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Abstract

We numerically investigate the thermal conductivity of n-vector models with n = 1, 2, 3
using molecular dynamics simulations. For n = 1, our focus is on the d = 1 lattice of
ferromagnetically coupled planar rotators in the inertial XY model, considering both local
and coupling anisotropies. In the limit of extreme anisotropy, these models approach the
Ising model.

For the classical inertial nearest-neighbor XY ferromagnet (n = 2) in dimensions
d = 1, 2, 3, with N = Ld representing the total number of lattice sites, we derive the
thermal conductance expression,

σ(T, L)Lδ(d) = A(d)e−B(d) [Lγ(d)T ]η(d)

q(d) , (with ez
q ≡ [1 + (1 − q)z]1/(1−q); ez

1 = ez) . (1)

The parameters A(d), B(d), q(d), η(d), δ(d), and γ(d) depend on the dimension d.
Our numerical results reveal consistent dependencies among (q, η, δ, γ) that comply

with normal thermal conductivity (Fourier’s law) in all dimensions. The one-dimensional
classical inertial Heisenberg model (n = 3) also verifies Fourier’s law, with the thermal
conductivity becoming independent of lattice size as L → ∞. We find that the thermal
conductance σ(L, T ) for all models can be well-fitted by a function originated from the
nonextensive statistical mechanics: σ(L, T ) = A(d) expq(d)(−B(d)|x|η(d)). The scaling
law, ηγ

q−1 = 1, guarantees the validity of Fourier’s law in all dimensions.
On related topics with q-statistics, we study human electroencephalograms of typical

human adults (EEG), very specifically their inter-occurrence times across an arbitrarily
chosen threshold of the signal (observed, for instance, at the midparietal location in
scalp). The distributions of these inter-occurrence times differ from those usually emerging
within Boltzmann-Gibbs statistical mechanics. They are instead well approached within
the q-statistical theory, based on non-additive entropies characterized by the index q.
The present method points towards a suitable tool for quantitatively accessing brain
complexity, thus potentially opening useful studies of the properties of both typical and
altered brain physiology.

We also stimulate promising investigations about quantum chaos at the edge of chaos,
a domain well-described by q-statistics. These ongoing investigations follow a comprehen-
sive exploration of a specific quantum system exhibiting strong chaos in some regions, a
scenario typically governed by Boltzmann-Gibbs statistics.

Key Words: Transport phenomena, Non-extensive statistical mechanics, Molecular
dynamics, n-vector models, Human electroencephalograms, Quantum chaos.
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Resumo

Investiga-se numericamente a condutividade térmica dos modelos n vetoriais com n =
1, 2, 3, utilizando simulações de dinâmica molecular. Para n = 1, foca-se na rede d = 1
de rotores planares ferromagneticamente acoplados no modelo XY inercial, considerando
tanto anisotropias locais quanto de acoplamento. No limite de anisotropia extrema, esses
modelos se aproximam do modelo de Ising. Para o modelo ferromagnético clássico inercial
de primeiros vizinhos (n = 2) em dimensões d = 1, 2, 3, com N = Ld representando o
número total de śıtios na rede, deriva-se a expressão da condutância térmica,

σ(T, L)Lδ(d) = A(d) e−B(d) [Lγ(d)T ]η(d)

q(d) , (com ez
q ≡ [1 + (1 − q)z]1/(1−q); ez

1 = ez). (2)

Os parâmetros A(d), B(d), q(d), η(d), δ(d) e γ(d) dependem da dimensão d. Tais
resultados numéricos revelam dependências consistentes entre (q, η, δ, γ) que estão em
conformidade com a condutividade térmica normal (Lei de Fourier) em todas as dimensões.
No modelo clássico de Heisenberg inercial unidimensional (n = 3) também verifica-se a Lei
de Fourier, com a condutividade térmica se tornando independente do tamanho da rede
conforme L → ∞. Descobriu-se que a condutância térmica σ(L, T ) para todos os modelos
pode ser bem ajustada por uma função originada da mecânica estat́ıstica não extensiva:
σ(L, T ) = A(d) expq(d)(−B(d)|x|η(d)). A lei de escala, η,γ

q−1 = 1, garante a validade da Lei
de Fourier em todas as dimensões.

Em tópicos relacionados com a q-estat́ıstica, estudamos eletroencefalogramas (EEG)
de adultos t́ıpicos, especificamente seus tempos de interocorrência através de um limiar
arbitrariamente escolhido do sinal (observado, por exemplo, na localização midparietal
no couro cabeludo). As distribuições desses tempos de interocorrência diferem daquelas
que geralmente emergem dentro da mecânica estat́ıstica de Boltzmann-Gibbs. Elas são,
em vez disso, bem descritas pela q-estat́ıstica, baseada em entropias não aditivas car-
acterizadas pelo ı́ndice q. O método atual aponta para uma ferramenta adequada para
acessar quantitativamente a complexidade cerebral, abrindo caminho para estudos úteis
das propriedades da fisiologia cerebral t́ıpica e alterada.

Também estimulamos investigações promissoras sobre o caos quântico na fronteira do
caos, um domı́nio bem descrito pela q-estat́ıstica. Estas investigações em andamento
seguem uma exploração abrangente de um sistema quântico espećıfico que apresenta
caos forte em algumas regiões, um cenário tipicamente governado pela estat́ıstica de
Boltzmann-Gibbs.

Palavras-Chave: Fenômenos de transporte, Mecânica estat́ıstica não-extensiva, Dinâmica
molecular, Modelos n-vetoriais, Eletroencefalogramas humanos, Caos quântico
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Chapter 1

Introduction

Transport properties naturally emerge in macroscopic systems which are not in equi-
librium. For instance, if a system is in permanent contact with two or more reservoirs
having different temperatures, electrical potentials, concentrations and mean velocities,
transfer of heat and of similar quantities (charge, mass, momentum) spontaneously oc-
cur. These phenomena lead to linear relations between causal quantities (appropriate
gradients, assumed to be asymptotically small) and their effects (corresponding transfers)
yielding characteristic coefficients such as thermal conductivity, electrical conductivity,
diffusivity and viscosity, appearing respectively in Fourier’s, Ohm’s, Fick’s and viscosity
Newton’s laws.

We focus here on Fourier’s law. In the absence of radiation and convection, this law [1]
consists in a linear relation between heat flux J and the gradient of the temperature field
−∇T which causes this flux, thus yielding, at the stationary state, the well known relation
J = −κ∇T , which is the flow of energy per unit of Ld−1 per unit of time, being κ > 0
referred to as the thermal conductivity of the d-dimensional medium and L its linear size.

This important transport property currently satisfies some rules, namely that κ neither
depends on the gradient of the temperature as long as it is small, nor on the system size as
long as it is large [2]. This centennial law was usually used to deal with three-dimensional
materials, because in the nineteenth century atoms and molecules were only theoretical
particles, with no direct evidence of their existence. Nowadays, various low-dimensional
systems have been experimentally [3, 4] and theoretically [5, 6, 7, 8, 9, 10, 11, 12, 13]
investigated and some of them, even in one-dimension, obey that important relation
[14, 15, 16]. In contrast, it has also been claimed that this law is violated in cases such as
ballistic diffusion regime [17, 18], non-momentum conserving systems [19], and anomalous
heat diffusion [20, 21, 22]. Let us also mention its possible experimental invalidity in
carbon nanotubes [23].

Paradigmatic ferromagnets are in general described by a set of interacting spins in a
crystalline d-dimensional lattice that contains n spin vector components such that |S| = 1.
In the absence of external fields and inertial terms, the Hamiltonian of these systems can
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be expressed in the following form:

H = −J
∑
⟨ij⟩

n∑
m=1

Sm
i S

m
j (J > 0;

n∑
m=1

(Sm
i )2 = 1) , (1.1)

where ⟨ij⟩ denotes first-neighboring spins, and n = 1, 2, 3,∞ correspond respectively to
the Ising, XY , Heisenberg and spherical models [24]. Their transport properties have been
little investigated in the literature [25, 26, 27, 28, 29, 30]. In particular, the Ising model
has no intrinsic dynamics, and is therefore unfeasible by molecular dynamical approaches.
Extensions of Monte Carlo techniques exist [31], but these methods are not grounded on
first-principles and no information about the evolution of the system can be provided. For
instance, if the system is in a non-stationary state, the heat flux fluctuates and can be
positive or negative. Within a molecular dynamics approach, all information is available
at any instant of time. Knowledge about the Ising case (i.e., n = 1) might be important
for the thermal control of spin excitations [32, 33] and skyrmion-hosting materials [34],
among others.

In the case of a coupled XY nearest-neighbor-interacting rotator chain (n = 2), the
temperature dependence of the thermal conductance was, in first approximation, well-
fitted by a q-Gaussian distribution [29],

Pq(u) = P0 expq(−βu2) , (1.2)

defined in terms of the q-exponential function,

expq(u) = [1 + (1 − q)u]1/(1−q)
+ ;

(
exp1(u) = exp(u)

)
, (1.3)

where P0 ≡ Pq(0) and [y]+ = y, for y > 0 (zero otherwise). The distribution in Eq. (1.2)
is very common in the context of nonextensive statistical mechanics [35], since it appears
from the extremization of the generalized entropy, known as Sq, characterized by a real
index q [36, 37],

Sq = k
W∑

i=1
pi

(
lnq

1
pi

)
, (1.4)

where we have introduced the q-logarithm definition,

lnq u = u1−q − 1
1 − q

; (ln1 u = ln u) . (1.5)

Therefore, one recovers Boltzmann-Gibbs (BG) entropy,

SBG = −k
W∑

i=1
pi ln pi , (1.6)
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as limq→1 Sq = SBG, whereas in the microcanonical ensemble, where all microstates present
equal probability, pi = 1/W , Eq. (1.4) becomes,

Sq = k lnq W . (1.7)

Above, the q-exponential function in Eq. (1.3) appears precisely as the inverse function
of the q-logarithm of Eq. (1.5), i.e., expq(lnq u) = lnq(expq(u)) = u.

Since the introduction of the entropy Sq in Eq. (1.4), a large amount of works appeared
in the literature defining generalized functions and distributions (see, e.g., Ref. [35]).
Particularly, a recent study based on superstatistics, has found a stretched q-exponential
probability distribution [38],

Pq(u) = P0 expq(−β|u|η) (0 < η ≤ 1), (1.8)

as well as its associated entropic form.
In this essay, we studied the classical inertial XY model for d = 1, 2 and 3 dimen-

sional cases (Chapter 2), as well as classical inertial Ising and Heisenberg model in one-
dimensional lattices, with linear size L, which allowed us to evaluate the validity of the
Fourier’s law. We consider the first and last ends in thermal contact with heat baths at
temperatures Th and Tl (Th > Tl), respectively. All remaining rotators (i = 2, · · · , L− 1)
interact by means of nearest-neighbor ferromagnetic couplings and evolve in time through
molecular-dynamics numerical simulations. Furthermore, we better characterized the con-
ductivity change for a more extended range of temperatures, resulting in the q-stretched
exponential as in Eq. (1.8) instead of the q-Gaussian distribution as in Eq. (1.2). All re-
sults presented here are based in the most recent articles about this subject [39, 40, 41],
and an ongoing research, focusing on a one-dimensional classical inertial generic-ranged
XY -model, namely α−XY model [42].

In summary, in the first part of this thesis, we analyze the thermal conductance of
classical inertial n = 1, 2, 3-vector models. Our numerical data validate Fourier’s law and
the thermal conductance is well-fitted by the functional form of Eq. (1.8). The present
results suggest that this form should apply in general for the thermal conductance of
nearest-neighbor-interacting systems of classical rotators.

In the second part of this thesis, we present related applications with q-statistics as in
human electroencephalograms. The distribution of inter-occurrence times across an arbi-
trarily chosen threshold of the signal is well-fitted by a combination of a q-stretched expo-
nential and a power law, clearly indicating that q-statistics provides a good description of
typical human beings [43]. We also study humans with Attention-Deficit/Hyperactivity
Disorder (ADHD), and we show that with this approach, we are able to classify and
possibly assess human atypicalities [44].

Still in this part, we conduct an investigation which can be valuable at the edge of
chaos, which is a transition between ordered and disordered systems. Within the de
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Broglie-Bohm theory, we numerically study a generic two-dimensional anharmonic oscil-
lator including cubic and quartic interactions in addition to a bilinear coupling term. Our
analysis of the quantum velocity fields and trajectories reveals the emergence of dynam-
ical vortices. In their vicinity, fingerprints of chaotic behavior such as unpredictability
and sensitivity to initial conditions are detected. The simultaneous presence of the off-
diagonal −kxy and nonlinear terms leads to robust quantum chaos very analogous to
its classical version [45]. This investigation suggests that, as the quantum chaos is very
analogous to classical one, we can investigate instead of strong chaos regions, the weak
chaos one [46, 47].
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Chapter 2

A brief discussion about thermostatistics

2.1 The postulates of thermodynamics

In this section, we discuss the postulates of thermodynamics. We examine some pos-
tulates that needed adaptations, showing that such adaptations are truly dependent on
the progress of novel theoretical investigations.

The four postulates of thermodynamics according to H. Callen [48] are statements
about the property of a simple thermodynamic system. They are stated as follows:

Postulate I. There exist particular states ( called equilibrium states) of simple
systems that, macroscopically, are characterized completely by the internal
energy U , the volume V , and the mole numbers N1, N2, . . . , Nr, of the chemical
components.

In the first postulate, it is emphasized that it holds for simple ones, and if equilibrium
states for such systems exist, we are able to completely characterize them by internal
energy U , volume V and mole numbers N for each chemical component. Such systems
have only two types of work: mechanical and chemical. In a magnetic one, for instance,
the ‘magnetic work’ must be taken into account, and in dielectric ones, the work due to
the variation of the polarization vector cannot be neglected. Therefore, the first postulate
is restricted to a particular class of thermodynamic systems, and additional considerations
would be needed to encompass general ones.

Postulate II. There exists a function ( called the entropy S) of the extensive
parameters of any composite system, defined for all equilibrium states and
having the following property: The values assumed by the extensive param-
eters in the absence of an internal constraint are those that maximize the
entropy over the manifold of constrained equilibrium states.

In the second postulate, it is affirmed the existence of a function called entropy, which
is very important in the realm of statistical physics (obviously also in thermodynamics).
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This entropy has extensive parameters, such as U , V and N . It also emphasizes the
necessity to exist equilibrium states, which is a requirement for the maximization of
entropy after the removal of internal constraints related with the equilibrium states. It is
worth to emphasize that the maximization of entropy is only achieved when such system
is large and closed or isolated.

Postulate III. The entropy of a composite system is additive over the con-
stituent subsystems. The entropy is continuous and differentiable and is a
monotonically increasing function of the energy.

The postulate III is referring to a composite system, which might be defined as a set
of simple systems, statistically independent, requiring the same description with energy,
volume and number of moles for each simple system, which at equilibrium becomes a
single system with the same intensive parameters, such as temperature T , pressure P ,
and chemical potentials µ1, µ2 . . . µr.

Postulate IV. The entropy of any system vanishes in the state for which(
∂U

∂S

)
U,N1,...,Nr

= 0 (that is, at the zero of temperature) . (2.1)

The fourth postulate is equivalent to the third law of thermodynamics (Nernst postu-
late), in which limT →0 S = 0. The derivative in Eq. (2.1) is the temperature, so it is same
that to say: the entropy of any system vanishes at T = 0. There are many examples
of systems have a (positive) non-zero entropy at zero temperature, such as many quan-
tum systems. It is a common misconception that the Nernst Postulate is responsible for
the impossibility of reaching absolute zero. However, even in a world governed by clas-
sical statistical mechanics, absolute zero would remain unattainable. Therefore, a more
accurate formulation would be limT →0 S ≥ 0, which applies universally to all systems.

Furthermore, these concepts primarily focus on simple systems with short-range inter-
actions. To summarize, Callen’s postulates of thermodynamics are specifically applicable
to simple systems rather than complex ones.

We highlight the four postulates, due to the requirements about extensivity and ad-
ditivity. It is worth to notice that complex systems, with long-range interactions or not,
are not included in these postulates, indicating that additivity and/or extensivity are
not obligatory. We need to be aware that despite of some similarities, extensivity and
additivity are not two phases of the same coin. In the R. H. Swendsen’s book [49], it is
written in page 121:

The properties of additivity and extensivity are often confused. This is prob-
ably due to the fact that many textbooks restrict their discussion of ther-
modynamics to homogeneous systems, for which both properties are true.
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Additivity is the more fundamental property. It is true whenever the range
of interactions between particles is small compared to the size of the system.
Extensivity is only true to the extent that the surface of the system and the
interface with its container can be neglected.

So, it is possible that these properties may not hold in complex systems. In general,
in complex system, additivity is broken, and particularly in systems with long-range
interactions, the extensivity is also broken in standard approaches, such as in gravitational
systems [50], magnetic nanoparticle ensembles [51], among others ([52, 53, 54, 55]).

2.1.1 Additivity and extensivity

A system with N independent subsystems Ai is additive if and only if its entropic
form obeys the following relation

S(A1 + A2 + · · · + AN) = S(A1) + S(A2) + · · · + S(AN) . (2.2)

Conversely, a system is extensive, if and only if

lim
N→∞

S(A)
N

< ∞ . (2.3)

Another important property of entropy is its homogeneity. A function f(x) is homo-
geneous of degree n if and only if, for any λ ∈ R, we have f(λx) = λnf(x). If entropy is
both additive and homogeneous of degree 1 across all its constituents, then this entropy
is extensive. However, the converse is not necessarily true. If an entropy is extensive, it
does not guarantee that the entropy of the system is additive.

The importance of extensivity to thermodynamics is beyond mathematical formula-
tions. According to Euler’s theorem, a function f(x1, x2, . . . , xN), homogeneous of degree
n, can be related with its derivatives by the relation as follows:

nf(x1, x2, . . . , xN) =
N∑

i=1
xi
∂f

∂xi

, (2.4)

so, for n = 1, the entropy preserves the structure of its differential form, resulting in
S = U

T
+ p

T
V − µ

T
N , and all feasible Legendre transformations can be done, which allows

us to define the free energies, as F ≡ U − TS (Helmholtz free energy) and G ≡ F + PV

(Gibbs free energy), as well as H ≡ U + PV (enthalpy), among others.

2.1.2 Reformulated “mandatory” postulates

The reformulated versions of those postulates according to R. H. Swendsen [49], are
given by:
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Postulate I: There exist equilibrium states of a macroscopic system that are
characterized uniquely by a small number of extensive variables.

Postulate II: The values assumed by the extensive parameters of an isolated
composite system in the absence of an internal constraint are those that
maximize the entropy over the set of all constrained macroscopic states.

Postulate III: The entropy of a composite system is additive over the con-
stituent subsystems.

Postulate IV: The entropy is a continuous and differentiable function of the
extensive parameters.

The author makes it clear that the third postulate is valid when the interactions are
short-ranged, in some approximations (page 120),

Most interactions between molecules are short ranged. If we exclude gravita-
tional interactions and electrical interactions involving unbalanced charges,
the direct interaction between any two molecules is essentially negligible at
distances of more than a few nanometers. As discussed at the end of Chapter
7, this leads to an approximate separation of the integrals defining the entropy
for the subsystems, so that the entropy of the composite system is just the
sum of the entropies of the subsystems.

So, the basis of thermodynamics’ postulates involve a specific type of system: a short-
ranged one. Long-range interactions are overlooked in certain assumptions. Nevertheless,
thermodynamics is a robust and well-established theory capable of describing all equi-
librium properties of macroscopic systems. Grounded on empirical evidence, it offers a
powerful framework for understanding a wide array of phenomena, from gas behavior to
heat engine efficiency, and even black hole properties [56]. Therefore, while these postu-
lates are important, they do not fully encompass the vast scope of thermodynamics.

2.2 The range of standard statistical physics

The Boltzmann entropy is defined in terms of the total number of microstates, W ,
such that S = kB lnW . The standard microcanonical ensemble theory is entirely based
in this entropy. This entropy is additive, but it has some limitations even for simple ideal
gases. These limitations are evident in Gibbs’s paradox [57], which is only resolved by ad
hoc introducing N ! in the denominator of the total number of the microstates, justified by
quantum mechanics. This adjustment takes into account the effective indistinguishability
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of the particles. To make it clearer, in complex systems, it is common to find the total
number of microstates as a power law of the number of particles, namely WN ∼ Nρ. When
it happens, this entropy is no more extensive, by definition. To preserve the Legendre
transformations in thermodynamics we need to consider another entropy that maintains
such property [35].

The Shannon entropy, a generalization of Boltzmann entropy, is defined in terms of
microstates’ probabilities, pi, such that S = −kB

∑W
i=1 pi ln pi. The Boltzmann entropy is

recovered when pi = 1
W

. After using the constraints ∑W
i pi = 1 and ∑W

i=1 Eipi = U as
Lagrange multipliers, we obtain the canonical distribution, which is given by ρeq = e−βEi

Z
,

where Ei is the energy associated with the microstate i, β ≡ 1/kBT (kB is the Boltzmann
constant), and Z is the canonical partition function Z ≡ ∑

i e
−βEi . This distribution has

a wide variety of applications in standard statistical physics. However, it also has some
limitations. In Gibbs’s book [58], on page 35, it is written,

In treating of the canonical distribution, we shall always suppose the multiple
integral in equation (92) to have a finite value, as otherwise the coefficient
of probability vanishes, and the law of distribution becomes illusory. This
will exclude certain cases, but not such apparently, as will affect the value of
our results with respect to their bearing on thermodynamics. It will exclude,
for instance, cases in which the system or parts of it can be distributed in
unlimited space [...]. It also excludes many cases in which the energy can
decrease without limit, as when the system contains material points which
attract one another inversely as the squares of their distances. [...]. For
the purposes of a general discussion, it is sufficient to call attention to the
assumption implicitly involved in the formula (92).

Not only J. W. Gibbs, but A. Einstein [59], E. Fermi [60], E. Majorana [61], C. E.
Shannon [62], L. Tisza [63], among others [64, 65, 66, 67, 68, 69], were well aware of some
problems regarding additivity and nonextensivity in long-range systems. In these systems,
the inequivalence between ensembles, mainly the correspondence from microcanonical to
canonical results is an object of study even nowadays ([52, 53]).

In the subsequent introductory chapter, we will discuss various families of nonextensive
entropies, their properties, and provide details on their concavity and possible thermo-
dynamic descriptions. These entropies generalize Boltzmann-Gibbs entropy in specific
limits.
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Chapter 3

Exploring the neighborhood of
q-exponentials

This chapter is based on the article with the same name, published in
Entropy in 2020 [37].

Nonadditive entropies have been used as a basis to explain a diversity of phenomena,
from astrophysics to the oscillatory behavior of El Niño [70, 71, 72], from DNA to
financial markets [73, 74] from high-energy physics of collisions to granular matter and
cold atoms [75, 76, 77], among many others. It turns out that wide classes of complex
systems can be satisfactorily handled within a generalization of Boltzmann–Gibbs (BG)
statistical mechanics based on the nonadditive entropy

Sq ≡ k
1 −∑W

i=1 p
q
i

q − 1 = k
W∑

i=1
pi lnq

1
pi

(q ∈ R; S1 = SBG ≡ −k
W∑

i=1
pi ln pi;

W∑
i=1

pi = 1) ,

(3.1)
where W is the total number of microstates and k is a conventional positive constant
(usually k = kB in physics, and k = 1 in computational sciences), the q-logarithmic func-
tion being defined as lnq z ≡ z1−q−1

1−q
(ln1 z = ln z). This theory is currently referred

to as nonextensive statistical mechanics, or q-statistics for short [36, 78, 79, 35]. The
optimization of Sq with simple constraints yields

pi =
e−βqEi

q∑W
j=1 e

−βqEj
q

, (3.2)

where {Ei} are the energy eigenvalues, and the q-exponential function (inverse of the
q-logarithmic function) is defined as follows:

ex
q ≡ [1 + (1 − q)x]

1
1−q

+ (q ∈ R; ex
1 = ex) , (3.3)

where [z]+ = z if z > 0 and zero if z ≤ 0; notice that this definition implies that, for q < 1,
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there is a cutoff at xcutoff = −1/(1 − q) < 0, for x > 0 and xcutoff = 1/(1 − q) > 0 for
x < 0 [36]. In the limit q → 1, Equation (3.2) recovers the celebrated BG weight.

The aim of the present introductory chapter is to discuss in detail some departures
from a pure q-exponential function which frequently emerge in real situations. Such
variations are used in the statistics of nucleotides in full genomes [73], the re-association
of folded proteins [80], standard map for intermediate values of the control parameter [81],
to mention but a few. We focus on crossover statistics (Section 3.1), linear combinations
of q-exponential functions (Section 3.2), linear combinations of q-entropies (Section 3.3),
and some two-indices entropies, namely Sq,δ [56], SBR

q,q′ [82] and Sq,q′ [83] (Section 3.4).

3.1 Multiple Crossover Statistics

Crossover statistics is often useful whenever the phenomenon which is focused on
exhibits a q-exponential behavior within a range of the relevant variables, and then makes
a crossover to another q-exponential function with a different index q. Although rare, it
can, in principle, happen that several crossovers successively occur one after the other.
We will refer to it as multiple crossover statistics.

Illustrations of such crossovers can be found in [80, 84, 85, 86, 87, 88].
Let us consider the following ordinary differential equation:

dy

dx
= −ayq (y(0) = 1; a ∈ R) . (3.4)

Its solution is given by
y(x) = e−a x

q . (3.5)

Multiple crossovers emerge from the following nonlinear ordinary differential equation:

dy

dx
= −

M∑
k=1

ak y
qk (q1 < q2 < · · · < qM) , (3.6)

with y(0) = 1, and 0 ≤ a1 ≤ a2 ≤ · · · ≤ aM , where the right-hand term is constituted by
a linear combination of nonlinear terms. Consequently

x =
∫ 1

y

dz∑M
k=1 ak zqk

. (3.7)

We know that Equation (3.7) has analytical solutions for M = 1 and M = 2. For M > 2,
we need to solve this equation numerically.

Particularly for crossover between two curves (M = 2) with q1 and q2, we have:

dy

dx
= −a1y

q1 − a2y
q2 = −µq1y

q1 − (λq2 − µq1)yq2 (y(0) = 1) , (3.8)
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where we have identified (a1, a2) ≡ (µq1 , λq2 − µq1) in order to facilitate the connection
with the notation used in [80]. Let us incidentally mention that this equation enabled the
study of the anomalous behavior of folded proteins.

To solve Equation (3.8), we use Equation (3.7), which yields

x = 1
µq1


y1−q1 − 1
q1 − 1 −

(
λq2
µq1

)
− 1

1 + q2 − 2q1

×

H
1; q2 − 2q1, q2 − q1,

(
λq2

µq1

)
− 1



−H

y; q2 − 2q1, q2 − q1,

(
λq2

µq1

)
− 1





(3.9)

with
H(y; a, b, c) = y1+a

2F1

(
1 + a

b
, 1; 1 + a+ b

c
; −ybc

)
, (3.10)

where 2F1 is a hypergeometric function.
For the particular case q1 = 1, we obtain

y = 1[
1 − λq2

µ1
+ λq2

µ1
e(q2−1) µ1x

] 1
q2−1

. (3.11)

It is certainly worth mentioning that its q2 = 2 instance yields y =
[
1 − λ2

µ1
+ λ2

µ1
eµ1x

]−1
,

whose λ2/µ1 >> 1 asymptotic behavior becomes y ∝ 1/[eµ1 x − 1]. It is precisely through
this ordinary-differential path that Planck found, in his historical 19 October 1900 paper,
the thermostatistical factor which eventually led to his celebrated law for the black-body
radiation with the ultimate identification µ1x → hν/kBT [89, 90].
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Figure 3.1: y(x) (log-log plot). For the case M = 1 with (q, a) = (2.7, 1) (blue curve) and,
for the case M = 2, the crossover between two curves, namely with q1 = 1 (black curve)
and q1 = 1.7 (red curve) respectively, both with (q2, λq2 , µq1) = (2.7, 1, 1 × 10−5). For the
red curve, we have the crossover characteristic values (xc1 , xc2) = (0.588, 8.407 × 108),
which indicate the passage from one regime to another.
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For the case M = 3, we have

dy

dx
= −a1y

q1 − a3y
q2 − a3y

q3 (3.12)

whose analytical solution is intractable. Therefore, we use numerical methods to solve
it. In contrast, the characteristic values (xc1 , xc2 , xc3) where changes of behavior of the
curve occur are analytically accessible. Those values are obtained through the following
considerations. For the characteristic value xc1 , we have

y(xc1) ∼ [(q3 − 1)a3xc1 ]−
1

q3−1 ∼ 1 . (3.13)

Consequently
xc1 = 1

[(q3 − 1)a3] . (3.14)

For xc2 we have

y(xc2) ∼ [(q2 − 1)a2xc2 ]−
1

q2−1 ∼ [(q3 − 1)a3xc2 ]−
1

q3−1 , (3.15)

hence

xc2 = [(q3 − 1)a3]
q2−1

q3−q2

[(q2 − 1)a2]
q3−1

q3−q2

. (3.16)

Similarly, we have

xc3 = [(q2 − 1)a2]
q1−1

q2−q1

[(q1 − 1)a1]
q2−1

q2−q1

. (3.17)

Therefore, for the M = 3 particular case whose parameter values are a1 = 5×10−11, a2 =
1 × 10−4 and a3 = 1, with q1 = 1.2, q2 = 1.7 and q3 = 2.7 , we have xc1 ≈ 0.59,
xc2 ≈ 1.68 × 107 and xc3 ≈ 5.47 × 1013, as shown in Figure 3.2 a,b. It is similarly possible
to study multiple crossovers for the case M > 3.
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Figure 3.2: Crossovers in y(x) for M = 3 (log-log plots) (a) between two curves with (q1, q2) =
(1, 1.7) (red curve), (q1, q2) = (1.2, 1.7) (blue curve) respectively, both with (q3, a1, a2, a3) =
(2.7,5 × 10−11,1 × 10−4,1), and (b) a change was done on the blue curve, with q1 = −1 (black
curve); the cutoff occurs at xcutoff ≈ 4.48 × 104.

3.2 Linear Combination of Normalized q-Exponentials

For a linear combination of normalized q-exponentials, we consider a probability dis-
tribution function P = P (x) , x ∈ X ⊂ R

+ such that:

P (x) =
M∑

k=1
bk pk(x) =

M∑
k=1

bk
e

−βqk
x

qk

Zqk

(q1 ≤ q2 ≤ · · · ≤ qM < 2; βqk
> 0 ,∀ k) , (3.18)

with ∑M
k=1 bk = 1 (bk ≥ 0), {Zqk

} being normalization factors (the upper limit q < 2
emerges in order to {Zqk

} being finite). Those quantities are determined by imposing,
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for all k ∈ {1, ...,M},
∫ ∞

0
dx pk(x) = 1 if qk ≥ 1 , (3.19)∫ 1

βqk
(1−qk)

0
dx pk(x) = 1 if qk < 1 . (3.20)

It follows
Zqk

= 1
βqk

(2 − qk) , ∀ qk < 2 . (3.21)

Let us focus on two specific particular cases, namely M = 2 with q1 = q2 ≡ q,
and M = 3 with q1 = q2 = q3 ≡ q; βq1 ≡ β1, βq2 ≡ β2, βq3 ≡ β3, and Zqk

≡ Zk. It follows
that

p(x) = b1
e−β1 x

q

Z1
+ b2

e−β2 x
q

Z2
(3.22)

with b2 = 1 − b1, 1/Z1 = β1(2 − q), and 1/Z2 = β2(2 − q), and

p(x) = b1
e−β1 x

q

Z1
+ b2

e−β2 x
q

Z2
+ b3

e−β3 x
q

Z3
(3.23)

with b3 = 1 − b1 − b2, 1/Z1 = β1(2 − q), 1/Z2 = β2(2 − q) and 1/Z3 = β3(2 − q). See
Figures 3.3 and 3.4.

β = 0.1 , q = 1.11

β = 1.5, q =1.11

Linear 

combination

0.1 1 10 100 1000
10-10

10-8

10-6

10-4

0.01

1

x

p
(x
)

Figure 3.3: p(x) (log-log plot) of three curves (case M = 2) with parameters q = 1.11 and
β = 0.1 (blue dashed curve), β = 1.5 (red dashed curve), and their linear combination (black
curve) with b1 = 1 × 10−5 and b2 = 1 − b1.
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Figure 3.4: p(x) (log-log plots) of four curves with parameters q = 1.11, β = 1.9 (blue dashed
curve), β = 1.5 (red dashed curve), β = 1.2 (gray dashed curve), and their linear combination
(black curve). (a) Four curves with β = 1.5 (blue dashed curve), β = 1.1 (red dashed curve),
β = 0.1 (gray dashed curve) and their linear combination (black curve). (b) With b1 = 1×10−5,
b2 = 1 × 10−3 and b3 = 1 − b1 − b2, both with q = 1.11 (case M = 3) .

In Figure 3.4 (M = 3), we fix the value qk = 1.11 for k = 1, 2, 3. Another illustration
of the linear combination consists of fixing the value βqk

= β for k = 1, 2, 3 and using
three different values for qk. In the case illustrated in Figure 3.5, the linear combination
remains close to the curve corresponding to (q, β) = (1.2, 0.1).

p(x) = b1
e−β x

q1

Zq1

+ b2
e−β x

q2

Zq2

+ b3
e−β x

q3

Zq3

(3.24)

with b3 = 1 − b1 − b2, 1/Zq1 = β(2 − q1), 1/Zq2 = β(2 − q2) and 1/Zq3 = β(2 − q3).
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Figure 3.5: p(x) (log-log plot) of four curves (case M = 3) with parameters β = 0.1, q = 1.2
(blue dashed curve), q = 1.5 (red dashed curve), q = 1.9 (gray dashed curve), and their linear
combination (black curve) with b1 = 1 × 10−5, b2 = 1 × 10−3 and b3 = 1 − b1 − b2.

Linear combinations of this kind (either of q-exponentials, or of q-Gaussians) have
been fruitfully used in [73, 81, 91, 92].

3.3 Linear Combination of q-Entropies

A linear combination of q-entropies can be written as follows:

S({pi}) =
M∑

k=1
ck Sqk

({pi}) (q1 < q2 < · · · < qM) (ck ≥ 0) . (3.25)

This expression is generically not normalized. If we happen to prefer normalization for
some specific reason, it is enough to divide Equation (3.25) by ∑M

k=1 ck.
With the constraints ∑i pi −1 = 0 and ∑i piEi −U = 0, where U is the internal energy

of the system and {Ei} are the energy eigenvalues, we define the functional f(α1, α2, {pi})
as follows:

f(α1, α2, {pi}) ≡
M∑

k=1
ck Sqk

({pi}) + α1

1 −
∑

i

pi

+ α2

U −
∑

i

piEi

 . (3.26)

Then, through extremization, we obtain

∂

∂pj

f = 0 =
∑

k

ck

lnqk

1
pj

−
(

1
pj

)1−qk

− α1 − α2Ej (3.27)
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hence

E(pj) = −α1

α2
+ 1
α2

∑
k

ck

lnqk

1
pj

−
(

1
pj

)1−qk

 . (3.28)

We introduce convenient new variables, namely

α1 ≡ −α2µ, α2 ≡ β . (3.29)

This enables us to express Xj ≡ β(Ej − µ) as an explicit function of pj, namely

Xj =
∑

k

ck

lnqk

1
pj

−
(

1
pj

)1−qk

 . (3.30)

The cutoff condition, whenever present, is given by limpj→0 X(pj, q1, q2, . . . , qM) ≡
Xc(q1, q2, . . . , qM). For instance, for M = 3, we have (see Fig. 3.6)

Xc(q1, q2, q3) = c1

q1 − 1 + c2

q2 − 1 + c3

q3 − 1 , (1 < q1 ≤ q2 ≤ q3). (3.31)

p1.2,1.4,1.7(X)

p1.3,1.5,2.0(X)

p1.4,1.9,2.7(X)

p1.7,2.1,3.2(X)

c1 = 0.641026

c2 = 0.006410

c3 = 0.352564

Xc = 1.08 Xc = 1.82 Xc = 2.5
Xc = 3.72

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
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3
(X
)

Figure 3.6: Four probability distributions pq1,q2,q3(X) (M=3) based on Equation (3.30) with
(c1, c2, c3) = (0.641026, 0.006410, 0.352564). From (3.31), we respectively obtain the cutoff val-
ues Xc = 1.08 for (q1, q2, q3) = (1.7, 2.1, 3.2) (blue curve), 1.82 for (q1, q2, q3) = (1.4, 1.9, 2.7)
(black curve), 2.50 for (q1, q2, q3) = (1.3, 1.5, 2.0) (gray curve) and Xc = 3.72 for (q1, q2, q3) =
(1.2, 1.4, 1.7).

The M = 2 particular case of (3.25) has been focused on in [91]:

S({pi}) = c1SBG({pi}) + c2Sq({pi}) (3.32)
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where one of the entropies is the BG entropy (i.e., q1 = 1), and the other one Sq({pi})
corresponds to q2 ≡ q ̸= 1. Then, we have (see Fig. 3.7)

pj =
{
aW

(
Aqe

−(q−1)Xj

)} 1
q−1

(3.33)

where W (z) is the Lambert function, implicitly defined by WeW = z (see, for in-

stance, [93]), Aq ≡ 1
a
e

−(q−1)
(

1− c2
c1(q−1)

)
, α1 ≡ −µα2, β ≡ α2

c1
and Xj ≡ β(Ej − µ)

(this definition of β differs from that in Equation (3.29)), with a ≡ c1
c2q

= c1
(1−c1)q . Aq

is determined via the normalization of the probabilities {pj}, i.e.,

∑
j

pj =
∑

j

{
aW

(
Aqe

−(q−1)Xj

)} 1
q−1

= 1. (3.34)

In other words, Aq implicitly depends on (q, c1). Whenever appropriate, we may go to
the continuum limit. If it is allowed to consider X ≥ 0, we have

∫ ∞

0

{
aW

(
Aqe

−(q−1)X
)} 1

q−1

dX = 1 , (3.35)

hence
qa− 1

q−1 = W (Aq)
1

q−1
[
q +W (Aq)

]
. (3.36)

This expression determines a as an explicit function of (q, Aq).
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Figure 3.7: Three probability distributions p(X) based on Equation (3.33) with c1 = 0.3 and
q = 1.01 hence Aq = 0.0238786 (black curve), q = 1.2 hence Aq = 0.6798077 (red curve),
and q = 1.5 hence Aq = 2.3025270 (blue curve).
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It is known that, in nonextensive statistical mechanics [94], the constraints under which
the entropy is optimized might be chosen with escort distributions, namely, ∑i pi − 1 = 0
and

∑
i

pq
i Ei∑

i
pq

i
− Uq = 0. We then have

f̃(α1, α2, {pi}) ≡ c1SBG({pi}) + c2Sq({pi}) +α1

1 −
∑

i

pi

+α2

[
Uq −

∑
i p

q
iEi∑

i p
q
i

]
(3.37)

hence

pj =
{
ae(q−1)

q W
(
Bq e

−(q−1)Xj
q

)} 1
q−1

, (3.38)

where Xj ≡ β′(Ej − µ) with β′ defined as

β′ ≡ β∑
j p

q
j + (1 − q)βUq

(3.39)

with β ≡ α2
c1

. Clearly, Bq is determined by

∑
j

pj =
∑

k

{
a e(q−1)

q W
(
Bqe

−(q−1)Xj
q

)} 1
q−1

= 1 . (3.40)

Let us remind at this point that extremizing Sq with standard constraints is equivalent
to extremizing S2−q with escort constraints. The equivalence implies in doing the trans-
formation q → 2 − q [94, 95].

Let us address now the concavity/convexity of S{pi}. We illustrate with the linear
combination of two (M = 2) q-entropies with q1 and q2, assuming p1 ≡ p2 ≡ · · · ≡
p(W −1) ≡ p and pW = 1 − (W − 1)p. In other words, we consider

Sq1,q2(p) = c1

(W − 1)p lnq1

(
1
p

)
+ (1 − (W − 1)p) lnq1

(
1

1 − (W − 1)p

)+

c2

(W − 1)p lnq2

(
1
p

)
+ (1 − (W − 1)p) lnq2

(
1

1 − (W − 1)p

) .
(3.41)

The study of concavity of (3.41) can be done in the (q1, q2) space, taking also into
consideration the regions of non admissibility in which the entropy is neither concave nor
convex.

We clearly note that when W = 3 (see Figure 3.8b), the black region is reduced
compared to the W = 2 case (Figure 3.8a). This result tends to suggest that the black
region tends to disappear at W → ∞, while the pink (convex) region predominates.
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Figure 3.8: Concavity/convexity mapping for (3.41) with (c1, c2) = (0.48, 0.52), W = 2 (a)
and W = 3 (b). The green (pink) region represents all points whose entropy (3.41) is concave
(convex). The black region represents all points whose entropy is neither concave nor convex,
having two local minima points and a local maximum in between (a global maximum point at
p = 0.5 and divergences at p = 0 and p = 1). On the red point is localized the Boltzmann–Gibbs
entropy and over the red dashed line cutting the origin, we have all the Sq entropies. On the
concave (convex) region we have Sq, q > 0 (q < 0). (c) Four (W = 2) entropies with q2 = 1,
and q1 = 1 (blue curve), q1 = 0.2 (green curve), q1 = −0.1 (black curve) and q1 = −1 (pink
curve).

3.4 Other Departures—Two-Indices Entropies

We focus here on other type of departures from pure q-exponentials, originated now
from two-indices nonadditive entropies which recover Sq as particular instances.

3.4.1 Sq,δ

From [56], we have

Sq,δ ≡
W∑

i=1
pi

[
lnq

1
pi

]δ

(q ∈ R; δ > 0) . (3.42)
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We verify that Sq,1 = Sq. Extremization of Sq,δ under usual constraints yields

E(pj) = −α1

α2
+ 1
α2


[
lnq

1
pj

]δ

− δ

(
1
pj

)1−q [
lnq

1
pj

]δ−1
 . (3.43)

Through (3.29), we have

Xj =


[
lnq

1
pj

]δ

− δ

(
1
pj

)1−q [
lnq

1
pj

]δ−1
 . (3.44)

Taking into account the transformation q → 2 − q mentioned below Equation (3.40),
the cutoff occurs for q > 1, and Xc(q, δ) is given by (see Fig. 3.9)

Xc(q, δ) = (q − 1)−δ (q > 1). (3.45)
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Figure 3.9: Illustrative probability distributions pq,δ(X). (a) q = 1.2 and δ = 0.2 hence, through
(3.45), Xc = 1.38 (gray curve); δ = 0.3, hence Xc = 1.62 (black curve); δ = 0.5 hence Xc = 2.34
(red curve) and finally, δ = 0.9 hence Xc = 4.26 (blue curve); (b) (q, δ) = (3.1, 0.9) hence
Xc = 0.51 (blue curve); (q, δ) = (2.7, 0.7) hence Xc = 0.69 (red curve); (q, δ) = (2.5, 0.6) hence
Xc = 0.78 (black curve); and (q, δ) = (2.1, 0.4) hence Xc = 0.96 (gray curve).

We verify that pq,δ(X) is single-valued for q ≥ δ and multi-valued otherwise.
Let us now consider the case p1 ≡ p2 ≡ · · · ≡ p(W −1) ≡ p and pW = 1 − (W − 1)p

hence

Sq,δ(p) = (W − 1)p
lnq

(
1
p

)δ

+ (1 − (W − 1)p)
lnq

(
1

1 − (W − 1)p

)δ

, (3.46)

where p ∈
[
0, 1

W −1

]
. This expression will help us to study the concavity/convexity of the
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entropy for increasing values of W . See Figures 3.10 and 3.11.
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Figure 3.10: Concavity/convexity regions for Sq,δ (3.46) (a) W = 2. (b) W = 3. The green
(pink) region represents all points whose entropy (3.41) is concave (convex). The black
region represents all points whose entropy is neither concave nor convex, having two
local maxima ( inflexion) points and another local minimum (maximum) in between.
The points of transition at δ = 2 are: qc = 1/2 (both W = 2 and W = 3) (pink ↔ black);
qc = 4/3 (W = 2) and qc ∼ 0.98 (W = 3) (black ↔ green) and qc = 2 (both cases)
(black ↔ purple). At q = 1, we have the transition from non concave to concave at
δc = 1 + ln 2 (W = 2) and for W = 3, we have δc < 1 + ln 3. The blue dashed horizontal
line represents Sδ, while the red dashed vertical line represents all Sq entropies, and the
red point is the BG entropy. (c) Four cases (W = 2) for δ = 2 with the respective colors:
q = 0.4 and q = 1.8 (convex and concave regions respectively); q = 0.8 (black region) and
q = 2.5 (purple region) (non concave and non convex regions).

The black region is clearly reduced for W = 3 (see Figure 3.10b), but the purple region
at, for example, δ = 3.8 and q = 2.15, invades the concave region. It is not excluded
that the purple region gradually expands with W in such way that it approaches the
black region.

We noticed that an inadvertence occurred in [56]. Indeed, it was therein indicated
that, for all entropies Sδ, it would be δc(W ) = 1 + lnW , but this is not exactly so in
some cases. As we verify in what follows, we always have δc ∈ (lnW, 1+lnW ]. Therefore,
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the formula in [56] constitutes an upper bound of δc.

Figure 3.11: Plot for Sq,δ with W = 3, q = 1 and δ = 1 + ln 3. We clearly observe that
δc = 1 + ln W is not valid here, because in this value, the entropy is not concave, much less the
values close to this.

The probability is limited by p ≥ 1
W −1 . Numerically, we analyze the plot 1/ lnW ×

δc − lnW . If it was δc = 1 + lnW for all entropies Sδ, we should obtain δc − lnW = 1 for
all values of W , which is not the case.

The interpretation of δc is given by the transition green ↔ black; no transition black
↔ pink appears to exist.

We notice in Figures 3.10, 3.12, and 3.13 that the divergence of δc in the limit W → ∞
means that Sδ is concave in the thermodynamic limit for any positive δ.
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Figure 3.12: Plot for 1/ ln W × δc − ln W with Wmax = 9 × 106. Here, δc ∈ (ln W, 1 + ln W ].
In the inset, we indicate the behavior of that function closer to origin.
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Figure 3.13: Plot for 1/ ln W ×(δc −1)/ ln W with Wmax = 9×106. The regression by excluding
the W = 2 and W = 3 points yields an 8th degree polynomial of x ≡ 1/ ln W , namely f(x) ≈
1−0.794252x−6.20252x2 +60.9556x3 −223.39x4 +466.1x5 −588.297x6 +420.626x7 −130.677x8.
It means that, when W → ∞ we have x → 0, thus lim

x→0
f(x) = 1, therefore δc ∼ 1 + ln W which

diverges at infinity .

3.4.2 Borges–Roditi Entropy SBR
q,q′

Borges and Roditi [82] extended the entropy Sq as follows:

SBR
q,q′ =

∑W
i=1 p

q
i −∑W

i=1 p
q′

i

q′ − q
, ((q, q′) ∈ R

2) , (3.47)

with SBR
q,1 = SBR

1,q = Sq, where BR stands for Borges–Roditi; notice that SBR
q,q′ = SBR

q′,q .
Extremization with usual constraints, and using (3.29), we have:

Xj = 1
q′ − q

(
qpq−1

j − q′pq′−1
j

)
. (3.48)

For q, q′ < 1, p monotonically decreases to zero when X increases to infinity. For q, q′ > 1,
p is multivalued, hence physically inadmissible. For q < 1, q′ > 1 (hence, for q > 1, q′ < 1
), p is single-valued and exhibits a cutoff at Xc. See Figure 3.14 for typical examples.
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Figure 3.14: Eight illustrative Borges–Roditi probability distributions. (a) (q, q′) = (0.2, 0.5)
(red curve); (q, q′) = (0.4, 0.7) (black curve); (q, q′) = (0.6, 0.8) (blue curve), and (q, q′) =
(0.8, 0.9) (gray curve). (b) (q, q′, Xc) = (1.4, 0.9, 5.42) (red curve), (q, q′, Xc) = (1.8, 0.9, 3.03)
(black curve), (q, q′, Xc) = (2.8, 0.9, 1.44) (blue curve), and (q, q′, Xc) = (4.8, 0.9, 0.7) (gray
curve).

Let us focus now on the concavity of SBR
q,q′ . By considering the same case that led to

Equation (3.46), we obtain here

Sq,q′(p) = 1
q′ − q

[
(W − 1)pq + (1 − (W − 1)p)q − (W − 1)pq′ − (1 − (W − 1)p)q′]

.

(3.49)
The purple region undergoes a slight change whether we compare the Figures 3.15a (W =
2) and Figures 3.15b (W = 3), although it appears that the rectangular purple region
at W = 3 does not increase for W > 3. Indeed, if it did that, it would affect the BG
and Sq entropies whose convexity/concavity are known. With respect to the black region,
the fact of that region shrinks from W = 2 to W = 3 suggests that it possibly disappears
in W → ∞.
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Figure 3.15: Concavity/convexity for SBR
q,q′ (3.49) with (a) W = 2 and (b) W = 3. The green

(pink) region represents all points whose entropy (3.49) is concave (convex). The black (purple)
region represents all points whose entropy is neither concave nor convex, having two local maxima
(inflexion) points and another local minimum (maximum) in between. The red dashed vertical
lines represent all Sq entropies and the red point is the BG entropy, while the light (dark) blue
lines represents all Shafee SS

q (Kaniadakis SK
κ ) entropies [96, 97]. (c) Four illustrative cases

(W = 2) with q = 2 and its respective colors: q′ = −0.6 and q′ = 0.9 (pink and green regions
respectively ); q = −0.1 (black region) and q = 2.1 (purple region).

Sq,q′

On the basis of some algebraic properties, Sq has been generalized in [83, 98, 99]:

Sq,q′ =
W∑

i=1
pi lnq,q′

1
pi

(3.50)

with
lnq,q′ z ≡ 1

1 − q′

[
exp

(1 − q′

1 − q
(z1−q − 1)

)
− 1

]
. (3.51)
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We verify that lnq,1 = ln1,q = lnq, hence Sq,1 = S1,q = Sq. with Sq,1 = S1,q = Sq. Clearly,
we can reformulate (3.51) in terms of lnq such that

lnq,q′ z = 1
1 − q′

[
exp

(
(1 − q′) lnq z

)
− 1

]
. (3.52)

The reformulated version of the extremized entropy Sq,q′ is written as

Xj = exp
(

(1 − q′) lnq
1
pj

) 1
1 − q′ −

(
1
pj

)1−q
− 1

1 − q′ (3.53)

The cutoff equation Xc(q, q′) is given by

Xc(q, q′) = 1
1 − q′

[
e− 1−q′

1−q − 1
]
, q > 1. (3.54)

For q > 1 and 0 < q′ < 1, p is single-valued and exhibits a cutoff at Xc (see Fig. 3.16).
For q, q′ < 1, p is multi-valued, hence, it is inadequate for physical purposes. For 0 < q < 1
and q′ > 1, p exhibits clearly a cutoff.
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Figure 3.16: Eight illustrative probability distributions pq,q′(X). (a) (q, q′, Xc) = (1.5, 1.3, 1.5)
(gray curve), (q, q′, Xc) = (1.4, 1.1, 2.21) (blue curve), (q, q′, Xc) = (1.3, 0.9, 3.96) (black
curve), and (q, q′, Xc) = (1.2, 0.8, 8.59) (red curve). (b) (q, q′, Xc) = (0.8, 2.5, 0.67) (gray
curve), (q, q′, Xc) = (0.7, 2.0, 1.0) (blue curve), (q, q′, Xc) = (0.5, 1.5, 2.06) (black curve),
and (q, q′, Xc) = (0.3, 1.3, 3.33) (red curve).

Analogously to (3.46), we write the Equation (3.50) as

Sq,q′(p) = (W − 1)p lnq,q′

(
1
p

)
+ (1 − (W − 1)p) lnq,q′

(
1

1 − (W − 1)p

)
. (3.55)

In Figures 3.17a,b, we observe that the purple region appears to remain the same for
all W ≥ 2. In contrast, the black region for W = 3 is slightly smaller than that for W = 2,
which suggests that, in W → ∞, such a region might disappear. We checked for large
values of W , and this scenario is confirmed. This happens in two different ways: the black
region close to the BG point gradually disappears, being replaced by the pink (convex)
region, and the black region in the negative part of q′ also disappears, being replaced by
the green (concave) region.
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Figure 3.17: Concavity/convexity for Sq,q′ (3.55) with (a) W = 2 and (b) W = 3. The green
(pink) region represents all points whose entropy (3.55) is concave (convex). The black (purple)
region represents all points whose entropy is neither concave nor convex, having two local maxima
(inflexion) points and another local minimum (maximum) in between. The red dashed vertical
line represents all Sq entropies and the red point is the BG entropy. (c) Four cases (W = 2)
with the respective colors: with q = 0.5, q′ = 0.5 and q′ = 1.5 (pink and green regions) and
q′ = 0.87 (black region), and (q′, q) = (1.9, −3) (purple region).

In summary, we have explored here various mathematical properties related to ex-
tensions of q-exponentials and q-entropies, including some double-index nonadditive en-
tropies.

In the case of crossover statistics (Equation (3.7)), there are multiple changes in the
slopes of the corresponding log-log plots. The values of the abscissa at which the rele-
vant quantities make crossovers between two successive regimes are characterized by xc,
analytically calculated in all cases, as illustrated in Figures 3.1 and 3.2.

When we consider linear combinations of normalized q-exponentials, we may focus on
the influence of the qk’s and of the βk’s in Equation (3.18). For a single value of βk and
various values for the qk’s, the result might be close to one of the q-exponentials, whereas
if we adopt a single value of qk and various values for the βk’s, the outcome might be
sensibly different from all the q-exponentials, as illustrated in Figures 3.3–3.5.

With respect to the linear combination of q-entropies, it is generically impossible to
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have the probability distribution pj in Equation (3.30) as an explicit function of Xj.
Notice, however, that we do have Xj as an explicit function of pj. This is in contrast with
the case where we have linear combinations of the normalized q-exponentials. The final
results for these two types of linear combinations clearly differ, as first shown in [91].
Let us emphasize that, consistently, the operations of linearly combining and entropic
extremization do not commute.

In addition to that, for the linear combination of two nonadditive entropies (case
M = 2), as well as for the three double-index nonadditive entropies (namely, Sq,δ, SBR

q,q′

and Sq,q′), we have studied their convexity/concavity in the indices-space. The results
depend naturally on the total number of states (W ). The limit W → ∞ is particularly
interesting, since it corresponds to the thermodynamical limit. We verify that, in the case
of a linear combination of two q-entropies (M = 2), the concave region remains one and
the same for all values of W . Indeed, the value of W only affects the size of the convex
region, as illustrated in Figure 3.8. It seems plausible that, in the W → ∞ limit, the only
possibilities which remain are either concave or convex. In what concerns Sq,δ, SBR

q,q′ and
Sq,q′ , regions in the indices-space exist, for a given value of W , where the entropy is
concave, or convex, or none of them, as illustrated in Figures 3.10, 3.15, and 3.17. For all
these three entropies, the region which is neither concave nor convex does not disappear
even for W → ∞. In particular, we have studied in detail the case of Sδ (q = 1 and δ > 0),
and have obtained that convexity never emerges, ∀δ, ∀W . A critical value δc(W ) exists
such that Sδ is concave for δ < δc(W ) and neither concave nor convex for δ > δc(W );
moreover, in the W → ∞ limit, we verify that δc(W ) ∼ lnW . The results displayed in
the present paper could hopefully guide the use of entropies differing from Sq for large
classes of natural, artificial and social complex systems.
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First-principle validation of Fourier’s law
on n-vector models
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Chapter 4

Aspects of nonequilibrium statistical
mechanics

4.1 Discussion about the connection between stationary state
and equilibrium state

A system that is out of equilibrium, in some cases, tends to achieve an equilibrium
state after long periods of time. However, not all systems out of equilibrium reach this
particular state. There are systems that are always in nonequilibrium, and all variables
that describe these systems depend on time at any instant. There are also systems where
all variables do not depend on time after a long transient period, and this remains true
throughout their evolution. This state is called a stationary state and is primarily known
as a situation in which the probability density does not depend on time, having no relation
to the principle of maximum entropy. Conversely, some stationary states are identified as
regions where the entropy reaches its maximum. In such cases, the system is sufficiently
large, and there is no net macroscopic flow of matter and energy within this system
(isolated ). When it occurs, the equilibrium state is identical to the stationary one1.
According to D. Ruelle [100]:

(a’) Equilibrium states are operationally definable. The state of an isolated
system tends to an equilibrium state as time tends to +∞(“approach to equi-
librium”).

(b’) An equilibrium state of a system consists of one or more macroscopically
homogeneous regions (called phases).

1It does not mean that Boltzmann-Gibbs statistics is the correct one. For standard statistics to hold,
it is necessary that all points of the system visit all accessible regions in phase space over a long period
of time. In other words, the system must be ergodic in the mean. However, some authors claim that a
weak form of ergodicity is sufficient, called ϵ-ergodicity [101].
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(c’) Equilibrium states can be described by thermodynamics, in particular
they can be parameterized by a finite number of thermodynamic parameters
which determine all thermodynamic functions.

From those starting points, we investigate some mathematical constructions of nonequi-
librium statistical mechanics and their relations with equilibrium.

4.1.1 Description of the dynamics of a classical system

In classical mechanics, the Hamiltonian of a conservative system in Cartesian coordi-
nates may be written as

H =
d∑

i=1

p2
i

2mi

+ 1
2
∑
i,j
i ̸=j

V (|qi − qj|) (4.1)

where mi,pi,qi are the mass, momentum, and coordinate of the particle i, respectively.
The right-hand side of the Hamiltonian represents the potential. By the Hamilton’s
equation, namely q̇i = ∂H

∂pi
and ṗi = − ∂H

∂qi
, we have

q̇i = pi

m

ṗi = −∇iV (q1,q2, . . . ,qN) . (4.2)

At any instant of time, we obtain the position and momentum of each particle i, by
Eqs. (4.2). The system evolves in time and preserves the volume of the phase space,
starting from the previous assumption that the system is conservative. The probability
density of such system evolves in such way that

∂ρ

∂t
= −iLρ (4.3)

where iL . = {H, .}.The Eq. (4.3) represents the mathematical formulation of the Liou-
ville’s theorem, which states that the volume of the phase space is conserved during its
evolution. No probability density is known a priori. For instance, in linear response the-
ory, we start from Liouville equation to derive the average of certain function O(t) under
some perturbation in the Hamiltonian −X(t)A as follows:

δ
〈
O(t)

〉
=
∫ t

−∞
dτ X(τ)χOA(τ − t) (4.4)

χ(t)AO = θ(t)
〈
{O(t), A}

〉
eq , (4.5)

where θ(t) is the Heaviside function2. Now, by considering ρeq = e−βH

Z
the Boltzmann

2It is introduced by causality. It is also a good manner to easily obtain its Fourier-Laplace transform.
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weight, we obtain

χ(t)AO = θ(t)β
〈
O(t), Ȧ

〉
eq
. (4.6)

which is an elegant description of the response function, although certain assumptions
were made to derive this expression. The issue with Eq.(4.6) pertains to the assumption
of equilibrium. However, this expression cannot be applied indiscriminately. Using this
expression in systems that are not in equilibrium can yield incorrect results. A common
approach to simplify such averages is by substituting the “equilibrium response” function
with a response function in a stationary state, defined as

χ(t)AO = θ(t)
〈
{O(t), A}

〉
st , (4.7)

where the subscript “st” denotes the stationary state.
The standard statistical mechanics plays an important role in describing the thermal

properties of a system towards equilibrium. It is an awesome theory that simplifies almost
all dynamics of a system and is capable of obtaining static response functions, such as
magnetic susceptibility and thermal susceptibility, by solving the partition function of the
problem. However, this theory must be used only when the stationary state is equivalent
to the equilibrium state, and long-ranged interactions are negligible. For this reason,
we need to take care with some assumptions and also verify if certain hypotheses are
consistent with the true dynamics of the system. On the derivation of such formulas,
assuming Boltzmann weight, R. Kubo et al.[102] wrote (page 151)

Since we are interested in near-equilibrium states driven by external forces,
we may assume that the external perturbation started to work in the infi-
nite past, i.e., t0 → −∞, when the system was in equilibrium at a certain
temperature.[...]

So, it is evident that it is assumed that the probability distribution a priori as a canonical
distribution, and the system is towards equilibrium. Also referring to equilibrium distri-
butions, some criticism is taken about that. For instance, A. Einstein [59] argues in favor
of the dynamics when he wrote

Usually W is set equal to the number of ways (complexions) in which a state,
which is incompletely defined in the sense of a molecular theory (i.e., coarse
grained), can be realized. To compute W one needs a complete theory (some-
thing like a complete molecular-mechanical theory) of the system. For that
reason it appears to be doubtful whether Boltzmann’s principle alone, i.e.,
without a complete molecular-mechanical theory (Elementary theory) has
any real meaning. The equation S = k logW + const. appears [therefore],
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without an Elementary theory—or whatsoever one wants to call it—devoid
of any meaning from a phenomenological point of view.

From first principles, it is important to consider that the dynamics of a system dictate the
probabilities of its states. When an external perturbation is turned on, the distribution of
probabilities may no longer be an equilibrium distribution at the initial time, but rather
a more general one [36, 103].

From now on, we will provide some examples of formalisms from first-principles in
which the stationary probability distribution corresponds to an equilibrium one.

4.1.2 Langevin dynamics

For a single particle randomly moving in a one-dimensional medium, the Langevin
equation is defined as

mv̇ = −γmv + f(x) +
√

2Aη(t) (4.8)

where γ, v, f(x) and η are the friction coefficient, velocity , deterministic force, and
√

2Aη
the random force of the particle, respectively. η is particularly chosen as a Gaussian white
noise with zero mean value and

〈
η(t)η(t′)

〉
= δ(t − t′). The force, in principle, depend

only on the spatial coordinate x. In phase space coordinates, we have

ẋ = p

m
(4.9)

ṗ = −γp+ f(x) +
√

2Aη .

By considering f(x) = 0 and p(0) = 0, we obtain

p2(t) = A

γ

(
1 − e−2γ t

)
. (4.10)

Taking the average
〈
p2
〉

≡ limt→∞ p2(t) in Eq. (4.10), and by considering the equipartition
theorem,

〈
p2

2m

〉
= 1

2kBT , it yields A = mγkBT
3.

From Langevin to Klein-Kramers and Fokker-Planck equations

From the Langevin equation it is possible to derive the partial equation which describes
the probability distribution on phase space ρ(x, p, t) which is given by

∂ρ

∂t
= − p

m

∂ρ

∂x
− ∂[(f − γp)ρ]

∂p
+mγkBT

∂2ρ

∂p2 . (4.11)

3The constant A has unit of momentum squared over time. Indeed,
√

2A η has no unit of force,
but it preserves the units after the integration procedure. The integration is carried out by assuming
dη =

√
dt N (0, 1), where N (0, 1) is a Gaussian white noise with zero mean and unit variance, so

√
2A dη

has units of momentum.
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It is called Klein-Kramers equation.
Considering m ≪ 1, we have

ẋ = f(x)
γm

+
√

2kBT

mγ
η(t) , (4.12)

and the associated partial differential equation for ρ(x, t), is given by:

∂ρ

∂t
= − 1

γm

∂(fρ)
∂x

+ kBT

γm

∂2ρ

∂x2 , (4.13)

where kBT
mγ

corresponds to the diffusion coefficient4. This equation is called Fokker-Planck
equation5.

Connection with Boltzmann-Gibbs distribution

In the stationary state, we have for a conservative force, with confined potential, the
following result for the stationary distribution ρst(x) for the Fokker-Planck equation:

ρst(x) ∝ e−V (x)/kBT , (4.14)

and surprisingly, for the Klein-Kramers equation, we have

ρst(x, p) ∝ e−H(x,p)/kBT . (4.15)

It means that the stationary state distribution of those particular systems are, indeed,
Boltzmann weights6.

We should be careful with that, because nonconfined potentials lead us to undesirable
results, which does not coincide with the Boltzmann weight. Also there are some prob-
lems in which the diffusion coefficient really depends on the probability distribution, such
that D = D(ρ). In the particular case where D(ρ) ≡ D0ρ

1−q, the stationary distribu-
tion ρ is given by a generalized distribution, namely q-exponential distribution (See the
introductory Chapter 2 for details).

4Some authors define the diffusion coefficient as kBT
γ , but they also assume γ → mγ. The diffusion

coefficient, usually named as D, must be units of length squared over time, which means that all definitions
are correct. Out of mere curiosity, the diffusion coefficient can be obtained by a relation with the second

cumulant of position, namely D = limt→∞
1
2

x(t)2−
(

x(t)
)2

t .
5The derivation of the Klein-Kramers and Fokker-Planck equations are quite simple and can be found

in Ref. [104].
6This specific condition, where the flux vanishes at the boundaries is often called reflective boundary

condition.
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4.2 Transport phenomena and some linear relations

4.2.1 Transport of mass

In transport of mass, the flux of concentration of some homogeneous substance is given
by

JN = −D∇n (4.16)

where D is the diffusion coefficient, and n = ms

V
, which is the concentration of certain

amount of substance with mass ms in a solution volume V . It is the Fick’s first law [105].
The Eq. (4.16) relates the gradient of concentration of the amount of substance to its flux
of concentration. In other words, the gradient of concentration generates a flux of particles
of the solute in the opposite direction, indicating that the diffusion occurs from the high
to the low concentration of the material. In general, considering an ideal diffusion, the
concentration rate obeys a continuity equation given as follows

∂n

∂t
+ ∇ · JN = 0 , (4.17)

then, substituting Eq. (4.17) into Eq. (4.16), we obtain

∂n

∂t
= D∇2n , (4.18)

which is a diffusion equation for the concentration of a given solute. It is the Fick’s second
law and Eq. (4.18) is also known as diffusion equation. An interesting fact about this
equation concerning to its application not only in fluids, but in solids and gases [106, 107].

4.2.2 Transport of momentum

Restricting to the realm of fluid mechanics, the simplest continuity for a given fluid
may be written as

∂ρ

∂t
+ ∇ · (ρv) = 0 , (4.19)

where ρ is the fluid density and v is the fluid velocity field7. It is worth to notice that
the flux here has no linear relation with the gradient of some field. However, when the
velocity field is conservative, the flux of particles can be written as

JN = ρ∇ϕ (4.20)

where ϕ is the velocity potential. In Eq. (4.20), there are no assumptions about low
and high potentials, and there are no implications regarding a second law as in Fick’s

7If the fluid is incompressible, that is, the density is constant regardless of the changes in pressure it
undergoes, then, from the continuity equation, we have ∇ · v = 0.
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second law. It is also worth emphasizing that, despite the fact that density has a similar
relation with mass and volume of a system to concentration, concentration is restricted
to a certain substance in another, while density is related to the system as a whole. In
summary, for fluids, a linear relation with some gradient is achieved only for conservative
velocity fields, which is a very particular case and it is hard to find in nature due to
the complex interactions and forces in a fluid. In fluid dynamics, the assumption of
conservative velocity fields is only a theoretical construction for idealized situations. In
other words, almost all fluids must be investigated assuming non-conservative velocities.

The key factor in fluid mechanics refers to the effects of stress applied to a fluid. The
transport of momentum is intrinsically linked to some property, as it is the mechanism
through which some concept emerges and operates within a fluid. This concept determines
the efficiency of momentum transfer within the fluid, thereby influencing the fluid’s resis-
tance to flow gradients. According to Newton’s law of viscosity [108], the stress applied
to fluid layers is proportional to the velocity gradient. Hence, this crucial relationship can
be expressed as

ταβ = µ
∂vα

∂xβ

, (4.21)

which ταβ are components of the shear stress tensor (in units of force per unit area).
For this relation there is no continuity equation. The concept and property which we
are referring, namely µ is called viscosity8. In principle, we need to find the solution
for the velocity field and then, find the shear stress, but the equation which describes
a incompressible fluid, namely Navier-Stokes equations [109], is extremely hard to solve
and almost in all cases, needs to be solved numerically. The Newton’s law for viscosity
exhibits a linear relation between a stress tensor and the velocity field, but it remains
linear only for viscosities not dependent on the same velocity field. When this relation is
maintained, the fluid which obeys this relation is called Newtonian, otherwise, it is called
non-Newtonian fluid. Examples of Newtonian fluids are: water, mineral oil, and milk and
for non-Newtonian fluids, we have animal blood, ketchup, toothpaste, and so forth. There
are subtypes of Newtonian and non-Newtonian, but it is out of the scope of this thesis.

4.2.3 Transport of heat

In transport of heat, a difference of temperature between two different reservoirs gen-
erates a heat flux, which is the rate of energy per unit area (energy per time per unit
area). The heat transfer occurs from the hot to cold reservoir, thus, this empirical law
can be given by

J = −κ∇T (4.22)
8Just for clarification, in anisotropic fluids, the viscosity is not a constant, but a tensor of rank 4, thus

yielding the following relation for the shear stress tensor: ταβ = µαβγδ
∂vγ

∂xδ
.
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where κ is the thermal conductivity, which is related with the amount of heat that certain
system conduct. The minus sign in Eq. (4.22) arises from the second law of thermody-
namics, more specifically, from the Clausius statement, which says that heat can never
pass from a colder to a warmer body without some other change, connected therewith,
occurring at the same time. The Eq. (4.22) is known as Fourier’s law of conduction [1].
The continuity equation for ideal heat conduction is given by

∂u

∂t
+ ∇ · J = 0 (4.23)

where u is the energy of the system per unit volume, considering a three-dimensional
system. It is worth be mentioned that in one and two-dimensional systems, the flux is
not defined with the same units of the three-dimensional case. The problem is only the
definition of area. The area here is the transversal section of the volume where the flux
trespass. In one and two-dimensional systems, the area is the unit of the atoms (area as
unit) and transversal length. Therefore, the heat flux is energy per unit time per unit
[Length]d−1 for a d-dimensional system.

Let us notice that Eq. (4.22) holds linear if and only if the thermal conductivity de-
pends on intensive variables, as temperature and pressure. When it happens, we say that
the Fourier’s law is obeyed, and such system presents normal heat conduction. Other-
wise, the system presents anomalous heat conduction. For instance, when the thermal
conductivity depends on thermal gradient.

4.2.4 Transport of charges

The flux of charges taking account magnetic effects is given by

Jq = σ(E + v × B) . (4.24)

In the absence of magnetic field, Eq. (4.25) becomes

Jq = σE . (4.25)

By using Maxwell equations ∇ · E = ρ/ϵ and ∇ × E = µJq + ϵµ∂E
∂t

9, we have

∂ρ

∂t
+ ∇ · Jq = 0 , (4.26)

which is the continuity equation for the Ohm’s law [110]. Assuming that the electrical
field is conservative, we have

J = −σ∇ϕ (4.27)
9Here, we are assuming linear dielectric and magnetic materials, or, at least, materials subject to weak

fields.
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where ϕ is the electrical potential. This equation is similar in structure with the other
constitutive relations and even more similar to the linear relations which have a continuity
equation, such as Fick’s law and Fourier’s law.

In the next chapter, we will focus on discussing the connection between micro and
macro heat flux. Our aim is to derive the thermal conductivity of classical inertial n-
vector models.
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Chapter 5

Classical inertial n-vector models

5.1 Non-inertial form

The Hamiltonian of an arbitrary, isotropic n-model with n components of spin S,
namely Sℓ, is defined as

H = −J
∑
⟨ℓℓ′⟩

Sℓ · Sℓ′ = −J
∑
⟨ℓℓ′⟩

n∑
m=1

Sm
ℓ S

m
ℓ′ ; |Sℓ|2 = S2 , (5.1)

where ℓ and ⟨ℓℓ′⟩ represent the points and the nearest-neighboring spins in a d-dimensional
lattice. We define the distance between neighboring spins as unit, without loss of gen-
erality. The exchange coupling J determines whether a system exhibits ferromagnetic
(J > 0) or antiferromagnetic behavior (J < 0). In all definitions from now on, we will
set normalized spins, in such way that, Sℓ → Sℓ

S
, thus resulting in spins with unit norm

( |Sℓ|2 = 1 ).

Another way to represent this model is as follows,

H = J
2d

∑
⟨ℓℓ′⟩

[1 − Sℓ · Sℓ′ ] , (5.2)

and it is valid for all n-vector models. The difference between Eqs. (5.1) and (5.2)
concerns about the zero-point energy. We are assuming d-dimensional lattices with volume
[0, L1] × [0, L2] · · · × [0, Ld] with L1 = L2 = · · · = Ld, and those that the angles between
the lattice vectors are 90 degrees, for simplicity . For instance, let us consider all spins
aligned in the z-direction, so, the total energy is −2JNd in the first definition, and zero
in the second one. It justifies the use of 2d neighbors for each unit cell. For instance,
linear, square and cubic lattices have 2, 4, 6 neighbors, respectively1.

Let us emphasize that both Eqs. (5.1) and (5.2) are not inertial because the kinetic
energy is naturally zero.

1In an arbitrary lattice, we define z as the number of neighbors in which the total energy is −J Nz.
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Figure 5.1: (Left) Nearest neighbors for a one-dimensional lattice. (Center) Nearest
neighbors for a square lattice. (Right) Nearest neighbors for a cubic lattice. The neighbors
are represented in color blue.

In quantum mechanics, an Hermitian operator evolves in time as follows

d

dt
O = 1

iℏ
[H, O] , (5.3)

where [., .] denotes the commutator between two operators. The commutation relations
between spins operators are

[Sα
ℓ , S

β
ℓ′ ] = iℏϵαβγS

γ
ℓ′δℓℓ′ , (5.4)

therefore, the evolution of spins is given by

Ṡℓ = Sℓ ×
∑
⟨ℓ′⟩

Sℓ′ = −Sℓ × ∂H
∂Sℓ

, (5.5)

where ⟨ℓ′⟩ denotes only the summation over the nearest-neighbors. In a classical version,
we have [., .]/iℏ → {., .}, in which {., .} is the Poisson bracket. The Eq. (5.5) remains
valid replacing operators with spin coordinates, since the relation (5.4) in its classical
version is ϵαβγS

γ
ℓ′δℓℓ′ in the left-hand side, differing by a factor iℏ [111].

We notice that Eq. (5.5) is only consistent for n = 2 and n = 3 vector models, due
to the cross product not being well-defined for higher dimensions. Another problem is
that for n = 2, the cross product results in a vector in z-direction which does not exist
in the XY -model, in other words, the time evolution of the spins are zero in x and y

components. Summarizing, only n = 3 has non-trivial equations of motion, which is the
Heisenberg model. To avoid these problems, an inertial term must be added to allow the
spins to evolve in time. This inertial term is simply the sum of the kinetic energy of all
particles in the lattice.
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5.2 Inertial form

To add a total kinetic energy in those systems we need to include a summation over the
kinetic energy of all rotors, namely p2

ℓ

2Iℓ
where pℓ and Iℓ denote the angular momentum2

and the moment of inertia of a rotor in the lattice point ℓ. Considering rotors with the
same moment of inertia (Iℓ = I ∀ℓ), we have the inertial XY -model defined as

H =
Ld∑
ℓ=1

p2
ℓ

2I + J
2d

∑
⟨ℓ,ℓ′⟩

[1 − Sℓ · Sℓ′ ] . (5.6)

The equations of motion can be derived by Euler’s equations for rigid bodies[112], yielding

Ṡℓ = ωℓ × Sℓ = pℓ

I
× Sℓ (5.7)

Iω̇ℓ = ṗℓ = J Sℓ ×
∑
⟨ℓ′⟩

Sℓ′

It is worth emphasizing that that these equations can also be obtained using noncanonical
Hamiltonian equations, wherein

Ṡℓ = −Sℓ × ∂H
∂pℓ

(5.8)

ṗℓ = −Sℓ × ∂H
∂Sℓ

.

The relations in Eq. (5.8) enable us to straightforwardly derive the equations of
motion from more complex Hamiltonians.

5.2.1 Classical inertial n-vector models in canonical coordinates

XY model

The classical Hamiltonian in canonical coordinates for n = 2 is obtained through polar
coordinates using Sx

ℓ = cos θℓ and Sy
ℓ = sin θℓ, thus yielding

H =
Ld∑
ℓ=1

p2
ℓ

2I + J
2d

∑
⟨ℓ,ℓ′⟩

[1 − cos(θℓ − θℓ′)] , (5.9)

where pℓ = pℓẑ assuming the constraint pℓ · Sℓ = 0, therefore, it leads us to the following
equations of motion:

θ̇ℓ = pℓ

I
(5.10)

ṗℓ = −J
∑
⟨ℓ′⟩

sin(θℓ − θℓ′) .

2We avoid the notation L for angular momentum, because we use L for the linear lattice size.

46



Let us notice that the advantage of using Eqs. (5.10) lies in the number of equations
to integrate. For instance, when using Eqs. (5.10), we deal with 2Ld first-order ordinary
differential equations, whereas Eqs. (5.8) lead us to 4Ld equations, taking into account
the components of both the spin and angular momentum vectors.

Heisenberg model

For the Heisenberg model, we use spherical coordinates by replacing

Sℓ = (sin θℓ cosϕℓ, sin θℓ sinϕℓ, cos θℓ) , (5.11)

resulting in the following Hamiltonian:

H =
∑

ℓ

p2
θℓ

2I +
p2

ϕℓ

2I sin2 θℓ

+ J
2d

∑
⟨ℓℓ′⟩

[
1 − cos (ϕℓ − ϕℓ′) sin θℓ sin θℓ′ − cos θℓ cos θℓ′

]
. (5.12)

From Eqs. (5.12), the equations of motion are

θ̇ℓ = pθℓ

I

ϕ̇ℓ = pϕℓ

I sin2 θℓ

ṗθℓ = −J
∑
⟨ℓ′⟩

[
sin θℓ cos θℓ′ − cos (ϕℓ − ϕℓ′) cos θℓ sin θℓ′

]
(5.13)

ṗϕℓ = −J
∑
⟨ℓ′⟩

sin (ϕℓ − ϕℓ′) sin θℓ sin θℓ′ .

We notice that the second Eqs. in (5.13) have singularities at θℓ = nπ, ∀n ∈ Z, therefore,
these equations can not be integrated in this way. To avoid such problem, we need to
integrate Eqs. (5.8) leading us to 6Ld first-order ordinary differential equations.

5.3 Anisotropic n-vector models

5.3.1 Anisotropic exchange interactions

This model is used to study phase transitions and critical phenomena in anisotropic
magnetic systems. The anisotropy, introduced by having different values of J m for dif-
ferent m, can lead to interesting and complex behavior. For example, it can break the
symmetry of the system and lead to the formation of different phases [113].

H = −
∑
⟨ℓℓ′⟩

n∑
m=1

J mSm
ℓ S

m
ℓ′ ; |Sℓ|2 = 1 (5.14)

Particularly, for n = 3 and J x = J y ̸= J z it is called Heisenberg XXZ model, where the
symmetry is broken due to the anisotropic exchange coupling J z. When J x ̸= J y ̸= J z
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it is called XY Z model. Notice that, in this case, when J m = J , m = x, y, z, we
recover the standard isotropic Heisenberg model (or Heisenberg XXX model). Despite
the nomenclatures, all these models correspond to particular cases of the anisotropic
Heisenberg models.

The equations of motion are quite simple, and are given as follows by

Ṡℓ = pℓ × Sℓ , (5.15)

and

pℓ = Sℓ ×
∑
⟨ℓ′⟩

(J xSx
ℓ′ ,J ySy

ℓ′ ,J zSz
ℓ′) . (5.16)

The Eq. (5.15) is the same for all models with only the kinetic energy momentum-
dependent. Therefore, we focus only on the equations of motion for the angular momen-
tum.

5.3.2 Standard interaction with a external magnetic field

A simple example of an anisotropic interaction is when a external magnetic field hℓ is
turned on and interacts with all points of the lattice, with magnetic moment µ, yielding

HM = −µ
∑

ℓ

hℓ · Sℓ . (5.17)

As a simplification, we can consider a field h uniformly interacting with all spins in the
lattice, thus resulting in

HM = −µh ·
∑

ℓ

Sℓ . (5.18)

In real experiments we bias the field in a single directions, for instance, the z-direction,
as follows

HM = −µhz
∑

ℓ

Sz
ℓ (5.19)

When we apply a strong magnetic field in a certain direction to the lattice, all spins
tend to align in its direction because it is energetically favorable. However, when the
field is weak, thermal fluctuations can disrupt this alignment, causing the spins to orient
in random directions, as observed in a paramagnet. The field must be sufficiently high
to align the spins, since as the temperature increases, thermal fluctuations become even
more pronounced.

The equations of motion for the general case of the classical inertial magnetic field
interaction are given by Eq. (5.15) and

ṗM
ℓ = Sℓ × µhℓ . (5.20)
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It is the most common anisotropy and is easily found in almost all books of thermo-
statistics [114].

5.3.3 Uniaxial anisotropy

The Hamiltonian of the uniaxial anisotropic interaction is given by

Hu = D
∑

ℓ

(Sℓ · n̂ℓ)2 , (5.21)

whereD is the uniaxial anisotropy constant, which determines the strength of the anisotropy,
and nℓ is the unit vector along the direction of the easy axis at site ℓ. The term (Sℓ · nℓ)2

represents the square of the projection of the spin onto the easy axis. This term is mini-
mized when the spin is aligned with the easy axis, which is the preferred direction of the
spin due to the anisotropy.

In this model, the anisotropy tends to align all spins along their respective easy axes.
The specific form of the anisotropy can vary depending on the physical system under
consideration [115]. For example, in some systems, the easy axis might be the same for
all spins, while in others, it might vary from spin to spin. The given Hamiltonian can
describe both situations.

The equations of motion for the classical inertial uniaxial interaction are given by
Eq. (5.15) and

ṗu
ℓ = −2D(Sℓ · n̂ℓ)n̂ℓ . (5.22)

This interaction will be taken account in Chapter 8 with the aim to achieve the Ising
model.

5.3.4 Dzyaloshinskii-Moriya interaction

The Dzyaloshinskii-Moriya interaction (DMI), also known as antisymmetric exchange,
is a contribution to the total magnetic exchange interaction between two neighboring
magnetic spins. It is a term in the Hamiltonian and can be written as

HDM =
∑
ℓℓ′

Dℓℓ′ · (Sℓ × Sℓ′) , (5.23)

where Dℓℓ′ is an axial vector describing an antisymmetric magnetic exchange between
spins located at sites ℓ and ℓ′. In magnetically ordered systems, DMI favors a spin canting
of otherwise parallel or antiparallel aligned magnetic moments and thus, is a source of
weak ferromagnetic behavior in an antiferromagnet. It is fundamental to the production
of magnetic skyrmions and explains the magnetoelectric effects in a class of materials
termed multiferroics [116, 117, 118].
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The functional form of the DMI can be obtained through a second-order perturbative
analysis of the spin-orbit coupling interaction, between ions. The magnitude and direction
of the Dzyaloshinskii-Moriya vector are dictated by the symmetries of neighboring ions.

The DMI is crucial in understanding various spin-related phenomena and is particu-
larly relevant in the study of two-dimensional magnets. The equations of motion for the
classical inertial DM interaction, assuming that the DM vector does not depend on the
orbital angular momentum, are given by Eq. (5.15) and

ṗDM
ℓ = −

∑
ℓ′

[
Dℓℓ′(Sℓ · Sℓ′) − (Dℓℓ′ · Sℓ)Sℓ′

]
. (5.24)

Despite the name, Dℓℓ′ was previously described as a vector which the magnitude and
direction are dictated by the symmetries of neighboring ions, thus, the antisymmetry is
not an mandatory condition for this vector. Assuming a uniform DM vector, namely D,
we obtain a simplified version of this interaction, which is more convenient for simulations
and analytical purposes in quantum mechanics. More simplifications can be made, as long
as they are appropriate and lead us to consistent results in the realm of physics. In this
situation Dℓℓ′ = D, therefore, we have

ṗDM
ℓ = −

∑
ℓ′

[
D(Sℓ · Sℓ′) − (D · Sℓ)Sℓ′

]
, (5.25)

which is more simple to solve analytically3.
In this section we show some possible interactions which might be valuable in the study

of anisotropic n-vector models. It also encourages future investigations of the dynamics
of such systems. In the next section we will detail n-vector models with generic-range
interactions, which plays an important role in the study of magnetic systems with strong
and weak spin correlations.

5.4 n-vector models with generic-range interactions

The Hamiltonian of n-vector models with generic-range interactions [119, 120] is given
by

H =
∑

ℓ

p2
ℓ

2I + J
2Ñ

∑
ℓ,ℓ′

ℓ′ ̸=ℓ

1 − Sℓ · Sℓ′

rα
ℓℓ′

, (5.26)

where rℓℓ′ ≡ |ℓ− ℓ′| denotes the distance between the rotators in a d-dimensional lattice.
The factor Ñ becomes the system extensive, and it is defined as follows

Ñ =
∑
ℓ,ℓ′

ℓ′ ̸=ℓ

r−α
ℓℓ′ /N . (5.27)

3For instance, see Ref. [118]
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It is worth emphasizing that in the limit α → ∞, we recover the standard n-vector models
with nearest-neighbors, while for α = 0, it recovers the mean-field model [121].

The definition in Eq. (5.26) originates from considering spins that interacts in a generic
way, such that the exchange coupling is no more a constant J , but a matrix with elements
Jℓℓ′ . In this way, we assume a nontrivial interaction between the sites ℓ and ℓ′, where
Jℓℓ′ ≡ J

Ñrα
ℓℓ′

. Now, in certain limits, it behaves as a system with very long, long and short-
range interactions, specifically at 0 < α/d < 1, 1 < α/d < ∞, and α = ∞, respectively.

The generic-range n-vector models for n = 1, 2 and 3 are called α-Ising, α-XY , and
α-Heisenberg models, respectively. The equations of motion are easily obtained by the
substitution J ∑

⟨ℓ′⟩ Sℓ′ → J
Ñ

∑
ℓ′ ℓ′ ̸=ℓ

Sℓ′
rα

ℓℓ′
, thus yielding

Ṡℓ = pℓ

I
× Sℓ (5.28)

ṗℓ = Sℓ × J
Ñ

∑
ℓ′

ℓ′ ̸=ℓ

Sℓ′

rα
ℓℓ′
.

The Eq. (5.28) dictates the evolution of the classical inertial n-vector model for n = 2
and n = 3 [122], and its structure reveals that a generic description of interactions is not
easy to solve analytically. Now, we will describe a more restricted approach to deal with
the n = 2 version.

5.4.1 α-XY model

Particularly, for n = 2, we can also define the spins in polar coordinates as in the
standard XY model, giving the Hamiltonian

H =
Ld∑
ℓ=1

p2
ℓ

2I + J
2Ñ

∑
ℓℓ′

ℓ′ ̸=ℓ

[1 − cos(θℓ − θℓ′)]
rα

ℓℓ′
, (5.29)

which yields the following equations of motion

θ̇ℓ = pℓ

I
(5.30)

ṗℓ = −J
Ñ

∑
ℓ′

ℓ′ ̸=ℓ

sin(θℓ − θℓ′)
rα

ℓℓ′
.

As mentioned before, the α-Heisenberg model remains with the same problems when we
try to use spherical coordinates, so, in this model, we must evolve Eqs. (5.28) in time in
order to obtain the noncanonical coordinates (Sℓ(t),pℓ(t)).

Let us notice that even in canonical coordinates and in a one-dimensional systems at
low spin excitations, the equations of motion are not trivial, due to the evolution of pℓ

resulting in a generic range system of coupled harmonic oscillators.
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5.5 Langevin baths in classical inertial n-vector models

The equations for motion for n-vector models with Langevin heat baths can be written
as follows:

Ṡℓ = pℓ

I
× Sℓ (5.31)

ṗℓ = J Sℓ ×
∑
⟨ℓ′⟩

Sℓ′ + (ηh − γhpℓ) δℓh + (ηl − γlpℓ) δℓl

where h and l denote the rotators in the hot and cold reservoirs in a Langevin heat bath,
respectively. The noise vectors ηh/l, for instance, for the Heisenberg model have three
components each one. Conversely, for the XY model, the noises are applied along the
z-direction. In other words, the noises must be in the same direction than the angular
momenta. The constant γh/l are the damping coefficients. Still about noises, we assume
that all components of ηh/l are Gaussian white noises, which means that

⟨ηα
h/l(t)η

β
h/l(t)⟩ = 2IkBTh/lγh/lδ(t− t′)δαβ, α, β = x, y, z

⟨ηα
h/l(t)⟩ = 0, α = x, y, z (5.32)

The equations (5.31) represent Langevin equations only at the ends. The region with-
out baths is called the bulk.

There are other types of thermostats that we could use in our simulations, such as the
Andersen, Berendsen, Nosé-Hoover, and Bussi-Dnadio-Parrinello thermostats [123, 124,
125, 126, 127]. However, the aim of our approach is not concerned with rescaling velocities
or obtaining the exact canonical distribution. In the next chapters, we will demonstrate
the importance of Eqs. (5.31) in nonequilibrium molecular dynamics. This approach is
entirely based on first principles.

5.6 Lagrangian heat flux of n-vector models

To connect a microscopic system, out of equilibrium, with the heat flux, it is necessary
to understand how the continuity equation behaves when the total energy of certain system
evolves in time. The continuity equation for an ideal thermal conductor 4 is given by

∂e

∂t
+ ∇ · J = 0 . (5.33)

Let us transform Eq. (5.33) in its integral form, first integrating both sides in a volume
V , so ∫

V

∂e

∂t
dv +

∫
V

∇ · Jdv = 0 . (5.34)

4We call ideal thermal conductor, a system whose thermal convection and radiation can be neglected.
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The first part in Eq. (5.34) yields dE
dt

and the second one, yields
∮

A J · da. Particularly,
for a discrete system, the surface integral results in∮

A
J · da =

∑
ℓ

(Jℓ − Jℓ′) · n̂ℓ′∆a (5.35)

where (Jℓ − Jℓ′) · n̂ℓ′ represents the difference of flow projected in the normal direction
of the surface of the lattice, and ∆a is a small element of the surface. To clarify this
notation, let us consider a d-dimensional lattice with coordinates ℓ = (ℓ1, ℓ2, . . . , ℓd). If
ℓ′ = (ℓ1 + δℓ1, ℓ2, . . . , ℓd), where δℓ1 represents a displacement on the lattice, the normal
vector is represented by n̂ℓ′ = (1, 0, . . . , 0). For ℓ′ = (ℓ1, ℓ2 +δℓ2, . . . , ℓd) the normal vector
is n̂ℓ′ = (0, 1, . . . , 0), and so forth. In particular, for one-dimensional flow, the notation is
simplified because, n̂ℓ′ = x̂ for all neighboring lattice sites.

1
∆a

dE

dt
+
∑

ℓ

(Jℓ − Jℓ′) · n̂ℓ′ = 0 . (5.36)

Let us notice that, the first part of Eq. (5.36) has the same units as the heat flux (energy
per unit of time per unit of area), and the second one represents the difference between
the flow with positions ℓ and ℓ′. In this way, the heat flux for each element of the system
can be obtained by

1
∆a

dEℓ

dt
+ (Jℓ − Jℓ′) · n̂ℓ′ = 0 . (5.37)

The flux Jℓ is often called Lagrangian heat flux [128] and it is completely determined
by the microscopic behavior of a system. The connection with the macroscopic heat flux
is given by the average ⟨Jα

ℓ ⟩ ≡ Jα for α = x, y, z, taking into account both time and
space variables.

Considering an isotropic medium, the thermal conductivity can be obtained by

k = |J|
|∇T |

, (5.38)

where the thermal gradient is directly obtained by the solution of heat equation 5.
Let us emphasize that for anisotropic media the expression Eq. (5.38) breaks down

due to the tensor behavior of the thermal conductivity, thus, it might be not accessible
directly, but using another approach, namely Green-Kubo relation, although it presents
some limitations [129].The most applicable situation is when the heat flux flows in x-
direction. It results in a simple expression given by

k = JL

∆T
, (5.39)

5For an ideal heat conduction, which is the focus of this thesis, the heat equation is given by ∂T
∂t = a ∂2T

∂t2 ,
where a is called thermal diffusivity.
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with ∆T = Th−Tl being the difference of temperatures between the hot and cold reservoir,

Th Tl
J

L

Figure 5.2: Illustration of the flow in x-direction in a cylinder. The hot reservoir (red
color) is represented by the temperature Th while the cold reservoir is represented by the
temperature Tl. The heat flux J = J x̂ is transferred from hot to cold reservoirs. In this
particular case, L coincides with the height of the cylinder.

and L represents the linear size through which the flow passes. We focus on these
systems when the flux is one-dimensional, even though the system can exist in any di-
mensional space. For instance, n-vector models can describe magnetic systems on a
d-dimensional lattice, where heat transport may occur only in the x-direction. In this
scenario, the dimension of the lattice is d, while the dimension of the flow is one. In some
circumstances, the flux in other directions is so negligible that it can be ignored. For
instance, when we apply periodic boundary conditions along the regions outside of the
heat baths.

5.6.1 One-dimensional Lagrangian heat flux of the n-vector models in
noncanonical coordinates

All α components of the heat flux may be written as

Jα
ℓ = 1

2Ld−1

∑
⟨ℓ′

α⟩
ℓ′

α>ℓα

(
Sℓ · Ṡℓ′ − Sℓ′ · Ṡℓ

)
. (5.40)

Here, we set moment of inertia and exchange coupling as unitary in Eq. (5.6) (or define the
heat flux in units of J /I), for simplification purposes . For a heat flux only in x-direction,
we have

Jℓ = 1
2
∑
⟨ℓ′

x⟩
ℓ′

x>ℓx

(
Sℓ · Ṡℓ′ − Sℓ′ · Ṡℓ

)
. (5.41)

where ℓ′
x is the x component of the nearest-neighbors in a d-dimensional lattice. The sum

in Eq. (5.41) is considered only in the nearest-neighbors which are greater than the lattice
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point in the same direction. To illustrate the definition, let us consider a two and three-
dimensional lattice with one-dimensional flow. In the first case the sum in x-direction is
at (i + 1, j), while in the second case, the neighbors are at (i + 1, j, k). Only the first
coordinate of the lattice points change. In all cases, there is only one neighbor. The
simplest case is when the lattice is a chain (d = 1) and the flux is one-dimensional. The
Lagrangian heat flux is then, given by

Ji = 1
2
(
Si · Si+1 − Si+1 · Ṡi

)
. (5.42)

The derivation of Eq. (5.42) will be shown in Chapter 10, when we discuss about the
Heisenberg chain. Notice that, when n = 2, by using polar coordinates for the spins
Si = (cos θi, sin θi), we obtain

Ji = 1
2(pi + pi+1) sin (θi − θi+1) . (5.43)

Let us clarify that Eq. (5.43) can be directly obtained with the aid of Eqs. (5.9), (5.30),
and (5.37). This is the expression for heat flux of the one-dimensional XY model in
a one-dimensional flow. In the case of the Heisenberg chain, we can use the general
expression with noncanonical coordinates, Eq. (5.42).

5.7 Green-Kubo versus direct formalism

The Green-Kubo formula [130, 131] for heat flux is a useful tool for obtaining the
thermal conductivity of a system which achieves the equilibrium state. This approach also
gives a straightforward information about the thermal conductivity tensor. The relation
for each component of the thermal conductivity is given by

kαβ = 1
TV

∫ ∞

0
dt ⟨Jα

ℓ (0)Jβ
ℓ (t)⟩eq (5.44)

and for an isotropic medium and one-dimensional heat flux, we have

k = 1
kBT 2V

∫ ∞

0
dt ⟨Jℓ(0)Jℓ(t)⟩eq (5.45)

where V is the volume, T is the temperature , kB is the Boltzmann constant, and
⟨Ji(0)Jj(t)⟩eq represents the heat flux correlation function assuming Boltzmann weigths
when the perturbation is turned on. In contrast with Green-Kubo relation, the direct
method has some limitation regarding to the off-diagonal terms of the thermal conductiv-
ity tensor, however, the Green-Kubo formula assumes the equilibrium hypothesis6, thus

6The hypothesis is that for a long-time in the past (from −∞ to t) the time-dependent distribution
reaches the equilibrium state, and the correspondent phase space distribution is assumed to be a canonical
one.
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define the probability a priori. As previously discussed in Chapter 4, not all systems
achieve the stationary state, and even if it does, not all stationary states are equivalent
to the equilibrium one.

Referring to the Green-Kubo formula for heat conduction, it is valid for large sys-
tems. However, these formulas may not accurately describe thermal conductivity in small
systems or systems with finite size effects. Furthermore, there can be nonlinear correc-
tions to Fourier’s law, which are not captured by the Green-Kubo formula. The standard
Green-Kubo formula may not be valid for systems with long-range or nonstationary cor-
relations, necessitating a generalized version of the Green-Kubo formula for such systems.
Additionally, the Green-Kubo formula assumes that the system is in equilibrium at the
initial time when the external field is turned on, which may not always be the case in
real-world systems. These limitations need to be taken into account when applying the
Green-Kubo formula to practical problems in heat conduction and other linear transport
phenomena.

In contrast, the assumption of equilibrium has no implication in the direct formalism,
since it is a natural nonequilibrium method and can be suitable for a wide variety of
systems being also consistent with small ones. Another important remark about the
direct method concerning about the derivation of the thermal conductivity from heat
equation, given by ∂T

∂t
= ∇ · (k∇T ), which for one-dimensional heat transfer, we have

∂T

∂t
= ∂

∂x

(
k
∂T

∂x

)
. (5.46)

Even with nonlinear contributions to the thermal conductivity, the thermal conductivity
can be obtained by Eq. (5.39), although the Fourier’s law is naturally broken (κ can be
dependent on the thermal gradient and so forth). Therefore, we are able to simulate
systems with anomalous heat conduction without resorting to unphysical considerations,
such as assuming equilibrium in a system that is in a permanent nonequilibrium state.

In the next chapters, we will show some results applying the direct method to classical
inertial n-vector models.
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Chapter 6

XY model in d = 1, 2, 3 dimensions

PRIMARY causes are unknown to us; but are subject to simple and constant
laws, which may be discovered by observation, the study of them being the
object of natural philosophy.
Heat, like gravity, penetrates every substance of the universe, its rays occupy
all parts of space. The object of our work is to set forth the mathematical laws
which this element obeys. The theory of heat will hereafter form one of the
most important branches of general physics.
J. Fourier, 1822, Théorie Analytique de la Chaleur (English translation).

This chapter is based on the recent article First-principle validation of
Fourier’s law in d = 1, 2, 3 classical systems, published in Physica D:
Nonlinear Phenomena [39].

In this chapter we numerically study the thermal transport in the classical inertial
nearest-neighbor XY ferromagnet in d = 1, 2, 3, the total number of sites being given by
N = Ld, where L is the linear size of the system.

6.1 Model

The Hamiltonian of the d-dimensional inertial ferromagnetic XY model is given by

H = 1
2

Ld∑
ℓ=1

p2
ℓ + 1

2
∑
⟨ℓ,ℓ′⟩

[1 − cos(θℓ − θℓ′)] , (6.1)

where ⟨ℓ, ℓ′⟩ denotes nearest-neighboring rotors in the d-dimensional lattice [29, 27, 28].
Because we assume that the particles have the same mass and the same moment of inertia,
we have considered unit momenta of inertia and unit first-neighbor coupling constant
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without loss of generality, and (pℓ, θℓ) are conjugate canonical pairs. We use periodic
boundary conditions along (d − 1) directions, and leaving open for 1-dimensional ends.
One of the ends being at a low temperature heat bath Tl and the other one at high
temperature Th (see Fig. 6.1 for the illustration for d = 1 and 2).

The equation of motion for the one-dimensional model is given as,

1,2

1,3

1,1

1,L

1,L-1

1,4

1,L-2

2,2

2,3

2,1

2,L

2,L-1

2,4

2,L-2

L,2

L,3

L,1

L,L

L,L-1

L,4

L,L-2

High 
temperature

Low
temperature

Flux Direction i

1 2 3 L-2 L-1 L
Bulk

A) 1D - Model

B) 2D - Model

Figure 6.1: The lattice structure of the present A) d = 1 model (L sites) and B) d = 2
model (L2 sites). Red shaded areas represent hot heat bath, Th, and blue areas are
cold heat bath, Tl. The heat flux direction is from the hot heat bath to the cold one.
To sensitively compute the heat flux and conductance, the bulk selected from the 3rd
component to L− 2 one in the flux direction to avoid direct random noise from the heat
baths. The bulk is illustrated for 1D-model in A), which is straightforwardly generalized
for dimensions d=2 and 3.

θ̇i = pi (i = 1, . . . , L)

ṗ1 = −γhp1 + F1 +
√

2γhThηh(t)

ṗi = Fi (i = 2, . . . , L− 1)

ṗL = −γlpL + FL +
√

2γlTlηl(t) ,

(6.2)

the force components being given by

F1 = − sin(θ1 − θ2) − sin(θ1)

Fi = − sin(θi − θi+1) − sin(θi − θi−1)

FL = − sin(θL) − sin(θL − θL−1),

(6.3)
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where i = 2, . . . , L − 1, the friction coefficients are chosen γl = γh = 1 (for numerical
convenience), and ηl and ηh represents the Gaussian white noise with zero mean value
and unit variance. Note that, in a relativistic context, these equations must be modified.

6.1.1 Equations of motion for d > 1 Lattices

2-Dimensional Lattice

The equations of motion for d = 2 are written as follows

θ̇i,j = pi,j ((i, j) = 1, . . . , L)

ṗ1,j = −γhp1,j + F1,j +
√

2γhThηj,h(t)

ṗi,j = Fi,j (i = 2, . . . , L− 1)

ṗL,j = −γlpL,j + FL,j +
√

2γlTlηj,l(t) ,

(6.4)

the force components being given by

F1,j = − sin(θ1,j − θ2,j) − sin(θ1,j)

− sin(θ1,j − θ1,j+1) − sin(θ1,j − θ1,j−1)

Fi,j = − sin(θi,j − θi+1,j) − sin(θi,j − θi−1,j)

− sin(θi,j − θi,j+1) − sin(θi,j − θi,j−1)

FL,j = − sin(θL,j) − sin(θL,j − θL−1,j)

− sin(θL,j − θL,j+1) − sin(θL,j − θL,j−1)

(6.5)

where θi,1 = θi,L+1 and θi,0 = θi,L. The friction coefficients γl and γh have been chosen γl =
γh = 1, and all components of the vectors ηj,l and ηj,h are random Gaussian distributions
with zero mean value and unit variance.

3-Dimensional Lattice

For d = 3, we have similarly :

θ̇i,j,k = pi,j,k ((i, j, k) = 1, . . . , L)

ṗ1,j,k = −γhp1,j,k + F1,j,k +
√

2γhThηj,k,h(t)

ṗi,j,k = Fi,j,k (i = 2, . . . , L− 1)

ṗL,j,k = −γlpL,j,k + FL,j,k +
√

2γlTlηj,k,l(t) ,

(6.6)
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the force components being given by

F1,j,k = − sin(θ1,j,k − θ2,j,k) − sin(θ1,j,k)

− sin(θ1,j,k − θ1,j+1,k) − sin(θ1,j,k − θ1,j−1,k)

− sin(θ1,j,k − θ1,j,k+1) − sin(θ1,j,k − θ1,j,k−1)

Fi,j,k = − sin(θi,j,k − θi+1,j,k) − sin(θi,j,k − θi−1,j,k)

− sin(θi,j,k − θi,j+1,k) − sin(θi,j,k − θi,j−1,k)

− sin(θi,j,k − θi,j,k+1) − sin(θi,j,k − θi,j,k−1)

FL,j,k = − sin(θL,j,k) − sin(θL,j,k − θL−1,j,k)

− sin(θL,j,k − θL,j+1,k) − sin(θL,j,k − θL,j−1,k)

− sin(θL,j,k − θL,j,k+1) − sin(θL,j,k − θL,j,k−1)

(6.7)

where θi,1,k = θi,L+1,k, θi,0,k = θi,L,k, θi,j,1 = θi,j,L+1 and θi,j,0 = θi,j,L. The friction coeffi-
cients γl and γh have been chosen γl = γh = 1, and all components of the matrices ηj,k,l

and ηj,k,h are random Gaussian distributions with zero mean value and unit variance.
This approach can be extended for d > 3, where the lattice points are ℓ = (i1, i2, . . . , id).

The boundary conditions are quite complicated. For instance, for d = 4, we have θi,1,k,m =
θi,L+1,k,m, θi,0,k,m = θi,L,k,m, θi,j,1,m = θi,j,L+1,m, θi,j,0,m = θi,j,L,m, θi,j,k,1 = θi,j,k,L+1 and
θi,j,k,0 = θi,j,k,L. The equations of motion also must be modified, assuming for coordinates
for each point of the lattice. The noise increases its rank to 4.
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6.2 Methods

The dynamical evolution was conducted using the Velocity-Verlet algorithm [132, 133]
with step size dt = 0.01; after discarding a transient time, the average of the heat flux is
computed for 4 × 108 time steps and 80 randomly initialized realizations. The transient
time is carefully selected for different system sizes by considering the development of
the conductivity curve for varying temperature values. The system is assumed to be
stationary when the conductivity curve reaches a steady state. For simplicity, we set
Th = T (1 +∆) and Tl = T (1 −∆) with ∆ = 0.125, where T is the average temperature .
The macroscopic conductivity κ is given by

κ = J

(Th − Tl)/L
= J

2∆T/L (6.8)

where J = ⟨Jl⟩bulk is the time and space average of heat flux along the bulk of the lattice
in the stationary state, which connects the microscopic level (the equations of motion)
with the macroscopic one (the average of the heat flux and thermal conductivity) via
the continuity equation. The bulk is defined as the entire system excluding the sides in
high and low temperature heat baths and their first neighbors to avoid the direct effect
of stochastic dynamics on the flux calculation (see Fig. 6.1). Therefore, the possible
minimum system length for any lattice topology Ld is L = 5 to compute the flow as
desired. Furthermore, to reduce the direct effect of noise on the flux, one can ignore more
than two nearest neighbors to the heat baths from the calculation for large systems. The
time derivative of the Hamiltonian Eq. 6.1 can be written as

dH
dt

= −1
2

Ld∑
ℓ=1

(Jℓ − Jℓ′) (6.9)

where Jℓ = (pℓ + pℓ′) sin(θℓ − θℓ′) is the Lagrangian flux [128], ℓ ∈ {1, · · · , Ld} is a
unique label for each site and ℓ′ is the nearest-neighbor of site-ℓ towards to hot reservoir.
Therefore, Jℓ is defined as the energy transfer per unit time, per transverse (d − 1)-
dimensional “area” Ld−1. Note that the calculation of Jℓ is independent of the lattice
dimension d since the flow direction is always in one direction from the high temperature
end to the cold one. The statement for the flux direction is straightforward for d = 1;
however, the model for d > 1 has periodic boundary conditions for interacting sides on
(d−1) dimensions. Then the flux is defined only through the axis where the boundaries are
ended with the heat baths in any lattice dimension d ∈ Z

+. The macroscopic conductivity
κ only depends on the specific material and its temperature. This is essentially the content
of Fourier’s 1822 law, where only the macroscopic phenomenon was considered [1].

The (dimensionless) conductivity κ and the (dimensionless) “conductance” σ are, by
definition, related through

κ ≡ σLd . (6.10)
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As we shall later on verify, this specific definition of σ [29] does not depend, for d = 1, on
L in the T → 0 limit (see Fig. 2).

The asymptotic power-law relation between T and σ (or κ) was numerically explored
for the one-dimensional first-neighbor planar-rotator model [27]. Furthermore, a collapse
of the power-law distributions was discovered through the following q-Gaussian [29]

σ(T, L) = σ(0, L) e−Bq(L1/3T )2

q , (6.11)

where, for d = 1, σ(0, L) is independent from L, and (q, Bq) ≃ (1.55, 0.40), the q-
exponential function being defined as ez

q ≡ [1 + (1 − q)z]1/(1−q) (ez
1 = ez). The q-Gaussian

form (6.11) was proposed in [29] because, under appropriate simple constraints, it ex-
tremizes the nonadditive entropy

Sq ≡ k
1 −∑

i p
q
i

q − 1 = k
∑

i

pi lnq
1
pi

= −k
∑

i

pq
i lnq pi = −k

∑
i

pi ln2−q pi (6.12)

where k is a positive constant such that for q = 1, k = kB (kB is the Boltzmann constant),
and lnq z ≡ z1−q−1

1−q
(ln1 z = ln z) [36, 35, 134]. We straightforwardly verify that S1 =

SBG ≡ −k ∑i pi ln pi, where BG stands for Boltzmann-Gibbs. We also verify that, for
two statistically independent systems X and Y (i.e., pX+Y

ij = pX
i p

Y
j ),

Sq(X + Y )
k

= Sq(X)
k

+ Sq(Y )
k

+ (1 − q)Sq(X)
k

Sq(Y )
k

. (6.13)

This property exhibits the nonadditivity of the entropic functional Sq for q ̸= 1. For q = 1
we recover the well known BG additivity SBG(X+Y ) = SBG(X)+SBG(Y ), which follows
Penrose’s definition of entropic additivity [135].

6.3 Results

We revisit here the d = 1 results of [29] by exploring higher values of T . It turns
out that, while the q-Gaussian Ansatz was good enough for the conductivity σ at the
relatively low temperatures considered in [29], the present numerics at a wider range of
T require a more general Ansatz, namely the stretched q-exponential

y(x) = e−B|x|η
q (6.14)

with q ≥ 1, η > 0 and B > 0. The q-Gaussian form Eq. (6.11) is recovered as the
η = 2 particular limit of this more general form. The form Eq. (6.14) introduces one more
parameter, namely η, which fits our numerical data very satisfactorily. Note that we used
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Figure 6.2: Thermal conductance as a function of temperature for d-dimensional lattice
structures (d = 1, 2 and 3). Top: Conductance σ plotted for (a) dimension d = 1 for
sizes L = 35, 50 and 100, (c) d = 2 with L × L = 10 × 10, 14 × 14 and 18 × 18 and (e)
d = 3 with L × L × L = 6 × 6 × 6, 7 × 7 × 7 and 8 × 8 × 8. Bottom: Collapse of σ
values for all available system sizes in dimensions (b) d = 1, (d) d = 2 and (f) d = 3
using the relations for temperature T → TLγ and σ → σLδ, scaling parameters, δ and
γ, are given on the associated sub-figures. Collapsed σ values are accurately fitted with
σ(T, L) = A(1−(1−q)B(TLγ)η)1/(1−q) using the optimal parameters in the legend for the
fitting curves (dashed gray lines). The number of time steps used for all d case is 4 × 108

and an average is taken over 80 experiments. The number of transients thrown away for
the system to attain the stationary state is at least 2.6 × 1011 for d = 1, 8.0 × 1010 for
d = 2 and 5.6 × 1010 for d = 3.

the standard least squares method to find the best-fitting curve for our numerical data.
By so doing, we follow the successful Ansatz proposed in [136] for neutron experiments
with standard spin glasses. This is specifically shown in what follows here below.

All our results for d = 1, 2 and 3 collapse in the following universal form:

σ(T, L)Lδ(d) = A(d) e−B(d)[T Lγ(d)]η(d)

q(d) , (6.15)

where (A,B, q, η, γ, δ) are fitting parameters (Fig. 6.2). Let us emphasize here that
Fourier’s law corresponds to the L → ∞ limit 1 of this equation, hence, both σ and

1Out of mere clarification, the asymptotic limit of a q-exponential is given by the relation e−x
q ∼

x−1/(q−1), then, for a q-stretched exponetial as in Eq. (6.15), it follows that e−bxη

q ∼ x−η/(q−1).
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κ decay with power laws, namely σ ∼ 1/Lρσ and κ ∼ 1/Lρκ , where ρσ ≡ δ + γ η
q−1 and

ρκ ≡ ρσ −d as exhibited in Fig. 6.3. The validation of Fourier’s law is confirmed if ρκ = 0
or, equivalently, ρσ = d, making the thermal conductivity independent of the lattice size.

0 1 2 3 4

d

0

1

2

3

4

ρσ

Figure 6.3: σ ∝ 1/Lρσ(d) (L → ∞) and κ = σLd ∝ Ld−ρσ(d). The dots correspond to
the present numerical results. The dashed line indicates the validity of Fourier’s law,
i.e., limL→∞ κ(T, L) is a finite T -dependent quantity. These results strongly suggest that
ρσ = d, hence ρκ = 0, for all values of d, possibly including noninteger values as well.

In this chapter, we numerically demonstrate that the heat conduction in XY -model
for all dimensions exhibits no abnormality. For d = 1, 2, 3, the thermal conductivity
follows a power law behavior, κXY ∼ T−ρd with ρd = ηd/(qd − 1), where (ρ1, ρ2, ρ3) ≈
(3.33, 2.38, 2.17) showing a decrease as the dimension increases. The q-stretched expo-
nential, a typical function in q-statistics, has been proven useful in the study of trans-
port phenomena, particularly, in heat conduction. Furthermore, such approach provides
a closed formula to all feasible regimes, facilitating the analysis of the thermodynamic
limit.

Does it hold for n = 1 vector model? We will see in Chapter 7, numerical evidence of
normal heat conduction in the Ising chain.
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Chapter 7

Ising chain

The new theories explained in our work are united for ever to the mathematical
sciences, and rest like them on invariable foundations; all the elements which
they at present possess they will preserve, and will continually acquire greater
extent. Instruments will be perfected and experiments multiplied. The analysis
which we have formed will be deduced from more general, that is to say, more
simple and more fertile methods common to many classes of phenomena.
J. Fourier, 1822, Théorie Analytique de la Chaleur (English translation).

This chapter is based on the recent article Ising chain: Thermal con-
ductivity and first-principle validation of Fourier’s law, published in
Physica A: Statistical Mechanics and its Applications [40].

In the present study we approach, for a linear chain, the Ising limit via two different
types of extremely anisotropic XY models, namely through the addition of a local term
in the Hamiltonian (preliminary discussed in [137]), or by allowing the XY interaction to
be anisotropic.

7.1 Models and methods

Let us first focus on the local possibility. We assume that the Hamiltonian of the
inertial XY model includes a local energy being proportional to a self-interaction between
spins in the x-direction. This Hamiltonian can then be written as follows

H l
XY =

L∑
i=1

p2
i

2 + 1
2
∑
⟨i,j⟩

[
1 − cos(θi − θj)

]
+ ϵl

L∑
i=1

sin2 θi , (7.1)

where ϵl ∈ [0,∞) is a coupling constant associated with this local energy. This model is
similar to Blume-Capel one [138, 139], but with n = 2 instead of n = 1. For increasing
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ϵl, the third term in the Hamiltonian dominates, thus exhibiting properties that are
characteristic of the n = 1 class of the Hamiltonian Eq. (5.2). The limit ϵl → ∞
corresponds to a complete crossover from the XY model to the Ising one.

We consider the Hamiltonian described by Eq. (7.1), adding Langevin heat baths
acting only on the first and the last particles of the chain with temperatures Th and Tl

(Th ≥ Tl) respectively. The corresponding equations of motion are given by

θ̇i = pi for i = 1, . . . , L

ṗ1 = −γhp1 + F1 + ηh(t)

ṗi = Fi for i = 2, . . . , L− 1

ṗL = −γlpL + FL + ηl(t)

(7.2)

where the force components are

Fi = −ϵl sin(2θi) −
∑
⟨j⟩

sin(θi − θj) , (7.3)

where, for each i, ⟨j⟩ means that we are summing over nearest-neighbor pairs; ηh/l are
Gaussian white noises with correlations

⟨ηh/l(t)ηh/l(t′)⟩ = 2γh/lTh/lδ(t− t′)

⟨ηh(t)ηl(t′)⟩ = 0 .
(7.4)

The heat flux is derived via continuity equation; the Lagrangian heat flux Ji [128] is
given by

Ji = 1
2(pi + pi+1) sin(θi − θi+1) . (7.5)

Let us emphasize that Eq. (7.5) has the same form ∀ϵl, i.e. that of the Lagrangian
heat flux of the XY model itself [39]. Despite of the fact that the local term does not
contribute to the structure of the heat flux, the evolution of the canonical coordinates is
quite different for different values of ϵl. Indeed, the presence of the local force [Eq. (7.3)]
enters into the average J ≡ ⟨Ji⟩bulk, which is then affected by ϵl. This average ⟨Ji⟩bulk is
considered only for the particles within the bulk, excluding the ends that are naturally
affected by the random forces. The thermal conductance σ of the chain is defined as
follows

σ ≡ κ

L
= J

Th − Tl

. (7.6)

This definition is obtained through the one-dimensional heat equation ∂T
∂t

∝ ∂2T
∂x2 . In the

steady state, ∂Tst

∂t
= 0, where Tst = Tst(x) is the steady-state temperature field. By

imposing the boundary conditions Tst(0) = Th and Tst(L) = Tl we have the solution
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Figure 7.1: Schematic representation of the anisotropic XY coupling.

Tst(x) = Tl−Th

L
x+ Th, hence the heat flux is given by

J = κ
Th − Tl

L
= σ(Th − Tl) , (7.7)

consistently with Eq. (7.6).
Let us focus now on the second possibility, namely the anisotropically coupled XY -

model with L interacting spins Si. The corresponding Hamiltonian is given by

H a
XY =

L∑
i=1

p2
i

2 − Jx

∑
⟨i,j⟩

Sx
i S

x
j − Jy

∑
⟨i,j⟩

Sy
i S

y
i . (7.8)

We define Jx ≡ J (1 + ϵa)/2 and Jy ≡ J (1 − ϵa)/2 with |ϵa| ≤ 1 and J > 0 . This
Hamiltonian can be rewritten in polar coordinates as follows:

H a
XY =

L∑
i

p2
i

2 + 1
2
∑
⟨i,j⟩

[1 + ϵa − cos(θi − θj) − ϵa cos(θi + θj)] (7.9)

Without loss of generality, we set moment of inertia and exchange interaction J equal
to unity. Notice that θi = 0 , ∀i, leads to zero potential energy, for all ϵa. Notice also
that ϵa = ±1 correspond to the Ising model along the y and x axes respectively, whereas
ϵa = 0 recovers the standard isotropic XY -model (see Fig. 7.1). The equations of motion
are the same as in Eq. (7.2), the forces being now written as follows:

Fi = −
∑
⟨j⟩

[
sin(θi − θj) + ϵa sin(θi + θj)

]
. (7.10)

The heat flux of the anisotropically coupled XY model is given by

Ji = pi + pi+1

2 sin(θi − θi+1)

+ ϵa
pi − pi+1

2 sin(θi + θi+1) . (7.11)

For both models, we implement the equations of motion with Velocity Verlet algorithm
[132, 133]. In our simulation, we set the step size dt = 0.01, γh = γl = 1.0, and the
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temperatures Th/l = T (1 ±∆), with ∆ ≡ 0.125 arbitrarily chosen as a small value taking
account that T = (Th + Tl)/2. The coordinates and momenta are initially set to zero;
the sum of the L momenta is only approximately conserved since this is a canonical
molecular-dynamical approach.

We directly compute the averages from Eqs. (7.5) and (7.11), assuming a transient
time equal to 1010, which ensures the arrival to the stationary state; we then average the
heat flux along 200 equally spaced intervals of 4 × 108 time-steps. After that, Eq. (7.6)
is used for 23 different values for the temperature T , with ϵl and ϵa ranging from 0 to 0.7
by steps of 0.1.
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Figure 7.2: Left: Thermal conductance of the first anisotropic model as a function of
temperature for one-dimensional lattice structure and the local coupling constant for
L = 50. Center: Plot of -slope versus ϵl for L = 20, 35, 50. All the curves approach
the same saturation value slopel ≃ −3.0. Right: Collapse with a stretched q-exponential
form, from ϵl = 0.4 to ϵl = 0.7 with L = 20, 35, 50. The values of the minimum (Tmin)
and maximum (Tmax) temperatures are 0.03 and 8.0 respectively.

68



ϵa = 0.0

ϵa = 0.1

ϵa = 0.2

ϵa = 0.3

ϵa = 0.4

ϵa = 0.5

ϵa = 0.6

ϵa = 0.7

L = 50

10
-1

10
0

10
-5

10
-4

10
-3

10
-2

10
-1

T

σ
(ϵ

a
,

T

L=20

L=35

L=50

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

2.9

3.0

3.1

3.2

3.3

3.4

ϵa

0.0031e1.64821
-0.035 x1.94142

10
-1

10
0

10
1

10
2

10
-6

10
-5

10
-4

10
-3

ϵa
-1
L
0.336

T

ϵ a
4
σ
(ϵ
a

Figure 7.3: Left: Thermal conductance of the second anisotropic model as a function
of temperature for one-dimensional lattice structure and the local coupling constant for
L = 50. Center: Plot of -slope versus ϵa for L = 20, 35, 50. All the curves approach
the same saturation value slopea ≃ −3.0. Right: Collapse with a stretched q-exponential
form, for ϵa = 0.6 and ϵa = 0.7 with L = 20, 35, 50. The values of the minimum (Tmin)
and maximum (Tmax) temperatures are 0.03 and 8.0 respectively.

7.2 Results

We observe in Figs. 7.2 and 7.3 that, at low temperatures, the thermal conductance σ
decreases for increasing anisotropic parameters ϵl and ϵa: σ decreases for the first model
(Fig. 7.2) slower than for the second one (Fig. 7.3). For the first model, for instance,
the decrease is related to the fact that, at small oscillations (θi ≃ 0), an additional force
−2ϵlθi emerges which reduces the mean heat flux, hence the thermal conductance. A
similar effect is present in the second model with regard to ϵa.

At intermediate temperatures a crossover becomes preliminary evident. This is due to
the fact that the rotators are now at excited states, and therefore start being angularly
constrained because of the anisotropy, as depicted in Fig. 7.1. We can see in Fig. 7.2
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that, after that intermediate regime, the absolute value of the slope reduces more and
more until it saturates, making the cases ϵl = 0.5, 0.6, 0.7 to virtually coincide. The Ising
regime neatly emerges in the ϵl > 1/2 region.

We can collapse all thermal conductances of both models, except in the crossover
region, with a stretched q-exponential Ansatz (see [136, 39]), defined as

y(x) = e−Bxη

q (x ≥ 0, q ≥ 1, η > 0, B > 0) , (7.12)

where ez
q ≡ [1+(1−q)z]

1
1−q (ez

1 = ez). Consistently with this Ansatz, we verify that, in the
thermodynamic limit (L ≫ 1), σ(ϵl, T ) ∝ σ(ϵa, T ) ∝ T− η

q−1 , where (η, q) ≈ (1.94, 1.65)
thus yielding the slope η/(q − 1) ≈ 3.0. This value is already shown in Figs. 7.2 (center)
and 7.3 (center). Another important observation is that κ = σL does not depend on the
system size L. This is a simple consequence from the fact that, at fixed temperatures,
we have σ ∼ L−γ η

q−1 , with γ = 0.336, hence σ ∝ L−1, thus validating, through both
anisotropic models, the Fourier’s law in the Ising limit.

Let us emphasize that, in the isotropic XY model, σXY ∼ T−3.34 [39] while, in the
Ising limit, we have σIsing ∼ T−3.0. The parameters (q, η, γ) of the XY and Ising models
are sensibly different. However, when all those parameters are combined together, a
remarkable numerical result is obtained, namely that the thermal conductivity κ becomes
asymptotically independent of the lattice size, thus obeying Fourier’s law. It should be
noted that ηγ

q−1 ≈ 1 for both the Ising and XY linear chains. It is in fact plausible to
expect that, for the n-vector models, ηγ

q−1 ≈ 1 for all values of n .

Therefore, in response to the question posed in Chapter 6, it is indeed confirmed that
the Ising chain exhibits normal heat conduction, with κIsing ∼ T−3, and it does not depend
on lattice size. We will now pose another question: Does it also hold for n = 3 vector
models? In Chapter 8, we will present numerical evidence supporting the conclusion that
there is no abnormality in heat conduction for the Heisenberg chain, and therefore for
n = 1, 2, 3 vector models as well.
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Chapter 8

Heisenberg chain

THE effects of heat are subject to constant laws which cannot be discovered
without the aid of mathematical analysis. The object of the theory which we are
about to explain is to demonstrate these laws; it reduces all physical researches
on the propagation of heat, to problems of the integral calculus whose elements
are given by experiment. No subject has more extensive relations with the
progress of industry and the natural sciences; for the action of heat is always
present, it penetrates all bodies and spaces, it influences the processes of the
arts, and occurs in all the phenomena of the universe.
J. Fourier, 1822, Théorie Analytique de la Chaleur (English translation).

This chapter is based on the recent article First-Principle Validation of
Fourier’s Law: One-Dimensional Classical Inertial Heisenberg Model,
published in Entropy [41].

In the present work, we analyze the thermal transport in a one-dimensional classical
inertial Heisenberg model of linear size L, considering the first and last particles in thermal
contact with heat baths at temperatures Th and Tl (Th > Tl), respectively.

8.1 Model and Methods

The one-dimensional classical inertial Heisenberg model, for a system of L-interacting
rotators, is defined by the Hamiltonian,

H = 1
2

L∑
i=1

p2
i + 1

2
∑
⟨ij⟩

(
1 − Si · Sj

)
, (8.1)

where pi ≡ (pix, piy, piz) and Si ≡ (Six, Siy, Siz) represent, respectively, continuously vary-
ing angular momenta and spin variables at each site of the linear chain, whereas ∑⟨ij⟩

denote summations over pairs of nearest-neighbor spins; herein, we set, without loss of
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generality, kB, moments of inertia, and ferromagnetic couplings, all equal to the unit.
Moreover, spins present the unit norm, S2

i = 1, and at each site, angular momentum pi

must be perpendicular to Si, yielding pi · Si = 0; these two constraints are imposed at
the initial state and should be preserved throughout the whole time evolution.

One should notice that, in contrast to a system of coupled classical XY rotators,
where canonical conjugate polar coordinates are commonly used [39], in the Heisenberg
case, one often chooses Cartesian coordinates [140, 122, 141]. The reason for this is
essentially technical, since in terms of spherical coordinates (more precisely, θ, ϕ, and their
canonical conjugates pθ, pϕ), a troublesome term (1/ sin2 θ) appears in the corresponding
equations of motion, leading to numerical difficulties [142, 143]. However, some of the
analytical results to be derived next recover those of the classical inertial XY model for
Si = (sin θi, cos θi, 0) and pi = piẑ.

It is important to mention that previous research on the thermal conductivity has been
carried out for a classical one-dimensional Heisenberg spin model, by using Monte Carlo
and Langevin numerical simulations [25], as well as for a classical one-dimensional spin-
phonon system, through linear-response theory and the Green–Kubo formula [144]. These
investigations did not take into account the kinetic contribution in Equation (8.1), so that
in order to obtain the thermal conductivity they assumed the validity of Fourier’s law.
The main advantage of the introduction of the kinetic term in Equation (8.1) concerns the
possibility of deriving equations of motion, making it feasible to follow the time evolution
of the system through molecular-dynamics simulations, by a numerical integration of such
equations. This technique allows one to validate Fourier’s law, as well as obtain its thermal
conductivity directly.

In order to carry out this procedure, we consider an open chain of rotators with the first
and last particles in thermal contact with heat baths at higher and lower temperatures,
Th and Tl (Th > Tl), respectively (cf. Figure 10.1), whereas all remaining rotators (i =
2, · · · , L − 1) follow their usual equations of motion (see, e.g., Refs. [140, 122, 141]). In
this way, one has for sites i = 2, . . . , L− 1,

Ṡi = pi × Si ,

ṗi = Si × (Si+1 + Si−1) ,
(8.2)

whereas the rotators at extremities follow standard Langevin dynamics,

ṗ1 = −γhp1 + S1 × S2 + ηh ,

ṗL = −γlpL + SL × SL−1 + ηl .
(8.3)

Above, γh and γl represent friction coefficients, whereas ηh and ηl denote independent
three-dimensional vectors, ηh ≡ (ηhx, ηhy, ηhz), ηl ≡ (ηlx, ηly, ηlz), where each Cartesian
component stands for a Gaussian white noise with zero mean and correlated in time,

72



⟨ηhµ(t)⟩ = ⟨ηlµ(t)⟩ = 0 ,

⟨ηhµ(t)ηlν(t′)⟩ = ⟨ηhµ(t′)ηlν(t)⟩ = 0 ,

⟨ηhµ(t)ηhν(t′)⟩ = 2δµνγhThδ(t− t′) ,

⟨ηlµ(t)ηlν(t′)⟩ = 2δµνγlTlδ(t− t′) ,

(8.4)

with the indexes µ and ν denoting Cartesian components; from now on, we will set
the friction coefficients γh and γl equal to the unit. One should mention that different
types of thermostats have been used to investigate transport properties in systems out
of equilibrium (see, e.g., Ref. [145] for an application of Nosé–Hoover thermostats to
a system of interacting planar rotators); however, for the present Heisenberg chain, we
found it more convenient to use standard Langevin thermostats, as defined above.

The condition of a constant norm for the spin variables yields

dSi

dt
= d (Si · Si)1/2

dt
= 0 ⇒ Si · Ṡi = 0 , (8.5)

which should be used together with ℓi · Si = 0 in order to eliminate ℓ̈i and calculate S̈i

from Equations (8.2) and (8.3). For rotators at sites i = 2, · · · , L− 1, one has

S̈i = (Si+1 + Si−1) −
[
Si · (Si+1 + Si−1) + Ṡ2

i

]
Si , (8.6)

whereas, for those at extremities,

S̈1 = −Ṡ1 + S2 −
[
S1 · S2 + Ṡ2

1

]
S1 + S1 × ηh ,

S̈L = −ṠL + SL−1 −
[
SL · SL−1 + Ṡ2

L

]
SL + SL × ηl .

(8.7)

For the system illustrated in Figure 8.1, we will consider the temperatures of the heat
baths differing by 2ε, with ε representing a positive dimensionless parameter; moreover,
the temperature parameter T = (Th +Tl)/2 will vary in a certain range of positive values.
Equations (8.6) and (8.7) are transformed into first-order differential equations (e.g., by
defining a new variable Vi ≡ Ṡi) to be solved numerically through the velocity Verlet
method [132, 133], with a time step dt = 0.005, for different lattice sizes L . The rotators
at the bulk (i= 2, · · · , L− 1) follow a continuity equation,

dEi

dt
= −(Ji − Ji−1) , (8.8)

where

Ei = 1
2 p2

i + 1
2
∑

j=i±1

(
1 − Si · Sj

)
, (8.9)

so the stationary state is attained for (dEi/dt) = 0, i.e., Ji = Ji−1. The derivation is
simple, since from Equation (8.5) and pi · Si = 0, we have Ṡ2

i = p2
i , hence,
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d

dt
Ei = Ṡi · S̈i − 1

2

[
Ṡi · (Si+1 + Si−1) + Si ·

(
Ṡi+1 + Ṡi−1

)]
. (8.10)

This equation, together with Equation (8.6), yields

d

dt
Ei = 1

2

[
Ṡi · (Si+1 + Si−1) − Si ·

(
Ṡi+1 + Ṡi−1

)]
= 0 (8.11)

at the stationary state. Data are obtained at stationary states, which, as usual, take
longer to reach for increasing lattice sizes. For numerical reasons, to decrease fluctuations
in the bulk due to the noise, we compute an average heat flux by discarding a certain
number of particles k near the extremities (typically k ≃ 0.15L). In this way, we define
an average heat flux as

J ≡ 1
L− 2k

L−k∑
i=k+1

⟨Ji⟩ , (8.12)

Ji = 1
2
(
Si · Ṡi+1 − Si+1 · Ṡi

)
, (8.13)

whereas ⟨..⟩ denotes time and sample averages, which will be described next.
Let us emphasize that for Si = (sin θi, cos θi, 0) and pi = piẑ, one recovers the expres-

sion for the heat flux of the classical inertial XY model, i.e., Ji = 1
2(pi+pi+1)sin (θi − θi+1) [39,

128], showing the appropriateness of the Cartesian-coordinate approach used herein for
the classical inertial Heisenberg model.

Let us now describe the time evolution procedure; for a time step dt = 0.005, each
unit of time corresponds to 200 integrations of the equations of motion. We considered
a transient of 5 × 107 time units to compute the averages ⟨Ji⟩ in Equation (8.12), and
checked that this transient time was sufficient to fulfill the condition Ji = Ji−1 (within, at
least, a three-decimal digits accuracy), for all values of L analyzed. After that, simulations
were carried out for an additional interval of 2 × 108 time units (leading to a total time
of 2.5 × 108 for each simulation). The interval 2 × 108 was divided into 80 equally spaced
windows of 2.5 × 106 time units, so that time averages were taken inside each window;
then an additional sample average was taken over these 80 time windows, leading to the
averages ⟨Ji⟩.
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Figure 8.1: Illustration of the system defined in Equation (8.1), where the rotators at
extremities of the chain are subjected to heat baths at different temperatures. The hot
(Rh) and cold (Rl) reservoirs are at temperatures Th = T (1 + ε) and Tl = T (1 − ε),
respectively, leading to an average heat flux J = Jx throughout the bulk (see text). The
rotators at sites i = 2, . . . , L− 1 interact with their respective nearest neighbors.

Using the results of Equation (8.12), one may calculate the thermal conductivity and
consequently, the thermal conductance by the relation,

σ = J

Th − Tl

= J

2Tε ≡ κ

L
. (8.14)

In the next section, we present the results of both quantities, obtained from the numerical
procedure described above.

8.2 Results

We simulate the system of Figure 8.1 for different lattice sizes, namely, L = 50, 70, 100,
140, considering the heat-bath temperatures differing by 2ε, with ε = 0.125. The tem-
perature parameter T = (Th + Tl)/2 varied in the interval 0 < T ≤ 3.5, capturing both
low- and high-temperature regimes. The values of L (L ≥ 50) were chosen adequately to
guarantee that the thermal conductivity κ did not present any dependence on the size L
in the high-temperature regime, as expected.

In Figure 8.2, we present numerical data for the thermal conductivity Figure 2a and
thermal conductance Figure 2b versus temperature (log–log representations) and different
sizes L. The similar qualitative behaviors of the data displayed in both properties of Fig-
ure 10.2, for different values of L, evidence that the sizes considered in the present analysis
(L ≥ 50) are sufficiently large, in the sense that finite-size effects do not play a relevant
role. In Figure 10.2a, we exhibit κ(L, T ) (the dependence of the thermal conductivity on
the size L, used herein, will become clear below), showing a crossover between two distinct
regimes (for T ≃ 0.3), as described next. (i) A low-temperature regime, where κ depends
on the size L, decreasing smoothly for increasing temperatures (L fixed). The plots of Fig-
ure 10.2a show that, in the limit T → 0, an extrapolated value, κ(L, 0) ≡ limT →0 κ(L, T ),
increases with L. Such a low-temperature increase with L has been observed in other
one-dimensional models (see, e.g., Refs. [145, 27, 29, 39]) and is reminiscent of the be-
havior expected for a chain of coupled classical harmonic oscillators. This anomaly is

75



attributed to the classical approach used herein, indicating that for low temperatures, a
quantum–mechanical procedure should be applied. (ii) A high-temperature regime, where
κ essentially does not depend on L (in the limit L → ∞), as expected from Fourier’s law.
Moreover, in this regime, one notices that κ decreases with the temperature as it generally
occurs with liquids and solids. For increasing temperature, the thermal conductivity of
most liquids usually decreases as the liquid expands and the molecules move apart; in the
case of solids, due to lattice distortions, higher temperatures make it more difficult for
electrons to flow, leading to a reduction in their thermal conductivity. The results of Fig-
ure 10.2a indicate that the thermal conductivity becomes independent of the lattice size
in the limit L → ∞, scaling with the temperature as κ(T ) ∼ T−2.25 at high temperatures.
Therefore, the system becomes a thermal insulator at high temperatures, approaching this
state according to κ(T ) ∼ T−2.25. Despite the simplicity of the one-dimensional classical
inertial Heisenberg model of Figure 10.1, the present results are very close to experimen-
tal verifications in some antiferromagnetic electrical insulators, such as the Heisenberg
chain cuprates Sr2CuO3 and SrCuO2, for which the thermal conductivity is well-fitted by
a 1/T 2 law at high temperatures [146]. We should note that the one-dimensional Heisen-
berg model with nearest-neighbor ferromagnetic interactions, defined by the Hamiltonian
of Equation (8.1), does not present an equilibrium phase transition, being characterized
by a paramagnetic state for all temperatures T > 0. In this case, one may perform
the following transformations in the Hamiltonian of Equation (8.1), leaving it unaltered:
1/2 → −1/2 (which incorporates the coupling constant), as well as Sj → −Sj, keeping Si

unchanged. Consequently, the Hamiltonian of Equation (8.1) applies to antiferromagnetic
systems at high temperatures, as well.
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Figure 8.2: Numerical data for the thermal conductivity [panel (a)] and thermal con-
ductance [panel (b)] are represented versus temperature (log–log plots) for different sizes
(L = 50, 70, 100, 140) of the one-dimensional classical inertial Heisenberg model. One no-
tices a crossover between the low- and high-temperature regimes for T ≃ 0.3. As expected,
higher temperatures amplify the effects of the multiplicative noise, which is proportional
to the square root of the corresponding temperatures (Th, Tl), currently leading to larger
fluctuations in numerical data, as shown in panel (a). All quantities shown are dimen-
sionless.

The same data of Figure 10.2a are exhibited in Figure 10.2b where we plot the ther-
mal conductance σ(L, T ) = κ(L, T )/L versus temperature, characterized by the two dis-
tinct temperature regimes described above. The low-temperature regime shows that the
zero-temperature extrapolated value κ(L, 0) scales as κ(L, 0) ∼ L, leading to σ(L, 0) ≡
limT →0 κ(L, T )/L ≃ 0.5. Such low-temperature results are in full agreement with those
obtained in previous simulations of coupled classical XY rotators [145, 27, 29, 39]. On
the other hand, in the high-temperature regime, the thermal conductance presents a de-
pendence on L, as expected.

In Figure 8.3, we exhibit the thermal-conductance data of Figure 8.2b in conveniently
chosen variables, yielding a data collapse for all values of L considered. The full line
essentially represents the form of Equation (1.8), so that one writes

σ(L, T ) = A expq(−Bxη) , (8.15)

where x = L0.475T , q = 2.28±0.04, η = 2.88±0.04, A = 0.492±0.002, and B = 0.33±0.04.
Notice that this value of η lies outside the range of what is commonly known as “stretched”
[cf. Equation (1.8)], so that the form above should be considered rather as a “shrinked”
q-exponential.
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Figure 8.3: The plots for the thermal conductance of Figure 8.2b are shown in a log–log
representation, for a conveniently chosen abscissa (x = L0.475T ), leading to a collapse
of data for all values of L considered. The fitting (full line) is given by the function of
Equation (8.15).

It should be mentioned that, in the case of coupled nearest-neighbor-interacting clas-
sical XY rotators on d-dimensional lattices (d = 1, 2, 3) [39], the thermal conductance was
also fitted by the form of Equation (8.15), with values of η(d) > 2. In particular, in the
one-dimensional case, such a fitting was attained for x = L0.3T , q = 1.7, and η = 2.335,
showing that these numbers present a dependence on the number of spin components
(n = 2, for XY spins and n = 3, for Heisenberg spins), as well as on the lattice dimension
d. It is important to mention that the generalized forms in Equations (1.8) and (8.15)
have been used in the literature for an appropriate description of a wide variety of physical
phenomena, like velocity measurements in a turbulent Couette–Taylor flow [147], relax-
ation curves of RKKY spin glasses, such as CuMn and AuFe [136], cumulative distribution
for the magnitude of earthquakes [148], and more recently, for the thermal conductance
of a system of interacting XY rotators [39]. Moreover, its associated entropic form has
been studied in detail in Ref. [38].

By defining the abscissa variable of Figure 8.3 in the general form x = Lγ(n,d)T , and
using the q-exponential definition of Equation (1.3), the slope of the high-temperature
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ηγ

q − 1
d = 1

(linear chain)
d = 2

(square lattice)
d = 3

(simple cubic lattice)
n = 1

(Ising ferromagnet)
1.0063±0.015

q = 1.65 ± 0.025, η = 1.94 ± 0.13, γ = 0.336 ± 0.003 — —

n = 2
(XY ferromagnet)

1.0007±0.005
q = 1.7 ± 0.01, η = 2.335 ± 0.0125, γ = 0.3 ± 0.015

0.95±0.22
q = 3.2 ± 0.36, η = 5.23 ± 0.65, γ = 0.4 ± 0.06

0.93±0.18
q = 3.5 ± 0.34, η = 5.42 ± 0.65, γ = 0.43 ± 0.01

n = 3
(Heisenberg ferromagnet)

1.069± 0.083
q = 2.28 ± 0.04, η = 2.88 ± 0.04, γ = 0.475 ± 0.0085 — —

Table 8.1: Values of the ratio ηγ/(q − 1) (highlighted in blue color) analyzed up to the
moment: n = 1 (d = 1) [40], n = 2 (dimensions d = 1, 2, 3) [39], together with the present
results for n = 3 (d = 1). In all cases studied, the limit of Eq. (8.17) is numerically
approached.

part of the thermal-conductance data scales with L, as

σ ∼ L−[η(n,d)γ(n,d)]/[q(n,d)−1] , (8.16)

where we introduce the dependence (n, d) on all indices. Since the thermal conductivity
(κ = Lσ) should not depend on the size L (in the limit L → ∞), Fourier’s law becomes
valid for

η(n, d)γ(n, d)
q(n, d) − 1 = 1 . (8.17)

The data of Figure 8.3 lead to [η(3, 1)γ(3, 1)]/[q(3, 1) − 1] = 1.069 ± 0.083, whereas those
for XY rotators on d-dimensional lattices yield 1.0007, 0.95, and 0.93, for d = 1, 2, and 3,
respectively [39], indicating the validation of Fourier’s law for systems of coupled nearest-
neighbor-interacting classical n-vector rotators, through the thermal conductance form
of Equation (8.15).

Recently, similar analyses were carried out for an XY Hamiltonian with anisotropies,
in such a way to approach the Ising model in particular limits [40]. All the results for the
quantity in Equation (8.17), computed up to the moment, are summarized in Table 8.1,
where one notices that finite-size effects play an important role in increasing dimensions,
as expected.

In summary, we demonstrated that (i) for the classical one-dimensional inertial fer-
romagnetic Heisenberg model, the (macroscopic) Fourier-law is validated from (micro-
scopic) first principles, i.e., the temperature-dependent thermal conductivity is, in the
high-temperature regime, finite and independent of the system size (the low-temperature
regime is to be handled within a quantum grounding, which is out of the goal of the present
paper); (ii) For all temperatures and sizes, the thermal conductivity appears to be con-
sistent with q-statistics since it can be neatly collapsed within a shrunken q-exponential
form; (iii) within this shrunken q-exponential form, a single universal condition, namely
η(n,d)γ(n,d)

q(n,d)−1 = 1, validates the Fourier law for the n-vector models for n = 1, 2, 3, which
constitutes a numerical indication that this centennial macroscopic law is possibly valid
for all values of (n, d), where n → ∞ and n → 0 correspond to the spherical model and
‘self-avoiding walk’, respectively. It is not our present aim to review the rich existing liter-
ature on the validity of the Fourier law within diverse classical and quantum approaches,
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but we rather restrict our focus to analytical and numerical first-principle approaches of
classical systems that are similar to the present one.
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Chapter 9

α-XY chain

This chapter is based on a ongoing research entitled Fourier’s law break-
down for the planar-rotator chain with generic-range coupling, which
will be available in a preprint version soon [42].

The purpose of the present work is to numerically study how this behavior is general-
ized in the presence of generically-ranged interactions 1/rα

ij (α ≥ 0) in the same type of
inertial XY model [119, 120]. The α → ∞ limit recovers the above-mentioned nearest-
neighborhood case and, in the α = 0 limit, we recover the mean field model [121]. The
influence of arbitrary α in this peculiar heat transport phenomenon was approached in
[28], where the existence of a special value of α was detected, such that above it the
Fourier’s law is satisfied at high temperatures, whereas it is violated in all cases below
that special value.

For clarity, let us anticipate at this stage our present main conclusion, namely that
the results can, in all cases, be collapsed in the following universal form: Lδασ(T, L;α) =
Aαe

−Bα(Lγα T )ηα

qα
, where (γα, δα, Aα, Bα) are α-dependent non-negative coefficients and qα

is the index of the q-stretched exponential. We also investigate the threshold where, from
that, the Fourier’s law holds.

9.1 Model

Let us focus now on the details of the model, the numerical method, and the set of
results. The Hamiltonian of the classical inertial one-dimensional α−XY is given by

H =
L∑

i=1

p2
i

2 + ε

2L̃

L∑
j=1

L∑
i=1

j ̸=i

1 − cos(θi − θj)
rα

ij

, (9.1)
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where pi and θi are the angular momenta and coordinates (respectively), and

L̃ ≡ 1
L

∑
i,j
j ̸=i

r−α
ij , (9.2)

with rij ≡ |i − j|. We set the moment of inertia of the rotators as a unit, without loss
of generality. The factor L̃ is introduced to make the Hamiltonian extensive (following
the current notation in the literature) [119]. For α = 0 we have L̃ = L − 1 ∼ L, and for
α → ∞ we have L̃ = 2. For the d-dimensional case, we change L̃ → Ñ , where N is no
longer the linear lattice size. In the general case, for α = 0 we have Ñ = N − 1 ∼ N , and
for α → ∞ we have Ñ = 2d, where d is the dimension of the system (in the present case,
d = 1). The general expression of Ñ is given by a relation proportional to

lnα/d N ≡ N1−α/d − 1
1 − α/d

, (9.3)

which for 0 ≤ α/d < 1 this factor behaves as Ñ ∼ N1−α/d, for α/d = 1 it presents a
logarithmic divergence as Ñ ∼ lnN . For α/d > 1, this factor goes to a finite value, at the
thermodynamic limit. So, there is a critical value, αc/d = 1, which, below this specific
value, the system is very long-ranged, and above that, the system changes to other types
of interaction.

Let us clarify that for 0 ≤ α/d < 1, the system is very long-ranged, while for 1 <

α/d < ∞ the system is long-ranged. The particular case of nearest-neighbors is the only
one that is consistent with the definition of short-range interaction. The main explanation
is because only for α/d → ∞ we can guarantee that all momenta of its distribution are
finite, and beyond that, for all cases in which α/d < ∞, the power law behavior of the
interactions can not be neglected. From now on, let us use the notation for the one-
dimensional system where only the linear lattice size is important, namely L, hence, L̃.

The equations of motion of the Hamiltonian described by Eq. (9.1), adding a Langevin
heat bath whose only the first and the last particles are coupled in the heat bath with
temperatures Th and Tl (Th > Tl), respectively, are given by:

θ̇i = pi for i = 1, . . . , L

ṗ1 = −γhp1 + F1 +
√

2γhThηh(t)

ṗi = Fi for i = 2, . . . , L− 1

ṗL = −γlpL + FL +
√

2γlTl ηl(t)

(9.4)

where we set the Boltzmann constant as a unit. The generalized force components (torque
components) are:

Fi ≡ − ε

L̃

∑
j ̸=i

sin(θi − θj)
rα

ij

(9.5)
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and ηh/l are Gaussian white noises with correlations:

⟨ηh/l(t)ηh/h(t′)⟩ = δ(t− t′)

⟨ηh(t)ηl(t′)⟩ = 0
(9.6)

For the measurements of the thermal conductance, we need to define the macroscopic
heat flux along the lattice, namely J , through the flux defined by the continuity equation
for each particle d

dt
Hi = −∑

j ̸=i Jij as in [28], in such way that:

Jij ≡ ε

2L̃
(pi + pj)

sin(θi − θj)
rα

ij

(9.7)

After it, the average of Jij is defined as the flux on the right side of the lattice Ji in the
following way:

Ji ≡
〈∑

j>i

Jij

〉
. (9.8)

We can define the flux on the left side of the lattice, but in the stationary state, both are
equal in terms of absolute value. Finally, the heat flux J is written as the average over
the bulk particles, namely J ≡ ⟨Ji⟩bulk. Thus, the thermal conductance can be defined
as:

σ = J

Th − Tl

= J

2∆T ≡ κ

L
. (9.9)

9.2 Methods and discussion

The preferable numerical method to solve the equations of motion is the Velocity Verlet
algorithm [132], due to certain circumstances (as in the small step size) it preserves the
energy conservation. In our simulation, we set the step size dt = 0.01, γh = γl = 1.0, ε = 2,
and the temperatures Th/l = T (1 ±∆), with ∆ ≡ 0.125 in such way that T = (Th +Tl)/2.
The coordinates and momenta are initially set to zero. We simulate from t = 0 to the
maximum time tmax = 1.65 × 109 (1.65 × 1010 in the L = 20 cases). We average the
heat flux in a range of 20 − 40 experiments, considering 4 × 108 time steps for each one
(8 × 109 − 1.6 × 1010 in total).
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Figure 9.1: The plot of thermal conductance versus T for α = 0, 0.5, 1, 1.5, 2, 3, 4, 5 in
log-log scale, for L = 20 (red), L = 35 (blue), and L = 50 (green).
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Figure 9.2: The plot of thermal conductivity versus T for α = 0, 0.5, 1, 1.5, 2, 3, 4, 5 in
log-log scale, for L = 20 (red), L = 35 (blue), and L = 50 (green).

The general expression of the thermal conductance is finally obtained as

σα(T ;L) = L−δαAαe
−Bα(Lγα T )ηα

qα
(9.10)

where Aα, Bα, δα, and γα are non-negative parameters, ηα > 2, and qα > 1. In the
LγαT → ∞ limit, this expression leads to

σα(T ;L) ∼ AαL
−δα [Bα(LγαT )ηα ]1/(1−qα)

∝ L
−
[

δα+ γαηα
qα−1

]
T− ηα

qα−1 (9.11)

We can see in Fig. 9.1 that for α = 0 the thermal conductance varies substantially with
the lattice size and it decreases as α increases. For instance, for α ≥ 2 the low-temperature
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regime of the thermal conductance appears to be independent of the lattice size, indicating
that the thermal conductivity is ballistic in this regime. The threshold α = 1 seems to be
almost uniformly dependent on the lattice size for all regimes. However, the logarithmic
divergence in this case makes the high-temperature regime exhibit an inflection close to
T = 1. The Fig. 9.2 highlight this phenomenon. The divergence effect also disturbs their
neighbors as we notice in the cases α = 0.5 and α = 1.5.

For 0 ≤ α < 2, the high-temperature regime is dependent on the lattice size, while
out of this interval, the converse is noticed. Mainly for α = 2, the thermal conductivity
diminishes this dependence substantially, as well as the inflection point almost disappears.
The case α = ∞ was previously studied in Ref. [39] and it exhibits similar behavior as
in α ≥ 2 cases.
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Figure 9.3: The plot of rescaled thermal conductance versus LγT for α =
0, 0.5, 1, 1.5, 2, 3, 4, 5 in log-log scale, for L = 20 (red), L = 35 (blue), and L = 50 (green).
The black solid curve is a function as in Eq. (9.10).

In Fig. 9.3, we notice that the scaled thermal conductance, Lδασα appears to behave
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as constant at the low-temperature regime, therefore, at this limit, σα ∼ L−δα . As α
increases, the δα values decrease rapidly, and for α ≥ 2 it almost vanishes. For α > 2,
this parameter starts to be zero.

For the high-temperature regime at the thermodynamic limit, the thermal conductance
starts to exhibit a different scaling, as in Eq. (9.11). The particular cases α = 2, 2.5, 3, 4, 5
exhibit a scaling δα + γαηα/(qα − 1) ∼ 1, in other words, σα ≡ κα/L ∼ L−1, indicating
that κα ∼ L0. The large-temperature asymptotic exponent of σα is the same of κα, which
yields σα ∼ L−ηα/(qα−1) ∼ κα .
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Figure 9.5: Same data as in Fig. 9.4 versus 1/α.
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Figure 9.6: The α-dependence of the exponent of the large-temperature asymptotic be-
havior of σα ≡ κ/L ∝ T−ηα/(qα−1) (top), and the exponent of the large-L asymptotic
behavior, σα ∝ L−[δα+γαηα/(qα−1)] (bottom). The requirement δα + γαηα/(qα − 1) = 1 (red
line) for the Fourier’s law validity is numerically satisfied for α ≥ 2 and violated for
0 ≤ α < 2.

Let us discuss the values of the parameters of Eq. (9.10). As we see in Fig. 9.4,
the parameter Aα has a peak close to the critical value αc = 1, while it decreases until a
minimum close to α = 1.5 and α = 2, and it finally becomes well-behaved after α = 2. The
same occurs for Bα. Conversely, γα, δα, qα are monotonic functions of α. The parameter
ηα exactly exhibits a peak at αc and decreases after that. A curious fact is that δα goes
to zero as α > 2. This analysis, however, does not allow us to note the point at α = ∞.
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For this reason, let us consider the results in Fig. 9.5, which shows the parameters versus
1/α. The cases Aα × 1/α and Bα × 1/α present a peculiar behavior around αc, while ηα

presents a similar behavior exact at αc = 1. In this particular analysis, however, γα, δα, qα

exhibit atypical behavior around the neighbors of αc.
An interesting fact about the range 0 ≤ α < 1 is that, the thermal conductance scales

like L2−α (δα = 2 − α, for α < αc). It can be justified by the derivation of the heat
flux using the energy of each rotor, which scales like energy per length, then, using the
property that H = H̃/L̃, where the renormalization is made by assuming a scale t →

√
L̃t,

we have a flux dependent on LL̃. Without loss of generality, we can use that

LL̃ ∼
∫ ∞

1
dr

r

rα
= L2−α − 1

2 − α
(9.12)

where we assume that L ∼
∫ L

1 dx, in the thermodynamic limit (L − 1 ∼ L). Therefore,
the new critical value for this one-dimensional system is αc = 2. It is verified in Fig. 9.6.
This value is physically and mathematically quite different from the critical value for the
interactions, αc. From the physical perspective, this is related to the regime in which
Fourier’s law starts to be valid, while the previous critical value of αc = 1 is related to
the regime, up to that, where the model starts to be long-ranged or short-ranged. Below
αc = 1, the model is considered very long-range. The critical value of α∗

c = 2 can be
explained in the following way: for α < α∗

c the thermal conductivity becomes dependent
on the lattice size in a non-trivial manner, such that the lattice size exponent is non-
zero. In the α > α∗

c regime, the thermal conductivity becomes independent of the lattice
size. Also about the exponents, still in the regime of very long-range interactions, the
absolute value of the lattice size exponent can be obtained as δα +γα

ηα

qα−1 = 2−α
2 . It can be

obtained by the renormalized heat flux assuming straightforward a scale 1/
√
LL̃ ∼ L− 2−α

2 .
It corroborates with the values of the exponents, for instance, for α = 0, 0.5, 1, we obtain
numerically the absolute values of the exponents as δα + γα

ηα

qα−1 ∼ 1, 0.78, 0.48 against
1, 0.75, 0.5.

We can see in Fig. 9.6 that Fourier’s law is broken in the range of 0 ≤ α < 2 while
for α ≥ 2 the thermal conductivity no more is lattice size dependent. The exponent of
the temperature increases from α = 0 to α = 2 and saturates for α > 2. However, the
exponent of the lattice size decreases from α = 0 to α = 2 and saturates for α ≤ 2. It
indicates that the requirement δα + γα

ηα

qα−1 = 1 starts to be satisfied at this limit. For
α > α∗

c , at the thermodynamic limit, the expression (L2−α −1)/(2−α) ∼ 1/(α−2), then,
δα = 0, as the scaling for the thermal conductivity at high-temperature regime, which
yields something as 1√

LL̃
∼

√
α− 2.

As previously mentioned, the low-temperature regime of the thermal conductivity, for
α > 2 is proportional to the linear size L. It also can be explained with the aid of Eq.
(9.12). Let us notice that, at these values of α, Eq. (9.12) becomes LL̃ ∼ (α − 2)−1,
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thus yielding κα>2/L ∝ (α − 2), therefore κ ∝ L. The very-long ranged regime at low
temperature behaves as κ0≤α<1 ∝ L−(1−α) which is the well-known asymptotic behavior
of 1/L̃. Although it is an interesting fact, the low-temperature regime is only completely
understood by a quantum mechanical approach. However, it is worth highlighting that
there are real systems with large spins, that can be modeled quasi-classically, for instance,
single-molecule magnets (SMMs) [149].

Let us emphasize that, the approach used to obtain the scale of the thermal conduc-
tance at high temperatures and the scale for the thermal conductance can be extrapolated
for the d-dimensional α − XY model at the regime of very long-range interactions. For
instance, we know that the three-dimensional heat flux J is naturally scaled by Ld−1 be-
cause the heat flux is the energy rate per unit area. Here, we are assuming a heat flux only
in one direction. Therefore, the thermal conductance scales as d+1−α, because N = Ld.
Similarly, the scale of the thermal conductivity can be predicted as d(1 − α/(d + 1)),
based on the possible behavior of the mean field model (α = 0). Although the scale of the
thermal conductivity coincides with the square root of LL̃, it leads to non-integer values
of the scale of the thermal conductivity for this particular case. So, we assume that the
1/2 in the denominator of this scale is because the denominator for a d-dimensional lattice
is simply d + 1. It can be justified by the integration of NÑ , which is equivalent to an
effective d+1 dimensional system,

∫
drrd−1r/rα. We also integrate over the d components

of the momenta (the high-temperature limit can be viewed as a noninteracting system
with a small perturbation [150], so, the contribution of the scale without the factor Ld−1

is Ld(1−α/(d+1)), which yields the expected result. For instance, the thermal conductivities
of the mean-field model, at low temperatures, behave as L−2, L−3 for two and three-
dimensional systems, respectively. The high-temperature thermal conductivities of the
same model behave as L−2, L−3, in agreement with the one-dimensional system, which
has the same exponent at low and high temperatures. All exponents recover the limit
L0 when α = α∗

c = d + 1. So, when Fourier’s law starts to hold, it is expected that the
d-dimensional α −XY model possibly obeys these scales. The physical interpretation of
the extra dimension in the scaling can be possibly related to circular waves. The α−XY

model is a set of planar rotators that oscillates, but can not be interpreted as particles
slowly carrying heat. The circular motion of the spins, makes the system propagate heat
throughout the bulk, and, at very long-range regimes, it occurs in a large part of the
system, in contrast with the system at α > 1, where the interaction becomes weak. For
the short-range case (α = ∞), it ceases, staying only close to the neighbors.

9.3 Final remarks

In summary, Fourier’s law is a remarkable relation between the heat flux and the ther-
mal gradient. Although it is well-verified in a wide class of models, including ferromagnet-
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ically coupled spin models, we can establish a limit for its validity. When 0 ≤ α < 2, we
show that this law is no longer obeyed, while for α ≥ 2, we ensure its validity. Particularly
for the mean field model, such a system is a perfect thermal insulator, which means that, in
the thermodynamic limit, the thermal conductivity rapidly vanishes. However, for α ≥ 2
the lattice size exponent of the thermal conductivity is zero, indicating that the system
is not dependent on the lattice size at high temperatures. The thermal conductance scale
of the very long-ranged models can be obtained as a power law of the lattice size, whose
exponent is δα = 2 − α. The high-temperature exponent for the thermal conductivity
allows us to write the relation δα

2 + γα
ηα

qα−1 = 0, which is also applicable for the very
long-ranged cases. The relations obtained here can be extrapolated to higher dimensions.
For instance, the validity of Fourier’s law for two and three-dimensional generic-ranged
systems is possibly α∗

c = 3 and α∗
c = 4 (α∗

c = d + 1 for a d-dimensional system), respec-
tively. The extrapolation allows us to obtain the general δα for a d-dimensional system in
the very long-range regime, namely δα = d+ 1 −α, as well as the exponent of the thermal
conductivity for the high-temperature regime (∼ d(1 − α/(d + 1))), which is consistent
with the simplest case, α = 0.

The scaled thermal conductance was well-fitted by a q-stretched exponential, a typical
function of q-statistics, and it was proved useful in the context of magnon heat transport
[39, 40, 41]. Here and in the previous works referring to n-vector models, we were capable
of obtaining closed expressions for the thermal conductance, and hence, the asymptotic
limit of the thermal conductivity, then, verifying that classical inertial n-vector models
present normal heat conduction. From a future perspective, we can numerically verify the
regime of the validity of Fourier’s law for the d = 2, 3 classical inertial α − XY models,
as well as the possible agreement with our extrapolations.
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Related applications of q-statistics
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Chapter 10

Neural complexity through a
nonextensive statistical-mechanical
approach of human
electroencephalograms

The brain is the organ of destiny. It holds within its humming mechanism
secrets that will determine the future of the human race.
Wilder G. Penfield, The second career: with other essays and addresses,1963.

This chapter is entirely based on the recent article with the same name of this
chapter, published in Scientific Reports in 2023 [43].

Introduction

The brain is widely recognized as a complex system since it is composed by billions of
cells (neurons) which express individual behaviors and, at same time, they build a fully
interconnected network with emergent, self-organized collective behaviors [151]. Thus,
traditional reductionist scientific methodology from mechanistic rationality appears to
fail for deeply understanding the brain and its associated mind inside a multidimensional
environment [152]. On one hand, a humanity’s great unresolved problem is to establish
a suitable mental medicine, from epistemology [153] to the biomedical perspective. The
problem begins in differentiating normality from typicality, illness from neurodiversity.
And, upon this basis, to establish a taxonomy about mental typology for a more realistic
nosography. On the other hand, several studies have explored brain complexity through
entropic measures within the electroencephalogram (EEG), and found relationships be-
tween brain complexity and different mind conditions [154]. However, this issue yet is
incipient. One way of accessing brain complexity is through the electroencephalogram
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(EEG) signal [155], which is the electrical result of millions of neurons under each of the
leads (electrodes) over time. The EEG is the simplest, least invasive and universally used
form of functional recording of the human brain dynamics.

The pioneering works of Boltzmann [156] and Gibbs [157] (BG) established a magnif-
icent theory which is structurally associated with the BG entropic functional

SBG = −k
W∑

i=1
pi ln pi (

W∑
i=1

pi = 1) , (10.1)

and consistent expressions for continuous or quantum variables; k is a conventional pos-
itive constant (in physics, k is chosen to be the Boltzmann constant kB; in information
theory and computational sciences, k = 1 is frequently adopted).

In the simple case of equal probabilities, this functional becomes SBG = k lnW . Eq.
(10.1) is generically additive [135]. Indeed, if A and B are two probabilistically inde-
pendent systems (i.e., pA+B

ij = pA
i p

B
j ), we straightforwardly verify that SBG(A + B) =

SBG(A) + SBG(B). The celebrated entropic functional (10.1) is consistent with thermo-
dynamics for all systems whose N elements are either independent or weakly interacting
in the sense that only basically local (in space/time) correlations are involved. For exam-
ple, if we have equal probabilities and the system is such that the number of accessible
microscopic configurations is given by W (N) ∝ µN (µ > 1; N → ∞), then SBG(N) is
extensive (i.e., proportional to the number of elements) as required by thermodynamics.
Indeed SBG(N) = k lnW (N) ∼ k(lnµ)N .

However, complex systems are typically composed of many elements which essentially
are non-locally correlated, building an intricate network of interdependencies from where
collective states can emerge [158]. BG statistical mechanics appears to be generically
inadequate for such systems because this theory assumes (quasi) independent components
with short-range (stochastic or deterministic) interactions.

Indeed, if the correlations are nonlocal in space/time, SBG may become thermody-
namically inadmissible. Such is the case of equal probabilities with say W (N) ∝ Nν (ν >
0; N → ∞): it immediately follows SBG(N) ∝ lnN , which violates thermodynamical
extensivity [158]. To satisfactorily approach cases such as this one, it was proposed in
1988 [36] to build a more general statistical mechanics based on the nonadditive entropic
functional

Sq ≡ k
1 −∑W

i=1 p
q
i

q − 1 = k
W∑

i=1
pi lnq

1
pi

= −k
W∑

i=1
pq

i lnq pi = −k
W∑

i=1
pi ln2−q pi (q ∈ R;S1 = SBG) ,

(10.2)
with the q-logarithmic function lnq z ≡ z1−q−1

1−q
(ln1 z = ln z), its inverse being the q-

exponential ez
q ≡ [1 + (1 − q)z]1/(1−q)

+ ; (ez
1 = ez; [z]+ = z if z > 0 and vanishes otherwise);

for q < 0, it is necessary to exclude from the sum the terms with vanishing pi. We easily
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verify that equal probabilities yield Sq = k lnq W . Also, we generically have the following
functional nonadditivity

Sq(A+B)
k

= Sq(A)
k

+ Sq(B)
k

+ (1 − q)Sq(A)
k

Sq(B)
k

. (10.3)

Consequently, in the (1−q)/k → 0 limit, we recover the SBG additivity. For the anomalous
class of systems mentioned above, namely if W (N) ∝ N ν , we obtain, ∀ν, the extensive
entropy S1−1/ν(N) = k ln1−1/ν W (N) ∝ N , as required by the Legendre structure of ther-
modynamics [134, 78]. Finally, the optimization of Sq under simple constraints yields
q-exponential distributions for the (quasi)stationary states, instead of the usual BG ex-
ponentials.

2.500 2.525 2.550 2.575 2.600 2.625 2.650 2.675 2.700
time (miliseconds) ×105

−100

−80

−60

−40

−20

0

20

40

60

80

100

−σ

am
pl
itu

de
(m

ic
ro
vo

lts
)

−20

−10

0

10

20

Figure 10.1: Segment of ongoing EEG from one subject (B006), recorded on the mid-parietal
(Pz) location of the head. Red dots: time values when ddp (signal amplitude) crosses downwards
the bottom threshold (1.0 standard deviation; red line). EEG sampling rate was 1000 Hz.

Since EEG is a massive electrical phenomenon, its amplitude is correlated with the cell
synchronization. The regularity of time intervals between amplitude peaks that overcomes
a typical threshold (in this case, one standard deviation), would reflect the system’s
complexity. If synchronization would be a stochastic and uncorrelated phenomenon, the
distribution of inter-peak distances could possibly be estimated within the BG frame. But
EEG is a highly non-equilibrium phenomenon, and it requires more general approaches.
Independently of the nature of regularities, this phenomenon exhibits the complex nature
of the system. It cannot be excluded that, in the realm of q-statistics where q is a scalar
measure of complexity, a possibly satisfactory description could be attained.
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Figure 10.2: Sequence of inter-event time intervals from EEG signal, as detected in FIG. 10.1.

Motivation, methodology and results

The above nonadditive entropies, as well as the nonextensive statistical mechanics
grounded on them, have been already used to characterize various aspects of complexity.
Various data obtained from EEG, magnetoencephalograms (MEG), electrocardiograms
(ECG), and others, have been analyzed in connection to q-statistics [159, 160, 161, 162].
However, the discussion frequently focuses on qualitative ingredients. Our aim here is
to demonstrate that nonextensive statistical mechanics is applicable to the brain as a
complex system, thus providing specific values for the relevant parameters. Thus, we are
analyzing human EEG’s in a specific manner herein described which eventually provides
a small number of real numbers (such as q) having the potential of satisfactorily char-
acterizing different regions of the brain, different functional neuro-states, nosologically
different classes of human phenomenologies.

We analized the EEG signal of ten typical adult humans from a match-to-sample task
experiment with neutral affective interference for access working memory and attention,
such in Yang and Zhen’s study [163]. This work was approved by our ethical board for
human research, under CAAE 50137721.4.0000.5269. Each EEG signal has 5-10 minutes
length recorded with open eyes at 1000Hz sampling rate, through 20 channels disposed
at 10-20 montage with eyes open. The high, low and band-pass filters were respectively
0.5, 150Hz and 60Hz. We did not apply any other filter to minimize signal manipulation.

We accessed signal recorded at the midparietal (Pz) site (see figure 3), where classical
cognitive event-related potentials, as P300 [164], manifest during attention tasks. A
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Figure 10.3: Probability distributions of EEG inter-occurrence times (500 equal logarithmic
bins) and fittings with statistical models. Superimposed signal recorded on the Pz location of
ten subjects performing a work memory task. Amplitude threshold = 1.0 standard deviation.
Fitting within Boltzmann-Gibbs statistical mechanics for non-complex systems (i.e., q = 1,
dashed red curve). Fitting within nonextensive statistical mechanics for complex systems (i.e.,
q ̸= 1, black continuous curve). See Methodology for details.

threshold was set at -1.0 standard deviation from Pz signal average (figure 10.1, from
subject B006). Taking negative voltages we are minimizing the effect of blink artifacts,
which are positive waves, amplier in frontal places.

Each event is the numerical position i of signal vector (1 second = 1000 positions)
where the amplitude crossed the threshold downwards. The inter-event distances in −in−1

(where n = 1,...,N) were calculated (figure 10.2, from B006). The logarithm distribution
of inter-event distances (with 500 distance classes) of all ten EEG signals at Pz were
superimposed, and the fitting was performed to the following q-statistical function (figure
10.3):

yq = aq x
cq/[1 + (q − 1)βq x

ηq ]
1

q−1 , (10.4)

where (aq, βq, cq, ηq, q) = (2.1 × 10−5, 2.0 × 10−5, 2.12, 2.96, 1.89) for the best fitting. And,
for comparison, we also included the classical statistical BG function (where q = 1), as
follows:

yBG = aBG x
cBG e−βBG x ηBG . (10.5)

where (aBG, βBG, cBG, ηBG, qBG) = (4.3 × 10−4, 0.023, 0.94, 0.93, 1) for the best fitting.
The fitting was performed using three different methods: dog leg trust region [165],

trust region reflective [166] and crow search [167] algorithms, all available in Scipy library.
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The constant a is determined by imposing normalization, i.e.,
∫∞

0 dx y(x) = 1. Conse-
quently,

a−1
q =

∫ ∞

0
dx

xcq

[1 + (q − 1)βqxηq ]
1

q−1
= (βq(q − 1))− cq+1

ηq

Γ (1+cq

ηq
)Γ ( 1

q−1 − 1+cq

ηq
)

ηqΓ ( 1
q−1) (10.6)

for q > 1 and 1
q−1 − 1+cq

ηq
> 0. In the q → 1 limit, we obtain

a−1
BG =

β
− cBG+1

ηBG
BG Γ

(
cBG+1

ηBG

)
ηBG

. (10.7)

It is observed that EEGs at Pz position from all subjects express very similar distributions
of distances. The EEG regularity was modelled by the q-statistics function instead BG
one (figure 10.3).

Discussion

Consistently with the use of Sq entropy in numerous articles as a measure of complexity
in neural systems, we believe that we bring here the demonstration of the applicability of
non-extensive statistical mechanics on the collective behavior of a neural system through
the regularities of EEG. This preliminary study exhibits as a proof of concept that q-
statistics easily can quantitatively reveal some aspects of brain complexity through the q
parameter. Future research needs to be carried out to determine whether this measure
will be sensitive enough to discriminate the complexity of different regions or different
states of the brain, as well as aspects of inter-individual diversity (among them, brain
diseases or even mental disorders). Consistently, we have verified here that brain phe-
nomenology is not properly described within BG statistics (i.e., q=1). This is by no
means surprising since BG statistics generically disregards inter-component long-range
correlations and their collective behavior, which is well known in neural systems [151]. In
contrast, q-statistics has been empirically shown to be a useful generalization of BGSM
[78, 168, 77, 73, 76, 169]. In addition to other quite informative complexity measures
and related methodologies applied to neurosciences [170, 171, 172, 173, 174], q-statistics
hopefully also is useful in the present case. Here, it was applied through a quite simple
methodology, using a functional model involving stretched q-exponentials which satisfac-
torily fit the empirical distributions of scalar inter-event intervals (see figure 3) . Many
of these complex systems present cq ̸= 0, from basic chemical reactions through quantum
tunneling [175] to financial market behavior [176], COVID-19 spreading [177], commercial
air traffic networks [178] We are led to believe that we are dealing with universality classes
of complexity, thus revealing, in what concerns information processing and energy dynam-
ics, far more integrative networks than one might a priori expect from neural structures
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[179].
By generalizing the BG theory, q-statistics shows that it could be a suitable and

promising path to explore brain complexity. Our expectancy is that the q parameter
can be sensitive to different brain/mental states, to brain/mind development, and to
neural diversity, perhaps clarifying the boundaries between the normal and the ill brain,
including extreme cases such as Alzheimer, Pick, and Parkinson diseases. Consistently, a
key outcome of emergence of self-organized new states in complex systems is an adaptive
behavior facing environmental constraints [151]. Indeed, the concept of disease has also
been related to reduced adaptive capabilities, and to the alteration of complexity [154,
180]. Along the lines of the seminal philosophical work of G. Canguilhem [153], normality
should be related to the ability to create new rules (i.e., adaptation) instead of living by
the same old norms. We intend to further explore, in the future, the neural diversity
through the most remarkable paradigm of complexity.
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Chapter 11

Identifying
Attention-Deficit/Hyperactivity Disorder
through complexity analysis of the
electroencephalogram

The brain has not explained the mind fully.
Wilder G. Penfield, “Mystery of the Mind: A Critical Study of Consciousness and the
Human Brain”, p.88, Princeton University

This chapter is based on a recent finished research, with the same name
of the chapter, which will be available in a preprint version soon [44] .

Introduction

Complexity is a property of many systems in the Universe related to integration among
system’s components by long-range correlations in a multiscale organization. As a result,
these systems are non-reducible in their constituents, capable of transitioning between
different states or configurations [78, 151].

The lifeforms are dissipative systems that manifest endothermic long-term stability
due to their capacity for self-organization since they are complex, controlling the entropy
through allostatic mechanisms, which keep and regulate homeostasis in the face of en-
vironmental stressors [181, 182]. Therefore, pathological states, typically non-adaptive,
would likely result in a decrease in the organism’s complexity [183, 180, 184]. In recent
decades, several studies have systematically identified alterations in the brain complex-
ity of individuals with mental disorders. [185, 186, 154]. However, the meaning of those
changes in complexity remains elusive. Indeed, some of those studies have indicated higher
complexity in patients as compared to typical subjects.
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Many procedures based on different theoretical paradigms have been developed to
quantify complexity in the human brain activity, mainly based on classical methods such
as approximate entropy or Lempel–Ziv complexity, using indices of predictability and
regularity of time series from the electroencephalogram (EEG) [154]. In 1988, a general-
ization of the standard Boltzmann-Gibbs statistical mechanics (BGSM) — non-extensive
statistical mechanics (NESM), known as q-statistics — was introduced [36]. The NESM
functions satisfactorily describe the behavior of wide classes of natural, social, and ar-
tificial systems [78]. Recently, we have demonstrated the applicability of q-statistics to
describe brain complexity by analyzing the temporal regularity of the EEG signal [43],
fitting a q-exponential function upon the empirical distribution of the probabilities y re-
lated to the occurrence of the events x (in this case, events are time distances between
EEG amplitudes that passes down a threshold), as follows:

yq = aq x
cq/[1 + (q − 1)bq x

hq ]
1

q−1 (11.1)

which is equal to Eq. (10.4), where aq is the normalization constant, and (bq, cq, hq) are
positive parameters. The parameter cq denotes the slope of the left tail, while the index q
and the parameter hq have a straightforward relation with the slope of the right tail in the
q-stretched exponential function. Thus, q departs further from unity as the range of the
spatial-temporal correlations increases; in the limit of short-range correlations, we return
to the original BG exponential (q = 1), which corresponds to strong chaos. In turn, the
index cq characterizes the number of degrees of freedom. Physically, this parameter is
related to the degeneracies of the physical states [114]. Some other complex systems are
modeled by similar q-exponential functions with a power-law function, (xc

q), such as the
financial market [176], air traffic [178], or COVID-19 spreading [177].

To study brain complexity and its relation to mind disorders, we believe that q-
statistics can be an effective and consistent approach due to its wide applicability in
describing the complexity of a wide range of systems and its simplicity in implementa-
tion.

Here, we have evaluated the neural complexity in the EEG of typical boys and those
with diagnostics of attention-deficit/hyperactivity disorder (ADHD) by q-statistics. Al-
though ADHD is a condition with relatively recognized biological bases, accurate biomark-
ers for precise diagnosis and understanding of its mechanisms remain undefined [187].
Some previous studies about NC were discordant as to whether the EEG complexity of
ADHD was greater or lesser than that of typical peers [154]. However, some findings have
shown that in ADHD children, NC is higher than their peers and ADHD adults [188].
Here, we have described neural complexity from the EEG of the same ADHD and typical
subjects that we had previously studied using other psychophysiological methods. We
observed marked differences of event-related potentials [189] and EEG topography [190]
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between the groups, as well as high accuracy with respect to DSM diagnostics criteria by
multivariate analysis [191].

By analyzing EEG complexity through q-statistics, we aim to show relevant differences
between the typical and ADHD boys. Let us anticipate that q-statistics will effectively
cluster the subjects based on the q and c parameters, which are uncorrelated quantities.

Methods

Subjects and procedures

We examined 19 typical and 19 ADHD boys, aged from 11 to 13 years, performing the
Posner’s Attention Network Test (ANT). The EEG’s of the subjects were recorded using
a Nihon Kohden NK1200 EEG System at 20 scalp points according to the International
10/20 System, with linked biauricular reference (A1+A2) at a sampling rate of 1000 Hz.
The visual task required high cognitive effort during testing Posner’s alertness, spatial
orientation, and executive dimensions of sustained attention. The test lasted 20 minutes.
For details, see Kratz et al. [192] and Abramov et al. [189]. Before the ANT task began,
a short segment of EEG lasting about 5 minutes was collected (pretask), with open and
closed eyes.

Two physicians evaluated the subjects independently of each other in order to reduce
the bias associated with interpretation subjectivity. The classification of subjects regard-
ing ADHD was based on the DSM-IV-TR criteria (at least six symptoms of inattention
or hyperactivity/impulsivity were to be satisfied). The children had to also present men-
tal/behavioral dysfunctionality in at least two environments (e.g., school and home). The
criteria for inattention and hyperactivity/impulsivity symptoms were assessed through
direct questioning of the parents regarding their child’s characteristics, with responses
recorded as ”yes” or ”no” for each criterion. A score between 0 and 18 was computed
based on these responses. Boys with neurological or psychiatric comorbidities were ex-
cluded from the study. IQ was assessed using a reduced version of the Wechsler Intelligence
Scale for Children (WISC) test, with the Vocabulary and Block Design subtests [193].

All subjects and their parents gave us written informed consent to participate in
this study, which was performed following all international and local ethical rules after
being approved by our independent ethical board (CEP-IFF), registered under CAAE
08340212.5.0000.5269 (2013).

Data Analysis

The EEG signal was filtered using a convolution approach with a vector of size t ( 1
bin = 1 milisecond) defined by:

V = exp(−x2)/2 (11.2)
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where x is ranging from −
√

2 to +
√

2 with size t. For low-pass filtering, t = 10 ms
(100Hz). And for high pass filtering, the output from convolution of V with t = 2000ms
(0.5Hz) was subtracted from the original signal. Baseline slow oscillations as well the
muscle artifacts were suitably minimized. For 60Hz suppression (a very deterministic
artifact from power net), we adopted band-pass filtering using a Fast Fourier Transform
approach. No other signal handling was done.

The negative part of the signal was used to perform the regularity analysis, where
blink artifacts had little effect on the signal after filtering. We truncated the amplitudes
smaller than -200 µV (with higher absolute value) because no brain sources physiologically
generate larger ones in the EEG. From the remaining negative part of the signal, we
calculate the standard deviation and every amplitude that passes down the threshold of
-1.0 std. dev. was considered as a time event (see [43] for more detailed explanation).
The histogram of these intervals was computed within 1000 classes from each of the 20
EEG channels. The classes were nearly 2 ms long, but EEG signals with several large
amplitude artifacts (truncated at -200 microvolts) presented slightly higher thresholds,
which resulted in distributions with larger time bins. These distributions of frequencies
were normalized to probability distributions, the integral thus being equal to unity.

The analysis of the normalized frequencies of the inter-occurrence times leads to a
fitting by the function currently emerging in nonextensive statistical mechanics, given by
(11.1). The parameters of the function were empirically determined by fitting using the
least squares method. However, convergence is carried out by estimation, given compu-
tational limitations that make it impossible to execute all loops within the appropriate
slopes. For greater precision of the parameters c and q through a second fitting, we
analytically determined the parameters b and h through the respective linear functions
obtained from the correlation of these two parameters with q, originating from a first
fitting (see Fig. 11.2). We bind the distributions of all channels of each subject for best
convergence.

The probability distribution must obey the normalization condition, i.e., the integral∫∞
0 xc−h/(q−1) dx can not diverge. This implies (c + 1)(q − 1)/h < 1. Our results satisfy

this condition as shown in Fig. 11.3.
After fitting, individual values of c and q in each condition and group (as well averaged

ones) were plotted on a (q×c) space to observe sample dispersion and possibly clustering.
The Mann-Whitney U-Test inferred differences between groups and conditions. Correla-
tions between parameters and other variables (DSM scores, I.Q. etc) were explored using
the Pearson or Spearman Tests.
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Results

Since we had previously ascertained that typical human EEG distributions satisfy c >
1 in function (11.1) (at least for mid-parietal channel) [43], we adopted c ≤ 1 at least in
one channel of any condition as an exclusion criterion for the subject. So, the distributions
that we regarded were those exhibiting left and right tails, representing observations from
both typical and ADHD subjects. The dataset with such distributions corresponded to
15 typical and 15 ADHD boys.

Table 11.1: Relevant and confounding variables
(*) SD = standard deviation; (**) in hours/week (***) Income per month in Brazilian
minimum wages

Variable Typical(mean) Typical(SD*) ADHD(mean) ADHD(SD)

AGE 11.33 0.90 11.80 0.94
HOURS OF SLEEP (last night) 7.33 2.26 7.67 1.80
VIDEOGAME** 3.47 1.25 3.20 1.61
INTERNET** 3.40 1.30 3.33 1.68
YEARS OF STUDY 6.07 1.22 6.33 1.29
CURRENT SCHOOL GRADE 5.93 1.28 5.53 1.77
FAMILIAR INCOME*** 8.43 6.84 5.90 8,83
DSM-IN 2.40 1.50 7.20 1.37
DSM-IMP+HIP 2.87 1.51 4.20 2.62
DSM-TOTAL 5.27 2.40 11.40 2.75
IQ 111.13 12.73 99.40 12.39
c (task) 1.80 0.01 2.00 0.00
q (task) 1.96 0.00 2.10 0.02
c (pretask) 1.68 0.01 1.90 0.01
q (pretask) 1.94 0.08 2.00 0.02

The distributions of frequencies reveal a q-stretched exponential profile, observing all
subjects for each group and condition taken together in the same distribution (global
distributions, with n(ADHD) = 15, n(typical) = 15, Fig. 11.1). The refined aspect of
the distributions of task condition is due to the larger number of inter-event intervals
computed in longer EEG vectors.

Each global distribution was fitted with the function (11.1). The empirical values
found for the task and pretask parameters, were q(ADHD) = 2.19, q(typical) = 2.34(2.35),
c(ADHD) = 1.89, and c(typical) = 1.71. The correlations among the four parameters can
be seen in Fig. 11.2: c shows no significant correlation with the other ones. In parallel,
b and h show strong correlation with q (r > 0.80, Pearson Test). The respective linear
functions were extracted to analytically set b and h for each group and condition (see
methods). Subsequently, q and c were individually estimated by fitting the empirical
distribution of each subject with the function (11.1).

There were no statistical differences between groups concerning confounding variables
(age, time using videogame or internet, education, familiar incomes, and hours of sleep
at night before the test), indicating no artifact of this kind influencing the results, and
consequently that the two groups were paired (see Table 11.1). The I.Q.(estimated by
WISC test) was slightly higher in typical boys than in ADHD ones, which was already
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Figure 11.1: Probabilities versus inter-occurrence time events for all datasets and their
corresponding fittings. (Top left) Typical\pretask,(top right) ADHD\pretask (bottom
left) Typical\task, and (bottom right) ADHD\task. The Greek letters in Typical\pretask
represent the following frequencies γ (frequencies greater than 32 Hz), β (between 13 and
31 Hz), α (between 8 and 12 Hz), θ (between 4 and 7 Hz), and δ (smaller than 4Hz),
respectively. Notice that the data dispersion corresponding to pretask EEGs is larger than
that corresponding to the task EEGs, possibly due to the time duration of the EEGs.
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Figure 11.2: (Top left) ln b×q, (top right) ln b×c, (middle left) ln b×h, (middle right) h×c,
(bottom left) h× q, and (bottom right) q× c. The r(Pearson) of the dashed straight lines
in the same order are -0.87, 0.12, -0.87, 0.43, 0.82, and -0.15. The blue, green, red, and
purple points represent typical\pretask, ADHD\pretask, typical\task, and ADHD\task,
respectively.
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Figure 11.3: (Left) Linear plot of q versus c. The empty circles refer to the mean values
of q and c for all cases. (Right) The plot of the condition of normalization of the prob-
ability distribution, where h(q) is given by an independent analysis of the four types of
electroencephalograms (Typical and ADHD in pretask and task, respectively).

pointed out before [194, 195, 196]. However, all subjects of both groups fell within the
range of statistically normal I.Q.

Unlike the DSM-IV scores for inattention, those for hyperactivity/impulsivity were
not different between groups, prevailing the inattentive subtype in the ADHD group (see
Table 11.1).

The averaged parameters c and q from samples were statistically lower for typical
subjects compared to ADHD pairs (all p < 0.01, see Table 11.1), with very low standard
deviations. Comparing conditions, only q in ADHD differed between Task and pretask (p
= 0.0004, Mann-Whitney U test, see means and std. deviations, Table 11.1). Fig. 11.3
shows the space (c× q), where all individual values form well-defined clusters relative to
each group and condition. We observed 100 % accuracy in differentiating typical ADHD
in the “task” condition since there was no overlapping regarding the values of (c×q) from
these different groups. From all distributions taken together, the global values for q and
c differed from averaged ones from individual fittings.

There is no monotonic correlation between c and q and DSM scores for Inattention
(Fig. 11.4), nor for total scores (result not shown). However, well-defined clusters are
observed in scatter plots for both c and q(task), which appears to roughly coincide with
the DSM cutoff for inattention (i.e., six criteria satisfied).

Discussion

The traditional analytical-reductionist approach for studying the relationship between
the human brain and mind usually comes down to correlating mental processes with
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the dynamics of neural networks. However, this approach cannot be considered fully
adequate, since it does not take into account the complexity of the phenomena that are
being compared.

The science of complexity is gaining space every day for studying the cerebral basis
of the mind and its disorders [188]. The informativeness in complex systems is non-
addictive and non-extensive [78] due to the system’s inviolable completeness: the whole
is larger than the sum of its parts. Studying the molecular receptor or neuronal cell
activity mechanisms, outside their intricate network of correlations, might not be the
most appropriate way to understand brain dynamics related to mental processes. The
possibility of using quantitative assessment of NC as a kind of more integral indicator of
cerebral functioning seems promising in overcoming the above methodological difficulties
in comparing the brain and mind and bringing the solution of these problems to a more
adequate level.

Here, we have shown that the q parameter, a complexity measure from NESM, seems to
accurately discriminate ADHD young boys from their typical pairs. Corroborating other
studies [154, 188], which used alternative procedures to infer brain complexity, here the
NESM has shown that NC from EEG of ADHD subjects is higher than that of the typical
ones. Let us emphasize that the present approach, based on NESM [36, 78], enables us to
describe the system in terms of complexity using a very simple function involving basic
parameters, such as q and c. A hard problem in studying different mental disorders is
the reliability of available diagnostic classifications and tools: The DSM (Diagnostic and
Statistical Manual of Mental Disorders) is a qualitative/quantitative classifier of mind
properties (phenomena, symptoms, and features) to a taxonomy of clusters (diagnostics),
designed by expert’s perceptions about human diversity [197, 198]. And at least for
ADHD, the experts’ taxonomy seems to correspond to biological reality. Previously, we
had shown high accuracy (nearly 80 percent) among DSM-IV criteria for ADHD and
multivariate analysis of the same subjects [191]. Now we have accessed complexity by
q-statistics, and we observed satisfactory accuracy of q and c parameters to classify the
subjects as ADHD or typical. We are concomitantly showing that (1) the DSM seems
to adequately identify and describe ADHD and (2) possibly we can objectively identify
ADHD by measuring objective and relevant properties of the brain, such as NC. However,
the design of definitive and universal models for putative brain mechanisms appears to be
elusive due to their extremely complex nature. We did not find other studies within which
such a high accuracy of agreement between complexity measures and ADHD diagnostics
would be achieved [199, 200, 201, 202].

Although we have shown that q-statistic can describe NC, it would still be premature
to interpret the clinical meaning of the difference in q values found between ADHD and
typical subjects. To explain the observed higher complexity in ADHD, we need further
studies that we are currently running. In physics, this parameter is related to complexity
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Figure 11.4: q (pretask), q (task), c (pretask), and c (task) versus DSM score (top left,
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fitted with an increasing straight line (dashed red) with r(Pearson)=0.55.
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through long-range correlations, which modify the probability distribution of events as far
from the Boltzmann-Gibbs model as the system is complex. EEG studies have found lower
beta/alpha or beta/teta rates in ADHD subjects [203, 204, 205, 206], which could justify
our findings. Whereas gamma oscillations are related to local and bottom-up processing,
theta and alpha bands are related to long-range functional connectivity in the brain in
top-down (or inner) processing [207, 208, 209, 210]. In Fig. 11.1, a probability peak on
the alpha band shows that this rhythm (between 8-12Hz, which diffusely spreads across
the EEG channels) is present in the probability distributions.

As we have shown in a previous study [43], c > 1 seems to be a marker feature of the
frequency distributions from human EEG time regularity. Here, some distributions did
not satisfy this condition, which was probably an artifact of shorter EEG signals from the
pretask condition or noisy ones: as pointed out in the methodology, signals with higher
thresholds due to contamination by large amplitude artifacts, resulted in distributions
with larger time bins. In this context, small intervals between events were not recorded,
which would form a left tail in the distribution. As a rule for our methodology, we
advocate in favor of the exclusion of these cases to prevent excessive manipulation of the
signal, which could generate spurious results. As we see above, c parameter is crucial for
the subject’s classification.

The parameter c was more sensitive to ADHD than q, as shown in Fig. 11.4. The
larger the value of the parameter c, the more vertical the left slope of the stretched q-
exponential function due to power law a xc (if c=0, the function recovers a pure q-stretched
exponential curve). The left slope of the probability distribution is set by the expression
of high-frequency EEG bands (beta and perhaps gamma). EEG gamma frequencies are
not easily accessed in clinical examinations. However, there are some studies of the EEG
gamma band in relation to psychiatric disorders [211].Gamma and beta bands are highly
correlated to bottom-up cognitive processes [208, 209], and are more expressed in typical
than in ADHD subjects [203, 204, 205, 190, 206]. Indeed, larger c values correspond to
lower probability of detecting higher frequencies in the EEG signal since their amplitude
is usually below the threshold that has been used (in preliminary essays, we have observed
c = 0 to larger thresholds by statistical formalism in light of the central limit theorem,
we advocate in favor of a suitable threshold of one standard deviation). We are currently
conducting another study focusing on the effect of different cognitive states in typical
adult subjects upon c and q parameters.

As seen in Table 11.1 and Fig. 11.1, by including the data corresponding to all the
subjects in the same distribution we found q values above the average of the individual
ones. Slight fitting errors are naturally possible by varying four instead of two parameters,
and also because the straight lines for b and h may have an error close to 20 %.

Although we currently do not have enough information to establish a more enhanced
discussion about the meaning of these complexities and the biological correlates with the
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q and c parameters, we provide robust evidence for the applicability of q-statistics to
measure brain complexity and accurately clusterize mental states and conditions.
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Chapter 12

Quantum chaos from the de Broglie-
Bohm theory of quantum mechanics

To answer Rosen’s objections, we need merely point out again that the usual
interpretation can give no meaning to the motion of particles in a station-
ary state; at best, it can only predict the probability that a given result will
be obtained, if the velocity is measured. As we saw in Sec. 8, however, our
interpretation leads to precisely the same predictions as are obtained from the
usual interpretation, for any process which could actually provide us with a
measurement of the velocity of the electron. One must remember, however,
that the value of the momentum ”observable” as it is now ”measured” is not
necessarily equal to the particle momentum existing before interaction with the
measuring apparatus took place.
D. Bohm, A Suggested Interpretation of the Quantum Theory in Terms of ”Hidden” Vari-
ables. II (1951)

This chapter is based on the recent article with the same name of the
chapter, published in Chaos in 2024 [45].

12.1 Introduction

Quantum chaos [212, 213, 214] is a rich problem in the realm of quantum mechanics.
Moreover, it has a wide variety of applications, e.g., quantum computing [215, 216, 217,
218], quantum dots [219, 220], nuclear physics [221, 222] and even in cosmology and black
holes [223]. Our present goal for advancing the understanding of this phenomenon is to
scrutinize the correspondence between quantum and classical chaotic dynamics by tuning
the value of the Planck constant. Starting from classical dynamics, it is necessary to
integrate all equations of motion to determine whether a system is dissipative, ordered,
strongly or weakly chaotic. Conversely, in quantum mechanics, the Schrödinger equation
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HΨ = iℏ∂tΨ is linear and acts on probability amplitudes instead of trajectories. So,
to study quantum chaotic dynamics, many authors suggest that the de Broglie-Bohm
(dBB) theory [224, 225, 226] is an intriguing alternative to investigate quantum chaos
[227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242], as it is
based on trajectories determined by heavily nonlinear terms. On classical grounds, the
Liouville equation

∂tρ = −{ρ,H} ≡ −iLρ, (12.1)

where ρ is the probability density, {.} is the Poisson bracket and L is the Liouvillian
operator, governs the time evolution of the system. From Eq. (12.1) it is not possible
to directly measure chaos or any consequence of it since, like the Schrödinger equation,
it is linear. Quantum observables operate in the Hilbert space in such a way that the
corresponding distributions are typically well-behaved, thus apparently suggesting that
there is no chaos in quantum mechanics. This is obviously inadmissible since, according
to the correspondence principle, quantum mechanics recovers classical mechanics [243],
widely known to exhibit chaotic behavior; examples of classical chaos are found in [244,
245, 246, 247]. Although Eq. (12.1) is linear, a classical system with more than three
equations of motion and nonlinearities is likely to exhibit sensitivity to initial conditions,
hence some type of chaos. Therefore, at least in classical mechanics, the feasible way to
analyze the collective behavior of particles is via equations of motion.

In this sense, in the Bohmian interpretation of quantum mechanics, nonlinear effects
naturally arise from the equations of motion [248, 249] due the additional presence of
the quantum potential Q ≡ − ℏ2

2m
∇2|Ψ |

|Ψ | , which can exhibit the equivalence between quan-
tum and classical trajectories in the limit ℏ → 0. It is worth to emphasize that this
issue is not trivial, and some authors claim that it is not always possible to study this
quantum-to-classical transition by just setting ℏ → 0 or taking the limit of large quantum
numbers [250]. Accordingly, a simple limit in Bohmian mechanics is to consider Q → 0.
Nevertheless, the crossover between quantum and classical systems can be unveiled by
considering ℏ → 0, even with some remnants of possible quantum effects. As an example
we can cite its physical importance in the study of quantum scars [251]. For instance,
a constant quantum potential in the limit of null ℏ provides classical equations of mo-
tion. Conversely, when the quantum potential diverges in two and three-dimensional
systems, it can result in the emergence of vortices [252, 253, 254, 255, 256], an important
component in the study of superconductors [259], Bose-Einstein condensates [260, 261],
superfluid phenomena [262, 263], quantum field theory [264, 265, 266, 267], to cite but a
few. The appearance of these quantum vortices is an important element in the emergence
of chaos due to the presence of geometric structures called nodal point X-point complexes
(NPXPCs) [258, 257, 240]. Additionally, chaotic dynamics constitutes a crucial factor in
validating Born’s rule for systems that do not satisfy the quantum equilibrium hypoth-
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esis [268, 269, 270, 271], i.e., for initial conditions that are not distributed according to
|Ψ |2.

Here, we conduct a full numerical study of a generic two-dimensional quantum anhar-
monic oscillator, with high accuracy and precision, considering cubic and quartic inter-
actions. We consider the unstable cubic potential in order to have an instability region,
allowing the quantum particles to escape from the barrier repressively (negative values)
and progressively (positive values) in space. The quartic potential is introduced exactly to
stabilize this effect when it predominates in regards to the cubic interaction. In addition,
we also consider a off-diagonal term given by −κxy, providing a kind of entanglement
between the spatial coordinates. All potentials plays an important role in our system,
which will be discussed later in this article.

The main objective of this work is to show that the classical and quantum chaos can
be studied along similar lines, namely, from the deviation of the trajectories. Along the
article we present several evidences of chaotic tendency. We intend to show that this
system exhibits quantum-classical invariant chaotic behavior in the vicinity of vortices.
For this, we vary the value of ℏ and subsequently analyze the separation between the
quantum trajectories.

12.2 de Broglie-Bohm theory

The de Broglie-Bohm view of quantum mechanics is a non-local interpretation based
on a classical analogy of Schrödinger equation, where the particle dynamics is driven by
the guidance equations

m
dx
dt

= ℏ Im
{

∇Ψ
Ψ

}
. (12.2)

In this perspective, the wave function guides the quantum particles in the configuration
space. Assuming a polar form for the wave function Ψ(x, t) = R(x, t)eiS(x,t)/ℏ and sub-
stituting into Schrödinger equation, we obtain two real relations, together with p = ∇S
(which is equivalent to Eq. (12.2)), namely

∂tS + (∇S)2

2m + V +Q = 0, (12.3)

∂tR
2 + ∇ ·

(
R2 ∇S

m

)
= 0, (12.4)

with the quantum potential Q(x, t) defined as

Q ≡ − ℏ2

2m
∇2R

R
. (12.5)
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Eq. (12.3) is a Hamilton-Jacobi equation with an effective potential given by the sum of
the classical and quantum potentials. Moreover, Eq. (12.4) is a continuity equation that
reveals |Ψ |2 = R2 as a probability density. Thus, given an initial distribution |Ψ(x, 0)|2,
the trajectories probability density at any instant will be |Ψ(x, t)|2. From Eqs. (12.2) and
(12.3), we obtain a quantum analogue of Newton’s second law with an extra quantum
force −∇Q, such that

m
d2x
dt2

= −∇V − ∇Q. (12.6)

The relation in(12.6) is straightforwardly obtained by assuming an effective Hamilto-
nian as follows:

Heff = p2

2m + Veff (12.7)

where Veff = V +Q. In this form, Eq. (12.6) is very analogous to the classical equations of
motion, suggesting the possibility of chaos. The main difference here is the presence of the
quantum potential, which is, in general, nonlinear. Interestingly, some classical systems
that do not exhibit chaotic behavior may present quantum chaos [240]. This happens
because the trajectories obtained via guidance equations (12.2) undergo the influence of
NPXPCs throughout their evolution [240, 257, 258]. The NPXPCs are formed by two
main elements: the nodal points, defined as regions where Re(Ψ) = Im(Ψ) = 0, and the
X-points, which are unstable hyperbolic points defined in the reference frame of the nodal
points that accompany its evolution. The complex geometry created by this pair generates
quantum vortices, which are responsible for the scattering of neighboring trajectories. So,
if a particular system has a considerable number of such vortices, the nearby trajectories
can experience significant deviation. Hence, it is natural to expect that such systems will
exhibit chaotic behavior.

12.3 Model

Let us consider a generic two-dimensional anharmonic oscillator whose Hamiltonian
is given as follows

H = p2
x

2m +
p2

y

2m + 1
2(ω2

xx
2 + ω2

yy
2) (12.8)

− κxy + α

3 (x3 + y3) + β

4 (x4 + y4),

where α and β > 0 are constants of the cubic and quartic interactions, respectively. With-
out loss of generality, we set the mass m and frequencies as unity. The coupling constant
κ connects the two spatial coordinates. Setting κ to zero results in two independent oscil-
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lators, while κ ̸= 0 results in a nonlinear membrane . The Eq. (12.8) under the condition
α ≫ β is highly unstable. To avoid this problem, we set α/3 and β/4 to be small values,
with α slightly greater than β. Here, the nonlinear interactions may be treated as small
perturbations.

12.4 Methods

We numerically solve the time-dependent Schrödinger equation, with the Hamiltonian
given by Eq. (12.8), considering different values of κ and ℏ. We employ the finite element
method (FEM) [272, 273, 274] in a square domain D ≡ [−L,L] × [−L,L], where L is the
linear size of this domain, and we integrate the temporal part with high accuracy and
precision, using adaptive time-steps dt requiring a significant computational effort. For
each value of ℏ we set L in a region that the entire wave packet is included, but ensuring
that this wave packet is far from the boundaries. The domain is discretized using uniform
spacing square mesh elements, and Dirichlet boundary conditions are applied to prevent
undesirable effects in the numerical solutions. As a consequence, the integral of the square
modulus of the wave function is preserved within an error of 10−3. For numerical purposes,
we consider as initial conditions a properly normalized superposition of eigenfunctions of
the two-dimensional harmonic oscillator as follows:

Ψ(x, 0) = 1
2
(
ψ00(x) + ψ01(x) + ψ10(x) + ψ11(x)

)
, (12.9)

where the eigenvectors are given by the relation

ψnm(x) = e− 1
2ℏ (x2+y2)

√
2n+mn!m!πℏ

Hn

(
x√
ℏ

)
Hm

(
y√
ℏ

)
, (12.10)

with Hn(x) the Hermite polynomials of order n. This choice of initial condition is inter-
esting because it shares the same symmetry of the Hamiltonian (12.8), which is invariant
by changing x and y variables. In other words, the line y = x is an axis of symmetry of the
system. By Curie’s causality [275] we expect the manifestation of such symmetry within
the calculation of the Bohmian trajectories. In our simulation, we choose α/3 = 0.05 and
β/4 = 0.04, ranging κ from 0 to 1 and ℏ from 0.05 to 1 at arbitrary steps. Eq. (12.2)
is integrated using 8th order Runge-Kutta method [276, 277, 278] with time-steps of
dt = 10−5. In order to analyze the divergence of initially nearby trajectories, we com-
pute their deviations (δx, δy, δpx, δpy) in the fourth-dimensional phase space (x, y, px, py),
where px and py are simply the momentum components. Considering 60 different ini-
tial conditions, we perform the mean of ln ξ(t), in which ξ(t) are the normalized phase
space distance of each pair of neighboring trajectories, defined as ξ(t) = ξ̃(t)/ξ̃(0), where
ξ̃(t) =

√
δx(t)2 + δy(t)2 + δpx(t)2 + δpy(t)2. For each pair we set initial space components
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equally distant by an amount of ϵ = 10−4. Please note that the graph of ln ξ(t) versus
t provides us information about the value of the Lyapunov exponent λ formally defined
as λ = lim

t→∞

(
ln ξ(t)/t

)
. Despite we need to consider a relatively long period of time to

determine the precise value of λ, it is possible to infer its signal through the slope of the
associated curve, positive slopes indicating a strongly chaotic tendency.

12.5 Results

Let us present now the results of our simulations. We notice that the wave packet
spreads during its evolution, as shown in Fig. 12.1. This spreading is due to the −κxy
interaction and the unstable cubic potential, which assumes both positive and negative
values. When |x|, |y| > 1, the cubic potential becomes very unstable, leading the system
to slightly escape from the potential well. However, the quartic interaction in Eq. (12.8)
is responsible for stabilizing the oscillations in such a way that neither −κxy nor the cubic
term cause an exaggerated stretching of the wave function. Analyzing the solutions of Eq.
(12.2), we illustrate the velocity field in the case κ = 0.1 (see Fig. 12.2). Within a short
period of time, we observe the presence of four dynamic vortices, where two distinct events
can be highlighted: Firstly, we notice the formation of the upper vortex pair at t = 2.8,
while the vortices of the lower pair coming from outside the represented region approach
and eventually collide at t = 3.2, resulting in their disappearance. Furthermore, dynamic
vortices continue to emerge in the same area and undergo similar collision phenomena.
This is a direct effect of the previously mentioned symmetry. Since the Hamiltonian (12.8)
and the initial condition (12.9) are invariant under the exchange of the x and y variables,
the equations of motion should be invariant under the reflection in relation to the line
y = x. Hence, the vortices are created and annihilated in pairs equally distant of this
axis of symmetry, having the same absolute value of vorticity (∇ × v), but with opposite
signs. As a result, the pairs have the same diameter but spinning in opposite directions.
It is worth to emphasize that the production of vortices is directly related to the increase
of the coupling constant κ.

In Fig. 12.3 we show the parametric plot of the guidance equations solution until
time t = 215, for different initial conditions. It is possible to observe that all four tra-
jectories present very distinct and seemingly unpredictable behaviors when κ = 1.0. In
contrast, the trajectories of the κ = 0 case are clearly ordered. This indicates that κ ̸= 0
is crucial for inducing chaotic behavior. It is noteworthy that despite the inherent non-
linearity caused by the quantum potential, it alone is not sufficient for chaos to emerge.
Without any constraint or coupling to bound the spatial coordinates, the emergence of
unpredictability and sensitivity to initial conditions are nearly null, because there are
no sufficient vortices to induce chaotic behavior and the dynamics are not conducive to
chaos as well. Additionally, we notice that the same symmetry regarding the exchange of
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Figure 12.1: Evolution of the probability density |Ψ(x, y, t)|2 of the generic anharmonic
oscillator, for κ = 1, at (top left) t = 0, (top right) t = 100, (bottom left) t = 200 and
(bottom right) t = 300.

the spatial variables also occurs in the level of the quantum trajectories, supporting the
effectiveness of our numerical results.

Another characteristic of chaos is the sensitivity to initial conditions, where small
perturbations in the system can result in significantly different outcomes. In Fig. 12.4
we illustrate such effect for κ = 1.0. We examine three trajectories with very close ini-
tial conditions, namely (x0, y0) = (0.6,−0.5), (x0, y0) = (0.6001,−0.5), and (x0, y0) =
(0.6,−0.5001). Initially they evolve practically together, but, as times increases, they
exhibit significantly different behaviors as a consequence of the dynamical nonlinearity.
Due to the nonvanishing value of the constant κ, which connects both spatial coordinates,
such sensitivity is observed for both the x and y components, even considering an initial
difference in only one of them. In Fig. 12.5, we notice that ⟨ln ξ(t)⟩ is a nearly mono-
tonically increasing function of time, when κ > 0, indicating an exponential deviation of
the trajectories. Conversely, when κ = 0, no evidence exists of an exponential deviation,
indicating a regular behavior.
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Also analysing the results from Fig. 12.5, ℏ has almost no influence in the deviation
of the trajectories. Indeed, the same angular coefficient is found varying ℏ from 0.05 to 1.
In other words, the system studied here presents chaotic behavior in both classical and
quantum regimes. Therefore, through the Bohmian approach of quantum systems, it is
possible to study the quantum chaotic dynamics employing the same techniques used to
study classical chaos, resulting in robust chaos in both limits (ℏ = 1 and ℏ → 0).

Summarizing, we simulate, within the Bohmian quantum mechanical approach, a two-
dimensional anharmonic oscillator under the influence of a coupling potential and of a
tunnable Planck constant. The generic requirements for chaos (unpredictability and sen-
sitivity to small perturbations of the initial conditions) are satisfied by this system. In
the absence of coupling (i.e., κ → 0), chaos disappears. Despite the fact that initial state
might provide an entanglement between the spatial components, we do not observe chaos
in this situation; notice that the commensurable ratio between the frequencies ωx and ωy

[240], has been set as unity in our simulations. In remarkable contrast, for κ ̸= 0 chaos
emerges even considering the same frequencies. Additionally, no important influence is
observed along the quantum-to-classical crossover (ℏ → 0), thus validating the conjecture
that no strong difference exists between quantum and classical chaos. Couplings as in Eq.
(12.8) are good candidates for inducing quantum chaos (both strong and weak [46]) and
possibly enlighten the study of emergence of vortices in quantum systems.
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Figure 12.2: Ilustration of the emergence of four dynamical vortices in a square region
x ∈ [−2, 3]× [−2, 3] at t = 2.7, 2.8, 2.9, 3.1, 3.2 and t = 3.4 for κ = 0.1. We choose κ = 0.1
for didactic purposes (number of vortices increase as κ also increases).
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Figure 12.3: Parametric plot of the quantum trajectories (x(t), y(t)) until t = 215,
considering initial conditions near vortices collision and repulsion. Left: (x0, y0) =
{(1.4, 0.5), (0.5, 1.4), (0.6,−0.5), (−0.5, 0.6)} with κ = 1. Right: with κ = 0 and the
same previous initial conditions. Note the reflection symmetry with respect to the line
y = x.
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Figure 12.4: Plot of x and y as functions of time for κ = 1.0, considering three different
initial conditions: (x0, y0) = {(0.6,−0.5), (0.6001,−0.5), (0.6,−0.5001)}. Even with a
difference of 10−4 in just one spatial coordinate, the quantum trajectories behave very
differently, highlighting the sensitivity to the initial conditions.
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Figure 12.5: Left: ⟨ln ξ(t)⟩ versus t for ℏ = 1 and κ = 0, 0.05, 0.5, 1 with 60 pairs of initial
conditions regularly spaced in the interval of (x0, y0) ∈ [−1.5,−1.1] ∪ [1.1, 1.5]. Right:
⟨ln ξ(t)⟩ versus t for κ = 1 and ℏ = 0.05, 0.5, 1 with 60 pairs of initial conditions regularly
spaced in the interval of (x0, y0) ∈ [−0.5,−0.1]∪ [0.1, 0.5]. We observe a growing tendency
in the curves in the black, blue and red curves, thus indicating a positive Lyapunov
number. While the increase in the value of κ affects the value of the Lyapunov exponent,
the change in the value of ℏ does not appear to affect the chaotic behavior in the observed
time window. In the limit of ℏ → 0 it exactly reproduces the classical mechanical behavior.
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Chapter 13

Final Remarks

The statistical mechanics describing a physical many-body system depends on various
factors, such as interaction range and boundary conditions. For short-range interactions,
the system is typically treated with the Boltzmann-Gibbs (BG) theory at thermal equi-
librium (q = 1). However, non-equilibrium phenomena, as evidenced in our numerical
results, suggest a departure from q = 1, emphasizing the need for nonadditive entropies.

In the L → ∞ limit, our numerical results reveal a remarkable agreement with the
centennial Fourier macroscopic law for thermal transport at all dimensions. Specifically,
a numerical ’conspiracy’ in the values of (q, η, γ, δ) implies the validity of Fourier’s law,
even hinting at δ = d− 1 for all dimensions d.

Our collapsed results, expressed as Ld−1σ(T, L) ∝ e
−B(d)[Lγ(d)T ]η(d)

q(d) , show a transition
from q-Gaussians to q-stretched-exponentials due to a broader range of temperature val-
ues. Future work will explore the impact of long-range interactions on this form.

It is essential to recognize that physical systems do not adhere strictly to q = 1 or
q ̸= 1; the appropriate statistical mechanics depends on various factors. For instance,
in thermal equilibrium with periodic boundary conditions, the BG theory applies, but a
system permanently forced out of equilibrium exhibits turbulent-like fluctuations, leading
to q-statistics.

In our studies of the classical inertial ferromagnetic n-vector models, we find validation
of Fourier’s law from first principles, with temperature-dependent thermal conductivity
exhibiting independence of system size in the high-temperature regime. The thermal
conductivity conforms to q-statistics, collapsing into a shrunken q-exponential form. A
universal condition, η(n,d)γ(n,d)

q(n,d)−1 = 1, validates Fourier’s law for n-vector models, indicating
potential universality across different values of (n, d). As future perspective, we intend to
investigate other linear transport relations through nonequilibrium molecular dynamics
(direct method), such as Fick’s law, Newton’s law, and Ohm’s law.

In summary, our findings provide insights into the thermal transport properties of
classical rotators, confirming Fourier’s law and suggesting a universal form for q-statistics
across various dimensions and spin components.
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About the human electroencephalograms, our findings suggest that the q-statistic of-
fers valuable insights into brain complexity, particularly in distinguishing between ADHD
and typical subjects. However, interpreting the clinical significance of q values remains
premature. Further studies, currently underway, are needed to elucidate the observed
complexities in ADHD and typical subjects. Our research underscores the importance of
considering long-range correlations in understanding brain function, as evidenced by EEG
studies and the sensitivity of the parameter c in ADHD detection. While our method-
ology presents robust evidence for utilizing q-statistics in assessing brain complexity and
classifying mental states, further investigation is warranted to elucidate the biological
correlates of q and c parameters. In conclusion, q-statistics can be useful for the diagnosis
of ADHD and potentially other atypical conditions.

About the evidence of strong chaos in quantum systems with the Bohmian approach,
that analysis can be a starting point for further investigations of the same model with
different initial conditions. For instance, we can verify whether the increase of initial
states implies the increase or decrease of the Lyapunov number. Moreover, with the
development of more computational capacity, it will be possible to evaluate the precise
value of the Lyapunov exponent, instead of only its tendency. Also, with this same
numerical procedures we can explore other models with are not analytically tractable, not
only assuming potentials as small perturbations. For instance, it is possible to conduct the
analysis of systems in other coordinates as well, as in the interaction between topological
insulators and superconductors, where it is suitable to use cylindrical coordinates with
some symmetries [279]. It is important to note that exploring the compatibility between
classical and quantum chaos derived from averaging the coordinates of a specific system
is a significant aspect deserving attention. Another interesting possibility is the study of
the equivalence between this Bohmian approach of the quantum chaos and other usual
manners to characterize chaos at quantum level, such as the random matrix theory and
the periodic orbit expansions, where the focus is on properties like spectral fluctuations
and statistical properties regarding the energy eigenvalues. Also, as a final perspective,
the numerical procedures implemented here in simulating a tunable Planck’s constant can
pave the way for the search of quantum scars [280], and also can be useful for the study
of weak chaotic systems.
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ero, N. Garćıa-Campos, J. Biederman, T. Ortiz, Complexity analysis of spontaneous
brain activity in attention-deficit/hyperactivity disorder: diagnostic implications. Biol
Psychiatry. 65(7):571-7 (2009).

[200] M.R. Mohammadi, A. Khaleghi, A.M. Nasrabadi, S. Rafieivand, M. Begol, H. Zaraf-
shan, EEG classification of ADHD and normal children using non-linear features and
neural network. Biomedical Engineering Letters, 6(2), 66–73 (2016).

[201] H. Zarafshan, A. Khaleghi, M.R. Mohammadi, M. Moeini, N. Malmir, Electroen-
cephalogram complexity analysis in children with attention-deficit/hyperactivity dis-
order during a visual cognitive task. J Clin Exp Neuropsychol. 38(3):361-9 (2016).

[202] H. Chen, W. Chen, Y. Song, L. Sun, X. Li, EEG characteristics of children with
attention-deficit/hyperactivity disorder. Neuroscience. 406:444-456 (2019).

[203] R.J. Barry, A.R. Clarke, S.J. Johnstone, A review of electrophysiology in attention-
deficit/hyperactivity disorder: I. Qualitative and quantitative electroencephalography.
Clin Neurophysiol. 114(2):171-83 (2003).

[204] S.K. Loo, S. Makeig, Clinical utility of EEG in attention-deficit/hyperactivity dis-
order: a research update. Neurotherapeutics. 9(3):569-87 (2012).

[205] R.J. Barry, A.R. Clarke, Resting state brain oscillations and symptom profiles in
attention deficit/hyperactivity disorder. Suppl Clin Neurophysiol. 62:275-87 (2013).

[206] S. Markovska-Simoska, N. Pop-Jordanova, Quantitative EEG in Children and
Adults With Attention Deficit Hyperactivity Disorder: Comparison of Absolute and
Relative Power Spectra and Theta/Beta Ratio. Clin EEG Neurosci. 48(1):20-32
(2017).

[207] A. von Stein, J. Sarnthein, Different frequencies for different scales of cortical in-
tegration: from local gamma to long range alpha/theta synchronization. Int J Psy-
chophysiol. 38(3):301-13 (2000).

[208] J.E. Lisman, O. Jensen, The θ − γ neural code, Neuron, 77(6):1002-16 (2013).

[209] J.M. Palva, S. Palva, Functional integration across oscillation frequencies by cross-
frequency phase synchronization. Eur J Neurosci. 48(7):2399-2406 (2018).

[210] J.W.Y. Kam, T. Rahnuma, Y.E. Park, C.M. Hart, Electrophysiological markers of
mind wandering: A systematic review. Neuroimage. 258:119372 (2022).

[211] J. J. Newson, T. C. Hiagarajan, EEG Frequency Bands in Psychiatric Disorders: A
Review of Resting State Studies, Front. Hum. Neurosci. 12, 521 (2019).

141



[212] A. Peres, Stability of quantum motion in chaotic and regular systems. Phys. Rev.
A, 30, 1610-1615 (1984).

[213] F. M. Izrailev, Simple models of quantum chaos: Spectrum and eigenfunctions. Phys.
Rep., 196, 299-392 (1990).

[214] M. C. Gutzwiller, Chaos in classical and quantum mechanics. Springer New York
(1990).

[215] B. Georgeot and D. L. Shepelyansky Quantum chaos border for quantum computing,
Phys. Rev. E, 62, 3504 (2000).

[216] D. L. Shepelyansky, Quantum chaos and quantum computers, Phys. Scr., 2001, 112
(2001).

[217] B. Georgeot and D. L. Shepelyansky, Exponential gain in quantum computing of
quantum chaos and localization, Phys. Rev. Lett. 86, 2890–2893 (2001).

[218] T. Prosen and M. Znidaric, Can quantum chaos enhance the stability of quantum
computation?, J. Phys. A Math. Gen., 34, L681 (2001).
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