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Abstract

We perform an investigation of the leading anomalous graphs in four and six dimensions of the
topology of a triangle and box, respectively. The linear and log power counting in some of their
integrals are handled using an alternative strategy called Implicit Regularization (Ireg). The
idea is to preserve from the beginning the arbitrary routings and isolate them in convergent
integrands employing an algebraic identity. The divergences are not explicitly integrated but
are organized in formal expressions corresponding to surface terms and irreducible scalars.
Finite parts are freely integrated and automatically functions of routing differences; they are
projected in a class of functions whose integral representation obeys many recurrence relations
that are useful in the study of symmetries. Over the set of fermionic amplitudes studied, a class
of linear relations is established among their integrands, and we name them relations among
green functions (Ragfs). Under integration, they represent linearity of integration; based on
general and detailed computations, we determined how, in this set of amplitudes, such algebraic
aspect is set by the kinematical limits of finite amplitude that appear in the Ragfs. The result
of the constraint furnishes a value to the formal surface term incompatible with translational
invariance in momentum space. This incompatibility rooted in features independent of the
divergences can be interpreted as the cause of violation of at least one Ward identity since
if the referred limit was zero, then all WIs could be kept. From the perspective drawn, we
can localize the array of distinct results that can be obtained for the anomalous amplitudes
based on which property is chosen to be maintained. The features investigated extend to other
graphs with more external lines and other types of coupling, such as the pseudotensor and
tensor vertexes in four dimensions and triangle topology; nevertheless, the violations of the

Ragfs are not directly related to kinematical limits.



Resumo

E realizada uma investigacio dos primeiros diagramas anémalos em quatro e seis dimensdes da
topologia de um tridngulo e box, respectivamente. A contagem de poténcia linear e logaritmica
em algumas de suas integrais é tratada usando uma estratégia alternativa chamada Regulariza-
¢ao Implicita (Ireg). A ideia é preservar desde o inicio os rétulos da linhas internas arbitrérios
e isold-los em integrandos convergentes empregando uma identidade algébrica. As divergéncias
nao sao explicitamente integradas, mas sao organizadas em expressoes formais correspondentes
a termos de superficie e integrais escalares irredutiveis. As partes finitas sao integradas livre-
mente e sao automaticamente funcao das diferencas entre os rétulos. Estas sao projetadas em
uma classe de fungoes cuja representacao integral obedece vdrias relacoes de recorréncia que
sao uteis no estudo de simetrias. Sobre o conjunto de amplitudes fermidnicas estudadas, uma
classe de relacoes lineares é estabelecida entre seus integrandos, e as denominamos relacoes
entre fungoes de green (Ragfs). Sobre integragao, representam a linearidade da integragao; com
base em célculos gerais e detalhados, determinamos como, neste conjunto de amplitudes, tal
aspecto algébrico é restrito pelos limites cineméticos de amplitudes finitas que aparecem nas
Ragfs. O resultado da restrigao fornece um valor ao termo de superficie formal que é incom-
pativel com a invaridncia de translagao no espaco de momentos. Esta incompatibilidade que
tem origem em caracteristicas independentes das divergéncias pode ser interpretada como a
causa da violacao de pelo menos uma identidade de Ward, pois se o referido limite fosse zero,
entao todas as WIs poderiam ser mantidos. A partir da perspectiva tragada, podemos localizar
o conjunto de resultados distintos que podem ser obtidos para as amplitudes anémalas com base
na propriedade escolhida para ser mantida. As caracteristicas investigadas estendem-se a outros
grafos com mais linhas externas e outros tipos de acoplamento, como os vértices pseudotensores
e tensores em quatro dimensoes e topologia triangular; no entanto, as violacoes dos Ragfs nao
estao diretamente relacionadas com os limites cinemaéticos.

Palavras-chave: Anomalias, Limites cinematicos, Linearidade de integracao, Divergéncias,

Regularizagao Implicita.
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Introduction

Since their inception, anomalies have played an important role in quantum field theories
(QFTs). Concisely, anomalies come from the quantum violation of symmetries present in
the classical theory. This subject arose when the authors [3]-[6] attempted to build models
with fermions coupled to axial currents. Afterwards, it resurfaced in two dimensions through
the non-conservation of the axial current in two-point perturbative corrections [7]. In four di-
mensions, it manifests through the coupling of axial and vector currents in one fermionic loop,
the ABJ anomaly of the triangle graph [§[-[I0]. The presence of one anomalous term on the
axial current divergence is responsible for the decay rate of some mesons [I1], including the
experimentally observed decay of the neutral pion into two photons [12].

The concept of anomaly received prominence due to the breaking of Ward Identities (WI),
crucial in guaranteeing the renormalizability of gauge models [13]. Theories featuring spon-
taneous symmetry breaking, such as the Standard Model, resort to anomalous cancellation to
circumvent this problem [14, [15]. This mechanism becomes fundamental for maintaining the
consistency of the theory, also contributing to the prediction of particles as the top quark [16].
Some research lines suggest the need for a similar mechanism to establish a gauge theory in
the gravitational context. Anomalies manifest when gravitational fields couple to fermions,
with two gravitons contributing to the axial anomaly from a triangle diagram, see Kimura [17],
Delbourgo and Salam [I§].

This subject remains important in investigations within the domain of Kaluza-Klein the-
ories, irrespective of renormalization [19 20]. We stress its relevance regarding the breaking
of diffeomorphism invariance in purely gravitational anomalies (without gauge coupling), see
Gaume [21]. When interacting with photons and Weyl fermions, one also acknowledges vio-
lations of conformal symmetry in the propagation of gravitons [22), 23]. Furthermore, recent
contributions have revisited the Weyl anomalies on the Pontryagin density contribution, mainly
by Bonora in [24]-]2§]. Lorentz anomalies can be interchanged with Einstein anomalies using
the local Bardeen-Zumino polynomial [29], which transforms the consistency into a covariant
form for anomalies, see [30, [31] for a simple application. Ultimately, anomalies are recognized
as an intrinsic aspect of symmetries [32], establishing criteria for delimiting admissible field

theories.

With this background established, we aim to elucidate some aspects relevant to the anom-

alies study, aspects that are fundamentally linked to explicit computation of perturbative am-

xiil
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plitudes. For such, let us develop our investigation in a general model coupling fermions with
boson fields of even and odd parity (spins zero and one), coupling without derivatives. The
n-vertex polygon graphs of spin-1/2 internal propagators are the center of this analysis, being
explored in two, four, and six dimensions. The corresponding amplitudes exhibit Dirac traces
containing two gamma matrices beyond the space-time dimension, whose evaluation yields
combinations involving the metric tensor and the Levi-Civita symbol. Hence, traces admit
equivalent expressions that differ in their index arrangements, signs, and number of monomi-
als. That only produces identities at first glance; however, subtle consequences emerge since
the involved amplitudes are divergent. This feature led to many works developed in recent
years, sometimes proposing rules to take these traces [33]-[37] and [38]-]40]. Part of our task is
to shed light on this issue, and we use operations on general identities governing the Clifford
algebra for such.

This outset is intimately linked to the divergent content of amplitudes. When dealing with
linearly divergent structures, a shift in the integration variable requires compensation through
non-zero surface terms [41, [16]. These objects bring coefficients depending on arbitrary routings
attributed to internal momentd’] Although conservation sets routing differences as physical
momenta, internal momenta remain arbitrary and might assume non-covariant expressions [42].
This feature represents a break in the translational invariance, violating a crucial requirement
for establishing WIs and thus violating other symmetries. Alternatively, some regularization
techniques [43], 44] partially preserve symmetries because they maintain translational invariance
by eliminating surface terms.

Given the impossibility of satisfying all WIs in four dimensions [45], we attribute a special
treatment to the axial triangle. That motivates the pursuit of odd correlators involving axial
and vector vertices, the AV"-type amplitudes in 2n dimensions. They are (n + 1)-order tensors
written as functions of n momentum variables, which leads to low-energy theorems derived
from well-defined finite functions, an approach in this direction can be found in [46]. We obtain
these theorems through momenta contractions over general tensors, achieving meaningful results
regarding the anomaly’s source and implications.

Such a perspective is associated with relations among Green functions (Ragfs), obtained
from momenta contractions over amplitudes independently of prescriptions to evaluate diver-
gences. These relations embody the linearity of the integration and are a central ingredient of
the procedure adopted for our calculations. We use the set of tools proposed by O. A. Battistel
in his Ph.D. thesis [47], later known as Implicit Regularization (IReg). Several investigations
applied this strategy in even and odd dimensions [51]-[50] and multi-loops calculations [56].
Other works also have a similar approach [60]-][59].

This strategy uses an identity to expand propagators, allowing us to isolate divergent ob-

jects without modifying expressions derived from Feynman rules. Evaluating these objects is

IThe same surface terms appear within tensor integrals exhibiting logarithmic power counting, albeit without
arbitrary coefficients.
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unnecessary in the initial steps; hence, one can opt for a prescription at the end of the calcula-
tions. No choices are made for internal momenta; they feature arbitrary routings used along the
work. Lastly, the organization of finite integrals is also a helpful feature [61], [62]. We improved

its efficiency by developing a systematization through finite tensors and their properties.

By exploring general tensor forms, we show how the kinematical behavior of finite integrals
links to anomalous contributions. Although violations are unavoidable, different prescriptions
affect how they manifest within the calculations. Interpretations that set surface terms as zero
make results symmetric for even amplitudes. Meanwhile, they lead to the already-known com-
petition between gauge and chiral symmetries for anomalous amplitudes. We elucidate this
point by studying Dirac traces and how they allow different results for the same amplitude.
Differently, an interpretation adopting one (specific) finite value for surface terms implies that
all trace manipulations provide a unique tensor. Although that preserves the linearity of inte-
gration, it induces violating terms for even and odd amplitudes. Our perspective on low-energy

implications offers a clear understanding of this subject.

The thesis is organized in two main parts. First, the chapters 1, 2, and 3 with general

character; second, the chapter 4, 5, and 6 where resides the application of the former ones.

In Chapter [1], we introduce a first set of notations that appear along the thesis, mainly
in chapters 2 and 3. The last section of the chapter is exclusively dedicated to introducing
reasons and meaning of arbitrary routings, additionally its connection with the same concept

that appear in the literature, however, with other purposes.

In Chapter [2| the general model is set, Feynman rules for vertices and propagators estab-
lished, and a brief and formal treatment of WIs is made. Then, the subsequent section lay down
with detail the integrand Ragfs and the integrated Ragfs, for arbitrary masses also. The next
section handles in the diagrammatic level the WIs and how they relate to Ragfs. It ends with
three necessary conditions, connected to Ragfs and translation symmetry, for WIs to hold. The
last section constructs a general and symmetry independent low-energy theorem (LET)
and discusses the WIs from a kinematical perspective. The deduction is made for arbitrary

even dimension, in the course of chapters 4, 5, and 6 it is specialized to the appropriate context.

The Chapter (3| is the computational powerhouse of the thesis, in there we return to the
subject of arbitrary routings and argue for and about the strategy of analysis IReg. The chapter
is the longest one because it furnishes quite specific cues to actually perform computations with
the strategy, beyond the problems studied in the thesis, e.g., gravitational anomalies. In section
, a systematic for generalized surface terms is approached, but we need only the most simple
structures in the subsequent chapters. In section (3.4]) we introduced a basis for finite functions
and an efficient organization in terms of tensors resembling Feynman integrals. Then the next
section is essentially examples of computation and application of notation, it can be left aside
in a first moment. The practical results about reductions or recursions for finite parts, enabling

all operations for verification of Ragfs, are developed in section (3.6). After that a dedicated
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derivation of a class of tensors we called sign-tensors is performed. Finally, we discuss some
features of traces that will appear in the remaining chapters applied to particular amplitudes
and dimensions. All derivations about finite parts where done in such a way they are valid
for multiple masses and general dimension. The chapter has more information than what is
necessary to follow with the investigation.

Then the second main part starts with Chapter [4l It applies the results of previous
chapters specialized for equal masses in two dimensions for AV-V A correlator. The connection
with even amplitudes permits a simple comparison of Ragfs for even and odd amplitudes.

The Chapter [5| handle amplitudes in four dimensions, AVV-VAV-VV A-AAA. 1t is the
most detailed application of the tools developed in the first part. It has at least one explicit
example for most operations performed. The objective is to allow the reader to reproduce the
conclusions. The low-energy theorems are replicated in relation to the general results in (2.3)).
Two exclusive sections are used to connect them with linearity of integration. The last section
of the chapter discusses some features of symmetry violations and violation of linearity. It ends
with a series of conclusions and comments about application of the methods for analysis of odd
tensors applied to other types of coupling.

The Chapter [6] extends the analysis to two four-point amplitudes, AVVV and VAAA
emphasizing the general validity of the investigation. This chapter, again, ends with partial
conclusions about how the tools apply to other types of coupling.

Finally, we conclude with Chapter [7}, summarizing our findings and discussing one partic-

ular direction for future investigation.

As a guide for consultation we have the appendices: the finite functions and their reductions
that are needed in two, four, and six dimensions are presented in Appendix Appendix
and Appendix These appendices are a faster way to verify the results in dimension
specific chapters. The Appendices and contain subamplitudes needed in four and
six dimensions. The last Appendix demonstrates a proposition about traces alluded in
chapter 5.



Chapter 1

Notations, Conventions, and
Preliminaries

"The difficulty, as in all this work, is to find a notation which is both concise and
intelligible to at least two persons, of whom which may be an author"—P. Matthews,
A. Salam. Mod. Rev. 23 (1951) 314.

This chapter introduces a labelling system for tensors such as Minkowski vectors, met-
ric tensor, Levi-Civita tensor, Dirac matrices, their products, and characteristic features like
(anti)symmetrizations and hermiciticty in the first section. The second introduce a notation
for the integrand and integrals, seizing the opportunity to digress over the uses of the notation,
some of which appear in the investigation. Finally the third section will have an extensive
discussion of the artifice of arbitrary routings. That section is an intermediary step between

notation and the investigation per-se.

1.1 Indexing, Tensors and Dirac Matrices

First and foremost, the Riemannian manifold which refer any assertion in the body’s text is
the Minkowski one: the pair M? = (R?, g), where g is the metric tensor whose expression in an
orthonormal and coordinate basis is diagonal, ¢, = diag (1, —1,---, —1) of signature (1,d — 1).

The sets of natural, integer, rational, real and complex numbers, N, Z, Q, R, and C, col-
lectively denoted by F, will be understood as containing the neutral element of addition, when
the zero need to be excluded it is indicated by F, := F\ {0}. The units are the natural system,
c=h=1.

Adopting some labelling system that has an alphabet whose members are Lorentz indices,

namely
£= {aa/Ba’ya"‘7057176717"'/'6717]/71,"':HEN*}a (11)

and the set of sequences or strings of finite length denoted by £* = {I |I: N — £, |I] < oo}
with a product operation of concatenation or plain and simple juxtaposition, £* x £* — £*.

For example:

L= (pys ) = papia, I = (1, @2) = ara, (1.2)



2 CHAPTER 1. NOTATIONS, CONVENTIONS, AND PRELIMINARIES
then we have their concatenation as

LJ = (M17M27041= 042) = HqHoQ1 0y = [h19002. (1~3)

Let it be the string of indexe I, = (uil, e ,pin) = i Myt My, = Miyiyenq,» Which in
principle is ordered, but the objects indexed by it may have symmetries, that will be pointed
in a moment, which in some instances work just as a set of indices. The empty string will
denote some scalar and the length (or depth) of it is given by |I,,| = n. One author, R. Penrose,
in Spinor and Space-time V.1 [TT], uses the term composite index. The importance to us is
capturing the permutation and degeneracy features of their host objects. That author uses a
more sophisticated structure, for us the indices will be just the components of the objects.

In a sequence of examples we shall introduce the other objects that are necessary. Let us

begin by the very metric tensor: defining a symmetric tensor composed of its tensor products

as follows
. 1 -
9, + = onp Z Hg“o(2i71)a(2i)’ (1'4)
UESgn =1
Jlon = YGo(lzn)s o (Izy) := Ho(1)..0(2n)y O € San, (1.5)
where the permutations o are the set of bijections o : [1,n] — [1,n] := {1,...,n}. In the

formula above we can notice the merging we do with the indices Gt iy = Itto(aio1y oz -
That action is not a obligatory and it is used as a device to shrink some expression or to
avoid repetition of symbols. The factor (2”71!)_1 in the definition is to cut off the degeneracy
that summing over the (2n)! permutations have. Hence, what we effectively have is a fully
symmetric tensor with just the independent monomials which in this case are in number |gy, | =

(2n — )!' =T], (2i — 1), the double factorial.
Example 1.1.1 For four indices, 1y = j11434, we have

gI4 = g“1234 = g/‘12gﬂ'34 + gﬂ139ﬂ24 + g/l14g/—l423’ (1~6)

The next notational topic is traces of strings of Dirac matrices. They differ from the

expression above by some signs and a factor, all given below. But first the definition:

(VsV}, = 200,15 Y€ {0,--,d—1},7,,1€Mat (242,C) (1.7)

and we will omit reference to the identity matrix in general. The products of Dirac matrices

can then be accommodated in our notational scheme as

e = Vg = Toa Tug -+ Ty (18)

Note that the order of indices in the string can be read from the notation used in the definition.

The ordering can be read by context or by convention as we shall do soon.

1'We shall use interchangeably the notation for sequences: (ui)izl = (fgye o fby) =y ooy = g -0 =10
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The traces of those strings obey the formulas

tr (7, +1) = 0, For even dimensions (1.9)
_ 1 -
2 d/ztr (71271) - onpl Z Sgn (U) H g#a(mq)ﬂa(zi) - pf (M) ) (1'10)
" 0E€Say i=1

The parity function sgn (o) is —1 if o is a odd permutation or +1 if it is a even one. The
last equality express the result as a pfaffian of a matrix. For a antisymmetric matrix of even
dimensions the determinant can be written as the pfaffian square detM = pf? (M). The

mentioned pfaffian satisfies a recurrence relation

2n 2n
pf (M) = Z (‘DHJHH(%J) ai;jpf (My;) = Z (—1)1 ay;pt (Mii% (1.11)
J=137#i =2

where 6 (i — j) is the Heaviside step function. This is the recurrence relation for the traces, and

if one sets the elements of matrix M in the form

9ij = Guin; = uyy » (1.12)
0 g12 g13 e 91,20
—912 0 g23 T 92,2n
— . _ tr (712n)
. : : 0 92n—1.2n
—J1,2n —Y2n—1,2n 0

there will follow immediately the trace formula. The book of Caianiello, Combinatorics and
Renormalization in Quantum Field Theory [79], contains more information about the uses of
pfaffian in diverse themes of QFT. These remarks are being pointed since in the article [80]
there are results which are just the beginning of more efficient way to compute lengthy traces

and by different method the Kahane algorithm in [81] and generalization by Chisholm [82].

"The proof of our final result is long and tedious, and even the statement of it is

fraught with notational difficulties. We therefore explain it by an example.."—R.
S. Chisholm.

The quotation does not mean we will endeavour in matters related to algorithms for traces
or detailed and completely formal demonstrations in any subject we enter. However, following
the spirit of the quotation we will try to exemplify our assertions and definitions as long as

possible. Therefore, one example follow.

Example 1.1.2 Take v, =7, , its trace reads

1234
—d
2 /2tI' (714) = g#12g#34 o g#lsgﬂu + g#14gﬂ23' (114)

About the common tensor appearances there are the epsilon tensor and antisymmetrized

products of Clifford algebra generators. For the latter one, we have the definition:
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Definition 1.1.3 The skew-symmetrized or antisymmetrized product of 0 < n < d Dirac ma-

trices is defined by

1
V) = n! Z sgn (o) Totn)r O (I,) = Ho(1)..0(n)- (1.15)
’ O’GSn
For d dimensions and n > d, vy _, = 0. Since the tensor rank would necessarily ask for

repetition of the numerical values of the indices in all components. For us the set of indices
of some tensor are what they are, natural numbers. The empty string Iy denotes the identity

matriz, v, = 1.
To illustrate we have an example.

Example 1.1.4 The most simple one has two indices, or the commutator of the generators:

1 1
2] = Vo) = 5 Virs = Vo) = 5 Vs Vi) (1.16)

About the signs, see the trivial fact that follows from the definition itself
Y = sgn () 470, (1.17)

more caveats in the following.
For tensors that will turn up as numerators of integrals studied, numerators which are tensor
powers of K! = k" + k', we define:
In I v v n __ V12...n
Ky = KUK Kot = Koy (1.18)

In = Vijig-ip>s i= ilig s Zn (119)
Notice that they are not symmetric for general i,

Kin = K # Ky # K, (1.20)

but when the sequence i = (7,)]_, is constant we just keep that constant as label, e.g. i =
(1,...,1) for which Ki" =[], (k. + ki1, ) is the representation. Observe that the particular

greek letter used and its placement to represent the tensor is largely an open choice.

Remark 1.1.5 Now a moment for commentary and fixing some directions. A reasonable for-
malization though possible would tmply too much energy spent since we only want a notation
to shorten expressions and manipulations without loss of information or track of terms, signs,
and factors. With this in mind we also adopt the following: Capital upright Roman letters
will be employed for strings of Lorentz indices. Boldface lowercase Roman letters will represent
multi-indices and other vectors but not Lorentz ones, in the lack of any explicit statement or

convention to the contrary.
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It is not hard to grasp nor simple to confuse—the indexing system.

We must be careful when the strings represent contractions, in each case the same letter and
number of indices must be adequate, and the relative position, like when the string is developed
in the normal notation. In general, when no more than one string is contracted we use the
letter C for the string and v for its indices—remembering that this is a choice, if needed other
letters are employed. An example of contraction will come when the chiral matrix enters the
scene and is defined also.

As mentioned in the beginning the string of indices has naturally the concatenation product,
IT = W1y Cd—r = UVi.d—r, Ier—r = MU1.pV1d—r- (1.21)

The product is not commutative in general, and as example of behavior attached to some object

we have er,¢, . = (=1)“""eq, 1. This follows from the definitional property

d—r

e, = sgn(0)eoqy), (1.22)

2=l g =1, (1.23)

Not all objects own such high symmetry, the role of the strings is to abbreviate in diverse

forms the indices at play. We assume the indices of the indices in the sequence

In = Vi <ig<in (124)

are in ascending order when the objects are fully antisymmetric and nothing more is said about.
The notation will be allowed to be plastic enough to point out the important parameters, or
operations, and assertions aimed at.

Clifford algebra generalities, returning to the subject of Dirac matrices. They are generators
of an irreducible matrix representation of a Clifford algebra. For it we write down an important
property they have, grading. For more informations consult the book by F. R. Harvey, Spinors

and Calibrations [88]. As a vector space the algebra may be written as
d .
Cl g1 (R, g) = P C1Y, (1.25)
i=0

where the 7 in the 7** summand in the direct sum is the grade of the vectors in that sub-space.

It corresponds to the number of the Dirac matrices being skew-symmetrized
C1% = spang {fy[m} ;Y € Mat (2d/2, C) , (1.26)

and their dimensions as vector spaces are given by

d
dim C1 = <‘j> dim Clyg_1 = ) (f) =27 (1.27)

i=1
The highest grade sub-space is one-dimensional, its only generator is the chiral matrix

defined as
id/2fl G id/2fl

ViV -d/2—-1
Ve T gt = g SV =i

YoVt Vd-1- (1-28)
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I call the reader to note that the last equality has explicit space-time indices appearing, it is
the product of all generators—Dirac matrices. In even dimensions the chiral matrix as defined

above has the properties

H=vs =1 {1.7.}=0Yue{0,-,d—1}. (1.29)

The hermiticity property is representation dependent since hermiticity properties of the gamma
matrices themselves depend on that. Any result derived assumes a representation unitarily
equivalent to one that satisfies
Py’ =M,
as the Dirac, or Weyl ones.
The Hodge star isomorphism is given by multiplication with the highest grade element
[Cd—r]
_ar(r—1)+d/2—-1:Car )
=i —_ 1.30
Here we can see identical strings C;_, accommodated in the form of contraction, again, and
accompanying the free indices string I,.
In this next step we have other types of tensors that appear in chapter |3 and which are
formed not only by metric tensors. We are going to employ a notation similar to and first intro-

duced in [85] by Passarino and Veltman, and thoroughly used by other authors like Davydychev
and Tarasov in the refs. [86, [87].

Definition 1.1.6 Multivariate symmetric tensor. Working with fully symmetric tensors T;,
whose rank maybe be bigger than two, we denote a fully symmetric tensor with unit normaliza-

tion and formed by their tensor powers as
ﬂnry“g”WP;|n:§:;J%mmqﬂﬂ; a; €N (1.31)

the set of its indices has depth |I| (number of indices present) as given above. It is the sum of

all independent monomials with a; copies of T; all in product and fully symmetric in |1| indices.
To better grasp the definition (or the only way to this) let us work out some examples.

Example 1.1.7 Choosing T, = p, and T5, = g

I3
{[Tl]l [TQ}l} = {[g] [p]}13 = gM12pM3 + g,U13pI~LQ + g#ggplh = kfg (132>

Another tensor with the same choices, but having one more factor in one tensor,

271
{[g] [p] } b= gﬂ12pﬂspﬂ4 + g#13pH2pH4 + g#14pﬂ2pﬂs + gN23p#1p#4 + g#z4pﬂ1pﬂs + gﬂ34pN1pM2
2
— K=K (1.33)
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The variety of expressions are to illustrate the logic invoked by the notation. In the previous
tensors, furnished as illustration, we introduce the notation {kf,, kfj} that is a particular case

of an adapted notation when metric and only vectors appear.

Definition 1.1.8 Let it be u,v € R? then we define

T

s 1 s+r 2t—1
Mo = 2t!slr! Z {[H“ﬂam] lH ”Nam] [ H Iho vy rq+1) (1.34)

UEST+S+2t =1 =r+1 l=s+r+1

r,s,t € N

In the expression above we have a fully symmetric tensor with u appearing s number of times,
v appearing v times, and the remaining 2t indices are carried by metric tensor and then the
sum runs over (r + s+ 2t)! permutations. To end, there is the factor in front which enforces
any independent monomial to turn up with unit coefficient. The reciprocal of that factor is the

number independent of terms as well. Note San Serif font is used for k.

The connection with the notation of [86] 87] is expressed as
s J" s r n—r—s HaBn
b = { " ] ) (1.35)

where |m] is the closest integer less than m, the floor function. Note we suppressed the vector
u = k; just keeping its index and dropped the square brackets. In our notation we must infer
the number of metric tensors, which is easy in any case, and the power-like appearance reveal
its efficiency in time. This notation was mainly construed by T. Girardi and L. Ebani in their
Ph.d. investigations [90, [89]. This tensor notation can be used for more than two vectors, it

has at most three layers

AJTAZ?... AT The tensor powers
H1-pj<—The index set :

The readiness to write some expressions justifies some of our notational devices, for example,

the 2n dimensional traces

tr(v,7m,,) = 2"(=i)" e, (1.36)
n An+1 a+b+1 a 2n
tr (’Y*’YIQTL+2) = 2" (—1) " Z (=1) ot TS (LB 1251 = (:u’c)czl,c;éa,b' (1.37)
b

a<<
a,be(1,2n+2]

These formulae will be demonstrated in section (3.8)).

This next content has the nature of an appendix, however, it is included here to exercise
the notations. The Schouten identity: It is the fact that a fully antisymmetric tensor of rank
d + 1 in d-dimensions must be identically zero. Consider the sequence of indices I; = (ui)le

and a vector V), the notation for the identity is given as follows

1
5[Iqud+l] = (dTl)' Z sgn (O') ga(ld)VMU(LHn = 0. (138)

O’GSd+1
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Only cyclic permutations are necessary, let us find it. For each permutation with V,,_ (@ fixed

there are d! terms which can be brought into the form

V.., (1.39)

sgn (0) Elig(1)-+Ho (i) Heo(d) Vﬂa(d+1) = TCu i a1 Big 1B

since it is equivalent to a transposition and any transposition has odd parity. Hence, we may

write

d
Z sgn (o) 5U(Id)VMa(d+1) = d {EIqud+1 - Z €Si1#d+1sdivﬂi} =0 (1.40)

UESd+1 =1

Sict = ()5 Saci= (o)l ity (1.41)

Permuting f1,,, to the right of S;_; and concatenating them we get j15,1S4-; = (=) " Sy it1,

then by transposing the strings S; 1S, ;11 = (—1)(i_1)(d_i+l) Sa_ir15;_1 follows
Si_ludJrlSd_i = (—1)i(d7i)+(i71) Sd—i+1si—1~ (1.42)

If 0 appear as the length of the string, it means the empty string. Putting together, simplifying

some signs and including the first term, we get

d+1
i(d+1—1
(d+ 1) ep, Vi = > (D) es, s Vie= > sgn(0)coqy Vi =0 (1.43)
i=1 0€Lg41

The sum reduces to cyclic permutations and if d is even, the sign is always positive; but
in odd dimensions we have an oscillation due to (—1)"*""" = (=1)*“. Being the total result
vanishing, the normalization does not matter, thus, we shall always write for any tensor carrying

an additional set of indices A|; = («;)._,, the following expression
|7 3l g

eJ’

8[1dVA

Hd+1] =

(1.44)

The indices in A|; may be in contraction with the antisymmetrized ones.

Example 1.1.9 In two dimensions a Schouten identity with one contraction can be written as

v V1 V1 vy
Elu1s ‘]2,1/1] = Euyy ‘]271/1 + Evip ‘]2,#2 + Epgri 2 0’

the meaning of J3** will be established in .

1.2 Integrands and Integrals

Rather late than never, let us consider some rational functions, Feynman integrands such as

K gt
= . 1.4
(K2 —m? +i0%) - (K —m2 +07) (1.45)
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In the numerator we have the tensor powers of K; = k + k; which were pondered about in the
previous section, i.e., it may be written as KIm = [T, K&, when it is convenient to do so.

The denominator factors receive the notation

Di= (K} -m}); Di..., =]]Di, (1.46)

s=1
Note that we have suppressed the prescription +i0" with the understand that masses carry
a negative imaginary part responsible for the analytical structure of the amplitudes. We may

also use a set notation sometimes D; = [[..; D;, where I = {iy,--- ,i,} is some appropriate

iel
set of indices.

Without lost of generality, we can bring all indices in the integrand above to a reference
one. By using K, = Kj + (k, — k;) we may write any of those rational functions as linear

combinations of y ., .
B KMo gk B Klm

jIWL — —
" HZ:I Dbs Dbl...bn ’
we just require that a € {by,...b,}.

(1.47)

From that, and obeying a logic explained in the sequel, we define their integrals as

. dik  Kl»
flm:/ dk [jim z/ L 1.48
Rd ] c(d) Dy, .., (1.48)

whose normalization of the measure has a number of conventions possible {c (d) = it%?, ¢ (d) =

(2m)*% ¢(d) = (2m)*,---}. Each has its advantages and can recovered quite simply. We
will commonly choose the first in generic derivations, ¢ (d) = i7%2, because it eliminate the

common factor i/ (47)"*

that appear globally in integrals, mainly in the computational chapter
However, in some chapters we shall use other conventions, but it is indicated in the begining
of the chapter what convention is adopted.

Here I call attention for a common usage where the integrand s identified by a lowercase
letter and its integral gets an uppercase letter. This is going to happen with the green functions

as well. The function of the overbar in notation for integrals will be discussed in chapter

1.3 External and Internal Coordinates: Arbitrary Rout-
ings

This section has the heavy duty of motivating the, implicitly introduced, labelling of the in-
tegrals and amplitudes to be studied in the majority of the thesis. Some parts of this section
uses a notation that will not turn up elsewhere; it may be understood as a standalone section,
but integrated to the rest and indispensable in a certain sense.

In the sequel we shall handle sequences of distributions corresponding to free propagators
in perturbation theory. As is common, the Fourier transform of these objects are better suited,
since in position space they involve roots and Hankel functions, but are rational functions in

momentum space.
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In discussing the Fourier transform we try to motivate the device of arbitrary routings,
which appear in the literature as the name of dual coordinates among others. Furthermore, we
seize the opportunity to talk about the recurrent theme of translation invariance.

Let us start by considering the sequence of vectors

r = (3717 s 73371) = (xi)?zl ) q= (Q'L):L:]_ ) r= (Ti)?zl ) (149)

d
Tiyqiy T & ]R,

where x will denote position space and ¢, and » momentum space. A graph is going to appear
soon. Consider a sequence of functions (F;);_;, which depend on relative coordinates z;; :=
x; — x; arranged in a chain Fy (x12) Fo (223) ... F, (Tpne1) and identify x,.1 = 21 to get a
cycle. This is a typical object of our interest, the string of propagator-like functions. To lead

it to the momentum space we Fourier transform it:

= H Fi(z); zi=Tii, (1.50)
(rz) « =) iz (1.51)

Fi(r;) = /Rddrie""'ziFl-(zi), (1.52)
S () :/ arexp (i {r,2) [ £ (0, (1.53)

where the measure in R"*? is expressed as d"r = [[}_, dr;, together with the abbreviation dr; =
d?r;/c(d). The global factors in this part will be suppressed.
Having written each factor in term of its inverse Fourier transform and performing a Fourier
transform in the whole string of propagator functions, there follows
S (q) :/ d"ze’ @9 g / d"r / d"zexp (i (x,q) —i (r,2)) [1 F; (r:) . (1.54)
Rnd Rnd Rnd =1
Then, in the exponential’s argument, that is explicitly given as
(x,q) Zrl T — Z i Tiitls (1.55)
=1

we split the second summation, use the modulo n labelling of = variables (r1 = x,41), and shift

the summation index upwards to get

n n n—1 n n
E Ty Tii+1 = E ;- XT; — E Ti'fL'i+1—|—Tn'I1 = E A E Ti—1 " T;. (156)
i=1 1=1 1=1 i=1 i=1

With the understand that rq = r,, being that just a convenient convention to write a summation

with no special term. Therefore, by r; ; := r; — r;, we may write

(z,q) sz — Tii1) - (1.57)
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Back to the transform we get

S = /
- L

Now we achieved the point where we can free ourselves of most but one integration. The

(1.58)

Mi :]: Il :j:

]
<
S—

—

o

3
8
—

)

»
o
=
8
S

act of reducing the momentum constraints require a sequence of choices, which we want to

elaborate over. Let us start by an example.

Example 1.3.1 To reduce the integrations in the following expression

S(q) = / dry...dr,d (g —710) 6 (@2 —791) - 0 (G — Tome1) By (11) ... Ey ()
Rnxd
we may begin by the integration in r1 which will asserts that ry = r, + q1. Then continuing by

integrating (just integrating) in the sequence 12,73 ..., we will get

S(g) = 5(611+Q2+-..+qn_1+qn)/dd7“n (1.59)
R

Fl(Tn+q1)p2(rn+q1+q2)--~Fn71<rn+q1+"'+Qn72+qnfl)Fn<rn>-

Note the very last integral escape, and we get the delta constraint over the total sum of
the variables ¢;. We kept the label r, to differentiate of other options of integration. In the
end, that variable is a dummy one, which we shall make a convention latter. And we already
dropped the sum of all momenta in the last function in the string, F, (r,). And what about

other options? Let see one more example.

Example 1.3.2 Starting with ro whose constraint imposes ro = r1 + q2 and then integrating

3,74 ..., We get

S(q) =601 @) / driFy(r) Fa(ri+ qo) .. Fa (M4 ga+ 4 qo1) Fr (m — q1) -
Rd
(1.60)
Besides the dummy variable, we get a different integrand only by choice in the sequence of

operations performed.

The glaring similarity would be completed as equality by translating the variable of inte-
gration r; — 11 + q;. Before reaching this point, let us observe that the choices can assume

quite general forms. Starting the integration in r;,;, we get the expression

$(0.0) =) [ an [ 56+ 5 ) (1.61)

with the notational understanding of periodicity for labelling system, that means

4% = Gnti = 1 = Gn+1, (1.62)
4% = Gi—n — qn = Qo (1.63)
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Which simplify the work of writing the expression. Also observe that we put a label i in S (¢, i)
just to remind that, a priori, they are distinct functions of the external momenta {¢;}, which
is the role this set of variables play. If all strings of functions were absolutely convergent there
would be only one function.

As we have been mentioning, to compare any expression produced by the choices in the
order of application of constraints, one needs to actively use the shift transformation. At this
point it is introduced a tool for such aim, that will bring benefits and a cost.

Introducing an arbitrary set of coordinates {k;...,k,} and a defining relation with the
external momenta, ¢; = k;;—1 = k; — k;—1. For this relation to be valid for all ¢ € {1,...n}
indices, we are called to notationally work with a extend set {ko, k1 ..., k,}. Here we will not,

a priori, impose periodicity in k;. Then returning to the point, we write

S (k) = /R d {15[1 5 (riay — km-l)} lf[l B (n), (1.64)

and by shifting r; — 7 + k;, the argument in 0 (r; o — k19) — 6 (—7ro + (r1 + ko)) changes.
Now, by the convention of r; variables, ro = r,,, we keep integrating over r,,7r,_1,--- , 72, but
we do not assume the convention ky = k,, yet. The obtained expression is one of a general form,

one that starts integrating in any r,_1, it is given by

S(k) = (1.65)
= 5 (kno) /Rd dr, {H By (ro+ ki)} {innl By (ra+ ki — kn,o)} (o + ko)

=1

<

by the é constraint, ko=ky, L.
— / dro [T F (ro + k)
R4 i

The reason to not agree since the beginning in writing ¢ = k1o = k1, is because the
variables {k;: 1 <i <n} have the property that ki, + > . o kii—1 = ki, + ko1 = 0. The
sum telescopes to the difference of the last and first term. In other words they hardwire total
momentum conservation y ., ¢; = 0.

The delta distributions constrains the traffic of momenta through the vertices, since the
definition ¢; = k;;—; of the external momenta in terms of the internal ones says that the
difference of momenta in adjacent edges (when S in represented by a graph) must be the same
no matter the parametrization. The reminiscent overall delta § (ko) now allows to identify
ko = k,. It is the incarnation of total momenta conservation. But notice that momenta
conservations says nothing about the individual nature of the routings coordinates; moreover,
the parametrizations exemplified in terms of external momenta are all coded in coordinate
choices for k;.

It is important to point out the generality of the routings. If it is expanded the d-dimensional

delta distribution as

6 (i — q:) o (ri —aq) = o (Ti,(O) - %,(0)) SRR (ﬁ,(d—l) - Qi,(d—l)) ) (1.66)
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for in a next step reduce the constraints component-wise in each vector, we would not be capable
to account for the arguments of a general propagator function I’ with a covariant expression,
but k; can, because they are not covariant quantities. They are labels whose only determinate
values are their differences. For the experienced practitioner of the field this may sound trivial,
however, for the beginner these points perhaps may clarify some things.

Summarizing: In effect, we 'broke up’ the variables ¢; and distributed their pieces among the
‘propagator’ functions, hoping for their future reassembling and no other source of functional
dependence, all in an automatic manner. Such hope would be attained by translating the
integration variables. The arbitrariness of the routings, therefore, replaces the translation
symmetry, which would connect parametrizations of the internal edges by external momenta.
This means that the possible freedom of translational symmetry is codified in the arbitrary
choice of the routings. If such choices have no effect, we have the symmetry. On the other
hand, their appearance is symptomatic of a cascade of other symmetry violations. The effects
of this artifice of analysis will be deepened in the section handling extraction of information
from formally divergent integrals and or amplitudes.

Let us simplify and fix some little changes of notation (essentially used throughout the text).
The integration variable will be denoted by the letter k, and in general the expression acquire

a form like the following

SO = [ AbIR () B () (1.67)
Ki = k+ky ki€{ki,.. k},neN (1.68)

In addition, we shall drop the symbols over S , S and distinguish the Fourier transforms
from their conjugated transforms contextually, noticing whether the object refers to position

or momentum space.

Definition 1.3.3 The routing variables will have their difference denoted by

Pij = ki = kj; Zpi,i—l =0 pin+ 01 =0 (1.69)

=1

And its conjugate pair and generalizations
b
Py =ki+ki Pin.a =) ki (1.70)
a=1

Remark 1.3.4 In an amplitude p; ; relates with the external momenta very simply, we will set
Dii—1 = ¢, and use p; ; = pi; + pi; when necessary. As of the conjugate P, ; and its general-
1zation, only one is really necessary because they basically represent the arbitrary routings. We
can write the differences p is terms of the sums P, but not the opposite. Context shall bring

more information.
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In literature, e.g. [75, [74], some descriptions used to describe the attitude of employing
arbitrary routings are: dual variables trivialize the total momenta conservation, or make the
momentum conservation manifest, or hardwire the property. Furnishing an unconstrained way
to represent momentum conservation.

Dual variables are also called zone variables since we can divide the embedding of a planar
graph by regions (in particular 1-loop graphs are planar). The regions are constructed extending
external vertices to infinity, what divides the plane into a set of disconnected regions: the
external ones unbounded and the internal ones bounded. Then proceeding by associating a
vertex plus a momenta variable to each region, and connecting all of them by edges that crosses
the internal edges of the original graph only once. Next the momentum flowing in each edge
of the original graph are the differences of the momenta in the vertices of the "dual" graph [}
Repeating the procedure for the dual graph results in the original graph, but with the external
edges deleted. See this schematically in the fig. [I.1] below

Ry

Rl R() R.‘S \d

Figure 1.1: Dual Graph

Nowadays, the investigation of integrand properties per se, besides its integral, is a common
theme in high multiplicity as higher loop approximations of QFTs. Those investigations seek to
efficiently incorporate constraints in advanced computations for models like 4D N = 4 SYM in
the planar limit. For that aim, a series of new variables are introduced to treat amplitudes
like MHV, i.e., maximum helicity-violating ones. They are dual coordinates, spinor-helicity
variables, and momentum twistor variables to name the most salient ones, see 75, [78] [74].

Their objective is said to trivialize constraints like momenta conservation and on-shellness
for external massless particles, both in the case of momentum twistors. In the case of dual
variables new features are spotted as dual conformal symmetry and Yangin symmetry of classes
of integrals, the Ph.d. thesis about the subject from J. Miczajka [83] is a rich source about the
subject, in this author’s opinion.

Nevertheless, the investigations cited handle finite integrals: dual conformal symmetry in
massless integrals that are ultraviolet and infrared finite. Moreover, in the instance where there
is a need to regulate an infrared singularity the use of some type of dimensional regularization

breaks that symmetry, see the introduction of the article [76]E|.

2T have quoted the word dual because this graph is a little different from the formal definition of a dual
graph.

3The article is one of the first full application of dual coordinate device without even name it like that, but
is not the first the very first use of the device, this author could not find the very first occurence.
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Our objective will be other: to study the implications of resorting to the natural freedom
to route or label the edges of a graph by non-physical coordinates, like arbitrary routings (dual
coordinates). This artifice already appeared wholly in the work of O. A. Battistel since his
P.h.d. thesis in 1999 [47] and the paper, with M.C. Nemes, [70]. The context is the important
subject of anomalies, in particular the correlators of currents which are bilinears in a spin
one-half field, massive, and Dirac.

Being massive is not a conceptual downgrading, because the source of the massless-limit
anomaly may be understood when observed from the massive instance. Now we pass to the

model and our inquires.
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Chapter 2

Model and Amplitudes

To appreciate the consequences of a set of fields and symmetries, classically, we would have to
solve a set of partial differential equations that select an extremum of the action, plus a set
of boundary conditions for solution uniqueness. Whereas quantum mechanically, we formally
have a set of options to follow. For the past fifty years, Feynman’s path integral has been the
dominating method of going from a classical model of fields to a corresponding quantum theory.
However, the companion strategy of canonical quantization never dwindled in its usefulness
and insight. Today we have a symbiosis between both ideas, they are quite frequently mixed
in textbooks and research articles.

Let it be a path integral or canonical approach, beyond free field models, perturbation theory
is more often than not the weapon chosen to exhibit predictions for the models. Perturbation
theory is most useful when the first few steps reveal the important features of the solution, and
the remaining ones give small corrections. After classical tree-level effects, the most important
from a general phenomenological point of view are the one-loop corrections. They comprise a
functional which is the first power in the Planck constant, in the so-called loop expansion of

QFT.

The tree level is a given input, schematically:
Stassca[®] = T [8] = / Ar[L(2,P(0)2) (2). (2.1)
R

The Lagrangian £ is commonly a polynomial in its variables, and necessarily a polynomial for
a set of models where renormalizability is required. The polynomial in the partial derivatives
acts as P, (0) © = 3 cna,ja<n Ca0%®. For monomials of degree two in the fields (free part), the
differential operators are at most of degree two for bosons and one for fermions. The quantized

counterpart is symbolically given by

eiunancum — /dueisclassical‘ (2.2)

The classical model from which follows the amplitudes through some choice of quantization,

which we shall not discuss more than some general aspects, and the ingredients employed for

17
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the thesis can be, in generality, expressed as

d/2
S =T J] = / dz { Lpirac (w,{p)+ch [Tt e . (2.3)
R4 n=0

The fermion Lagrangian Lp;..c denoting the free part is given by
1 /=
*CDirac = EO = i'lvb (Z a - 2m> ’QD, (24)

where Ab_JB = A0,B — (0,A) B. The other terms correspond to the interaction action

d/2 d/2

Sint = ; /Rd dz (cFJIE(I)I”) = ; /Rd dzer [(@Fﬂﬂ)ln @In} ) (2.5)

The coupling constants are denoted by cr € {cs, cpcy,ca,cr cs, ... }. We will set them to unit,
cr = 1, since they do not participate in the deductions to come. Notwithstanding, they can
be recovered in any case. The fermionic bilinears, which some are symmetry currents, Noether

currents for a classical exact symmetry or an approximate one, are given by

Ji(@) = (W) (@); Tie {vp) =V 10 < k< d}. (2.6)
Where v, appeared in the definition (1.1.3). However, by the formula

Ca—r
-r(r—1)+d/2—151r0d7r7[ ol

TV, = ¢ Cd—r) (2.7)

one may adopted a restricted set. They allow to write basis of grade bigger then d/2 as chiral
matrix multiplied by the ones with grade < d/2. These identities may be used to compute

traces as well.

Definition 2.0.5 The vertices of our amplitudes will belong to the following set

Ti € {Vm) YV mg b = {1 Yoo YVoor YoV o0 Vi) VoV § » (2.8)

where the tensor ones appear in subamplitudes as do the lower rank ones. They will denote the

following currents

T I T T T T (2.9)

and the term current will be use for all of them.

Few comments are needed here. First, the set of bosonic fields are: scalar, pseudo-scalar,
vector, pseudo-vector or axial, and antisymmetric tensor fields. In the respective order, they

are denoted as
= (S(2), P @)V, (@), Ay (), T (2), T () (2.10)
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The labels that will appear as upper index of amplitudes will accompany the ones for the vertex

itself, but in our cases they will be denoted by
e {5, P, V,A,T,T}. (2.11)
In correlation with the fields the densities 7 couple to. Next step is the green functions.

Definition 2.0.6 Then the definition of the r-point(r = 1,2...) green functions, or correlators

of currents,

18— (2T {7, (@) 82, o) @} @) = ([, i @)
In the notation we have
F :Fl e FT = Plu-r; In = Il,a1 s Ir,aM n = Z;:l a;,

the sequence T' = (T';);_, will correlate with the sequence of indices that appear in the concate-

TAAVVSVT

wisonps » with I; = aBdonpt, the index n

nation I, = 114, - 1,4, €.g., in the expression
corresponds to the sizth vector vertex, pr both correspond to the seventh and tensor vertex, and

so on. The indices a, refers to the tensor rank of the vertex. The time-ordering operator reads

T(O (@) O (@) = X ges, TTm 020 — 250.,1))0 (20) -

Motivation for the Perturbative Expression: What follows is motivational in nature.
Motivation for the perturbative expression to be investigated. Abbreviating the formal measure

by dp,, = dipde) we write the generating functional

Z(®,n,1) = /duw eXpi/d Az [Lo + Lint + 91 + 7] . (2.12)
R

By standard manipulations, this functional can be written as
Z(é,n,n)zzg{ it [@ J( = ;)anm,n) (2.13)
n>0
and the free field generator as
Z (n,7) = exps /R o (00) Sr (212) 1 (7). (2.14)

Sp (x1 — x9) is the Feynman propagator, more discussion in the sequel. The formula above is

a compilation of a functional whose derivatives gives the green functions

Z[0] = (Z[®,n,7]),_ o= 'Zz L1y ) P (1) D (2,) (2.15)

" n>1

It can be used to compute our correlator

(—i)" 6”7 [®]

[T ) T () €
0P (1) -+ 0D (z4,) ‘

=0 B / dpu 70

(T (@1) - T (x0)) =
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These amplitudes are loop amplitudes since the composite current, bilinear in the fermion
field, obliges the propagators coming from the functional derivatives to have identical argu-
ments, in which case we have tadpoles, or to close in cycles. However, the cycles may be

disconnected. To obtain only connected amplitudes, we need the connected generator
['[®] = —ilog Z [®]. (2.16)

The traditional notation for effective action is employed, since by not integrating the fields ®
the connected generator will produce exactly the 1P| graphg'| The external edges, amputed by
the Legendre transform, are simply not there, ® are external fields. However, this is not loss of
information because by turning on interacting boson fields, the amplitudes developed here will
appear in that case with the same mathematical form, and that is our concernE]

Another way to reach loop amplitudes for the model is using the interaction-picture formula

QT T (@] 2) ~ (90| T{TTL, Jo () e T4 1 ).

Thereby, the first term in the expansion followed by Wick theorem applied to the free operators
produces the expressions we need. That means, products of propagators and vertices. We take

only the 1Pl graphs into account.

e Amplitudes Definitions

As pointed various paths leads to the cycle (loop) graphs or amplitudes here. In any case
we have our spinor propagator in momentum space as
K,—mi D

Reminding the K; = k + k; contains the integration variable and a routing. The amplitudes

S (1) = Sp (K;,m;) =

(2.17)

will start with their integrands
tr (kyky,... k) =tr[[1S(1)---T,S(n)]; T=Ty...T,. (2.18)

The string of indices I will receive its depth in context |I,| = n, however, the common attitude
is just express it as p,..,,- Note the convention used for integrals j,Ij, about the lowercase and
uppercase letters, is being extended here to the amplitudes. Therefore, the integrated amplitude

reads
r(1,...,n)= / dk [t (k k1, ..., k)] - (2.19)
Rd

Note we are stripping off any factor of i = v/—1 from propagators and vertices, plus setting

aside minus signs from fermion loop rule. All retrievable if needed.

!Graphs with only one connected component, whose number of connected components does not grow by
deleting one edge. B
2Keeping the sources for ¢ and 1) then

or _

_ _ or
F[@ib,w]ZW[‘P,n’ﬁ]—/Rddw[wnJrW]; =" 5

5 —
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Example 2.0.7 The n'™-rank and odd amplitude of one azxial vertex and remaining vector ones

tﬁ]_"/'.';‘;“: (1,...,n) = tr hﬂuls (1) Yy S (2) .. N, S (n)} (2.20)
Li = py; Th=A Tus=V

Its integral gives the amplitude
TAV-V — /R dk [tﬁf.ﬂ . (2.21)

The arguments are omitted in context. If the highest n-point expression being discussed does

not explicitly show its variables, assume it is (1,--- ,n).

All external momenta are incoming and in our variables they get coded as
pij=hki—kj =K —Kj; q=pii1; 4,j€{l,--,n}, (2.22)

the modulo n labelling is understood. They are represented in the graph of fig. ({2.1))

q2 = P21
q1 = Pin

TiT2 Ty

43 = P32

Figure 2.1: General diagram for the one-loop amplitudes of this work.

e Symmetries

Let us be direct here. Consider a more general current for two massive fermions J, =

¥, ['Y,. To have this coupling one needs a internal symmetry present, non-abelian in nature,
connecting different species of fermions of masses m, and my. In that scenario we would have

semi-conservation laws. Using the free field motion’s equations

. I -H

(15 - ma) ¢a = 0; ¢a(l a + ma) =0,
which are enough for our purposes, we derive the equations

auj;fab = i(ma - mb) Q_ﬂa% = i(ma - mb) Jasb (223)
_a‘uj;fab = i(ma + mb) Q_ﬁa/y*wb =1 (ma + mb) jaIZ' (224}
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That for us have the same status of symmetry. Equal masses imply vector current conservation
and vanishing masses in axial current conservation. We have introduced the feature of distinct
masses to elaborate over certain aspects of our derivations. All the results investigated can
directly extended to arbitrary masses.

These classical equations of motion, added to equal-time commutation relations, result in
Ward-Takahashi identites (WI) for the correlator of definition (2.0.6]). Formally, and for equal

masses, we have
ot (T (@) T (02) T (@) ) = —2im (T (@) T (22) T, (@) - ).
(9/”2 <\7A7u1 (z1) j;}; (22) - - - > - 0.

The dots represent other vector of axial currents. Our discussion of Wls is brief, since it will
be expanded in the very important section . For each of these correlators there are a set
of diagrams to consider in order to investigate WIs and this links to the concept of relations
among green functions (Ragfs) and linearity of integration. This prospects are material of the

next two sections.

2.1 The iRagfs and IRagfs: Relations Among Green Func-
tions

In this section we establish integrand Ragfs and integral Ragfs. The set of iRagfs are a set of
identities, as the set of IRagfs are equations. However one may wonder: equations for what
variable? For even-parity amplitudes IRagfs remain identities; nonetheless, in a class of odd-
parity ones they are equations, which admit only one solution, see the eq. for the answer
in four dimensions. Without more explications, let us elaborate a while.

Starting by a general n-pt amplitude
t (1,...,n)=tr[[[[uS(i)); T =Ty...T,,
i=1

where the vertices I' must carry Lorentz indices. The Ragfs are simply equations relating the
integrands first and then integrals of the amplitudes. Let us start by the slash g, i of a general

momentum, it can be rewritten as inverse propagators and massesﬂ explicitly

p?.j’h :p(i.j = Kl - Kj = SEI (i) — SEI (j) + (mi — mj>~

The artifice allows to relate green functions inside the classes of amplitudes, the relations are
just consequences of defined operations of algebraic character.
Let us approach a sub-string in an integrand’s amplitude, which is under trace operation

and with the cyclic labelling understood, i.e.

(m(), ko, So) = (mn, ky, Sn); and (mn-i-l; Enia, Sn+1) = (mh k1, 51)'

3Furthermore, it is similar to a WI for the tree level 1Pl vector vertex Ay
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With S; = Sp (i) to diminished the cluttered expressions. Let it be that sub-sequence of vertices

and propagators given by
TS (= D)8 () Ty S (i +1) - (2.25)

By contracting with péf i1, and focusing on ¢; ,I'}" first, we have two cases that we denote by V/

and A superscript, they are simply
[d'TY] = @y =St =S+ (mi —mia), (2.26)
[T = @™ =757 =757 + (mi —mis1) v, (2.27)
When inserted on the string they produce, for the a vector vertex, the following expression

1S [%“FL/] Silit1Siyn = TisiSicaliaSivya — TisaSilivaSia (2.28)
+ (mi —mi—1) T-18i-118:T41Si 41,

and for an axial vertex
[i18i1 [erﬁ] Siliv1Sim1 = Tic1Sic7.LivaSisn — Tict [Sic17.924] Sili1Sia
+ (m; — mi—1) ['im1Sim17,5i i1 Siga- (2.29)

For vector case one propagator gets reduced, and for distinct masses we have an additional
term where the scalar vertex replaces the vector one, V' — S . Whereas in the second case
transformations may happen. The last term of the axial contraction [2.29] will have the same
n-pt degree of the source amplitude, tensor rank diminished by one unit and A — P. The last
step is the sandwich

Sic17.5i01 = — (1 +2mi18;1) 7., (2.30)

that changes the string to its final, close to final, form

IS5 [er,ﬂ Silip1Sipn = TicnSica (L) Siga + (Ticay) SilipaSipn (2.31)
+ (mz + mi_l) Pi_lsi_l’)/*siri+1si+1. (232)

However, let us observe that the products v,I';;1 and I';_17,, in the first two terms, change of

nature and sign. The first behave as
Vx (Fil,Fﬁl,Fﬁl,Fﬁl,FﬁpFZl) - (le‘j-bFf—f-larﬁbrx-lari-br;ﬂ—l) (2.33)
and the second as
<Ff—1vF{il?Fz‘/—lvFil?FﬁlvFil) Ve <F£17Ff—1> _Fz‘A—p —Fz"/—pFiT:pFiTA) : (2.34)

Because the anticommutation with odd tensor-rank vertices. Thereby, the type of vertices may

produce a sum of lower point functions in some cases and changes of nature.
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In dimension d = 2, examples of non-trivial behavior are

q :tf}f: = [t°@)] + [t° (V)] + (m1 +mo) [t7F], (2.35)
Q' [t;‘z/ls: = [ts (2>] + [ts (1)] + (my —my) [tss} , (2.36)
Q" :t/‘jlp: = [t"(2)] + [t (1)] + (m1 — mo) [tSP] . (2.37)

Four our main amplitudes, decorated only with vector and axial vertices, we have the scheme

o=t (2.38)
(P [(F] = [ = D] = [ O+ (mi — (~1) miy) 7], (2.39)

Where |I] = n, || = n — 1, and the exponent ¢; = 1 for T; = A and ¢; = 0 for I'; = V. Tt is
possible to arrange the indices in ascending order, i.e. I | = Wy <jpecin_y With jo # 1. The
sequence of labels in ' and I'? can differ by a cyclic permutation just for the relation involving
contraction with ¢j*. Contrary to the general convention of Penrose [77], about contraction
with a index inside a composite one, I will left the contraction index p, implicit inside the
composite index I, ;. Then, the symbol I/ is the string with p; projected out, or its simple
omission g (tIn +1) =ty = t..z5... When it is absolutely clear that the particular index being
contracted is part of that string, which is not hard to observe in context.

A sufficiently complex example illustrates better the matter of Ragfs. In six dimensions,

d = 6, we handle boxes which have the following Ragfs: for the single axial box

Y] = [y s )] - (6 (1,2,8)] 4 2m [0V, (2.40)
ph [V = [, 3,4)] - t;‘lvsf (2,3,4) , (2.41)
Pl [tV = [V (1,2,4)] - tﬁl‘:f(l,BA) , (2.42)
P [t = [V (1,2,3)] - ﬁg:'(1,2,4) , (2.43)
and the triple axial one
P ] = g 2,0 - 640 (1,2,3)] (2.44)
phe [ivasa) = —tl‘jl‘;f(l,3,4)} . [t;‘éf (2,3,4)} +om [tm‘“‘ , (2.45)
plhy [ivAasa) = [prav (1,2,4)} - [ng(1,3,4)} +2m [txlg‘ff‘ , (2.46)
P s = (e 1,2,3)] = [00AY (1,2,4)] + 2m 1404 (2.47)
One more case, for distinct masses. Consider the (n + 1)-pt amplitude
Y =t 170 S (107,,5(2) 7, S0+ 1)) (2.48)

its first contraction reads

¢ [V = [tfg"* (i,...,n+1)]—[tﬁ"*lf‘(a(1,...,ﬁ))}+(m1+mn) [tﬁf"], (2.49)
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or permuting the vertices in the second term of the r.h.s. to get

a T = [T A )] = T ) ) [47] L 250)
where the permutation means o (I1) = 2. n1- FOr the other vector vertices, we have

@ [0 = [T )| = T ) ) [ 251)
2 < 1 <n+1.

The vector of labels has the scalar label S in the i*® position, i.e. (I';...T, 1) = (A, V..., S;, ... V).
The string I’ just omits the index y,;, and the hats in the arguments means the omission of the
corresponding propagator. The same reasoning applies to even amplitudes, any perturbative
green function carrying at least one Lorentz index have a set of Ragfs.

The set of relationships discussed we will call integrand Ragfs, abbreviated as iRagfs. After
integration, we denote them as IRagfs. These identities have non-trivial behavior in integral
form, IRagfs. They embody the linearity of integration when the operation holds, and for non-
negative power counting they stand for the linearity of the functional which replaces it. Any
regularization known assumes it can be distributed linearly over sums of terms it regularizes,
if not explicitly at least implicitly.

The TRagfs for the specific class where I'; € {A, V'}, now reads

X -1, B N Cj %
@ [TF] = (787 =) — (75 ()] + (ms + (—1)° may) [T, (2.52)
Where ¢; =1if I'; =V and ¢; = —1 if [, = A; what means that for vector vertices and equal

masses the last term is not present. The relation with WIs, and anticipating the fact that if

the TRagfs cannot hold Ward-Takahashi identities either, is the matter of next section.

2.2 TRafgs and Their WI Counterparts

A correlator, coming from wick contractions of free fields, has its 1Pl contributions given by

o(1 Fa‘ n
<j (1‘1) 1PI Z Tuo—((l)) #a((1) (2‘5?’)

€S/ Ln

Hence, we will adopted the notation for the sums of crossed channels as

T —To..m o(1)Lon
Tt = N T = Y T(e(D) o (D). (2.54)
UESn/Zn aGSn/Zn
where o € S,,/7Z, indicates the sum over non-cyclic permutations. For targeting a discussion
of WIs we must treat the complete correlator. Therefore, in a sequence of fairly detailed
arguments, some of which are basic ones, we finalize with the proposition that all algebraic

relation are needed to state a WI.
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Aiming some illustration we will route a specific expression by external momenta, the ex-

pression is an arbitrary 3-pt amplitude,

<H?:1 [’;b (.I’Z) Fﬂﬁ (.%’Z)} >1PI = TF123 (.171, T, l‘g) + TF132 (1‘1, s, .Tg) s (255)

where the position space representation is the starting point (as of now I am not touching the

definitional status of the representation). They are given by

TP123 (331, T, Z’g) = tr [Fls (3312) FQS (1'23) FgS (5[)31)] s (256)
TF132 (11:1, xs, SL’Q) = tr [FlS (.Tlg) ng (.7332) FQS (Igl)] . (257)

We see that any simultaneous permutation of (x;,I';) return the same two combinations. The
sum of their Fourier transforms instructs us to compute the same graph where the vertices and

momenta are permuted, namely

TFlHFQFS (qh 42, Q3) = TF1F2F3 (qlv 42, Q3) + TF1F3F2 (ql? 4qs, q2) . (258)

Any simultaneous permutations of (g;,I';) does the job, then, if nothing else interfere, this
should in principle produces the same result. That is true for convergent expressions.
Let us go deeper in this point. Employing the formulas of the section in examples|1.3.1

and|1.3.2, about reducing momenta constraints, and dropping the overall momenta conservation

) (Zle ¢;), we get, by application of eq. 1) the following possibility
F [TF123 (l’l, T, 1'3)] = / dktr [F15 (k’ + ql) FQS (k’ + a1 + (JQ) FgS (k’)] . (259)
R4
On the other hand, through ((1.3.2)) applied to the second graph follows another independent
possibility
F [TV (21, 33, 72)| = / dktr [I1S (k) T3S (k + g2) T2S (K — 1)) - (2.60)
Rd
What is equivalent to reduce the momentum constraint in different order, and independently
in each expression.
Motivated by this observation, that the arbitrary routing of amplitudes are also independent
for distinct graphs differing by a permutation of the external data, i.e. vertices as a whole with
its internal symmetry operators as well, we write the complete arbitrary expression for the

amplitude

TR (), (L) = 172 (ky, ko, k) 4+ 67192 (I, o, Is) (2.61)
IO (k)L (1) = T70% (o, ki) + T (I, o, Is) - (2.62)

For the direct channel we have

(1,92, q3) = (P13, P21, P32) »  Dij = ki — kj, (2.63)
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and for the crossed channel

(QIv q2, Q3) = (113, l32, 121) ) li,j =1 — lj- (2-64)

However, there is not a priori relation among arbitrariness of coordinates in one and in the
other graph. If the graphs are strictly convergent this distinction is empty, since translation
invariance sweeps out the very possibility of dependence on another variable but the kinematic
data. Hence, we have introduced the property that translation invariance, or lack thereof is
unrelated through the graphs that contribute to some correlator. Even though their differences
are related, the independent summations k; + k; and [; + [; varies independently.

Let us pass to a wider discussion, for higher n-point functions, where this simple pair of
graphs gets more aspects. For n! connected cycle graphs, the n cyclic permutations of external
vertices of a particular graph return the same expression due to the trace, hence, only (n — 1)!
are independent. Moreover, the set can be grouped in (n — 1)!/2 pairs whose only distinction
is the orientation of the fermion line. Any permutation of some reference graph with one fixed
vertex, say the first, will not be a cyclic one and it will have a pair. That pair come from

considering the permutation
1 0 N
o =\1 . o , (2.65)

which reverses the order of the vertices, and is seen graphically as the original permutation,
o, but the graph has direction reversed from clockwise to anticlockwise direction. To see this
more clearly, the amplitude corresponding to Tll; with fixed first vertex has one permutation

contributing as

NI VI
1"110’(1717‘,1) ' (k17 T kn) - 9 (2.66)
i = (i, @i,)
(Q1, (%);:11) = (PLm (pj,jfl)?:2> . (2.67)
Whereas the reversed permutation is represented by the anticlockwise expression
7‘/n—1

Flrz‘n7 o ) ~

IloTU(Ii,l) e l) = , (2.68)

31 ir= (T, q)

(@1 (@) yeny) = (ll,n?aj:j*l)?:Q)‘ (2.69)
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These simple and standard considerations have non-trivial consequences in scenarios of
non-negative power counting. For starting let us consider what happens if the amplitude is
convergent. In that case we use the external momenta and the previous expression to write the

following, simplified for o = id, expression

n

T (g, (0)1) + T (a0 (@)2,) = (L+ ()™ @) = (270)

We must now pause to make some considerations, and explain the 7 (I') written in the last
equation. In even dimensions, modulo similarity transformation, there is only one irreducible
representation of the Clifford Algebra, the Pauli theorem in four dimensiong’] This implies
specific connections among the vertexes, propagators, and graphs having a closed loop. Then
the perturbative set of graphs contributing to a particular amplitude can be related and con-
strained. Translations of the internal momentum are essential here. That information in turn
is codified in the set of surface terms, see section for how we handle these objects.

Continuing, by defining new matrices through

Y= =t =t = 2001, (2.71)
it is seen that they satisfy the defining product of the Clifford algebra. Therefore, there are
matrices connecting by similarity transformations the two representations with the starting

one, namely
Civ, 01t =49 (2.72)

Both (. exist for even dimensions, however only one exists for odd dimensions, C'_ for d = 4k+3
and C'; for d = 4k+1, k € N. Focusing in the negative sign, the matrix is the charge conjugation
matrix and we just call it C'. In dimension even d = 2n the two types of vertices, tensor and

pseudo-tensor, behave under conjugation by the matrix C' as
- 1(1+1)/2 - I(1—-1)/24n T
CypyC ' = (-1) v/ Y; and Oy, Ot = (=1) =07z (Vam)) ™ - (2.73)

Hence, the charge parity of the vertices are

() = . ! 2.74
(I') {l(l—l)/?—i—n if I = 7.7 (2.74)
For us they are written below
d = 4:C <S, PV, AT, T> o1 = <S, P.—V,A —T, —T) , (2.75)
d = 6:C (S, PV, AT, T) o1 = (S, P —V,—A, T, T) . (2.76)

Returning to our considerations where we want to relate clockwise and anti-clockwise graphs.

By simple operations, using eqgs. (2.74) for the parities which for the propagator implies

4See Giinter Scharf, Finite Quantum Electrodynamics: The Causal Approach, 3rd ed, [64]. In section 1.3 for
an interesting derivation.
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CS (K;) C~1 = ST (—Kj;), we obtain a identity among integrands

trﬁFiS(Ki) = trﬁ(onc—l) (CS(K)C™h) = ()" P [[S(-K) Ty (2.77)
O a@) ;=Y () . (2.78)

This is the most we can reach only in integrand level. Now working out what would be for
integrals. Until this point we have the pair

1 1
= ()P a][S(-k-k)Ty, 5=t][SE+1)T, (2.79)

Then, inside the integral we reflect the integration variable & — —k and adopt the notation
K} = k — k;. Furthermore, observe that in the reversed direction momenta conservation fixes

lii—1 = —qi, hence l; ;1 + k; ;—1 = 0. This easily can be seen as the relation
K: = Ll - Ei*la Ei*l = 11'71 -+ kifl. (281)

Therefore, the integrated amplitudes acquire the form

, T = / dktr [ﬁS(Li)Fi]. (2.82)

Now we come to the anticipated point. If, by hypothesis, one could transform the integration

1
TF = (—1)”(F) /Rd dktr [HS (Li — %) Ty

i=n

variable by & — k 4 X,,_1 then, and only then, we have
TF = (-1)"™™ 7T, (2.83)

Observe that the relation among the graphs may change with non-abelian vertices. In
abelian case and equal masses if 7 (I') is odd, then each pair of graphs should vanish that in
turn implies the vanishing of the total amplitude. This is what should happen in all amplitudes
of odd n-pt degree and just vector vertices in all dimensions, the Furry theorem. In other
words, we must be able to transform the loop momenta to make this algebraic relation valid.

A more subtle point is when 7 (T") is even in which case the result should double.

Returning to the Ward identities subject. After effecting a contraction with some pﬁf i, and
stated one IRagf as
¢ [TF] = [T (= D) = [T (@) + (e — (=mia)®) (15, (2:84)
then simplifying to equal masses and summing all contributions, we will get
@I = 3 o (TET) o) + (L () mlTE T (285)

0€Sn/Ln

This should be a Ward identity!! The example in the next paragraph will guide the discussion

better. I had to drop some arguments since expressing the aspect of having independent
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momenta coordinates for each graph is an unwieldy task to write. However, I must point that
the differences in the r.h.s. do not cancel each other for higher than 3-pt functions. They get
organized complete amplitudes of lower number of points.

The example used to finally connect both concepts (IRagfs and WIs) is a two-dimensional
(d = 2) amplitude, single mass, but with enough features to make our statements clear. The
2D-AVV'V box is finite as it is all its IRagfs. By the egs. and follow 7 (AV?3) = 1,

hence the total sum of its contributing graphs is non-zero and given by

TV (g0, 03,00) = 2 [TV +TAEY (00 (@) + Ty (02 (4:)] (2.86)
01(2,3,4) = 3,24, 05(2,3,4) =2,4,2. (2.87)

Where the permutations are what is called the sums of the ¢ and u channel for a 4-pt function,
and we have chosen (kq, ko, k3, ks) = (0,q2, 92 + g3, 92 + g3 + q4) for the routings, since it is a
finite tensor we are elaborating over. Notice the routings of the second and third graphs were
taken such that their differences appear as simple permutations of the external momenta of the
first one.

The contraction with ¢} reads

¢ TV =20 VY (2,03, 0) + TNV (030620 qa) + 4TV (g9, qas g3)]. (2.88)

H1324 H1243

Applying the TRagfs for this negative power counting amplitude, it follows

3 3
@I = [T;iiv (g3, a3 + qa)] — [T,i;v (92,2 + q3)] + 2m[T:;§:4 (g2, 43, q4)], (2.89)
" [Tcﬁ‘f] = [T:;‘;V (g2, q2 + qa)] — [Tilfzv (3,3 + q2)] + Qm[TlZ‘ZT (g3, 92, g4)], (2.90)
3 3
Tt = [TV (g a+a3)] = [TV (g2, ¢0 + @a)] + 2m[T1Y (g2, 4. q2)]- (2.91)

Summing them up, one pair will cancel without any action. The remaining can be written as

qill IﬁlHVVV — +2m [TITHVVV] (292)

+2 [TAVV (q3,q3 + qa) + TV (arqa + %)]

H234 H243

Ha32 Ha23

—2 [TAVV (g3,q3 + q2) + T2V (g0, g2 + QB)] :

The two sums of 3-pt amplitudes are complete green functions or correlators of type <J ATVI V>,
the sums of direct and crossed channel. Therefore, by the two-dimensional parities m(A) =
(V) = -1 , and the previous considerations applying, the result is zero. Before this
step we have a set of IRagfs and then their combinations, if everything holds, becomes a WI.

Explicitly

qllhTI,;l—WVV — +2m [TI{Z—J/VV] + 9 |:TA—>VV (q3’ q4>] —9 |:TA—>VV (Q3, q2) (293)

H234 Ha32
_ P—-VVV
= 2m [TI . } .

The process repeats for the other vertices, from which we must get

ASVVV

q"T} , 2<i<4 (2.94)
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The summary and rationale about the connection of algebraic relations, translational sym-

metry, and kinematical properties can be made as:

I All translations must be equivalent, no dependence in individual routings must be present.

IT All algebraic relations must hold simultaneously to item I. Hitherto we see that all iRagfs

must becomes IRagfs, i.e., integration linearity must be everywhere satisfied.

IIT Even if there is no individual routing dependence all algebraic relations must hold.

In even dimensions (d = 2n) the odd amplitudes of vertices T' = (I;)7" 1 with T; € {A,V},
can not satisfy these conditions and the reason is a low energy theorem (LET) which we shall
elaborate in the next section. Such theorem requires quantification just over finite amplitudes
related to correlators with scalar and pseudoscalar, and depends solely in the analytical struc-

ture of a tensor representing the type of amplitudes called anomalous.

2.3 Low-Energy Analytical Behavior

To entertain in the matter of kinematics and symmetry, where we will transform WIs together
with an ancillary hypothesis in a predicate about kinematics. We must start by defining kine-

matic invariants as follows
Sij = (qz —f- q]‘)z . (295)

The range of indices I will establish in a moment. These Mandelstan variables are not all
independent: their independent set varies with the relation between dimension and r-pt degree,
with the type of external particles, and so on. In the case we are considering, just the r-pt

degree in d dimensions, we have for the number invariants:

2r—d—1)

|{s,-j}|:$, r<d and |{Sij}|:d( 5 ;o r>d (2.96)

If d > r, then the number of independent invariants is just the number of s;; = sj;
discounting its symmetry. Whereas for » > d linear dependence of d + 1, or more vectors in
d dimensions must be taken into account. That has the result described above. This fairly
common consideration appear in references where a selection of variables that reduces redun-
dancy in the kinematic setup are sought for, e.g., spinor helicity variables [78, [75]. For another
context-based reference see Davydychev and Delbourgo [93]. They show how to interpret 1-loop
Feynman integrals as volumes of simplices formed by masses and the kinematic setup.

We shall focus rather precisely in one point of the kinematic data, the point where all

invariants vanish, i.e.

sij=0, Vi,je€[lLin+1]={1,--- ,n+1}, (2.97)
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where the range will eventually corresponds to a (n + 1)-pt amplitudes in d = 2n dimensions.
Here, the important aspect, for now, is the number of variables. Let it be the scalar functions

of the kinematics
{F.({si;}),Gra ({si;}) ra€[l,n]; bell,n+1]}, (2.98)

and the sequences of free ;i indices and contracted indices v given by

I’ﬂ+1 = /'lenJrl - (:ua)gill ) I; = (:ua>Z;rll,a;£i7 (299)
Cn = Vo.pt1 = (VG)ZZ;, szfl = (VQ)Z:; yai - (2100)

With their help we define the sequence of products of momenta ¢; as

C n+1 oi n+1 o c

noe__ s 1 e— s Vi 1 — n

¢ =11q, q¢ri= Il ¢ =q¢'¢=q" (2.101)
5=2 5=2,5%#1

The role of second definition is to omit the ¢ > 2 index and momenta, basically, the structure
qcft—l is an ascending subsequence of ¢©» excluding ¢/*. Observe that we are singling out
q1 = —Qq2 — *++ — Qnt1 as dependent vector.

Aiming the amplitudes of type TIEH, with T' containing a odd number of v, -matrix, we

define the most ample form of a pseudo-tensor constituted by n vectors, ga<i<n+1, such as

n+1 n+1 n+1
=) [&‘Inﬂcg_lqci*} [Frcara] D) [e1ac,d™] [abp, Gat) - (2.102)
a=2 a=1 b=2

Examples will appear after we deduce the general case.
Then, for the expression to be valid in each dimension, without adaptation, we separate
the contractions with the variables ¢;. First contracting Fy,,, with ¢;*(i = 2,...n + 1) and

analyzing the first sum. We have the following
¢ en, 0 qO = (1) §eny,can qi g = (1) 6fer ¢, g (2.103)

The result follows from the fact that to bring an i index to the right next position of .,
one needs n — i + 1 permutations; moreover, if the vector ¢; is equal to some vector in ¢“»-1 the
contraction in null. Therefore, it must be the case that i = a for a non-zero result. Then, the
now dummy index p, is written as v, and inserting it in the string C¢_; we have more i — 2
permutations to perform, hence the (—1)"*" factor.

For the double sum we have

¢ €130,07" G, = 004, "€130, 47" B, = Oufr30,0°" (¢ @) - (2.104)
The result follows because the ¢©» contains all vectors from ¢, to g,.1; hence, if i = a, we are
adding one more contraction and repeating one vector, then the result is null. What remains

is a contraction with g, , i.e., the term (¢; - g).
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Lumping everything together, one may express the contractions until now as
n+1
0 Fiugs = o060 {(—1)”*1 (Pl +_ (- ) [Gm} dERn+1]. (2109)
j=2

Now the contraction with ¢* = —¢4* — -+ — ¢,1,. For this one observe the following
sequence of derivations

n+1
H1 C;’;— — E 77
q]. €In+lc%,1q ! - - q’L €In+lcn ]_q ! (2'106>

n+1

_ n v; C&_
= —E (=1)"envce g "
i=2
n+1

— Z (_1)n+i—2 5?51;10”(]0" — (_1)1’L+a—1 €I%qucn

=2
In the derivation, the second line comes from observing that the index contracted is in the
same position for all the momenta. Then n permutations are necessary to bring it to the end
of the string of free indices. The third line comes from the permutations needed to insert the
new dummy index in its ascending position inside C?_,. The delta d; arises because if ¢ # a,
then ga<;<y is present in the contracted-indices string q“n-1, therefore the result is null. In the
opposite case the vector gets inserted into ¢©».

The next step is to show that

+¢\ €100, %" @, = 0terec, ¢ (@1 - @) -

This happens since if a # 1 we are contracting with the e-indices and have zero because ¢©»
contain all the vectors and ¢{* = —¢4* — -+ — ¢';. We could have expanded everything in
terms of what we have chosen to be the independent set, but as we shall see, for our objectives,
this is enough.

Gathering these facts, we have for contractions with ¢;* the following structure

n+1 n+1
VL, = algbcnqc”{Z[( )" +Z Glb} (2.107)

a=2
n+1
4" P, = e, g™ {(—1)n+1 [Focin] + ) (4~ 4j) [Gz‘j]}7 i€[2,n+1] (2.108)
=2

Motivated by this we offer a definition that will be used to analyze the interrelation of kinematics

and symmetry.

Definition 2.3.1 In d = 2n dimensions, consider a pseudo-tensor of rank n + 1 formed by n
linearly independent vectors from a set {ql- eMt:iel,n+ 1]}, which satisfy Z;LJFII g =0
its Lorentz indices coded in 1,11 = pyply -+ fyyy, and the product ¢°» = HZ+21 qvs. With these

ingredients we identify, by definition, the invariant functions VL' ({sau})
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They are a way to store the informations cha