinik [288]. The author proved that
for non-bounded manifolds, in the absence of local singularities in the potential,
the Schrödinger operator on a Riemannian manifold is essentially self-adjoint.
In the case of bounded manifolds in ℝ𝑑 , the result of Ref. [289] ensures that for
potentials with algebraic divergences of order ≥ 2, the Schrödinger operator is
self-adjoint. Note that 𝑈 (𝑥2) is a real-valued function that is locally summable
in 𝐿2 and globally semi-bounded, i.e., 𝑈 (𝑥2) ≥ −𝐶 for 𝑥2 ∈ 𝑀𝑑𝑠 , with a constant
𝐶 ∈ ℝ. Therefore, we have a self-adjoint operator in the Hilbert space 𝐿2(𝑀𝑑𝑠 ) =
𝐿2(𝑀𝑑𝑠 , 𝑑𝜇).

To preserve the universality of the second law of thermodynamics [290],
Bekenstein conjectured that the total entropy of the system must satisfy the gen-
eralized second law

Δ𝑆𝑔𝑒𝑛 = Δ𝑆(1) + Δ𝑆(2) ≥ 0, (5.256)

where 𝑆(1) denotes the Bekenstein-Hawking entropy, which is proportional to
the horizon area, and 𝑆(2) represents corrections frommatter and radiation fields.
We now proceed to discuss the contribution of 𝑆(2).

Since, in our case, we have a system with infinitely many degrees of freedom,
wemust use the concept of mean entropy, i.e., the entropy per unit (𝑑−1)-volume
(𝛽−1Vol𝑑(Ω)) [291],

𝑠(2) = 𝛽 𝑆(2)
Vol𝑑(Ω)

. (5.257)

Using the fact that 𝑆 = ln𝑍 + 𝛽𝐸, in Euclidean quantum field theory, we can
derive the generalized entropy density from the Gibbs free energy. In the case of
a compact Riemannian manifold, the contribution of the quantum fields to the
generalized entropy in the absence of disorder is

𝑠(2) = 1
Vol𝑑(Ω)

(𝛽 − 𝛽2 𝜕
𝜕𝛽 ) ln𝑍(𝑗)|

𝑗=0
, (5.258)

where 𝑍(𝑗)|𝑗=0 is the partition function. Here, we have the Gibbs entropy of a
classical probability distribution.

In the presence of disorder, the contribution of external matter fields to the
generalized entropy density 𝑠(2) is

𝑠(2) = 1
Vol𝑑(Ω)

(𝛽 − 𝛽2 𝜕
𝜕𝛽 )𝔼 [𝑊 (ℎ)] . (5.259)
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The form of Eq. 5.259 results from the assumption that the total volume and
the temperature are not affected by the disorder. Using Eqs. (5.255) and (??), we
obtain that

𝑠(2) =
∞
∑
𝑘=1

𝑐′𝑘
Vol𝑑(Ω)

(𝛽 − 𝛽2 𝛽
𝜕𝛽 ) [det(−Δ𝑠 + 𝑚20)]

− 𝑘
2 [ det (−Δ𝑠 + 𝑚20)

det (−Δ𝑠 + 𝑚20 − 𝑘𝑈 (𝑥2))
]
1
2
,

(5.260)

where 𝑐′𝑘 = (−1)𝑘
𝑘𝑘! . Notice that 𝑎 is assumed large enough due to its relation with

the thermodynamic limit of disordered systems.
The entropy, on physical grounds, depends on the covariance of the disorder.

It becomes necessary to specify 𝑈 (𝑥2) in order to obtain 𝑠(2). As we shall clar-
ify below, we will obtain the values of the functional determinants using their
eigenfunctions. One can verify in Eq. (5.246) that the operator Δ𝑠 always con-
tains the angular Laplace-Beltrami operator, −Δ𝜃 . Since 𝑈 (𝑥2) does not depend
on the angular variables, we shall ignore such an angular operator. In practice,
it is equivalent to work in 𝑑 = 2. In the neighborhood of the event horizon,
the effects of the internal degrees of freedom are expected to become more rele-
vant. In such a region, where 𝑥2 = 𝑟 ≈ 2𝑀 , we can define the radial coordinate
𝜌 = √8𝑀(𝑟 − 2𝑀), and the line element can be written as

d𝑠2 = 𝜌2
16𝑀2d𝜏2 + d𝜌2, (5.261)

where the horizon is located at 𝜌 = 0. The equation of motion for the free field
in the Euclidean Rindler space is given by

(−ΔR + 𝑚20)𝜙 = (16𝑀
2

𝜌2
𝜕2
𝜕𝜏2 + 𝜕2

𝜕𝜌2 + 1
𝜌

𝜕
𝜕𝜌 + 𝑚20) 𝜙 = 0, (5.262)

where −ΔR stands for the Laplace-Beltrami operator in the Rindler coordinates
given by the line element (5.261). Therefore, we can observe that this operator
is −Δ𝑠 near the horizon after the angular part is disregarded.

In the near-horizon approximation, i.e., 𝜌 ≈ 0, the potential of the Schrödinger
operator can be recast as

𝑈 (𝜌,𝑀) = 𝑎𝛼−2
(2𝑀)𝛼 (1 − 𝛼𝜌2

16𝑀2) . (5.263)

Using the fact that the coordinate 𝜏 is periodic, the total entropy density will
be a sum over all Matsubara modes:

𝑠(2) =
∞
∑
𝑛=−∞

𝑠(2)(𝑛), (5.264)
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where 𝑠(2)(𝑛) is given by Eq. (5.260) in the near-horizon approximation with the
angular part disregarded.

Note that for small 𝜌, and defining 𝑓 (𝛼,𝑀) = 𝛼
24+𝛼𝑀2+𝛼 , the determinant that

contains the potential can be written as

det [−ΔR + 𝑘𝑎𝛼−2𝜌2𝑓 (𝛼,𝑀) + 𝑚20 − 𝑘𝑎𝛼−2
(2𝑀)𝛼 ] . (5.265)

We define an effective mass for each effective action as 𝑚2
eff(𝑘,𝑀) = 𝑚20 − 𝑘𝑎𝛼−2

(2𝑀)𝛼 .
To continue, let us discuss the solution of the differential equation for each

Matsubara mode. We have that 𝑅𝑛(𝜌) satisfies

[𝜌2 d2
d𝜌2 + 𝜌 d

d𝜌 + 𝑚2
eff𝜌2 − 𝑛2] 𝑅𝑛(𝜌) = 0. (5.266)

Defining 𝑤 = 𝑚2
eff𝜌2, the general solution of the above equation is written as

𝑅𝑛(𝑥) = 𝐴𝐽𝑛(𝑤) + 𝐵𝑌𝑛(𝑤), (5.267)

where 𝐽𝑛(𝑤) is the Bessel function of the first kind, and 𝑌𝑛(𝑤) is the Bessel func-
tion of the second kind. Using the fact that the large 𝑛 Matsubara modes give the
main contribution to the generalized entropy [292], we can write an asymptotic
expansion for 𝐽𝑛(𝑤) and 𝑌𝑛(𝑤). Since 𝑚2

eff(𝑘,𝑀) can be negative for some 𝑘, we
write 𝑠(2)(𝑛) as

𝑠(2)(𝑛) = 𝑠(2)𝑘<𝑘𝑐 (𝑛) + 𝑠(2)𝑘≥𝑘𝑐 (𝑛). (5.268)

Denoting by ⌊𝑚⌋ the largest integer less than or equal to𝑚, we define a critical
𝑘 given by 𝑘𝑐 = ⌊ (2𝑀)𝛼𝑚20

𝑎𝛼−2 ⌋. Using 𝛽 = 8𝜋𝑀 , we have

𝑠(2)𝑘<𝑘𝑐 (𝑛)= 8𝜋 (𝑀 − 𝑀2 𝜕
𝜕𝑀 )

𝑘𝑐−1
∑
𝑘=1

𝑐′𝑘
Vol𝑑(Ω)

[det(−ΔR + 𝑚20)]
−𝑘
2 [ det(−ΔR + 𝑚20)

det(−ΔR + 𝑚2
eff)

]
1
2
,

(5.269)

and

𝑠(2)𝑘≥𝑘𝑐 (𝑛)=8𝜋 (𝑀−𝑀2 𝜕
𝜕𝑀 )

∞
∑
𝑘=𝑘𝑐

𝑐′𝑘
Vol𝑑(Ω)

[det(−ΔR + 𝑚20)]
−𝑘
2 [ det(−ΔR + 𝑚20)

det(−ΔR + 𝑚′2eff)
]
1
2
,

(5.270)

where 𝑚′2
eff = −2𝑚2

eff is the shifted effective mass.
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The spectrum of the Schrödinger operator is unknown. Therefore, we use an
alternative procedure to calculate the above expression. It can be shown that the
derivative of the spectral zeta function can be expressed in terms of the eigen-
functions as follows:

− d
d𝑠 𝜁 (𝑠)|𝑠=0 = ln [ 𝑅(0)

𝑅(−∞)] , (5.271)

where 𝑅 denotes the respective eigenfunctions. This is known as the Gel’fand-
Yaglom method, which involves manipulating the eigenfunctions instead of the
eigenvalues. Using this procedure, it is possible to evaluate the generalized en-
tropy density. We can see that an eigenfunction that is repeating in both lim-
its will cancel out. This justifies the fact that we have disregarded the angular
Laplace-Beltrami in Eq. (5.261). Since the eigenfunctions of such an operator are
spherical harmonics, they are 𝜌-independent. For 𝛼 = 2, we obtain the following
expression for the first contribution of Eq. 5.268:

𝑠(2)𝑘<𝑘𝑐 (𝑛) =
𝑘𝑐−1
∑
𝑘=1

𝑐′𝑘
Vol𝑑

[ 2𝜋𝑘𝑛
𝑀𝑚2

eff
+ 8𝜋𝑀] . (5.272)

A similar result is obtained for the second contribution of Eq. 5.268:

𝑠(2)𝑘≥𝑘𝑐 (𝑛) =
∞
∑
𝑘=𝑘𝑐

𝑐′𝑘
Vol𝑑

[ 2𝜋𝑘𝑛
𝑀𝑚′2eff

+ 8𝜋𝑀] ( 𝑚0
𝑚′eff

)
𝑛
. (5.273)

The generalized second law was introduced to ensure that the total entropy
of the system also increases (Δ𝑆(1)+Δ𝑆(2) ≥ 0). Starting from Eq. 5.268, we have
that 𝑆(2)(𝑛) = 𝑆(2)𝑘<𝑘𝑐 (𝑛)+ 𝑆(2)𝑘≥𝑘𝑐 (𝑛). Thus, the expressions for both contributions to
the entropy are as follows:

𝑆(2)𝑘<𝑘𝑐 (𝑛) =
𝑘𝑐−1
∑
𝑘=1

𝑐𝑘 [ 𝑘𝑛
4𝑀2𝑚2

eff
+ 1] ( 𝑚0

𝑚eff
)
𝑛
, (5.274)

for 𝑘 ≤ 𝑘𝑐 , and

𝑆(2)𝑘≥𝑘𝑐 (𝑛) =
∞
∑
𝑘=𝑘𝑐

𝑐𝑘 [ 𝑘𝑛
4𝑀2𝑚′2

eff
+ 1] ( 𝑚0

𝑚′
eff
)
𝑛
, (5.275)

for 𝑘 ≥ 𝑘𝑐 . If we consider the two angular variables that were disregarded, the re-
sult is preserved, as shown by Eq. (5.271). Further corrections must be analyzed.
To determine the numerical validity of our results, we evaluate our expressions
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under different scenarios. In Fig. 5.7, we plot the contributions for the sum of
Eq. (5.274) and Eq. (5.275) for large Matsubara modes, which represent the main
contribution to the entropy of the matter fields, as a function of the dimension-
less parameter𝑀𝑚0. We observe the entropy reaching a steady value, which is a
trend followed by all large Matsubara modes. Since we have redefined the mass
of the black hole as 𝑀 = 𝐺(𝑑)𝑀0, we can conclude that, for a fixed scalar-field
mass, the matter contribution agrees with the generalized second law, and the
stable value is driven by the black hole mass. The approach to a constant value
for the entropy contribution from the matter fields could be interpreted as a po-
tential saturation of information on the black hole horizon [293–296]. The stabi-
lization of entropy for large Matsubara modes suggests that high-energy modes
contribute less significantly to the overall entropy, which is consistent with the
ultraviolet cutoff often encountered in different field theory schemes [297, 298].
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Figure 5.7: Behavior of the matter entropy as a function of the dimensionless parameter
𝑀𝑚0 for different Matsubara modes 𝑛. We remark the redefinition of 𝑀 as 𝑀 = 𝐺(𝑑)𝑀0.

In Fig. 5.8, we examine the validity of the generalized second law of ther-
modynamics for different scalar fields, as expressed in Eq. (5.256), in black hole
physics. In other words, we have added the Bekenstein-Hawking entropy to the
matter fields’ entropy described by Eq. (5.274) and Eq. (5.275), obtaining the ex-
pected results. The signature of black hole evaporation is the decrease of its mass,
and we compare the total entropy of the system for different mass values. For
a range of scalar-field mass values, our findings once again confirm the general-
ized second law, highlighting the robustness of our approach. This demonstrates
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that the law holds not only for specific cases but across a broad spectrum of phys-
ical parameters. Furthermore, the interaction between the Bekenstein-Hawking
entropy and the matter field entropy reveals the intricate balance between geom-
etry and matter in determining the total entropy of the system [299, 300]. This
balance is crucial for understanding the randomness of the degrees of freedom
and the thermodynamic properties of black holes within a more comprehensive
framework that incorporates both gravitational and quantum effects.
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Figure 5.8: Behavior of the total black hole entropy 𝑆gen as a function of the dimension-
less parameter 𝑀𝑚0 for different scaled field masses √𝐺𝑚0. We remark the redefinition
of 𝑀 as 𝑀 = 𝐺(𝑑)𝑀0.

This stabilization, influenced by the black hole mass, suggests a potential in-
terpretation of information saturation. The addition of the Bekenstein-Hawking
entropy to the matter field entropy confirms the generalized second law, where
the model introduces a quenched disorder field.



Chapter 6

Conclusions

In this thesis, we have examined the fundamental principles and applications of
quantum and statistical field theory. By exploring the mathematical structures
underlying these theories, we have gained insight into how field-theoretic meth-
ods can be used to describe a wide range of physical phenomena.

Our discussion began with an overview of the mathematical foundations of
the quantum field theory, highlighting its role in describing particle interactions
and fundamental forces. We reviewed key concepts such as the Lagrangian for-
malism, path integrals, and Feynman diagrams, demonstrating how these tools
enable precise calculations of scattering amplitudes and correlation functions.

We then turned our attention to statistical field theory, emphasizing its rele-
vance in studying phase transitions, critical phenomena, and condensed matter
systems. Using the partition function and correlation functions, we explored
how statistical mechanics and quantum field theory are deeply interconnected,
particularly through the renormalization group framework.

A significant portion of our study has been devoted to disordered systems
and their impact on physical observables. Disorder plays a crucial role in various
condensed matter systems, leading to intriguing phenomena such as Anderson
localization, spin glass behavior, and quantum chaos. Traditional approaches
such as replica symmetry breaking and supersymmetric techniques have been
developed to address these challenges, but recent advancements in the distribu-
tional zeta function method offer a novel perspective.

The distributional zeta function method has proven to be a powerful analyt-
ical tool in extracting spectral properties of disordered operators. By analyzing
the asymptotic properties of spectral densities, this method enables a deeper un-
derstanding of a wide range of phenomena and posses a natural linkwith random
matrix theory and applications. Its applications can be extend to fields such as
topological physics, quantum chaos, and even aspects of quantum gravity, mak-
ing it an essential tool in modern theoretical physics.
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One of the key insights gained from our study is the power of field-theoretic
methods in describing systems at different scales. The renormalization group,
in particular, provides a systematic approach for understanding how physical
theories change as one moves from microscopic to macroscopic scales. This idea
has found applications in diverse areas, from condensed matter physics to high-
energy particle physics and cosmology.

The study of disordered systems is also important in computational physics,
where numerical methods such as Monte Carlo simulations and tensor network
techniques are employed to investigate complex systems. The distributional zeta
function method complements these numerical approaches by offering analytic
insights into spectral properties and phase transitions.

Despite the significant progress made in the field, many open questions re-
main. The quest for a unified theory that incorporates gravity, the nature of
dark matter, and the resolution of the hierarchy problem are among the pressing
challenges in modern theoretical physics. Additionally, non-perturbative meth-
ods, such as lattice field theory, continue to be active areas of research, offering
potential breakthroughs in our understanding of strongly interacting systems.

Future research directions in quantum and statistical field theorymay involve
further developments in computational techniques, new experimental insights,
and the exploration of novel theoretical frameworks. The interplay between field
theory and other disciplines, such as machine learning and complex systems,
may also yield new perspectives and methodologies for tackling long-standing
problems. Furthermore, extending the distributional zeta function method to
broader classes of disordered systems and complex networks could unlock new
possibilities in statistical physics and beyond.

In conclusion, the study of quantum and statistical field theory remains a
vibrant and evolving field of research. The concepts and methods developed
within these frameworks continue to shape our understanding of the fundamen-
tal forces of nature and the emergent properties of complex systems. As new
discoveries unfold, field theory will undoubtedly remain a cornerstone of theo-
retical physics.



Appendices



Appendix A

Rudiments of Functional Analysis

Before starting with a bunch of definitions, lemmas, theorems, etc., it seems nice
to mention that a reader with some previous knowledge in real analysis and set
theory will be greatly favored in understanding this section. On top of that, we
do not believe that such previous topics are strictly necessary to understand the
underlying ideas that we are going to present here.

Of course, there is not enough room to cover the entire field of mathematics
encapsulated by functional analysis. Because of that, we opt to present the main
topics that we believe are most useful for our objectives. This means that we are
going to present some of the most basic and general results of functional analysis.
The topics that we would like to cover here are basic aspects of measure theory,
Hilbert and Banach spaces, the spectral theorem for bounded operators, and also
some aspects of the theory of generalized functions.

A.1 Measure Theory
While simple, measure theory is of fundamental importance for mathematics and
physics. Such a construction provides us with useful generalizations and a robust
framework for basic concepts that are used on a daily basis.

A self-contained presentation of measure theory would need to be presented
with some developments of set theory. However, set theory is intrinsically en-
tangled with the foundations of mathematics, and thinking too much about such
a topic can be both entertaining and nerve-racking. To avoid the hard discussion,
we just present some definitions, basic properties, and results of set theory. The
basis of our analysis follows Refs. [301, 302].

After establishing what a set is, we can briefly discuss functions and metric
spaces. After that, we are allowed to study measures, which are just a type of set
function. Following this, we will define the integral in measure theory and some
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special kinds of measures. It is important to note that our presentation is far
from complete; we are focusing on the development of ideas that are of interest
to us. A far more complete presentation can be found in the aforementioned
bibliography.

Our main objective in this section is to construct the well-known Riemann
integral and its generalization, while also presenting some fundamental results
in measure theory.

Generically, we can say that a set 𝐸 is a collection of elements 𝑥 that satisfies
some property 𝑃 . Such a construction will be denoted by

𝐸 = {𝑥 | 𝑥 has property 𝑃}. (A.1)

If 𝐸 has a small countable number of elements, we may write 𝐸 = {𝑥1, 𝑥2, 𝑥3, 𝑥4}.
If a set contains a single element, e.g., 𝐸 = {𝑥}, we may denote the set 𝐸 simply
as {𝑥}.

The set that contains no elements is called the empty set and can be defined
as

∅ = {𝑥 | 𝑥 ≠ 𝑥}. (A.2)
Any affirmation about the empty set is both true and false at the same time. By
these properties, ∅ belongs to any other set.

We use the double bar notation for the most usual sets, that is:

• ℕ = set of natural numbers;

• ℤ = set of integer numbers;

• ℝ = set of real numbers;

• ℂ = set of complex numbers.

It is possible to define sets of sets, whichwe call classes, and also sets of classes,
called collections. A set which is contained by another set is called a subset, and
is usually denoted by 𝐴 ⊂ 𝐸, where one reads “𝐴 is a subset of 𝐸” or “𝐸 contains
𝐴”. Two sets are equal if and only if 𝐴 ⊂ 𝐸 and 𝐸 ⊂ 𝐴. In such a situation, we
may write 𝐴 = 𝐸.

If we have at least two sets 𝐸1, 𝐸2, we can define operations between sets. If
we wish to pick elements that belong to 𝐸1 or 𝐸2, we have a union of the sets 𝐸1
and 𝐸2, such an operation is denoted by 𝐸1 ∪ 𝐸2. Now, an operation that picks
elements that belong to 𝐸1 and 𝐸2 is called intersection and denoted by 𝐸1 ∩ 𝐸2.
The elements of a set 𝐸 that do not belong to 𝐸1 are called the complement of 𝐸1,
and are denoted by (𝐸−𝐸1). To represent the set of elements that are in 𝐸1 but not
in 𝐸2, we use 𝐸1\𝐸2. The set of elements that are in one of 𝐸1 or 𝐸2, but not in both,
is given by the symmetric difference and denoted by 𝐸1Δ𝐸2 = (𝐸1\𝐸2) ∪ (𝐸2\𝐸1).
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The previous operations can be proved to satisfy the following known alge-
braic properties:

Proposition A.1. Take 𝐴, 𝐵, and 𝐶 as any sets, then

(i) 𝐴 ∪ 𝐵 = 𝐵 ∪ 𝐴, 𝐴 ∩ 𝐵 = 𝐵 ∩ 𝐴;

(ii) (𝐴 ∪ 𝐵) ∪ 𝐶 = 𝐴 ∪ (𝐵 ∪ 𝐶), (𝐴 ∩ 𝐵) ∩ 𝐶 = 𝐴 ∩ (𝐵 ∩ 𝐶);
(iii) 𝐴 ∩ (𝐵 ∪ 𝐶) = (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶),

𝐴 ∪ (𝐵 ∩ 𝐶) = (𝐴 ∪ 𝐵) ∩ (𝐴 ∪ 𝐶);
(iv) 𝐴 ∪ ∅ = 𝐴, 𝐴 ∩ ∅ = ∅;

(v) if 𝐴 ⊂ 𝑋 , then 𝐴 ∩ 𝑋 = 𝐴, 𝐴 ∪ 𝑋 = 𝑋 ;

(vi) 𝐴 ∪ 𝐵 = (𝐴Δ𝐵)Δ(𝐴 ∩ 𝐵), 𝐴\𝐵 = 𝐴Δ(𝐴 ∩ 𝐵);
Denote every subset of a given classℰ by 𝐸. The union of the class,⋃{𝐸 | 𝐸 ∈

ℰ}, is the set of elements that are in at least one set 𝐸 ∈ ℰ . Its intersection,
⋂{𝐸 | 𝐸 ∈ ℰ}, is the set of elements that are in every set 𝐸 ∈ ℰ . If we can
index the class ℰ such that ℰ = {𝐸𝛼 | 𝛼 ∈ 𝐼 }, we can use the notations ⋃𝛼∈𝐼 𝐸𝛼 ,
⋂𝛼∈𝐼 𝐸𝛼 .

Now we can prove two useful results

Lemma A.2. (de Morgan’s law) Suppose 𝐸𝛼 , 𝛼 ∈ 𝐼 is a class of subsets of 𝑋 , and
𝐸1 is one set of the class, then

(i) ⋂𝛼∈𝐼 𝐸𝛼 ⊂ 𝐸1 ⊂ ⋃𝛼∈𝐼 𝐸𝛼 ;
(ii) 𝑋 − ⋃𝛼∈𝐼 𝐸𝛼 = ⋂𝛼∈𝐼 (𝑋 − 𝐸𝛼 );
(iii) 𝑋 − ⋂𝛼∈𝐼 𝐸𝛼 = ⋃𝛼∈𝐼 (𝑋 − 𝐸𝛼 ).

Proof. (i) follows from the definitions of union and intersection.
For (ii), take 𝑥 ∈ 𝑋 − ⋃𝛼∈𝐼 𝐸𝛼 , then 𝑥 ∈ 𝑋 , 𝑥 ∉ ⋃𝛼∈𝐼 𝐸𝛼 ⇒ 𝑥 ∉ 𝐸𝛼 , 𝛼 ∈ 𝐼 .

But, 𝑥 ∈ 𝑋 − 𝐸𝛼 , 𝛼 ∈ 𝐼 ⇒ 𝑥 ∈ ⋂𝛼∈𝐼 (𝑋 − 𝐸𝛼 ).
If 𝑥 ∈ ⋂𝛼∈𝐼 (𝑋 − 𝐸𝛼 ), then, for all 𝛼 ∈ 𝐼 , 𝑥 ∈ 𝑋 and 𝑥 ∉ 𝐸𝛼 , so 𝑥 ∉ ⋃𝛼∈𝐼 𝐸𝛼 .

So, 𝑥 ∈ 𝑋 − ⋃𝛼∈𝐼 𝐸𝛼 .
(iii) follows similarly to (ii). ■

Two sets that have no common elements are said disjoint, and naturally, if
𝐴 ∩ 𝐵 = ∅ then 𝐴 and 𝐵 are disjoint. We can form a disjoint class by picking
the set of disjoint sets, and the unions of disjoint classes can be called a disjoint
union.
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Lemma A.3. Given a finite or enumerable union of sets ⋃𝑝
𝑖=1 𝐸𝑖 (𝑝 can be infi-

nite), there are subsets 𝐹𝑖 ⊂ 𝐸𝑖 such that the sets 𝐹𝑖 are disjoint and ⋃𝑝
𝑖=1 𝐸𝑖 =

⋃𝑝
𝑖=1 𝐹𝑖.

Proof. We prove for 𝑝 infinite; for 𝑝 finite, only obvious changes are needed.
Assume 𝐶 = ⋂𝑝

𝑖=1 𝐸𝑖 and define 𝐹1 = 𝐸1, and 𝐹𝑛 = 𝐸𝑛\⋃𝑛−1
𝑖=1 𝐸𝑖 where 𝑛 =

1, 2, 3, … . By our definition, we always have that 𝐹𝑛 ⊂ 𝐸𝑛, and, if 𝑖 < 𝑗, 𝐹𝑖∩𝐸𝑗 = ∅.
So, 𝐹𝑖 ∩ 𝐹𝑗 = ∅.

Take 𝑥 ∈ 𝐶 and 𝑛 as the smallest integer such that 𝑥 ∈ 𝐸𝑛, then 𝑥 ∉ 𝐸𝑖 if 𝑖 < 𝑛.
Thus, 𝑥 ∈ 𝐹𝑛, and 𝑥 ∈ ⋃∞

𝑖=1 𝐹𝑖 ⇒ 𝐶 ⊂ ⋃∞
𝑖=1 𝐹𝑖.

Now assume 𝑥 ∈ 𝐹𝑖, then 𝑥 ∈ 𝐸𝑖 and 𝑥 ∉ 𝐸𝑖−1. Thus, 𝑥 ∈ ⋃∞
𝑖=1 𝐸𝑖 and

𝑥 ∈ ⋃∞
𝑖=1 𝐹𝑖 ⇒ ⋃∞

𝑖=1 𝐹𝑖 ⊂ 𝐶. So, 𝐶 = ⋃∞
𝑖=1 𝐹𝑖. ■

This last lemma allows us to say that any class that is enumerable can be
represented as a disjoint union of sets.

To finish our discussion of set theory, let us define the convergence of a se-
quence of sets. Take a sequence of sets {𝐸𝑖} = 𝐸1, 𝐸2, … , and define

lim sup 𝐸𝑖 =
∞
⋂
𝑖=1

(
∞
⋃
𝑖=𝑛

𝐸𝑛) , lim inf 𝐸𝑖 =
∞
⋃
𝑖=1

(
∞
⋂
𝑖=𝑛

𝐸𝑛) , (A.3)

if lim sup 𝐸𝑖 = lim inf 𝐸𝑖 = 𝐸, it is said that the sequence converges to the set
𝐸. The interpretation of such objects for any sequence {𝐸𝑖} is the following:
lim sup 𝐸𝑖 is the set of those elements which are in 𝐸𝑖 for infinitely many 𝐸𝑖, and
lim inf 𝐸𝑖 is the set of those elements which are in all but a finite number of sets
𝐸𝑖. If, for each 𝑛 positive integer, 𝐸𝑛 ⊂ 𝐸𝑛+1, the sequence is said increasing, if
𝐸𝑛 ⊃ 𝐸𝑛+1, the sequence is said decreasing. Sequences that satisfy any of the
previous cases are called monotone sequences.

Monotone sequences always converge. Take {𝐸𝑖} increasing, then ⋃∞
𝑖=𝑛 𝐸𝑖 =

⋃∞
𝑖=𝑖 𝐸𝑖 and ⋂∞

𝑖=𝑛 𝐸𝑖 = 𝐸𝑛 for all 𝑛. So, lim sup 𝐸𝑖 = lim inf 𝐸𝑖 = ⋃∞
𝑖=𝑖 𝐸𝑖. Now

take {𝐸𝑖} decreasing, then ⋂∞
𝑖=𝑛 𝐸𝑖 = ⋂∞

𝑖=𝑖 𝐸𝑖 and ⋃∞
𝑖=𝑛 𝐸𝑖 = 𝐸𝑛 for all 𝑛. Thus,

lim sup 𝐸𝑖 = lim inf 𝐸𝑖 = ⋂∞
𝑖=𝑖 𝐸𝑖.

Another important thing to understand in measure theory is to be able to
define functions between elements of sets. Take two sets 𝐴 and 𝐵, a mapping
𝑓 ∶ 𝐴 → 𝐵 establishes a relation between an element of 𝐴 and an element of
𝐵. In such a map, 𝐴 is called the domain of 𝑓 , sometimes denoted as 𝐷(𝑓 ). The
subset of 𝐵 consisting of 𝑓 (𝑥) for 𝑥 ∈ 𝐴 is called the range of 𝑓 , and is sometimes
denoted by Ran(𝑓 ) or 𝑓 (𝐴). If 𝑓 (𝐴) = 𝐵, 𝑓 is a function from 𝐴 onto 𝐵. One
can also define the function 𝑓 −1 ∶ ℬ → 𝒜 , where 𝒜 and ℬ are the classes of
subsets of 𝐴 and 𝐵. This function is defined as 𝑓 −1(𝐹 ) = {𝑥 ∈ 𝐴 | 𝑓 (𝑥) ∈ 𝐹}, for
each 𝐹 ⊂ 𝐵. 𝑓 (𝐹) is called the inverse image of 𝐹 under 𝑓 . If 𝑦 ∈ 𝐵 − 𝑓 (𝐴), then
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𝑓 −1({𝑦}) = ∅. If 𝑓 ∶ 𝐴 → 𝐵 is one-to-one, 𝑦 ∈ 𝑓 (𝐴), then 𝑓 −1({𝑦}) is a one-point
set of 𝐴. Only in this last situation can we consider 𝑓 −1 ∶ 𝑓 (𝐴) → 𝐴.

Let us assume that 𝑓 ∶ 𝐴 → 𝐵 uniquely determines an element of 𝐵 for each
𝑥 ∈ 𝐴. So, if 𝑥1, 𝑥2 ∈ 𝐴 and 𝑥1 ≠ 𝑥2 ⇒ 𝑓 (𝑥1) ≠ 𝑓 (𝑥2), 𝑓 is said to be a one-to-one
function. The inverse function exists only if 𝑓 −1 ∶ 𝐴 → 𝐵 is onto and one-to-
one, so 𝑓 −1 ∶ 𝐵 → 𝐴 is the inverse function such that 𝑓 −1(𝑦) = 𝑥 if and only if
𝑦 = 𝑓 (𝑥).

At this point, the most important set function that we can define is the in-
dicator (or characteristic) function. Take a subset 𝐴 ⊂ 𝑋 , then 𝜒𝐴 ∶ 𝑋 → ℝ is
defined as

𝜒𝐴(𝑥) = {1, if 𝑥 ∈ 𝐴
0, if 𝑥 ∉ 𝐴. (A.4)

The correspondence between subsets of 𝑋 (not elements) and the indicator func-
tion is one-to-one.

Before going further into functions, let us give our abstract sets more struc-
ture.

Definition A.4. Take a non-empty set 𝑋 with the function 𝜌 ∶ 𝑋 × 𝑋 → ℝ. 𝑋
is said to be a metric space if it satisfies:

(i) 𝜌(𝑥, 𝑦) = 𝜌(𝑦, 𝑥) ≥ 0, ∀ 𝑥, 𝑦 ∈ 𝑋 ;

(ii) 𝜌(𝑥, 𝑦) = 0, if and only if 𝑥 = 𝑦 ;

(iii) 𝜌(𝑥, 𝑦) ≤ 𝜌(𝑥, 𝑧) + 𝜌(𝑧, 𝑦), ∀ 𝑥, 𝑦 , 𝑧 ∈ 𝑋 .

The function 𝜌 agrees with our notion of distance in many spaces. On a
metric space (𝑋 , 𝜌), the open sphere of center 𝑥 and radius 𝑟 > 0 is a set given
by 𝑆(𝑥, 𝑟) = {𝑦 | 𝜌(𝑥, 𝑦) < 𝑟}. We say that a set 𝐸 on a metric space (𝑋 , 𝜌) is open
if, for each 𝑥 ∈ 𝐸, there is an 𝑟 > 0 such that 𝑆(𝑥, 𝑟) ⊂ 𝐸. From this definition,
it follows that open spheres are open sets1. With the definition of open sets, we
can also define the closed sets. A set 𝐸 ⊂ 𝑋 is said to be closed if (𝑋 − 𝐸) is
open. We can also define the closed sphere of center 𝑥 ∈ 𝐸 ⊂ 𝑋 and radius 𝑟 > 0:
𝑆(𝑥, 𝑟) = {𝑦 | 𝜌(𝑥, 𝑦) ≤ 𝑟}, which is a closed set.

Definition A.5. On a metric space (𝑋 , 𝜌), a sequence {𝑥𝑛} is said to be aCauchy
sequence if given 𝜀 > 0, there is an integer 𝑁 such that

𝑛, 𝑚 ≥ 𝑁 ⇒ 𝜌(𝑥𝑛, 𝑥𝑚) < 𝜀 (A.5)
1𝑦 ∈ 𝑆(𝑥, 𝑟), then 𝜌(𝑥, 𝑦) = 𝑟1 < 𝑟 . So, 0 < 𝑟2 ≤ 𝑟 − 𝑟1 such that 𝑆(𝑦 , 𝑟2) ⊂ 𝑆(𝑥, 𝑟).
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On a metric space (𝑋 , 𝜌), any sequence {𝑥𝑛} that converges to 𝑥 ∈ 𝑋 is a
Cauchy sequence. A metric space is said to be complete if for each Cauchy
sequence {𝑥𝑛} in 𝑋 , there is a point 𝑥 ∈ 𝑋 such that 𝑥 = lim 𝑥𝑛.

With the idea of open sets, we can construct the class of all open sets of 𝑋 ,
denoted such a class as 𝒢 , then we have that

Theorem A.6. In a metric space 𝑋 , the class 𝒢 of open sets satisfies

(i) ∅, 𝑋 ∈ 𝒢 ;

(ii) 𝐴1, 𝐴2, … , 𝐴𝑛 ∈ 𝒢 , then ⋂𝑛
𝑖=1𝐴𝑖 ∈ 𝒢 ;

(iii) 𝐴𝛼 ∈ 𝒢 for 𝛼 ∈ 𝐼 , then ⋃𝛼∈𝐼 𝐴𝛼 ∈ 𝒢 .

Proof. For (i), we first notice that any statement about ∅ is true, then ∅ ∈ 𝒢 .
Note that 𝑆(𝑥, 𝑟) ⊂ 𝑋 for any 𝑥 ∈ 𝑋 , so 𝑋 ∈ 𝒢 .

(ii) Take 𝑥 ∈ ⋂𝑛
𝑖=1𝐴𝑖, so 𝑥 ∈ 𝐴𝑖, 𝑖 = 1, 2, … , 𝑛. By construction, each 𝐴𝑖 is

open, thus there exists 0 < 𝑟𝑖 ∈ ℝ such that 𝑆(𝑥, 𝑟𝑖) ∈ 𝐴𝑖. Fix 𝑟 = min1≤𝑖≤𝑛 𝑟𝑖, then
𝑆(𝑥, 𝑟) ⊂ ⋂𝑛

𝑖=1𝐴𝑖.
(iii) Let 𝑥 ∈ ⋃𝛼∈𝐼 𝐴𝛼 , so, for some 𝛼 ∈ 𝐼 , 𝑥 ∈ 𝐴𝛼 . 𝐴𝛼 is open, so there is

𝑟𝑖 > 0 such that 𝑆(𝑥, 𝑟) ⊂ 𝐴𝛼 ⊂ ⋃𝛼∈𝐼 𝐴𝛼 ⊂ 𝒢 . ■

Worth noting that (ii) cannot be extended for infinite intersections2. We
could start from the class 𝒢 and then define it as the open sets. The set 𝑋 and
the class 𝒢 are said to form a topological space. The topology of a space can
vary with the choices of the open sets that form 𝒢 .

Definition A.7. In a topological space (𝑋 , 𝒢 ), any open set containing 𝑥 ∈ 𝑋 is
said to be a neighbourhood of 𝑥 . If 𝐸 ⊂ 𝑋 , a point 𝑥 ∈ 𝑋 is said to be a limit
point or point of accumulation of 𝐸 if every neighbourhood of 𝑥 contains a
point of 𝐸 other than 𝑥 .

The closure of a set 𝐸 ⊂ 𝑋 , denoted by 𝐸, is the intersection of all closed sets
that contain 𝐸. 𝐸 is a closed set, and it contains all limit points of 𝐸.

Definition A.8. A set 𝑆 in a metric space 𝑀 is called nowhere dense if 𝑆 has
an empty interior3.

Theorem A.9. (Baire category theorem) A complete metric space is never the
union of a countable of nowhere dense sets.

2Take ℝ and the open intervals (0, 1 + 1
𝑛 ). ⋂∞

𝑛=1(0, 1 + 1
𝑛 ) = (0, 1], which contains no open

sphere with center at 1.
3𝑆 contains no open set besides the empty set.
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Proof. Take 𝑀 a complete metric space such that 𝑀 = ⋃∞
𝑛=1𝐴𝑛, where each 𝐴𝑛

is nowhere dense. So, there is some 𝑥1 ∉ 𝐴1. Construct the open sphere at
centre at 𝑥1 and radius less than the unity, 𝑟1, 𝑆(𝑥1, 𝑟1). By definition we have
that 𝑆(𝑥1, 𝑟1) ∩ 𝐴1 = ∅. 𝐴2 is also nowhere dense, so there is 𝑥2 ∉ 𝐴2 and 𝑥2 ∈
𝐵1\𝐴2. Construct the open sphere 𝑆(𝑥2, 𝑟2), with 𝑟2 < 1/2, so 𝑆(𝑥2, 𝑥1) ⊂ 𝑆(𝑥1, 𝑟1)
and 𝑆(𝑥2, 𝑟2) ∩ 𝐴2 = ∅. Proceeding 𝑛 steps, we have 𝑥𝑛 ∉ 𝐴𝑛, 𝑥𝑛 ∈ 𝐵𝑛−1\𝐴𝑛.
Construct the open sphere 𝑆(𝑥𝑛, 𝑟𝑛), with 𝑟𝑛 < 2−𝑛, so 𝑆(𝑥𝑛, 𝑥𝑛) ⊂ 𝑆(𝑥𝑛−1, 𝑟𝑛−1)
and 𝑆(𝑥𝑛, 𝑟𝑛) ∩ 𝐴𝑛 = ∅.

The previous construction says that {𝑥𝑛} is a Cauchy sequence since for𝑚, 𝑛 >
𝑁 we have 𝑥𝑛, 𝑥𝑚 ∈ 𝑆(𝑥𝑁 , 𝑟𝑁 ), such that

𝜌(𝑥𝑛, 𝑥𝑚) ≤ 21−𝑁 + 21−𝑁 = 22−2𝑁 → 0, as𝑁 → ∞. (A.6)

Denote 𝑥 = lim𝑛→∞ 𝑥𝑛, such that 𝑥𝑛 ∈ 𝐵𝑛, 𝑛 ≥ 𝑁 . So 𝑥 ∈ 𝐵𝑁 ⊂ 𝐵𝑁−1. But
𝑥 ∉ 𝐴𝑁−1 for any 𝑁 . This contradicts𝑀 = ⋃∞

𝑛=1𝐴𝑛. So some 𝐴𝑛 is not nowhere
dense. ■

Back to functions, we can say that, for given two metric spaces (𝑋 , 𝜌𝑋 ) and
(𝑌 , 𝜌𝑌 ), a function 𝑓 ∶ 𝑋 → 𝑌 is said to be continuous at 𝑥 = 𝑎 if, given 𝜀 > 0,
there is a 𝛿 > 0 such that

𝜌𝑋 (𝑥, 𝑎) < 𝛿 ⇒ 𝜌𝑌 (𝑓 (𝑥), 𝑓 (𝑎)) < 𝜀. (A.7)

We say that 𝑓 is continuous on 𝐸 ⊂ 𝑋 if 𝑓 is continuous on each point of 𝐸.
Saying that 𝑓 ∶ 𝑋 → 𝑌 is continuous means that 𝑓 is continuous at each point
of 𝑋 .

Lemma A.10. If (𝑋 , 𝜌𝑋 ) and (𝑌 , 𝜌𝑌 ) are metric spaces, a function 𝑓 ∶ 𝑋 → 𝑌 is
continuous if and only if 𝑓 −1(𝐺) is an open set in 𝑋 for each open set 𝐺 in 𝑌 .
Proof. Suppose 𝑓 is continuous and 𝐺 ∈ 𝑌 is open. If 𝑓 −1(𝐺) = ∅, it is open.
Now let 𝑎 ∈ 𝑓 −1(𝐺), 𝑓 (𝑎) ∈ 𝐺, then, there is a 𝜀 > 0 for which the sphere
𝑆(𝑓 (𝑎), 𝜀) ⊂ 𝐺. Then we can find 𝛿 > 0 such that

𝜌𝑋 (𝑥, 𝑎) < 𝛿 ⇒ 𝑓 (𝑥) ∈ 𝑆(𝑓 (𝑎), 𝜀) ⊂ 𝐺. (A.8)

So 𝑆(𝑎, 𝛿) ⊂ 𝑓 −1(𝐺), that is, 𝑓 −1(𝐺) is open.
Now take 𝑓 at the point 𝑎 ∈ 𝑋 . For each 𝜀 > 0, 𝑆(𝑓 (𝑎), 𝜀) = 𝐻 is an open set

in 𝑌 . If 𝑓 −1(𝐻) is open, we can find 𝛿 > 0 for which 𝑆(𝑎, 𝛿) ⊂ 𝑓 −1(𝐻), then
𝜌𝑋 (𝑥, 𝑎) < 𝛿 ⇒ 𝜌𝑌 (𝑓 (𝑥), 𝑓 (𝑎)) < 𝜀, (A.9)

so 𝑓 is continuous. ■
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Definition A.11. A class 𝒳 of subsets of a set 𝑋 is said to be a 𝜎𝜎𝜎-algebra (or
𝜎𝜎𝜎-field) if it satisfies

(i) ∅, 𝑋 belong to 𝒳 ;

(ii) If 𝐴 belongs to 𝒳 , then the complement 𝑋 − 𝐴 belongs to 𝒳 ;

(iii) If {𝐴𝑛} is a sequence of sets in 𝒳 , then the union ⋃∞
𝑛=1𝐴𝑛 belongs to 𝒳 .

In a topological space 𝑋 , the 𝜎-algebra ℬ𝑛 generated by the open sets is
called the class of Borel sets.

Lemma A.12. The class𝒫 𝑛 of half-open intervals in ℝ𝑛 generates the 𝜎-algebra
ℬ𝑛 of Borel sets in ℝ𝑛.
Proof. Denote by ℱ 𝑛 the 𝜎-algebra generated by 𝒫 𝑛. Any set in 𝒫 𝑛 is given by

𝒫 𝑛 ∶ {(𝑥1, 𝑥2, … , 𝑥𝑛) | 𝑎𝑖 < 𝑥𝑖 ≤ 𝑏𝑖; 𝑖 = 1, 2, … , 𝑛}, (A.10)

such sets can be obtained by a countable intersection

𝒫 𝑛 ∶
∞
⋂
𝑘=1

{(𝑥1, 𝑥2, … , 𝑥𝑛) | 𝑎𝑖 < 𝑥𝑖 < 𝑏𝑖 + 1
𝑘 ; 𝑖 = 1, 2, … , 𝑛} =

∞
⋂
𝑘=1

𝑅𝑛𝑘 , (A.11)

but each 𝑅𝑛𝑘 is an open rectangle, that is, 𝑅𝑛𝑘 ∈ ℬ𝑛. So 𝒫 𝑛 ⊂ ℬ𝑛 ⇒ ℱ 𝑛 ⊂ ℬ𝑛.
Any open set 𝐺 ∈ ℝ𝑛 is the union of rectangles of𝒫 𝑛 with boundaries at 𝑎𝑖, 𝑏𝑖

rational numbers, that is 𝑎𝑖, 𝑏𝑖 ∈ ℚ, but by lemma A.3, ℚ = ⋃∞
𝑛=1 𝐸𝑛, where 𝐸𝑛 is

the set of real numbers of the form 𝑝/𝑛, with 𝑝 ∈ ℤ. So 𝐸𝑛 is countable, so ℚ is
also countable. Then there are only a countable number of rectangles. Thus 𝐺 is
a countable union of sets in 𝒫 𝑛. It follows that ℬ𝑛 ⊂ 𝒫 𝑛 ⇒ ℬ𝑛 ⊂ ℱ 𝑛.

Thus ℬ𝑛 = ℱ 𝑛 ■

A set with the corresponding 𝜎-algebra, (𝑋 ,𝒳), is called a measurable space.
So, the real line, ℝ, with the Borel sets, (ℝ,ℬ), is a measurable space.

With the previous basic concepts developed, we now can define what is mea-
surability of a function.

Definition A.13. A function 𝑓 ∶ 𝑋 → ℝ is said to be𝒳𝒳𝒳 -measurable (or mea-
surable) if for every real number 𝛼 , the set

{𝑥 ∈ 𝑋 | 𝑓 (𝑥) > 𝛼} (A.12)

belongs to 𝒳 .
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Lemma A.14. Let 𝑓 and 𝑔 be measurable real-valued functions and let 𝑐, 𝑎 ∈ ℝ.
Then the functions

𝑐𝑓 , 𝑓 2, 𝑓 + 𝑔, 𝑓 𝑔, |𝑓 |, (A.13)
are also measurable.

Proof. If 𝑐 = 0, 𝑐𝑓 = 0 then the statement follows trivially. Take 𝑐 > 0, then
{𝑥 ∈ 𝑋 | 𝑐𝑓 (𝑥) > 𝛼} = {𝑥 ∈ 𝑋 | 𝑓 (𝑥) > 𝛼/𝑐}. (A.14)

If 𝑐 < 0, it follows similarly.
If 𝛼 > 0, then {𝑥 ∈ 𝑋 | (𝑓 (𝑥))2 > 𝛼} = 𝑋 ; if 𝛼 < 0, then
{𝑥 ∈ 𝑋 | (𝑓 (𝑥))2 > 𝛼} = {𝑥 ∈ 𝑋 | 𝑓 (𝑥) > √𝛼} ∪ {𝑥 ∈ 𝑋 | 𝑓 (𝑥) > −√𝛼} (A.15)

Take 𝑟 a rational number and define 𝑆𝑟 = {𝑥 ∈ 𝑋 | 𝑓 (𝑥) > 𝑟} ∪ {𝑥 ∈ 𝑋 | 𝑔(𝑥) >
𝛼 − 𝑟} ∈ 𝑋 . So,

{𝑥 ∈ 𝑋 | (𝑓 + 𝑔)(𝑥) > 𝛼} = ⋃𝑆𝑟 ∈ 𝑋. (A.16)

Write 𝑓 𝑔 = 1
4 [(𝑓 + 𝑔)2 − (𝑓 − 𝑔)2], so 𝑓 𝑔 is measurable.

If 𝛼 < 0, then {𝑥 ∈ 𝑋 | |𝑓 (𝑥)| > 𝛼} = 𝑋 . If 𝛼 > 0, then
{𝑥 ∈ 𝑋 | |𝑓 (𝑥)| > 𝛼} = {𝑥 ∈ 𝑋 | 𝑓 (𝑥) > 𝛼} ∪ {𝑥 ∈ 𝑋 | 𝑓 (𝑥) > −𝛼}. (A.17)

■

For any function 𝑓 ∶ 𝑋 → ℝ, we can define

𝑓 +(𝑥) = sup{𝑓 (𝑥), 0}, 𝑓 − = sup{−𝑓 (𝑥), 0}. (A.18)

Where 𝑓 +(𝑥) is called positive part of 𝑓 and 𝑓 −(𝑥) is the negative part of 𝑓 . Of
course we have that

𝑓 = 𝑓 + − 𝑓 −, |𝑓 | = 𝑓 + + 𝑓 −

𝑓 + = 1
2(|𝑓 | + 𝑓 ), 𝑓 − = 1

2(|𝑓 | − 𝑓 ). (A.19)

From the last lemma, one concludes that 𝑓 is measurable if and only if 𝑓 + and
𝑓 − are measurable.

The previous discusion and results can be easily translated to compex-valued
functions. If 𝑓 is a complex values function we can write it as 𝑓 = 𝑓1 + 𝑖𝑓2, so 𝑓
is measurable if and only if its real and imaginary parts are measurable.

After such a lenghty disscusion, we have some familiarity with the main
structures tha we need to push further our construnction. Now we can sit tight
and define what is a measure.
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Definition A.15. A measure is a extended real-valued function4 𝜇 defined on
a 𝜎-algebra 𝒳 of subsets of 𝑋 such that

(i) 𝜇(∅) = 0;
(ii) 𝜇(𝐸) ≥ 0 for all 𝐸 ∈ 𝒳 ;

(iii) 𝜇 is contably additive, that is, if {𝐸𝑛} is a disjoint sequence o sets in𝒳 , then

𝜇 (
∞
⋃
𝑛=1

𝐸𝑛) =
∞
∑
𝑛=1

𝜇(𝐸𝑛). (A.20)

Note that 𝜇 may be +∞, this means that for some set 𝐸𝑛 on the Eq. (A.20) we
have 𝜇(𝐸𝑛) = ∞ , or the series of positive numbers diverges. A set 𝑋 , a 𝜎-algebra
𝒳 , and a measure 𝜇 form ameasure space, denoted by (𝑋 ,𝒳 , 𝜇), or simply ⟨𝑋 , 𝜇⟩.
Theorem A.16. Suppose 𝜇 ∶ 𝒳 → ℝ∗ is a measure defined on the 𝜎-algebra 𝒳
and 𝐸, 𝐹 ∈ 𝒳 . Then

(i) if 𝐹 ⊂ 𝐸 and 𝜇(𝐹) is finite

𝜇(𝐸 − 𝐹) = 𝜇(𝐸) − 𝜇(𝐹); (A.21)

(ii) if 𝐹 ⊂ 𝐸 and 𝜇(𝐹) is infinite

𝜇(𝐸) = 𝜇(𝐹); (A.22)

Proof. (i)𝒳 is a 𝜎-algebra, so 𝐸 − 𝐹 ∈ 𝒳 , using the countably additivity of 𝜇 and
the fact that 𝐹 ∩ (𝐸 − 𝐹) = ∅ we have that

𝜇(𝐸) = 𝜇(𝐸 − 𝐹) + 𝜇(𝐹), (A.23)

we can subtract the finite real number 𝜇(𝐹) from both sides to obtain 𝜇(𝐸 − 𝐹) =
𝜇(𝐸) − 𝜇(𝐹).

(ii) if 𝜇(𝐹) = ∞, the expression 𝜇(𝐸 − 𝐹) = 𝜇(𝐸) − 𝜇(𝐹) has meaning only if
𝜇(𝐸 − 𝐹) ≠ −∞, so 𝜇(𝐸) = ∞. ■

Like in the case of functions, we can define the continuity of measures.
4Extendend real numbers are a compactification of real numbers adding the points {±∞}, that

is, ℝ∗ = ℝ ∪ {±∞}. The operations of multiplication and sum with the symbols ±∞ follows the
natural operations of reals. We adopt the convention that 0(±∞) = 0. Division by ±∞ is not
allowed.
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DefinitionA.17. Suppose𝒳 is a 𝜎-algebra, and 𝜇 ∶ 𝒳 → ℝ∗ is a measure. Then
for all 𝐸 ∈ 𝒳 we say that

(i) 𝜇 is continuous from below at 𝐸 if

lim𝑛→∞ 𝜇 (𝐸𝑛) = 𝜇(𝐸) (A.24)

for every monotone increasing sequence {𝐸𝑛} of sets in𝒳 which converges
to 𝐸;

(ii) 𝜇 is continuous from above at 𝐸 if lim𝑛→∞ 𝜇 (𝐸𝑛) = 𝜇(𝐸) is satisfied for
any monotone decreasing sequence {𝐸𝑛} in 𝒳 with limit 𝐸 which is such
that 𝜇(𝐸𝑛) < ∞ for some 𝑛;

(iii) 𝜇 is continuous at 𝐸 if it is continuous at 𝐸 from below and from above
(when 𝐸 = ∅ the first requirement is trivially satisfied).

In the next theorem we show that our definition of measure (definition A.15)
ensures the continuity of any measure.

Theorem A.18. Suppose 𝒳 is a 𝜎-algebra, and 𝜇 ∶ 𝒳 → ℝ∗ is additive5 set
function with 𝜇(𝐸) > −∞.

(i) If 𝜇 is countably additive, then 𝜇 is continuous at 𝐸 for all 𝐸 ∈ 𝒳 ;

(ii) if 𝜇 is continuous from below at every set 𝐸 ∈ 𝒳 , then 𝜇 is countably
additive;

(iii) if 𝜇 is finite and continuous from above at ∅, then 𝜇 is countably additive.

Proof. (i) Take 𝜇(𝐸𝑛) = ∞ for some 𝑛 = 𝑁 , and assume that {𝐸𝑛} is monotone
increasing. So, 𝜇(𝐸) = ∞ and 𝜇(𝐸𝑛) = ∞ for 𝑛 ≥ 𝑁 . Then 𝜇(𝐸𝑛) → 𝜇(𝐸), as
𝑛 → ∞.

Now assume that 𝜇(𝐸𝑛) < ∞ for all 𝑛 and {𝐸𝑛} is monotone increasing to 𝐸.
Then take the following disjoint decomposition of 𝐸

𝐸 = 𝐸1
∞
⋃
𝑛=1

(𝐸𝑛+1\𝐸𝑛) , (A.25)

5Additive means that, for {𝐸𝑖} a disjoint sequence, 𝜇 (⋃𝑛
𝑖=1 𝐸𝑖) = ∑𝑛

𝑖=1 𝜇(𝐸𝑖), for 𝑛 finite.
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by hypothesis, 𝜇 is countably additive, so

𝜇(𝐸) = 𝜇(𝐸1) +
∞
∑
𝑛=1

𝜇(𝐸𝑛+1 − 𝐸𝑛)

= 𝜇(𝐸1) + lim𝑁→∞

𝑁
∑
𝑛=1

𝜇(𝐸𝑛+1 − 𝐸𝑛)

= lim𝑁→∞ 𝜇(𝐸𝑁 ), (A.26)

so 𝜇 is continuous from below at 𝐸.
Now take {𝐸𝑛} as a monotone decreasing sequence that converges to 𝐸 and

assume that 𝜇(𝐸𝑁 ) < ∞. Define 𝐹𝑛 = 𝐸𝑁 −𝐸𝑛, such that 𝑛 ≥ 𝑁 . By (ii) of theorem
A.16, we have that 𝜇(𝐹𝑛) < ∞ and the sequence {𝐹𝑛} is monotone increasing to
𝐸𝑁 − 𝐸, so

As 𝑛 → ∞, 𝜇(𝐹𝑛) → 𝜇(𝐸𝑁 − 𝐸) = 𝜇(𝐸𝑁 ) − 𝜇(𝐸). (A.27)

On the other hand, 𝜇(𝐹𝑛) = 𝜇(𝐸𝑁 )−𝜇(𝐸), so 𝜇(𝐸𝑛) → 𝜇(𝐸) as 𝑛 → ∞, since 𝜇(𝐸𝑁 )
is finite. Then, 𝜇 is continuous from above at 𝐸. Thus, 𝜇 is continuous at 𝐸.

To prove (ii), we take 𝐸 ∈ 𝒳 , and 𝐸𝑖 ∈ 𝒳 , (𝑖 = 1, 2, … ) such that 𝐸 = ⋃∞
𝑖=1 𝐸𝑖

and 𝐸𝑖 are disjoint. Define 𝐹𝑛 = ⋃𝑛
𝑖=1 𝐸𝑖, so {𝐹𝑛} is an increasing sequence which

converges to 𝐸.
By hypothesis, 𝜇 is additive and continuous from below at 𝐸, so

𝑛
∑
𝑖=1

𝜇(𝐸𝑖) = 𝜇(𝐹𝑛) → 𝜇(𝐸), as 𝑛 → ∞

⇒ 𝜇(𝐸) =
∞
∑
𝑖=1

𝜇(𝐸𝑖), (A.28)

so 𝜇 is countably additive and, by (i), 𝜇 is continuous at 𝐸.
(iii) follows from denoting 𝐺𝑛 = 𝐸 − 𝐹𝑛 ∈ 𝒳 , such that 𝐹𝑛 = ⋃𝑛

𝑖=1 𝐸𝑖 and
noticing that {𝐺𝑛} is a decreasing sequence converging to ∅. So, once again, by
hypothesis 𝜇 is continuous from above at ∅, we have that

𝜇(𝐸) =
𝑛
∑
𝑖=1

𝜇(𝐸𝑖) + 𝜇(𝐺𝑛)

𝜇(𝐺𝑛) → 0 as 𝑛 → ∞

⇒ 𝜇(𝐸) =
∞
∑
𝑖=1

𝜇(𝐸𝑖), (A.29)

thus 𝜇 is countably additive and, therefore, 𝜇 is continuous. ■
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So we have proved our claim that the definition A.15 ensures the continuity
of measures. In light of the last theorem, we could define measures as the non-
negative continuous additive maps 𝜇 ∶ 𝒳 → ℝ∗, where 𝒳 is a 𝜎-algebra.

Before we start the construction that leads us to the integral, let us make one
more definition and prove one more useful theorem.
Definition A.19. A measure 𝜇 ∶ 𝒳 → ℝ∗ is said to be 𝜎𝜎𝜎-finite if, for each 𝐸 ∈
𝒳 , there is a unique sequence of sets 𝐶𝑖 ∈ 𝒳 , (𝑖 = 1, 2, … ) such that 𝐸 ⊂ ⋃∞

𝑖=1 𝐶𝑖
and 𝜇(𝐶𝑖) is finite for all 𝑖.

One should notice that a measure that is 𝜎-finite may be infinite. But a finite
measure is always 𝜎-finite.
Theorem A.20. (Hahn-Jordan Decomposition) Given a countably additive set
function 𝜇 ∶ 𝒳 → ℝ∗, on a 𝜎-algebra 𝒳 , there are measures 𝜇+ and 𝜇− on 𝒳
and subsets 𝑃, 𝑁 in 𝒳 such that 𝑃 ∪ 𝑁 = 𝑋 , 𝑃 ∩ 𝑁 = ∅, and for each 𝐸 ∈ 𝒳 ,

𝜇+(𝐸) = 𝜇(𝐸 ∩ 𝑃) ≥ 0, 𝜇−(𝐸) = −𝜇(𝐸 ∩ 𝑁) ≥ 0,
𝜇(𝐸) = 𝜇+(𝐸) − 𝜇−(𝐸), (A.30)

so that 𝜇 is the difference of two measures 𝜇+ and 𝜇− on𝒳 . At least one of 𝜇+ or
𝜇− is finite, and if 𝜇 is finite or 𝜎-finite, so are both 𝜇+ and 𝜇−.
Proof. First, we observe that 𝜇 does not satisfy (ii) of definition A.15. Without
loss of generality, we can assume that −∞ < 𝜇(𝐸) ≤ +∞ for all 𝐸 ∈ 𝒳 .

We begin by proving that if 𝐸 ∈ 𝒳 and 𝜆(𝐸) = inf𝐵⊂𝐸, 𝐵∈𝒳 𝜇(𝐵), then 𝜆(𝑋) ≠
−∞.

If our last statement is false, there exists a 𝐵1 ∈ 𝒳 such that 𝜇(𝐵1) < −1.
Then, at least one of 𝜆(𝐵1) or 𝜆(𝑋 −𝐵1)must be −∞; by our definitions, we have
that 𝜆(𝐴 ∪ 𝐵) ≥ 𝜆(𝐴) + 𝜆(𝐵), for disjoint sets 𝐴, 𝐵 in 𝒳 . Define

𝐴1 = {𝐵1, if 𝜆(𝐵1) = −∞,
𝑋 − 𝐵1, if 𝜆(𝑋 − 𝐵1) = −∞. (A.31)

By induction, for each integer 𝑛, take 𝐵𝑛+1 ⊂ 𝐴𝑛 such that 𝜇(𝐵𝑛+1) < −(𝑛 + 1)
and

𝐴𝑛+1 = {𝐵𝑛+1, if 𝜆(𝐵𝑛+1) = −∞,
𝐴𝑛 − 𝐵𝑛+1, if 𝜆(𝐴𝑛 − 𝐵𝑛+1) = −∞, (A.32)

so, 𝜆(𝐴𝑛+1) = −∞. We have two possibilities: (i) infinitely many integers 𝑛, such
that 𝐴𝑛 = 𝐴𝑛−1 − 𝐵𝑛, (ii) for some 𝑛 ≥ 𝑛0, 𝐴𝑛 = 𝐵𝑛.

If (i) holds, there is a subsequence of disjoint sets {𝐵𝑛𝑖}, and by the countable
additivity of 𝜇

𝜇 (
∞
⋃
𝑖=1

𝐵𝑛𝑖) =
∞
∑
𝑖=1

𝜇(𝐵𝑛𝑖) ≤
∞
∑
𝑖=1

−(𝑛𝑖 + 1) = −∞, (A.33)
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so 𝜇(𝐸) = −∞ for 𝐸 = ⋃∞
𝑖=1 𝐵𝑛𝑖 ∈ 𝒳 , which contradicts the assumption that

−∞ < 𝜇(𝐸) ≤ +∞.
If (ii) is true, take 𝐸 = ⋂∞

𝑛=𝑛0 𝐵𝑛 ∈ 𝒳 , where {𝐵𝑛} is a decreasing sequence of
sets. Then

𝜇(𝐸) = lim𝑛→∞ 𝜇(𝐵𝑛) = −∞, (A.34)

which also contradicts our assumption.
We conclude that 𝜆(𝑋) ≠ −∞.
We have that 𝜇(∅) = 0, and 𝜆(𝑋) ≤ 0, so 𝜆 = 𝜆(𝑋) is finite. Take a sequence

of sets {𝐶𝑛} in𝒳 such that 𝜇(𝐶𝑛) ≤ 𝜆+2−𝑛. We note that, using (vi) of proposition
A.1, we can write

𝐶𝑛 ∪ 𝐶𝑛+1 = (𝐶𝑛\(𝐶𝑛 ∩ 𝐶𝑛+1)) ∪ (𝐶𝑛+1\(𝐶𝑛 ∩ 𝐶𝑛+1)) ∪ (𝐶𝑛 ∩ 𝐶𝑛+1) , (A.35)

and notice that the right-hand side is a disjoint decomposition of the left-hand
side. By the countable additivity of 𝜇, we have that

𝜇(𝐶𝑛 ∩ 𝐶𝑛+1) = 𝜇(𝐶𝑛) + 𝜇(𝐶𝑛+1) − 𝜇(𝐶𝑛 ∪ 𝐶𝑛+1)
< 𝜆 + 2−𝑛 + 𝜆 + 2−𝑛−1 − 𝜆 = 𝜆 + 2−𝑛 + 2−𝑛−1. (A.36)

The same argument can be repeated for the intersection of (𝐶𝑛 ∩𝐶𝑛+1)with 𝐶𝑛+2,
proceeding by induction, one gets that

𝜇 (
𝑝
⋂
𝑟=𝑛

𝐶𝑟) < 𝜆 +
𝑝
∑
𝑟=𝑛

2−𝑟 < 𝜆 + 21−𝑛. (A.37)

Now define𝐷𝑛 = ⋂∞
𝑟=𝑛 𝐶𝑟 , so𝐷𝑛 ∈ 𝒳 . By (i) of theoremA.18, our set function

𝜇 is continuous, so 𝜇(𝐷𝑛) ≤ 𝜆 − 21−𝑛, which shows that {𝐷𝑛} is a monotone
increasing sequence in 𝒳 . Take 𝑁 = lim𝑛→∞ 𝐷𝑛 = lim inf𝑛→∞ 𝐶𝑛 ∈ 𝒳 , so one
gets that 𝜇(𝑁 ) = 𝜆 = inf𝑁⊂𝑋,𝑁∈𝒳 𝜇(𝑁 ).

Now take 𝑃 = 𝑋 − 𝑁 . If 𝐸 ∈ 𝒳 and 𝐸 ⊂ 𝑃 , we must have that 𝜇(𝐸) ≥ 0,
otherwise 𝜇(𝐸 ∪ 𝑁) = 𝜇(𝐸) + 𝜇(𝑁 ) < 𝜆. If 𝐸 ∈ 𝒳 and 𝐸 ⊂ 𝑁 , then 𝜇(𝐸) ≤ 0,
otherwise 𝜇(𝑁 − 𝐸) = 𝜇(𝑁 ) − 𝜇(𝐸) < 𝜆. Then, for any 𝐸 ⊂ 𝑋 and 𝐸 ∈ 𝒳 , define

𝜇+(𝐸) = 𝜇(𝐸 ∩ 𝑃), 𝜇−(𝐸) = 𝜇(𝐸 ∩ 𝑁), (A.38)

so the theorem is satisfied. ■

The decomposition 𝜇 = 𝜇+ − 𝜇− is called the Jordan decomposition and is
unique. The decomposition of 𝑋 into 𝑃 and 𝑁 is sometimes called the Hahn de-
composition, and it is not unique. From our proof of the theorem, we can deduce
that

𝜇−(𝐸) = − inf𝐵⊂𝐸,𝐵∈𝒳 𝜇(𝐵), 𝜇+(𝐸) = sup
𝐵⊂𝐸,𝐵∈𝒳

𝜇(𝐵). (A.39)

Now we are able to continue along the path that culminates in the integral.
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Definition A.21. A real-valued function is called simple if it has only a finite
number of values. If 𝐸1, 𝐸2, … , 𝐸𝑛 are disjoint subsets of 𝑋 , a simple function can
be represented as

𝑓 (𝑥) =
𝑛
∑
𝑖=1

𝑎𝑖𝜒𝐸𝑖 , (A.40)

where 𝑎𝑖 ∈ ℝ for 𝑖 = 1, 2, … , 𝑛 and 𝜒𝐸𝑖 is the indicator function.
Just applying the previous representation shows that the sum and product of

simple functions are simple functions. Now, using our definition ofmeasurability,
definition A.13, we can show that
Lemma A.22. Any simple function is measurable.

Proof. Using that 𝑓 = ∑𝑛
𝑖=1 𝑎𝑖𝜒𝐸𝑖 , we have that 𝐸𝑐 = {𝑥 | 𝑓 (𝑥) > 𝑐}. Such a set 𝐸𝑐

is the finite union of sets 𝐸𝑖 ∈ 𝒳 , with 𝑎𝑖 > 𝑐, so 𝐸𝑐 ∈ 𝒳 . By our definition, 𝑓 is
measurable. ■
TheoremA.23. Any non-negative measurable function 𝑓 ∶ 𝑋 → ℝ+ is the limit
of a monotone increasing sequence of non-negative simple functions.

Proof. For each positive integer 𝑠, define
𝑄𝑝,𝑠 = {𝑥 | 𝑝 − 1

2𝑠 ≤ 𝑓 (𝑥) < 𝑝
2𝑠 } , (𝑝 = 1, 2, … , 22𝑠)

𝑄0,𝑠 = 𝑋 −
22𝑠
⋃
𝑝=1

= {𝑥 | 𝑓 (𝑥) ≥ 2𝑠}, (A.41)

𝑓 is measurable, 𝑄𝑝,𝑠 ∈ 𝒳 , and 𝑄𝑝,𝑠 (𝑝 = 0, 1, 2, … , 22𝑠) are disjoint. The function

𝑓𝑠(𝑥) = {
𝑝−1
2𝑠 , if 𝑥 ∈ 𝑄𝑝,𝑠 (𝑝 = 1, 2, … , 22𝑠)
2𝑠 , if 𝑥 ∈ 𝑄0,𝑠

(A.42)

is a simple function. It follows directly that 0 ≤ 𝑓𝑠 < 𝑓 . If 𝑥 ∈ 𝑄𝑝,𝑠 , then either
𝑥 ∈ 𝑄2𝑝−1,𝑠+1 or 𝑥 ∈ 𝑄2𝑝,𝑠+1, so that, either 𝑓𝑠(𝑥) = 𝑓𝑠+1(𝑥) or 𝑓𝑠(𝑥) + 2

2𝑠+1 =
𝑓𝑠+1(𝑥).

If 𝑥 ∈ 𝑄0,𝑠 , then 𝑓𝑠(𝑥) = 2𝑠 ≤ 𝑓 (𝑥), so that, in either case 𝑥 ∈ 𝑄0,𝑠+1 or
𝑥 ∈ 𝑄𝑝,𝑠+1 for some 𝑝 ≥ 22𝑠+1 + 1. In either case, we have that for each inte-
ger 𝑠, 𝑓𝑠+1(𝑥) ≥ 𝑓𝑠(𝑥) ∀ 𝑥 ∈ 𝑋 . Thus, the sequence {𝑓𝑠} of simple functions is
monotone increasing.

Take 𝑥 such that 𝑓 (𝑥) is finite and 2𝑠 > 𝑓 (𝑥), then
0 ≤ 𝑓 (𝑥) − 𝑓𝑠(𝑥) < 2−𝑠 (A.43)
⇒ 𝑓𝑠(𝑥) → 𝑓 (𝑥), as 𝑠 → ∞. (A.44)

If 𝑓 (𝑥) = ∞, then 𝑓𝑠(𝑥) = 2𝑠 ⇒ 𝑓𝑠(𝑥) → 𝑓 (𝑥) as 𝑠 → ∞. ■
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It is important to notice that the previous theorem does not establish the
uniqueness of the monotone increasing sequence of simple functions that con-
verges to the non-negative measurable function. There are many sequences of
simple functions that may converge to 𝑓 .

In a topological space, a function that is measurable with respect to the Borel
sets is said to be Borel measurable.

Lemma A.24. Any continuous function 𝑓 ∶ 𝑋 → ℝ on a topological space 𝑋 is
Borel measurable.

Proof. 𝑓 is continuous, so the inverse image of an open set in ℝ is an open set in
𝑋 . So {𝑥 | 𝑓 (𝑥) < 𝑐} is open for all 𝑐 ∈ ℝ, and by the definition of Borel sets, it
belongs to ℬ. ■

Before we define what an integral is, a final definition that will prove its
importance later.

Definition A.25. We say that a function 𝑓 (𝑥) has the property 𝑃 almost every-
where with respect to 𝜇, if there is a set 𝐸 ∈ 𝒳 with 𝜇(𝐸) = 0 such that 𝑓 (𝑥) has
the property for all 𝑥 ∈ 𝑋 − 𝐸. We then write

𝑓 (𝑥) has property 𝑃 𝑎.𝑒. (𝜇). (A.45)

If it raises no ambiguity, we may omit (𝜇).
Now we have all the ingredients to define the integral in measure theory.

Definition A.26. If 𝑓 is a non-negative simple function, we define the integral
of 𝑓 with respect to 𝜇 to be the extended real number

∫𝑓 d𝜇 =
𝑛
∑
𝑖=1

𝑎𝑖𝜇(𝐸𝑖), (A.46)

where the sequence {𝐸𝑖} is disjoint.
The expected linearity of the integral follows from the definition of simple

functions, definition A.21, and from the definition of a measure, definition A.15.

Definition A.27. If 𝑓 is a non-negative measurable function, we define the in-
tegral of 𝑓 with respect to 𝜇 to be the extended real number

∫𝑓 d𝜇 = sup∫𝑓𝑠d𝜇, (A.47)

where 𝑓𝑠 is a simple function and the supremum is taken over all simple functions
that satisfy 0 ≤ 𝑓𝑠(𝑥) ≤ 𝑓 (𝑥) for all 𝑥 ∈ 𝑋 . If 𝑓 is non-negative and measurable
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and 𝐸 ∈ 𝒳 , then 𝑓 𝜒𝐸 is non-negative andmeasurable, andwe define the integral
of 𝑓 over 𝐸 with respect to 𝜇 to be the extended real number

∫𝐸 𝑓 d𝜇 = ∫ 𝑓 𝜒𝐸d𝜇. (A.48)

Again, the linearity of the integral follows from the definitions. We observe
that if we have 𝑓 , 𝑔 two non-negative measurable functions such that 𝑓 ≥ 𝑔, we
may write 𝑓 = 𝑔 + (𝑓 − 𝑔), such that (𝑓 − 𝑔) ≥ 0, so

∫𝑓 d𝜇 = ∫𝑔d𝜇 + ∫(𝑓 − 𝑔)d𝜇 ≥ ∫𝑔d𝜇. (A.49)

So the integral is a monotone operation.
We say that a function is integrable if its integral is finite. Note that a function

can be measurable but not integrable.
Now we give some theorems about the continuity of the integral.

Theorem A.28. (Monotone convergence theorem) Suppose {𝑓𝑛} is a monotone
increasing sequence of non-negative measurable functions: 𝑋 → ℝ+ and 𝑓𝑛 → 𝑓
for all 𝑥 ∈ 𝑋 , then

∫𝑓 d𝜇 = lim𝑛→∞∫𝑓𝑛d𝜇, (A.50)

in the sense that, if 𝑓 is integrable, the integrals ∫ 𝑓𝑛d𝜇 converge to ∫ 𝑓 d𝜇; while if
𝑓 is not integrable, either 𝑓𝑛 is integrable for all 𝑛 and ∫ 𝑓𝑛d𝜇 → +∞ as 𝑛 → +∞,
or there is an integer 𝑁 such that 𝑓𝑁 is not integrable so that ∫ 𝑓𝑛d𝜇 = ∞ for
𝑛 ≥ 𝑁 .

Proof. For each 𝑛 = 1, 2, … choose an increasing sequence {𝑓𝑛,𝑘} (𝑘 = 1, 2, … )
of non-negative simple functions converging to 𝑓𝑛. Set 𝑔𝑘 = max𝑛≤𝑘 𝑓𝑛,𝑘 , such
that {𝑔𝑘} is a non-decreasing sequence of non-negative simple functions, so 𝑔 =
lim𝑘→∞ 𝑔𝑘 , and 𝑔 is non-negative and measurable. But 𝑓𝑛,𝑘 ≤ 𝑔𝑘 ≤ 𝑓𝑘 ≤ 𝑓 , 𝑛 ≤ 𝑘,
so 𝑓𝑛 ≤ 𝑔 ≤ 𝑓 , as 𝑘 → ∞ ⇒ 𝑓 = 𝑔 as 𝑛 → ∞. Using the fact that the integral is
monotone, Eq. (A.49), we may write that

∫𝑓𝑛,𝑘d𝜇 ≤ ∫𝑔𝑘d𝜇 ≤ ∫ 𝑓𝑘d𝜇, 𝑛 ≤ 𝑘,

∫ 𝑓𝑛d𝜇 ≤ ∫𝑔d𝜇 ≤ lim𝑘→∞∫𝑓𝑘d𝜇, as 𝑘 → ∞, and 𝑛 fixed,

lim𝑛→∞∫𝑓𝑛d𝜇 ≤ ∫𝑔d𝜇 ≤ lim𝑘→∞∫𝑓𝑘d𝜇, as 𝑛 → ∞,

lim𝑛→∞∫𝑓𝑛d𝜇 = ∫𝑔d𝜇 = ∫ 𝑓 d𝜇. (A.51)

■
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Corollary A.29. (Absolute continuity) If 𝑓 is integrable over𝑋 , then, for𝐴 ∈ 𝒳 ,

∫𝐴 𝑓 d𝜇 → 0 as 𝜇(𝐴) → 0 (A.52)

Proof. Take

𝑓𝑛(𝑥) = {𝑓 , if |𝑓 | ≤ 𝑛,
𝑛, if |𝑓 | ≥ 𝑛. (A.53)

so |𝑓𝑛| is monotonic increasing to |𝑓 | as 𝑛 → ∞. By Eqs. (A.19), it follows that |𝑓 |
is integrable and

|∫ 𝑓 d𝜇| = |∫ 𝑓+d𝜇 − ∫ 𝑓−d𝜇| ≤ ∫ 𝑓+d𝜇 + ∫ 𝑓−d𝜇 = ∫ |𝑓 |d𝜇. (A.54)

Once |𝑓 | is integrable, we have that ∫ |𝑓𝑛|d𝜇 → ∫ |𝑓 |d𝜇 as 𝑛 → ∞.
Given 𝜀 > 0, take 𝑁 such that

∫𝑓 d𝜇 < ∫ |𝑓𝑛|d𝜇 + 𝜀
2, as 𝑛 ≥ 𝑁 , (A.55)

if 𝐴 ∈ 𝒳 is such that 𝜇(𝐴) < 𝜀/2, then

|∫𝐴 𝑓 d𝜇| ≤ ∫𝐴 |𝑓 |d𝜇 = ∫𝐴 |𝑓𝑁 |d𝜇 + ∫𝐴 (|𝑓 | − |𝑓𝑁 |) d𝜇 < 𝜀
2 + ∫𝑋 (|𝑓 | − |𝑓𝑁 |) d𝜇 < 𝜀.

(A.56)
■

Theorem A.30. (Fatou’s lemma) If {𝑓𝑛} is a sequence of measurable functions
which is bounded below by an integrable function, then

∫ lim inf𝑛→∞ 𝑓𝑛d𝜇 ≤ lim inf𝑛→∞ ∫𝑓𝑛d𝜇. (A.57)

Proof. First, we notice that lim inf picks out the smallest value of a sequence. So
the theorem says that if we pick the smallest values and integrate, it is smaller
or equal to the integral of the smallest values.

Set 𝑔 as the integrable function that bounds from below the sequence {𝑓𝑛}.
Without loss of generality, we can assume that 𝑓𝑛 ≥ 0 for all 𝑛. So define ℎ𝑛 =
𝑓𝑛 − 𝑔 ≥ 0 𝑎.𝑒.

∫ ℎ𝑛d𝜇 = ∫ 𝑓𝑛d𝜇 − ∫𝑔d𝜇
lim inf ℎ𝑛 = lim inf 𝑓𝑛 − 𝑔 𝑎.𝑒., (A.58)
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Define 𝑔𝑛 = lim inf𝑘≥𝑛 𝑓𝑘 , so 𝑔𝑘 is an increasing sequence of measurable functions
and lim𝑛→∞ 𝑔𝑛 = lim inf𝑛→∞ 𝑓𝑛. But 𝑓𝑛 ≥ 𝑔𝑛 for all 𝑛, so, using the monotone
convergence theorem (Theorem A.28), we get

lim inf𝑛→∞ ∫𝑓𝑛d𝜇 ≥ lim𝑛→∞∫𝑔𝑛d𝜇 = ∫ lim𝑛→∞ 𝑔𝑛d𝜇 = ∫ lim inf𝑛→∞ 𝑓𝑛d𝜇. (A.59)

■

Repeating the last proof but setting 𝑔𝑛 = −𝑓𝑛 (𝑛 = 1, 2, … ), we can prove that

Corollary A.31. If {𝑓𝑛} is a sequence of measurable functions which is bounded
above by an integrable function, then

∫ lim sup
𝑛→∞

𝑓𝑛d𝜇 ≥ lim sup
𝑛→∞ ∫𝑓𝑛d𝜇. (A.60)

Theorem A.32. (Lebesgue dominated convergence theorem)

(i) If 𝑔 ∶ 𝑋 → ℝ+ is integrable, {𝑓𝑛} is a sequence of measurable functions
𝑋 → ℝ∗, such that |𝑓𝑛| ≤ 𝑔 (𝑛 = 1, 2, … ) and 𝑓𝑛 → 𝑓 as 𝑛 → ∞, then 𝑓 is
integrable and

∫𝑓𝑛d𝜇 → ∫𝑓 d𝜇, as 𝑛 → ∞; (A.61)

(ii) Suppose 𝑔 ∶ 𝑋 → ℝ+ is integrable, −∞ ≤ 𝑎 < 𝑏 ≤ +∞, and for each
𝑡 ∈ (𝑎, 𝑏), 𝑓𝑡 is a measurable function 𝑋 to ℝ∗. Then if |𝑓𝑡 | ≤ 𝑔 for all
𝑡 ∈ (𝑎, 𝑏) and 𝑓𝑡 → 𝑓 as 𝑡 → 𝑎+ or 𝑡 → 𝑏−, then 𝑓 is integrable and

∫𝑓𝑡d𝜇 → ∫𝑓 d𝜇. (A.62)

Proof. For (i), first consider the case where 𝑓𝑛 ≥ 0 and 𝑓𝑛 → 0 as 𝑛 → ∞. Using
Fatou’s Lemma and its corollary (theorems A.30 and A.31), we obtain that

lim sup∫𝑓𝑛d𝜇 ≤ ∫ lim sup 𝑓𝑛d𝜇 = ∫ 0d𝜇 = 0

∫ lim inf 𝑓𝑛d𝜇 = 0 ≤ lim inf∫𝑓𝑛d𝜇 ≤ lim sup∫𝑓𝑛d𝜇

⇒ lim∫𝑓𝑛d𝜇 = 0. (A.63)

In the general case, take ℎ𝑛 = |𝑓𝑛−𝑓 |, such that 0 ≤ ℎ𝑛 ≤ 2𝑔, where 𝑔 is integrable.
Thus, ℎ𝑛 is integrable and ℎ𝑛 → 0 as 𝑛 → ∞, and

|∫ 𝑓𝑛d𝜇 − ∫ 𝑓 d𝜇| ≤ ∫ |𝑓𝑛 − 𝑓 |d𝜇 → 0 as 𝑛 → ∞, (A.64)
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hence ∫ 𝑓𝑛d𝜇 → ∫ 𝑓 d𝜇 as 𝑛 → ∞, and 𝑓 is measurable.
For (ii), suppose that 𝑓𝑡 → 𝑓 as 𝑡 → 𝑎+. Then take 𝑓𝑛 = 𝑓𝑡𝑛 , where {𝑡𝑛} is any

sequence in (𝑎, 𝑏) converging to 𝑎. Thus, 𝑓 = lim 𝑓𝑛, and by (i) we obtain that

∫𝑓𝑛d𝜇 → ∫𝑓 d𝜇, as 𝑛 → ∞, for any {𝑡𝑛}. (A.65)

Therefore, ∫ 𝑓𝑡d𝜇 approaches ∫ 𝑓 d𝜇 as 𝑡 → 𝑎 through values in (𝑎, 𝑏). ■

We end this section with a short discussion about Lebesgue measure, culmi-
nating in the Riemann-Stieltjes integral. We also present one final theorem (in
this section) and analyze its consequences. We note that we have not developed
enough concepts to give a proper construction of such objects, so some of our
conclusions can be proved using a more detailed construction.

First, we observe that we can define over the real line, ℝ, the class ℱ of all
finite unions of sets of the forms (𝑎, 𝑏], (−∞, 𝑏], (𝑎, +∞), and (−∞, +∞), and we
can define the measure 𝑙 as the length of the interval. Similarly to the proof of
proposition A.12, we can show that ℱ generates the 𝜎-algebra ℱ ∗. Sets that
are measurable in the ℱ ∗ are said to be Lebesgue measurable. We can restrict
the measure 𝑙 to the Borel sets ℬ, which are all ℱ ∗-measurable. When such a
restriction is adopted, 𝑙 is called Borel or Lebesgue measure. An analogous
argument can be used to construct the Lebesgue measure in ℝ𝑘 .

Instead of using the notation d𝑙 for integration with the Lebesgue measure,
we use d𝑥 , and in the case of an integral over a single interval 𝐸 = (𝑎, 𝑏], we use
the endpoints of the interval in the integral. That is,

we use∫𝑓 (𝑥)d𝑥 instead of∫𝑓 d𝑙

we use∫
𝑏

𝑎
𝑓 (𝑥)d𝑥 instead of∫𝐸 𝑓 d𝑙

The Lebesgue measure is not the unique measure possible in ℝ𝑘 . Suppose
𝐹 ∶ ℝ → ℝ is a monotone increasing function which is everywhere continuous
on the right. Such a function can be used to define a measure of an interval by
setting

𝜇𝐹 (𝑎, 𝑏] = 𝐹(𝑏) − 𝐹(𝑎) (A.66)

for each (𝑎, 𝑏] ∈ 𝒫 . Such a measure is called Stieltjes measure. This measure
can be used to define the Riemann-Stieltjes integral, which is denoted by

∫𝑓 (𝑥)𝜇𝐹 = ∫ 𝑓 (𝑥)d𝐹(𝑥). (A.67)
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It can also be directly generalized if 𝐹 is a multivariable function, that is, if
𝐹 ∶ ℝ𝑘 → ℝ. In addition, if we have that ∫ d𝐹 = 1, 𝐹(𝑥) is said a probabil-
ity measure and the space (𝑋 ,𝒳 , 𝐹) is called a probability space.

All the previous theorems have been proved for any measure, so all of them
hold in the case of either Lebesgue or Stieltjes measures.

Definition A.33. Take 𝒳 as a 𝜎-algebra of subsets of 𝑋 and 𝜇 as a measure on
𝒳 . The set function 𝜈 ∶ 𝒳 → ℝ∗ is said to be absolutely continuous with
respect to 𝜇 if 𝜈(𝐸) = 0 for every 𝐸 ∈ 𝒳 with 𝜇(𝐸) = 0. In this case, we write
𝜈 ⋖ 𝜇. Furthermore, we say that 𝜈 is singular with respect to 𝜇 if there exists a
set 𝐸0 ∈ 𝒳 such that 𝜇(𝐸0) = 0 and 𝜈(𝐸) = 𝜈(𝐸 ∩ 𝐸0) for all 𝐸 ∈ 𝒳 .

Clearly, any function which is 𝜇-integrable is also 𝜈-integrable if 𝜈 ⋖ 𝜇.
Lemma A.34. If (𝑋 ,𝒳 , 𝜇) is a measure space and 𝜈 ∶ 𝒳 → ℝ is finite-valued,
countably additive, and 𝜈 ⋖ 𝜇, then for any 𝜀 > 0, there exists a 𝛿 > 0 such that
for all 𝐸 ∈ 𝒳 ,

𝜇(𝐸) < 𝛿 ⇒ |𝜈(𝐸)| < 𝜀. (A.68)

Proof. From the Hahn-Jordan decomposition (theorem A.20), any such 𝜈 is the
difference of two finite measures. Thus, it is enough to consider 𝜈 as a measure.
Suppose that Eq. (A.68) is false, so there exists an 𝜀 > 0 and a sequence {𝐸𝑛} of
sets in 𝒳 such that 𝜈(𝐸𝑛) > 𝜀 and 𝜇(𝐸𝑛) < 2−𝑛. Take 𝐸 = lim sup 𝐸𝑛. Then,

𝜇(𝐸) ≤ 𝜇 (
∞
⋃

𝑟=𝑛+1
𝐸𝑟) ≤

∞
∑

𝑟=𝑛+1
𝜇(𝐸𝑟 ) < 2−𝑛, (A.69)

so that 𝜇(𝐸) = 0, while

𝜈(𝐸) = lim 𝜈 (
∞
⋃

𝑟=𝑛+1
𝐸𝑟) ≥ lim sup 𝜈(𝐸𝑟 ), (A.70)

which leads to 𝜈(𝐸) ≥ 𝜀, contradicting 𝜈 ⋖ 𝜇. Thus, Eq. (A.68) holds. ■

TheoremA.35. (Radon-Nikodým theorem)Given a 𝜎-finitemeasure space (𝑋 ,𝒳 , 𝜇)
and a countably additive, 𝜎-finite set function 𝜈 , there exists a unique decompo-
sition

𝜈 = 𝜈1 + 𝜈2, (A.71)
into countably additive set functions 𝜈𝑖 which are 𝜎-finite and such that 𝜈1 is
singular with respect to 𝜇 and 𝜈2 ⋖ 𝜇. Furthermore, there exists a finite-valued
measurable function 𝑓 ∶ 𝑋 → ℝ such that

𝜈2(𝐸) = ∫𝐸 𝑓 d𝜇, for all 𝐸 ∈ 𝒳. (A.72)
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The function 𝑓 is unique in the sense that if we also have

𝜈2(𝐸) = ∫𝐸 𝑔d𝜇, (A.73)

for all 𝐸 ∈ 𝒳 , then 𝑓 (𝑥) = 𝑔(𝑥) except in a set of zero measure.

Proof. We can express 𝑋 as a union of a countable set of disjoint sets on which
both 𝜇 and 𝜈 are finite, so we can consider them both finite on 𝑋 . This applies to
both the existence and uniqueness proofs. We start by proving that the decom-
position is unique.

Let
𝜈 = 𝜈1 + 𝜈2 = 𝜈3 + 𝜈4, (A.74)

where 𝜈1 and 𝜈3 are singular and 𝜈2 and 𝜈4 are absolutely continuous. Then 𝜈1 −
𝜈3 = 𝜈4 − 𝜈2. The union of the support sets of 𝜈1 and 𝜈3 gives a set 𝐸0 such that

(𝜈1 − 𝜈3)(𝐸) = (𝜈1 − 𝜈3)(𝐸 ∩ 𝐸0), 𝜇(𝐸0) = 0. (A.75)

But (𝜈4 − 𝜈2) is absolutely continuous and therefore zero on any null set, so

(𝜈1 − 𝜈3)(𝐸) = (𝜈4 − 𝜈2)(𝐸) = (𝜈1 − 𝜈3)(𝐸 ∩ 𝐸0) = (𝜈4 − 𝜈2)(𝐸 ∩ 𝐸0) = 0. (A.76)

Thus, 𝜈1 = 𝜈3 and 𝜈4 = 𝜈2. The uniqueness of the integral representation of 𝜈2
follows trivially from Eq. (A.49). Now, we must find the decomposition and the
integral representation.

From TheoremA.20, we can decompose 𝜈 into the difference of twomeasures,
so it is enough to prove the theorem assuming 𝜈 is a measure. Letℳ be the class
of non-negative measurable functions 𝑓 ∶ 𝑋 → ℝ such that

𝜈(𝐸) ≥ ∫𝐸 𝑓 d𝜇, ∀ 𝐸 ∈ 𝒳. (A.77)

and define
𝛼 = sup {∫ 𝑓 d𝜇 | 𝑓 ∈ ℳ} . (A.78)

Consider a sequence {𝑓𝑛} of functions in ℳ such that

∫𝑓𝑛d𝜇 > 𝛼 − 1
𝑛 . (A.79)

Define 𝑔𝑛 = max{𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑛(𝑥)}. Then, for any 𝐸 ∈ 𝒳 and fixed 𝑛, we
can decompose 𝐸 into a disjoint union of sets 𝐸 = 𝐸1 ∪ 𝐸2 ∪ ⋯ ∪ 𝐸𝑛 ∈ 𝒳 such
that 𝑔𝑛 = 𝑓𝑖 on 𝐸𝑖. Hence,

∫𝐸 𝑔𝑛d𝜇 =
𝑛
∑
𝑖=1

∫𝐸𝑖
𝑔𝑛d𝜇 =

𝑛
∑
𝑖=1

∫𝐸𝑖
𝑓𝑖d𝜇 ≤

𝑛
∑
𝑗=1

𝜈(𝐸𝑗) = 𝜈(𝐸), (A.80)
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so that 𝑔𝑛 ∈ ℳ for all 𝑛. Since 𝑔𝑛 is monotone increasing, by the Monotone
Convergence Theorem (Theorem A.28), 𝑓0(𝑥) = lim𝑛→∞ 𝑔𝑛(𝑥) ∈ ℳ. Since
𝑓0(𝑥) ≥ 𝑓𝑛(𝑥) for all 𝑛, we must have

𝛼 = ∫ 𝑓0(𝑥)d𝜇. (A.81)

For each 𝐸 ∈ 𝒳 , define

𝜈2(𝐸) = ∫𝐸 𝑓0d𝜇, 𝜈1(𝐸) = 𝜈(𝐸) − 𝜈2(𝐸). (A.82)

Then 𝜈2 ⋖ 𝜇, and it remains to show that 𝜈1 is singular.
Take the countably additive set function 𝜆𝑛 = 𝜈1 − 1

𝑛𝜇 and use Theorem A.20
to decompose 𝑋 into positive and negative sets 𝑁𝑛, 𝑃𝑛 such that 𝑃𝑛 ∪ 𝑁𝑛 = 𝑋 ,
𝑃𝑛 ∩ 𝑁𝑛 = ∅, 𝐸 ⊂ 𝑃𝑛 ⇒ 𝜆𝑛(𝐸) ≥ 0, and 𝐸 ⊂ 𝑁𝑛 ⇒ 𝜆𝑛(𝐸) ≤ 0. Take 𝐸 ⊂ 𝑃𝑛:

𝜈(𝐸) = 𝜈1(𝐸) + 𝜈2(𝐸) ≥ 𝜈2(𝐸) + 1
𝑛𝜇(𝐸) = ∫𝐸 (𝑓0 +

1
𝑛) d𝜇. (A.83)

Thus, 𝑓 = 𝑓0 on 𝑁𝑛 and 𝑓 = (𝑓0 + 1
𝑛 ) on 𝑃𝑛, which belongs to ℳ. This gives an

integral less than 𝛼 , by the definition of 𝛼 , unless 𝜇(𝑃𝑛) = 0. If 𝑃 = ⋃∞
𝑛=1 𝑃𝑛, then

𝜇(𝑃) = 0. Further, 𝑋 − 𝑃 ⊂ 𝑁𝑛 for all 𝑛, so that 𝜈(𝑋 − 𝑃) = 0 and

𝜈1(𝐸) = 𝜈1(𝐸 ∩ 𝑃), ∀ 𝐸 ∈ 𝒳. (A.84)

That is, 𝜈1 is singular. ■

If (𝑋 ,𝒳 , 𝜇) is a 𝜎-finite measure space and

𝜈(𝐸) = ∫𝐸 𝑓 d𝜇 for 𝐸 ∈ 𝒳, (A.85)

then we write 𝑓 = 𝑑𝜈
d𝜇 and call 𝑓 the Radon-Nikodým derivative of 𝜈 with respect

to 𝜇.

A.2 Different Kinds of Spaces
In this section, we intend to present some spaces and their principal properties
that will be useful in later constructions. At present, we focus on normed linear
and inner-product spaces and their key properties for the further development of
physical concepts. More detailed references on such subjects can be easily found;
for example, see Refs. [16, 17, 303].
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A.2.1 Banach Spaces
Definition A.36. A normed linear space is a vector space 𝑉 , over ℝ (or ℂ), and
a function ‖ • ‖ from 𝑉 to ℝ which satisfies

(i) ‖𝑣‖ ≥ 0 for all 𝑣 ∈ 𝑉 ;
(ii) ‖𝑣‖ = 0 if and only if 𝑣 = 0;
(iii) ‖𝛼𝑣‖ = |𝛼|‖𝑣‖, for all 𝑣 ∈ 𝑉 and for all 𝛼 ∈ ℝ (or ℂ);
(iv) ‖𝑣 + 𝑤‖ ≤ ‖𝑣‖ + ‖𝑤‖, for all 𝑣 , 𝑤 ∈ 𝑉 .

If we drop condition (ii), the function ‖ • ‖ is said to be a semi-norm or pseudo-
norm for 𝑉 .

It is direct to see that if we define our metric, from definition A.4, as 𝜌(𝑣 , 𝑤) =
‖𝑣 −𝑤‖, then the normed linear space (𝑉 , ‖•‖) is a metric space. If the metric space
induced by (𝑉 , ‖ • ‖), denoted by 𝑋 , is incomplete in the Cauchy sense (definition
A.5), we can add themissing Cauchy sequences, denoted by 𝐶𝑎 = {𝑥 = lim 𝑥𝑛 | 𝑥 ∉
𝑋 , 𝑥𝑛 ∈ 𝑋}, and define the completion of the space as 𝑋̃ = 𝑋 ∪ 𝐶𝑎. Since by
construction, every Cauchy sequence of 𝑋 converges to some element of 𝑋̃ , we
say that 𝑋 is dense in 𝑋̃ . Using the metric now defined over 𝑋̃ , we can make it
into a normed linear space, say (𝑉̃ , ‖ • ‖). We say that 𝑉̃ is the completion of 𝑉 .

We say that a normed linear space (𝑉 , ‖ • ‖) is complete if its metric-induced
space is complete.

Definition A.37. A bounded linear transformation (or bounded operator)
from a normed linear space (𝑉1, ‖ • ‖1) to a normed linear space (𝑉2, ‖ • ‖2) is a map,
𝑇 ∶ 𝑉1 → 𝑉2, which satisfies

(i) 𝑇 (𝛼𝑣 + 𝛽𝑤) = 𝛼𝑇 (𝑣) + 𝛽𝑇 (𝑤) for all 𝑣 , 𝑤 ∈ 𝑉 and for all 𝛼, 𝛽 ∈ ℝ (or ℂ);
(ii) For some 𝐶 ≥ 0, ‖𝑇 𝑣‖2 ≤ 𝐶‖𝑣‖1.

We say that the smallest 𝐶 is the norm of T, so

‖𝑇 ‖ = inf
‖𝑣‖1=1

‖𝑇 𝑣‖2. (A.86)

With these definitions, we now present an important theorem of functional
analysis.

Theorem A.38. (Bounded Linear Transformation Theorem, or B.L.T. Theorem)
Suppose 𝑇 is a bounded linear transformation from a normed linear space (𝑉1, ‖ •
‖1) to a complete normed linear space (𝑉2, ‖ • ‖2). Then 𝑇 can be uniquely ex-
tended to a bounded linear transformation (with the same bound), ̃𝑇 , from the
completion of 𝑉1 to (𝑉2, ‖ • ‖2).



222 Different Kinds of Spaces

Proof. Denote by 𝑉̃1 the completion of 𝑉1. For each 𝑥 ∈ 𝑉̃1, there is a Cauchy
sequence {𝑥𝑛} ∈ 𝑉1 such that 𝑥𝑛 → 𝑥 as 𝑛 → ∞. That is, for some 𝑁 , there exist
𝑛, 𝑚 < 𝑁 and a 𝜖 = 𝜀/‖𝑇 ‖ > 0 such that

‖𝑥𝑛 − 𝑥𝑚‖1 ≤ 𝜀
‖𝑇 ‖ . (A.87)

By the linearity and boundedness of the transformation 𝑇 , we can write that

‖𝑇 𝑥𝑛 − 𝑇𝑥𝑚‖2 = ‖𝑇 (𝑥𝑛 − 𝑥𝑚)‖2 ≤ ‖𝑇 ‖‖𝑥𝑛 − 𝑥𝑚‖1 < 𝜀, (A.88)

so it is a Cauchy sequence in 𝑉2. Since 𝑉2 is complete, we have 𝑇𝑥𝑛 → 𝑦 ∈ 𝑉2.
Define ̃𝑇 𝑥 = 𝑦 . Take two sequences that converge to the same element:

{𝑥𝑛} → 𝑥 , {𝑥′𝑛} → 𝑥 . Then, the sequence {𝑥𝑛, 𝑥′𝑛} also converges to 𝑥 . By the
boundedness of 𝑇 , we have that {𝑇 𝑥𝑛, 𝑇 𝑥′𝑛} → 𝑦 ′ and lim𝑛→∞ 𝑇𝑥𝑛 = lim𝑛→∞ 𝑇𝑥′𝑛 =
𝑦 ′. So, our definition does not depend on the sequence.

Observing that ‖ ̃𝑇 𝑥‖2 = lim𝑛→∞ ‖𝑇 𝑥𝑛‖2 ≤ lim sup𝑛→∞ 𝐶‖𝑥𝑛‖ = 𝐶‖𝑥‖1, we con-
clude that ̃𝑇 is bounded and has the same bound as 𝑇 .

Linearity of ̃𝑇 follows directly, noting that ̃𝑇 (𝛼𝑥 + 𝛽𝑥′) = lim𝑛→∞(𝛼𝑇 (𝑥𝑛) +
𝛽𝑇 (𝑥′𝑛)).

To prove uniqueness, take ̃𝑇 ′𝑥 = 𝑦 ′, such that 𝑇𝑥𝑛 → 𝑦 ′ as {𝑥𝑛} → 𝑥 . But
lim𝑛→∞ 𝑇𝑥𝑛 = 𝑦 ′ = 𝑇 lim𝑛→∞ 𝑥𝑛 = 𝑇𝑥 = 𝑦 , so 𝑦 = 𝑦 ′ ⇒ ̃𝑇 ′ = ̃𝑇 . ■

Since, from now on, we are interested in integrable functions, it is convenient
to use set notation for functions that are Borel integrable. For that, we define

𝐿1(ℝ) = {𝑓 (𝑥) | ∫ 𝑓 (𝑥) d𝑥 < ∞, 𝑥 ∈ ℝ} (A.89)

as the set of real-valued integrable functions. Now assume that we fix the norm
on 𝐿1 as

‖𝑓 ‖1 = ∫ |𝑓 (𝑥)| d𝑥. (A.90)

From the linearity and monotonicity of the integral, it follows directly that 𝐿1(ℝ)
is a linear normed space. We must check if such a space is complete. For that,
take the following sequence 𝑔𝑛(𝑥) = min[𝑛, − ln(𝑥)]. If 𝑚 > 𝑛, it follows that

‖𝑔𝑛 − 𝑔𝑚‖ = ∫ |𝑔𝑛(𝑥) − 𝑔𝑚(𝑥)| d𝑥 ≤ ∫ |𝑔𝑛(𝑥)| d𝑥 − 1, (A.91)

𝑔𝑛 → − ln(𝑥) 6, as 𝑛 → ∞ and − ln(𝑥) ∉ 𝐿1, so 𝐿1(ℝ) is not a complete space.
6See definition A.25.
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In order to obtain a complete space preserving integrability, we must con-
sider the space of equivalence classes7. We say that two functions 𝑓 , 𝑔 ∈ 𝐿1(ℝ)
are equivalent if 𝑓 = 𝑔 𝑎.𝑒., equivalently, if ∫ |𝑓 − 𝑔| 𝑑𝑥 = 0. Since there are
many functions that can be taken and are equal almost everywhere, we must
choose a representative. Since we will only work with the set of equivalence
classes, we will not distinguish the representative of a function from the function
itself. However, we define the set of equivalence classes of integrable functions
asℒ 1(ℝ). With the norm defined in Eq. (A.90), it is direct to prove that the space
(ℒ 1(ℝ), ‖ • ‖1) is a linear normed space, usually denoted only by ℒ 1. Soon we
will also prove that ℒ 1 is complete. Before that, let us introduce a more general
notion.

Definition A.39. If 1 ≤ 𝑝 < ∞, the space ℒ𝑝 = (ℒ𝑝(ℝ), ‖ • ‖𝑝) of all equivalent
Borel measurable real-valued functions 𝑓 for which |𝑓 |𝑝 has a finite integral. We
set

‖𝑓 ‖𝑝 = [∫ |𝑓 |𝑝 d𝑥]
1
𝑝 . (A.92)

Before analyzing the completeness of this space, let us prove a set of impor-
tant inequalities.

Theorem A.40. (i) (Hölder’s inequality) Let 𝑓 ∈ ℒ𝑝 and 𝑔 ∈ ℒ 𝑞 , where
𝑝 > 1 and 1/𝑝 + 1/𝑞 = 1. Then 𝑓 𝑔 ∈ ℒ 1 and ‖𝑓 𝑔‖1 ≤ ‖𝑓 ‖𝑝‖𝑔‖𝑞 .

(ii) (Schwarz’s inequality) If 𝑓 and 𝑔 belong to ℒ 2, then 𝑓 𝑔 is integrable and

|∫ 𝑓 𝑔 d𝑥| ≤ ∫ |𝑓 𝑔| d𝑥 ≤ ‖𝑓 ‖2‖𝑔‖2. (A.93)

(iii) (Minkowski’s inequality) If 𝑓 and ℎ belong toℒ𝑝 , 𝑝 ≥ 1, then 𝑓 +ℎ belongs
to ℒ𝑝 and ‖𝑓 + ℎ‖𝑝 ≤ ‖𝑓 ‖𝑝 + ‖ℎ‖𝑝 .

Proof. (i): Take 𝛼 ∈ (0, 1) and define the function 𝜙(𝑡) = 𝛼𝑡 − 𝑡𝛼 . It is immediate
that 𝜙′(𝑡) < 0, if 0 < 𝑡 < 1 and 𝜙′(𝑡) > 0, if 𝑡 > 0. From the mean value theorem
of calculus, one takes that 𝜙(𝑡) ≥ 𝜙(1), from that follows, for 𝑡 ≥ 0,

𝑡𝛼 ≤ 𝛼𝑡 + (1 − 𝛼). (A.94)

For any 𝑎, 𝑏 non-negative numbers, take 𝑡 = 𝑎/𝑏 and multiply the last expression
by 𝑏 to get

𝑎𝛼𝑏1−𝛼 ≤ 𝛼𝑎 + (1 − 𝛼)𝑏. (A.95)
7An equivalence relation must be reflexive, symmetric, and transitive.
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Choose 𝑝, 𝑞 satisfying 1/𝑝+1/𝑞 = 1, 1 < 𝑝 < ∞. Take 𝑦 = 𝑥𝑝−1 and compute
the area of this function between (0, 𝐴),

𝐴1 = ∫
𝑎

0
𝑥𝑝−1 d𝑥 = 𝐴𝑝

𝑝 . (A.96)

Similarly, we can take the area of 𝑥 = 𝑦1/(𝑝−1) = 𝑦𝑞−1 between (0, 𝐵):

𝐴2 = ∫
𝑎

0
𝑥𝑝−1 d𝑥 = 𝐵𝑝

𝑝 . (A.97)

Clearly, the area of the rectangle 𝐴𝐵 is greater than or equal to 𝐴1 + 𝐴2, so for
any two nonnegative real numbers, we obtain:

𝐴𝐵 ≤ 𝐴𝑝
𝑝 + 𝐵𝑝

𝑝 . (A.98)

Using this previous result and fixing 𝛼 = 1/𝑝, we can take 𝑓 ∈ ℒ𝑝 and
𝑔 ∈ ℒ 𝑞 , and set 𝐴 = |𝑓 (𝑥)|

‖𝑓 ‖𝑝 , 𝐵 = |𝑔(𝑥)|
‖𝑔‖𝑞 to write:

|𝑓 (𝑥)𝑔(𝑥)|
‖𝑓 ‖𝑝‖𝑔‖𝑞

≤ |𝑓 (𝑥)|𝑝
𝑝‖𝑓 ‖𝑝𝑝

+ |𝑔(𝑥)|𝑞
𝑞‖𝑔‖𝑞𝑞

. (A.99)

Both sides are integrable, so 𝑓 𝑔 ∈ ℒ 1. Integrating both sides:

‖𝑓 (𝑥)𝑔(𝑥)‖1
‖𝑓 ‖𝑝‖𝑔‖𝑞

≤ 1
𝑝 + 1

𝑞 = 1

⇒ ‖𝑓 (𝑥)𝑔(𝑥)‖1 ≤ ‖𝑓 ‖𝑝‖𝑔‖𝑞 . (A.100)

(ii) follows by taking 𝑝 = 𝑞 = 2 in Hölder’s inequality.
In (iii), the case for 𝑝 = 1 follows directly from |𝑓 + ℎ| ≤ |𝑓 | + |ℎ|. Assume

𝑝 > 1, since
|𝑓 + ℎ|𝑝 ≤ [2 sup{|𝑓 |, |ℎ|}]𝑝 ≤ 2𝑝[|𝑓 |𝑝 + |ℎ|𝑝]. (A.101)

𝑓 + ℎ is measurable by lemma A.14. Moreover, we notice that

|𝑓 + ℎ|𝑝 = |𝑓 + ℎ||𝑓 + ℎ|𝑝−1 ≤ |𝑓 ||𝑓 + ℎ|𝑝−1 + |ℎ||𝑓 + ℎ|𝑝−1, (A.102)

so 𝑓 + ℎ ∈ ℒ𝑝 and |𝑓 + ℎ|𝑝 ∈ ℒ 1. Taking 1/𝑝 + 1/𝑞 = 1 ⇒ 𝑝 = (𝑝 − 1)𝑞, we
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have that |𝑓 + ℎ|𝑝−1 ∈ ℒ 𝑞 , so by (i), we get:

∫ |𝑓 ||𝑓 + ℎ|𝑝−1 d𝑥 ≤ ‖𝑓 ‖𝑝 [∫ |𝑓 + ℎ|(𝑝−1)𝑞]
1
𝑞 = ‖𝑓 ‖𝑝‖𝑓 + ℎ‖

1
𝑞𝑝

∫ |ℎ||𝑓 + ℎ|𝑝−1 d𝑥 ≤ ‖ℎ‖𝑝 [∫ |𝑓 + ℎ|(𝑝−1)𝑞]
1
𝑞 = ‖ℎ‖𝑝‖𝑓 + ℎ‖

1
𝑞𝑝

‖𝑓 + ℎ‖𝑝𝑝 ≤ ‖𝑓 ‖𝑝‖𝑓 + ℎ‖
1
𝑞𝑝 + ‖ℎ‖𝑝‖𝑓 + ℎ‖

1
𝑞𝑝 = [‖𝑓 ‖𝑝 + ‖ℎ‖𝑝] ‖𝑓 + ℎ‖

𝑝
𝑞𝑝 .

(A.103)

If ‖𝑓 +ℎ‖𝑝 = 0, the relation is trivially satisfied. If ‖𝑓 +ℎ‖𝑝 ≠ 0, we can divide the
last relation by ‖𝑓 + ℎ‖𝑝/𝑞𝑝 to obtain:

‖𝑓 + ℎ‖𝑝 ≤ ‖𝑓 ‖𝑝 + ‖ℎ‖𝑝 . (A.104)

■

With this last set of results, in particular with Minkowski’s inequality, it is
trivial to show thatℒ𝑝 with the norm from Eq. (A.92) is complete. The following
theorem proves its completeness.

Theorem A.41. (Riesz-Fischer Theorem or Completeness Theorem) If 1 ≤ 𝑝 <
∞, then the space ℒ𝑝 is a complete normed linear space under the norm given
by Eq. (A.92).

Proof. ℒ𝑝 with the norm from Eq. (A.92) is a linear normed space. To prove
completeness, we need to show that for a sequence {𝑓𝑛}, there exists an 𝜀 > 0 and
a 𝑁 such that for 𝑚, 𝑛 ≥ 𝑁 , we have

∫ |𝑓𝑚 − 𝑓𝑛|𝑝d𝑥 = ‖𝑓𝑚 − 𝑓𝑛‖𝑝𝑝 < 𝜀𝑝 . (A.105)

Take a subsequence {𝑔𝑘} of {𝑓𝑛} such that ‖𝑔𝑘+1 − 𝑔𝑘‖𝑝 < 2−𝑘 , 𝑘 ∈ ℕ, and
define the Borel measurable function 𝑔(𝑥) as

𝑔(𝑥) = |𝑔1(𝑥)| +
∞
∑
𝑘=1

|𝑔𝑘+1(𝑥) − 𝑔𝑘(𝑥)|. (A.106)

Using Fatou’s lemma (Theorem A.30), we have that

∫ |𝑔|𝑝d𝑥 ≤ lim inf𝑛→∞ ∫[|𝑔1| +
∞
∑
𝑘=1

|𝑔𝑘+1 − 𝑔𝑘 |]
𝑝
d𝑥, (A.107)
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taking the 𝑝th root and using Minkowski’s inequality ((iii) of Theorem A.40) we
have that

[∫ |𝑔|𝑝d𝑥]
1
𝑝 ≤ lim inf𝑛→∞ [‖𝑔1‖𝑝 +

∞
∑
𝑘=1

‖𝑔𝑘+1 − 𝑔𝑘‖𝑝]

≤ ‖𝑔1‖𝑝 + 1, (A.108)

where we have used the fact that ∑∞
𝑘=2 ‖𝑔𝑘+1 − 𝑔𝑘‖𝑝 < ∑∞

𝑘=1 2−𝑘 = 1. Take the
set 𝐸 as the set where 𝑔 is Borel measurable and 𝑔𝜒𝐸 ∈ ℒ𝑝 . So the Lebesgue
measure of ℝ − 𝐸 is zero.

Now define 𝑓 on ℝ as

𝑓 (𝑥) = {𝑔1 +∑∞
𝑘=1[𝑔𝑘+1 − 𝑔𝑘], if 𝑥 ∈ 𝐸

0, if 𝑓 ∉ 𝐸, (A.109)

but we know that |𝑔𝑘 | ≤ |𝑔1| + ∑𝑘−1
𝑗=1 |𝑔𝑗+1 − 𝑔𝑗 | and {𝑔𝑘} converges to 𝑓 a.e., so,

by the Lebesgue dominated convergence theorem (Theorem A.32) we have that
𝑓 ∈ ℒ𝑝 . Since |𝑓 − 𝑔𝑘 | ≤ 2𝑝𝑔𝑝 by the Lebesgue dominated theorem, we get
lim𝑘→∞ ‖𝑓 − 𝑔𝑘‖𝑝 = 0. So {𝑔𝑘} converges to 𝑓 in ℒ𝑝 .

Take 𝑚, 𝑘 ≥ 𝑀 , so ∫ |𝑓𝑚 − 𝑔𝑘 |𝑝d𝑥 < 𝜀𝑝 . Using Fatou’s lemma

∫ |𝑓𝑚 − 𝑓 |𝑝d𝑥 ≤ lim inf𝑘→∞ ∫ |𝑓𝑚 − 𝑔𝑘 |𝑝d𝑥 ≤ 𝜀𝑝 , (A.110)

for any𝑚 ≥ 𝑀 . So 𝑓𝑛 converges to 𝑓 in theℒ𝑝 norm. Therefore,ℒ𝑝 is complete.
■

All the previous discussion of ℒ𝑝 spaces has been focused on the functions
defined overℝwith the usual Lebesguemeasure. We choose such an approach be-
cause such functions are going to appear in the main applications. However, all
the previous discussion can be directly generalized to any spaceℒ𝑝 = ℒ𝑝(𝑋 ,𝒳 , 𝜇),
that is, the space of functions defined over a measure space (𝑋 ,𝒳 , 𝜇).
Definition A.42. A complete linear normed space is called a Banach space.

Denote the set of all bounded linear functionals from 𝑋 to 𝑌 byℒ(𝑋, 𝑌 ) and
assume that for any 𝐴 ∈ ℒ(𝑋 , 𝑌 ), the operator norm is given by

‖𝐴‖ = sup
𝑥∈𝑋 , 𝑥≠0

‖𝐴𝑥‖𝑌
‖𝑥‖𝑋

, (A.111)

where ‖ • ‖𝑋,𝑌 denotes the norm in 𝑋 and 𝑌 . We then have the following theorem.
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Theorem A.43. If 𝑌 is complete, then ℒ(𝑋, 𝑌 ) is a Banach space.

Proof. Linear combinations of bounded operators are bounded operators, soℒ(𝑋, 𝑌 )
is a vector space. Our definition of ‖ • ‖ in Eq. (A.111) trivially satisfies (i), (ii),
and (iii) of definition A.36. To verify (iv) of definition A.36, we write

‖𝐴 + 𝐵‖ = sup
𝑥∈𝑋 , 𝑥≠0

‖(𝐴 + 𝐵)𝑥‖𝑌
‖𝑥‖𝑋

≤ sup
𝑥∈𝑋 , 𝑥≠0

‖𝐴𝑥‖𝑌 + ‖𝐵𝑥‖𝑌
‖𝑥‖𝑋

≤ sup
𝑥∈𝑋 , 𝑥≠0

(‖𝐴𝑥‖𝑌‖𝑥‖𝑋
+ ‖𝐵𝑥‖𝑌

‖𝑥‖𝑋
) = ‖𝐴‖ + ‖𝐵‖, (A.112)

so ℒ(𝑋, 𝑌 ) is a normed linear space under the norm ‖ • ‖.
Take {𝐴𝑛} as a Cauchy sequence in the operator norm. For each 𝑥 ∈ 𝑋 , {𝐴𝑛𝑥}

is a Cauchy sequence in 𝑌 . By hypothesis, 𝑌 is complete, so 𝐴𝑛𝑥 → 𝑦 ∈ 𝑌 .
Define 𝐴𝑥 = 𝑦 , where 𝐴 is a linear operator. By the triangle inequality, we have
that | ‖𝐴𝑛‖ − ‖𝐴𝑚‖ | ≤ ‖𝐴𝑛 − 𝐴𝑚‖. Therefore, {‖𝐴𝑛‖} is a Cauchy sequence of real
numbers that converge to some real number 𝐶 . Thus,

‖𝐴𝑥‖𝑌 = lim𝑛→∞ ‖𝐴𝑛𝑥‖𝑌 ≤ lim𝑛→∞ ‖𝐴𝑛‖‖𝑥‖𝑋 = 𝐶‖𝑥‖𝑋 , (A.113)

which shows that 𝐴 is a bounded operator.
We have that ‖(𝐴 − 𝐴𝑛)𝑥‖𝑌 = lim𝑚→∞ ‖(𝐴𝑚 − 𝐴𝑛)𝑥‖𝑌 , which implies that

‖(𝐴 − 𝐴𝑛)𝑥‖𝑌
‖𝑥‖𝑋

≤ lim𝑚→∞ ‖𝐴𝑚 − 𝐴𝑛‖

‖𝐴 − 𝐴𝑛‖ = sup
𝑥≠0

‖(𝐴 − 𝐴𝑛)𝑥‖𝑌
‖𝑥‖𝑋

≤ lim𝑚→∞ ‖𝐴𝑚 − 𝐴𝑛‖

≤ lim𝑚,𝑛→∞ ‖𝐴𝑚‖ − ‖𝐴𝑛‖ = lim𝑚→∞ ‖𝐴𝑚‖ − 𝐶 < 𝜀 arbitrary. (A.114)

So, ‖𝐴‖ = 𝐶 . ■

If 𝑌 = ℂ, the space ℒ(𝑋, ℂ) is denoted by 𝑋 ∗ and is called the Dual Space
of X. Since the complex numbers, ℂ, are complete8, the last theorem shows that
𝑋 ∗ is complete, and therefore we can define its dual, denoted by 𝑋 ∗∗, which is
called the double dual.

LemmaA.44. Let 𝑋 and 𝑌 be linear normed spaces. Then a linear map 𝑇 ∶ 𝑋 →
𝑌 is bounded if and only if 𝑇−1 [{𝑦 | ‖𝑦‖𝑌 ≤ 1}] has nonempty interior.

8Take 𝑧𝑛 = 𝑥𝑛 + 𝑖𝑦𝑛, an 𝜀 > 0, and 𝑚, 𝑛 > 𝑁 , so |𝑧𝑛 − 𝑧𝑚 | < 𝜀 is a Cauchy sequence. But
|𝑧𝑚 − 𝑧𝑛 | ≥ |𝑥𝑚 − 𝑥𝑛 | and |𝑧𝑚 − 𝑧𝑛 | ≥ |𝑦𝑚 − 𝑦𝑛 |, so {𝑥𝑛}, {𝑦𝑛} ∈ ℝ and are Cauchy sequences. Reals are
complete, so 𝑥𝑛 → 𝑥 and 𝑦𝑛 → 𝑦 , therefore 𝑧𝑛 → 𝑥 + 𝑖𝑦 = 𝑧 ∈ ℂ.
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Proof. Suppose that 𝑇 is given and that the set contains the open sphere {𝑥 | ‖𝑥 −
𝑥0‖𝑋 < 𝜀}. If ‖𝑥‖ < 𝜀, we have that ‖𝑇 𝑥‖ ≤ ‖𝑇 (𝑥 + 𝑥0)‖ + ‖𝑇 (𝑥0)‖ ≤ 1 + ‖𝑇𝑥0‖. So,
for all 𝑥 ∈ 𝑋 ,

‖𝑇 𝑥‖ ≤ 𝜀−1 (‖𝑇 𝑥0‖ + 1) ‖𝑥‖, (A.115)

thus, 𝑇 is bounded.
Now assume that 𝑇 is bounded. By definition A.37, ‖𝑇 𝑥‖ ≤ 𝐶‖𝑥‖. Take 𝑥 ∈

{𝑥 | ‖𝑥 − 𝑥0‖𝑋 < 𝜀} ⊂ 𝑋 , then ‖𝑇 𝑥‖ = ‖𝑇 (𝑥 + 𝑥0)‖ ≤ 𝐶‖𝑥‖. Denote 𝑇𝑥 = 𝑦 and
𝑇 (𝑥 + 𝑥0) = 𝑦0, by our last relation,

‖𝑦‖ = ‖𝑦0‖ ≤ 𝐶‖𝑥‖
⇒ ‖𝑦 − 𝑦0‖ ≤ 𝐶‖𝑥‖, (A.116)

which is a (closed) sphere of center 𝑦0 and radius 𝐶‖𝑥‖. So, 𝑇−1 [{𝑦 | ‖𝑦‖𝑌 ≤ 1}]
has nonempty interior. ■
Theorem A.45. (Open mapping theorem) Let 𝑇 ∶ 𝑋 → 𝑌 be a bounded linear
transformation from one Banach space to another Banach space 𝑌 . Then, if𝑀 is
an open set in 𝑋 , 𝑇 [𝑀] is open in 𝑌 .
Proof. We need to show that for any neighbourhood 𝑁 of 𝑥 , 𝑇 [𝑁 ] is a neighbour-
hood of 𝑇 (𝑥). 𝑇 is linear, so 𝑇 [𝑥 +𝑁] = 𝑇 [𝑥]+𝑇 [𝑁 ], then we need only prove for
a neighbourhood of 𝑥 = 0. Since the neighbourhoods contain open spheres, it is
enough to prove that 𝑆(𝑦 , 𝑟 ′) ⊂ 𝑇 [𝑆(𝑥, 𝑟)] for some 𝑟 ′. But 𝑇 [𝑆(𝑥, 𝑟)] = 𝑟𝑇 [𝑆(𝑥, 1)],
so we must prove that 𝑇 [𝑆(𝑥, 𝑟)] is a neighbourhood of zero for some 𝑟 . Using
the result of lemma A.44, we must show that 𝑇 [𝑆(𝑥, 𝑟)] has nonempty interior
for some 𝑟 .

𝑇 is onto, so 𝑌 = ⋃∞
𝑛=1 𝑇 [𝑆(0, 𝑟𝑛)]. By the Baire category theorem (theorem

A.9), some 𝑇 [𝑆(0, 𝑟𝑛)] has nonempty interior. Suppose that 𝑆(0, 𝜀) ⊂ 𝑇 [𝑆(0, 𝑟1)].
Take 𝑦 ∈ 𝑇 [𝑆(0, 𝑟1)]. If 𝑥1 ∈ 𝑆(0, 𝑟1), then 𝑦 − 𝑇𝑥1 ∈ 𝑆(0, 𝜀/2) ⊂ 𝑇 [𝑆(0, 𝑟1/2)]. If
𝑥1 ∈ 𝑆(0, 𝑟1/2), then 𝑦 − 𝑇𝑥1 − 𝑇𝑥2 ∈ 𝑆(0, 𝜀/4) ⊂ 𝑇 [𝑆(0, 𝑟1/4)]. If 𝑥𝑛 ∈ 𝑆(0, 𝑟𝑛),
then 𝑦 − ∑𝑛

𝑗=1 𝑇𝑥𝑗 ∈ 𝑆(0, 21−𝑛𝜀).
Set 𝑥 = ∑∞

𝑗=1 𝑥𝑗 ∈ 𝑆(0, 𝑟1/2), thus 𝑦 = ∑∞
𝑗=1 𝑇𝑥𝑗 = 𝑇𝑥 , so 𝑦 ∈ 𝑇 [𝑆(0, 𝑟1/2)], so

some 𝑇 [𝑆(𝑥, 𝑟)] has nonempty interior and the theorem follows. ■
Corollary A.46. (Inverse mapping theorem) A continuous bijection from one
Banach space to another has a continuous inverse.

Proof. By the last theorem, if 𝑇 is open, 𝑇−1 is continuous. ■

Banach spaces are useful to construct functionals with some desired prop-
erties. In order to understand why it is useful to define functionals on Banach
spaces, the next important theorem is necessary.
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Theorem A.47. (Hahn-Banach theorem) Let 𝑋 be a real vector space, 𝑝 a real
valued function defined on 𝑋 satisfying 𝑝(𝛼𝑥 + (1 − 𝛼)𝑦) ≤ 𝛼𝑝(𝑥) + (1 − 𝛼)𝑝(𝑦)
for all 𝑥, 𝑦 ∈ 𝑋 and all 𝛼 ∈ [0, 1]. Suppose that 𝜆 is a linear functional defined
on a subspace 𝑌 of 𝑋 which satisfies 𝜆(𝑥) ≤ 𝑝(𝑥) for all 𝑥 ∈ 𝑌 . Then, there is a
linear functional Λ, defined on 𝑋 , satisfying Λ(𝑥) ≤ 𝑝(𝑥) for all 𝑥 ∈ 𝑋 , such that
Λ(𝑥) = 𝜆(𝑥) for all 𝑥 ∈ 𝑌 .
Proof. Denote the space spanned by 𝑧 and 𝑌 by 𝑌̃ . The extension of 𝜆, defined
on 𝑌 satisfying 𝜆(𝑦) ≤ 𝑝(𝑦) for all 𝑦 ∈ 𝑌 , to 𝑌̃ is denoted by 𝜆̃. Define 𝜆̃(𝑧) using
𝜆̃(𝑎𝑧 + 𝑦) = 𝑎𝜆̃(𝑧) + 𝜆(𝑦).

Take 𝑦1, 𝑦2 ∈ 𝑌 and 𝛼, 𝛽 > 0, so

𝛽𝜆(𝑦1) + 𝛼𝜆(𝑦2) = 𝜆(𝛽𝑦1 + 𝛼𝑦2) = (𝛼 + 𝛽)𝜆 ( 𝛽
𝛼 + 𝛽 𝑦1 +

𝛼
𝛼 + 𝛽 𝑦2)

≤ (𝛼 + 𝛽)𝑝 ( 𝛽
𝛼 + 𝛽 𝑦1 +

𝛼
𝛼 + 𝛽 𝑦2)

≤ (𝛼 + 𝛽)𝑝 ( 𝛽
𝛼 + 𝛽 𝑦1 +

𝛼
𝛼 + 𝛽 𝑦2 +

𝛼𝛽
𝛼 + 𝛽 𝑧 −

𝛼𝛽
𝛼 + 𝛽 𝑧)

≤ (𝛼 + 𝛽)𝑝 ( 𝛽
𝛼 + 𝛽 (𝑦1 − 𝛼𝑧) + 𝛼

𝛼 + 𝛽 (𝑦2 + 𝛽𝑧))
≤ 𝛽𝑝(𝑦1 − 𝛼𝑧) + 𝛼𝑝(𝑦2 + 𝛽𝑧), (A.117)

therefore, for all 𝛼, 𝛽 > 0 and 𝑦1, 𝑦2 ∈ 𝑌
1
𝛼 [−𝑝(𝑦1 − 𝛼𝑧) + 𝜆(𝑦1)] ≤ 1

𝛽 [−𝑝(𝑦2 + 𝛽𝑧) + 𝜆(𝑦2)]. (A.118)

We can always find a real number 𝑎 such that

sup
𝑦∈𝑌 , 𝛼>0

1
𝛼 [−𝑝(𝑦1 − 𝛼𝑧) + 𝜆(𝑦1)] ≤ 𝑎 ≤ inf𝑦∈𝑌 , 𝛼>0

1
𝛽 [−𝑝(𝑦2 + 𝛽𝑧) + 𝜆(𝑦2)], (A.119)

which means that we can thus define 𝜆̃(𝑧) = 𝑎. Thus, 𝜆 can be extended “one
direction at a time”.

It remains to show that 𝜆 can be extended to the whole space 𝑋 . Take ℰ as
the collection of extensions 𝑒 of 𝜆, which satisfies 𝑒(𝑥) ≤ 𝑝(𝑥) on each subspace.
Define a partial order in ℰ by setting that 𝑒1(𝑥) ⪯ 𝑒2(𝑥) if 𝑒2(𝑥) is defined on a
larger set than 𝑒1(𝑥), and 𝑒1(𝑥) = 𝑒2(𝑥) where they are both defined.

Take {𝑒𝛼 }𝛼∈𝐴 as a partially ordered subset of ℰ . Define 𝑒 on ⋃𝛼∈𝐴 𝑋𝛼 by
𝑒(𝑥) = 𝑒𝛼 (𝑥) if 𝑥 ∈ 𝑋𝛼 . So 𝑒𝛼 ⪯ 𝑒 for any 𝑒𝛼 ∈ ℰ , therefore, each partially
ordered subset ofℰ has an upper bound inℰ . By Zorn’s lemma,ℰ has amaximal
element, Λ, defined in some subset 𝑋 ′ and satisfying Λ(𝑥) ≤ 𝑝(𝑥) for 𝑥 ∈ 𝑋 ′.
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But, if 𝑋 ′ is not the whole 𝑋 , we can extend it to Λ̃ by the previous procedure.
This contradicts the maximality of Λ; therefore 𝑋 ′ = 𝑋 , and the extension Λ is
defined everywhere in 𝑋 . ■

The extension of the Hahn-Banach theorem to a complex vector space 𝑋 is
straightforward.

Now we can see why Banach spaces are useful. If we need a functional with
some properties, we need only to define it on a subspace of the Banach space,
then we use the Hahn-Banach theorem to extend it to the whole space.

Corollary A.48. Let 𝑋 be a normed linear space, 𝑌 a subset of 𝑋 , and 𝜆 an
element of 𝑌 ∗. Then there exists a Λ ∈ 𝑋 ∗ extending 𝜆 and satisfying ‖Λ‖𝑋 ∗ =
‖𝜆‖𝑌 ∗ .
Proof. Take 𝑝(𝑥) = ‖𝜆‖𝑌 ∗‖𝑥‖ in the Hahn-Banach theorem. ■

Corollary A.49. Let 𝑦 be an element of a normed linear space 𝑋 . Then there is
a nonzero Λ ∈ 𝑋 ∗ such that Λ(𝑦) = ‖𝑋‖𝑋 ∗‖𝑦‖
Proof. Take 𝑌 as the subspace of all scalar multiples of 𝑦 and define 𝜆(𝑎𝑦) = 𝑎‖𝑦‖.
By the last corollary, we can construct Λ, such that ‖Λ‖ = ‖𝜆‖, which extends 𝜆
for the whole 𝑋 . But Λ(𝑦) = ‖𝑦‖, once that ‖Λ‖ = 1, thus, Λ(𝑦) = ‖Λ‖𝑋 ∗‖𝑦‖. ■

We finish our brief discussion about Banach spaces with the definition of a
graph and a theorem which has future use.

Definition A.50. Let 𝑇 be a mapping of a normed linear space 𝑋 into another
linear normed space 𝑌 . The graph of 𝑇 , denoted by Γ(𝑇 ), is defined by

Γ(𝑇 ) = {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝑋 × 𝑌 , 𝑦 = 𝑇𝑥}. (A.120)

Theorem A.51. (Closed graph theorem) Let 𝑋 and 𝑌 be Banach spaces and 𝑇 a
linear map of 𝑋 into 𝑌 . Then 𝑇 is bounded if and only if the graph of 𝑇 is closed.

Proof. Suppose that Γ(𝑇 ) is closed. 𝑇 is linear, therefore, Γ(𝑇 ) is a subspace of the
Banach space 𝑋 × 𝑌 . Since Γ(𝑇 ) is closed9, it is a Banach space in the norm

‖⟨𝑥, 𝑇 𝑥⟩‖ = ‖𝑥‖ + ‖𝑇𝑥‖. (A.121)

Now consider the maps Π1 ∶ ⟨𝑥, 𝑇 𝑥⟩ → 𝑥 and Π2 ∶ ⟨𝑥, 𝑇 𝑥⟩ → 𝑇𝑥 . Π1 is
a bijection, so by the inverse map theorem (corollary A.46), Π−11 is continuous.
Since 𝑇 = Π2 ∘ Π−11 , 𝑇 is continuous and bounded.

9Remember that a closed set contains all its limit points.
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Conversely, assume that 𝑇 is bounded. Then, ‖𝑇 𝑥‖ ≤ 𝐶‖𝑥‖, so

‖Γ(𝑇 )‖ = ‖⟨𝑥, 𝑇 𝑥⟩‖ = ‖𝑥‖ + ‖𝑇𝑥‖ ≤ ‖𝑥‖(1 + 𝐶)
⇒ ‖Γ(𝑇 )‖

‖𝑥‖ ≤ 1 + 𝐶, (A.122)

thus Γ(𝑇 ) is closed. ■

Of course, there are many results that could be obtained in the context of
Banach spaces. However, we believe that the set of results that we have chosen
to present has a low level of difficulty and is useful in physics, especially those
involving integrable functions.

A.2.2 Hilbert spaces
Vector and metric spaces have a plethora of physics literature due to their appli-
cability in the physical world. However, the inner-product space, which is used
as the basis of quantum mechanics and some classical physics as well, does not
receive that much attention. Many quantum mechanics books do not even give
a proper definition of what a Hilbert space is. To avoid repeating the same over-
sight, let us analyze with care the main properties and results of inner product
spaces.

Definition A.52. A complex vector space 𝑉 is called an inner product space
if there is a complex-valued function (•, •), called the inner product, on 𝑉 × 𝑉
that satisfies the following conditions for any 𝑥, 𝑦 , 𝑧 ∈ 𝑉 and 𝛼 ∈ ℂ

(i) (𝑥, 𝑥) ≥ 0 and (𝑥, 𝑥) = 0 if and only if 𝑥 = 0;

(ii) (𝑥, 𝑦 + 𝑧) = (𝑥, 𝑦) + (𝑥, 𝑧);

(iii) (𝛼𝑥, 𝑦) = 𝛼(𝑥, 𝑦);

(iv) (𝑥, 𝑦) = (𝑦, 𝑥).

We can use the same geometrical nomenclature of vectors in the inner prod-
uct space. That is, if (𝑥, 𝑦) = 0 they are said to be orthogonal, and if we have a
collection of vectors {𝑥𝑖}𝑖∈𝐴, such that (𝑥𝑖, 𝑥𝑖) = 1 for all 𝑖 ∈ 𝐴 and (𝑥𝑖, 𝑥𝑗) = 0 for
all 𝑖, 𝑗 ∈ 𝐴, we say that we have an orthonormal set. We directly see that if we
fix ‖𝑥‖ = √(𝑥, 𝑥), then (i), (ii), and (iii) of definition A.36 are directly satisfied. To
prove that ‖ • ‖ = √(•, •) is a norm, we need only check (iv) of definition A.36.



232 Different Kinds of Spaces

Theorem A.53. (Pythagorean theorem) Let {𝑥𝑛}, 𝑛 = 1, 2, … , 𝑁 be an orthonor-
mal set in an inner product space 𝑉 . Then for all 𝑥 ∈ 𝑉

‖𝑥‖2 =
𝑁
∑
𝑛=1

|(𝑥, 𝑥𝑛)|2 + ‖𝑥 −
𝑁
∑
𝑛=1

(𝑥𝑛, 𝑥)𝑥𝑛‖
2
. (A.123)

Proof. First we note that

(
𝑁
∑
𝑛=1

(𝑥𝑛, 𝑥)𝑥𝑛, 𝑥 −
𝑁
∑
𝑛=1

(𝑥𝑛, 𝑥)𝑥𝑛) = (
𝑁
∑
𝑛=1

(𝑥𝑛, 𝑥)𝑥𝑛, 𝑥) − (
𝑁
∑
𝑛=1

(𝑥𝑛, 𝑥)𝑥𝑛,
𝑁
∑
𝑛=1

(𝑥𝑛, 𝑥)𝑥𝑛)

=
𝑁
∑
𝑛=1

(𝑥𝑛, 𝑥)(𝑥𝑛, 𝑥) −
𝑁
∑
𝑛=1

(𝑥𝑛, 𝑥)(𝑥𝑛, 𝑥)

= 0, (A.124)

so, 𝑥 = ∑𝑁
𝑛=1(𝑥𝑛, 𝑥)𝑥𝑛 + (𝑥 − ∑𝑁

𝑛=1(𝑥𝑛, 𝑥)𝑥𝑛) is a decomposition of any 𝑥 ∈ 𝑉
into two orthogonal components. Now we use this decomposition to directly
compute

(𝑥, 𝑥) = ‖
𝑁
∑
𝑛=1

(𝑥𝑛, 𝑥)𝑥𝑛‖
2
+ ‖𝑥 −

𝑁
∑
𝑛=1

(𝑥𝑛, 𝑥)𝑥𝑛‖
2

=
𝑁
∑
𝑛=1

|(𝑥, 𝑥𝑛)|2 + ‖𝑥 −
𝑁
∑
𝑛=1

(𝑥𝑛, 𝑥)𝑥𝑛‖
2

(A.125)

■

Corollary A.54. (Bessel’s inequality) Let {𝑥𝑛}, 𝑛 = 1, 2, … , 𝑁 be an orthonormal
set in an inner product space 𝑉 . Then for all 𝑥 ∈ 𝑉

‖𝑥‖2 ≥
𝑁
∑
𝑛=1

|(𝑥, 𝑥𝑛)|2 . (A.126)

Proof. Follows directly from the Pythagorean theorem. ■

Corollary A.55. (Cauchy-Schwarz’s inequality) Let 𝑥 and 𝑦 be any elements of
an inner product space 𝑉 , then |(𝑥, 𝑦)| ≤ ‖𝑥‖‖𝑦‖.
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Proof. If 𝑦 = 0 it is trivial. Suppose 𝑦 ≠ 0, then 𝑦/‖𝑦‖ is an orthonormal set. Take
𝑥 ∈ 𝑉 and apply Bessel’s inequality to obtain

‖𝑥‖2 ≥ |(𝑥, 𝑦
‖𝑦‖)|

2
= |(𝑥, 𝑦)|2

‖𝑦‖2
⇒ |(𝑥, 𝑦)| ≤ ‖𝑥‖‖𝑦‖. (A.127)

■

Now we can directly calculate

‖𝑥 + 𝑦‖2 = (𝑥, 𝑥) + (𝑥, 𝑦) + (𝑦, 𝑥) + (𝑦, 𝑦) (A.128)
= (𝑥, 𝑥) + 2ℜ(𝑥, 𝑦) + (𝑦, 𝑦),

but, ℜ(𝑥, 𝑦) ≤ |(𝑥, 𝑦)| and by Schwarz’s inequality |(𝑥, 𝑦)| ≤ (𝑥, 𝑥) 12 (𝑦 , 𝑦) 12 , there-
fore

‖𝑥 + 𝑦‖2 ≤ (𝑥, 𝑥) + 2(𝑥, 𝑥) 12 (𝑦 , 𝑦) 12 + (𝑦, 𝑦),
⇒ ‖𝑥 + 𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖, (A.129)

which is item (iv) of definition A.36. That is, we have proved the following theo-
rem.

Theorem A.56. Every inner product space is a linear normed space with the
norm ‖ • ‖ = √(•, •).

By the last theorem, it is direct to see that we have a natural definition of a
metric on the inner product space

𝜌(𝑥, 𝑦) = √(𝑥 − 𝑦, 𝑥 − 𝑦). (A.130)

That is, all the construction of Section A.1 can be applied.

Definition A.57. A complete inner product space is called Hilbert space.
It is worth noting that, if we sum up the following expression

‖𝑥 − 𝑦‖2 = (𝑥, 𝑥) − (𝑥, 𝑦) − (𝑦, 𝑥) + (𝑦, 𝑦), (A.131)

with Eq. (A.128) we obtain that for any 𝑥, 𝑦 in a Hilbert space we have

‖𝑥 + 𝑦‖2 + ‖𝑥 − 𝑦‖2 = 2‖𝑥‖2 + 2‖𝑦‖2, (A.132)

which is the Parallelogram law. This law is satisfied whenever the norm is ob-
tained by an inner product. The emergence of such a law is a consequence of
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the fact that in Hilbert spaces, we have a geometric notion, making it easier to
handle than Banach spaces.

Assume that we have 𝑓 = 𝜒[0,1](𝑥) and 𝑔 = 𝜒[1,2](𝑥), where 𝜒𝐸 is the indicator
function. It is direct to check that 𝑓 , 𝑔 ∈ ℒ𝑝 , and it follows that ‖𝑓 ‖𝑝 = ‖𝑔‖𝑝 = 1,
and ‖𝑓 + 𝑔‖𝑝 = ‖𝑓 − 𝑔‖𝑝 = 2

1
𝑝 . So, applying the parallelogram law, we have that

4 = 2(2)
2
𝑝 . This relation is satisfied only if 𝑝 = 2. This quick analysis shows us

that ℒ𝑝 is a Hilbert space only if 𝑝 = 2. That is, ℒ 2 is the only one of the ℒ𝑝
spaces whose norm is obtained by an inner product.

As we have explained, the geometric properties of Hilbert spaces are useful.
In particular, if we have a Hilbert space ℋ , we can construct a closed subspace
ℳ with the same inner product. Now denote by ℳ⟂ the set of all elements that
are orthogonal to ℳ. Now take the subspace ℳ as the following set ℳ = {𝜙} ⊂
ℋ , then, for any 𝜓 ∈ ℳ⟂, we have that (𝜙, 𝜓 )ℋ = 0. Let 𝜓 = 𝜓1 + 𝜓2, with
𝜓1, 𝜓2 ∈ ℳ⟂, then (𝜙, 𝜓 ) = 0 = (𝜙, 𝜓1) + (𝜙, 𝜓2), so (𝜙, 𝜓1) = (𝜙, 𝜓2) = 0 and
(𝜓1, 𝜓2)ℳ⟂ = (𝜓1, 𝜓2)ℋ , and all the linearity properties follow. So,ℳ⟂ is a linear
subspace of ℋ .

Further, take the open sphere 𝑆(𝜓2, 𝑟 ) = {𝜓1 | 𝜓1 ∈ ℋ, 𝜌(𝜓1, 𝜓2) < 𝑟}, with
𝜌(𝜓1, 𝜓2) = √(𝜓1 − 𝜓2, 𝜓1 − 𝜓2). Assume that 𝜓1, 𝜓2 ∈ ℳ⟂ and write 𝜓1 = 𝜓 + 𝜓 ′,
then

𝜌(𝜓1, 𝜓2) = √(𝜓 + 𝜓 ′ − 𝜓2, 𝜓 + 𝜓 ′ − 𝜓2) < 𝑟
= √(𝜓 − 𝜓2 + 𝜓 ′, 𝜓 − 𝜓2) + (𝜓 − 𝜓2 + 𝜓 ′, 𝜓 ′) < 𝑟
= √(𝜓3 + 𝜓 ′, 𝜓 ) + (𝜓3 + 𝜓 ′, 𝜓 ′) < 𝑟
= √(𝜓3 + 𝜓 ′, 𝜓 + 𝜓 ′) < 𝑟, (A.133)

where we have defined 𝜓3 = 𝜓 − 𝜓2. By the last equation, we have that 𝜓3 ∈
𝑆(𝜓2, 𝑟 ), and by the linearity of ℳ⟂, 𝜓3 ∈ ℳ⟂. Therefore, 𝑆(𝜓2, 𝑟 ) ∩ℳ⟂ ≠ ∅, so
𝜓3 is a limit point of ℳ⟂, once the decomposition 𝜓1 = 𝜓 + 𝜓 ′ is arbitrary, also
it is 𝜓3, so ℳ⟂ is closed. We conclude that ℳ⟂ is a closed linear subspace of ℋ .
Lemma A.58. Let ℋ be a Hilbert space, ℳ a closed linear subspace of ℋ , and
suppose that 𝜙 ∈ ℋ . Then, there is a unique 𝜓 ∈ ℳ closest to 𝜙.
Proof. Let 𝑑 = inf𝜓∈ℳ ‖𝜙−𝜓‖ and take a sequence {𝜓𝑛} ∈ ℳ such that ‖𝜙−𝜓𝑛‖ →
𝑑 , then, using the parallelogram law (Eq. (A.132)), we get that
‖𝜓𝑛 − 𝜓𝑚‖2 = ‖(𝜓𝑛 − 𝜙) − (𝜓𝑚 − 𝜙)‖2 = 2‖𝜓𝑛 − 𝜙‖2 + 2‖𝜓𝑚 − 𝜙‖2 − ‖ − 2𝜙 + 𝜓𝑛 + 𝜓𝑚‖2

= 2‖𝜓𝑛 − 𝜙‖2 + 2‖𝜓𝑚 − 𝜙‖2 − 4 ‖𝜙 + 1
2(𝜓𝑛 + 𝜓𝑚)‖

2

≤ 2‖𝜓𝑛 − 𝜙‖2 + 2‖𝜓𝑚 − 𝜙‖2 − 4𝑑2
→ 2𝑑2 + 2𝑑2 − 4𝑑2 = 0, as 𝑛 → ∞ and 𝑚 → ∞, (A.134)
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once that ℳ is closed, {𝜓𝑛} is Cauchy. Take {𝜓𝑛} → 𝜓 , then ‖𝑥 − 𝑧‖ = 𝑑 .
Now take a different sequence {𝜓 ′𝑛 }, all the calculations follow as the same.

We conclude that {𝜓 ′𝑛 } is Cauchy and {𝜓 ′𝑛 } → 𝜓 ′ ∈ ℳ and ‖𝜙 − 𝜓 ′‖ = 𝑑 . But
‖𝜙 − 𝜓 ′‖ − ‖𝜙 − 𝜓‖ = 0, then 𝜓 = 𝜓 ′. ■

Theorem A.59. (Projection theorem) Let ℋ be a Hilbert space, and ℳ ⊂ ℋ a
closed subspace. Then, every 𝜙 ∈ ℋ can be uniquely written as 𝜙 = 𝜓 +𝜉 , where
𝜓 ∈ ℳ and 𝜉 ∈ ℳ⟂.

Proof. Take 𝜙 ∈ ℋ . By the last lemma, there is a unique 𝜓 ∈ ℳ closest to 𝜙.
Define 𝜉 = 𝜙 − 𝜓 . Take any 𝜓 ′ ∈ ℳ and 𝑡 ∈ ℝ, if 𝑑 = ‖𝜙 − 𝜓‖ = ‖𝜔‖, then

𝑑2 ≤ ‖𝜙 − (𝜓 + 𝑡𝜓 ′)‖2 = ‖𝜉 − 𝑡𝜓 ′‖2
≤ ‖𝜉 ‖2 − 2𝑡ℜ(𝜉 , 𝜓 ′) + 𝑡2‖𝜓 ′‖2 = 𝑑2 − 2𝑡ℜ(𝜉 , 𝜓 ′) + 𝑡2‖𝜓 ′‖2, (A.135)

therefore it follows that −2ℜ(𝜉 , 𝜓 ′) + 𝑡‖𝜓 ′‖2 ≥ 0, this can only be satisfied if
ℜ(𝜉 , 𝜓 ′) = 0. Repeating the same thing but with 𝑖𝑡 , we get ℑ(𝜉 , 𝜓 ′). So we
conclude that (𝜉 , 𝜓 ′) = 0, so 𝜉 ∈ ℳ⟂.

Repeating the same procedure but with 𝜉 ′ = 𝜙 − 𝜓 , we get (𝜉 , 𝜓 ′) = 0, so
𝜉 ′ ∈ ℳ⟂. But 𝑑2 = ‖𝜉 ‖2 = ‖𝜉 ′‖2, on the other hand 𝑑2 = ‖𝜙 − 𝜓‖2, so 𝜉 = 𝜉 ′. ■

This last theorem indicates that we can write any Hilbert space asℋ = ℳ⊕
ℳ⟂.

Just like in the case of Banach spaces (see the discussion of Eq. (A.111)), we
can define the set of bounded linear transformations fromℋ toℋ ′ byℒ(ℋ,ℋ ′),
and the theorem A.43 ensures that this space is complete. Again, if ℋ ′ = ℂ, the
spaceℒ(ℋ,ℂ) is denoted byℋ ∗ and called the dual space ofℋ . The elements
of ℋ ∗ are called continuous linear functionals.

Theorem A.60. (Riesz’s Representation theorem in Hilbert spaces) Any linear
functional Φ(𝜓) in the Hilbert space ℋ can be represented uniquely in the form

Φ(𝜓) = (𝜙, 𝜓 ), (A.136)

where (•, •) denotes the inner-product in ℋ , and 𝜙 is defined uniquely by the
functional Φ. Moreover,

‖Φ‖ = ‖𝜙‖. (A.137)

Proof. LetΦ(𝜓) be a continuous linear functional acting over the complex Hilbert
space ℋ . Denote by 𝐿 the set of zeros of this functional, that is,

𝐿 = {𝜓 ∈ ℋ | Φ(𝜓) = 0}. (A.138)
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𝐿 is a subspace of ℋ . Linearity and continuity of Φ(𝜓) implies that 𝐿 is a linear
and closed manifold.

For any 𝜓 ∈ ℋ , let 𝜓0 be the projection of 𝜓 into the subspace ℋ\𝐿. Then,
Φ(𝜓0) = 𝐶 , and 𝐶 ≠ 0. Set 𝜓1 = 𝜓0/𝐶 , by the linearity of the functional we have
that Φ(𝜓1) = 1. For any 𝜓 ∈ ℋ we have Φ(𝜓) = 𝐶′, again using the linearity of
the functional, we can write that

Φ(𝜓) − 𝐶′Φ(𝜓1) = Φ(𝜓 − 𝐶′𝜓1) = 0, (A.139)

from which one can conclude that 𝜓 −𝐶′𝜓1 = 𝜉 , 𝜉 ∈ 𝐿, equivalently 𝜓 = 𝐶′𝜓1+𝜉 .
So we get that ℋ is the sum of two orthogonal spaces, one of them is 𝐿 and the
other is the space spanned by 𝜓1.

Once 𝜓1 ⟂ 𝜉 , follows that (𝜓1, 𝜓 ) = 𝐶′‖𝜓1‖, since 𝐶′ = Φ(𝜓) we can write

Φ(𝜓) = ( 𝜓1
‖𝜓1‖

, 𝜓) . (A.140)

Set 𝜙 = 𝜓1/‖𝜓1‖, then
Φ(𝜓) = (𝜙, 𝜓 ). (A.141)

Suppose that Φ(𝜓) = (𝜔, 𝜓 ), then 0 = (𝜙 − 𝜔, 𝜓 ), ∀𝜓 ∈ ℋ , which implies that
𝜙 = 𝜔. Taking the absolute value of the previous equation, one gets that

|Φ(𝜓 )| = |(𝜙, 𝜓 )| ≤ ‖𝜙‖ ‖𝜓 ‖ ⇒ ‖Φ‖ ≤ ‖𝜙‖. (A.142)

However, Φ(𝜙) = (𝜙, 𝜙) = ‖𝜙‖2, then ‖Φ‖ ≥ ‖𝜙‖, hence ‖Φ‖ = ‖𝜙‖. ■

Theorem A.61. Let ℋ be a Hilbert space, and let 𝐴 ∈ ℒ(ℋ). If
𝑓 ⟨𝜙, 𝜓 ⟩ = (𝐴𝜙, 𝜓 ), (A.143)

then 𝑓 is a bounded sesquilinear10 functional and ‖𝑓 ‖ = ‖𝐴‖. Conversely, if 𝑓 is
a bounded sesquilinear functional, there exists a unique 𝐴 ∈ ℒ(ℋ) such that
𝑓 ⟨𝜙, 𝜓 ⟩ = (𝐴𝜙, 𝜓 ).
Proof. Two linear transformations𝐴1 and𝐴2, each mappingℋ into itself, satisfy
(𝐴1𝜙, 𝜓 ) = (𝐴2𝜙, 𝜓 ) for all 𝜙, 𝜓 ∈ ℋ , then 𝐴1 = 𝐴2. If 𝐴1 and 𝐴2 satisfy the
weaker condition (𝐴1𝜙, 𝜙) = (𝐴2𝜙, 𝜙), this also implies that 𝐴1 = 𝐴2. Let us
consider two sesquilinear functionals 𝑓 ⟨𝜙, 𝜓 ⟩ = (𝐴1𝜙, 𝜓 ) and 𝑔⟨𝜙, 𝜓 ⟩ = (𝐴2𝜙, 𝜓 ).
Therefore, 𝑓 = 𝑔, and then 𝐴1 = 𝐴2 for all 𝜙, 𝜓 ∈ ℋ .

Now let 𝐴 ∈ ℒ(ℋ) and consider 𝑓 ⟨𝜙, 𝜓 ⟩ = (𝐴𝜙, 𝜓 ). Using the Cauchy-
Schwarz inequality (corollary A.55), we have

|𝑓 ⟨𝜙, 𝜓 ⟩| = |(𝐴𝜙, 𝜓 )| ≤ ‖𝐴‖‖𝜙‖‖𝜓 ‖, (A.144)
10See footnote 4 on page 16.
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so 𝑓 is a bounded sesquilinear functional and ‖𝑓 ‖ ≤ ‖𝐴‖. For any 𝜙 ∈ ℋ , we have

‖𝐴𝜙‖2 = (𝐴𝜙, 𝐴𝜙) = 𝑓 ⟨𝜙, 𝐴𝜙⟩ = |𝑓 ⟨𝜙, 𝐴𝜙⟩| ≤ ‖𝑓 ‖‖𝜙‖‖𝐴𝜙‖, (A.145)

so it follows that ‖𝐴𝜙‖ ≤ ‖𝑓 ‖‖𝜙 ⇒ ‖𝐴‖ ≤ ‖𝑓 ‖. Therefore, ‖𝐴‖ = ‖𝑓 ‖.
Conversely, suppose that 𝑓 is a bounded sesquilinear functional and consider

the functional 𝑔𝑥(𝑦) = 𝑓 ⟨𝜙, 𝜓 ⟩. It directly follows that 𝑔𝜙 is a linear functional.
The fact that 𝑔𝜙 is bounded follows directly from the definition and the Cauchy-
Schwarz inequality. By Riesz’s Representation theorem, there exists a unique
𝜉 ∈ ℋ such that

𝑔𝜙(𝜓 ) = 𝑓 ⟨𝜙, 𝜓 ⟩ = (𝜓 , 𝜉 ), (A.146)
and ‖𝑔𝜙‖ = ‖𝜉 ‖. If we denote 𝜉 = 𝐴𝜙, we have that 𝑓 ⟨𝜙, 𝜓 ⟩ = (𝐴𝜙, 𝜓 ). It remains
to show that 𝐴 is a bounded linear transformation. From linearity, we have that
𝑔𝜙1+𝜙2(𝜓 ) = (𝜓 , 𝐴(𝜙1 +𝜙2)), and from the definition of 𝑔𝜙 , it follows immediately
that𝐴(𝜙1+𝜙2) = 𝐴𝜙1+𝐴𝜙2. The multiplication by scalar follows similarly. Then
𝐴 is linear. Its boundedness follows from

‖𝑔𝜙‖ = ‖𝜉 ‖ = ‖𝐴𝜙‖ ≤ ‖𝑓 ‖‖𝜙‖. (A.147)

■

To push further the ideas of finite-dimensional spaces into an infinite-dimen-
sional space like Hilbert spaces, we must ask ourselves if it is possible to define
a set of orthonormal basis.

We say that if 𝑆 is an orthonormal subset of a Hilbert space and there is no
other orthogonal set which contains 𝑆 as a proper subset, then we say that 𝑆 is
an orthonormal basis for ℋ .

Theorem A.62. Every Hilbert space has an orthonormal basis.

Proof. Take 𝒞 as the collection of orthonormal sets of ℋ . Partially order 𝒞 by
inclusion, that is 𝑆1 ≺ 𝑆2 if 𝑆1 ⊂ 𝑆2. Since for any 𝜓 ∈ ℋ , we have that 𝜓/‖𝜓 ‖ is
an orthonormal set, 𝒞 is a nonempty collection.

Take {𝑆𝛼 }𝛼∈𝐴 as any partially ordered subset of𝒞 , so⋃𝛼∈𝐴 𝑆𝛼 is an orthonor-
mal set which contains each 𝑆𝛼 , also, it is an upper bound for {𝑆𝛼 }𝛼∈𝐴. Each par-
tially ordered subset of 𝒞 has an upper bound, so we can apply Zorn’s Lemma,
therefore 𝒞 has a maximal element. That is, 𝒞 contains an orthonormal system
which is not contained by any other orthonormal system. ■

TheoremA.63. Letℋ be a Hilbert space and 𝑠 = {𝜙𝛼 }𝛼∈𝐴 an orthonormal basis.
Then, for each 𝜓 ∈ ℋ

𝜓 = ∑
𝛼∈𝐴

(𝜙𝛼 , 𝜓 )𝜙𝛼 , (A.148)
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where the equality means that the sum (independent of the order) converges to
𝜓 ∈ ℋ , and

‖𝜓 ‖2 = ∑
𝛼∈𝐴

|(𝜙𝛼 , 𝜓 )|2. (A.149)

Conversely, if ∑𝛼∈𝐴 |𝑐𝛼 |2 < ∞, with 𝑐𝛼 ∈ ℂ, then ∑𝛼∈𝐴 𝑐𝛼𝜙𝛼 converges to an
element of ℋ .

Proof. Using Bessel’s inequality (corollary A.54), we have that for any finite sub-
set 𝐴′ ⊂ 𝐴, ∑𝛼∈𝐴′ |(𝜙𝛼 , 𝜓 )|2 ≤ ‖𝜓‖2. If (𝜙𝛼 , 𝜓 ) ≠ 0, there is at most a countable
number of 𝛼 ’s in 𝐴 for which we can establish an order in some way: 𝛼1, 𝛼2, … .
Since∑𝑁

𝑗=1 |(𝜙𝛼 , 𝜓 )|2 is monotone increasing and bounded, it converges to a finite
quantity as 𝑁 → ∞. Assume that 𝜓𝑛 = ∑𝑛

𝑗=1(𝜙𝛼𝑗 , 𝜓 )𝜙𝛼𝑗 , then, for any 𝑛 > 𝑚

‖𝜓𝑛 − 𝜓𝑚‖2 = ‖
𝑛
∑

𝑗=𝑚+1
(𝜙𝛼𝑗 , 𝜓 )𝜙𝛼𝑗 ‖

2
=

𝑛
∑

𝑗=𝑚+1
|(𝜙𝛼𝑗 , 𝜓 )|2, (A.150)

thus, {𝜓𝑛} is a Cauchy sequence that converges to some 𝜓 ′ ∈ ℋ . Therefore, we
have that

(𝜓 − 𝜓 ′, 𝜙𝛼𝑙 ) = lim𝑛→∞(𝜓 −
𝑛
∑
𝑗=1

(𝜙𝛼𝑗 , 𝜓 )𝜙𝛼𝑗 , 𝜙𝛼𝑙)

= (𝜓 , 𝜙𝛼𝑙 ) − (𝜓 , 𝜙𝛼𝑙 ) = 0, (A.151)

the previous holds for any 𝛼 ≠ 𝛼𝑙 , which means that we have (𝜓 − 𝜓 ′, 𝜙𝛼 ) = 0,
so 𝜓 − 𝜓 ′ is orthogonal to all 𝜙𝛼 ∈ 𝑆. But 𝑆 is a complete orthonormal set, then
𝜓 − 𝜓 ′ = 0 and it follows that

𝜓 = ∑
𝛼∈𝐴

(𝜙𝛼 , 𝜓 )𝜙𝛼 . (A.152)

Furthermore, we have that

0 = ‖𝜓 − ∑
𝛼∈𝐴

(𝜙𝛼 , 𝜓 )𝜙𝛼 ‖
2
= lim(‖𝑦‖2 −

𝑛
∑
𝑗=1

|(𝜙𝛼𝑗 , 𝑦)|2)

= ‖𝑦‖2 − ∑
𝛼∈𝐴

|(𝜙𝛼 , 𝑦)|2, (A.153)

and Eq. (A.149) follows. ■

The Eq. (A.149) is sometimes called Parseval’s relation.
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Definition A.64. A metric space which has a countable dense subset is said to
be topologically separable.

Theorem A.65. A Hilbert space ℋ is separable if and only if it has a countable
orthonormal basis 𝑆. If there are 𝑁 < ∞ elements in 𝑆, then ℋ is isomorphic to
ℂ𝑁 . If there are countably many elements in 𝑆, then ℋ is isomorphic to 𝑙211.

Proof. Supposeℋ is separable and take {𝜙𝑛} as a countable dense set. Take out of
the sequence some of the 𝜙𝑛 to get a subcollection of independent vectors. Such
a subcollection spans the same dense space as {𝜙𝑛}. Apply the Gram-Schmidt
procedure to obtain a countable orthonormal system.

Now take {𝜓𝑛} as a complete orthonormal system ofℋ . By the theorem A.63,
the set of finite linear combinations of 𝜓𝑛 is dense in ℋ , such a set is countable,
therefore ℋ is separable.

Take ℋ separable and {𝜓𝑛}, 𝑛 = 1, 2, … , a complete orthonormal system. De-
fine 𝒰 ∶ ℋ → 𝑙2 by 𝒰 ∶ 𝜙 → {(𝜓𝑛, 𝜙)}, 𝑛 = 1, 2, … . By the theorem A.63 it is
well defined and onto, by Parseval’s relation, it is unitary.

In the case 𝑁 < ∞, an analogous map can be defined. ■

Using the fact that ℒ 2 is a Hilbert space and the last theorem, we have that
ℒ 2 is isomorphic to 𝑙2.

We end the discussion about Hilbert spaces with an important theorem in
mathematical physics. First, we say that an operator 𝐴 ∶ 𝑋 → 𝑌 is everywhere
defined if 𝐷(𝐴) = 𝑋 .

Theorem A.66. (Hellinger-Toeplitz theorem) Let 𝐴 be an everywhere defined
linear operator on a Hilbert space ℋ with (𝐴𝜙, 𝜓 ) = (𝜙, 𝐴𝜓), for all 𝜙, 𝜓 ∈ ℋ .
Then 𝐴 is bounded.

Proof. Suppose that ⟨𝜙𝑛, 𝐴𝜙𝑛⟩ → ⟨𝜙, 𝜓 ⟩. Then, for any 𝜉 ∈ ℋ we have that

(𝜉 , 𝜓 ) = lim𝑛→∞(𝜉 , 𝐴𝜙𝑛) = lim𝑛→∞(𝐴𝜉 , 𝜙𝑛)
= (𝐴𝜉 , 𝜙) = (𝜉 , 𝐴𝜙), (A.154)

thus 𝐴𝜙 = 𝜓 , which means that Γ(𝐴) is a closed graph. By the closed graph
theorem (theorem A.51), 𝐴 is bounded. ■

11𝑙2 is the set of sequences {𝑥𝑛}, 𝑛 = 1, 2, … , of complex numbers which satisfy ∑∞
𝑛=1 |𝑥𝑛 |2 < ∞.
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A.3 Spectral Theorem
We dedicate this section to explore constructions about bounded operators that
allow us to culminate into the spectral theorem. For such a section do not extend
too much, we focus only on the minimum concepts needed to prove the spectral
theorem for bounded operators.

Definition A.67. Let 𝑋 and 𝑌 be Banach spaces, 𝑇 ∶ 𝑋 → 𝑌 a bounded linear
operator. The Banach space adjoint of 𝑇 , denoted by 𝑇 ′, is the bounded linear
operator from 𝑌 ∗ to 𝑋 ∗ defined by

(𝑇 ′𝑙)(𝑥) = 𝑙(𝑇 𝑥) (A.155)

for all 𝑙 ∈ 𝑌 ∗, 𝑥 ∈ 𝑋 .

Theorem A.68. Let 𝑋 and 𝑌 be Banach spaces. The map 𝑇 → 𝑇 ′ is an isomor-
phism of ℒ(𝑋, 𝑌 ) into ℒ(𝑋 ∗, 𝑌 ∗).
Proof. The linearity of 𝑇 → 𝑇 ′ follows from the definition of 𝑇 ′. To prove the
isometry12 we use the operator norm, Eq. (A.111) and the corollary A.48 to get

‖𝑇 ‖ℒ(𝑋,𝑌 ) = sup
‖𝑥‖≤1

‖𝑇 𝑥‖‖𝑌 = sup
‖𝑥‖≤1

‖𝑙(𝑇 𝑥)‖‖𝑌 ∗ = sup
‖𝑥‖≤1

(sup
‖𝑙‖≤1

|𝑙(𝑇 𝑥)|)

= sup
‖𝑙‖≤1

( sup
‖𝑥‖≤1

|(𝑇 ′𝑙)(𝑥)|) = sup
‖𝑙‖≤1

‖𝑇 ′𝑙‖

⇒ ‖𝑇 ‖ℒ(𝑋,𝑌 ) = ‖𝑇 ′‖ℒ(𝑋 ∗,𝑌 ∗). (A.156)

■

Most of the time we are concerned about operators which map a Hilbert
spaceℋ into itself, that is 𝑇 ∶ ℋ → ℋ . The Banach space adjoint does the map
𝑇 ′ ∶ ℋ ∗ → ℋ ∗. Let us consider 𝐶 ∶ ℋ → ℋ ∗, by the Riesz representation
theorem (theorem A.60), 𝐶 is the functional (𝜓 , •) acting on ℋ .

Define 𝑇 ∗ ∶ ℋ → ℋ as 𝑇 ∗ = 𝐶−1𝑇 ′𝐶 , so we have that

(𝑇𝜙, 𝜓 ) = (𝐶𝜓)(𝑇𝜙) = (𝑇 ′𝐶𝜓)(𝜙) = (𝜙, 𝐶−1𝑇 ′𝐶𝜓) = (𝜙, 𝑇 ∗𝜓), (A.157)

𝑇 ∗ is called the Hilbert space adjoint of 𝑇 . Since we are mostly interested in
the Hilbert space case, we will call it only the adjoint and let ′ and ∗ differentiate
the cases.

12𝑇 is said to be an isometry if ‖𝑇 𝑥‖ = ‖𝑥‖.
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Proposition A.69. Any adjoint operators 𝐴, 𝐵 ∈ ℒ(𝑋), satisfies the following
properties

(i) ‖𝐴′𝐴‖ = ‖𝐴‖2;
(ii) (𝐴𝐵)′ = 𝐵′𝐴′;

(iii) (𝐴 + 𝐵)′ = 𝐴′ + 𝐵′.
Proof. To prove (i) we note that ‖𝐴′𝐴‖ ≤ ‖𝐴′‖‖𝐴‖ = ‖𝐴‖‖𝐴‖ = ‖𝐴‖2. On the other
hand we have

‖𝐴‖2 = ( sup
‖𝜙‖=1

‖𝐴𝜙‖)
2
= sup

‖𝜙‖=1
‖𝐴𝜙‖2 = sup

‖𝜙‖=1
(𝐴𝜙, 𝐴𝜙)

= sup
‖𝜙‖=1

(𝐴′𝐴𝜙, 𝜙) ≤ sup
‖𝜙‖=1

‖𝐴′𝐴𝜙‖‖𝜙‖ = ‖𝐴′𝐴‖, (A.158)

therefore, ‖𝐴′𝐴‖ = ‖𝐴‖2.
In order to show (ii), assume 𝐴, 𝐵 adjoint and define 𝜉 = 𝐵𝜙, then it follows

(𝐴𝜉 , 𝜓 ) = (𝜉 , 𝐴′𝜓) = (𝐵𝜙, 𝐴′𝜓) = (𝜙, 𝐵′𝐴′𝜓), (A.159)

but ((𝐴𝐵)𝜙, 𝜓 ) = (𝜙, (𝐴𝐵)′𝜓). Thus, (𝐴𝐵)′ = 𝐵′𝐴′.
(iii) follows similarly to (ii). ■

DefinitionA.70. Abounded operator𝐴 on aHilbert space is called self-adjoint
if 𝐴 = 𝐴∗.

Another important kind of operators are the projections.

Definition A.71. If 𝑃 ∈ ℒ(ℋ) and 𝑃2 = 𝑃 , then 𝑃 is called a projection. If in
addition 𝑃 = 𝑃∗, then 𝑃 is called an orthogonal projection.

Definition A.72. If the range of 𝜆𝐼 −𝐴, Ran(𝜆𝐼 −𝐴), is dense inℋ and if 𝜆𝐼 −𝐴
has a bounded inverse on Ran(𝜆𝐼 − 𝐴), then 𝜆 is said to belong to the resolvent
set of 𝐴, 𝜌(𝐴).
TheoremA.73. Let 𝑋 be a Banach space and suppose that𝐴 ∈ 𝒳 . Then 𝜌(𝐴) is
an open subset of ℂ and (𝜆𝐼 −𝐴)−1 is an analyticℒ(𝑋)-valued function on each
component (maximal connected subset) of 𝐷. For any two points 𝜆, 𝜇 ∈ 𝜌(𝐴),
(𝜆𝐼 − 𝐴)−1 and (𝜇𝐼 − 𝐴)−1 commute and

(𝜆𝐼 − 𝐴)−1 − (𝜇𝐼 − 𝐴)−1 = (𝜇 − 𝜆)(𝜇𝐼 − 𝐴)−1(𝜆𝐼 − 𝐴)−1 (A.160)
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Proof. Let us take 𝜆0 ∈ 𝜌(𝐴) and, momentarily, ignore questions about conver-
gence, then we can write

1
𝜆𝐼 − 𝐴 = 1

𝜆 − 𝜆0𝐼 + (𝜆0 − 𝐴) =
1

𝜆0𝐼 − 𝐴 ( 1
1 − 𝜆0−𝜆

𝜆0−𝐴
)

= 1
𝜆0𝐼 − 𝐴 [1 +

∞
∑
𝑛=1

( 𝜆0 − 𝜆
𝜆0 − 𝐴)

𝑛
] , (A.161)

this last equation suggests us to define

(𝜆𝐼 − 𝐴)−1 = (𝜆0𝐼 − 𝐴)−1 {𝐼 +
∞
∑
𝑛=1

(𝜆0 − 𝜆)𝑛 [(𝜆0𝐼 − 𝐴)−1]𝑛} . (A.162)

The previous series converges if |𝜆 − 𝜆0| < ‖(𝜆0𝐼 − 𝐴)−1‖−1, in such a scenario,
(𝜆𝐼 − 𝐴)−1 is well defined. Therefore, 𝜆 ∈ 𝜌(𝐴) if |𝜆 − 𝜆0| < ‖(𝜆0𝐼 − 𝐴)−1‖−1 and
𝜌(𝐴) is open. Once that (𝜆𝐼 − 𝐴)−1 has a convergent power series expansion,
(𝜆𝐼 − 𝐴)−1 is analytic.

By direct computation of the following expression

(𝜆𝐼−𝐴)−1−(𝜇𝐼−𝐴)−1 = (𝜆𝐼−𝐴)−1(𝜇𝐼−𝐴)(𝜇𝐼−𝐴)−1−(𝜆𝐼−𝐴)−1(𝜆𝐼−𝐴)(𝜇𝐼−𝐴)−1,
(A.163)

we conclude that (𝜆𝐼 −𝐴)−1 and (𝜇𝐼 −𝐴)−1 commute and the Eq. (A.160) follows.
■

Sometimes the quantity (𝜆𝐼 − 𝐴)−1 is called the resolvent of 𝐴, denoted
𝑅𝜆(𝐴) = (𝜆𝐼 − 𝐴)−1, and the Eq. (A.160) is called the first resolvent formula.
Note that, if we take formally

1
𝜆𝐼 − 𝐴 = (1𝜆)

1
𝐼 − 𝐴

𝜆
= 1

𝜆 [1 +
∞
∑
𝑛=1

(𝐴𝜆 )
𝑛
] (A.164)

it suggests that we have

𝑅𝜆(𝐴) = 1
𝜆 [𝐼 +

∞
∑
𝑛=1

(𝐴𝜆 )
𝑛
] , (A.165)

such a series is called the Neumann series for (𝜆𝐼 − 𝐴)−1.
Theorem A.74. The resolvent of 𝐴, 𝑅𝜆(𝐴), is analytic in the set of regular
points13.

13Set of numbers 𝑥 ∈ ℂ for which an operator has a bounded inverse.
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Proof. Take 𝜆 and 𝜆0 to be regular points. By the first resolvent formula, Eq.
(A.160), we have that

lim𝜆→𝜆0
𝑅𝜆(𝐴) − 𝑅𝜆0(𝐴)

𝜆 − 𝜆0
= lim𝜆→𝜆0

𝑅𝜆0(𝐴)𝑅𝜆(𝐴) = 𝑅𝜆0(𝐴) lim𝜆→𝜆0
𝑅𝜆(𝐴). (A.166)

Let {𝑅𝜆,𝑛(𝐴)} be a sequencewhich converges to𝑅𝜆(𝐴). Then𝑅𝜆(𝐴)−1𝑅𝜆,𝑛(𝐴) →
𝐼 , and for any 𝜀 > 0, there must exist an 𝑛 > 𝑁 such that

‖𝑅𝜆(𝐴)−1𝑅𝜆,𝑛(𝐴) − 𝐼 ‖ < 𝜀. (A.167)

Now take𝑁1 such that for 𝑛 > 𝑁1 we have ‖𝑅𝜆(𝐴)−1𝑅𝜆,𝑛(𝐴)−𝐼 ‖ < 1, and consider
the series

𝐼 +
∞
∑
𝑘=1

[𝐼 − 𝑅𝜆(𝐴)−1𝑅𝜆,𝑛(𝐴)]𝑘 . (A.168)

By the same argument used in the proof of theoremA.73, and since ‖𝑅𝜆(𝐴)−1𝑅𝜆,𝑛(𝐴)−
𝐼 ‖ < 1, the series must converge to (𝑅𝜆(𝐴)−1𝑅𝜆,𝑛(𝐴))−1 = 𝑅𝜆,𝑛(𝐴)−1𝑅𝜆(𝐴).
Therefore, we have

‖𝑅𝜆(𝐴)−1𝑅𝜆,𝑛(𝐴) − 𝐼 ‖ ≤
∞
∑
𝑘=1

‖[𝐼 − 𝑅𝜆(𝐴)−1𝑅𝜆,𝑛(𝐴)]𝑘‖

=
∞
∑
𝑘=1

‖𝑅𝜆(𝐴)−𝑘 [𝑅𝜆(𝐴) − 𝑅𝜆,𝑛(𝐴)]𝑘‖

≤
∞
∑
𝑘=1

‖𝑅𝜆(𝐴)−1‖𝑘 ‖[𝑅𝜆(𝐴) − 𝑅𝜆,𝑛(𝐴)]𝑘‖ = 𝛿, (A.169)

Once that 𝑅𝜆(𝐴) → 𝑅𝜆,𝑛(𝐴), we can take 𝑁2 such that 𝑛 > 𝑁2 will make 𝛿 as
small as desired; hence

‖𝐼 − 𝑅𝜆,𝑛(𝐴)−1𝑅𝜆(𝐴)‖ → 0
𝑅𝜆,𝑛(𝐴)−1𝑅𝜆(𝐴) → 𝐼
𝑅𝜆,𝑛(𝐴)−1 → 𝑅𝜆(𝐴)−1, (A.170)

therefore, taking the inverse is continuous.
Using the continuity of taking the inverse, we can write

lim𝜆→𝜆0
𝑅𝜆(𝐴) = lim𝜆→𝜆0

(𝜆𝐼 − 𝐴)−1 = (𝜆0𝐼 − 𝐴)−1 = 𝑅𝜆0(𝐴), (A.171)

thus, the limit of Eq. (A.166) exists, and symbolically we have that 𝑅′𝜆(𝐴)|𝜆=𝜆0 =
𝑅2𝜆0(𝐴). ■
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Remembering that every Hilbert space is a Banach space, we can define some
important quantities.

Definition A.75. If the range of 𝜆𝐼 −𝐴, Ran(𝜆 −𝐴), is dense inℋ and if 𝜆𝐼 −𝐴
has an unbounded inverse, then 𝜆 is said to belong to the continuous spectrum
of 𝐴, 𝜎c(𝐴).
Definition A.76. If the range of 𝜆𝐼 −𝐴, Ran(𝜆−𝐴), is not dense inℋ but 𝜆𝐼 −𝐴
has an inverse, bounded or unbounded, then 𝜆 is said to belong to the residual
spectrum of 𝐴, 𝜎r(𝐴).
Definition A.77. If (𝜆𝐼 − 𝐴)−1 does not exist, then 𝜆 is said to belong to the
point spectrum (or discrete spectrum) of 𝐴, 𝜎p.

Note that the set 𝜎p is just the eigenvalues of 𝐴.

Definition A.78. The set 𝜎(𝐴) = 𝜎c(𝐴) ∪ 𝜎r(𝐴) ∪ 𝜎p(𝐴) is called the spectrum
of 𝐴.

Definition A.79. Let
𝑟(𝑇 ) = sup

𝜆∈𝜎(𝑇 )
|𝜆| (A.172)

𝑟(𝑇 ) is called the spectral radius of 𝑇 .

Theorem A.80. Let 𝑋 be a Banach space, 𝑇 ∈ ℒ(𝑋). Then lim𝑛→∞ ‖𝑇 𝑛‖
1
𝑛 exists

and is equal to 𝑟(𝑇 ).
Proof. Take 𝑎𝑛 = ln ‖𝑇 𝑛‖, then we have

𝑎𝑚+𝑛 = ln ‖𝑇𝑚+𝑛‖ ≤ ln (‖𝑇𝑚‖‖𝑇 𝑛‖) = ln ‖𝑇𝑚‖ + ln ‖𝑇 𝑛‖,
⇒ 𝑎𝑚+𝑛 ≤ 𝑎𝑚 + 𝑎𝑛. (A.173)

Setting 𝑛 = 𝑚𝑞 + 𝑟 where 𝑚, 𝑞 and 𝑟 are positive integers such that 0 ≤ 𝑟 ≤ 𝑚 − 1,
we obtain the following

𝑎𝑛 ≤ 𝑎𝑚𝑞 + 𝑎𝑟 , (A.174)
𝑎𝑚𝑞+𝑟 ≤ 𝑎𝑚𝑞 + 𝑎𝑟 , (A.175)

𝑎𝑟 ≤ 𝑎𝑚 + 𝑎−1 ≤ 𝑎𝑚, (A.176)

therefore, for any 𝑛 ∈ [𝑚, 2𝑚 − 1], we have that

lim sup
𝑎𝑛
𝑛 ≤ 𝑎𝑚

𝑚 . (A.177)
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Once that 𝑎𝑛 ≥ 1
𝑛 , we have

lim𝑛→∞
𝑎𝑛
𝑛 = inf

𝑎𝑛
𝑛 . (A.178)

Then lim𝑛→∞ ln ‖𝑇 𝑛‖ exists, and lim𝑛→∞ ‖𝑇 𝑛‖
1
𝑛 exists.

Once that 𝑅𝜆(𝑇 ) is analytic in 𝜌(𝑇 ), and {𝜆 ∣ |𝜆| > 𝑟(𝑇 )} ⊂ 𝜌(𝑇 ), the conver-
gence of the Neumann series (Eq. A.165) cannot be smaller than 𝑟−1(𝑇 ). Using
the Cauchy-Hadamard theorem, we have that the radius of convergence of the
Neumann series is the inverse of lim sup𝑛 ‖𝑇 ‖1/𝑛 = lim𝑛→∞ ‖𝑇 ‖1/𝑛, therefore

𝑟(𝑇 ) = lim𝑛→∞ ‖𝑇 ‖
1
𝑛 . (A.179)

■

If 𝑋 = ℋ and 𝑇 = 𝐴 is a self-adjoint operator, we can use the property (i) of
proposition A.69 to see that

𝑟(𝐴) = lim𝑘→∞ ‖𝐴𝑘‖
1
𝑘 = lim𝑛→∞ ‖𝐴2𝑛‖2−𝑛 = ‖𝐴‖

⇒ 𝑟(𝐴) = ‖𝐴‖. (A.180)

Theorem A.81. (Phillips’ Theorem) Let 𝑋 be a Banach space, 𝑇 ∈ ℒ(𝑋). Then
𝜎(𝑇 ) = 𝜎(𝑇 ′) and 𝑅𝜆(𝑇 ) = 𝑅𝜆(𝑇 ′). If 𝑋 = ℋ is a Hilbert space, then 𝜎(𝑇 ∗) = {𝜆 ∣
𝜆 ∈ 𝜎(𝑇 )} and 𝑅𝜆(𝑇 ∗) = 𝑅𝜆(𝑇 )∗.
Proof. First, we use property (ii) of proposition A.69 and notice that

𝐼𝑋 = 𝐼𝑋 ′ = (𝑇−1𝑇 )′ = 𝑇 ′ (𝑇−1)−1 = (𝑇𝑇−1)′ = (𝑇−1)−1 𝑇 ′. (A.181)

Then, 𝑇 being an isomorphism implies that 𝑇 ′ is an isomorphism, and 𝜌(𝑇 ) ⊂
𝜌(𝑇 ′). Repeating the same reasoning, we get that 𝜌(𝑇 ′) = 𝜌(𝑇 ). Therefore,
𝜎(𝑇 ) = 𝜎(𝑇 ′).

Now we notice that

𝐼𝑋 ′ = [𝑅𝜆(𝑇 )(𝑇 − 𝜆𝐼𝑋 )]′ = (𝑇 − 𝜆𝐼𝑋 )′𝑅𝜆(𝑇 )′ = (𝑇 ′ − 𝜆𝐼𝑋 ′)𝑅𝜆(𝑇 ′). (A.182)

Thus, 𝑅𝜆(𝑇 ) = 𝑅𝜆(𝑇 ′).
The case for Hilbert spaces follows similarly using that 𝐼 = 𝐼 ∗. ■

Assume that 𝐴 is a self-adjoint operator acting over a Hilbert space. By the
last theorem, we have that 𝜎(𝐴∗) = {𝜆 ∣ 𝜆 ∈ 𝜎(𝐴)}, but 𝜎(𝐴∗) = 𝜎(𝐴), therefore
{𝜆 ∣ 𝜆 ∈ 𝜎(𝐴)} = {𝜆 ∣ 𝜆 ∈ 𝜎(𝐴)}. Then, ℑ𝜆 = ℑ𝜆, which implies that 𝜆 ∈ ℝ
and 𝜎(𝐴) ⊂ ℝ. Actually, we can restrict the spectrum of a bounded self-adjoint
operator to an interval of ℝ.
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Theorem A.82. Let 𝐴 be a bounded self-adjoint operator 𝐴 ∈ ℒ(ℋ). Then,
there exist 𝑚 and 𝑀 real numbers such that 𝜎(𝐴) ⊂ [𝑚,𝑀]. Furthermore, 𝑚 and
𝑀 belong to 𝜎(𝐴).
Proof. We have that ‖𝐴‖ = sup‖𝜙‖=1 |(𝐴𝜙, 𝜙)|, so we define

𝑚 = inf
‖𝜙‖=1

(𝐴𝜙, 𝜙), 𝑀 = sup
‖𝜙‖=1

(𝐴𝜙, 𝜙), (A.183)

then ‖𝐴‖ = max(|𝑚|, |𝑀|). Now assume that 𝜙 ≠ 0, then (𝐴𝜙/‖𝜙‖, 𝜙/‖𝜙‖) < 𝑀 .
Then, for every 𝜙 we have (𝐴𝜙, 𝜙) ≤ 𝑀(𝜙, 𝜙).

Suppose that 𝜆 ∉ [𝑚,𝑀], so 𝜆 < 𝑚 or 𝜆 > 𝑀 . Take 𝜆 > 𝑀 , so there is 𝜀 > 0
such that 𝜆 = 𝑀 + 𝜀. Thus

((𝐴 − 𝜆)𝜙, 𝜙) ≤ 𝑀(𝜙, 𝜙) − 𝜆(𝜙, 𝜙) ≤ −𝜀(𝜙, 𝜙) < 0 (A.184)

or, in terms of absolute values

|((𝐴 − 𝜆)𝜙, 𝜙)| ≥ 𝜀‖𝜙‖2. (A.185)

By the Cauchy-Schwarz inequality (Corollary A.55), we have |((𝐴 − 𝜆)𝜙, 𝜙)| ≤
‖(𝐴− 𝜆)𝜙‖‖𝜙‖, which implies ‖(𝐴 − 𝜆)𝜙‖ ≥ 𝜀‖𝜙‖. It is worth noting that the values
𝜇 which satisfy ‖(𝐴−𝜇)𝜙‖ > 𝜀‖𝜙‖ are sometimes called approximate eigenvalues of
𝐴. Now take the set of all approximated eigenvalues of 𝐴 and denote it by 𝜋(𝐴),
called the approximate spectrum of 𝐴. Then, it follows directly that 𝜆 ∉ 𝜋(𝐴).

Now take any complex number 𝜇 and any 𝜙 ≠ 0, then
0 < |𝜇 − 𝜇|‖𝜙‖2 = ((𝐴 − 𝜇)𝜙, 𝜙) − ((𝐴 − 𝜇)𝜙, 𝜙) = ((𝐴 − 𝜇)𝜙, 𝜙) − (𝜙, (𝐴∗ − 𝜇)𝜙)

= ((𝐴 − 𝜇)𝜙, 𝜙) − (𝜙, (𝐴 − 𝜇)𝜙) ≤ 2‖(𝐴 − 𝜇)𝜙‖‖𝜙‖. (A.186)

If ℑ𝜇 = 0 and 𝜇 ∈ 𝜎(𝐴), there is some 𝜙𝑛 such that ‖(𝐴 − 𝜇)𝜙𝑛‖ → 0, therefore
𝜋(𝐴) = 𝜎(𝐴).

So, by the last result, 𝜆 ∉ 𝜎(𝐴). This is a contradiction, so 𝜆 < 𝑀 . It follows
similarly that 𝜆 > 𝑚, therefore 𝜆 ∈ [𝑚,𝑀].

There is some real number 𝜈 such that 𝑀 − 𝜈 ≥ 𝑚 − 𝜈 ≥ 0. So we have that

sup
‖𝜙‖=1

((𝐴 − 𝜈)𝜙, 𝜙) = 𝑀 − 𝜈 = ‖𝐴 − 𝜈‖. (A.187)

We need to show that 𝑀 ∈ 𝜎(𝐴). There must exist a sequence of 𝜙𝑛, ‖𝜙𝑛‖ = 1 for
every 𝑛 such that (𝐴𝜙𝑛, 𝜙𝑛) → 𝑀 . By the definition of𝑀 , the sequence {(𝐴𝜙𝑛, 𝜙𝑛)}
must approach from below

(𝐴𝜙𝑛, 𝜙𝑛) = 𝑀 − 𝜀𝑛, where 𝜀𝑛 → 0 and 𝜀𝑛 > 0, ∀𝑛. (A.188)
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Consider

‖𝐴𝜙𝑛 − 𝑀𝜙𝑛‖ = ‖𝐴𝜙𝑛‖2 − 2𝑀(𝐴𝜙𝑛, 𝜙𝑛) + 𝑀2‖𝜙𝑛‖2
≤ ‖𝐴‖2𝑀(𝐴𝜙𝑛, 𝜙𝑛) + 𝑀2 = 2𝑀𝜀𝑛 → 0. (A.189)

Which implies that 𝑀 ∈ 𝜋(𝐴) = 𝜎(𝐴). Analogously, one shows that 𝑚 ∈ 𝜎(𝐴).
■

TheoremA.83. (Spectral Decomposition Theorem) To every bounded self-adjoint
transformation𝐴 in a Hilbert space, such that ‖𝐴‖ = max(|𝑚|, |𝑀|), we can assign
a spectral family on the interval [𝑚,𝑀]. That is, a family of projections {𝐸𝜆}
depending on the real parameter 𝜆 such that

(i) 𝐸𝜆 ≤ 𝐸𝜇 , or equivalently 𝐸𝜆𝐸𝜇 = 𝐸𝜆 for 𝜆 ≤ 𝜇;
(ii) 𝐸𝜆+0 = 𝐸𝜆;
(iii) 𝐸𝜆 = 0 for 𝜆 < 𝑚 and 𝐸𝜆 = 𝐼 for 𝜆 > 𝑀 .

In such a way that we have

𝐴 = ∫
𝑀

𝑚
𝜆d𝐸𝜆. (A.190)

Moreover, these properties uniquely determine the family {𝐸𝜆}. For every fixed
value of the parameter, 𝐸𝜆 is the limit of a sequence of polynomials in 𝐴.

Proof. Take the function 𝑒𝜇(𝜆) depending on the real parameter 𝜇, which is 1
if 𝜆 ≤ 𝜇 and 0 for 𝜆 > 𝜇. This function is a projection and is a continuous
function. Denote then the analogous projection 𝑒𝜇(𝐴) by 𝐸𝜇 . It is clear that
𝑒𝜇(𝜆)𝑒𝜈(𝜆) = 𝑒𝜇(𝜆) for 𝜇 < 𝜈 , therefore 𝐸𝜇𝐸𝜈 = 𝐸𝜇 . Once that we have 𝑚 ≤ 𝜆 ≤ 𝑀 ,
we have 𝐸𝜇 = 0 if 𝜇 < 𝑚 and 𝐸𝜇 for 𝜇 ≥ 𝑀 .

To prove that our map 𝐸𝜇 is meaningful, it needs to be continuous from the
right. For that, let’s pick a sequence of polynomials 𝑝𝑛(𝜆) which decrease in
[𝑚,𝑀] to 𝑒𝜇 , and in addition satisfy

𝑝𝑛(𝜆) ≥ 𝜇𝜇+ 1
𝑛
(𝜆). (A.191)

Then we have
𝑝𝑛(𝐴) ≥ 𝐸𝜇+ 1

𝑛
≥ 𝐸𝜇 . (A.192)

Since 𝑝𝑛(𝐴) → 𝜇, we have that 𝐸𝜇+ 1
𝑛
→ 𝐸𝜇 as 𝑛 → ∞, 𝐸𝜇 is a monotone function

of 𝜇, so 𝐸𝜇+𝜀 → 𝐸𝜇 as 𝜀 → 0. If 𝜇 < 𝜈 we have

𝜇[𝑒𝜈(𝜆) − 𝑒𝜇(𝜆)] ≤ 𝜆[𝑒𝜈(𝜆) − 𝑒𝜇(𝜆)] ≤ 𝜈[𝑒𝜈(𝜆) − 𝑒𝜇(𝜆)], (A.193)
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then
𝜇[𝐸𝜈 − 𝐸𝜇] ≤ 𝐴[𝐸𝜈 − 𝐸𝜇] ≤ 𝜈[𝐸𝜈 − 𝐸𝜇]. (A.194)

Take a sequence 𝜇0 < 𝑚 < 𝜇1 < ⋯ < 𝜇𝑛−1 < 𝑀 ≤ 𝜇𝑛. Take 𝜇 = 𝜇𝑘−1 and 𝜈 = 𝜇𝑘
(𝑘 = 1, 2, … 𝑛) in the previous equation, taking its sum

𝑛
∑
𝑘=1

𝜇𝑘−1(𝐸𝜇𝑘 − 𝐸𝜇𝑘−1) ≤ 𝐴
𝑛
∑
𝑘=1

(𝐸𝜇𝑘 − 𝐸𝜇𝑘−1) ≤
𝑛
∑
𝑘=1

𝜇𝑘(𝐸𝜇𝑘 − 𝐸𝜇𝑘−1), (A.195)

in the middle we have 𝐴(𝐸𝜇𝑛 − 𝐸𝜇0) = 𝐴(𝐼 − 0) = 𝐴. If max(𝜇𝑘 − 𝜇𝑘−1) ≤ 𝜀, the
difference of the first and third members is less than 𝜀𝐼 . Take 𝜆𝑘 as any point
between 𝜇𝑘−1 and 𝜇𝑘 , so

‖𝐴 −
𝑛
∑
𝑘=1

(𝐸𝜇𝑘 − 𝐸𝜇𝑘−1)‖ ≤ 𝜀. (A.196)

Now, increasing the number 𝑛 of the decomposition of the intervals (𝜇𝑘−1, 𝜇𝑘),
in such a way that the maximum length tends to zero, the sums ∑𝑛

𝑘=1 𝜆𝑘(𝐸𝜇𝑘 −𝐸𝜇𝑘−1) tend to 𝐴 in norm. Since 𝐸𝜆 is constant for 𝜆 ≥ 𝑀 and for 𝜆 < 𝑚, we can
use the Riemann-Stieltjes integral (see Eq (A.67)) to write

𝐴 = ∫
∞

−∞
𝜆d𝐸𝜆 = ∫

𝑀

𝑚
𝜆d𝐸𝜆. (A.197)

Remains to prove the uniqueness. For that, let us explore the last representa-
tion of 𝐴 further. Since [∑𝑛

𝑘=1 𝜆𝑘(𝐸𝜇𝑘 − 𝐸𝜇𝑘−1)]
𝑟 = ∑𝑛

𝑘=1 𝜆𝑟𝑘(𝐸𝜇𝑘 − 𝐸𝜇𝑘−1), we have
that

𝐴𝑟 = ∫
𝑀

𝑚
𝜆𝑟d𝐸𝜆. (A.198)

That ensures that for any polynomial 𝑝(𝜆) we can write

𝑝(𝐴) = ∫
𝑀

𝑚
𝑝(𝜆)d𝐸𝜆. (A.199)

Using the fact that polynomials are dense in the set of continuous functions
𝑢(𝜆) in the interval [𝑚,𝑀], we can extend this result to any 𝑢(𝜆). Given any 𝜀,
we can find a polynomial 𝑝(𝜆) such that −𝜀/3 ≤ 𝑢(𝜆) − 𝑝(𝜆) ≤ 𝜀/3 in [𝑚,𝑀];
therefore 𝜀

3𝐼 ≤ 𝑢(𝐴) − 𝑝(𝐴) ≤ 𝜀
3𝐼 , (A.200)

hence ‖𝑢(𝐴) − 𝑝(𝐴)‖ ≤ 𝜀/3.
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For every decomposition on the 𝜆-axis we must have

𝑆𝑢 =
𝑛
∑
𝑘=1

𝑢(𝜆𝑘)(𝐸𝜇𝑘 − 𝐸𝜇𝑘−1), (A.201)

and analogous 𝑆𝑝 for 𝑝(𝜆). Hence, by the same argument, we have

‖𝑆𝑢 − 𝑆𝑝‖ ≤ 𝜀
3 . (A.202)

If the decomposition has enough parts, we shall have ‖𝑝(𝐴) − 𝑆𝑝‖ ≤ 𝜀/3. Thus
‖𝑢(𝐴) − 𝑆𝑢‖ ≤ ‖𝑢(𝐴) − 𝑝(𝐴)‖ + ‖𝑝(𝐴) − 𝑆𝑝‖ + ‖𝑆𝑝 − 𝑆𝑢‖ ≤ 𝜀. (A.203)

Then, for every continuous function 𝑢(𝜆), we have

𝑢(𝐴) = ∫
𝑀

𝑚
𝑢(𝜆)d𝐸𝜆. (A.204)

So, for any 𝜙, 𝜓 ∈ ℋ , we have that

(𝑢(𝐴)𝜙, 𝜓 ) = ∫
𝑀

𝑚
𝑢(𝜆)d(𝐸𝜆𝜙, 𝜓 ). (A.205)

It is clear that the right-hand side of the last equation does not depend on the
choice of {𝐸𝜆}. Therefore (𝐸𝜆𝜙, 𝜓 ) is determined. Such a function is continuous
from the right and has the value (𝑓 , 𝑔) at 𝑀 , then it is uniquely determined ev-
erywhere. ■

Just in the study of bounded self-adjoint operators, we could spend a lot of
time and pages. However, to keep it as brief as possible, we wrap up this section
with a final case of the spectral theorem.

TheoremA.84. Every unitary14 transformation 𝑈 has a spectral decomposition

𝑈 = ∫
2𝜋

0
𝑒𝑖𝜃d𝐸𝜃 (A.206)

where {𝐸𝜃 } is a spectral family over the segment 0 ≤ 𝜃 ≤ 2𝜋 . We can require that
𝐸𝜃 be continuous at the point 𝜃 = 0, that is, 𝐸0 = 0; {𝐸𝜃 } will then be determined
uniquely by 𝑈 . Moreover, 𝐸𝜃 is the limit of a sequence of polynomials in 𝑈 and
𝑈−1.

14We call a unitary transformation one such that its inverse coincides with its adjoint, that is,
𝑈 ∗𝑈 = 𝐼 .
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Proof. First, we take the trigonometric polynomial

𝑝(𝑒𝑖𝜇) =
𝑛
∑
𝑘=−𝑛

𝑐𝑘𝑒𝑖𝑘𝜇 , (A.207)

and assign it to

𝑝(𝑈 ) =
𝑛
∑
𝑘=−𝑛

𝑐𝑘𝑈 𝑘 . (A.208)

We admit 𝑐𝑘 to be complex. Such a correspondence is obviously linear. The
conjugate polynomial, 𝑝(𝑒𝑖𝜇) = ∑𝑛

𝑘=−𝑛 𝑐𝑘𝑒−𝑖𝑘𝜇 , is the adjoint of 𝑝(𝑒𝑖𝜇). If 𝑝(𝑒𝑖𝜇) is
real, then 𝑝(𝑈 ) is self-adjoint. And if we have 𝑝(𝑒𝑖𝜇) ≥ 0, then 𝑝(𝑈 ) ≥ 0.

Now take the function 𝑒𝜃 (𝜇), which depends on the parameter 0 ≤ 𝜃 ≤ 2𝜋 ,
and is defined as

𝑒𝜃 (𝜇) = {1, if 2𝑘𝜋 < 𝜇 ≤ 2𝑘𝜋 + 𝜃,
0, if 2𝑘𝜋 + 𝜃 < 𝜇 ≤ 2(𝑘 + 1)𝜋, (A.209)

where 𝑘 = 0, ±1, ±2, … . These functions are equal to their squares, so the corre-
sponding transformation 𝐸𝜇 is a projection. In particular, 𝐸0 = 0 and 𝐸2𝜋 = 𝐼 ,
and if 𝜇 ≤ 𝜈 , then 𝐸𝜇𝐸𝜈 = 𝐸𝜇 .

The function 𝐸𝜇 is continuous on the right. Consider 0 ≤ 𝜃 < 2𝜋 , the func-
tions 𝑒′𝜇(𝜃) = 𝑒𝜇(𝜃)+𝑒′0(𝜃), where 𝑒′0(𝜃) is equal to 1 at 𝜃 = 2𝑘𝜋 and zero elsewhere.
Then, for each fixed 𝜃 , we can construct trigonometric polynomials 𝑝𝑛(𝑒𝑖𝜇)which
decrease to 𝑒′𝜃 (𝜇), and for 𝑛 large enough, 𝑝𝑛(𝑒𝑖𝜇) ≥ 𝑒′𝜃+ 1

𝑛
(𝜇). So, the correspond-

ing transformations 𝐸′𝜇+ 1
𝑛
→ 𝐸′𝜇′ , more generally, we have lim𝜉→𝜇+ 𝐸𝜉 = 𝐸𝜇 .

Thus, the transformation 𝐸𝜇 forms a spectral family over [0, 2𝜋], and 𝐸0 = 0.
By the construction, 𝐸𝜇 is the limit of polynomials in 𝑈 and 𝑈 ∗ = 𝑈−1.

Now consider a decomposition of the interval [0, 2𝜋] using the points 0 =
𝜃0 < 𝜃1 < ⋯ < 𝜃𝑛 = 2𝜋 , such that max(𝜃𝑘 − 𝜃𝑘−1) ≤ 𝜀. Take any 𝜃 such that
𝜃𝑘−1 < 𝜃 ≤ 𝜃𝑘 , so we have

|𝑒𝑖𝜃 −
𝑛
∑
𝑘=1

𝑒𝑖𝜃𝑘 [𝑒𝜃𝑘 (𝜃)𝑎 − 𝑒𝜃𝑘−1(𝜃)]| = |𝑒𝑖𝜃 − 𝑒𝑖𝜃𝑘 | ≤ |𝜃 − 𝜃𝑘 | ≤ 𝜀. (A.210)

The analogous follows for 𝜃 = 0. Then, for any value of 𝜃 , we have

0 ≤ [𝑒𝑖𝜃 −
𝑛
∑
𝑘=1

𝑒𝑖𝜃𝑘 [𝑒𝜃𝑘 (𝜃)𝑎 − 𝑒𝜃𝑘−1(𝜃)]] [𝑒𝑖𝜃 −
𝑛
∑
𝑘=1

𝑒𝑖𝜃𝑘 [𝑒𝜃𝑘 (𝜃)𝑎 − 𝑒𝜃𝑘−1(𝜃)]] ≤ 𝜀2.
(A.211)
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Using the corresponding transformations, we get

‖𝑈 −
𝑛
∑
𝑘=1

𝑒𝑖𝜃𝑘 (𝐸𝜇𝑘 − 𝐸𝜇𝑘−1)‖ ≤ 𝜀. (A.212)

Which, in the limit, is the desired representation. By the same way that in the
previous theorem, it follows that

𝑈 𝑛 = ∫
2𝜋

0
𝑒𝑖𝑛𝜃d𝐸𝜃 . (A.213)

Also, using the same construction, we have for any continuous function 𝑢

𝑢(𝑈 ) = ∫
2𝜋

0
𝑢(𝑒𝑖𝜃 )d𝐸𝜇 , (A.214)

from which it follows for any 𝜙, 𝜓 ∈ ℋ , that

(𝑢(𝑈 )𝜙, 𝜓 ) = ∫
2𝜋

0
𝑢(𝑒𝑖𝜃 )d(𝐸𝜃𝜙, 𝜓 ). (A.215)

And the uniqueness follows from the same reasoning.
■

A.4 Generalized Functions
Roughly speaking, the theory of generalized functions is the theory of how to
workwith “functions” that diverge at some point. Herewe base our discussion on
Ref. [34] to provide just an introductory and intuitive notion about such objects.
For this reason, we relax the mathematical rigor of this section. However, we
must bear in mind that all the results presented here have rigorous theorems
that ensure their validity. We choose not to develop these here because their
side constructions would greatly enlarge the previous sections. These theorems
and the main ingredients needed for a proper construction of the generalized
functions can be found in Ref. [304].

The simplest case of a singular function is given by a function that is zero
everywhere except at the point, say 𝑥0, where it diverges. If we have in mind
that the following equation is meaningless, we can represent such a singular
function by

𝛿(𝑥 − 𝑥0) = {0, if 𝑥 ≠ 𝑥0
∞, if 𝑥 = 𝑥0.

(A.216)
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To give a proper meaning to the last equation, we must integrate it with a “suffi-
ciently good” function.

By a sufficiently good function, we must require that the function has a
bounded support15 and with derivatives of all orders. We call these functions
test functions and represent their space by 𝐾 . It is direct to see that the space 𝐾
is a linear space.

We can define linear functionals over the space 𝐾 by using an inner product.
So, 𝑓 is a linear functional on 𝐾 if for all 𝜙(𝑥) ∈ 𝐾 , the real number (𝑓 , 𝜙) exists,
satisfying the linearity and continuity conditions. If 𝑓 is absolutely integrable in
every bounded region of ℝ𝑛, we can represent our inner product by

(𝑓 , 𝜙) = ∫ℝ𝑛
𝑓 (𝑥)𝜙(𝑥). (A.217)

We remark that this is a special kind of continuous linear functional; there are
others. We have two kinds of continuous linear functionals. In order to be clear,
let us search for a locally summable16 function that evaluates 𝜙(𝑥) ∈ 𝐾 at 𝑥 = 0,
that is, let us find an 𝑓 , such that

∫ℝ𝑛
𝑓 (𝑥)𝜙(𝑥) = 𝜙(0). (A.218)

If such a function does exist, it should act in the same way for all functions 𝜙 ∈ 𝐾 .
Denote 𝑥2 = 𝑥21 + ⋯ + 𝑥2𝑛 and take

𝜙(𝑥, 𝑎) = {𝑒
− 𝑎2

𝑎2−𝑥2 , if 𝑥 < 𝑎
0, if 𝑥 ≥ 𝑎,

(A.219)

then we have that 𝜙(0, 𝑎) = 𝑒−1; however,

lim𝑎→0∫ℝ𝑛
𝑓 (𝑥)𝜙(𝑥, 𝑎) = ∫ℝ𝑛

𝑓 (𝑥) lim𝑎→0 𝜙(𝑥, 𝑎) = 0 ≠ 𝑒−1. (A.220)

Therefore, such a summable function does not exist. The function that acts as we
desire is called the 𝛿-function (remember that it is not a function) and is defined
by its action on 𝜙 ∈ 𝐾

(𝛿(𝑥), 𝜙(𝑥)) = 𝜙(0), (A.221)

or its translated version (𝛿(𝑥 − 𝑥0), 𝜙(𝑥)) = 𝜙(𝑥0).
15The support of the function 𝑓 is the region where 𝑓 (𝑥) ≠ 0. Therefore, a bounded support

means that the function is nonzero in a finite region.
16Can also be referred to as locally integrable. A function is locally summable if it is integrable

in each compact subset.
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So, with the previous discussion, we fix some nomenclature. We call a gen-
eralized function any functional defined on 𝐾 . Functionals associated with
locally summable functions are called regular generalized functions. Func-
tionals which are defined by their action, similar to the 𝛿-function, are called
irregular generalized functions.

Clearly, for an irregular generalized function, say 𝛿(𝑥), the representation

(𝛿(𝑥), 𝜙(𝑥)) = ∫ℝ𝑛
𝛿(𝑥)𝜙(𝑥) d𝑥, (A.222)

is meaningless and must be taken just as symbolic manipulation.
As we can see, it is meaningless to talk about the values of a generalized

function at a given point. They need always to be “smeared out” by the test
functions. The value of generalized functions in a neighborhood𝑁 of a point can
be taken. If a generalized function vanishes in the neighborhood of every point,
it vanishes, (𝑓 , 𝜙) = 0. If two generalized functions coincide on the open set 𝐺,
𝑓 − 𝑔 vanishes in 𝐺. That is, any generalized function is uniquely determined
by its local properties. The linear properties of generalized functions are defined
straightforwardly using the integral representation.

We can also define the derivative and the integral of generalized functions.
Worth noting is that not all ordinary functions have derivatives, but all general-
ized functions have derivatives of all orders, which are also generalized functions.
To see that, let us first consider a regular generalized function defined by some
continuous function 𝑓 (𝑥) with a continuous first derivative and 𝜙 ∈ 𝐾 . Then,
integrating by parts, we have

(𝑓 ′, 𝜙) = 𝑓 (𝑥)𝜙(𝑥)|
+∞
−∞ − ∫

+∞

−∞
𝑓 (𝑥)𝜙′(𝑥) d𝑥 = (𝑓 , −𝜙′(𝑥)), (A.223)

where the first contribution vanishes because 𝜙 has compact support. We can use
the previous relation to define the derivative of generalized functions. Consider
any generalized function (regular or irregular) 𝑓 in 𝐾 . Define the functional 𝑔
by

(𝑔, 𝜙) = (𝑓 , −𝜙′). (A.224)

Then 𝑔 is the derivative of 𝑓 . The continuity and linearity of 𝑔 follows trivially,
so 𝑔 is a generalized function. Usually, it is denoted by 𝑓 ′ or d𝑓

d𝑥 . The rules of
differentiation are preserved.

In particular, let us compute the derivative of the step function defined by

𝜃(𝑥) = {0, if 𝑥 < 0
1, if 𝑥 > 0. (A.225)
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using our previous definition, for any 𝜙 ∈ 𝐾 , we get

(𝜃′(𝑥), 𝜙(𝑥)) = (𝜃(𝑥), −𝜙′(𝑥)) = −∫
∞

−∞
𝜃(𝑥)𝜙(𝑥)d𝑥 = −∫

∞

0
𝜙(𝑥)d𝑥 = 𝜙(0)

⇒ (𝜃′(𝑥), 𝜙(𝑥)) = (𝛿(𝑥), 𝜙(𝑥)). (A.226)

Thus, 𝜃′(𝑥) = 𝛿(𝑥). By the same manipulations, one recovers that 𝜃′(𝑥 + ℎ) =
𝛿(𝑥 + ℎ).

Using the same construction that we used for the first derivative, we can
define the 𝑘-th derivative of a generalized function by

(𝑓 (𝑘), 𝜙) = (𝑓 , (−1)𝑘𝜙(𝑘)) . (A.227)

Using this definition, it is straightforward to compute the 𝑘-th derivative of the
𝛿-function

(𝛿 (𝑘)(𝑥 − ℎ), 𝜙(𝑥)) = (𝛿(𝑥 − ℎ), (−1)𝑘𝜙(𝑘)(𝑥)) = (−1)𝑘𝜙(𝑘)(ℎ) (A.228)

Once we have the possibility of functionals defined by non-locally summable
functions 𝑓 , the integral representation may diverge. Let’s say that the function
𝑓 is not locally summable at 𝑥0, then if we take 𝜙 ∈ 𝐾 such that it vanishes
in the neighborhood of 𝑥0, we can make the integral representation finite. The
procedure of making the integrals finite is called regularization.

We shall introduce the regularization procedure using an example. Consider
the function 𝑓 (𝑥) = 1/𝑥 , so

(𝑓 , 𝜙) = ∫
∞

−∞
𝜙(𝑥)
𝑥 d𝑥 (A.229)

diverges at 𝑥 = 0. So, the procedure that we described in the last paragraph can
be implemented if we ensure that our test function is zero in the neighborhood
of 𝑥 = 0. If in the interval [−𝑎, 𝑏] we subtract 𝜙(0), we ensure that 𝜙(𝑥) − 𝜙(0)
vanishes in a neighborhood of zero. Therefore, the last divergent integral can be
represented by

(𝑓 , 𝜙) = ∫
−𝑎

−∞
𝜙(𝑥)
𝑥 d𝑥 + ∫

𝑏

−𝑎
𝜙(𝑥) − 𝜙(0)

𝑥 d𝑥 + ∫
∞

𝑏
𝜙(𝑥)
𝑥 d𝑥, (A.230)

which is convergent and agrees with the previous expression everywhere except
in the neighborhood of zero.

It is just a matter of repeating the same reasoning to conclude that any alge-
braic singularity can be regularized by an analogous procedure. That is, if 𝑓 (𝑥)𝑥𝑚
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(𝑥 = √∑𝑖 𝑥2𝑖 ) is locally summable for some 𝑚 > 0, we can regularize (𝑓 , 𝜙) by

(𝑓 , 𝜙) = ∫ℝ𝑛
𝑓 (𝑥) {𝜙(𝑥) − [𝜙(0) + 𝜕𝜙(𝑥)

𝜕𝑥1
|
𝑥=0

𝑥1 + ⋯ + 𝜕𝑚𝜙(𝑥)
𝜕𝑥𝑚𝑛

|
𝑥=0

𝑥𝑚𝑛
𝑚! ] 𝜃(1 − 𝑥)} .

(A.231)
Therefore, the last expression is the meaningful version of any irregular general-
ized function with algebraic singularities.

Now let us consider the following regular functional: define the generalized
function 𝑥𝜆+ by

𝑥𝜆+ = {0, if 𝑥 ≤ 0
𝑥𝜆, if 𝑥 > 0, (A.232)

Forℜ𝜆 > −1. So the functional given by (𝑥𝜆+, 𝜙) is regular forℜ𝜆 > −1. However,
we notice that

(𝑥𝜆+, 𝜙) = ∫
∞

0
𝑥𝜆𝜙(𝑥)d𝑥 = ∫

1

0
𝑥𝜆𝜙(𝑥)d𝑥 + ∫

∞

1
𝑥𝜆𝜙(𝑥)d𝑥

= ∫
1

0
𝑥𝜆 [𝜙(𝑥) − 𝜙(0)] d𝑥 + ∫

1

0
𝑥𝜆𝜙(0)d𝑥 + ∫

∞

1
𝑥𝜆𝜙(𝑥)d𝑥

= ∫
1

0
𝑥𝜆 [𝜙(𝑥) − 𝜙(0)] d𝑥 + ∫

∞

1
𝑥𝜆𝜙(𝑥)d𝑥 + 𝜙(0)

𝜆 + 1, (A.233)

this last expression is regular for ℜ𝜆 > −2 and 𝜆 ≠ −1. Therefore, we have
an analytic extension of the functional 𝑥𝜆+. By successive applications of the
previous reasoning, we can obtain the following expression

(𝑥𝜆+, 𝜙) = ∫
1

0
𝑥𝜆 [𝜙(𝑥) −

𝑚−1
∑
𝑘=1

𝑥𝑘−1
(𝑘 − 1)!𝜙

(𝑘−1)(0)] + ∫
∞

1
𝑥𝜆𝜙(𝑥)d𝑥

+
𝑚
∑
𝑘=1

𝜙(𝑘−1)(0)
(𝑘 − 1)!(𝜆 + 𝑘) , (A.234)

which is regular forℜ𝜆 > −𝑚−1 and 𝜆 ≠ −1, −2, … , −𝑚. The previous expression
is the regularization of the generalized function as a function of 𝜆, and it follows
directly that for any 𝜆 = −𝑘, it has a pole with residue

𝜙(𝑘−1)(0)
(𝑘 − 1)! = (−1)𝑘−1

(𝑘 − 1)! (𝛿
(𝑘−1)(𝑥), 𝜙(𝑥)) , (A.235)

whichmeans that the functional has a pole at 𝜆 = −𝑘with residue (−1)𝑘−1
(𝑘−1)! 𝛿 (𝑘−1)(𝑥).
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With that, we finish the discussion about generalized functions. One must
bear in mind that we only discussed simple examples and properties to avoid
extending ourselves. As we can notice, some of the concepts that are key ideas
of quantum field theory have already appeared in the generalized functions. Be-
sides this direct connection, the theory of generalized functions is also useful to
obtain practical results; for example, the Cauchy problem can be solved using
such objects.
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