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Resumo
Esta tese descreve a análise de amplitude para o canal de decaimento B± → K∓K±π±

utilizando dados coletados durante 2015, 2016, 2017 e 2018 em colisões pp a uma energia
de centro de massa de

√
s = 13 TeV, correspondendo a uma luminosidade integrada de

5,9 fb−1. A seleção dos eventos é baseada nas características topológicas do decaimento,
seguida pela aplicação de um critério baseado em análise multivariada. O conjunto final
de dados preparado para análise inclui cerca de 35.000 eventos.

A primeira análise de amplitude do canal B± → K∓K±π± , realizada durante o Run I,
revelou uma das maiores assimetrias de CP em uma única amplitude já observada, em
aproximadamente −66%. O modelo base do Run I incorporou componentes como K(892)0,
K∗0(1430), ρ(1450)0, f2(1270), ϕ(1020), Rescattering e uma contribuição não ressonante.

Este estudo se concentra em revisitar a análise de amplitude utilizando o modelo Isobárico
para B± → K∓K±π± com os dados do Run II, refinando a compreensão das contribuições
dominantes da onda S, que correspondem a aproximadamente 60% da amplitude do
decaimento. Além disso, ressonâncias de charmonium são exploradas.

Apresentamos dois modelos que diferem no tratamento das contribuições não ressonantes:
um inclui δP ol2 e o outro utiliza o componente PolarFFNR. O modelo base incorpora
K∗0(892), K∗0(1430) e PolarFFNR como componentes do sistema KK, juntamente com
as ressonâncias ρ0(1700), ρ0(1450), f2(1270), Rescattering, ϕ(1020) e χc0 para o sistema
Kπ. O segundo modelo introduz essencialmente o movimento de fase permitido por δP ol2,
que oferece uma representação mais dinâmica da região de baixa massa de Kπ.

Key-words: B sem charme. Decaimento em 3 corpos. Violação de CP.



Abstract
This thesis describes the amplitude analysis for the B± → K∓K±π± decay channel using
data collected during 2015, 2016, 2017, and 2018 from pp collisions at a center-of-mass
energy

√
s = 13 TeV, corresponding to an integrated luminosity of 5.9 fb−1. The event

selection is based on the topological features of the decay, followed by the application of
a multivariate analysis-based criterion. The final dataset prepared for analysis includes
around 35,000 events.

The first amplitude analysis of the B± → K∓K±π± channel, performed during Run I,
revealed one of the largest single-amplitude CP asymmetries observed, at approxima-
tely −66%. The baseline model for Run I incorporated components such as K∗(892)0,
K∗

0(1430)0, ρ(1450)0, f2(1270), ϕ(1020), Rescattering, and a non-resonant contribution.

This study focuses on revisiting the amplitude analysis using the Isobar model of B± →
K∓K±π± using Run II data, refining the understanding of the dominant S-wave con-
tributions, which account for approximately 60% of the decay amplitude. Additionally,
charmonium resonances are explored.

We present two models differing in their treatment of non-resonant contributions: one
includes the δP ol2 and the other uses PolarFFNR component. The baseline model incorpo-
rates K∗0(892), K∗0(1430), and PolarFFNR as components of the KK system, alongside
ρ0(1700), ρ0(1450), f2(1270), Rescattering, ϕ(1020), and χc0 resonances for the Kπ system.
The second model essentially introduces the phase motion allowed by δP ol2, which offers a
more dynamic representation of the Kπ low-mass region.

Key-words: B charmless. 3-body decay. CP violation.
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1 Introduction

Over the past few decades, charmless decays have proven to be an excellent
environment for exploring the phenomenon of CP violation. The LHCb experiment, one
of the four main detectors at the Large Hadron Collider (LHC), is specifically built to
study particles containing bottom and charm quarks, emphasizing the asymmetry between
matter and antimatter. CP violation (CPV), first detected in neutral kaon decays, is
essential for understanding this asymmetry and provides crucial insights into the Standard
Model, especially through the Cabibbo-Kobayashi-Maskawa (CKM) matrix. The CPV
measurements performed by LHCb have been vital in refining CKM parameters and
probing potential physics beyond the Standard Model. These advances push the limits of
current theoretical frameworks, paving the way for future breakthroughs.

Using the data collected during the Run I period, the LHCb experiment measured
significant integrated CP asymmetries in three-body B decays involving pions and kaons
in the final state [20]. With the higher statistics from the Run II dataset, LHCb confirmed
the CP violation in the B± → π∓π±π± decays and further strengthened the evidence for
CP violation [1]. Building on this, this analysis focuses on the B± → K∓K±π± decay
channel.

Significant CP asymmetries have been identified in particular regions of the phase
space. Based on Run 2 data, their distribution can be qualitatively analyzed, as shown in
Fig.1, spotting clear CP asymmetries across the bins. The sources of these asymmetries
can be investigated through amplitude analysis, allowing measurements of the resonant
structure, interference patterns, relative contributions of each component, and their
associated CP asymmetry.

From a theoretical perspective, the dynamics of each process cannot be determined
from first principles. In three-body decays, the standard procedure is to consider a
superposition of two-body interaction channels plus a spectator particle, within the
framework of the so-called Isobar model. In this approach, two-body interactions are
represented as a coherent sum of resonances, which are usually described by Breit-Wigner
functions.

In the Run 1 period, LHCb conducted the first amplitude analysis of the B± →
K∓K±π± channel [19] using the Isobar model approach. This study uncovered one of the
largest CP asymmetries for a single amplitude observed up to that point, with a value near
−66%. Resonant contributions are expected in the two pairs of oppositely charged particles:
the KK and Kπ systems. The production of resonances in the B± → π±K+K− decay is
constrained. Resonances in the π±K∓ system are only accessible via penguin transitions,
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Figura 1 – Measured Acp in bins of the B± → K∓K±π± Dalitz plot. The distribution
comes from background-subtracted and acceptance-corrected events [1].

Figura 2 – Tree (left) and penguin (right) diagrams for the B± → K∓K±π± decay.

whereas K+K− resonances may arise from tree-level transitions. One mechanism by which
CP violation can occur is through the interference between resonance states, coming from
the quark level due to different weak phases of penguin and tree transitions. The tree
(b → u) and the penguin (b → d) level transitions diagrams for B± → K∓K±π± are
shown in the Fig. 2(a) and 2(b), respectively.

The amplitude analysis of B± → K∓K±π± using the Run 2 data will be performed
and, as a starting point, the previous results of the LHCb experiment will be used. The
Run I baseline model included the following components: K∗(892), K∗

0(1430), and a
non-resonant contribution for the Kπ system, as well as ρ(1450), f2(1270), a rescattering
contribution, and ϕ(1020) for the KK system.

The rescattering ππ ↔ KK concept was introduced in the context of two-body
interactions. In the context of three-body decays, rescattering transitions occur when a pair
of mesons initially coming from one channel reappear in the final state of a coupled channel
having the same flavor quantum numbers, which is the case of B± → K∓K±π± and
B± → π∓π±π± . The rescattering region needs improvements in its description so far.
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The update of its modeling could lead to a better understanding of the significant difference
between the fit fractions of this component associated with B± → K∓K±π± (≈ 16%)
and B± → π∓π±π± (≈ 1 − 2%) [21].

The contributions of components such as rescattering, ϕ(1020), ρ(1450), f2(1270),
and other potential resonances will be analyzed. In practice, certain resonances are
not expected in this decay. For instance, the B± → ϕπ± decay, where ϕ → K+K−,
involves an ss̄ resonance that is highly suppressed by the OZI rule, which states that
diagrams with disconnected quark lines are less likely than those with connected ones,
having B(B± → ϕπ±) < 1.5 × 10−7. Additionally, other resonances exhibit contributions
significantly exceeding predictions, such as ρ(1450). While this resonance primarily decays
into the B± → π∓π±π± channel, where its fit fraction is approximately 5% [22], it shows
a considerably higher contribution of around 30% in the B± → K∓K±π± channel. The
f2(1270) plays the role of the tensor contribution, however, the component that was
expected for this role was f ′

2(1525), considering that the fraction of f2(1270) → KK is
4.6% and for the f ′

2(1525) → KK is 87.6%. The inclusion of ϕ(1020) was motivated by
the lack of a good parametrization in the region near the threshold KK, as for the results
of paper [23].

This study emphasizes the S-wave contribution to the decay, which accounts for
approximately 60% of the total decay amplitude and is predominantly located near the
most populated regions of events, along the edges of the Dalitz plot. A notable challenge in
this analysis lies in parameterizing the Kπ and KK S-wave, due to the absence of angular
distribution information, components with well-defined angular properties are easier to
identify. These are just some examples of situations that need to be better understood.

There is also a strong interest in the charmonium resonances, especially the χc0(1P )
and J/ψ(1S) components, as there seem to be indications of their presence. These are
particularly intriguing because they involve (cc̄), and the related decays are driven by
the process b → c + c̄ + d. According to the CKM matrix, the couplings involved (Vbc

and Vcd) do not introduce a weak phase at λ3 level, implying that there should not be
CP violation within the Standard Model. This kind of component will be explored in the
revisited resonant model for B± → K∓K±π± with the Run II data.

In general, the aim of this study is, due to the abundance of resonant substructures
and dynamical effects like rescattering, to perform a full amplitude analysis to shed light
on the CP violation mechanisms in this channel, using the full Run II dataset, i.e, a total
of 5.9fb−1 (higher luminosity if compared to the 3.0fb−1 from Run I) of pp collisions
collected during 2015 - 2018 with around 35,000 events (7 times more than in Run I).

The organization of this thesis is as follows: Chapter 2 presents the essential
theoretical foundations of the Standard Model and the type of physics relevant to this
study. Chapter 3 provides an overview of the LHCb experiment, followed by Chapter
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4, which details the technical contributions of this work to the experiment. Chapter 5
discusses the event selection process for the analysis. Chapter 6 introduces the Dalitz Plot
formalism and fundamental concepts for analyzing the decay’s phase space. Chapter 7
explores the technical aspects necessary for performing this analysis and describes the tools
used to evaluate the results. Chapter 8 presents the main results of this study. Proposals
for systematic studies are included in Chapter 9, and the thesis concludes with the findings
and implications discussed in Chapter 10.
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2 Theory Overview

In this chapter, a brief overview of the theoretical foundations of particle physics is
presented, including an introduction to the Standard Model with a focus on flavor physics
and CP violation. The published results for the CP violation in B± → h±h+h− will be
also discussed [20, 1].

2.1 The Standard Model
The Standard Model (SM) of particle physics is the theoretical framework that

describes the fundamental particles and interactions in the universe, excluding gravity.
It classifies particles into two main categories: fermions, which constitute matter, and
bosons, which mediate interactions. The model successfully explains three of the four
fundamental forces: electromagnetic, weak, and strong interactions, while organizing
elementary particles into a structured framework. At its core, the SM is based on
the symmetry group SU(3)C × SU(2)L × U(1)Y , where each group corresponds to a
fundamental interaction: SU(3)C for the strong force, SU(2)L for the weak force, and
U(1)Y for electromagnetism.

The quark sector of the SM is particularly relevant to flavor physics. Quarks
come in six flavors: up, down, charm, strange, top, and bottom, each grouped into three
generations. The first generation consists of the up and down quarks, the second generation
includes the charm and strange quarks, and the third generation contains the top and
bottom quarks. Flavor-changing interactions are central to flavor physics and are observed
in the weak interaction. In contrast to the strong and electromagnetic interactions, which
conserve flavor, the weak interaction can change quark flavors through processes mediated
by the charged W± bosons.

Quarks are bound together by the strong interaction, described by Quantum
Chromodynamics (QCD), forming composite particles known as hadrons. These hadrons
come in two main types: baryons, which are made of three quarks (such as protons and
neutrons), and mesons, which are quark-antiquark pairs. Flavor physics experiments, like
LHCb at CERN, focus on the properties and decays of hadrons containing bottom (or b)
quarks, providing insights into fundamental symmetries and potential new physics beyond
the SM.
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2.2 The Cabibbo-Kobayashi-Maskawa Matrix
A key element in understanding flavor physics within the Standard Model (SM)

is the Cabibbo-Kobayashi-Maskawa (CKM) matrix, which describes the mixing and
transitions between quark flavors due to the weak interaction. The CKM matrix elements
Vij represent the probability amplitude for a transition between quark flavors i and j,
where i = u, c, t and j = d, s, b. For example, Vus describes the transition of a strange
quark to an up quark.

The CKM matrix is a unitary 3×3 matrix, ensuring the conservation of probability
in flavor transitions. In general, any 3 × 3 unitary matrix has 9 parameters: 3 angles and
6 phases. However, due to the complex nature of the CKM matrix, there is freedom in the
phase structure of the quark mass eigenstates. This allows the elimination of 5 of the 6
phases, leaving only 4 independent parameters: 3 angles and 1 complex phase. The CKM
matrix can be expressed as:


d′

s′

b′

 =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb



d

s

b

 ≡ VCKM


d

s

b

 (2.1)

Written in terms of the three mixing angles and a complex phase, it can be expressed
as:

VCKM =


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 ,

Various parametrizations of the CKM matrix exist, with the Wolfenstein parame-
trization [24] being the most widely used. This parametrization relies on experimental
measurements and expands in terms of λ = sin θc ≈ 0.225, where θc is the Cabibbo angle.
In this form, it is represented as follows:

V =


1 − λ2/2 λ Aλ3(ρ− iη)

−λ 1 − λ2/2 Aλ2

Aλ3(1 − ρ− iη) −Aλ2 1

+O(λ4), (2.2)

where η expresses the complex nature of the matrix, responsible for CP violation.
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2.3 CP Violation
The CP violation can occur through at least three distinct mechanisms. Direct

CPV, also referred to as CPV in decay, takes place when the decay amplitude of a particle
differs from that of its CP conjugate, impacting both charged and neutral particles. CPV
in mixing appears as a difference in the oscillation rates between mesons and antimesons,
occurring when the mass eigenstates of a neutral meson are not CP eigenstates. Lastly,
CPV through the interplay of mixing and decay arises when a final state can be reached
by both a neutral meson and its CP conjugate antimeson, allowing them to decay into the
same final state either before or after mixing. Charged particles cannot undergo mixing
due to charge conservation, that is why the last two forms of CP violation are limited to
decays involving neutral mesons.

In the SM, CP violation originates from a complex phase in the CKM matrix.
These phases can be classified into two types: CP-odd and CP-even. A CP-odd phase
changes sign under CP conjugation — differing between particle and antiparticle — while a
CP-even phase remains unchanged. These phases are associated with different interactions:
CP-odd phases, often called weak phases, arise from weak interactions, whereas CP-even
phases, referred to as strong phases, occur in strong or electromagnetic interactions. The
origin of the weak and strong phases is not fully understood a priori. While weak phases
are linked to the CKM matrix within the Standard Model (SM), strong phases may result
from short-distance effects, such as those from penguin diagrams, or from long-distance
effects due to final-state interactions (FSI) e.g. hadronic rescatterings in non-leptonic
decays [25], which will be discussed in a further section.

For simplicity, let us consider an example of a decay B+ → f and its conjugate
B− → f̄ , where f is a possible final state that can be reached through two different
amplitudes. The total amplitudes for B+ and B− are:

Af = |a1|ei(δ1+ϕ1) + |a2|ei(δ2+ϕ2) (2.3)
Āf̄ = |a1|ei(δ1−ϕ1) + |a2|ei(δ2−ϕ2), (2.4)

where δ1,2 are the strong phases, ϕ1,2 are the weak phases, and a1,2 are intermediate
amplitudes. Under CP conjugation, the weak phase changes sign, while the strong phase
remains unchanged. The asymmetry between the decay rates can be quantified by the
quantity ACP , given by:

ACP = Γ(B+ → f+) − Γ(B− → f−)
Γ(B+ → f+) + Γ(B− → f−) =

|Af |2 − |Āf̄ |2

|Af |2 + |Āf̄ |2
. (2.5)
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By substituting Eqs. 2.3 and 2.4 into Eq. 2.5, we find:

ACP = 2|a1a2| sin(δ2 − δ1) sin(ϕ2 − ϕ1)
|a1|2 + |a2|2 + 2|a1a2| cos(δ2 − δ1) cos(ϕ2 − ϕ1)

. (2.6)

From Eq. 2.6, we can see that, as long as there is interference between amplitudes
with different strong and weak phases, an observable CP asymmetry will arise.

2.3.1 CP violation aspects for B± → h±h+h− decays

One of the reasons for performing the amplitude analysis of B± → K∓K±π± is
inspired by the findings reported in [1]. As already observed in this work, charmless three-
body B decays represent an interesting scenario for exploring the sources of CP violation.
The authors presented a study of the phase-space integrated CP-asymmetries for the decay
modes B± → K±π+π−, B± → K±K+K−, B± → π±K+K−, and B± → π±π+π−. The
distributions of CP asymmetries in the phase space of the four modes are also presented.

The four decay channels under investigation are highly sensitive to CP violation
effects because their dominant diagrams involve b → s(d) (penguin diagrams) and b → u

(tree diagrams), see Figure 3, producing different resonances. These processes can result
in interference between these resonances denoted by distinct weak and strong phases.
Consequently, the strong interaction between intermediate decay states could generate
localized CP asymmetries in regions with weak phases.

Estimating direct CP violation asymmetries presents a significant challenge, from
a theoretical perspective. These estimates heavily depend on the magnitude of the strong
phases involved in the decays [26]. The Bander, Silverman, and Soni framework [27]
(BSS mechanism) was the first theoretical proposal to study direct CP violation. It
suggests that asymmetries in charged B meson decays arise from the interference between
tree-level and penguin-level quark diagrams, which have distinct weak and strong phases.
Since then, numerous studies have explored different mechanisms to understand the role
of strong interaction phases. It is generally agreed that strong phases originating from
short-distance effects are expected to be small. Under this assumption, the resulting
level of direct CP violation would also be minimal. However, if long-distance effects are
considered a significant source of strong phase shifts, much larger direct CP violation
effects could be expected.

Even though the existence of a strong phase and a weak phase are necessary
conditions for the occurrence of the direct CP violation, these should, in principle, not
be the only ones, the influence of CPT symmetry is not explicitly evident and must be
carefully considered. Together with the unitarity of the scattering matrix, CPT invariance
imposes a significant constraint on direct CP violation. Specifically, in the absence of
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Figura 3 – Tree (left, where q1, q2 ∈ {u, c, }) and QCD penguin (right, where q1 = q2 ∈
{u, d, c, s}) diagrams [2].

rescattering processes, direct CP asymmetries cannot occur, even in the presence of weak
phases [26].

2.3.1.1 The final-state interactions

The interaction that occurred at the quark level before hadronization is characteri-
zed as a short-distance phenomenon. Such interactions involve collisions between quarks
and gluons governed by QCD. Conversely, the scattering takes place at the hadronic level
and is identified as a long-distance process [28].

During the decay of B mesons, quarks produced in the weak transition experience
strong interactions that persist even after the hadrons are formed. These interactions,
referred to as FSI, play a crucial role in shaping the final particle states. Following the
initial weak decay of a heavy meson, the hadrons generated can scatter into different
particle configurations through non-perturbative strong interactions or electromagnetic
processes, facilitated by various FSI mechanisms. This contributes to the complexity of
the decay dynamics and can influence observable properties, such as CP asymmetries.

In the literature, the prevailing belief has been that FSI has a minimal impact
regarding the asymmetries, due to the high energy released in such decays. The energy
released causes the hadrons produced in the final state to move at such high speeds that
they quickly exit the interaction region, leaving them with insufficient time to participate
in meaningful final-state rescattering processes [29]. Thus, the FSI would have a negligible
influence on the production of the strong phase. However, by examining the implications
of the BSS mechanism for CP violation in the B-meson system, the FSI rescattering at
the hadronic level increases with energy [30]. Moreover, it was demonstrated that relying
solely on short-distance amplitudes in the BSS mechanism could potentially violate the
CPT theorem in quark-level processes.

“communication”

According to CPT symmetry, the lifetimes, τ , and consequently the total decay
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widths, Γtotal, of a particle and its antiparticle are identical. However, CP violation
allows for differences in the partial decay widths, Γi. Maintaining equality in total widths
between a particle and its antiparticle while permitting variations in their partial widths
necessitates a “communication” between different decay modes. This communication can
only occur among modes that share the same flavor quantum numbers. For final states
with identical quantum numbers, the sum of partial decay widths must also be identical.
In this context, CPV could be distributed among multiple channels through FSI. This
implies, for example, that if a significant positive CP asymmetry is observed in one decay
mode, it necessitates the presence of strongly coupled final states exhibiting negative CP
asymmetry to maintain the overall balance.

In a nutshell, the final-state interactions play a critical role in providing the strong
phases required for CP violation to manifest, and it is also a fundamental element in
preserving the CPT symmetry. Thus, the CPT symmetry not only demands equality in
the total decay widths of particles and antiparticles but also imposes the condition that
the sum of partial widths to final states with identical quantum numbers must be equal.
This constraint can be expressed as:

∑
i

∆Γ(P → fi) = 0

The hadronic rescattering in the final state, like K−K+ ↔ π−π+, which connects
different final states, could introduce the necessary strong phase difference for CP violation.
This mechanism plays a significant role in the specific decay B± → K∓K±π± , which is
the focus of our interest [31, 32].

2.3.2 The Direct CP violation measurements in B± → h±h+h− decays

The standard observable used when investigating CP violation in decays is the CP
asymmetry (Acp). The observed raw charge asymmetry is defined as:

ARAW ≡
N−

sig −N+
sig

N−
sig +N+

sig
, (2.7)

where NB− and NB+ represent the number of events for B− and B+, respectively.
However, experimentally, the value of Araw is influenced not only by CP -violation but also
by a series of effects stemming from production, reconstruction, and the final selection of
events.

After performing a mathematical manipulation and considering other sources of
asymmetries, we can express the physical CP violation asymmetry as:
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ACP = AACC
RAW − AP

1 − AACC
RAWAP

(2.8)

where the Ap is the production asymmetry and AACC
RAW is representing the detection

and acceptance correction. The final results for the phase-space integrated CP-asymmetry
of the four B± → h±h+h− modes, including uncertainties, are:

ACP (B± → K±π+π−) = +0.011 ± 0.002 ± 0.003 ± 0.003 ,
ACP (B± → K±K+K−) = −0.037 ± 0.002 ± 0.002 ± 0.003 ,
ACP (B± → π±π+π−) = +0.080 ± 0.004 ± 0.003 ± 0.003 ,
ACP (B± → π±K+K−) = −0.114 ± 0.007 ± 0.003 ± 0.003 .

where the first uncertainty is statistical, the second is systematic and the third is
due to the limited knowledge of the CP asymmetry of the B± → J/ψK± control channel.

One of the benefits of three-body decays is that they enable the investigation of CP
asymmetries in localized regions of the phase space. The Dalitz Plot is the phase-space
graphical representation of the decay 1 and it provides direct insight into the decay dynamics
allowing the exploration of CP asymmetry effects. To examine localized asymmetries, the
ACP distribution within phase space bins is constructed. Figure 4 illustrates a rich pattern
of significant localized asymmetries, which arise from the interference between different
contributions, with negative and positive asymmetries being observed in the same phase
space. It is interesting to note how CP violation can manifest at higher levels - varying
from 80% to -80% in some cases - in localized regions compared to the integrated value.

Notice that for the B± → K±K+K− decay, the phase space can be divided
into two regions: 1.1 < m2

KK,low < 2.25 and 4 < m2
KK,high < 17. Similarly, for

the B± → K±π+π− decay, the division can be applied as follows: 1.1 < m2
π+π− <

2.25 and 3.5 < m2
K+π− < 19. A striking difference is observed in the CP asymmetry

between these decays: the asymmetry changes sign in opposite directions (blue-negative for
B± → K±K+K− and red-positive for B± → K±π+π−). The selected region corresponds
to the rescattering region, and the difference in the sign of the asymmetries could be
attributed to the “communication” facilitated by the rescattering phenomena, as previously
mentioned.

As observed, the integrated asymmetry in B± → K∓K±π± is predominantly
concentrated in the rescattering region defined as 1 < m2

KK < 2.25 and 4 < m2
Kπ <

19, where an almost constant blue asymmetry is present. To explore the origin of
these pronounced CP asymmetries, an amplitude analysis across all decay channels is
essential. The substructures of the components, as well as their interferences, can provide
1 Further details and discussions on this topic will be presented in the subsequent chapters.
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Figura 4 – The distribution of asymmetry in the bins of the Dalitz plot is presented for
the following decays: (a) B± → π±π+π−, utilizing 400 bins with an average of
229 events per bin; (b) B± → K±π+π−, with 1728 bins and an average of 276
events per bin; (c) B± → π±K+K−, using 256 bins averaging 127 events per
bin; and (d) B± → K±K+K−, consisting of 729 bins with approximately 461
events per bin [3].

valuable insights into the dynamic processes underlying the observed CP violation. The
localized CP asymmetry detected in the rescattering region appears strongly connected
to rescattering phenomena, particularly in B± → K∓K±π± , where a significant CP
asymmetry is evident.
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3 The LHCb Experiment

This chapter describes some of the main features of the LHC, its accelerator
complex, and its collaborations. CERN has four main experiments: ALICE, ATLAS,
CMS, and LHCb. The latter is an experiment dedicated to heavy flavor physics. Some of
its primary objectives are the study of CP violation and rare processes involving hadrons
containing b and c quarks [6].

3.1 The Large Hadron Collider
The LHC (Large Hadron Collider) is an accelerator located in a tunnel appro-

ximately 27 km in length, which was originally built between 1984 and 1989 for the
LEP (Large Electron–Positron Collider). It lies around 100 meters below the surface on
the border between Switzerland and France, near Geneva. The primary purpose of the
LHC is to study elementary particles and their interactions, aiming to test the validity
of theoretical models such as the Standard Model (SM) and to explore physics beyond
it. This accelerator was designed to collide beams of protons and lead nuclei, achieving
center-of-mass energies of up to 13 TeV.

The LHC is host to several experiments. The four main experiments are:

1. ALICE (A Large Ion Collider Experiment): This experiment is focused on heavy
ion collisions and investigates QCD, the strong interaction sector of the Standard
Model. According to QCD, a new phase of matter should exist at extreme values
of density and temperature, which can be achieved in high-energy nucleus-nucleus
collisions [33];

2. ATLAS (A Toroidal LHC Apparatus): This is the largest of the four experiments
and, together with CMS, was involved in the discovery of the Higgs boson in 2012.
Its research topics also include measurements of the Standard Model and phenomena
beyond it, such as the search for extra dimensions and dark matter [34];

3. CMS (Compact Muon Solenoid): Like ATLAS, CMS is a general-purpose experiment,
but it is designed to enhance the efficiency of muon reconstruction by detecting them
before they decay into electrons and in a more compact form [35].

4. LHCb (Large Hadron Collider beauty experiment): This experiment explores the
flavour physics. Its main objective is to search for indirect signs of new physics,
meaning deviations from the Standard Model predictions caused by effects of yet-
undiscovered phenomena, like CP violation and rare decays of beauty and charm
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Figura 5 – The CERN accelerator complex.

hadrons[6]. Unlike ATLAS and CMS, which focus on direct searches for new particles,
LHCb provides a complementary approach by probing the effects of potential new
physics through measurements in the flavour sector;

Proton beams travel through the accelerator tunnel in opposite directions, in an
ultra-high vacuum environment at a temperature of 2 K, and are guided and focused by
superconducting magnetic dipoles and quadrupoles, respectively.

Figure 5 shows the accelerator complex that supports the LHC. These smaller
accelerators are responsible for providing intermediate energies, ensuring beam stability,
minimizing losses, and optimizing energy use. Each accelerator in the chain is designed to
handle specific energy ranges, preparing the beam efficiently for the LHC’s high-energy
collisions. Protons to be collided are obtained in LINAC2, where they are accelerated to
50 MeV by ionizing hydrogen gas with an electron bombardment. They then pass to the
PSB (Proton Synchrotron Booster), where they are accelerated to 1.4 GeV. The beam is
injected into the PS (Proton Synchrotron), where it is accelerated to 25 GeV. After this,
the protons are directed to the SPS (Super Proton Synchrotron), where they reach 450
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GeV, and finally, they enter the LHC. In this final stage, protons reach a center-of-mass
energy of 13 TeV and collide at specific points where the experiments are located.

To conduct the type of physics we aim to study, increasing the number of events is
essential. To achieve this, the LHC was designed to operate at high luminosity, maximizing
the collision rate and facilitating the exploration of rare phenomena. Thus, in addition to
the center-of-mass energy, luminosity (L) is a fundamental factor. It represents a measure
of the number of collisions that can occur per unit area per unit time: the higher the
luminosity, the greater the number of collisions. Luminosity can be expressed as:

L ≈ N2

t× Seff

, (3.1)

where N2 represents the number of protons (with each cloud containing approximately
1.1 × 1011 protons), t is the time between the proton clouds, about 25 × 10−9 s, and Seff

is the effective collision cross-section, which depends on the cross-sectional area and has a
value of approximately 4π(16×10−4)2 cm2. Thus, we arrive at a value of L ≈ 1034 cm−2 s−1

[36], representing the potential for the LHC to produce 1034 collisions per cm2 per second.
Once luminosity is known, it can be integrated over time, and this integrated luminosity
is a measure of the total amount of data collected. The instantaneous luminosity used
by LHCb is lower, at 1032 cm−2 s−1, chosen to limit the number of interactions per beam
crossing, which allows for the reconstruction of primary and secondary vertices and prevents
premature aging of the detector [37]. Table 1 shows the values of integrated luminosity
and energy for each year of data collection during LHCb runs I and II.

Tabela 1 – Approximate values of the conditions for LHCb data-taking [18].

Run Year
√
s (TeV) Integrated

Luminosity (fb−1)

I 2011 7 1.14
I 2012 8 2.19
II 2015 13 0.36
II 2016 13 1.88
II 2017 13 1.87
II 2018 13 2.46

3.2 The LHCb Detector
In high-energy proton-proton collisions, heavy flavor hadrons, such as those con-

taining b-quarks or c-quarks, are predominantly produced in the forward or backward
directions. This production mechanism, combined with the substantial mass of B mesons,
results in particles characterized by high transverse momentum (pT ) and energy (ET ).
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To optimize the study of heavy flavor hadrons, the LHCb detector is designed
as a single-arm spectrometer covering the forward region, with an angular coverage of
approximately 10–300 mrad in the horizontal plane and 10–250 mrad in the vertical plane.
This corresponds to a pseudorapidity 1 range of 2 < η < 5, where η = − ln(tan(θ/2)) is
defined in terms of θ, the angle relative to the beam axis. The LHCb detector consists of
a series of sub-detectors, each with specific functions, as described below

Figure 6 shows some components of this detector. The VELO (Vertex Locator) is
responsible for reconstructing the trajectories of charged particles together with the tracker
stations, TT (Tracker Turicensis), T1, T2, and T3, allowing it to determine the interaction
points, known as primary vertices, as well as decay points, or secondary vertices. The
Magnet is responsible for deflecting the trajectories of charged particles, enabling the
measurement of their momenta. The RICH detectors (Ring Imaging Cherenkov) provide
particle identification. The calorimeters (ECAL, HCAL, SPD/PS) measure the positions
and energies of particles, assisting in their identification as electrons, photons, or hadrons.
The muon stations (M1–M5) are responsible for identifying muons.

The detectors described above are grouped into two main systems within LHCb:
the Tracking System and the Particle Identification System. These components will be
further explored in the following sections.

Figura 6 – 3D sketch of the LHCb detector, including all its subdetectors [4].

1 Pseudorapidity is an approximation to Rapidity, which is a measure of a particle’s angle relative to
the beam axis, but easier to calculate from the polar angle and equivalent to Rapidity for massless
particles.
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3.2.1 The tracking system

The LHCb tracking system is essential for the precise reconstruction of particle
vertices and achieving high momentum resolution, both critical to the detector’s perfor-
mance. It is composed of several key components: the Vertex Locator (VELO), positioned
close to the interaction point; the Tracker Turicensis (TT), located upstream of the dipole
magnet; the dipole magnet itself, used to measure the momentum of charged particles;
and the Inner and Outer tracking stations (T1-T3), positioned downstream of the magnet.
This system is responsible for reconstructing the trajectories of charged particles, known
as tracks, which deposit a small amount of energy as they pass through the detector
material. Designed for optimal accuracy, the tracking system provides excellent momentum
resolution, from 0.5% at low momentum to 1.0% at 200 GeV/c.

3.2.1.1 The Vertex Locator - VELO

For data analysis, it is essential to precisely know the position of the interaction
point, known as the primary vertex (PV), where colliding protons interact, as well as
to identify secondary vertices (SV), which are the decay points of hadrons such as B
and D mesons. These interactions occur within the region enclosed by the VELO. The
distance between primary and secondary vertices is crucial for studying heavy hadrons,
and the VELO provides information on particle coordinates, enabling the reconstruction
and localization of the secondary vertex [38].

This sub-detector consists of 42 modules, with 21 on each side of the semi-circular
structure surrounding the beam. These modules are made of silicon strips sensors grouped
in two sectors: one for radial coordinates (r-sensor) and another for azimuthal coordinates
(ϕ-sensor). The z-coordinate is determined from the position of each module along the
experiment. This setup allows for the three-dimensional reconstruction of trajectories
and vertices. This system provides spatial resolutions of 10 µm and 40 µm for ϕ and z
coordinates, respectively, at the primary vertex, and 300 µm and 150 µm for ϕ and z
coordinates at the secondary vertex. Figure 7 shows the geometry of the VELO sensors.

The accuracy of the reconstructed vertex position decreases as the distance from
the initial measurement point to the interaction region increases. Therefore, the detector is
positioned as close as possible to the collision point, with the sensitive area of the sensors
starting just 8 mm from the beam axis. To protect the detector, the VELO is equipped
with a retractable system, allowing each half to remain at a distance of 3 cm from the
operating position during beam injection and acceleration - named VELO open - , and at
8 mm away - named VELO closed - when the beam is collimated and stable, as shown in
Figure 8.
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Figura 7 – Schematic illustration of the VELO r and ϕ strips (left) alongside an image of
the VELO sensors.

Figura 8 – Schematic illustration of the VELO r and ϕ strips (left) alongside an image of
the VELO sensors.

3.2.1.2 Tracking Stations

Together with the VELO, the TT and T1, T2, T3 tracking stations form the
particle tracking system. These stations are divided into Inner (IT) and Outer (OT)
regions [39], as explained below.
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• Tracker Turicensis (TT)

The primary purpose of the TT is to provide information on the trajectories of low-
momentum particles. It fully covers the angular acceptance of LHCb and has dimensions
of 150 cm in width and 130 cm in height. Like the VELO, this detector also uses silicon
strips, arranged in four layers, and is located between the RICH1 detector and the magnet.
These layers are organized in an “x-u-v-x” configuration, as shown in Figure 9, with
vertical strips in the “x” layers and strips rotated by −5◦ and +5◦ in the “u” and “v”
layers, respectively. This configuration enhances transverse momentum resolution. Each
silicon strip has a spatial resolution of approximately 200 µm.

Figura 9 – Layout of the TT, with the LHC beam pipe passing through an opening in
the center of the detection layers. The four detection layers are labeled TTaX,
TTaU, TTbV, and TTbX. Different types of readout sectors are indicated by
varying shading: the sectors closest to the beam pipe consist of a single silicon
sensor, while other sectors are made up of two, three, or four silicon sensors
connected in series [5].
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• Inner Tracker (IT) and Outer Tracker (OT)

The design of the IT detector is similar to that of the TT, also utilizing silicon strips
with an “x-u-v-x” layer arrangement. The IT covers the inner regions of the T1, T2, and
T3 stations, each of which contains four boxes surrounding the particle beam, with each
box containing seven modules. The boxes are arranged in a cross shape, with each module
equipped with one sensor if located at the top or bottom, or two sensors if positioned on
the sides. Like the TT, this system also has a spatial resolution of approximately 200 µm
[40].

The OT covers the outer regions of the tracking stations. It is a straw-tube gas
detector that uses the drift-time to track charged particles and measure their momentum
across a wide coverage area. When a charged particle passes through the gas-filled
environment, consisting of a mixture of Argon (70%) and CO2 (30%), the gas atoms
become ionized and the resulting charges are collected by an anode wire at the center of
each tube. Like the previous detectors, the OT also consists of four layers aligned in the
“x-v-u-x” configuration. The drift time is approximately 50 ns, due to the tube diameter
of 4.9 mm and the specific gas mixture [41]. An illustration of these detectors is shown in
Figure 10.

Figura 10 – Arrangement of OT straw-tube modules in layers and stations [6].
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3.2.1.3 The Magnet

A dipole magnet is responsible for bending the trajectories of charged particles by
generating a vertical dipole magnetic field in the “y” direction, providing an integrated
field of 4 Tm over a length of 10 m [42]. It is located near the first tracking station, TT,
and is composed of saddle-shaped coils. This magnetic field generates a perpendicular
force that depends on the particle’s momentum, allowing the momentum to be measured
based on the deflection caused by the dominant component of the field in its direction of
action.

The magnet’s polarity is periodically reversed, enabling the field direction to point
either upward or downward. These configurations are referred to as MagUp and MagDown,
respectively. This polarity reversal is essential for controlling systematic effects related to
charge asymmetries within the detector.

Figura 11 – Perspective view of the LHCb dipole magnet with its current and water
connections (units in mm). The interaction point lies behind the magnet [6].

3.2.2 The particle identification system

Particle Identification (PID) is crucial for studying the weak decays of B and D
mesons, as it enables the accurate reconstruction of heavy-flavor decay products. A precise
PID system is also essential for distinguishing between decays with similar topologies,
reducing background from random track combinations, and identifying hadronic decays
that involve one or more muons in the final state. The LHCb PID system comprises two
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ring-imaging Cherenkov detectors (RICH1 and RICH2), an electromagnetic calorimeter
(ECAL), a hadronic calorimeter (HCAL), and a dedicated muon detection system.

3.2.2.1 Ring-Imaging Cherenkov System (RICH)

For the study of heavy hadron decays, it is crucial to identify the particles in
the final state. To achieve this, the collaboration employs RICH detectors, which are
responsible for particle identification, distinguishing between kaons, pions, and protons.
The RICH detector operates based on the Cherenkov radiation phenomenon. By combining
the particle’s speed with the momentum information provided by the tracking system, it
is possible to determine its mass. The cone formed by the photons emitted as the particle
passes through the medium has an angle θ relative to the trajectory, such that:

cosθc = 1
vn
, (3.2)

where n is the refractive index of the medium, θc is the Cherenkov angle, and v is the
particle’s velocity. Two types of RICH detectors are used depending on the particle
momenta. Larger angles correspond to low-momentum particles, while high-momentum
particles are associated with smaller angles.

The first detector, RICH1, positioned upstream, is designed for low-momentum
charged particle identification in the range of approximately 1–60 GeV/c, using C4F10 as
radiators. RICH1 has a wide angular acceptance, fully covering the LHCb range, with a
horizontal acceptance of ±300 mrad and a vertical acceptance of ±250 mrad. A schematic,
3D model, and photo of the RICH1 detector are shown in Figure 13.

The second detector, RICH 2, positioned downstream between the final tracking
station (T3) and the first muon station (M1), is designed for high-momentum particle
identification, covering a range from approximately 15 GeV/c up to and beyond 100 GeV/c.
It achieves this using a CF4 radiator (see Figure 12). The detector’s acceptance spans a
horizontal range of ±15 mrad to ±120 mrad and a vertical range of ±15 mrad to ±100
mrad, effectively covering the region where high-momentum particles are detected. Two
schematic layouts of RICH2 are illustrated in Figure 14.
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Figura 12 – Cherenkov angle versus particle momentum for the RICH radiators [6].

Figura 13 – (a) Side view schematic layout of the RICH1 detector. (b) Cut-away 3D model
of the RICH1 detector, shown attached by its gas-tight seal to the VELO
tank. (c) Photo of the RICH1 gas enclosure containing the flat and spherical
mirrors [6].

Figura 14 – (a) Top view schematic of the RICH2 detector. (b) A schematic layout of
the RICH2 detector. (c) A photograph of RICH2 with the entrance window
removed [6].
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3.2.2.2 Calorimeter System

The calorimeter system in LHCb consists of several sub-detectors: the electromag-
netic calorimeter (ECAL), the hadronic calorimeter (HCAL), the Scintillator Pad Detector
(SPD), and the PreShower (PS) detector. This system primarily assists in identifying
particles such as electrons, photons, and hadrons by measuring their energies and positions
[43], and it also contributes to the trigger system.

The system follows a classic setup, with the ECAL placed in front of the HCAL.
The main challenge is accurately identifying electrons among the particles, which is crucial
for enriching b events in the sample. To this end, the Level 0 electron trigger is designed
to reject 99% of inelastic pp interactions while enhancing b events by a factor of at least
15, achieved by selecting electrons with high transverse energy (ET ). A section about the
LHCb trigger will be presented soon.

Each calorimeter shares a fundamental design feature: alternating layers of absor-
bers and scintillators. The absorbers, composed of dense materials of lead (in ECAL) and
iron (in HCAL), induce particle showers by breaking down the incident particle into lighter
particles with lower energies. The scintillators, made of materials that emit photons when
charged particles pass through, detect part of this energy. The emitted light are guided to
photomultiplier tubes (PMTs) via wavelength-shifting fibers, where they are converted
into electrons, producing a measurable electrical signal.

• ECAL: The electromagnetic calorimeter measures the energy of electrons and
photons2. To separate electrons from the high background of charged pions, the
ECAL is longitudinally segmented and includes a preshower detector (PS) positioned
in front of the main ECAL section. This structure aids in refining electron selection
by detecting early signals in the development of the particle shower. The thickness of
the lead used in the ECAL, set at 25 radiation lengths, is chosen to balance trigger
performance and energy resolution. The ECAL achieves an energy resolution of
σE/E = 10%

√
E ⊕ 1%.

• HCAL: The hadronic calorimeter is used to measure the energies of hadrons such
as protons, neutrons, pions, and kaons. Due to the larger size of hadronic showers,
the HCAL has a lower containment requirement than the ECAL, with a thickness
of 5.6 interaction lengths. It consists of 16 mm iron plates interleaved with 4 mm
scintillators, aligned parallel to the particle beam, providing an energy resolution of
σE/E = 80%

√
E ⊕ 10%. The HCAL modules emit about 30 times less light than

those in the ECAL, so the phototubes in HCAL operate at a higher gain.
2 Photon identification is crucial for the reconstruction of particles such as π0.
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• SPD and PS: The SPD (Scintillator Pad Detector) and PS (PreShower) help filter
out background particles. The SPD, positioned in front of the PS, is essential for
discriminating between showers from electrons and photons and for rejecting high-ET

electrons. The PS further assists in rejecting charged pion background, enhancing
electron candidate selection.

To account for the varying density of particle hits across the calorimeter surface,
the ECAL and SPD/PS are divided into three sections with different lateral segmenta-
tions, while the HCAL is divided into two larger zones, each with larger cell sizes. The
segmentation is designed to match the distribution of hit density, as shown in Figure 15.

Overall, all calorimeters operate on the principle of capturing scintillation light
via wavelength-shifting fibers and channeling it to PMTs. In the SPD/PS, individual
fibers connect to multianode PMTs (MAPMTs) for each cell, while in the ECAL and
HCAL, fiber bundles connect to single phototubes. The gain of each phototube is adjusted
according to its distance from the beamline to maintain a consistent ET scale across the
calorimeters, ensuring uniform response throughout the detector.

Figura 15 – Lateral segmentation of the SPD/PS and ECAL (left) and the HCAL (right).
One-quarter of the detector’s front face is shown. In the left figure, the cell
dimensions are given for the ECAL [6].

3.2.2.3 Muon System

A crucial particle for identification at the LHCb detector is the muon - a long-lived,
charged quasi-stable particle frequently produced in decays of b and c-hadrons. As an
elementary charged lepton, it is heavier than the electron and can travel through the
entire detector, generating only minimal ionization signals in each subdetector with a
low probability of being absorbed. Muons play a vital role in numerous decays that are
either CP-sensitive or rare, holding the potential to provide insights into new physics.
Additionally, they are employed to determine the flavor of neutral B and D mesons in CP
asymmetry and oscillation studies.
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The muon system consists of five rectangular stations (M1-M5) arranged along the
beam axis, covering an area of 435 m2, as illustrated in Figure 16. The system includes
a total of 1380 chambers, with an angular acceptance ranging from 20 (16) mrad to 306
(258) mrad in the bending (non-bending) plane, providing approximately 20% acceptance
for muons from inclusive semileptonic b decays.

To optimize muon identification, the area is divided into four regions (R1 to R4),
with dimensions that increase progressively to manage the particle flux and occupancy
uniformly across the detector. The layout of each station follows a projective geometry,
meaning their transverse dimensions and pad resolution scale with their distance from the
interaction point, as shown in Figure 17.

Station M1 is located in front of the calorimeter and uses Gas Electron Multiplier
(GEM) detectors to handle high occupancy rates. The remaining stations (M2 to M5) are
placed downstream of the calorimeters, separated by 80 cm thick iron absorbers. These
absorbers are designed to block hadrons and allow only high-penetration particles, as
muons, to pass, helping to reduce hadronic background [44]. Muons must have a minimum
momentum of around 6 GeV/c to pass through all five stations, as the combined absorber
thickness is roughly 20 interaction lengths.

The detectors in M2 to M5 utilize Multi Wire Proportional Chambers (MWPCs)
with a gas mixture of Ar (40%), CO2 (55%), and CF4 (5%). As muons pass through, they
ionize the gas, generating a signal by driving ions toward the cathode and electrons toward
the anode. GEM detectors, used in M1, consist of three GEM plates placed between
cathode and anode planes, filled with a gas mixture of Ar (45%), CO2 (15%), and CF4

(40%). This setup enables the system to track muon paths accurately, as depicted in
Figure 18.

The muon trigger relies on independent muon track reconstruction and transverse
momentum (pT ) estimation. It requires aligned hits across all five stations, with stations M1-
M3 providing high spatial resolution along the x-axis (bending plane). This configuration
allows for precise track direction determination and pT calculation for candidate muons,
achieving a 20% pT resolution. Stations M4 and M5 primarily serve to confirm the
identification of penetrating particles.
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Figura 16 – Side view of the muon system [6].

Figura 17 – Station layout with the four regions R1-R4 [6].

Figura 18 – 4 muon station regions [6].
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3.2.3 The trigger system

Many people unfamiliar with the subject might assume that all data generated from
proton collisions is stored for analysis. However, the volume of information far exceeds both
storage capacity and the limited readout rate from the subdetector’s front-end electronics.
Consequently, only a fraction of the events can be recorded for subsequent analysis.

The trigger system’s work comprises a collection of algorithms designed to filter
events that may be of interest for analysis. Its function is to reduce the data rate to a
manageable level by retaining only those events or parts of events considered significant.
Within the LHC framework, each classification algorithm is typically called a “line,”
making the trigger system a compilation of various trigger lines.

The LHCb trigger system used during Run 1 operated with a simplified, two-stage
approach that mirrored offline reconstruction. In the first stage, only charged particles
with transverse momentum (pT ) above 1 GeV/c and displaced from the primary vertex
(PV) were selected. For muons, a lower pT threshold was set, and they did not require
displacement. In the second stage, most charged particles with pT over 300 MeV/c became
available to classify events more fully. Additionally, particle identification information and
neutral particles, such as photons or π0 mesons, could be accessed by specific algorithms
as needed.

While this trigger system supported the majority of the LHCb physics goals, it
posed some limitations. The absence of low-momentum charged particles in the first
stage and incomplete particle identification in the second stage restricted its effectiveness,
particularly in studies involving c-hadrons. Furthermore, differences in resolution between
the online and offline reconstructions made it challenging to determine absolute trigger
efficiencies accurately.

The LHCb trigger system was restructured for Run 2, to allow for complete offline
event reconstruction within the trigger itself. The entire data processing framework was
overhauled to facilitate unified real-time detector alignment and calibration, as well as direct
real-time analysis using information from the trigger system. This change significantly
enhanced the efficiency of selecting charm- and strange-hadron decays and also achieved
the same level of alignment and calibration quality in the trigger as was reached offline in
Run 1, allowing final signal selection to occur at the trigger stage.

The LHCb trigger is designed to facilitate data-taking with minimal dead time
at the full LHC bunch crossing rate of 40 MHz. The maximum rate at which all LHCb
subdetectors can be read out is limited by the bandwidth3 and frequency of the front-end
electronics, corresponding to around 1.1 MHz when operating at the intended rate of
visible interactions per bunch crossing, µ = 0.4, in LHCb. During Run 2, LHCb operated
3 The amount of data that can be transmitted over a network or communication channel per unit time.
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at µ ≈ 1.62 to collect a higher integrated luminosity, which effectively limited the readout
rate to about 1 MHz. Figure 19 presents a diagram showing the trigger data flow in Run
2. The trigger system is organized into two stages: the hardware trigger (L0) and the
high-level trigger (HLT).

Figura 19 – Overview of the LHCb trigger system. Out of the LHC bunch crossing rate of
40 MHz, the LHCb subdetector’s maximum read-out rate was about 1 MHz,
constrained by the bandwidth and frequency of the front-end electronics. [7].

3.2.3.1 The L0 trigger

The L0 trigger uses information from both the calorimeter and muon systems to
select events. Events are chosen if they include a muon with high pT or a hadron, photon,
or electron with substantial transverse energy in the calorimeters. The energies deposited
in the SPD, PS, ECAL, and HCAL detectors are used by the L0-calorimeter system for
event selection. Each calorimeter component is segmented into cells of varying sizes across
the plane perpendicular to the beam axis, while data from SPD and PS detectors helps
distinguish between hadron, photon, and electron candidates.

The L0-muon trigger searches for straight-line tracks in the five muon stations,
with each station divided into logical pads in the x-y plane, where pad size increases with
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distance from the beamline. The track direction is used to estimate the pT of a muon
candidate, assuming the particle originated at the interaction point and was deflected by
the magnetic field. The pT resolution of the L0-muon trigger averages around 25% over
the relevant pT range. The trigger decision is based on the two muon candidates with the
highest pT : either the highest pT must exceed the L0Muon threshold, or the product of
the two highest pT values must exceed the L0DiMuon threshold.

3.2.3.2 The High-Level Trigger

The high-level trigger (HLT) operates entirely through software and is divided into
two stages: HLT1 and HLT2. Events selected by the L0 trigger are transferred to the
Event Filter Farms (EFF), a network of computers where the software-based trigger steps
are executed. The first stage of the software trigger, HLT1, reconstructs the trajectories
of charged particles passing through the entire LHCb tracking system, referred to as long
tracks, with pT greater than 500 MeV/c. Additionally, a precise reconstruction of the
primary vertex (PV) is carried out.

In the second stage, HLT2, the full event reconstruction is performed, which consists
of three main phases: track reconstruction of charged particles, reconstruction of neutral
particles, and particle identification (PID). HLT2 track reconstruction leverages complete
information from the tracking sub-detectors, performing additional pattern recognition
steps not feasible in HLT1 due to strict time limitations. This enables the identification of
high-quality long and downstream tracks with the most precise momentum estimation
achievable. Similarly, the most accurate neutral cluster reconstruction algorithms are
executed within HLT2.

In addition to the muon identification available in HLT1, HLT2 utilizes the full
particle identification capabilities of the RICH detectors and calorimeter system. All
reconstruction algorithms have been optimized for Run 2 to better harness the processing
power of modern CPUs. Combined with the algorithmic improvements described in
subsequent sections, this optimization results in a twofold increase in execution speed
while achieving the same or, in several cases, superior physics performance compared to
the offline reconstruction in Run 1.

Approximately 40% of the trigger output rate is allocated to inclusive topological
trigger (discussed in the Chapter 5) lines, another 40% is devoted to exclusive c-hadron
trigger lines, with the remaining portion divided among dimuon lines, trigger lines for
electroweak physics, searches for exotic particles, and other exclusive lines tailored for
specific analyses. In total, there are around 20 HLT1 and 500 HLT2 trigger lines.

Events that pass the trigger selections are sorted into categories based on whether
the signal candidate or another part of the event activated a specific trigger line. The
categories include Triggered on Signal (TOS), Triggered Independent of Signal (TIS), and
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Triggered on Both.

In TOS events, the signal candidate’s tracks directly trigger the line, providing
higher signal efficiency, though these samples may have charge biases that are challenging
to simulate accurately. For TIS, other event components activate the trigger, capturing
the signal candidate as a byproduct. While more abundant, TIS events tend to include
additional background. The “Triggered on Both” category applies when both the signal
candidate and other event elements contribute to the trigger.

3.2.3.3 The LHCb tracks

In the track reconstruction process at LHCb, data from multiple detectors, including
the VELO, TT, IT, and OT, are combined to reconstruct particle trajectories from
the interaction point near the VELO through to the calorimeters. This computational
procedure starts by clustering hit points in these detectors to form segments. Segments
containing VELO hits are reconstructed under the assumption that their origin lies along
the z-axis, where the pp collision point is centered within the VELO.

The reconstruction algorithm aims to identify all tracks within an event that
leave sufficient detector hits, not only those resulting from b-hadron decays. It employs
both direct and reverse search techniques: the direct search algorithm identifies potential
trajectories starting from segments detected in the TT, while the reverse search algorithm
extrapolates segments identified in the T stations back to the pp collision point to complete
valid track formation.

Depending on their paths inside the detector, the following categories of tracks are
defined, as shown in Figure 20:

• Longtracks: traverse the complete tracking system, from the VELO to the T stations,
offering the highest momentum resolution. This accuracy makes them the most
essential track type for reconstructing b-hadron decays.

• Upstreamtracks: tracks that pass through only the VELO and TT stations are
typically lower-momentum and are bent out of the detector acceptance by the
magnetic field. Despite their limited momentum resolution, these tracks are useful
for analyzing backgrounds in the RICH particle identification algorithm. They can
also contribute to b-hadron decay reconstruction and flavor tagging when needed.

• Downstream tracks: tracks that cross only the TT and T stations are typically the
decay products of long-lived hadrons, like K0

S and Λ, which decay outside the VELO
acceptance.

• VELO tracks: measured in the VELO, they are useful for the primary vertex
reconstruction.
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• T tracks: cross only the T stations are generally produced in secondary interactions
and are valuable for global pattern recognition in RICH2.

Figura 20 – A schematic illustration of the various track types: long, upstream, downs-
tream, VELO and T tracks. For reference, the main B-field component is
plotted above as a function of the z coordinate [6].



Capítulo 3. The LHCb Experiment 33

3.3 The LHCb Upgrade I
This section outlines the main modifications introduced in LHCb Upgrade I.

Technical contributions made as part of this work will be discussed in Chapter 4.

Initially designed for CP violation studies and precision measurements in heavy-
flavor physics, the LHCb experiment has proven effective across a wide range of fields,
including electroweak physics, heavy-ion studies, and fixed-target experiments. To further
expand its physics program and take advantage of the fivefold increase in LHC luminosity
in Run 3, the LHCb detector underwent significant hardware and software upgrades,
transforming it into a general-purpose experiment focused on the forward region. Operated
successfully from 2010 to 2018 during Run 1 (2010–2012) and Run 2 (2015–2018), LHCb
collected an extensive dataset comprising 9 fb−1 of proton-proton data [8].

The design of the LHCb system during Runs 1 and 2 imposed constraints on the
ability to significantly increase statistical data, particularly for fully hadronic final state
decays. The maximum allowed output rate of the initial trigger level, L0, represents the
main limitation. The inclusive selection criteria employed in the L0 trigger, primarily
relying on particle transverse momentum, led to a notable reduction in efficiency as
luminosity increased. This was especially pronounced for the most prevalent processes
involving hadrons in the final state, ultimately resulting in the saturation of the event
yield, as illustrated in the left panel of Figure 21.

Figura 21 – Left: Trigger yields normalized to L = 2 × 1032 cm−2 s−1 as a function of
instantaneous luminosity. Right: Reconstructed decay rates within the LHCb
acceptance as a function of the pT cut for decaying particles with τ > 0.2 ps
[8].

Key upgrades include a new tracking system with a silicon-pixel vertex detector, a
silicon-strip tracker positioned upstream of the dipole magnet, and a scintillating-fibre
tracker downstream of the magnet. The photon detection system of the Cherenkov
detectors has been enhanced with multianode photomultiplier tubes, while the calorimeter
and muon detector electronics have been redesigned and updated. Additionally, an all-
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software trigger utilizing GPUs and a dedicated computing farm has been implemented,
along with a completely renewed online system. To align with this new trigger approach,
the software and computing framework have been entirely restructured and reengineered.

The particle tracking system consists of the vertex locator (VELO), an array of
pixel silicon detectors surrounding the interaction region; the silicon-strip upstream tracker
(UT) positioned before the large-aperture dipole magnet; and three scintillating fibre
tracker (SciFi Tracker) stations located downstream of the magnet. The upgraded VELO
uses hybrid silicon pixel detectors, and the SciFi Tracker replaces the former straw-tube
Outer Tracker and silicon-strip Inner Tracker in the downstream tracking stations.

Particle identification (PID) is handled by two ring-imaging Cherenkov detectors
using C4F10 and CF4 gases, an electromagnetic calorimeter (ECAL), a hadronic calorimeter
(HCAL), and four muon chamber stations (M2–5) interspersed with iron shielding. The
previous Scintillating Pad Detector and Pre-Shower, as well as the most upstream muon
station, have been removed, as their roles have reduced with the new full software trigger
replacing the former hardware L0. Figure 22 shows the layout of the upgraded detector.

Figura 22 – Layout of the upgraded LHCb detector.

The VELO has undergone an extensive upgrade, now incorporating hybrid silicon
pixel detectors arranged in modules and cooled by a silicon microchannel cooling system.
Only the primary vacuum vessel and motion mechanisms from the original VELO structures
used in Run 1 and Run 2 have been retained. The RF boxes, which connect the detector
to the LHC beams, have been completely redesigned to reduce material usage and decrease
the VELO’s inner radius along the beamline. Additionally, a new storage cell has been
installed upstream of the VELO within the beam vacuum to support further fixed-target
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physics studies. This upgraded VELO is anticipated to significantly enhance performance
while also enduring a radiation dose approximately ten times higher than before.

The TT has been replaced by the Upstream Tracker (UT), which consists of four
planes of silicon detectors with a central circular gap allowing space for the beam pipe.
The UT is a crucial part of the upgraded tracking system, providing essential data for the
first processing algorithm in the software trigger. It is designed to maintain a single-hit
efficiency of 99% and to withstand radiation damage, ensuring reliable performance through
the end of Run 4.

The T1-T3 tracking stations were upgraded to new stations utilizing scintillating
fiber technology with SiPM readout. These stations handle the tracking of charged particles
and measure momentum, achieving performance levels for b- and c-hadrons comparable to
those in Run 1 and Run 2, despite operating in an environment with increased particle
density.

The photon detection system in both RICH1 and RICH2 previously relied on
hybrid photon detectors (HPDs) with embedded front-end electronics, restricted to a 1
MHz output rate, which necessitated replacement for the upgrade. The updated system
now utilizes multi-anode photomultiplier tubes (MaPMTs) paired with new front-end
electronics capable of a 40 MHz readout rate. Additionally, RICH1 underwent significant
optical redesigns to manage the anticipated increase in hit occupancy within the detector’s
central region. The upgraded calorimeter system no longer includes the Scintillating Pad
Detector (SPD) and PreShower detector (PS), while the M1 station has been removed
from the upgraded muon system. The ECAL, HCAL, and the remaining muon stations
underwent no major structural changes, although their front-end and readout electronics
were redesigned to support a 40 MHz readout frequency.

3.3.1 The trigger and software update

Increasing the quantity of acquired data is, therefore, essential for advancing the
studies conducted at LHCb. Such an increase involves raising the beam luminosity, leading
to more collisions and more events per unit time. However, any attempt to operate
the current LHCb experiment at higher luminosity results in the saturation of the L0
trigger. This saturation is caused by limitations in the detector layout and data acquisition
hardware, which impose a maximum rate for data accumulation from the experiment.
During the Run 2, the average number of detectable proton-proton (pp) collisions per
bunch-crossing is µ ≈ 1.62.

At the nominal instantaneous luminosity for pp collisions during Run 3, the LHCb
experiment will generate data at a rate close to 4 TB/s. However, only a maximum of
10 GB/s can be permanently saved for physics analyses. To address this limitation, the
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LHCb detector has been extensively upgraded to implement a trigger system that relies
on software. The LHCb has also undergone a redesign of its trigger system. This system
is intended to carry out real-time analysis, executing a complete reconstruction with
offline-level quality by providing full detector raw data to the decision-making processes,
while alignment and calibration are conducted in near real-time.

After the upgrade, the experiment will be able to take advantage of the new
available luminosity, which will be 5 times greater than the Runs 1 and 2 together. It is
expected that, in this way, the LHCb experiment will be capable of collecting 50 fb−1 of
data over the course of Run 3. The expected number of detectable pp interactions per
bunch-crossing after the upgrade is µ ≈ 5.

The new two-stage trigger system consists of an initial inclusive stage, HLT1,
focused on charged particle reconstruction and reducing data volume by a factor of 20.
This is followed by HLT2, which performs a full offline-quality reconstruction and selection
of physics events. A 30 PB disk buffer sits between these stages to store data while
real-time alignment and calibration occur.

HLT1’s main objective is to lower the event rate to allow data buffering for
alignment, calibration, and further processing in HLT2, while ensuring high efficiency
across LHCb’s physics goals. The HLT1 output rate, capped at 2 MHz for Run 3, is
optimized based on HLT2’s reconstruction throughput and the disk buffer’s write speed,
ensuring minimal selection of false tracks or random track combinations.
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4 The SciFi Tracker and the ROB test system

Part of the work conducted during my PhD is related to the commissioning of the
SciFi detector. Further details on this detector will be presented in this chapter. The test
system for the front-end electronics housed in the SciFi readout boxes (ROB) will also be
discussed.

4.1 A new tracker for the LHCb Experiment
The tracking detectors upstream and downstream of the LHCb dipole magnet

enable precise momentum measurements of charged particles, ensuring accurate mass
resolution for particles undergoing decay. The reconstructed particle trajectories are
crucial inputs for photon-ring searches in the RICH detectors, which are used for particle
identification. Momentum resolution for tracks is primarily limited by multiple scattering
at momenta up to about 80 GeV/c [9], while detector resolution is the main constraint for
tracks with higher momentum. This chapter focuses on the upgrades to the downstream
tracking detectors, specifically the Scintillating Fiber Detector (SciFi), which is now the
primary tracker in the LHCb spectrometer.

The SciFi detector, designed to measure charged-particle tracks with over 99%
efficiency and spatial resolution better than 70 µm (with 100 µm sufficient for the required
momentum resolution), plays a key role in track reconstruction by providing the hit data
necessary to determine the momentum of charged particles. It also supplies positional
information to the RICH system for particle identification.

The SciFi consists of three tracking stations positioned between the magnet and
the RICH2 detector (see Figure 23), each with four detection layers arranged in a “XUVX”
configuration. These layers are spaced approximately 20 cm apart and oriented at angles
of 0°, +5°, -5°, and 0° relative to the vertical axis. The stations are centered around the
LHC beam pipe, with a circular opening in the center allowing the detection layers to
approach as close as 20 mm to the beam pipe.

The ±5° layer orientation maximizes resolution in the plane of magnetic field
deflection while reducing the number of hit combinations needed for pattern recognition,
with a minor trade-off in vertical resolution. The entire detector covers an area of 5 meters
in height and 6 meters in width within the X-Y plane. Altogether, the SciFi detector
consists of 144 modules. Figure 24 illustrates the arrangement of these modules.
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Figura 23 – The three stations of the scintillating fibre tracker shown between the dipole
magnet on the left and RICH2 on the right [9].

Figura 24 – 3D model of the SciFi [8].

4.1.1 Detector Performance

The main requirements for the upgraded tracking detector are outlined below:

• Hit Detection Efficiency: The detector should achieve a high hit detection
efficiency, aiming for approximately 99%. Additionally, the rate of reconstructed
noise clusters at any location in the detector should remain significantly lower than
the signal rate at the same location, specifically less than 10% of the signal rate.

• Spatial Resolution: In the bending plane of the magnet, the spatial resolution for
single hits should be no more than 100 µm. Higher precision is not necessary, as the



Capítulo 4. The SciFi Tracker and the ROB test system 39

extrapolation of tracks from the VELO is mainly affected by multiple scattering in
the upstream detectors.

• Material Minimization: The material in the detector’s acceptance region should
be minimized to reduce multiple scattering effects in the tracker. This ensures that
scattering effects are less significant than those caused by upstream materials.

• Read-Out Electronics: The electronics should operate at a 40 MHz frequency,
with a short recovery time for each read-out channel to minimize inefficiencies caused
by dead time.

• Operational Performance: The detector must maintain the required performance
levels for data collection at an integrated luminosity of up to 50 fb−1.

4.1.2 Scintillating Fibres

Scintillating plastic fibers are used as the active elements in the SciFi Tracker
project. Optical photons are generated through a multi-step process. Initially, ionization
energy is deposited in the fiber’s polymer core, where only a few eV of energy is needed to
excite the polymer molecules. However, the base material alone has a low light yield and
slow relaxation time. To enhance the scintillation efficiency, an organic fluorescent dye
with a compatible excitation energy level is mixed into the polystyrene base, at around
1% by weight. This enables rapid (sub-nanosecond) energy transfer from the polymer to
the dye through a non-radiative dipole-dipole interaction called Förster Transfer, after
which the dye releases a photon as it returns to a lower energy state.

4.1.3 Silicon Photomultipliers (SiPM)

Silicon photomultipliers (SiPMs) are solid-state devices designed for photon de-
tection, encompassing all necessary features for capturing photons in high-resolution
scintillating fiber trackers. These specialized devices offer high photon detection efficiency
across a wide wavelength spectrum, high reliability due to their straightforward mechanical
design, and are packaged in dense multi-channel formats. Their cost-effectiveness enables
their use in constructing large-area tracking detectors.

SiPMs must meet several demanding requirements, including resilience to neutron
radiation and efficient operation with the relatively low light yield from long scintillating
fibers. One of the crucial aspects of the SciFi project is the necessity to control the noise
generated by the SiPMs, which directly impacts the detector’s performance. To address this
challenge, custom-designed SiPMs are employed to match the detector channel dimensions
and packaging, and a low-temperature operation is implemented to significantly reduce
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noise. The cooling of the SciFi Tracker is, therefore, a critical feature, as it ensures optimal
SiPM performance and supports the overall efficiency and reliability of the detector.

The tracker’s primary performance metrics are hit detection efficiency and spatial
resolution, which are largely influenced by the overall light yield of the detector and fiber
module, given that mechanical parameters such as channel size and fiber diameter are
predetermined. The SiPM noise has three main components: dark noise, pixel cross-talk,
and after-pulsing. Dark noise, resulting from random avalanches in the silicon amplification
region, produces signals equivalent to a single photon. The Dark Count Rate (DCR) —
the measure of dark noise — significantly rises post-irradiation, which is the primary
form of radiation damage observed at the levels required for LHCb. Each avalanche may
trigger a neighboring pixel, a phenomenon known as pixel cross-talk. Both cross-talk and
after-pulsing are highly dependent on the detector technology. After-pulsing contributes
to the DCR by introducing after-pulses with enough amplitude to mimic a single-pixel
signal, which can only occur after a substantial portion of the pixel recovery time (over 10
ns). Thanks to advancements in technology, after-pulsing has been considerably reduced
and now accounts for only a small part of the overall noise.

4.1.4 The Read-out Box (ROB)

The Read-out Box is a compact device designed to read the SiPM signals of the
SciFi detector module. Located at both ends of the module, the RoB interfaces with
the scintillating fiber ribbons linked to the SiPM arrays and connects to the front-end
electronics. The RoB handles 2048 input channels, divided into two independent Half
RoBs. Each Half RoB houses one Master Board (MB), four Cluster Boards (CB), and
four PACIFIC Boards (PB), with each PB accommodating 256 input channels.

The low-Power Asic for the sCIntillating FIbres traCker (PACIFIC) boards [45]
is an application-specific integrated circuit (ASIC) with around a 64-channel, which is
responsible for amplifying and digitizing the input signals. This ASIC includes 8-bit
DACs (digital-toanalogical converter) for fine-tuning the SiPM high voltage and the analog
threshold for the comparators. The Cluster Boards contain two Microsemi FPGAs, each
handling 128 channels, and one slow control adapter (SCA) ASIC. The Master Board
integrates key components such as four DataGBT ASICs for data transmission, one
MasterGBT (Giga-Bit Transceiver) for control interface, an SCA ASIC for slow control,
DC-DC power provided by FeastMPs, and one Housekeeping FPGA. Data is transmitted to
the acquisition system via eight unidirectional data links and one bidirectional control link.
The cooling system, known as the “Cold box” cools the 16 SiPM arrays to a temperature
of -40◦C. It employs dry gas, maintaining frost and dew points below -70°C at the inlet
and -50°C at the exhaust. Additionally, for slow control, the RoB contains ten SCA ASICs
equipped devices enabling voltage measurements.
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The RoB design, shown schematically in Figure 25, exemplifies the integration of
functionality and precision required to support the SciFi detector’s performance within
the LHCb experiment.

Figura 25 – Side and front views of the end of a scintillating fiber module, displaying the
SiPM arrays, cooling pipe, flexible cables, and front-end electronics [8].

Access to the ROB is provided through two panels on its front face: one for the front-
end electronics and another for the cold volume housing the SiPMs. The modular design
of the electronic cards and SiPM super-arrays is intended to facilitate easy replacement
with minimal adjustments. Connectors for electronics and power supplies will be routed
through the top end of the ROB.

Significant insulation (around 5 cm) will be required to separate the cold area
containing the SiPMs from the warmer region with the front-end electronics. Additionally,
the limited 2 cm space between the cooling pipe and the ROB faces presents a challenge
in preventing condensation and frost formation inside and outside the ROB.

4.1.5 The front-end electronics

The front-end electronics (FEE) in the SciFi Tracker function as the interface
between the SiPM signals and the Back-End Electronics (BE) modules, facilitating data
acquisition and control. Positioned on the warm side of the ROB, the FEE is attached
directly to the detector, connecting to the SiPMs on one side and to the experiment’s data
acquisition and control system on the other. The FEE is responsible for reading detector
signals and transferring the data to the BE electronics. Additionally, it controls and
monitors the detector, receives commands, and reports the status of various components.
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Each FEE board includes an interface to distribute bias voltages to both the
integrated circuits and the SiPMs, manages Timing and Fast Control (TFC) signals, and
communicates with the Experiment Control System (ECS).

The SciFi FEE consists of three types of modules that handle data readout,
processing, and transmission (see Figure 26):

• Pacific Board: is the module responsible for reading, amplifying, and digitizing
the data from the SiPMs. It includes four PACIFIC.

• Clusterization Board: performs zero-suppression, organizes the data into clusters,
and prepares it for transmission to the back end.

• Master Board: coordinates the other boards, supplying power and clock signals,
and is responsible for data serialization and transmission to the counting room.

Figura 26 – Photograph of assembled Master, Clusterization, and PACIFIC boards [8].

The architecture of the SciFi Tracker’s FE electronics follows [46]. Its functional
operation is summarized in the block diagram shown in Figure 27. The data path in
the FE electronics begins when light reaching the SiPM pixels generates electrical pulses.
The PACIFIC chip reads these pulses and outputs a 2-bit digital signal representing the
pulse’s threshold level. Clusterization FPGAs then process signals from all 128 SiPM
channels, creating clusters and formatting them according to the GBT protocol. The
data is subsequently passed to the GBTx chips on the Masterboard, which serializes it
and sends it to the Back-End (BE) electronics via VTTx modules. Each GBTx channel
transmits data through specific VTTx modules, as shown in the block diagram for a half
FE Box.
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Figura 27 – Diagram illustrating the functional data flow within the FE electronics [8].

4.2 The Read-out Box test system
The SciFi layout consists of 144 detector modules, each with two readout boxes,

one on each end. This setup results in the production of 288 readout boxes for assembly,
plus approximately 10% additional units as spares, totaling over 300 boxes. The front-end
electronics in the SciFi readout boxes are required to pass a series of functional tests
before installation to guarantee optimal performance for the LHCb experiment. Given the
scale of production and the time constraints, manual testing is impractical. To address
this, the Charge Injection Device, which consists of using FPGAs to generate pulses with
binary amplitude, was proposed as a key tool for automating the testing of the SciFi ROB
front-end electronics. The tests conducted and the development of the testing system was
entirely the responsibility of the CBPF group.

The test system is designed to ensure quality control of the front-end electronics by
identifying potential issues that may arise from manufacturing or assembly processes. It
should be capable of detecting defective (dead) and noisy channels, as well as pinpointing
interference (crosstalk) and phase differences (timing) between channels. Furthermore,
it needs to verify the functionality of the PACIFIC, including assessments of DC level
uniformity, input gains, and threshold voltages, in addition to the performance of shapers,
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integrators, comparators, and digital logic. An essential aspect of this system is its ability
to validate the integrity of an emulated physical measurement by injecting charge levels
comparable to those generated by photomultipliers during real events. This validation
confirms the functionality of the entire acquisition chain, covering clustering mechanisms,
data transmission, and data storage. Ultimately, this test system is intended to support
the reliability and performance of the SciFi front-end electronics, ensuring each component
meets the operational standards required for the LHCb experiment.

One of the main contributions of this work lies in the enhancement and utilization
of the RoB test system. Over 10% of the total RoBs available for the SciFi detector were
tested during the course of this project.

4.2.1 Charge injection device

The Charge Injector is a device designed to emulate the electrical signals produced
by four SiPM super-arrays when excited by photons generated by scintillating fibers
under the effect of ionizing radiation. The purpose of this emulation is to systematically
stimulate the readout mechanism. The emulation of the SiPM channels is achieved by
replacing the photomultiplier elements with output channels from the Charge Injector
Device. These channels are capable of injecting into the PACIFIC ASIC inputs a charge
amount equivalent to that generated by an SiPM. A full evaluation of a Readout Box
requires 2048 injection channels, each functioning as an independent pulse generator.

4.2.2 The test bench

The Test Bench includes an injection system, the RoB under test, and a back-end
data acquisition and control unit named miniDAQ, equipped with a monitor, keyboard,
and mouse. Additionally, it requires a high-precision high-voltage module and a 4-channel
power supply capable of delivering 10A. The power supply provides two +12 V lines for
the injection system and two +6.5 V lines for the RoB.

The injection system features a control board connected to the miniDAQ, and
eight injector modules, each with 256 channels (see Figure 28). These modules are capable
of individually injecting calibrated charge pulses into any of the 2048 inputs of the RoB
through the standard SiPM connectors. Due to the high-density design of the connector,
which has a maximum insertion limit of 50 cycles—far less than the number of RoBs
requiring testing.

The combination of the miniDAQ and the injection system ensures a robust and
efficient testing setup for the RoBs. The test procedure is fully automatized by the WINCC
control panel, which can be used by non-experts.
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Figura 28 – Photo of the injector module.

4.2.3 The RoB test sequence

A brief summary of the steps involved in the RoB Test Procedure is provided
below:

• Download file configuration and RoB IDs: The initial step involves downloading the
configuration files from the database and obtaining the production and hardware
IDs for all MB, CB, and PB components of the RoB being tested.

• Current Verification I: Verification of the RoB current before configuration, measured
on the Power Supply.

• Optical Control Link syncronization: Before initiating the configuration process, the
error lock counters in the miniDAQ firmware are reset. Once the RoB configuration
is complete (as detailed in the following step), these counters are used to detect and
report any errors present in the control fiber connections.

• RoB configuration: in the MB, we configure the MasterGBTs, DataGBTs and
MasterSCA. In the CB, we configure the SCA.

• Check LEDs status: following a successful configuration, the software checks the
status of the RoB LEDs to identify any potential configuration issues with the
DataGBTs.

• Light Power Verification of Optical Fiber Links: verification of the light intensity of
the optical links.

• House-keeping FPGA: the procedure loads the firmware of the two FPGAs located
in MBs, and records the firmware version.
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• Cluster Board FPGA: the procedure loads the firmware of sixteen FPGAs located
in CBs, and records the firmware version.

• RoB configuration II: once the firmware for the HK and CB FPGAs is successfully
loaded, the configuration process is repeated to ensure the proper setup of the PB.

• Optical Data Link syncronization: checks if all DataLinks are properly locked. The
process is the same as the control links.

• Current Verification II and Voltage: measures the RoB current following the configu-
ration and firmware loading process. Additionally, it records the voltages from the
MB SCA ADCs (analog-to-digital converter) and the power supply.

• IDs verification: the MasterGBT IDs are read to identify the MB, and the MasterSCA
ID from the MB is uploaded to the data. For the CBs, this step compares the SCA
IDs with those already stored in the data base to ensure consistency.

• Current Source Calibration: This step involves determining the current values
generated by the eight current sources. The current measurements are averaged and
then uploaded to the data base, as shown in Fig. 29.

Figura 29 – Current source plot of all channels for all RoBs tested.

• Temperature measurements: once the current source values are determined, the test
measures the temperatures of all sensors.

• Calibration of HV measurement: Each HalfRoB is supplied with 16 high-voltage
lines from an external HV power supply. During data acquisition, the HV bias is
monitored by reading the ADC values from multiplexed 1 channels on the SCA
chip after passing through a voltage divider. For calibration, this process involves
applying a high-precision power supply voltage ranging from 5 V to 70 V in 1 V

1 Combining multiple signals into a single transmission medium or channel, allowing multiple data
sources to share a single communication resource.
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increments and averaging the measurements 20 times. The voltage readings from
the ADC are then used to perform a linear fit, mapping the applied voltage to
the measured ADC values. Although the theoretical relationship is described by
Vbias = (72.43 ± 0.09) · VADC, the fit is modeled as a first-degree polynomial (with
two parameters) to account for minor variations in millivolts caused by grounding
fluctuations, as illustrated in Figures 30 and 31. The calibration parameters are
stored in a database for comparison with future calibration data.

Figura 30 – HV Fit Slope plot of all channels for all RoBs tested.

Figura 31 – Profile of the HV Fit Slope plot of all channels for all RoBs tested.

• Threshold-Scan Test: the ThScan test determines key parameters of the system,
such as the pedestal, injected charge (Qinj), and Equivalent-Noise-like (ENL). This
procedure consists of a powerful tool to search for dead and noisy channels

Figure 32 presents an example of the distributions of the pedestal, Qinj, and ENL
(pedestal) for a Rob. In this example, all channels are working as expected.

• Short-Circuit Test: this test aims is to identify short circuits and crosstalk between
adjacent channels. These channels are grouped into blocks of 128, sharing the same
SiPM connector and two PACIFIC ASICs on the PB.
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Figura 32 – From left to right, distributions of (a) pedestal, (b) Qinj , and (c) ENL from a
ThScan.

• Link Stability Test: the purpose of this test is to monitor communication errors
caused by clock failures in the control links.

• PACIFIC Bit Error Rate (BER): this test is designed to confirm proper communica-
tion between the PACIFIC output and the back-end system. This is achieved by
transmitting a predefined pattern sequence through a specific route. The process
begins in the CB FPGA, which sends digital data to the PACIFIC chip. The
PACIFIC chip then returns the data to the back-end, where any discrepancies in
the sequence are detected and counted.
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5 Mass fit and event selection

This chapter presents the event selection process for this analysis, building upon
the strategy detailed in [1], which discusses the selection criteria and the mass fit for the
four B± → h∓h

′±h
′′± channels. A concise summary of the event selection and B-mass fit

specifically for B± → K∓K±π± is provided here for both completeness and to reflect the
updates made.

5.1 Variables definition
B-meson decays are identified based on their topological characteristics and recons-

tructed from the signatures left in the detector. Selecting signal events (B± candidates)
involves analyzing these features, which correspond to physical quantities measured preci-
sely by the LHCb sub-detectors. Distinguishing signal from background is a crucial aspect
of the analysis and is accomplished by setting thresholds on key discriminating variables.

A substantial part of the data selection process focuses on evaluating variables
related to the identification of final state particles and the decay’s topology. The typical
topology of a B± → K∓K±π± decay, illustrated in Fig. 33, shows the B meson being
produced at the primary vertex (PV), traveling a certain distance (flight distance, FD), and
decaying at the secondary vertex (SV). Important selection features include high transverse
momentum (PT ), a large impact parameter (IP) for the tracks, and a requirement that
they originate from the PV. These variables serve as effective discriminators, allowing us
to separate signal from background. Below, we describe some of these variables in detail:

Figura 33 – Topology of a three-body decay. The acronyms are defined in the text.

• Invariant Mass: Using the masses of the three daughter particles, we can reconstruct
the mass of the meson in question, as we have the momentum vectors of the
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reconstructed tracks. The four-momentum can be expressed as pµ
B = pµ

1 + pµ
2 + pµ

3 ,
and the invariant mass is given by:

mhhh =
√

(pµ
1 + pµ

2 + pµ
3)2

• Flight Distance (FD): This is the distance between the primary vertex (PV), where
the proton-proton interaction and typically the B+ meson production occurs, and
the secondary vertex (SV), where the decay happens.

• Transverse Momentum (pT ): This is the momentum of the particle perpendicular
to the z-axis.

• PTsum: This is the scalar sum of the transverse momenta of the daughter particles.

• Momentum (P): The momentum P of the mother particle B is defined as the sum
of the daughters momenta.

• Impact Parameter (IP): Defined as the shortest distance between the reconstructed
particle trajectory and the associated primary vertex.

• DOCA: The minimum distance of closest approach between the reconstructed
trajectories of two final state particles. In the case of a three-body decay, we have
DOCA12, DOCA13, and DOCA23.

• Maximum DOCA: Refers to higher DOCA among the three possibilities mentioned
above.

• Flight Distance χ2 (FDCHI2): This is the ratio of the square of the flight distance
to the quadratic sum of the uncertainties of the PV and SV.

• Impact Parameter χ2 (IPCHI2): This represents the difference in χ2 of the PV fit
with and without the evaluated particle (or track).

• ProbNN: This variable is used for particle identification, employing neural networks
to assign an ID to each particle being analyzed. It is particularly useful in reducing
background from kaon and pion misidentification. The information utilized comes
from the RICH detectors, calorimeters, and the muon system.

• Track IP χ2: Is defined as the difference in the vertex-fit χ2 of the PV reconstructed
with and without the inclusion of the track being considered.

• Track PT : Is the component of the momentum transverse to the beam for each
daughter particle.

• Secondary vertex χ2: A good quality of the secondary vertex is required by
imposing that the three daughter tracks form a good vertex.
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5.2 Data set
Given that this analysis represents a follow-up from the previous work [1], a few

other new requirements have been included. Namely, modifications to the veto cut in the
two-body invariant masses mK+K− and mπ+K− , in order to avoid remnant structures from
charm decays. The whole selection process can be divided into the following steps: trigger,
stripping, and offline selection criteria. All of them will be discussed in the following.

This analysis uses the Run II data collected in 2015 - 2018, with a total integrated
luminosity of 5.9 fb−1 and energy of 13TeV at the center-of-mass energy. The luminosity
achieved per year is the total comprised by magnet polarity, namely, 0.33 fb−1 for 2015,
1.67 fb−1 for 2016, 1.71 fb−1 for 2017, and 2.19 fb−1 for 2018. Table 2 shows the summary
of luminosity, Stripping and reconstruction version per year.

Tabela 2 – Summary of luminosity, stripping and reconstruction for run II data set.

Year Luminosity Stripping Reco
2015 0.33fb−1 Stripping24r1 Reco15a
2016 1.67fb−1 Stripping28r1 Reco16a
2017 1.71fb−1 Stripping29r2 Reco17
2018 2.19fb−1 Stripping34 Reco18

LHCb Monte Carlo (MC) samples are generated for 2015 Stripping24r1, 2016
Stripping28r1 and 2017 Stripping29r2 signal simulated samples using Sim09, Pythia 8 and
Reco15a/Reco16a/Reco17h respectively, are used for efficiency studies (the 2018 MC was
unavailable during the period in which the efficiency was being determined).

The signal large simulated samples were generated uniformly distributed in the
denominated squared Dalitz plot (SDP), without CP violation. The use of the uniform
distribution in the SDP aims to improve the determination of the efficiency variation
across the phase space if compared with nominal Dalitz plot representation, since events
are located near of the curved borders in the latter. The generation criteria for the large
MC samples are listed in Table 3.

Tabela 3 – General level requirements for large MC signal samples.

Variables Selection cuts
Tracks PT >90 MeV/c
Tracks P >1400 MeV/c
B± PT >1000 MeV/c
B± P >17000 MeV/c
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Tabela 4 – Stripping line selection criteria for charmless B± decays to three light hadrons.

Variables Selection cuts
Tracks PT 0.1 GeV/c
Tracks P >1.5 GeV/c
Tracks IPχ2 >1
Tracks χ2/n.d.f <3
Tracks GhostProb <0.5
Sum of PT of tracks >4.5 GeV/c
Sum of P of tracks >20 GeV/c
Sum of IPχ2 of tracks >500
PT of the highest-PT track >1.5 GeV/c
Maximum DOCA <0.2 mm
B± candidate MKKK 5.05 - 6.30 GeV/c2

B± candidate MCOR
KKK 4 - 7 GeV/c2

B± candidate IPχ2 <10
B± candidate PT >1. GeV/c
Distance from SV to any PV >3 mm
Secondary Vertex χ2 <12
B± candidate cos(θ) >0.99998
B± Flight Distance χ2 >500

5.2.1 Trigger requirements

Trigger decisions are applied at all levels to select hadronic decays. At the L0
trigger stage, events are required to pass either the hadron line (L0_Hadron_TOS) or any
L0 line independent of the signal (L0_Global_TIS). At the software trigger stage, the
selections include Hlt1TrackMVADecision_TOS and Hlt2Topo(2-,3-)_TOS [47].

5.2.2 Stripping selection

For all B± → h±h+h− decay modes, particles are assigned the kaon mass and
selected using an inclusive stripping line. Due to the topological similarities between the
channels, the stripping lines rely on StdAllNoPIDKaons and are designed to capture all
four charmless B± decays within a wide three-body invariant mass window. A summary
of the stripping criteria can be found in Table 4.

The stripping selection applies initial constraints on track parameters, such as
IPχ2, momentum (P ), transverse momentum (PT ), and the maximum distance of closest
approach (DOCA) between tracks. The three tracks must form a common secondary vertex
(SV) with a good χ2, displaced from the primary vertex (PV) due to the significant flight
distance (FD) of the B± meson before decay. The reconstructed B± momentum vector is
required to align with the primary vertex, typically resulting in a small impact parameter
and a minimal angle θ between the momentum and flight direction. Additionally, B±
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candidates must satisfy a corrected mass (MCOR) range criterion, calculated assuming all
daughters have kaon masses (MCOR

KKK).

5.2.3 B-mass constraint

All Dalitz plot analyses utilize a B-mass constraint applied through DecayTreeFitter.
This algorithm parametrizes the entire decay chain in terms of vertex positions, decay
lengths, and momentum parameters, fitting these parameters simultaneously while en-
forcing relevant constraints like measured final state track parameters and 4-momentum
conservation at each vertex. A Kalman filter is employed for efficient fitting, as detailed in
[48].

5.2.4 Offline selection

The multivariate method (e.g., Boosted Decision Trees) was employed during the
offline procedures to improve the selection of B± candidates, suppress combinatorial
background, and utilize particle identification to mitigate contamination from other b-
hadron decays. Events with multiple candidates passing the final selection were discarded
randomly (≈ 1%), as only one signal B candidate per event is expected due to the low
branching ratio of the decay channel.

5.2.5 Loose preselection

To reduce the large size of the various B± → h±h+h− subsamples, loose preselection
criteria are applied before the multivariate selection. Vetoes were imposed in the two-body
invariant mass to eliminate background contributions from B+ → D̄0K+(π+) decays.
A muon veto is implemented by requiring Track_isMuon = 0 for all decay products.
Additionally, loose PID requirements are employed, which are highly efficient for signal
retention while significantly reducing background. These requirements are based on the
Artificial Neural Network (ANN) PID algorithm.

The probability distributions for all tracks in the B± → K∓K±π± decay are
shown in Figs. 34. A large number of entries with low values of the corresponding ProbNN
variable can be observed. For further analysis, only kaon and pion candidates with
ProbNNk/pi > 0.1 are retained. The impact of this loose PID preselection is illustrated
in Fig. 35, where the rejected candidates are highlighted in red. The mass spectra of the
retained candidates are presented in Fig. 36.

5.2.6 Boosted Decision Trees

To train the boosted decision trees (BDT), we selected ten input variables with
strong signal-background discrimination and minimal inter-variable correlation. These



Capítulo 5. Mass fit and event selection 54

Figura 34 – Distribution of ANN probabilities for B+ → K+(d1)π+(d2)K−(d3).

Figura 35 – Invariant mass distributions B± → K∓K±π± decays. The histogram in red
has the candidates rejected by the minimal PID cut. Sample plots made with
MagUp data only.

variables demonstrated good consistency between their distributions in data and simulation.
Signal samples were obtained from Monte Carlo simulations, while background samples
were taken from high-mass sideband data (mB > 5.4 GeV/c2) from 2015 and 2016, with
comparable event counts in both.

Due to discrepancies in PID variable distributions between data and simulation,
weights from the PIDCalib package [49] were applied to the simulation to correct for
PID pre-selection efficiency. The variables used for BDT training are detailed in Table 5.
Among them, the pointing variable is particularly effective in suppressing combinatorial
background, defined as:

Pointing = Psinθ

Psinθ +∑
i P

i
T

, (5.1)

where the sum in over the transverse momenta of the daughter particles, P i
T =

Pi sin(θi), and θi denotes the angle between the particle’s momentum and the parent’s
displacement from the specified vertex. This variable corresponds to a normalized transverse
momentum relative to the flight displacement, rescaled to lie within the range [0, 1].
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Figura 36 – Invariant mass distributions for the decays retained after the minimal PID cut
for B± → K∓K±π± decays. Sample plots made with MagUp data only. .

Figure 37 displays the distribution of the BDT output variable, contrasting the
optimization specific for B± → K∓K±π± with the one applied to all channels. Simi-
larly, Figure 38 illustrates the Receiver Operating Characteristic (ROC) curve, showing
background rejection efficiency versus signal selection efficiency, again comparing the
B± → K∓K±π± -specific optimization with the channel-independent approach.

Figura 37 – The distributions of outputs variables from BDT. Left curves are background
and right ones are signal. Red lines are for the optimization specific to
B± → K∓K±π± while blue lines are for the optimization common to all
channels.

The optimal BDT output variable cuts are determined by maximizing the statistical
significance, calculated as SMC√

(S+B)data

. Here, SMC represents signal events selected from
simulated samples, and (S + B)data corresponds to the event count in the signal region
|(Bm − 5284 MeV/c2)| < 40 MeV/c2 obtained from data. To improve signal efficiency with
minimal loss of significance, the cuts are chosen slightly before the peak significance value.
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Figura 38 – The background rejection efficiency against signal selection efficiency (ROC
curves). Red lines is for the optimization specific for B± → K∓K±π± and
blue line is for the optimization common to all channels.

Tabela 5 – List of variables used as input for BDT training.

Pointing [pointing_pt]
Maximum DOCA [B_AMAXDOCA]
Sum of the IP relative to PV of tracks [ipownpvsum]
Secondary Vertex χ2 B_ENDVERTEX_CHI2]
PT asymmetry in a cone of 0.5 around the B± candidates B_050_cc_CONEPTASYM_B
Mean of tracks PT ptmed
Max of tracks PT ptmax
B± candidate B_P
B± candidate IPχ2 B_IPCHI2_OWNPV
P of track with opposite sign relative to B± candidate d3_P

Figure 39 illustrates the signal significance and efficiency for this optimization, indicating
the selected cut position. For B± → K∓K±π± , the chosen cut was K+π+K− > −0.07.

Figure 40 shows the B± → K∓K±π± invariant mass distribution both before and
after the application of the BDT selection. One can observe how the multivariate selection
significantly contributes to the reduction of the combinatorial background, enhancing the
signal purity.

5.2.7 Final PID selection

Candidates are selected only if all their tracks meet the criteria of momentum
below 100 GeV/c and pseudorapidity within 1.5 < η < 5.5 (this is also known as fiducial
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Figura 39 – The background rejection efficiency against signal selection efficiency (The
significance S/

√
(S +N) and the signal efficiency for the specific optimizations.

The green line indicate the maximum of the significance. The pink line indicate
the location of the cut on the BDT output variables we chose.

Figura 40 – The invariant mass distribution of B± → K∓K±π± before (black) and after
(blue) BDT selection, for the optimization specific to each channel. The shaded
region corresponds to the signal region |(Bm - 5284 MeV/c2)| < 40MeV/c2.

cuts) . This restriction minimizes cross-feed from other B± → h∓h±h± modes by reducing
the misidentification probability for high-momentum tracks, where the RICH system’s
particle identification capability is limited.

The final PID selection combines “positive” requirements (identifying kaon and pion
candidates as their respective particles) and “negative” requirements (kaon candidates not
identified as pions, and vice versa). The decays B+ → D̄0K+(π+) and D̄0 → K−π+/K−K+

are used to establish these criteria when it is possible.

The PID selection aims to manage cross-feed background by balancing signal
efficiency and background rejection. While PID cuts can significantly reduce cross-
feed, they cannot eliminate it entirely. Tightening requirements sharply decreases signal
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efficiency, so an optimal balance is necessary. Given the large signal yields, the PID
requirements were determined by analyzing the behavior of D̄0 → K−π+/K−K+ signals
relative to both positive and negative cuts. Thef ProbNNe<0.4 cut was also applied to
remove residual contamination from J/ψ → e+e−, where electrons and positrons are
misidentified as pions or kaons. This cut achieves an efficiency of approximately 99%.

For B± → K∓K±π± , the primary backgrounds are B+ → K+π+π− and B+ →
K+K+K−, caused by π − K and K − π misidentifications, respectively. Negative re-
quirements are applied to ProbNNpi for particles 1 and 3 (kaon candidates in B+ →
K+π+K−) and to ProbNNk for particle 2 (the pion candidate). Clear signals from both
B+ → K+K+K− and B+ → K+π+π− are visible in the B+ → K+π+K− sample (see
Fig. 41), providing a basis for the negative PID cuts. For positive requirements, the
B+ → D̄0K+(π+) signal (Fig. 42) is used.

Figura 41 – The K+K+K− (left) and K+π+π− (right) invariant mass distributions from
the B+ → K+π+K− sample. The plot has the 2015+2016 data and includes
both polarities.

Figura 42 – The B+ → D̄0K+(π+) signal from the B+ → K+π+K− sample. The plot
has the 2015+2016 data and includes both polarities.

Contamination from B+ → K+K+K− is mitigated by applying a negative PID
cut (ProbNNk < x) to particle 2, as shown in Fig. 43. The histograms in red, magenta,
green, and brown correspond to cuts of ProbNNk < 0.4, 0.3, 0.2, and 0.1, respectively.
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Similarly, Fig. 44 illustrates the reduction in B+ → K+π+π− contamination when a
negative PID cut is applied to particles 1 and 3, with the same color scheme for ProbNNpi.
Final requirements of ProbNNk < 0.05 for particle 2 and ProbNNpi < 0.2 for particle 3
effectively remove most of the contamination from B+ → K+K+K− and B+ → K+π+π−.

Figura 43 – The B+ → K+K+K− signal from the B+ → K+π+K− sample. Histograms
in, red, magenta, green and brown correspond to the requirement of ProbNNk
< 0.4, 0.3, 0.2 and 0.1, respectively. The plot has the 2015+2016 data and
includes both polarities.

Figura 44 – The B+ → π+K+π− signal from the B+ → K+π+K− sample. Histograms in,
red, magenta, green and brown correspond to the requirement of ProbNNpi
< 0.4, 0.3, 0.2 and 0.1, respectively. The plot has the 2015+2016 data and
includes both polarities.

In addition to the negative PID requirements, positive identification is applied to
the three particles in B+ → K+π+K− candidates. After the negative PID cut, positive
identification proves highly efficient. This is illustrated in Fig. 45, where simultaneous
cuts of ProbNNk > 0.3, 0.4, 0.5, and 0.6 are applied to particles 1 and 3, and ProbNNpi >
0.3, 0.4, 0.5, and 0.6 to particle 2, represented by the histograms in red, magenta, green,
and brown. The selected values were ProbNNk > 0.4 for particle 1, ProbNNpi > 0.7 for
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Tabela 6 – Final PID requirements for B+ → π+K+π−.

K+ π+ K−

ProbNNpi - >0.7 <0.2
ProbNNk >0.4 <0.05 >0.6

particle 2, and ProbNNk > 0.6 for particle 3. The final spectrum is presented in Fig. 46,
and the requirements are summarized in Table 6.

Figura 45 – The B+ → D̄0K+(π+) signal from the B+ → K+π+K− sample. Histograms
in, red, magenta, green and brown correspond to the requirement of ProbNNpi
> 0.3, 0.4, 0.5 and 0.6, after the negative PID is applied respectively. The
plot has the 2015+2016 data and includes both polarities.

Figura 46 – The B+ → K+π+K− signal sample with final PID requirements. The plots
has the 2015+2016 data and includes both polarities.

5.2.8 Mass vetoes

To isolate charmless B decay samples, contamination from B+ → D̄0h+(h =
K+, π+) must be removed using specific mass cuts in the two-body spectra. D0 backgrounds
can arise in two forms: with or without K-π misidentification. The B → D̄0(→ K+π−)π+,
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Tabela 7 – The D̄0 mass veto.

m23_kpi m23_pipi m23_kk m23_pik m31_kk m31_pipi m31_pik
K+π+K− no no no yes yes no no

B → D̄0(→ π+π−)K+ (without misID), and B → D̄0(→ K+K−/π+π−)π+ (with K-π
misID) contribute as backgrounds. Figures 48 and 49 illustrate the four possible D̄0 signals,
while Table 7 summarizes the applied mass vetoes on the corresponding two-body invariant
mass spectra. The veto nomenclature specifies combinations like m23_kpi (particle 2=kaon,
particle 3=pion) and m23_kk (particle 2=kaon, particle 3=kaon). For the D̄0 → K+π−

decay, the mass veto window is extended to mD0 ± 0.060 GeV/c2 to account for signal tail
contributions, while other D̄0 decays use mD0 ± 0.035 GeV/c2, consistent with [1].

It was also identified that the vetoes in the D0 region needed to be extended.
Residual peaks of D0 contamination were observed in both the KK mass and the Kπ
mass distributions. The final version of vetoes applied were: 1.70 < m2

K±π∓ < 2.0GeV2/c4

and 1.83 < m2
K+K− < 2.1GeV2/c4. Figure 47 compares the version of the data used in [1]

and the data after the extension of the vetoes. As can be seen, after applying the cuts,
the contamination peaks from the D0 near 3 and 4 GeV2/c4 were removed.

Figura 47 – Comparison between the KK (right) and Kπ (left) projections before and
after the application of the new vetoes. The red represents the data before
the new vetoes, and the blue represents the data after their application.

Another type of background, found in the high-mass sideband of B+, does not
affect the signal region but impacts the three-body mass fit. It originates from two-body
decays, such as B0 → K+π−/π+π−/K+K−, combined with a random track. To address



Capítulo 5. Mass fit and event selection 62

Figura 48 – The D̄0 → K+π− signal from the π+K+π− sample after final PID require-
ments. On the left panel, the D̄0 → K+π− signal with no misID (combination
of particles 2 and 3). On the right D̄0 → K+π− signal (combination of
particle 1 and 3). The candidate is selected when particle 1, a true kaon,
is misidentified as a pion. The plots have the 2016 data and include both
polarities.

Figura 49 – The D̄0 → hh signal from the π+K+π− sample after final PID requirements.
On the left panel, the D̄0 → π+π− signal with no misID. On the right
D̄0 → K+K− signal where particle 3 is kaon misidentified as a pion. The
plots have the 2016 data and include both polarities.

this, a mass veto of ±60 MeV/c2 around the B0 mass is applied. A summary of all cuts
used in this analysis is provided in Table 8.

5.3 B± mass fit
This section describes the procedure for fitting the B± → K∓K±π± mass spectrum

to determine the total signal yield, raw asymmetry, and background estimates, which will
be used as inputs for the Dalitz plot fits in Chapter 8. A simultaneous fit to the B+ and B−

invariant mass distributions is performed over the range (5080 - 5580) MeV/c2. Background
sources include combinatorial background, partially reconstructed backgrounds (mainly
from four-body decays with a missing particle), and peaking backgrounds with one or
more misidentified particles. Peaking and partially reconstructed backgrounds are modeled
using MC samples, which are subject to the same selection, stripping, trigger, and offline
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Tabela 8 – Summary of all selection stages applied in this analysis.

Trigger requirements as described in section 5.2.1
Stripping cuts as described in Table 4
MVA cuts > −0.07
D0 vetoes as described in section 5.2.8
Muon veto Track_isMuon = 0
Veto to Jψ → e+e− Track_ProbNNe <0.4
Fiducial cuts
Track P <100 GeV/c
Track pseudorapidity selection 1.5 - 5.5
High invariant mass region veto√
s31 and √

s23 5.22 - 5.40 GeV/c2

PID cuts
B± → K∓K±π±

Track1_ProbNNk >0.4
Track2_ProbNNpi >0.7
Track2_ProbNNk <0.05
Track3_ProbNNk >0.6
Track3_ProbNNpi <0.2

selection as the data.

5.3.1 Fit model

A simultaneous unbinned extended maximum likelihood fit was applied to the
invariant mass distributions of B+ and B−. The probability density functions (PDFs) were
modeled and fitted using the RooFit C++ framework [50]. The raw charge asymmetry,
ARAW , is defined as:

ARAW = N− −N+

N− +N+ , (5.2)

where N− and N+ are the number of B− and B+ candidates, respectively. We can represent
N− and N+ as a function of ARAW and the total number of candidates N = N− +N+ in
the following way:

ARAW = N− − (N −N−)
[N− + (N −N−)] ⇒ N− = N

2 (1 + ARAW ) (5.3)

ARAW = (N −N+) −N+

[(N −N+) +N+] ⇒ N+ = N

2 (1 − ARAW ) (5.4)

Using this definition, we define the mass fit model (F±) for B± samples as:
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F± =
[
Ns

2 (1 ∓ AS
RAM)

]
F±

s +

+
[
Ncomb

2 (1 ∓ Acomb
RAW )

]
F±

comb+

+
∑
i=1

[
(fbkgi

NS)
2 (1 ∓ Abkgi

RAW )
]
F±

bkgi
,

(5.5)

The term AS
RAW represents the raw asymmetry of the decay channel, encompassing

CP, detection, and production asymmetries. Abkgi
RAW corresponds to the asymmetry of

peaking or partially reconstructed background, while Acomb
RAW accounts for any asymmetry

in the combinatorial background. NS and Ncomb are the total number of signal and
combinatorial background events, respectively. F specifies the lineshape function PDF
(FS for signal, Fcomb for combinatorial background, and Fbkgi

for peaking or partial
backgrounds). The summation over i considers all background components, with fbkgi

defined as:

fbkg = Nbkg

NS

= Bbkg

BS

× ϵbkg

ϵS

, (5.6)

where Bbkg and BS are the branching ratios taken from PDG, and ϵbkg and ϵS are
the efficienies from the MC selection.

5.3.1.1 Signal fit model

The signal PDF (represented by F±
S (m) for B+ and B− respectively in Eq. 5.7)

model is composed by the sum of a Gaussian plus two Crystal-Balls with common
parameters for B+ and B− samples. This parametrization is derived from MC studies,
which gives a good description of the signal shape and at the same time provides the
best stability to data. The two Crystal Balls are needed to account for the non-Gaussian
asymmetric tails of the signal, including final state radiation (FSR). One Crystal Ball has
its tail on the left and one on the right. The signal PDFs are then defined as:

The signal PDF, represented as F±
S (m) for B+ and B−, as shown in Eq. 5.7, is

modeled as the sum of a Gaussian and two Crystal-Ball functions with shared parameters
for both B+ and B− samples. The two Crystal-Ball components account for the non-
Gaussian asymmetric tails of the signal, including final state radiation (FSR), with one
tail extending to the left and the other to the right. The signal PDFs are expressed as:

F+
S = F−

S =fG ·G(m;m0, σG)+
(1 − fG) · fCBS

· CB1(m;m0, n1, a1, σ1)+
(1 − fG) · (1 − fCBs) · CB2(m;m0, n2, a2, σ2)

(5.7)
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where

G(m;m0, σG) = 1√
2π
exp

[
−(m−m0)2

2σ2
G

]
(5.8)

is the Gaussian distribution. The Crystal Ball functions CBi (i = 1, 2) describe
the signal’s asymmetric Gaussian behavior, combining a Gaussian peak with a power-law
tail. They are defined as:

CBi =


exp

[
− (m−m0)2

2σ2
i

]
, if (m−m0)

σi
> −ai.

( ni

|ai|)
ni

(
ni−a2

i

|ai| − (m−m0)
σi

)−ni

exp(−a2
i

2 ), if (m−m0)
σi

≤ −ai.
(5.9)

The tail’s power-law behavior is governed by ai indicating its position relative to
the distribution’s mean.

5.3.1.2 Background fit models

Combinatorial backgrounds

The high-mass sidebands (above 5440 MeV/c2) are primarily dominated by com-
binatorial background, resulting from random combinations of three unrelated tracks
forming a B± vertex. The combinatorial background is modeled using an exponential
PDF:

Fcomb(m; b) = e[b·(m−5080MeV/c2)] (5.10)

with one free parameter b for the slope.

Peaking backgrounds

Peaking backgrounds originate from channels that overlap or lie near the signal
region. These include cross-feed backgrounds, where misidentification of final-state particles
causes one charmless three-body decay to mimic another, as well as other three-body B
decays. Simulated samples are used to estimate their yields relative to the signal and
determine their shapes in the B± invariant mass spectrum. These findings are incorporated
into the invariant mass fit. The background fraction relative to the signal yield is calculated
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Tabela 9 – Branching ratios and fractions of the peaking backgrounds for B± → K∓K±π±

Mode Branching ratio Fractions from MC 15 - 16
B± → K±K+K− (3.37 ± 0.22) × 10−5 0.0852 ± 0.0139
B± → K±π+π− (5.10 ± 0.29) × 10−5 0.0958 ± 0.0155
B± → π±π+π− (1.52 ± 0.14) × 10−5 0.0040 ± 0.0009

Tabela 10 – Peaking background parameters extracted from MC studies for B± →
K∓K±π± .

Final state µi σi a1 a2 n1 n2 fCB

B± → K±K+K− 5232±
5.1

20.8±
3.4

0.07±
0.05

-2.2±
1.5

19.4±
11.1

1.6±
2.9

0.86±
0.11

B± → K±π+π− 5320.9±
2.1

20.0±
2.0

1.7±
0.4

-0.29±
0.19

1.34±
0.71

18.4±
13.6

0.54±
0.15

B± → π±π+π− 5378.9±
6.1

16.2±
6.0

1.3±
1.0

-0.17±
0.55

1.84±
2.04

2.7±
15.9

0.39±
0.32

as shown in Eq. 5.6, with its uncertainty arising from limited simulation statistics and
branching fraction errors.

The peaking background lineshapes (Fbkg(m)) are modeled by two Crystal Ball
functions CBi as defined in Eq. 5.9. This background model is defined as:

F±
bkg(m) =fCBs · CB1(m; ν1, n1, a1, σ1)

(1 − fCBs) · CB2(m; ν2, n2, a2, σ2)
(5.11)

The potential sources of peaking backgrounds in the B± → K∓K±π± spectrum,
shown in Table 9, were examined. Significant contributions are observed from the K±π−π±

and K+K−K± final states with one misidentified particle. The π±π−π+ final state, invol-
ving two misidentified pions, contributes around 1% and is absorbed into the combinatorial
background, excluding it as a separate fit component. The parameterizations used are
listed in Table 10.

Partially-reconstructed backgrounds

Partially reconstructed backgrounds typically arise from 4-body B± decays missing
a neutral particle (e.g., π0 or γ) or from B0 and B0

s decays missing a charged particle.
For B0 and B± decays without misidentification, the background peaks near a high-mass
threshold, determined by the mass difference between the B and the pion. In contrast,
B0

s decays are closer to the signal peak due to the higher B0
s mass. These backgrounds

are modeled separately in the fit using an Argus function convolved with a Gaussian
resolution, where the Argus function is defined as:
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Tabela 11 – Fractions of the partially-reconstructed backgrounds, obtained from MC.

Mode (B± → K∓K±π± )
B± → D0(K±π∓π0)π± 0.074± 0.011
B± → K∗±(K±π0)K+K− < 0.1 %
B± → K∗±(K±π0)π+π− 0.016±0.003
B0

s → D0
s(K+K−π−)π+ 1.13±0.24

B0
s → K∗0(K+π−)ϕ(K+K−) < 0.1 %

B± → η
′
K± < 0.1 %

A(m;mt, c, p) = 2−pc2(p+1)

Γ(p+ 1) − Γ(p+ 1, c2/2)

· m
m2

t

(
1 − m2

m2
t

)p

exp

[
−1
2 c2(1 − m2

m2
t

)
]
,

(5.12)

The Argus function is characterized by three parameters: the upper mass threshold
mt, the curvature c, and the power p, which defines the slope’s steepness. During the fit,
both the Argus shape parameters and its fractional contribution relative to the signal are
treated as free parameters.

The partially reconstructed components, located to the left of the signal peaks,
have their normalizations floated during the fit. Table 11 lists the fractions of the studied
channels, with B0

s decays contributing significantly to the B± → K∓K±π± spectrum. B0

and B± decays are modeled as a single partially reconstructed four-body component, with
a floated fraction in the fit.

5.3.2 Fit procedure and results

The signal PDF shapes are derived from the MC sample, which satisfies the event
selection criteria and is triggered by L0 Global TIS or L0 Hadron TOS. These shapes are
then applied in the data mass fit. Figure 50 presents the simultaneous mass fits for B−

and B+ samples in both MC and data.

For the MC fit figures, χ2/dof covers the full B mass range (5050–5650 MeV/c2),
while χ2/dof(S) focuses on the signal region (5200–5333 MeV/c2). Table 12 summarizes
the parameters from the MC fit, and Table 13 lists the signal and combinatorial components
from the data fit.

5.3.2.1 Signal region

The signal region chosen for the amplitude analysis is selected to be from 5247 to
5315 MeV/c2. In Table 14 is presented the integral of the signal and each background
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Tabela 12 – Parameters extracted from the mass fits distribution of MC samples.

Signal component MC B± → K∓K±π±

m0[MeV/c2] 5281.0 ± 0.091711
σ[MeV/c2] 14.450 ± 0.66449
σ3[MeV/c2] 14.868 ± 0.72049
σG[MeV/c2] 19.926 ± 1.1883
a1 1.3846 ± 0.17448
n1 1.4803 ± 0.11395
a2 -1.97220 ± 0.20983
n2 2.1668 ± 0.23755
fGauss 0.25232 ± 0,071781
fCBs 0.37223 ± 0.088096

ARAW

0.0065401
±(-0.0039674,
+0.0039636)

Nsig 63626 ± 252.24

Tabela 13 – Parameters extracted from the mass fits distributions of data samples. The
numbers followed by a “(C)” were fixed in the corresponding fit. This table
presents only the signal and combinatorial components of the fit. This
table does not take into account the mass vetoes applied to address the D0

contamination described in Sec. 5.2.8.

Signal component Data B± → K∓K±π±

m0[MeV/c2] 5279.8 ± 0.15009
σ[MeV/c2] 18.837 ± 1.6523
σ3[MeV/c2] 15.636 ± 1.0735
σG[MeV/c2] 17.498 ± 2.4436
a1 1.3846 (C)
n1 1.4803 (C)
a2 -1.97220 (C)
n2 2.1668 (C)
fGauss 0.25232 (C)
fCBs 0.37223 (C)

ARAW

-0.131775
±(-0.0068116,
+0.0067412)

Nsig 32466 ± 296.05
Combinatorial
shift 5050.0 (C)

b
-0.00254267
± 0.000084639

Acomb
-0.0175048
± 0.0059264

Ncomb 59530 ± 1128.1
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Tabela 14 – Integral of each component in the signal region of 5247 to 5315 MeV/c2.

Component B± → K∓K±π±

Signal (-) 12606
Signal (+) 16432
Signal (All) 29038
Combinatorial 7320
Bs → 4 − body 509
Reflection 3 1018
Reflection 4 271
Reflection 5 2

component in this region. The background components named Reflections 3 - 5 are
B± → K±π+π−, B± → K±K+K−, B± → π±π+π−, respectively.
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Figura 50 – Invariant mass fits for B± → K∓K±π± : (top) MC mass fit result plot using
logarithmic scale and pull, (middle) data sample mass fit result plot using
logarithmic scale and pull and (bottom) data sample mass fit.
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6 The Dalitz Plot: tools and theories

This chapter introduces the Dalitz plot formalism as a framework for analyzing
three-body decays, with a focus on the B± → K∓K±π± channel. It highlights the
mathematical structure and kinematic boundaries of the Dalitz plot, emphasizing its role
in uncovering the dynamics of the decay and identifying resonances. The Isobar model,
which will be used for the model-dependent amplitude analysis, is presented, along with
discussions on its limitations, alternative approaches for S-wave models, and the impact of
rescattering. Dynamical functions are explored to model the resonance contributions.

6.1 The Dalitz Plot description
To illustrate a generic example of a three-body decay, consider Figure 51. In this

representation, P⃗ denotes the 4-momentum vector of the parent particle with mass M ,
while pi represents the 4-momentum of each decay product with mass mi. The decay
process complies with the principles of energy and momentum conservation, resulting in
the following constraints:

EM =
3∑

i=1
Ei, Ei = m2

i + p2
i , p⃗M =

3∑
i=1

pi = 0, (6.1)

In total, there are 12 degrees of freedom (4 for each decay product) due to the
4-momentum vectors. This number is reduced by accounting for three particle masses
in the final state (3 degrees of freedom), three Euler angles (3 more degrees of freedom),
and the 4 equations for energy and momentum conservation from Eq. 6.1. As a result,
only two independent variables remain. These two variables describe the two-dimensional
phase space of the decay process, which is visually represented by the Dalitz plot (DP).

Figura 51 – The scheme for three-body decays. Figure extracted from PDG [10].

By constructing independent variables using the 4-momentum vector of the daughter
particles, p⃗ij = p⃗i + p⃗j and m2

ij = p2
ij, where i and j stand for any pair combination the

daughter particles in the final state, it can be shown, using 4-momentum conservation for
the process, that the following relation must be satisfied:
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M2 +m2
1 +m2

2 +m2
3 = m2

12 +m2
23 +m2

31 (6.2)

Since the momenta of the three daughters are co-planar in the M reference frame,
the boundaries of the decay phase space are limited by a maximum and a minimum value
of m2

ij , when the momentum vector p⃗i are parallel or antiparallel to p⃗j . Fig. 52 represents
the kinematically allowed phase space in a broader context. These points correspond
to configurations where one of the particles is produced at rest in the rest frame of the
decaying particle. One can also examine the behavior of the particles in other regions of
the Dalitz Plot, such as the middle, where none of the particles are at rest. The shape
of the phase-space is intrinsically determined by the kinematic involved in the process,
where mmax = M −mk and mmin = mi +mj. The resulting phase space is interpreted as
being a scatter plot of any set of m2

ij variables, m2
12, m2

23 and m2
31.

Figura 52 – Kinematic boundaries of the three-body decay phase space, along with a
depiction of various kinematic configurations for the final-state particles at
representative points on the Dalitz plot. This figure illustrates the phase space
for the decay process B0 → π−D̄0K+, where a = π−, b = D̄0, and c = K+

[11].

Considering the kinematics defined above and the Euler’s angle to define the
3-momentum orientation, one can finally write the decay rate for a M → d1d2d3 as

dΓ = 1
(2π)332M3 |M(m2

13,m
2
23)|2dm2

13dm
2
23, (6.3)
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Here, M represents the amplitude of the decay process, which contains information
about the dynamics. In contrast, the constant state density term holds the kinematic
information. If M is constant, the Dalitz plot (DP) will show a uniform distribution of
events for decays of the type M → d1d2d3. Any asymmetrical distribution of events in the
DP indicates the influence of the decay dynamics.

In non-leptonic B meson decays, the DP often displays bands around certain
invariant masses of two-particle combinations, suggesting the presence of intermediate
states, such as decays of the form M → Rd3; R → d1d2, where R is a resonant state.
These bands in the DP may interact with each other, revealing interesting patterns that
can be examined in the Dalitz plot. Such interactions are studied through amplitude
analysis, which is part of the focus of this work.

For the specific case of B± → K∓K±π± , Eq. 6.2 can be read as:

M2
B± +m2

K± +m2
π± +m2

K∓ = m2
K±π± +m2

π±K∓ +m2
K∓K± , (6.4)

where m2
K±π± , m2

π±K∓ and m2
K∓K± are the invariant masses formed by any two

daughters of the decay (d1 = K±, d2 = π±, d3 = K∓). From the main Feynman contribu-
ting diagrams to this process, Tree-level and Penguin shown in Fig. 2, can be noticed that
the resonant contributing states are mainly expected in the m2

π±K∓ and m2
K∓K± systems.

Therefore, these two independent variables form B± → K∓K±π± Dalitz Plot.

For B decays into light mesons, events are mostly distributed near the edges of
the Dalitz plot. In the case of B± → K∓K±π± , the decay resonances are close to these
kinematic boundaries, regions with high sensitivity where significant changes occur within
a small area. To avoid information loss in these regions, an alternative representation called
the Square Dalitz plot (SDP) can be used. This method transforms the original Dalitz
plot into a rectangular plane, removing the curved boundaries and making building the
efficiency model for amplitude analysis easier. Additionally, the square variables highlight
areas with higher event density, simplifying the parametrization. The transformation
equation is given by:

dm2
π±K∓dm2

K∓K± → |detJ |dm′
dθ

′
, (6.5)

where m2
π±K∓ and m2

K∓K± are the Dalitz plot variables and J is the jacobian of the
transformation. The new variables are defined as [51]:

m
′ = 1

π
arcos

(
2mπ±K∓ −mmin

π±K∓

mmax
π±K∓ +mmin

π±K∓
− 1

)
(6.6)

θ
′ = 1

π
θπ±K∓ , (6.7)
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where mmin
π±K∓ and mmax

π±K∓ are the kinematics limits of mπ±K∓ . The θπ±K∓ is the helicity
angle of the “π±K∓” system (angle between the bachelor particle, in this case, “K±” and
one of the resonance particles produced in the resonance rest frame). The cosine of the
helicity angle (cos(Hel)) is a valuable variable for exploring resonant contributions, as the
spin of each resonance state exhibits a unique shape on its projection, which is associated
with the square of the Legendre polynomial having the same degree as the spin.

Figura 53 – Simulated data projections in the nominal Dalitz plot (left) and Square Dalitz
plot (right) highlighting how each region of the phase space maps from one
representation for B± → K∓K±π± .

Identifying resonances in the Square Dalitz plot is more challenging than in the
standard Dalitz plot. Therefore, in this analysis, the Square Dalitz plot will only be used
to compute the efficiency and background models needed for the Dalitz plot fit, rather
than for resonance identification. In Figure 53, the standard Dalitz plot is shown with
specific regions highlighted in different colors, alongside the corresponding regions in the
Square Dalitz plot to illustrate the mapping of distributions. For the B± → K∓K±π±

decay, the Monte Carlo (MC) sample that will be used for the acceptance map in the
Dalitz Plot fit (see section 7.1) is uniformly generated in the Square Dalitz plot using the
K+π+ variables. The square Dalitz plot variables are dimensionless and range from 0 to 1.
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6.2 B± → K∓K±π± decay amplitude
Nonleptonic three-body decays of B and D mesons occur commonly via resonant

two-body processes. For decays of a spin-zero particle P such as the B into pseudoscalar
final states, the standard theoretical approach to describe the decay amplitude M(m2

13,m
2
23)

involves a coherent sum of contributions from two-body resonances (r) and a non-resonant
term (NR):

M(m2
13,m

2
23) =

N∑
j=1

aje
iϕj Aj(m2

13,m
2
23) + aNRe

iϕNRANR(m2
13,m

2
23). (6.8)

Here, aj (aNR) and ϕj (ϕNR) represent the magnitude and phase (including both
weak and strong phases 1) of the amplitude for the j-th resonant (NR) component,
respectively. The Aj and ANR are the decay amplitudes for each component that describe
the dynamics of the decay into multi-body final states. The following section explore the
parametrization of Aj(m2

13,m
2
23) within the scope of this thesis.

6.2.1 The Isobar model

One of the simplest and most commonly used approaches for describing the
Aj(m2

13,m
2
23) is the Isobar model 2formalism. In this context, the Aj

3 contains the
dynamics given by 2-body strong interaction, and it is phenomenological given by:

Aj = FP × Fr × Tr ×Wr, (6.9)

The term Tr ×Wr represents the resonance propagator, where Tr corresponds to
the dynamical function of the resonance r, and Wr describes the angular distribution of the
decay. The dynamical function Tr is typically modeled using a relativistic Breit-Wigner
(BW) parameterization, which incorporates a mass-dependent width and will be discussed
soon. The Zemach tensor formalism [52][53] are used to describe the Wr, and are given as
in the Table 15. These are related to the Legendre polynomials PL(cos θhel), where the
helicity angle θhel is the angle between p⃗ and q⃗, providing a clear visual representation of
the spin of the intermediate state.

The factors FP and Fr are the Blatt-Weisskopf barrier form factors [54], to consider
the penetration effects caused by the finite size of the particles participating in the reaction.
1 Although the Isobar model does not explicitly account for final-state interactions, these interactions

are implicitly incorporated within the strong phase component of ϕj .
2 The Isobar formalism derives its name from its initial application in describing interactions such as

pion-nucleon, nucleon-nucleon, and antinucleon-nucleon processes. The intermediate resonances were
identified as isobars of specific nuclear states in these reactions. Over time, this formalism was extended
and generalized to describe any three-body final state [11].

3 This description also holds Āj .
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Resonance Spin Angular distribution
J = 0 1
J = 1 −2p⃗ · q⃗
J = 2 4

3 [3(p⃗ · q⃗)2 − (|p⃗||q⃗|)2]
J = 3 −24

15 [5(p⃗ · q⃗)3 − 3(p⃗ · q⃗)(|p⃗||q⃗|)2]

Tabela 15 – Angular distribution using Zemach tensor formalism.

Spin value Barrier Factors (F (z))
J = 0 1

J = 1
√

1+z2
0

1+z2

J = 2
√

z4
0+3z2

0+9
z4+3z2+9

J = 3
√

z6
0+6z4

0+45z2
0+225

z6+6z4+45z2+225

Tabela 16 – Blatt-Weisskopf barrier factor used to correct the amplitude for penetration
effects where z0 represents the value of z when the invariant mass is equal to
the pole mass of the resonance.

Table 16 shows these factors for various spin values, as a function of a variable z defined as:
z = |q⃗|d or z = |p⃗|d, where d is the radius of penetration taken to be 4.0 GeV −1 ≈ 1fm
[55].

The P - and D-wave components of the decay amplitude are generally well-
represented using the BW. The S-wave component of the B± → K∓K±π± amplitude, in
both the K−K+ and π−K+ systems, is characterized by its large magnitude and the pre-
sence of multiple overlapping resonances. These broad, overlapping states pose challenges
for the isobar model, which often fails to provide an adequate description for such cases.
Additionally, it includes effects from rescattering, where particles in the final state interact
with each other before reaching the detector and are influenced by thresholds of different
decay channels. These factors make modeling the S-wave more complex.

6.2.1.1 Limitations of the Isobar Model

The Isobar Model has certain limitations, some of which are highlighted below:

• The 2+1 (or quasi-two-body) approximation: This approximation assumes that
the companion hadron, which does not originate from the resonance decay, does
not interact with the other particles in the final state. Any approximation that
neglects hadron interactions in multi-hadron decays should be applied cautiously.
For instance, the Fermilab E791 and FOCUS experiments conducted amplitude
analyses to measure the Kπ S-wave in the D → KKπ decay. Figure 54 illustrates
this result compared to the Kπ S-wave measured by the LASS scattering experiment.
Notably, both measurements from the decay deviate from the scattering data.
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Figura 54 – The S-wave phase as a function of the Kπ invariant mass, extracted from the
QMI-PWA analysis of the D+ → K+π+π− Dalitz plot, is presented in [12].
The shaded region represents the results obtained from the Isobar model fit
conducted in a prior study [13] The dashed vertical line indicates the elastic
range as determined by the LASS experiment [14] .

Recalling Watson’s theorem, in simpler terms, it posits that swapping two identical
particles in a scattering final state results in essentially the same amplitude, modified
by a phase factor dependent on the scattering process dynamics. Consequently, the
phase behavior should match regardless of whether the production originates from a
decay or a scattering process. These observations reinforce the notion that, at least
for D → Kππ decays, the companion hadron plays a significant role in the final state
dynamics. However, this issue is expected to be less problematic for B-meson decays,
as the B-decay phase space is significantly larger. In this work, we are particularly
interested in the Kπ S-wave, as it will be discussed in greater detail in a subsequent
section.

• Resonances shaping: The Breit-Wigner (or its derivatives) approach is known to
work well only for narrow resonances and non-overlapping resonances, like the P-
and D-waves. But for low-mass broad overlapping resonances (generally the S-wave),
this parameterization is not good, which is the kind of component very important or
even dominant for B decays.

• Unitarity: assuming that the 2+1 approximation is exact, the simple sum of Briet-
Wigners would not preserve the unitarity of the S-matrix 4.

4 It still finds support in [56].
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To address these limitations, some analyses have adopted alternative methods for
parameterizing the S-wave, such as the K-matrix formalism [57]. This method is based
on decomposing the physical amplitude into a pole part and a non-pole part (commonly
referred to as the Slow Variant Part). The K-matrix formalism ensures that the two-body
scattering matrix respects unitarity, a condition that the isobar model does not guarantee.

Another alternative is the (quasi) model-independent partial wave analysis (QMI-
PWA). This approach allows the scalar component to be treated in a model-independent
manner while retaining a model-based description for the other parts of the amplitude. The
S-wave is described by dividing the phase space into bins and introducing a CP-violating
complex parameter, which enables the amplitude and phase to be fitted independently in
each bin [58].

Despite its approximations, the isobar model remains a simple and elegant fra-
mework that continues to offer valuable insights into decay processes. Furthermore,
approximations such as the 2+1 approach can still yield remarkably accurate results,
especially for non-S-wave contributions, as demonstrated in [59].

6.2.2 Expected resonances

A list of possible resonances for the B± → K∓K±π± decay is presented in 18.
However, certain aspects regarding the types of resonances expected for this channel
warrant further discussion and are addressed here.

The resonant contributing states are expected in the K+K− and K−π+ systems.
The diagrams presented in Figure 2 offer valuable insight into the types of resonances that
may contribute to the final state. The gluonic penguin diagrams, driven by the quark
transition b → d, indicate that resonances from the K∗ family, such as K∗(892), K∗

0 (1430),
and others, are likely to appear in the K∓π± sector. These resonances arise due to the
rapid decay of K∗0 into a πK final state. Conversely, tree-level diagrams involving the
b → u transition suggest the presence of resonances in the K+K− system, characterized
by the fx family. These include resonances such as f2(1270), f0(1370), and f0(980).

The so-called OZI rule explains the suppression of certain particle decay processes.
Named after Susumu Okubo, George Zweig, and Jugoro Iizuka, who introduced the
concept in the 1960s, this rule describes how specific decays are less likely to occur due to
disconnected quark diagrams. For instance, the ϕ meson, a vector meson composed of a
strange quark (s) and a strange antiquark (s̄), can decay into two kaons (K+ and K−) or
into (π+, π−, and π0)

For the decay into kaons, the Feynman diagram involves a strange quark interacting
with a gluon, producing an up-anti-up quark pair. Similarly, the strange antiquark interacts
with a gluon, which gets absorbed by the newly created up-quark, yielding K+ and K−
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(see Figure 55 left side). For the decay into pions, the strange and anti-strange quarks
annihilate, producing quark-antiquark pairs through interactions with three gluons. These
gluons generate down-antidown, up-anti-up, and down-antidown pairs, corresponding to
the three pions (see Figure 55 right side).

Figura 55 – The OZI rule states that if a Feynman diagram can be divided into two
disconnected parts by cutting only gluon lines (without slicing through any
external lines), the process is highly suppressed [15]

The Q-value of a decay process measures the energy released or absorbed during
the reaction [60]. For the ϕ meson (mϕ ≈ 1020 MeV), the Q-values for the decay processes
are:

∆Q1 = (mϕ) − (mK+ +mK−) ≈ 30 MeV small phase space, (6.10)
∆Q2 = (mϕ) − (mπ+ +mπ− +mπ0) ≈ 600 MeV large phase space. (6.11)

Typically, higher Q-values indicate larger phase spaces, making the process more
expected. For pionic decay, the phase space is approximately 20 times larger than that for
kaonic decay.

Despite theoretical expectations favoring the pionic decay, experiments reveal that
∼ 50% of phi mesons decay into kaons [61]. This discrepancy led physicists to the OZI
rule: if the Feynman diagram of a decay can be separated into initial and final states by
cutting only gluon lines, the decay is suppressed.

For the pionic decay, cutting the gluon lines separates the initial and final states
entirely, necessitating high-energy gluons to produce hadrons in the final state. In contrast,
for the kaonic decay, contributions from the strange quarks in the initial state persist
throughout, reducing the required gluon energy. According to QCD’s asymptotic freedom,
higher-energy gluons couple weakly to quarks, suppressing the pionic decay relative to the
kaonic decay.
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Figura 56 – B → ϕ(→ KK)π diagram considering the ϕ meson is subject to suppression
according to the OZI rule [16].

Figure 56 illustrates the decay diagram for the process B → ϕ(→ KK)π. As can
be seen, for this type of decay, it is possible to entirely separate the gluon lines connecting
the ϕ meson to the initial state. This characteristic indicates that this decay is suppressed
according to the OZI rule.

The OZI rule also plays an important role in suppressing the hadronic decay modes
of some charmonia meson, like the χc0 and J/ψ(1S) meson. For instance, the same principle
applies, effectively suppressing the J/ψ(1S) → 3π decay channel and favoring transitions
into two charmed D mesons. These D mesons are analogous to kaons but replace the
strange quarks with charmed quarks. In this case, the combined mass of two D mesons
exceeds the mass of the J/ψ(1S), making the decay J/ψ(1S) → D+D− kinematically
impossible. At the same time, the J/ψ(1S) → 3π process is strongly suppressed by the
OZI rule. This rare combination of kinematic and dynamic factors contributes significantly
to the extended lifetime (approximately 10−20 sec) of the J/ψ(1S) particle, which is
associated with its narrow decay width (approximately 90 KeV) [62].

6.2.3 Dynamical functions

As previously noted, Tr in Eq. 6.9 represents the lineshapes used to describe the
resonance’s propagator. While there is no single unique parameterization, the Breit-Wigner
(BW) remains the primary method for describing resonances and serves as the foundation
for other parameterizations. The most relevant parameterizations for this analysis are
outlined below.

6.2.3.1 Breit-Wigner

Resonances are characterized by a phase variation that reaches 90° at m0 (the pole
of the resonance) and are typically described by the relativistic Breit-Wigner lineshape
[63]. The expression is given by:
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TR(mij) = 1
m2

R −m2
ij − imRΓij(mij)

(6.12)

where mij is the two-body invariant mass corresponding to the two particles to which
the resonance decays. The other components are resonance-dependent items, such as the
nominal mass (mR) and the mass-dependent width (Γij(mij)). In general, for a resonance
decaying to spinless particles, the width can be expressed as:

Γij(mij) = ΓR

( q⃗
q⃗R

)2J+1mR

mij

(F 2(|q⃗|d)), (6.13)

where the |q⃗| corresponds to the resonance’s daughters momentum and |q⃗R| is the |q⃗| for
mij = mR. The ΓR corresponds to the nominal width of the resonances and the values of
mR and ΓR are obtained from the PDG [61].

6.2.3.2 Flatté

To describe resonances with an invariant mass distribution close to a two-particle
threshold, the Flatté is often employed [64]. This function is used, for instance, to describe
light scalar mesons like f0(980) and a0(980). As their mass is slightly below the K−K+

threshold, the parameterization is a variation of the relativistic Breit-Wigner distribution.
The specific form for f0(980) is provided by:

Tf0(980) = 1
m2

f0 −m2
K−K+ − i[g2

f0π+π−ρπ+π− + g2
f0K+K−ρK+K− ] , (6.14)

where gf0π+π− = 0.165 and gf0K+K− = 4.21 × gf0π+π− are the f0(980) coupling constants
to the π+π− and K−K+ final states, respectively. The ρπ+π− and ρK+K− are the phase
space factors.

6.2.3.3 Gounaris-Sakurai

This parametrization is commonly used to describe broad resonances decaying
into two pions, as ρ0(770), where an analytical dispersive component is incorporated
to maintain unitarity at distances far from the pole mass. It is a modification of the
Breit-Wigner lineshape, with a width depending on the 2 pions invariant mass computed
following the method proposed by [65].

T (s) =
1 + DΓ0

m0

(m2
0 − s) + f(s) − im0Γ(s) (6.15)

where f(s) is a mass-dependent term expressed as:

f(s) = Γ0m
2
0

q3
0

q2
(
h(s) − h(m2

0)
)

+
(
m2

0 − s
)
q2

0
dh

ds

∣∣∣∣∣
m2

0

 , (6.16)
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where
h(s) = 2q

π
√
s

log
(√

s+ 2q
2mπ

)
, (6.17)

and

dh

ds

∣∣∣∣∣
m2

0

= h(m2
0)
[
(8q2

0)−1 − (2m2
0)−1

]
+ (2πm0)−1, (6.18)

The constant parameter D is given by:

D = 3m2
π

πq2
0

log
(
m0 + 2q0

2mπ

)
+ m0

2πq0
− m2

πm0

π3
0

. (6.19)

6.2.3.4 Non-resonant contribution

While the BW function is commonly used for resonances, the situation is different
for non-resonant contributions. Various empirical approaches can be employed to model
non-resonant contributions. For instance, in the case of D-meson decays, where the phase
space is relatively small, non-resonant contributions are typically modeled as flat across the
Dalitz plot. For B-meson decays, which have significantly larger phase space, exponential
form factors are often used [66]. We present some parametrization for this below:

(i) Flat non-resonant

A straightforward approach to parameterize the non-resonant contribution is by
employing a flat function that uniformly fills the entire Dalitz Plot. This flat function
ignores any dynamics involved in the decay. Nevertheless, it can also be very helpful
as it can facilitate the visualization of other lineshapes of resonant states, and
non-resonant or rescattering components in the Dalitz plot.

(ii) BelleNR

It represents the simplest empirical non-resonant exponential:

R(m) = e−αm2
, (6.20)

where the α is a float parameter.

(iii) LASS_NR

The approximation of the BW function is not that good for the Kπ S-wave, which
includes the K∗

0(1430) resonance. This resonance strongly interferes with a slowly
varying non-resonant term. To address this, the LASS lineshape [14] was introduced
to properly combine these amplitudes:
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T (m) = m

q cot δB − iq
+ e2iδB

m0Γ0
m0
q0

(m2
0 −m2) − im0Γ0

q
m

m0
q0

, (6.21)

with cot δB = 1
aq

+ 1
2rq. (6.22)

The first term of Eq. 6.21 corresponds to the non-resonant part, while the second
term accounts for the resonant contribution. The m0 and Γ0 denote the pole mass
and width of the K∗

0(1430), respectively, while a and r are parameters defining the
shape.

(iv) Polar form factor

A different approach to non-resonant parameterization employs a lineshape with a
pole (which is a specific value of the mass where the magnitude reaches its maximum)
form factor of the type (1 + s

Λ2 )−1, as proposed in [67]. Following the authors, this
form factor offers a phenomenological representation to describe the non-resonant
amplitude, highlighting the low-energy production region of the final-state particles.
Consequently, this amplitude is more pronounced near the pair threshold and
diminished in high-energy regions. The parameterization is expressed as:

Tnr(m2
ij) = 1

1 + m2
ij

Λ2

, (6.23)

where Λ = 1 GeV/c2 as default value, taken from the fit to the B± → π∓π±π± data
[68]. This parametrization can be used for both m2

π±K∓ and m2
K±K∓.

6.2.3.5 The δ formulation

Analytically, in two-body to two-body scattering processes, it can be shown that
possible scattering scenarios (such as ππ and Kπ) can be divided into elastic and inelastic
regions. These regions are represented by a function in the form sin(δ)eiδ, where δ is the
phase shift. This functional form captures the essential dynamics of scattering processes,
allowing for a more accurate representation of the S-wave behavior in the decay analysis.
This method enables the observation of phase variations of a complex amplitude within
the Dalitz plot for three-body decays using an empirical way.

An important advantage of using the function sin(δ)eiδ over the traditional Breit-
Wigner (BW) function should be emphasized. While the BW function effectively captures
individual resonances, it fails to account for the regions between resonances, where no peaks
are observed. This limitation reduces its accuracy in describing the smooth transitions
in these inter-resonance regions. Additionally, a simple sum of BW functions does not
preserve the unitarity of the S-matrix, whereas the δ-based formulation inherently ensures
unitarity, if we consider only this component.
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Two different formats for δ will be used, which are:

• The δsKπ: this approach was suggested in [69]. One of the key benefits of the δsKπ

model is that it is an empirical method capable of “mimicking” the behavior of a
resonance. The δsKπ is defined as:

δsKπ = π

1 + exp (a(sKπ −m2
0))
, (6.24)

with a and m0 as free parameters to be determined in the fit.

• The δP ol: the primary objective of this alternative approach is to employ a generic
function to serve as the phase representation. In this context, we select a fourth-degree
polynomial as a function of the mass. It is an effective tool for understanding the
data when existing possibilities have been exhausted. By avoiding a predetermined
functional form, this approach allows the fit to freely adapt and model the phase in
a manner that best aligns with the data. For instance, the δP ol can be defined as:

δP ol4 = A1 · mass4 +B2 · mass3 + C3 · mass2 +D4 · mass + E5 (6.25)

The A1 to E5 are the free parameters. It is important to note that this approach is
generic enough to allow changing the polynomial’s order, if necessary, to achieve a
better description of the data.

6.2.3.6 The ππ → KK Rescattering

Considering that the rescattering amplitude is not a resonant contribution, yet it
is also not classified as a non-resonant contribution (despite fulfilling a similar role from a
certain perspective), it is treated in a separate section to emphasize its distinct nature
and characteristics.

In characterizing a rescattering amplitude within the framework of three-body
decays, it is essential to consider various aspects for its definition. One aspect is the
function representing its source (which is essentially the origin of the rescattering), while
another is the functional structure of the transition amplitude components. The idea of
the rescattering process ππ → KK originated from two-body interactions in the context
of three-body decays, implying that a meson pair produced in one channel will emerge
in the final state of an interconnected channel. The phenomenological form factor that
accounts for the source term is introduced in [67]. When aiming to define the rescattering
amplitude for the ππ → KK process, the source term is formulated as:

Asource(m2
K−K+) = 1

1 + m2
K−K+
∆2

ππ

, (6.26)
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where ∆2
ππ is a parameter taken from the fit to the B± → π∓π±π± [68] and set to

1 GeV/c2. Similarly, the representation of the source term for the rescattering phenomenon
KK → ππ will be described by Equation 6.28, using ∆2

KK instead of ∆2
ππ. We have

constrained the amplitude parameterizations used in ππ −KK derived from scattering
data [17]. The objective is to characterize the partonic interaction (tree and penguin
diagrams at the quark level) that produces the three mesons.

In this study, the authors analyzed ππ → KK scattering data, obtaining a set of
unconstrained fits (UFD) for each partial wave gI

l , where l and I represent the angular
momentum and isospin, respectively. Of particular interest is the scalar-isoscalar wave
g0

0, for which they provided two alternative fits, UFDB and UFDC , to accommodate two
conflicting data sets. They also introduced constrained fits (CFD), which were designed
to both describe the data accurately and satisfy theoretical consistency conditions. These
constrained parameterizations of the g0

0 wave, labeled CFDB and CFDC , were found to
work well across most of the energy range, except very close to the threshold. All these
alternative fits will be explored, as detailed in a subsequent section.

This interaction is presumed to differ for the meson pairs ππ and KK. The overall
rescattering amplitude in the B three-body decay is thus formulated as:

Ascatt = AsourceSrescattering, (6.27)

Ascatt = |g0
0(s)|eiϕ0

0(s) 1

1 + m2
K−K+
∆2

KK

, (6.28)

where the |g0
0(s)| and ϕ0

0(s) are the magnitude and phase, respectively. The ππ − KK

amplitude model is divided into two regions. The first one, Region I, from √
smin,I = 2mK ,

which is the KK production threshold, up to √
smax,I = 1.47 GeV, where dispersion

relations can be used effectively. The second, Region II, from √
smin,II = 1.47 GeV up to

√
smax,II = 2 GeV is also modeled, although dispersion relations are not applicable in this

region. The magnitude and phase are parameterized as:

|g0
0(s)| =


∑3

n=0 Dnpn(xI(s)) : Region I∑4
n=0 Fnpn(xII(s)) : Region II

(6.29)

and

ϕ0
0(s) =


∑3

n=0 Bnpn(xI(s)) : Region I∑5
n=0 Cnpn(xII(s)) : Region II

(6.30)
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where the pn are the Chebyshev polynomials, remapping s to lie within the range [-1, +1],
in each region. They are given by:

p0(x) = 1, p1(x) = x,

pn+1(x) = 2xpn(x) − pn−1(x).

Both, the constrained fit to data (CFD) and unconstrained results (UFD) were
tested, as will be shown in a further section. The latter do not impose dispersive constraints,
while the constrained CFD do. The coefficients B, C, D, and F listed in Table 17 satisfy
the continuity conditions between regions:

B0 = δ
(0)
0 (sK) +B1 −B2 +B3 (6.31)

C0 = ϕ0
0(smax, I) + C1 − C2 + C3 − C4 + C5, (6.32)

F0 = |g0
0(smax, I)| + F1 − F2 + F3 − F4. (6.33)

(6.34)

Considering the Watson’s theorem, at the KK threshold, the ππ −KK scattering
phase ϕ0

0 should match the elastic ππ − ππ phase shift δ(0)
0 = (226.5 ± 1.3)◦, which impose

the continuity condition B0.

Parameter Value Parameter Value (◦)
D0 0.59 ± 0.01 δ0

sK +226.5 ± 1.3
D1 −0.38 ± 0.01 B1 23.6 ± 1.3
D2 0.12 ± 0.01 B2 29.4 ± 1.3
D3 −0.09 ± 0.01 B3 0.6 ± 1.6
F1 −0.04329 (fixed) C1 34.3932 (fixed)
F2 −0.008 ± 0.009 C2 4.4 ± 2.6
F3 −0.028 ± 0.007 C3 −32.9 ± 5.2
F4 0.026 ± 0.007 C4 −16.0 ± 2.2

C5 7.4 ± 2.4

Tabela 17 – Parameters and their values extracted from Tables 3 and 4 of [17].
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Figura 57 – Upper panel: the modulus of ππ −KK scattering. Lower panel: the phase
for ππ −KK scattering. Figure extracted from [17].
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7 Dalitz Plot Fit

In this chapter, we will outline the essential components and methods required for
constructing and performing a fit, as well as discuss the key metrics used to evaluate the
fit results. The aim is to provide a clear understanding of each component involved in the
fitting process. Additionally, we will introduce the figures of merit - statistical measures
and diagnostic tools - that serve to assess the quality and accuracy of the fit, ensuring
that the results are both robust and reliable.

7.1 Acceptance
To accurately determine the physical CP asymmetry, we must correct for differences

in detection efficiency and the production rates of B+ and B− particles, as these factors
are not accounted for in the Monte Carlo (MC) simulations. Such variations can introduce
a charge asymmetry that may vary across the Dalitz plot. Therefore, it is crucial to
evaluate and correct efficiency differences separately.

Furthermore, the level-0 trigger is not precisely modeled in the MC. To address
this, we use absolute trigger efficiencies derived from calibration data. In the decay
B± → K∓K±π± , both signal and background events are often concentrated near the
kinematic boundaries of the phase space. These boundary regions, although covering a
small portion of the total phase space, show more pronounced variations in signal efficiency.
To improve resolution in these high-sensitivity areas, we employ the Square Dalitz Plot
(SDP) representation. This approach expands the corners and edges of the Dalitz plot
relative to its less populated center, allowing for finer detail in regions with higher event
density.

For this analysis, we apply the phase-space acceptance correction using large,
uniformly generated MC samples in the Square Dalitz plot. This ensures that efficiency
variations are accurately accounted for across the entire phase space, enhancing the
precision of the CP asymmetry measurement.

The acceptance map is generated by year, subsample of L0 trigger configuration.
A detailed description of each component is given in the following:

• Year: The acceptance maps are separated by year (2015, 2016, and 2017) to account
for differences between the three periods of data taking.

• Polarity: Separated by each magnet polarity to take into account the left-right
asymmetry of the detector.
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• Trigger configuration: A separation in TOS and TISnotTOS subsamples is per-
formed to account for possible differences between data and MC concerning the
L0Hadron_TOS trigger efficiency. Once the acceptance maps are generated, a L0
trigger efficiency correction is applied.

Acceptance maps for each subsample are generated using the same selection criteria
applied to the data, excluding the PID cuts. PID efficiency weights are derived from
the PIDCalib package [70] and are applied to each event. Since the MC generation
is not perfectly uniform in the squared Dalitz plot, we also use an unbiased simulated
sample generated without any cuts, which is then projected onto a histogram in the
square variables and normalized to the actual number of events generated before filtering.
Acceptance is then determined by dividing two histograms with the same binning: the
histogram with all the selection cuts is divided by the histogram of the uniformly generated
events distributed over a 4π solid angle. The binning scheme selected for this process is 30
× 30.

7.2 Selection and PID
Since the PID variables are generally not accurately represented in MC simulation

samples, a data-driven approach is employed to determine the PID efficiency for the
PID cuts listed in Table 6. In MC simulations, factors such as temperature fluctuations,
non-linear effects like magnetic field distortions in the detector, and variations in the
performance of the RICH detectors across different data recording periods within the year,
are not taken into account. This results in an unreliable simulation of the PID variables,
leading to significant systematic errors if PID efficiency were derived from them. Therefore,
the efficiency for identifying pions and kaons is obtained using the PIDCalib package tools.
This package uses a data-driven technique that uses a full set of calibration samples of
pions, kaons, and protons from the denominated golden nodes.

It is crucial to consider that track identification depends on its kinematics and
that there is a correlation between the kinematic variables of the tracks in the final state.
The PID efficiency is therefore determined in bands of kinematic variables, with the
most commonly used being momentum (p), pseudorapidity (η), and the number of tracks.
However, the latter has proven to be not entirely well-reproduced by simulation samples.
For technical reasons, we opted to divide the phase space into bins of p and η (2D-plane)
using an appropriate adaptive binning method. This approach aims to achieve a uniform
PID efficiency distribution as a function of momentum and pseudorapidity for the cuts
applied to pions and kaons. The resulting ntuple from matching the efficiency tables with
the analysis sample provides the overall PID efficiency for each event, separated by charge.
This efficiency is then used to construct the acceptance maps.
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7.2.1 Trigger correction

A correction to the acceptance is performed to account for the differences between
data and MC simulations regarding the L0Hadron_TOS trigger efficiency. This correction
is applied to the mutually exclusive TOS and TISnotTOS MC subsamples. The process
involves calculating the ratio of the L0_Hadron efficiencies for data and MC (data/MC)
within the variables of the square Dalitz plot. The L0Hadron efficiency maps are constructed
using the Λbß → Λc(pKπ)µν Run II data samples. These correction histograms are then
applied to the respective acceptance in each category.

The absolute efficiencies for data are obtained from calibration samples. This
calculation is based on the track ID, magnet polarity, calorimeter location, and energy
deposited, and it also considers the probability of tracks causing overlapping clusters in the
calorimeter. The efficiency for a candidate is determined as the probability that at least
one track or cluster triggers the calorimeter in the TOS case, and none in the TISnotTOS
case. The corresponding MC efficiency is associated with events that fired the trigger.

7.2.2 Total Acceptance Maps

The total acceptance map is constructed by combining the acceptance maps of each
category. For each year, the TOS and TISnotTOS histograms are combined in the same
proportion as the data while maintaining overall normalization. Thus, a weight factor is
defined:

wyear
T OS = Ryear

T OT AL × NDAT Ayear

T OS

NMCyear

T OS

, (7.1)

where “year” represents 2015, 2016, or 2017. The RT OT AL is the ratio of the total
number of events in the MC sample to the signal data sample. NDAT Ayear

T OS is the number
of TOS events from the mass fit for the signal data, and NMCyear

T OS is the corresponding
number from the MC sample. The same definition applies to the TISnotTOS configuration.
The magnet up and magnet down subsamples are also combined proportionally according
to the recorded luminosity for each year.

The total acceptance map by year can be represented as:

Accyear = wT OS × Acc
(Up+Down)
T OS + wT ISnotT OS × Acc

(Up+Down)
T ISnotT OS , (7.2)

where

Acc
(Up+Down)
T OS = wUpAcc

Up
T OS + (1 − wUp)AccDown

T OS , (7.3)

and
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Acc
(Up+Down)
T ISnotT OS = wUpAcc

Up
T ISnotT OS + (1 − wUp)AccDown

T isnotT OS, (7.4)

are the acceptance histograms.

The final acceptance map can be seen in Fig 58 and 59 separated by charge, for
B+ and B− respectively. As one can see, they are quite similar.

Figura 58 – Overall acceptance map for B+ → π+K+K−.

Figura 59 – Overall acceptance map for B− → π−K−K+.

7.3 Background Models
Incorporating background parametrization is a key component of the Dalitz plot

fit. During Run I, the standard method for modeling background across the phase space
involved using sidebands. The signal-to-background ratio was determined from the B mass
fit and then held constant throughout the amplitude analysis. Since the total background
count in a sample is fixed, overestimating background entries in one region will necessarily
result in an underestimation in another.
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For the previous amplitude analysis of B± → K∓K±π± with Run I data [19],
the background model consisted of three main components: combinatorial background,
peaking background, and a prompt contribution. The combinatorial background was
the largest component, accounting for random combinations of particles. The peaking
background aimed to capture reflection events, while the prompt contribution included
potential direct entries from decays involving the ϕ(1020) resonance.

It’s important to recognize that the sidebands often display structures that do
not accurately represent the true background. This limitation is especially relevant for
B± → K∓K±π± , where a large portion of the central region is dominated by background
entries, potentially leading to inaccuracies with this approach.

For the Run II data analysis, a new methodology has been introduced [71]. This
updated approach constructs the background histogram directly from the signal region,
eliminating the reliance on sidebands. The procedure consists of the following steps:

• The Dalitz Plot is divided into bins that are as small as possible, yet sufficiently
large to allow for a meaningful fit.

• For each bin, a fit is performed on the B mass projection to estimate the background.
The background histogram is then constructed using the fit results.

• It is often challenging to achieve small bins due to the insufficient quantity of entries
required to perform a fit. Consequently, different bin configurations were tested, and
those not selected were considered for the study of systematic error.

• In cases where larger bins are necessary, the method employs the sPlot tool to
enhance the background distribution [72].

This method aims to provide a more accurate background representation by using
the signal region and employing advanced statistical tools to address the limitations posed
by bin size constraints. The number of bins selected also depends on the number of events
in each bin, with the understanding that the number of events per bin is nearly uniform.
Various simple functions were used in an attempt to obtain better mass fits within each
bin, considering: 1 Gaussian + 1 Crystal-Ball, 2 Gaussians + 1 Crystal-Ball, 2 Gaussians,
and 1 Gaussian, all applied separately for B− and B+, for the signal and an exponential
for the background.

The binning method employed in this analysis is adaptive, as the bins are distributed
according to the number of events in each region. Less populated regions tend to have
larger bins, while smaller bins characterize denser regions. The chosen number of bins
represents a balance between having sufficient events in each bin, as a low number of events
can lead to poorer fits and maintaining a reasonable number of bins that can adequately
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describe the phase space. This approach ensures that an insufficient number of bins does
not obscure potential imperfections in the background description. Appendix B presents
the results of the fits per bin of the Square Dalitz Plot.

7.3.1 Total background model

The final result of the background model used for the Dalitz Plot fits can be
seen in Fig 60 and 61, for B− and B+, A yellow streak can be observed in both plots,
running diagonally between 0.1 and 0.7 in m

′ representing the B → Kππ reflections.
The appearance of this background indicates the new method’s ability to capture this
contribution without the need for additional background components. In this case, a
Gaussian function was used for the signal events within the event window between 5140
and 5450 MeV for each bin.

Figura 60 – Background model for B− → π−K−K+.

Figura 61 – Background model for B+ → π+K+K−.
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7.4 Quantitative metrics for evaluation
Several metrics are utilized to evaluate the results of the Dalitz Plot fits. This

section is dedicated to explaining some of these parameters as well as their level of relevance
according to the study in question.

7.4.1 The probability density function

To accurately fit the event distribution observed in the Dalitz plot, several key
considerations are required. First, each event in the phase space has a certain probability
of being either signal or background, which must be accounted for. Second, the complex
coefficients ci need to be properly parameterized to represent the contributions of different
resonances. The total decay amplitude model, A, depends on a set of parameters, whose
optimal values are determined by performing a maximum likelihood fit. This fitting
method aims to estimate the unknown parameters based on the observed data.

The probability density function (PDF), denoted P (x|α), represents the distribution
of the observable data x given a set of parameters α. Here, x represents the event data,
and α represents the parameters we aim to estimate. In contrast, the likelihood function
L(α) = P (x|α) is a function of the parameters given the observed data. Considering that
the PDF describes the probability distribution of the data, it is normalized to one, while
the likelihood function, used for parameter estimation, does not require normalization.

If we have n independent observations of x, we can write the likelihood function
for the entire data set as:

L(α) =
n∏
i

P (xi|α) (7.5)

The maximum likelihood estimators for the parameters are those that maximize the
likelihood function. In a physical measurement context, this means that these parameter
values make it most likely for nature to produce the observed data. To find these optimal
values, we minimize twice the negative log-likelihood, NLL(or FCN) = −2 ln L. This
approach is chosen for computational efficiency, as the optimization algorithm can handle
the log-likelihood more easily. By converting multiplications into sums, calculations are
simplified, and the method becomes numerically more stable.

In this analysis, we use the negative log-likelihood function. The optimizer MINUIT,
which is specifically designed to minimize function outputs, is employed for this task.
MINUIT works in conjunction with the LAURA++ software toolkit [73], which is used to
perform the Dalitz plot fit. Minimizing the negative log-likelihood function is equivalent
to maximizing the log-likelihood (and hence the likelihood itself), making it an effective
approach for parameter estimation. The relationship that − ln L must satisfy is:
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− ∂

∂α
lnL = − ∂

∂α

n∑
i

lnP (xi|α) = 0 (7.6)

If it were not for the efficiency effects, the signal probability density distribution
would be simply given by the square of the total decay amplitude M, as shown in Eq 6.8.
This can be expressed as1:

Psig(m2
π+K− ,m2

K+K− |ci) = |M(m2
π+K− ,m2

K+K−|ci)|2. (7.7)

Due to the effects of the efficiency variations across the Dalitz Plot, the PDF must
be corrected for each event. The modified expression for the signal PDF, which accounts
for efficiency throughout the phase space, is given by:

Psig(m2
π+K− ,m2

K+K− , ci) ∝ ϵ(m2
π+K− ,m2

K+K− , ci)
× P

′

sig(m2
π+K− ,m2

K+K− , ci).
(7.8)

The total signal probability density function considering both particle and antipar-
ticle is: :

Psig(m2
π+K− ,m2

K+K− |ci) =
1+qB

2 ϵ(m2
π+K− ,m2

K+K−)|A(m2
π+K− ,m2

K+K−)|2

Ns

+
1−qB

2 ϵ̄(m2
π−K+ ,m2

K−K+)|Ā(m2
π−K+ ,m2

K−K+)|2

Ns

,

(7.9)

where the qB is the charge of the B-meson candidate and ϵ stands for the reconstruction
efficiency variations. Each different contribution is individually normalized over the phase
space, the Ns is the normalization factor and is given by:

Ns =
∫∫

DP

(
ϵ(m2

π+K− ,m2
K+K−)

∣∣∣A(m2
π+K− ,m2

K+K−)
∣∣∣2 )

+
(
ϵ̄(m2

π−K+ ,m2
K−K+)

∣∣∣Ā(m2
π−K+ ,m2

K−K+)
∣∣∣2 )

× d2mπ±K∓d2mK+K−

(7.10)

which we calculate using Gauss-Legendre integration methods [74].

The overall probability density function must also consider the background, as
mentioned in 7.3. The total PDF is then:

Ptotal(m2
π±K∓ ,m2

K+K− |ci) = NsigPsig(m2
π±K∓ ,m2

K+K−|ci)
+NbkgPbkg(m2

π±K∓ ,m2
K+K−|ci),

(7.11)

1 We have the same for the CP-conjugate process
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where the Psig is the signal PDF, the Pbkg is the background PDF. Nsig and Nbkg are
the relative contributions number of events of signal and background, respectively, and
were obtained from the 1D mass fit. One can notice that the dependence of the complex
coefficients ci is only considered in the signal PDF, once the background modelling is
totally fixed in the Dalitz Plot fit.

The Likelihood function for B± → K∓K±π± is constructed using the total
probability function referred as in Eq 7.11 and is expressed as:

L = exp
(

−
∑

k

Nk

)
×

N∏
i

(
∑

k

NkP
i
k(m2

π±K∓ ,m2
K+K−)), (7.12)

where the Nk is the yield for the event category k (signal or background), N is the
total number of candidates and P i

k is the PDF for the category k for event i.

The optimal values of the fitted parameters are determined by minimizing the
negative log-likelihood, −2lnL. Due to the multidimensional nature of Dalitz plot analyses,
the results can vary depending on the initial parameter values, often converging to a
local rather than global minimum of the −2lnL function. To seek the global minimum,
numerous fits are conducted where the initial values of the complex coefficients ci of each
lineshape are randomized. The fit yielding the smallest −2lnL value from this ensemble is
then considered the nominal result, taking into account the physical implications as well.

7.4.2 The coefficient ci

It is important to highlight that ci is distinct from c̄i to allow CP violation, and
they represent the relative contribution of the component i. These are expressed in the
Cartesian convention for CP violation:

ci = (xi + ∆xi) + i(yi + ∆yi), (7.13)
c̄i = (xi − ∆xi) + i(yi − ∆yi), (7.14)

where xi, yi, ∆xi, ∆yi are the CP-conserving (-violating) components of the decay
amplitude. Using the Polar coordinate system:

ci = a+
i e

iδ+
i , (7.15)

c̄i = a−
i e

iδ−
i , (7.16)

where the a±
i and δ±

i are the magnitude and phase, respectively, for the component i
for B±. The phase δ±

i is composed of the weak and strong phases, while the Aj (mentioned
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in 6.2) can contribute only to the strong phase. The relation between Cartesian and Polar
Coordinates, for B+ and B−, is:

a±
i =

√
(xi ± ∆xi)2 + (yi ± ∆yi)2. (7.17)

δ±
i = tan−1( yi ± ∆yi

xi ± ∆xi

). (7.18)

Typically, using Cartesian coordinates eliminates the issue of positive definite values
encountered with polar coordinates. However, this approach results in fitted parameters
that are less intuitive to interpret.

7.4.3 Fit Fractions and CP Asymmetry

The main results of the Dalitz-plot fit are the complex Isobar coefficients ci.
However, these coefficients depend on the chosen phase convention, amplitude formalism,
and normalization, making direct comparisons between analyses challenging. Therefore, it
is more practical to compare fit fractions. These are defined as the integral of the absolute
value of the squared amplitude for each intermediate component, i, divided by the integral
of the squared coherent matrix element for all intermediate contributions:

FFi =
∫∫

(|ciMi|2 + |c̄iM̄i|2)dm2
π±K∓dm2

K+K−∫∫
(|A|2 + |Ā|2)dm2

π±K∓dm2
K+K−

(7.19)

Since the denominator comes from the coherent sum of all contributions, these fit
fractions do not necessarily sum to unity in the presence of net constructive or destructive
interference.

Another powerful tool utilized for analyzing the data is CP asymmetry linked to
each resonant state in the model is computed based on its respective magnitudes and
phases obtained from the fit, which are dependent on x, y, ∆x, ∆y. The relationship is
expressed as:

ACP,i = |c̄i|2 − |ci|2

|c̄i|2 + |ci|2
= −2(xi∆xi + yi∆yi)

(xi)2 + (∆xi)2 + (yi)2 + (∆yi)2 (7.20)

It is important to mention that CP violation can still occur even when the CP
asymmetry parameter ACP is zero, as the difference between c̄i and ci can arise from phase
differences between components. Since absolute phases cannot be measured, CP violation
is detected through these phase differences, which represent the interference between two
components of the model.
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7.4.4 Multiple solutions

The fit results are highly sensitive to the parameters xi, yi, ∆xi, and ∆yi, presented
in Section 7.4.2. Therefore, obtaining a coherent set of these parameters is a crucial step
in achieving a stable fit. The parameter space is explored by randomizing the initial
values of xi, yi, ∆xi, and ∆yi. However, depending on the model being fitted to the data,
different sets of parameters may emerge as valid solutions. It is in this context that the
phenomenon of multiple solutions arises.

In quantum mechanics, observables are connected to the squared modulus of
amplitudes, and the total amplitude is determined by the sum of contributions from
multiple amplitudes. The mathematical nature of extracting these amplitudes from
experimental data often leads to this phenomenon known as multiple solutions. This
occurs due to the quadratic relationship between observables and amplitudes, allowing
different parameter sets to produce equally valid fits to the data [75].

The method employed in these analyses to select the optimal result in scenarios
involving multiple solutions involves randomizing the parameters xi, yi, ∆xi, and ∆yi,
and evaluating the outcomes based on the lowest NLL values and the most frequently
occurring NLLs. Additionally, ideally, if all components correspond to partial waves with
distinct quantum numbers, the total fit fractions should sum to 100%. However, in the
presence of interference effects among the components, small deviations from 100% are
expected. Consequently, results exhibiting total fit fraction sums significantly deviating
from 100% may be considered invalid solutions (or non-physical results).

7.4.5 Wilks’ Theorem and the Likelihood Ratio Test

As discussed previously, the Negative Log-Likelihood serves as a critical figure of
merit for evaluating the outcomes of fits. Generally, physical motivations play a significant
role in guiding modifications to models, such as the presence of expected resonances in
specific regions of the phase space or the visible agreement between the model and the
data in Dalitz Plot projections (see Section 8.2). However, numerical and statistically
significant results are equally essential for a robust analysis.

Directly comparing NLL values between models without accounting for changes in
degrees of freedom can lead to biased conclusions. Furthermore, there is no universally
fixed reference value for differences in NLL units that can be applied to all cases. For
instance, if model X shows an improvement of 15 NLL units compared to model Y, how
can we determine the statistical relevance of this difference? This is precisely where
Wilks’ theorem becomes crucial, providing a systematic framework to assess the statistical
significance of changes in NLL across models.

The Wilks’ Theorem is a statistical result used to determine the significance of
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parameters in model fitting by using the Likelihood Ratio Test (LRT) [76]. It states that,
under certain conditions, the difference in the log-likelihood values between a complete
model and a reduced model follows a chi-square (χ2) distribution, with degrees of freedom
equal to the difference in the number of parameters between the models. This approach
enables testing whether the addition of new parameters significantly improves the model
fit to the data, thus providing a robust framework for hypothesis testing. The likelihood
ratio is defined as:

Λ = L(θ0)
L(θ1)

(7.21)

where:

• L(θ0) is the maximum value of the likelihood function under the reduced model
(hereafter referred to as θ0).

• L(θ1) is the maximum value of the likelihood under the complete model (hereafter
referred to as θ1).

Thus, we can define the NLLratio as:

NLLratio = −2 ln(Λ) = −2
(

ln L(θ0)
L(θ1)

)
. (7.22)

So, to determine whether the complete model significantly improves the fit, we
compare −2 ln(Λ) with a critical value from the χ2 distribution, which depends on n.d.f.

(number of degrees of freedom) and the desired significance level (2 or 5 σ, for instance).
The critical value of a χ2 distribution is a threshold that determines the point at which
the null hypothesis (which in our case is the reduced model) is rejected in a statistical
test. It serves as a boundary that distinguishes between retaining or rejecting the null
hypothesis, as outlined below:

• If −2 ln(Λ) ≤ critical value: We do not reject null hypothesis θ0. This means that
the simpler model is sufficient to describe the data, and the alternative model does
not bring significant improvements.

• If −2 ln(Λ) > critical value: We reject the null hypothesis θ0 in favor of θ1. This
implies that the alternative model θ1, with additional parameters, significantly
improves the fit of the data.

As a practical example, let us consider a scenario where a given reduced model
yields a Negative Log-Likelihood (NLL) of −100, while the complete model (which includes
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an additional resonance) produces an NLL of −150. Using Equation 7.22, the calculation
becomes:

−2 ln Λ → −2 [ln Lreduced − ln Lcomplete] = −100 − (−150) = 50 (7.23)

By introducing one additional resonance, we effectively add four degrees of freedom
to the model (parameters x, y, ∆x, ∆y, as discussed in Section 7.4.2). Assuming that we
aim to evaluate this hypothesis at a 5σ significance level, the statistical implications of the
additional parameters can be assessed accordingly. The critical value of the χ2 distribution
corresponding to 4 n.d.f. and 5σ significance is 34.5550. If we compare Equation 7.23
with the critical value, we observe that:

50 > 34.5550 (7.24)

which leads us to conclude that, in this hypothetical case, the null hypothesis
should be rejected, and the complete model should be adopted.

However, the Wilk’s Theorem has some limitations [77], such as:

• Bounded parameters: for this type, such as those restricted to positive values, the
theorem may fail when the parameter lies on the boundary, causing the maximum
likelihood estimator (MLE) distribution to split.

• Non-nested models: this case - where one model cannot be derived as a special case
of the other — despite both MLEs potentially being Gaussian, they occupy distinct
parameter spaces, preventing the test statistic from converging to a chi-square (χ2)
distribution.

• Insufficient data: searches for new physics phenomena, such as dark matter, often
involve detecting rare signals against a background that experiments aim to suppress.
When the signal is weak or the background level is minimal, there may not be enough
data to rely on asymptotic approximations, like those applied in Wilks’ theorem.

Therefore, it is important to be aware of some of the limitations associated with the
use of Wilks’ theorem, as discussed in the case presented in Appendix F. The Appendix G
presents a toy study of the Wilks’ theorem reliability.
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8 Dalitz Plot fit results

This chapter presents the results of the Dalitz plot fits, which were conducted using
the Isobar Model formalism. Efficiency and background models, as defined in Sections 7.1
and 7.3 respectively, were incorporated. Events within the designated signal region, as
outlined in 5.3.2.1, were used.

The number of signal and background events used for normalizing the Dalitz plot
fit is summarized in Table 19, based on the results of the B± → K∓K±π± mass fit. Table
18 presents the resonance line shapes along with the mass and width values [61] used in
the Dalitz plot fits. The signal asymmetry is allowed to float in the fit. The combinatorial
background asymmetry is fixed to the value obtained from the mass fit presented in Table
13.

8.1 Preliminary observations
Since this is not the first amplitude analysis conducted for this channel, the natural

starting point for this study is the results obtained in the Run I analysis [19]. In this

Resonance Line shape Mass [MeV] Width [MeV]
K∗(892) RBW 891.67 51.4
K∗

0(1430) RBW 1425 270
κ RBW, Pole 845 468

Non-resonant PolarFFNR, FlatNR - -
ρ(770) GS 775.26 147.4
ρ(1450) RBW 1465 400
ρ(1700) RBW 1720 250
ρ(1900) RBW 1909 130
f2(1270) RBW 1275.5 185.9
f0(980) Flatté 990 10
f0(1370) RBW 1370 350
f

′
2(1525) RBW 1517.4 86.9

Rescattering Rescattering - -
ϕ(1020) RBW 1019.461 4.269
χc0(1P ) RBW 3414.71 10.5
Lass-NR LASS - -
J/ψ(1S) RBW 3096.9 0.09
δsKπ δsKπ - -

BelleNR RBW - -
δP ol δP ol - -

Tabela 18 – Description of various resonances including their line shapes, masses, and
widths.
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Category Number of events
Signal 26443

Background 8350

Tabela 19 – Signal and background events set on the Dalitz plot fit.

section, we will summarize the findings of the previous model, highlighting areas where
improvements are necessary and where the additional data collected in Run II provides
new opportunities for exploration. As will be detailed later, the chosen approach involves
constructing a baseline model with essential updates to the Run I model. From this
baseline, we will explore further refinements and address limitations in how the previous
model represented the decay dynamics, incorporating insights from the earlier analysis.

There are inherent characteristics of the decay itself that we must consider carefully.
Notably, significant integrated CP asymmetry was observed for this channel [1]. Additio-
nally, even more pronounced asymmetries have been identified and reported in specific
regions of the phase space. The mass fit performed only in the expected rescattering region
(1 < m2(K+K−) < 2.25 and 4 < m2(K+π−) < 19) shows a remarkable difference between
B− and B+, see Figure 62. The CP asymmetry reported for this region is about -60% [19].

Another notable feature is the strong pattern of destructive interference, which
appears as a diagonal slice with almost no events, located in the high mass region of
m2

π±K∓ around 15 GeV2/c4 and 20 GeV2/c4, and for m2
K+K− < 3.5, see Figure 63 and 64.

From these figures, it is also visually evident that there is a clear difference between B+

and B−.

Considering that the total number of events has increased by nearly a factor of
seven, the first attempt to model the B± → K∓K±π± resonant structure with Run 1
results, showed itself as not enough. The increased statistic reveals structures that were
not possible to identify before. The scrutiny of imperfections will be observed in the
projections presented in the next section. This analysis aims to correct such imperfections
and update the phenomenological description of the rescattering amplitude following the
new model proposed by Pelaez and Rodas [17].

The significant contribution of ρ(1450)0 to the B± → K∓K±π± channel raises
questions, especially since a recent study published a fit fraction for B± → π±π+π− of
about 5% [22], the preferred channel for this resonance. The corresponding B → ρ(1450)0π

fit fraction is approximately 30%, an unexpectedly large contribution for the K+K− pair,
as the dominant decay mode is ππ, and the ρ(1450)0 contribution in B± → π±π+π− is
observed to be much lower.

In general, a refined model will be constructed to account for possible new con-
tributions and attempt to understand the overall dynamics of the decay process more
comprehensively. Including these improvements is crucial for refining our theoretical
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understanding and ensuring that the model fits the data more accurately and reliably
reflects the underlying physical processes.

Figura 62 – (a) m2(K+π−) projection for the rescattering region with the B± →
K∓K±π± mass fits for the (b) region 1 ( B− on the left) [1].

Figura 63 – Dalitz plot distribution for B+ → K−K+π+, the color scale indicates the
number of events.

Figura 64 – Dalitz plot distribution for B− → K+K−π−, the color scale indicates the
number of events.

In the strategy for the Dalitz plot fit, challenges are encountered in the scalar
sector, where numerous potential contributions exist, and their signatures are not very
clear due to the absence of angular distribution and broad structures. We must be very
cautious in including scalar components because it is often possible to achieve better-fit
results by allowing many contributions to interplay. However, this approach frequently
produces unrealistic interference scenarios that are difficult to interpret.
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8.2 Methodology for evaluating fit quality
The results are presented in a table detailing the fit fraction contributions for

each resonance within the model, along with their respective magnitudes and phases for
both B+ and B−, as shown in Sections 7.4.2 and 7.4.3. The direct CP asymmetry for
each component is included, calculated according to Eq.7.20. The m2

K−K+ and m2
K+π−

projections are compared against the model and background estimations. Additionally,
the NLL values for each model, as outlined in Section 7.4.1, and the likelihood ratio results
from Section 7.4.5, are employed to evaluate the fits.

This framework combines numerical tools and a visual inspection of how well the
model aligns with the Dalitz Plot projections. It is important to emphasize that the
decision to include a component will not rely on an isolated evaluation of these tools but
rather on a combination of favorable numerical conditions and complementary insights
from the physical analysis.

Throughout this analysis, the reference channel is the K∗(892)K+, with its phase
set to zero and magnitude allowed to vary freely in the fit. In Cartesian coordinates, this
is represented as x fixed at one, y fixed at zero, ∆x allowed to vary, and ∆y fixed at zero
(with the CP asymmetry allowed to vary, noting that ∆x and ∆y are the CP-violating
parameters in the fit, see Eq. 7.18).

A practical approach to qualitatively evaluate how well the data and models align
is by examining specific projections in key regions of the Dalitz Plot. These regions
are of primary interest because they are where the essential dynamics of the decay are
hypothesized to occur. Figure 65 and 66 present the projections of a generic fit result, to
highlight the different phase space regions that will studied and explored in detail.

In the case of Figure 65, the red and blue areas (cosHel23 < 0 and cosHel23 > 0
for m2

K±π∓ projection, respectively) highlight the low-mass regions of the Kπ sector, where
components such as K∗(892), K∗(1430), and the PolarFFNR are located. The light
blue and orange areas (cosHel13 > 0 and cosHel13 < 0 for m2

K+K− projections) show the
low-mass regions of the KK sector, where components like the ρ(1450), rescattering, and
f2(1270) are situated. The yellow and green areas show the diagonal projections of the
decay. The other two are the m2

K±π∓ and m2
K+K− projections with no specific resonance

associated. The blue line represents the model, the black dots represent the data, and the
red area indicates the background estimation.

For Figure 66, the yellow (m2
K±π∓ > 4), black (0.9 < m2

K+K− < 1.2), and purple
(m2

K±π∓ > 4) areas highlight the m2
K+K− projections directly on the masses of the χc0,

ϕ(1020), and the low-mass KK region as a whole, respectively. The blue (m2
K+K− < 1.4),

green (1.4 < m2
K+K− < 3.5) and orange (4 < m2

K+K− < 5) lines are the projections for
the m2

K±π∓ . The pink (1.2 < m2
K±π∓ < 3), light blue (0.5 < m2

K±π∓ < 1.2) and red
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(m2
K+π+ < 5) lines are the m2

K+K− projections. The remaining two, not highlighted in
color, show the full KK and Kπ projections using the linear mass rather than the squared
mass.

Figura 65 – Colored Dalitz Plot with indications of regions of highest interest.

Figura 66 – Colored Dalitz Plot with indications of regions of highest interest.
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8.3 Fit Results

Fit 1. Run I model validation

The first step was to validate the previous model using the RUN II data, incorpo-
rating new efficiency and background models. The model used as a starting point is the
one published in [19].

One can compare the results from Table 20, which presents Run I data using the
Run I model, with those from Table 21, which uses the Run I model on Run II data. The
findings show good agreement between them. This is a positive indication, demonstrating
that the initial model reasonably describes the data although with clear signs of needed
improvements. Figure 67, shows the projection of the Run I model on Run II data.
It highlights a poor description of the data in panel (a) at m2

K+K− around 9 GeV2/c4

and m2
K+K− around 11 GeV2/c4, potentially indicating the presence of the J/ψ(1S) and

χc0(1P ) resonances. Figure 68 also illustrates the discrepancies between data and model.

It is also striking to observe the significant difference in the measured ACP for the
ϕ(1020) using Run I data compared to the measurement using Run II data. As shown in
Figure 69, item c), this appears to be a modeling issue, as the data indicate the presence
of the resonance for both charges. However, possibly due to the sharpness of the ϕ(1020),
whose width is around 7 MeV, the model struggles to capture this feature. This difficulty
is likely compounded by the LHCb detector’s resolution. Consequently, this limitation
might lead to an erroneously large CP violation for this component.

It can also be observed that in certain regions of the phase space, the number of
background events exceeds the number of signal events, as shown in item (g) of Figure 67
and item (f) of Figure 68. These regions correspond to the diagonal bands of the Dalitz
Plot (see Figures 65 and 66), where little or no contribution from resonances is expected.

Given our particular interest in the S-wave, we will also examine the magnitude
and phase motion of the KK and Kπ systems. Figures 70 and 71 present the plots
illustrating the magnitude and phase of the S-wave across the phase space. As can be
observed, Figure 71 shows a significant difference between the B+ and B− components,
which is reflected in the measured ACP for the Rescattering contribution presented in
Table 21. This type of plot will be revisited in subsequent sections whenever there is
interest in evaluating the impact of model modifications.
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Tabela 20 – Results of the Dalitz plot fit for the Run I data used as the starting point
model, table extracted from [19].

Fit fraction (%) Magnitude and phase coefficients ACP (%)
Component a−

i δ−
i [◦] a+

i δ+
i [◦]

K∗(892)0 7.5 ± 0.6 0.94 ± 0.04 0 (fixed) 1.06 ± 0.04 0 (fixed) +12.3 ± 8.7
K∗

0(1430)0 4.5 ± 0.7 0.74 ± 0.09 −176 ± 10 0.82 ± 0.09 136 ± 11 +10.4 ± 14.9
PolarFFNR 32.3 ± 1.5 2.19 ± 0.13 −138 ± 7 1.97 ± 0.12 166 ± 6 −10.7 ± 5.3
ρ(1450)0 30.7 ± 1.2 2.14 ± 0.11 −175 ± 10 1.92 ± 0.10 140 ± 13 −10.9 ± 4.4
f2(1270) 7.5 ± 0.8 0.86 ± 0.09 −106 ± 11 1.13 ± 0.08 −128 ± 11 +26.7 ± 10.2
Rescattering 16.4 ± 0.8 1.91 ± 0.09 −56 ± 12 0.86 ± 0.07 −81 ± 14 −66.4 ± 3.8
ϕ(1020) 0.3 ± 0.1 0.20 ± 0.07 −52 ± 23 0.22 ± 0.06 107 ± 33 +9.8 ± 43.6
Fit Fraction Sum 99.2

Tabela 21 – Results of the Dalitz plot Fit 1 for the Run II data using the starting point
model.

[NLL -142446] Fit fraction (%) Magnitude and phase coefficients ACP (%)
Component B− B+ a+

i δ+
i [◦] a−

i δ−
i [◦]

K∗(892) 6.6 ± 0.3 4.9 ± 0.3 0.99 ± 0.02 0 ± 0 1.01 ± 0.02 0 ± 0 1.1 ± 4.0
K∗

0(1430) 6.7 ± 0.6 4.0 ± 0.6 0.91 ± 0.06 11 ± 4 1.02 ± 0.05 −21 ± 3 11.6 ± 7.5
PolarFFNR 38.4 ± 2.6 32.8 ± 2.0 2.59 ± 0.08 28 ± 2 2.43 ± 0.10 −11 ± 3 −6.1 ± 2.0
ρ(1450) 31.5 ± 2.0 27.6 ± 2.2 2.37 ± 0.13 157 ± 4 2.20 ± 0.08 124 ± 2 −7.4 ± 2.6
f2(1270) 9.9 ± 0.7 5.3 ± 0.4 1.04 ± 0.04 47 ± 4 1.23 ± 0.04 33 ± 4 16.9 ± 4.0
Re-scattering 7.3 ± 0.5 23.6 ± 1.2 2.19 ± 0.05 110 ± 4 1.06 ± 0.03 86 ± 5 −62.3 ± 1.5
ϕ(1020) 1.0 ± 0.1 0.01 ± 0.02 0.05 ± 0.05 −111 ± 62 0.40 ± 0.02 111 ± 8 97.4 ± 5.4
Fit Fraction Sum 101.2 98.2
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Figura 67 – Fit 1 results, for each plot B− (top), B+ (middle) and the difference (B− −B+,
bottom). The a) (cosHel23 < 0), b) (cosHel > 0), and c) are showing the
m2

K±π∓ in a different region. The d) (cosHel13 > 0), e) (cosHel13 < 0), and
f) are the projections for the m2

K+K− . For the g) and h) we have the diagonal
projections m2

K+π+ . The line in blue represents the model, the black dots
represent the data, and the region in red is the background estimation. All
plots were produced using 40 bins.



Capítulo 8. Dalitz Plot fit results 109

Figura 68 – Fit 1 results, for each plot B− (top), B+ (middle) and the difference (B− −B+,
bottom). The a) (m2

K±π∓ > 4, specially for the χc0(1P )), b) (m2
K±π∓ > 4)

are showing the m2
K+K− in different regions. The c) (m2

K+K− < 1.4), d)
(1.4 < m2

K+K− < 3.5), and e) (4 < m2
K+K− < 5) are the projections for

the m2
K±π∓ . For the f) (m2

K+π+ < 5), g) (0.5 < m2
K±π∓ < 1.2) and h)

(1.2 < m2
K±π∓ < 3) we have the m2

K+K− projections. The line in blue
represents the model, the black dots represent the data, and the region in red
is the background estimation. All plots were produced using 40 bins.
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Figura 69 – Fit 1 results, for each plot B− (top), B+ (middle) and the difference (B− −B+,
bottom). The a) and b) show the full projections of mK±π∓ and mK+K−

produced using 100 bins, respectively. It is important to note that in these
two cases, the mass is not squared. The c) is the 0.9 < m2

K+K− < 1.2 to
zoom in on the ϕ(1020), using 40 bins. The line in blue represents the model,
the black dots represent the data, and the region in red is the background
estimation.

Figura 70 – Magnitude and phase of the Kπ S-wave resulting from Fit 1 using K∗
0(1430)

and PolarFFNR.
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Figura 71 – Magnitude and phase of the KK S-wave resulting from Fit 1 using Rescatte-
ring.
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Fit 2. Adding the χc0(1P ) resonance

Figure 68 item a) highlights the clear need to include the χc0(1P ) resonance in
our model, as the data strongly indicates its presence around 11.5 GeV2/c4. As can be
seen, the ACP for the χc0(1P ) in this model presents a value compatible with zero. Figure
72 illustrates the impact on the model when adding this component. Due to its narrow
width, the χc0(1P ) interferes minimally with other resonances, resulting in only minor
changes to the parameters of the other components in the model, see Table 22.

Using the tools outlined in Section 8.2, we verified that ∆NLL = 103, considering Fit
1 - Fit 2 1, and applying the likelihood ratio technique 103 > 34.552. Thus, all indicators
strongly support the inclusion of this resonance in the model.

Figura 72 – Fit 2 results for the m2
K+K− projection with the m2

K±π∓ > 4. Signature of
J/ψ(1S) and χc0(1P ) around 9.5 GeV2/c4 and 11.6 GeV2/c4, respectively.

Tabela 22 – Results of the Dalitz plot Fit 2 considering the addition of χc0(1P ).
[NLL -142549] Fit fraction (%) Magnitude and phase coefficients ACP (%)
Component B− B+ a+

i δ+
i [◦] a−

i δ−
i [◦]

K∗(892) 6.8 ± 0.3 4.9 ± 0.3 0.99 ± 0.02 0 ± 0 1.01 ± 0.02 0 ± 0 1.7 ± 3.9
K∗

0(1430) 7.5 ± 0.6 4.2 ± 0.3 0.92 ± 0.04 11 ± 4 1.06 ± 0.05 −19 ± 4 14.2 ± 5.4
PolarFFNR 37.2 ± 1.0 32.5 ± 0.7 2.55 ± 0.06 28 ± 3 2.37 ± 0.06 −10 ± 3 −7.2 ± 1.8
ρ(1450) 31.6 ± 0.7 27.6 ± 0.6 2.35 ± 0.05 158 ± 4 2.18 ± 0.05 127 ± 4 −7.2 ± 1.7
f2(1270) 9.7 ± 0.5 5.3 ± 0.4 1.03 ± 0.04 49 ± 4 1.21 ± 0.04 36 ± 4 16.5 ± 4.1
Re-scattering 7.3 ± 0.3 23.6 ± 0.4 2.17 ± 0.05 111 ± 4 1.05 ± 0.03 89 ± 5 −62.3 ± 1.5
ϕ(1020) 1.0 ± 0.1 0.01 ± 0.02 0.05 ± 0.05 −110 ± 63 0.39 ± 0.02 115 ± 9 97.5 ± 5.3
χc0 1.3 ± 0.1 0.6 ± 0.1 0.35 ± 0.03 112 ± 8 0.44 ± 0.03 46 ± 8 21.5 ± 8.3
Fit Fraction Sum 102.2 98.8

1 We will adopt as the standard for calculating ∆NLL the convention of using the previous fit as the
baseline and subtracting the subsequent fit.

2 Considering 4 degrees of freedom and a 5σ threshold, the critical χ2 value is 34.55, which serves as the
reference for some subsequent studies.
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Fit 3. Low mass Kπ

The PolarFFNR component, which was used as the standard non-resonant contri-
bution during the Run 1 analysis, will also serve as the default non-resonant component
in this study. As in the previous study, the existence of a second solution (i.e., different
results for the a± and δ±, Acp, and Fit Fraction) exhibited non-physical behavior, being a
fitter-created outcome, resulting from the large interference of scalars in the Kπ sector,
particularly caused by the interference between the K∗

0(1430) and the PolarFFNR. In
essence, this reflects a scenario of multiple solutions, where different parameter sets can
explain the experimental data, as explained in the section 7.4.4.

To address this issue, we conducted a study (see details in Appendix D) where
we fitted the Λ parameter of the PolarFFNR. The fitted value was Λ = 1.22 ± 0.03, and
this value will be fixed in the fits from now on. Table 23 presents the results of fitting
the Λ value. For this case, ∆NLL = 31, with the critical value for a χ2 distribution being
253, thus 31 > 25. Therefore, the indicators also support the modification applied in this
scenario.

Tabela 23 – Results of the Dalitz plot Fit 3 fitting Λ = 1.22 ± 0.03.
[NLL -142580] Fit fraction (%) Magnitude and phase coefficients ACP (%)
Component B− B+ a+

i δ+
i [◦] a−

i δ−
i [◦]

K∗(892) 7.0 ± 0.4 5.3 ± 0.3 1.00 ± 0.02 0 ± 0 1.00 ± 0.02 0 ± 0 0.3 ± 3.8
K∗

0(1430) 9.2 ± 0.7 5.4 ± 0.4 1.02 ± 0.04 22 ± 4 1.15 ± 0.05 −12 ± 4 12.6 ± 4.9
PolarFFNR 38.7 ± 1.0 33.1 ± 0.8 2.51 ± 0.06 29 ± 3 2.36 ± 0.06 −11 ± 3 −5.9 ± 1.8
ρ(1450) 31.1 ± 0.7 27.1 ± 0.6 2.27 ± 0.05 158 ± 4 2.12 ± 0.05 128 ± 4 −6.9 ± 1.7
f2(1270) 9.3 ± 0.5 4.9 ± 0.3 0.96 ± 0.04 50 ± 4 1.16 ± 0.04 38 ± 4 18.1 ± 4.2
Re-scattering 7.0 ± 0.3 23.4 ± 0.4 2.11 ± 0.05 112 ± 4 1.00 ± 0.03 90 ± 5 −63.1 ± 1.5
ϕ(1020) 1.0 ± 0.1 0.01 ± 0.02 0.04 ± 0.05 −104 ± 59 0.38 ± 0.02 115 ± 9 97.5 ± 5.5
χc0 1.3 ± 0.1 0.6 ± 0.1 0.34 ± 0.03 114 ± 7 0.43 ± 0.02 49 ± 8 21.9 ± 8.2
Fit Fraction Sum 105.0 99.9

Fit 4. Rescattering update

As mentioned in Section 6.2.3.6, an update to the phenomenological description of
the ππ → KK rescattering was conducted, following [17]. This element is one of the main
parts of this analysis, as it exhibits one of the largest CP violations observed in a single
component.

Considering the available parameter options, we tested several sets, including
CFDb, CFDc, UFDb, and UFDc. Based on the results, we decided to proceed with the
UFDb parameters for the remainder of the analysis, as they provided the most consistent
performance. Detailed results of the other parameter sets are presented in the Appendix
C.
3 Considering 1 degree of freedom and a 5σ threshold, the critical χ2 value is 25.
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Figures 73, 74 and 75 present the new projections of the Dalitz plot regions after
the rescattering update. Attention is particularly drawn to the areas surrounding this
new component due to its changes, especially in the KK projections between 1 GeV2/c4

and 2 GeV2/c4. Notably, items d) and e) in Figure 73 underwent considerable changes
compared to the same items in the previous Run I model results, as shown in Figure
67. The model’s behavior after the update appears to be more consistent with the data.
However, specifically for item d) in 73, the results seem to be worse between 1.6 and 2
GeV2/c4. For this case, ∆NLL = 148.

Tabela 24 – Dalitz Plot Fit 4 results using UFDb parameters for the Rescattering compo-
nent.

[NLL -142728] Fit fraction (%) Magnitude and phase coefficients ACP (%)
Component B− B+ a+

i δ+
i [◦] a−

i δ−
i [◦]

K∗(892) 7.1 ± 0.3 5.1 ± 0.3 0.99 ± 0.02 0 ± 0 1.01 ± 0.02 0 ± 0 2.1 ± 3.8
K∗

0(1430) 9.3 ± 0.7 5.8 ± 0.4 1.05 ± 0.04 18 ± 3 1.16 ± 0.05 −13 ± 4 9.7 ± 4.9
PolarFFNR 39.8 ± 1.0 33.7 ± 0.8 2.54 ± 0.06 29 ± 3 2.40 ± 0.06 −10 ± 3 −5.6 ± 1.8
ρ(1450) 33.5 ± 0.7 26.8 ± 0.5 2.26 ± 0.05 178 ± 259 2.20 ± 0.05 141 ± 5 −2.7 ± 1.7
f2(1270) 8.5 ± 0.5 3.8 ± 0.3 0.85 ± 0.04 78 ± 5 1.11 ± 0.04 49 ± 5 26.1 ± 4.3
Re-scattering 6.7 ± 0.3 24.1 ± 0.4 2.14 ± 0.05 −173 ± 5 0.99 ± 0.03 141 ± 6 −65.1 ± 1.4
ϕ(1020) 0.9 ± 0.1 0.01 ± 0.02 0.05 ± 0.03 38 ± 39 0.37 ± 0.02 171 ± 9 97.0 ± 4.2
χc0 1.3 ± 0.1 0.7 ± 0.1 0.35 ± 0.03 115 ± 7 0.44 ± 0.02 52 ± 7 21.2 ± 8.1
Fit Fraction Sum 107.1 100.0
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Figura 73 – Fit 4 using UFDb parameters, for each plot B− (top), B+ (middle) and the
difference (B− − B+, bottom). The a) (cosHel23 < 0), b) (cosHel > 0),
and c) are showing the m2

K±π∓ in a different region. The d) (cosHel13 > 0),
e) (cosHel13 < 0), and f) are the projections for the m2

K+K− . For the g)
and h) we have the diagonal projections m2

K+π+ . The line in blue represents
the model, the black dots represent the data, and the region in red is the
background estimation. All plots were produced using 40 bins.
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Figura 74 – Fit 4 using UFDb parameters, for each plot B− (top), B+ (middle) and
the difference (B− − B+, bottom). The a) (m2

K±π∓ > 4, specially for the
χc0(1P )), b) (m2

K±π∓ > 4) are showing the m2
K+K− in different regions. The

c) (m2
K+K− < 1.4), d) (1.4 < m2

K+K− < 3.5), and e) (4 < m2
K+K− < 5) are the

projections for the m2
K±π∓ . For the f) (m2

K+π+ < 5), g) (0.5 < m2
K±π∓ < 1.2)

and h) (1.2 < m2
K±π∓ < 3) we have the m2

K+K− projections. The line in blue
represents the model, the black dots represent the data, and the region in red
is the background estimation. All plots were produced using 40 bins.
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Figura 75 – Fit 4 using UFDb parameters, for each plot B− (top), B+ (middle) and the
difference (B− − B+, bottom). The a) and b) show the full projections of
mK±π∓ and mK+K− produced using 100 bins, respectively. It is important
to note that in these two cases, the mass is not squared. The c) is the
0.9 < m2

K+K− < 1.2 to zoom in on the ϕ(1020), using 40 bins. The line in
blue represents the model, the black dots represent the data, and the region
in red is the background estimation.
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Fit 5. Floating mass and width of ρ0(1450)

Following studies of the previous analysis, the mass and width of the ρ0(1450)
amplitude were allowed to float 4. Table 25 shows the fit results obtained by floating the
mass and width of the ρ0(1450), being these of 1.546 ± 0.005 GeV/c2 and 0.452 ± 0.018
GeV/c2, respectively. As can be seen, there is an improvement in the NLL compared to
the previous results in Table 24. Additionally, a significant change in the Acp values can
be noted, showing how sensitive and yet unstable the system remains.

Tabela 25 – Dalitz Plot Fit 5 results with mass and width of the ρ0(1450) floating.
[NLL -142808] Fit fraction (%) Magnitude and phase coefficients ACP (%)
Component B− B+ a+

i δ+
i [◦] a−

i δ−
i [◦]

K∗(892) 6.0 ± 0.3 5.1 ± 0.3 1.03 ± 0.02 0 ± 0 0.97 ± 0.02 0 ± 0 −5.1 ± 3.9
K∗

0(1430) 5.9 ± 0.5 6.0 ± 0.4 1.12 ± 0.04 16 ± 3 0.97 ± 0.04 −24 ± 4 −14.2 ± 5.0
PolarFFNR 34.8 ± 1.1 33.8 ± 0.8 2.64 ± 0.07 28 ± 3 2.35 ± 0.06 5 ± 3 −11.7 ± 2.0
ρ(1450) 41.0 ± 0.8 27.6 ± 0.6 2.39 ± 0.05 −172 ± 4 2.55 ± 0.06 −111 ± 4 6.6 ± 1.7
f2(1270) 10.2 ± 0.5 4.1 ± 0.3 0.92 ± 0.04 73 ± 4 1.27 ± 0.04 126 ± 4 31.7 ± 4.1
Re-scattering 9.2 ± 0.4 24.4 ± 0.5 2.25 ± 0.05 −165 ± 5 1.21 ± 0.04 −115 ± 5 −55.1 ± 1.7
ϕ(1020) 0.8 ± 0.1 0.07 ± 0.04 0.12 ± 0.03 39 ± 15 0.35 ± 0.03 −69 ± 9 78.7 ± 10.3
χc0 1.3 ± 0.1 0.7 ± 0.1 0.37 ± 0.03 115 ± 7 0.46 ± 0.03 68 ± 7 21.5 ± 8.2
Fit Fraction Sum 110.3 101.5

Fit 6. Improving KK P-wave

Due to the previous fit, we conducted a test by adding the ρ0(1700) together with
the ρ0(1450) but keeping their masses and widths at the original values. Indeed, when
the ρ0(1700) was included, the fit improved, indicating that there are likely two distinct ρ
resonances. If we compare this result with the Fit 1, we notice a significant improvement in
the NLL, with a ∆NLL = 373. This observation will be further discussed, along with other
characteristics of the baseline model, in the next section. This model will be regarded as
our baseline, serving as the foundation for subsequent enhancements.

4 The standard values for the ρ0(1450) are 1465 ± 25 MeV for the mass and 400 ± 60 MeV for the width
[61].
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8.3.1 The baseline model

Future improvements will be systematically developed and evaluated based on the
results presented here. By using this baseline as a reference point, we can accurately
evaluate the effects of different modifications, ensuring solid model development. In this
section, we will also analyze the partial results obtained thus far.

Table 26 presents the results after the addition of the ρ0(1700) to the model. A
drastic difference in the total sum of the Fit Fraction is noteworthy, especially for the case
of the ρ0(1450), which experienced a reduction in its contribution by nearly 20% compared
to the previous result, likely due to a constructive interference between the ρ0(1450) and
ρ0(1700). Figures 78, 79, and 80 show the new projections of the phase space regions, and
it can be seen that the addition of the ρ0(1700) has a positive impact. Specifically, note
item d) in Figure 79, which shows improvement compared to the previous result between
1.6 and 2 GeV2/c4.

Tabela 26 – Dalitz Plot Fit 6 results after adding the ρ0(1700).
[NLL -142819] Fit fraction (%) Magnitude and phase coefficients ACP (%)
Component B− B+ a+

i δ+
i [◦] a−

i δ−
i [◦]

K∗(892) 6.3 ± 0.3 5.0 ± 0.3 1.01 ± 0.02 0 ± 0 0.99 ± 0.02 0 ± 0 −1.4 ± 3.9
K∗

0(1430) 5.8 ± 0.5 5.6 ± 0.4 1.07 ± 0.04 15 ± 3 0.95 ± 0.04 −25 ± 4 −11.9 ± 5.3
PolarFFNR 37.8 ± 1.2 34.3 ± 0.8 2.65 ± 0.07 29 ± 3 2.43 ± 0.06 2 ± 3 −8.5 ± 2.0
ρ(1700) 3.6 ± 0.5 2.9 ± 0.5 0.76 ± 0.07 −99 ± 8 0.75 ± 0.06 −84 ± 6 −2.2 ± 11.2
ρ(1450) 22.4 ± 1.2 16.6 ± 0.9 1.84 ± 0.06 177 ± −123 1.87 ± 0.06 −141 ± 7 1.5 ± 3.9
f2(1270) 9.8 ± 0.5 3.9 ± 0.3 0.89 ± 0.04 81 ± 5 1.24 ± 0.04 113 ± 5 31.9 ± 4.2
Re-scattering 8.7 ± 0.4 24.6 ± 0.5 2.24 ± 0.05 −162 ± 6 1.16 ± 0.04 −132 ± 6 −57.6 ± 1.7
ϕ(1020) 0.8 ± 0.1 0.07 ± 0.04 0.12 ± 0.03 46 ± 15 0.35 ± 0.03 −91 ± 10 77.4 ± 10.6
χc0 1.4 ± 0.1 0.7 ± 0.1 0.37 ± 0.03 115 ± 7 0.46 ± 0.03 66 ± 7 22.5 ± 8.0
Fit Fraction Sum 96.5 93.5

The signature of a possible J/ψ(1S) resonance at 9.5 GeV2/c4 can be observed
(see item a) Fig 79), warranting further studies and special attention in the following
sections. Additionally, in the same figure and item, the model (blue line) appears to
overestimate the number of entries compared to the data (black points), especially for
the B+ (middle layer). This suggests that improvements are needed around the χc0(1P ),
particularly concerning broad contributions with tails extending across the phase space.
This is evident in non-resonant contributions like the PolarFFNR or the K∗

0 (1430)0. Figure
80 item c) shows that the issue remains unresolved in the fit of the ϕ(1020), as the model
continues to struggle with accurately fitting the sharp ϕ(1020) resonance, resulting in an
erroneously large CP violation. Attempts to modify the width of the ϕ(1020) were made,
but without positive results. The difficulty in achieving a good result regarding the width
of this component is related to the LHCb energy resolution, as already mentioned.

Since this is the baseline model, it is also insightful to examine again the behavior
of the S-wave magnitude and phase across the phase space. Figures 76 and 77 present the
magnitude and phase motion for the KK and Kπ S-wave. It can be observed that the Kπ
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S-wave behavior has remained almost unchanged so far, as seen when comparing Figure 76
with Figure 70. On the other hand, after the Rescattering update, the KK S-wave exhibits
significant differences, particularly in the phase behavior of the rescattering component,
alongside the inclusion of the χc0 resonance, comparing Figure 77 with Figure 71. However,
it is important to emphasize that the large difference in magnitude remains similar. Such
an analysis provides a reference point for understanding how modifications in alternative
models may impact these plots.

Figura 76 – Magnitude and phase of the Kπ S-wave resulting from Fit 6 using K∗
0(1430)

and PolarFFNR.

Figura 77 – Magnitude and phase of theKK S-wave resulting from Fit 6 using Rescattering
and χc0.
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Figura 78 – Fit 6, for each plot B− (top), B+ (middle) and the difference (B− − B+,
bottom). The a) (cosHel23 < 0), b) (cosHel > 0), and c) are showing the
m2

K±π∓ in a different region. The d) (cosHel13 > 0), e) (cosHel13 < 0), and
f) are the projections for the m2

K+K− . For the g) and h) we have the diagonal
projections m2

K+π+ . The line in blue represents the model, the black dots
represent the data, and the region in red is the background estimation. All
plots were produced using 40 bins.
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Figura 79 – Fit 6, for each plot B− (top), B+ (middle) and the difference (B− − B+,
bottom). The a) (cosHel23 < 0), b) (cosHel > 0), and c) are showing the
m2

K±π∓ in a different region. The d) (cosHel13 > 0), e) (cosHel13 < 0), and
f) are the projections for the m2

K+K− . For the g) and h) we have the diagonal
projections m2

K+π+ . The line in blue represents the model, the black dots
represent the data, and the region in red is the background estimation. All
plots were produced using 40 bins.
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Figura 80 – Fit 6, for each plot B− (top), B+ (middle) and the difference (B− − B+,
bottom). The a) and b) show the full projections of mK±π∓ and mK+K−

produced using 100 bins, respectively. It is important to note that in these
two cases, the mass is not squared. The c) is the 0.9 < m2

K+K− < 1.2 to
zoom in on the ϕ(1020), using 40 bins. The line in blue represents the model,
the black dots represent the data, and the region in red is the background
estimation.
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Fit 7. Further Kπ improvements - δsKπ formulation

We also considered an alternative parametrization for the low-mass Kπ region
using the δ formulation, as discussed in the section 6.2.3.5.

The primary difference between the PolarFFNR and δ options lies in their formu-
lations. While the PolarFFNR is a real contribution without phase (aside from the one
directly from the Isobar model), the δ is a unitary formulation that includes phase motion.
It is important to note that obtaining a precise measurement of the phase of the Kπ
S-wave is particularly challenging. This difficulty arises because it is located in regions far
from other resonances, and as a result, it does not intersect with the neighboring elements.

Table 27 presents the results of replacing the PolarFFNR by the δsKπ, allowing
the m0 and a parameters to float. The resulting values were:

m0 = 0.86 ± 0.03 and a = −1.14 ± 0.03.

It can be observed that the total sum of the Fit Fractions in this case is notably
large, which raises concerns about the validity of this attempt. Additionally, the NLL
showed a significant deterioration compared to the previous model, increasing by nearly
200 units.

Tabela 27 – Dalitz Plot Fit 7 results using the δsKπ as parametrization for the Kπ low
mass.

[NLL -142632] Fit fraction (%) Magnitude and phase coefficients ACP (%)
Component B− B+ a+

i δ+
i [◦] a−

i δ−
i [◦]

K∗(892) 5.88 ± 0.34 4.58 ± 0.27 1.002 ± 0.020 0 ± 0 0.998 ± 0.020 0 ± 0 −0.3 ± 4.0
K∗

0(1430) 45.82 ± 1.73 45.83 ± 1.28 3.169 ± 0.093 144 ± 3 2.786 ± 0.092 96 ± 4 −12.8 ± 2.1
δ(sKπ) 35.02 ± 2.38 39.76 ± 1.86 2.952 ± 0.109 −83 ± 4 2.435 ± 0.111 −124 ± 4 −19.0 ± 3.2
ρ(1700) 2.21 ± 0.46 1.95 ± 0.33 0.654 ± 0.057 153 ± 9 0.612 ± 0.064 42 ± 10 −6.8 ± 13.3
ρ(1450) 24.75 ± 1.39 15.83 ± 0.95 1.863 ± 0.063 104 ± 6 2.048 ± 0.066 56 ± 7 9.4 ± 3.6
f2(1270) 9.58 ± 0.51 4.66 ± 0.33 1.011 ± 0.039 −4 ± 5 1.274 ± 0.039 −46 ± 7 22.8 ± 3.9
Re-scattering 6.98 ± 0.36 23.18 ± 0.67 2.254 ± 0.051 111 ± 6 1.088 ± 0.033 53 ± 8 −62.2 ± 1.4
ϕ(1020) 0.79 ± 0.10 0.03 ± 0.02 0.082 ± 0.030 −43 ± 22 0.367 ± 0.025 84 ± 10 90.5 ± 7.0
χc0 0.67 ± 0.10 0.20 ± 0.05 0.208 ± 0.024 −109 ± 14 0.337 ± 0.027 −114 ± 14 44.6 ± 10.7
Fit Fraction Sum 148.4 152.5
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Fit 8. Further Kπ improvements - δP ol formulation

The same considerations applied to Fit 7 are also valid in this case. We included
the version of the generic function mentioned in section 6.2.3.5, using a second-degree
polynomial in the format:

δP ol2 = A1mass
2 +B2mass+ C3 (8.1)

where A1 = −0.137 ± 0.002 (floating) and C3 = 1.19 ± 0.03 (floating), while the
B2 = 1 (fixed).

Table 28 presents the results of replacing the PolarFFNR by the δP ol2. These
results, along with the previous findings in Table 26, show that the outcomes remain stable
and consistent, reinforcing that the δP ol2 is a reliable option for this role.

Tabela 28 – Dalitz Plot Fit 7 results using the δP ol2 as parametrization for the Kπ low
mass.

[NLL -142915] Fit fraction (%) Magnitude and phase coefficients ACP (%)
Component B− B+ a+

i δ+
i [◦] a−

i δ−
i [◦]

K∗(892) 6.97 ± 0.36 5.04 ± 0.30 0.997 ± 0.019 0 ± 0 1.003 ± 0.019 0 ± 0 0.6 ± 3.9
K∗

0(1430) 8.81 ± 0.77 7.85 ± 0.67 1.245 ± 0.064 46 ± 4 1.128 ± 0.056 6 ± 4 −9.8 ± 6.2
δP ol2 42.79 ± 1.45 39.70 ± 1.06 2.799 ± 0.073 −90 ± 5 2.485 ± 0.068 −121 ± 3 −11.9 ± 2.4
ρ(1700) 2.31 ± 0.49 3.26 ± 0.77 0.802 ± 0.090 −33 ± 15 0.577 ± 0.063 −43 ± 9 −31.8 ± 13.1
ρ(1450) 27.01 ± 1.41 20.53 ± 1.10 2.013 ± 0.069 −140 ± 13 1.974 ± 0.062 −129 ± 8 −1.9 ± 3.8
f2(1270) 11.71 ± 0.60 4.84 ± 0.38 0.977 ± 0.041 124 ± 13 1.300 ± 0.042 132 ± 6 27.8 ± 4.0
Re-scattering 8.65 ± 0.44 26.12 ± 1.15 2.270 ± 0.052 −121 ± 15 1.117 ± 0.036 −115 ± 7 −61.0 ± 1.6
ϕ(1020) 0.78 ± 0.12 0.10 ± 0.05 0.142 ± 0.032 87 ± 19 0.336 ± 0.027 −76 ± 12 69.8 ± 12.4
χc0 1.02 ± 0.19 0.69 ± 0.09 0.369 ± 0.025 154 ± 8 0.383 ± 0.036 57 ± 13 3.6 ± 11.3
Fit Fraction Sum 100.1 102.2

Figures 76 and 81 present the resulting amplitudes and phases motion from the
PDFs of Kπ S-wave of the fits using K∗

0(1430) together with PolarFFNR, and K∗
0(1430)

together with δP ol2, respectively. As previously mentioned, the PolarFFNR contributes
only a constant phase, while the δP ol2 introduces a varying phase that increases across
the phase space. On the other hand, the amplitudes exhibit very similar shapes. Figures
82, 83 and 84 present the projections of the Dalitz Plot using the δP ol2. For this case,
∆NLL = 96.
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Figura 81 – Magnitude and phase of the Kπ S-wave resulting from Fit 7 using K∗
0(1430)

and δP ol2.
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Figura 82 – Fit 7, for each plot B− (top), B+ (middle) and the difference (B− − B+,
bottom). The a) (cosHel23 < 0), b) (cosHel > 0), and c) are showing the
m2

K±π∓ in a different region. The d) (cosHel13 > 0), e) (cosHel13 < 0), and
f) are the projections for the m2

K+K− . For the g) and h) we have the diagonal
projections m2

K+π+ . The line in blue represents the model, the black dots
represent the data, and the region in red is the background estimation. All
plots were produced using 40 bins.
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Figura 83 – Fit 7, for each plot B− (top), B+ (middle) and the difference (B− − B+,
bottom). The a) (cosHel23 < 0), b) (cosHel > 0), and c) are showing the
m2

K±π∓ in a different region. The d) (cosHel13 > 0), e) (cosHel13 < 0), and
f) are the projections for the m2

K+K− . For the g) and h) we have the diagonal
projections m2

K+π+ . The line in blue represents the model, the black dots
represent the data, and the region in red is the background estimation. All
plots were produced using 40 bins.
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Figura 84 – Fit 7, for each plot B− (top), B+ (middle) and the difference (B− − B+,
bottom). The a) and b) show the full projections of mK±π∓ and mK+K−

produced using 100 bins, respectively. It is important to note that in these
two cases, the mass is not squared. The c) is the 0.9 < m2

K+K− < 1.2 to
zoom in on the ϕ(1020), using 40 bins. The line in blue represents the model,
the black dots represent the data, and the region in red is the background
estimation.
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Fit 9. Including the J/ψ(1S)

After the modifications made to the Fit 7, the addition of the J/ψ(1S) component
was tested, as there appear to be indications of its presence (as discussed in Fit 2). Table
29 presents the fit results after including the J/ψ, and Figure 85 shows the region where
this component is located. As can be seen, there is almost no impact on the Dalitz
plot projection, and the Fit Fraction shows a very low value of around 0.1%. Using the
likelihood ratio, we find that the inclusion of the J/ψ(1S) in this case does not have
appreciable statistical significance since NLLratio = 33, and 33 < 34.55. A study with
toys generated including the J/ψ(1S) is presented in Appendix G, exploring different
configurations.

Tabela 29 – Dalitz Plot Fit 9 results including the J/ψ.
[NLL -142848] Fit fraction (%) Magnitude and phase coefficients ACP (%)
Component B− B+ a+

i δ+
i [◦] a−

i δ−
i [◦]

K∗(892) 6.42 ± 0.34 4.95 ± 0.28 1.002 ± 0.020 0 ± 0 0.998 ± 0.020 0 ± 0 −0.4 ± 3.9
K∗

0(1430) 6.02 ± 0.49 5.64 ± 0.41 1.069 ± 0.044 15 ± 3 0.966 ± 0.043 −25 ± 4 −10.1 ± 5.3
PolarFFNR 38.39 ± 1.14 34.15 ± 0.76 2.632 ± 0.064 29 ± 3 2.440 ± 0.062 1 ± 3 −7.6 ± 1.9
ρ(1700) 3.51 ± 0.53 3.05 ± 0.51 0.786 ± 0.068 −96 ± 10 0.738 ± 0.059 −90 ± 6 −6.3 ± 11.3
ρ(1450) 22.43 ± 1.22 16.83 ± 0.92 1.848 ± 0.062 177 ± −120 1.865 ± 0.063 −145 ± 7 0.9 ± 3.8
f2(1270) 9.83 ± 0.51 3.92 ± 0.29 0.891 ± 0.038 80 ± 6 1.235 ± 0.041 109 ± 5 31.5 ± 4.2
Re-scattering 8.52 ± 0.39 24.47 ± 0.46 2.228 ± 0.049 −164 ± 6 1.150 ± 0.036 −136 ± 6 −57.9 ± 1.7
ϕ(1020) 0.77 ± 0.11 0.07 ± 0.04 0.120 ± 0.031 42 ± 16 0.346 ± 0.026 −96 ± 10 78.5 ± 10.4
χc0 1.39 ± 0.14 0.66 ± 0.09 0.367 ± 0.025 115 ± 7 0.464 ± 0.026 66 ± 7 23.1 ± 7.9
J/ψ 0.20 ± 0.09 0.01 ± 0.02 0.053 ± 0.035 52 ± 37 0.177 ± 0.040 161 ± 11 83.5 ± 22.3
Fit Fraction Sum 97.5 93.7

Figura 85 – Fit 9 results for the m2
K+K− projection with the m2

K±π∓ > 4. Signature of
J/ψ(1S) around 9.5 GeV2/c4.
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Fit 10. Trials to include the f ′
2(1525)

The objective of this test is to evaluate the possibility of replacing (or including)
the tensor resonance in the decay with the f ′

2(1525). This proposal is based on [61], which
shows that the dominant decay channel for the f ′

2(1525) is 87.6%, while for the f2(1270),
it is 4.6% for the KK̄ system.

Table 30 presents the results of the attempt to replace f2(1270) with f ′
2(1525). As

observed, the impact on the NLL value is significantly negative if compared to the previous
result Fit 6. Various regions of the phase space were adversely affected by this change.
Figures 86, 87, and 88 display the Dalitz Plot projections. For instance, in Figure 87, item
c), the negative impact of this modification is evident.

Attempts were also made to include both resonances (f2(1270) and f ′
2(1525)). Table

31 presents the results of including both resonances. Figures 89, 90, and 91 display the
Dalitz Plot projections for this scenario. No noticeable positive or negative impact from
the addition of f ′

2(1525) was observed in the projections. However, using the likelihood
ratio for this case, the NLLratio = 66. Since 34.55 < 66, the addition of f ′

2(1525) in this
model demonstrates positive statistical significance. In the other hand one can also observe
the low contribution of the f ′

2(1525)) to the decay, around 0.5% of total Fit Fraction. Due
to these ambiguities, we decided not to proceed with the inclusion of the f ′

2(1525) in the
final model.

Tabela 30 – Dalitz Plot Fit 10 results replacing f2(1270) with f ′
2(1525).

[NLL -142442] Fit fraction (%) Magnitude and phase coefficients ACP (%)
Component B− B+ a+

i δ+
i [◦] a−

i δ−
i [◦]

K∗(892) 6.12 ± 0.32 4.94 ± 0.29 1.009 ± 0.020 0 ± 0 0.991 ± 0.020 0 ± 0 −1.9 ± 4.0
K∗

0(1430) 7.13 ± 0.53 4.08 ± 0.33 0.918 ± 0.042 19 ± 4 1.069 ± 0.045 −20 ± 4 15.2 ± 5.4
PolarFFNR 32.77 ± 1.07 34.87 ± 0.76 2.683 ± 0.067 32 ± 3 2.292 ± 0.063 0 ± 3 −15.6 ± 2.0
ρ(1700) 2.17 ± 0.48 2.80 ± 0.49 0.760 ± 0.069 −96 ± 8 0.590 ± 0.068 −91 ± 7 −24.8 ± 13.4
ρ(1450) 30.76 ± 1.49 16.00 ± 0.87 1.818 ± 0.061 175 ± 4 2.221 ± 0.071 −88 ± 5 19.8 ± 3.5
f ′

2(1525) 5.68 ± 0.38 0.96 ± 0.14 0.444 ± 0.033 −163 ± 8 0.954 ± 0.037 −53 ± 5 64.4 ± 4.7
Re-scattering 13.94 ± 0.42 26.78 ± 0.44 2.351 ± 0.052 171 ± 5 1.495 ± 0.039 −95 ± 5 −42.4 ± 1.5
ϕ(1020) 0.77 ± 0.11 0.07 ± 0.04 0.120 ± 0.032 9 ± 15 0.351 ± 0.027 −53 ± 8 79.2 ± 10.2
χc0 1.21 ± 0.13 0.10 ± 0.04 0.144 ± 0.026 −24 ± 18 0.440 ± 0.026 59 ± 8 80.8 ± 6.5
Fit Fraction Sum 100.5 90.6
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Tabela 31 – Dalitz Plot Fit 10 results adding f2(1270) together with f ′
2(1525).

[NLL -142885] Fit fraction (%) Magnitude and phase coefficients ACP (%)
Component B− B+ a+

i δ+
i [◦] a−

i δ−
i [◦]

K∗(892) 6.25 ± 0.34 4.93 ± 0.29 1.008 ± 0.020 0 ± 0 0.992 ± 0.020 0 ± 0 −1.6 ± 4.0
K∗

0(1430) 5.79 ± 0.47 5.45 ± 0.40 1.060 ± 0.045 16 ± 3 0.955 ± 0.043 −24 ± 4 −10.4 ± 5.3
PolarFFNR 37.69 ± 1.30 34.25 ± 0.76 2.656 ± 0.066 30 ± 3 2.436 ± 0.065 2 ± 3 −8.6 ± 2.1
ρ(1700) 3.62 ± 0.55 3.16 ± 0.52 0.807 ± 0.069 −97 ± 9 0.755 ± 0.060 −78 ± 6 −6.6 ± 11.2
ρ(1450) 22.48 ± 1.35 16.34 ± 0.91 1.835 ± 0.063 174 ± 5 1.881 ± 0.070 −135 ± 9 2.5 ± 4.2
f2(1270) 7.90 ± 0.54 3.53 ± 0.30 0.853 ± 0.040 71 ± 5 1.116 ± 0.044 109 ± 6 26.2 ± 5.1
f ′

2(1525) 0.92 ± 0.24 0.18 ± 0.07 0.192 ± 0.038 −166 ± 13 0.380 ± 0.050 −118 ± 12 59.4 ± 15.4
Re-scattering 9.18 ± 0.46 24.55 ± 0.46 2.249 ± 0.050 −168 ± 6 1.202 ± 0.041 −127 ± 7 −55.5 ± 1.9
ϕ(1020) 0.79 ± 0.11 0.07 ± 0.04 0.120 ± 0.032 37 ± 16 0.353 ± 0.027 −82 ± 10 79.1 ± 10.2
χc0 1.36 ± 0.14 0.09 ± 0.03 0.139 ± 0.026 −29 ± 18 0.463 ± 0.026 65 ± 7 83.5 ± 5.8
Fit Fraction Sum 96.0 92.6
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Figura 86 – Fit 10 replacing the f2(1270) with f ′
2(1525), for each plot B− (top), B+

(middle) and the difference (B− − B+, bottom). The a) (cosHel23 < 0), b)
(cosHel > 0), and c) are showing the m2

K±π∓ in a different region. The d)
(cosHel13 > 0), e) (cosHel13 < 0), and f) are the projections for the m2

K+K− .
For the g) and h) we have the diagonal projections m2

K+π+ . The line in blue
represents the model, the black dots represent the data, and the region in red
is the background estimation. All plots were produced using 40 bins.
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Figura 87 – Fit 10 replacing the f2(1270) with f ′
2(1525), for each plot B− (top), B+

(middle) and the difference (B− − B+, bottom). The a) (cosHel23 < 0), b)
(cosHel > 0), and c) are showing the m2

K±π∓ in a different region. The d)
(cosHel13 > 0), e) (cosHel13 < 0), and f) are the projections for the m2

K+K− .
For the g) and h) we have the diagonal projections m2

K+π+ . The line in blue
represents the model, the black dots represent the data, and the region in red
is the background estimation. All plots were produced using 40 bins.
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Figura 88 – Fit 10 replacing the f2(1270) with f ′
2(1525) , for each plot B− (top), B+

(middle) and the difference (B− −B+, bottom). The a) and b) show the full
projections of mK±π∓ and mK+K− produced using 100 bins, respectively. It is
important to note that in these two cases, the mass is not squared. The c) is
the 0.9 < m2

K+K− < 1.2 to zoom in on the ϕ(1020), using 40 bins. The line in
blue represents the model, the black dots represent the data, and the region
in red is the background estimation.
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Figura 89 – Fit 10 adding the f2(1270) together with f ′
2(1525), for each plot B− (top),

B+ (middle) and the difference (B− −B+, bottom). The a) (cosHel23 < 0),
b) (cosHel > 0), and c) are showing the m2

K±π∓ in a different region. The d)
(cosHel13 > 0), e) (cosHel13 < 0), and f) are the projections for the m2

K+K− .
For the g) and h) we have the diagonal projections m2

K+π+ . The line in blue
represents the model, the black dots represent the data, and the region in red
is the background estimation. All plots were produced using 40 bins.
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Figura 90 – Fit 10 adding the f2(1270) together with f ′
2(1525), for each plot B− (top),

B+ (middle) and the difference (B− −B+, bottom). The a) (cosHel23 < 0),
b) (cosHel > 0), and c) are showing the m2

K±π∓ in a different region. The d)
(cosHel13 > 0), e) (cosHel13 < 0), and f) are the projections for the m2

K+K− .
For the g) and h) we have the diagonal projections m2

K+π+ . The line in blue
represents the model, the black dots represent the data, and the region in red
is the background estimation. All plots were produced using 40 bins.
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Figura 91 – Fit 10 adding the f2(1270) together with f ′
2(1525), for each plot B− (top), B+

(middle) and the difference (B− −B+, bottom). The a) and b) show the full
projections of mK±π∓ and mK+K− produced using 100 bins, respectively. It is
important to note that in these two cases, the mass is not squared. The c) is
the 0.9 < m2

K+K− < 1.2 to zoom in on the ϕ(1020), using 40 bins. The line in
blue represents the model, the black dots represent the data, and the region
in red is the background estimation.



Capítulo 8. Dalitz Plot fit results 139

Fit 11. Alternative model

As an alternative model, studies were conducted involving the substitution of
the two main S-wave components for the KK and Kπ systems: the f0(980) replacing
the Rescattering component, and the δP ol4 replacing the PolarFFNR. In this case, a
fourth-degree polynomial is used to describe the phase, expressed as:

δP ol4 = A1mass
4 +B2mass

3 + C3mass
2 +D4mass+ E5 (8.2)

with all parameters free to vary, the measured values are: A1 = −3.01 × 10−2 ±
2.11×10−4, B2 = 2.97×10−1±9.84×10−4, C3 = −1.07±4.41×10−3, D4 = 1.97±2.90×10−2

and E5 = 1.25 ± 7.54 × 10−2.

As shown in Figures 92, 93, and 94, the results of these modifications are presented.
In the c) of Figure 94, the negative impact on the model can be observed in the region
where the f0(980) is located (see the same item Figure 84 for comparison). Other regions
of the Dalitz plot experienced minimal or no changes.

Figures 95 and 96 present the phase and amplitude motion for this case. It can
be observed that for the Kπ S-wave, the difference between using a second-degree or
fourth-degree polynomial introduces more intense variations in the phase (compared to
Figure 81). As we can see, the δP ol approach is flexible and adapts to different scenarios.
On the other hand, the KK S-wave shows significant differences (compared to Figure
77), as expected, given that the Rescattering modeling is substantially different from the
Flattè parameterization used for the f0(980).

Tabela 32 – Dalitz Plot Fit 11 results using f0(980) replacing the Rescattering and the
δP ol4 replacing the PolarFFNR.

[NLL -142909] Fit fraction (%) Magnitude and phase coefficients ACP (%)
Component B− B+ a+

i δ+
i [◦] a−

i δ−
i [◦]

K∗(892) 6.07 ± 0.33 4.49 ± 0.26 1.012 ± 0.020 0 ± 0 0.988 ± 0.020 0 ± 0 −2.3 ± 3.9
K∗

0(1430) 8.19 ± 0.69 6.89 ± 0.63 1.253 ± 0.059 43 ± 3 1.148 ± 0.052 −1 ± 4 −8.7 ± 5.7
δP ol4 31.34 ± 1.13 29.00 ± 1.04 2.571 ± 0.073 −110 ± 4 2.246 ± 0.065 −139 ± 4 −13.4 ± 2.5
ρ(1700) 1.67 ± 0.39 1.13 ± 0.29 0.508 ± 0.067 −56 ± 11 0.519 ± 0.063 −35 ± 10 2.2 ± 16.1
ρ(1450) 24.42 ± 1.27 15.81 ± 0.88 1.899 ± 0.060 −111 ± 6 1.983 ± 0.064 −104 ± 6 4.3 ± 3.6
f2(1270) 9.09 ± 0.52 3.21 ± 0.31 0.856 ± 0.046 141 ± 6 1.210 ± 0.042 149 ± 5 33.3 ± 5.0
f0(980) 16.52 ± 0.62 38.63 ± 0.70 2.967 ± 0.066 −44 ± 6 1.631 ± 0.044 −48 ± 5 −53.6 ± 1.4
ϕ(1020) 0.70 ± 0.10 0.04 ± 0.03 0.096 ± 0.035 52 ± 19 0.336 ± 0.026 −108 ± 9 85.0 ± 10.5
χc0 0.90 ± 0.12 0.41 ± 0.09 0.307 ± 0.034 155 ± 15 0.381 ± 0.026 77 ± 9 21.2 ± 12.2
Fit Fraction Sum 101.6 107.8
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Figura 92 – Fit 11 using f0(980) in place of Rescattering and δP ol4 for PolarFFNR, for each
plot B− (top), B+ (middle) and the difference (B− − B+, bottom). The a)
(cosHel23 < 0), b) (cosHel > 0), and c) are showing the m2

K±π∓ in a different
region. The d) (cosHel13 > 0), e) (cosHel13 < 0), and f) are the projections
for the m2

K+K− . For the g) and h) we have the diagonal projections m2
K+π+ .

The line in blue represents the model, the black dots represent the data, and
the region in red is the background estimation. All plots were produced using
40 bins.
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Figura 93 – Fit 11 using f0(980) in place of Rescattering and δP ol4 for PolarFFNR, for each
plot B− (top), B+ (middle) and the difference (B− − B+, bottom). The a)
(cosHel23 < 0), b) (cosHel > 0), and c) are showing the m2

K±π∓ in a different
region. The d) (cosHel13 > 0), e) (cosHel13 < 0), and f) are the projections
for the m2

K+K− . For the g) and h) we have the diagonal projections m2
K+π+ .

The line in blue represents the model, the black dots represent the data, and
the region in red is the background estimation. All plots were produced using
40 bins.
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Figura 94 – Fit 11 using f0(980) in place of Rescattering and δP ol4 for PolarFFNR, for
each plot B− (top), B+ (middle) and the difference (B− −B+, bottom). The
a) and b) show the full projections of mK±π∓ and mK+K− produced using 100
bins, respectively. It is important to note that in these two cases, the mass is
not squared. The c) is the 0.9 < m2

K+K− < 1.2 to zoom in on the ϕ(1020),
using 40 bins. The line in blue represents the model, the black dots represent
the data, and the region in red is the background estimation.

Figura 95 – Amplitude and phase of the Kπ S-wave resulting from Fit 11 using K∗
0 (1430)

and δP ol4.
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Figura 96 – Amplitude and phase of the KK S-wave resulting from Fit 11 using f0(980)
and χc0.
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8.4 Summary
As discussed in the previous section, various contributions were tested for the decay

composition. The highlighted results presented represent only the most notable outcomes.
Additional attempts that did not yield satisfactory results are detailed in Appendix H. The
final results comprise the baseline model Fit 6 and the version Fit 8. It is worth noting
that the attempts including the J/ψ and f ′

2(1525) resonances are not entirely dismissible
and could be revisited in future studies with larger datasets. We also have an alternative
model Fit 11 considering the substitution of all S-waves to different components.

Appendix E also introduces an alternative approach to Dalitz plot cropping,
reducing the full phase space to regions of particular interest. This method prioritizes
resonances localized in these regions, such as χc and J/ψ, enhancing the focus on their
contributions.
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9 Future systematic uncertainties studies

The evaluation of systematic uncertainties has not yet been carried out, as it
depends on finalizing and agreeing upon the baseline model for the paper. Consequently,
this section currently focuses on describing the possible sources of uncertainty.

Several sources are considered for systematic uncertainties, including the signal-to-
background ratio derived from the B mass fit, efficiency variations across the phase space,
and the background distribution within the SDP, among others. Systematic uncertainties
are evaluated for each parameter of the baseline result. These parameters include FF±,
the Isobar coefficients a± and δ±, the ACP , and the total fit fraction of each resonant state
in the model. The total systematic uncertainty is determined by summing in quadrature
the contributions from all these sources.

As a concrete example of a source of systematic uncertainties, one can consider
variations in the functions used to fit the mass bins forming the background model
presented in section 7.3. Additionally, the number of bins employed in these background
models can also be varied to assess their impact on the results.

Another example lies in the variation of the acceptance presented in section 7.1.
As observed, the current study does not account for the acceptance corresponding to the
data collected in 2018. We can also consider, as a source of systematic uncertainties,
the different sets of parameters provided by the authors for the parameterization of the
Rescattering process, as presented in section 6.2.3.6.

Additionally, the choice of resonance used as a reference in the model can also
influence the systematic uncertainties. Until now, the K∗(892) has been used as the
reference resonance. However, alternative resonances such as the ρ(1450), which interacts
significantly with many structures across the Dalitz Plot, could also be considered to
evaluate their impact on the results.
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10 Conclusions

This study provides a comprehensive amplitude analysis of theB± → K∓K±π± decay
channel using the complete LHCb Run II dataset, addressing key issues identified in previ-
ous analyses and enhancing our understanding of CP violation mechanisms in charmless
B meson decays. Resonances are expected in the KK and Kπ pairs and linked to specific
quark transitions in the decay process. The penguin diagrams (b → d) suggest contributi-
ons from the K∗ family, such as K∗(892), K∗

0(1430), while tree-level transitions (b → u)
indicate resonances in the K+K− system, such as f2(1270), f0(1370), and f0(980).

The analysis highlighted several challenges, such as the need for improved para-
metrization of the Rescattering region and the clarification of unexpected resonances,
for instance, ϕ(1020), ρ(1450), and f2(1270). Certain resonances, such as ϕ(1020), are
strongly suppressed due to the OZI rule. Others, like f2(1270) and ρ(1450), have smaller
contributions than expected due to low branching fractions to KK. The rescattering
region, which previously lacked a robust description, has been updated. Our revisited
model has also clarified the roles of the ρ(1450) and f2(1270) resonances. Contrary to
initial expectations, ρ(1450) contributes distinctly in the B± → K∓K±π± channel, while
f2(1270) serves as the principal tensor contribution. Adding the ρ0(1700) resonance to the
model has also proven advantageous, especially by improving the fit fraction balance and
reducing the ρ0(1450) contribution. This change is indicative of constructive interference
between the ρ0(1450) and ρ0(1700) resonances.

Furthermore, the complex modeling of the S-wave component remains an intricate
aspect of the analysis. The S-wave model, which comprises approximately 60% of the
decay amplitude, now offers an improved fit along the densely populated Dalitz plot
edges, where prior analyses faced substantial modeling challenges. The introduction of the
δP ol parametrization as an alternative to the PolarFFNR has provided a more accurate
model of the Kπ low mass region, introducing a unitary formulation with phase motion.
This approach has demonstrated stable and consistent results, thereby establishing δP ol

as a reliable alternative. This development is particularly valuable given the challenges
associated with measuring the phase of the Kπ S-wave.

A novel approach to modeling the background, developed by the CBPF group,
was introduced and demonstrated to be highly promising. This method consolidates all
background contributions of the channel into a single framework, which could potentially
reduce the impact of systematic uncertainties.

Different studies of Dalitz plot fits are presented in the appendix, including methods
based on cropped Dalitz plots and Likelihood Ratio. The latter is highlighted as a reliable
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method for statistical evaluation, serving as a foundation for future analyses.

The results obtained were evaluated both through physical principles and in light
of the statistical tools discussed. We present two reliable models that differ only in
their treatment of non-resonant contributions, specifically by including either the δP ol2

or the PolarFFNR component. The baseline model incorporates K∗(892), K∗
0(1430),

and PolarFFNR as components of the KK system, alongside ρ(1700), ρ(1450), f2(1270),
Rescattering, ϕ(1020), and χc0 resonances for the Kπ system. The second model essentially
introduces the phase motion allowed by δP ol, which offers a more dynamic representation
of the Kπ low-mass region. There are also indications of the presence of the J/ψ(1S) and
f ′

2(1525). However, possibly due to the limited number of events, it was not possible to
draw definitive conclusions about these resonances.

In both models, the significant CP violation is confined primarily to the rescattering
component, suggesting a unique dynamic effect in this region that warrants further
investigation. Notably, this measurement represents one of the largest CP violations
observed in a single component. On the other hand, no CP violation was identified in the
charmonium resonances. The updated models provide crucial insights into the resonant
structures and CP asymmetries in charmless B decays, setting a robust benchmark for
future investigations and offering potential pathways to identify new physics beyond the
Standard Model.

The results leave the matter open for future analyses, such as a simultaneous
amplitude analysis of the strongly coupled channels B → K+K−π± and B → π+π−π±.
This study could provide a more precise understanding of unresolved questions regarding
the origin of resonant processes in the three-body decays of massive mesons. Through this
analysis, it will be possible to differentiate between contributions to the amplitudes arising
from the direct coupling of the weak process and those resulting from hadron-hadron
rescattering occurring after the decay process.

This work also contributes to the LHCb Upgrade I, specifically in the commissioning
of the new SciFi Tracker. Contributions were made to the Read-out Box (RoB) test system,
including active participation in drafting a technical note.

The findings presented in this thesis are also included in the complete analysis note,
which is currently undergoing internal scrutiny within the LHCb collaboration as part of
the publication process. During this review phase, systematic studies will be conducted to
determine the uncertainties associated with the fit results.
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A Appendix: Components

In Figures 97, 98, 99 and 100 we present simulations showing the Dalitz plot
distributions for possible components involved in the decay B± → K∓K±π± . Each
resonance displays a distinct lineshape, as previously described. Figures 97 and 98 show all
resonances modeled with the Breit-Wigner lineshape, which is commonly used to represent
resonance behavior in particle decays.

In contrast, Figure 99 explores alternative parametrizations: the flat non-resonant
lineshape, the Flatté lineshape, the non-resonant polar form factor, and the rescattering
lineshape, shown sequentially from top to bottom.

All resonances in these simulations were generated using only signal events. In each
figure, the first column displays the Dalitz plot distribution, providing a two-dimensional
view of the invariant mass combinations. The second column shows the distribution
projected onto m2

π±K∓ , while the third column presents the projection onto m2
K+K− . These

projections allow us to observe the component structures and mass dependencies in specific
two-body subsystems, offering additional insights into the decay dynamics.
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Figura 97 – Possible components contributions in the B± → K∓K±π± phase space. Com-
ponents are parameterized using the Breit-Wigner lineshape. The first line
shows χc0(1P ), the second line shows ρ(1700), the third line shows K∗(892),
the fourth line shows κ, and the fifth line shows K∗

0(1430).
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Figura 98 – Possible components contributions in the B± → K∓K±π± phase space.
Components are parameterized using the Breit-Wigner lineshape. The first
line shows f2(1270), the second line shows f ′

2(1525), the third line shows
ϕ(1020), and the fourth line shows ρ(1450).



Appendix A. Appendix: Components 158

Figura 99 – Possible components contributions in the B± → K∓K±π± phase space.
Components are parameterized using different lineshapes. The first line shows
a Non-Resonant using LASS, the second line shows the PolarFFNR, the third
line shows f0(980) using Flattè, and the fourth line shows the Rescattering.
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Figura 100 – Possible components contributions in the B± → K∓K±π± phase space.
Components are parameterized using different lineshapes. The first line
shows ρ(770) using Gounaris-Sakurai, the second line shows the BelleNR,
the third line shows J/ψ, and the fourth line shows the δP ol2.
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B Appendix: Fits per bin

In this appendix, we present the fits per bin of the Dalitz Plot that form the
background model used for the amplitude analysis, where only a single Gaussian was
employed. It can be observed that some plots exhibit different distributions, and in many
cases, a mass peak does not even appear. This occurs because these bins contain almost
no signal events.
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S/Sqrt(S+B): 16.65

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00065 MeV±bkg_slope = -0.011639 

 27±nbkg =  618 

 19±nsig =  223 

Integration
from: 5247.00

to: 5315.00
S: 218.13
B: 99.93
S/B: 2.18

S/Sqrt(S+B): 12.23
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00067 MeV±bkg_slope = -0.010398 

 25±nbkg =  509 

 21±nsig =  334 

Integration
from: 5247.00

to: 5315.00
S: 325.84
B: 88.35
S/B: 3.68

S/Sqrt(S+B): 16.01

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00063 MeV±bkg_slope = -0.010845 

 27±nbkg =  589 

 20±nsig =  251 

Integration
from: 5247.00

to: 5315.00
S: 245.02
B: 99.76
S/B: 2.45

S/Sqrt(S+B): 13.19

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00056 MeV±bkg_slope = -0.004374 

 24±nbkg =  449 

 23±nsig =  394 

Integration
from: 5247.00

to: 5315.00
S: 384.95
B: 97.37
S/B: 3.95

S/Sqrt(S+B): 17.52

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00057 MeV±bkg_slope = -0.008332 

 27±nbkg =  581 

 20±nsig =  261 

Integration
from: 5247.00

to: 5315.00
S: 255.10
B: 111.55
S/B: 2.28

S/Sqrt(S+B): 13.32

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00051 MeV±bkg_slope = -0.006306 

 28±nbkg =  605 

 20±nsig =  237 

Integration
from: 5247.00

to: 5315.00
S: 231.36
B: 125.12
S/B: 1.84

S/Sqrt(S+B): 12.25

A RooPlot of "B_m"

5150 5200 5250 5300 5350 5400 5450
)2cB_m (MeV/

0

5

10

15

20

25

30

35

40

45 )
2

c
E

ve
nt

s 
/ (

 3
.1

 M
eV

/

A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00065 MeV±bkg_slope = -0.012788 

 28±nbkg =  678 

 17±nsig =  165 

Integration
from: 5247.00

to: 5315.00
S: 160.58
B: 102.11
S/B: 1.57

S/Sqrt(S+B): 9.90

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00059 MeV±bkg_slope = -0.013106 

 31±nbkg =  833 

 11±nsig =  10 

Integration
from: 5247.00

to: 5315.00
S: 9.55

B: 123.01
S/B: 0.07

S/Sqrt(S+B): 0.82

A RooPlot of "B_m"

5150 5200 5250 5300 5350 5400 5450
)2cB_m (MeV/

0

5

10

15

20

25

30

35

 )
2

c
E

ve
nt

s 
/ (

 3
.1

 M
eV

/

A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00046 MeV±bkg_slope = -0.007212 

 31±nbkg =  788 

 14±nsig =  53 

Integration
from: 5247.00

to: 5315.00
S: 51.42

B: 158.15
S/B: 0.32

S/Sqrt(S+B): 3.55

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00057 MeV±bkg_slope = -0.012381 

 31±nbkg =  818 

 12±nsig =  24 

Integration
from: 5247.00

to: 5315.00
S: 23.62

B: 126.43
S/B: 0.18

S/Sqrt(S+B): 1.92

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00043 MeV±bkg_slope = -0.003976 

 30±nbkg =  723 

 17±nsig =  118 

Integration
from: 5247.00

to: 5315.00
S: 114.82
B: 158.05
S/B: 0.72

S/Sqrt(S+B): 6.95

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00055 MeV±bkg_slope = -0.006165 

 26±nbkg =  513 

 22±nsig =  331 

Integration
from: 5247.00

to: 5315.00
S: 323.16
B: 106.57
S/B: 3.03

S/Sqrt(S+B): 15.58

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00051 MeV±bkg_slope = -0.009675 

 30±nbkg =  782 

 14±nsig =  58 

Integration
from: 5247.00

to: 5315.00
S: 56.80

B: 140.85
S/B: 0.40

S/Sqrt(S+B): 4.04

A RooPlot of "B_m"

5150 5200 5250 5300 5350 5400 5450
)2cB_m (MeV/

0

5

10

15

20

25

30

35

40

 )
2

c
E

ve
nt

s 
/ (

 3
.1

 M
eV

/

A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00046 MeV±bkg_slope = -0.009222 

 29±nbkg =  842 

 85±nsig =  0 

Integration
from: 5247.00

to: 5315.00
S: 0.00

B: 155.15
S/B: 0.00

S/Sqrt(S+B): 0.00

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00048 MeV±bkg_slope = -0.010071 

 29±nbkg =  842 

 3.3±nsig =  0.0 

Integration
from: 5247.00

to: 5315.00
S: 0.00

B: 148.67
S/B: 0.00

S/Sqrt(S+B): 0.00

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00044 MeV±bkg_slope = -0.006553 

 31±nbkg =  798 

 15±nsig =  46 

Integration
from: 5247.00

to: 5315.00
S: 44.64

B: 163.85
S/B: 0.27

S/Sqrt(S+B): 3.09

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00044 MeV±bkg_slope = -0.007939 

 29±nbkg =  841 

 3.5±nsig =  0.0 

Integration
from: 5247.00

to: 5315.00
S: 0.00

B: 164.01
S/B: 0.00

S/Sqrt(S+B): 0.00

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00064 MeV±bkg_slope = -0.017086 

 29±nbkg =  841 

 1.2±nsig =  0.0 

Integration
from: 5247.00

to: 5315.00
S: 0.00
B: 93.31
S/B: 0.00

S/Sqrt(S+B): 0.00

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00052 MeV±bkg_slope = -0.012462 

 29±nbkg =  842 

 0.99±nsig =  0.00 

Integration
from: 5247.00

to: 5315.00
S: 0.00

B: 129.54
S/B: 0.00

S/Sqrt(S+B): 0.00

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00054 MeV±bkg_slope = -0.008528 

 28±nbkg =  645 

 18±nsig =  196 

Integration
from: 5247.00

to: 5315.00
S: 191.25
B: 122.69
S/B: 1.55

S/Sqrt(S+B): 10.79

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00071 MeV±bkg_slope = -0.012668 

 26±nbkg =  563 

 20±nsig =  279 

Integration
from: 5247.00

to: 5315.00
S: 272.16
B: 85.53
S/B: 3.18

S/Sqrt(S+B): 14.39

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00050 MeV±bkg_slope = -0.007837 

 29±nbkg =  697 

 17±nsig =  146 

Integration
from: 5247.00

to: 5315.00
S: 142.56
B: 136.48
S/B: 1.04

S/Sqrt(S+B): 8.53

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00055 MeV±bkg_slope = -0.007524 

 27±nbkg =  569 

 20±nsig =  271 

Integration
from: 5247.00

to: 5315.00
S: 264.95
B: 112.89
S/B: 2.34

S/Sqrt(S+B): 13.63

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00061 MeV±bkg_slope = -0.008337 

 25±nbkg =  507 

 22±nsig =  337 

Integration
from: 5247.00

to: 5315.00
S: 328.94
B: 97.23
S/B: 3.38

S/Sqrt(S+B): 15.93

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00061 MeV±bkg_slope = -0.009357 

 26±nbkg =  556 

 20±nsig =  285 

Integration
from: 5247.00

to: 5315.00
S: 277.89
B: 101.81
S/B: 2.72

S/Sqrt(S+B): 14.26

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00060 MeV±bkg_slope = -0.008767 

 26±nbkg =  543 

 21±nsig =  298 

Integration
from: 5247.00

to: 5315.00
S: 290.79
B: 102.18
S/B: 2.84

S/Sqrt(S+B): 14.66

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00062 MeV±bkg_slope = -0.008365 

 25±nbkg =  487 

 22±nsig =  355 

Integration
from: 5247.00

to: 5315.00
S: 346.15
B: 93.34
S/B: 3.70

S/Sqrt(S+B): 16.51

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00041 MeV±bkg_slope = -0.004487 

 31±nbkg =  816 

 14±nsig =  27 

Integration
from: 5247.00

to: 5315.00
S: 25.97
B: 176.81
S/B: 0.14

S/Sqrt(S+B): 1.82

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00045 MeV±bkg_slope = -0.005550 

 30±nbkg =  733 

 17±nsig =  109 

Integration
from: 5247.00

to: 5315.00
S: 106.40
B: 154.97
S/B: 0.68

S/Sqrt(S+B): 6.58

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00043 MeV±bkg_slope = -0.006842 

 29±nbkg =  843 

 2.7±nsig =  0.0 

Integration
from: 5247.00

to: 5315.00
S: 0.00

B: 171.39
S/B: 0.00

S/Sqrt(S+B): 0.00

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00040 MeV±bkg_slope = -0.004594 

 29±nbkg =  841 

 3.0±nsig =  0.0 

Integration
from: 5247.00

to: 5315.00
S: 0.00

B: 181.77
S/B: 0.00

S/Sqrt(S+B): 0.00

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00051 MeV±bkg_slope = -0.006358 

 28±nbkg =  617 

 20±nsig =  225 

Integration
from: 5247.00

to: 5315.00
S: 220.04
B: 127.50
S/B: 1.72

S/Sqrt(S+B): 11.80

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00057 MeV±bkg_slope = -0.006781 

 26±nbkg =  514 

 22±nsig =  327 

Integration
from: 5247.00

to: 5315.00
S: 319.37
B: 104.66
S/B: 3.05

S/Sqrt(S+B): 15.50

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00043 MeV±bkg_slope = -0.002578 

 30±nbkg =  716 

 18±nsig =  126 

Integration
from: 5247.00

to: 5315.00
S: 123.15
B: 158.73
S/B: 0.77

S/Sqrt(S+B): 7.33

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00045 MeV±bkg_slope = -0.004499 

 30±nbkg =  702 

 18±nsig =  138 

Integration
from: 5247.00

to: 5315.00
S: 135.03
B: 151.93
S/B: 0.88

S/Sqrt(S+B): 7.97

A RooPlot of "B_m"

Figura 101 – Fits for B+ for all 64 bins of the background model.
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00063 MeV±bkg_slope = -0.005206 

 22±nbkg =  366 

 22±nsig =  393 

Integration
from: 5247.00

to: 5315.00
S: 385.55
B: 78.08
S/B: 4.93

S/Sqrt(S+B): 17.90

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00060 MeV±bkg_slope = -0.005821 

 23±nbkg =  419 

 21±nsig =  338 

Integration
from: 5247.00

to: 5315.00
S: 331.79
B: 87.92
S/B: 3.77

S/Sqrt(S+B): 16.19

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00062 MeV±bkg_slope = -0.006541 

 23±nbkg =  412 

 22±nsig =  346 

Integration
from: 5247.00

to: 5315.00
S: 339.58
B: 84.60
S/B: 4.01

S/Sqrt(S+B): 16.48

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00076 MeV±bkg_slope = -0.008442 

 21±nbkg =  331 

 23±nsig =  426 

Integration
from: 5247.00

to: 5315.00
S: 418.04
B: 63.19
S/B: 6.61

S/Sqrt(S+B): 19.05

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00056 MeV±bkg_slope = -0.006759 

 25±nbkg =  524 

 19±nsig =  233 

Integration
from: 5247.00

to: 5315.00
S: 228.99
B: 106.74
S/B: 2.14

S/Sqrt(S+B): 12.49

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00051 MeV±bkg_slope = -0.010580 

 27±nbkg =  758 

 2.9±nsig =  0.0 

Integration
from: 5247.00

to: 5315.00
S: 0.00

B: 130.23
S/B: 0.00

S/Sqrt(S+B): 0.00

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00064 MeV±bkg_slope = -0.011577 

 27±nbkg =  607 

 16±nsig =  152 

Integration
from: 5247.00

to: 5315.00
S: 149.66
B: 98.48
S/B: 1.51

S/Sqrt(S+B): 9.50

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00056 MeV±bkg_slope = -0.012736 

 27±nbkg =  756 

 1.2±nsig =  0.0 

Integration
from: 5247.00

to: 5315.00
S: 0.00

B: 114.32
S/B: 0.00

S/Sqrt(S+B): 0.00

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00056 MeV±bkg_slope = -0.005545 

 24±nbkg =  474 

 20±nsig =  284 

Integration
from: 5247.00

to: 5315.00
S: 278.92
B: 100.18
S/B: 2.78

S/Sqrt(S+B): 14.32

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00076 MeV±bkg_slope = -0.007670 

 20±nbkg =  307 

 23±nsig =  451 

Integration
from: 5247.00

to: 5315.00
S: 442.73
B: 60.50
S/B: 7.31

S/Sqrt(S+B): 19.73

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00051 MeV±bkg_slope = -0.004354 

 26±nbkg =  533 

 19±nsig =  226 

Integration
from: 5247.00

to: 5315.00
S: 221.36
B: 115.77
S/B: 1.91

S/Sqrt(S+B): 12.05

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00066 MeV±bkg_slope = -0.008759 

 24±nbkg =  448 

 21±nsig =  308 

Integration
from: 5247.00

to: 5315.00
S: 302.09
B: 84.37
S/B: 3.58

S/Sqrt(S+B): 15.36

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00063 MeV±bkg_slope = -0.012268 

 28±nbkg =  665 

 14±nsig =  94 

Integration
from: 5247.00

to: 5315.00
S: 91.91

B: 103.60
S/B: 0.88

S/Sqrt(S+B): 6.57

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00053 MeV±bkg_slope = -0.011432 

 27±nbkg =  756 

 3.4±nsig =  0.0 

Integration
from: 5247.00

to: 5315.00
S: 0.00

B: 123.80
S/B: 0.00

S/Sqrt(S+B): 0.00

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00061 MeV±bkg_slope = -0.012978 

 29±nbkg =  745 

 11±nsig =  12 

Integration
from: 5247.00

to: 5315.00
S: 11.30

B: 110.95
S/B: 0.10

S/Sqrt(S+B): 1.02

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00054 MeV±bkg_slope = -0.010332 

 29±nbkg =  740 

 12±nsig =  17 

Integration
from: 5247.00

to: 5315.00
S: 16.91

B: 128.84
S/B: 0.13

S/Sqrt(S+B): 1.40

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00053 MeV±bkg_slope = -0.011507 

 28±nbkg =  758 

 1.00±nsig =  0.00 

Integration
from: 5247.00

to: 5315.00
S: 0.00

B: 123.58
S/B: 0.00

S/Sqrt(S+B): 0.00

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00046 MeV±bkg_slope = -0.007189 

 28±nbkg =  758 

 2.0±nsig =  0.0 

Integration
from: 5247.00

to: 5315.00
S: 0.00

B: 152.20
S/B: 0.00

S/Sqrt(S+B): 0.00

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00045 MeV±bkg_slope = -0.005569 

 30±nbkg =  746 

 13±nsig =  11 

Integration
from: 5247.00

to: 5315.00
S: 10.43

B: 157.72
S/B: 0.06

S/Sqrt(S+B): 0.80

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00045 MeV±bkg_slope = -0.005610 

 29±nbkg =  716 

 14±nsig =  42 

Integration
from: 5247.00

to: 5315.00
S: 41.22

B: 151.14
S/B: 0.27

S/Sqrt(S+B): 2.97

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00054 MeV±bkg_slope = -0.006016 

 26±nbkg =  526 

 19±nsig =  233 

Integration
from: 5247.00

to: 5315.00
S: 228.98
B: 109.67
S/B: 2.08

S/Sqrt(S+B): 12.44

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00058 MeV±bkg_slope = -0.007485 

 25±nbkg =  505 

 20±nsig =  252 

Integration
from: 5247.00

to: 5315.00
S: 246.99
B: 100.34
S/B: 2.46

S/Sqrt(S+B): 13.25

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00066 MeV±bkg_slope = -0.008686 

 24±nbkg =  444 

 21±nsig =  313 

Integration
from: 5247.00

to: 5315.00
S: 307.45
B: 83.80
S/B: 3.66

S/Sqrt(S+B): 15.54

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00082 MeV±bkg_slope = -0.011665 

 22±nbkg =  396 

 21±nsig =  361 

Integration
from: 5247.00

to: 5315.00
S: 354.04
B: 63.99
S/B: 5.53

S/Sqrt(S+B): 17.31

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00047 MeV±bkg_slope = -0.005555 

 29±nbkg =  671 

 15±nsig =  87 

Integration
from: 5247.00

to: 5315.00
S: 85.69

B: 141.78
S/B: 0.60

S/Sqrt(S+B): 5.68

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00062 MeV±bkg_slope = -0.009823 

 26±nbkg =  552 

 18±nsig =  205 

Integration
from: 5247.00

to: 5315.00
S: 201.29
B: 98.69
S/B: 2.03

S/Sqrt(S+B): 11.62

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00051 MeV±bkg_slope = -0.006657 

 28±nbkg =  626 

 16±nsig =  132 

Integration
from: 5247.00

to: 5315.00
S: 129.48
B: 128.06
S/B: 1.01

S/Sqrt(S+B): 8.06

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00060 MeV±bkg_slope = -0.010330 

 27±nbkg =  606 

 16±nsig =  151 

Integration
from: 5247.00

to: 5315.00
S: 147.81
B: 105.61
S/B: 1.39

S/Sqrt(S+B): 9.28

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00066 MeV±bkg_slope = -0.008700 

 23±nbkg =  441 

 21±nsig =  316 

Integration
from: 5247.00

to: 5315.00
S: 310.42
B: 83.17
S/B: 3.73

S/Sqrt(S+B): 15.64

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00071 MeV±bkg_slope = -0.011086 

 24±nbkg =  479 

 19±nsig =  279 

Integration
from: 5247.00

to: 5315.00
S: 273.55
B: 80.06
S/B: 3.41

S/Sqrt(S+B): 14.54

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00073 MeV±bkg_slope = -0.010950 

 24±nbkg =  452 

 20±nsig =  307 

Integration
from: 5247.00

to: 5315.00
S: 300.99
B: 76.16
S/B: 3.95

S/Sqrt(S+B): 15.49

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00064 MeV±bkg_slope = -0.009789 

 25±nbkg =  516 

 19±nsig =  240 

Integration
from: 5247.00

to: 5315.00
S: 235.39
B: 92.46
S/B: 2.54

S/Sqrt(S+B): 13.00

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00050 MeV±bkg_slope = -0.006688 

 28±nbkg =  634 

 16±nsig =  124 

Integration
from: 5247.00

to: 5315.00
S: 121.86
B: 129.52
S/B: 0.94

S/Sqrt(S+B): 7.68

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00059 MeV±bkg_slope = -0.010329 

 27±nbkg =  633 

 16±nsig =  125 

Integration
from: 5247.00

to: 5315.00
S: 122.99
B: 110.19
S/B: 1.11

S/Sqrt(S+B): 8.05

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00065 MeV±bkg_slope = -0.007067 

 23±nbkg =  398 

 22±nsig =  361 

Integration
from: 5247.00

to: 5315.00
S: 354.38
B: 80.25
S/B: 4.41

S/Sqrt(S+B): 16.99

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00063 MeV±bkg_slope = -0.010794 

 27±nbkg =  585 

 17±nsig =  171 

Integration
from: 5247.00

to: 5315.00
S: 168.08
B: 99.29
S/B: 1.69

S/Sqrt(S+B): 10.27

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00061 MeV±bkg_slope = -0.012860 

 29±nbkg =  736 

 11±nsig =  24 

Integration
from: 5247.00

to: 5315.00
S: 23.25

B: 110.42
S/B: 0.21

S/Sqrt(S+B): 2.01

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00051 MeV±bkg_slope = -0.007346 

 28±nbkg =  658 

 15±nsig =  99 

Integration
from: 5247.00

to: 5315.00
S: 97.04

B: 131.37
S/B: 0.73

S/Sqrt(S+B): 6.42
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00053 MeV±bkg_slope = -0.009811 

 29±nbkg =  721 

 13±nsig =  36 

Integration
from: 5247.00

to: 5315.00
S: 34.91

B: 129.09
S/B: 0.27

S/Sqrt(S+B): 2.72
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00046 MeV±bkg_slope = -0.003469 

 28±nbkg =  628 

 17±nsig =  129 

Integration
from: 5247.00

to: 5315.00
S: 126.58
B: 138.18
S/B: 0.91

S/Sqrt(S+B): 7.77

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00068 MeV±bkg_slope = -0.006276 

 21±nbkg =  341 

 23±nsig =  417 

Integration
from: 5247.00

to: 5315.00
S: 409.36
B: 70.58
S/B: 5.79

S/Sqrt(S+B): 18.68

A RooPlot of "B_m"
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A RooPlot of "B_m" 2cB_m =  5295 MeV/

 0.00056 MeV±bkg_slope = -0.009759 

 28±nbkg =  665 

 15±nsig =  93 
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Figura 102 – Fits for B− for all 64 bins of the background model.
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C Appendix: Comparative analysis of Rescat-
tering parameter sets

The full results of the Dalitz Plot fits considering the parameter options presented in
[17], including CFDb, CFDc, UFDb, and UFDc, are detailed in Tables 34, 33, 36 and 35 . As
can be seen, the results are similar, with subtle variations in the a± and δ± parameters. The
decision to proceed with the UFDb parameters was based on a comparison of NLL values
and Fit Fractions, which indicated that UFDb provided the most stable and consistent
results for further analysis.

Tabela 33 – Dalitz Plot fit results using CFDc parameters for the Rescattering component.
[NLL -142584] Fit fraction (%) Magnitude and phase coefficients ACP (%)
Component B− B+ a+

i δ+
i [◦] a−

i δ−
i [◦]

K∗0(892) 6.35 ± 0.34 5.08 ± 0.29 1.014 ± 0.020 0 ± 0 0.986 ± 0.020 0 ± 0 −2.8 ± 3.9
K∗

0(1430) 5.88 ± 0.50 5.74 ± 0.41 1.078 ± 0.044 16 ± 3 0.949 ± 0.043 −24 ± 4 −12.7 ± 5.3
PolarFFNR 38.45 ± 1.11 34.56 ± 0.78 2.645 ± 0.065 30 ± 3 2.426 ± 0.063 3 ± 3 −8.6 ± 1.9
ρ(1450) 39.19 ± 0.87 26.62 ± 0.56 2.322 ± 0.053 −168 ± 5 2.449 ± 0.060 −124 ± 6 5.3 ± 1.8
f2(1270) 8.88 ± 0.54 3.41 ± 0.27 0.830 ± 0.038 97 ± 5 1.166 ± 0.042 129 ± 5 32.7 ± 4.5
Re-scattering 9.37 ± 0.46 25.55 ± 0.53 2.274 ± 0.050 −152 ± 6 1.198 ± 0.040 −123 ± 6 −56.6 ± 1.8
ϕ(1020) 0.96 ± 0.12 0.03 ± 0.03 0.077 ± 0.032 60 ± 24 0.384 ± 0.025 −86 ± 9 92.3 ± 6.4
χc0 1.41 ± 0.15 0.67 ± 0.09 0.368 ± 0.026 116 ± 7 0.464 ± 0.026 66 ± 7 22.8 ± 8.0
Fit Fraction Sum 110.5 101.7

Tabela 34 – Dalitz Plot fit results using CFDb parameters for the Rescattering component.
[NLL -142587] Fit fraction (%) Magnitude and phase coefficients ACP (%)
Component B− B+ a+

i δ+
i [◦] a−

i δ−
i [◦]

K∗0(892) 6.55 ± 0.68 5.14 ± 0.31 1.011 ± 0.032 0 ± 0 0.989 ± 0.032 0 ± 0 −2.3 ± 6.3
K∗

0(1430) 6.33 ± 1.26 5.73 ± 0.40 1.068 ± 0.046 18 ± 4 0.971 ± 0.082 −25 ± 5 −9.5 ± 9.9
PolarFFNR 38.88 ± 2.88 33.85 ± 0.77 2.596 ± 0.074 30 ± 3 2.408 ± 0.072 2 ± 5 −7.5 ± 3.5
ρ(1450) 38.19 ± 3.26 26.55 ± 0.54 2.299 ± 0.062 −180 ± 49 2.386 ± 0.159 −133 ± 35 3.7 ± 6.0
f2(1270) 9.19 ± 0.68 3.44 ± 0.27 0.828 ± 0.039 86 ± 6 1.171 ± 0.041 121 ± 29 33.4 ± 4.4
Re-scattering 8.85 ± 1.44 24.54 ± 0.46 2.210 ± 0.059 −166 ± 7 1.149 ± 0.116 −132 ± 33 −57.5 ± 5.3
ϕ(1020) 0.95 ± 0.13 0.02 ± 0.02 0.070 ± 0.027 48 ± 25 0.377 ± 0.030 −95 ± 35 93.4 ± 5.7
χc0 1.42 ± 0.15 0.65 ± 0.09 0.360 ± 0.026 116 ± 7 0.461 ± 0.025 66 ± 7 24.2 ± 8.1
Fit Fraction Sum 110.4 99.9

Tabela 35 – Dalitz Plot fit results using UFDc parameters for the Rescattering component.
[NLL -142620] Fit fraction (%) Magnitude and phase coefficients ACP (%)
Component B− B+ a+

i δ+
i [◦] a−

i δ−
i [◦]

K∗0(892) 6.43 ± 0.35 5.08 ± 0.29 1.011 ± 0.020 0 ± 0 0.989 ± 0.020 0 ± 0 −2.3 ± 4.0
K∗

0(1430) 6.00 ± 0.51 5.81 ± 0.41 1.082 ± 0.044 16 ± 3 0.955 ± 0.044 −25 ± 4 −12.4 ± 5.4
PolarFFNR 38.71 ± 1.14 34.52 ± 0.78 2.637 ± 0.065 29 ± 3 2.425 ± 0.062 3 ± 3 −8.4 ± 2.0
ρ(1450) 38.78 ± 0.92 26.79 ± 0.55 2.323 ± 0.053 −169 ± 5 2.427 ± 0.061 −128 ± 6 4.4 ± 1.8
f2(1270) 9.21 ± 0.54 3.59 ± 0.28 0.850 ± 0.038 92 ± 5 1.183 ± 0.042 125 ± 6 31.9 ± 4.4
Re-scattering 9.09 ± 0.46 25.12 ± 0.48 2.250 ± 0.049 −158 ± 6 1.175 ± 0.040 −125 ± 7 −57.1 ± 1.9
ϕ(1020) 0.96 ± 0.12 0.02 ± 0.02 0.058 ± 0.031 50 ± 32 0.382 ± 0.025 −90 ± 10 95.5 ± 4.9
χc0 1.41 ± 0.15 0.67 ± 0.09 0.367 ± 0.025 116 ± 7 0.463 ± 0.026 66 ± 7 23.0 ± 8.0
Fit Fraction Sum 110.6 101.6
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Tabela 36 – Dalitz Plot fit results using UFDb parameters for the Rescattering component.
[NLL -142728] Fit fraction (%) Magnitude and phase coefficients ACP (%)
Component B− B+ a+

i δ+
i [◦] a−

i δ−
i [◦]

K∗0(892) 7.07 ± 0.34 5.14 ± 0.29 0.990 ± 0.019 0 ± 0 1.010 ± 0.019 0 ± 0 2.1 ± 3.8
K∗

0(1430) 9.29 ± 0.67 5.80 ± 0.40 1.051 ± 0.042 18 ± 3 1.158 ± 0.047 −13 ± 4 9.7 ± 4.9
PolarFFNR 39.76 ± 0.99 33.74 ± 0.77 2.535 ± 0.061 29 ± 3 2.396 ± 0.059 −10 ± 3 −5.6 ± 1.8
ρ(1450) 33.45 ± 0.68 26.76 ± 0.54 2.257 ± 0.049 178 ± −101 2.197 ± 0.049 141 ± 5 −2.7 ± 1.7
f2(1270) 8.54 ± 0.46 3.80 ± 0.29 0.850 ± 0.036 78 ± 5 1.110 ± 0.036 49 ± 5 26.1 ± 4.3
Re-scattering 6.73 ± 0.30 24.09 ± 0.43 2.142 ± 0.045 −173 ± 5 0.985 ± 0.029 141 ± 6 −65.1 ± 1.4
ϕ(1020) 0.93 ± 0.12 0.01 ± 0.02 0.045 ± 0.029 38 ± 39 0.365 ± 0.024 171 ± 9 97.0 ± 4.2
χc0 1.31 ± 0.14 0.65 ± 0.09 0.351 ± 0.025 115 ± 7 0.435 ± 0.024 52 ± 7 21.2 ± 8.1
Fit Fraction Sum 107.1 100.0
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D Appendix: PolarFFNR Λ fitting

The issue of the unphysical result mentioned previously is closely related to the Kπ
S-wave in the decay. Since it exhibits little distinction between the angular distributions,
it becomes difficult to differentiate and identify the possible scalar resonances that might
contribute to the decay. Moreover, being generally broad, these resonances interfere with
each other. As a consequence of the difficulty in dealing with the S-wave of the Kπ
system, the results of the fits using the Run I model on the Run II data showed large
fluctuations in the fit fractions. This problem, known as multiple solutions, arises from the
lack of stability in the fit when randomizing the initial parameters xi, yi, ∆xi, and ∆yi.
When these parameters were randomized, many different local minima existed, producing
non-physical results.

To address this problem, we fitted the Λ parameter of the PolarFFNR component,
which has the largest contribution to the decay. Simultaneously, we randomized the
initial parameters xi, yi, ∆xi, and ∆yi. By doing so, we were able to find a set of initial
parameters along with the value of Λ that provided stability to the fit. Figure 103 shows
the large number of different results (NLL) for different fitted values of Λ. It can be seen
that there are some Λ values (between 1.05 and 1.25) that produce lower NLL values,
indicating a better-fit result. On the other hand, Figure 104 shows that the highest
frequency of Λ values is around 1.22. From this study, we concluded that the best value
for Λ is 1.22, and the result where Λ = 1.22 appeared almost 40% of the time. By fixing
the fit at this value, it becomes stable as it represents the best and most frequent NLL.

Table 23 presents the results of using the most frequent values of Λ, xi, yi, ∆xi, and
∆yi. Depending on these parameters, it can lead to a local minimum with non-physical
results. These parameters were used throughout the entire analysis.
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Figura 103 – Scatter plot showing the relationship between NLL and Λ from PolarFFNR
from a total of 100 fits. Each point represents a different local minimum for
each fitted value of Λ.

Figura 104 – Histogram showing the distribution of Λ from PolarFFNR values from a
total of 100 fits. This histogram highlights that the preferred value for Λ is
around 1.22
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E Appendix: Cropped Dalitz Plot Fit studies

In this appendix, results from studies on Dalitz Plot fits for specific regions of the
phase space, referred to as “cropped Dalitz Plots” , are presented. The purpose of this
study is to investigate whether it is feasible to perform Dalitz Plot fits on selected regions
of the phase space and still obtain results consistent with those derived from the complete
Dalitz Plot.

The underlying idea is that by isolating regions of the phase space densely populated
with resonances from those with fewer contributions, we could focus on the less crowded
regions (or those with resonances contributing minimally to the total), thereby enabling a
more accurate measurement in those areas. This approach aims to enhance precision in
regions of the Dalitz Plot where the complexity is lower, offering a clearer insight into the
dynamics of the decay process.

Furthermore, the study explores the possibility of partitioning the phase space
into two distinct sections: one corresponding to the Kπ system and the other to the
KK system. This division is potentially viable since the resonances associated with both
systems tend to occupy the boundaries of the Dalitz Plot. The results and implications of
this approach are examined in detail within this appendix.

E.1 First approach: generated toys and individual contributions
What we aim to verify is whether it will be possible to recover the original result

(used as input for generating the toys) in the fits of the Dalitz plot restricted regions (ACP

and Fit Fraction). To achieve this, the study will involve generating 100 toys, each with
100,000 events. Initially, these toys are based on a simplified model counting only with
some resonances. Figure 105 illustrates the resonances included in this study and the
regions of the phase space they occupy, proportionally to their respective fit fractions
(these resonances were generated individually without background). It is also noteworthy
that not all resonances are distributed across the entire Dalitz Plot, as expected. Figure
106 illustrates the regions of greatest interest, where the Dalitz Plot will be cropped.
It is important to highlight that the regions, named according to the cropping, will be
referenced throughout the remainder of this work. Table 37 presents the model being used
as the basis for this study. Note that the contributions of this model do not necessarily
correspond to real data, as some resonances had their contributions artificially enhanced
to facilitate the study (e.g., χc and J/ψ).

First, a consistency test was performed to verify whether the input parameters
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Figura 105 – Resonances generated without background contributions, proportional to
their respective fit fractions.
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Tabela 37 – Model given as input for the generation of 100 toys.

Fit fraction (%) ACP (%)
Component B− B+

K∗(892) 4.4 5.2 -2.9
K∗

0(1430) 4.0 3.3 14.5
PolarFFNR 23.5 32.9 -11.1
ρ(1450) 18.8 14.9 17.0
f2(1270) 3.9 2.8 21.3
Re-scattering 5.6 26.6 -61.6
χc0 18.1 11.4 28.0
J/ψ 27.1 6.2 65.9

Figura 106 – Cropped regions of the Dalitz Plot.

used for the toy generation could be recovered in the fits. To this end, a simple test
was conducted by fitting the 100 generated toys. Figures 107, 108, and 109 present the
results for the ACP and Fit Fraction , where the red bin represents the true value (input
parameter), and the blue bins represent the fit results. As can be observed, there is a clear
Gaussian behavior centered around the red bin, which is a positive indication that the
input parameters are being successfully recovered by the fit. It is worth noting that, in
this initial test, no cropped regions were applied to the Dalitz plot, and the entire phase
space was fitted. The amplitudes considered in this study are:

• A0 = K∗0(892) A1 = K∗
0(1430) A2 = PolarFFNR A3 = ρ(1450)

• A4 = f2(1270) A5 = Re-scattering A6 = χc0 A7 = J/ψ
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Figura 107 – Fitted ACP distribution from the 100 generated toys, with the reference
value shown in red.

Figura 108 – Fitted positive fit fraction distribution from the 100 generated toys, with the
reference value shown in red.
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Figura 109 – Fitted negative fit fraction distribution from the 100 generated toys, with
the reference value shown in red.

E.2 “Square” cropped region
The first version of the cropped Dalitz plot is referred to as the “square” where

the cuts are applied at KK < 15 and Kπ < 10. This reduction results in approximately
45,000 events remaining in the phase space. This format was chosen because it allows for
the inclusion of all resonances. Thus, despite being a cropped version, we will test the
hypothesis that it is still possible to recover the results of the full phase space analysis,
even with a reduced dataset.

Figures 110, 111, and 112 present the results of the fits performed on the 100
generated toys. It is noticeable that there is a bias between the reference values and the
distributions, which are no longer centered around the reference value. This discrepancy
arises due to the impact of the difference in the background level. In this first version, we
assumed that the background level in this cropped region was equal to or very close to the
background level of the full phase space, which is 76% of purity.

Figures 113, 114, and 115 present the results after correcting the background level.
As observed, there is no bias in this case. By applying the correct background level for this
region (approximately 80% of purity), it is possible to recover the input values. This result
demonstrates that it is feasible to crop the Dalitz plot and still obtain results consistent
with those from the full Dalitz plot analysis. The final results are summarized in Table
38. Considering this result, the studies in the following sections already account for the
correct background contribution according to the cropped region.
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Figura 110 – Fitted ACP distribution from the 100 generated toys for the square cropped
region of the Dalitz Plot. There is a clear bias between the reference value
shown in red and the distribution of the fits depicted in blue.

Figura 111 – Fitted positive fit fraction distribution from the 100 generated toys for the
square cropped region of the Dalitz Plot. There is a clear bias between the
reference value shown in red and the distribution of the fits depicted in blue.
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Figura 112 – Fitted negative fit fraction distribution from the 100 generated toys for the
square cropped region of the Dalitz Plot. There is a clear bias between the
reference value shown in red and the distribution of the fits depicted in blue.

Tabela 38 – Results of the square cropped Dalitz Plot after the correction of the background
level.

Fit fraction (%) ACP (%)
Component B− B+

K∗0(892) 4.4 5.2 1.0 ± 4.7
K∗

0(1430) 4.0 3.3 17.5 ± 5.0
PolarFFNR 23.5 32.9 −11.5 ± 2.1
ρ(1450) 18.8 14.9 10.0 ± 3.5
f2(1270) 3.9 2.8 15.6 ± 11
Re-scattering 5.6 26.6 −60.0 ± 3.0
χc0 18.1 11.4 28.0 ± 1.1
J/ψ 27.1 6.2 65.0 ± 1.1
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Figura 113 – Fitted ACP distribution from the 100 generated toys for the square cropped
region of the Dalitz Plot. There is no bias between the reference value shown
in red and the distribution of the fits depicted in blue after correcting the
background level.

Figura 114 – Fitted positive fit fraction distribution from the 100 generated toys for the
square cropped region of the Dalitz Plot. There is no bias between the
reference value shown in red and the distribution of the fits depicted in blue
after correcting the background level.
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Figura 115 – Fitted negative fit fraction distribution from the 100 generated toys for the
square cropped region of the Dalitz Plot. There is no bias between the
reference value shown in red and the distribution of the fits depicted in blue
after correcting the background level.

E.3 Upper cropped region
For this region, a cut was applied to the Dalitz Plot at KK < 6. This region

contains approximately 65,000 events with a purity of 79%.It was selected because, above
6 GeV 2/c4, there should be no contribution from the Rescattering process, and little to no
contribution from the ρ(1450) and f2(1270) resonances (see Figure 105). This step aims to
reinforce the hypothesis that it may be possible to entirely exclude a specific contribution
from the fit while still recovering the input information provided.

Figures 116, 117, and 118 present the results for the 100 fitted toys, which in this
case were fitted considering only K∗0(892), K∗0(1430), PolarFFNR, χc, and J/ψ to test
the hypothesis. As expected, the fit fractions were significantly altered compared to the
reference values, since cropping the Dalitz Plot changes the proportion of the resonances.
Additionally, the ACP values were also considerably different from the original ones.

Considering that the observed changes in the results were a consequence of removing
the ρ(1450), f2(1270), and Rescattering contributions, we tested the impact of removing
only the Rescattering amplitude. This choice is justified as the Rescattering amplitude
extends at most up to 4 GeV2/c4. Thus, by excluding the Rescattering component from
the fit model and applying it to a dataset cropped accordingly, it is expected that the
results will not deviate from the original input values. Figures 119, 120, and 121 show the
results of this test, with only the Rescattering contribution removed. As observed, the
distributions exhibit the expected behavior, spreading Gaussian-like around the central
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value. From this step, we conclude that while ρ(1450) and f2(1270) still need to be included
in the fit model due to their small contributions to the upper Dalitz Plot, it is feasible to
exclude the Rescattering amplitude, as it does not contribute to this region. The table 39
presents the results after the removal of only the Rescattering component.

Figura 116 – Fitted ACP distribution from the 100 generated toys for the Upper cropped
region of the Dalitz Plot. The impact of removing three resonances on the
fitted values (in blue) can be observed by comparing them with the reference
values (in red).

Figura 117 – Fitted positive fit fraction distribution from the 100 generated toys for the
Upper cropped region of the Dalitz Plot. The impact of removing three
resonances on the fitted values (in blue) can be observed by comparing them
with the reference values (in red).
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Figura 118 – Fitted negative fit fraction distribution from the 100 generated toys for the
Upper cropped region of the Dalitz Plot. The impact of removing three
resonances on the fitted values (in blue) can be observed by comparing them
with the reference values (in red).

Figura 119 – Fitted ACP distribution from the 100 generated toys for the Upper cropped
region of the Dalitz Plot. After removing only the rescattering, the distribu-
tions (in blue) align consistently with the reference values (in red).
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Figura 120 – Fitted positive fit fraction distribution from the 100 generated toys for the
Upper cropped region of the Dalitz Plot. After removing only the rescattering,
the distributions (in blue) align consistently with the reference values (in
red)..

Figura 121 – Fitted negative fit fraction distribution from the 100 generated toys for the
Upper cropped region of the Dalitz Plot. After removing only the rescattering,
the distributions (in blue) align consistently with the reference values (in
red).
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Tabela 39 – Results of the upper cropped Dalitz Plot after removing only the Rescattering.

Fit fraction (%) ACP (%)
Component B− B+

K∗0(892) 4.6 7.2 −2.9 ± 2.7
K∗

0(1430) 4.3 4.6 15.0 ± 4.4
PolarFFNR 25.2 46.1 −11.3 ± 1.3
ρ(1450) 20.0 21.2 15.2 ± 9.0
f2(1270) 4.4 4.4 18.7 ± 30
χc0 19.3 15.9 28.0 ± 0.9
J/ψ 30.0 8.7 65.9 ± 0.7

E.4 Middle cropped region
The aim of this study, involving cropped Dalitz Plots, is to perform Dalitz Plot

fits in regions where certain resonances contribute significantly more than others, thus
allowing them to be prioritized. For the “Middle” region, the focus is on obtaining a
more accurate ACP measurement for χc and J/ψ, as these resonances are very narrow
and involve fewer events. This cropped region was defined with 13 GeV2/c4 > KK > 9
GeV2/c4 and Kπ > 4 GeV2/c4, containing approximately 20,000 events per toy with a
purity of about 93%. Since only the PolarFFNR component, in addition to χc and J/ψ,
significantly contributes to this region, it was also included in the fit model.

As seen in the previous section, since the Fit Fraction values are always altered
according to the region, these plots will not be presented here as their effect is already well
understood. Figure 122 shows the result of the fits for 100 toys, keeping only PolarFFNR,
χc, and J/ψ in the model, where A0 = PolarFFNR, A1 = χc, and A2 = J/ψ. The ACP

values exhibit some deviations from the reference values, which may be due to the absence
of certain contributions in the Middle region. Consequently, the same study was repeated,
this time including ρ(1450), which contributes significantly to this region.

The figure 123 presents the results for the fits of the 100 toys, this time considering
A0 = PolarFFNR, A1 = ρ(1450), A2 = χc, and A3 = J/ψ. As observed, there is a good
agreement between the fit distributions and the reference values. However, some bias is
still present, particularly in PolarFFNR, likely due to the absence of another resonance
not accounted for in this region.
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Figura 122 – Fitted ACP distribution from the 100 generated toys for the Middle cropped
region of the Dalitz Plot. Keeping only PolarFFNR, χc, and J/ψ, there
appears to be a bias in the ACP values when comparing the reference value
(in red) with the distribution (in blue).

Figura 123 – Fitted ACP distribution from the 100 generated toys for the Middle cropped
region of the Dalitz Plot, after adding the ρ(1450).

E.4.1 Studies with a realistic model for the Middle cropped region

The studies conducted thus far have involved simulations of the real data using a
model that was not entirely realistic with respect to the contributions of the resonances
J/ψ and χc. This approach was initially adopted to simplify the process of verifying, in a
first approximation, whether it would be possible to recover the values provided as input,
although under the assumption that these resonances contributed more significantly than
they do in reality.

In this subsection, we will employ a more realistic model, where the contributions
of these resonances will exhibit behavior closer to that observed in the real data. In
other words, a new set of 100 toys, each containing 100,000 events, was generated with
contributions more realistic. Table 40 presents the input values used for the toy generation.

Note that this model does not exactly replicate the one extracted from the data; it
merely adjusts the contributions of the two resonances that were artificially amplified in
the previous study. It should be emphasized that the ACP values of these two contributions
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remain quite large, while the fit fractions have been significantly altered. Under these new
conditions, the cropped region now contains approximately 3,600 events with a purity of
63%, which is drastically different from the previous study.

Tabela 40 – A more realistic model used as input for the generation of the new set of toys.

Fit fraction (%) ACP (%)
Component B− B+

K∗0(892) 7.6 6.2 -2.7
K∗

0(1430) 7.1 4.1 14.3
PolarFFNR 41.1 39.2 -11.0
ρ(1450) 32.9 17.8 17.1
f2(1270) 7.0 3.4 21.3
Rescattering 9.9 31.7 -61.5
χc0 1.2 0.7 86.3
J/ψ 1.6 1.1 82.3

Figure 124 presents the results of the new set of 100 fitted toys for the Middle
region, with A0 = PolarFFNR, A1 = ρ(1450), A2 = χc, and A3 = J/ψ. In this case,
although all fits converged, 83% of them reached parameter limits, which is a negative
indicator. As shown, there is a clear bias in this scenario, with no agreement between the
reference values and the distributions. This discrepancy arises due to the low number of
events in the region along with the absence of other resonances that might contribute to
this region.

Figura 124 – Fitted ACP distribution from the new 100 generated toys for the Middle
cropped region of the Dalitz Plot.

E.5 Limitations and insights from Cropped Dalitz Plot Analysis
This study involving cropped regions of the Dalitz Plot suggests that it is possible

to correlate fits from cropped regions with the full phase space. Initial results demonstrated
that, depending on the resonances included in the fit model and the specific region of the



Appendix E. Appendix: Cropped Dalitz Plot Fit studies 182

phase space being cropped, consistency in the results can be achieved if the contributing
resonances to that region are well understood.

On the other hand, it was also observed that in regions with a low number of events
and resonances that, although isolated, still interact with larger resonances spreading
throughout the phase space, obtaining accurate results becomes challenging. Therefore,
specifically for B → KKπ, it is not feasible to achieve precise results for χc and J/ψ using
the cropped Dalitz Plot method.
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F Appendix: Impact of Rescattering Model
Variations on NLL

As observed throughout this analysis, the metric used to evaluate the quality of a fit
is the negative log-likelihood (NLL). The NLL value allows us to quantify numerically how
much a fit has improved and to assess whether one model might be superior to another.
However, this metric does not have an associated uncertainty, meaning that when we
observe an improvement in the NLL between models, it remains unclear if, despite the
progress, the models may still be statistically compatible.

As described in section 7.4.5, generally, to evaluate the statistical significance of
adding a component to a model (or a degree of freedom in a broader sense), the Wilks’
Theorem is applied. However, there are some limitations like non-nested models and
bounded parameters. Both situations limit the applicability of Wilks’ theorem in studying
the case of Rescattering, as this amplitude includes bounded parameters, and the use of
either Rescattering(2018) or Rescattering(2023) results in non-nested models, as will be
presented.

Therefore, as an alternative for evaluating the NLL in this case, simulations can be
used. The motivation for this appendix study lies in the attempt to provide users of this
metric with insights into how meaningful an improvement in NLL may be. Through this
investigation, we aim to clarify the interpretive value of changes in NLL, enhancing the
understanding of model comparison based on this metric.

To achieve this, we employ two different rescattering models: one referred to as
Rescattering(2018), based on the work of [17], and the other referred to as Rescatte-
ring(2023), derived from [78]. The primary distinction between these two models lies in
their suitability for the specific decay environment. Rescattering(2018) is more appropriate
for use within the isobar model framework, as it describes two-body scattering. In contrast,
Rescattering(2023) is formulated for direct three-body scattering, making it incompatible
with the isobar model’s “quasi-two-body” or “2+1” approximation, which treats the decay
as two quasi-independent two-body processes.

Thus, the study presented here compares these two distinct rescattering models
to observe how the NLL value changes with each. By comparing the impact of Rescatte-
ring(2018) and Rescattering(2023) on the model, we aim to identify how many units of
NLL shift with each model, providing insight into the effect of fundamentally different
rescattering assumptions on model quality.

As a first step in this study, we applied the same model to fit the data, differing
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Tabela 41 – Dalitz Plot fit results using the Rescattering(2018).
[NLL -146056] Fit fraction (%) Magnitude and phase coefficients ACP (%)
Component B− B+ a+

i δ+
i [◦] a−

i δ−
i [◦]

K∗(892) 5.1 ± 0.5 6.1 ± 0.4 0.99 ± 0.02 0 ± 0 1.01 ± 0.02 0 ± 0 2.8 ± 4.1
K∗

0(1430) 3.6 ± 0.5 4.5 ± 0.3 0.81 ± 0.04 4 ± 4 0.87 ± 0.04 −30 ± 4 7.7 ± 5.8
PolarFFNR 36.9 ± 1.5 38.9 ± 1.3 2.81 ± 0.07 36 ± 3 2.56 ± 0.06 3 ±3 −9.3 ± 1.9
ρ(1700) 4.2 ± 0.8 4.3 ± 0.7 1.03 ± 0.06 −47 ± 6 0.75 ± 0.06 -92 ±6 −31.0 ± 8.4
ρ(1450) 18.9 ± 1.2 23.4 ± 1.0 1.86 ± 0.07 −121 ± 7 1.98 ± 0.07 −135 ± 5 6.3 ± 3.8
f2(1270) 6.5 ± 0.7 8.4 ± 0.6 1.28 ± 0.06 132 ± 6 1.26 ± 0.05 117 ± 4 24.2 ± 4.4
Re-scattering 19.5 ± 0.8 8.7 ± 0.7 2.48 ± 0.06 −104 ± 6 2.11 ± 0.04 −131 ± 5 −61.5 ± 1.6
ϕ(1020) 0.4 ± 0.1 0.8 ± 0.1 0.12 ± 0.03 93 ± 15 0.37 ± 0.03 −89 ± 9 79.9 ± 9.0
χc0 1.0 ± 0.2 1.4 ± 0.2 0.40 ± 0.03 125 ± 6 0.48 ± 0.03 67 ± 6 18.3 ± 7.8
Fit Fraction Sum 96.0 96.6

Tabela 42 – Dalitz Plot fit results using the Rescattering(2023).
[NLL -145838] Fit fraction (%) Magnitude and phase coefficients ACP (%)
Component B− B+ a+

i δ+
i [◦] a−

i δ−
i [◦]

K∗(892) 5.1 ± 0.5 6.0 ± 0.4 0.99 ± 0.02 0 ± 0 1.01 ± 0.02 0 ± 0 2.1 ± 4.1
K∗

0(1430) 3.3 ± 0.3 4.3 ± 0.3 0.76 ± 0.04 7 ± 4 0.85 ± 0.04 −29 ± 4 11.5 ± 6.0
PolarFFNR 37.3 ± 1.4 39.2 ± 1.2 2.84 ± 0.07 36 ± 3 2.58 ± 0.07 3 ± 3 −9.8 ± 1.8
ρ(1700) 4.6 ± 0.8 3.2 ± 0.7 1.13 ± 0.07 −38 ± 6 0.74 ± 0.06 −89 ± 6 −40.2 ± 8.1
ρ(1450) 18.3 ± 1.1 24.5 ± 1.3 1.75 ± 0.07 −120 ± 6 2.04 ± 0.07 −130 ± 5 15.0 ± 4.1
f2(1270) 5.3 ± 0.8 8.4 ± 0.7 0.88 ± 0.06 136 ± 6 1.26 ± 0.04 143 ± 5 36.0 ± 4.9
Re-scattering 22.3 ± 0.9 9.4 ± 0.7 2.68 ± 0.06 −104 ± 5 1.26 ± 0.04 −143 ± 5 −63.7 ± 1.5
ϕ(1020) 0.6 ± 0.1 1.0 ± 0.3 0.25 ± 0.03 112 ± 12 0.41 ± 0.03 −84 ± 12 46.7 ± 11.6
χc0 1.0 ± 0.2 1.4 ± 0.2 0.40 ± 0.03 124 ± 6 0.48 ± 0.03 67 ± 7 18.1 ± 7.9
Fit Fraction Sum 97.9 97.4

only in the choice of rescattering model. Table 41 presents the results for the fit using
Rescattering(2018), and Table 42 shows the fit results with Rescattering(2023). As can be
observed, both results are quite similar in terms of ACP , Fit Fractions, ai, and δi. The
most noticeable difference lies in the NLL value, which varies between the two models.

A set of 500 samples was generated based on the solution using the Rescatte-
ring(2018) model, which will be referred to as the “mother solution” from here onward.
First, we calculated1 the NLL values by “fitting” the mother solution directly to these
datasets. We then recalculated the NLL values by applying variations of the mother solu-
tion, created by randomizing all parameters according to Gaussian distributions centered
on their values and uncertainties from the mother solution — a method we will refer to as
“shaking”Ḟor instance, if the central value of ai for K∗(892) is 0.99 with an error of 0.02,
these parameters select a randomized value within a Gaussian distribution. Parameter
variations were applied in Cartesian coordinates rather than polar coordinates, based on
the results of this fit.

Figure 125 presents the result after a single “shaking” of the mother solution. The
NLL distribution calculated with the parameters of the mother solution is shown in blue,
while the NLL distribution calculated after shaking the parameters is shown in red. It
1 “Calculating the NLL” refers to performing the fit with all parameters fixed, except for the number of

signal events.
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can be observed that, in this first test, the difference between the mean NLL values is
approximately 200 units. In other words, after Gaussian randomization of the parameters
according to the mother solution, the NLL distribution of the new solution differs by
around 200 units.

Figura 125 – NLL distribution for the mother solution (in blue) and the parameters after
one shaking (in red).

The next step was to shake the mother solution 500 times, allowing us to observe
the behavior of the distribution of the shaken solutions. Figure 126 presents the results,
in blue, we once again show the NLL distribution calculated from the parameters of the
mother solution. In red, we display the NLL distribution after shaking the parameters 500
times.

It can be observed that the Gaussian distributions of the mother solution parameters
and the shaken parameters are compatible. The standard deviation of the Gaussian in
blue is due to statistical error, while the standard deviation of the Gaussian in red results
from a convolution of statistical and model errors. From this, we conclude that a 200-unit
difference in NLL does not appear sufficient to distinguish between models.

The next test aims to estimate the difference in NLL units between the Rescat-
tering(2023) and Rescattering(2018) models. To do this, we generated 500 simulations
using the Rescattering(2018) solution and 500 simulations with the Rescattering(2023)
solution. Figure 127 presents the distributions of the NLL values calculated in four distinct
ways: first, we calculated the NLL for the Rescattering(2018)-generated set by applying
the model containing Rescattering(2018) itself (in blue), and then by applying the model
containing Rescattering(2023) (in red). Next, for the Rescattering(2023)-generated set, we
calculated the NLL first with Rescattering(2023) (in pink) and then with the model using
Rescattering(2018) (in green).

As shown, all distributions are compatible with each other, and a difference of
around 200 NLL units does not seem sufficient to distinguish between the models. We
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Figura 126 – NLL distribution for the mother solution (in blue) and the parameters after
500 shakings (in red).

conclude that, while Rescattering(2018) yields results with better NLL values and is
more suitable for this analysis, Rescattering(2023) should not be entirely disregarded.
Additionally, incorporating correlation matrices between parameters would lead to more
accurate results, as “shaking” the mother solution without considering correlations risks
ignoring the effect that changes in one parameter may have on another, especially when
they are strongly correlated.

It is important to note that this study is not general. In considering a 200-unit
difference in NLL as insufficient to distinguish between models, we do not imply this
threshold applies to any possible modification within this analysis. This evaluation is
specific to the two rescattering options under consideration, where we conclude there
is insufficient evidence to exclude one model in favor of the other. We have chosen to
proceed with Rescattering(2018) due to its greater suitability for use within the isobar
model framework.
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Figura 127 – Distribution of NLL values calculated for four different cases: 500 simulations
generated with Rescattering(2018), calculated with Rescattering(2018) and
Rescattering(2023) shown in blue and red, respectively. 500 simulations
generated with Rescattering(2023), calculated with Rescattering(2018) and
Rescattering(2023) shown in green and pink, respectively.
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G Appendix: testing Wilk’s Theorem with
toys

In this appendix, toy studies are presented to evaluate the validity of Wilks’
Theorem. A toy dataset was generated with 100,000 events and a purity of 76%. Various
scenarios were evaluated, including vector and tensor resonances with both broader and
narrower widths. All the generated toys were based on the baseline model presented
in Section 8.3.1. For each individual case, the resonance under investigation, aimed at
determining its statistical significance, was added to the model. In all cases, 4 degrees of
freedom will be added in this appendix. For this scenario, considering 5 σ, the critical
value of a χ2 distribution is 34.55. Therefore, this will serve as the reference value for all
subsequent studies.

G.1 The vector J/ψ(1S) resonance
Due to its extremely narrow width (approximately 90 KeV), two scenarios were

tested: one with its width increased to 9 MeV and another using its real width.

• J/ψ(1S) with width 9 MeV:

The Table 44 presents the real model used for the generation of the toy for this
case, considering the addition of the J/ψ(1S) resonance with total fit fraction of
0.2%. Table 43 present the result after removing the J/ψ(1S) from the fit model.
Considering that NLLratio = 66, and since 34.55 < 66, the inclusion of the J/ψ in
this context does have appreciable statistical significance.

Tabela 43 – Dalitz Plot fit result for a toy dataset generated with the J/ψ(1S) having an
increased width and not included in the fit model.

[NLL -514517] Fit fraction (%) Magnitude and phase coefficients ACP (%)
Component B− B+ a+

i δ+
i [◦] a−

i δ−
i [◦]

K(892) 5.94 ± 0.19 5.06 ± 0.16 1.028 ± 0.011 0 ± 0 0.972 ± 0.011 0 ± 0 −5.6 ± 2.3
K∗

0(1430) 5.55 ± 0.27 5.90 ± 0.24 1.109 ± 0.027 14 ± 2 0.940 ± 0.025 −22 ± 2 −16.5 ± 3.1
PolarFFNR 37.94 ± 0.61 33.93 ± 0.45 2.661 ± 0.038 31 ± 2 2.457 ± 0.037 6 ± 2 −8.0 ± 1.1
ρ0(1700) 3.91 ± 0.33 2.61 ± 0.25 0.738 ± 0.037 −99 ± 5 0.788 ± 0.035 −72 ± 4 6.6 ± 6.5
ρ0(1450) 22.00 ± 0.72 16.28 ± 0.52 1.844 ± 0.036 −176 ± 3 1.871 ± 0.038 −137 ± 3 1.5 ± 2.3
f2(1270) 9.57 ± 0.29 4.04 ± 0.18 0.919 ± 0.023 82 ± 3 1.234 ± 0.024 119 ± 3 28.7 ± 2.5
Re-scattering 9.07 ± 0.24 24.62 ± 0.28 2.267 ± 0.029 −159 ± 3 1.201 ± 0.022 −126 ± 3 −56.1 ± 1.0
ϕ(1020) 0.82 ± 0.07 0.09 ± 0.02 0.137 ± 0.017 56 ± 9 0.361 ± 0.015 −79 ± 5 74.9 ± 5.7
χc0 1.38 ± 0.09 0.61 ± 0.05 0.357 ± 0.015 116 ± 4 0.469 ± 0.016 62 ± 5 26.6 ± 4.9
Fit Fraction Sum 96.2 93.1
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Tabela 44 – Dalitz Plot fit result for a toy dataset generated with the J/ψ(1S) having an
increased width and included in the fit model.

[NLL -514583] Fit fraction (%) Magnitude and phase coefficients ACP (%)
Component B− B+ a+

i δ+
i [◦] a−

i δ−
i [◦]

K(892) 5.98 ± 0.19 5.03 ± 0.16 1.024 ± 0.012 0 ± 0 0.976 ± 0.012 0 ± 0 −4.9 ± 2.3
K∗

0(1430) 5.91 ± 0.29 5.79 ± 0.24 1.100 ± 0.027 14 ± 2 0.970 ± 0.026 −21 ± 2 −12.5 ± 3.1
PolarFFNR 38.21 ± 0.60 33.72 ± 0.45 2.653 ± 0.038 31 ± 2 2.466 ± 0.037 4 ± 2 −7.3 ± 1.1
ρ0(1700) 3.86 ± 0.33 2.55 ± 0.25 0.730 ± 0.037 −98 ± 5 0.784 ± 0.035 −81 ± 4 7.1 ± 6.6
ρ0(1450) 22.20 ± 0.72 16.49 ± 0.52 1.855 ± 0.036 −177 ± 3 1.880 ± 0.038 −141 ± 3 1.3 ± 2.3
f2(1270) 9.45 ± 0.29 4.01 ± 0.18 0.915 ± 0.023 82 ± 3 1.226 ± 0.024 114 ± 3 28.5 ± 2.5
Re-scattering 8.87 ± 0.23 24.64 ± 0.28 2.268 ± 0.029 −160 ± 3 1.189 ± 0.021 −132 ± 3 −56.9 ± 1.0
ϕ(1020) 0.84 ± 0.07 0.09 ± 0.02 0.139 ± 0.017 55 ± 9 0.365 ± 0.015 −85 ± 5 74.8 ± 5.7
χc0 1.40 ± 0.09 0.61 ± 0.05 0.357 ± 0.015 116 ± 4 0.472 ± 0.016 62 ± 4 27.2 ± 4.9
J/ψ 0.27 ± 0.06 0.09 ± 0.03 0.138 ± 0.021 45 ± 8 0.205 ± 0.023 151 ± 6 37.8 ± 16.0
Fit Fraction Sum 97.0 93.0

• J/ψ(1S) with width 90 KeV:

The Table 46 presents the real model used for the generation of the toy for this
case, considering the addition of the J/ψ(1S) resonance with total fit fraction of
0.2%. Table 45 present the result after removing the J/ψ(1S) from the fit model.
Considering that NLLratio = 496, and since 34.55 < 496, the inclusion of the J/ψ in
this context does have appreciable statistical significance.

Tabela 45 – Dalitz Plot fit result for a toy dataset generated with the J/ψ(1S) having the
real width and not included in the fit model.

[NLL -514285] Fit fraction (%) Magnitude and phase coefficients ACP (%)
Component B− B+ a+

i δ+
i [◦] a−

i δ−
i [◦]

K(892) 6.02 ± 0.19 5.03 ± 0.16 1.021 ± 0.011 0 ± 0 0.979 ± 0.011 0 ± 0 −4.2 ± 2.3
K∗

0(1430) 5.78 ± 0.28 5.83 ± 0.24 1.100 ± 0.027 14 ± 2 0.959 ± 0.025 −22 ± 2 −13.7 ± 3.1
PolarFFNR 38.42 ± 0.61 33.91 ± 0.45 2.652 ± 0.038 31 ± 2 2.473 ± 0.037 4 ± 2 −7.0 ± 1.1
ρ0(1700) 3.78 ± 0.32 2.58 ± 0.25 0.731 ± 0.037 −99 ± 5 0.776 ± 0.035 −82 ± 4 5.9 ± 6.5
ρ0(1450) 22.19 ± 0.71 16.45 ± 0.52 1.847 ± 0.036 −177 ± 3 1.879 ± 0.037 −141 ± 3 1.7 ± 2.3
f2(1270) 9.37 ± 0.29 4.01 ± 0.18 0.912 ± 0.023 82 ± 3 1.221 ± 0.024 115 ± 3 28.4 ± 2.5
Re-scattering 8.81 ± 0.23 24.66 ± 0.28 2.262 ± 0.029 −159 ± 3 1.184 ± 0.021 −131 ± 3 −57.0 ± 1.0
ϕ(1020) 0.84 ± 0.07 0.09 ± 0.02 0.136 ± 0.017 56 ± 9 0.365 ± 0.015 −85 ± 5 75.6 ± 5.6
χc0 1.38 ± 0.09 0.61 ± 0.05 0.356 ± 0.015 116 ± 4 0.469 ± 0.016 60 ± 5 27.0 ± 4.9
Fit Fraction Sum 96.6 93.2

Tabela 46 – Dalitz Plot fit result for a toy dataset generated with the J/ψ(1S) having the
real width and included in the fit model.

[NLL -514781] Fit fraction (%) Magnitude and phase coefficients ACP (%)
Component B− B+ a+

i δ+
i [◦] a−

i δ−
i [◦]

K∗(892) 6.01 ± 0.19 5.02 ± 0.16 1.022 ± 0.011 0 ± 0 0.978 ± 0.011 0 ± 0 −4.3 ± 2.3
K∗

0(1430) 5.96 ± 0.28 5.86 ± 0.24 1.103 ± 0.027 14 ± 2 0.974 ± 0.026 −21 ± 2 −12.4 ± 3.1
PolarFFNR 37.97 ± 0.61 33.86 ± 0.45 2.652 ± 0.038 31 ± 2 2.459 ± 0.037 4 ± 2 −7.5 ± 1.1
ρ0(1700) 3.80 ± 0.32 2.54 ± 0.25 0.726 ± 0.037 −99 ± 5 0.778 ± 0.035 −81 ± 4 7.0 ± 6.6
ρ0(1450) 22.11 ± 0.71 16.48 ± 0.52 1.850 ± 0.036 −177 ± 3 1.877 ± 0.037 −140 ± 3 1.4 ± 2.3
f2(1270) 9.43 ± 0.29 4.02 ± 0.18 0.914 ± 0.023 82 ± 3 1.226 ± 0.024 115 ± 3 28.5 ± 2.5
Re-scattering 8.81 ± 0.23 24.63 ± 0.28 2.262 ± 0.029 −160 ± 3 1.185 ± 0.021 −131 ± 3 −56.9 ± 1.0
ϕ(1020) 0.83 ± 0.07 0.09 ± 0.02 0.136 ± 0.017 56 ± 9 0.364 ± 0.015 −84 ± 5 75.6 ± 5.6
χc0 1.38 ± 0.09 0.61 ± 0.05 0.356 ± 0.015 116 ± 4 0.469 ± 0.016 62 ± 5 27.0 ± 4.9
J/ψ 0.38 ± 0.03 0.05 ± 0.01 0.101 ± 0.011 39 ± 26 0.245 ± 0.012 148 ± 27 70.8 ± 6.1
Fit Fraction Sum 96.7 93.2
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G.1.1 Adding no J/ψ(1S)

In this study, we used a toy generated as previously, but this time without including
the J/ψ(1S). The Table 47 presents the real model used for the generation. Table 48
present the result after removing theJ/ψ(1S) from the fit model. Considering that
NLLratio = 2, and since 34.55 > 2, the inclusion of the J/ψ in this context does not have
appreciable statistical significance. This approach aims to reinforce the idea that the
method is unbiased.

Tabela 47 – Dalitz Plot fit result for a toy dataset generated without the J/ψ(1S) and
not included in the fit model.

[NLL -514626] Fit fraction (%) Magnitude and phase coefficients ACP (%)
Component B− B+ a+

i δ+
i [◦] a−

i δ−
i [◦]

K∗(892) 6.02 ± 0.19 5.03 ± 0.16 1.022 ± 0.011 0 ± 0 0.978 ± 0.011 0 ± 0 −4.5 ± 2.3
K∗

0(1430) 5.99 ± 0.28 5.86 ± 0.24 1.103 ± 0.027 14 ± 2 0.975 ± 0.026 −21 ± 2 −12.3 ± 3.1
PolarFFNR 38.16 ± 0.61 33.86 ± 0.45 2.652 ± 0.038 31 ± 2 2.462 ± 0.037 4 ± 2 −7.4 ± 1.1
ρ0(1700) 3.84 ± 0.32 2.60 ± 0.26 0.734 ± 0.037 −98 ± 5 0.781 ± 0.035 −81 ± 4 6.1 ± 6.5
ρ0(1450) 22.16 ± 0.71 16.42 ± 0.52 1.847 ± 0.036 −177 ± 3 1.876 ± 0.037 −141 ± 3 1.6 ± 2.3
f2(1270) 9.44 ± 0.29 4.03 ± 0.18 0.915 ± 0.023 82 ± 3 1.225 ± 0.024 114 ± 3 28.4 ± 2.5
Re-scattering 8.86 ± 0.23 24.67 ± 0.28 2.263 ± 0.029 −160 ± 3 1.186 ± 0.021 −132 ± 3 −56.9 ± 1.0
ϕ(1020) 0.84 ± 0.07 0.09 ± 0.02 0.139 ± 0.017 55 ± 9 0.364 ± 0.015 −85 ± 5 74.6 ± 5.7
χc0 1.38 ± 0.09 0.61 ± 0.05 0.356 ± 0.015 117 ± 4 0.468 ± 0.016 61 ± 5 26.8 ± 4.9
Fit Fraction Sum 96.7 93.2

Tabela 48 – Dalitz Plot fit result for a toy dataset generated without the J/ψ(1S) and
included in the fit model.

[NLL -514628] Fit fraction (%) Magnitude and phase coefficients ACP (%)
Component B− B+ a+

i δ+
i [◦] a−

i δ−
i [◦]

K∗(892) 6.00 ± 0.19 5.02 ± 0.16 1.023 ± 0.011 0 ± 0 0.977 ± 0.011 0 ± 0 −4.5 ± 2.3
K∗

0(1430) 5.97 ± 0.29 5.82 ± 0.24 1.101 ± 0.027 14 ± 2 0.975 ± 0.026 −21 ± 2 −12.1 ± 3.1
PolarFFNR 38.09 ± 0.61 33.83 ± 0.45 2.653 ± 0.038 31 ± 2 2.463 ± 0.037 4 ± 2 −7.4 ± 1.1
ρ0(1700) 3.83 ± 0.33 2.58 ± 0.26 0.733 ± 0.038 −98 ± 5 0.780 ± 0.035 −81 ± 4 6.3 ± 6.6
ρ0(1450) 22.17 ± 0.72 16.48 ± 0.52 1.852 ± 0.036 −178 ± 3 1.879 ± 0.038 −141 ± 3 1.5 ± 2.3
f2(1270) 9.45 ± 0.29 4.02 ± 0.18 0.915 ± 0.023 81 ± 3 1.226 ± 0.024 115 ± 3 28.5 ± 2.5
Re-scattering 8.87 ± 0.23 24.67 ± 0.28 2.266 ± 0.029 −160 ± 3 1.188 ± 0.021 −131 ± 3 −56.9 ± 1.0
ϕ(1020) 0.83 ± 0.07 0.09 ± 0.02 0.140 ± 0.017 55 ± 9 0.365 ± 0.015 −85 ± 5 74.4 ± 5.7
χc0 1.38 ± 0.09 0.61 ± 0.05 0.356 ± 0.015 116 ± 4 0.469 ± 0.016 61 ± 5 26.9 ± 4.9
J/ψ 0.00 ± 0.01 0.01 ± 0.01 0.038 ± 0.020 34 ± 31 0.021 ± 0.018 28 ± 57 −53.1 ± 68.3
Fit Fraction Sum 96.6 93.1

G.2 The tensor f ′
2(1525) resonance

In this study, we evaluate the statistical impact of including or excluding the tensor
resonance f ′

2(1525) in the fit model, in a toy dataset generated including it. The Table 49
presents the real model used for the generation of the toy for this case, considering the
addition of the f ′

2(1525) resonance with total fit fraction of 0.04%. Table 50 present the
result after removing the f ′

2(1525) from the fit model. Considering that NLLratio = 12, and
since 34.55 > 12, the inclusion of the f ′

2(1525) in this context does not have appreciable
statistical significance.
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It is important to emphasize that the method does not confirm or exclude the
presence of any resonance; it only evaluates the statistical significance of adding a resonance.
This distinction is crucial because, as in the case of f ′

2(1525), even though it is known to
exist (as it was included in the generation model), the method indicates that its addition
lacks statistical relevance. In other words, Wilks’ theorem concludes that the inclusion of
f

′
2(1525) is statistically insignificant. This result aligns with expectations since, despite its

inclusion in the toy generation, f ′
2(1525) contributes only marginally (with just 0.05% fit

fraction).

Tabela 49 – Dalitz Plot fit result for a toy dataset generated with the f ′
2(1525) and included

in the fit model.
[NLL -514440] Fit fraction (%) Magnitude and phase coefficients ACP (%)
Component B− B+ a+

i δ+
i [◦] a−

i δ−
i [◦]

K∗(892) 6.01 ± 0.19 5.02 ± 0.16 1.021 ± 0.011 0 ± 0 0.979 ± 0.011 0 ± 0 −4.1 ± 2.3
K∗

0(1430) 5.97 ± 0.29 5.84 ± 0.24 1.101 ± 0.027 14 ± 2 0.976 ± 0.026 −21 ± 2 −12.0 ± 3.1
PolarFFNR 37.89 ± 0.60 33.85 ± 0.45 2.651 ± 0.038 31 ± 2 2.459 ± 0.037 4 ± 2 −7.5 ± 1.1
ρ0(1700) 3.80 ± 0.33 2.63 ± 0.26 0.739 ± 0.037 −99 ± 5 0.778 ± 0.035 −81 ± 4 5.2 ± 6.5
ρ0(1450) 22.30 ± 0.71 16.37 ± 0.53 1.844 ± 0.036 −177 ± 3 1.886 ± 0.037 −141 ± 3 2.3 ± 2.3
f2(1270) 9.41 ± 0.30 4.04 ± 0.18 0.916 ± 0.023 81 ± 3 1.225 ± 0.025 115 ± 3 28.3 ± 2.6
f ′

2(1525) 0.07 ± 0.03 0.01 ± 0.01 0.053 ± 0.024 63 ± 25 0.108 ± 0.024 103 ± 12 60.9 ± 31.7
Re-scattering 8.76 ± 0.23 24.64 ± 0.28 2.262 ± 0.029 −160 ± 3 1.183 ± 0.021 −132 ± 3 −57.1 ± 1.0
ϕ(1020) 0.83 ± 0.07 0.09 ± 0.02 0.136 ± 0.017 55 ± 9 0.365 ± 0.015 −85 ± 5 75.6 ± 5.6
χc0 1.38 ± 0.09 0.61 ± 0.05 0.357 ± 0.015 117 ± 4 0.470 ± 0.016 62 ± 4 26.7 ± 4.9
Fit Fraction Sum 96.4 93.1

Tabela 50 – Dalitz Plot fit result for a toy dataset generated with the f ′
2(1525) and not

included in the fit model.
[NLL -514428] Fit fraction (%) Magnitude and phase coefficients ACP (%)
Component B− B+ a+

i δ+
i [◦] a−

i δ−
i [◦]

K∗(892) 6.06 ± 0.19 5.02 ± 0.16 1.019 ± 0.011 0 ± 0 0.981 ± 0.011 0 ± 0 −3.9 ± 2.3
K∗

0(1430) 6.05 ± 0.29 5.79 ± 0.24 1.095 ± 0.026 14 ± 2 0.980 ± 0.026 −21 ± 2 −11.1 ± 3.1
PolarFFNR 38.04 ± 0.61 33.94 ± 0.45 2.650 ± 0.038 31 ± 2 2.458 ± 0.037 4 ± 2 −7.5 ± 1.1
ρ0(1700) 3.96 ± 0.33 2.68 ± 0.26 0.744 ± 0.037 −98 ± 5 0.793 ± 0.035 −81 ± 4 6.3 ± 6.4
ρ0(1450) 22.26 ± 0.71 16.34 ± 0.52 1.839 ± 0.036 −177 ± 3 1.880 ± 0.037 −142 ± 3 2.2 ± 2.3
f2(1270) 9.32 ± 0.29 4.00 ± 0.18 0.910 ± 0.023 80 ± 3 1.217 ± 0.024 112 ± 3 28.2 ± 2.5
Re-scattering 8.75 ± 0.23 24.64 ± 0.28 2.258 ± 0.029 −160 ± 3 1.179 ± 0.021 −134 ± 3 −57.1 ± 1.0
ϕ(1020) 0.84 ± 0.07 0.09 ± 0.02 0.134 ± 0.017 54 ± 9 0.365 ± 0.015 −86 ± 5 76.2 ± 5.5
χc0 1.39 ± 0.09 0.61 ± 0.05 0.357 ± 0.015 117 ± 4 0.469 ± 0.016 62 ± 4 26.8 ± 4.9
Fit Fraction Sum 96.7 93.1
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H Appendix: Alternative models

An amplitude analysis is highly sensitive to the components tested. Therefore, in
this appendix, we present a series of tests conducted with alternative resonances. These
studies were based on the Baseline Model 6, with occasional modifications where established
resonances in the analysis were replaced one at a time. The tests focused on low-mass
components that could appear in the decay, particularly for the Kπ S-wave. Only the
tables with the numerical results will be presented. These alternatives will also be used
for systematic error studies in this analysis.

Tabela 51 – Dalitz Plot Fit replacing the PolarFFNR with the BelleNR.
[NLL -142795] Fit fraction (%) Magnitude and phase coefficients ACP (%)
Component B− B+ a+

i δ+
i [◦] a−

i δ−
i [◦]

K(892) 5.91 ± 0.30 4.33 ± 0.25 0.992 ± 0.019 0 ± 0 1.008 ± 0.019 0 ± 0 1.7 ± 3.8
K∗

0(1430) 7.01 ± 0.58 5.80 ± 0.50 1.148 ± 0.052 28 ± 3 1.098 ± 0.048 −10 ± 4 −4.4 ± 4.9
BelleNR 36.29 ± 0.94 32.83 ± 0.69 2.730 ± 0.068 34 ± 3 2.498 ± 0.063 1 ± 3 −8.8 ± 2.1
ρ(1700) 4.05 ± 0.56 4.24 ± 0.48 0.981 ± 0.059 −54 ± 7 0.835 ± 0.061 −101 ± 6 −16.0 ± 8.8
ρ(1450) 22.81 ± 1.31 15.45 ± 0.94 1.873 ± 0.067 −116 ± 6 1.981 ± 0.070 −126 ± 5 5.6 ± 4.0
f2(1270) 8.81 ± 0.48 4.01 ± 0.31 0.954 ± 0.042 131 ± 5 1.231 ± 0.042 121 ± 5 25.0 ± 4.4
Re-scattering 8.19 ± 0.37 25.00 ± 0.58 2.382 ± 0.052 −109 ± 6 1.187 ± 0.035 −127 ± 5 −60.2 ± 1.5
ϕ(1020) 0.80 ± 0.10 0.02 ± 0.02 0.073 ± 0.032 84 ± 22 0.371 ± 0.025 −88 ± 9 92.5 ± 6.5
χc0 1.21 ± 0.13 0.60 ± 0.08 0.369 ± 0.025 118 ± 7 0.457 ± 0.025 64 ± 7 21.1 ± 7.9
Fit Fraction Sum 105.1 103.1

Tabela 52 – Dalitz Plot Fit replacing the PolarFFNR with the κ.
[NLL -141872] Fit fraction (%) Magnitude and phase coefficients ACP (%)
Component B− B+ a+

i δ+
i [◦] a−

i δ−
i [◦]

K(892) 7.62 ± 0.83 0.17 ± 0.07 0.400 ± 0.076 180 ± 0 2.400 ± 0.076 0 ± 0 94.6 ± 1.6
K∗

0(1430) 17.66 ± 0.73 9.80 ± 0.64 3.060 ± 0.148 −97 ± 3 3.653 ± 0.137 0 ± 4 17.5 ± 3.6
κ 8.32 ± 0.46 12.48 ± 0.46 3.454 ± 0.129 158 ± 5 2.507 ± 0.115 −112 ± 3 −31.0 ± 3.0
ρ(1700) 3.77 ± 0.58 3.31 ± 0.46 1.780 ± 0.139 −106 ± 7 1.688 ± 0.144 −92 ± 6 −5.3 ± 10.1
ρ(1450) 28.70 ± 1.37 19.03 ± 1.05 4.266 ± 0.196 −135 ± 6 4.657 ± 0.188 −78 ± 3 8.8 ± 3.7
f2(1270) 11.50 ± 0.54 5.60 ± 0.40 2.313 ± 0.112 106 ± 5 2.949 ± 0.123 176 ± 4 23.8 ± 4.1
Re-scattering 8.45 ± 0.37 29.17 ± 0.52 5.281 ± 0.188 −133 ± 4 2.527 ± 0.101 −81 ± 5 −62.7 ± 1.4
ϕ(1020) 0.94 ± 0.12 0.03 ± 0.02 0.163 ± 0.070 64 ± 23 0.845 ± 0.060 −49 ± 8 92.8 ± 6.1
χc0 0.98 ± 0.12 0.37 ± 0.07 0.597 ± 0.058 −21 ± 14 0.862 ± 0.058 114 ± 9 35.3 ± 9.3
Fit Fraction Sum 88.0 80.0

Tabela 53 – Dalitz Plot Fit replacing the PolarFFNR with the LASS.
[NLL -142367] Fit fraction (%) Magnitude and phase coefficients ACP (%)
Component B− B+ a+

i δ+
i [◦] a−

i δ−
i [◦]

K(892) 6.21 ± 0.33 4.91 ± 0.27 1.002 ± 0.020 0 ± 0 0.998 ± 0.020 0 ± 0 −0.4 ± 3.9
K∗

0(1430) 35.78 ± 1.24 8.69 ± 0.65 1.333 ± 0.056 37 ± 3 2.396 ± 0.067 24 ± 3 52.7 ± 3.0
NR(LASS) 12.27 ± 0.70 23.30 ± 1.11 2.182 ± 0.069 8 ± 3 1.403 ± 0.052 −53 ± 3 −41.5 ± 3.1
ρ(1700) 3.73 ± 0.61 2.31 ± 0.43 0.687 ± 0.066 −89 ± 9 0.774 ± 0.067 −82 ± 8 11.8 ± 12.4
ρ(1450) 29.95 ± 1.40 22.21 ± 1.08 2.131 ± 0.066 −92 ± 7 2.192 ± 0.067 −52 ± 6 2.8 ± 3.4
f2(1270) 10.50 ± 0.50 5.06 ± 0.37 1.017 ± 0.043 158 ± 7 1.298 ± 0.041 −154 ± 6 23.9 ± 4.2
Re-scattering 8.35 ± 0.34 29.14 ± 0.49 2.441 ± 0.051 −88 ± 7 1.157 ± 0.032 −55 ± 7 −63.3 ± 1.3
ϕ(1020) 0.91 ± 0.11 0.01 ± 0.02 0.053 ± 0.030 120 ± 35 0.382 ± 0.025 −26 ± 10 96.3 ± 4.5
χc0 0.77 ± 0.10 0.52 ± 0.07 0.325 ± 0.024 142 ± 11 0.352 ± 0.023 141 ± 11 8.2 ± 9.5
Fit Fraction Sum 108.5 96.2
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Tabela 54 – Dalitz Plot Fit replacing the PolarFFNR with the non-resonant flat contribu-
tion.

[NLL -141778] Fit fraction (%) Magnitude and phase coefficients ACP (%)
Component B− B+ a+

i δ+
i [◦] a−

i δ−
i [◦]

K(892) 7.70 ± 0.37 6.80 ± 0.30 1.034 ± 0.016 0 ± 0 0.966 ± 0.016 0 ± 0 −6.9 ± 3.3
K∗

0(1430) 24.75 ± 1.17 26.19 ± 0.79 2.030 ± 0.050 60 ± 3 1.731 ± 0.053 4 ± 4 −15.8 ± 2.8
NR (Flat) 29.76 ± 0.81 21.79 ± 0.62 1.852 ± 0.044 31 ± 3 1.898 ± 0.045 −9 ± 5 2.5 ± 2.1
ρ(1700) 3.65 ± 0.59 1.11 ± 0.30 0.419 ± 0.057 −25 ± 8 0.665 ± 0.056 −90 ± 7 43.1 ± 12.8
ρ(1450) 32.32 ± 1.50 23.08 ± 1.08 1.906 ± 0.056 −13 ± 4 1.978 ± 0.057 −49 ± 5 3.7 ± 3.3
f2(1270) 8.27 ± 0.49 5.03 ± 0.39 0.890 ± 0.038 −125 ± 5 1.001 ± 0.035 −152 ± 6 11.7 ± 4.9
Re-scattering 17.50 ± 0.55 38.72 ± 0.63 2.469 ± 0.047 −9 ± 4 1.456 ± 0.033 −47 ± 6 −48.4 ± 1.4
ϕ(1020) 0.77 ± 0.11 0.01 ± 0.01 0.042 ± 0.027 −171 ± 146 0.306 ± 0.023 −11 ± 9 96.2 ± 4.8
χc0 1.22 ± 0.13 0.57 ± 0.08 0.298 ± 0.022 122 ± 9 0.385 ± 0.021 66 ± 8 24.9 ± 8.3
Fit Fraction Sum 125.9 123.3
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