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Resumo
Nós propomos um novo modelo baseado em agentes para estudar a distribuição de riqueza,
onde nós demonstramos que os vínculos entre riqueza, informação (conectividade e comércio
entre agentes) e vantagem comercial (risco) são chave para reproduzir qualitativamente
distribuições reais de riqueza, assim como sua evolução ao longo do tempo e distribuições
de equilíbrio. Essas distribuições são apresentadas em quatro cenários, com dois esquemas
diferentes de tributação nos quais, em cada cenário, apenas um dos esquemas de tributação
é aplicado. Em geral, o estado de equilibrio final é de concentração extrema de riqueza, a
qual pode ser combatida com impostos apropriados.

Palavras-chave: Modelos baseados em agentes; economia; informação; imposto; sistemas
complexos; distribuição de renda, riqueza, desigualdade



Abstract
We propose a new agent-based model for studying wealth distribution. We show that
a model that links wealth to information (connectivity and trade among agents) and to
trade advantage (risk) is able to qualitatively reproduce real wealth distributions, as well
as their evolution over time and equilibrium distributions. These distributions are shown
in four scenarios, with two different taxation schemes where, in each scenario, only one
of the taxation schemes is applied. In general, the evolving end state is one of extreme
wealth concentration, which can be counteracted with an appropriate taxation.

Key-words: agent-based; economy; information; taxation; complex systems; income
distributions, wealth, inequality
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1 Introduction

1.1 A Brief History

1.1.1 Wealth Distribution

The study of wealth distributions has its origins in the late 19th century when
Vilfredo Pareto [1] examined the distribution of land in Italy - a proxy for wealth at
the time. Pareto’s investigation revealed that for individuals with higher1 wealth, this
distribution followed a power-law pattern characterized by an exponent α.

This significant discovery led Pareto, and other scholars, to wonder if such phe-
nomenon was something unique to Italy or something universal. Hence, Pareto sought
to extend his research to other countries in Europe, and found that this distribution
pattern could be seen in every other European country where data were available. He
later estimated that Europe, as a whole, had an exponent of approximately α ≈ 3

2 [2, 3].

The probability density function, P (x), associated with Pareto distribution can be
written, in general form, as

P (x) =

F (x) for x < xc

λ
xα+1 for x ≥ xc where λ > 0 is a parameter,

(1.1)

where for x < xc (x can be land, money, income, etc., in general, any kind of wealth), we
have a function F (x), but for x > xc, a power law appears, having a typical exponent α.
The Pareto distribution, P(x), is usually associated with the complementary cumulative
distribution function for the higher values of x, i.e.,

P(x) =
∫ ∞

x
dx′P (x′) . (1.2)

This research sparked the study not only of wealth but also income distributions
and prompted many economists, who continued its research, to believe that with sufficient
data, a similar pattern would emerge in most, if not all, other countries worldwide.

In the following decades, however, as data became more readily available, the
nature of this distribution underwent significant transformations. Notably, the 20th
century witnessed the emergence of a robust middle class in certain countries, largely
due to the impact of the industrial revolution, wars, and hyperinflation that reshaped
the global economy [4]. Furthermore, this distribution was found to also describe not
only wealth, which was Pareto’s initial subject (land), but also income distributions [5, 6].
1At the time, data were only available for large owners.
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Hence, when talking about the shape of the distribution we will use income and wealth
interchangeably in this thesis.

Interestingly, despite these changes, the Pareto distribution remained the default
description for the tail end of this distribution, while the exponential distribution was
found to be more suitable for characterizing the broader segment of society, encompassing
the poor and the middle class. This distinction, as well as the similarity between income
and wealth, is evident in the income distribution for the US and the wealth distribution
for the UK, as illustrated in Figure 1 - for a more current example see [7] (Brazil: 2001 to
2014).

Now, if we consider the persistent relevance of Pareto’s distribution in describing
the wealthier segments of society across time, we must then reconcile the discovery of the
exponential portion of the distribution. To that effect, many economists often argue that
it was the industrial revolution that started the creation of the middle class. However, we
must also consider that when Pareto first studied this issue very little data were available
for the broader population. Therefore, it might just have been a case of data scarcity.
Regardless of which side of this is true, the persistence of Pareto’s distribution as the best
description for the tail across time speaks to its robustness and stability.

This analysis, however, often overlooks, as we will demonstrate in the following
subsection 1.1.2, that the same period marked by enormous economic growth and instru-
mental in shaping this distribution was also witness to numerous cultural and historical
revolutions which also played a role in it. Hence, simply stating that this distribution was
always true or that the industrial revolution is to blame is, at least partially, incorrect.

Nonetheless, regardless of its stability or how it came to be, over the 20th century
this analysis was done to multiple countries2 and this distribution was found to be
widespread, as was expected. Hence, it is reasonable to infer that it must be rooted in
very fundamental trade behaviors that are common to all countries worldwide. After all,
it transcends geographical regions, cultures, religions, etc.
2We give further evidence to that claim in subsection 1.2.1
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Figure 1 – The cumulative probability distribution of net wealth in the US (left, 1997)
and UK (right, 1996) shown in log–log scales. Points represent data from
the IRS/HMRC, and solid lines are the fitted lines to the exponential and
power-law (Pareto)[2].

1.1.2 The Middle Class

The 20th century witnessed a multitude of economic and cultural shifts that
have shaped the contemporary world. Amid these transformations, several stand out,
particularly the heightened industrialization experienced by individual nations. Alongside a
more seamlessly interconnected global economy, this synergy started a rapid and expansive
worldwide growth. Frequently, this economic surge is cited as the principal drive behind
the rise — and often the inception — of the middle class. However, it is crucial to recognize
that both the 20th and 19th centuries were also arenas of numerous political and cultural
revolutions that often remain marginalized in discourse. For a full comprehension of the
evolution and historical trajectory of wealth distribution, these political and cultural shifts
carry paramount significance alongside the industrial revolution itself.

1.1.3 Nineteenth Century: Growth and Wage Stagnation

In the early 19th century, many countries undergoing the industrial revolution also
experienced a significant population boom due to rising agricultural productivity. These
two factors combined resulted in a unprecedented population growth as well as a surplus
of rural labor. Consequently, as the demand for industrial work increased, a large number
of rural workers migrated to urban centers with their families in search of employment,
sparking one of history’s most substantial rural-to-urban migrations.

However, life within the city frequently unfolded in a harsh and demanding manner
for the workers, even though employment opportunities were numerous. The routine
was marked by extended work hours, the grim specter of child labor, unsanitary working
conditions, and the stark reality of overcrowded apartments, often shared by multiple
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generations of families. All of these distressing conditions persisted, regardless of the rapid
economic growth. To provide some context, if we look at the period from 1700 to 1820,
we find that global production, when adjusted for inflation, experienced a rather modest
annual growth rate of approximately 0.5%. However, a significant shift occurred from 1820
to 1913, where this global growth rate surged to approximately 1.5% per year – a threefold
increase compared to the preceding century[8]. It is important to note that this statistic
pertains to global production, predominantly driven by the waves of industrialization
during that era. Consequently, it is evident that individual countries at the center of the
industrial revolution witnessed considerably more substantial economic growth.

Despite the remarkable pace of economic expansion during this period, wages for
the majority of workers largely remained the same. Nonetheless, the late 19th century
marked a crucial turning point after decades of intensive industrialization and a substantial
increase in the factory workforce. The sheer size of these factory populations made them
increasingly challenging to control, which allowed for the emergence of social movements
advocating for improved wages and working conditions.

It was only at this juncture, often in the wake of significant labor unrest and riots,
that workers began to secure wage increases, despite still inadequate for addressing the
prevailing economic inequality of the era [8]. Additionally, it is worth highlighting that
this wage growth only marginally kept pace with the overall economic expansion that
characterized this period. Hence, these movements marked the initial signs that economic
growth alone could not effectively diminish inequality or foster the growth of the middle
class.

1.1.4 Capital Returns and Inflation

Inflation was nearly non-existent prior to the last decades of the 19th century.
While sporadic instances of inflation occurred, often due to a bad harvest, they were often
followed by periods of deflation once supply and demand equilibrium were restored. This
meant that, on average, inflation was absent for almost two centuries, spanning from the
early 18th century to the late 19th century [8]. Throughout this extended timeframe,
global economic growth was modest, typically below 0.5% annually, and wages remained
static. In contrast, government bonds consistently yielded interest rates between 2% and
5%, while investments in foreign enterprises and debt returned around 5% on average,
based on the most reliable estimates [8].

These returns, combined with the prolonged absence of inflation, enabled the upper
class to lead a leisurely life without reliance on work [8]. This trend reached its pinnacle
during the Belle Époque (France, 1870-1913), a period of conspicuous abundance, ceaseless
festivities, and minimal worries, often depicted in literature and plays. Remarkably, this
era boasted the highest recorded levels of inequality prior to the 21st century.
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It was not until the early 20th century that inflation became commonplace, eroding
the wealth of the upper class. Rising inflation rendered interest rates inadequate for
sustaining the affluent lifestyle, consequently narrowing inequality as political movements
and unions advocated for wage adjustments. For instance, France endured a consistent
annual inflation rate of 13% for over 45 years, spanning from 1913 to 1950 [8]. This,
combined with a substantial decrease in capital returns3, steadily diminished the elites’
amassed wealth. This transformation is illustrated in Figure 2.

Once again, this underscores that economic growth, while necessary to counter-
balance inflation, fell short of effectively addressing inequality and wealth redistribution.
It took more than a century for workers’ conditions to ameliorate, and if not for infla-
tion’s impact on capital returns, the wealth gap between the elites, the less affluent, and
the emerging middle class would likely have persisted. This elucidates that the issue
of inequality is not solely tied to wages, but intrinsically linked to capital returns and
inflation.

1.1.5 Twentieth Century: Wealth Destruction, Wars and Taxation

The 20th century was a period marked by transformative global events. Within a
short span, World War I raged for four years (1914-1918), followed swiftly by the Russian
Revolution (1917-1923) and the devastating Great Depression in 1929. Merely six years
after post-war Germany, struggling with hyperinflation, had begun its recovery, World
War II erupted in 1939. These tumultuous times also witnessed the Chinese Communist
Revolution, the Cold War, the Vietnam War, and the Soviet-Afghan War, among others.
Consequently, given how many historical events happened in such a short amount of
time, discussions about this era often overlook the economic aspects and the financial
underpinnings of the period. For instance, how did the world afford and financed so many
wars? The answer? Money printing.

During the 18th century, countries adhered to monetary policies tied to gold and
silver standards. Governments assigned a fixed value in gold/silver to their currency,
maintaining an unalterable relationship. However, this standard worked only when central
banks could guarantee this exchange by directly converting gold/silver to currency. This
required governments to hold gold reserves, in order to honor this exchange. Consequently,
for governments to enact monetary policy — increasing or decreasing the money supply

— they had to either accumulate or deplete gold reserves. This hindered countries from
swiftly printing money, and thus creating inflation, to counter recessions, manage debt, or
rescue banks [4].

Hence, given the cost of World War I, Germany departed from the gold standard
3Capital returns is what an investment of capital yields (interest), whether it is in government bonds,
corporate debt, stocks, etc.
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in 1914, which allowed them to print money without the need for a gold counterpart.
Therefore, it was no longer necessary to first increase gold reserves, nor was it necessary
for banks to directly exchange currency for gold.

Later in 1929, the Great Depression led many others to follow suit, with the USA,
the UK, and others, also abandoning4 the gold standard in 1931[4].

With the gold standard no longer restricting them and economic downturns stem-
ming from the depression, most countries turned to high rates of money printing, a trend
that intensified during World War II. Therefore, because inflation rates in countries are
primarily influenced by factors such as the amount of money being printed, the level of
debt, and the overall economic output, this period was marked by annual inflation rates
consistently exceeding 10% for many years. For instance, as mentioned before, France
experienced an average annual inflation rate of 13% from 1913 to 1950, while Germany
averaged 17%. Although seemingly small, this led to prices in France increasing by a
factor of 100, while in Germany, they surged by a factor of 300 [8].

Figure 2 – France: Evolution of total salary and total income from 1910-2010 for the
top 1% of the population. Reproduced from Capital in the Twentieth First
Century[8]

High inflation periods, such as these, which disproportionately burden the working
class, also erode capital wealth significantly. For instance, when Germany faced inflation
rates exceeding 20, 000% annually during the 1920s [4], the country’s capital wealth
disappeared. It was only in 1923, with the introduction of the Rentenmark, that inflation
finally came to a halt. Additionally, during these times of war and crisis, many countries
4Note: The gold standard was later reinstated as part of the Bretton Woods system, which was ended by
the countries over the years. The USA, for instance, ended it in 1976.



Chapter 1. Introduction 7

resorted to imposing steep taxation policies, which is another factor often overlooked in
discussions about inequality.

In the USA, for example, during the 1940s and 1950s, income tax rates not only
surged to 81% (for incomes exceeding the equivalent of about 1 million today) but the
USA also enacted excess profit taxes [9] to fight war profiteering. While the purpose of
these taxes is arguable—whether to fund the cost of war or redistribute wealth—this
period witnessed remarkable reductions in inequality. These reductions continued until
the 1980s when Ronald Reagan’s presidency shifted government tax policies towards a
more hands-off, free-market approach. This brought substantial cuts to income and capital
gains taxes [9], fueling rapid growth in inequality. By the 1990s, the top 10% of earners,
who previously represented around 32% − 35% of the country’s income from the 1950s to
the 1980s, claimed nearly 40% of the income. In 2010, this share had escalated to nearly
50% [10]. It is, however, worth pointing out that this change also lead one of the largest
periods of sustained growth of all time. Since then, the US has grown almost 9 times,
averaging a growth of about 5, 3% annually [11].

1.1.6 The Rise of Inequality

Similar to the Reagan era, the 1970s and 1980s marked a significant shift in
economic policies across developed nations. As the memories and traumas of war receded,
consensus around public welfare and the common good began to fray. Fresh leadership
and ideologies emerged, advocating for a transition away from Keynesian economics and
towards freer markets. This change entailed reduced government expenditure, welfare
provisions, and tax rates.

By this juncture, it is unsurprising that the capital losses suffered by the wealthy
elite over the past seven decades had largely been recuperated. Inflation had stabilized,
and the adoption of new free-market economic models facilitated a resurgence in capital
returns. Consequently, inequality once again started to rise.

For instance, in the USA, just before the Great Depression in 1929, capital returns
constituted more than 80% of the income for the top 0.01% earners, see Figure 3 - which
mirrored the circumstances in France during the Belle Époque.

This share, however, as mentioned in the previous section and seen in Figure 4, kept
diminishing during most of the 20th century until the adoption of free-market economics
in the 1980s prompted a steady escalation in inequality. By 2010, inequality had already
surpassed pre-war levels, and if this trend persists, the top 10% of earners could control
60% of the nation’s income by 2030 [8].

A similar trajectory unfolded in the UK with Margaret Thatcher’s policies, albeit
on a smaller scale. This trajectory contrasts with France, which retained many of the
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Figure 3 – USA - 1929: Composition of earnings by income percentiles. Notice how the
richest get most of their income from capital. Reproduced from Capital in the
Twentieth First Century [8]

Figure 4 – USA: Evolution of total salary and total income 1910-2010 for the top 10%.
Reproduced from Capital in the Twentieth First Century [8]

economic features from the first half of the century, including indexing minimum wages
to inflation and economic growth, a robust welfare state, and progressive income and
inheritance taxes (as depicted in Figure 5). While the USA has been consistently boosting
the income share of the top 10% by nearly 5% per decade, France managed to decrease its
peak from 37% in 1966 to a stable 33% throughout the century.

This divergence between countries illustrates that once inflation abated and post-
war damages were repaired, and in the absence of effective inequality-controlling economic
policies, these economies regressed to their previous state. It underscores that a free-market
economic approach invariably leads to pronounced concentration of wealth, even though
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Figure 5 – France: Evolution of total salary and total income from 1910-2010 for the
top 10% of the population. Reproduced from Capital in the Twentieth First
Century[8]

the pace of this process might vary.

1.1.7 Conclusion

To sum up, the considerable decline in inequality throughout the 20th century was
not solely the outcome of rapid economic expansion. Rather, the driving force behind
inequality reduction stemmed from persistent economic upheavals driven by wars and
frequent economic downturns, which reduced capital returns and fostered inflation. In these
instances, due to the size of factory work forces, unions and social movements managed
to get lower wages swiftly reevaluated and readjusted. This, coupled with diminished
capital returns, exerted pressure on the upper classes of society, resulting in a reduction of
inequality. However, this was not achieved by redistributing wealth but by eroding the
affluence (and rate of return) of the elite class.

Consequently, while economic growth was essential to navigate the challenges of
those tumultuous decades, it is inaccurate to attribute the reduction in inequality solely
to it. Furthermore, examining countries less affected by wars, like the USA, underscores
the influence of economic policies in relatively stable contexts. High upper-income and
capital gains taxes successfully sustained years of economic growth without a significant
rise in inequality. In contrast, the application of free-market or trickle-down economics
had the opposite effect.

In essence, the intricate interplay of economic shifts, policy decisions, and external
shocks—such as wars and recessions—shaped the trajectory of inequality, revealing that a
nuanced combination of factors, beyond economic growth alone, played a pivotal role in
reshaping the distribution of wealth and income.
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1.2 The Study of Inequality
In the preceding section 1.1, we discussed the complexity of the inequality problem,

which has prompted both statistical and theoretical investigations into its dynamics
and origins due to its widespread and rapidly changing nature. In this section, we will
review key studies to provide a current overview of the field. Our goal is to gather the
essential components for constructing a model that replicates real-world wealth and income
distributions.

1.2.1 Empirical Evidence

In previous sections we have mentioned that the current shape of wealth/income
distributions are widespread, which poses the question: if cultures, economies and history
can differ so much between countries how can its income distributions be so similar in
shape? In this section we aim to provide sufficient data to validate this assertion.

In 2001, Dragulescu and Yakovenko [5] analyzed the income and wealth distributions
of the UK and the income of the USA and its individual states for the years between 1994
and 1998. In their work they found that, as can be seen in Figure 6, both wealth and
income for the UK follow very similar patterns and they both have the same shape. In
other words, they are both described by a exponential distribution for the middle and
lower class and a Pareto tail for the upper class - from this point forward we will call this
a Exponential-Pareto tailed distribution. Their analysis also found a Pareto exponent α

between 2.0 and 2.3 for the UK and the same shape was found for the income of US’s
individual states5, as can be seen in Figure 7.
5With an α = [1.6, 1.8] for the USA
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Figure 6 – Cumulative probability distribution of wealth (right panel) and cumulative
percentage of tax returns by income (left panel). Both in log-log and by in
thousands of pounds form for the UK. Left inset: Distribution in log-linear
form. Reproduced from [5].

Clementi and Gellati [12], on the other hand, analyzed the period between 1991
and 2001 for not only the income distributions of the UK and the USA but also that of
Germany. And they, once again, found the same shape pointing out that:

Our analysis of the data for the US, the UK, and Germany shows that there
are two regimes in the income distribution. For the low-middle class up
to approximately 97% − 99% of the total population the incomes are well
described by a two-parameter lognormal distribution, while the incomes of the
top 1% − 3% are described by a power law (Pareto) distribution.

They also calculated the Pareto exponents for the period analyzed: US with α = [1.1, 3.34],
UK with α = [3.47, 5.76] and Germany with α = [2.42, 3.96]. Note how they substantially
differ from the ones found by Dragulescu and Yakovenko, evidence that even though the
shape might be the same, the distribution changes over time.



Chapter 1. Introduction 12

Figure 7 – Cumulative percentage of tax returns by adjusted gross income in thousands of
dollars of the USA (all states) in log-log form. Inset: Log-linear for adjusted
gross income between 0 and 120 thousand dollars. Reproduced from [5].

Furthermore, Tragtenberg and Siciliani [7] analyzed Brazil’s income distribution
between the years 2001 and 2014 and they also found the same shape, this time with an
α = [2.17, 2.192]. Similarly, Aoyama et al[13] analyzed Japan’s distribution tail and, once
again, found a Pareto power law with an α = [1.98, 2.06]. Hence, with just a handful of
papers we have evidence of this shape for five different countries (USA, UK, Germany,
Japan and Brazil) across various years.

Nevertheless, it is important to note that there are good competing arguments
about the best description of the shape of the income/wealth distribution. For example, C.
Tsallis, C. Anteneodo and Sílvio M. Duarte Queiros[14] argued that, given how additive-
multiplicative stochastic processes, like the economy, are at the core of nonextensive
statistical mechanics [15] their naturally occurring gaps6 could be bridged by q-exponential
distributions. This idea is particularly important since, if true, it means we might be able
to reproduce the distribution we are looking for with a single process that is closely linked
to the q-exponential.

Later, in 2016, Abner D. Soares, N.J. Moura Jr. and Marcelo B. Ribeiro gave
evidence in favor of this hypothesis by showing [16] how Brazil’s income distribution, from
1978 through 2014, could be well described by a single q-exponential distribution, thus
strengthening the authors’ argument. In another paper [17], the authors also explored
6When distributions cannot be fitted by a single function and/or some of its fits are not convincing.
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how taking the complex form of the q-parameter could explain periodic (over time)
behavior found within these distributions, which gives further evidence of the power of
the q-exponential to analyze it.

However, it is worth pointing out that the poor and middle class of this distribution
(the exponential part) usually appears within just one order of magnitude, from the top
100% to the bottom 10% of the distribution. Hence, many functions are able to fit within
this range. Further evidence of this can be seen in the work of Marcelo Byrro and Newton
Moura in [18], where they find the Gompertz curve in the income distribution of Brazil
from 1978 to 2005. And in Bernarjee, Yakovenko and Di Matteo’s work in [19], where the
authors also explore the Gamma and log-normal distributions.

With all that in mind, given how widespread this distribution’s shape is and how
economically different the countries presented here are, it is reasonable to conclude that
its main drivers probably are very fundamental characteristics of trades and business
interactions, since despite economic, cultural, geographic and historical differences this
shape is widespread. Nonetheless, these studies also make it quite clear that the precise
definition - the distributions parameters - is an ever changing phenomena and not a static
fact. Hence, there is basis to think this shape will not remain the best description forever.
In fact, Aoyama points out in his work[13], when analyzing the rank-size plot of the income
of Japan, that in certain circumstances a single Pareto tail is not enough to model the
top of the income distribution. As can be seen in Figure 8, there is, what appears like, a
second Pareto tail in the upper parts of the distribution. Which hints at the fact that
with enough data and time, we can differentiate between the rich too. With some much
richer than others.

Figure 8 – The rank-size plot of the income and tax for Japan in 1998. Reproduced from
Ayoama et al[5].
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1.2.2 Agent-based Models

In the domain of theoretical exploration, agent-based models have arisen as a
valuable instrument, providing insights that, in comparison, exhibit a closer resemblance
to real-world dynamics. An illustrative case in point is the work carried out by Chatterjee
and Chakrabarti, as documented in their research papers [20] and [21]. In these studies,
they investigated how enhancing a basic conservative model, characterized by exchanges
between agents where the total money does not change over time (mi(t) + mj(t) =
mi(t + 1) + mj(t + 1)) and where the occurrence of debt is prohibited, would change its
equilibrium states. Their research trajectory led them to progressively introduce higher
levels of complexity, and illustrate how each modification influenced the result of the
system.

In their initial study, exchanges among agents occurred randomly, characterized
by a process in which a fractional amount ∆m, Equation (1.3), of money was exchanged.
This dynamics gave rise to a stable equilibrium state, specifically, one that aligns with the
Boltzmann-Gibbs distribution, as expected. After all, this, in essence, remains a perfect
gas model.

∆m = ϵ(mi(t) + mj(t)) − mi(t) where ϵ ∈ [0, 1] . (1.3)

Subsequently, the authors introduced a uniform saving parameter λ in Equation
(1.3), which lead to the exchanged amount seen in Equation (1.4). This parameter
represents the agent’s propensity to save and, consequently, altered the amounts exchanged
in transactions. This adjustment had the effect of transforming the distribution of wealth
into a Gamma distribution. Notably, different values of λ resulted in distinct parameters
for the Gamma distribution, highlighting the impact of this additional constraint in its
shape.

∆m = (1 − λ)[ϵ(mi(t) + mj(t)) − mi(t)] . (1.4)

To delve deeper into this added constraint, the authors extended their investigation
by permitting the saving propensity to be distributed among individual agents. Conse-
quently, each agent, denoted as i, was assigned a specific saving propensity parameter λi,
following a distribution characterized by ρ(λ). The results of their exploration revealed a
consistent pattern: regardless of the specific shape of the ρ(λ) distribution, the asymptotic
behavior of the wealth distribution consistently conformed to a Pareto distribution. This
finding aligns with the earlier work conducted by Chakraborti and Patriarca and documen-
ted in [22], which underscores the concept that a system composed of subsystems featuring
different degrees of freedom, represented here by the saving propensity λi, tends to exhibit
a Pareto power-law distribution, which is the hallmark of a multiplicative process. With
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this result we have the first link between varying degrees of freedom within a system and
power-laws.

Building on these insights, the authors introduced an additional layer of complexity
by incorporating non-consumable commodities into their model. They represented an
agent’s wealth as the sum of their money, denoted as mi, and the value of the non-
consumable commodities they possessed, represented by ci. The price of these commodities
was denoted as p0, and it had a direct influence on an agent’s wealth calculation (wi =
mi + p0ci). To account for the inherent uncertainty and the absence of bargaining power
on the part of agents, the authors introduced stochastic fluctuations in commodity prices
over time. Specifically, they modeled these price fluctuations as follows: p(t) = p0 ± δ.
Thus, they defined that when agents interact they exchange wealth according to equations:

ci(t + 1) = ci(t) + ∆mi

p(t)

cj(t + 1) = cj(t) − ∆mj

p(t) .

(1.5)

Subsequently, they demonstrated that this model had the capacity to drive the
steady-state wealth distribution towards a Gamma distribution when the saving propensity
parameter λ was uniform, and towards a Pareto distribution when λ was distributed
among agents. This observation exemplified a model that exhibited partial efficacy in
bridging the gap between two contrasting approaches: one that predominantly modeled the
broader segments of society, characterized by Boltzmann-Gibbs or Gamma-like features,
and another that focused primarily on Pareto-like wealth concentration in the tails while
disregarding the rest of the population. Therefore, by combining an stochastic process
(the price fluctuation) and a system where different parts have different degrees of freedom,
the authors have come closer, when compared to their initial attempts, to a real world
representation, which is what we are looking for. It is also worth pointing out that the
elements they explored are usually the default elements most econophysics models start
from. Therefore, they are often a blueprint for new ones.

Another noteworthy contribution in this field came from Braunstein, Macri, and
Iglesias, as detailed in [23]. In their work, the authors took a simple conservative model
(Conservative Exchanges Market Model or CEMM), much like Chatterjee and Chakrabarti’s
original work, that was previously built on a nearest neighbor network and applied it to
Erdos-Rényi and scale-free networks.

Scale-free networks are characterized by agents with varying degrees of connectivity
that follow a power law. That is, the fraction P (k) of the network that has k connections
to other nodes is given by Equation (1.6).
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Figure 9 – Left side: Plot of the average wealth of a node of grade k, w(k). Right side: Plot
of the average wealth of the neighbors of a node with degree k, wnn(k). Both
panels represent an scale free network with λ = 2.5 (black circles) λ = 3.5 (red
squares). Notice that the neighbors of low connectivity nodes are in disgrace,
as their average wealth is lower than the global one: 0.5. Reproduced from the
original paper [23].

P (k) ∼ k−λ . (1.6)

In this work, they found that connectivity and wealth have a very complex dynamics.
Starting from a network that has average wealth ⟨w⟩ = 0.5, the authors investigated how
connectivity affected the wealth of agents/nodes across the network. In Figure 9, we
reproduced one of the graphs on the paper. On the left side, the authors plot the average
wealth of nodes with connectivity k, where we can see that agents with higher degrees
of connectivity (higher k) are, on average, richer than agents with lower connectivity.
Following suit, on the right side, they plot the average wealth of the neighboring nodes.
Notice how, on average, they are also richer. This is an interesting result, since it matches
common intuition: being close to rich and influential individuals increases chances of
success.

What is more interesting though is that they also found that this "rich status"seems
to be fleeting. Or, perhaps, very dependent on chance.

In Figure 10, they show on the y-axis the probability that an agent with connectivity
k is the poorest in the network. Notice how agents with high degrees of connectivity (high
values of k) are more likely to be the poorest agent in the network than the others. This,
however, does not imply that a rich agent with high connectivity is constantly struggling
to maintain their status, as the authors claim. A rich highly connected agent might, once
rich, never fall. Meanwhile, a highly connected poor agent might suffer from the opposite
but similar fate: It also never changes its status thus remaining poor. Hence, the difference
between rich and poor agents with high connectivity might just be chance. The ones that
gain wealth at the beginning of the simulation continue to gain and, therefore, become rich.
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Figure 10 – Plot of the frequency any site of degree k is the poorest one divided by the
number of sites of degree k and as a function of the degree. Black circles
correspond to a network with exponent λ = 2.5 and red squares to λ = 3.5.
The dashed line indicates the slope 1. This plot confirms that high degree
nodes are the minimum wealth ones with higher frequency. Reproduced from
the original paper [23].

While the ones that start losing tend to continue losing and become poor. This reinforces
the previously mentioned result that chance seem to play a major role in these types of
networks. However, regardless of what is precisely behind these results, what is interesting
is that, even though this is quite counter intuitive, it also bares striking resemblance to
the real world.

At the end, however, the different networks applied here made it so that the poverty
line, here defined as the minimum wealth found in the network, was relatively healthy
compared to other similar models. This result is also intuitive. Since the network is static
it limits the reach of agents. Hence, once a rich agent has all or almost all of the wealth of
his cluster he can grow no longer. Similarly, some agents will, simply by chance, end up
in more isolated silos which will prevent them from dropping their wealth too low. Thus
reducing poverty.

Furthermore, even though the model is simple and presents resulting distributions
that are far from any real-world ones, as is often the case with conservative models, the
effects of the network are still valid and should be kept in mind when modeling this type
of problem.

Later on, in another attempt to bring conservative models closer to reality, Iglesias
and de Almeida have also proposed, in another work [24], a notable modification which
further helps us understand the limitations of these conservative models.

Firstly, they modified the manner in which the exchanged amount ∆w was deter-
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Figure 11 – Equation (1.7) rewritten as the relationship between how much larger wj is,
in reference to wi, and how much more of wi is available to trade.

mined. Unlike the fixed exchanges in some conservative models, Iglesias determined ∆w

as a combination of both agents’ current wealth, as expressed in Equation (1.7). Notably,
this modification meant that the wealth exchange was influenced by the relative wealth of
the two agents involved in the transaction. Specifically, the richer an agent was compared
to the other, the larger the portion of the poorer agent’s wealth that would be exchanged.
This alteration is interesting because it resembles well a very common part of trade: the
richer an agent is, the higher the investment it is able to make. Hence, it is able to define
the price point in which he wants to operate, thus setting the initial price. As an example,
it takes a lot more money to start a car manufacturing business, which is a good with a
high initial price, than to start a baking business, which has a low initial price,

∆w = w′w′′

w′ + w′′ . (1.7)

Furthermore, they introduced an element of stochasticity into the trading process
by incorporating a winning probability factor that depended on the wealth of both agents
and a parameter γ ∈ [0, 1], as defined in Equation (1.8) and shown in Figure 12. Notice
that this probability equation exhibits symmetry, ensuring that P (w′|w′′) + P (w′′|w′) = 1.
Additionally, as the wealth gap between the two agents increases, their respective winning
probabilities shifts to favor the poorer agent. The degree of this advantage was, however,
controlled by the parameter γ. Different values of γ resulted in varying degrees of advantage
for the less affluent agent, with lower values of γ indicating a smaller advantage, and higher
values amplifying it. In particular, when γ = 1, the model ensured that in cases where
one agent possessed significantly more wealth than the other (w′ >> w′′), the probability
of the wealthier agent winning the trade approached zero:

Pγ(w′|w′′) = 1
2[1 − γ tanh (w′ − w′′)] where γ ∈ [0, 1] . (1.8)
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Here we would like to show how extreme and unrealistic this advantage is by
pointing to Figure 12 where we present how this probability evolves with the relative
difference in wealth of both agents. Notice how steep the growth is. Very quickly wealthier
agents enter a situation where they always lose, which makes no sense economically
speaking. Firstly, because trade is, more often than not, a value add to both parties. And
secondly, because one would never enter a trade this unfavorable in the first place - except
in very extreme circumstances.

Furthermore, their exploration of this model’s properties revealed a consistent
trend: it converged to a state where a single agent accumulated all the wealth, except
when γ = 1. This specific scenario, where the least affluent agent consistently prevails in
trades, highlights three common pitfalls inherent in conservative models:

1. Extreme condensation is common and the only mechanism to avoid it is to ensure,
in some form, huge advantages to the poorer agent;

2. The necessary mechanisms to stabilize these models often have no economic basis;

3. These mechanisms have no negative side-effects;

It is important to note, however, that the presence of redistribution mechanisms in
economic models should not be deemed inherently wrong. In fact, such mechanisms are
not only crucial from a modeling perspective but also possess significant economic and
moral justifications. The underlying concern, rather, revolves around the extreme degree
of redistribution required to harmonize with conservative models.

To underscore these points further, Paulo Murilo’s research, as documented in
[25], shows how these redistribution mechanisms end up being imperative in conservative
models like this, otherwise, in essence, they all rapidly collapse. Murilo’s work emphasizes
that taxation serves as a vital stabilizing force, crucial for sustaining conservative models
past trivial solutions.

Furthermore, these results show that, despite their utility, conservative models
possess inherent limitations which hinder their ability to fully align with the complexities
of reality. After all, not only do they fail to reproduce real world distributions but they
also fail to capture fundamental economic principles, such as the mutual value gain that
occurs when two parties engage in trade and the economic growth that leads from it.
These limitations underscore the ongoing need for refinement and expansion in modeling
approaches to achieve a more comprehensive understanding of this economic phenomena.

Other similar results can be found in other works by Iglesias, Cardoso and Gonçalves
in [26] and [27].
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Figure 12 – Probability function (1.8) for different values of γ. Notice how quickly it grows
to favor the poorest agent.

Despite these limitation, however, we can still learn from these models, much
like when we analyzed the impact of networks on CEMM. And to that effect, another
conservative model by the same group of researchers, Iglesias, Cardoso and Gonçalves,
that is worth mentioning is [28].

In this work, the authors introduce a random network where agents interact and
exchange a set amount of their wealth. The exchanged amount is given by a function
of both agent’s wealth (wi and wj) and their respective saving parameters (βi and βj).
Here, the agents starting wealth and saving parameter is uniformly distributed in the
interval [0, 1] at the beginning of the simulation. Note that the saving parameter βi does
not change over the course of the simulation.

The exchanged amount is then given by Equation (1.9) and the winning probability
is given by Equation (1.10). Exchanges are, obviously, conservative:

dw = min[(1 − βi)wi(t); (1 − βj)wj(t)] (1.9)

P = 1
2 + f × |wi − wj|

wi + wj

, (1.10)

note that f ∈ [0, 0.5] controls how much the model favors the poorer agent in the exchange,
with higher values of f favoring them more.

The results of this model are exactly what you would expect: f = 0 leads the
system to a condensed state where one agent controls all the wealth. Increasing f , on the
other hand, “redistributes” the wealth and reduces inequality, which they measure with a
Gini index and the percentage of wealth held by the top 10% and top 1%. It also has no
negative consequences. That being said, we want to draw particular attention to their
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introduction of a taxation and tax redistribution mechanism, which prompts interesting
insights.

The authors then introduce a taxation parameter λ ∈ [0, 1] that controls how
much of the agents wealth is collected in taxes at the end of each Monte Carlo step. At
λ = 0.25, for example, means 25% of every agent’s wealth will be collected as tax. With
this taxation scheme setup, they then analyze the best way to redistribute it by choosing
which bottom percentage p of the population will receive taxes (targeted re-distribution).
Hence, if p = 1 then all of the collected taxes will be equally divided among the agents
and the network. On the other hand, if p = 0.1, the collected taxes will be equally divided
among the bottom 10% of the population.

With this setup, they found that in order for one to optimize inequality reduction,
different levels of taxation (λ) require different targeted re-distributions (p). This can be
seem in Figure 13, where the authors plot the Gini index of the equilibrium states for
different values of λ and p. This result is important firstly because it matches reality and
common sense intuition: just collecting taxes is not enough, how to redistribute it is also
important.

This result highlights that even in such simple models taxes are not a trivial matter.
Furthermore, this is one of the few models where, simultaneously, equilibrium states
depend of starting parameters (a common problem we talk about further in this section)
and they are non-trivial. Hence, even in such simple models complexity can arise.

Figure 13 – Equilibrium Gini index as a function of λ and p (the bottom fraction of agents).
Reproduced from [28].

To further explore and understand what we have seem so far, it is worth mentioning
Dragulescu and Yakovenko’s work in [29]. By looking at conservative models from a
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statistical mechanics point of view, the authors reverse what has been done with most of
these models - which is to take gas-like models and exchange particles for agents - and
evaluate, mathematically and computationally, what effects each model parameter has on
its equilibrium states.

Their research indicate that within conservative systems devoid of what they term
"external forces", such as robust redistribution mechanisms, equilibrium states tend to
exhibit a remarkable resistance to alterations in model parameters. This insight accentuates
the necessity of external interventions, such as taxation and redistribution, to steer these
models toward outcomes that align more closely with empirical economic realities or
that, at least, do not result in trivial equilibrium states. Which is why a new approach
is necessary to study this phenomena. Furthermore, this result binds itself with Paulo
Murilo’s previously mentioned work [25], thus reinforcing its findings. Other noteworthy
works on this subject by Scaffetta et al can be found in [30], [31] and [32].

1.2.3 Conclusion

In the preceding sections, we have emphasized the widespread prevalence of the
exponential-Pareto tailed distribution. This distribution is found across nations with
diverse cultures and economies, including Germany, Japan, the USA, the UK, and Brazil -
with some competing evidence as to which description is best [18]. Our investigation has
revealed that most attempts to model this distribution not only struggle to replicate its
shape but also overlook fundamental economic principles. Notably, these models often
portray economies devoid of growth, where trades are conservative, and equilibrium states
seem trivial due to their parameters’ inability to produce varied outcomes, thus making
their features often useless. Furthermore, the redistribution mechanisms required to avoid
trivial solutions are often extreme and lack any negative consequences.

On the next sections, and with these results in mind, we aim to delve deeper into
not just the results shown here, but also into some of the parts we deem essential to build
a model that is more realistic and capable of reproducing the distribution we are looking
for.

1.3 Information Theory and Networks
In the previous section 1.2 we have explored not just empirical results but also

attempts to model income distributions. However, given the pitfalls we have shown, it
might be best to go back to the beginning and ask: What processes can generate this
distribution? After all, ultimately, this is our goal.

To that effect, and considering we aim to model this with an agent based approach,
we must first learn about information theory and how it links itself to network science and
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stochastic processes.

1.3.1 Information Theory

When Ludwig Boltzmann initially introduced his statistical definition of entropy,
as expressed in Equation (1.11), he established a crucial connection between the number of
microstates (W ) and the ways in which the constituent parts of a system (atoms, in this
context) can be arranged. This relationship, in turn, relates to the macroscopic properties
and states of the system, such as its energy and pressure. His groundbreaking work
revealed that as the number of potential microstates corresponding to a given macrostate
increases, so does the entropy of that system, leading to the common analogy of entropy
being associated with disorder or chaos,

S = kB ln W . (1.11)

Boltzmann’s definition, however, is particular to what statistical mechanics now
calls microcanonical ensemble, where the number of particles and energy of the system are
precisely defined and fixed. In this case, all microstates are equally probable. In other
scenarios, this might not be the case.

Thankfully, we can readily generalize Equation (1.11) by incorporating the proba-
bilities associated with each microstate (pi), as shown in Equation (1.12). This generalized
form reduces to the original Equation (1.11) when all pi are equal. This is the case, for
example, of the canonical ensemble, where the temperature is fixed and the probability of
all the possible microstates is dependent on the energy of that given microstate:

S = −kB

∑
pi ln pi . (1.12)

This particular Equation, as denoted by (1.12), is often commonly referred to as Boltzmann-
Gibbs’ entropy. Given that it was Gibbs who first explicitly interpreted this equation in
terms of the probabilities associated with microstates, in contrast to Boltzmann’s original
use of the symbol f to represent a phase space density.

Later, in the 1940’s, Claude Shannon was working on a completely different problem:
how to decode noisy messages being sent through a communication’s channel [33]. Based
on previous works made by Harry Nyquist [34] and Ralph Hartley [35], Shannon came
to the idea that information can be measured based on how likely a new bit of data
is, given prior statistical knowledge of previous messages. This idea eventually led him
to a statistical problem that was very similar to Boltzmann’s but without any ties to
physical laws. As with Boltzmann, he attempted to maximize a function subject to a set
of constraints (axioms).
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Shannon would eventually solve the problem and arrive at a statistical function very
similar to Boltzmann-Gibbs’ entropy but with a much different interpretation. Shannon
interpreted his entropy as a measure of ignorance. In other words, as the number of
potential states of a system increases (resulting in higher entropy), our level of ignorance
about the system also increases. Therefore, higher entropy implies that new information
(or new data) becomes more valuable, as our prior state of ignorance was high.

To summarize, we can arrive at Shannon’s entropy by simply reformulating
Boltzmann-Gibbs’ entropy, as illustrated in Equation (1.13),

H(p1, ..., pn) = −K
∑

i

pi ln pi , (1.13)

and replacing Boltzmann’s constant (kB) with a free parameter (K), which can be
customized for each particular system. This link between Boltzmann-Gibbs’ entropy and
Shannon’s entropy was first formally discussed and formulated by E.T. Jaynes in his
1957’s seminal paper called Information Theory and Statistical Mechanics [36] - it is worth
pointing out, however, that his formulation and reasoning are far more in depth than this
summary.

To better understand this concept let us take two examples: 1) a tossed coin; 2)
a roll of dice. And let us consider K = 1 in order for both examples to be more readily
comparable. In 1) there are only two equally probable possibilities: heads or tails. Hence,
H1 = ln 2. In 2), however, there are six distinct possibilities, also all equally probable.
Hence, H2 = ln 6 (H2 > H1). This means that the information that an experiment with a
coin has yielded a head, for example, is less valuable, contains less information, than the
information that an experiment with a dice yielded a three.

These results are incredibly important in many contexts but specially in computer
science and signal processing [37]. Where his work would later open many new paths to
study various subjects that range from cryptography [38] to machine learning [39].

Nonetheless, it seems there is a gap in the understanding of how information theory,
stochasticity and networks combine together. Something we discuss in the next subsection.

1.3.2 Networks

Networks are a ubiquitous phenomenon, observed across a wide spectrum of disci-
plines including physics, social sciences, biology, and many others. They are characterized
by a connectivity function that governs the relationships between nodes within the network.
In our context, we have shown two examples that highlight how networks can effect the
equilibrium states of agent-based models (as discussed in Section 1.2). What we have not
yet explored is the intriguing concept that within stochastic systems, the connectivity of a
node has a direct link to information, irrespective of the nature of interactions.
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To explain this it is better to start with an example. In the previous section 1.3.1,
we showed how an increase in the number of possible states of a system leads to an increase
in the information gained from new data. Therefore, to pull from the examples we have
already explored, let us consider an agent i with number of connections k (a node denoted
by ni(k)), that starts with a set amount of a given quantity w = w0 (w ∈ R) and then
interacts and exchanges with its connections. Given our context, we can think of w as
wealth and w0 the starting wealth of the agent.

To simplify, let us say that in this interaction all it can do is gain a net amount
of ∆w (∆w > 0). Now let us add our stochastic element: a winning probability Pi that
dictates if i will gain (add ∆w to its starting w0 quantity) with this interaction or not.
Note that this is a simplified example where the agent can never lose.

As we know, the probability of winning j times in k interactions is given by the
binomial distribution:

f(j, k, Pi) = k!
j!(k − j)!P

j
i (1 − Pi)k−j . (1.14)

Now let us consider the simplest case, where the agent will, necessarily, interact
with all of his connections. Given this scenario the collection of all possible states for
agent i (node ni(k)) is:

w0, ∆w + w0, 2∆w + w0, 3∆w + w0, ..., k∆w + w0 , (1.15)

notice how the number of possible states increases as the number of connections (k)
increases. Now, given that every possible state has an attached probability given by
Equation (1.14), we can re-write Equation (1.15) to include it:

w0

[
k!

0!(k − 0)!P
0
i (1 − Pi)k−0

]
, ..., (w0 + k∆w)

[
k!

k!(k − k)!P
k
i (1 − Pi)k−k

]
, (1.16)

hence, from Equation (1.16) we can easily get how much, on average, the agent will gain.
In other words, we can get the average future state of this agent, which will be given by:

⟨wi(k)⟩ = w0 + ∆w
k∑

j=0
f(j, k, Pi)j . (1.17)

Notice, that given the nature of the binomial distribution, the average state grows
linearly with connectivity k, angular coefficient Pi and linear coefficient w0. Similarly, as
per Shannon’s entropy, we have:

Hi = −K
k∑

j=0
f(j, k, Pi) ln f(j, k, Pi) . (1.18)
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Thus, it is easy to see that as the connectivity of a node increases, not only does
the number of possible states but also its entropy. This can be clearly seen in Figure 14
where we show Hi(k) for ∆w = 1, K = 1 and w0 = 0. Notice how given the additive
nature of this example an increase in the probability of winning increases the average state
but decreases entropy. This highlights a fundamental physical concept: equally probable
states maximize entropy. This is why we postulate that, whenever we lack information
about a system, it is best to assume equal probabilities for every possible state.

Figure 14 – Equation (1.18), the information entropy, as a function of the connectivity k.
Note: Since P ∈ [0, 1] and the distribution is binomial, distinct values of P
gives an entropy that is exactly the same as its complementary value. Hence,
the entropy for P = 0.1 and P = 0.9 are the same.

Furthermore, one can, obviously, write a more generalized version of this. Where
Pi and ∆w take much more complex forms. However, it is straightforward to see that, for
most choices, the number of possible states will increase with connectivity k and so will
entropy. Hence, agents/nodes with higher connectivity lead to/have more information.

To bring this concept closer to the model we are trying to build, and make it
clearer, we can think about it in terms of a Monte Carlo simulation. let us consider the
same example from before, but this time focus on two different agents, where their states
are updated with each Monte Carlo step: An agent i, with ni connections, and an agent
j, with nj connections. Take the case when wi = wj = w0 but ni > nj and, therefore,
Hi > Hj. Even though they both start at the same place, the number of possible states
the agent i has available in the next step is greater. Hence, the information about its
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next state, on the next Monte Carlo step, is more valuable and contains more information.
This is a key concept which intrinsically ties an increase in network connectivity with an
increase in information in stochastic systems.

This result also helps us better understand Iglesias’ [23] result, linking higher
connectivity with higher wealth: agents with more information tend to be wealthier and
they also tend to make agents closer to them richer by proxy. This is a key finding because
it will allow us to think about inequality as an information differential instead of more
abstract, and often complex, concepts.

1.3.3 Distribution Generating Processes

In sections 1.2.2 and 1.3.2 we have given direct examples about how connectivity
and wealth are intrinsically linked, we then showed how this is essentially caused by a
information differential and how this allows us to better understand the wealth/income
distribution process. However, there is still one element missing to build our model. We do
not know which processes generate Boltzmann-Gibbs or power-law/Pareto distributions.

Boltzmann-Gibbs Distribution

The Boltzmann-Gibbs distribution arises when we maximize the entropy in Equation
(1.12) in the canonical ensemble, where every microstate i of the system has an associated
energy Ei, and the macrostate has average energy U . Which means, the system is at
thermal equilibrium. This leads us to:

Φ = −
n∑
i

pi ln pi − α(
n∑
i

p1 − 1) − β(
n∑
i

piEi − U) , (1.19)

which can be solved by taking derivatives with respect to pi:

0 = − ln pi − 1 − α − βEi → pi = e(−1−α−βEi) . (1.20)

Since e(1+α) is simply the normalization of the distribution:

e(1+α) =
n∑
i

e−βEi = Z . (1.21)

Therefore,

pi = e−βEi

Z
, (1.22)

this is the Boltzmann-Gibbs distribution. Notice how this result arises from maximazing
entropy in a system with no a priori preference and with fixed average energy. Hence,
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exchange energy by any other quantity and we realize that if the system has no preference
attached to it and every exchange is conservative (the total remains constant) the result
will always be this. That is why so many conservative agent-based models (see section
1.2.2) all result in Boltzmann-Gibbs/exponential distributions and it is also why when we
introduce different, non-random, networks, which produce preference, this distribution
changes. This is also the root of Dragulescu and Yakovenko’s work in [29].

Therefore, almost by definition, agent-based random networks will produce this
distribution, what we have to find is how to also generate a power-law tail.

Power-Law Distribution

In statistical mechanics and network science, additive and multiplicative processes
are terms used to describe systems that evolve in time by successively adding or multiplying
random numbers. Power laws, as exemplified by the Pareto tail, are a consequence of
multiplicative processes, where the entities involved in the exchange typically gain or lose a
percentage of their energy as a result of the interaction. A lot of non-conservative physical
systems behave in this manner since drag, dampening, decay, acoustic loss, and many
other losses, are exponential in nature.

Furthermore, much like non-conservative forces, economic systems are also naturally
multiplicative, since compounding is an intrinsic part of it. From investments, to the growth
of companies, to the growth of countries, everything is multiplicative in nature. Which
is why power laws are so common in these systems. Nonetheless, from the distribution
of city sizes, to particle physics, to the distribution of the mass of stars and to wealth
distribution, power-laws are everywhere.

Given this nature, power-law generating processes are varied. However, given our
economic interest, we will focus on just one: preference. Preference, in this context, means
that if whenever something grows its chances to keep growing also increase, then we have
the essential elements of a power-law generating system.

Hence, if we create a mechanism that generates some form of preference, it is very
likely that this will also generate a power-law.

Combining the Two Processes

Therefore, what is left for us is to find a mechanism that can transit from broad
(exponential/Boltzmann-Gibbs’ distribution) to tail (Pareto’s). Fortunately, based on the
concepts we have elucidated, there seems to exist a straightforward method to achieve
this.

In physics, a particle gains energy by colliding and interacting with other particles.
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And, in essence, whenever a particle collides with a particle with higher energy it gains
some. However, as the energy of this particle grows finding other particles with similar or
higher energy becomes increasingly rare, thus making it much more likely that the particle
will interact of other particles with lower energy and, therefore, lose some, returning
closer to the mean. Similarly, in our context, what limits an agent-based system into
a Boltzmann-Gibbs process is the fact that once an agent reaches a certain amount of
wealth it inevitably stops growing because most other agents have such a small fraction,
relative to them, of wealth to exchange that it becomes more likely for it to lose wealth
and return to the mean than to keep growing. This is true regardless of the starting point
of system - how much wealth is in it. As long as the total wealth of the system is fixed,
whenever an agent increases his wealth away from the mean, it becomes harder and harder
for it keep growing.

This constraint, however, can be solved by allowing those wealthy agents to exchange
with multiple parties at once, thus effectively permitting multiple tiny exchanges to be
combined into one big enough to push it further. Then, for the process to continue all
we must do is to make sure that as the wealth of the agent grows so does how likely this
multiple party exchange happens.

Of course, in physics, it is incredibly unlikely that an instantaneous exchange
between multiple particles will happen at once. Which is why no model within physics
proposes such interaction. However, in the scale of the economy, this happens all the time
with large businesses, which are constantly engaging in various exchanges simultaneously.
Thus, if we link the agents connectivity to its wealth or income, we will be essentially
allowing them to pass the threshold and, potentially, reach the multiplicative state we
need. This can also be pushed further by favoring the richer agent in each transaction, if
necessary. Thus creating a system that has very strong preference towards richer agents.

1.3.4 Conclusion

So far we have highlighted the connection between a higher degree of freedom
(connectivity) and both information and wealth. We have also shown how and why
conservative models often produce Boltzmann-Gibbs distributions and the importance
of preferential attachment to generate power-law distributions. This then allowed us
to understand wealth/income differences as an information differential, and to link the
growth of large companies through the lens of their connectivity. All of which, perhaps
surprisingly, match common intuitions about the world and the economy.

Therefore, by combining all that we have shown, we aim to further explore the
universal dynamics governing wealth and income distributions by proposing a new agent-
based model that is based on fundamental ideas, intrinsic to any commercial exchange,
which, we hope, will shed light on how income/wealth distributions are generated.
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To that affect, we will present each element of our model in a very systematic
approach, where we elucidate how each one of our assumptions contributes to the gradual
transformation of wealth distribution over time. Through this process we will show that
by allowing wealth to be freely generated (and destroyed) and directly linking information
(connectivity) and wealth, while slightly favoring rich agents, one can achieve the results
we are looking for, which is to reproduce real-world scenarios7. Furthermore, we will also
explore different types of taxation and how these affect our results.

7Scenarios : Income/wealth distributions
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2 Outline of the Model

Our goal with this work is to construct a simple agent-based model, rooted in very
basic assumptions of business relationships. To do this, we have built our model step by
step, introducing complexity along the way, while always maintaining its basic features.
Hence, the description of the model, as well as its results, is presented in the same manner,
as a step-by-step model built from its simplest form to its most complex, in order to help
us understand what the effect of each part is and why it matters. We also separate the
description of each version of the model from its results in order to discuss the impact
of each parameter and to understand why we have chosen some appropriate numerical
values for some of these parameters. Note that more complex models can also yield similar
results, but we aim to make it as simple as possible.

2.1 Fundamental Characteristics
We consider a collection of N agents, each starting with a given value w0 of a

continuous variable wi, representing the wealth of the agents. The evolution is probabilistic,
where, in each Monte Carlo step, each agent is chosen once and trades with other agents,
chosen randomly. As the system evolves, agents interact and trade according to four
different sets of rules, which we call scenarios. With each one being more complex than
the other. In these interactions, agents can either gain or lose a net amount of money
based on the combined wealth of both agents i and j,

∆wi,j = µ(wiwj)
(wi + wj)

, (2.1)

where µ is a constant ∈ [0, 1]. This function is taken from [24] and is chosen because it
reflects well the relationship of the difference in buying power among agents: the bigger
the difference in buying power of one agent relative to another, the greater is its ability
to set the amount of money exchanged, aka the price. This Function (2.1) can be seem
in Figure 11. This also makes it impossible for agents to trade more wealth than they
currently have, a basic requirement. It is important to note, however, that this function
is not special and that any other function with a similar qualitative behavior would also
work.

At each interaction, both agents play according to a probability distribution and
wealth is not conserved, as it happens in reality. Therefore, possibilities where both agents
gain (wealth creation) and where both agents lose (wealth destruction) are possible. Since
wealth is not conserved in each trade exchange, the total wealth of the system is normalized
at the end of each Monte Carlo step. It is important noting, however, that since our aim
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is to model real world economic behavior we made decisions to ensure that in most cases
trades are a value add to both agents. Hence, wealth creation and wealth conservation is
more likely than wealth destruction.

2.2 Basic Assumptions
Here, we will introduce the three very basic assumptions that we have adopted and

that are reasonably valid anywhere in the world. Of course, each of these assumptions will
be adequately mathematized.

Our first assumption, which should be self-evident, is

First basic assumption

• The number of trades an agent makes increases with his wealth.

This simple, yet powerful, mechanism encompasses all we have discussed in section
1.3.1, and introduces a direct link between how much wealth an agent has and how much
information it possesses.

This link is also based in reality, after all, as businesses and individuals increase
their net worth, they also increase how many business interactions they perform. For
example, a store grows by selling more items and hence, having contact with a greater
number of customers. Similarly, an individual usually becomes richer by taking part
in multiple businesses at once, like having multiple shares in different companies. This
element is what gives rise to a system with varying degrees of freedom and allows rich
agents to multiply their wealth exponentially, thus shifting part of the system into a
multiplicative process.

These agents will then randomly interact with others according to a given connection
function, defined as fc(wi), which gives how many connections/interactions each agent can
make, based on his wealth. For example, if fc(wi) = 1, each agent in their turn, regardless
of its wealth, will perform one interaction, and therefore one transaction, per Monte Carlo
step. Notice that in one Monte Carlo step, a given agent may perform more than fc(wi)
interactions, as it may be chosen by other agents in their time.

Therefore, according to the assumption, the connection function fc(w) mentioned
above must be a monotonically increasing function. We will assume here the simplest
one, a linear function. Clearly, any other type of monotonically increasing function could
be adopted, but the qualitative behavior of the evolution of the system will not change
by reasonable choices of the connection function. Only the way the system evolves will
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change, but not the patterns of the distribution. This assumption will be used in the
second, third, and fourth scenarios presented below.

Our second basic assumption, which is also self-evident, is

Second basic assumption

• The probability of making a favorable trade transaction increases with the difference
in wealth between the richest and poorest.

Similarly, this aims to model the fact that the richer agent, relative to each other, in
any given transaction, typically enjoys a lower risk. This also, as a reference to section 1.3.1,
further reinforces the preference of the system towards richer agents, therefore increasing
the likelihood that they will partake in a multiplicative process, which is necessary for the
Pareto tail to appear.

To put this into perspective, and exemplify how this takes place in the real world,
let us take the example of a bank performing a loan. The bank not only has a much better
understanding of how risky the transaction is and hence how likely the loan-taker is to
pay - thus allowing it to set the price accordingly. But it is also able to perform multiple
loans with various different parties at once (first assumption) which significantly reduces
its risk. Notwithstanding, it is clear to see that if both parties have similar wealth they
will also have access to similar resources and their risk will be similar.

This introduces a probability of making a favorable trade exchange that depends on
the difference in wealth between the two agents trading. The richer an agent is relative to
each other, the higher the probability of making a good trade, as is usually the case in any
negotiation. In terms of the simulation, this means that two “coins” are tossed, one for each
agent; hence, they both can win or lose, and situations where one wins and the other loses
are also possible. Mathematically, this means that when wi > wj → P (wi|wj) > P (wj|wi).
This assumption will be used in the third and fourth scenarios.

Third basic assumption

• The tax is a monotonic increasing function of wealth.

We have essentially two main types of taxation: wealth taxation and income
taxation (income or capital gains during 1 year, i.e., one stage).
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2.3 Taxation

Taxation on Wealth

We start with taxation on wealth simply because, from the perspective of a
simulation, it is the simplest form of tax. This taxation is setup as follows: After a certain
number of Monte Carlo steps, here adopted as five, we have what we call a stage, which
we can think of as equivalent to 1 year - the period over which income taxes are typically
collected in the real world. At the end of each stage, a tax is applied on the amount
of wealth the agent has at the end of the period. The standard pattern should be that
the tax increases with wealth, so we have our third basic assumption. This mechanism
resembles real world taxation schemes, albeit without your typical bracket and levied on
wealth instead of income.

We then define as a taxation function, to be applied to the wealth of each agent at
the end of a stage, the simplest one, a linear function:

Tax(wi) =


0, if wi < wo

γ(wi − w0) + σw0, if w0 ≤ wi < w∗ and

τ, if wi ≥ w∗ ,

(2.2)

where γ, τ, σ ∈ [0, 1]; γ indicates the growth rate of the tax according to wealth, σ the
base tax rate, τ the maximum adopted tax rate, and w∗ = [τ + (γ − σ) w0]/γ. It is
worth noting that taxation here means taxation to be applied on the wealth each agent
has. We will consider in this paper only progressive taxation, as it should be; thus, the
parameter γ is considered non-negative. Of course, scenarios with negative values of γ

will contribute to concentrate more wealth in the hands of fewer agents. The parameter τ ,
which controls how high the tax rate can reach, could be relevant in controlling inequality
by preventing further concentration in the tail end of the distribution. Furthermore it is
also an important political issue today in many countries - see [9]. The parameter σ, the
initial tax rate, is a parameter that is not particularly important, but we keep it here for
the sake of completeness.

It is also important to note that there is nothing special about the form of this
function, chosen here as a linear function. It could also be another type of increasing
function, such as a power law. What matters is its behavior—it grows with wealth and has
an upper bound. In fact, we explored the quadratic function, and the visible difference was
on how quickly the simulations reached their different patterns. We would also like to note
that a similar approach but using tax brackets was previously tried and the overall behavior
was unchanged hence why we defaulted to, once again, its simplest form. This, however,
refers to our model only. Other authors have explored taxation and the difference between
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Figure 15 – Function Tax(wi) (2.2). On the left figure, the function Tax(w) as function of
wi − w0 is shown for γ = 0.01 and typical values of τ . On the right, the same
function is represented for τ = 0.8 and typical values of γ. Both figures have
σ = 0

linear and non-linear taxation and found different results, see [40] and [41]. Similarly, our
tax definition means taxation always starts when the wealth of an agent is greater then
w0, instead of some other point, which is an aspect that can have an effect on the results
but that we do not explore - see [40].

This taxation is then applied to the share of each agent’s wealth wi above a given
minimum w0 at the end of a fixed number of Monte Carlo steps (called stages), where w0

is each agent’s wealth at the beginning of the simulation.

The total tax charged to the N agents at the end of a stage is then

CT =
N∑

i=1
Tax(wi) wi ; (2.3)

this total tax collected at the end of a stage is then redistributed equally among all
agents (different scenarios in which, for example, the redistribution favors the poor are
also possible and certainly lead to different results and conclusions). Thus, if we let
CT = total tax collected, then Ci,T = CT /N is the amount of tax that is returned to each
agent at the end of a stage.

In the fourth scenario (see Sections 2.5.4 and 3.4), we will consider taxation on
annual income, but the same third assumption applies: taxation increases with income
earned during the previous year.

Taxation on Income or Capital Gain

We have discussed in Section 2.3 how to tax the wealth of agents at the end of each
year (stage) rather than taxing income or capital gains, which is the much more common
form of tax. Therefore, instead of taxing all agents’ wealth wi above the minimum w0,
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we now tax an agent’s annual capital gain whenever it is above the minimum gain ξ.
Hence, regardless of how much wealth an agent has, if he has enough capital gain over a
year, i.e., a stage, above this minimum (ξ), the agent will be taxed on that amount, in a
monotonically increasing way. Then, we can define

Capital Gain ≡ Gi = wi,t − wi,t−1 , (2.4)

where t indexes the t-th year, i.e., the t-th stage—as defined in (Section 2.4). Hence,
taxation to be applied to the capital gain of each agent can now be assumed as

Tax(Gi) =


0, if Gi < ξ

γ(Gi − ξ), if ξ ≤ Gi < G∗ and

τ, if Gi ≥ G∗ ,

(2.5)

where ξ ∈ [0, w0] (therefore, it is never greater than the starting point of the systems) and
G∗ = (τ + γξ)/γ; γ is the the growth rate of the tax according to capital gain.

Notice, however, that here, at the end of a year (a stage), we tax anyone with a
capital gain above ξ, regardless of their current (wealth) condition. Therefore, a poor
agent (wi < 1) who has capital gains above the minimum (Gi > ξ) at a given time t will
be taxed, even though he is poor. Note, however, that the order of magnitude of taxes in
this case (earnings in a year) is very different from the case of a wealth tax. It is important
to note that there are many types of taxes that can be collected during the year. There
are consumption taxes, which are regressive, affecting poor agents more than rich ones,
and taxes on annual income, which are progressive, hurting the rich more. All types of
taxes collected during an agent’s year are called here the agent’s annual income tax. By
annual here, we mean the earning received during a stage, of course.

Therefore, while in the wealth tax model an agent with wi >> w0 can be taxed
heavily, since the tax is applied over the agent’s total wealth above w0, it also allows poorer
agents to build wealth, since they are not taxed until their wealth is at least wi = w0.
Here, in the case of income tax, the opposite may be true. No matter how poor an agent
is, whenever he has a good year, he will be taxed, thus making it difficult for him to build
wealth. Meanwhile, extremely wealthy agents could pay almost nothing—relative to their
wealth—if their capital gain is not important.

As with taxation on wealth, at the end of the stage (year), the total tax collected
that year, which is ∑

i Tax(Gi)Gi, is redistributed equally among all agents.

Note, however, that in each scenario analyzed, only one of these two types of
taxation is applied, either on wealth or on annual income.
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2.4 Simulation Setup
We initiate every agent with wi = w0 and define a Monte Carlo step when each

agent (N) in the system finishes his turn, which means

The agent i, with income wi and number of connections fc(wi) = k, performs all k

interactions in one step. These k interactions are randomly chosen.

The system has no distance (every agent can interact with fc(wi) other agents,
chosen at random). Therefore, since the interacting agents are randomly selected, a given
agent i may perform more than fc(wi) interactions per step, since other agents may in
turn randomly choose agent i.

Note that this choice of network is not random. We need the connectivity of agents
to be able to grow, otherwise we will never get the multiplicative processes necessary to
generate a Pareto tail.

We then define that five Monte Carlo steps constitute a stage, and every step
is synchronous: the state of an agent (increase/decrease in wealth) is only updated when
the Monte Carlo step is completed (all agents have been updated). Tax collection and
redistribution occur only once at the end of the stage. Therefore, Monte Carlo steps can
be interpreted as the passage of months, while a stage as the passage of an entire year
(annual tax).

To better understand the model and how each element contributes to its’ dynamics
we will define the poverty line as 10% of the initial average (wi < w0

10 ) and track how this
portion of the population evolves. Hence, we will separate the population in two groups:

1. Agents with wi ≥ w0
10 , which are shown in the distributions;

2. Agents with wi < w0
10 , which are taken as the poverty rate and only appear as a

percentage.

By doing so, we are essentially defining poverty as any agent with wealth inferior to
10% of the initial average. This is an arbitrary choice but one that we believe is reasonable.

In the following chapters, we explore different simulation settings (interaction rules,
probability, and connection functions) and discuss some of the properties of the model. We
reinforce, however, that the functions we have chosen have nothing special about them—we
particularly choose the simplest functions whenever possible—it is just their qualitative
behaviors that matter. In fact, in the beginning, we tested alternative functions, and the
resulting patterns remained unchanged (the speed of evolution may, as mentioned earlier,
change depending on the functions chosen).
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2.5 Scenarios
By partially combining different elements of our model, we are able to explore

different simulation settings and, therefore, evaluate the impact of each part in the end
result. These different settings are what we call scenarios, which we introduce and define
in the following sections.

2.5.1 First Scenario: Raw Model and Taxation on Wealth

This is the simplest, unbiased scenario. Consider a system with the trade rules
defined at the beginning of Section 2, with an equal probability of winning a commercial
exchange; i.e., the probability that agent i will win a commercial exchange with agent j is

P (wi|wj) = 1
2 . (2.6)

We also consider the connection function—which, as it is defined in Section 2.1, means
how many interactions/transactions an agent will choose at each step—as

fc(wi) = 1 , (2.7)

for any value of wi, implying that at each step, each agent chooses only one other agent to
trade with.

The numerical simulation results for this model can be seen in Section 3.1.

2.5.2 Second Scenario: The Wealth–Connection Model with Wealth Taxation

In this scenario, we go one step further. We present a simple connection function
that links the wealth of an agent with his number of connections,

fc(wi) =

a (wi−w0)
w0

+ 1 if wi ≥ w0

1 if wi < w0 ,
(2.8)

where a ∈ [0, 1]. This is what links information and wealth in our model. By doing so we
are adding a preference, or bias, to the system towards wealthier agents. This is the first
part of the mechanism to generate a multiplicative process in our model and, therefore,
generate a Pareto tail.

The probability of an agent i winning a commercial exchange with an agent j is
still given by Equation (2.6).

According to the function (2.8), note that agents will always make at least one
interaction and that fc(wi) is continuous. In order to reproduce this, agents with fc(wi) ∈ R
have an equivalent probability of having an extra interaction at each Monte Carlo step.
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For example, an agent i with fc(wi) = 3.14 will have three connections plus an extra
connection with a probability of 14%. A random number will be drawn, and if it is below
0.14, the agent will obtain an extra connection, while if it is above, the agent will only
obtain three connections in this round. This treatment is important because, otherwise,
the distribution shows discontinuity where fc(wi) = 2 given that a large portion of the
population is in fc(wi) ∈ [1, 2[.

Furthermore, we would like to point out that the shape of this function is unimpor-
tant. What matters is that it grows with wi, which is why we have chosen the simplest
function possible - a linear one. Quadratic, exponential, etc, would also serve its purpose.
In fact, earlier on, we have explored much more complex versions. One example, which is
worth mentioning, was the introduction of a distance-based connectivity Function (2.9),
which introduced the distance between agents (ri,j) as part of the connectivity process by
creating a probability to trade with agent j that depended on the distance and the wealth
of the agent. By doing so, richer agents were able to reach and trade with agents further
away than otherwise. Which, we believe, is a self-evident fact. After all, economic agents
are more likely to trade with neighbors than far away businesses and as business grow so
do their reach:

fc(wi) = exp (−ari,j

wi

) . (2.9)

This change, however, even though much more complex than our current version,
still produced very similar qualitative results. Hence why we have defaulted to its simplest
form. And why we point out that it is the link between connectivity and wealth that this
function generates that matters.

The numerical simulations associated with this scenario are shown in Section 3.2.

2.5.3 Third Scenario: Favoring the Rich on Transactions and Wealth Taxation

Now, according to our second basic assumption, we introduce a higher probability
of winning a commercial transaction for the agent with greater wealth. Until now, each
agent had an equal probability of winning a commercial exchange, but now the probability
of an agent i winning a transaction with an agent j will be given by the asymmetric
function

P (wi|wj) = 2 + exp(βδwi,j)
5 + exp(βδwi,j)

, (2.10)

where δwi,j = wi − wj and β ∈ [0, 1]. This function aims to model the risk ratio between
agents. The greater the difference between the wealths of agent i and agent j, the greater
the chance that agent i will make a favorable transaction (if wi > wj), modeling the fact
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that the richer agent takes less risk in a trade transaction. A real world example of this
can be seen when we introduced this assumption in section 2.2.

This element further reinforces preference towards richer agents, which contributes
to generate the multiplicative process necessary for the Pareto tail to appear.

At each step, a random number is drawn, and an agent plays this probability with
each of the other agents he trades with. Wealth, as always, is not necessarily conserved:
if both agents win, wealth is created (both agents earn ∆w, Equation (2.1); if only one
wins, wealth is conserved (one agent loses ∆w, while the other wins); and if both lose,
wealth is destroyed. In Figure 16, we can see the behavior of this probability function
as a function of β. Notice how the decrease in the probability of winning for the poorer
agent is small, while the increase for the rich is significant. The function is not symmetric.
As mentioned when we introduced the model, we make this choice with the aim to come
closer to a fundamental economic principle: any given trade, more often than not, is a
value add to both parties. Hence, situations where wealth is conserved or created are more
likely than otherwise. After all, if the commercial negotiation is too unfavorable for an
agent, in the real world, he simply would not make the trade (except in very exceptional
cases, which are not considered here), something we wish to avoid.
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Figure 16 – Probability function, Equation (2.10).

Here, once again, the chosen function is not special, and any other function with
similar behavior would work. What matters is the risk advantage that the rich agent has.
After all, this mechanism simply aims to add more preference towards them.
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2.5.4 Fourth Scenario: Favoring the Rich in Transactions and Taxation on
Annual Income (Capital Gains)

In this scenario, we consider a connection function given by Equation (2.8), a
probability to win a commercial exchange given by Equation (2.10), and a tax on income
earned during a year given by Equation (2.5). This is the scenario closest to reality
considered.
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3 Results

When developing the model we analyzed multiple different values for its parameters
and we found that, essentially, µ, β and a only control how fast the system evolves and,
therefore, how quickly it goes through the different stages. Higher rates of any of these
variables will mean that some of the intermediate distributions will inevitably be skipped
because the system will evolve too fast. Therefore, these parameters will be kept constant
in all of our simulations since we are more interested in following the different stages of
evolution and seeing how the wealth/income distribution changes.

Hence, after extensive testing, we adopt from now on the values µ = 0.1, β = 0.01,
and a = 1. Similarly, σw0, our base tax rate, will be kept at 5% of w0 (σw0 = 0.05) .
Furthermore, since the parameters w0 and ξ are simply scale parameters, and therefore,
their values do not affect the results, they are also kept fixed as w0 = 10 and ξ = 0 during
all numerical simulations. This means, given our previous definition, that our poverty line
will be w0

10 = 1.

On the other hand, however, γ and τ could completely change both the evolution
of the system and the possible equilibrium states. Therefore, our analysis will consist of
varying essentially these two parameters, keeping all others previously mentioned constant.

We would also like to add that, as previously mentioned, different rules for trade
have been tested and the chosen functions have nothing special about them, since, in
general, what drives the distribution’s shape is the link between wealth and information
(connectivity) and the difference in risk1 associated with trade. Therefore, as some of our
tests have shown, we suspect that as long as these two features are maintained in some
fashion, results should be qualitatively the same.

Examining the Data

To examine the evolution of the system, beyond just looking at the shape of
the wealth/income distribution, we will also employ common statistical techniques for
analysis. Firstly, we will assess the system’s equilibrium by analyzing its standard deviation.
Secondly, we will employ the Lorenz curve, as proposed by Max O. Lorenz in 1905 [42]
and shown in Figure 17, to quantify inequality. This curve is essential for calculating the
Gini index, which is the current standard measure of inequality introduced by Corrado
Gini in 1912 [43].
1A richer agent having lower risk/chance of losing wealth versus the poorer agent.
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We use the Lorenz curve because it provides a graphical representation of inequality,
whether it is wealth or annual income. It plots the fraction of the population on the
abscissa based on their income or wealth and the fraction of accumulated wealth or annual
income on the vertical axis. The Gini index, when we take the x and y axis from 0 to 1,
is defined as twice the area between the line representing perfect equality, i.e., the curve
connecting the origin to the point (1, 1), and the Lorenz curve.

Figure 17 – A Lorenz curve depicting different inequality levels.

Finally, as we are interested in understanding the distribution of wealth across
the population, we will characterize its evolution using quantiles. Quantiles are chosen
because they are a standard measure2 of inequality and represent the points that divide
the population into segments. For example, the 90th quantile (or q90) separates the top
10% from the other 90%. Specifically, our focus is on the top 1% and the top 10% of the
population.

Another important measure we are going to examine is the amount of wealth held
by the top 10% and the 1% of the population. These quantities, often referred as the
p90/p100 and p99/p100 ratios, are also commonly used to evaluate inequalities between
countries. Hence, they are easy to find and reference. To that effect, whenever we reference
2Quantiles and percentiles can be used interchangeably.
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these values we will be talking about the earliest available data from the World Inequality
Database [44] (which at the time of writing this thesis was 2022 for most countries).

3.1 Raw Model
As defined in Section 2.5.1, the raw model describes a system without any assump-

tions that privilege any of the agents. Where the richest and the poorest have equal risks
and number of connections.

The aim of this version of the model is to set a baseline for everything that follows.
And it also might be taken as its most Utopian version.

Therefore, its probability function (risk) and connection function are given by
Equations (2.6) and (2.7). All results presented in this section are for N = 100,000
(number of agents) averaged over 100 samples. Taxation is over wealth, given by Equation
(2.2).

3.1.1 Statistics

In Figure 18a, it is evident that even in a system without any form of privilege,
where no agent holds an advantage over another, and wealth is equitably redistributed
among agents, there persists some level of inequality. The Gini coefficient in this scenario
reaches 0.32. This observation underscores that achieving absolute equality is, in essence,
unattainable, as randomness alone is capable of generating inequality.

We can also see that the 90th quantile quickly reaches about 1.6 times the average
wealth (w0). This means that in order to get into the top 10% of the population one
must have at least3 1.6 times the average wealth (w0). This, in turn, makes the top 10%
hold about 19% of the total wealth of the population, as can be seen in Figure 18b. This
measure is often called the p90/p100 ratio. To put this quantity into perspective, Sweden,
one of the most equal countries on earth, has a p90/p100 ratio of 58.87% for wealth and
of 32% for income.
3Note: this is the minimum required wealth, not the average. Hence, there are many agents within the
top 10% that have higher wealth.
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Figure 18 – Raw model with taxation on wealth: γ = 10−3 and τ = 0.4. In the figure
on the left, we can see the average wealth held by the 90 and 99 quantiles,
i.e., the 10% and 1% richest agents, respectively, compared with the standard
deviation. On the right, the fraction of wealth held by the 10% and 1% richest
agents is shown. The time evolution of the Gini index is also shown, stabilizing
slightly above 0.3.

Going further we also analyze how the top 1% fair in this scenario. In Figure 18a,
we can see that the 99 quantile has a value not greater than 2.5 times w0, which makes the
top 1% hold approximately 3% of the total wealth. This measure is commonly known as
the p99/p100 ratio and for Sweden this ratio is 27.65% for wealth and 11, 7% for income.
Therefore, it is safe to say that, as expected, this is a completely unrealistic scenario.

We have designed what essentially constitutes a perfectly egalitarian system, and
yet, we have still identified the presence of inequality. This highlights the inherent
difficulty in achieving absolute equality and defines the natural bounds of such a system.
Consequently, it becomes evident that in ordinary circumstances where agents do not
possess perfectly equal opportunities and taxation does not apply uniformly to an agent’s
total wealth, inequality will not only persist but increase.

Historically, we observe that significant social issues and instability tend to emerge
only when wealth disparities reach extreme levels. This observation, combined with
the economic rationale of maintaining some level of inequality to incentivize production,
underscores the impossibility of completely eliminating inequality. Hence, our focus should
be towards reducing it, rather than striving for its total eradication.

3.2 Wealth-Trade Link
As defined in Section 2.5.2, the wealth–connection model describes a system in

which the richer the agent, the greater his number of connections (trade exchanges).
Therefore, since his risk ratio remains at 50% at all commercial exchanges, once an
agent starts to randomly gain more wealth, due to statistical fluctuations, the increase in
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connections makes his wealth evolution happen faster, while also providing the necessary
source to further increase it. After all, if the connectivity did not increase, the rich agent’s
growth would be bound by the average wealth of the system. Specifically, on average, it
would be limited to increase no further than µw0 per stage. This mechanism is key to
allow an effectively multiplicative process to exist within a mostly additive model.

The functions that define this scenario are given by Equations (2.6) and (2.8). All
results presented in this section are for N = 100,000 averaged over 100 samples. Taxation
is on wealth, given by Equation (2.2).

3.2.1 Distributions

Firstly, we focus on the model’s distribution evolution in Figure 19. Where we can
get an initial sense of the effects of this link. We notice that the system evolves almost
equally as fast as the previous version, quickly reaching a exponential-type form. It is
also noticeable that this version of the model stabilizes around stage 42, where it reaches
its steady-state - this is validated in the next section. Also, see how interconnected the
wealth distribution (left-hand side) and the connection distribution (right-hand side) are.
We will further explore these changes in the statistics section.
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Figure 19 – Evolution of the distributions for the model that links wealth and trade:
γ = 10−4 and τ = 0.4. At each stage, the figure on the left is the distribution
of wealth, and the figure on the right is the distribution of the number of
connections. The orange line is the poverty rate.

3.2.2 Statistics

In Figure 20, we can see that the link between wealth and connections allows for
greater inequality. Whereas, before, the 99th quantile stabilized around 2.4 times w0, it
now stabilizes at 3.1 w0, a 30% increase. Similar differences can also be seen for other
statistics. The Gini index went from 0.31 to 0.37, an increase of 20%. The total wealth of
the richest 10% went from 20% to 24%, an increase of 20%, and so on.

Therefore, the small advantage of allowing the agent with more wealth to have
more trade opportunities (connections), and hence increasing his information, which is
basically a given fact, is enough to increase inequality. Regardless of the fact that his
chance of making a favorable trade is still the same as the poorer agent, ie P (wi|wj) = 1/2.

This mechanism, though apparently simple, is what allows richer agents to approach
a multiplicative realm. Which means agents move away from the mainly additive nature
of making small trades and slowly increasing their wealth - a Boltzmann-Gibbs like
mechanism - and into a multiplicative situation which allows agents to increase their
wealth by percentages - a Pareto like mechanism. This is key for achieving a distribution
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that resembles the real world.

Figure 20 – Statistics for the wealth–connection linked model and taxation on wealth:
γ = 10−3 and τ = 0.4. In the figure on the left, we can see the average
wealth held by the 90 and 99 quantiles, i.e., the 10% and 1% richest agents,
respectively, compared with the standard deviation. Note that these values
are larger than in the raw case, Figure 21. On the right, the fraction of wealth
held by the 10% and 1% richest agents is shown. The increase in wealth
concentration is evident. Consequently, the Gini index also increases. The
time evolution of the Gini index is also shown, stabilizing just below 0.4.

3.3 Favoring the Rich on Transactions
As defined in Section 2.5.3, this model describes a system where an agent’s risk

ratio, P (wi|wj), given by Equation (2.10), and his number of connections, fc(wi), given
by Equation (2.8), are linked to his wealth. Hence, we have what is, essentially, a system
where richer agents have more opportunities to do businesses while also taking on less
risk, on average, than poorer agents. This mechanism, once again, further reinforces the
system’s preference towards richer agents and pushes it further into the multiplicative
processes necessary for a Pareto tail to emerge.

The taxation here is on wealth, given by Equation (2.2), and all results presented
in this section are for N = 100,000 averaged over 500 simulations.

3.3.1 Distributions

First, we start by exploring the evolution of the wealth distribution in this scenario,
which is the main focus of this research: can the model reproduce real-world wealth
distributions with these simple assumptions? The parameter values adopted are τ = 0.4
and γ = 10−4 (Figures 21 and 23), and γ = 10−3 (Figure 24).

On the left-hand side of Figure 21, we can see that at the beginning of the simulation,
the system quickly evolves into a exponential-type form. However, at stage 5, as the
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poverty rate (orange line) begins to increase, what resembles a Pareto tail begins to appear.
At stage 10, when the poverty rate has passed 0.5% and continues to increase, the Pareto-
shaped tail starts to become clearer. At stage 23, its shape reaches exactly the expected
behavior, as can be seen in the fitted curve in Figures 22 and 23: A exponential-like middle
and poor classes, with a Pareto-shaped tail for the upper 10% of the population and a
poverty rate just above 1%. Interestingly, however, as the system reaches that point, the
poverty rate begins to decrease due to the wealth tax, as inequality increases. At stage
38, we see that a “secondary” Pareto tail appears with a higher coefficient, much like the
distribution for Japanese firms shown by Aoyama et al in [13], showing that, in practice,
if given enough time, even the rich begin to differentiate themselves, some much richer
than others. Then, at stage 45, poverty continues to decrease, around 0.1% (remember
that taxation is levied on wealth), even though inequality is still present and evolving.

The much richer, due to the taxation on wealth, rather than annual income, help
reduce poverty. The rounded part of the curve for higher values of wealth is due to finite
size effects. To the right of the distributions, we can also see how the distribution of
number of connections evolves.

We would like to note that, due to the not-so-large number of agents, we cannot
claim that these behaviors are true power laws. For this, we would have to run simulations
for at least 100 times larger number of agents, which is beyond our scope at the moment.
Until the last stage presented in the image (stage 45), the system does not seem to have
reached an equilibrium state yet.

This result not only shows that the model is capable of reproducing real world
scenarios but it also highlights the points put forward at the end of section 3.2: The
combination of reduced risk of doing business (a P (wi|wj) that favors the rich) and
increased number of opportunities/information (number of connections fc(wi)) for the rich
is what finally drives the richest agents towards a multiplicative process. This, in turn,
makes the Pareto tail appear. The hallmark we were looking for.
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Figure 21 – Evolution of the distributions for the model that favors the rich: γ = 10−4

and τ = 0.4. At each stage, the figure on the left is the distribution of wealth,
and the figure on the right is the distribution of the number of connections.
The orange line is the poverty rate.

Figure 22 – Stage 23 of Figure 21. Exponential-like middle class (dotted red line) is clear,
with e−x/t and t = 1.18. γ = 10−4 and τ = 0.4.
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Figure 23 – Stage 23 of Figure 21. Pareto tail (dotted red line) is clear, with Pareto
exponent α = 5.63. γ = 10−4 and τ = 0.4.

To further explore the model, we apply a 10 times taxation increase thus taking γ

from 10−4 to γ = 10−3.

As can be seen in Figure 24, this change does not affect the model’s ability to
evolve to the expected/desired behavior. Hence, we can still see the exponential-Pareto
tailed distribution we have been looking for.

However, even though finite-sized effects that start to appear around stage 45 for
γ = 10−4 (Figure 21) prevents us from being certain about these comparisons, the increase
in taxation (see Figure 24), which leads to a reduction in inequality, also reduces tax
revenue, and, therefore, the redistribution of wealth. This makes the system apparently
reach an equilibrium state (from stage 42 to stage 99) faster and with a much more
egalitarian wealth distribution. This is an important point because standard economic
theory postulates that if taxes are too severe, decision making economic agents will be
less encouraged to keep working and producing, thus reducing welfare. The reduction
of tax revenues when taxation is increased could lead to an increase in poverty, but the
limitations of our simulations do no allow us to verify this effect with certainty.

This result shows that in our model taxation is not absent of negative consequences
- which is often the case with most, if not all, agent-based modeling approaches.

Therefore, to conclude, we have increased taxation which, according to most agent-
based models should, theoretically, make the system more egalitarian. This, however,
did not necessarily occur. Hence, given how inequality has persisted across all model
versions, so far, this shows us four things about a system that favors the wealthy (note that,
again, this is in the context of a model with perfectly equal tax redistribution; unequal
redistribution—those that favor the poor, for example—could lead to different results):
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1. The problem of poverty seems to not be simply solved with higher tax rates.

2. There might be tipping points where tax increases lead to reduction of tax revenues.
A case well studied and understood within economics.

3. Indirectly, we can also infer that the way in which the tax collected is redistributed
is also an essential point. In this case, the tax has been redistributed equally among
the agents and the results are clear: poverty can still persist even with a perfect
redistribution mechanism and high tax rates. However, at least in this case, the
distribution of wealth can be stabilized, unlike what happens with lower taxes, where
the distribution of wealth tends towards ever greater concentrations.

4. It is not necessary to eliminate inequality in order to end poverty. Properly equated
tax policies and tax redistribution mechanisms can eliminate poverty while also
allowing for a healthy elite to exist, simultaneously.

Figure 24 – Evolution of distributions for the model that favors the rich: γ = 10−3 and
τ = 0.4. The orange line is the poverty rate.

These results show us that the model is perfectly capable of reproducing, qualitati-
vely, the behavior of wealth distributions in the real world, from more egalitarian societies
to strongly unequal ones, where even the richest end up separated into different classes.
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This second observation (the double Pareto tail) is not only a remarkable result, but also
something nonexistent in other approaches.

Furthermore, these results indicate that a certain level of inequality generally
always exists, but that poverty can be combated with effective taxation on wealth and
effective redistribution of these taxes.

3.3.2 Statistics

In order to better analyze the effects of the parameters of the model over its time
evolution of the distributions, let us examine some of its statistics. The total tax revenue
can be seen in Figure 25 for several values of γ (our tax rate). As the system evolves, lower
tax rates lead to higher tax revenues that are applied to fewer and fewer agents. This is
because lower tax rates allow a greater concentration of wealth, so fewer and fewer people
can reach the minimum wealth required to pay taxes (w0 = 10). This becomes clearer
when we look at Figures 26 and 27, which show the evolution of the top 10% and top 1%
of the population, respectively. We can see that the 90 quantile initially grows to 2 times
w0 and then suddenly falls around stage 40 for lower tax rates, although the percentage of
wealth held by the top 10% continues to increase. This means that wealth is concentrated
in a group of agents (much) smaller than the 10%. This quantifies the effects we saw in
the last section: even among the richest agents, a differentiation starts, with some much
richer than others (the second Pareto tail we saw). However, the simulation with the
highest tax rate (γ = 10−3) quickly reaches equilibrium (which can be better visualized
in Figure 28) and inequality is greatly reduced. Figure 28b shows the Gini index. Note,
however, that for γ = 10−4 (tax rate), the bump around stage 40 is precisely the point at
which we start to see finite size effects, which prevents us from drawing conclusions for
stages higher than this value. Furthermore, in Figure 28, all the simulations eventually
reach equilibrium, with a stable standard deviation.

Further analyzing the top4 10% of the distribution in Figure 26b (right), we can
see that for γ = 10−5 the fraction of wealth held by top 10% stabilizes just above 50%
which is similar to Sweden, which has in 2021 registered a p90/p100 ratio of 58, 9% for
wealth. Notice, however, that we are talking about a system with wealth taxation. Hence,
a low rate like this is effectively much higher.

Similarly, analyzing the top 1% for the same value of γ in Figure 27b (right) we
find that the top 1% holds just above 40% of the system’s wealth. This number, on the
other hand, is closer the p99/p100 ratio for Brazil in 2021, with 48, 69%.

Therefore, this version of the model not only is capable of showing the wealth/income
distribution we were looking for but it also, consequently, is capable of generating very
4For lower values of γ = [10−4, 10−5] the same comment from before apply. Meaning, finite-size effects
prevents us from making precise conclusions about wealth concentration past stage 40.
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realistic values for the top 10% and 1%, respectively. Thus further establishing the validity
of the model.

Figure 25 – Evolution of total tax revenue and total taxed agents for different values of γ
(tax growth rate according to wealth).

Figure 26 – Evolution of the top 10% of agents for different values of γ (tax growth rate
according to wealth).

Figure 27 – Evolution of the top 1% of agents for different values of γ (tax growth rate
according to wealth).
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Figure 28 – Evolution of the standard deviation (σ) and the Gini coefficient for different
values of γ (tax growth rate according to wealth).

3.4 Annual Income Tax Model
This scenario is similar to the model described in Section 3.3, where an agent’s

risk ratio (P (wi|wj)) and number of connections are linked (fc(wi)) to his wealth. The
difference in this section is how taxation works. Here, instead of taxing the total wealth
of an agent at the end of a stage, we tax the amount the agent earned at the last stage,
which we call annual income.

This is the last scenario we are considering, as it is the closest representation to
the taxation most commonly used around the world. Therefore, as a connection function,
we use Equation (2.8); as risk ratio, we use Equation (2.10); and as taxation, Equation
(2.5) is used.

All results presented in this section are for N = 100,000 averaged over 500 simula-
tions.

3.4.1 Distributions

As usual, we start by exploring the wealth distribution in this scenario and try
to evaluate if the change in taxation alters the qualitative characteristics we have found
previously. In Figure 29 we can see the time (stage) evolution of the distribution for
γ = 10−1 and τ = 0.4. Notice how, in accordance with what we saw in the previous section,
the exponential-Pareto tailed distribution once again appear at stage 30. We also show a
proper fit in Figures 30 and 31, where the exponential and Pareto tail are clearly visible.
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Figure 29 – Evolution of probability distributions for the model with capital gain taxation:
γ = 10−1 and τ = 0.4. The orange line is the poverty rate.

Figure 30 – Stage 30 of Figure 29. Exponential-like middle class (dotted red line) is clear,
with e−x/t and t = 1.17. γ = 10−1 and τ = 0.4.

This time, however, we also see an even steeper second Pareto tail at stage 41,
showing that inequality among the ultra rich, the top 0.1%, has increased even more.
We can also see a proper fit of this phenomenon in Figure 32, where this second Tail is
clearer. Interestingly, however, this is followed by a reduction in poverty rate between
stages 41 and 51, although we have the highest concentration rate so far. This happens
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because as the income of those rich agents increases rapidly, so does the tax revenue to be
redistributed. Hence, at least initially, we get a reduction in the poverty rate.

Figure 31 – Stage 30 of Figure 29. There is a Pareto tail (dotted red line) with α = 4.82.

As the system continues to evolve, however, not only does inequality seem to keep
growing, but the trend of reduced poverty dies out as the system shows no signs of reaching
equilibrium. This is because, since we are taxing only annual earnings, as the ultra rich
gain more and more wealth, there is less and less available income to trade among the
other agents. Hence, the ultra rich can no longer keep increasing their wealth. Once this
happens, tax revenues decrease and the “welfare state” collapses.

Figure 32 – Stage 41 of Figure 29, scenario of annual income taxation. A second Pareto
tail appears, with α = 1.06 (dotted red line). γ = 10−1 and τ = 0.4.

But perhaps the most interesting part about these results is the fact that it is,
once again, similar to reality. When a country initially starts to grow its economy, the
appearance of ultra rich individuals during this process is not uncommon, as the first
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to become rich gain a disproportional ability to take part in the broad economy and
exponentially increase their wealth.

One such example is India, which went years on a trend of ever decreasing poverty
which can be seen in Figure 33b [44], where we show how the poverty rate, here defined as
the percentage of the population with a daily income lower than 2.25 US dollars per day,
has consistently decreased from over 60%, in the 1980s to just below 12% in 2021.

This decrease in poverty is followed closely by a significant increase in income, as
can be seen in the time evolution of the average Indian income in Figure 33c. Notice how
from the 1950s until 1995 the average Indian income increased 250%, from 1235 Euros to
3110 Euros, with almost zero increase in inequality, as can be seen in the p90/p100 and
p99/p100 ratios in Figure 33a.

Figure 33 – Figure a (left): Time evolution of India’s p90/p100 and p99/p100 ratios.
Figure b (middle): Time evolution of India’s poverty rate, here defined as the
percentage of the population with daily income lower than 2.25 US dollars.
Figure c (right): Time evolution of India’s national average income in Euros.
Notice how India grew its average income for decades without any significant
changes to income inequality. Sources: [44] and [45].

However, from 1995 forwards India’s inequality has started to increase both at the
top 1% and at the top 10%, which is a similar movement from what we saw in our model -
see Figure 33.

When countries grow richer quickly but fail to develop past the stage of being a
manufacturer of simple goods and/or seller of commodities and into higher productivity
endeavors - like high value goods and services - sometimes this improvement stagnates
and the gap between richest and poorest start to grow larger. These types of development
problems have been extensively studied in economics and each country has its particular
problems. However, a famous case, often taught in universities, is called the Dutch disease
[46], which shows how widespread such issues can be and reinforces the model’s results.
Nonetheless, given how complex this can be, discussing it is beyond the scope of this work.

In the context of our model, however, if we think about it in terms of an information
differential, we notice that it is caused because rich agents are very “mobile”, due to their
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large number of connections. So they are capable of finding good deals and increase their
wealth even if most of the network is in disarray. On the other hand, poorer agents cannot.

Furthermore, these numerical results also confirm the widespread intuition among
many economists that taxation of annual income alone fails to balance the concentration
of income in a country that, with this type of taxation, always tends towards an ever more
extreme concentration and does not stabilize the distribution. Consequently, according to
the model, taxation of wealth and not only of annual incomes seems to be an valuable
policy to avoid this trend.

To further explore this scenario, we also analyze the wealth distributions for
γ = 2.10−3 and τ = 0.4 in Figure 34. We can see that by stage 19 the exponential-Pareto
tailed distribution once again appears. This time, however, its slope (α in Equation (1.1))
seems higher which indicates a lower rate of inequality - we will verify this in the statistics
section. We can also see that poverty rates are much higher than before, since it reaches
10% by stage 29. Also note that the second Pareto tail, another sign of higher inequality,
appears much earlier. While before we saw its first signs at stage 41, now we see signs of
it by stage 24. This shows us that there is an almost mechanical connection between tax
rates, poverty and inequality. And that the model captures this relationship quite well.

Analyzing the transition from wealth taxation to taxation on annual income, the
most common fiscal approach in the world today, reaffirms a central tenet of our model:
the ability to qualitatively represent real-world wealth distributions based on a few simple
and universally applicable assumptions. These foundational assumptions alone suffice to
capture the essence of actual wealth disparities.

Of course, we can introduce additional economic variables to enhance the model’s
complexity, which would subsequently expand the number of parameters. Remarkably,
these variables, in one way or another, are encompassed within the limited parameters
employed in our model. This approach can be likened to a coarse-grained representation,
where we capture the essential elements driving wealth inequality without delving into
excessive intricacies.

However, when examining the fundamental principles underlying global wealth
disparities, it becomes evident that advantages enjoyed by the wealthy in trade and the
lower risk associated with business play a pivotal role. As our model illustrates, these
factors are adequate to reproduce the qualitative aspects of wealth distributions seen
across various countries.

This exploration underscores the inevitable nature of wealth concentration if effec-
tive fiscal policies and wealth redistribution, particularly targeting low-income individuals,
are absent. Our findings suggest that, in the absence of such policies, the market alone is
ill-equipped to address the challenge of wealth concentration. Effective wealth taxation,
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especially when coupled with equitable tax revenue redistribution, emerges as a plausible
solution to mitigate this issue, as clearly demonstrated by our model.

Figure 34 – Evolution of probability distributions for the model with capital gain taxation:
γ = 2.10−3 and τ = 0.4. The orange line is the poverty rate.

3.4.2 Statistics

Examining the taxation dynamics depicted in Figure 35 and Figure 36, we gain
valuable insights into the influence of the upper tax limit (τ) on our model. Notably,
higher tax limits significantly affect the model’s temporal progression.

As evident from both Figure 35 and Figure 36, elevating the upper tax limit extends
the duration during which tax-driven wealth redistribution operates. This extension allows
for the accumulation of higher total tax revenue, consequently sustaining effective wealth
redistribution for a more prolonged period. Nevertheless, it is notable that, despite
variations in the upper tax limit, the model ultimately converges along a similar trajectory.

Moreover, these figures indicate a noteworthy shift in tax revenue patterns due to
the introduction of this novel form of taxation. Compared to previous stages in the model,
tax revenues are markedly reduced, underscoring the distinctive nature of this taxation
method.
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Figure 35 – Evolution of total tax revenue and total taxed agents for different values of τ
(tax limit). γ = 10−1.

Figure 36 – Evolution of total tax revenue and total taxed agents for different values of τ
(tax limit). γ = 2.10−3.

When we look at the behavior of the top 10%, however, it appears that, in fact,
the upper tax limit is actually able to limit how much of wealth the top 1% and top 10%
hold. Specifically, if we look at Figure 38b for γ = 2.10−3, we notice that the lower level
of taxation, when compared to γ = 10−1, allows the system to reach certain stages of
evolution much faster - as we have seen before. Hence, while in Figure 37b it is not clear
whether the different tax limits are capable of changing the equilibrium state of the model,
in Figure 38b it seems like it indeed is. Notice how for each value of τ , a different, and
lower, fraction of wealth is held by the top 10%. Of course, if we also analyze Figure
42a, we can see that besides for τ = 0.20, the system has not yet reached equilibrium.
Therefore, we cannot know for certain if that is the case or not. Nonetheless, the result is
not unexpected.

Similar behavior can also be seen in Figures 39 and 40 for the top 1%. Meaning,
the tax limit (τ) slows down the evolution of the system and, once again, γ = 2.10−3 in
Figure 40 suggests that different tax limits are indeed capable of changing the amount
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of wealth held by the elite (top 1% in this case). Here, however, based on the system’s
trajectory it becomes clear that for such a low taxation level, what we see in the graphs of
the top 10%, Figure 38, is mainly representative of the top 1%. Hence, the top 90% to
99% actually control very little wealth.

Figure 37 – Evolution of the top 10% of agents for different values of τ (tax limit) and
γ = 10−1.

Figure 38 – Evolution of the top 10% of agents for different values of τ (tax limit) and
γ = 2.10−3.



Chapter 3. Results 63

Figure 39 – Evolution of the top 1% of agents for different values of τ (tax limit) and
γ = 10−1.

Figure 40 – Evolution of the top 1% of agents for different values of τ (tax limit) and
γ = 2.10−3.

Further analyzing the top of the distribution, it is clear that the concentration of
wealth seen in this scenario reaches much higher levels. The richest 1% end up holding up
to 90% of the wealth in both cases (γ = 10−1 and γ = 2.10−3), which leads Gini coefficients
that also reach similar levels and goes up to 0.9.

Moreover, as we saw in the last section, the change among the rich happens in a
faster and stronger way. This time, the 90th quantile reaches two times w0 much earlier
(stage 20 and stage 12 vs. stage 40 in the wealth tax model) than before and drops to
much lower values: in scenario 3, the lowest value of the 90th quantile is just above 0.8w0

(Figure 26), whereas now it is only 0.25w0 (Figure 37 and 38). A similar trend can also
be seen at the 99th quantile (Figure 39 and 40). This shows us that the wealth of the
population is not, in fact, in the hands of the richest 10% or even the richest 1%, but,
actually, in the hands of the 0.0% group (top 0.001%, 0.0001%, 0.00001%, etc.).

As high as these values might seem, they are, actually, not entirely unreasonable.
let us focus on cases where it is more likely, though not certain, for the system to have
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reached equilibrium, which for γ = 2.10−3 is the case of τ = 0.2 (Figure 42):

• γ = 2.10−3 → p90/p100 ≈ 85%;

• γ = 2.10−3 → p99/p100 ≈ 80%;

South Africa has a p90/p100 ratio of 85, 6% and a p99/p100 ratio of 54, 92% for
wealth5. Hence, if we take in consideration that perhaps South Africa has not reached
equilibrium yet, the numbers shown by the model are actually quite possible.

Therefore, the impact of the highest level of taxation, τ , does not seem to change
the qualitative behavior of the time evolution of the stages; it just delays the same pattern,
and it is not a pattern-changing parameter. The parameter can, however, substantially
alter the limits to how much wealth the elite is able to control. Hence, higher tax limits
(τ) lead to lower wealth held by the top 1%.

Then, all the analyzed aspects of the model seem important (i) the value of the
parameter γ (the tax rate), (ii) the type of taxation (on wealth or on annual income), (iii)
how the total tax revenue is redistributed (to be analyzed in a future work), and (iv) the
tax limit τ . All other parameters do not change the tendency of wealth concentration,
according to our simulations.

Furthermore, it might be worth mentioning that the case for γ = 10−1 is quite
extreme. Notice how the taxation, Equation (2.5), reaches its maximum (τ) at Gi = τ

γ
=

τ
0.1 = 10τ . Hence, for τ = 0.2, we have maximum taxation at Gi = 2, which is only 0.2w0.
Therefore, even though the results are useful to understand and validate the model, they
are a very unrealistic scenario, with very high taxation levels. And, yet still, it leads to
high levels of concentration and inequality.

Figure 41 – Evolution of the standard deviation (σ) and the Gini coefficient for different
values of τ (tax limit) and for γ = 10−1.

5These values refer to the year of 2021.
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Figure 42 – Evolution of the standard deviation (σ) and the Gini coefficient for different
values of τ (tax limit) and for γ = 2.10−3.
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4 Conclusion

Over the course of this thesis, we have adequately shown how research on the topic
of income/wealth distributions has developed over time on the field of complex systems.
By doing so, we saw how the problem is commonly framed as well as its typical pitfalls.
In particular, how most models are based on conservative principles and how this severely
hinders their ability to produce non-trivial/closer to reality solutions.

Based on this, we explored alternatives in a search for a generating process that
was capable to produce the distribution we were looking for - a Boltzmann-Gibbs-Pareto
tailed distribution - and through this processes showed how information, stochasticity
and networks are intrinsically linked. With this we were able to frame the problem in a
new light: as an information asymmetry between agents. Thus linking our model’s agent
connectivity to their wealth.

Following this finding, we discussed the role that preference has in these types of
systems and how it is linked to power-laws - one of the reasons why we introduced the
wealth-connectivity link in the first place. This, in turn, led us to further increase our
model’s preference towards richer agents by introducing an asymmetric risk factor that
slightly favors the rich.

With all that combined we were able to build a model with very simple and universal
premises and while doing so, we have showed that it can qualitatively reproduce current
wealth/income distributions, with their middle and poor classes having a Exponential
distribution and a Pareto tail for the richest parts of the population.

Moreover, we analyzed the model’s time evolution through not only their distribu-
tion but also through statistics commonly used to study inequality. This allowed us to
validate the Pareto tail we have found. Furthermore, it showed the complexities it could
generate while still presenting reasonable statistics. In other words, we have showed that
the model resembles the real world not only on its shape but also on how it evolves over
time.

Furthermore, we have also shown that in most cases, taxation on annual income
seems unable to stabilize the distribution. Hence, societies might need some form of
combination of the two (wealth and income), given how hard it is to tax wealth, in order
to reduce inequality in the future. After all, the model shows that a healthy equilibrium
can be reached by taxing wealth even at very low rates, while simultaneously allowing
a healthy economic elite to exist. Nonetheless, while it is important to note that some
of these conclusions would likely change if redistribution favored the poor, particularly
about how high the tax rate (γ) must be to reduce inequality and control poverty, its
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fundamental features are still highly likely to be correct given all the elements we have
explored.

Therefore, it is reasonable to conclude that the model’s principles are very likely
to be correct. In other words, lower risks (greater bargaining power) and greater number
of opportunities (connections/information) associated with wealthy agents are a central
part of the inequality equation, so it is not simply a matter of taxing these agents more,
but reducing these differences as well. A high concentration scenario does not exist when
opportunities are equal and/or markets are regulated and an increase in the upper tax
limit (τ) seems capable of controlling how much wealth the top 1% can control.

This means that among the main drivers of inequality, we should consider the
problem of unequal opportunities and the difference in risks associated with doing business.
Richer agents have much more access to business opportunities and a much lower risk rate
than the rest of society, which leads to growing inequality.

Furthermore, it is worth pointing out that during the development of this model
more complex elements were tested and evaluated. In particular, we explored bracket-based
taxation schemes and distance-based trading advantages - all realistic mechanisms. This
added complexity, however, produced similar qualitative behavior which reinforced that
the basic elements, all of which remain, are what truly drives the model. In other words,
it is the information differential between rich and poor agents and the reduced risk that
those agents enjoy that allows the model to produce these results.

Finally, there are multiple questions yet to be explored about this model which we
hope to research in future work. For example, we have yet to study the effects of unequal
redistribution of taxes, hybrid taxation schemes, how taxation affects growth (remember
that the model is not conservative), how an increase in the number of stages can help
us better understand equilibrium states of some simulations, how with a larger set of
simulations we can more readily verify the tail and some of the behaviors we have found,
how stable the rich status is and further explore the robustness of the model - in other
words, how much more can we change, while maintaining its core features, and still arrive
at the same qualitative result.
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