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Abstract
This thesis explores the algebraic foundations of Zn

2 -graded Lie (super)algebras and their
physical applications in quantum mechanics and quantum field theory. By employing
a Boolean logic framework, we classify all inequivalent graded brackets via mappings
Zn

2 × Zn
2 → Z2, leading to

bn = n + ⌊n/2⌋ + 1

distinct Lie-type structures. These mappings, constructed through Karnaugh maps and
logical operations (AND, OR, XOR), define the commutation and anticommutation
relations of n-bit parastatistics, generalizing conventional Bose-Fermi statistics.

The physical implications of these structures manifest in Zn
2 -graded quantum Hamiltonians,

which support inequivalent multiparticle quantizations. Depending on the graded algebra,
particles are categorized into bosonic, fermionic, parabosonic, and parafermionic sectors,
each with unique exchange symmetries. Crucially, statistical transmutations arising from
the graded brackets lead to physically distinguishable parastatistics, measurable through
eigenvalues of specific observables.

A key application of this formalism is to N -extended supersymmetric and superconformal
quantum mechanics, where the graded structures induce sN inequivalent formulations
(with sN = 2, 6, 10, 14 for N = 1, 2, 4, 8, respectively). These inequivalences correspond
to alternative statistical transmutations of supercharges, modifying the energy spectra
of supersymmetric systems. In particular, in the N = 2 superconformal model with an
sl(2|1) spectrum-generating algebra, the Z2

2-graded parastatistics introduce an energy level
degeneracy that cannot be realized within standard Bose-Fermi statistics.

This work establishes Boolean representations as a fundamental tool for constructing and
classifying graded symmetries, offering new perspectives on exotic quantum statistics and
their experimental signatures. The results have potential applications in quantum field
theory, higher-dimensional supersymmetry, and quantum information science.



Resumo
Esta tese explora os fundamentos algébricos das álgebras de Lie (super)graduadas por Zn

2

e suas aplicações físicas em mecânica quântica e teoria quântica de campos. Utilizando
uma estrutura lógica booleana, classificamos todos os brackets graduados inequivocamente
distintos por meio de aplicações Zn

2 × Zn
2 → Z2, o que conduz a

bn = n + ⌊n/2⌋ + 1

estruturas distintas do tipo Lie. Essas aplicações, construídas com auxílio de mapas de
Karnaugh e operações lógicas (AND, OR, XOR), definem as relações de comutação e
anticomutação das parastatísticas de n bits, generalizando as estatísticas convencionais de
Bose–Fermi.

As implicações físicas dessas estruturas manifestam-se em hamiltonianos quânticos Zn
2 -

graduados, os quais admitem quantizações multipartículas inequivocamente distintas.
Dependendo da álgebra graduada considerada, as partículas são classificadas em setores
bosônicos, fermiônicos, parabosônicos e parafermiônicos, cada um com simetrias de troca
características. Essencialmente, as transmutações estatísticas induzidas pelos brackets
graduados dão origem a parastatísticas fisicamente distinguíveis, mensuráveis por meio
dos autovalores de certos observáveis.

Uma aplicação central desse formalismo encontra-se na mecânica quântica supersimétrica
e superconforme com N extensões, onde as estruturas graduadas geram sN formulações
inequivocamente distintas (com sN = 2, 6, 10, 14 para N = 1, 2, 4, 8, respectivamente).
Tais inequivalências correspondem a diferentes transmutações estatísticas das supercargas,
modificando os espectros de energia dos sistemas supersimétricos. Em particular, no
modelo superconformal com N = 2 e álgebra de geração espectral sl(2|1), as parastatísticas
graduadas por Z2

2 introduzem uma degenerescência nos níveis de energia que não pode ser
reproduzida no contexto das estatísticas de Bose–Fermi padrão.

Este trabalho estabelece as representações booleanas como uma ferramenta fundamental
para a construção e classificação de simetrias graduadas, oferecendo novas perspectivas
sobre estatísticas quânticas exóticas e suas assinaturas experimentais. Os resultados
obtidos possuem aplicações potenciais em teoria quântica de campos, supersimetria em
dimensões elevadas e ciência da informação quântica.

Key-words: Estruturas algébricas. Superalgebras. Parastatística.
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1 Introduction

Symmetry and algebraic structures play a fundamental role in modern theoretical
physics, shaping our understanding of fundamental interactions, quantum mechanics,
and quantum field theory. Lie algebras and their graded extensions, particularly Lie
superalgebras, have been extensively explored in the context of supersymmetry (SUSY),
string theory, and quantum field theory [1, 2, 3, 4]. While conventional SUSY relies on
Z2-graded algebras, more generalized grading structures, such as Zn

2 -graded algebras, have
recently gained attention due to their potential to describe exotic quantum symmetries,
non-standard statistics, and higher-order generalizations of supersymmetry.

We focus on Zn
2 -graded structures, examining both their mathematical foundations

and their physical consequences [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. These
graded structures provide a natural extension of supersymmetry and introduce alternative
symmetry transformations that go beyond traditional Lie superalgebras. One of the key
motivations behind their study is their appearance in dynamical symmetries of physical
systems, including classical and quantum mechanics, as well as field-theoretic models.

In non-relativistic quantum mechanics, Z2
2-graded symmetries naturally emerge

as dynamical invariances in the Lévy-Leblond equations, which describe non-relativistic
spin-1

2 particles [18, 19]. Recent advancements in this direction include the classification
of Lévy-Leblond spinors [20], highlighting the potential physical relevance of these gener-
alized symmetries. Extensions to classical mechanics have also been considered, where
worldline models incorporating Z2

2 gradings have been explored as an extension of phase-
space dynamics [21]. In quantum field theory, similar generalizations have been studied
in two-dimensional sigma models, where Z2

2-graded supersymmetry has been explicitly
constructed [22]. Moreover, quantum mechanical formulations incorporating Z2

2-graded
algebras have been analyzed in various models [23, 24, 25]. Superspace extensions of
these graded structures have also been systematically studied, revealing their role in
generalized SUSY models [26, 27, 28, 29, 30, 31, 32]. While most studies focus on n = 2,
important advancements have been made for higher-order generalizations (n ≥ 3), as
explored in [33, 34, 35, 36, 37, 38].

A particularly intriguing consequence of Zn
2 -graded algebras is their connection to

paraparticles, exotic quantum states that generalize conventional bosons and fermions [39,
40, 41, 42, 43, 44]. Paraparticles obey intermediate statistics that differ from Bose-Fermi
symmetry, leading to novel algebraic and physical properties. One of the most pressing
questions in this context is whether paraparticles are physically distinguishable from
ordinary bosons and fermions. This problem has been tackled using exchange operators
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that measure statistical properties in multiparticle quantum states [39, 40]. In conventional
quantum mechanics, the eigenvalues of such operators reflect wavefunction symmetry: +1
for bosons and −1 for fermions. However, in Zn

2 -graded systems, the nature of exchange
operators becomes significantly more intricate, requiring a deeper analysis of the statistical
transmutations that arise from these algebraic structures [45], also [46, 47].

A critical aspect of these statistical transmutations is their effect on physical
observables, particularly in quantum mechanics and field theory. Understanding how these
transmutations alter wavefunction symmetrization rules is essential for uncovering their
implications in condensed matter physics, quantum information theory, and high-energy
physics.

To systematically classify inequivalent Zn
2 -graded Lie brackets, we employ a Boolean

logic gate representation through Karnaugh maps [48] (a diagram method to simplify
Boolean expressions), which provides a computationally efficient framework to encode the
commutation and anticommutation relations of graded algebras. This approach is based
on the observation that graded Jacobi identities and associative compatibility conditions
naturally translate into Boolean operations. In this formulation, elements of the algebra are
assigned binary grading labels, and their commutation properties, whether they commute,
anticommute, are determined by logical AND, OR, and XOR operations on their grading
vectors. This allows for a straightforward method to generate and classify all possible
graded brackets, ensuring that the entire space of inequivalent structures is exhaustively
explored.

Beyond their abstract classification, we explore the physical consequences of Zn
2 -

graded algebras in quantum mechanics and quantum field theory. A particularly relevant
application is their impact on statistical transmutations, which lead to novel multiparticle
wavefunction symmetrization rules. Unlike conventional Bose-Fermi statistics, these
transmutations introduce alternative forms of quantum statistics, fundamentally modifying
the structure of quantum states.

One of the key results of this work is the application of these statistical transmuta-
tions to supersymmetric quantum mechanics (SQM). We analyze how different Zn

2 -graded
brackets lead to inequivalent Lie (super)algebras associated with supersymmetry, resulting
in observable modifications to energy spectra and degeneracy structures in quantum
systems. A particularly striking example is found in superconformal quantum mechanics
with the de Alfaro-Fubini-Furlan (DFF) oscillator term [49]. We demonstrate that for
certain choices of Zn

2 -graded brackets, the resulting paraparticle statistics produce energy
spectra that cannot be reproduced by standard bosons and fermions, providing a concrete
and testable prediction for Zn

2 -graded symmetries.

This thesis is structured as follows. Section 2 introduces the mathematical founda-
tions of color (super)algebras and their generalization beyond Lie superalgebras. Section 3
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presents the classification of Zn
2 -graded Lie brackets and the Boolean logic representation.

Section 4 explores the physical consequences of these algebras, focusing on quantum
Hamiltonians. Section 5 is about paraparticle detectability as a consequence of statisti-
cal transmutations. Section 6 develops applications in quantum field theory. Section 7
summarizes our findings and discusses future research directions.

This study contributes to the growing interest in higher-graded algebraic structures
and their physical realizations, establishing a firm foundation for further exploration of
exotic symmetries in physics.
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2 Color (Super)algebras

Algebraic structures play a central role in mathematical physics, particularly in
understanding and modeling symmetries within physical systems. Among these structures,
Color (Super)algebras generalize the concepts of Lie algebras and superalgebras by incor-
porating graded symmetries and exotic commutation relations. These algebras extend
traditional frameworks by allowing elements to be assigned "grades", which dictate how
they interact with one another under multiplication or bracket operations. This chapter
develops the foundational principles of Color (Super)algebras, preparing the ground for
their application and further generalization in subsequent chapters.

2.1 Graded Algebras and Symmetries
To understand Color (Super)algebras, we begin with the concept of a graded

algebra. Let V be a vector space over a field K. The space V is said to be graded if it can
be decomposed into a direct sum of subspaces indexed by elements of a grading set G:

V =
⊕
g∈G

Vg. (2.1)

The elements of Vg are referred to as homogeneous elements of grade g. A graded algebra
is a graded vector space equipped with a bilinear product · : V × V → V that preserves
the grading:

Vg · Vh ⊆ Vg+h, ∀g, h, g + h ∈ G. (2.2)

Here, the addition g + h is defined within the grading set G, which is typically chosen to
reflect the symmetries under consideration.

In the context of Color (Super)algebras, the grading set G introduces a key
distinction between different types of algebraic structures. The simplest example is a
Z2-graded algebra, where G = {0, 1}. This grading distinguishes even elements (g = 0)
from odd elements (g = 1), a characteristic feature of superalgebras. On the other hand,
color (super)algebras use more general grading sets, allowing for a richer classification of
elements and their interactions.

2.2 Commutation Relations and Generalized Symmetry
A defining feature of Color (Super)algebras is the modification of traditional

commutation relations to accommodate the grading. For two homogeneous elements
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A ∈ Vg and B ∈ Vh, the commutator is replaced by a graded commutator:

[A, B] = A · B − (−1)⟨g,h⟩B · A, (2.3)

where ⟨g, h⟩ is a bilinear mapping that determines the interaction between grades g and h.
The sign factor (−1)⟨g,h⟩ encodes the symmetry properties of the algebra. For instance, in
a Z2-graded algebra, ⟨g, h⟩ often corresponds to the product of g and h modulo 2.

The choice of ⟨g, h⟩ determines whether the algebra exhibits commutative or anti-
commutative behavior for certain pairs of elements. If ⟨g, h⟩ = 0, the graded commutator
reduces to the standard commutator, while if ⟨g, h⟩ = 1, the graded commutator behaves
like an anticommutator. This flexibility allows Color (Super)algebras to describe a wide
range of symmetries, from those seen in bosonic systems to those characteristic of fermionic
or parastatistic systems.

2.3 Jacobi Identity and Algebraic Consistency
To ensure that the structure of a graded algebra remains consistent, its elements

must satisfy a generalized form of the Jacobi identity. For three homogeneous elements
A ∈ Vg, B ∈ Vh, and C ∈ Vk, the graded Jacobi identity is given by:

(−1)⟨k,g⟩[A, [B, C]] + (−1)⟨g,h⟩[B, [C, A]] + (−1)⟨h,k⟩[C, [A, B]] = 0. (2.4)

This identity guarantees that the bracket operation is well-defined and compatible with
the algebra’s grading. The bilinear form ⟨g, h⟩ plays a critical role here, influencing how
terms interact and ensuring that the structure is closed under the bracket operation.

2.4 Applications and Physical Relevance
Color (Super)algebras are of significant interest in physics due to their ability

to model exotic symmetries and generalized statistics. For example, superalgebras, an
important subclass of Color (Super)algebras, are central to supersymmetry, where bosonic
and fermionic degrees of freedom are unified within a single theoretical framework. The
graded structure of these algebras allows for the coexistence of commutative and anti-
commutative behaviors, reflecting the fundamental properties of these systems.

Beyond supersymmetry, Color (Super)algebras provide a natural framework for
describing parastatistics, where particles obey generalized commutation relations that
extend beyond the standard Bose-Einstein and Fermi-Dirac statistics. The grading
structure encodes the interactions between different particle types, offering insights into
the underlying symmetries of these systems.
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From a mathematical perspective, graded algebras serve as a foundation for study-
ing representation theory and category theory, where the grading set G facilitates the
classification of representations and morphisms. These tools are increasingly relevant in
areas such as topological quantum field theory, quantum computing, and digital logic,
where graded structures naturally align with the underlying mathematical framework.

2.5 Towards Zn
2 -Graded Algebras

The Color (Super)algebras discussed in this chapter provide a versatile framework
for studying graded symmetries, but their scope is limited by the choice of grading set
G. In the next chapter, we extend these concepts to Zn

2 -graded algebras, where G = Zn
2

represents the n-dimensional vector space over Z2. This generalization introduces new
possibilities for classifying elements and defining commutation relations, enabling the
description of more complex symmetries and higher-dimensional grading structures.

Zn
2 -graded algebras not only generalize the properties of Color (Super)algebras but

also connect directly to physical applications, such as parastatistics and quantum field
theories with quaternionic or exotic scalar fields. The following chapter formalizes the
construction of Zn

2 -graded Lie brackets, exploring their mathematical properties and their
relevance to contemporary theoretical physics.
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3 Construction of Zn
2 -Graded Lie Brackets

The generalization of algebraic structures to Zn
2 -graded Lie brackets provides a

versatile mathematical framework for studying systems with graded symmetries. These
brackets extend the concepts of Lie algebras and superalgebras by introducing higher-
dimensional grading groups, allowing for richer interactions and more intricate classification
schemes. In this chapter, we formalize the construction of Zn

2 -graded Lie brackets, focusing
on their foundational properties, computational representations, and their role as the basis
for equivalence classes in graded algebras.

3.1 Definitions and Framework
The Zn

2 -grading structure extends the familiar notion of grading in Z2-graded
algebras (superalgebras) by using the group G = Zn

2 , which consists of n-dimensional
binary vectors. The group operation is component-wise addition modulo 2, denoted as:

g + h = (g1 + h1, g2 + h2, . . . , gn + hn) mod 2. (3.1)

Each vector g ∈ G serves as a grade that determines the behavior of elements in a graded
algebra.

3.2 Canonical Forms and Generalized Brackets
The study of Zn

2 -graded Lie brackets often begins by specifying canonical forms
for the bilinear form ⟨g, h⟩. These forms influence the behavior of the bracket and the
classification of the algebra.

3.2.1 Standard Bilinear Forms

One common choice for ⟨g, h⟩ is the standard dot product modulo 2:

⟨g, h⟩ = g · h mod 2, (3.2)

where g ·h is the dot product of the binary vectors g and h. This form encodes the parity of
the interaction between grades, determining whether the bracket behaves as a commutator
or an anticommutator.

3.2.2 Generalized Brackets and Mixed Symmetries

The flexibility of Zn
2 -graded Lie brackets allows for the definition of generalized

brackets that interpolate between purely commutative and purely anticommutative be-
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havior. For homogeneous elements A ∈ Vg and B ∈ Vh, the generalized bracket can be
written as:

[A, B] =

A · B − B · A, if ⟨g, h⟩ = 0,

A · B + B · A, if ⟨g, h⟩ = 1.
(3.3)

Such brackets are particularly useful in modeling systems with mixed symmetries, such as
parastatistics or extended supersymmetry.

The complete list of inequivalent canonical forms for ⟨α, β⟩ can be expressed as
follows:

I - For Zn
2 -graded compatible Lie algebras:

⟨g, h⟩0 = 0 (it is an ordinary Lie algebra induced by a vanishing scalar product matrix),
(3.4)

and

⟨g, h⟩n+1+k =
k∑

j=0
(g2j+1h2j+2 + g2j+2h2j+1) mod 2, k = 0, 1, 2, . . . ,

⌊
n

2

⌋
− 1, (3.5)

where the maximal value for k is expressed in terms of the floor function.

II - For Zn
2 -graded compatible Lie superalgebras:

⟨g, h⟩k =
k∑

j=1
(gjhj) mod 2, for k = 1, 2, . . . , n. (3.6)

Therefore, the total number bn of inequivalent, Zn
2 -graded compatible Lie (su-

per)algebras which obey definitions I and II is given by:

bn = n +
⌊

n

2

⌋
+ 1. (3.7)

3.2.3 Boolean Representations of Graded Brackets

Boolean algebra provides a natural framework for representing the Zn
2 -graded

structure of Lie brackets. By interpreting the components of the grading vectors α =
(α1, α2, . . . , αn) and β = (β1, β2, . . . , βn) as binary inputs, the bilinear map ⟨α, β⟩ can
be expressed as a Boolean function (where we changed the notation to greek letters to
specifically refers to boolean expressions). This allows the interaction between graded
elements to be modeled using logical operations such as AND (∧), OR (∨), XOR (⊕), and
NOT (¬).
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Boolean Expressions for Zn
2 -Graded Brackets

For homogeneous elements A ∈ Vα and B ∈ Vβ, the graded antisymmetry of the
bracket is defined as:

[A, B] = −(−1)⟨α,β⟩[B, A]. (3.8)

Here, (−1)⟨α,β⟩ determines the sign factor and depends on the Boolean expression for
⟨α, β⟩, a bilinear form defined on the components of α and β.

The most common Boolean expressions for ⟨α, β⟩ include:

⟨α, β⟩ =
n⊕

i=1
(αi ∧ βi), (3.9)

where the XOR operation combines the pairwise AND operations on the components, and

⟨α, β⟩ =
⊕
i ̸=j

(αi ∧ βj), (3.10)

representing antisymmetric cross terms. Fully symmetric contributions may combine these
forms:

⟨α, β⟩ =
n⊕

i=1
(αi ∧ βi) +

⊕
i ̸=j

(αi ∧ βj). (3.11)

Logical Operations in Zn
2

Boolean algebra supports the operations required to model graded interactions.
The key operations are:
- AND (∧ or .): Represents the logical intersection of two inputs. For example, α1 ∧ β1 = 1
if both α1 = 1 and β1 = 1.
- OR (∨ or +): Represents the union of inputs. α1 ∨ β1 = 1 if α1 = 1 or β1 = 1.
- XOR (⊕): Represents exclusive disjunction, where α1 ⊕ β1 = 1 if α1 ̸= β1.
- NOT (¬): Represents negation, flipping the binary value (¬α1 = 1−α1). Also represented
by a overline as α1.

These operations enable the compact representation of bilinear maps, which can
be further analyzed using truth tables, Karnaugh maps, and circuit diagrams.

Truth Tables for Z2
2, example of the color (super)algebra

The truth table for the symmetric mapping ⟨α, β⟩ = α1 · β1 ⊕ α2 · β2 is:
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α1 α2 β1 β2 ⟨α, β⟩
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 1
0 1 1 0 0
0 1 1 1 1
1 0 0 0 0
1 0 0 1 0
1 0 1 0 1
1 0 1 1 1
1 1 0 0 0
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

This table shows all possible combinations of α1, α2, β1, β2 and their corresponding
⟨α, β⟩.

Karnaugh Maps and Simplification of Boolean Expressions

Karnaugh maps (K-maps) are a graphical tool used to simplify Boolean expressions
systematically. They represent truth table outputs in a two-dimensional grid format, where
adjacent cells differ by only one variable (according to Gray code ordering). This adjacency
property makes it easier to visually identify terms that can be combined to simplify the
expression. Karnaugh maps are widely used in digital logic design and computational
modeling to minimize the number of logic gates required in circuit implementations.

To construct a Karnaugh map for the bilinear map ⟨α, β⟩, we follow these steps:

1. Identify the variables (here, α1, α2, β1, β2) and their combinations, which define the
rows and columns of the map.

2. Fill in the grid using the values of ⟨α, β⟩ from the truth table.

3. Group adjacent cells with the same output value (e.g., 1) into blocks. These groups
should be powers of two in size (1, 2, 4, 8, etc.).

4. Use the groups to write the simplified Boolean expression, where each group corre-
sponds to a term that can be factored out.



Chapter 3. Construction of Zn
2 -Graded Lie Brackets 11

In this case, the Karnaugh map for the bilinear map ⟨α, β⟩ = α1 · β1 ⊕ α2 · β2 is as
follows:

α1α2\β1β2 00 01 11 10
00 0 0 0 0
01 0 1 1 0
11 0 1 0 1
10 0 0 1 1

The rows represent the combinations of α1 and α2, while the columns correspond
to β1 and β2. The value in each cell is the output of the bilinear map ⟨α, β⟩ for the given
input combination.

Next, we group adjacent 1s:

• A group of size 2 in the row α1α2 = 01 and columns β1β2 = 11, 10.

• Another group of size 2 in the row α1α2 = 11 and columns β1β2 = 01, 10.

From these groups, the simplified Boolean expression can be written as:

⟨α, β⟩ = (α1.β1) ⊕ (α2.β2). (3.12)

This process significantly reduces the complexity of Boolean expressions by elim-
inating redundant terms. The use of Karnaugh maps is particularly advantageous for
simplifying expressions in higher dimensions, such as those arising in Zn

2 -graded algebras,
where direct inspection of truth tables becomes impractical.

Boolean Circuits

The circuit diagram for the above expression consists of:
1. Two AND gates to compute α1 ∧ β1 and α2 ∧ β2.
2. An XOR gate to combine their outputs.

This circuit effectively implements the bilinear map for Z2
2-graded algebras.

Practical Implications

Boolean representations provide several advantages:
1. Digital Simulations: Graded structures can be directly simulated using digital logic. Each
component of α and β is treated as a binary input, and the bilinear map is implemented
as a logical function.
2. Quantum Computing: Boolean algebra aligns with the binary nature of qubits, enabling
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the modeling of Zn
2 -graded algebras in quantum systems.

3. Efficient Analysis: Tools such as truth tables, Karnaugh maps, and Boolean circuits
streamline the study of graded algebras, particularly in applications like parastatistics.

Boolean algebra thus serves as both a conceptual and practical framework for
Zn

2 -graded Lie brackets, bridging abstract algebra with computational methods.

3.3 Zn
2 Structures

For Zn
2 , the graded vectors of n-components are associated with gradings in powers

of 2, as are the related generators. Specifically, there are 2n gradations. For example:

• For n = 1 (Z2):
[I] = 0, [A] = 1,

where the identity I has grading 0 and the single generator A has grading 1.

• For n = 2 (Z2
2):

[I] = 00, [A] = 01, [B] = 10, [C] = 11.

• For n = 3 (Z3
2):

[I] = 000, [A] = 001, [B] = 010, [C] = 011, [D] = 100, [E] = 101, [F ] = 110, [G] = 111,

with each generator assigned a unique binary grading.

3.3.1 Structure for n = 1: Z2

For n = 1, the vector space G is divided into two homogeneous subspaces:

G = G0 ⊕ G1.

The possible mappings that respect these restrictions are:

1. ⟨α, β⟩ = 0, corresponding to an ordinary Lie algebra.

2. ⟨α, β⟩ = α · β mod 2, defining a Z2-graded superalgebra.

3.3.2 Structure for n = 2: Z2
2

Consider the generators I, A, B, C with respective gradations 00, 01, 10, 11. Follow-
ing the construction for n = 1, there are four possible mappings:

1. ⟨α, β⟩ = 0, representing an ordinary Lie algebra.
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2. ⟨α, β⟩ = α1 · β1, defining a Z2-graded superalgebra embedded in Z2
2.

3. ⟨α, β⟩ = α1·β2−α2·β1, corresponding to a Z2
2-graded color algebra with antisymmetric

properties.

4. ⟨α, β⟩ = α1 · β1 + α2 · β2, defining a Z2
2-graded superalgebra with symmetric contri-

butions.

3.3.3 Structure for n = 3: Z3
2

For n = 3, there are five inequivalent mappings, including:

1. ⟨α, β⟩ = 0, corresponding to an ordinary Lie algebra.

2. ⟨α, β⟩ = α1 · β1, defining an embedded Z2-graded superalgebra.

3. ⟨α, β⟩ = α1 · β1 + α2 · β2, describing an embedded Z2
2-graded superalgebra.

4. ⟨α, β⟩ = α1 · β2 − α2 · β1, defining an embedded Z2
2-graded algebra.

5. ⟨α, β⟩ = α1 · β1 + α2 · β2 + α3 · β3, representing a generalized Z3
2-graded superalgebra.

These structures provide the foundation for n-bit parastatistics.

3.3.4 Practical Implications

These results provide a pathway to simulate exotic quantum systems using digital
logic. For example:

• Boolean circuits can represent n-bit parastatistics.

• Logic gates such as AND, OR, XOR, and NOT encode the behavior of graded Lie
algebras.

These digital representations could have applications in modeling, simulating, and
controlling systems involving paraparticles such as parabosons and parafermions. In the
Appendix, we will present all the details.

3.4 Connection to Equivalence Classes and Physical Interpretation
The construction of Zn

2 -graded Lie brackets establishes the mathematical basis for
understanding equivalence classes of graded algebras. Equivalence classes naturally arise
from the properties of the bilinear form ⟨g, h⟩, which determines how elements interact
and how the algebra behaves under transformations.
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In the next chapter, we delve into the equivalence and inequivalence of Zn
2 -graded Lie

algebras. This includes an analysis of graded sectors and their role in defining equivalence
classes, as well as the concept of marked operators that lead to inequivalent algebras.
These equivalence classes have profound implications for physical systems, as they manifest
in phenomena such as parastatistics, energy spectrum degeneracy, and the classification of
quantum symmetries.
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3.5 Classes of Equivalence of the Graded Sectors
The 2n − 1 nonzero graded sectors of an associative Zn

2 -graded ring of operators
are, by default, treated as equivalent. This equivalence implies that the graded sectors are
on equal footing, and their roles in the algebraic structure can be interchanged without
altering the fundamental properties of the system. The symmetry among the graded
sectors is particularly well-demonstrated in lower-dimensional cases, such as n = 3.

In this case, the assignment of nonvanishing entries in 8 × 8 matrices, as detailed
in Appendix, illustrates the equality of these sectors. Geometrically, this configuration is
represented by the vertices of a Fano plane. The Fano plane provides a visual depiction of
the relationships among the graded sectors, highlighting their interconnectedness and the
absence of a natural hierarchy among them.

3.5.1 Impact of the Zn
2 -Graded Bracket

The introduction of a Zn
2 -graded bracket disrupts the equivalence of the graded

sectors. As defined in Equation (2.3), the bracket determines the symmetry or antisymmetry
of the interaction between graded sectors, remembering:

[A, B] = −(−1)⟨α,β⟩[B, A], (3.13)

where ⟨α, β⟩ is the bilinear map associated with the grading. This bilinear map assigns
specific symmetry properties to interactions between elements of different graded sectors.

For instance, in the 34 case (Appendix), the grading 001 exhibits a distinct behavior.
The corresponding row and column in the matrix representation are entirely populated by
zeros, indicating that this sector commutes with all others. As a result, the 001-graded
sector describes bosons, which are particles that commute with every other particle. In
contrast, other graded sectors exhibit nontrivial interactions. For example, the 110 and
111-graded sectors define parabosons, characterized by partially symmetric commutators,
while 101, 011, 100, and 010-graded sectors define parafermions, which are associated with
antisymmetric commutators.

This distinction illustrates how the introduction of the Zn
2 -graded bracket splits the

graded sectors into distinct classes of equivalence. For the 34-superalgebra, three classes
of equivalence emerge: bosons, parabosons, and parafermions. These equivalence classes
reflect the underlying symmetries of the algebra and their implications for the physical
behavior of particles.

3.5.2 General Patterns in Zn
2 -Graded Algebras

This analysis generalizes to all Zn
2 -graded Lie (super)algebras with n = 1, 2, 3, and

4. The number of distinct equivalence classes for each case is summarized as follows:
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n Equivalence Class Count
1 11, 12 1, 1
2 21, 22, 23, 24 1, 2, 1, 2
3 31, 32, 33, 34, 35 1, 2, 2, 3, 2
4 41, 42, 43, 44, 45, 46, 47 1, 2, 1, 2, 3, 3, 2

The equivalence classes define the possible configurations of particles (e.g., bosons,
parabosons, and parafermions) and their relationships within Zn

2 -graded rings. For a given
algebra, operators in the same equivalence class can be interchanged without altering the
multiplication table, up to a normalization factor. However, the existence of inequivalent
classes introduces distinct roles for certain operators, leading to richer algebraic structures.

3.5.3 Graded Quantum Hamiltonians and Parastatistics

A single-particle quantum Hamiltonian belonging to a Zn
2 -graded associative ring

of operators admits, following the construction presented above, a total number of:

cn ≥ bn, (3.14)

where cn is the model-dependent number of inequivalent Zn
2 -graded Lie (su-

per)algebras, and bn represents the lower bound determined in Equation (3.7). For
single-particle systems, these alternatives are physically indistinguishable. As such, cn

inequivalent graded algebras describe the same quantum model, with the choice among
them being a matter of convenience or mathematical simplicity.

In the first-quantized formulation, however, the multiparticle sector of the Zn
2 -

graded quantum Hamiltonian allows for the discrimination of the alternatives. Specifically,
different (anti)commutation relations among particles lead to several consistent n-bit
parastatistics. These distinct parastatistical configurations produce measurable physical
consequences.

3.5.4 Marked Operators and Their Effects

The distinction between equivalence and inequivalence is often influenced by the
presence of marked operators. Marked operators are those that disrupt the symmetry
among graded sectors by introducing specific properties that distinguish them from others.
For example, in the Z2

2-graded quaternions, the three imaginary quaternionic generators
are on equal footing, resulting in a single equivalence class. However, for split-quaternions,
one generator is marked, splitting the graded sectors into two equivalence classes, with the
generators divided as 1 + 2. Similarly, for Z3

2-graded biquaternions, the graded sectors split
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into three equivalence classes: one marked generator and two groups of three equivalent
generators each.

The number of equivalence classes in these cases exceeds the minimum number of
inequivalent algebras. For instance:

Quaternions: c2 = b2 = 4,

Split-quaternions: c2 = 6 > b2 = 4,

Biquaternions: c3 = 16 > b3 = 5.

Marked operators thus play a critical role in creating inequivalent structures,
enriching the variety of graded algebras and their applications.

3.5.5 Physical Applications of Equivalence Classes

Equivalence classes in Zn
2 -graded algebras have profound physical implications.

The classification of bosons, parabosons, and parafermions is directly tied to these classes.
Bosons, which commute with all other particles, occupy a single equivalence class. Para-
bosons and parafermions, defined by partially symmetric and antisymmetric commutators
respectively, occupy separate equivalence classes.

In quantum mechanics, equivalence classes influence the behavior of multiparticle
systems, including their symmetry properties and statistical behaviors. For example, in
the 34-superalgebra, the separation of graded sectors into three equivalence classes explains
the coexistence of bosonic, parabosonic, and parafermionic states in the same system.
These distinctions extend to quantum Hamiltonians, where the number of inequivalent
classes determines the supported parastatistics.

Beyond particle physics, equivalence classes have implications for supersymmetric
quantum mechanics and superconformal systems. The distribution of supercharges across
graded sectors, along with their interactions, creates unique statistical transmutations,
further enriching the study of Zn

2 -graded systems.
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4 Applications to Quantum Mechanics

The algebraic structures of Zn
2 -graded algebras find profound applications in quan-

tum mechanics, particularly in constructing Hamiltonians with exotic statistics and
exploring statistical transmutations within supersymmetric frameworks. This chapter
investigates these applications, emphasizing the mathematical and physical implications
of Zn

2 -graded operators.

4.0.1 Braided Tensor Products and Multiparticle Construction

To analyze Zn
2 -graded quantum models, we introduce the framework of braided

tensor products. Let A, B, C, D be Zn
2 -graded operators with n-bit gradings α, β, γ, δ,

respectively. The braided tensor product, denoted ⊗br, satisfies the relation:

(A ⊗br B) · (C ⊗br D) = (−1)⟨β,γ⟩(AC) ⊗br (BD), (4.1)

where the sign on the right-hand side depends on the symmetric scalar product ⟨·, ·⟩.

This braided tensor product applies consistently to a Zn
2 -graded compatible Lie

(super)algebra g and its Universal Enveloping Algebra U := U(g), which is a graded Hopf
algebra. Among the operations in the Hopf algebra, the coproduct ∆ is particularly
relevant for constructing multiparticle states. The coproduct map:

∆ : U → U ⊗br U , (4.2)

satisfies the coassociativity property:

∆(m+1) := (∆ ⊗br 1)∆(m) = (1 ⊗br ∆)∆(m), (4.3)

with ∆(1) ≡ ∆. For any u1, u2 ∈ U , the comultiplication is:

∆(u1u2) = ∆(u1) · ∆(u2). (4.4)

The coproduct acts on the identity 1 ∈ U(g) and primitive elements g ∈ g as
follows:

∆(1) = 1 ⊗br 1, ∆(g) = 1 ⊗br g + g ⊗br 1. (4.5)

From these rules, the action of ∆(u) on any u ∈ U can be derived using the
comultiplication. Primitive elements such as Hamiltonians and creation/annihilation
operators play a central role in constructing multiparticle systems. The coproduct ∆ = ∆(1)

is used to construct two-particle states, while ∆(m) is applied to construct (m + 1)-particle
states.
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4.0.2 Nilpotent Operators and Pauli Exclusion Principle

Let A ∈ g be a nilpotent creation operator with n-bit grading α, satisfying:

A2 = 0, [A] = α, ⟨α, α⟩ = 0 or 1. (4.6)

The corresponding two-particle creation operator is:

∆(A) = 1 ⊗br A + A ⊗br 1. (4.7)

The comultiplication implies:

A2 = 0 =⇒ ∆(A2) = ∆(A) · ∆(A) = 1 + (−1)⟨α,α⟩(A ⊗br A). (4.8)

For parafermions with ⟨α, α⟩ = 1, this equation reduces to:

A2 = 0 and ∆(A2) = 0. (4.9)

This result encodes the Pauli exclusion principle for parafermions in the multiparticle
sector.

4.0.3 Observables and Measurable Parastatistics

In a Zn
2 -graded compatible Lie (super)algebra, an observable operator Ω ∈ End(Hm)

must satisfy the following conditions:

1) Ω is Hermitian: Ω† = Ω.
2) Ω is zero-graded: [Ω] = 0.

These properties ensure that Ω has real eigenvalues, making it a valid physical
observable. For the quantum Hamiltonians supporting bn inequivalent parastatistics, these
observables produce the signs from the braided tensor product as measurable eigenvalues.
The inequivalent parastatistics thus become physically distinguishable. The graded Hopf
algebra formalism, endowed with a braided tensor product, provides a powerful tool
for constructing multiparticle quantum systems. By encoding the parastatistics in the
algebra’s structure, this approach connects mathematical symmetry to measurable physical
phenomena. The signs from the braided tensor product appear in eigenvalues, enabling
the detection of inequivalent parastatistics and their contributions to the energy spectrum.

4.0.4 Construction of Zn
2 -Graded Quantum Hamiltonians

In this section, we construct a class of quantum Hamiltonians within the framework
of an associative Zn

2 -graded ring of operators. These Hamiltonians are associated with bn
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inequivalent graded Lie (super)algebras that satisfy the lower bound cn ≥ bn established
in Equation (5.1). Through explicit computations for n = 2 and n = 3, we demonstrate
that these graded Lie (super)algebras lead to detectable parastatistics, resulting in b2 = 4
and b3 = 5 inequivalent multiparticle quantizations.

For a general n, the construction involves introducing 2n pairs of annihilation and
creation operators, denoted by ai;n and a†

i;n, where i = 0, 1, . . . , 2n − 1. These operators
are represented by 2n+1 × 2n+1 matrices with binary entries (0 and 1). The matrices are
expressed as tensor products of 2 × 2 matrices, specifically:

I =
1 0

0 1

 , Y =
0 1

1 0

 , β =
0 0

1 0

 , γ =
0 1

0 0

 . (4.10)

Case n = 1: The 1-Bit Operators

For n = 1, the creation and annihilation operators are 4 × 4 matrices constructed
as:

a†
0;1 = I ⊗ γ, a0;1 = (a†

0;1)† = I ⊗ β, (4.11)

a†
1;1 = Y ⊗ γ, a1;1 = (a†

1;1)† = Y ⊗ β. (4.12)

Case n = 2: The 2-Bit Operators

For n = 2, the operators are 8×8 matrices constructed similarly, with combinations
of I and Y in the first two tensor products and γ in the third:

a†
0;2 = I ⊗ I ⊗ γ, a0;2 = (a†

0;2)† = I ⊗ I ⊗ β, (4.13)

a†
1;2 = I ⊗ Y ⊗ γ, a1;2 = (a†

1;2)† = I ⊗ Y ⊗ β, (4.14)

a†
2;2 = Y ⊗ I ⊗ γ, a2;2 = (a†

2;2)† = Y ⊗ I ⊗ β, (4.15)

a†
3;2 = Y ⊗ Y ⊗ γ, a3;2 = (a†

3;2)† = Y ⊗ Y ⊗ β. (4.16)

4.0.5 General Construction for n-Bit Operators

The general pattern for n-bit annihilation and creation operators ai;n and a†
i;n

becomes evident from the cases above:

••• The annihilation operator ai;n is the Hermitian conjugate of the creation operator:

ai;n =
(
a†

i;n

)†
.

• For the creation operators a†
i;n, the matrix in the (n + 1)-th tensor product is always

γ, while the first n tensor products consist of all possible combinations of I and Y .

This systematic construction ensures a consistent representation of Zn
2 -graded

operators, setting the foundation for analyzing their quantum mechanical properties.
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4.0.6 Creation Operators for n = 3

Following the general rules of construction, for n = 3, the eight 16 × 16 creation
operators are:

a†
0;3 = I ⊗ I ⊗ I ⊗ γ, a†

1;3 = I ⊗ I ⊗ Y ⊗ γ,

a†
2;3 = I ⊗ Y ⊗ I ⊗ γ, a†

3;3 = I ⊗ Y ⊗ Y ⊗ γ,

a†
4;3 = Y ⊗ I ⊗ I ⊗ γ, a†

5;3 = Y ⊗ I ⊗ Y ⊗ γ,

a†
6;3 = Y ⊗ Y ⊗ I ⊗ γ, a†

7;3 = Y ⊗ Y ⊗ Y ⊗ γ.

(4.17)

Due to the nilpotency of the operators β and γ, satisfying β2 = γ2 = 0, each pair
(ai;n, a†

i;n) defines a fermionic oscillator. These operators obey the relations:

{ai;n, ai;n} = {a†
i;n, a†

i;n} = 0, {ai;n, a†
i;n} = I2n+1 , (4.18)

and
a†

i;na†
j;n = 0, ∀ i, j = 0, 1, . . . , 2n − 1. (4.19)

4.0.7 Zn
2 -Grading of Operators

The Zn
2 -grading is assigned based on the tensor products of the diagonal (I) and

antidiagonal (Y ) matrices appearing in a†
i;n and ai;n. For n = 1, 2, the gradings are:

[a†
0;1] = 0, [a†

1;1] = 1,

[a†
0;2] = 00, [a†

1;2] = 01, [a†
2;2] = 10, [a†

3;2] = 11.
(4.20)

For n ≥ 3, the extension is straightforward, with a†
0;n assigned to the zero-graded

sector:
[a†

0;n] = 0. (4.21)

4.0.8 Hamiltonian Construction and Hilbert Space

The Hermitian n-bit Hamiltonian operator Hn is defined as:

Hn := a†
0;na0;n, (4.22)

with the first few cases being:

H1 = diag(0, 1), H2 = diag(0, 1, 0, 1), H3 = diag(0, 1, 0, 1, 0, 1, 0, 1). (4.23)

By construction, the Hamiltonian satisfies:

[Hn, ai;n] = −ai;n, [Hn, a†
i;n] = +a†

i;n, (4.24)
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for all i. The single-particle n-bit Hilbert space H1;n is spanned by the creation operators
acting on the n-bit Fock vacuum |vac⟩n, which satisfies:

ai;n|vac⟩n = 0, ∀ i. (4.25)

The Fock vacuum |vac⟩n is a 2n+1-component column vector:

|vac⟩n = r1, (4.26)

where rj denotes a column vector with 1 in the j-th position and 0 elsewhere.

The excited states are given by:

vi;n = a†
i;n|vac⟩n. (4.27)

The Zn
2 -graded 2n+1-dimensional Hilbert space is:

H1;n = {|vac⟩n, vi;n}, (4.28)

with |vac⟩n and v0;n belonging to the zero-graded sector.

The energy spectrum is:

Hn|vac⟩n = 0, Hnvi;n = vi;n, ∀ i, (4.29)

where the excited state is 2n-degenerate.

4.0.9 Generalized Diagonal Operators

A more general zero-graded diagonal Hermitian operator Hd;n is defined as:

Hd;n := diag(x0, x1, . . . , x2n−1) ⊗ (βγ). (4.30)

For example:

Hd;1 = diag(0, x0, 0, x1), Hd;2 = diag(0, x0, 0, x1, 0, x2, 0, x3). (4.31)

The eigenvalues of Hd;n are:

Hd;n|vac⟩n = 0, Hd;nvi;n = xivi;n. (4.32)

4.0.10 Exchange Operators

To analyze particle exchanges, we define the graded exchange operators Xij;n:

Xij;n = ei,j + ej,i, Xij;n = Xij ⊗ I, (4.33)
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where ei,j is a matrix with 1 at the (i, j)-th entry and 0 elsewhere. These operators are
symmetric 2n+1 × 2n+1 matrices, with their gradings given by:

[Xij;n] = [a†
i;n] + [a†

j;n] mod 2. (4.34)

For n = 2, the three exchange operators are:

X12;2 =


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

⊗ I, (4.35)

X13;2 =


0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

⊗ I, (4.36)

X23;2 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

⊗ I. (4.37)

Their respective gradings are:

[X12;2] = 11, [X13;2] = 01, [X23;2] = 10. (4.38)

4.0.11 The Inequivalent Two-Particle Quantizations

Having outlined the construction of multi-particle sectors from graded Hopf algebras
above, this discussion focuses on presenting the results. As noted earlier, for the system
under consideration, demonstrating the distinguishability of the bn parastatistics requires
an analysis of only the two-particle sector. We specifically examine the cases n = 2 and
n = 3, with the extension to n > 3 being a natural and straightforward progression.

The n-bit two-particle vacuum |vac⟩(2)
n is represented as the 22n+2-component

column vector:
|vac⟩(2)

n = |vac⟩n ⊗ |vac⟩n. (4.39)

The 2n first-excited states (with energy level 1) are denoted as v
(2)
i ; n and given by:

v
(2)
i;n =

(
a†

i;n ⊗ I2n+1 + I2n+1 ⊗ a†
i;n

)
|vac⟩(2)

n . (4.40)

The maximal number of second-excited states (energy level 2), denoted as v
(2)
ij;n for 0 ≤

i ≤ j ≤ 2n − 1, is 2n−1(2n − 1). These states are given by:

v
(2)
ij;n =

(
a†

i;n ⊗ I2n+1 + I2n+1 ⊗ a†
i;n

) (
a†

j;n ⊗ I2n+1 + I2n+1 ⊗ a†
j;n

)
|vac⟩(2)

n , (4.41)
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or equivalently:
v

(2)
ij ; n =

(
a†

i;n ⊗ a†
j;n + (−1)ϵij a†

j;n ⊗ a†
i;n

)
|vac⟩(2)

n , (4.42)

where the factor (−1)ϵij depends on the mutual (anti)commutation properties of the i-th
and j-th particles. This expression ensures that there are no third-excited states in the
two-particle sector.

The parastatistics are determined by the signs (−1)ϵij , and their inequivalence
appears only in the second-excited states v

(2)
ij;n.

The two-particle Hamiltonian and the extension of the diagonal operator are:

H(2)
n = Hn ⊗ I2n+1 + I2n+1 ⊗ Hn, H

(2)
d;n = Hd;n ⊗ I2n+1 + I2n+1 ⊗ Hd;n. (4.43)

The two-particle Hilbert space H2;n is spanned by the states:

H2;n =
{
|vac⟩(2)

n , v
(2)
i ; n, v

(2)
ij ; n

}
. (4.44)

Analysis for n = 2

The total number of states in the H2;n=2 Hilbert space, depending on the graded
Lie (super)algebras in Appendix, is:

a) For 21 and 23 (para)bosonic algebras: 1 + 4 + 10 = 15,

b) For 22 and 24 parafermionic superalgebras: 1 + 4 + 8 = 13.

These counts include contributions from energy eigenstates with E = 0, 1, 2. The difference
in the a) and b) cases is due to the Pauli exclusion principle, which enforces v11;2 = v22;2 = 0
for the graded superalgebras.

The inequivalence of the 21, 23 (para)bosonic statistics versus the 22, 24 parafermionic
statistics is reflected in the degeneracy of the second-excited states. Discriminating 21

bosons from 23 parabosons or 22 fermions from 24 parafermions requires additional observ-
ables.

Let w12, w13, w23 represent normalized states of the second-excited sector:

wij = 1√
2

vij;2. (4.45)

The states w12, w13, w23 for the four cases are:

For 21: w12 = 1√
2

(r30 + r44), w13 = 1√
2

(r32 + r60), w23 = 1√
2

(r48 + r62),

For 23: w12 = 1√
2

(r30 − r44), w13 = 1√
2

(r32 + r60), w23 = 1√
2

(r48 − r62),

For 22: w12 = 1√
2

(r30 − r44), w13 = 1√
2

(r32 + r60), w23 = 1√
2

(r48 − r62),

For 24: w12 = 1√
2

(r30 + r44), w13 = 1√
2

(r32 − r60), w23 = 1√
2

(r48 − r62).

(4.46)
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To distinguish the cases, the observable Y12;2 = X12;2 ⊗ X12;2 is measured on the
state w12. The eigenvalues ±1 of Y12;2 allow discrimination among the four cases.

Analysis for n = 3

For n = 3, the total number of states in the H2;n=3 Hilbert space is:

a) For 31 and 32 (para)bosonic algebras: 1 + 8 + 36 = 45,

b) For 33, 34, 35 parafermionic superalgebras: 1 + 8 + 32 = 41.

Similar measurements using observables Yij;3 provide the necessary eigenvalue distinctions
to differentiate among the parastatistics.
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5 Parastatistics detectability: A statistical
transmutation approach

In this chapter, we extend the framework of induced graded Lie (super)algebras to
the study of Supersymmetric Quantum Mechanics (SQM), a formalism that has proven
to be highly influential in both physics and mathematics. Since its inception in [50],
where it was introduced as a reformulation of the Atiyah-Singer index theorem, SQM
has served as a foundational tool for understanding complex algebraic and topological
structures. Within this context, we explore the concept of n-bit parastatistics associated
with SQM. To describe these parastatistics, we adopt the term statistical transmutation,
which has been used in condensed matter physics to refer to related phenomena (see [51] for
additional discussions and references). Here, statistical transmutation refers specifically to
the algebraic transformations governed by Zn

2 -graded Lie (super)algebras that are induced
by the operators in SQM.

5.1 Statistical Transmutations in N = 1, 2, 4, 8-Extended Super-
symmetric Quantum Mechanics
To further elucidate this framework, consider the construction of an N = 2

supersymmetric quantum model, as presented in [52]. This model exhibits invariance under
a Z2

2-graded superalgebra. The emergence of this graded symmetry naturally prompted
the question: what is the physical role of such a Z2

2-graded invariant superalgebra? This
inquiry was addressed in [39], where it was demonstrated that the Z2

2-graded invariance
leads to observable parafermionic statistics within the multiparticle sector. This finding
underscores the direct physical implications of graded algebraic symmetries in quantum
systems.

The present framework generalizes this analysis, providing a systematic and model-
independent approach to Zn

2 -graded structures. This generalization applies to any positive
integer n, enabling a unified description of algebraic statistical transmutations. By
leveraging these results, we can uncover new classes of parastatistics and their physical
manifestations, offering deeper insights into the interplay between symmetry, algebra, and
quantum mechanics.

For any positive integer n, Zn
2 -gradings can be applied. In particular, for a positive

integer N = 1, 2, 3, 4, 5, . . ., the superalgebra sqmN of the N -extended one-dimensional
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supersymmetric quantum mechanics is defined by the following (anti)commutators:

{Qi, Qj} = 2δijH, [H, Qi] = 0, (5.1)

where i, j = 1, . . . , N .

Here, Qi are the generators of supersymmetry transformations, known as the
supercharges, and H is the Hamiltonian, which is invariant under these transformations.
Both Qi and H are assumed to be Hermitian, satisfying:

Q†
i = Qi, H† = H. (5.2)

We denote the corresponding Universal Enveloping Superalgebra as UN := U(sqmN ).
For m = 0, 1, 2, . . ., these superalgebras are spanned by the following sets of operators:

UN =1 = {Hm, HmQ1},

UN =2 = {Hm, HmQ1, HmQ2, HmQ1Q2},

UN =3 = {Hm, HmQ1, HmQ2, HmQ3, HmQ1Q2, HmQ1Q3, HmQ2Q3, HmQ1Q2Q3},

...

(5.3)

In general, for N -extended supersymmetric quantum mechanics, the number of
operators included in UN at any given m is 2N .

The subsequent analysis relies on the matrix differential representations of the
Qi and H operators as defined in (5.1). The sqmN superalgebras admit two distinct
types of differential representations. At the classical level, there are the time-dependent
worldline D-module representations introduced in [53, 54], which are used for constructing
invariant worldline sigma models. At the quantum level, differential representations are
employed where the Hamiltonian H acts as a second-order differential operator in the
spatial coordinates. The relationship between these two types of representations is clarified
in [55] and, specifically within a Z2

2-graded framework, in [24].

As outlined in [53], the minimal and irreducible D-module representations of the
sqmN superalgebra express the N supercharges Qi as dN ×dN matrix operators. These are
first-order differential operators in the time variable t, where dN is given by the following
expression.

Let us parametrize N as
N = 8k + r, (5.4)

where
k = 0, 1, 2, · · · ∈ N0, r = 1, 2, 3, 4, 5, 6, 7, 8. (5.5)

The size of the dN matrix is then determined by the formula:

dN = 2(4k+z(r)+1), (5.6)
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where z(r) is given by
z(r) = ⌈log2 r⌉. (5.7)

In the above formula, the ceiling function ⌈·⌉ is used, resulting in the following
specific values:

z(1) = 0,

z(2) = 1,

z(3) = z(4) = 2,

z(5) = z(6) = z(7) = z(8) = 3.

(5.8)

The dimensionality dN of the bosonic and fermionic subspaces corresponds to
sequence A034583 in the OEIS (Online Encyclopedia of Integer Sequences), available at
https://oeis.org. The sequence begins as follows:

1 × dN ⇒ 1, 2, 4, 4, 8, 8, 8, 8, 16, 32, 64, 64, 128, 128, 128, 128, 256, . . . (5.9)

For values N ≥ 4, it has been demonstrated in [56] that the sqmN superalgebra
supports D-module representations that may be reducible but remain indecomposable.
The statistical transmutations associated with these representations can, in principle,
be calculated for any D-module, whether it corresponds to a reducible or irreducible
representation of the N -extended sqmN superalgebra.

For irreducible representations, it is useful to introduce the parameter:

nN := 4k + z(r) + 1, (5.10)

where nN determines the dimensionality of the matrix space:

dN × dN = 2nN × 2nN . (5.11)

In this context, the irreducible supercharges Qi can be associated with the nonzero
graded sectors of a ZnN

2 -grading. Meanwhile, the Hamiltonian H is assigned to the nN -bit
zero vector, denoted by 0.

To simplify the discussion, we will focus on irreducible representations of N =
1, 2, 4, 8-extended one-dimensional Supersymmetric Quantum Mechanics. These specific
cases of N , which are intimately connected to the division algebras, have been the subject
of extensive study in the literature and serve as significant examples for exploring the
algebraic framework.

Before advancing further, it is important to highlight a few key observations. For
the cases N = 1, 2, 4, 8, the minimal D-module representations correspond to matrix sizes
of 2 × 2, 4 × 4, 8 × 8, and 16 × 16, respectively. These representations are valid for both

https://oeis.org
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the classical and quantum settings. From the relationship provided in (5.10) and (5.11),
we find the values of nN for each case as follows:

nN =1 = 1, nN =2 = 2, nN =4 = 3, nN =8 = 4. (5.12)

These values of nN are significant because they define the number of bits in
the ZnN

2 -grading associated with the supercharges Qi. The graded Lie (super)algebras
induced by different grading assignments for the supercharges are classified based on the
n = 1, 2, 3, 4-bit cases, as detailed in the tables provided in Appendix. Each table outlines
the inequivalent structures arising from these gradings.

At this point, we are ready to compute the number of inequivalent graded Lie
(super)algebras, denoted sN , induced by the minimal set of H and Qi operators satisfying
the defining relations in (5.1). These computations focus specifically on U(sqmN ), the
universal enveloping algebra of the sqmN superalgebra.

The methodology for this analysis draws on techniques previously applied to (split-
)quaternions and biquaternions, which are discussed in detail in Appendices. However,
the computation here incorporates unique features stemming from the ZnN

2 -grading of the
supercharges. The distinctions in these assignments lead to structural differences in the
resulting graded Lie (super)algebras. These variations will be carefully outlined in the
following sections to provide a complete picture of the classification.

5.1.1 The N = 1 Statistical Transmutations

In the case of N = 1, the Hamiltonian H is assigned to the zero grading, [H] = 0,
and the single supercharge Q1 is assigned the grading [Q1] = 1. The inequivalent graded Lie
(super)algebras can be classified based on the information from the 1-bit tables provided
in Appendix.

The distinct cases and their corresponding properties are summarized in Table 1:

Case Algebra Type Relations
11 Lie algebra [H, Q1] = 0
12 Lie superalgebra [H, Q1] = 0, {Q1, Q1} = 2H

Table 1 – Classification of inequivalent graded Lie (super)algebras for N = 1.

From the above classification, the number of inequivalent graded Lie (super)algebras
for N = 1 is:

sN =1 = 2. (5.13)
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5.1.2 The N = 2 Statistical Transmutations

For N = 2, the Hamiltonian H is assigned the zero grading, [H] = 00. The
supercharges Q1 and Q2 are assigned to the nonzero gradings, denoted as [Q1] = α and
[Q2] = β, where α ̸= β and α, β ∈ {10, 01, 11}. The grading assignments of the operators
in the Universal Enveloping (Super)algebra U(sqmN =2) are as follows:

[Hm] = 00,

[HmQ1] = α,

[HmQ2] = β,

[HmQ1Q2] = α + β mod 2.

(5.14)

An important feature of this setup is the presence of an empty α + β-graded sector,
denoted as ∅, which can be interpreted as a generator associated with a matrix of all
zero entries. This marked generator plays a key role in distinguishing the graded Lie
(super)algebras. The computation of the inequivalent graded Lie (super)algebras sN =2

mirrors that of the split-quaternions, as discussed in Appendix, which involves a 1 + 2
decomposition of the 2-bit nonvanishing graded sectors.

The cases and their properties are summarized in Table 2:

Case Type of Algebra Grading Assignment Description
21 Lie algebra [Q1] = 10, [Q2] = 01 Bosonic case: 2B, infinite generators

22α Lie superalgebra [Q1] = 10, [Q2] = 11 Mixed case: 1F + 1B, infinite generators
22β Lie superalgebra [Q1] = 10, [Q2] = 01 Fermionic case: 2F , infinite generators
23 Parabosonic algebra [Q1] = 10, [Q2] = 01 Parabosonic case: 2PB, 3 generators

24α Parafermionic superalgebra [Q1] = 10, [Q2] = 11 Mixed case: 1PF + 1PB, 3 generators
24β Parafermionic superalgebra [Q1] = 10, [Q2] = 01 Parafermionic case: 2PF , 4 generators

Table 2 – Classification of inequivalent graded Lie (super)algebras for N = 2.

From the contributions of the four 2-bit cases, the total number of inequivalent
graded Lie (super)algebras for N = 2 is:

sN =2 = 1 + 2 + 1 + 2 = 6. (5.15)

5.1.3 The N = 4 Statistical Transmutations

The N = 4 statistical transmutations are derived from the 3-bit tables. The four
supercharges, Qi, along with the three null matrices representing the empty slots (∅),
are distributed among the seven non-zero graded sectors. This arrangement leads to two
distinct classes of equivalence for the marked generators, encompassing 4 + 3 = 7 elements.
The non-zero graded sectors can be visualized as encoded within a Fano plane diagram.

Two key observations are critical for the analysis:
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1. Alignment of Empty Slots: The three null matrices (∅) are aligned along an edge
of the Fano plane since the product of two null matrices always results in another
null matrix.

2. (Para)Bosonic Alignment: In the 31 to 35 tables of (Appendix), the product of
two (para)bosonic sectors yields a third (para)boson. Consequently, these bosonic
sectors are also aligned along an edge of the Fano plane.

These two principles simplify the combinatorial analysis necessary to compute
sN =4, the total number of inequivalent graded Lie (super)algebras.

Case Graded Sectors Split Grading Assignment for Qi Transmutation De-
scription

31 7 bosons [Q1] = 001, [Q2] = 101, [Q3] =
011, [Q4] = 111

4B: 4 bosonic super-
charges

3α
2 1 boson, 6 parabosons [Q1] = 001, [Q2] = 101, [Q3] =

011, [Q4] = 111
1B + 3PB: 1 bosonic,
3 parabosonic

3β
2 7 parabosons [Q1] = 110, [Q2] = 010, [Q3] =

011, [Q4] = 111
4PB: 4 parabosonic
supercharges

3α
3 3 bosons, 4 fermions [Q1] = 001, [Q2] = 011, [Q3] =

101, [Q4] = 111
2B + 2F : 2 bosonic, 2
fermionic

3β
3 7 fermions [Q1] = 100, [Q2] = 110, [Q3] =

101, [Q4] = 111
4F : 4 fermionic super-
charges (identity trans-
mutation)

3α
4 1 boson, 2 parabosons, 4

parafermions
[Q1] = 001, [Q2] = 110, [Q3] =
100, [Q4] = 011

1B + 1PB + 2PF : 1
bosonic, 1 parabosonic,
2 parafermionic

3β
4 2 parabosons, 4

parafermions
[Q1] = 111, [Q2] = 110, [Q3] =
010, [Q4] = 011

2PB + 2PF : 2
parabosonic, 2
parafermionic

3γ
4 7 parafermions [Q1] = 101, [Q2] = 010, [Q3] =

100, [Q4] = 011
4PF : 4 parafermionic
supercharges

3α
5 3 parabosons, 4

parafermions
[Q1] = 101, [Q2] = 011, [Q3] =
010, [Q4] = 001

2PB + 2PF : 2
parabosonic, 2
parafermionic

3β
5 7 parafermions [Q1] = 100, [Q2] = 111, [Q3] =

010, [Q4] = 001
4PF : 4 parafermionic
supercharges

Table 3 – Classification of N = 4 statistical transmutations based on 3-bit graded Lie
(super)algebras.
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Using the properties above (alignment of empty slots and (para)bosonic alignment),
the inequivalent statistical transmutations are categorized into ten distinct cases, each
corresponding to a different graded Lie (super)algebra structure. The assignments of
gradings to the supercharges determine whether they behave as bosons, parabosons,
fermions, or parafermions.

• Bosonic Cases: The cases 31 and 3β
2 correspond to purely bosonic or parabosonic

assignments, with 31 featuring four bosonic supercharges and 3β
2 describing a purely

parabosonic system.

• Fermionic Cases: The case 3β
3 recovers the original N = 4 supersymmetric quantum

mechanics with four fermionic supercharges.

• Mixed Cases: The remaining cases present different mixtures of bosons, parabosons,
fermions, and parafermions, leading to diverse transmutation patterns such as
(2B + 2F ), (1B + 3PB), (2PB + 2PF ), and (4PF ).

The total number of inequivalent transmutations is given by

sN =4 = 1 + 2 + 2 + 3 + 2 = 10. (5.16)

These results generalize previous studies on N = 2 systems and extend the
framework of statistical transmutations to higher-dimensional graded Lie (super)algebras.

5.1.4 The N = 8 Statistical Transmutations and Fano Plane Encoding

The N = 8 transmutations are derived from the 4-bit tables (Appendix). The eight
supercharges Qi, along with the seven vanishing matrices representing the empty slots ∅,
must be distributed among the fifteen nonzero graded sectors. This classification follows
from the structure of the generalized Fano plane, a key geometric tool used to organize
the graded sectors. The implications of the Fano plane for the classification of graded Lie
(super)algebras and the corresponding statistical transmutations are outlined below.

5.1.5 Fano Planes and Graded Structures

The Fano plane is a finite projective geometry that naturally encodes the algebraic
structure of graded Lie (super)algebras. In the N = 4 case, the seven nonzero graded
sectors can be represented as the seven points of the standard Fano plane, where each line
represents a graded multiplication rule.

For N = 8, the structure extends to a generalized Fano plane, encoding fifteen
nonzero graded sectors within a higher-dimensional incidence geometry.
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5.1.6 Properties of the N = 4 Fano Plane

1. Alignment of Empty Slots (∅): Since the product of two empty slots remains an
empty slot, the corresponding vanishing matrices align along an edge of the Fano
plane.

2. Parafermion and Paraboson Alignment: The graded multiplication rules enforce the
condition that the product of two (para)bosons must generate a third (para)boson.
This requirement constrains their placement within the Fano structure.

3. Supercharge Assignments: The four supercharges Qi must be positioned such that
they complement an edge of the Fano plane, leading to multiple inequivalent grading
assignments.

5.1.7 The N = 8 Generalized Fano Plane

For N = 8, the graded sectors increase from seven to fifteen, forming a higher-
dimensional analog of the Fano plane. This extension represents an incidence structure in
projective geometry over Z2, enforcing additional constraints on graded Lie (super)algebras.

The key properties are:

1. Expanded Empty Slots: With seven empty slots, the generalized Fano structure
enforces additional constraints on the grading assignments.

2. Multiple Parafermionic Subspaces: Unlike N = 4, where a single edge aligns
parafermions, N = 8 allows for multiple parafermionic alignments.

3. Higher-Dimensional Projection: The fifteen graded sectors correspond to an inci-
dence geometry that extends the standard Fano plane into a higher-dimensional
configuration.
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For 44 and 47, we have two inequivalent contributions from unmarked vertices, as
follows,

α diagram:

β diagram:
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For 45 we have three inequivalent contributions with three marked vertices,

α diagram:

β diagram:

γ diagram:



Chapter 5. Parastatistics detectability: A statistical transmutation approach 36

For 46 we have three inequivalent contributions with one marked vertice,

α diagram:

β diagram:

γ diagram:
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5.1.8 Statistical Transmutation Classification

The transmutations for N = 8 follow the 4-bit classification scheme, where the
fifteen nonzero graded sectors accommodate the eight supercharges and seven empty slots.
The resulting transmutations are summarized in the following table.

Case Supercharges (8 sec-
tors)

Empty Slots (7 sectors) Transmutation Type

41 8B 7B Fully bosonic
4α

2 2B + 6P B 1B + 6P B Mixed bosonic-parabosonic
4β

2 8P B 3B + 4P B Fully parabosonic
43 8P B 7P B Fully parabosonic
4α

4 4B + 4F 3B + 4F Boson-fermion mixed
4β

4 8F 7B Fully fermionic
4α

5 4P B + 4P F 3B + 4P F Paraboson-parafermion
mixed

4β
5 2B + 2P B + 4P F 1B + 2P B + 4P F Hybrid bosonic-

parastatistics
4γ

5 8P F 3B + 4P B Fully parafermionic
4α

6 4P B + 4P F 1B + 2P B + 4P F Mixed paraboson-
parafermion

4β
6 1B + 3P B + 4P F 3P B + 4P F Higher parabosonic-

parafermionic
4γ

6 8P F 1B + 6P B Fully parafermionic
4α

7 4P B + 4P F 3P B + 4P F Mixed high-order paraboson-
parafermion

4β
7 8P F 7P B Fully parafermionic

Table 4 – Complete classification of N = 8 statistical transmutations with 14 inequivalent
cases.

By summing all the contributions from the seven 4-bit tables, we obtain

sN =8 = 1 + 2 + 1 + 2 + 3 + 3 + 2 = 14. (5.17)

The Fano planes provide an underlying geometric structure that dictates how
graded multiplication rules operate in supersymmetric quantum mechanics. For N = 4,
the standard Fano plane organizes the seven nonzero graded sectors, while for N = 8, a
generalized Fano structure emerges.

The key findings are:

• The Fano structure determines how graded sectors interact, enforcing parafermionic
and parabosonic constraints.

• The N = 8 case introduces a higher-dimensional incidence geometry, increasing the
number of transmutation possibilities.

• The inequivalent graded Lie (super)algebras lead to physically distinct parafermionic
statistics, which may be detectable in multiparticle quantum systems.
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These results demonstrate that the geometric encoding of graded sectors is funda-
mental to understanding supersymmetric quantum mechanics and statistical transmuta-
tions.

In this section, we have demonstrated that the Universal Enveloping Superalge-
bras UN ≡ U(sqmN ) associated with the one-dimensional N -extended Supersymmetric
Quantum Mechanics can accommodate alternative gradings beyond the conventional super-
symmetric grading. These alternative gradings define distinct and inequivalent graded Lie
(super)algebra structures on UN , each leading to a different formulation of (para)statistics.

As established in this section, each specific graded Lie (super)algebra structure
determines its own set of statistical transmutations. Consequently, the classification of
N = 1, 2, 4, 8 supersymmetric theories results in a corresponding number sN of inequivalent
graded Lie (super)algebras:

N = 1 : n1 = 1, s1 = 1 + 1 = 2,

N = 2 : n2 = 2, s2 = 1 + 2 + 1 + 2 = 6,

N = 4 : n4 = 3, s4 = 1 + 2 + 2 + 3 + 2 = 10,

N = 8 : n8 = 4, s8 = 1 + 2 + 1 + 2 + 3 + 3 + 2 = 14.

(5.18)

In this classification, the numbers sN are systematically partitioned into their
respective contributions, which originate from each of the inequivalent nN -bit graded
brackets listed in Appendix. As discussed in Section 3, the presence of “marked” generators
increases the number of possible inequivalent structures, ensuring that sN ≥ bN .

The values of sN obtained above quantify the total number of allowed statistical
transmutations affecting the supercharges Qi in each case. The next fundamental question
is whether these inequivalent parastatistics produce observable physical effects. This issue
is examined in the subsequent section, where we explore how parastatistics can manifest
in measurable quantities. In particular, we analyze whether these parastatistics influence
the degeneracy structure of energy levels in multiparticle states. To facilitate this analysis,
we work within the framework of Superconformal Quantum Mechanics, augmented by
the de Alfaro-Fubini-Furlan (DFF) oscillator term [49]. This formulation preserves the
spectrum-generating superconformal algebra while providing a well-defined vacuum state
and discrete energy spectrum, thereby offering a natural setting to investigate the physical
implications of graded statistical transmutations.



Chapter 5. Parastatistics detectability: A statistical transmutation approach 39

5.2 Detectable Parastatistics in Superconformal Quantum Mechan-
ics with de Alfaro-Fubini-Furlan Oscillator Terms
In this section, we explore the physical detectability of the statistical transmutations

introduced in Supersymmetric Quantum Mechanics (SQM). As emphasized before, each
graded Lie (super)algebra defined on a Universal Enveloping Algebra, such as

UN ≡ U(sqmN ) (5.19)

from equation (5.3) induces a distinct (para)statistics in the multiparticle sector of a
corresponding quantum model.

From a single-particle perspective, these different graded Lie (super)algebras merely
provide alternative formulations of the same physical system. However, in a multiparticle
sector, their physical equivalence or inequivalence becomes a model-dependent question,
requiring direct analysis of how these structures impact observable quantities.

5.2.1 Detectability of Statistical Transmutations

A fundamental question arises: are the sN statistical transmutations (given in
equation (5.18)) physically measurable?

A complete resolution of this issue demands an extensive investigation, as the
physical effects of graded parastatistics depend on the multiparticle dynamics of the
specific quantum system under study. Such an in-depth analysis extends beyond the scope
of this work. Instead, we focus here on the simplest nontrivial case the two-particle sector
of an N = 2 supersymmetric quantum model to illustrate the key ideas and establish a
concrete example of detectable parastatistics.

Our findings indicate a striking result:

• The sN =2 = 6 distinct parastatistics obtained in equation (5.15) naturally split into
two sets:

1. Three cases correspond to conventional statistics, associated with standard
bosonic and fermionic states (from tables 21 and 22 in Appendix).

2. Three cases correspond to genuine parastatistics, which involve paraparticles,
parabosons and parafermions, associated with the graded structures 23, 2α

4 , and
2β

4 .

A crucial observation is that the energy-level degeneracies in the two-particle
system exhibit measurable differences between these two groups. Specifically, the genuine
parastatistics yield an energy spectrum that cannot be reproduced by ordinary bosons or
fermions, providing an observable signature of paraparticles.
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This discovery represents the first known example where the Z2
2-graded parabosons

and parafermions, originally introduced by Rittenberg and Wyler, explicitly alter the
energy spectrum of a quantum system.

The mechanism of parastatistics detection presented here differs fundamentally from
that found in the models analyzed at the beginning of this section, and in the references
[39, 40]. In those cases, distinguishing between n-bit paraparticles and ordinary particles
required measuring an observable distinct from the Hamiltonian, as both species shared
the same energy spectrum. In contrast, in the present model, the impact of parastatistics
is directly reflected in the energy spectrum itself, making detection more straightforward.

5.2.2 The Role of Superconformal Symmetry in Statistical Transmutations

To systematically analyze the effects of statistical transmutations, we adopt the
framework of Superconformal Quantum Mechanics (SCQM). This approach offers several
advantages. It introduces superconformal Lie superalgebras, which serve as spectrum-
generating superalgebras, allowing for an algebraic classification of energy levels. The
algebraic structure simplifies the identification of energy-level degeneracies arising from
different graded Lie (super)algebras.

The superalgebra governing SCQM depends on the number of supercharges N :

• N = 1: The superalgebra osp(1|2)

• N = 2: The superalgebra sl(2|1)

• N = 4: The exceptional superalgebra D(2, 1; α) (see [55])

• N = 8: The exceptional superalgebra F (4) (see [57])

For a comprehensive review of superconformal mechanics and its implications, see
Ref. [58] and references therein.

5.2.3 The Importance of the de Alfaro-Fubini-Furlan (DFF) Oscillator Term

A central challenge in studying parastatistics in quantum mechanics is constructing
a model that provides a clear and computable framework. This challenge is addressed by
incorporating the de Alfaro-Fubini-Furlan (DFF) oscillator term into the Hamiltonian.

This term plays a crucial role in the following ways:

1. It preserves the spectrum-generating superconformal algebra, ensuring that the
structure of the quantum theory remains intact.
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2. It introduces a well-defined ground state and a discrete energy spectrum, which
greatly simplifies the analysis of energy-level degeneracies.

3. It allows for a direct comparison between ordinary statistics and parastatistics,
making it possible to observe physical distinctions between them.

Given these advantages, our investigation will focus on analyzing the statistical
transmutations within the framework of superconformal quantum mechanics, incorporating
the DFF oscillator term. This setting provides the ideal structure for identifying and
understanding the physical consequences of inequivalent graded Lie (super)algebras.

5.2.4 Summary of Key Findings

The study of parastatistics in supersymmetric quantum mechanics reveals that their
physical relevance manifests primarily in the multiparticle sector. While different graded
Lie (super)algebras yield equivalent descriptions at the single-particle level, their impact
becomes nontrivial when considering systems involving multiple interacting particles.
The structural differences between inequivalent statistical transmutations influence the
symmetry properties and observable features of the quantum states, making it possible to
distinguish distinct parastatistical behaviors in multi-particle sectors.

A particularly striking result emerges in the case of N = 2 supersymmetric
quantum mechanics. The presence of Z2

2-graded parastatistics introduces modifications
to the energy spectrum that are absent in conventional bosonic and fermionic systems.
These modifications manifest as shifts in the degeneracies of energy levels, indicating that
particles governed by such alternative statistics obey fundamentally different combinatorial
occupancy rules compared to standard quantum particles. This represents the first explicit
demonstration that Z2

2-graded parastatistics have a tangible effect on quantum energy
spectra, providing a novel avenue for their potential experimental verification.

A crucial component of this analysis is the incorporation of the de Alfaro-Fubini-
Furlan (DFF) oscillator term into the Hamiltonian. This term serves a dual purpose:
first, it ensures that the quantum system possesses a normalized ground state, which is
essential for defining a well-structured Hilbert space. Second, it introduces a discrete
energy spectrum, significantly simplifying the study of level degeneracies and allowing for a
precise identification of statistical transmutations. Without the DFF term, the continuous
nature of the spectrum would make it considerably more difficult to isolate the effects of
parastatistics from other dynamical features of the system.

Furthermore, the formalism of Superconformal Quantum Mechanics provides a
powerful framework for analyzing statistical transmutations systematically. By leveraging
the structure of superconformal Lie superalgebras, it becomes possible to classify the
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energy spectra of different inequivalent graded Lie (super)algebras. The mathematical con-
sistency of this approach enables a rigorous characterization of how distinct parastatistical
properties manifest in quantum systems. The connection between graded parastatistics
and superconformal symmetry suggests deeper algebraic structures at play, which may
have implications beyond quantum mechanics, extending into quantum field theory and
higher-dimensional models of supersymmetry.

These findings collectively underscore the importance of parastatistics as a physically
meaningful extension of conventional quantum statistics. The explicit demonstration that
energy spectra can encode signatures of inequivalent statistical transmutations provides
strong motivation for further theoretical and experimental investigations into the role of
graded Lie (super)algebras in quantum mechanics.

Building on these insights, we now turn our attention to the implications of graded
parastatistics within the framework of N = 1, 2, 4, 8 Superconformal Quantum Mechanics.
By leveraging the structure of superconformal algebras, we systematically explore how
statistical transmutations manifest in these theories and affect the symmetry properties,
energy spectra, and multiparticle dynamics. This analysis not only reinforces the physical
significance of inequivalent graded Lie (super)algebras but also provides a deeper connection
between parastatistics and the mathematical foundations of supersymmetric quantum
mechanics.

5.3 On N = 1, 2, 4, 8 Superconformal Quantum Mechanics
A one-dimensional N -extended superconformal algebra is a simple Lie superalgebra

g that appears in Kac’s classification [1], with generators satisfying additional structural
properties. In addition to the standard Z2-grading, these generators are characterized by
their scaling dimensions s = −1, −1

2 , 0, 1
2 , 1, such that the algebra decomposes as

g = g−1 ⊕ g− 1
2

⊕ g0 ⊕ g 1
2

⊕ g1. (5.20)

Here, the generators in g± 1
2

are odd (fermionic), while those in g0, g±1 are even (bosonic).
The (anti)commutators obey the relation

[gr, gs} ⊆ gr+s. (5.21)

The positive subalgebra g>0 = g 1
2
⊕g1 is isomorphic to the supersymmetric quantum

mechanics algebra sqmN defined in Eq. (5.1). Specifically, the Hamiltonian H is housed in
g1, while the N supercharges Qi reside in g 1

2
. Their respective conformal partners, the

generator K and the N additional generators Q̃i, are assigned to g−1 and g− 1
2
, respectively.

Finally, the subalgebra g0 contains the dilatation operator D and an additional structure
known as the R-symmetry subalgebra. The generators {H, D, K} close an sl(2) subalgebra,
with D playing the role of the Cartan element.
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For a given N -extended superconformal algebra, the total number of generators is
given by

d = 2N + 3 + r, (5.22)

where r represents the number of R-symmetry generators. The most relevant cases include:

• osp(1|2), which has 5 generators (N = 1 with r = 0, meaning no R-symmetry),

• sl(2|1), which has 8 generators (N = 2 with r = 1, where R-symmetry forms a u(1)
subalgebra),

• D(2, 1; α), which, for generic values of α [59], contains 17 generators (N = 4 with
r = 6, where R-symmetry corresponds to su(2) ⊕ su(2)),

• F (4), which has 40 generators (N = 8 with r = 21, where R-symmetry is given by
so(7)).

To construct explicit differential matrix representations of these superconformal
algebras, we consider their irreducible realizations satisfying the constraints outlined earlier
in this chapter for their respective sqmN subalgebras. These representations, expressed
in terms of the space coordinate x, are conveniently written using tensor products of the
fundamental 2 × 2 matrices

I =
1 0

0 1

 , X =
1 0

0 −1

 , Y =
0 1

1 0

 , A =
 0 1

−1 0

 , (5.23)

as introduced in Appendix.

These representations play a crucial role in describing the structure and implications
of superconformal algebras, particularly in the study of quantum mechanical systems with
extended supersymmetry.

For N = 1, the differential matrix representation of osp(1|2) is given by

Q1 = 1√
2

(
∂x · A + β

x
· Y

)
, (5.24)

Q̃1 = i√
2

x · A, (5.25)

H = 1
2

(
−∂2

x + β2

x2

)
· I − β

2x2 · X, (5.26)

D = − i

2

(
x∂x + i

2

)
· I, (5.27)

K = 1
2x2 · I, (5.28)

where β is an arbitrary real parameter. The above operators are Hermitian.
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The nonvanishing osp(1|2) (anti)commutators are

{Q1, Q1} = 2H, (5.29)

[D, Q1] = 2iQ1, (5.30)

{Q1, Q̃1} = 2D, (5.31)

[D, Q̃1] = −iQ̃1, (5.32)

[D, H] = iH, (5.33)

{Q̃1, Q̃1} = 2K, (5.34)

[K, Q1] = iQ̃1, (5.35)

[D, K] = −iK, (5.36)

[K, Q̃1] = −iQ1, (5.37)

[H, K] = −2iD. (5.38)

For N = 2, the differential matrix representation of sl(2|1) is given by

Q1 = 1√
2

(
∂x · A ⊗ I + β

x
· Y ⊗ I

)
, (5.39)

Q2 = 1√
2

(
∂x · Y ⊗ A + β

x
· A ⊗ A

)
, (5.40)

Q̃1 = i√
2

x · A ⊗ I, (5.41)

Q̃2 = i√
2

x · Y ⊗ A, (5.42)

H = 1
2

(
−∂2

x + β2

x2

)
· I ⊗ I − β

2x2 · X ⊗ I, (5.43)

D = − i

2

(
x∂x + 1

2

)
· I ⊗ I, (5.44)

K = 1
2x2 · I ⊗ I, (5.45)

W = i

4(X ⊗ A + 2β · I ⊗ A), (5.46)

where W is the R-symmetry generator. As before, the operators are Hermitian, and β is
an arbitrary real parameter.

The nonvanishing sl(2|1) (anti)commutators are, for j = 1, 2:

{Q1, Q1} = {Q2, Q2} = 2H, (5.47)

{Q1, Q̃1} = {Q2, Q̃2} = 2D, (5.48)
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[D, Qj] = i

2Qj, (5.49)

[W, Q1] = i

2Q2, (5.50)

[W, Q2] = − i

2Q1, (5.51)

[D, Q̃j] = − i

2Q̃j, (5.52)

[D, H] = iH, (5.53)

{Q̃1, Q̃1} = {Q̃2, Q̃2} = 2K, (5.54)

{Q1, Q̃2} = −{Q2, Q̃1} = 2W, (5.55)

[K, Qj] = iQ̃j, (5.56)

[W, Q̃1] = i

2Q̃2, (5.57)

[W, Q̃2] = − i

2Q̃1, (5.58)

[D, K] = −iK, (5.59)

[K, Q̃j] = −iQj, (5.60)

[H, K] = −2iD. (5.61)

For N = 4, the differential matrix representation of D(2, 1; α) is constructed by
evaluating the repeated (anti)commutators of the four supercharges Qi and the generator
K. These operators take the following explicit form:

Q1 = 1√
2

(
∂x · A ⊗ I ⊗ I + β

x
· Y ⊗ I ⊗ I

)
, (5.62)

Q2 = 1√
2

(
∂x · Y ⊗ A ⊗ X + β

x
· A ⊗ A ⊗ X

)
, (5.63)

Q3 = 1√
2

(
∂x · Y ⊗ A ⊗ Y + β

x
· A ⊗ A ⊗ Y

)
, (5.64)

Q4 = 1√
2

(
∂x · Y ⊗ I ⊗ A + β

x
· A ⊗ I ⊗ A

)
. (5.65)

The Hamiltonian’s conformal partner, responsible for generating special conformal
transformations, is given by:

K = 1
2x2 · I ⊗ I ⊗ I. (5.66)

This representation satisfies the structure of the D(2, 1; α) superalgebra, with the
identification
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α = β − 1
2 . (5.67)

For the N = 8 case, the superalgebra extends to the exceptional Lie superalgebra
F (4), whose differential matrix representation has been constructed in [57].

When considering the statistical transmutations of supersymmetry, the fundamental
bosonic generators, namely the Hamiltonian H, the dilatation operator D, and the special
conformal generator K, are all assigned to the zero-graded sector:

[H] = [K] = [D] = 00. (5.68)

In the presence of a conformal structure, each supercharge Qi is accompanied by a
conformal superpartner Q̃i. Both of these generators reside in the same nonzero graded
sector. Specifically, for N = 2, the graded assignments take the form:

[Q1] = [Q̃1] = µ, [Q2] = [Q̃2] = ν, (5.69)

[W ] = µ + ν mod 2, (5.70)

where µ and ν take distinct values in the set {10, 01, 11}. This classification reflects the
interplay between supersymmetry and its underlying graded structure.

The de Alfaro-Fubini-Furlan (DFF) Hamiltonian HDFF is introduced by modifying
the standard Hamiltonian through the inclusion of the conformal generator K:

HDFF = H + K. (5.71)

This modification introduces a β-dependent deformation of the quantum oscillator,
altering its spectral properties while preserving the underlying superconformal symmetry.

Focusing on the N = 2 case, the explicit form of the deformed Hamiltonian is given
by:

HDFF = 1
2

(
−∂2

x + β2

x2 + x2
)

· I ⊗ I − β

2x2 · X ⊗ I. (5.72)

This Hamiltonian is explicitly Hermitian, as required:

H†
DFF = HDFF. (5.73)

To analyze the system’s spectrum, we introduce a set of creation and annihilation
operators a†

j and aj for j = 1, 2, which are defined as:
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aj := Qj − iQ̃j, a†
j := Qj + iQ̃j. (5.74)

These operators exhibit the expected commutation relations with the Hamiltonian,
confirming their role in raising and lowering the system’s energy states:

[HDFF, aj] = −aj, [HDFF, a†
j] = a†

j. (5.75)

Additionally, the creation and annihilation operators satisfy the fundamental
anti-commutation relations:

{a1, a†
1} = {a2, a†

2} = 2HDFF. (5.76)

An essential feature of this formulation is that each operator pair obeys a β-deformed
Heisenberg algebra:

[a1, a†
1] = [a2, a†

2] = I4 − 2βK, (5.77)

where K represents a Klein operator, defined as:

K = X ⊗ I. (5.78)

This Klein operator satisfies key algebraic properties:

K
2 = I4, {aj, K} = {a†

j, K} = 0, for j = 1, 2. (5.79)

Furthermore, the creation operators exhibit additional anti-commutation relations:

{a†
i , a†

j} = 2δijZ, [Z, a†
j] = 0, for i, j = 1, 2, (5.80)

where Z is given by:

Z = H + K + 2iD. (5.81)

The algebraic structure described above recovers the fundamental (anti)commutation
relations of N = 2 supersymmetric quantum mechanics. However, a key difference lies in
the fact that the operators a†

j and Z are not Hermitian, leading to additional subtleties in
their physical interpretation. This aspect plays a crucial role in distinguishing standard
quantum statistics from the induced parastatistics in the presence of supersymmetry.
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An in-depth study of the admissible Hilbert spaces associated with the Hamiltonian
HDFF, depending on the range of the parameter β, is provided in [59]. It is established
that for

β > −1
2 , (5.82)

one can define a well-behaved single-particle Hilbert space H(1)
β , built from a properly

normalized bosonic Fock vacuum Ψβ. The explicit expression for the vacuum state, written
in terms of the coordinate representation, is given by

Ψβ(x) = 1√
Γ(β + 1

2)
xβe− 1

2 x2


1
0
0
0

 . (5.83)

Here, the prefactor ensures proper normalization, where the Gamma function in
the denominator plays a crucial role in guaranteeing that the integral of the probability
density remains finite. Specifically, as demonstrated in [59], this function satisfies the
normalization condition

∫ ∞

−∞
dx Tr

(
Ψ†

βΨβ

)
= 1. (5.84)

The vacuum state Ψβ(x) is annihilated by both of the fundamental lowering
operators:

a1Ψβ(x) = a2Ψβ(x) = 0. (5.85)

This property establishes Ψβ(x) as the lowest-energy eigenstate of the system, from
which the entire Hilbert space is constructed by applying the creation operators.

The single-particle Hilbert space H(1)
β is then spanned by the basis states

|m; r, s⟩ := Zm(a†
1)r(a†

2)sΨβ(x), (5.86)

where the quantum numbers take values

r, s = 0, 1, m = 0, 1, 2, . . . . (5.87)

Thus, the Hilbert space is formally given by



Chapter 5. Parastatistics detectability: A statistical transmutation approach 49

H(1)
β = {|m; r, s⟩}. (5.88)

Each of these basis vectors is an eigenstate of the de Alfaro-Fubini-Furlan Hamilto-
nian HDFF, with corresponding eigenvalues

HDFF|m; r, s⟩ = Em;r,s|m; r, s⟩, (5.89)

where the explicit form of the energy levels is

Em;r,s = 1
2 + β + 2m + r + s. (5.90)

A key feature of this spectrum is that, apart from the lowest energy state, the
higher energy levels exhibit degeneracy. The ground state energy is given by

Evac := E0;0,0 = 1
2 + β. (5.91)

Above the vacuum energy level, the remaining spectrum follows a characteristic
pattern in which each excited state exhibits a twofold degeneracy:

En = 1
2 + β + n, n = 0, 1, 2, . . . . (5.92)

This leads to a structured energy tower with degeneracies of the form (1, 2, 2, 2, . . . ),
where the first energy level is non-degenerate, and each subsequent level consists of two
states with the same energy.

5.3.1 Statistical Transmutations of the N = 2 DFF-Deformed Oscillator

We now extend the framework introduced in this section to the study of two-particle
Hilbert spaces, constructed according to the six different N = 2 parastatistics outlined in
subsection 5.1.2. Each of these statistical transmutations modifies the structure of the
Hilbert space and affects the resulting energy spectrum.

For a given deformation parameter β satisfying

β > −1
2 , (5.93)

the two-particle Hilbert spaces, denoted by H(2)
β,∗ (where the asterisk labels the particular

parastatistics), are properly constructed Fock spaces. These spaces are not arbitrary but
must be subspaces of the tensor product of the single-particle Hilbert spaces:
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H(2)
β,∗ ⊂ H(1)

β ⊗ H(1)
β . (5.94)

This condition ensures that the two-particle states are consistently built from the
single-particle states while obeying the appropriate (para)statistics.

5.3.2 Two-Particle Operators and the Fock Vacuum

The extension to the two-particle sector is achieved by defining appropriate coprod-
uct structures for the creation and annihilation operators, as well as for the Hamiltonian.
The coproducts [60] for the fundamental operators are given by

∆(a†
j) = a†

j ⊗ I4 + I4 ⊗ a†
j, for j = 1, 2. (5.95)

∆(aj) = aj ⊗ I4 + I4 ⊗ aj, for j = 1, 2. (5.96)

∆(HDFF) = HDFF ⊗ I4 + I4 ⊗ HDFF. (5.97)

These definitions ensure that the operators act consistently in the two-particle
space while preserving the structure of the algebra.

The two-particle Fock vacuum, denoted by Ψβ;0(x, y), is explicitly given by

Ψβ;0(x, y) = (xy)βe− 1
2 (x2+y2)

Γ(β + 1
2) ρ1. (5.98)

Here, ρ1 is a 16-component column vector with 1 in the first position and 0 elsewhere,
ensuring that the vacuum state is properly normalized. The normalization condition is
chosen so that

∫ ∞

−∞

∫ ∞

−∞
dx dy Tr

(
Ψ†

β;0Ψβ;0
)

= 1. (5.99)

This guarantees a unit norm for the vacuum state, consistent with the probabilistic
interpretation of quantum mechanics.

The vacuum is annihilated by all two-particle lowering operators:

∆(a1)Ψβ;0 = ∆(a2)Ψβ;0 = 0. (5.100)

Thus, Ψβ;0 is the lowest-energy state in the two-particle system.
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5.3.3 Two-Particle Energy Spectrum

The two-particle Hilbert space H(2)
β,∗ is spanned by states obtained by repeatedly

applying the two-particle creation operators ∆(a†
1) and ∆(a†

2) on the vacuum:

H(2)
β,∗ = Span

{
∆(a†

1)r∆(a†
2)sΨβ;0

}
, r, s = 0, 1. (5.101)

The corresponding energy eigenvalues in this two-particle sector are given by

E
(2)
β = 1 + 2β + n, n = 0, 1, 2, . . . . (5.102)

The vacuum energy is obtained for n = 0:

E
(2)
β;0 = 1 + 2β. (5.103)

5.3.4 Two-Particle Excitations and Parastatistics Dependence

To systematically describe the energy eigenstates of the two-particle system, we
introduce the following notation for the coproduct operators:

∆1 = ∆(a†
1), ∆2 = ∆(a†

2), (5.104)

∆11 = ∆1 · ∆1, ∆22 = ∆2 · ∆2, ∆12 = ∆1 · ∆2, ∆21 = ∆2 · ∆1. (5.105)

These operators generate the excited states from the two-particle vacuum, and
their commutation/anticommutation properties depend on the underlying parastatistics.

5.3.5 Energy Eigenstates and Degeneracy Structure

Up to the second excited states, the two-particle Hilbert space H(2)
β is spanned by

the following energy eigenvectors:

E
(2)
β,0 = 1 + 2β : Ψβ;0, (5.106)

E
(2)
β,1 = 2 + 2β : Ψβ;1 = ∆1Ψβ;0, Ψβ;2 = ∆2Ψβ;0, (5.107)

E
(2)
β,2 = 3 + 2β : Ψβ;11 = ∆11Ψβ;0, Ψβ;22 = ∆22Ψβ;0, Ψβ;12 = ∆12Ψβ;0, Ψβ;21 = ∆21Ψβ;0.

(5.108)

From this structure, we see that the vacuum state Ψβ;0 is non-degenerate. The first
excited energy level E

(2)
β,1 has a degeneracy of 2, while the degeneracy of the second excited

level E
(2)
β,2 depends explicitly on the underlying parastatistics.
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5.3.6 Effect of Parastatistics on Operator Structure

The influence of different parastatistics on the second excited states manifests in
the explicit form of the creation operators:

∆11 = Z ⊗ I4 + I4 ⊗ Z + (1 + δ11)a†
1 ⊗ a†

1, (5.109)
∆22 = Z ⊗ I4 + I4 ⊗ Z + (1 + δ22)a†

2 ⊗ a†
2, (5.110)

∆12 = V ⊗ I4 + I4 ⊗ V + a†
1 ⊗ a†

2 + δ12a
†
2 ⊗ a†

1, (5.111)
∆21 = −V ⊗ I4 − I4 ⊗ V + a†

2 ⊗ a†
1 + δ21a

†
1 ⊗ a†

2. (5.112)

where we define

Z = a†
1a

†
1 = a†

2a
†
2, V = a†

1a
†
2. (5.113)

The parameters δ11, δ22, δ12 take values ±1 and encode the commutation/anticommutation
rules imposed by the graded structure. These signs are determined by the graded entries
εij from the classification tables in Appendix. Specifically, we set:

δij = (−1)εij . (5.114)

5.3.7 Parastatistics and Sign Assignments

The explicit correspondence between the statistical transmutation types and the
signs δ11, δ22, δ12 is summarized as follows:

Parastatistics δ11 δ22 δ12

21 +1 +1 +1
23 +1 +1 −1
2α

2 +1 −1 +1
2α

2 −1 +1 +1
2β

2 −1 −1 −1
2α

4 +1 −1 −1
2α

4 −1 +1 −1
2β

4 −1 −1 +1

Table 5 – Sign assignments for different N = 2 parastatistics.

From equations (5.112), it follows that:
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∆11 = ∆22, if δ11 = δ22 = −1. (5.115)

∆12 = −∆21, if δ12 = −1. (5.116)

These conditions imply that, when δ11 = δ22 = −1, the two states Ψβ;11 and Ψβ;22

collapse into the same ray vector. Similarly, when δ12 = −1, the two states Ψβ;12 and Ψβ;21

become indistinguishable.

5.4 Energy Level Degeneracies and Statistical Transmutations
The degeneracy dg of the energy levels varies depending on the choice of paras-

tatistics, as summarized in Table 6. This table highlights the distinctions between the
statistical transmutations arising in the N = 2 deformed oscillator model.

Parastatistics E = 1 + 2β E = 2 + 2β E = 3 + 2β Excitations
21 1 2 4 2B (bosons)
2α

2 1 2 4 1F + 1B (fermion + boson)
2β

2 1 2 2 2F (fermions)
23 1 2 3 2PB (parabosons)
2α

4 1 2 3 1PF + 1PB (parafermion + paraboson)
2β

4 1 2 3 2PF (parafermions)

Table 6 – Energy level degeneracies dg for different N = 2 parastatistics. The last
column describes the types of particles in each case, distinguishing ordinary
bosons/fermions from paraparticles.

The effects of these transmutations become particularly evident in the multiparticle
sector, where higher-order excitations will further differentiate the parastatistical properties
of the system. The key observations from Table 6 are as follows:

The ground state (E = 1 + 2β) is always non-degenerate across all parastatistics,
confirming a unique vacuum state in every case. The first excited level (E = 2 + 2β)
consistently exhibits a degeneracy of 2, indicating the presence of a two-dimensional
excitation space.

At the second excited level (E = 3 + 2β), significant differences emerge between
the statistical transmutations:

- The standard bosonic case (21) and the mixed boson-fermion case (2α
2 ) both yield

a degeneracy of dg = 4, implying that their underlying symmetry structures do not affect
the counting of states at this level.

- The purely fermionic case (2β
2 ) has only dg = 2, in agreement with the Pauli
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exclusion principle, which restricts the available states.
- The three cases involving paraparticles (23, 2α

4 , 2β
4 ) all exhibit dg = 3, indicating

that their statistical properties lead to a modified energy level structure that distinguishes
them from standard bosons and fermions.

While measuring the degeneracy of the second-excited state does not distinguish
between the 21 and 2α

2 statistics (both yielding dg = 4), nor among the three parastatistical
cases (23, 2α

4 , 2β
4 , each with dg = 3), it is nevertheless sufficient to establish that the

Z2
2-graded parastatistics yield a physical system with properties distinct from those of

standard bosons or fermions.

These findings provide strong evidence that, at least within the framework of the
N = 2 deformed oscillator, parastatistics manifest in observable differences in the quantum
energy spectrum. Further investigations may explore whether additional observables, such
as correlation functions or selection rules, can offer further discrimination between different
parastatistical behaviors.

Thus, we observe that the statistical transmutations induce a reorganization of the
two-particle spectrum, reducing the number of independent states depending on the choice
of δij. This modification leads to distinct degeneracy structures, which provide a direct
avenue to distinguish different types of (para)statistics through spectral measurements.

5.5 Summary and Comments
In this section, we presented a preliminary investigation into the physical conse-

quences of algebraic statistical transmutations of supersymmetry, specifically in the context
of Superconformal Quantum Mechanics with the inclusion of the de Alfaro-Fubini-Furlan
(DFF) oscillator term. Our findings provide the first explicit evidence that Z2

2-graded paras-
tatistics can directly influence the energy spectrum of a quantum model. This discovery
represents a significant departure from previous cases where the presence of parastatistics
had to be inferred through indirect measurements involving exchange operators.

The primary distinction between the mechanism discussed here and the one em-
ployed in the quantum models analyzed at the beginning of this section, as well as those in
[39, 40], lies in the nature of the creation operators. In those previous cases, the quantum
models relied on nilpotent creation operators, meaning that higher-order excitations would
necessarily vanish beyond a certain threshold. As a consequence, distinguishing between
ordinary statistics and parastatistics required constructing specific exchange operators
and measuring their eigenvalues to extract statistical information.

In contrast, the creation operators associated with the DFF-deformed oscillator, as
shown in equation (5.80), do not exhibit nilpotency. This fundamental difference allows
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the energy spectrum itself to encode information about the underlying parastatistics,
making it possible to distinguish between different statistical transmutations through
direct spectral measurements. The identification of this alternative detection mechanism
opens new avenues for studying the physical implications of Z2

2-graded parastatistics in
quantum systems.

The results presented here serve as a foundation for a systematic exploration of the
detectability of inequivalent parastatistics arising from algebraic statistical transmutations
of supersymmetry.
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6 Applications in Quantum Field Theory

Building on the role of algebraic statistical transmutations in supersymmetric
quantum mechanics, we now extend our analysis to quantum field theory. The integration of
Zn

2 -graded parastatistics into field-theoretic models introduces a platform for investigating
exotic quantum statistics, extended symmetry algebras, and novel particle excitations.
These generalizations challenge the canonical assumptions of quantum field theory, most
notably, the Bose–Fermi dichotomy and its relation to spin.

To evaluate these extensions meaningfully, we must revisit the foundations of
quantum field quantization, especially the intricate relationship between spin, statistics,
and relativistic causality. The spin-statistics theorem, rigorously established by Pauli [61],
asserts that integer-spin fields must commute and half-integer-spin fields must anticommute,
ensuring compatibility with Lorentz invariance, locality, and positive energy. This result
has since been formalized axiomatically by Streater and Wightman [62], and algebraically
by Doplicher, Haag, and Roberts [63] using local observables and superselection sectors.

Recent developments have tested the limits of these foundational assumptions.
In noncommutative field theory, where locality is modified, Chaichian et al. [64] showed
that while C and T symmetries may be individually violated, the CPT theorem and
spin-statistics connection can still hold in adapted forms.

The classification of allowable symmetries in quantum field theory is likewise
evolving. The Coleman–Mandula theorem [65] constrains the unification of spacetime and
internal symmetries within the S-matrix. However, its extension by Haag, Łopuszański,
and Sohnius [66] demonstrates that supersymmetry, embodied in Lie superalgebras, can
transcend these constraints. More recently, Ito and Nago [67] have proposed Zn

2 -graded
Lie superalgebras as a foundation for novel symmetry structures of the S-matrix.

These theoretical advances are increasingly supported by experiment. Para-particle
oscillators have been realized using trapped-ion quantum simulators [68, 69], while statis-
tical behavior beyond bosons and fermions has been explored [39, 40, 45, 70], hinting at
a broader taxonomy of quantum statistics.

Alternative mathematical frameworks, such as quaternionic quantum mechanics,
offer further generalization. Adler’s foundational work [71] established a quaternionic
formulation of quantum fields, and more recent contributions by Giardino [72, 73] have
developed scalar and spinor field theories on real Hilbert spaces. These models suggest new
internal symmetries, vacuum structures, and potential deviations from standard statistical
behavior.
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In the sections that follow, we develop the conventional spin-statistics connection,
emphasizing its derivation from Lorentz symmetry, microcausality, and the positivity
of the Hilbert space. This will serve as a benchmark for evaluating parastatistical and
quaternionic field theories, allowing us to probe the boundaries of standard quantum field
theory.

6.1 The Spin-Statistics Theorem and Microcausality
The spin-statistics theorem asserts that the spin of a quantum field dictates the

algebraic relations its operators must satisfy: commutation relations for integer-spin fields
(bosons), and anticommutation relations for half-integer-spin fields (fermions). These
constraints ensure that quantum statistics are consistent with the core principles of
relativistic quantum field theory, namely Lorentz invariance, locality, and positive energy.

First rigorously demonstrated by Pauli in 1940 [61], the theorem has since been
reformulated in various frameworks. The Wightman axiomatic approach [62] and the
algebraic quantum field theory program of Doplicher, Haag, and Roberts [74] offer mathe-
matically rigorous perspectives based on local observables and superselection sectors. More
recently, topological quantum field theories and lower-dimensional models have provided
generalizations beyond the standard boson-fermion classification [75, 39, 40, 45].

Here, we adopt the constructive formalism of Weinberg [76], where quantum fields
are derived from the unitary irreducible representations of the Poincaré group. Within this
framework, the spin-statistics connection follows from the consistency of microcausality,
Lorentz covariance, and the positivity of the Hilbert space norm, without invoking the full
machinery of axiomatic field theory.

Let ϕ(x) denote a local quantum field transforming under a finite-dimensional
representation of the Lorentz group. The requirement of microcausality imposes:

[ϕ(x), ϕ(y)]∓ = 0 for (x − y)2 < 0,

where the commutator or anticommutator is chosen according to the field’s spin. This
condition ensures that operators at spacelike separation do not influence each other, in
accordance with relativistic causality.

Weinberg’s formalism constructs fields from one-particle states |p, σ⟩ transforming
under Lorentz transformations via Wigner rotations:

U(Λ)|p, σ⟩ =
∑
σ′

D
(s)
σ′σ(W (Λ, p))|Λp, σ′⟩.

The corresponding quantum field is defined to create and annihilate these states:

ϕ(x) =
∫ d3p

(2π)3
1√
2Ep

∑
σ

[
a(p, σ)u(p, σ)e−ip·x + a†(p, σ)v(p, σ)eip·x

]
.
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To preserve causality, one demands:

[ϕ(x), ϕ†(y)]∓ = 0 for (x − y)2 < 0.

Weinberg shows that this constraint leads to a contradiction unless integer-spin fields use
commutators and half-integer-spin fields use anticommutators. Violating this assignment
leads either to a breakdown of causality or to negative-norm states.

Historical and Generalized Context

Although Pauli’s original derivation [61] relied on heuristic field-theoretic arguments,
later approaches grounded the theorem in rigorous mathematical structures. In algebraic
quantum field theory, the connection emerges from properties of the local net of observables
and the symmetry group of the vacuum [74]. In lower-dimensional theories, particularly in
2 + 1 dimensions, the standard permutation group is replaced by the braid group, allowing
for anyonic statistics and partial spin-statistics correlations [75].

It is crucial to note that the theorem depends fundamentally on Lorentz symmetry
and microcausality. In non-relativistic quantum mechanics, or in nonlocal or noncommu-
tative frameworks, the spin-statistics correspondence is no longer guaranteed and must be
imposed by hand or justified separately.

Microcausality and the Dyson Expansion

In the interaction picture, the S-matrix is given by the Dyson series:

S = T exp
(

−i
∫

d4x HI(x)
)

,

where T denotes time ordering. However, time ordering is not Lorentz invariant for
spacelike-separated events unless the Hamiltonian density satisfies:

[HI(x), HI(y)] = 0 for (x − y)2 > 0.

This condition, microcausality, is necessary for the Lorentz invariance of scattering ampli-
tudes and ensures that observables remain frame-independent.

As Weinberg demonstrates [76], this requirement forces quantum fields to obey
spin-dependent (anti)commutation relations to avoid acausal signal propagation and to
preserve positivity. Incorrect statistics violate these properties, yielding inconsistencies in
propagators and scattering amplitudes.

A complementary derivation by Duck and Sudarshan [77] analyzes unitarity through
Feynman diagrams. They show that quantizing spin-1/2 fields with commutators (or
spin-0 fields with anticommutators) leads to incorrect sign structure in loop corrections,
violating the optical theorem. Although their focus is on unitarity rather than locality,
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the underlying principle is the same: incorrect statistics produce physically unacceptable
behavior.

Thus, from both the algebraic and perturbative perspectives, the spin-statistics
connection is not merely postulated but required by the internal consistency of relativistic
quantum field theory.

6.2 Overview of Quaternionic Field Theories
Quaternionic field theory extends the foundations of quantum field theory by

allowing fields to take values in the division algebra of quaternions, H, rather than the
real R or complex C numbers traditionally used. Quaternions, introduced by Hamilton
in 1843, form a noncommutative four-dimensional algebra with basis {1, i, j, k} and
multiplication rules i2 = j2 = k2 = ijk = −1. Their noncommutativity introduces
both mathematical richness and novel physical implications, making them attractive for
theoretical investigations.

The formulation of quaternionic quantum mechanics (QQM) was pioneered by Adler
in his seminal work Quaternionic Quantum Mechanics and Quantum Fields [71]. There,
quaternionic Hilbert spaces and a generalization of canonical quantization were developed.
Adler proposed that quaternionic structures might naturally encode internal symmetries,
suggest mechanisms for CP violation, and even accommodate magnetic monopoles. His
work laid the foundation for extending quaternionic techniques into interacting field
theories.

Building on Adler’s formalism, Giardino proposed a reformulation of quaternionic
scalar and spinor fields within a real Hilbert space framework [72, 73]. This approach
sidesteps interpretational challenges associated with quaternionic inner products and
non-Hermitian operators. His two- and four-component formulations of quaternionic scalar
fields lead to new vacuum structures and potential deviations from standard particle
statistics. In particular, Giardino’s quaternionic Dirac equation features an extended
solution space with possible physical implications, including novel fermionic states.

Moreover, quaternionic electrodynamics has been shown to naturally incorporate
magnetic monopoles through modified field strength tensors and conserved currents [72].
Giardino has also constructed a quaternionic conformal field theory (QCFT) [78], extending
2D conformal symmetries to four dimensions using quaternionic holomorphic functions.
These developments open new directions in the study of symmetry, analyticity, and
operator algebras in field theory.

Complementary contributions include Morita’s early demonstration that a con-
sistent quaternionic field theory can be constructed for bosonic and fermionic fields
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balanced under second-order dynamics [79], and De Leo’s analysis of quaternionic groups
in physics [80]. John Baez has further clarified the role of normed division algebras,
including quaternions [81].

6.2.1 Motivations for Quaternionic Representations

Quaternionic representations offer several advantages over traditional complex field
theories. First, quaternions generalize complex numbers while preserving a norm and
supporting unitary evolution, enabling a natural extension of quantum theory. Because
H contains C as a subalgebra, QQM may be viewed as an enrichment rather than a
replacement of standard formalism.

Second, quaternionic Hilbert spaces admit richer symmetry structures. The auto-
morphism group of H is SO(3), and quaternionic vector spaces are naturally aligned with
SU(2) representations, central to the electroweak sector of the Standard Model. Quater-
nionic projective spaces also appear in extended supersymmetric theories [81], particularly
in scalar manifold classifications.

Third, quaternionic frameworks support generalizations of quantum statistics.
Their noncommutative scalar coefficients offer a natural algebraic setting for Zn

2 -graded
structures, relevant to parastatistics and exotic symmetry algebras [67]. Quaternion-valued
operators are well-suited for encoding graded commutation relations and may lead to
consistent quaternionic parastatistics field theories.

Fourth, in the context of conformal field theory, quaternionic analyticity permits an
extension of 2D CFT structures to higher dimensions. Giardino’s construction of QCFT [78]
demonstrates that quaternionic holomorphic functions can play a role analogous to complex
holomorphic functions in 2D, preserving essential aspects of conformal symmetry.

Finally, quaternionic models may provide insight into symmetry breaking, non-
Hermitian dynamics, and emergent topological structures. In Adler’s and Giardino’s
models, the generalization of propagators and conserved currents introduces new dynamics
not easily captured by complex formulations.

In summary, quaternionic field theory offers a mathematically rigorous and physi-
cally compelling extension of standard quantum field theory. Its compatibility with internal
symmetries, capacity for algebraic generalizations, and potential to reveal new particle
phenomena make it a promising framework for future theoretical exploration.

6.3 Minimal Quaternionic Bosonic representation
First, we have to define a quaternionic basis. Considering,
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e0 = I ⊗ I =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 e1 = X ⊗ A =


0 1 0 0

−1 0 0 0
0 0 0 −1
0 0 1 0

 (6.1)

e2 = A ⊗ I =


0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0

 e3 = Y ⊗ A =


0 0 0 1
0 0 −1 0
0 1 0 0

−1 0 0 0

 (6.2)

where we have used an alphabetical representation,

I =
 1 0

0 1

 , X =
 1 0

0 −1

 , Y =
 0 1

1 0

 , A =
 0 1

−1 0


(6.3)

6.4 Quaternionic Bosonic Scalar Field Theory
For a scalar field theory in a minimal representation, we set,

ΦB = e0φ̃0 + e1φ̃1 + e2φ̃2 + e3φ̃3 (6.4)

where φ̃i, for i = 0, 1, 2, 3 are the component scalar fields. In this case, bosonic. In order
to construct the lagrangian density we have to construct ΦB, which is the quaternionic
conjugate of ΦB. Explicitly, we have,

ΦB =


φ̃0 φ̃1 φ̃2 φ̃3

−φ̃1 φ̃0 −φ̃3 φ̃2

−φ̃2 φ̃3 φ̃0 −φ̃1

−φ̃3 −φ̃2 φ̃1 φ̃0

 ΦB =


φ̃0 −φ̃1 −φ̃2 −φ̃3

φ̃1 φ̃0 φ̃3 −φ̃2

φ̃2 −φ̃3 φ̃0 φ̃1

φ̃3 φ̃2 −φ̃1 φ̃0

 . (6.5)

6.4.1 Construction of the Lagrangian

For the free scalar field theory lagrangian density, we have,

L = 1
4Tr

[
∂µΦB ∂µΦB − m2ΦBΦB

]
(6.6)

We can start with the kinect term,
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∂µΦB ∂µΦB = ηµν∂νΦB ∂µΦB (6.7)

where ηµν is a diagonal matrix,

ηµν =


r 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (6.8)

The parameter r is for an arbitrary metric signature, that is, Minkowskian or
Euclidian. Then,

ηµν ∂µΦB ∂νΦB = η00 ∂0ΦB ∂0ΦB +
3∑

i=1
ηii ∂iΦB ∂iΦB (6.9)

= r∂0ΦB ∂0ΦB + ∂1ΦB ∂1ΦB + ∂2ΦB ∂2ΦB + ∂3ΦB ∂3ΦB (6.10)

Then we have,

1
4 Tr

[
∂µΦB ∂µΦB

]
= r

[
∂0φ̃0 ∂0φ̃0 + ∂0φ̃1 ∂0φ̃1 + ∂0φ̃2 ∂0φ̃2 + ∂0φ̃3 ∂0φ̃3

]
+ ∂1φ̃0 ∂1φ̃0 + ∂1φ̃1 ∂1φ̃1 + ∂1φ̃2 ∂1φ̃2 + ∂1φ̃3 ∂1φ̃3

+ ∂2φ̃0 ∂2φ̃0 + ∂2φ̃1 ∂2φ̃1 + ∂2φ̃2 ∂2φ̃2 + ∂2φ̃3 ∂2φ̃3

+ ∂3φ̃0 ∂3φ̃0 + ∂3φ̃1 ∂3φ̃1 + ∂3φ̃2 ∂3φ̃2 + ∂3φ̃3 ∂3φ̃3 (6.11)

Mass term (auto interaction):

1
4Tr

[
m2ΦBΦB

]
= m2(φ̃2

0 + φ̃2
1 + φ̃2

2 + φ̃2
3). (6.12)

Now, for a higher order interaction term, we have,

1
4Tr

[
λ(ΦBΦB)2

]
= λ

(
φ̃4

0 + φ̃4
1 + φ̃4

2 + φ̃4
3

)
(6.13)

+ 2λ
(
φ̃2

0φ̃
2
1 + φ̃2

0φ̃
2
2 + φ̃2

0φ̃
2
3

)
+ 2λ

(
φ̃2

1φ̃
2
2 + φ̃2

1φ̃
2
3 + φ̃2

2φ̃
2
3

)
.

Moreover, quaternionic algebra presents a natural framework to accommodate Zn
2 -

graded structures, which generalize the usual fermionic/bosonic Z2-grading of superalgebras.
In particular, this provides a suitable language for the formalism of parastatistics, where
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particles obey generalized symmetry relations extending beyond the Fermi-Dirac and
Bose-Einstein cases. Because quaternionic structures support noncommutative scalar
multiplication and generalized commutation relations, they provide a promising setting
for constructing quaternionic parastatistical field theories.

However, to make meaningful comparisons with parabosonic scalar field theories, es-
pecially those with Zn

2 -graded symmetry, one must go beyond the minimal representation of
quaternionic bosonic fields. This is due to the fact that the minimal nontrivial parabosonic
representation already requires a 16 × 16 matrix structure. Therefore, a non-minimal
quaternionic bosonic representation is necessary to capture equivalent degrees of freedom
and to faithfully reproduce the operator algebra structure of the parabosonic theory. This
non-minimal embedding ensures a consistent mapping between the quaternionic bosonic
and parabosonic fields. Hence, we set,

Φ16
B = ΦB ⊗ I4. (6.14)

Explicitly,

Φ16
B = e0 ⊗ I4φ̃0 + e1 ⊗ I4φ̃1 + e2 ⊗ I4φ̃2 + e3 ⊗ I4φ̃3. (6.15)

As in standard quaternionic field constructions, we must define the quaternionic
conjugate of the field in order to construct covariant bilinear terms and invariant La-
grangians.

To proceed, we define the quaternionic conjugate of the field, denoted by Φ16
B .

This operation acts by taking the quaternionic conjugate (i.e., reversing the sign of the
imaginary components) of each entry.

This conjugate structure is essential in forming quaternionic inner products and
kinetic terms, and it ensures hermiticity when constructing Lagrangian densities involving
bosonic fields valued in quaternionic modules. Now, explicitly, we have,
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Φ16
B =



φ̃0 0 0 0 φ̃1 0 0 0 φ̃2 0 0 0 φ̃3 0 0 0
0 φ̃0 0 0 0 φ̃1 0 0 0 φ̃2 0 0 0 φ̃3 0 0
0 0 φ̃0 0 0 0 φ̃1 0 0 0 φ̃2 0 0 0 φ̃3 0
0 0 0 φ̃0 0 0 0 φ̃1 0 0 0 φ̃2 0 0 0 φ̃3

−φ̃1 0 0 0 φ̃0 0 0 0 −φ̃3 0 0 0 φ̃2 0 0 0
0 −φ̃1 0 0 0 φ̃0 0 0 0 −φ̃3 0 0 0 φ̃2 0 0
0 0 −φ̃1 0 0 0 φ̃0 0 0 0 −φ̃3 0 0 0 φ̃2 0
0 0 0 −φ̃1 0 0 0 φ̃0 0 0 0 −φ̃3 0 0 0 φ̃2

−φ̃2 0 0 0 φ̃3 0 0 0 φ̃0 0 0 0 −φ̃1 0 0 0
0 −φ̃2 0 0 0 φ̃3 0 0 0 φ̃0 0 0 0 −φ̃1 0 0
0 0 −φ̃2 0 0 0 φ̃3 0 0 0 φ̃0 0 0 0 −φ̃1 0
0 0 0 −φ̃2 0 0 0 φ̃3 0 0 0 φ̃0 0 0 0 −φ̃1

−φ̃3 0 0 0 −φ̃2 0 0 0 φ̃1 0 0 0 φ̃0 0 0 0
0 −φ̃3 0 0 0 −φ̃2 0 0 0 φ̃1 0 0 0 φ̃0 0 0
0 0 −φ̃3 0 0 0 −φ̃2 0 0 0 φ̃1 0 0 0 φ̃0 0
0 0 0 −φ̃3 0 0 0 −φ̃2 0 0 0 φ̃1 0 0 0 φ̃0


(6.16)

and

Φ16
B =



φ̃0 0 0 0 −φ̃1 0 0 0 −φ̃2 0 0 0 −φ̃3 0 0 0
0 φ̃0 0 0 0 −φ̃1 0 0 0 −φ̃2 0 0 0 −φ̃3 0 0
0 0 φ̃0 0 0 0 −φ̃1 0 0 0 −φ̃2 0 0 0 −φ̃3 0
0 0 0 φ̃0 0 0 0 −φ̃1 0 0 0 −φ̃2 0 0 0 −φ̃3

φ̃1 0 0 0 φ̃0 0 0 0 φ̃3 0 0 0 −φ̃2 0 0 0
0 φ̃1 0 0 0 φ̃0 0 0 0 φ̃3 0 0 0 −φ̃2 0 0
0 0 φ̃1 0 0 0 φ̃0 0 0 0 φ̃3 0 0 0 −φ̃2 0
0 0 0 φ̃1 0 0 0 φ̃0 0 0 0 φ̃3 0 0 0 −φ̃2

φ̃2 0 0 0 −φ̃3 0 0 0 φ̃0 0 0 0 φ̃1 0 0 0
0 φ̃2 0 0 0 −φ̃3 0 0 0 φ̃0 0 0 0 φ̃1 0 0
0 0 φ̃2 0 0 0 −φ̃3 0 0 0 φ̃0 0 0 0 φ̃1 0
0 0 0 φ̃2 0 0 0 −φ̃3 0 0 0 φ̃0 0 0 0 φ̃1

φ̃3 0 0 0 φ̃2 0 0 0 −φ̃1 0 0 0 φ̃0 0 0 0
0 φ̃3 0 0 0 φ̃2 0 0 0 −φ̃1 0 0 0 φ̃0 0 0
0 0 φ̃3 0 0 0 φ̃2 0 0 0 −φ̃1 0 0 0 φ̃0 0
0 0 0 φ̃3 0 0 0 φ̃2 0 0 0 −φ̃1 0 0 0 φ̃0


(6.17)

6.5 Quaternionic Parabosonic Scalar Field Theory
For this construction, we will use the same quaternionic basis, but additionally, we

will introduce the parabosonic struture by the action of three matrices (M1, M2 and M3),
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which are constructed with Pauli matrices in the following way.

M1 = I2 ⊗ σ1, M2 = σ1 ⊗ σ3, M3 = −σ1 ⊗ σ3, (6.18)

where

σ1 =
 0 1

1 0

 , σ2 =
 0 −i

i 0

 , σ3 =
 1 0

0 −1

 . (6.19)

Hence, explicitly, M1, M2 and M3 are,

M1 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 , M2 =


0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

 , M3 =


0 0 0 i

0 0 −i 0
0 i 0 0

−i 0 0 0

 . (6.20)

Now, we can define a scalar field as,

Φ16
PB = (e0 ⊗ I4)φ̃0 + (e1 ⊗ M1)φ̃1 + (e2 ⊗ M2)φ̃2 + (e3 ⊗ M3)φ̃3 (6.21)

where, again, φ̃i, for i = 0, 1, 2, 3 are the component scalar fields. Explicitly, we have,

Φ16
PB =



φ0 0 0 0 0 φ1 0 0 0 0 φ2 0 0 0 0 iφ3

0 φ0 0 0 φ1 0 0 0 0 0 0 −φ2 0 0 −iφ3 0
0 0 φ0 0 0 0 0 φ1 φ2 0 0 0 0 iφ3 0 0
0 0 0 φ0 0 0 φ1 0 0 −φ2 0 0 −iφ3 0 0 0
0 −φ1 0 0 φ0 0 0 0 0 0 0 −iφ3 0 0 φ2 0

−φ1 0 0 0 0 φ0 0 0 0 0 iφ3 0 0 0 0 −φ2

0 0 0 −φ1 0 0 φ0 0 0 −iφ3 0 0 φ2 0 0 0
0 0 −φ1 0 0 0 0 φ0 iφ3 0 0 0 0 −φ2 0 0
0 0 −φ2 0 0 0 0 iφ3 φ0 0 0 0 0 −φ1 0 0
0 0 0 φ2 0 0 −iφ3 0 0 φ0 0 0 −φ1 0 0 0

−φ2 0 0 0 0 iφ3 0 0 0 0 φ0 0 0 0 0 −φ1

0 φ2 0 0 −iφ3 0 0 0 0 0 0 φ0 0 0 −φ1 0
0 0 0 −iφ3 0 0 −φ2 0 0 φ1 0 0 φ0 0 0 0
0 0 iφ3 0 0 0 0 φ2 φ1 0 0 0 0 φ0 0 0
0 −iφ3 0 0 −φ2 0 0 0 0 0 0 φ1 0 0 φ0 0

iφ3 0 0 0 0 φ2 0 0 0 0 φ1 0 0 0 0 φ0


(6.22)

and
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Φ16
PB =



φ0 0 0 0 0 −φ1 0 0 0 0 −φ2 0 0 0 0 −iφ3

0 φ0 0 0 −φ1 0 0 0 0 0 0 φ2 0 0 iφ3 0
0 0 φ0 0 0 0 0 −φ1 −φ2 0 0 0 0 −iφ3 0 0
0 0 0 φ0 0 0 −φ1 0 0 φ2 0 0 iφ3 0 0 0
0 φ1 0 0 φ0 0 0 0 0 0 0 iφ3 0 0 −φ2 0
φ1 0 0 0 0 φ0 0 0 0 0 −iφ3 0 0 0 0 φ2

0 0 0 φ1 0 0 φ0 0 0 iφ3 0 0 −φ2 0 0 0
0 0 φ1 0 0 0 0 φ0 −iφ3 0 0 0 0 φ2 0 0
0 0 φ2 0 0 0 0 −iφ3 φ0 0 0 0 0 φ1 0 0
0 0 0 −φ2 0 0 iφ3 0 0 φ0 0 0 φ1 0 0 0
φ2 0 0 0 0 −iφ3 0 0 0 0 φ0 0 0 0 0 φ1

0 −φ2 0 0 iφ3 0 0 0 0 0 0 φ0 0 0 φ1 0
0 0 0 iφ3 0 0 φ2 0 0 −φ1 0 0 φ0 0 0 0
0 0 −iφ3 0 0 0 0 −φ2 −φ1 0 0 0 0 φ0 0 0
0 iφ3 0 0 φ2 0 0 0 0 0 0 −φ1 0 0 φ0 0

−iφ3 0 0 0 0 −φ2 0 0 0 0 −φ1 0 0 0 0 φ0


(6.23)

6.5.1 Construction of the Lagrangian

For the free scalar field theory lagrangian density, we have,

L = 1
16Tr

[
∂µΦ16

PB ∂µΦ16
PB − m2Φ16

PBΦ16
PB

]
(6.24)

We can start with the kinect term,

∂µΦ16
PB ∂µΦ16

PB = ηµν∂νΦ16
PB ∂µΦ16

PB (6.25)

where ηµν is a diagonal matrix with,

ηµν =


r 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (6.26)

The parameter r is for an arbitrary metric signature, that is, Minkowskian or
Euclidian. Then,

ηµν ∂µΦ16
PB ∂νΦ16

PB = η00 ∂0Φ16
PB ∂0Φ16

PB +
3∑

i=1
ηii ∂iΦ16

PB ∂iΦ16
PB (6.27)

= r∂0Φ16
PB ∂0Φ16

PB + ∂1Φ16
PB ∂1Φ16

PB + ∂2Φ16
PB ∂2Φ16

PB + ∂3Φ16
PB ∂3Φ16

PB (6.28)
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Then we have,

1
16 Tr

[
∂µΦ16

PB ∂µΦ16
PB

]
= r

[
∂0φ0 ∂0φ0 + ∂0φ1 ∂0φ1 + ∂0φ2 ∂0φ2 + ∂0φ3 ∂0φ3

]
+ ∂1φ0 ∂1φ0 + ∂1φ1 ∂1φ1 + ∂1φ2 ∂1φ2 + ∂1φ3 ∂1φ3

+ ∂2φ0 ∂2φ0 + ∂2φ1 ∂2φ1 + ∂2φ2 ∂2φ2 + ∂2φ3 ∂2φ3

+ ∂3φ0 ∂3φ0 + ∂3φ1 ∂3φ1 + ∂3φ2 ∂3φ2 + ∂3φ3 ∂3φ3 (6.29)

Mass term (auto interaction):

1
16Tr

[
m2Φ16

PBΦ16
PB

]
= m2(φ2

0 + φ2
1 + φ2

2 + φ2
3). (6.30)

Now, for a higher order interaction term, we have,

1
16Tr

[
λ(Φ16

PBΦ16
PB)2

]
= λ

(
φ4

0 + φ4
1 + φ4

2 + φ4
3

)
(6.31)

+ 2λ
(
φ2

0φ
2
1 + φ2

0φ
2
2 + φ2

0φ
2
3

)
+ 6λ

(
φ2

1φ
2
2 + φ2

1φ
2
3 + φ2

2φ
2
3

)
In the construction of the Lagrangian density for generalized quaternionic scalar

field theories, a key distinction arises in the structure of the quartic interaction term.
Specifically, the term φ2

i φ
2
j , with i, j = 1, 2, 3, takes different forms in the cases under

consideration: the quaternionic bosonic scalar field and the quaternionic parabosonic scalar
field. This divergence reflects the differing algebraic properties imposed by the underlying
commutation or anticommutation relations, which directly influence the symmetrization of
field products and, consequently, the permissible interaction terms in the theory. It is worth
noting that the difference we identified in the quartic coupling term between the bosonic
and parabosonic scalar field theories echoes similar effects found in the non-relativistic
regime. In particular, Kuznetsova and Vasconcellos [82] investigated physical realizations
of Z2 ×Z2-graded algebras in quantum mechanical systems and showed that such gradings
induce modifications in the interaction potential. Although their analysis was carried out
in a non-relativistic context, the structural changes observed in the potential reflect the
same underlying algebraic deformation of canonical statistics. Our result, which manifests
as a correction to the quartic self-interaction of the Lagrangian density, may thus be
viewed as a relativistic counterpart to these earlier findings.

6.5.2 Physical operators

As a fundamental premise, we assume that the physical operators, that is, operators
associated with physically measurable quantities, are confined to sector 0. Initially, we
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consider the following operators Θi, for i = 1, 2, 3.

Θi = : γiMiφi :, for i = 1, 2, 3, (6.32)

where γi is a constant. Using a standard field expansion, we have,

Θi(x) = γiI4 :
∫ d3k d3p

(2π)32√
ωk ωp

[
ai(k)eikµ.xµ + a†

i (k)e−ikµ.xµ
] [

ai(p)eipµ.xµ + a†
i (p)e−ipµ.xµ

]
:

(6.33)

In the end of the day we have,

Θi(x) = γiI4

∫ d3k d3p

(2π)32√
ωk ωp

ai(k)ai(p)ei(k+p).x − ϵ ai(p)a†
i (k)ei(k−p).x (6.34)

+ a†
i (k)ai(p)e−i(k−p).x + a†

i (k)a†
i (p)e−i(k+p).x

+ δ3(k − p)ei(k−p)x

.

It is possible to construct mixed operators, involving components from different
sectors, such that the resulting operator resides in sector 0.

Expansion of the Operator Ωijk(x)

Definitions

Let φr(x) be real scalar fields, with momentum-space expansion:

φr(x) =
∫ d3pr

(2π)3√2ωpr

[
ar(pr) e−ipr·x + a†

r(pr) e+ipr·x
]

, (6.35)

where r = i, j, k.

The operator Ωijk(x) is defined as:

Ωijk(x) = α
(
MiMjMk + (−1)η(i,j,k)MkMjMi

)
: [φi(x) φj(x) φk(x)] :, (6.36)

where η(i, j, k) is defined via the Z2
2-graded structure below.

Graded Algebra: Z2
2-Lie Color Algebra

Each operator ar or a†
r carries a degree α⃗r ∈ Z2

2.

The graded sign function is:

ε(α⃗r, α⃗s) = α⃗r · α⃗s mod 2, (6.37)
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and the symmetry factor for the matrix term is:

η(i, j, k) = ε(k, j) + ε(j, i) + ε(k, i) mod 2. (6.38)

Graded commutation relations:

aras = (−1)ε(r,s)asar, ara
†
s = (−1)ε(r,s)a†

sar. (6.39)

Full Expansion Before Normal Ordering

We expand all combinations from the product:

: [φi(x) φj(x) φk(x)] : (6.40)

Each field contributes two terms, yielding 8 terms from φiφjφk and 8 from φkφjφi.
Explicitly:

Ωijk(x) = α
(
MiMjMk + (−1)η(i,j,k)MkMjMi

) ∫ d3pi

(2π)3√2ωpi

d3pj

(2π)3
√

2ωpj

d3pk

(2π)3√2ωpk

×
{

ai(pi)aj(pj)ak(pk) e−i(pi+pj+pk)·x

+ ai(pi)aj(pj)a†
k(pk) e−i(pi+pj−pk)·x

+ ai(pi)a†
j(pj)ak(pk) e−i(pi−pj+pk)·x

+ ai(pi)a†
j(pj)a†

k(pk) e−i(pi−pj−pk)·x

+ a†
i (pi)aj(pj)ak(pk) e+i(pi−pj−pk)·x

+ a†
i (pi)aj(pj)a†

k(pk) e+i(pi−pj+pk)·x

+ a†
i (pi)a†

j(pj)ak(pk) e+i(pi+pj−pk)·x

+ a†
i (pi)a†

j(pj)a†
k(pk) e+i(pi+pj+pk)·x

+ ak(pk)aj(pj)ai(pi) e−i(pk+pj+pi)·x

+ ak(pk)aj(pj)a†
i (pi) e−i(pk+pj−pi)·x

+ ak(pk)a†
j(pj)ai(pi) e−i(pk−pj+pi)·x

+ ak(pk)a†
j(pj)a†

i (pi) e−i(pk−pj−pi)·x

+ a†
k(pk)aj(pj)ai(pi) e+i(pk−pj−pi)·x

+ a†
k(pk)aj(pj)a†

i (pi) e+i(pk−pj+pi)·x

+ a†
k(pk)a†

j(pj)ai(pi) e+i(pk+pj−pi)·x

+ a†
k(pk)a†

j(pj)a†
i (pi) e+i(pk+pj+pi)·x

}
(6.41)
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After Normal Ordering

Applying the Zn
2 -graded normal ordering and sign conventions:

Ωijk(x) = α
(
MiMjMk + (−1)η(i,j,k)MkMjMi

) ∫ d3pi d3pj d3pk

(2π)9
√

8ωpi
ωpj

ωpk

×
[

+ ai(pi) aj(pj) ak(pk) e−i(pi+pj+pk)·x

+ (−1)ε(j,k)+ε(i,k)a†
k(pk) ai(pi) aj(pj) e−i(pi+pj−pk)·x

+ (−1)ε(i,j)a†
j(pj) ai(pi) ak(pk) e−i(pi−pj+pk)·x

+ (−1)ε(i,j)+ε(i,k)a†
j(pj) a†

k(pk) ai(pi) e−i(pi−pj−pk)·x

+ a†
i (pi) aj(pj) ak(pk) e+i(pi−pj−pk)·x

+ (−1)ε(j,k)a†
i (pi) a†

k(pk) aj(pj) e+i(pi−pj+pk)·x

+ (−1)ε(i,k)a†
i (pi) a†

j(pj) ak(pk) e+i(pi+pj−pk)·x

+ (−1)ε(i,k)+ε(j,k)a†
i (pi) a†

j(pj) a†
k(pk) e+i(pi+pj+pk)·x

]
(6.42)

Example

Specifically, for (i, j, k) = (1, 2, 3) and (2, 3, 1), we compute:

Operator Ω123(x):

Ω123(x) = α(M1M2M3 + M3M2M1)
∫ d3p1 d3p2 d3p3

(2π)9√8ωp1ωp2ωp3

×
[

+ a1a2a3 e−i(p1+p2+p3)·x

− a†
3a1a2 e−i(p1+p2−p3)·x

+ a†
2a1a3 e−i(p1−p2+p3)·x

− a†
2a

†
3a1 e−i(p1−p2−p3)·x

+ a†
1a2a3 e+i(p1−p2−p3)·x

− a†
1a

†
3a2 e+i(p1−p2+p3)·x

− a†
1a

†
2a3 e+i(p1+p2−p3)·x

+ a†
1a

†
2a

†
3 e+i(p1+p2+p3)·x

]
(6.43)
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Operator Ω231(x):

Ω231(x) = α(M2M3M1 + M1M3M2)
∫ d3p2 d3p3 d3p1

(2π)9√8ωp2ωp3ωp1

×
[

+ a2a3a1 e−i(p2+p3+p1)·x

− a†
1a2a3 e−i(p2+p3−p1)·x

+ a†
3a2a1 e−i(p2−p3+p1)·x

− a†
3a

†
1a2 e−i(p2−p3−p1)·x

+ a†
2a3a1 e+i(p2−p3−p1)·x

− a†
2a

†
1a3 e+i(p2−p3+p1)·x

+ a†
2a

†
3a1 e+i(p2+p3−p1)·x

+ a†
2a

†
3a

†
1 e+i(p2+p3+p1)·x

]

Commutator Structure
Each Ω has 8 terms, leading to 8 × 8 = 64 pairwise combinations:

[Ω123(x), Ω231(y)] =
8∑

i=1

8∑
j=1

[
Ti(x), T ′

j (y)
]

(6.44)

where we have,

Terms from Ω123(x) :
T1(x) = a1a2a3 e−i(p1+p2+p3)·x

T2(x) = −a†
3a1a2 e−i(p1+p2−p3)·x

T3(x) = +a†
2a1a3 e−i(p1−p2+p3)·x

T4(x) = −a†
2a

†
3a1 e−i(p1−p2−p3)·x

T5(x) = +a†
1a2a3 e+i(p1−p2−p3)·x

T6(x) = −a†
1a

†
3a2 e+i(p1−p2+p3)·x

T7(x) = −a†
1a

†
2a3 e+i(p1+p2−p3)·x

T8(x) = +a†
1a

†
2a

†
3 e+i(p1+p2+p3)·x (6.45)
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Terms from Ω231(y) :
T ′

1 (y) = a2a3a1 e−i(q2+q3+q1)·y

T ′
2 (y) = −a†

1a2a3 e−i(q2+q3−q1)·y

T ′
3 (y) = +a†

3a2a1 e−i(q2−q3+q1)·y

T ′
4 (y) = −a†

3a
†
1a2 e−i(q2−q3−q1)·y

T ′
5 (y) = +a†

2a3a1 e+i(q2−q3−q1)·y

T ′
6 (y) = −a†

2a
†
1a3 e+i(q2−q3+q1)·y

T ′
7 (y) = +a†

2a
†
3a1 e+i(q2+q3−q1)·y

T ′
8 (y) = +a†

2a
†
3a

†
1 e+i(q2+q3+q1)·y

The only non-vanishing contributions come from combinations where:

[ar(p), a†
r(q)] = (2π)3δ3(p⃗ − q⃗) (6.46)

We compute representative terms from:

[a1a2a3, a†
1a

†
2a

†
3] (6.47)

This yields:

[Ω123(x), Ω231(y)] ⊃
∫ d3p1 d3p2 d3p3

4096 π9 ω1ω2ω3

[
δ3(p⃗1 − q⃗1) + δ3(p⃗2 − q⃗2) + δ3(p⃗3 − q⃗3)

]
· e−i(p1+p2+p3)·xe+i(q1+q2+q3)·y (6.48)

After integrating over the delta functions, these terms reconstruct the Pauli–Jordan
commutator function:

∆(x − y) =
∫ d3p

(2π)3 2ωp

(
e−ip·(x−y) − e+ip·(x−y)

)
(6.49)

Conclusion: Microcausality
The full commutator between the operators Ωijk(x) and Ωlmn(y) vanishes for

spacelike separations:
(x − y)2 < 0 ⇒ ∆(x − y) = 0 (6.50)

Thus, we conclude:

[Ωijk(x), Ωlmn(y)] = 0 for (x − y)2 < 0 (6.51)
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This confirms that the generalized operators Ωijk(x) constructed with Z2
2-graded

parastatistics satisfy the fundamental requirement of microcausality in relativistic quantum
field theory. It is worth emphasizing that most scientific works concerning paraparticles,
or particles beyond the standard fermion and boson categories, have focused on them
as emergent excitations in effective theories. One of the guiding questions in this thesis,
however, has been to challenge that paradigm: could such particles, characterized by
generalized statistics, exist as fundamental constituents of matter?
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7 Conclusion and Future Work

This thesis has explored the algebraic and physical implications of Zn
2 -graded Lie

(super)algebras, demonstrating their role in classifying inequivalent quantum symmetries,
statistical transmutations, and parastatistics. Using a Boolean logic framework, we
systematically classified all possible graded brackets through mappings Zn

2 × Zn
2 → Z2,

obtaining a total of
bn = n + ⌊n/2⌋ + 1

inequivalent algebraic structures. These graded brackets provide a rigorous and systematic
approach to describing multiparticle quantum systems with exotic statistics, extending
beyond the conventional Bose-Fermi dichotomy.

The construction of Zn
2 -graded quantum Hamiltonians has revealed fundamental

physical consequences of these algebraic structures, leading to inequivalent multiparticle
quantizations. The different graded brackets induce distinct types of parastatistics, where
particles can behave as bosons, fermions, parabosons, or parafermions depending on the
underlying algebraic structure. These parastatistics are not merely abstract mathematical
constructs but are physically distinguishable through specific observables, as shown in our
analysis of statistical transmutations. In particular, in supersymmetric and superconformal
quantum mechanics, inequivalent graded Lie (super)algebras correspond to alternative
formulations of N -extended systems, where the assignment of parastatistical properties
to supercharges leads to observable modifications in the spectrum. This was explicitly
demonstrated in the N = 2 superconformal model with an sl(2|1) spectrum-generating
algebra, where the Z2

2-graded parastatistics introduce an energy level degeneracy pattern
that cannot be realized within standard bosonic or fermionic statistics.

Beyond quantum mechanics, the implications of Zn
2 -graded algebras extend to

quantum field theory, where generalized statistics and higher-dimensional supersymmetry
could be naturally incorporated into interacting field-theoretic models. The Boolean
representation of graded brackets provides an additional computational advantage, offering
a structured method for encoding algebraic structures in digital logic circuits. This
approach has potential applications not only in theoretical physics but also in quantum
computing and information science, where the manipulation of graded symmetries could
play a role in quantum algorithms and error correction.

While this work has established a comprehensive classification of Zn
2 -graded Lie

(super)algebras and their physical applications, several open problems remain. A major
challenge is identifying physical systems where these inequivalent parastatistics can be
experimentally observed, possibly in condensed matter systems, optical lattices, or quantum
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simulations. Extending this algebraic framework to quantum field theory, particularly in
the context of non-perturbative effects in supersymmetric models, remains an important
direction for future research. Additionally, exploring the potential relevance of higher-
dimensional graded structures in theories such as string theory or M-theory could provide
new insights into the mathematical formulation of fundamental interactions. Furthermore,
the Boolean representation of graded brackets suggests intriguing connections to quantum
computing, where graded symmetries might offer novel computational frameworks or
improvements in quantum error correction techniques.

As demonstrated in the final chapter on quantum field theory, a distinct difference
arises in the structure of the quartic interaction term when comparing conventional bosonic
theories to their parabosonic analogues. This distinction reflects the nontrivial impact
of generalized statistics on the formulation of interacting field theories. Moreover, as
an illustrative case, we have shown that a composite operator constructed from para-
bosonic scalar fields respects the condition of microcausality, thereby upholding one of the
foundational principles of relativistic quantum field theory. It is important to note that
existing investigations into paraparticles — entities obeying statistics beyond the standard
fermionic and bosonic classifications — have predominantly interpreted them as emergent
excitations within effective low-energy theories. In contrast, one of the central questions
posed by this thesis is whether such exotic statistical behaviors might instead signal the
existence of truly fundamental degrees of freedom in nature, beyond the conventional
paradigm of quantum field theory.

The results presented in this thesis contribute to the broader understanding of
graded symmetries and their role in fundamental physics, establishing a solid algebraic
foundation for the study of exotic quantum statistics. By bridging abstract mathematical
formalism with concrete physical applications, this work paves the way for future research
in quantum symmetries, parastatistics, and their potential experimental realization.
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A Tables of Inequivalent Graded Lie Brackets

In detail, we present the tables of inequivalent graded Lie brackets that are
compatible with the n-bit construction of Zn

2 structures (for n ≤ 4). Specifically, we
present the mappings Zn

2 × Zn
2 → Z2.

- The b1 = 2 inequivalent brackets of n = 1:

11 case:
0 1

0 0 0
1 0 0

(an ordinary Lie algebra),

12 case:
0 1

0 0 0
1 0 1

(an ordinary Lie superalgebra);

- The b2 = 4 inequivalent brackets of n = 2:

21 case:

00 10 01 11
00 0 0 0 0
10 0 0 0 0
01 0 0 0 0
11 0 0 0 0

(an ordinary Lie algebra),

22 case:

00 10 01 11
00 0 0 0 0
10 0 1 1 0
01 0 1 1 0
11 0 0 0 0

(an ordinary Z2-graded Lie superalgebra),

23 case:

00 10 01 11
00 0 0 0 0
10 0 0 1 1
01 0 1 0 1
11 0 1 1 0

(the Z2
2 color Lie algebra),
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24 case:

00 10 01 11
00 0 0 0 0
10 0 1 0 1
01 0 0 1 1
11 0 1 1 0

(the Z2
2 color Lie superalgebra);

- The b3 = 5 inequivalent brackets of n = 3:

The rows (columns) are labeled by 3-bit, α1, α2, α3 (and, respectively, β1, β2, β3). The
1-bit entries are expressed as mod 2 formulas.

31 case:

000 100 010 001 110 101 011 111
000 0 0 0 0 0 0 0 0
100 0 0 0 0 0 0 0 0
010 0 0 0 0 0 0 0 0
001 0 0 0 0 0 0 0 0
110 0 0 0 0 0 0 0 0
101 0 0 0 0 0 0 0 0
011 0 0 0 0 0 0 0 0
111 0 0 0 0 0 0 0 0

(Lie algebra),

32 case:

000 100 010 001 110 101 011 111
000 0 0 0 0 0 0 0 0
100 0 0 1 0 1 0 1 1
010 0 1 0 0 1 1 0 1
001 0 0 0 0 0 0 0 0
110 0 1 1 0 0 1 1 0
101 0 0 1 0 1 0 1 1
011 0 1 0 0 1 1 0 1
111 0 1 1 0 0 1 1 0

(from α1β2 + α2β1 mod 2),

33 case:

000 100 010 001 110 101 011 111
000 0 0 0 0 0 0 0 0
100 0 1 0 0 1 1 0 1
010 0 0 0 0 0 0 0 0
001 0 0 0 0 0 0 0 0
110 0 1 0 0 1 1 0 1
101 0 1 0 0 1 1 0 1
011 0 0 0 0 0 0 0 0
111 0 1 0 0 1 1 0 1

(from α1β1 mod 2),
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34 case:

000 100 010 001 110 101 011 111
000 0 0 0 0 0 0 0 0
100 0 1 0 0 1 1 0 1
010 0 0 1 0 1 0 1 1
001 0 0 0 0 0 0 0 0
110 0 1 1 0 0 1 1 0
101 0 1 0 0 1 1 0 1
011 0 0 1 0 1 0 1 1
111 0 1 1 0 0 1 1 0

(from α1β1 + α2β2 mod 2),

35 case:

000 100 010 001 110 101 011 111
000 0 0 0 0 0 0 0 0
100 0 1 0 0 1 1 0 1
010 0 0 1 0 1 0 1 1
001 0 0 0 1 0 1 1 1
110 0 1 1 0 0 1 1 0
101 0 1 0 1 1 0 1 0
011 0 0 1 1 1 1 0 0
111 0 1 1 1 0 0 0 1

(α1β1 + α2β2 + α3β3 mod 2).

The inequivalence of the 5 graded brackets is spotted in terms of:

• i) the number R(nk) of nonvanishing rows and

• ii) the trace Tr(nk) of the above matrices.

We have

Tr(31) = Tr(32) = 0, T r(33) = Tr(34) = Tr(35) = 4,

which implies that the cases 31 and 32 correspond to (para)bosonic Lie algebras.

The numbers of nonvanishing rows are given by

R(31) = 0, R(32) = 6, R(33) = 4, R(34) = 6, R(35) = 7.

The b4 = 7 inequivalent brackets of n = 4:

The rows (columns) are labeled by 4-bit, α1, α2, α3, α4 (and, respectively, β1, β2, β3, β4). The
1-bit entries are expressed as mod 2 formulas.
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41 case:

0000 1000 0100 0010 0001 1100 1010 1001 0110 0101 0011 1110 1101 1011 0111 1111
0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0010 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1010 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0101 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0011 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1101 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1011 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0111 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1111 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

42 case:

0000 1000 0100 0010 0001 1100 1010 1001 0110 0101 0011 1110 1101 1011 0111 1111
0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1000 0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1
0100 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1
0010 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1100 0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 0
1010 0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1
1001 0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1
0110 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1
0101 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1
0011 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1110 0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 0
1101 0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 0
1011 0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1
0111 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1
1111 0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 0
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43 case:

0000 1000 0100 0010 0001 1100 1010 1001 0110 0101 0011 1110 1101 1011 0111 1111
0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1000 0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1
0100 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1
0010 0 0 0 0 1 0 0 1 0 1 1 0 1 1 1 1
0001 0 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1
1100 0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 0
1010 0 0 1 0 1 1 0 1 1 0 1 1 0 1 0 0
1001 0 0 1 1 0 1 1 0 0 1 1 0 1 1 0 0
0110 0 1 0 0 1 1 1 0 0 1 1 1 0 0 1 0
0101 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0
0011 0 0 0 1 1 0 1 1 1 1 0 1 1 0 0 0
1110 0 1 1 0 1 0 1 0 1 0 1 0 1 0 0 1
1101 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 1
1011 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1
0111 0 1 0 1 1 1 0 0 1 1 0 0 0 1 0 1
1111 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0

44 case:

0000 1000 0100 0010 0001 1100 1010 1001 0110 0101 0011 1110 1101 1011 0111 1111
0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1000 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1
0100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0010 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1100 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1
1010 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1
1001 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1
0110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0101 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0011 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1110 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1
1101 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1
1011 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1
0111 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1111 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1
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45 case:

0000 1000 0100 0010 0001 1100 1010 1001 0110 0101 0011 1110 1101 1011 0111 1111
0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1000 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1
0100 0 0 1 0 0 1 0 0 1 0 0 1 1 0 1 1
0010 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1100 0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 0
1010 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1
1001 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1
0110 0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1
0101 0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1
0011 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1110 0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 0
1101 0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 0
1011 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1
0111 0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1
1111 0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 0

46 case:

0000 1000 0100 0010 0001 1100 1010 1001 0110 0101 0011 1110 1101 1011 0111 1111
0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1000 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1
0100 0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1
0010 0 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1
0001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1100 0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 0
1010 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0
1001 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1
0110 0 0 1 1 0 1 1 0 0 1 1 0 1 1 0 0
0101 0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1
0011 0 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1
1110 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 1
1101 0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 0
1011 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0
0111 0 0 1 1 0 1 1 0 0 1 1 0 1 1 0 0
1111 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 1
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47 case:

0000 1000 0100 0010 0001 1100 1010 1001 0110 0101 0011 1110 1101 1011 0111 1111
0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1000 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1
0100 0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1
0010 0 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1
0001 0 0 0 0 1 0 0 1 0 1 1 0 1 1 1 1
1100 0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 0
1010 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0
1001 0 1 0 0 1 1 1 0 0 1 1 1 0 0 1 0
0110 0 0 1 1 0 1 1 0 0 1 1 0 1 1 0 0
0101 0 0 1 0 1 1 0 1 1 0 1 1 0 1 0 0
0011 0 0 0 1 1 0 1 1 1 1 0 1 1 0 0 0
1110 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 1
1101 0 1 1 0 1 0 1 0 1 0 1 0 1 0 0 1
1011 0 1 0 1 1 1 0 0 1 1 0 0 0 1 0 1
0111 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1
1111 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0

The entries of the corresponding cases are given by

41 : 0,

42 : α1β2 + α2β1 mod 2,

43 : α1β2 + α2β1 + α3β4 + α4β3 mod 2,

44 : α1β1 mod 2,

45 : α1β1 + α2β2 mod 2,

46 : α1β1 + α2β2 + α3β3 mod 2,

47 : α1β1 + α2β2 + α3β3 + α4β4 mod 2.

The inequivalence of the 7 graded brackets is spotted in terms of:

i) the number R(nk) of nonvanishing rows and

ii) the trace Tr(nk) of the above matrices.

We have

Tr(41) = Tr(42) = Tr(43) = 0,

T r(44) = Tr(45) = Tr(46) = Tr(47) = 8,

which implies that the cases 41, 42, and 43 correspond to (para)bosonic Lie algebras.

The numbers of nonvanishing rows are given by

R(41) = 0, R(42) = 12, R(43) = 15, R(44) = 8,

R(45) = 12, R(46) = 14, R(47) = 15.
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B Assignments of Z3
2 graded sectors

The combinatorics which are used to derive the 16 inequivalent graded Lie (super)algebras of the
biquaternions and the 10 inequivalent parastatistics of the N = 4 supersymmetric quantum mechanics are
based on the admissible 3-bit assignments of the Z3

2 graded sectors. Here we present two tables which
clarify this feature. The Z3

2 grading of 8 × 8 matrices implies that the 0 = 000 (i.e., zero-vector) graded
elements belong to the diagonal, while the 7 remaining sectors are expressed in terms of any choice of
three fundamental gradings α, β, γ according to the following mod 2 relations. The ∗ symbol denotes, for
each graded sector, which entries of the 8 × 8 matrices can be nonvanishing:

0 ≡ 000:



∗
∗

∗
∗

∗
∗

∗
∗


α:



∗
∗

∗
∗

∗
∗

∗
∗



β:



∗
∗

∗
∗

∗
∗

∗
∗


γ:



∗
∗

∗
∗

∗
∗

∗
∗



α + β:



∗
∗

∗
∗

∗
∗

∗
∗


α + γ:



∗
∗

∗
∗

∗
∗

∗
∗



β + γ:



∗
∗

∗
∗

∗
∗

∗
∗


α + β + γ:



∗
∗

∗
∗

∗
∗

∗
∗


(B.0)
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In another schematical presentation, the 3-bit nonzero vectors can be assigned to the 7 vertices
of the Fano’s plane. For each one of the 7 edges, the sum mod 2 of the vectors of any two vertices gives
the 3-bit vector of the third vertex lying on the edge:

Figure 1 – Assignments on Fano’s plane

Bellow, we present the non-trivial Z3
2 maps through diagrams. Starting with Z2

2 graded algebra
embedded on a Z3

2 structure, we have

α1.β2 − α2.β1 000 001 010 011 100 101 110 111
000 0 0 0 0 0 0 0 0
001 0 0 0 0 0 0 0 0
010 0 0 0 0 1 1 1 1
011 0 0 0 0 1 1 1 1
100 0 0 1 1 0 0 1 1
101 0 0 1 1 0 0 1 1
110 0 0 1 1 1 1 0 0
111 0 0 1 1 1 1 0 0

Table 7 – (Anti)commutator table for α1.β2 − α2.β1
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B.0.1 Subalgebras of 32 case: 2 Bosons, 6 Parabosons
001, 010, 011

21 case:

[001, 001] [001, 010] [010, 010] 001 010 011
[001, 011] [011, 011] [010, 011] 001 0 0 0

010 0 0 0
011 0 0 0

Ordinary Lie algebra

001, 100, 101

21 case:

[001, 001] [001, 100] [100, 100] 001 100 101
[001, 101] [101, 101] [100, 101] 001 0 0 0

100 0 0 0
101 0 0 0

Ordinary Lie algebra

001, 110, 111

21 case:

[001, 001] [001, 110] [110, 110] 001 110 111
[001, 111] [111, 111] [110, 111] 001 0 0 0

110 0 0 0
111 0 0 0

Ordinary Lie algebra

010, 100, 110

23 case:

[010, 010] {010, 100} [100, 100] 010 100 110
{010, 110} [100, 110] {110, 110} 010 0 1 1

100 1 0 1
110 1 1 0

Z2
2 graded algebra

010, 101, 111

23 case:

[010, 010] {010, 101} [101, 101] 010 101 111
{010, 111} [111, 111] {101, 111} 010 0 1 1

101 1 0 1
111 1 1 0

Z2
2 graded algebra
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011, 100, 111

23 case:

[011, 011] {011, 100} [100, 100] 011 100 111
{011, 111} [111, 111] {100, 111} 011 0 1 1

100 1 0 1
111 1 1 0

Z2
2 graded algebra

011, 110, 101

23 case:

[011, 011] {011, 110} [110, 110] 011 110 101
{011, 101} [101, 101] {110, 101} 011 0 1 1

110 1 0 1
101 1 1 0

Z2
2 graded algebra

Figure 2 – Fano plane for 32 case

Summary:

• 3 ordinary Lie algebras

• 4 Z2
2 algebras
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For the 33 case, we have:

α1.β1 000 001 010 011 100 101 110 111
000 0 0 0 0 0 0 0 0
001 0 0 0 0 0 0 0 0
010 0 0 0 0 0 0 0 0
011 0 0 0 0 0 0 0 0
100 0 0 0 0 1 1 1 1
101 0 0 0 0 1 1 1 1
110 0 0 0 0 1 1 1 1
111 0 0 0 0 1 1 1 1

Table 8 – (Anti)commutator table for α1.β1

B.0.2 Subalgebras of 33 case: 4 Bosons, 4 Fermions
001, 010, 011

21 case:

[001, 001] [001, 010] [010, 010] 001 010 011
[001, 011] [011, 011] [010, 011] 001 0 0 0

010 0 0 0
011 0 0 0

Ordinary Lie algebra

001, 100, 101

22 case:

[001, 001] [001, 100] {100, 100} 001 100 101
[001, 101] {101, 101} {100, 101} 001 0 0 0

100 0 1 1
101 0 1 1

Z2 superalgebra

001, 110, 111

22 case:

[001, 001] [001, 110] {110, 110} 001 110 111
[001, 111] {111, 111} {110, 111} 001 0 0 0

110 0 1 1
111 0 1 1

Z2 superalgebra
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010, 100, 110

22 case:

[010, 010] [010, 100] {100, 100} 010 100 110
[010, 110] {110, 110} {110, 100} 010 0 0 0

100 0 1 1
110 0 1 1

Z2 superalgebra

010, 101, 111

22 case:

[010, 010] [010, 101] {101, 101} 010 101 111
[010, 111] {111, 111} {101, 111} 010 0 0 0

101 0 1 1
111 0 1 1

Z2 superalgebra

011, 100, 111

22 case:

[011, 011] [011, 100] {100, 100} 011 100 111
[011, 111] {111, 111} {100, 111} 011 0 0 0

100 0 1 1
111 0 1 1

Z2 superalgebra

011, 110, 101

22 case:

[011, 011] [011, 110] {110, 110} 011 110 101
[011, 101] {101, 101} {110, 101} 011 0 0 0

110 0 1 1
101 0 1 1

Z2 superalgebra



Appendix B. Assignments of Z3
2 graded sectors 97

Figure 3 – Fano plane for 33 case

Summary:

• 1 ordinary Lie algebra

• 6 Z2 superalgebras

For the 34 case, we have:

α1.β1 + α2.β2 000 001 010 011 100 101 110 111
000 0 0 0 0 0 0 0 0
001 0 0 0 0 0 0 0 0
010 0 0 1 1 0 0 1 1
011 0 0 1 1 0 0 1 1
100 0 0 0 0 1 1 1 1
101 0 0 0 0 1 1 1 1
110 0 0 1 1 1 1 0 0
111 0 0 1 1 1 1 0 0

Table 9 – (Anti)commutator table for α1.β1 + α2.β2
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B.0.3 Subalgebras of 34 case: 2 Bosons, 4 Parabosons, 4 Parafermions
001, 010, 011

22 case:

[001, 001] [001, 010] {010, 010} 001 010 011
[001, 011] {011, 011} {010, 011} 001 0 0 0

010 0 1 1
011 0 1 1

Z2 superalgebra

001, 100, 101

22 case:

[001, 001] [001, 100] {100, 100} 001 100 101
[001, 101] {101, 101} {100, 101} 001 0 0 0

100 0 1 1
101 0 1 1

Z2 superalgebra

001, 110, 111

21 case:

[001, 001] [001, 110] {110, 110} 001 110 111
[001, 111] {111, 111} {110, 111} 001 0 0 0

110 0 0 0
111 0 0 0

Ordinary Lie algebra

010, 100, 110

24 case:

{010, 010} [010, 100] {100, 100} 010 100 110
{010, 110} [110, 110] {110, 100} 010 1 0 1

100 0 1 1
110 1 1 0

Z2
2 superalgebra

010, 101, 111

24 case:

{010, 010} [010, 101] {101, 101} 010 101 111
{010, 111} [111, 111] {101, 111} 010 1 0 1

101 0 1 1
111 1 1 0

Z2
2 superalgebra
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011, 100, 111

24 case:

{011, 011} [011, 100] {100, 100} 011 100 111
{011, 111} [111, 111] {100, 111} 011 1 0 1

100 0 1 1
111 1 1 0

Z2
2 superalgebra

011, 110, 101

24 case:

{011, 011} [011, 110] {110, 110} 011 110 101
{011, 101} [101, 101] {110, 101} 011 1 0 1

110 0 1 1
101 1 1 0

Z2
2 superalgebra

Figure 4 – Fano plane for 34 case

Summary:

• 1 ordinary Lie algebra

• 2 Z2 superalgebra

• 4 Z2
2 superalgebras
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For the 35 case, we have:

α1.β1 + α2.β2 + α3.β3 000 001 010 011 100 101 110 111
000 0 0 0 0 0 0 0 0
001 0 1 0 1 0 1 0 1
010 0 0 1 1 0 0 1 1
011 0 1 1 0 0 1 1 0
100 0 0 0 0 1 1 1 1
101 0 1 0 1 1 0 1 0
110 0 0 1 1 1 1 0 0
111 0 1 1 0 1 0 0 1

Table 10 – (Anti)commutators table for α1.β1 + α2.β2 + α3.β3

B.0.4 Subalgebras of 35 case: 1 Boson, 3 Parabosons, 4 Parafermions
001, 010, 011

24 case:

{001, 001} [001, 010] {010, 010} 001 010 011
[001, 011] [011, 011] {010, 011} 001 1 0 1

010 0 1 1
011 1 1 0

Z2
2 superalgebra

001, 100, 101

24 case:

{001, 001} [001, 100] {100, 100} 001 100 101
{001, 101} [101, 101] {100, 101} 001 1 0 1

100 0 1 1
101 1 1 0

Z2
2 superalgebra

001, 110, 111

22 case:

{001, 001} [001, 110] [110, 110] 001 110 111
{001, 111} {111, 111} [110, 111] 001 1 0 1

110 0 0 0
111 1 0 1

Z2 superalgebra
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010, 100, 110

24 case:

{010, 010} [010, 100] {100, 100} 010 100 110
{010, 110} [110, 110] {110, 100} 010 1 0 1

100 0 1 1
110 1 1 0

Z2
2 superalgebra

010, 101, 111

22 case:

{010, 010} [010, 101] [101, 101] 010 101 111
{010, 111} {111, 111} [101, 111] 010 1 0 1

101 0 0 0
111 1 0 1

Z2 superalgebra

011, 100, 111

22 case:

[011, 011] [011, 100] {100, 100} 011 100 111
[011, 111] {111, 111} {100, 111} 011 0 0 0

100 0 1 1
111 0 1 1

Z2 superalgebra

011, 110, 101

23 case:

[011, 011] {011, 110} [110, 110] 011 110 101
{011, 101} [101, 101] {110, 101} 011 0 1 1

110 1 0 1
101 1 1 0

Z2
2 graded algebra
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Figure 5 – Fano plane for 35 case

Summary:

• 1 Z2
2 graded algebra

• 3 Z2 superalgebras

• 3 Z2
2 superalgebras
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C Details of Boolean Logic Representations

In this appendix, we illustrate how the tables of inequivalent graded Lie brackets can be reformu-
lated using Boolean logic gates.

The Boolean logic representation follows a systematic procedure: first, the graded sectors
appearing in the tables of Appendix A are reordered according to a Gray code (where only one bit changes
at a time). This rearrangement enables the use of Karnaugh maps, which, when further simplified, allow
the graded-bracket tables to be expressed in terms of the logical gates AND, OR, XOR along with the
NOT operation.

The truth tables for these logical operations, acting on binary inputs a, b ∈ {0, 1}, are as follows:

NOT:
a a

0 1
1 0

AND:

a b a · b

0 0 0
0 1 0
1 0 0
1 1 1

OR:

a b a + b

0 0 0
0 1 1
1 0 1
1 1 1

XOR:

a b a ⊕ b

0 0 0
0 1 1
1 0 1
1 1 0

The symbols used to denote these operations are:

NOT: a 7→ a, AND: a, b 7→ a · b, OR: a, b 7→ a + b, XOR: a, b 7→ a ⊕ b.

For n = 2, Gray code representations of the 22, 23, and 24 cases from Appendix A are given
below:

- 22 case:
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- 23 case:

- 24 case:

The 1 entries in the above tables are encircled to indicate how they are grouped together in
a Karnaugh map. Whenever possible, horizontally or vertically adjacent 1 entries are grouped in even
numbers, except when an isolated 1 remains.

After grouping the entries into pairs, we examine which bit (denoted as α1, α2, β1, β2 in the above
tables) remains constant and which varies as we move from one encircled row or column to another.

For example, consider the encircled row in table where α1 = 0, α2 = 1. In this row, the β2 bit
remains constant (β2 = 1), while β1 changes from 0 to 1. Thus, the non-varying bits in this encircled row
are α1, α2, β2.

The Karnaugh map assigns to this row the following mod 2 expression in terms of the non-varying
bits:

α1 · α2 · β2.

Here, the bar over α1 indicates the NOT operation, since in the encircled row, α1 = 0 (while α2 = 1 and
β2 = 1).

The expressions for the different encircled pairs are combined using the OR operation. Thus, the
table (C) is encoded as the mod 2 equation:

⟨α, β⟩ = α1 · α2 · β2 + α1 · α2 · β1 + α2 · β1 · β2 + α1 · β1 · β2.

Further simplifications allow us to express ⟨α, β⟩ as:

⟨α, β⟩ = α2 · β2 · (α1 + β1) + α1 · β1 · (α2 + β2).

Using De Morgan’s theorem, which states that:

a + b = a · b,

we can rewrite ⟨α, β⟩ as:
⟨α, β⟩ = α2 · β2 · (α1 · β1) + α1 · β1 · (α2 · β2).
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The final simplification uses the XOR operation, which satisfies (mod 2):

a ⊕ b = a · b + a · b.

Thus, the table (C) is simplified to:

⟨α, β⟩ = (α1 · β1) ⊕ (α2 · β2).

By using the standard logic gate representation, the simplification can be depicted as:

The NAND operation (a combination of NOT and AND), which maps a, b to a · b, appears on
the left in the above diagram.

This construction can be extended to other n = 2 cases, as well as to n > 2 tables.

In the Boolean logic graphical representation, the ⟨α, β⟩ scalar products for the cases 22, 23, 24

are:

22 : ⟨α, β⟩ = α2 · β2 ⇒

23 : ⟨α, β⟩ = (α1 · β2) ⊕ (α2 · β1) ⇒

24 : ⟨α, β⟩ = (α1 · β1) ⊕ (α2 · β2) ⇒
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In terms of Boolean logic operators, the ⟨α, β⟩ scalar products of the five 3-bit cases are expressed
as:

31 : ⟨α, β⟩ = 0,

32 : ⟨α, β⟩ = (α1 · β2) ⊕ (α2 · β1),

33 : ⟨α, β⟩ = α1 · β1,

34 : ⟨α, β⟩ = (α1 · β1) ⊕ (α2 · β2),

35 : ⟨α, β⟩ = (α1 · β1) ⊕ (α2 · β2) ⊕ (α3 · β3).

The extension of this Boolean logic representation to n-bit scalar products for n > 3 is straight-
forward.
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D Analysis of Specific Examples (biquater-
nions and (split-)quaternions)

D.1 (Split-)quaternions
As a preliminary step toward the construction and classification of the 3-bit compatible Zn

2 -graded
(n = 0, 1, 2, 3) Lie (super)algebras of biquaternions, we discuss in detail the recovery of the 2-bit Zn

2 -graded
compatible Lie (super)algebras over R induced by quaternions and split-quaternions.

Quaternions and split-quaternions arise from an ε-dependent Cayley-Dickson doubling of the
complex numbers, with ε = ±1. The choice ε = −1 yields the division algebra of quaternions, while
ε = +1 produces its split version (see [83, 84] for details on the construction).

We denote the four generators of the quaternions as e0, ei, and the four generators of the split-
quaternions as ẽ0, ẽi, where i = 1, 2, 3. The elements e0 and ẽ0 serve as the respective identities. The
Z2

2 multiplicative grading of quaternions and split-quaternions is preserved by faithful 4 × 4 real matrix
representations.

Without loss of generality, we express these algebras in terms of the following 2 × 2 real matrices:

I =

1 0
0 1

 , X =

1 0
0 −1

 , Y =

0 1
1 0

 , A =

 0 1
−1 0

 .

We can set for the quaternions:

e0 = I ⊗ I, e1 = A ⊗ I, e2 = Y ⊗ A, e3 = X ⊗ A.

so that

e0 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , e1 =


0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0

 ,

e2 =


0 0 0 1
0 0 −1 0
0 1 0 0

−1 0 0 0

 , e3 =


0 1 0 0

−1 0 0 0
0 0 0 −1
0 0 1 0

 .

And for the split-quaternions:

ẽ0 = I ⊗ I, ẽ1 = A ⊗ I, ẽ2 = Y ⊗ Y, ẽ3 = X ⊗ Y.
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so that

ẽ0 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , ẽ1 =


0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0

 ,

ẽ2 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 , ẽ3 =


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

 .

The identity operators e0 and ẽ0 always belong to the 2-bit 00-graded sector, while the remaining
operators are distributed among the 10, 01, and 11-graded sectors. The four compatible graded Lie
(super)algebras, denoted as 21, 22, 23, 24, are explicitly presented in Appendix A.

Remark: In the cases 21 and 23, the graded sectors 10, 01, and 11 are treated symmetrically. However, in
the cases 22 and 24, the 11-graded sector is distinguished from the 10 and 01 sectors. Specifically:

• In the 22 case, the 11-graded sector corresponds to a bosonic generator, while the 10 and 01 sectors
contain fermionic generators.

• In the 24 case, the 11-graded sector contains an "exotic boson" (see [15]), while the 10 and 01
sectors correspond to parafermions.

For the graded Lie (super)algebras derived from quaternions, this distinction is irrelevant. The
three imaginary quaternionic generators e1, e2, e3 are completely symmetric and can be interchanged
freely.

However, the distinction becomes significant when constructing the graded Lie (super)algebras
induced by split-quaternions. In this case, one of the generators, ẽ1, is inherently different from ẽ2 and ẽ3.
This asymmetry arises from the relations:

ẽ2
1 = −ẽ0, ẽ2

2 = ẽ2
3 = ẽ0.

Thus, ẽ1 can be considered a "marked" generator, distinguishing it from the others.

This observation leads to the classification of four inequivalent graded Lie (super)algebras derived
from quaternions and six inequivalent graded Lie (super)algebras derived from split-quaternions. Each of
these algebras is uniquely defined by its set of (anti)commutators.

The four inequivalent quaternionic graded Lie (super)algebras are denoted as q1, q2, q3, and q4.
Their definitions, based on their respective grading sector assignments, are as follows:

q1 from 21 In this case, the generators are assigned as follows: e0 ∈ [00], e1 ∈ [10], e2 ∈ [01], and e3 ∈ [11].
The commutation relations defining q1 are:

[e0, e1] = [e0, e2] = [e0, e3] = 0, [e1, e2] = 2e3, [e2, e3] = 2e1, [e3, e1] = 2e2.

q2 from 22 For q2, the same grading sector assignments are used: e0 ∈ [00], e1 ∈ [10], e2 ∈ [01], and
e3 ∈ [11]. However, the defining (anti)commutation relations differ:

[e0, e1] = [e0, e2] = [e0, e3] = 0, [e1, e3] = −2e2, [e2, e3] = 2e1,

{e1, e1} = {e2, e2} = −2e0, {e1, e2} = 0.
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q3 from 23 The sector assignments remain the same: e0 ∈ [00], e1 ∈ [10], e2 ∈ [01], and e3 ∈ [11]. The
defining relations for q3 are:

[e0, e1] = [e0, e2] = [e0, e3] = 0, {e1, e2} = {e2, e3} = {e3, e1} = 0.

q4 from 24 The grading sector assignments are unchanged: e0 ∈ [00], e1 ∈ [10], e2 ∈ [01], and e3 ∈ [11].
However, the defining (anti)commutators are:

[e0, e1] = [e0, e2] = [e0, e3] = 0, [e1, e2] = 2e3,

{e1, e1} = {e2, e2} = −2e0, {e1, e3} = {e2, e3} = 0.

Comment: q3 and q4 enter the [15] classification of minimal Z2
2-graded Lie (super)algebras

(q3 corresponds to the algebra A7 and q4 to the superalgebra S10ε=+1).

The six inequivalent split-quaternionic graded Lie (super)algebras are denoted as q̃1, q̃2α, q̃2β , q̃3,
q̃4α, and q̃4β . Their definitions, based on their respective grading sector assignments, are as follows:

q̃1 from 21 In this case, the sector assignments are given by ẽ0 ∈ [00], ẽ1 ∈ [10], ẽ2 ∈ [01], and ẽ3 ∈ [11].
The defining commutation relations are:

[ẽ0, ẽ1] = [ẽ0, ẽ2] = [ẽ0, ẽ3] = 0, [ẽ1, ẽ2] = 2ẽ3, [ẽ2, ẽ3] = −2ẽ1, [ẽ3, ẽ1] = 2ẽ2.

q̃2α from 22 The sector assignments remain the same: ẽ0 ∈ [00], ẽ1 ∈ [10], ẽ2 ∈ [01], and ẽ3 ∈ [11]. The
defining (anti)commutation relations are:

[ẽ0, ẽ1] = [ẽ0, ẽ2] = [ẽ0, ẽ3] = 0, [ẽ1, ẽ3] = −2ẽ2, [ẽ2, ẽ3] = −2ẽ1,

{ẽ1, ẽ1} = −2ẽ0, {ẽ2, ẽ2} = 2ẽ0, {ẽ1, ẽ2} = 0.

q̃2β from 22 In this case, the sector assignments differ slightly: ẽ0 ∈ [00], ẽ1 ∈ [11], ẽ2 ∈ [10], and ẽ3 ∈ [01].
The defining relations are:

[ẽ0, ẽ1] = [ẽ0, ẽ2] = [ẽ0, ẽ3] = 0, [ẽ1, ẽ2] = 2ẽ3, [ẽ1, ẽ3] = −2ẽ2,

{ẽ2, ẽ2} = {ẽ3, ẽ3} = 2ẽ0, {ẽ2, ẽ3} = 0.

q̃3 from 23 The sector assignments return to: ẽ0 ∈ [00], ẽ1 ∈ [10], ẽ2 ∈ [01], and ẽ3 ∈ [11]. The defining
relations are:

[ẽ0, ẽ1] = [ẽ0, ẽ2] = [ẽ0, ẽ3] = 0, {ẽ1, ẽ2} = {ẽ2, ẽ3} = {ẽ3, ẽ1} = 0.

q̃4α from 24 Here, the generators are assigned to the same sectors as before: ẽ0 ∈ [00], ẽ1 ∈ [10], ẽ2 ∈ [01],
and ẽ3 ∈ [11]. The defining relations are:

[ẽ0, ẽ1] = [ẽ0, ẽ2] = [ẽ0, ẽ3] = 0, [ẽ1, ẽ2] = 2ẽ3,

{ẽ1, ẽ1} = −2ẽ0, {ẽ2, ẽ2} = 2ẽ0, {ẽ1, ẽ3} = {ẽ2, ẽ3} = 0.

q̃4β from 24 In this case, the sector assignments are: ẽ0 ∈ [00], ẽ1 ∈ [11], ẽ2 ∈ [10], and ẽ3 ∈ [01]. The
defining relations are:

[ẽ0, ẽ1] = [ẽ0, ẽ2] = [ẽ0, ẽ3] = 0, [ẽ2, ẽ3] = −2ẽ1,

{ẽ2, ẽ2} = {ẽ3, ẽ3} = 2ẽ0, {ẽ1, ẽ2} = {ẽ1, ẽ3} = 0.

Comment: q̃3, q̃4α, q̃4β enter the [15] classification of minimal Z2
2-graded Lie (super)algebras

(q̃3 corresponds to the algebra A7, q̃4α to the superalgebra S10ε=−1 and q̃4β to the superalgebra S10ε=+1).
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D.2 Biquaternions
The algebra HB of biquaternions can be regarded as the tensor product C × H of the complex

numbers with the quaternions (over R). This algebra has eight generators, which can be arranged within
a Z3

2 multiplicative grading (allowing for a 3-bit assignment).

A faithful 8 × 8 matrix representation that preserves this grading can be constructed using the
2 × 2 matrices I, X, Y, A introduced in the beginning of this appendix. We define the generators as follows:

f0 = I ⊗ I ⊗ I, f1 = I ⊗ A ⊗ I, f2 = I ⊗ Y ⊗ A, f3 = I ⊗ X ⊗ A,

g0 = A ⊗ I ⊗ I, g1 = A ⊗ A ⊗ I, g2 = A ⊗ Y ⊗ A, g3 = A ⊗ X ⊗ A.

Taking into account the definitions of the I, X, Y, A matrices, the multiplication table for these
generators can be derived:

f0 f1 f2 f3 g0 g1 g2 g3

f0 f0 f1 f2 f3 g0 g1 g2 g3

f1 f1 −f0 f3 −f2 g1 −g0 g3 −g2

f2 f2 −f3 −f0 f1 g2 −g3 −g0 g1

f3 f3 f2 −f1 −f0 g3 g2 −g1 −g0

g0 g0 g1 g2 g3 −f0 −f1 −f2 −f3

g1 g1 −g0 g3 −g2 −f1 f0 −f3 f2

g2 g2 −g3 −g0 g1 −f2 f3 f0 −f1

g3 g3 g2 −g1 −g0 −f3 −f2 f1 f0

In the above table, each entry represents the result of the left action of a row generator on a
column generator.

The generator f0 corresponds to the identity operator, while g0 represents the imaginary unit, as
it commutes with all other generators. The quaternionic subalgebra is spanned by the set {f0, f1, f2, f3}.

The remaining seven generators (excluding the identity) fall into three distinct equivalence classes
(A, B, C), which "mark" them according to the classification presented. These classes are determined by
the transformations that leave the multiplication table (D.2) invariant. These transformations include
permutations within a given class combined with a possible ±1 sign normalization. The class structure is
as follows:

f1, f2, f3 ∈ A, g0 ∈ B, g1, g2, g3 ∈ C.

The identity operator f0 is assigned to the 000-graded sector:

[f0] = 000.

The 3-bit grading assignments of the remaining generators can be deduced from those of f1, f2,

and g0. Let us define [f1] = α, [f2] = β, and [g0] = γ. Consistency with the Z3
2-grading requires:

[f0] = 000, [f1] = α, [f2] = β, [f3] = α + β,

[g0] = γ, [g1] = α + γ, [g2] = β + γ, [g3] = α + β + γ,

where the sums are taken modulo 2.

The inequivalent graded Lie (super)algebras compatible with the multiplicative Z3
2 grading

assignments are the five algebras denoted as 31, 32, 33, 34, 35.
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We can extend the analysis performed before for the 2-bit assignments to determine which graded
sectors (besides 000) are distinguished in each of the five cases given in Appendix A. The results are as
follows:

31 case: All seven graded sectors 100, 010, 001, 110, 101, 011, 111 are on equal footing and correspond to
bosonic particles.

32 case: The sector 001 is singled out as it corresponds to a bosonic particle, whereas the remaining six
sectors 100, 010, 110, 101, 011, 111 correspond to parabosons and are treated symmetrically.

33 case: The three sectors 010, 001, 011 correspond to bosonic particles, while the remaining four sectors
100, 110, 101, 111 correspond to fermions.

34 case: The seven graded sectors divide into three distinct types: 001 corresponds to a bosonic particle,
110 and 111 to parabosons, and 100, 010, 101, 011 to parafermions.

35 case: The three sectors 110, 101, 011 correspond to parabosons, while the remaining four sectors
100, 010, 001, 111 correspond to parafermions.

Thus, the seven additional graded sectors (besides 000) are distributed as follows:

31 : 7, 32 : 1 + 6, 33 : 3 + 4, 34 : 1 + 2 + 4, 35 : 3 + 4.

Inequivalent graded Lie (super)algebras are obtained by assigning the seven marked generators
(D.2), which belong to classes A, B, C, to the different graded sector classes listed above. The classification
results in the following subcases:

31 case - A single graded Lie algebra, which can be expressed as:

31,i: α = 100, β = 010, γ = 001

(All other assignments are equivalent.)

32 case - Three inequivalent graded Lie algebras:

32,i: α = 100, β = 010, γ = 001,

32,ii: α = 001, β = 010, γ = 100,

32,iii: α = 111, β = 010, γ = 100

(The underlined sector 001 is the distinguished bosonic sector. In case 32,iii, it is assigned to the C

generator g3, whose grading is α + β + γ.)

33 case - Three inequivalent graded Lie superalgebras, considering the 3 + 4 split (010, 001, 011 vs.
100, 110, 101, 111):

33,i: α = 010, β = 001, γ = 111,

33,ii: α = 010, β = 100, γ = 111,

33,iii: α = 010, β = 100, γ = 011

(Either all three A generators f1, f2, f3 are assigned to the 010, 001, 011 sectors, or just one of them. In
the latter case, there are two inequivalent possibilities for the grading of γ in g0: either it belongs to
010, 001, 011 or it does not.)
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34 case - Six inequivalent graded Lie superalgebras, considering the 1+2+4 split (001/110, 111/100, 010, 101, 011):

34,i: α = 001, β = 110, γ = 100,

34,ii: α = 001, β = 100, γ = 110,

34,iii: α = 001, β = 100, γ = 011,

34,iv: α = 110, β = 100, γ = 001,

34,v: α = 110, β = 100, γ = 111,

34,vi: α = 110, β = 100, γ = 011

(Define a, b, c as the respective graded sectors of the 1 + 2 + 4 decomposition. Either all three A generators
f1, f2, f3 belong to sectors a, b, forcing γ into c, or only one of them is assigned to a or b. If this generator
is in a, then γ can be in b or c. If this generator is in c, then γ has three inequivalent placements: a, b, or
c.)

35 case - Three inequivalent graded Lie superalgebras arise from the 3+4 split (110, 101, 011/100, 010, 001, 111).
These algebras can be presented as follows:

35,i: α = 110, β = 101, γ = 100,

35,ii: α = 110, β = 100, γ = 111,

35,iii: α = 110, β = 100, γ = 011

(The classification follows the same reasoning as in the 33 case, which is also based on a 3 + 4 graded
sector split.)

Thus, the total number nB of inequivalent graded Lie (super)algebras compatible with the Z3
2

multiplicative grading of the biquaternions is:

nB = 1 + 3 + 3 + 6 + 3 = 16.

To save space, we explicitly present the defining (anti)commutators only for the three inequivalent
superalgebras from the 35 case. Each of these algebras is defined by 32 (anti)commutators, of which the
following seven are common to all cases:

[f0, z] = 0 for any z ∈ HB .

The remaining (anti)commutators are given below.

For 35,i: Nine defining brackets vanish:

[g0, g1] = [g0, g2] = [g0, f3] = {g1, f3} = {g2, f3} = {f1, f2} = {f1, f3} = {f2, f3} = [f3, g3] = 0.

The remaining sixteen are nonvanishing:

{g0, g0} = −2f0, {g0, f1} = 2g1, {g0, f2} = 2g2, {g0, g3} = −2f3, {g1, g1} = 2f0,

[g1, g2] = −2f3, {g1, f1} = −2g0, [g1, f2] = 2g3, {g1, g3} = −2f2, {g2, g2} = 2f0,

[g2, f1] = −2g3, {g2, f2} = −2g0, {g2, g3} = −2f1, [f1, g3] = −2g2, [f2, g3] = 2g1,

{g3, g3} = 2f0.

For 35,ii: Fifteen defining brackets vanish:

{f2, f1} = {f2, g3} = [f2, g2] = {f3, f1} = [f3, g3] = {f3, g2} = [g1, f1] = {g1, g3} =

= {g1, g2} = {f1, g3} = {f1, g2} = [f1, g0] = {g3, g2} = [g3, g0] = [g2, g0] = 0.
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The remaining ten are nonvanishing:

{f2, f2} = −2f0, [f2, f3] = 2f1, [f2, g1] = −2g3, {f2, g0} = 2g2, {f3, f3} = −2f0,

[f3, g1] = 2g2, {f3, g0} = 2g3, {g1, g1} = 2f0, {g1, g0} = −2f1, {g0, g0} = −2f0.

For 35,iii: Nine defining brackets vanish:

{f2, f1} = {f2, g1} = [f2, g0] = [f3, g3] = {f3, f1} = [f3, g2] = {g3, g1} = {g3, g2} = [g0, g2] = 0.

The remaining sixteen are nonvanishing:

{f2, f2} = −2f0, [f2, f3] = 2f1, [f2, g3] = 2g1, {f2, g2} = −2g0, {f3, f3} = −2f0,

[f3, g1] = 2g2, {f3, g0} = 2g3, {g3, g3} = 2f0, [g3, f1] = 2g2, {g3, g0} = −2f3,

{f1, g1} = −2g0, {f1, g0} = 2g1, [f1, g2] = 2g3, {g1, g0} = −2f1, [g1, g2] = −2f3,

{g2, g2} = 2f0.

Comment: The difference between the 35,i and 35,iii cases is related to the diagonal signature of the
parafermionic generators. Since f0 is the identity operator, the graded superalgebra 35,i has the signature
(−1, +1, +1, +1) for the squared values of g0, g1, g2, g3, while in the 35,iii case, the squared values of
f2, f3, g3, g2 produce the signature (−1, −1, +1, +1). Thus, 35,i and 35,iii are different real forms of a
graded superalgebra.
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