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Resumo

Na exploração de petróleo, enquanto o método sísmico é sensível às litologias em reser-
vatório, o eletromagnético é sensível à saturação de fluido. Um estudo de sensiblilidade
valida essa complementaridade com resoluções parecidas. Uma abordagem Bayesiana é
então proposta para estimar fácies de lito-fluido e outras propriedades de reservatório
condicionadas a dados sísmicos e eletromagnéticos. As distribuições a priori são conside-
radas modos Gaussianos de propriedades geofísicas de rochas adquiridas diretamente ou
convertidas de propriedades petrofísicas por modelagem calibrada de física de rochas. Uma
generalização original inclui as duas distribuições na mesma integral de marginalização,
que é resolvida analiticamente de modo a fornecer a probabilidade de um dado modelo
de fácies condicionada aos dados geofísicos. Calcular essa probabilidade para todas as
configurações de fácies possíveis pode ser impraticável, logo, um algoritmo Monte Carlo
por Cadeia de Markov amostra modelos de maneira eficiente, fornecendo uma distribuição
posteriori completa. A inversão utiliza dados geofísicos simulados de um modelo sintético
1D baseado no cenário geológico e um poço de um campo de petóleo marinho selecionado.
Dois outros poços do mesmo reservatório foram utilizados para fornecer as distribuições a
priori. Dados de poços, calibração da modelagem física das rochas e correspondência de
fácies entre as distribuições a priori e o modelo sintético são apresentados e discutidos.
Testes numéricos validam adaptações de modelagem direta não lineares na abordagem
Gaussiana linearizada. Os dados geofísicos simulados autônomos e conjuntos são então
invertidos para modelos de fácies lito-fluido sob diferentes condições a priori. Também
foram testados dois cenários geoelétricos desafiadores, um com contrastes de resistividade
mais baixos e outro com um modelo de fundo equivocado. Todos os resultados demonstram
ganho em precisão e acurácia ao associar ambos os sinais geofísicos para se estimar a
coluna de óleo. A abordagem Gaussiana linearizada permite o cálculo das propriedades
geofísicas e petrofísicas das rochas através de inversões determinísticas locais sobre os
diversos modelos de fácies amostrados. Tais inversões também demonstraram potencial
para interpretações quantitativas de reservatórios.
Palavras-chave: Inversão Conjunta, Geophysica de Reservatório, Sísmica, CSEM, Bayes,
Facies, Petrofísica.





Abstract

In the oil industry, whereas the seismic method is sensitive to reservoir lithologies, the
electromagnetic is sensitive to fluid saturation. A sensitivity study supports this comple-
mentarity with similar resolutions. Hence, we propose a Bayesian approach to estimate
lithofluid facies and other properties of reservoirs conditioned on seismic and electromag-
netic data characterization. Prior distributions are assumed to be facies-related Gaussian
modes of geophysical rock properties directly acquired or converted from petrophysical
properties by calibrated rock-physics modeling. An original generalization includes these
distributions in the same marginalization integral, analytically solved under a linearized
Gaussian assumption to provide a facies model likelihood conditioned on geophysical
data. Since computing this probability for all possible facies configurations may be im-
practical, a Markov Chain Monte Carlo algorithm efficiently samples models to provide
a full posterior distribution. The inversion uses simulated geophysical data from a 1D
synthetic model based on the geological scenario and a well from a selected marine oil
field. Two other wells from the same reservoir were used to gather prior distributions.
Data from the well, calibration of the rock-physics modeling, and facies matching between
the priors and the synthetic model are presented and discussed. Numerical tests validate
nonlinear forward modeling adaptations on the assumed linearized Gaussian approach.
The simulated stand-alone and joint geophysical datasets are then inverted for lithofluid
facies models under different prior inputs. Two challenging geoelectric scenarios were also
tested, one with lower resistivity contrasts and another with a misguided background
model. All results demonstrate a gain in precision and accuracy when associating both
geophysical signals to estimate the oil column. The linearized Gaussian approach allows
the computation of the conditional distributions of geophysical and petrophysical rock
properties by applying local deterministic inversions over the many sampled facies models.
The linearized Gaussian approach allows the computation of the conditional distributions
of geophysical and petrophysical rock properties by applying local deterministic inversions
over the many sampled facies models. Such application also shows potential for quantitative
reservoir interpretations.
Keywords: Joint Inversion, Reservoir Geophysics, Seismic, CSEM, Bayes, Facies, Petro-
physics.
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1 Introduction

The goal of mitigating risk in hydrocarbon exploration and reservoir recovery has driven
the development of tools to integrate seismic data, well-logs, core samples, and geologic
models in reservoir characterization [1]. There are various approaches for quantitative
estimation of reservoir properties from seismic inversion; some invert for elastic and
petrophysical properties as continuous parameters [2], and others use facies estimation [3–7].
However, mapping fluid saturation from seismic signals faces critical limitations as the
rock matrix dominates the elastic moduli and density of the bulk [8]. Such limitations
make the interpretation highly dependent on prior knowledge [9], signal processing, and
acquisition [10].

Conversely, the electrolytic conductivity of fluids in the connected pore spaces
dominates the resistivity of sedimentary rocks [8]. Indeed, resistivity well-logs are the
primary tool for indirectly measuring fluid saturation throughout a borehole. In particular,
the observed strong contrasts in resistivity of a siliciclastic reservoir at the oil-brine interface
have led to the increasing use of electromagnetic geophysical methods for mapping fluids
in marine reservoirs [11–14].

Despite its relatively recent history, the marine Controlled-Source Electromagnetic
(CSEM) method has been successfully applied to offshore hydrocarbon exploration [11,
14,15], often at the intermediate stage of field development: after seismic interpretation,
since CSEM acquisition is focused on leads and the interpretation of the acquired signals
depends on prior information, and before reservoir characterization [11], due to the limited
signal resolution compared to the typical geologic scale in which reservoir engineers are
interested.

Some approaches invert the stand-alone CSEM data for a resistivity model that
focuses on the seismically derived zone of interest and then use that resistivity and elastic
rock properties from seismic inversion to estimate petrophysical properties such as porosity,
saturation, shale volume, and lithofluid facies by calibrated rock-physics modeling [13, 14].

However, constraining resistivity models with seismically derived regularization
and prior models may need to be revised or more accurate in recovering models at the
inner reservoir scale. For instance, assigning transverse resistance for the interval from
CSEM-only inversions does not contribute to the seismic mapping of the oil-water contact.
It requires a circular interpretation process [16]. Therefore, the seismic resolution to
lithology should be associated with CSEM sensitivity to fluid saturation by simultaneous
joint inversion linked in the model domain [17].

Techniques of seismic and CSEM joint inversion have been proposed linking elastic
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to electrical models by spatial constraints [18], petrophysical coupling [19–22], and facies
categorization [7, 23]. Inverting for facies links electric to elastic models by spatial dis-
cretization associated with facies-related prior means and covariances of geophysical rock
properties. Petrophysical coupling can be explicitly introduced when using petrophysical
parameters as prior distributions and associating rock-physics with geophysical modeling in
the forward function [24] or, as in this work, implicitly when using petrophysical parameters
transformed by rock-physics modeling to compose the prior distributions.

Over the last decade, several works have been concerned with facies inversion
from geophysical data, often presenting the Bayesian approach as a natural framework to
solve inverse problems that combine categorical and continuous variables. The posterior
probability density function (PDF) defines the target solution for the model parameters,
providing the maximum posterior probability (MAP) model and related uncertainty. Given
the number of cells in 3D reservoir models [10], the full stochastic evaluation of the
posterior PDF [23,24] might be very costly when modeling CSEM and seismic signals by
numerical solvers of differential or integral equations. [25–27]. In this thesis, we use 1D
models and forward functions to concept-proof, although we are interested in developing
an inversion routine prepared to efficiently incorporate 3D models and functions.

We propose a Bayesian joint inversion of seismic and CSEM data to estimate
models of lithofluid facies, in contrast with [23], by using a linearized Gaussian approach
where the marginalization over geophysical rock properties is found analytically [6, 28].
Although the Zoeppritz reflectivity [8, 29] and CSEM 1D modeling [30] are nonlinear
functions, they are used as forward modeling and assumed to be linear approximations
around the facies-related averages to take advantage of such analytical solutions. Numerical
tests validate this adaptation of the linearized Gaussian approach for the given conditions.

The petrophysical prior distributions converted to geophysical rock properties
by calibrated rock-physics modeling may introduce distinct facies-related means and
covariances than directly acquired geophysical rock properties. Hence, we assemble prior
distributions of geophysical and transformed petrophysical rock properties in the marginal-
ization integrals. We also linearize the rock-physics modeling around the averages. A
proposed parameter weights these distributions, providing stand-alone geophysical [6] or
petrophysical priors at the edges and joint distributions [2,5,23,31,32] at the middle of its
range.

The proposed linearizations using analytical Jacobians of forward functions ef-
ficiently evaluate the data-conditioned likelihood for a given facies model (posterior
probability). However, there are F N possible configurations for F facies arranged in N

layers, and computing them may be impracticable. Thus, a Markov Chain Monte Carlo al-
gorithm [33] samples models through that likelihood to provide a full posterior distribution
in reasonable run time.
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As in [6] and different than in [23], the model layer thickness is equivalent to the
seismic data sampling, which means a model discretization on the limit of signal resolution.
Unlike these works, we do not impose spatial correlation between layers in the covariance
matrices to focus on evaluating the inversion accuracy for each given dataset. However, we
set correlations between layers in the model perturbation.

A siliciclastic marine reservoir in the Campos Basin in Brazil [10] was selected to
validate the methodology in a realistic scenario. We used two wells, one as prior information
and another as a base for the synthetic model to simulate the geophysical data. After
presenting and discussing the well’s data, rock-physics calibration, and matching between
priors and the synthetic model, we apply the proposed lithofluid facies inversion to the
simulated data for many prior settings and compare stand-alone with joint inversions.

To challenge the CSEM inversions, we simulate two pessimistic scenarios, one with
lower resistivity contrasts for the fluid saturation and another with a resistive layer in
the overburden, which is ignored during forward modeling. We also test many datasets in
these simulations.

The linearized Gaussian approach allows us to compute the conditional distributions
of geophysical and petrophysical rock properties by sampling linear transformations over
their respective means and covariances on each accepted facies model [4, 5, 32]. Instead,
because we use nonlinear forward functions, nonlinear inversions [34, 35] are performed to
minimize the residuals in these local inversions. Finally, our method is applied to joint
geophysical data and joint prior distributions, providing profiles of posterior distributions
for the rock properties in three inversion experiments, each using one of the three wells
as a prior, including the testing well itself. We approach this feature as a supplementary
subroutine without testing many parameterizations and detailing the results.

This Thesis is organized as follows: Chapter 2 presents seismic, CSEM, and rock-
physics modeling. Chapter 3 is a sensitivity analysis of seismic and CSEM signals to a
simplified reservoir model. Chapter 4 describes the linearized Gaussian methodology and
computational implementation. Chapter 5 presents the borehole data, quality controls,
and aspects of the proposed geophysical linearization. Finally, in Chapter 6, we apply the
facies inversion to the synthetic model with many prior conditions and local inversions for
rock properties. Chapter 7 is the conclusions and perspectives. Appendix A presents the
mathematical formulation of the elastic rock-physics modeling, and Appendix B presents
the Fréchet derivative of this composed formulation.
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2 Geophysical and rock-physics modeling

The modeling functions and parameterizations used in this work are described as follows.

2.1 Seismic modeling

The seismic modeling is based on the Convolutional Model with Zoeppritz Rpp reflection
component [8], simulating a conventional marine seismic acquisition (Figure 1, image
extracted from [36]). The typical AVA attribute angles [20] of 20-degree, 30-degree, and
45-degree are chosen to cover the valid range of the Aki-Richards approximation [37] in
the Jacobian calculation. These angles simulate the near, mid, far gathers of partially
staked angles on the widely employed AVO attribute [38].

In that time-domain paradigm, the interval of interest (IOI) is a layered model
of compression Vp, shear Vs velocities, and density ρ, discretized in n = 13 layers of 5.4
m thickness, corresponding to 4 ms two-way travel time for 2.7 km/s migration velocity.
Then, the reflection coefficients are calculated and convolved with wavelets relative to each
angle, with about 30 Hz peak frequency fM [39] extracted from generic field data. The
reflection coefficients must be convolved with the wavelets to honor the frequency content
of the in-field data, and the n − 1 central samples of the convolved vector are sufficient for
the inversion (Figure 2) [6]. Gaussian noise is added with 10 % variance of the noise-free
signal, simulating data noise and uncertainties on the wavelet estimation [4].

Instead of using the derivatives of the Zoeppritz coefficients, the Jacobian matrix
of the seismic forward function is built with the Aki-Richards coefficient matrix A [37]
multiplied by the differential operator D, convoluted with the wavelets S ∗ AD [4]. As
the geophysical properties are logarithmically scaled to be inversion parameters, the Aki-
Richards approximation is more computationally convenient and suitable for those angles,
velocity contrasts, and noise level [37].

2.2 Geoelectric model

According to the geoelectric scenario of the selected reservoir, the 1D resistivity model as
input is composed of the 70.2 m-IOI inserted below 0.3 Ωm-1.3 km sea water plus 1 Ωm-1.5
km overburden; above 1 Ωm-500 m followed by 4 Ωm-500 m underburden sediments; over
a 100 Ωm half-space basement (Figure 3).
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Figure 1 – Representation of marine seismic acquisition. A vessel tows the air gun source
and hydrophones stream close to the water surface. The red rays depict the
seismic wave paths.

2.3 Electromagnetic modeling

The algorithm described in [30] calculates the CSEM 1D responses on a receiver placed at
the sea floor (see Figure 3) for a normalized horizontal electric dipole towed 50 m above
the receiver depth [40, 41]. The Jacobian matrix for inversion also uses the analytical
derivatives in [30].

Figure 3 shows the CSEM sensitivity to a 70 Ωm-5.4 m resistive layer, simulating
one oil sand layer on the employed discretization, just above a 1 Ωm-64.8 m conductive
layer, representing the other 12 layers of the IOI filled with brine sand. The color map
presents the percent anomaly in the amplitude of this model’s horizontal electric field
|Ex| responses, related to the corresponding responses for the entire IOI filled with a
homogeneous 1 Ωm layer. The anomaly color maps are plotted over the offsets in the x-axis
and the frequencies in the y-axis for inline and broadside source-receiver arrangements
in each frame. The black lines indicate the employed 10−15.5 V/Am2 noise threshold, a
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Figure 2 – A numerical example of AVA seismic modeling: the 12 reflection coefficients are
a function of the incident angle, and the 13 layers elastic model in time domain
4 ms-discretized as the seismic signal sampling. These reflectivity series are
convolved with the respective wavelets, taking the 12 central samples as the
modeled seismic signal. The peak of the wavelets normalizes the amplitudes.

slightly higher value than in [11], as it is achievable in current surveys.

Figure 4 depicts the marine CSEM survey.

Figure 5 shows a map of the two source-receiver arrangements. Note that there is
only one receiver since our modeling is 1D.

We chose 0.75 Hz frequency with a 2.1 to 6 km offset range according to a
compromise between sensitivity to the resistive layer and the number of data points.
Signals below 2 km offset have dispensable anomaly levels and are problematic in-field
data, and 6 km is close to the noise threshold (red dots in Figure 3). We use a source
position interval of 100 m as a conventional acquisition parameter.

Figure 6 shows the inline and broadside electric fields at 0.75 Hz in the chosen
offset range, for homogeneous and anomalous IOI (Figure 3).

The electromagnetic data is contaminated with standard deviation noise at 3 to
5 % [23] of the signal, linearly increasing with the offset. The Gaussian noise distribution
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Figure 3 – The left frame is the resistivity model, including the background, representative
oil, and brine sand layers inside the 70.2 m-IOI. The other frames are color
maps of percent anomaly for |Ex| response on the presence of a 70 Ωm-5.4 m
layer on the top of IOI, compared to the response to 1 Ωm homogeneous IOI,
for inline and broadside source-receiver geometries, over frequency versus offset
axes. Black lines are the noise threshold of 10−15.5 V/Am2. Red dots are the
chosen offset limit and frequency.

is treated on a logarithmic scale to be consistent with the adopted data space.

Evaluating the inclusion of multi-frequency, multi-component, and phase showed
little contribution compared to the increasing complexity of the responses analysis. Hence,
as a matter of simplicity, inverting one frequency and only the amplitude of the horizontal
inline and broadside electric fields are sufficient for the scope of this work [30,42,43].

2.4 Rock-physics modeling

Elastic rock-physics modeling is a granular model composed by coupling some sub-models.
It starts from the Voigh-Reuss Average for bulk Kmat and shear Gmat moduli of the
rock matrix, composed of grains and shale; Hertz-Mindlin Model introduces the effective
pressure Peff , coordination number C and critical porosity Φ0; and Hashin-Shtrikman
includes the porosity Φ, with a Stiff Sand Model for sandstone and a Soft Sand Model for
shale stone.

The Gassman Model includes the water saturation Sw, and the Constitutive
Equations give the compressional Vp and shear Vs velocities from the bulk modulus of the
saturated rock Ksat, the shear modulus of porous media Gdry and the total density ρ [8].
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Figure 4 – Scheme of marine CSEM acquisition. A vessel tows the alternated current
horizontal bipole tens of meters above the sea floor. At the same time, elec-
tromagnetic receivers deployed on the ocean bottom record the transmitted
signal that carries influences of the whole medium, including the subsurface.
(Courtesy of Scripps Institute of Oceanography).

Figure 5 – The inline and broadside source-receiver arrangement employed in this work.
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Figure 6 – Above, the CSEM inline and broadside electric fields at the chosen frequency
and offsets, for homogeneous and anomalous IOI. Below are the corresponding
ratios between the anomalous and homogeneous IOI responses.

The mathematical formulation of this composed model is approached in Appendix
A. Appendix B calculates the analytical derivatives to build the Jacobian of petrophysical
inversion [44] and related to the rock-physics parameters used to the petrophysical model
calibration [45].

The rock-physics modeling of resistivity Res considers the porosity Φ, water
saturation Sw, shale volume Vsh, tortuosity a, water resistivity Resw, shale resistivity
Ressh, cementation exponents m and msh, and fluid exponents n and nsh:

1/Res = ΦmSn
w

aResw

+ V msh
sh Snsh

w

Ressh

, (2.1)

including the exponent nsh (Figure 19) as a slight modification to the original Simandoux
formula [46,47]. As in the elastic model, the shale volume is part of the rock matrix.

The composed rock-physics modeling t(r) has parameters that must be calibrated
to each facies [32,45]. This work uses analytical derivatives of t(r) related to the inputs to
efficiently build the Jacobian matrix T .
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3 Sensitivity analysis (Motivation)

Below there are examples of the complementing aspects between seismic and CSEM signals
in light of the inversion theory [34], which motivates the use of joint inversion for reservoir
characterization.

The synthetic model of a reservoir generates the seismic and CSEM simulated
data dobs (contaminated with Gaussian noise as in Chapter 2) to be compared with the
responses dscan for scanning values of rock properties or the oil column thickness by the
following normalized misfit function:

misfit =
√

(dscan − dobs)T Wd(dscan − dobs)/N. (3.1)

Where N is the number of data points and Wd is the inverse of the diagonal
variance matrix Cd for the added noise in dobs, in the cases of scanning geophysical rock
properties dscan = g(mscan).

If scanning petrophysical properties dscan = g(t(rscan)), it must include the un-
certainty in rock-physics modeling: Wd = (Cd + GCmrGT )−1, where G is the Jacobian
of geophysical modeling and Cmr is a diagonal matrix with the squared errors from the
rock-physics modeling calibration (Figure 19).

3.1 Synthetic model
The 1D synthetic model in Figure 7 represents an IOI with three homogeneous layers: a
shale rock sealing an oil-saturated sandstone over another sandstone saturated with brine.
The reference values of rock properties (Table 1) are rounded averages from well-logs of
the test well (WT) further presented in Section 5.1.

Geophysical and petrophysical properties of the synthetic model
Lithofluid facies Vp (m/s) Vs (m/s) ρ (g/cm3) Res (Ωm) Φ Sw Vsh

Shale 2600 1300 2.2 3.4 0.13 0.3 0.55
Oil sand 3000 1500 2.2 70 0.24 0.26 0.11

Brine sand 3100 1500 2.2 0.8 0.23 0.87 0.11

Table 1 – Table of synthetic model properties by lithofluid facies: Vp and Vs are compression
and shear velocities respectively, ρ is density. Φ is porosity, Sw is water saturation
and Vsh is shale volume (dimensionless values).
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Figure 7 – Synthetic 1D model of a reservoir, z is depth relative to the top of the IOI,
smooth gray lines are the 5.4 m discretization, and colors indicate the lithofluid
facies.

3.2 Geometrical constraint

Figure 8 shows maps of the misfit function for scanning values of thickness h and Vp of
the oil column, h only controls the depth of the oil-water contact. The 70.2 m-IOI, the
shale layer, and all the not-scanned parameters are fixed on the reference values.

Seismic Misfit has a well-defined global minimum with coarsely circular surround-
ings, presenting a channel of h ambiguity for misfit > 1.6 and a local minimum for h ≈ 18
m. CSEM Misfit with fixed Res shows less h resolution. However, CSEM data contributes
to avoiding h ambiguity and local minima in Seismic+CSEM Misfit.

Figure 9 shows the same previous experiment framework, but fixing Vp and scanning
Res. The region of ambiguity in CSEM Misfit with many local minima shows the well-
known dominant sensitivity to the vertical transverse resistance Res × h [13, 40]. Thus,
summing the seismic data better conditions h in CSEM+Seismic Misfit, which still presents
a region of ambiguity, although weaker and with only global minimum.

A comparison between central maps in Figure 8 and 9 shows that seismic have
superior resolution to h, not so far from CSEM.
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Figure 8 – Three maps of the misfit function varying the velocity Vp and thickness h of the
oil column. At left for seismic stand-alone, at the center for CSEM with fixed
Res, and right for the arithmetic average of the previous ones. The symbol *
marks the reference values.

Figure 9 – Three maps of the misfit function varying the resistivity and thickness h of the
oil column. At left for CSEM stand-alone, at the center for seismic with fixed
Vp, and right for the arithmetic average of the previous ones. The symbol *
marks the reference values.



38 Chapter 3. Sensitivity analysis (Motivation)

Figure 10 – Three maps of the misfit function varying the oil column’s porosity Φ and
water saturation Sw. At left for seismic stand-alone, at the center for CSEM
stand-alone, and right for the arithmetic average of the previous ones. The
symbol * marks the reference values.

3.3 Petrophysical constraints

Figure 10 shows the same as the previous experiment framework, now fixing the thickness
in the reference value h = 37.8 m and scanning the petrophysical properties Φ and Sw.
The rock-physics modeling t(r) (see Section 2.4) is previously calibrated on oil sand WT
well-logs (see Section 5.2) to generate all the geophysical properties for the seismic and
CSEM modeling. The input shale volume is also with the reference value Vsh = 0.11.

The maps in Figure 10 assume the geophysical rock properties as a perfect mirror
of petrophysical ones through the rock-physics modeling function to generate the synthetic
model msynthetic = t(rsynthetic), data dobs = g(t(rsynthetic)) + Cdϵ, and scanning responses
dscan = g(t(rscan)). Where ϵ is the vector of normalized Gaussian noise.

Seismic shows much more sensitivity to Φ, while CSEM response is dominated
by Sw. Hence, integrating signals in Seismic+CSEM Misfit presents a well-defined global
minimum. The stand-alone applications present quasi-orthogonal ambiguities, leading to a
well-defined minimum on the joint data map.

Including the misfit of rock-physics calibration Cmr to either normalize the misfit
Wd = (Cd+GCmrGT )−1 in equation 3.1 and contaminate the synthetic model of geophysical
rock properties dobs = g(t(rsynthetic)) + (Cd + GCmrGT )ϵ lead to the more inaccurate and
imprecise mapping in Figure 11. Although biased, the association of both data presents a
well-conditioned minimum in Φ, and Sw indicates the presence of oil.
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Figure 11 – Three maps of the misfit function varying the oil column’s porosity Φ and
water saturation Sw. At left for seismic stand-alone, at the center for CSEM
stand-alone, and right for the arithmetic average of the previous ones. The
data weight and added noise include the calibration misfit. The symbol *
marks the reference values.

Figure 12 – Three maps of the misfit function varying the thickness h and water saturation
Sw of the oil column. At left for the seismic stand-alone, at the center for the
CSEM stand-alone, and right for the arithmetic average of the previous ones.
The symbol * marks the reference values.

3.4 Geometrical and petrophysical constraints

Figure 12 shows the same as the previous experiment framework, now fixing Φ = 0.23 and
Vsh = 0.11 in the reference values and scanning Sw and h.

Seismic shows much more sensitivity to h, while CSEM response is dominated by
Sw. These stand-alone applications present quasi-orthogonal ambiguities, which leads to a
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Figure 13 – Three maps of the misfit function varying the thickness h and water saturation
Sw of the oil column. At left for the seismic stand-alone, at the center for the
CSEM stand-alone, and right for the arithmetic average of the previous ones.
The data weight and added noise include the calibration misfit. The symbol *
marks the reference values.

better-defined minimum on the joint data map, although it presents a relevant region of
ambiguity from CSEM.

Including the uncertainty in the rock-physics modeling leads to critical inaccuracy
to h in all the maps but still provides a better definite minimum on the integration map
(Figure 13), which at least indicates the presence of oil in Sw.

3.5 Partial conclusion
The association of seismic and CSEM minimizes or eliminates the ambiguities presented
by stand-alone signals in experiments involving the geophysical rock properties, where
only the geometry h constrains the elastic to resistivity models. In this case, simultaneous
joint inversion for Vp and Res with a fixed h, for example, has no gain.

Conversely, although petrophysical properties couple elastic to resistivity models,
the uncertainty in rock-physics modeling dramatically increases inaccuracy in mapping
the target minimum.

This analysis demonstrates advantages in distinct associations of seismic and CSEM
signals for reservoir characterization. Although the multiparametric inverse problem is
far more complex than the exemplified maps, these experiments motivate us to approach
geometrical, geophysical, and petrophysical constraints in the same inversion algorithm.

The following work proposes associating distribution modes of geophysical and
petrophysical rock properties to lithofluid facies, then simultaneously inverting seismic
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and CSEM data to the same model composed by this categorical variable.
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4 Methodology

This chapter discusses a Bayesian approach under Gaussian assumptions and linearized
modeling for estimating the posterior probability density function (PDF) of the facies
model within an interval of interest (IOI), including the proposed prior distribution
that integrates geophysical and petrophysical rock properties, along with the numerical
implementation of the theory using a Markov Chain Monte Carlo (MCMC) algorithm [33]
for facies inversion. Calculating and implementing local inversions for rock properties are
also presented as an optional subroutine.

4.1 Theory
The linearized Gaussian mixture technique for facies inversion [44] is generalized to combine
two equivalent prior distributions on the marginalization integral, providing a hybridized
analytical expression for the posterior facies likelihood.

4.1.1 Bayesian inferences

The desired posterior PDF p(π|d) of the facies model π conditioned on the geophysical
data d can be expressed by the following Bayesian inference [34]:

p(π|d) = p(d|π)p(π)
p(d) , (4.1)

where p(d|π) is the PDF for any possible geophysical data conditioned on a proposed
facies model, and p(π) is the PDF for any possible facies models and may be conditioned
on prior information about facies spatial distribution within the IOI.

The term p(d) normalizes the posterior distribution by the following summation
over the entire space of possible facies configurations:

p(d) =
∑

π∈Ωn

p(d|π)p(π), (4.2)

such that for the model space Ω = {π1, π2, ..., πnf
}, the nf discriminated facies arranged

in n layers result in nn
f possible configurations [28].

The PDF of the geophysical data conditioned on facies model p(d|π) is given by
the product of the data likelihood p(d|m) with the prior distribution p(m|π) marginalized
in the m properties [6, 28]:

p(d|π) =
∫

p(d|m)p(m|π)dm. (4.3)
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Assuming Gaussian data noise and introducing the notation (Ndata(function, covariance))
for Normal Distributions (ND) [4], the data likelihood of equation 4.3 can be written as:

p(d|m) = Nd(g(m), Cd) ≡ 1√
det(2πCd)

exp
[

− 1
2(d − g(m))T Cd

−1(d − g(m))
]
, (4.4)

The prior PDF, p(m|π), in equation 4.3 can be computed from the set of m

properties (Vp, Vs, ρ and Res) directly acquired from well-log or core sample measurements
for each facies. Thus, under the Gaussian assumption, it can be written as:

pm(m|π) = Nm(µm, Cm), (4.5)

where µm is the vector of prior means and Cm is the prior covariance matrix. Although
not indicated by subscripts for simplicity, all means, and covariances of rock properties
are facies-related variables.

Alternatively, the prior PDF in equation 4.3 can also be computed from the
petrophysical hard data r (Φ, Sw and Vsh) when it is transformed by a calibrated rock-
physics modeling mr = t(r). In this case, the prior PDF of the transformed geophysical
properties conditioned on facies takes the form of the following marginal distribution:

pr(m|π) =
∫

p(m|r)p(r|π)dr. (4.6)

Then, assuming both PDFs in equation 4.6 as NDs:

pr(m|π) =
∫

Nm(mr, Cmr)Nr(µr, Cr)dr, (4.7)

where µr is the vector of means, Cr is the covariance matrix of the r prior distributions,
and Cmr is a diagonal matrix with the squared errors of the rock-physics calibration, also
assigned to each facies (Figure 19).

4.1.2 Proposed generalization

The following exponential balancing is now proposed to generalize equation 4.3 by including
both priors of equations 4.5 and 4.7:

p(m|π) ∝ pm
α(m|π)pr

(1−α)(m|π), (4.8)

where the parameter 0 ≤ α ≤ 1 weights each prior distribution type under the requirements
of retrieving the stand-alone priors at the edges of this range and ensuring that α never
decreases the covariances of either distribution, avoiding overfitting prior averages.
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Thus, substituting equation 4.8 in 4.3 leads to the following generalized marginal-
ization:

p(d|π) =
∫

p(d|m)pm
α(m|π)pr

(1−α)(m|π)dm. (4.9)

4.1.3 Solving the integrals

To find an analytical solution for the marginalizations (equations 4.7 and 4.9), the geo-
physical g(m) and rock-physics modeling t(r) must be linear functions. The following
calculus assumes hypothetical linear functions gLin(m) = g0 + Gm and tLin(r) = t0 + Tr

tentatively before substituting them with the nonlinear functions g(m) and t(r) for the
final p(d|π) in equation 4.23.

Hence, the petrophysical marginalization of equation 4.7 is found using the known
solution for the convolution of two NDs, whose arguments are linearly dependent on the
integration variable [48,49]:

pr(m|π) =
∫

Nm(t0 + Tr, Cmr)Nr(µr, Cr)dr = Nm(t0 + Tµr, TCrT
T + Cmr). (4.10)

The prior PDFs must be expressed as NDs by including the regularization exponents
(α in equation 4.9) inside the arguments:

pm(m|π)α = Nm(µm,
Cm

α
) (4.11)

and
pr(m|π)1−α = Nm(µmr ,

TCrT
T + Cmr

1 − α
), (4.12)

where µmr = t0 + Tµr.

Now, the PDF for geophysical data conditioned on the facies model takes the form:

p(d|π) = A
∫

Nd(Gm, Cd)Nm(µm,
Cm

α
)Nm(µmr ,

TCrT
T + Cmr

1 − α
)dm. (4.13)

Thus, renaming C−1
α = α

Cm

, C−1
β = 1 − α

TCrT T + Cmr

(inverse to include α = 0, 1)
and then applying the following product rule for two NDs depending on the same variable
[48,49]:

Nm(µm, Cα) · Nm(µmr , Cβ) = Nµm(µmr , Cα + Cβ) · Nm(µη, Cη), (4.14)
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with the joint covariance
Cη =

[
Cα

−1 + Cβ
−1

]−1
(4.15)

and average
µη = Cη

[
Cα

−1µm + Cβ
−1µmr

]
. (4.16)

Hence, the combined prior distribution in equation 4.8 assumes the form:

p(m|π) = ANµm(µmr , Cα + Cβ)Nm(µη, Cη), (4.17)

where the normalization constant A must cancel the m-independent function:

A = 1/Nµm(µmr , Cα + Cβ), (4.18)

thus, the resulting p(m|π) is a ND, as follows:

p(m|π) = Nm(µη, Cη). (4.19)

Therefore, the posterior distribution in equation 4.3 becomes:

p(d|π) =
∫

Nd(g0 + Gm, Cd)Nm(µη, Cη)dm. (4.20)

The integral in equation 4.20 can again be solved as a convolution of linear dependent
NDs (equation 4.10):

p(d|π) = Nd(g0 + Gµη, GCηGT + Cd). (4.21)

By renaming gLin(µη) = g0 + Gµη and C = GCηGT + Cd, the final expression is
found:

p(d|π) = Nd(gLin(µη), C). (4.22)

In the following, we substitute the nonlinear functions t(r) and g(m) in equations
4.16 and 4.22 because it may improve the accuracy. Substituting µmr = t(µr) in equation
4.16 and g(µη) in equation 4.22 adapts the nonlinear forward functions to p(d|π):

p(d|π) = Nd(g(µη), C) , (4.23)

where C is the covariance matrix:
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Figure 14 – Color map of covariance matrices Cm and TCrTT, for three layers model.
Including the three chosen lithofluid facies (shale, brine sand, and oil sand),
indicated on layers, and the four geophysical properties marked on elements of
Cm picture (seismic velocities Vp and Vs, density Dens, and resistivity Res);
and similar to TCrTT picture.

C = G
[

α

Cm

+ 1 − α

TCrT T + Cmr

]−1
GT + Cd . (4.24)

The derivation of equations 4.23 and 4.24 can be validated by assuming the
particular cases α = 0, 1, as the same results are obtained by directly substituting pm(m|π)
or pr(m|π) in equation 4.20, and then applying equation 4.10.

In equation 4.24, the precision (inverse of the covariance) matrices related to each
type of prior distribution are summed, ensuring that in the middle of the range (α = 0.5),
the more accurate the information between the priors, the more significant its contribution
to p(d|π). This relevant aspect of the proposed equation 4.8 may also be attractive to
other statistical applications.

After setting a realistic geological parametrization, the linearization and nonlinear
adaptation are implicitly validated for the rock-physics modeling through the almost
α-independent results in Section 5.3 and explicitly for the geophysical modeling in Section
5.4.

Figure 14 shows color maps of covariance matrices Cm and TCrT
T , for a three

layers model, each belonging to one of the three chosen lithofluid facies, with logarithmic
values extracted from generic well-logs. The complementary between the covariances of
each prior type is interesting for the inverse problem.
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4.2 Implementation
This section presents the computational implementation for the proposed facies inversion
and the local inversions for geophysical and petrophysical properties.

4.2.1 Facies from geophysical data

The analytical solution in equation 4.23 eliminates the need for numerical integration
over the properties m (equation 4.3) for each facies configuration. However, the posterior
distribution p(π|d) (equation 4.1) can only be entirely determined by the evaluation of the
product p(d|π)p(π) over the whole facies model space Ωn (equation 4.2), which may be
numerically unfeasible. Therefore, an MCMC algorithm draws multiple facies realizations
from this high-dimensional posterior distribution [6].

The probability for each proposed facies model p(π) in equation 4.1 is assumed to
be a first-order Markov Chain:

p(π) = p(π1)
n∏

l=2
p(πl|πl−1), (4.25)

where the facies probability at a given layer l depends on the adjacent facies at position l−1
according to the prior probabilities of facies occurrence p(π1) and transitions p(πl|πl−1).
These probabilities are geological parameters based on prior knowledge about the spatial
distribution of the facies in the IOI [24,50].

At each iteration, a model window is randomly selected, keeping the same facies
as the previous model in the top and bottom layers of the window. Then, the layers
in between are perturbed using truncated Gaussian simulation, according to the matrix
P , the elements of which are the facies transition probability between adjacent layers
p(πl|πl−1) in equation 4.25. If the probabilities are uniformly applied over the layer pairs,
P is a square matrix with a dimension equal to the number of facies [24]. This windowing
is adopted to increase the acceptance rate compared to the perturbation of the entire
model.

The geophysical rock properties are computed in logarithm scale and then con-
catenated on a vector by blocks related to each layer. Seismic and CSEM data are also
concatenated into a data vector. The Jacobian and covariance matrices are built by
layer-related blocks consistent with the rock properties vector.

After evaluating p(d|πnew) (equation 4.23) for the current model proposal, the
acceptance rate is given by:

r = min{1, p(d|πnew)/p(d|πlast)}, (4.26)

where p(d|πlast) relates to the last accepted model.
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Then, according to the Metropolis algorithm [6, 33], a random number y with
uniform distribution in the range 0 ≤ y ≤ 1 is generated and compared to r. If y ≤ r, the
current configuration πnew is accepted. Otherwise, it is rejected, retaining the previous
model (Figure 15). If accepted, the model sample is stored, along with its averages µη,
responses g(µη), covariance Cη, Jacobians G and T , and πnew becomes πlast on the next
iteration (Figure 15).

Despite p(π) of equation 4.25 multiplies p(d|π) in equation 4.1, it is not explicit in
equation 4.26 because the described model perturbation implicitly introduces it.

In contrast with [6] and [23], no spatial correlation between layers is imposed on the
covariance matrices to focus on the accuracy of each geophysical dataset under different
prior settings and α effects (equation 4.8).

Beyond the burn-in period, stored samples provide a posterior distribution where
the MAP is the most accepted model, and the uncertainties are extracted for each layer
independently.

4.2.2 Local inversions

In the linearized Gaussian approach, geophysical and petrophysical rock properties can
be estimated as conditional distributions by sampling local inversions over the accepted
facies models [6, 28]:

m ∼ p(m|d, π) = Nm(µm|d,π, Cm|d,π), (4.27)

where the means and covariances conditioned on data and facies model for the proposed
prior distribution (subscript η) are given by the following linear relations:

µm|d,π = µη + CηGT (GCηGT + Cd)−1(d − Gµη) (4.28)

and
Cm|d,π = Cη − CηGT (GCηGT + Cd)−1GCη. (4.29)

However, under the assumed paradigm of using nonlinear forward functions, local
inversions for rock properties achieve better adjustments through the following iterative
process [14,34,35,51]:

µk+1
m|d,π = µk

m|d,π + CηGT
k (GkCηGT

k + Cd + λI)−1
[
d − g(µk

m|d,π) + Gk(µk
m|d,π − µη)

]
, (4.30)

where k is the iteration counter, µ0
m|d,π = µη, λ is the Marquardt parameter (the starting

value λ = 0.01 is empirically set), and I is the identity matrix [35,51]. The inversion stops
when model changes reach a minimum value |µk+1

m|d,π − µk
m|d,π| < δ. The covariance of the

posterior properties Cm|d,π is updated with the final Jacobian Gk in equation 4.29.
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Figure 15 – Block diagram for the facies inversion algorithm. Facies discriminate the rock
properties from well-logs, and the electrical anisotropy ratio θ rescales the
resistivities, calibrating rock-physics parameters to provide the misfit, means,
and Jacobian for the geophysical transformed properties. The inputs are the
means and covariances extracted from these treated prior well data, seismic
and CSEM data, prior weight α, and the initial model. Seismic and CSEM
modeling and Jacobians are the primary external functions of the looping.
Aleatory widowing and facies sampling are subroutines with fixed parameters.
The acceptance condition is based on MCMC. The accepted sample is inputted
to build new facies proposal and stored to update the posterior distribution.
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The same process is employed for the petrophysical properties µr|m,π, by substituting
d into the final µm|d,π, the Jacobian G to T , Cη to Cr, Cd to Cmr and similarly to its
posterior covariance Cr|m,π. The properties r are limited within the critical limits by a
logarithm barrier [52].

In this work, the two local inversions are done in cascade for quality control.
However, the petrophysical properties could be directly inverted from the geophysical data
by the composite function g(t(r)), changing µη and Cη to µr and Cr, G to GT and Cd to
Cd + GCmrGT in equation 4.30, which has the advantage of coupling the elastic properties
to resistivity and the disadvantage of not computing the geophysical rock properties.

To compute the posterior distribution p(γ|d) of the rock properties γ ∈ {m, r}
(with m in logarithm and r in linear scale according to the inversion parametrization)
an M -element (i-index) linearly spaced vector is created for each property γ and layer
(with ranges that cover more than one standard deviation). The NDs Nγi

(µγj, Cγj
) are

calculated with the means µγj
and covariances Cγj

given by local inversions for each
accepted facies configuration represented by the j-index that includes repetitions in
configuration acceptance. Thus, the average of those NDs over the j-index provides a M

dimension posterior probability vector for each property and layer.
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5 Data analysis

The inversion routine should be applied to a realistic geological scenario to assess the
proposed hybrid prior modeling and the robustness of the inversion dealing with many
different prior settings. Three wells of a marine reservoir were selected, one for the synthetic
model and the others to provide the prior distributions.

This chapter presents the well data, the synthetic model by upscaling the test well
profiles, the calibration of rock-physics parameters, the ability of the priors to predict the
reference facies from the synthetic model of geophysical rock properties, surveying the full
range of α, and a numerical validation for the nonlinear geophysical modeling adapted to
the linearized Gaussian approach.

5.1 Well data

Three Maastrichian deep water reservoir wells (confidential geographic reference) were
selected for this work: WP1, WP2, and WT, where (W) refers to the well, (P) to prior,
and (T) to test. Each well contains the three lithofluid facies used in this work: shale, brine
sand (Sw ≥ 0.5), and oil sand (Sw ≤ 0.5), the last two separated by the indicated oil-water
contact (OWC), all inside the previously interpreted top and bottom of the IOI (Figure
16). Along the text, the convention to facies is 1-shale (gray), 2-brine sand (yellow), and
3-oil sand (green).

Notably, the resistivity of oil-saturated sandstone presents a high anisotropy ratio
[53]. However, the conventional resistivity well-logs of the vertical wells employed are only
sensitive to the horizontal resistivities Resh. Meanwhile, the sensitivity of the employed
isotropic CSEM modeling is dominated by the vertical resistivity Resv [54].

As there is no triaxial induction well-log on these selected vertical wells [55], the
ratio of electric anisotropy for each facies (θπ) is coarsely estimated from horizontal wells
and a fluid flow simulator on the reservoir [10]: θ1 = 2, θ2 = 1.5 and θ3 = 10. The vertical
resistivity profiles are then computed by applying θ as a multiplicative factor on the
resistivity data from the three wells (Figures 15 and 17). The fluid flow simulator also
provides the effective pressure employed in the rock-physics modeling.

Figure 17 shows WT original and upscaled lithofluid facies with 13 layers of 5.4 m
thickness each, determined by the adopted seismic time sampling, along with geophysical
and petrophysical properties from WT well-logs, including the rescaled Resv; the synthetic
model, and the prior averages and standard deviations related to the upscaled facies model.
The upscaling algorithm builds the synthetic rock properties model by averaging values
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Figure 16 – The lithological columns of prior wells (WP1) and (WP2), test well (WT) in
depth. The lithofacies are indicated in textures without discriminating fluid
saturation. The horizontal thickest lines indicate the top and bottom of the
interval of interest (IOI) and oil-water contact (OWC) at each well.
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Figure 17 – The first two columns are the original and upscaled lithofluid facies of the
WT in depth. The following frames are the rock properties profiles, with the
original WT profiles in black, transformed vertical resistivity in green, and
the synthetic model in magenta. Prior averages in blue lines for WP1, red
lines for WP2, and dashed lines are their respective intervals of one standard
deviation.

from the original profiles inside the respective upscaled layer. Quality control uses the
inference method which will be described in Section 5.3 to ensure the synthetic model of
geophysical rock properties has the most probability of belonging to the upscaled facies
model.

In the following applications, the IOI top of the synthetic model is 2800 m as in
Figure 3 (the original IOI top of WT is ≈ 2852 m in Figures 16 and 17), and the bottom
is 2870.2 m, an interval corresponding to 13 layers of 5.4 m.

Figure 18 shows crossplots for the petrophysical properties Vsh versus Φ, elastic
Is = ρVs versus acoustic Ip = ρVp impedances, and vertical resistivity Resv versus water
saturation Sw, for WPs and WT. Each contour corresponds to one standard deviation of
property pair distributions in multivariate form. The thinner contour lines are geophysical
rock properties transformed from petrophysical properties by calibrated rock-physics
modeling.

Shale presents sharp and poorly correlated distributions due to the shortage of
well-log samples inside the IOI (Figure 16). To better characterize shale, it is necessary to
complement the priors with well data samples outside the IOI limits, possibly discriminate
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Figure 18 – Crossplots of shale volume Vsh versus porosity Φ, elastic Is versus acoustic
Ip impedances, and vertical resistivity Resv versus water saturation Sw. The
contours correspond to one standard deviation for each pair of properties
distribution related to facies, prior WPs, and reference WT wells. In legend,
Ptr means that the corresponding geophysical property is transformed from
petrophysical modeling.

shale in facies above and below OWC (Figure 16), and constrain its positioning by the
transition matrix P (equation 4.25). However, the present application focuses on identifying
the presence of oil and the OWC positioning.

There are possible challenges for the inversion, as some geophysical rock properties
of the same facies are barely correlated between wells, i.e., shale Is and Resv between
WPs and WT; also, some properties of distinct facies show superimposed distributions,
i,e., Ip of brine and oil sands for the three wells.
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Figure 19 – Calibrated rock-physics parameters for each of the three employed facies and
WP1 and WP2. Petroelastic parameters: the K and µ refer to bulk and shear
moduli respectively, ρ to density, Res to resistivity, g to grain, sh to shale,
w to water, hc to hydrocarbon, C to coordination number, Φ0 to critical
porosity. Petroelectric parameters: a is tortuosity, m and n are cementation
and saturation exponents for grain and shale in the rock matrix.

5.2 Rock-physics calibration

Deterministic nonlinear inversion [34] calibrates the petrophysical modeling using the
derivatives in Appendix B. All rock-physics parameters are inverted from the geophysical
and petrophysical properties assigned to each facies in WP1 and WP2 well-logs, using a
starting model with typical values for this environment (Figure 19).

The mean errors in the adjustment are about 2.4 − 3.8 % for WP1 and 3.4 − 6.5 %
for WP2, depending on the facies. Figure 18 shows that most of the transformed elastic
properties lie inside the hard data distributions except for WP shale due to the few samples
and discrepancies in density profiles that lead to a poor fitting of densities, although not
of velocities.
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Figure 18 shows almost perfect fittings between measured and transformed resis-
tivities because the water saturation well-log is calculated using the resistivity well-log.
The contours are unskewed because, in the present approach, Resv is uncorrelated to Sw

in the prior covariance matrices, as they are properties of distinct kinds. The following
methodology evaluates the most relevant aspects of these calibrations in light of the
proposed inversion.

5.3 Facies from priors
The Bayesian approach is applied to infer the facies model from the synthetic model
of geophysical rock properties under different priors as a quality control to support the
interpretation of the subsequent geophysical modeling and inversions. Using averages and
covariances of each WP and scanning α allow us to evaluate the correspondence between
the priors and the synthetic model, the calibration of the rock-physics modeling, and the
linearization.

Only the geophysical rock properties of the synthetic model are used as input for
simulating geophysical data in further inversions. Thus, Bayes’ rule for estimating facies
conditional on properties m takes the form:

p(π|m) = p(m|π)p(π)
p(m) , (5.1)

where p(m|π) is given by equation 4.19, and p(m) is a normalization factor as in equation
4.2.

Addressing the prior probability of facies occurrence and transitions is outside
the scope of this analysis. Therefore, the inference is performed point-wise for each layer
(l-index) with a uniform probability of facies occurrence and without setting any correlation
between the layers. Thus, substituting equation 4.19 in equation 5.1:

p(il|ml) = Nml(µηi
, Cηi

)∑3
i=1 Nml(µηi

, Cηi
)
, (5.2)

where the index i relates to facies (i = 1 is shale, i = 2 is brine sand, i = 3 is oil sand).

Hence, the MAP facies for each layer are determined by maximizing the facies
probability for a given ml:

iMAP
l = arg max

i
{Nml(µηi

, Cηi
)}. (5.3)

Figure 20 shows the facies models inferred by the described method from both
WPs Elastic, Electric, and Joint rock properties for 11 α values regularly spaced in the
0 ≤ α ≤ 1 range.
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Figure 20 – Color map of 13-layer (y-axis) facies models inferred by applying the WP1
and WP2 priors over the synthetic model of geophysical rock properties.
Frames for elastic-only (Elastic), resistivity-only (Electric), and (Joint) rock
properties present a sequence of 11 inferred facies models related to α values
regularly spaced between 0 ≤ α ≤ 1 (x-axis). Black lines are the reference
facies transitions.
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The results show that WP1 priors overestimate the oil column in elastic, retrieve
the reference facies in electric, and retrieve the reference oil column in joint plots. The
WP2 applications also retrieve the reference facies in electric and the reference oil column
in joint plots. In opposition to WP1, the elastic plot in WP2 shows an underestimated oil
column. These results support the worth of using resistivity to map fluid variations.

In most cases, the resulting facies show weak dependence on α, which validates
the proposed adaptation of nonlinear rock-physics modeling to the linearized Gaussian
approach (equations 4.16, 4.15 and 4.23).

Although some of the above results present brine just above oil, constraining facies
transitions through equation 4.25 will avoid such a physical inconsistency in subsequent
inversions.

5.4 Geophysical linearization

In Subsection 4.1.1, the geophysical modeling is assumed to be close to linearity surrounding
the averages µη to achieve equation 4.23. Thus, the geophysical responses for the synthetic
model of m properties are generated by the nonlinear functions for seismic gS(mS) and
CSEM gEM(Res) (see Sections 2.1 and 2.3), and compared with facies-related linear
functions gS

Lin(mS) and gEM
Lin (Res). In that analysis, the prior means and covariances are

extracted from well-logs of WT itself (see Figures 17 and 18). It is limited to geophysical
rock properties m (α = 1 in equation 4.23) for assessing only linearization effects in
geophysical modeling.

As discussed in Section 2.1, despite using Zoeppritz for modeling the reflection
coefficients of seismic data, the Jacobian uses the Aki-Richards approximation [37], as
follows:

gS
Lin(mS) = GS · mS, (5.4)

with mS as the logarithm of the elastic properties and GS = S ∗ AD, where GS is a
function of µV p,V s|π.

Meanwhile, CSEM linear modeling uses the exact analytical derivatives of nonlinear
modeling (see [30] and Section 2.3) evaluated at µRes|π, as follows:

gEM
Lin (mEM) = gEM(µRes|π) + GEM · (mEM − µRes|π). (5.5)

Figure 21 compares the geophysical responses of the linear with the nonlinear
modeling over the synthetic model for clear and contaminated signals. The difference
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Figure 21 – Comparison between linear and nonlinear geophysical responses for the syn-
thetic model: a) The three angle-related frames contain the seismic signals as
indicated in the legend. b) The upper frames contain the CSEM inline and
broadside signals; the clear nonlinear signal normalizes the others on the lower
frames.

between the responses appears to be below the noise level for all datasets. However, the 5
% difference in the inline electric field at far offsets supports using the nonlinear function.

To compare the linear cases with the proposed nonlinear adaptation in p(d|π) of
equation 4.23, Figure 22 shows histograms for acceptance rates (see equation 4.26):

r = min{1, p(d|πtrial)/p(d|πreference)} (5.6)

of trial facies models p(d|πtrial) against the reference facies model p(d|πreference). The
histograms represent the cumulative acceptance rates divided into 10 intervals between 0
and 1 for 100 simulated data d with different noise seeds in pictures for seismic and CSEM
stand-alone and joint data for 13 trial models.

It is worth pointing out that seismic data uses the Aki-Richards approximation for
the simulated data dS and forward modeling gS

Lin(µS) in the linear case and Zoeppritz for
simulated data and forward modeling in the nonlinear case. In contrast, only the linearly
generated dEM is different from the nonlinear case, whereas the forward modeling is the
same for both cases gEM

Lin (µRes) = gEM(µRes) (see equation 5.5).

These histograms for the probability of accepting a trial against the reference facies
model are proposed as a simple way to assess the insertion of nonlinear modeling on the
linearized Gaussian approach, as conceptually, it should be r = 1 for the correct trial
model and r = 0 for the others. Although far from sampling the whole domain as the
Bayesian inversion intends to do, comparing the posterior likelihood function for linear
and nonlinear modeling and the resolution of each geophysical dataset in this way is
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Figure 22 – Histograms of acceptance rate for 100 simulations per experiment based on a
sequence of increasing oil column models for seismic and CSEM stand-alone
and joint data. The blue bars are nonlinear, and the red bars are linear
modeling, each covering a 0.1 acceptance rate interval. On the models, gray is
shale, yellow is brine sand, green is oil sand, and black lines are the reference
facies transitions.

enlightening.

The behavior of the histograms is generally similar for both functions, validating
the nonlinear adaptation. Furthermore, the higher sensitivity to contrasts of the nonlinear
modeling provides a more accurate acceptance rate for all displaced distributions in seismic
and CSEM stand-alone and joint data.

These results clarify in advance that seismic difficulty in discriminating oil from
brine sand and CSEM’s tendency to overestimate the oil column on subsequent inversions
are unrelated to adapting to the nonlinear forward functions on the linearized Gaussian
approach.

Despite these results validating this application, performing similar numerical tests
before running the inversion in other scenarios is recommended.
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6 Applications and Discussions

The facies inversions are applied to synthetic data, scanning the α range for each prior
well and geophysical dataset. Two possible challenges to CSEM are simulated: inversions
for the lowest possible resistivity contrast and using a misleading overburden model.

The local inversions for rock properties are applied as a supplementary routine
without scanning the prior settings or interpreting the results on the same level of detail
as in the facies inversion.

As described in Section 4.2, the facies proposal distribution is introduced through
stochastic perturbations conditioned on a transition probability matrix P (Figure 15). All
inversions start from a homogeneous model of shale, the facies occurrence probability is
uniform (p(π1) = {1/3} in equation 4.25), and the transition matrix P imposes a 90 %
chance of choosing the same facies on the layer just below each one, 10 % of changing,
and zero of placing oil just below a brine layer.

6.1 Inversion for facies

Figure 23 shows the MAP facies models inverted from contaminated geophysical data
with a noise seed for each of 11 realizations using α regularly spaced values that cover
the 0 ≤ α ≤ 1 range. These realizations are plotted side by side in frames of seismic (SS)
and CSEM stand-alone (EM) and joint seismic/CSEM (SEM) inversions. The MAP facies
model is the most accepted configuration in 2000 iterations, one order higher than the
approximately 200 iterations of the burn-in period (Figure 30).

When comparing the inversions, SS applications show unstable and inaccurate
results, contrasting with the EM. As the seismic signal is sensitive to the model contrasts,
or differentiation, the CSEM signal is sensitive to the model integration (concept well
expressed by the use of transverse resistance in [13], [14] and [12]), making it less susceptible
to uncorrelated noise fluctuations. On the other hand, the integrative aspect of the CSEM
signal impacts its resolution, tending to overestimate the oil column by stretching it up
and down, also related to WP and α.

Fortunately, the SEM results meet the expectations about the complementarity of
both geophysical methods when the contribution of the seismic data leads to more stable
estimations than EM for the oil column, with an average bias of one extra oil layer below
the reference OWC (Figure 23), regardless the prior settings. That means more reliability
for reservoir interpretation and drilling risk assessment.
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Figure 23 – Color map of 13-layer (y-axis) MAP facies models inverted geophysical syn-
thetic data. Frames for seismic-only (SS), CSEM-only (EM), and joint in-
versions (SEM) present a sequence of 11 facies models related to α values
regularly spaced between 0 ≤ α ≤ 1 (x-axis). Each inversion realization is
applied to data with different noise seeds. Gray is shale, yellow is brine sand,
green is oil sand, and black lines are the reference facies transitions.
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6.2 Lower resistivity contrast

Multiplying the resistivity profiles of the three employed wells by the same anisotropy
coefficients θπ might be an artificial advantage of inverting simulated data. Hence, similar
inversion experiments are performed with the original resistivities to assess the results
without such an effect.

In Figure 24, inversion experiments that employ the original horizontal resistivities
of WPs and WT (see Figure 17) present similar behavior to those with high anisotropy
coefficients on the oil sand (θ3 = 10) in Figure 23, i.e., more stable OWC mapping in SEM
than in EM inversions.

Although the higher the oil column resistivity, the higher the CSEM response,
applications of vertical resistivity in Figure 23 retrieve worse OWC mapping than in
Figure 24. This happens because the measured horizontal electric signal produced by the
horizontal electric dipole is dominated by the transversal magnetic (TM) mode [56], which
has a waveguide effect that concentrates the energy in the most resistive layers, shielding
the sensitivity to the more conductive layers just below, as observed in Figure 22.

Aiming to support this argumentation, Figure 25 shows the 13 by 13 elements of
sensitivity matrices [34] ratio (GT

c Gc)/(GT
r Gr), where Gc and Gr are the CSEM Jacobians

of the more conductive and the more resistive models, respectively. Note that the yellow
squares (ratio above 1) are only related to the layers below the OWC, whose sensitivity is
higher in the more conductive model.

The accurate SEM estimations for the oil column in Figure 24, ten times lower
than the typical vertical resistivities in that environment (about 70 Ωm) [10, 12], indicate
that the proposed methodology might work similarly to 3D body CSEM response, which
is also lower than on employed 1D modeling [30].

6.3 Misguided overburden

Despite the prior and synthetic models based on well-logs, and the realistic noise added to
the synthetic geophysical data, these controlled inversions have typical advantages over
in-field applications: 1D isotropic approximations, exact acquisition parameters, the same
IOI and discretization as the modeled data, which benefit both geophysical methods. The
same background model and anisotropy ratio benefit CSEM, while the same wavelets and
the Convolutional Model approximations (see Section 2.1) benefit seismic data.

Figure 26 shows a similar experiment. However, the CSEM simulated data is
perturbed by a 10 Ωm-20 m layer, inserted 1000 m below the sea floor and 480 m above the
IOI (see Figure 3) that is not introduced in the forward modeling, to simulate a pessimistic
scenario, in which CSEM inversion model might bias the interpretation of the reservoir due
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Figure 24 – Color map of 13-layer (y-axis) MAP facies models inverted from geophysical
simulated data over the less resistive synthetic model Resh. Frames for seismic-
only (SS), CSEM-only (EM), and joint inversions (SEM) present a sequence
of 11 facies models related to α values regularly spaced between 0 ≤ α ≤ 1
(x-axis). Each inversion realization is applied to data with different noise seeds.
Gray is shale, yellow is brine sand, green is oil sand, and black lines are the
reference facies transitions.
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Figure 25 – Color map of 13 by 13 elements of the ratio between sensitivity matrices
(GT

c Gc)/(GT
r Gr), where Gc and Gr are the Jacobians of the more conductive

more resistive models respectively.

to the presence of some unidentified resistive rock in the overburden [10], e.g., carbonates,
gas hydrate, salt, igneous and volcanic rocks, and cemented sandstone.

In contrast with the previous results, EM and SEM inversions retrieve the oil
column consistently overestimated by 4 to 6 extra oil layers below the reference OWC,
showing that this anomalous resistive layer strongly impacts the CSEM signal and could
introduce errors in its interpretation. However, penalizing the CSEM data fitting in SEM
by incorporating a multiplicative factor to increase the corresponding variance elements in
Cd (equation 4.24) allows the seismic signal to improve the OWC estimation (last frame
in Figure 26).

Under the Bayesian approach, prior covariances control the weight of each rock
property and geophysical data in the facies inversion and could be interpretation parameters
as in the present case. For instance, [19] proposes balancing electromagnetic to seismic
data by the ratio between starting model responses misfit.

Such an example suggests that the proposed simultaneous geophysical inversion
could mitigate other sources of errors from each geophysical method.
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Figure 26 – Color map of 13-layer (y-axis) MAP facies models inverted from geophysical
simulated data with CSEM perturbed by a resistive layer on the overburden.
Frames for seismic-only (SS), CSEM-only (EM), joint (SEM), and SEM with
enhanced seismic inversions present a sequence of 11 facies models related to α
values regularly spaced between 0 ≤ α ≤ 1 (x-axis). Each inversion realization
is applied to data with different noise seeds. Gray is shale, yellow is brine
sand, green is oil sand, and black lines are the reference facies transitions.

6.4 Inversions for rock properties
Figures 27 and 28 show conditional distributions of geophysical and petrophysical rock
properties built by sampling deterministic nonlinear inversions performed over the accepted
facies models, as described in Subsection 4.2.2. Figure 27 uses WP1 as a prior, and Figure
28 uses WP2, both with α = 0.5.

Figure 29 shows the same inversion experiment using profiles from WT to gather
the prior distributions and calibrate the rock-physics modeling. As expected, these more
likely prior inputs provided better estimations than those using WPs.

Figure 30 shows the misfit for each facies iteration on SEM-WP1 inversion of
Figure 27 after the local inversions for geophysical (d − g(mk))T Cd

−1(d − g(mk)) and
petrophysical (mk − t(rkr))T Cmr

−1(mk − t(rkr)) rock properties. Figure 31 shows the
respective geophysical data, sampled, and MAP responses.

The inversions for rock properties are presented as an extra application since they
are an easily accessible by-product of the proposed facies inversion. However, approaching
that at the same level of detail as the facies inversion would require many more experiments
beyond the scope of this work.
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Figure 27 – Joint geophysical data inversion for facies, geophysical and petrophysical
properties, with α = 0.5 and priors from WP1. The first two columns are
the facies iterations and MAP, and the black lines are the reference facies
transitions. On the properties profiles, cyan lines are the MAP, color maps
are the posterior probabilities, and black lines are the reference values.
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Figure 28 – Joint geophysical data inversion for facies, geophysical and petrophysical
properties, with α = 0.5 and priors from WP2. The first two columns are
the facies iterations and MAP, and the black lines are the reference facies
transitions. On the properties profiles, cyan lines are the MAP, color maps
are the posterior probabilities, and black lines are the reference values.
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Figure 29 – Inversion for facies, geophysical and petrophysical properties, with α = 0.5
and priors from WT. The first two columns are the facies iterations and MAP,
and the black lines are the reference facies transitions. On the properties
profiles, cyan lines are the MAP, color maps are the posterior probabilities,
and black lines are the reference values.

Figure 30 – Misfit evolution for geophysical and petrophysical local inversions in the 2000
facies iterations of joint geophysical data inversion, for WP1 with α = 0.5.
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Figure 31 – Geophysical data and joint inversion responses: a) The frames separate seismic
signals by the indicated angles with the contaminated data in black, the
sample’s responses in red, and the MAP response in cyan. b) The upper
frames are CSEM inline and broadside electric contaminated data in magenta,
the clear signal in black, the samples responses in red, and the MAP response
in cyan; the lower frame is the same data normalized by the clear signal. c)
The same as (b) for CSEM broadside signal.
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7 Conclusion and Perspectives

The semi-analytical Bayesian algorithm successfully estimates models of lithofluid facies
conditioned on seismic and CSEM data, including petrophysical and geophysical property
distributions, weighted by an introduced parameter that allows us to test the inversions
on many prior conditions.

The proposed generalization that associates two prior distributions in the same
marginalization integral leads to an expression that prioritizes the most accurate infor-
mation between them in the posterior covariance matrix. Such an aspect of this original
approach might also be attractive for other applications.

The facies inversion is applied to well-based synthetic models with priors from one
of two other wells per experiment, simulating scenarios of minimal information compared
to what is usually available during the oil field recovery phase. Given that and the added
noise, the results show that joint inversion for lithofluid facies can map vertical fluid
variations in reservoir scale and robustly deal with noise and geological uncertainties in
prior settings.

In stand-alone applications, the CSEM inversions provided stable oil column
estimations inside subsets of prior information, in contrast with the general instability of
the seismic inversions. However, the seismic influence on joint inversions stabilized the
oil-water contact positioning, providing results weakly dependent on prior settings and
data noise, always indicating the presence of oil with an average bias of two oil layers in
addition to the six of the true model, with 5.4 m thickness each.

By comparing the inversion results with the incompatibilities between priors and
elastic synthetic models previously observed by quality controls, the remaining deficiency
of joint inversion to precisely map the oil column is CSEM resolution limitations and weak
elastic response for fluid variations.

Two possible challenging scenarios for CSEM data inversion are also simulated.
One with lower resistivity contrasts for fluid saturation provides better oil-water contact
positioning because the less resistive oil column weakly shields the sensitivity to the lower
layers.

In another scenario, the CSEM simulated data is perturbed by an anomalous
resistive layer inserted in the overburden. However, as expected, the inversion background
model omits this occurrence, leading to the CSEM inversion overestimating the oil column.
However, joining the weight-enhanced seismic data improved the oil column estimation.
That represents an example of difficult-to-access compensation for collaborative interpreta-
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tion or multi-step joint inversion, justifying the simultaneous joint inversion and indicating
that it can reduce other sources of uncertainty in stand-alone signal interpretations.

Assembling geophysical methods, rock properties, and prior information on the
proposed semi-analytical facies inversion allows low-cost estimations of conditional dis-
tributions for geophysical and petrophysical rock properties. Although applied as a sup-
plementary subroutine without testing many parametrizations, the results demonstrate
potential for reservoir quantitative analysis, the quality of which depends on prior inputs.

Some other possible advances in this workflow are 1) optimizing α to condition
the inverse matrices in facies and local inversions, 2) post-inversion optimization for the
oil-water contact, 3) incorporate 3D CSEM and seismic modeling (i.e., finite-difference),
4) and include anisotropy as a rock property.
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APPENDIX A – Petroelastical model

Although well known, these mathematical models are presented to define the approach,
sequence, and variables addressed in the subsequent calculation of derivatives.

General definitions

Φ is porosity, V is volume, S is saturation, K is bulk modulus, µ is shear modulus,
P is effective pressure.

Subscripts g for grain, sh for shale, w for water, hc for oil, Vg for Voigt, Rs for Reuss,
VR for Voigt-Reuss-Hill, HM for Hertz-Mindlin, dry for dry rock, sat for saturated rock,
and fl for fluid.

Voigt-Reuss-Hill average

This is a simple way to define upper and lower bounds for effective elastic properties
of a solid with two homogeneous phases.

Voigt model

The arithmetic average for bulk and shear moduli.

KV g = Kg(1 − Vsh) + KshVsh (A.1)

and

µV g = µg(1 − Vsh) + µshVsh. (A.2)

Reuss model
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The harmonic average for bulk and shear moduli.

KRs =
[1 − Vsh

Kg

+ Vsh

Ksh

]−1
(A.3)

and

µRs =
[1 − Vsh

µg

+ Vsh

µsh

]−1
. (A.4)

Voigt-Reuss-Hill average

The simple arithmetic average between both averages provides a generalized model
that attends the Voigt upper and Reuss lower bounds for the moduli [8].

KV R = 0.5(KV g + KRs) (A.5)

and

µV R = 0.5(µV g + µRs). (A.6)

Hertz-Mindlin model

This model includes the geometry of grains and effective pressure.

For the defined Poisson Ratio

ν = 3KV R − 2µV R

6KV R + 2µV R

, (A.7)

KHM =
[
C2(1 − Φ0)2µ2

V R

18π2(1 − ν)2 P
]1/3

, (A.8)
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and

µHM = 3(5 − 4ν)
5(2 − ν) KHM . (A.9)

Where C is the coordination number of grain pack, which is related to the
average number of contacts that each grain has with surrounding grains [8] and Φ0 is the
critical porosity.

Hashin–Shtrikman soft-sand model

It takes into account the porosity in effective elastic properties of dry rocks.

Kdry =
[ Φ/Φ0

KHM + 4/3µHM

+ 1 − Φ/Φ0

KV R + 4/3µHM

]−1
− 4/3µHM , (A.10)

µdry =
[ Φ/Φ0

µHM + ξ
+ 1 − Φ/Φ0

µV R + ξ

]−1
− ξ, (A.11)

with

ξ = µHM

6

(9KHM + 8µHM

KHM + 2µHM

)
. (A.12)

Hashin–Shtrikman stiff-sand model

It has the same format as the previous soft-sand model, but changing µHM to µV R

in Kdry and the same change plus KHM to KV R in ξ.

Gassman model
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It takes into account the pore fluids effect.

Ksat = Kdry + (1 − Kdry/KV R)2

Φ/Kfl + (1 − Φ)/KV R − Kdry/K2
V R

, (A.13)

with the effective bulk modulus for the fluids mixture in porous space

Kfl =
[

Sw

Kw

+ 1 − Sw

Khc

]−1
, (A.14)

for water bulk modulus Kw and Khc for oil.

As fluids have no shear resistance, µ remains µdry.

It is ignored a possible gas phase for a matter of simplification because some of the
following expressions for derivatives are extensive, moreover it is easy to implement gas
phase contribution for Kfl and ρ, by introducing the equation Sw + Shc + Sgas = 1 [47]. In
the presence of gas, it might be important to consider changes in Kfl due to changes in
pressure [57].

Constitutive equations

Density

ρ = (1 − Φ)
[
(1 − Vsh)ρg + Vshρsh

]
+ Φ

[
Swρw + Shcρhc

]
. (A.15)

Compression Velocity

Vp =
√

Ksat + 4/3µdry

ρ
. (A.16)

Shear Velocity

Vs =
√

µdry

ρ
. (A.17)
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APPENDIX B – Jacobian of petroelastical
model

In the same sequence as the previous formulation, the following calculus approaches the
total derivatives of density and velocities as chain rules with the intermediate ones. Special
notations are assumed to compress the expressions.

Derivatives of Voigt-Reuss-Hill averages mVR = {Vsh, Kg,sh, µg,sh}

dKV R

dVsh

= 0.5
[
Ksh − Kg + K2

V R

(
1/Kg − 1/Ksh

)]
, (B.1)

dKV R

dKg

= 0.5(1 − Vsh)
[
1 +

(
KRs/Kg

)2]
, (B.2)

dKV R

dKsh

= 0.5Vsh

[
1 +

(
KRs/Ksh

)2]
, (B.3)

dµV R

dVsh

= 0.5
[
µsh − µg + µ2

V R

(
1/µg − 1/µsh

)]
, (B.4)

dµV R

dµg

= 0.5(1 − Vsh)
[
1 +

(
µRs/µg

)2]
(B.5)

and

dµV R

dµsh

= 0.5Vsh

[
1 +

(
µRs/µsh

)2]
. (B.6)

Derivatives of Hertz-Mindlin model

Poisson Ratio with respect to mVR
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dν

dmV R

= ∂ν

∂KV R

dKV R

dmV R

+ ∂ν

∂µV R

dµV R

dmV R

,

with

∂ν

∂KV R

= 18µV R

(6KV R + 2µV R)2 (B.7)

and

∂ν

∂µV R

= −18KV R

(6KV R + 2µV R)2 . (B.8)

Note that dKV R

dµg,sh

= dµV R

dKg,sh

= 0.

KHM with respect to mHM = {mVR, P, C, Φ0}

dKHM

dmHM

= ∂KHM

∂mHM

+ ∂KHM

∂µV R

dµV R

dmV R

+ ∂KHM

∂ν

dν

dmV R

, (B.9)

with

∂KHM

∂µV R

= 2KHM

3µV R

, (B.10)

∂KHM

∂ν
= 2KHM

3(1 − ν) , (B.11)

∂KHM

∂P
= KHM

3P
, (B.12)

∂KHM

∂C
= 2KHM

3C
(B.13)
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and

∂KHM

∂Φ0
= − 2KHM

3(1 − Φ0)
. (B.14)

µHM with respect to mHM

dµHM

dmHM

= ∂µHM

∂mHM

+ ∂µHM

∂ν

dν

dmV R

+ ∂µHM

∂KHM

dKHM

dmHM

, (B.15)

with

∂µHM

∂ν
= − 9KHM

5(2 − ν)2 , (B.16)

∂µHM

∂KHM

= 3(5 − 4ν)
5(2 − ν) , (B.17)

∂µHM

∂P
= µHM

3P
, (B.18)

∂µHM

∂C
= 2µHM

3C
(B.19)

and

∂µHM

∂Φ0
= − 2µHM

3(1 − Φ0)
. (B.20)

Derivatives of Hashin-Shtrikman soft-sand model

Kdry with respect to mdry = {mHM, Φ}

dKdry

dmdry

= ∂Kdry

∂mdry

+ ∂Kdry

∂KV R

dKV R

dmV R

+ ∂Kdry

∂KHM

dKHM

dmHM

+ ∂Kdry

∂µHM

dµHM

dmHM

, (B.21)
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with

∂Kdry

∂KV R

=
[
Kdry + 4/3µHM

KV R + 4/3µHM

]2(
1 − Φ/Φ0

)
, (B.22)

∂Kdry

∂KHM

=
[

Kdry + 4/3µHM

KHM + 4/3µHM

]2
Φ/Φ0, (B.23)

∂Kdry

∂µHM

= 4/3
[
∂Kdry

∂KV R

+ ∂Kdry

∂KHM

− 1
]
, (B.24)

∂Kdry

∂Φ =
(

Kdry + 4/3µHM

)2[ 1/Φ0

KV R + 4/3µHM

− 1/Φ0

KHM + 4/3µHM

]
(B.25)

and

∂Kdry

∂Φ0
= − Φ

Φ0

∂Kdry

∂Φ . (B.26)

ξ with respect to mHM

dξ

dmHM

= ∂ξ

∂KHM

dKHM

dmHM

+ ∂ξ

∂µHM

dµHM

dmHM

, (B.27)

with

∂ξ

∂KHM

= µHM

6
10µHM

(KHM + 2µHM)2 (B.28)

and

∂ξ

∂µHM

= ξ

µHM

− KHM

µHM

∂ξ

∂KHM

. (B.29)
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µdry with respect to mdry

dµdry

dmdry

= ∂µdry

∂mdry

+ ∂µdry

∂µV R

dµV R

dmV R

+ + ∂µdry

∂µHM

dµHM

dmHM

+ ∂µdry

∂ξ

dξ

dmHM

, (B.30)

with

∂µdry

∂µV R

=
[
µdry + ξ

µV R + ξ

]2(
1 − Φ/Φ0

)
, (B.31)

∂µdry

∂µHM

=
[

µdry + ξ

µHM + ξ

]2
Φ/Φ0, (B.32)

∂µdry

∂ξ
= ∂µdry

∂µV R

+ ∂µdry

∂µHM

− 1, (B.33)

∂µdry

∂Φ = (µdry + ξ)2
[ 1/Φ0

µV R + ξ
− 1/Φ0

µHM + ξ

]
(B.34)

and

∂µdry

∂Φ0
= − Φ

Φ0

∂µdry

∂Φ . (B.35)

Derivatives of Hashin-Shtrikman stiff-sand model

This formulation has the same format as the previous soft-sand model, but changing
µHM to µV R in Kdry derivative expressions, and the same change plus Kdry to KV R in ξ

derivatives, including the respective changes in differentiation variables.

Derivatives of Gassmann model
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Ksat with respect to mdry

dKsat

dmdry

= ∂Ksat

∂mdry

+ ∂Ksat

∂KV R

dKV R

dmV R

+ ∂Ksat

∂Kdry

dKdry

dmdry

, (B.36)

with

∂Ksat

∂KV R

= 1 +
[

KV R − Ksat

KV R − Kdry

]2
+ Φ

[
Ksat − Kdry

KV R − Kdry

]2(
2KV R

Kfl

− 1
)

, (B.37)

∂Ksat

∂Kdry

=
[

KV R − Ksat

KV R − Kdry

]2
(B.38)

and

∂Ksat

∂Φ = −
[

Ksat − Kdry

KV R − Kdry

]2
KV R

(
KV R

Kfl

− 1
)

. (B.39)

Ksat with respect to mfl = {Sw, Kw, Khc}

dKsat

dmfl

= ∂Ksat

∂Kfl

dKfl

dmfl

, (B.40)

with

∂Ksat

∂Kfl

=
[

Ksat − Kdry

KV R − Kdry

]2
Φ

(
KV R

Kfl

)2
, (B.41)

dKfl

dSw

= K2
fl(1/Khc − 1/Kw), (B.42)

dKfl

dKw

= Sw

(
Kfl

Kw

)2
(B.43)
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and

dKfl

dKhc

= (1 − Sw)
(

Kfl

Khc

)2
. (B.44)

Derivatives of ρ with respect to mρ = {Vsh, Φ, Sw, ρg,sh,w,hc}

dρ

dVsh

= (1 − Φ)(ρsh − ρg), (B.45)

dρ

dΦ = Swρw + (1 − Sw)ρhc − (1 − Vsh)ρg − Vshρsh, (B.46)

dρ

dSw

= Φ(ρw − ρhc), (B.47)

dρ

dρg

= (1 − Φ)(1 − Vsh), (B.48)

dρ

dρsh

= (1 − Φ)Vsh, (B.49)

dρ

dρw

= ΦSw (B.50)

and

dρ

dρhc

= Φ(1 − Sw). (B.51)

Derivatives of velocities v = {vp, vs} with respect to
m = {Φ, Sw, Vsh, P, ρg,sh,w,hc, Kg,sh,w,hc, µg,sh, C, Φ0}

dv

dm
= ∂v

∂ρ

dρ

dmρ

+ ∂v

∂Ksat

dKsat

dmdry,fl

+ ∂v

∂µdry

dµdry

dmdry

, (B.52)

with
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∂v

∂ρ
= − v

2ρ
, (B.53)

∂vp

∂Ksat

= 1
2vpρ

, (B.54)

∂vp

∂µdry

= 4
3

∂vp

∂Ksat

(B.55)

and

∂vs

∂µdry

= 1
2vsρ

. (B.56)
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