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Preface

One of the main challenges I faced while writing this thesis was reconciling the two distinct research
directions I pursued during my PhD. The first, building on my master’s work, explored quantum state
assignment based on limited information and resulted in a publication in Physical Review A [1]. The second
focused on developing a complexity benchmarking protocol for contemporary quantum processors, leading
to a publication in Quantum Information Processing [2]. While there is a common thread connecting both
projects—my interest in bridging theoretical models and experimental implementation through computational
investigation—I ultimately concluded that attempting to cover both in a single thesis would not allow me to
explore either with the appropriate level of depth. For the sake of thematic unity, I chose to focus solely on
my benchmarking research, which comprised the majority of my PhD and aligns more closely with my future

research interests.



Abstract

Quantum computing has become a rapidly evolving field, with researchers continually pushing the
limits of processor size and capability. Many companies have published ambitious roadmaps to build larger,
faster, and more precise quantum processors, aiming to achieve practical applications beyond fundamental
research. These advances naturally demand metrics and tests to evaluate the performance of these emerging
technologies. To meet this need, we introduce an architecture-independent benchmarking method based on
majorization, a mathematical framework for quantitatively assessing the uniformity of probability distribu-
tions. Building on prior work that links the complexity of random quantum circuits to majorization relations
in their outputs, we propose a complexity indicator capable of benchmarking quantum devices. To establish
the protocol’s experimental viability, we employ classical machine learning techniques to mitigate the effects
of finite measurement statistics and limited gate depth. Numerical simulations accounting for experimental
constraints such as noise and hardware connectivity suggest that majorization-based benchmarking provides
meaningful complexity assessments of current quantum devices, and can help determine noise thresholds

necessary for reliable complex computations.

Keywords: majorization, benchmarking, quantum computing, machine learning, quantum proces-

sors, complexity



Resumo

A computacao quantica se tornou um campo de rapida evolugao, onde pesquisadores continuamente
desafiam os limites no tamanho e capacidade dos processadores. Muitas empresas publicaram roadmaps am-
biciosos para desenvolver processadores quanticos maiores, mais rapidos e mais precisos, visando aplicagoes
praticas para além da pesquisa de base na area. Esses avangos naturalmente demandam métricas e testes
para avaliar a performance dessas tecnologias emergentes. Para atender a essa necessidade, apresentamos um
método de benchmarking independente de hardware baseado em majorizagao, uma ferramenta matemética
para avaliar quantitavamente a uniformidade de distribui¢oes de probabilidade. Com base em resultados
prévios ligando a complexidade de circuitos quanticos aleatérios a relagoes de majorizagao entre seus out-
puts, propomos um indicador capaz de mensurar a complexidade computacional alcancavel pelos dispositivos
quanticos de hoje. Para estabelecer a viabilidade experimental do protocolo, empregamos técnicas de ma-
chine learning classico para mitigar os efeitos da estatistica finita de medida e limites na profundidade dos
circuitos. SimulacGes numéricas que levam em conta restrigoes experimentais, como ruido e conectividade do
hardware, sugerem que o protocolo de benchmarking baseado em majorizacao fornece avaliacbes substanciais
da complexidade de dispositivos quéanticos atuais e pode ajudar a estabelecer limites no ruido necessario para

realizar computagoes complexas com confianca.

Palavras-chave: majorizacao, benchmarking, computagao quéntica, machine learning, proces-

sadores quanticos, complexidade
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Chapter 1

Introduction

Quantum computing has undergone remarkable growth over the past two decades. Processors with
tens [3-9| or even hundreds [10,11] of qubits have become a reality. A significant milestone was achieved in
2023, when IBM announced the Condor, its first quantum computing processor to exceed 1,000 qubits [12].
As of December 2024, when this thesis is being written, Google has unveiled its quantum chip, Willow—a
105-qubit processor capable of executing a quantum error correction code below the necessary noise thresh-
old [13]. These recent developments exemplify the rapid progress in the field, a trend which is expected
to continue as many companies have published ambitious roadmaps [14-17] to develop larger, faster, and
more precise quantum processors, striving to build machines with practical applications beyond quantum

computing research itself.

This context naturally drives the development of metrics and tests to evaluate the performance of
these rapidly advancing technologies. In recent years, various benchmarking techniques have been proposed
for this purpose. In a recent review [18], Wang, Guo and Shan classify benchmarks into three types: physical,

aggregated and application-level benchmarks.

Physical benchmarks are metrics that reflect the physical properties of a quantum processor. The
most well-known benchmark of this type is the number of qubits. Based on the classical concept of a bit, which
can assume the value of 0 or 1 to perform logical operations, a qubit is a two-level quantum system that can
exist in a superposition of states a'|0) + 3|1), where o and 3 are complex numbers satisfying |a|? + |5]? = 1.
A processor with n qubits can prepare a state that exists in a superposition of 2" classical states, enabling
it to process information in ways that are infeasible for classical computers. Due to this exponential scaling
of the state space, the number of qubits provides an intuitive sense of the system’s potential scale. However,
the performance of a quantum computer actually depends on a variety of factors. Besides the number of
physical qubits, important metrics include the device’s connectivity, the number of operations it can execute
in parallel, which gates it can natively perform and how many of them can be applied before quantum effects

are lost due to errors.

Meanwhile, aggregated benchmarks are metrics proposed with the objective of providing a concise
assessment of a device’s performance, accounting for the combined influence of multiple physical properties. In

contrast to physical benchmarks, which can be measured directly, aggregated benchmarks must be estimated



from a processor’s basic physical characteristics, or calculated using specific protocols. A notable example
of this type of benchmark is quantum volume, a metric that expresses the maximum size of square quantum
circuits that can be implemented successfully by the computer, and has been adopted by various quantum

computing companies [19-22].

Lastly, application-level benchmarks evaluate performance by running real-world applications on
quantum computers. Most of these concern assessing a processor’s capacity for solving optimization problems,
which have a wide range of real-world applications [23,24|. Other areas of interest for application-level

benchmarks include machine learning [25] and quantum chemistry [26].

Given the diversity of benchmarking approaches and current quantum device architectures, a com-
prehensive review of these techniques lies beyond the scope of this thesis. Instead, we focus on aggregated
benchmarks that use random quantum circuit-based (RQC-based) protocols to assess a processor’s general
computational capacity. During the last few years, RQC-based benchmarks have attracted attention due to
their successful experimental implementation and widespread adoption throughout the quantum computing
industry [19-22,27-31]. Due to their unstructured nature, RQC-based protocols are widely used as bench-
marks to estimate a quantum device’s overall performance, including its ability to handle complex interactions
between qubits. These protocols provide insights into the device’s error rates and fidelity, which are critical
for assessing its suitability for running general quantum algorithms. They have also shown promise as a tool

for demonstrating quantum advantage.

One of the most ambitious goals of the field, quantum advantage refers to the realization of a pro-
grammable quantum computer capable of solving problems that are intractable for classical computers within
any feasible timeframe. Sampling from a high-dimensional Hilbert space, a task widely believed to be in-
tractable for classical computers [32], could theoretically be achieved by implementing random quantum
circuits with a sufficiently large number of qubits. Thus, the construction of a machine capable of imple-

menting large RQCs with small enough error would demonstrate quantum advantage.

In practice, quantum processors are prone to errors. As a result, it is not only necessary to implement
a sufficiently large random quantum circuit but also to verify that its output matches the intended probability
distribution. A key metric for assessing whether the output of a quantum circuit aligns with the expected
outcome is the fidelity, defined as [33]:

F=@lply), (L)

where p is the quantum state produced by a physical noisy quantum device and |t} is the ideal state expected

from a noiseless quantum circuit.

However, the exponential scaling of the state space makes measuring fidelity exactly through quantum
state tomography infeasible for quantum processors with a large number of qubits. This limitation has led to
the development of alternative benchmarks, such as cross-entropy benchmarking (XEB) fidelity, which verify
that the output probability distribution of a random quantum circuit follows the expected distribution. XEB

has been prominently used in recent quantum advantage experiments [34-37].

We introduce majorization-based benchmarking as an alternative or complementary method to these
approaches. Based on the theory of majorization, a mathematical framework for quantitatively assessing
the uniformity or inequality of probability distributions, the majorization-based benchmarking protocol an-

alyzes the output of random quantum circuits to characterize a quantum device’s capacity for complex



computation. By requiring only measurements in the computational basis, it is practical to implement,
architecture-independent, and less experimentally demanding than computing fidelity. The protocol’s exper-
imental viability can be further enhanced by employing classical machine learning techniques to mitigate the

effects of finite measurement statistics and limited gate depth.

Numerical simulations accounting for experimental constraints such as noise and hardware connec-
tivity suggest that majorization-based benchmarking provides meaningful complexity assessments of current
quantum devices, and can help determine noise thresholds necessary for reliable complex computations. These

features make it a promising tool for benchmarking current quantum processors.

Given this introduction, let us lay out the structure of the thesis. Chapters 2 and 3 establish the theo-
retical basis for majorization-based benchmarking. Chapter 2 provides a brief overview of notable RQC-based
benchmarking protocols currently used in the industry, such as randomized benchmarking, quantum volume
and cross-entropy benchmarking, which are widely adopted due to their scalability and ease of implementa-
tion. This provides a strong motivation for the RQC-based approach used in our method. Chapter 3 reviews
the concept of majorization, explores its correlation with complexity, and presents the majorization-based

indicator used in our benchmarking procedure, establishing the mathematical foundation for the benchmark.

Chapter 4 focuses on the work published in Reference [2]. It explains the majorization-based protocol
and simulates its application on a specific architecture, the 8-qubit Rigetti Agave. Using numerical results, we
demonstrate that majorization-based benchmarking can determine the number of gates required for a noiseless
processor to sample from its full Hilbert space. We also simulate this specific arquitecture in the presence of
typical noise, demonstrating the majorization-based indicator’s capacity to detect loss of complexity due to
error. These results establish majorization-based benchmarking as a potential means for determining noise

thresholds necessary for reliable complex computations.

Building on these results, Chapter 5 studies the viability of majorization-based benchmarking in a
finite statistics regime. Using simulated experiments, it outlines the challenges of implementing the bench-
mark under finite statistics, such as increased measurement overhead as the number of qubits rises, which
can hinder scalability. Chapter 6 proposes the use of classical machine learning techniques to address these
issues. It introduces a modified benchmarking protocol, which allows a simple machine learning classifier
(Support Vector Machine) to be trained to distinguish between RQC outputs coming from universal and

non-universal gate sets, using a moderate amount of gates and measurements.

The thesis concludes with a reflection on the strengths of our method, motivating experimental tests
of majorization-based benchmarking on actual quantum processors and paving the way for its adoption in

the industry.



Chapter 2

RQC-based benchmarking

A variety of benchmarking protocols have been developed to assess the performance of quantum
processors, each with distinct advantages and limitations. Among them, methods based on random quantum
circuits have gained prominence due to their scalability and practical feasibility. This chapter presents an
overview of three widely used RQC-based benchmarking techniques—randomized benchmarking, quantum
volume, and cross-entropy benchmarking—highlighting their fundamental principles and roles in current

quantum computing research.

2.1 Randomized benchmarking

Randomized benchmarking (RB) [27] is a widely-used protocol to estimate the average error rates
of quantum computing hardware platforms [27-31]. Conceptually, the protocol is based on the idea that
any sequence of unitary operations can be reversed by applying an appropriate final operation. Consider an

arbitrary transformation on a quantum system given by a sequence of unitary operators:
U=UUs...Us. (2.1)
Since unitary operators are invertible, it is always possible to apply an additional operation Ug41 such that
Usrr = (WU,...U)' . (2.2)

This ensures that the overall transformation acts as the identity in the absence of noise. Randomized
benchmarking exploits this principle by analyzing the deviations that arise when noise is present in the

system.

The first step of the protocol is to generate a sequence of s + 1 quantum operations. The first s are
chosen uniformly at random from the Clifford group on n qubits. The final operation is selected so that the

net sequence, in the absence of errors, implements the identity operation.



In practice, each operation is affected by noise. Denoting the ideal Clifford operations as C; and

their associated noise processes as Aj, the full sequence can be written as:
S=(As410Cs41)0(Ag0Cs)o--- 0(A10Ch), (2.3)

with
(Asr10Catr) = [(AsoCy)o--- o (Ao ). (2.4)

The second step of the RB protocol is to measure the probability of obtaining the expected mea-
surement outcome after applying the generated sequence. This is also called the survival probability. Let py
denote the initial state of the quantum system taking into account preparation errors, while £, is the POVM

element that accounts for measurement errors. Then
Tr[EyS (py)] (2.5)

gives the survival probability of p,, after applying the sequence S. In the absence of errors, the measurement
is assumed to be ideal, meaning E, reduces to the projector |¢) (1|, the state of the system returns to |¢)

and the survival probability is 1.

Next, the average survival probabilities

Freq(tb,5) = (Tt [E4S (p,)]) | (2.6)

are measured for a set of ensembles of sequences with varying lengths s.

Under the assumptions of gate-independent and time-independent errors, the random Clifford se-
quences effectively twirl the noise channel. This causes the average effect of the noise to behave like a
depolarizing channel, in the sense that the average survival probability decays exponentially with the se-
quence length s [27,38|. Hence, the measured average survival probabilities are fit to an exponential decay
model of the form

Freg(tp,s) = Ap* + B, (2.7)

where A and B are coeflicients that absorb state-preparation, measurement errors and edge effects. The
parameter p determines the noise strength and can be used to determine the average error rate r by the

relation [38]
l-p

r=1-p— on

(2.8)

The advantage of RB is that it allows for the estimation of error rates without the need to directly
compute the fidelity of the quantum operations, which, as discussed previously, becomes intractable as the
number of qubits in the processor increases. Furthermore, by fitting the averaged sequence fidelity to the
model given by Equation (2.7), it is possible to separately estimate gate and measurement errors. The
scalability of RB, combined with its ability to disentangle different error sources, makes it a powerful and

widely adopted tool for assessing and optimizing quantum hardware performance.



2.2 Quantum volume

The performance of a quantum computer depends on various factors, including the number of physical
qubits, the amount of gates that can be applied before quantum effects are lost due to errors, the device’s
connectivity, and the number of operations it can execute in parallel. The objective of quantum volume is
to provide a single-number metric that captures a quantum computer’s overall performance, accounting for

all these factors [39,40].

Quantum volume is defined as
VQ - Qdmaz ) (2'9)

where d,, 4, is the number of layers of the largest square model circuit that processor can successfully imple-

ment.

Model circuits are a class of random quantum circuits with a fixed yet generic structure. A model
circuit with d layers acting on g qubits is constructed as follows: each layer begins with a random permutation
of the qubit labels, determining which pairs will interact. Then, two-qubit gates are applied to each neigh-
boring pair according to this new ordering. These gates are independently sampled from the Haar measure
on SU(4), ensuring they are fully random unitary operations. A square model circuit is defined as one for
which the width and depth are equal, i.e., d = ¢. A schematic representation of a model circuit can be seen

in Figure 2.1.

Cross et al. [40] argue that a processor’s ability to implement these circuits is a meaningful benchmark
because, while real quantum algorithms are not purely random, they can be expressed as polynomial-sized
quantum circuits composed of two-qubit unitary gates. Consequently, similar structures appear in practical

quantum algorithms and can also be used to model generic state preparations.

W N //
0)
0} Su(4) su@) | ([ Su(4)

0)- \

v Ssu4) || T Su(4) // m Su(4)

] B B B BB

0) =
0)- §
10) = Su(4) su@) | ) Su(4)
l et I N~ | // |u |
1 2 d

Figure 2.1: Schematic representation of a model circuit, reproduced from Reference [40].

To verify the successful implementation of a model circuit, researchers use the heavy output gen-
eration (HOG) test [20,40], which exploits the statistical properties of model circuit outputs for practical

experimental validation.

Consider a random quantum circuit U composed of ¢ qubits. At the end of the circuit, when all qubits
are measured, the result will be one of the 2¢ possible bit-strings of length g. The probability distribution of

all possible outputs can be represented by a 29-dimensional vector p;;, where each component p, corresponds

10



to the probability of obtaining the bit-string x. Sorting these components in non-decreasing order,

Po<p1 < ... S paai, (2.10)

the median of the ordered distribution py; is given by

(p2<q—1> +p2(q—1)_1)

5 (2.11)

Pmed =

Heavy outputs are defined as the bit-strings = for which p; > pmeq- To pass the HOG test, at least two-thirds

of the measured bit-strings must be heavy.

Asymptotically, an ideal quantum device is expected to produce heavy outputs with a probability
of approximately 0.85, whereas a completely depolarized system yields around 0.5 [41]. By evaluating a
processor’s ability to implement model circuits and pass the heavy output generation test, quantum volume
provides a practical and scalable measure of performance. These qualities have lead to its implementation

and adoption by various quantum computing companies [19-22].

2.3 Cross-entropy benchmarking

Cross-entropy benchmarking (XEB) is a technique for assessing how accurately a quantum processor
executes a random quantum circuit. The method has gained prominence due to its successful application in
recent quantum advantage experiments [34,37]. It is widely believed that sampling from a high-dimensional
Hilbert space becomes intractable for classical computers as the state space dimension grows [32,41]. Con-
sequently, a device capable of successfully implementing a random quantum circuit with a sufficiently large

number of qubits would provide evidence of quantum advantage.

Before proceeding, it is helpful to define more precisely what is meant by random circuit sampling.
Following Ref. [42], consider an n-qubit system in a 2" dimensional Hilbert space H". A quantum circuit U
acts on this system, evolving it from an initial state |1)o) to a final state |¢) = U |1)p). After executing the
circuit and measuring each of the qubits in the computational basis, we recover a bitstring = = ajas. .. ay,.
This bitstring corresponds to a basis state |x) = |ajag...ay) in a 2™ dimensional space. The probability of

obtaining the measurement |x) after the application of U is given by

pu(@) = araz ... an|)[* = |(@le)]* . (2.12)

The task of obtaining a sample x from a probability distribution py is known as sampling from the circuit
U.

If we consider an ensemble of quantum circuits {U;}, it is possible to treat the corresponding prob-
abilities p as random variables following their own probability distribution P(p). In the case of uniformly

distributed random quantum circuits, this distribution has the simple form of
P(p(x)) = De” PP (2.13)

where D = 2™ represents the dimension of the Hilbert space. This is known as the Porter-Thomas distribution.

11



This behavior is notably distinct from that of classical circuits. Consider a set of randomly selected
classical functions f mapping Boolean inputs to {0,1}". Since no output bitstring is favored, the expectation
value E [p(z)] = 27" for any bitstring x. In other words, in the classical case, the probabilities p(z) are
uniformly distributed. For quantum circuits, however, the situation is more complicated. Before measure-
ment, the system is not necessarily in one of the 2" basis states. Instead, a random wavefunction [¢) in the

computational basis can be written

) = (az +ibs) ) (2.14)

x

where a;,b, € R and satisfy
> al+bl=1. (2.15)
The amount of states satisfying these conditions is infinite, so the probability P(p) is given by

- VOI(HPJ)

Vol (2.16)

P(p)

where H,, 1 is the subspace of normalized states with probability p and H; the subspace of normalized states.

Following the supplementary information in Ref. [36], the numerator is given by

Vol(H,.1) = /_O; I1s (Z a2 + b2 — 1) 5 (|<x\a:>|2 —p) dagdb, , (2.17)

and the denominator,
Vol(H,) = / 11 (Z aZ + b2 — 1) da,db, . (2.18)

The first delta function in Eq.2.17 imposes the normalization condition, while the second selects the values

of x corresponding to a specific probability p.

Using the Cauchy equation, the function 6(x — @) can be expressed as

1 Rl
O0(r—a) = ﬂ/ et@E=aqg

—0o0

and so
1 o0 . 2 2 1 o0 . - 2 2
2 2 _ (>, az+bs—1 _ —it it(az+b2)
5(% a? + b2 1>_2ﬂ/ooe( )dt_i%/fooe |m|e .

Plugging this result into Eq.2.18, we obtain

Vol(H,1) = / H <217T/ et Heit(ai+bi)> dazdb, (2.19)
x

— 00 T —00
L7 gy / h [ e+ da,db, | . (2.20)
27T —0o0 — 00 T

The term in parentheses can be rewritten as

/ [T e+ daydb, = [| / €% dag - / e db, .

oo
— 00

12



Using

we find that

.\ D ) _
Y R 7 _(im)P e

oo

The integral in the above expression can be evaluated using Cauchy’s residue theorem (See Ref. [42] for

details), and the final expression for Vol(H;) is given by

(im)P —2mi _jN-1 7P

2 '(N71)!'( B

VOl(Hl) = = m .

The integration of the numerator can be performed through a similar procedure, yielding
__ " q_.\D-2
VOl(,Hp’l) = (1 p) .

Thus,
P(p)=(D—1)(1-p)"72. (2.21)

Given the expansions

(Dp)*  (Dp)?
2l 3!

D=1 DO-DD-2s, o,

e PP =1-Dp+ +eoo,(1=p)” =1-Dp+
we see that, as D grows,
1-pP?=(1-pP~e??,

and Eq.2.21 converges to the Porther-Thomas distribution.

In the presence of depolarizing noise, the probabilities p(z) deviate from Porther-Thomas and become
more uniformly distributed [43]. To systematically assess how well a quantum device implements a random
circuit, cross-entropy benchmarking quantifies this deviation using the cross-entropy benchmark fidelity,
defined as

Fxep =D (p(z)) —1. (2.23)

This metric compares the measured bit-string probabilities against the theoretical Porter-Thomas distribu-
tion, providing an eflicient way to estimate fidelity without requiring full quantum state tomography. This

makes XEB particularly valuable for benchmarking large-scale quantum processors.

To better understand this metric, let us consider two limiting cases. First, suppose the quantum
device is so noisy that the output distribution becomes uniform. In this case, the probabilities satisfy

p(z) = 1/D for every bit-string, leading to
1
]:XEBZD<p(.’L')>—1=DXB—1=O. (2.24)

Next, consider an ideal, noiseless device where the probabilities p(z) follow the expected Porter-Thomas

distribution. By Equation (2.13), the fraction of bit-strings with probability in the interval [p,p + dp] is

13



given by:
P(p)dp = De PP dp. (2.25)

To find the total number of such bit-strings, we multiply this by the total number of possible bit-strings,

2" = D. This yields
N(p)dp = D?e PP ap. (2.26)

Using this expression, we can calculate the probability that one of these bit-strings is sampled:
p- N(p)dp = pD?e PP dp. (2.27)

We define
f(p) = pD?e™ PP (2.28)

as the probability density function for the ideal probability of a sampled bit-string. This function satisfies

the normalization condition:
1

/f(p) dp=1. (2.29)

The probability density f(p) describes the likelihood that a randomly chosen bit-string from the output
distribution has an ideal probability p when sampling from an ideal quantum device. Using this result, the

average probability of a bit-string sampled from a noiseless device is given by

1

(p)= [ pf(p)dp= | pD*e~PPdp. (2.30)
o |

0

Evaluating this integral yields [43]

(p) = % (1 —e P <l;2 +D+ 1)> : (2.31)

For large D, this can be approximated as
(2.32)

Substituting this into Equation (2.23) gives
2
]:XEBZD<p(.’L')>—1=D><5—1:1. (2.33)

Thus, for an ideal quantum device, Fxgp = 1.

In the general case, where depolarizing noise is present, the fidelity can be understood as interpolating
between the two limiting cases (uniform noise and ideal performance) by a convex combination [43]. This
result highlights the role of Fxpp as a practical metric for assessing quantum processor performance. In
an ideal, noiseless scenario, the fidelity reaches its upper bound of 1, while in the presence of noise, it
decreases proportionally to the probability of errors occurring during the circuit execution. This makes XEB
a valuable tool for benchmarking large-scale quantum devices, providing a direct measure of how closely a

device’s output distribution aligns with theoretical expectations.
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Chapter 3

The majorization-based complexity

indicator

IIn many different fields of science, determining how unequal one distribution is when compared to
another is often crucial. Whether it be in physics, economics, or information theory, understanding how
resources, values, or phenomena are spread across a population can provide significant insights. For instance,
in equilibrium statistical mechanics, entropy quantifies how spread out the probability distribution of the
system is over its possible microstates, providing a measure of how much work can be extracted [44]. In
economics, measuring income inequality can help assess the fairness of wealth distribution [45]. Similarly, in
machine learning, the distribution of data across different categories or classes influences algorithm design

and performance [46].

Majorization is a mathematical framework for comparing the degree of inequality or uniformity in
distributions with precision. Given its role in quantifying inequalities, majorization has found applications
across diverse fields [47], including pure mathematics [48], biology [49] and physics [50-53]. Recent findings
[64] demonstrate a correlation between majorization and complexity in the context of random quantum

circuits. These results provide the mathematical foundation for majorization-based benchmarking.

This chapter begins with a review of the concept of majorization, followed by a brief discussion of
its relevance in quantum information theory. We then explore the relationship between majorization and
complexity, leading to the findings of Reference [54], which establish the majorization-based indicator used

in our benchmarking procedure.

3.1 The concept of majorization

One of the earliest recorded applications of majorization was by economist Max Otto Lorenz, who
proposed it as a tool to measure wealth concentration [45]. Lorenz writes that one should plot, on one axis,
the cumulative percentage of the population ordered from poorest to richest, and on the other, the total

wealth held by this percentage of the population.
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In other words, consider a population of N individuals, each holding a certain percentage p; of the
total wealth, with ¢ = 1,...,n, where the indices are ordered in such a way that ¢ = 1 is the poorest and
i = N the richest individual. To construct the Lorenz curve of this population, one should plot, on the
horizontal axis, the quantity k/N, with k = 0,..., N, and on the vertical axis, the quantity Si/Sn, where
So = 0 and S = Zle pi- When wealth is uniformly distributed in the population, this procedure yields
a straight line. Otherwise, the curve is convex and lies under this straight line. According to Lorenz [45]
(p. 217), “With an unequal distribution, the curves will always begin and end in the same points as with an
equal distribution, but they will be bent in the middle; and the rule of interpretation will be, as the bow is
bent, concentration increases.” An example of the curves used in Lorenz’ original formulation can be seen in
Figure 3.1. Curve A corresponds to the case in which wealth is uniformly distributed among the population,
while curves B and C are unequal distributions, and curve B represents a more even wealth distribution than

that represented by curve C.

Proportion of Income

Proportion of Population

Figure 3.1: An example of the curves used in Lorenz’s original formulation, reproduced from Reference [47]. The uniform probability
distribution is represented by a straight line labeled A. All other probability distributions are represented as curves that lie below A.

The definition that will be used in this work closely follows the procedure originally outlined by
Lorenz, but with one key difference: while Lorenz sorted individuals in non-decreasing order of income, we
sort the components of probability distributions in non-increasing order to align with the usual convention

in quantum information.

Consider two vectors, x and y € RV with components z; and y;, i = 0,..., N. We say that x is

majorized by y (or y majorizes x ), denoted x <y, when

k k
dar<> yr, 1<k<N, (3.1)
i=1 i=1

N N
Sr=du 52)
i=1 =1

Here, the superscript ¥ signifies that the vector components are sorted in non-increasing order. The partial

sums in (3.1) will be denoted F, (k) and F,(k), and referred to as the k-th cumulants of x and y , respectively.

By plotting the curves of F'(k) vs. k/N, majorization relations can be visualized in a straightforward

manner. Figure 3.2 illustrates this with two 100-component vectors. The curve labeled 'uniform’ represents a
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uniform distribution, while ‘random’ corresponds to a vector whose components were sampled from a Gaus-
sian distribution and then normalized. According to definition (3.1), in Figure 3.2, the random distribution
majorizes the uniform distribution. Notably, under the quantum information sorting convention, if x ma-
jorizes y, the Lorenz curve of x lies above that of y. The Lorenz curve of the uniform distribution, which is

majorized by all other comparable probability distributions, always lies below the others.

1.04 === uniform
—— random -

0.8 4

0.6 4

F(k)

0.4+

0.24

0.0+

0.0 0.2 0.4 0.6 0.8 10
kiN

Figure 3.2: An example of Lorenz curves that will be used in this work, in which the coefficients of probability distribution vectors
are sorted in non-increasing order.

An equivalent definition of majorization is given by a theorem of Hardy, Littlewood, and Pélya [55].

According to this theorem, for two vectors x and y € RV,
X<y < x=Py (3.3)

for some square matrix P = (p;;) of nonnegative real numbers, where each row and column sums to 1,

Zpij = sz’j =1. (3.4)

? J

Such a matrix is called bistochastic. In other words, we say that y majorizes x if it is possible to construct
x by multiplying y by some bistochastic matrix P. This definition will be important when covering different

applications of majorization in physics, as we shall see in the following subsections.

3.2 DMajorization in quantum information theory

To better understand the connections between majorization and quantum mechanics, let us first
formulate an operator-based definition of majorization. This will allow us to evaluate majorization relations
between density matrices, which in quantum mechanics often perform a somewhat analogous role to that of

probability distributions. Let R and S be d-dimensional Hermitian operators. We say [53]
R=<S < AR)=<A\Y9), (3.5)

where A\(R) denotes the vector whose components are the eigenvalues of R, arranged in non-increasing order.
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In Reference [53], Nielsen and Vidal shed light on the close connection between majorization and
quantum mechanics through the combination of two results, Horn’s lemma [56] and Uhlmann’s theorem [57].

Horn’s lemma states that, for vectors r and s,

r<s < nr= Z |’U,ij‘2 S5 (36)
J

for some unitary matrix U = (u;;) of complex numbers. A matrix that satisfies this property is necessarily
bistochastic, making Horn’s Lemma a special case of Equation (3.3). In turn, Uhlmann’s theorem states
that R < S for Hermitian matrices R and S if and only if there exist unitary matrices U; and a probability
distribution {p;} such that

R=Y p;U;SU}. (3.7)

J

Due to the fundamental role of unitarity in quantum mechanics, relations of the type found in Horn’s lemma
and Uhlmann’s theorem arise frequently. According to Nielsen and Vidal, this accounts for many of the

applications of majorization in quantum mechanics.

One of the most significant areas where majorization relations emerge is the study of quantum
entanglement. Specifically, they provide a framework for understanding the feasibility of state transformations
in bipartite systems by means of local operations on the two subsystems aided by classical communication
(LOCC). Consider a bipartite system AB in an entangled pure state 1. The feasibility of the transformation
of 1 into another state ¢ by means of LOCC depends on a majorization relation between the reduced density
matrix of part A of the system for states ¢ and ¢. Namely, the transformation ¢y — ¢ through LOCC is
feasible if, and only if [53]

Pl <% (3.8)

where p:ﬁ and pi are the reduced density matrices of part A of the system for the states ¥ and ¢, respectively.

Another property of majorization with interesting implications for quantum information theory is its
relation to a Schur-convex functions. A real-valued function f defined on R" is said to be Schur-convex if,
for all x,y € R",

x<y = f(x)< f(y). (3.9)

If, in addition, f(x) < f(y) whenever x < y but x is not a permutation of y, then f is said to be

strictly Schur-convex. Similarly, f is said to be Schur-concave if
x<y = [f(x) = f(y), (3.10)

and strictly Schur-concave if strict inequality f(x) > f(y) holds when x is not a permutation of y. Evidently,

f is Schur-concave if and only if —f is Schur-convex. Notably, the Shannon entropy, defined as
H(x)=—) w;logz; (3.11)
is strictly Schur-concave [47]. As a consequence, If a probability distribution y associated to a random

variable Y majorizes the probability distribution x of a random variable X, then H(x) > H(y). However,
the opposite is not necessarily true: H(x) > H(y) does not imply that y majorizes x . This asymmetry

18



highlights majorization’s finer granularity compared to entropy in quantifying the spread of probability

distributions.

Recognizing this potential, Ruch [58] used majorization relations to propose an alternative to the
second law of thermodynamics, known as the principle of increasing mixing character. Inspired by this
work, Orus, Latorre and Martin-Delgado [51] proposed a principle of majorization in the context of quantum

algorithms, which will be detailed in the next section.

3.3 The principle of majorization

Before explaining Orus, Latorre and Martin-Delgado’s majorization principle, we briefly discuss
Ruch’s principle of increasing mixing character. According to Ruch [58] (p. 182), “The time development of
a statistical (Gibbs) ensemble of isolated systems (microcanonical ensemble) proceeds in such a way that the

mixing character increases monotonically”.

To better illustrate Ruch’s principle, we use as an example a particular formulation of the master
equation, known as the Pauli master equation [59]. Consider a distribution of n particles among m states.
Assume that the number of particles is constant and the transitions are governed by constant probabilities
w;k. Furthermore, suppose n is large enough that differentiation with respect to time is justified. This

formulation can be expressed as

nl(t) = szknk(t) — Zwlmi(t)7 Wik 2 0, (3.12)
k=1 =1

or

m m
i(t) = Wikng(t), Wik = wix — ik »_wi; (3.13)
k=1 =1

Defining the vector n = {n;}, we may write Equation (3.13) as n(t) = Wn(t). The solution to this equation

is given by

n(t) =V ttln(t,). (3.14)

At equilibrium, n(t) = 0. Imposing this condition on Equation (3.13), the matrix W satisfies
m m m
ZWik :Zwikfzwlk :0; (3.15)
i=1 i=1 1=1
m m m
ZWikZZwik—ZwlkZO. (3.16)
k=1 k=1 k=1

that is, the sum of the elements in each of its rows and columns is zero. The expansion €' (!=%0) is given by

eW(t—to) =1+ (t _ tO)W + (t — t0)2W2 4+ ... (317)

where 1 is the identity matrix.
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When multiplying two matrices for which the elements of each of their rows and columns sum to
zero, the resulting matrix also retains this property. Consider two m x m matrices A and B. The entries of
the matrix C = AB are given by

m
Cij = Zaikbkj : (3.18)
k=1
Now, consider the sum of the i-th row of C"
D ocii =D aibiy = aim Yy bij. (3.19)
Jj=1 j=1k=1 k=1 j=1

If the sum of the elements in each row of B is zero, we have:
> by =0 Vk. (3.20)

This implies that
Cij = 0 Vi, (321)

I

Jj=1
meaning that each row of C' also sums to zero.
Similarly, the sum of the j-th column of C' is given by:

m

ZCij ZZaikbk] Zazk Zbk] . (322)

i=1 =1 k=1 i=1

If the sum of the elements in each column of A is zero, we have:

> ai=0 Vk. (3.23)
This implies that

> =0 Vi, (3.24)

i=1

meaning that each column of C' also sums to zero.

Thus, since the sum of the elements of each of the rows and columns of W is zero, the same is true
for all powers of W. Consequently, the sum of the elements of each row and column of e (*=%0) is one.
Because the number of particles in each state can never be negative, there are no negative coefficients and

we conclude that "' (*=%) is a bistochastic matrix. Given this, Equation (3.14) implies that
n(t) < n(ty) ift >to, (3.25)

and the time development of the system proceeds in the direction of monotonically increasing statistical

disorder, i.e. decreasing majorization.

Inspired by the principle of increasing mixing character, Orus, Latorre and Martin-Delgado proposed

a majorization principle for the behavior of quantum algorithms. To understand this principle, let us first
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consider a quantum computer executing an algorithm that uses n qubits and has Ny computational steps.
At step s of the computation, the register is in a pure state |¥), with s = 0,1,..., Ny . It is possible to
associate a probability distribution to this state in the following way. First, we decompose the register state

in the computational basis,
2m -1

W) = cildi) (3.26)

i=0
where each |¢;), denotes a basis state. Given this, we can define an ordered vector p} composed of the
coefficients |ci|2 in nonincreasing order. This distribution characterizes the probability of obtaining each
individual state of the computational basis when performing a measurement on the register at step s of the

computation.

Orus, Latorre and Martin-Delgado claim [51] that, for efficient quantum algorithms (those which
offer a significant speedup compared to the best known classical counterparts), the time development of the
system proceeds in the direction of monotonically increasing statistical order, i.e. increasing majorization.
The probability distributions p¥ associated to the state of quantum registers at different operating stages
satisfy

pt <plg,Vs=1,...,N,—1, (3.27)

where the index s runs from 1 to S — 1 so that the first step is excluded.

To corroborate this, the authors demonstrated that this principle was satisfied by a variety of algo-
rithms known to be efficient in the previously described sense, such as Grover’s, quantum adiabatic evolution

and phase-estimation algorithms, including Shor’s [51,52].

3.4 Majorization and complexity in random quantum circuits

Orus, Latorre and Martin-Delgado’s result suggests that majorization relations play a meaningful
role in the behavior of efficient quantum algorithms. Given that random quantum circuits are frequently used
in practical quantum algorithms and play a key role in quantum advantage experiments, Vallejos, Melo, and
Carlo investigated how majorization evolves in these systems [54]. The study considered RQCs constructed
using three finite gate sets, GI={CNOT, H, NOT}, G2={CNOT, H, S} and G3={CNOT, H, T}, as well as
matchgates and diagonal gates. The evolution of majorization in these systems was studied in relation to the
complexity class of the gate sets, which fall into three categories: universal, classically simulable, or neither

universal nor classically simulable.

A set of quantum gates is universal for quantum computation if any unitary operation can be approx-
imated to arbitrary accuracy using only those gates [33]. In contrast, a set of gates is classically simulable if
the measurement outcomes of quantum circuits composed solely of these gates can be efficiently computed
using classical resources. A simulation is deemed efficient if it runs in polynomial time with respect to the

system size.

There are two main notions of classical simulability: weak and strong. Consider a set of quantum
circuits U which can be efficiently generated by a classical algorithm, with both the input states and the types
of measurements performed on the output being restricted to specific classes. The family U is strongly simu-

lable under these constraints if the exact probabilities of measurement outcomes can be computed efficiently
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using a classical algorithm [60]. In contrast, U is weakly simulable if a sample from its output distribution

can be generated efficiently using classical means [61].

The gate set G3 is universal [33], while the sets G1 and G2 contain only Clifford gates and are thus
nonuniversal and classically simulable [62]. Matchgate (MG) circuits are a class of 2-qubit quantum gates,

which can be represented by the following matrix:

G(A,B) = : (3.28)

S oo
ow & o©
o w8 O
n O O K

where A and B are unitary 2 x 2 matrices with equal determinant. These matrices are defined as:

A:(pq> B:(w”’j). (3.29)
r s y oz

To construct random quantum circuits using matchgates, the matrices A and B are first selected randomly
according to the Haar measure in the unitary group U(2). These gates are then applied to randomly selected
pairs of qubits, with each pair having an equal probability of being chosen. Matchgate circuits are of
particular interest in this context because their complexity class changes depending on the connectivity
conditions. Circuits that only act on nearest-neighbor qubits are classically simulable. However, when the
nearest-neighbor restriction is lifted, the resulting circuits become universal for quantum computation, as

shown in Reference [60].

Finally, diagonal-gate circuits are made up from gates which are diagonal in the computational (Z)
basis. The initial state is set to |O>®" and Hadamard gates are placed at the beginning and ending of each
line. Diagonal circuits cannot perform universal computation, however, it has been shown that they are not
classically simulable under plausible assumptions in computational complexity theory [63]. The authors used

a particular subclass of diagonal circuits: the r-qubit phase-random circuits, which have the form [64]
W, = diag {ewl el ei‘j’T} , (3.30)

where the ¢’s are independent, random and uniformly distributed in [0, 27). Since diagonal gates commute,
the order of application does not affect the resulting circuit. The gates were applied on all combinations of
r (out of n) qubits, the ordering being random. The study used only three values for r, namely r = 2,3, n.

These types of circuits will be referred to as D2, D3 and Dn, respectively.

It was found that, for all types of circuits, the averages of the ordered probability distributions p}
exhibited decreasing majorization as the number of computational steps (in this case, given by the number

of gates) increased [54].

To illustrate this result, we present the results of an analogous simulated experiment using the gates in
the G1 gate set. The random quantum circuits were composed of 8 qubits and the computational procedure,
which will be described shortly, was performed 500 times. First, the circuit was initialized in a random
product state and its output probability distribution calculated. Next, random gates from G1 were applied.

For every 25 gates applied, the output probability distribution was calculated once more. Finally, the average
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probability distributions for the outputs was computed at computational steps {0, 25,50, 75,100,125}. The

resulting average Lorenz curves can be seen in Figure 3.3.

1.0
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F(k)

0.4+
—— 0 gates
—— 25 gates
—— 50 gates
—— 75 gates
100 gates
—— 125 gates
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kIN
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Figure 3.3: Average Lorenz curves of the probability distributions associated to the output of random quantum circuits constructed
with th gate set G1= {CNOT, H, NOT}, exhibiting decreasing majorization with the number of gates.

In this plot, it is possible to see that, for any given number of gates, the average Lorenz curve
representing the output probability of the circuit at that particular computational step is below the one
associated to the previous step. In other words, the output probability distributions exhibit decreasing

majorization with the number of gates.

In Reference [54], the authors also observed that, for a sufficiently large number of gates, the averaged
Lorenz curves for all the studied circuit families converge to an asymptotic curve. While the rate of change
in the Lorenz curves varies depending on the circuit type, many of the asymptotic curves closely resemble
those constructed from randomly sampled vectors in the Hilbert space using the Haar measure. These results
are illustrated in Figure 3.4. The abbreviations in the graph are structured in the form A-B-C. A represents
the type of circuit: G1, G2, G3, MG, D2, D3 or Dn. B refers to the connectivity, and can be NN (nearest
neighbors), RN (random neighbors) or ALL (all combinations of r qubits). C refers to the initial state of the
circuit. When the initial state is a random product state, C will be equal to RS, and when it is set to |O>®",
C will be 0. The curves labeled Haar-n refer to those constructed from randomly sampled vectors, where 2"

is the dimensionality of the Hilbert space from which the vectors were sampled.

Since all the circuits simulated in Reference [54] had 8 qubits, the asymptotic average Lorenz curves
for most of them coincided with Haar-8. Those that did not coincide with Haar-8 still exhibited only minimal
deviation from the curve. In other words, for a sufficiently large number of gates, the averaged Lorenz curves

of all studied circuit families closely resemble those of random vectors in an 8-dimensional Hilbert space.

However, studying the standard deviation of the asymptotic Lorenz curves revealed an important
finding: the fluctuations in Lorenz curves for the asymptotic states of RQCs from different complexity classes
show noticeably distinct qualitative behavior. Formally, let pyy be the probability distribution corresponding
to the asymptotic state of a random quantum circuit U. The k-th cumulant, F),, (k), of this distribution is
defined as:

k
Fyo (k) =D 0pi (3.31)
i=1
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Figure 3.4: Average Lorenz curves for asymptotic states generated by various families of random circuits of 8 qubits, reproduced from
Reference [54].

where p%ﬁ is the i-th component of the sorted probability vector p(l]. The fluctuations in F,, (k) are quantified
by the standard deviation:

Std[Fpy ()] = \/(F2, (k) — (Fpy (K))2, (3.32)
which is calculated over an ensemble of circuits generated from the same gate sets.

By plotting the fluctuations against k/N, the authors observed distinct qualitative behaviors in the
curves for ensembles of random quantum circuits constructed from gate sets of different complexity classes,
as shown in Figure 3.5. Notably, the fluctuation curves for G3 circuits, diagonal circuits, and matchgate
circuits without nearest-neighbor restrictions—all of which are not classically simulable—aligned closely with
those of random vectors of 8 qubits (Haar-8). In contrast, circuits known to be classically simulable, such
as matchgate circuits with nearest-neighbor connectivity and circuits composed of the G1 and G2 gate sets,

exhibited significant deviations from Haar-8.

To further validate the correlation between the majorization-based indicator and computational
complexity, the authors compared fluctuations in the Lorenz curves with entanglement spectrum statistics,
which have also been shown to correlate with complexity [65,66]. To define the entanglement spectrum,
consider a system partitioned into two subsystems, A and B, associated with Hilbert spaces H4 and Hp,
respectively. Let ns and npg, denote the number of qubits in each subsystem, with the total number of qubits
given by n = n4 + np. The total system is described by the Hilbert space H = H 4 ® Hp. For a pure state
|t)) € H, the reduced density matrix p4 is obtained by tracing out subsystem B:

pa = Trp|¥) (Y. (3.33)

The eigenvalues of p4, denoted spec{pa} = {A1,..., A\n,}, constitute the reduced density matrix spectrum.

The entanglement spectrum of an RQC is the spectrum of the reduced states pY after the circuit U is
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Figure 3.5: Standard deviation of Lorenz curves for asymptotic states generated by various families of random circuits of 8 qubits,
showing distinct behaviors for RQCs constructed from gate set of different complexity classes. Reproduced from Reference [54].

applied to the initial (pure) state. Shaffer et al. [65] found that the entanglement spectra of RQCs composed
of universal gates follow Wigner-Dyson statistics, while those constructed from non-universal gates exhibit
Poisson-like statistics. Following this methodology, Vallejos, Melo, and Carlo analyzed a 50-50 bipartition
of the asymptotic states of circuits from different families and calculated their entanglement spectra. Their

results aligned with the classification obtained using the majorization-based indicator.

These results provide compelling evidence of the correlation between majorization relations and
computational complexity in random quantum circuits. The fluctuations in the asymptotic Lorenz curves
serve as a reliable indicator that can distinguish between RQCs composed of gates from different complexity
classes. Furthermore, as it is not based on entanglement, which can degrade quickly even in weakly dissipative
environments [67], the majorization-based indicator shows more promise for practical implementations, where
noise is often a crucial factor. In the next chapter, we will discuss how this majorization-based indicator can
be used in an RQC-based benchmarking protocol to assess the computational capacity of current quantum

processors for reliable, complex computation.
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Chapter 4

The majorization-based benchmarking

protocol

Chapter 2 reviewed several notable RQC-based methods for benchmarking quantum processors. The
success of protocols such as randomized benchmarking, quantum volume, and cross-entropy benchmarking
demonstrates the scalability and practicality of RQC-based approaches. In particular, the XEB protocol
illustrates how statistical properties of random quantum circuits can be leveraged to extract meaningful

information about a device’s performance.

Meanwhile, the findings of Reference [54] demonstrate that it is possible to discriminate between
random quantum circuits of different complexity classes by plotting the fluctuations in the Lorenz curves
of their asymptotic output states. While these results come from different contexts, they suggest a natural
connection: if random quantum circuits are effective for benchmarking and majorization provides a mean-
ingful way to analyze them, the majorization-based indicator may offer a practical way to assess a quantum

device’s ability to perform complex computations.

Building on this logic, we introduce the majorization-based benchmarking protocol [2]. Rooted in
the theory of majorization, this tool provides an alternative approach to characterizing the computational

capabilities of current quantum devices, focusing on a processor’s ability to sample from its full Hilbert space.

In this chapter, we detail the protocol’s implementation and simulate its use on an existing device,
the 8-qubit Rigetti Agave. Using the classical supercomputer KUATOMU together with the ATOS QLM
system, we model the benchmarking procedure while incorporating experimental constraints such as noise and
hardware connectivity. Our results demonstrate how majorization-based benchmarking can help determine

noise thresholds necessary for reliable complex computations.
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4.1 The benchmarking protocol

As discussed in the previous chapter, the fluctuations in Lorenz curves derived from the output prob-
abilities of random quantum circuits composed of universal gate sets exhibit a limiting behavior qualitatively
similar to that of random n-qubit vectors. This heuristic observation suggests a correlation between the
qualitative characteristics of the Lorentz curve fluctuations and the circuit’s capacity to sample from the full

Hilbert space.

Protocols such as quantum volume and XEB establish successful sampling from a universal distri-
bution as a key benchmark for the computational capacity of quantum processors. Proponents of quantum
volume argue that random quantum circuits model arbitrary quantum operations, offering a general measure
of a device’s computational capabilities [39]. Recent efforts to demonstrate quantum advantage have also
focused on proving a device’s capability of sampling from a universal distribution [34,35,37|. In this context,
XEB has been implemented as an alternative metric to fidelity, verifying the successful implementation of

random quantum circuits.

Drawing from these results, we propose a majorization-based benchmarking protocol. First, we
implement random quantum circuits using the native gates of a given device. The output probabilities of
this experiment are then compared against two reference curves: (i) n-qubit Haar-random pure states, and

(ii) randomized n-qubit Clifford circuits. These curves are denoted Haar-n and Cliff-n, respectively.

As noted earlier, random quantum circuits composed entirely of Clifford gates are strongly simulable.
Furthermore, these circuits exhibit a characteristic limiting behavior that is qualitatively distinct from random
n-qubit vectors [54]. Thus, while the Haar-n curve characterizes the sampling capabilities of a noiseless
quantum device able to sample from its full Hilbert space, the asymptotic Cliff-n curve serves as a natural

reference for sampling capabilities that can be efficiently sampled by classical means.

The Clifford circuits used in this procedure are generated from the set {CNOT, H, S}, starting from
a random pure separable state and no qubit connectivity constraint. The Haar-n line, on the other hand,
is generated by sampling an ensemble of random n-qubit states from the Haar measure and computing its
cumulant fluctuations. An example of these characteristic fluctuation curves for 8-qubit systems can be seen
in Figure 4.1. These curves were computed from an ensemble of 10* random vectors. The Cliff-8 curve was
computed from the output probabilities of Clifford circuits composed of 2000 gates, while the Haar-8 curve

was calculated using an ensemble of Haar-random 8-qubit pure states.

The fluctuations in Lorenz curves computed from the RQC output probabilities depend on various
factors, including the number of circuits used to compute the standard deviation, the number of gates per
circuit, qubit connectivity, and noise levels. To isolate these factors and study their individual effects, we

first analyzed noiseless quantum processors.

Using SENAI CIMATEC’s quantum computing simulator, KUATOMU, we simulated the operation
of several currently available universal, circuit-model quantum processing units (QPUs). I conducted simu-
lations of Rigetti’s Agave 8-qubit QPU [68], as well as theoretical architectures inspired by this device. My
collaborator, Alexandre B. Tacla of SENAI-CIMATEC, analyzed IBM’s architectures, including the 5-qubit
IBM Q Yorktown and the 7-qubit IBM Perth. In this thesis, I will focus on the simulations of Rigetti’s
devices. The results for IBM’s architectures, which are qualitatively similar to those obtained for Rigetti’s,

can be found in Reference [2].

27



— Cliff-8
—— Haar-8

std[F(k)]

0.0 0.2 0.4 0.6 0.8 1.0
kIN

Figure 4.1: Illustration of the characteristic curves used in the benchmarking procedure for the case of an 8-qubit system.

The circuits used in my benchmarking experiments were constructed by sampling from the gates of
the set Grig = {RX,RZ, CZ}, where RZ rotations can be of an arbitrary angle, but RX rotations are restricted
to £7 and £7. The angles of the RZ rotations are sampled uniformly from [—, 7) and the angles of the RX

T T
259
quantum processors [69].

rotations, from {—7r, — ﬂ'}. These are the gates which can be natively implemented by Rigetti’s older

Our initial objective was to determine the number of gates required to achieve the desired level of
complexity in the output while taking into account the Agave’s native gate set and connectivity constraints.
To address this, we systematically varied these parameters in our simulations, analyzing their impact on the
fluctuation curves. After this, we explored explored the role of qubit connectivity by simulating other possible
architectures. Figure 4.2 illustrates the studied configurations. Graph (a) represents the architecture of the
Agave device, which has a “ring” geometry with nearest-neighbor connections, while graphs (b)—(d) represent
hypothetical 8-qubit devices with an increasing number of connections between the qubits.

(a)O ’

(c) % (d)
Figure 4.2: Connectivity maps for (a) Rigetti Agave 8-qubit, “ring” QPU, with nearest-neighbor connectivity (n. = 2), and other
examples of 8-qubit QPU geometries with increasing qubit connectivity: (b) n. =4, (c) n. =6, and (d) n. = 7 (all-to-all).

These simulations allowed us to systematically assess how circuit depth and qubit connectivity in-
fluence the complexity of the output distribution. By comparing fluctuation curves across different config-
urations, we identified the minimal conditions required for the circuits to exhibit behavior consistent with
universal sampling. In the following section, we present our findings, discussing how these factors impact the

effectiveness of the benchmarking protocol in a noiseless setting.
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4.2 Noiseless simulations

In majorization-based benchmarking, the asymptotic fluctuations in the Lorenz curves of Haar-
random vectors define the reference curve for universal sampling capabilities. To ensure the reliability of the
benchmarking procedure, this reference curve must be stable. As a first step, we analyzed how ensemble size
affects the statistical variation of the Haar-8 curve, determining the minimum number of samples needed
to make these fluctuations negligible. Figure 4.3 illustrates how the fluctuations in the Lorenz curves of
Haar-random 8-qubit probability vectors vary with ensemble size. For small ensembles, the curve exhibits

significant statistical variation but stabilizes as the number of samples increases.
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Figure 4.3: Fluctuations in the Lorenz curves of Haar-random 8-qubit probability vectors for different ensemble sizes. As the number
of samples increases, the curves converge toward the Haar-8 benchmark line.

To study this phenomenon systematically, we generated a total of 10* Haar-random 8-qubit probabil-
ity vectors and divided them into batches with an increasing number of samples. The first batch consisted of
500 samples, the second of 1,000, and so on, with the final batch comprising all 10* samples. This produced
a total of 20 batches, which were labeled by an index i € {1,...,20}. Next, we computed the standard devi-
ation of the Lorenz curves within each batch. To quantify the convergence to the asymptotic Haar-8 curve,

we measured the vertical distance between the peak standard deviations of consecutive batches, defined as:
AP; = |max [std [F(k)],] — max [std [F(k)],_,]]| - (4.1)

In this formula, std[F'(k)], represents the standard deviation of the Lorenz curves in the batch labeled by the

index 1.

A plot showing the distances AP; versus the number of circuits contained in batch ¢ can be seen in
Figure 4.4. For ensembles using 5000 circuits or more, the vertical distance between the peak fluctuations
is less than 1073. This variation is small enough to ensure that the Haar-8 benchmark line remains fixed
within visual resolution. As a result, all Lorenz curve fluctuations used in these simulations were calculated

using an ensemble of 5,000 circuits

After determining the appropriate ensemble size, we began investigating the number of gates required
for a noiseless 8-qubit Agave device to produce fluctuations in Lorenz curves that closely align with the Haar-

8 benchmark line, thereby achieving behavior consistent with universal sampling capabilities. The number
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Figure 4.4: Plot of P; (the vertical distance between the peak standard deviations of consecutive batches) versus the number of samples
in the largest batch, showing the convergence of the Lorenz curve fluctuations to the asymptotic Haar-8 benchmark.

of gates ranged from 100 to 2000, increasing in increments of 100 gates. In order to simulate the topology of
the Agave device, the connectivity was initially restricted to nearest neighbors. Figure 4.5 shows the results
of these simulations. For clarity and to avoid overloading the graph with excessive information, it illustrates

only the fluctuations for circuits with gate counts ranging from 100 to 1900, with increments of 200 gates.

The characteristic fluctuations approach the Haar-8 curve as the number of gates increases. This
provides us with further evidence that the Haar-8 curve can be considered a lower limit for universal (noiseless)
gate sets, and thus, serve as our reference for identifying a processor’s capacity to sample from the full Hilbert

space.

For circuits composed of 100 and 300 gates, the fluctuations are significantly above those typical
of Cliff-8. This behavior is similar to that of the 2-qubit phase-random diagonal gate circuits studied in
Reference [54]. As was stated previously, this gate set cannot perform universal computation, but is not
classically simulable in the strong sense. Hence, for this region, the results of the benchmarking procedure
are inconclusive. At 500 gates, the Agave reaches a level of complexity comparable to the Cliff-8 benchmark.
Though clearly distinguishable from each other, both curves are similar in shape and height. As the number of
gates increases further to 700 and 900, fluctuations decrease below the Clifford mark and approach the Haar-8
limit. Note that fluctuations for 1100 gates nearly coincide with Haar-8. For 1300 gates or more, the Lorenz
fluctuation curves become visually indistinguishable from Haar-8. These results suggest that a noiseless
Agave processor is theoretically capable of efficiently sampling from a complex probability distribution, but

achieving this would require a random quantum circuit comprising over 1000 noiseless gates.

To gain a more quantitative understanding of this phenomena, I computed the distance between the

fluctuations for each number number of gates and the Haar-8 benchmark line, defined as

n

Dy = |3 (stalF ()] - std[FH(k)})z . (4.2)

k=1

Figure 4.6 shows a plot of Dy versus the number of gates in the random quantum circuits. As the size

of the circuit increases, the distance to the Haar-8 line decreases, a behavior also observed in Figure 4.5.
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Figure 4.5: Fluctuations of the Lorenz curves for random quantum circuits with an increasing number of gates. The result suggests
that a noiseless Rigetti Agave QPU would need to execute RQCs of 1300 gates or more to sample from its full Hilbert space.

Comparing the two figures, we observe that visual coincidence with the Haar-8 line occurs in the region
where Dy < 1072.
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Figure 4.6: Distance to Haar-8, as defined in Equation 4.2, as a function of the number of gates in random quantum circuits composed
of Rigetti’s native gates. By comparing to Figure 4.5 it is possible to see that visual coincidence with the Haar-8 line occurs when the
distance is below 107 2.

To analyze the effect of qubit connectivity on a processor’s capacity for complex computation, we
calculated the fluctuations in Lorenz curves for RQCs of different gate depths on theoretical Agave-inspired
processors with increasing qubit connectivity. By plotting Dy as a function of gate depth for these archi-
tectures, we were able to compare their performance. These results can be seen in Figure 4.7, where each
configuration is labeled by its qubit connectivity number n.. We observed that convergence to Haar-8 re-
quires less gates when qubit connectivity is larger. Fluctuations for the n, = 6 and n. = 7 configurations
coincide with Haar-8 for 700 gates. For the n. = 4 geometry, the coincidence happens at 900 gates. All of
the theoretical architectures show an improved capacity for handling complex computation when compared

to the Agave, which requires circuits of over 1000 gates to achieve similar results.

The results show that the majorization-based indicator reacts to changes in qubit connectivity in a
manner consistent with expectations. As the connectivity between qubits increases, fewer gates are required
to produce outputs aligning with the Haar-8 benchmark line. This indicates a processor’s improved ability

to handle more complex quantum computations. This behavior aligns with the intuitive idea that more

31



2.004
. — =2
10
175 1 Be=d
10714 — n=6
o 1507 . — n=7
o 10
©
© 1251
T 1073
S 1004 500 1000 1500
o
2
S 075
—
u
A 050
0.25 1
0.00 -
; ; ; . ; . ;
0 250 500 750 1000 1250 1500 1750 2000

Number of gates

Figure 4.7: Distance to Haar-8, as defined in Equation (4.2), as a function of circuit depth for all 8-qubit QPU designs shown in Figure
4.2, with the Rigetti native gate set. The inset shows the same results in logarithmic scale.

connected processors can more efficiently process information, as higher connectivity allows for more flexible
quantum operations and reduced circuit depth [70]. It is important to note that these results were obtained in
the absence of noise, focusing purely on the architectural effects. These findings suggest that the majorization-
based indicator is a useful tool for evaluating a processor’s performance, as it provides meaningful insights
into how well a quantum processor can scale its computational capabilities in response to architectural

improvements.

4.3 Noisy simulations

To develop a benchmarking method suitable for real quantum processors, it is crucial to understand
how the majorization-based indicator responds to typical noise. In this work, I considered a simplified noise
model in which one assumes all quantum gates operate perfectly, meaning a processor’s qubits only experience
noise through interaction with the environment during idle periods. The two main types of noise these qubits

can experience are described by the quantum operations of amplitude damping and dephasing.

Following Reference [33], a quantum operation ¢ is a completely positive trace-preserving (CPTP)

map that acts on the state p of the affected qubit as
e(p) = > ExpEj}. (4.3)

To ensure trace preservation, the set of Kraus operators { E}} must satisfy the completeness relation

ZEZE;C =1. (4.4)
i

Amplitude damping is a quantum noise channel that models energy dissipation in open quantum
systems. It describes processes such as spontaneous photon emission by an atom or a spin system at high
temperature reaching thermal equilibrium with its environment. Formally, the amplitude damping operation
is given by

ealp) = BopEl + E1pE] (4.5)
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where

Eo = [0) (0] + /1 —p|1) (1],

and p denotes the probability of error. This probability increases with the duration of the idle period according
to

p=1—exp(—t/T1) (4.6)

where 77 is a characteristic time constant of the process. A detailed discussion of amplitude damping can be

found in section 8.3.5 of Reference [33].

Dephasing, in contrast, is a quantum noise channel that models the loss of quantum information
without energy dissipation. It describes processes such as photon scattering in a waveguide or the perturbation
of atomic electronic states due to distant electrical charges. Like amplitude damping, dephasing can be

described as a quantum operation of the form
ep(p) = Eopﬁg + ElpEI , (4.7)
where the Kraus operators are given by

Ey=+/1-p1,

with the probability

p= (1~ /T— en(20/T3) (4.9)

Here, as before, T5 is a characteristic time constant of the process. A detailed discussion of dephasing can
be found in section 8.3.6 of Reference [33].

Observing the mathematical descriptions of the amplitude damping and dephasing processes, we
can see that the constants T and Ty implicitly describe the evolution of error in these processes. These
characteristic times are inversely related to the probability of error: higher values of 77 and T5 indicate a
lower noise environment, whereas lower values correspond to higher noise levels. As such, these constants
quantify the noise levels in a quantum processor, which is why they often appear in processor specifications.
For instance, in the case of the Agave processor, Rigetti reports an average value of 77 = 13.38 us, while the

average for T» is 15.05 ps [71].

The idle time for each qubit depends on the configuration of the circuit being implemented, as some
gates can be applied simultaneously while others must wait their turn, leaving certain qubits idle. The
duration of each qubit’s idle period is determined by the gates applied to other qubits during its waiting
time. Since the idle time of each qubit depends on the durations of gates applied to others, the ATOS QLM
simulations for noisy quantum processors use the duration of a single-qubit gate as the unit of time when

applying the noise channel.

For the Rigetti Agave processor, the average duration of one-qubit gates is 50 ns, and for two-qubit

gates, it is 160 ns. Since the unit of time in the simulations is based on the duration of a single-qubit gate,
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the duration of the two-qubit gate was approximated to 150 ns, the closest multiple of the one-qubit gate

duration.

Our analysis considered two different scenarios: one in which only amplitude damping was present,
and another where only dephasing occurred. This approach was used to isolate the effect of each type of
noise on the system’s behavior, allowing for a clearer understanding of how each noise channel influences the
performance of the quantum processor. By separately analyzing amplitude damping and dephasing, we could
better identify the individual contributions to the overall noise profile and assess the processor’s resilience to

each type of error.

The noise time scales 77 and T5 varied from 1 us to 1 ms, with the ensemble size fixed at 5000
circuits, each composed of 1500 gates. As demonstrated in the previous section, this circuit depth results in
a fluctuation curve with a Euclidean distance from Haar-8 that is less than 10~2. This distance leads to a

curve that is visually indistinguishable from Haar-8 when an appropriate scale is chosen.

Figure 4.8 shows the results when only amplitude damping is present. As T} increases, corresponding
to a decrease in the intensity of the noise, the fluctuation curves approach the Haar-8 benchmark line. For
Ty = 1 ps, the fluctuation curve is significantly above the Cliff-8 line, and our benchmarking procedure
is inconclusive. When T is increased to 10 us, the fluctuations reduce dramatically, and the curve shape
changes. At this noise level, the benchmarking procedure remains inconclusive, as the curve does not align
with either Haar-8 or Cliff-8. At 77 = 100 us, the shape of the curve and the magnitude of the peak standard
deviation align more closely with Haar-8, suggesting that the sampling capabilities are starting to resemble
what is expected. Finally, for 77 = 1 ms, there is no apparent deviation from the Haar-8 curve. This result
strongly suggests that this level of noise ensures the Agave processor’s capability to sample from its full

Hilbert space is not compromised.
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Figure 4.8: Fluctuations in Lorenz curves for an ensemble size of 5000 circuits and circuit depth of 1500 gates, characterizing the RQC
outputs of a Rigetti Agave processor under the influence of amplitude damping.

Figure 4.9 presents the results for pure dephasing. Similar to the case of amplitude damping, the
fluctuation curves approach the Haar-8 benchmark line as 75 increases. However, for pure dephasing, the
fluctuations are zero for To = 1 us and increase monotonically as the error decreases.This behavior can be
explained by the Kraus operators for the dephasing channel, as given in Equation (4.8). The dephasing
channel effectively nullifies the off-diagonal terms of the density matrix in the computational basis [72].

As a result, when T5 is low, the output probabilities of random quantum circuits tend toward a uniform
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distribution, which causes the standard deviation to be zero. This contrast between the fluctuation behaviors
in pure dephasing and pure amplitude damping underscores that the key indicator of complexity lies in how

much the fluctuations deviate from Haar-8, rather than their absolute size.
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Figure 4.9: Fluctuations in Lorenz curves for an ensemble size of 5000 circuits and circuit depth of 1500 gates, characterizing the RQC
outputs of a Rigetti Agave processor under the influence of dephasing.

When T5 increases to 10 us, the fluctuations also increase, approaching the magnitude of those in
the Haar-8 benchmark. However, the shape of the curve remains visibly different from the reference line,
making it impossible to confirm that the Agave is still able to sample from its full Hilbert space. At 77 = 100
us, the curve aligns more closely with Haar-8, though there is still a noticeable difference in the magnitude
of the peak fluctuations. At this noise level, the Agave begins to recover its ability to sample from its full
Hilbert space. Finally, at 77 = 1 ms, there is no apparent deviation from the Haar-8 curve, suggesting that

the Agave processor can reliably sample from its full Hilbert space at this noise level.

To validate these results, we calculated the average purity of the output states (before measurement)
and the average fidelity between the noisy and noiseless output states (for the same circuit) for all studied
values of T7 and T5. Figure 4.10 shows the variation of these metrics with increasing 7' 2y, corresponding to
a decrease in noise levels. The behaviors of these metrics are similar for both the amplitude damping and
pure dephasing noise profiles. For Ty < 10 s, noise is very strong, leading to very low values of purity
and fidelity. For 10 us < Ti2) S 1 ps, we observe an intermediate noise regime, where purity and fidelity
increase rapidly from low to high values. For T} ;) 2 10 ms, noise is very low, allowing for computations with

near-unity fidelity and purity.

These results support the conclusions drawn from the benchmarking procedure and corroborate the
correlation between deviations from the Haar-8 curve and the amount of noise the circuit experiences. Small
deviations are associated with high purity and fidelity, while larger fluctuations in Lorenz curves correspond
to decreases in both purity and fidelity. This suggests that majorization-based benchmarking can assess
a quantum processor’s resilience to noise. By observing how much noise the processor can tolerate before
the cumulant fluctuations significantly deviate from the Haar curve, we can gauge its ability to handle
complex computations and establish thresholds for noise levels that ensure its capability for reliable complex
computation. This provides valuable insight into the processor’s practical applicability in real-world scenarios,

where noise is an inherent challenge.
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Figure 4.10: Average purity of the circuits’ output states (top) and average fidelity between noisy and noiseless output states (bottom)
as a function of noise times T and Ts, for the Rigetti Q8 Agave processor. These results support the conclusions drawn from the
benchmarking procedure.

An interesting observation is that the majorization-based indicator behaves differently for different
types of noise, while the purity and fidelity metrics exhibit similar trends across both amplitude damping and
dephasing. This contrast suggests the potential of the majorization-based indicator for distinguishing between
noise profiles, offering additional insight into the processor’s resilience to different noise types. While purity
and fidelity provide a general sense of the processor’s performance, the majorization-based criteria could help

identify specific noise-induced behaviors that may otherwise be overlooked.

4.4 Conclusion

In the last two decades, RQC-based benchmarking protocols have established themselves as indis-
pensable tools for evaluating the performance of quantum gates and processors. Notable examples include
randomized benchmarking, quantum volume and cross-entropy benchmarking, each of which has been suc-
cessfully implemented across the quantum computing industry to characterize and compare the performance

of existing devices.

The theoretical framework behind protocols such as quantum volume and XEB reveals an intriguing
property of universal RQCs: in the absence of noise, the probability p(z) of sampling a bit-string  over an
ensemble of quantum-circuits is distributed according to the Porter-Thomas distribution. This is a distinctly
quantum behavior. In contrast, for a set of randomly selected classical functions mapping Boolean inputs,
p(z) follows the uniform distribution, meaning no output bit-string is favored. This quantum signature—
rooted in the statistical properties of RQCs—serves as the foundation for many benchmarking protocols,

including XEB and quantum volume.

While quantum volume and XEB leverage this property to estimate circuit fidelity, the majorization-
based indicator focuses on discriminating between RQCs of different complexity classes. By evaluating
a processor’s capacity for universal computation, the majorization-based benchmarking protocol provides
insight into the complexity of operations that the device can perform, offering a complementary perspective

on quantum device performance.
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The numerical simulations presented in this chapter show that the majorization-based indicator is
sensitive to multiple relevant quantities for quantum processor performance, such as noise, connectivity and
the number of gates the device can effectively implement. It is correlated with purity and fidelity, which
are desirable properties for a benchmarking metric. Furthermore, it requires only taking measurements on
the computational basis, making it architecture independent and less experimentally costly to measure than

directly computing purity and fidelity.

These characteristics make majorization-based benchmarking a promising method for assessing ca-
pacity for universal computation in near-term devices. However, to apply this benchmark to actual quantum
processors, it is crucial to address the challenges posed by finite statistics—a topic I will explore in detail in
the next chapter. Understanding these practical limitations will be crucial to ensuring the applicability of

majorization-based benchmarking in real-world devices.
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Chapter 5

Accounting for finite statistics

The promising results of Reference [2] motivate testing the majorization-based benchmarking proce-
dure on actual quantum processors. In the previous chapter, we examined two key resources for characterizing
complex outputs: the number of gates in the RQC and the number of circuits used to compute the standard
deviation. However, before proceeding to experimental implementation, an additional factor must be studied:

the influence of finite statistics.

In a real experiment, accessing the exact probability distribution of a RQC’s output is not feasi-
ble. Instead, researchers prepare an ensemble of identical circuits and record the relative frequencies of
their outcomes. Larger ensembles yield frequency estimates that more closely approximate the probability
distribution. However, in practical settings, resources are limited, raising the question of how many mea-
surements are necessary to obtain reliable benchmarking results and how this requirement scales with the
processor’s qubit count. Understanding and addressing this challenge is crucial for the successful application

of majorization-based benchmarking to real quantum processors.

5.1 The challenge of finite statistics

Consider a quantum processor with n qubits. The measurement at the end of the quantum circuit
projects the system’s state onto one of the 2™ possible states of the computational basis. Since quantum
measurement is inherently probabilistic, the outcome is sampled from a probability distribution determined
by the quantum state. The result is a bit string of length n, which can be represented as a 2"-dimensional
binary vector x, where the component corresponding to the observed bit string is 1 and all other components

are 0.

To estimate a quantum circuit’s output probability, we perform multiple experiments under identical
conditions. Suppose we execute the same quantum circuit m times, each acting on the same initial state,

yielding m measurement outcomes. The quantity

Frea() = Y -yl (5.1)

i=1
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represents the relative frequency of obtaining a certain state |z), where 3’ is an indicator variable that is 1 if
the output |z) is obtained in the i-th experiment and 0 otherwise. Since quantum measurements project the
state onto one of the computational basis states, we have the constraint that if y¢ = 1 for some basis state
|z), then y¢, = 0 for all 2’ # .

Since Freq(z) is an empirical estimate of Prob(z), we can use Hoeffding’s inequality to bound its

deviation from the true probability. According to Hoeffding’s inequality, for a sum
Spm=X1+Xo+ -+ X5, (5.2)

where each X is an independent random variable satisfying a; < X; < b;, we have

Pr(|Sm — E[Sn]| > €) < 2exp (—M) , (5.3)

where E [S,,] is the expected value of Sy, [73].
The frequency Freq(z) can be expressed as a sum of variables X; + X5 4+ - -+ + X,;, such that

1 .
X, = —yt, 5.4
gl (5.4)

Since each X; satisfies 0 < X; < %, we substitute into Hoeffding’s inequality:

Pr(|Freq(z) — Prob(z)| > €) < 2exp (—%) . (5.5)

: (31} e (;) ‘= % (5.6)

(2

And as

we obtain the final bound:
Pr(|Freq(z) — Prob(z)| > ¢€) < 22 m (5.7)

This result shows that the probability of the empirical frequency deviating from the true probability
by more than a fixed threshold e decreases exponentially with the number of measurements. Consequently,

increasing the number of measurements significantly improves the accuracy of our estimate.

However, this bound only accounts for the error in estimating a single component of the probability
distribution. To obtain a reliable estimate of the full probability distribution, we need to ensure that all
components are simultaneously bounded by a similar inequality. According to Boole’s inequality, for any

finite or countable set of events A1, Ao, ... , A,,

P <O Ai> < Xn:P(Ai). (5.8)

That is, probability that at least one of the events happens is no greater than the sum of the probabilities of
the individual events [74].
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Since there are N possible measurement outcomes, we apply this inequality to control the probability

that at least one estimate deviates beyond e:
Pr(3z such that |[Freq(z) — Prob(z)| > ¢) < INe2€'m (5.9)

This result highlights that the required number of measurements m depends not only on the desired accuracy
€ but also on the number of possible measurement outcomes. In the context of quantum computing, this
poses a significant challenge, as the number of outcomes scales exponentially with the number of qubits,
following N = 2™,

Consequently, any practical complexity benchmark must remain viable even when the number of
measurements is limited. Understanding how finite measurement statistics impact benchmarking results is

therefore crucial for assessing its real-world applicability.

5.2 Generating Haar-n under finite statistics

Following a similar methodology as used in Reference [2], we used the quantum simulator KUATOMU
to conduct simulated experiments. We begin by studying the behavior of Lorenz curve fluctuations corre-
sponding to frequency distributions of Haar-random vectors for different values of m. These distributions,
which we refer to as Haar-like, can be considered estimates of the Haar-n benchmark line in the finite statis-
tics regime. The objective of this analysis is to determine how large m must be so that Haar-like curves
converge to the Haar-n benchmark line, serving therefore as adequate estimates. My primary focus was to
determine the qualitative scaling behavior of the number of measurements m necessary to achieve visual

coincidence with the appropriate Haar-n benchmark line as the number of qubits n increased.

As n varies, it is essential to ensure that the ensemble size used to calculate the Lorenz curve fluctu-
ations remains adequate across all values of n under consideration. This is particularly important because,
as n increases, the fluctuations in Lorenz curves of Haar-random vectors tend do decrease, a phenomenon
rooted in the concentration of measure [75]. In the context of quantum theory, this principle implies that
certain properties of random quantum states become increasingly predictable as the dimension of the system

grows [76].

To understand this behavior more deeply, recall that any pure n-qubit state can be represented as a
point on an D-dimensional hypersphere, with D = 27! — 1 [77]. This means that, as the number of qubits
rises, the dimension of the hypersphere increases exponentially. For high dimensional-spaces, geometric and
statistical properties often exhibit sharp concentration around their average values. This is formalized by
Levy’s lemma [75], which states that, for a specific class of functions acting on points on a high-dimensional
sphere, the probability of deviating significantly from the mean value decreases exponentially with the di-

mension.

Levy’s lemma applies to functions that are Lipschitz continuous. A function f is said to be Lipschitz

continuous if there exists a constant L such that for all points z and y, the following inequality holds:

|f(x) = fy)l < Lz —y|. (5.10)
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This condition ensures that the function does not vary too wildly, allowing Levy’s lemma to guarantee the
strong concentration of its values around the mean. The k-th cumulants, defined in Equation (3.31), are
continuous in this sense, since the function is bounded between zero and one. Therefore, as the dimension
of the random vectors rises, the cumulants tend to concentrate more strongly around the mean, leading to a

decrease in standard deviations.

An example of this phenomena for n € {5,6,7,8,9} is shown in Figure 5.1. In practice, this implies
that the ensemble size needs to be sufficiently large to minimize the impact of statistical variability when

calculating the standard deviation, even for larger values of n.
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Figure 5.1: The Haar-n benchmark for different values of n. Fluctuations decrease as n increases, a consequence of the concentration
of measure.

In our previous work, we determined the appropriate ensemble size using a procedure (detailed in
section 4.2) where we generated a sequence of standard deviations, each computed using incrementally larger
ensemble sizes. To quantify the convergence of these standard deviations, we calculated the vertical distance

between the peak standard deviations of consecutive batches, defined as:
AP; = |P, — P_4] , (5.11)

where P; = max [std [F (k)]

labeled by the index ¢. This approach allowed us to identify the ensemble size at which further increases no

;] is the peak value of the standard deviation of the Lorenz curves in the batch
longer significantly reduced the statistical variability, ensuring robust results without unnecessary computa-

tional cost.

To extend this analysis to circuits with n € {5,6,7,8,9} qubits, it is necessary to normalize AP; for
meaningful comparisons across different values of n. To this end, we divide each AP; by the appropriate peak
component of the standard deviation calculated using all of the generated vectors. In the previous study,
we generated a total of 10* Haar-random 8-qubit probability vectors, dividing them into batches with an
increasing number of samples. The first batch contained 500 samples, the second 1,000, and so on, with the
final batch comprising all 10* samples. This procedure was repeated for n € {5,6,7,9}, so that each AP;

was normalized as:
_P—P

A
P P2 0 )

(5.12)
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where i € {1,...,20} and Py the peak component of the standard deviation calculated using all 10* vectors.
This ensures that the distance AP; is scaled relative to the peak of the appropriate benchmark line for each

n. The resulting plot can be seen in Figure 5.2.
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Figure 5.2: Normalized vertical distance AP between the peak values of fluctuations P; and P;_1, calculated using batches i and ¢ — 1
, as a function of the number of circuits in batch 4 for a varying number of qubits. The results show that for ensembles of 5000 vectors or
more, the variation between peaks is less than 1% of the corresponding Haar-n benchmark line, for all values of n under consideration.

The results indicate that the number of circuits required to generate a stable benchmark line is not
significantly dependent on the number of qubits in the range under consideration. This is evidenced by
the significant overlap in the curves depicting the variation of AP as the number of circuits increases. For
ensembles of 5000 vectors or more, the variation between peaks is less than 1% of the corresponding Haar-n
benchmark line for all considered values of n. Therefore, the ensemble size of 5000 vectors, used in the

previous study, remains adequate even for n = 9.

After determining the appropriate ensemble size, I computed the cumulant fluctuations for frequency
distributions of n-qubit Haar-random pure states, calculated using an increasing number of measurements
m. The number of measurements was increased in powers of 2, ranging from 22 to 2'°. This range was
chosen to facilitate comparison between the size of the probability vector, given by 2", and the number of
measurements required to achieve visual coincidence with the benchmark line. The results are illustrated in
Figure 5.3.

To understand the qualitative behavior of the fluctuation curves as m increases, it is helpful to
examine the averages of these Lorenz curves for varying m. For concreteness, Figure 5.4 shows the frequency
distributions of 7-qubit Haar-random pure states as an example. While this figure illustrates the 7-qubit
case, the conclusions drawn from it apply to systems with any number of qubits, as the behavior arises from

general statistical principles governing the sampling of Haar-random states.

When m is small compared to N = 2™, the frequency vector is sparse, with only a few non-zero
components. As a result, the partial sum F'(k) reaches its maximum value (one) for small k, leading to a sharp
peak in the standard deviation at small k/N, followed by an abrupt drop to zero as F'(k) remains constant.
The Lorenz curves in this regime are characterized by a steep initial rise, reflecting the concentration of
probability in a small number of outcomes. As m becomes large compared to N, the frequency vector becomes

densely populated, and the partial sums F'(k) increase smoothly with k/N. The Lorenz curves converge to
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Figure 5.3: Fluctuations in the Lorenz curves for frequency distributions of n-qubit Haar-random pure states, calculated using an
increasing number of measurements m. The curve labeled “expected” corresponds to the infinite statistics scenario. For n = 5,6, visual
coincidence occurs at m ~ 2!, while for n = 7, 8,9, it occurs at m ~ 213,
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Figure 5.4: Average Lorenz curves for frequency distributions of 7-qubit Haar-random pure states, calculated using an increasing
number of measurements m. For m € {26, 27, 28}, the average Lorenz curves display a faceted behavior.

a characteristic curve that reflects the statistics of Haar-random vectors. This curve is determined by the
underlying Haar measure and represents the typical distribution of probabilities for Haar-random states.
Consequently, the standard deviation of F(k) exhibits a smooth, monotonic behavior, consistent with the
convergence to this characteristic curve. In the intermediate regime, where m ~ N, the frequency vector does
not yet fully resolve the underlying probability distribution. Some outcomes are overrepresented, while others
are underrepresented, leading to abrupt changes in the rate of increase of F'(k). This results in faceted Lorenz
curves, with distinct linear segments corresponding to different regimes of k/N. The standard deviation of
F(k) in this regime is undulating, reflecting the transitional behavior of the frequency vector as it moves

from sparse to dense sampling.

Since the minimum m required for overlap with the Haar-n benchmark line cannot be easily de-
termined by visual inspection, we instead consider the Euclidean distance between the frequency distribu-
tions of n-qubit Haar-random pure states and the ideal Haar-n curve. This distance, denoted Dy(n), is
computed as given by Equation (4.2). A plot of Dy(n) across varying qubit counts is shown in Figure
5.5. The range of m was limited to m € {28,29,2'0,211 212 213} to ensure greater resolution in identi-
fying the point where Dg(n) < 1072 for each value of n. For n = {5,6,7,8,9}, the intercepts occur at
m € [250,1000],[500, 1000],[1000, 2000], [2000, 3000] and [4000, 6000], respectively.

This scaling behavior poses a significant challenge to the applicability of the majorization-based
benchmarking protocol as proposed in Reference [2]. It suggest that, for larger devices, the number of
measurements required to generate the Haar-n benchmark line and demonstrate the capability of sampling
from the full Hilbert space may be impractically large. This highlights the need to modify the protocol to

ensure its feasibility in real-world applications.

To identify potential modifications, we study the frequency distributions of Clifford circuits for vary-
ing values of m and across different qubit counts. By comparing these Clifford-like curves to the corresponding
Haar-like ones, we aim to determine whether the requirement of reaching the asymptotic Haar-n curve can

be relaxed. This analysis is the focus of the next section.
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Figure 5.5: Distance Dy (n) as a function of the number of measurements m used to calculate the frequency distributions.

5.3 Differences between Haar-n and Cliff-n under finite statistics

Next, we study the behavior of fluctuations in Lorenz curves for frequency distributions of Cliff-n
circuits, or Clifford-like distributions, with the aim of determining how large m must be for Haar-like and
Clifford-like curves to be distinguishable. This builds on our earlier work [2], where we defined the asymptotic
Cliff-n curve as a reference for sampling capabilities that can be efficiently simulated by classical computers.
By computing these distributions for varying values of m and across different qubit counts, we aim to uncover
how the distinguishability between Haar-like and Clifford-like curves evolves as m increases, shedding light

on the boundary between simulable and non-simulable computation in the context of finite statistics.

As in our previous work [2], the Clifford circuits consisted of 500 gates from the gate set {CNOT, H, S},
starting from a random pure separable state and without qubit connectivity constraints. The number of
measurements was increased in powers of 2, ranging from 22 to 2'5, and the values of n were chosen as
n € {5,6,7,8}. Plots of the Lorenz curve fluctuations for these frequency distributions, corresponding to

each value of n, are shown in Figure 5.6.

Compared to the Haar-like fluctuations shown in Figure 5.3, the Clifford-like fluctuation curves
exhibit distinct qualitative behavior as m increases. While the fluctuations for Haar-like distributions decrease
monotonically, eventually approaching their asymptotic value, the fluctuations for Clifford-like distributions
initially decrease before rising toward their asymptotic value. For n € {5,6,7}, we see the peak fluctuations

begin to rise at m = 64, while for n = 8, this behavior starts at m = 128.

This result is favorable because, as the peaks in Clifford-like fluctuations rise while those in Haar-
like fluctuations fall, the two behaviors tend to diverge, making them easier to distinguish. The fact that
the decreasing behavior of Clifford-like fluctuations stops relatively early (at small m) further enhances this

distinguishability.

To analyze this behavior quantitatively, we introduce the normalized difference %, which compares

the peaks of Haar-like and Clifford-like fluctuation curves. Here, dy represents the difference between the
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Figure 5.6: Fluctuations in the Lorenz curves for frequency distributions of n-qubit randomized Clifford circuits, calculated using an
increasing number of measurements m. The curve labeled “expected” corresponds to the infinite statistics scenario.

peaks of the ideal fluctuation curves, defined as:
dp = max(std[Fe(k)]) — max(std[Fg (k)]). (5.13)

where Feo (k) and Fy (k) denote the cumulants of the of the Cliff-n and Haar-n distribution, respectively. The
difference d is defined analogously for finite statistics distributions. A visual representation of d and d for 7

qubits and m = 2° is provided in Figure 5.7.

It is important to note that this quantity will be negative when the Clifford-like distribution lies
below the Haar-like distribution. This intentional design not only signals when the Clifford curve is under
the Haar curve but also allows us to observe the transition from decreasing to increasing behavior in the
Clifford-like curves. Figure 5.8 shows a plot of % for n € {5,6,7,8}. While the difference was calculated for
all values of m, the plot focuses on the range m = 23 to m = 2'°, as we are particularly interested in the

behavior of the curves at lower values of m.
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Figure 5.8: Normalized difference between peaks of fluctuation curves for Clifford-like and Haar-like frequency distributions, calculated
for an increasing number of measurements.

For all values of n, the normalized difference % rises monotonically, approaching its asymptotic value
of 1. However, the number of measurements m required for % to approach this asymptotic value increases
with larger n. A promising finding is that, for all n considered, the number of measurements needed to
distinguish between the curves is significantly less than the dimension 2™ of the corresponding probability
vector. For example, consider the case of n = 8. As shown in Chapter 4, the difference between the CIliff-8
and Haar-8 curves is approximately dy ~ 0.06 (See Figure 4.1). At d = 0.01, or % ~ (.16, the curves are
already easily distinguishable. Figure 5.8 demonstrates that d% > 0.2 for m = 2%, meaning distinguishability

is achieved for m considerably smaller than 2™.

This result demonstrates that the majorization-based indicator not only captures differences in com-
plexity in the finite-statistics regime but also achieves this without requiring the generation of the asymptotic
Haar-random benchmark line. This is particularly encouraging from a scalability perspective, as it suggests

that the indicator remains practical even as the system size grows.
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5.4 Conclusion

Combining the results from this study with those of Chapter 4, we conclude that achieving the Haar-
n benchmark line is likely unfeasible for most current quantum devices. Realizing the asymptotic behavior
of fluctuations in the Lorenz curves of Haar-random vectors on a noiseless 8-qubit processor would require

214

thousands of high-depth unitary circuit realizations and on the order of measurements. These challenges

are further exacerbated by the presence of noise.

Moreover, the requirement to generate the Haar-n benchmark line is not only excessively stringent
but also overlooks a critical insight: fluctuations in the Lorenz curves of Haar-like and Clifford-like frequency
distributions are distinguishable well before the asymptotic behavior of the curves is fully realized. This
finding suggests that the majorization-based indicator can assess differences in complexity with a higher
resolution than previously assumed, offering a more practical and nuanced tool for benchmarking quantum

devices.

The primary limitation of the majorization-based indicator lies in its heuristic nature. While visual
inspection of fluctuations in Lorenz curves plotted against k/N allows for the distinction between Haar-like
and Clifford-like behaviors, there is currently no precise mathematical formula to quantify this distinction.
A comprehensive study accounting for the simultaneous influence of the number of gates, measurements, and
experimental realizations required to differentiate between Haar-like and Clifford-like fluctuation curves would
necessitate analyzing a large number of plots. This process is not only labor-intensive but also introduces

uncertainty, as it is difficult to ensure that all images are evaluated using consistent criteria.

This type of heuristic challenge, where visual inspection and pattern recognition play a central
role, has been successfully addressed in other fields using machine learning algorithms [78,79]. A well-known
example is the classification of handwritten digits or other images, where machine learning models are trained
to identify patterns and make distinctions that are difficult to quantify with explicit mathematical formulas.
Inspired by these successes, we propose the use of a machine-learning classifier to analyze the fluctuations
in Lorenz curves and distinguish between Haar-like and Clifford-like behaviors. By leveraging the ability of
machine learning to extract subtle patterns from complex data, we aim to overcome the limitations of manual

inspection and provide a more systematic and reliable approach to this problem.

In the next chapter, we will introduce the machine learning algorithm chosen for this study: Support
Vector Machines (SVMs). We will discuss the rationale behind selecting SVMs;, including their ability to
handle high-dimensional data and their effectiveness in binary classification tasks. A detailed explanation
of how SVMs work will be provided, along with the specific strategy we employed to train and evaluate
the model for distinguishing Haar-like and Clifford-like behaviors in Lorenz curves. Finally, we will present
and analyze the results of our study, demonstrating the potential of this approach to overcome the heuristic

limitations of manual inspection and provide a more robust framework for benchmarking quantum devices.
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Chapter 6

An implementable benchmarking

proposal

The results of Chapter 5 show that the majorization-based indicator is capable of capturing the
differences between Haar-like and Clifford-like frequency distributions well before the asymptotic behavior
of the Lorenz curve fluctuations is fully realized. This finding motivates a comprehensive analysis into
the distinguishability of Haar-like and Clifford-like curves across various experimental setups—with varying
numbers of gates, measurements and experimental realizations. Such a study would necessitate analyzing a
large number of plots, a process which is not only labor-intensive, but also introduces uncertainty regarding

the consistency of the criteria used to evaluate the images.

To address this challenge, we employed a machine learning-based strategy. A support vector machine
(SVM) was trained to distinguish between Haar-like and Clifford-like fluctuation curves, with the objective of
determining the minimum number of measurements, gates, and circuits necessary for the SVM to discriminate
between Haar-like and Clifford-like fluctuation curves with a success rate above a predefined threshold. This
approach allowed us to gain insights into the resources necessary to reliably differentiate between quantum

and classical sampling behaviors in the finite statistics regime.

6.1 Motivation

In recent years, numerous machine learning algorithms have been developed and successfully applied
to pattern recognition tasks [78]. Among these, the Support Vector Machine (SVM) stands out as particularly
well-suited for our problem. Introduced by Cortes and Vapnik in 1995 [80], SVMs classify data by identifying
the optimal hyperplane that maximizes the margin between classes. As a deterministic model, the SVM offers
a significant advantage in our study, which already involves a multitude of statistically varying quantities.
This determinism ensures a stable and interpretable framework for distinguishing between Haar-like and

Clifford-like behaviors, complementing the heuristic nature of our majorization-based indicator.

Furthermore, SVMs are capable of handling high-dimensional data efficiently using a technique called

the kernel trick. This technique relies on a positive-definite kernel function, which maps the training data onto
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a higher-dimensional feature space without explicitly computing the coordinates of the data in that space.
Instead, the kernel function represents the data through pairwise comparisons that measure the similarity
between observations, much like comparing the distances between points in a geometric space. Once the data
is transformed, the SVM identifies the optimal hyperplane that maximizes the margin between the classes.
This ability to operate effectively in high-dimensional spaces makes SVMs particularly well-suited for handling
the Lorenz curve fluctuation vectors analyzed in this study, as their dimension scales exponentially with the

number of qubits.

Finally, SVMs are also versatile in their learning paradigms, supporting both supervised and unsuper-
wised approaches. The support vector machine was originally proposed as a supervised learning algorithm,
designed to learn from labeled training data to predict outcomes for new, unseen samples [80]. However,
formulations such as the one-class SVM can be used for unsupervised learning, where the goal is to model
the underlying distribution of the data and identify anomalies or outliers [81,82]. The particular formulation
chosen for this study, Scholkopf et. al’s v-SVM [83], can be used for both supervised and unsupervised
learning tasks [81,83].

This enabled the comparison of two different approaches for data classification. In the supervised
setting, the SVM is trained on both Haar-like and Clifford-like curves, learning to classify and distinguish
between the two. In contrast, the unsupervised setting involves training the SVM exclusively on Haar-
like curves, modeling their distribution to detect deviations from universal behavior. While the supervised
approach focuses on classifying data as either Haar-like or Clifford-like, the unsupervised approach seeks to
identify features unique to RQCs composed of universal gate sets. Although the difference between these tasks
is subtle, it enables distinct inferences about the data, offering complementary insights into the complexity

of the analyzed outputs.

This chapter presents a modified version of the majorization-based benchmarking protocol, using
machine learning to distinguish between RQC outputs of different classes of complexity. It begins by explor-
ing the mathematical foundations of SVMSs, establishing the theoretical framework necessary to understand
their application in this study. Next, we present the modified benchmarking protocol, followed by an anal-
ysis of simulated experiments. The results demonstrate the experimental viability of majorization-based

benchmarking and highlight the potential of machine learning to enhance its resolution and applicability.

6.2 Support vector machines

Support vector machines are a class of machine learning models primarily used for classification and
regression tasks. They have been successfully applied to a wide range of real-world problems, including
text categorization, image recognition [79], and fraud detection [84]. In addition, SVMs have demonstrated
significant utility in the life sciences, such as in the automated classification of microarray gene expression

profiles, which can aid medical professionals in cancer diagnosis and treatment planning [85].

This section explains the fundamental mathematical principles of SVMs, providing the necessary
foundation for understanding their role in our study. It begins by tackling the problem of binary classification
for linearly separable data, followed by a formal mathematical treatment of the kernel trick. These concepts
enable us to understand the specific formulation chosen for this study—Schélkopf et al.’s ¥-SVM [83]—and

its applicability to both supervised and unsupervised learning tasks. The derivations in this section largely
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follow the approach presented in Reference 78], with additional insights drawn from Reference [86], an online

lecture series that provides a comprehensive introduction to this topic.

The simplest formulation of the support vector machine addresses the problem of binary classification
for linearly separable data. The goal of this type of classification problem is to find a discriminant function
y : RP — R that takes a D-dimensional input vector x and assigns it to one of two classes. The simplest

representation of such a function is given by
y(x) =wix+0, (6.1)

where w is called a weight vector, b is called the bias. An input vector is assigned to class C; if y(x) > 0,
and to class Cy otherwise. The equation y(x) = 0 defines a hyperplane which serves as the decision boundary

separating the two classes.

To develop an intuitive understanding of the SVM’s fundamental principles, we begin by examining a
simple scenario: the classification of linearly separable 2-D data with non-overlapping class distributions. In
this case, y(x) = 0 represents a line that separates the training data into two regions of the R? plane. There
exist infinitely many combinations of w and b that can separate the training data, corresponding to lines

with varying slopes and intercepts. However, not all such separating lines perform equally well as classifiers.

A desirable classifier should exhibit robustness: when a small amount of noise is introduced to the
dataset, the classification of the data points should remain unchanged. Geometrically, this implies that the
points should remain on the same side of the hyperplane as they were prior to the addition of noise. The
hyperplane that best achieves this robustness is the one that maximizes the margin—the distance between
the hyperplane and the closest data points of each class. Intuitively, a larger margin provides a buffer against
noise, reducing the risk of misclassification and improving the model’s generalization to unseen data. This

concept is illustrated in Figure 6.1.

» X4 » X4

Figure 6.1: Diagram illustrating two choices of decision boundaries (lines) for separating data in the R? plane. Solid shapes (blue
circles and yellow triangles) represent the initial data, while outlined shapes represent the data after the addition of noise. For the line
on the left, the addition of noise causes some data points to shift across the boundary, resulting in misclassification. For the line on the
right, the presence of a margin prevents misclassification, demonstrating the importance of margin maximization in robust classification.

While we have illustrated this concept in two dimensions for intuitive understanding, it generalizes
naturally to data of arbitrary dimensionality. In higher-dimensional spaces, the line becomes a hyperplane

that separates the data into two regions, and the margin remains the minimal distance between the hyperplane
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and the closest data points of each class. Maximizing this margin ensures robustness and generalization,

regardless of the dimensionality of the input space.

This approach is known as the hard-margin SVM and is suitable for the classification of linearly
separable data of any dimensionality, provided that the class distributions do not overlap. In the next section,
we will discuss the mathematical formalism of the hard-margin SVM in detail, which will allow us to derive
meaningful insights into the geometric properties of the problem and establish the theoretical foundation for

extending the method to cases involving non-linearly separable data and overlapping class distributions.

6.2.1 Hard margin SVM

Consider a binary classification problem with a discriminant function given by:
y(x) = sign (WTX + b) . (6.2)

The function assigns a class label of +1 or —1 to each input. Notably, the classifier’s behavior remains

unchanged if w? and b are scaled by any constant a > 0, since
sign (a(wa +b)) =sign (wx+b). (6.3)

To remove this degree of freedom and simplify the optimization problem, a scaling constraint is imposed on
w and b. The standard practice is to require the decision hyperplane to satisfy the canonical representation,
defined as:

Ly(xp) = ln(Wwix, +b) > 1, (6.4)

where x1,...,xy is the training set with corresponding labels l;,...,ly € {—1,1}. Here, I, represents the
class label of the n-th training sample, x,,. The inequalities above are referred to as the constraints of the
optimization problem. A constraint is said to be active for a data point if the equality holds, and inactive

otherwise.

With the canonical representation established, we now turn to the concept of the margin, which is
central to the formulation of the support vector machine. The margin is defined as the distance between the
decision hyperplane and the closest data points of each class. The size of the margin, p, can be computed as
the distance between the closest points on either side of the decision boundary, projected onto the direction
of the decision boundary, which is given by the weight vector w. This statement can be visualized in Figure

6.2, which illustrates the example in which the data is 2-dimensional.

Let xT and x~ denote the closest data samples on each side of the margin, with labels +1 and —1,

respectively. By the canonical representation, these points satisfy:

wlix® +b=+1. (6.5)
The margin size is given by
1 w wlxt —wlx~
p=oxt—x) o = (6.6)
2 [[wil 2wl
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» X4

Figure 6.2: Illustration of the decision boundary and margin for a 2-D example. The margin p is the perpendicular distance between
the hyperplane and the closest points, projected onto the weight vector w.

Substituting the conditions given by Equation (6.5), we obtain

1-b—(—-1-0b 1
. (-1-b) _

oWl Wl 6.7)

The objective of the hard-margin SVM is to maximize p with respect to w and b. For mathematical

convenience, this is reformulated as the following optimization problem:

1 2
arg min o |[w” , (6.8)
subject to
Ln(wlix, +b) > 1. (6.9)

This formulation is called the primal hard-margin SVM problem. While the primal problem is intuitive
and directly optimizes the margin, deriving the dual optimization problem is essential to uncover the most
important properties of the SVM, such as the role of support vectors and the application of the kernel
trick. Moreover, as the SVM optimization problem is a quadratic optimization problem, it satisfies strong
duality [79]. Thus, solving the dual problem provides the same optimal decision boundary as the primal

formulation.

To derive the dual problem, we introduce the Lagrange multipliers a4, . .., ay, each satisfying a,, > 0.

The Lagrangian for the primal problem is given by:
1 N
2 T
L(w,b,a,) = 3 lwl|” — nEZILLn {ln(w Xn +b) — 1} . (6.10)

To solve the optimization problem, the Lagrangian must be minimized with respect to w and b, and maximized

with respect to the Lagrangian multipliers. Let Vy, denote the gradient of L with respect to w, defined as

Vol = (aL Lok ) (6.11)

(9101’ “76’LUD
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Setting VL = 0 yields

N
W= anlXy, (6.12)
n=1

and %—% = 0 leads to

N
> anly =0. (6.13)

n=1

These results allow us to rewrite the Lagrangian solely in terms of the Lagrange multipliers a = (a1, ...,ay),

simplifying the optimization problem. This reformulation is called the dual Lagrangian.
First, we use Equation (6.12) to express the squared norm of w in terms of the dual variables a,:

N
|wl|? = wlw = Z anly WX, . (6.14)

n=1

Next, we rewrite a portion of the Lagrangian to simplify subsequent calculations. Specifically, consider the

following term:
N N N N
D an {ln(W'xn +6) =1} = apla W xn + > anlab— > an. (6.15)
n=1 n=1 n=1 n=1
Substituting Equations (6.13) and (6.14) into this expression, we obtain:
N N N N
Z anlnwx, + Z anlyb — Z an = ||w|* — Z A, . (6.16)
n=1 n=1 n=1 n=1
This result allows us to rewrite the Lagrangian in a simplified form:

N N
1 2 2 1 2
L{w, an) = 5 [IWlI" = llwll" + > a, = —5 Iwl™+ > an. (6.17)
n=1 n=1

Finally, using (6.12) once more, we derive the dual Lagrangian:

~ N 1 N N
L(an) = Z an — 5 Z Z anamlnlmanXma (618)
n=1 n=1m=1

where the Lagrange multipliers a,, are subject to the constraints

The first condition, a,, > 0, ensures that the Lagrange multipliers are non-negative, which is a
requirement for dual feasibility in constrained optimization. The second condition, Zﬁle anly, = 0, ensures
that the solution respects the linear constraint derived from the primal problem, as previously shown in
Equation (6.13). Together, these constraints guarantee that the dual solution is both feasible and consistent

with the primal problem.
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To fully characterize the optimal solution, the solution must also satisfy the Karush-Kuhn-Tucker
(KKT) conditions, which include the above constraints and add further requirements for optimality. For

this problem, the KKT conditions are given by:

an >0,
lny(xn) -1>0,
Qnp {lny(xn) - 1} =0.

The third condition, known as complementary slackness, has an important geometric interpretation.
It states that for each data point x,,, either the Lagrange multiplier a,, is zero, or the point lies exactly on
the margin boundary (I,,y(x,) = 1). This implies that only a subset of the data points—those for which
a, > O—actively contribute to the solution. These points, which lie on the margin boundary, are called
support vectors. All other points, for which a,, = 0, do not influence the final decision boundary. This is

the property which gives the support vector machine its name.

To better visualize the effect of this condition on the model, we use Equation (6.12) to rewrite the

discriminant function solely in terms of a,, and the bias term b:

N
y(z) = sign <Z anlpxx + b) . (6.19)

n=1

This equation demonstrates that training samples with a,, = 0 do not contribute to predictions for new data
points x. Only the support vectors, which satisfy l,,y(z,,) = 1, contribute to the final decision boundary.
This property is known as sparcity, and is computationally advantageous, as it reduces the complexity of the

model by focusing only on the most informative training samples.

Now, to complete the formulation of the support vector machine, it remains to derive an expression
for the bias term b. This term is crucial for ensuring that the decision boundary is correctly positioned
relative to the support vectors. Starting from the condition for support vectors, we can derive a numerically

stable solution for b that accounts for all support vectors in the dataset.
Substituting Equation (6.19) into the condition for support vectors yields
L (Z Al XX + b) =1, (6.20)
meS

where S denotes the set of indices corresponding to the support vectors. Since all [,, € {—1,1}, all [, satisfy

the property [2 = 1. Thus, we can simplify the above equation by multiplying through by i,

Z amlmxzxm +b=1,. (6.21)
meS

A numerically stable solution for b can be obtained by averaging over all support vectors. Letting Ng be the

total number of support vectors, this solution is given by

1
b= N Z <ln — Z amxgxm> . (6.22)

S nes mes
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The bias term is computed after the a, are determined from the dual optimization problem. This result
ensures that the bias term b is computed in a way that reduces variance among support vectors, which is
crucial for numerical stability and generalization. The averaging procedure mitigates the effects of outliers

and ensures robustness in the solution.

6.2.2 Soft margin SVM

Thus far, we have operated under the assumption of linearly separable, non-overlapping class distri-
butions. However, real-world datasets often exhibit overlapping class-conditional distributions due to factors
such as noise, outliers, or inherent variability in the data. In such cases, enforcing an exact separation of the
training data in the input space may require a highly complex decision boundary, which can lead to over-
fitting and poor generalization performance. To address this issue, the support vector machine is extended
to allow for some misclassification of training points. This relaxed formulation, known as the soft margin
SVM, introduces a trade-off between maximizing the margin and minimizing classification errors, thereby

improving the model’s robustness and generalization capability.

To achieve this, the classification constraints given by Equation (6.4) are relaxed by introducing
slack variables &, > 0, which are optimization variables that measure the degree of misclassification for

each data point. The new optimization problem is formulated as:

N
1
arg min (2 lw]* + C;&) : (6.23)

where C' > 0 is a regularization parameter that controls the trade-off between maximizing the margin and

minimizing classification errors. The new constraints are given by:

lny(xn>21_€n, nzl,...,N,
£n >0.

From these conditions, it follows that for points on or inside the correct margin boundary, &, = 0;
otherwise, &, = |l,, — y(x,)|. Together, these constraints represent a slackening of the requirement imposed
by Equation (6.4). They allow for some points to be misclassified or to lie within the margin in order to
improve the model’s robustness. To better understand how this works, let us examine the impact of these

new constraints on the classification of the data points.

When &,, = 0, the first constraint reduces to the canonical representation, as given by Equation (6.4).

Consequently,

=1 =y(x,) >1,

ln=-1 =yx,) <-1.
This implies that these data points will be correctly classified, lying either on or within the margin boundary.
When 0 < ¢, <1,

l,=1 =y(x,) >0,

l,=-1 =y(x,) <0
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These points will also be correctly classified but will lie within the margins. Finally, points with &, > 1
will be misclassified, as the condition |l,, — y(x,)| > 1 can only be satisfied if the signs of I,, and y(x,,) are
opposite. Points satisfying either 0 < &, < 1 (margin violations) or &, > 1 (misclassifications) are referred

to as margin errors, as they deviate from the ideal margin boundary defined by &, = 0.

The trade-off between margin violations and model robustness can be intuitively grasped by visu-
alizing the geometric relationship between the decision boundary and training samples satisfying each of
these conditions. Figure 6.3 provides a schematic representation of these cases, illustrating the relationship
between &, and the classification outcomes for the case of 2-dimensional data. Points 1 and 2 represents
cases in which &, = 0; they are correctly classified and lie outside the margin and on the margin boundary,
respectively. Point 3 corresponds to a case where 0 < &, < 1; it is correctly classified but violates the margin
boundary. Finally, point 4 represents a case in which &, > 1, resulting in a misclassification. Points 3 and 4
are both examples of margin errors. This visualization highlights the practical implications of the trade-off
between margin violations and classification accuracy, providing insight into how soft-margin SVMs balance

robustness and generalization.

30
20

» X4

Figure 6.3: Schematic illustration of the relationship between &, and classification outcomes for 2D data. Points 1 and 2 represent
correctly classified points (£, = 0) lying outside the margin and on the margin boundary, respectively. Point 3 shows a correctly
classified point with 0 < &, < 1, violating the margin boundary. Point 4 represents a misclassified point where £, > 1. Points 3 and
4 are examples of margin errors. This visualization highlights the practical implications of the trade-off between margin violations and
classification accuracy.

Having established the soft-margin SVM formulation and its constraints, we now turn to solving the
associated optimization problem. As in the hard-margin case, we employ the method of Lagrange multipliers,
which allows us to incorporate the constraints into the objective function and derive the optimal solution.
To extend the principles used for the hard-margin SVM to the more general soft-margin case, we introduce
two sets of Lagrange multipliers, a,, > 0 and p,, > 0. The Lagrangian for this optimization problem is given
by

L.t i) = L 17+ €360~ S o)~ 1460} — > (6.24)

05 Ans Gny Un =9 P n P n UnY Xn n nZIUn n- .
As before, the Lagrangian multipliers must be non-negative and the dual problem must satisfy the require-
ments of the original optimization problem, I, y(x,) > 1—¢, and &, > 0. Finally, we impose complementary

slackness, which implies a, (I,y(x,) — 1+ &,) = 0 and p,&, = 0. The combined set of conditions that must
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be satisfied by the soft-margin SVM optimization problem is given by:

an, >0,

Ly(xn) —1+&, 20,
an(lny(xn) =1+ &) =0,
pn 20,

pnén =0,

& 20,

withn=1,...,N.

The optimization with respect to w and b is performed in the same manner as in the hard-margin
case, and recovers the conditions given by Equations (6.12) and (6.13). Since the expressions for a,, and w
are the same as in the hard-margin case, the substitutions can be performed the same way (see Subsection

6.2.1) and the Lagrangian can be rewritten as

L(W, an, &y pin) = HW” +Zan+025n Zangn Zﬂnfna (6.25)

n=1 n=1

which simplifies to

N N
1
L(W, an,&ns ptn) = =5 [WI* + D an + D60 (C — jn = an) - (6.26)
n=1 n=1

Setting % = 0 yields:
an =C — tp, (6.27)

implying that C' — pu, — a, = 0. Substituting this condition into the Lagrangian, we recover the dual

Lagrangian of the hard-margin case:

N N
Z Z U Wbl Xn T Xom - (6.28)
n=1m=1

l\')\»—l

~ N
L(ay) = Z

However, this is not the same optimization problem, as the constraints on the dual Lagrangian are different.
Since a,, C and pu, are all non-negative, it follows that a, is bounded between 0 and C. Additionally,

ZnN:1 anl, =0, ensures that the solution respects the linear constraint derived from the primal problem, as

shown in the previous section. The resulting set of constraints for the dual problem is

0<a,<C,
N
> anly =0,
n=1

forn=1,...,N.

As before, substituting Equation (6.12) into discriminant function leads to:

N
y(x) = sign (Z anlnXix + b> . (6.29)

n=1

58



Hence, the soft-margin SVM maintains the sparsity of the solution, as only training samples with a,, > 0
contribute to the model’s predictions. These samples are the support vectors, which include points lying on
the margin boundary (&, = 0), within the margin (0 < &, < 1) and misclassified points (&, > 1).

As in the hard-margin SVM case, there is a relationship between the values of a,, &, and the
geometric placement of the training samples relative to the margin. To understand this, we first compile all

the conditions derived by solving the optimization problem

0<a,<C,

ly(xn) =1+& 20,
an(lny(xn) =1+ &) =0,
pn = 0,

pnén =0,

& >0,

an =C — Uy, .

When both a,, and &,, equal zero, the training sample is correctly classified and lies outside the margin.

The third condition, together with the requirement that a,, be non-negative implies that the training samples
for which a,, > 0 satisfy

lhyxn) =1-¢&,. (6.30)

This is also known as the support vector condition. When a, < C, the last constraint implies that g, is
strictly positive. According to the fifth condition, &, = 0, meaning &, = 0. Hence, points for which &, =0
and 0 < a,, < C will lie exactly on the margin. Points with a,, = C are either correctly classified, but violate
the margin (if 0 < &, < 1) or are misclassified (if &, > 1).

The relationship between a,,, &, and the geometric placement of the training samples relative to the
margin is especially convenient because, once the values of a,, are calculated by solving the dual optimization
problem, it is possible to determine which of the support vectors lie exactly on the margin. These support
vectors, which satisfy 0 < a,, < C, can then be used to derive a numerically stable solution for b. Substituting
Equation (6.12) into the support vector condition yields

In <Z amlmxgxm + b) =1, (6.31)

mesS

where S denotes the set of indices corresponding to the support vectors. The final expression for b is given
by

b= NLM Z <ln — Z amlmx,TLxm> , (6.32)

neM meS

with M denoting the set of indices of data points having 0 < a,, < C.

Note that, in both the hard-margin and soft-margin SVM formulations, neither the optimization

problem nor the final expression for the discriminant function depend explicitly on the coordinates or the
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training samples themselves. Instead, these quantities depend solely on scalar products between coordinates.

This property will prove crucial later when we generalize the SVM formulation to handle nonlinear data.

6.2.2.1 The v-SVM formulation

Having discussed the original soft-margin SVM, we now turn our attention to the specific algorithm
employed in this work: the v-SVM formulation, proposed by Scholkopf et. al [83]. This formulation is a
reparameterization that substitutes the parameter C' with v, whose relationship to the number of margin

errors and support vectors is more interpretable, making it more convenient for users to apply and tune.

In the linear case, the ¥-SVM formulation involves maximizing the Lagrangian [7§]

N N
~ 1
L(an) = =5 ; mZ::l UGl X T X, (6.33)
subject to the constraints
1
0>an> —,
Z Qp 2 N
N
> anl, =0,
n=1
N
Z Ap > V.
n=1

These conditions enable the parameter v to be interpreted as both an upper bound on the fraction of
margin errors and a lower bound on the fraction of support vectors. As was discussed in Subsection (6.2.2),
support vectors include all the points for which a,, > 0, while margin errors include only those for which a,,
is at its maximum value. This means that all margin errors are support vectors, although not all support

vectors are margin errors.

Let Ngy denote the total number of support vectors, and Nj;g, the number of margin errors. It
follows that Ngy > Njsg. In the extreme case in which all support vectors are margin errors, each term a,

will either be 0 or 1/N. In this case, the sum 25:1 a,, reaches its maximum value:

Nsv
max 321 a N ( )
Recalling that
N

> an>v, (6.35)

it follows that

Thus, v serves as a lower bound for the fraction of support vectors.
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Now, consider the case where not all support vectors are margin errors. In this situation, the sum

can be rewritten as
N

Nuyg
. = A, .
> a s (6.37)

n=1

where A accounts for the contribution from support vectors that are not margin errors. Rearranging,

N

Nue
N _;an A. (6.38)

To find an upper bound for the fraction of margin errors, we consider the case in which the sum ZnN:1 an is

at its minimum. From Equation (6.35), we have:

N
%E —v—A. (6.39)
Since A > 0, it follows that
N,
ME <. (6.40)

Thus, v serves as an upper bound for the fraction of margin errors.

This property of the v-SVM formulation is particularly interesting for the purposes of our study, as
it provides a straightforward interpretation for one of the model’s key parameters. By fixing v, we directly
establish an upper bound on the fraction of data points that can be margin violations or misclassifications. For

instance, setting v = 0.2 ensures that at most 20% of the data points violate the margin or are misclassified.

Controlling this percentage is crucial because it directly impacts the accuracy of the classification:
allowing too many misclassifications would degrade the performance of the classifier, while too few might
lead to overfitting—a scenario where the model performs well on the training data but fails to generalize to
unseen data—or an overly rigid model. This interpretation offers a clear criterion for selecting v, which is
especially valuable in a study that must account for numerous variables. Moreover, the ability to control
the fraction of margin violations aligns with our goal of achieving a balance between model robustness and

classification accuracy.

6.2.3 The kernel trick

So far, we have focused on the case of linearly separable data, where the SVM formulation provides
a theoretically sound and interpretable framework for classification. However, real-world applications often
involve data that is not linearly separable, exhibiting complex, nonlinear patterns. A common strategy in
machine learning to address this challenge is to transform the data by mapping it onto a higher-dimensional
space, where it may become linearly separable. This new space is called the feature space, and the transfor-

mation introduces new feature representations that better capture the data’s structure.

To illustrate this idea, consider a simple example from classical mechanics [79]: Newton’s law of
gravitation, which describes the gravitational force f between two masses m, and mo separated by a distance

r. The relationship is given by:
mimes
2 )

f(ml,mzﬂ”) =C

; (6.41)
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where C is a constant. In its current form, this relationship is nonlinear, and a linear model would struggle

to learn it directly. However, by applying a logarithmic transformation to the variables:
(my,ma,7) = (z,y,2) = (Inmq,lnma,Inr), (6.42)
we can rewrite the relationship as:
g(x,y,2) =In f(my,ma,r) =InC +Inmy + Inmy — 2Inr, (6.43)

This transformed equation is linear in the new variables x, y, and z, meaning a linear model could now learn

the relationship.

In this example, the transformation does not increase the dimensionality of the data; instead, it
maps the original input space X onto a different feature space F' of the same dimensionality. However, in
many real-world situations, it is not possible to find such a mapping that allows the relationship between the

features to be expressed in a linear form without increasing the dimensionality of the data.

'y

Figure 6.4: A training set composed of 2D data that is not linearly separable in the original input space. No straight line can classify
the data without significant misclassification. Adapted from Reference [87].

Consider, for example, the scenario illustrated in Figure 6.4 [87], where we have a training set of
2-dimensional data that is not linearly separable in the original 2D space. In this case, no straight line can
be drawn to separate the two classes without misclassifying a significant portion of the data. As a result, the
SVM cannot effectively classify the data in its current form. However, we can define a transformation that
maps this 2-dimensional data onto a 3-dimensional feature space, where the data becomes linearly separable

by a plane. This transformation is achieved by applying the function ¢ : R — R3, defined as:
(1, m2) = (x%, \/5931952733%)- (6.44)

As shown in Figure 6.5, this transformation captures the nonlinear relationships in the original data, enabling
the transformed data to be separated by a linear decision boundary in the 3D feature space. This illustrates
the power of mapping data into higher-dimensional spaces to achieve linear separability, a key idea behind

the extension of SVMSs to nonlinear classification tasks.

Such explicit mappings, however, become impractical as the dimensionality of the data and the
complexity of the transformations increase. Computing and storing high-dimensional feature vectors can
be computationally prohibitive, especially for large datasets or highly complex feature spaces. The key

innovation of the SVM formulation lies in its ability to circumvent this challenge. As discussed earlier, neither
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Figure 6.5: Visualization of the transformed data in a 3D feature space, where the data becomes linearly separable by a plane. Adapted
from Reference [87].

the SVM optimization problem nor the final expression for the discriminant function depend explicitly on the
coordinates or the training samples themselves. Instead, these quantities depend solely on scalar products
between coordinates. This observation makes it possible to implicitly map the data onto a higher-dimensional
feature space through the use of kernel functions, avoiding the need to explicitly compute the transformed

feature vectors.

Consider a nonlinear mapping ¢ : X — F', chosen so that the transformed data is linearly separable

in the feature space F'. The new discriminant function is given by:
y(x) = sign (W' ¢(x) +b) . (6.45)

Using this, the dual Lagrangian can be written as:

~ N 1 N N
L(an) = Z:lan - 5 Z Z anamlnlm¢(xn)T¢(Xm) . (646)

n=1m=1

Instead of explicitly constructing ¢(x,) and ¢(x,,) for all values of n and m, we can define a kernel function:

k(Xn, Xm) = ¢(X7L)T¢(Xm) ) (6.47)

which allows the inner product to be computed implicitly. This means that rather than explicitly defining
a feature space, computing the inner product in that space, and then finding a way to compute this value
directly from the original inputs, we can define a kernel function directly. This bypasses the need for explicit

feature mapping, significantly reducing computational costs.

To ensure that a function is a valid kernel, we need to establish the properties that guarantee it
corresponds to a valid inner product in some feature space. Let X be any finite input space. According
to Mercer’s theorem [79], a symmetric function & : X x X — R is a kernel function if, for all n > 1,

T1,%T2,...,Tn € X and ¢1,¢2,... ,¢, €R:

n

Z CiCjk'(fEi,ij) Z 0. (648)

ij=1
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This condition ensures that the kernel function corresponds to a valid inner product in some feature space.
Equivalently, the matrix K with entries k;; = k(z;, ;) must be positive semi-definite (i.e., it has non-negative

eigenvalues).

The most commonly used kernel function is the Gaussian kernel, defined as:
k(n, X)) = e 7ol (6.49)

where 7 is a free parameter. This is also called the Radial Basis Function (RBF) kernel. Conceptually, kernels
are often presented as a measure of similarity between points [88]. The Gaussian kernel provides an example
where this notion can be intuitively grasped. The function has its maximum value, 1, when the Euclidian

distance ||x,, — X;,|| between x,, and x,, is zero, and it decreases exponentially as this distance increases.

This interpretation allows us to gain intuition on the role of the parameter . For large values of ~,
k(xpn,Xm) will decrease rapidly as the distance between x,, and x,, increases. Conversely, for small values of
v, the decrease will be slower. Intuitively, v can be interpreted as defining how far the influence of a single
training example reaches, with low values meaning “far” and high values meaning “close”. The v parameter

can be seen as the inverse of the radius of influence of samples selected by the model as support vectors [89].

Choosing an appropriate value for = is crucial for the performance of the SVM. If v is too large, the
model may overfit to the training data, capturing noise and leading to poor generalization. On the other

hand, if « is too small, the model may fail to capture important patterns in the data.

In conclusion, kernel functions play a fundamental role in enabling SVMs to handle complex, non-
linear data. By implicitly mapping input data into high-dimensional feature spaces, they allow the SVM
to efficiently construct nonlinear decision boundaries, as illustrated in Figure 6.6. This understanding of
kernels is particularly crucial for comprehending one-class SVMs, which extend the SVM methodology to
unsupervised learning tasks. In one-class SVMs, kernels are essential for defining a boundary around the
data, enabling the model to identify outliers or novel patterns. This mechanism will be explored in detail in

the following section.

¢(X2) Xz

> D) . X,

Figure 6.6: Schematic representation of how an SVM can be used to classify nonlinear data. By employing the kernel trick, the data
is implicitly mapped into a higher-dimensional feature space, where it becomes linearly separable and the SVM identifies a separating
hyperplane (left). When transformed back into the original input space, this hyperplane corresponds to a nonlinear decision boundary
(right).
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6.2.4 One-class SVMs

Imagine a door equipped with a facial recognition system designed to unlock only for a specific
authorized user. For this system to work effectively, it must learn to recognize the unique features of the
authorized user’s face and distinguish it from all other possible faces, including those it has never encountered
before. When presented with a new image captured by the device’s camera, the system should then determine
whether the face belongs to the authorized user or not. This is a classic example of a one-class classification
problem. In such problems, the goal is to learn a model that identifies objects belonging to a specific target
class (in this case, the authorized user’s face) while rejecting all other objects (all other faces) as outliers or

anomalies.

Unlike traditional classification tasks, where the model is trained on examples from multiple classes,
one-class classification focuses solely on defining the boundaries of a single class, making it particularly useful

for tasks like anomaly detection [90], fraud prevention [91], and novelty identification [82,92].

In Reference [81], Scholkopf et al. proposed a method for solving one-class classification problems
using the v-SVM algorithm. In binary classification, the SVM is trained on data from two distinct classes,
with each training sample labeled as belonging to one class or the other. The algorithm’s goal is to find
a hyperplane that separates the two classes with the maximum possible margin. In contrast, one-class
classification involves training the SVM on data from only one class—the target class. The goal here is not
to separate two classes but to define a boundary around the target class that distinguishes it from all other
possible data points. To achieve this, the one-class SVM constructs a hyperplane in the feature space that
separates the training data from a fixed reference point (defined as the origin) with the maximum possible
margin. The viability of this approach relies on two factors: the mathematical framework provided by the
soft-margin SVM optimization problem and the ability to create nonlinear decision boundaries using the

kernel trick.

First, let us discuss the importance of the soft-margin SVM framework. In a hard-margin SVM,
where no violations are allowed, attempting one-class classification by maximizing the margin between the
training data and the origin would not make sense. Because the origin is arbitrarily defined, the hyperplane
could be placed infinitely far away from both the origin and the training data, resulting in a trivial solution
where all points are classified as part of the target class. This would render the algorithm useless for practical
applications. The soft-margin formulation addresses this issue by allowing a fraction of the training data
to violate the margin, ensuring that the hyperplane is positioned at a finite distance from the origin and

effectively defining a meaningful boundary around the target class.

To illustrate this, let us return to the facial recognition system example. Even if the system is trained
on images of the authorized user’s face, some inputs—such as the user wearing a mask, bad lighting, or unusual
facial expressions—may deviate significantly from the training data. These inputs can be considered outliers
or anomalies. By allowing a small fraction of such points to violate the margin, the one-class SVM ensures
that the hyperplane is positioned in a way that balances the goal of maximizing the margin with the need
to minimize the number of outliers. Given this, the interpretation of v as an upper bound for the fraction
of margin errors becomes particularly important in this application. The parameter v controls the trade-off
between maximizing the margin and allowing for outliers. A smaller value of v results in a narrower margin
and fewer allowed outliers, while a larger value of v permits a wider margin and more outliers. Intuitively,

one might expect that a smaller ¥ would reduce false positives by enforcing a stricter boundary around the
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training data. However, as v approaches zero, the soft-margin SVM behaves increasingly like a hard-margin
SVM, which, as discussed, can unexpectedly lead to more false positives. Therefore, ¥ must be chosen

carefully to balance reliability (fewer false positives) with usability (fewer false negatives).

D(x;) %
°
. _
s ° o
> o . p
A\ ® i ° ®
° @ ‘ e ° °
; . o
° | .
. » q3()(1) » X4

Figure 6.7: Schematic illustration of one-class SVM classification. Using the kernel trick, the data is implicitly mapped into a higher-
dimensional feature space, where the SVM identifies a hyperplane separating the data from the origin (left). When projected back into
the original input space, this hyperplane forms a closed decision boundary (right).

Another key factor contributing to the success of the one-class SVM is the kernel trick, which enables
the construction of nonlinear decision boundaries. A linear SVM is ill-suited for one-class classification, as
a hyperplane in the input space cannot effectively encapsulate the data distribution. However, by mapping
the data into a higher-dimensional feature space and separating it from the origin, the one-class SVM can
generate a closed decision boundary. This boundary effectively isolates the target class data from outliers or
other types of data, making it a powerful tool for anomaly detection or novelty detection tasks. Together,
the soft-margin framework and the kernel trick provide a robust mathematical foundation for one-class SVM,
allowing it to adapt to complex data distributions and real-world applications. An illustration of the one-class

SVM procedure is provided in Figure 6.7.

6.3 The modified benchmarking protocol

Having established the mathematical foundations of support vector machines, we now turn to their
application in majorization-based benchmarking. In Chapter 4, we showed that the majorization-based indi-
cator can distinguish between random quantum circuit outputs generated from universal and non-universal
gate sets, even when the probability distribution is estimated from a finite number of measurements. While
our initial analysis relied on visual inspection and heuristic criteria to judge when the fluctuation curves
became distinguishable, the introduction of machine learning allows for a more systematic approach. To de-
termine the amount of experimental resources necessary for distinguishing Haar-like and Clifford-like curves,
we study the SVM’s classification error in relation to the number of gates, measurements, and experimental

realizations used to generate the training data.

To enable a meaningful comparison between curves of different classes, the definitions of Haar-like and
Clifford-like curves must be slightly adjusted. Previously, Haar-like curves were defined as the fluctuations
in Lorenz curves of the frequency distributions of Haar-random vectors. In this study, however, Haar-like
curves are derived from the Lorenz curves of output frequencies from random quantum circuits composed of

universal gate sets. Similarly, Clifford-like curves, which were previously obtained from circuits composed
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entirely of Clifford gates initialized from a random product state, are now generated from Clifford circuits

initialized in |O>®”, with n being the number of qubits. This ensures that the number of gates used to

generate Haar-like and Clifford-like curves is directly comparable.

The Haar-like curves used in our study were constructed using the native gate set of IBM’s quantum
processors, Gipm = {X, VvX,RZ, CNOT}, where RZ rotations can be of an arbitrary angle. Since VX can

generate Pauli X, we omit the latter in our simulations.

The present study focuses on circuits with n = 5 qubits, as a first step toward a more comprehensive
analysis that considers different system sizes. Ideally, varying n would allow us to explore how the classi-
fication accuracy scales with the number of qubits and whether the majorization-based indicator remains
effective in distinguishing between Haar-like and Clifford-like distributions in larger systems. However, due
to time constraints, we have not yet conducted this extended analysis. Additionally, we are not considering
connectivity constraints at this stage, which could influence the complexity of circuit implementations in
real quantum hardware. The results presented here should therefore be regarded as preliminary, with the

expectation that future work will assess the impact of system size more systematically.

Before beginning our analysis for the n = 5 qubit case, we verify whether Haar-like and Clifford-
like curves remain distinguishable under these revised definitions. To do this, we generate the probability
distributions for ensembles of 5000 circuits of each class, all composed of 500 gates. As demonstrated in our
previous work [2], these values are sufficient for obtaining asymptotic curves in the infinite statistics regime,
where probabilities are computed directly from the quantum state rather than estimated from measurements.

These distributions serve as a reference for comparison with finite-sample estimates.

We observed that initializing the Clifford circuits in |0>®n instead of a random product state sig-
nificantly increases the distinguishability between the asymptotic curves. While the difference dy between
the peak fluctuations of the asymptotic Lorenz curves is of the order of dy ~ 0.06 when the Clifford circuits
are initialized in a random product state, this distance increases to dy ~ 0.2 when the Clifford circuits are

initialized in |0>®n instead. These results are illustrated in Figure 6.8.
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Figure 6.8: Comparison between the fluctuations in asymptotic Lorenz curves for RQCs constructed from Clifford and universal gate
sets. The left panel shows results when Clifford circuits are initialized in a random product state, while the right panel corresponds to
initialization in the |O>®" state. The difference dp between peak fluctuations increases significantly in the latter case.

The difference d between the peak fluctuations in Haar-like and Clifford-like Lorenz curves was
computed across various experimental configurations, considering both the finite statistics case and the
infinite statistics regime. For each experimental configuration, 50 independent sets of fluctuation curves were

generated, and the average d value was computed over these sets. The number of gates varied from 30 to 200
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in increments of 10, while the ensemble size—i.e., the number of circuits over which the standard deviation
was computed—ranged from 20 to 1000 in increments of 20. In the finite statistics regime, the number of

measurements per circuit ranged from 8 to 32.
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Figure 6.9: Difference between peak fluctuations of Clifford-like and Haar-like curves as a function of the ensemble size and the number
of gates per circuit, in the infinite statistics regime. Both plots represent the same data but offer alternative visualizations.

Figure 6.9 presents the results in the infinite statistics regime, where only two variables are considered:
the number of gates and the ensemble size. These results are visualized as a 2D color plot, with the z-axis
representing the number of gates, the y-axis representing the ensemble size, and the value of d indicated by
the color scale. Alternatively, the data can be represented in a 3D plot, where d is mapped to the z-axis

instead.

The results show that in this regime, d reaches approximately 0.06—the asymptotic value for the
case in which Clifford circuits are initialized in a random product state—for ensemble sizes of 20 circuits with
40 gates. These results suggest that significantly fewer resources are required to achieve distinguishability

when Clifford circuits are initialized in the |0)®"

state. Furthermore, the plots indicate that ensemble size
has a significantly smaller impact on the distinguishability of the curves compared to the number of gates
per circuit. This is evident from the fact that d, represented by the color scale in the 2D plot and by the

z-axis value on the 3D plot, remains relatively stable as the ensemble size varies.

In the finite statistics regime, we consider three variables: the number of gates, the ensemble size, and
the number of measurements per circuit. As a result, the data must be visualized in a 3D color plot, where
the z-axis represents the number of gates, the y-axis represents the ensemble size, the z-axis represents the
number of measurements per circuit, and the value of d is indicated by the color scale. The color distribution
in the plot reveals that, among these resources, the ensemble size has the least impact on distinguishability.
As before, the colors of the points, representing the distance d, remain relatively stable as the ensemble size
varies. Instead, the variation in d is primarily influenced by changes in the number of gates and measurements.
Although the color variation across these two variables may appear balanced, it is important to note that m
varies in much smaller increments than the number of gates. Therefore, the number of measurements is the

dominant factor in determining distinguishability.
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Figure 6.10: Difference between peak fluctuations of Clifford-like and Haar-like curves as a function of the ensemble size and the
number of gates and measurements per circuit.

For ensemble sizes of 20 circuits with 40 gates and 8 measurements per circuit, d is already on
the order of 0.01, which, as shown in the previous chapter, is distinguishable by visual inspection. Having
established that Haar-like and Clifford-like Lorenz curves remain distinguishable under the new definitions,
we now turn to the task of training an SVM to classify them. In the following subsections, we describe the
training procedure, including the choice of parameters, the dataset construction, and the impact of different

experimental configurations on classification accuracy.

6.3.1 Training set construction and parameter tuning

The training data used in this study consists of fluctuations in the Lorenz curves of RQC output
frequencies. Each training sample x is constructed by computing the standard deviation over ¢ Lorenz
curves, obtained from frequency distributions of circuits within the same class, each composed of g gates and
estimated using m measurements. A schematic representation of how the training data is constructed can

be seen in Figure 6.11.
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Figure 6.11: Schematic representation of the training data construction. Each of the t training vectors is obtained by computing the
standard deviation over ¢ Lorenz curves, derived from frequency distributions of random quantum circuit outputs.
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The parameter v of the ¥-SVM model was fixed at 0.2. This imposes an upper bound of 20%
on the fraction of margin errors allowed by the soft-margin SVM model. Since this study is still in an
exploratory stage, we adopt a standard approach for support vector machine classification while leaving a more
detailed analysis of kernel selection and parameter optimization for future work. Given that the Gaussian
(RBF) kernel is a well-established choice for SVM classification in cases where the decision boundary is not
necessarily linear [78,79,87], we adopt it as the default kernel for our model. This choice ensures flexibility
in capturing complex relationships in the data while maintaining consistency with standard approaches in

similar classification tasks.

To determine the v parameter, we performed an initial tuning using a fixed configuration in the infinite
statistics regime, where each standard deviation was computed over an ensemble of 10 circuits composed of
30 gates. This configuration was chosen because it represents the most challenging case for classification, as
the Lorenz curves for Haar-like and Clifford-like distributions are closest together at lower gate depths. By
tuning v in a scenario where distinguishing between the two classes is hardest, we ensure that the chosen
parameter remains effective in more favorable conditions as well. The value of v varied from 0.1 to 0.5 in
increments of 0.01. This range was chosen based on practical considerations. It was broad enough to cover
a reasonable span of values typically used in similar SVM applications, ensuring that we didn’t overlook
a potentially optimal choice, while also keeping the search space manageable. Given that v controls the
influence of individual training samples in the SVM, starting from a small value (0.1) and increasing in small

steps allowed for a systematic exploration without excessive computational cost.

This tuning was performed for both the binary and one-class SVM. The training set consisted of 800
samples, with 400 Haar-like and 400 Clifford-like samples for the binary SVM, and only Haar-like samples
for the one-class SVM. The test set contained 200 samples, equally split between Haar-like and Clifford-like
circuits. The classification error was measured as the percentage of misclassified test samples. The results

can be visualized in Figure 6.12.
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Figure 6.12: Results of v tuning for both SVM classifiers, with v fixed at 0.2.

For the binary SVM, the percentage of misclassified Haar-like samples starts at approximately 12%
and drops as vy increases, eventually converging to approximately 5%. The percentage of misclassified Clifford-

like samples remains below 6% for all values of v in the considered range. For the one-class SVM, the
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parameter 7y exerts considerably less influence on the classification accuracy. The percentage of misclassified
Haar-like samples (false negatives) remains at 25% for 0.1 < v < 0.25 and increases to 26% for 0.26 < v < 0.5.

The percentage of misclassified Clifford-like samples (false positives) remains fixed at 41%.

To understand the results for the one-class SVM, recall that in an unsupervised learning setting, the
SVM is trained exclusively on Haar-like data. As a result, the parameter v plays a more significant role in
defining the margin, as it directly controls the fraction of allowed outliers in the absence of explicitly labeled
negative samples. Accordingly, the percentage of misclassified Haar-like samples is relatively close to v, which
sets the upper bound on the fraction of margin errors. To confirm this relationship, we repeated the tuning
for the one-class SVM setting v = 0.1. As expected, the qualitative behavior remained unchanged, with ~
exerting little influence on the classification errors. The percentage of misclassified Haar-like samples (false
negatives) remained at 14% for 0.1 < v < 0.36 and increases to 15% for 0.36 < v < 0.5, aligning with the

new value of v. The results are shown in Figure 6.13.
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Figure 6.13: Results of v tuning for the one-class SVM with v fixed at 0.1. The classification accuracy depends significantly more on
v than on ~ .

It is also notable that decreasing v increased the percentage of misclassified Clifford samples (false
positives) to 57%. At first glance, this may seem counterintuitive, as a smaller v results in a narrower margin,
allowing fewer outliers. However, as v decreases, the soft-margin SVM increasingly resembles a hard-margin
SVM. As discussed in subsection 6.2.4, the one-class SVM algorithm fails in the hard-margin limit because,
without a sufficient number of outliers for reference, maximizing the margin pushes the decision boundary
infinitely far from the origin. As a result, the model effectively classifies all samples as belonging to the target
class, leading to a higher false positive rate. Therefore, when using the one-class SVM, it is crucial to choose

a value of v that balances the number of false negatives and false positives.

For the binary SVM, the margin width is primarily determined by the differences in the distributions
of the two classes, making the influence of v less crucial. As a result, the effect of v becomes more noticeable.
For the Gaussian kernel, v can be interpreted as the inverse of the radius of influence of the support vectors
selected by the model. Large values of v can lead to overfitting and poor generalization, while small values
may prevent the model from capturing important patterns in the data. Based on the results from both
the one-class and binary SVM, we chose to fix v at 0.3. This value improves the classification accuracy of

Haar-like samples for the binary SVM while avoiding the risk of overfitting.
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6.3.2 Training and classification accuracy

After fixing the model parameters, the next step is to determine the size of the training and test
sets. In our study, we considered 2000 experimental configurations, varying the ensemble size from 10 to
100 (in increments of 10), the number of gates from 30 to 200 (also in increments of 10), and the number
of measurements per circuit from 8 to 32. For each configuration, we generated 900 Haar-like samples and
500 Clifford-like samples. The training set contained 800 samples per configuration—400 Haar-like and 400
Clifford-like for the binary SVM, and only Haar-like samples for the one-class SVM. The test set consisted
of 200 samples, equally divided between Haar-like and Clifford-like circuits.

To analyze classification accuracy across different experimental setups, we adopted two approaches.

First, we investigated how accuracy varies with the total amount of experimental resources. To quantify this,
we defined the resource volume V, as:

Vi,=c-m-g, (6.50)

where c is the number of circuits in the ensemble over which the standard deviation of the Lorenz curves is

computed, m is the number of measurements per circuit, and g is the number of gates in each circuit.

Second, we explored how accuracy depends on each of these resources individually while considering
their combined effects. To do this, we used a 3D color plot to visualize classification accuracy as a function of
¢, m and g, allowing us to capture trends and interactions between these variables in a more comprehensive

way.

6.3.2.1 Two-class classification

We begin by examining the results of the binary classification experiments, where the SVM was
trained on both Haar-like and Clifford-like samples. The model was then tasked with distinguishing between
the two classes, offering insights into the distinguishability of Haar-like and Clifford-like curves across various
experimental setups. The classification error is defined as the total percentage of misclassified samples from

both classes.
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Figure 6.14: Scatter plot comparing classification error to resource volume. For small values of V., the error varies widely, but as V.
increases, the variation decreases, suggesting convergence toward 0%. The red line indicates the threshold of V,. = 190,000, and the
yellow line marks the 10% error threshold. For V,. > 190, 000, the error remains consistently within 10% or less.
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A scatter plot comparing classification error to resource volume is shown in Figure 6.14. For small
values of V., the error varies widely, ranging from 0% to as high as 92%. Each point in the scatter plot
represents a different experimental configuration, meaning that among the setups with low V.., some pro-
duce fluctuation curves that are significantly more distinguishable than others. This suggests that certain

experimental resources have a much greater impact on the distinguishability of the curves than others.

As V, increases, the variation in error decreases in a way that suggests convergence toward 0%. For
V.. > 190, 000, the error remains consistently within 10% or less. This implies that beyond a certain threshold
of resources, the distinguishability between the curves no longer improves significantly. This result aligns

with the expectation that the Haar-like and Clifford-like curves will eventually converge to the Haar-5 and

Cliff-5 benchmark lines.
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Figure 6.15: Classification error for the 2-class SVM, quantified by the percentage of misclassified samples, as a function of the
ensemble size and the number of gates and measurements per circuit. Hues ranging from orange to red represent configurations for

which the error is 20% or less.

To better understand how different resources impact distinguishability, we plot the classification error
as a function of ¢, m, and g. As before, the classification error is defined as the percentage of misclassified
samples. Figure 6.15 shows the 3D color plot representing the results, where the z-axis corresponds to the
number of gates, the y-axis to the ensemble size, and the z-axis to the number of measurements per circuit,

with classification error indicated by the color scale.

In the previous section, when analyzing the dependence of the difference d in peak fluctuations on c,
m, and g, we observed that the number of measurements had a greater impact on distinguishability compared
to the other resources. This effect is also reflected in the classification accuracy of the SVM. For smaller
values of m, larger values of ¢ and g are required to achieve an error of 20% or less. This can be observed
in the distribution of points with hues ranging from orange to red. Conversely, when both ¢ and g are large
but m is small, the error may still be high. This behavior is especially pronounced for low values of m.
For instance, the sample corresponding to m = 8, ¢ = 100, and g = 100 is represented by a purple point,
indicating an error of 80% or more. Meanwhile, the sample for m = 9, ¢ = 100, and g = 100 is represented
by an orange point, showing an error of 20% or less. This example highlights how even a slight increase in

the number of measurements can significantly improve classification accuracy.
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Given this, it is worth noting that for n = 5, the number of measurements required to distinguish
Haar-like and Clifford-like behaviors is significantly smaller than the dimension of the probability vector. For
comparison, the probability vector of a 5-qubit random state has 32 components. With only 9 measurements
per circuit, a simple machine learning classifier is able to distinguish between Haar-like and Clifford-like
fluctuation curves with an 80% success rate. This result is particularly encouraging, as it shows that the
benchmarking procedure can achieve a high success rate with a small number of measurements relative to
the size of the probability vector. Moreover, the accuracy improves quickly for low values of m and then
stabilizes, which is beneficial for the experimental viability of the method, as it means fewer measurements

are required to achieve a reliable classification.

To further investigate the relationship between classification error and experimental resources, we
analyzed how the error varies when one parameter is fixed while the others change. This approach provides
more information of the relative impact of each resource on classification accuracy. For each case, we provide
two visualizations: a 2D color plot, where the classification error is indicated by the color scale, and a 3D

plot, where it is mapped to the z-axis.

Figure 6.16a illustrates the relationship between classification error, ensemble size and number of
gates per circuit when m is fixed at 16. The results indicate that, when m is fixed, both the ensemble size
and the number of gates have a comparable influence on classification error. A decrease in the number of gates

per circuit can be compensated by an increase of the same magnitude in the ensemble size, and vice-versa.

Similarly, Figure 6.16b depicts the relationship between classification error, ensemble size, and the
number of measurements per circuit when g is fixed at 50. With g held constant, it is possible to see that the
number of measurements has a larger influence on classification error than the ensemble size. This is evident
from the steep drop in error as m increases, while changes in ¢ alone result in more gradual improvements.
Compensating for a decrease in the number of measurements by increasing the ensemble size is possible,
but inefficient. On the other hand, it is possible to reduce the ensemble size significantly by increasing the

number of measurements per circuit.

Finally, Figure 6.16¢c presents the classification error as a function of the number of gates and the
number of measurements per circuit, with the ensemble size fixed at 50. Holding ¢ constant allows us to
directly compare the influence of g and m on classification accuracy. The influence of the number of gates
is more comparable to that of the number of measurements than in the previous case. This means that
compensating for a decrease in the number of measurements by increasing the number of gates is more
efficient than by increasing the ensemble size. This result makes sense from a physical perspective: as the
number of gates increases, the computation implemented in each circuit becomes more complex. This, in
turn, has a more pronounced effect on the fluctuations in the Lorenz curves compared to simply increasing

the ensemble size.

Still, the number of measurements remains the dominant factor influencing classification accuracy.
This is evident because, although the error variation appears more balanced between g and m compared to
the plot with fixed g, the range of values for m is still much smaller than that for g, meaning that smaller

changes in m have a stronger impact on classification accuracy.

In conclusion, these results demonstrate that 5-qubit RQCs constructed using IBM’s native gate set

exhibit distinct behavior from those built solely from Clifford gates. In a noiseless scenario, this difference
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can be identified with over 80% accuracy using a simple machine learning classifier and a moderate amount
of resources. By analyzing the frequency distributions of real random quantum circuits and classifying
fluctuations in Lorenz curves, this approach could assess whether the desired level of complexity is being

successfully implemented by comparing classification accuracy for noiseless and experimental data.

A key advantage of this approach is its flexibility in adapting to different experimental constraints.
Depending on the setup, increasing the number of measurements, implementing more gates per circuit, or
expanding the ensemble size may be more practical. By examining classification error as a function of resource
volume, this method enables researchers to tailor the benchmarking strategy to their specific experimental

conditions, optimizing the configuration based on feasibility.

6.3.2.2 One-class classification

We now turn our attention to the one-class classification scenario, where the SVM is trained exclu-
sively on Haar-like samples and tasked with identifying outliers corresponding to Clifford-like data. This
approach differs from the binary classification case in that the model does not have prior exposure to both
classes during training. Instead, it learns the characteristics of Haar-like curves and classifies deviations
from this learned distribution as anomalies. By applying the same resource analysis as before, we examine
how classification performance depends on the ensemble size, number of measurements and gates per circuit,

identifying the conditions under which the model reliably distinguishes Clifford-like curves as outliers.

The classification error is again defined as the percentage of misclassified samples. In this case,
however, the model does not explicitly recognize Clifford-like curves; it only determines whether a given
sample belongs to the Haar-like class. Misclassifications include Haar-like curves that are incorrectly rejected

as outliers (false negatives) and Clifford-like curves that are incorrectly classified as Haar-like (false positives).

A scatter plot of the classification error as a function of V. reveals a similar qualitative pattern to the
binary SVM case: the error starts with a relatively high variation and gradually stabilizes at a constant value.
However, two key differences emerge. First, the classification error in the one-class SVM is consistently lower
than in the binary case, reaching a maximum of 56%—significantly below the 92% observed in the two-class

SVM for small V,.. Second, unlike in the binary case, the error does not converge to zero.

One reason for this behavior is that, for the one-class SVM to function correctly, some Haar-like
curves must be rejected as outliers, meaning false negatives will always be present. As a result, the error
stabilizes just below 20%, aligning with the model’s built-in tolerance for margin errors. For V,. > 230, 000,

the error stabilizes and remains consistently at or below 20%.

Analyzing the classification error separately for Haar-like and Clifford-like training samples reveals
two distinct behaviors that further explain this trend. Figure 6.18 presents two scatter plots of classification
error as a function of V,.: one considering only Haar-like samples in the test set and another considering
only Clifford-like samples. In this context, the classification error corresponds to the percentage of false
negatives and false positives, respectively. As V, increases, the false negative rate remains between 8% and
37%, clustering around 20%, which aligns with the model’s allowed margin of error. In contrast, the false
positive rate fluctuates significantly for small V;., ranging from 0% to 86%, before steadily converging to 0%

as V,. increases.
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Figure 6.16: Classification accuracy for the two-class SVM as a function of two parameters while the third is kept fixed. In each figure,
both plots represent the same data but offer alternative visualizations.
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Figure 6.17: Scatter plot of classification error as a function of resource volume. The red line indicates the threshold of V,. = 230, 000,
and the yellow line marks the 20% error threshold. For V,. > 230,000, the error stabilizes and remains consistently at or below 20%.

Due to the unsupervised nature of the one-class SVM, the classification accuracy for Haar-like samples
is less sensitive to the experimental setup compared to the two-class case. Since the model is trained only
on Haar-like samples, its performance depends primarily on how well it captures the underlying probability
distribution rather than on the specific experimental conditions that generate the data. In other words, the
effectiveness of the classifier is more influenced by the optimization of the model itself than by variations in

the experimental setup. This accounts for the fairly stable false negative rate.

In contrast, the classification accuracy for Clifford-like samples depends on the experimental con-
figuration because, as more gates, measurements, or ensemble size are used, the underlying probability
distribution that characterizes Clifford-like behavior becomes more distinct from that of Haar-like samples.

As a result, the model is better able to differentiate between the two, leading to a steady decrease in the false

positive rate.
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Figure 6.18: Scatter plots of classification error as a function of resource volume for Haar-like and Clifford-like samples, showing two
distinct behaviors for false negatives and false positives.
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Next, we analyze the classification accuracy as a function of ¢, m, and g. Figure 6.19 presents a
3D color plot of the results, where the z-axis represents the number of gates, the y-axis corresponds to the
ensemble size, and the z-axis maps the number of measurements per circuit, with classification error indicated
by the color scale. In this plot, points with hues ranging from yellow to red represent classification errors
below 20%. These points are predominantly concentrated in the region with high values of both gates and
measurements. By contrast, in the binary classification case, classification errors below 20% were observed
for configurations with a high number of measurements per circuit, even in occasions where the number of
gates was relatively low. As before, the number of measurements continues to have the most influence on

classification accuracy.
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Figure 6.19: Classification error, quantified by the percentage of misclassified samples, for the one-class SVM as a function of the
ensemble size and the number of gates and measurements per circuit. Hues ranging from yellow to red represent configurations for which
the error is less than 20%.

Following the methodology used for the analysis of the binary SVM classifier, we studied how the
error varies when one of the three parameters is fixed. Figure 6.20a shows the relationship between ensemble
size, number of gates per circuit, and classification error when m is fixed at 16. The observed behavior is
similar to that of the binary SVM case. When m is fixed, both the ensemble size and the number of gates

exert a comparable influence on classification error.

Next, we fix the number of gates at 50. Figure 6.20b illustrates the relationship between ensemble
size, number of measurements per circuit, and classification error at fixed g. Compared to the binary SVM
case, where a steep drop in error was clearly observed as m increases, the decrease for the one-class SVM is
more gradual. This means that, for the one-class SVM, compensating a decrease in measurements with an
increase in gates to achieve greater classification accuracy is less inefficient than it would be when using a
two-class SVM.

Finally, Figure 6.20c shows the classification error as a function of the number of gates and the
number of measurements per circuit, with the ensemble size fixed at 50. As in the previous case, the number

of measurements continues to have the most significant influence on classification accuracy.

Compared to the two-class SVM, the error rates obtained by the one-class SVM are higher. This is
not unexpected, as one-class classification is inherently more stringent. In two-class classification, a sample

only needs to exhibit properties more similar to Haar-like samples than to Clifford-like ones to be correctly
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classified. In contrast, one-class classification requires the sample to be compared not only to Clifford-
like samples but also to all other potential outliers. This makes the classification task more challenging.
Additionally, we did not conduct a detailed study of the kernel choice, which is especially important for the
one-class SVM. Since the one-class SVM’s performance is more sensitive to the kernel selection, the lack of

kernel optimization likely contributed to its lower accuracy.

Given these factors, the results are quite encouraging. The one-class classifier managed to correctly
classify 80% of the samples using a moderate number of resources, even without full optimization of the
model. This demonstrates the existence of underlying patterns in the data that are learnable, even with a

less-than-optimal machine learning setup.

These results confirm the findings given by the two-class SVM study. Random quantum circuits of 5
qubits constructed using IBM’s native gate set exhibit distinct behavior from those built solely from Clifford
gates. In a noiseless scenario, this difference can be identified with close to 80% accuracy using a simple

machine learning classifier and a moderate amount of resources.

6.4 Conclusion

As discussed in the previous section, the ensemble size, number of gates, and number of measurements
per circuit all play interconnected roles in determining the distinguishability between Haar-like and Clifford-
like curves. This is reflected in the classification accuracy of both the one-class and two-class SVMs. Despite
their different training approaches, both models lead to similar qualitative conclusions, further confirming
that the complexity of a quantum state manifests in the fluctuations of Lorenz curves from measurement

outputs.

The main difference between the results of the binary and one-class SVM models lies in the relation-
ship between ensemble size, number of measurements per circuit, and classification error when the number
of gates is fixed. Compared to the binary SVM, the one-class SVM’s classification accuracy is more strongly
influenced by the number of gates. This can be attributed to the one-class SVM’s unsupervised nature: it
trains only on Haar-like curves, aiming to recognize patterns specific to this target class. As the number
of gates increases, Haar-like curves approach their asymptotic behavior, making it easier for the model to
learn their characteristics. In contrast, the two-class SVM simply needs to distinguish Haar-like curves from

Clifford-like curves, which, as seen in Section 6.3, are separable well before the asymptotic regime is reached.

Having established how classification accuracy depends on resource allocation, we now turn to the
practical applications of this benchmarking protocol and how it can be implemented in real quantum proces-
sors. As demonstrated in Reference [2], the majorization-based indicator is able to detect loss of complexity
in the output due to noise. Therefore, it can be used to set target values for noise levels in current quantum
devices. Using a machine-learning classifier, the protocol can be extended to benchmark devices even when
the amount of measurements or gates implemented per circuit is not sufficient to realize the fluctuation

curve’s full asymptotic behavior.

Using classical computation, it is possible to create a training set of noiseless fluctuations in Lorenz
curves, taking into consideration the ensemble sizes and the number of gates and measurements that can
be implemented per circuit. Then, a test set composed of fluctuations in Lorenz curves generated from the

actual quantum processor is generated. If the machine learning classifier’s error rate is within the expected
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Figure 6.20: Classification accuracy for the one-class SVM as a function of two parameters while the third is kept fixed. In each figure,
both plots represent the same data but offer alternative visualizations.
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threshold for that particular resource volume, one may conclude that the processor achieves the desired level

of complexity.

Naturally, this procedure is limited to system sizes where classical simulation of random quantum
circuits remains feasible. However, many current quantum devices are still within this regime, making
the approach practical for benchmarking today’s hardware. A similar limitation exists in cross-entropy

benchmarking, which remains widely used and valuable despite its reliance on classical simulations.

Furthermore, using the one-class classification approach, it may be possible to extend the applicability
of this benchmarking procedure to larger system sizes. Instead of training the model on Haar-like distribu-
tions, the training set would be constructed from RQCs known to be classically simulable. By generating
standard deviation samples from Lorenz curves based on experimental data from real quantum circuits and
testing them with this machine learning model, it may be possible to identify behavior that is not classically

simulable.

Although preliminary, these insights provide strong motivation to continue this research. For n = 5,
the number of measurements required to distinguish between Clifford-like and Haar-like behaviors is relatively
low compared to the size of the probability vector. This is a promising result that encourages further
investigation of larger system sizes to determine if the trend persists. Even though the machine learning
model used in this analysis was simple and not fully optimized, it still yielded relatively good results, achieving
classification accuracies of 80% or more with a moderate number of resources. This suggests that further

optimization of the model could lead to even more accurate and experimentally viable benchmarking methods.
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Chapter 7

Conclusion

The findings of this thesis establish majorization-based benchmarking as a promising tool for evaluat-
ing a quantum processor’s capacity for reliable, complex computation. The correlation between majorization
relations and computational complexity in random quantum circuits was first introduced in Reference [54].
Initially, it was shown that the fluctuations in Lorenz curves of RQC outputs were sensitive to the gate set
used in circuit generation. Building on this research, we sought to demonstrate that these fluctuations, which
we refer to in this thesis as the majorization-based indicator, could serve as a benchmark for evaluating
quantum processors. Throughout this thesis, we showed that the majorization-based indicator is not only
sensitive to the gate set used to generate the RQC, but also responsive to a broader set of factors, including
qubit connectivity, finite measurement statistics, and typical noise. These interrelated factors play a crucial
role in determining a quantum processor’s computational capabilities. This provides strong evidence that
the majorization-based indicator can be used to assess the global performance of a quantum processor, not

just specific quantum circuits.

In Chapter 4, we demonstrate, using numerical results, that majorization-based benchmarking can
determine the number of gates required for a noiseless processor to sample from its full Hilbert space, given the
native gates and specific connectivity constraints of the hardware. We also simulate this specific architecture
in the presence of typical noise, showing the majorization-based indicator’s capacity to detect a loss of
complexity due to error. By determining the 77 and 75 values necessary to sample from the full Hilbert
space, the majorization-based benchmarking protocol can be used to set thresholds for noise. The assessments
provided by the majorization-based procedure align with those inferred by computing the average purity of
the output states (before measurement) and the average fidelity between the noisy and noiseless output
states (for the same circuit). Both of these quantities are far more experimentally costly to compute than

the majorization-based indicator, underscoring its utility.

Finally, in Chapter 6, we show how majorization-based benchmarking can be implemented in the finite
statistics regime. Our findings, although preliminary, provide strong motivation to continue this research,
aiming towards experimental implementation. For n = 5, the number of measurements required to distinguish
between Clifford-like and Haar-like behaviors is relatively low compared to the size of the probability vector.
This is a favorable result that encourages further investigation of larger system sizes to determine if the trend

persists.
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Using a simple support vector machine with a Gaussian kernel, we achieved classification accuracies
of 80% or higher in distinguishing Clifford-like and Haar-like behaviors while using a moderate number of
resources. There are many opportunities for further optimization, particularly in the unsupervised approach,
where a deeper understanding of the optimal kernel choice for this problem could significantly enhance

performance.

To conclude, this thesis establishes majorization-based benchmarking as a powerful and experimen-
tally viable tool for assessing the computational capabilities of quantum processors. By leveraging statistical
properties of random quantum circuits, this method provides a scalable and efficient alternative to traditional
benchmarking techniques, offering insights into the interplay between noise, circuit complexity, and hardware
constraints. The promising results obtained here pave the way for further refinement and experimental valida-
tion, with the potential to establish majorization-based benchmarking as a standard for evaluating quantum
devices. As quantum technologies continue to advance, investing in benchmarking methods that are both
rigorous and practical will be crucial for guiding hardware development and unlocking the full potential of

quantum computation.

83



Bibliography

[1]

2]

3]

4]

5]

[6]

7]

18]

Raul O Vallejos, Pedro Silva Correia, Paola Concha Obando, Nina Machado O’Neill, Alexandre B Tacla,
and Fernando de Melo. Quantum state inference from coarse-grained descriptions: Analysis and an

application to quantum thermodynamics. Physical Review A, 106(1):012219, 2022.

Alexandre B Tacla, Nina M O’Neill, Gabriel G Carlo, Fernando de Melo, and Raul O Vallejos.
Majorization-based benchmark of the complexity of quantum processors. Quantum Inf. Process., 23(6),
June 2024.

Jeremy Hsu. CES 2018: Intel’s 49-qubit chip shoots for quantum supremacy. https://
spectrum.ieee.org/intels-49qubit-chip-aims-for-quantum-supremacy, 2018. [Accessed 05-12-
2024].

IonQ. Compare quantum systems. https://ionq.com/quantum-systems/compare. [Accessed 05-12-
2024].

0QC. OQC launches OQC Toshiko, the world’s first enterprise ready quantum platform. https://
oqc.tech/company/newsroom/toshiko-the-worlds-first-enterprise-ready-quantum-platform/,
2023. [Accessed 05-12-2024].

Matthew DeCross, Reza Haghshenas, Minzhao Liu, Enrico Rinaldi, Johnnie Gray, Yuri Alexeev,
Charles H Baldwin, John P Bartolotta, Matthew Bohn, Eli Chertkov, Julia Cline, Jonhas Colina, Da-
vide DelVento, Joan M Dreiling, Cameron Foltz, John P Gaebler, Thomas M Gatterman, Christopher N
Gilbreth, Joshua Giles, Dan Gresh, Alex Hall, Aaron Hankin, Azure Hansen, Nathan Hewitt, Ian Hoff-
man, Craig Holliman, Ross B Hutson, Trent Jacobs, Jacob Johansen, Patricia J Lee, Elliot Lehman,
Dominic Lucchetti, Danylo Lykov, Ivaylo S Madjarov, Brian Mathewson, Karl Mayer, Michael Mills,
Pradeep Niroula, Juan M Pino, Conrad Roman, Michael Schecter, Peter E Siegfried, Bruce G Tiemann,
Curtis Volin, James Walker, Ruslan Shaydulin, Marco Pistoia, Steven A Moses, David Hayes, Brian
Neyenhuis, Russell P Stutz, and Michael Foss-Feig. The computational power of random quantum

circuits in arbitrary geometries. 2024.

QuantWare. Meet Tenor | the 64-qubit QPU by QuantWare. https://www.quantware.com/product/
tenor. [Accessed 05-12-2024].

Rigetti Computing Inc. Rigetti announces public availability of Ankaa-2 system with a 2.5x performance

improvement compared to previous QPUs. https://www.globenewswire.com/news-release/2024/

84


https://spectrum.ieee.org/intels-49qubit-chip-aims-for-quantum-supremacy
https://spectrum.ieee.org/intels-49qubit-chip-aims-for-quantum-supremacy
https://ionq.com/quantum-systems/compare
https://oqc.tech/company/newsroom/toshiko-the-worlds-first-enterprise-ready-quantum-platform/
https://oqc.tech/company/newsroom/toshiko-the-worlds-first-enterprise-ready-quantum-platform/
https://www.quantware.com/product/tenor
https://www.quantware.com/product/tenor
https://www.globenewswire.com/news-release/2024/01/04/2804006/0/en/Rigetti-Announces-Public-Availability-of-Ankaa-2-System-with-a-2-5x-Performance-Improvement-Compared-to-Previous-QPUs.html
https://www.globenewswire.com/news-release/2024/01/04/2804006/0/en/Rigetti-Announces-Public-Availability-of-Ankaa-2-System-with-a-2-5x-Performance-Improvement-Compared-to-Previous-QPUs.html
https://www.globenewswire.com/news-release/2024/01/04/2804006/0/en/Rigetti-Announces-Public-Availability-of-Ankaa-2-System-with-a-2-5x-Performance-Improvement-Compared-to-Previous-QPUs.html

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

01/04/2804006/0/en/Rigetti-Announces-Public-Availability-of-Ankaa-2-System-with-a-2-
5x-Performance- Improvement-Compared-to-Previous-QPUs.html, 2024. [Accessed 05-12-2024].

RIKEN Fujitsu Limited. Fujitsu and RIKEN develop superconducting quantum computer at the RIKEN
RQC-Fujitsu collaboration center, paving the way for platform for hybrid quantum computing. https:
//wwu.fujitsu.com/global/about/resources/news/press-releases/2023/1005-01.html, 2023. [Ac-
cessed 05-12-2024].

Lars S Madsen, Fabian Laudenbach, Mohsen Falamarzi Askarani, Fabien Rortais, Trevor Vincent, Jacob
F F Bulmer, Filippo M Miatto, Leonhard Neuhaus, Lukas G Helt, Matthew J Collins, Adriana E Lita,
Thomas Gerrits, Sae Woo Nam, Varun D Vaidya, Matteo Menotti, Ish Dhand, Zachary Vernon, Nicolas
Quesada, and Jonathan Lavoie. Quantum computational advantage with a programmable photonic
processor. Nature, 606(7912):75-81, June 2022.

Xinhua. China launches 504-qubit quantum chip, open to global users. https://
www.chinadaily.com.cn/a/202404/26/WS662b15dfa31082fc043c431e.html, 2024. [Accessed 05-12-
2024].

Jay Gambetta. IBM Quantum System Two: the era of quantum utility is here. https://www.ibm.com/
quantum/blog/quantum-roadmap-2033, 2023. [Accessed 05-12-2024].

Google Quantum Al and Collaborators. Quantum error correction below the surface code threshold.
Nature, December 2024.

Google. Roadmap | Google Quantum Al https://quantumai.google/roadmap. [Accessed 05-12-2024].

Erin Angelini and Hugh Collins. IBM debuts next-generation quantum processor & IBM Quantum
System Two, extends roadmap to advance era of quantum utility. https://newsroom.ibm.com/2023-
12-04-IBM-Debuts-Next-Generation-Quantum-Processor-IBM-Quantum-System-Two,-Extends-
Roadmap-to-Advance-Era-of -Quantum-Utility, 2023. [Accessed 05-12-2024].

Microsoft. Azure Quantum | Quantum Roadmap. https://quantummicrosoft.com/en-us/vision/

quantum-roadmap. [Accessed 05-12-2024].

Doug Finke. Quantinuum announces its processor development roadmap. https:

//quantumcomputingreport.com/quantinuum-announces-its-processor-development-roadmap/,

2024. [Accessed 05-12-2024].

Junchao Wang, Guoping Guo, and Zheng Shan. SoK: Benchmarking the performance of a quantum
computer. Entropy (Basel), 24(10):1467, October 2022.

Carina. State of Quantum Computing in Europe: AQT pushing performance with a Quantum Vol-
ume of 128 - AQT - Alpine Quantum Technologies — aqt.eu. https://www.aqt.eu/aqt-pushing-
performance-with-a-quantum-volume-of-128/. [Accessed 22-01-2025].

Petar Jurcevic, Ali Javadi-Abhari, Lev S Bishop, Isaac Lauer, Daniela F Bogorin, Markus Brink, Lau-
ren Capelluto, Oktay Giinliik, Toshinari Itoko, Naoki Kanazawa, Abhinav Kandala, George A Keefe,
Kevin Krsulich, William Landers, Eric P Lewandowski, Douglas T  McClure, Giacomo Nannicini, Adi-
nath Narasgond, Hasan M Nayfeh, Emily Pritchett, Mary Beth Rothwell, Srikanth Srinivasan, Neereja

85


https://www.globenewswire.com/news-release/2024/01/04/2804006/0/en/Rigetti-Announces-Public-Availability-of-Ankaa-2-System-with-a-2-5x-Performance-Improvement-Compared-to-Previous-QPUs.html
https://www.globenewswire.com/news-release/2024/01/04/2804006/0/en/Rigetti-Announces-Public-Availability-of-Ankaa-2-System-with-a-2-5x-Performance-Improvement-Compared-to-Previous-QPUs.html
https://www.globenewswire.com/news-release/2024/01/04/2804006/0/en/Rigetti-Announces-Public-Availability-of-Ankaa-2-System-with-a-2-5x-Performance-Improvement-Compared-to-Previous-QPUs.html
https://www.globenewswire.com/news-release/2024/01/04/2804006/0/en/Rigetti-Announces-Public-Availability-of-Ankaa-2-System-with-a-2-5x-Performance-Improvement-Compared-to-Previous-QPUs.html
https://www.globenewswire.com/news-release/2024/01/04/2804006/0/en/Rigetti-Announces-Public-Availability-of-Ankaa-2-System-with-a-2-5x-Performance-Improvement-Compared-to-Previous-QPUs.html
https://www.globenewswire.com/news-release/2024/01/04/2804006/0/en/Rigetti-Announces-Public-Availability-of-Ankaa-2-System-with-a-2-5x-Performance-Improvement-Compared-to-Previous-QPUs.html
https://www.fujitsu.com/global/about/resources/news/press-releases/2023/1005-01.html
https://www.fujitsu.com/global/about/resources/news/press-releases/2023/1005-01.html
https://www.chinadaily.com.cn/a/202404/26/WS662b15dfa31082fc043c431e.html
https://www.chinadaily.com.cn/a/202404/26/WS662b15dfa31082fc043c431e.html
https://www.ibm.com/quantum/blog/quantum-roadmap-2033
https://www.ibm.com/quantum/blog/quantum-roadmap-2033
https://quantumai.google/roadmap
https://newsroom.ibm.com/2023-12-04-IBM-Debuts-Next-Generation-Quantum-Processor-IBM-Quantum-System-Two,-Extends-Roadmap-to-Advance-Era-of-Quantum-Utility
https://newsroom.ibm.com/2023-12-04-IBM-Debuts-Next-Generation-Quantum-Processor-IBM-Quantum-System-Two,-Extends-Roadmap-to-Advance-Era-of-Quantum-Utility
https://newsroom.ibm.com/2023-12-04-IBM-Debuts-Next-Generation-Quantum-Processor-IBM-Quantum-System-Two,-Extends-Roadmap-to-Advance-Era-of-Quantum-Utility
https://quantum.microsoft.com/en-us/vision/quantum-roadmap
https://quantum.microsoft.com/en-us/vision/quantum-roadmap
https://quantumcomputingreport.com/quantinuum-announces-its-processor-development-roadmap/
https://quantumcomputingreport.com/quantinuum-announces-its-processor-development-roadmap/
https://www.aqt.eu/aqt-pushing-performance-with-a-quantum-volume-of-128/
https://www.aqt.eu/aqt-pushing-performance-with-a-quantum-volume-of-128/

[21]

[22]

[23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

Sundaresan, Cindy Wang, Ken X Wei, Christopher J Wood, Jeng-Bang Yau, Eric J Zhang, Oliver E
Dial, Jerry M Chow, and Jay M Gambetta. Demonstration of quantum volume 64 on a superconducting
quantum computing system. Quantum Sci. Technol., 6(2):025020, April 2021.

IQM. IQM Quantum Reports Benchmarks on 20-Qubit SystemA - High-Performance Computing News
Analysis | insidleHPC — insidehpc.com. https://insidehpc.com/2024/02/igm-quantum-reports-
benchmarks-on-20-qubit-system/. [Accessed 22-01-2025].

savoryjo q. GitHub - CQCL/quantinuum-hardware-quantum-volume: Repository for sharing Quantin-
uum’s Quantum Volume data — github.com. https://github.com/CQCL/quantinuum-hardware-
quantum-volume. [Accessed 22-01-2025].

Simon Martiel, Thomas Ayral, and Cyril Allouche. Benchmarking quantum coprocessors in an
application-centric, hardware-agnostic, and scalable way. IEEE Transactions on Quantum FEngineer-
ing, 2:1-11, 2021.

Koen Mesman, Zaid Al-Ars, and Matthias Moller. Qpack: Quantum approximate optimization algo-

rithms as universal benchmark for quantum computers. arXiv preprint arXiv:2103.17193, 2021.

Marcello Benedetti, Delfina Garcia-Pintos, Oscar Perdomo, Vicente Leyton-Ortega, Yunseong Nam,
and Alejandro Perdomo-Ortiz. A generative modeling approach for benchmarking and training shallow

quantum circuits. npj Quantum information, 5(1):45, 2019.

Alexander J McCaskey, Zachary P Parks, Jacek Jakowski, Shirley V Moore, Titus D Morris, Travis S
Humble, and Raphael C Pooser. Quantum chemistry as a benchmark for near-term quantum computers.
npj Quantum Information, 5(1):99, 2019.

Joseph Emerson, Robert Alicki, and Karol Zyczkowski. Scalable noise estimation with random unitary
operators. J. Opt. B Quantum Semiclassical Opt., 7(10):S347-S352, October 2005.

Andrew W Cross, Easwar Magesan, Lev S Bishop, John A Smolin, and Jay M Gambetta. Scalable
randomised benchmarking of non-clifford gates. Npj Quantum Inf., 2(1), April 2016.

Easwar Magesan, Jay M Gambetta, and Joseph Emerson. Characterizing quantum gates via randomized
benchmarking. Phys. Rev. A, 85(4), April 2012.

E Onorati, A H Werner, and J Eisert. Randomized benchmarking for individual quantum gates. Phys.
Rev. Lett., 123(6):060501, August 2019.

Tobias Chasseur, Daniel M Reich, Christiane P Koch, and Frank K Wilhelm. Hybrid benchmarking of
arbitrary quantum gates. Phys. Rev. A (Coll. Park.), 95(6), June 2017.

Adam Bouland, Bill Fefferman, Chinmay Nirkhe, and Umesh Vazirani. On the complexity and verifica-
tion of quantum random circuit sampling. Nat. Phys., 15(2):159-163, February 2019.

Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information. Cambridge
University Press, 2000.

Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin, Rami Barends, Rupak Biswas,
Sergio Boixo, Fernando G S L Brandao, David A Buell, Brian Burkett, Yu Chen, Zijun Chen, Ben

86


https://insidehpc.com/2024/02/iqm-quantum-reports-benchmarks-on-20-qubit-system/
https://insidehpc.com/2024/02/iqm-quantum-reports-benchmarks-on-20-qubit-system/
https://github.com/CQCL/quantinuum-hardware-quantum-volume
https://github.com/CQCL/quantinuum-hardware-quantum-volume

[35]

[36]

[37]

Chiaro, Roberto Collins, William Courtney, Andrew Dunsworth, Edward Farhi, Brooks Foxen, Austin
Fowler, Craig Gidney, Marissa Giustina, Rob Graff, Keith Guerin, Steve Habegger, Matthew P Harrigan,
Michael J Hartmann, Alan Ho, Markus Hoffmann, Trent Huang, Travis S Humble, Sergei V Isakov, Evan
Jeffrey, Zhang Jiang, Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly, Paul V Klimov, Sergey Knysh,
Alexander Korotkov, Fedor Kostritsa, David Landhuis, Mike Lindmark, Erik Lucero, Dmitry Lyakh, Sal-
vatore Mandra, Jarrod R McClean, Matthew McEwen, Anthony Megrant, Xiao Mi, Kristel Michielsen,
Masoud Mohseni, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill, Murphy Yuezhen Niu, Eric
Ostby, Andre Petukhov, John C Platt, Chris Quintana, Eleanor G Rieffel, Pedram Roushan, Nicholas C
Rubin, Daniel Sank, Kevin J Satzinger, Vadim Smelyanskiy, Kevin J Sung, Matthew D Trevithick, Amit
Vainsencher, Benjamin Villalonga, Theodore White, Z Jamie Yao, Ping Yeh, Adam Zalcman, Hartmut
Neven, and John M Martinis. Quantum supremacy using a programmable superconducting processor.
Nature, 574(7779):505-510, October 2019.

C Neill, P Roushan, K Kechedzhi, S Boixo, S V Isakov, V Smelyanskiy, A Megrant, B Chiaro,
A Dunsworth, K Arya, R Barends, B Burkett, Y Chen, Z Chen, A Fowler, B Foxen, M Giustina,
R Graff, E Jeffrey, T Huang, J Kelly, P Klimov, E Lucero, J Mutus, M Neeley, C Quintana, D Sank,
A Vainsencher, J Wenner, T C White, H Neven, and J M Martinis. A blueprint for demonstrating
quantum supremacy with superconducting qubits. Science, 360(6385):195-199, April 2018.

Sergio Boixo, Sergei V Isakov, Vadim N Smelyanskiy, Ryan Babbush, Nan Ding, Zhang Jiang, Michael J
Bremner, John M Martinis, and Hartmut Neven. Characterizing quantum supremacy in near-term
devices. Nature Physics, 14(6):595-600, 2018.

A Morvan, B Villalonga, X Mi, S Mandra, A Bengtsson, P V Klimov, Z Chen, S Hong, C Erickson,
I K Drozdov, J Chau, G Laun, R Movassagh, A Asfaw, L. T A N Brandao, R Peralta, D Abanin,
R Acharya, R Allen, T' T Andersen, K Anderson, M Ansmann, F' Arute, K Arya, J Atalaya, J C Bardin,
A Bilmes, G Bortoli, A Bourassa, J Bovaird, L Brill, M Broughton, B B Buckley, D A Buell, T Burger,
B Burkett, N Bushnell, J Campero, H-S Chang, B Chiaro, D Chik, C Chou, J Cogan, R Collins,
P Conner, W Courtney, A L. Crook, B Curtin, D M Debroy, A Del Toro Barba, S Demura, A Di Paolo,
A Dunsworth, L Faoro, E Farhi, R Fatemi, V S Ferreira, L. Flores Burgos, E Forati, A G Fowler, B Foxen,
G Garcia, E Genois, W Giang, C Gidney, D Gilboa, M Giustina, R Gosula, A Grajales Dau, J A Gross,
S Habegger, M C Hamilton, M Hansen, M P Harrigan, S D Harrington, P Heu, M R Hoffmann, T Huang,
A Huff, W J Huggins, L B Toffe, S V Isakov, J Iveland, E Jeffrey, Z Jiang, C Jones, P Juhas, D Kafri,
T Khattar, M Khezri, M Kieferova, S Kim, A Kitaev, A R Klots, A N Korotkov, F Kostritsa, J M
Kreikebaum, D Landhuis, P Laptev, K-M Lau, L. Laws, J Lee, K W Lee, Y D Lensky, B J Lester, A T
Lill, W Liu, W P Livingston, A Locharla, F D Malone, O Martin, S Martin, J R McClean, M McEwen,
K C Miao, A Mieszala, S Montazeri, W Mruczkiewicz, O Naaman, M Neeley, C Neill, A Nersisyan,
M Newman, J H Ng, A Nguyen, M Nguyen, M Yuezhen Niu, T E O’Brien, S Omonije, A Opremcak,
A Petukhov, R Potter, L P Pryadko, C Quintana, D M Rhodes, C Rocque, E Rosenberg, N C Rubin,
N Saei, D Sank, K Sankaragomathi, K J Satzinger, H F Schurkus, C Schuster, M J Shearn, A Shorter,
N Shutty, V Shvarts, V Sivak, J Skruzny, W C Smith, R D Somma, G Sterling, D Strain, M Szalay,
D Thor, A Torres, G Vidal, C Vollgraff Heidweiller, T White, B W K Woo, C Xing, Z J Yao, P Yeh,
J Yoo, G Young, A Zalcman, Y Zhang, N Zhu, N Zobrist, E G Rieffel, R Biswas, R Babbush, D Bacon,
J Hilton, E Lucero, H Neven, A Megrant, J Kelly, P Roushan, I Aleiner, V Smelyanskiy, K Kechedzhi,

87



[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

48]

[49]

[50]

[51]

[52]

Y Chen, and S Boixo. Phase transitions in random circuit sampling. Nature, 634(8033):328-333, October
2024.

Easwar Magesan, J. M. Gambetta, and Joseph Emerson. Scalable and robust randomized benchmarking
of quantum processes. Phys. Rev. Lett., 106:180504, May 2011.

Lev S Bishop, Sergey Bravyi, Andrew Cross, Jay M Gambetta, and John Smolin. Quantum volume.
Quantum Volume. Technical Report, 2017.

Andrew W Cross, Lev S Bishop, Sarah Sheldon, Paul D Nation, and Jay M Gambetta. Validating
quantum computers using randomized model circuits. Phys. Rev. A (Coll. Park.), 100(3), September
2019.

Scott Aaronson and Lijie Chen. Complexity-theoretic foundations of quantum supremacy experiments.
arXw preprint arXiw:1612.05903, 2016.

Sean Mullane. Sampling random quantum circuits: a pedestrian’s guide. arXiv preprint
arXw:2007.07872, 2020.

F Arute, K Arya, R Babbush, et al. Supplementary information for 'quantum supremacy using a
programmable superconducting processor’. Nat. Int. Wkly. J. Sci, 574:505-505, 2020.

Roger Balian. From microphysics to macrophysics. Theoretical and Mathematical Physics. Springer,

Berlin, Germany, 1 edition, November 2006.

Max O. Lorenz. Methods of measuring the concentration of wealth. Publ. Am. Stat. Assoc., 9(70):209—
219, June 1905.

Alexander Amini, Ava P Soleimany, Wilko Schwarting, Sangeeta N Bhatia, and Daniela Rus. Uncovering
and mitigating algorithmic bias through learned latent structure. In Proceedings of the 2019 AAAI/ACM
Conference on Al, Ethics, and Society, New York, NY, USA, January 2019. ACM.

Albert W Marshall, Ingram Olkin, and Barry C Arnold. Inequalities: Theory of majorization and its
applications. Springer series in statistics. Springer, New York, NY, 2 edition, December 2010.

Amarjit Kundu, Shovan Chowdhury, Asok K. Nanda, and Nil Kamal Hazra. Some results on majorization
and their applications. Journal of Computational and Applied Mathematics, 301:161-177, 2016.

Alan J Aw and Noah A Rosenberg. Bounding measures of genetic similarity and diversity using ma-
jorization. J. Math. Biol., 77(3):711-737, September 2018.

Gilad Gour, David Jennings, Francesco Buscemi, Runyao Duan, and Iman Marvian. Quantum majoriza-
tion and a complete set of entropic conditions for quantum thermodynamics. Nat. Commun., 9(1):5352,
December 2018.

J I Latorre and M A Martin-Delgado. Majorization arrow in quantum-algorithm design. Phys. Rev. A,
66(2), August 2002.

Roméan Orus, José I Latorre, and Miguel A Martin-Delgado. Quantum Inf. Process., 1(4):283-302, 2002.

88



[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

Michael Nielsen and Guifre Vidal. Majorization and the interconversion of bipartite states. Quantum
Inf. Comput., 1(1):76-93, July 2001.

Rail O Vallejos, Fernando de Melo, and Gabriel G Carlo. Principle of majorization: Application to
random quantum circuits. Phys. Rev. A (Coll. Park.), 104(1), July 2021.

G.H. Hardy, J.E. Littlewood, and G. Polya. Some Simple Inequalities Satisfied by Convexr Functions.
1929.

Alfred Horn. Doubly stochastic matrices and the diagonal of a rotation matrix. American Journal of
Mathematics, 76(3):620-630, 1954.

Peter M Alberti and Armin Uhlmann. Stochasticity and partial order. Deutscher Verlag der Wis-
senschaften Berlin, 1982.

Ernst Ruch. The diagram lattice as structural principle a. new aspects for representations and group
algebra of the symmetric group b. definition of classification character, mixing character, statistical
order, statistical disorder; a general principle for the time evolution of irreversible processes. Theoret.
Chim. Acta, 38(3):167-183, 1975.

Carsten Timm. Random transition-rate matrices for the master equation. Phys. Rev. E Stat. Nonlin.
Soft Matter Phys., 80(2 Pt 1):021140, August 2009.

Richard Jozsa and Akimasa Miyake. Matchgates and classical simulation of quantum circuits. Proc.
Math. Phys. Eng. Sci., 464(2100):3089-3106, December 2008.

Richard Jozsa and Maarten Van den Nest. Classical simulation complexity of extended clifford circuits.
arXiww preprint arXiv:1305.6190, 2013.

Scott Aaronson and Daniel Gottesman. Improved simulation of stabilizer circuits. Phys. Rev. A, 70(5),
November 2004.

Michael J Bremner, Richard Jozsa, and Dan J Shepherd. Classical simulation of commuting quantum
computations implies collapse of the polynomial hierarchy. Proc. Math. Phys. Eng. Sci., 467(2126):459—
472, February 2011.

Yoshifumi Nakata and Mio Murao. Diagonal quantum circuits: Their computational power and appli-
cations. Fur. Phys. J. Plus, 129(7), July 2014.

Daniel Shaffer, Claudio Chamon, Alioscia Hamma, and Eduardo R Mucciolo. Irreversibility and entangle-
ment spectrum statistics in quantum circuits. Journal of Statistical Mechanics: Theory and FExperiment,
2014(12):P12007, 2014.

Claudio Chamon, Alioscia Hamma, and Eduardo R Mucciolo. Emergent irreversibility and entanglement
spectrum statistics. Physical review letters, 112(24):240501, 2014.

Ting Yu and JH Eberly. Sudden death of entanglement. Science, 323(5914):598-601, 2009.

Matthew Reagor, Christopher B Osborn, Nikolas Tezak, Alexa Staley, Guenevere Prawiroatmodjo,
Michael Scheer, Nasser Alidoust, Eyob A Sete, Nicolas Didier, Marcus P da Silva, Ezer Acala, Joel

89



[69]

[70]

[71]

[72]

(73]

[74]

[75]

[76]

[77]

78]

[79]

[80]

[81]

Angeles, Andrew Bestwick, Maxwell Block, Benjamin Bloom, Adam Bradley, Catvu Bui, Shane Cald-
well, Lauren Capelluto, Rick Chilcott, Jeff Cordova, Genya Crossman, Michael Curtis, Saniya Desh-
pande, Tristan El Bouayadi, Daniel Girshovich, Sabrina Hong, Alex Hudson, Peter Karalekas, Kat
Kuang, Michael Lenihan, Riccardo Manenti, Thomas Manning, Jayss Marshall, Yuvraj Mohan, William
O’Brien, Johannes Otterbach, Alexander Papageorge, Jean-Philip Paquette, Michael Pelstring, An-
thony Polloreno, Vijay Rawat, Colm A Ryan, Russ Renzas, Nick Rubin, Damon Russel, Michael Rust,
Diego Scarabelli, Michael Selvanayagam, Rodney Sinclair, Robert Smith, Mark Suska, Ting-Wai To,
Mehrnoosh Vahidpour, Nagesh Vodrahalli, Tyler Whyland, Kamal Yadav, William Zeng, and Chad T
Rigetti. Demonstration of universal parametric entangling gates on a multi-qubit lattice. Sci. Adv.,
4(2):eaa03603, February 2018.

Gates and Instructions; pyQuil 2.7.0 documentation — pyquil-docs.rigetti.com. https://pyquil-
docs.rigetti.com/en/v2.7.0/apidocs/gates.html#native-gates-for-rigetti-qpus. [Accessed 27-
12-2024].

Adam Holmes, Sonika Johri, Gian Giacomo Guerreschi, James S Clarke, and Anne Y Matsuura. Impact
of qubit connectivity on quantum algorithm performance. Quantum Science and Technology, 5(2):025009,
2020.

Building scalable, innovative quantum systems — rigetti.com. https://www.rigetti.com/what-we-
build. [Accessed 10-01-2025].

Mark M Wilde. From classical to quantum shannon theory. arXiv preprint arXiv:1106.1445, 2011.

Wassily Hoeffding. Probability inequalities for sums of bounded random variables. The collected works
of Wassily Hoeffding, pages 409-426, 1994.

Ani Adhikari and Jim Pitman. Data 140 Textbook. https://datal40.org/textbook/content/
README.html, 2023. [Accessed 26-03-2025].

D Dubhashi and Alessandro Panconesi. Concentration of measure for the analysis of randomised algo-
rithms. Draft Manuscript, hitp://www. brics. dk/ale/papers. html, 1998.

Patrick Hayden, Debbie W Leung, and Andreas Winter. Aspects of generic entanglement. Communica-
tions in mathematical physics, 265:95-117, 2006.

Ingemar Bengtsson and Karol Zyczkowski. Geometry of quantum states: an introduction to quantum

entanglement. Cambridge university press, 2017.

Christopher M. Pattern Recognition and Machine Learning. Information Science and Statistics. Springer,
New York, NY, August 2016.

Nello Cristianini and John Shawe-Taylor. An introduction to support vector machines and other kernel-

based learning methods. Cambridge University Press, Cambridge, England, March 2013.
Corinna Cortes. Support-vector networks. Machine Learning, 1995.

Bernhard Schélkopf, John C Platt, John Shawe-Taylor, Alex J Smola, and Robert C Williamson. Esti-
mating the support of a high-dimensional distribution. Neuwral computation, 13(7):1443-1471, 2001.

90


https://pyquil-docs.rigetti.com/en/v2.7.0/apidocs/gates.html#native-gates-for-rigetti-qpus
https://pyquil-docs.rigetti.com/en/v2.7.0/apidocs/gates.html#native-gates-for-rigetti-qpus
https://www.rigetti.com/what-we-build
https://www.rigetti.com/what-we-build
https://data140.org/textbook/content/README.html
https://data140.org/textbook/content/README.html

[82]

[83]

[84]

[85]

[86]

[87]

[33]

[89]

[90]

[91]

[92]

Zineb Noumir, Paul Honeine, and Cedue Richard. On simple one-class classification methods. In 2012
IEEE International Symposium on Information Theory Proceedings, pages 2022-2026. IEEE, 2012.

Bernhard Scholkopf, Alex J Smola, Robert C Williamson, and Peter L. Bartlett. New support vector
algorithms. Neural computation, 12(5):1207-1245, 2000.

Nana Kwame Gyamfi and Jamal-Deen Abdulai. Bank fraud detection using support vector machine.
In 2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference
(IEMCON), pages 37-41. IEEE, 2018.

William S Noble. What is a support vector machine? Nature biotechnology, 24(12):1565-1567, 2006.

Ulrike von Luxburd and Philip Hennig. Probabilistic and statistical machine learning 2020. https:
//youtu.be/jFcYpB0eC0Q?si=oLn2DDwl_ty5YwCa, 2020. [Accessed 26-03-2025].

Alexandre Kowalczyk. Support Vector Machines Succinctly. Syncfusion, Inc, Morrisville, USA, October
2017.

Jean-Philippe Vert, Koji Tsuda, and Bernhard Scholkopf. A primer on kernel methods. Kernel methods
in computational biology, 47:35-70, 2004.

RBF SVM parameters — scikit-learn.org. https://scikit-learn.org/stable/auto_examples/svm/
plot_rbf_parameters.html. [Accessed 10-03-2025].

Rui Zhang, Shaoyan Zhang, Sethuraman Muthuraman, and Jianmin Jiang. One class support vector
machine for anomaly detection in the communication network performance data. In Proceedings of the
5th conference on Applied electromagnetics, wireless and optical communications, pages 31-37. Citeseer,
2007.

Kittikun Kittidachanan, Watha Minsan, Donlapark Pornnopparath, and Phimphaka Taninpong.
Anomaly detection based on gs-ocsvm classification. In 2020 12th international conference on knowledge
and smart technology (KST), pages 64—69. IEEE, 2020.

Aleksandra Solarz, Maciej Bilicki, Mariusz Gromadzki, Agnieszka Pollo, Anna Durkalec, and Michat
Wypych. Automated novelty detection in the wise survey with one-class support vector machines.
Astronomy & Astrophysics, 606:A39, 2017.

91


https://youtu.be/jFcYpBOeCOQ?si=oLn2DDwl_ty5YwCa
https://youtu.be/jFcYpBOeCOQ?si=oLn2DDwl_ty5YwCa
https://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html
https://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html

	Introduction
	RQC-based benchmarking
	Randomized benchmarking
	Quantum volume
	Cross-entropy benchmarking

	The majorization-based complexity indicator
	The concept of majorization
	Majorization in quantum information theory
	The principle of majorization
	Majorization and complexity in random quantum circuits

	The majorization-based benchmarking protocol
	The benchmarking protocol
	Noiseless simulations
	Noisy simulations
	Conclusion

	Accounting for finite statistics
	The challenge of finite statistics
	Generating Haar-n under finite statistics
	Differences between Haar-n and Cliff-n under finite statistics
	Conclusion

	An implementable benchmarking proposal
	Motivation
	Support vector machines
	The modified benchmarking protocol
	Conclusion

	Conclusion

