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Abstract

We investigate the possible existence of a phase of non-ergodic extended states in

random many-body systems. On one hand, a direct analysis of the spectral and wave

function statistics indicates that there is a wide range of values where the states

conform to the classification of ‘non-ergodic extended.’ However, upon further analysis

of the entanglement entropy, we suggest an alternative description where non-localized

many-body wave functions remain ergodic in an orthodox sense—uniform coverage of

a shell of constant energy in Fock space.





Resumo

Investigamos a possível existência de uma fase de estados estendidos não ergódicos

em sistemas de muitos corpos com desordem. Por um lado, uma análise direta

das estatísticas espectrais e de função de onda indica que há uma ampla gama de

valores onde os estados correspondem à classificação de ‘estendidos não ergódicos’. No

entanto, após uma análise mais aprofundada da entropia de emaranhamento, sugerimos

uma descrição alternativa onde as funções de onda de muitos corpos não localizadas

permanecem ergódicas em um sentido ortodoxo—cobertura uniforme de uma casca de

energia constante no espaço de Fock.
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Chapter 1

General Introduction

One of the main assumptions in quantum statistical mechanics is that systems are in

thermal equilibrium. However, this is far from trivial when considering closed systems,

that is, those completely decoupled from a bath. In recent years, there has been a lot

of focus on answering the question of what happens to a closed quantum system in

the long time limit. Major results find that systems that are not integrable, which

we will refer to as generic systems, can fit into two possible cases: those that do, in

fact, reach thermal equilibrium, and those that fail to thermalize through many-body

localization [4, 5].

Despite existing mathematical proof establishing the stability of the MBL phase

in 1d systems [6], possible loopholes in the proof related to the role of correlations

allow for some wiggle room. This is reflected in recent controversies surrounding the

existence of the MBL phase, and whether the localization transition is observable in

numerical simulations or experiments. In [7], the authors argue that, when approaching

the transition point from the ergodic side, the critical value for disorder found from

numerical simulation scales extensively with system size. If valid, this would imply

that the MBL phase is not stable in the thermodynamic limit. However, in [8] the

authors warn that one should not extrapolate scaling analysis done deep in the ergodic
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regime to strong disorder regimes. For example, they show how a similar analysis as

done in [7] but now applied to the well-established Anderson transition in the random

regular graph model (a single-particle model that serves as a toy-model for the MBL

problem) would lead to a (false) conclusion that the transition does not exist due to

the same scaling of the critical disorder with system size.

Another point of contention regarding the localization transition, which we will

address in this work, is whether there exists an intermediate phase, sandwiched between

the thermal and localized. In this purported intermediate phase, states are extended,

like in the thermal phase, but have theirs amplitudes distributed non-ergodically, thus

differing from fully thermal states. After two decades since the prediction of many-body

localization (MBL), there is still no strong consensus about possible intermediate phases

(or regimes) between the MBL and thermal [9–12].

The lack of definitive answers for these questions, much like the rest of theoretical

physics, is due to the challenge in treating complex quantum many-body systems, be

it analytically, numerically, or experimentally. One reason this option comes into focus

only now is that standard tools in diagnosing chaos are too coarse to resolve spatial

structure of quantum states in Fock space.

The typical phase diagram obtained numerically for the MBL transition is shown in

Fig. 1.1. Here we can see that as disorder strength h increases, the states at all energies

ϵ eventually change from the ergodic (dark region in figure) to localized behavior (light

region).

One way to try to make progress is to study systems that are complex enough to

display the desired properties, but still amenable to analytical and numerical analysis.

In this work, we will focus on two modified versions of the Sachdev-Ye-Kitaev (SYK)

model [13, 14]. The SYK model, which we will describe in more details further

below, is known to be fully ergodic [15–17], so we introduce modifications of the form
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Ĥ = Ĥ2 +Ĥ4, where Ĥ4 is the regular SYK Hamiltonian, and Ĥ2 is a term that induces

localization. Specifically, we will use two versions of this Ĥ2 term, each parametrized

with some disorder strength parameter h that will control the localization transition. In

recent years, the SYK model has become the paradigm for many-body quantum chaos,

and has attracted a lot of attention, specially because it can be used to obtain closed

form solutions for many questions in strongly interacting systems. This is because

the SYK model is a confined many-body system with strong long-range interactions,

meaning that all of its single-particle states are coupled, which in turn facilitates

analytical treatment of several physical quantities.

Thus, the main question we wish to address is whether wave functions in regimes

prior to the onset of strong localization in the modified SYK model satisfy an ergodicity

principle. An implication of this purported phase of non-ergodic extended states is

that one cannot rely solely on spectral statistics to classify a system as ergodic or

localized, in contrast to the common practices in the field. The existence of non-ergodic

extended states complicates the use of spectral statistics as a sole tool for classification.

Non-ergodic extended (NEE) states are special states that are neither localized nor

ergodic, but rather exhibit characteristics of both. They are extended in space, but their

dynamics are not completely chaotic, and they can display time-dependent revivals

of localization. Further, the distribution of the components of these states differs

from the usual distribution for fully ergodic states, which would point to a possible

non-ergodicity. However, as we will discuss below, while these NEE states are indeed

more localized than regular ergodic states, they are better understood as still being

ergodic, albeit in a vanishing fraction of Hilbert space determined by their energy shell.

Additionally, the existence of this intermediate regime could shift the value of the

critical disorder necessary to localize the system after finite-size scaling analysis, which

could help settle some controversies regarding the MBL phase transition.
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Fig. 1.1 Phase diagram of the random field Heisenberg spin chain. The vertical axis is
normalized energy density. Horizontal axis is disorder strength. Figure extracted from
ref. [18], see there for more details.

Outline of the thesis

In what follows, we go over some necessary background material in Chapter 2. Then,

in Chapter 3, we discuss the models used in the research and some quantities analyzed.

Chapters 4, 5, and 6 are a compilation of published papers. Finally, Chapter 7 contains

general concluding remarks.



Chapter 2

Background Material

In this chapter, we will provide an overview of the essential background material

necessary to understand the main results presented in later chapters. We begin by

discussing fundamental results from Random Matrix Theory (RMT) and its connection

to quantum chaos, serving as a foundation for our study. Subsequently, we will introduce

a more general description of ergodic systems, particularly through the Eigenstate

Thermalization Hypothesis (ETH). Finally, we will explore how certain systems can

deviate from ETH, with a specific focus on the phenomenon of many-body localization

(MBL).

2.1 Quantum Chaos and Random Matrix Theory

Random Matrix Theory (RMT), initially developed by Wigner and subsequently

expanded upon by Dyson, was designed to characterize the energy spectra of large,

complex atomic nuclei. Since its inception, RMT has evolved into a comprehensive

theory, finding applications across various domains in physics, as well as in diverse

fields such as mathematics and statistics.
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Wigner’s original insight was the realization that, rather than attempting to

precisely determine the exact energy levels and corresponding eigenstates of a large,

complex quantum system, a more pragmatic approach would be to first understand

their statistical properties. To develop this statistical model, he proposed that by

focusing on states located far from the edges of the spectrum, within a sufficiently

small energy window where the density of states remains constant, and by choosing

a “generic” basis, the Hamiltonian could be approximated as a matrix with random

entries. This approximation rests on the assumption that the matrix has no discernible

structure beyond the minimum required by the symmetries inherent to the problem.

When constructing a random matrix, a crucial question to address is the choice of

distribution for the matrix entries. Two critical criteria guide this decision. Firstly, the

matrix entries should be independent random variables, allowing the joint probability

distribution of the matrix to be expressed as a product of individual distributions:

p(H) ∝
∏
i

p(Hii)
∏
i<j

p(Hij). (2.1)

Secondly, the probability measure p(H) should exhibit rotational invariance, remaining

unchanged under similarity transformations of the matrix H. Remarkably, the only

distribution that fulfills both these requirements is the Gaussian distribution for the

matrix entries. This defines the Gaussian ensemble in RMT, which can then be

further classified into three distinct classes: the Gaussian Orthogonal Ensemble (GOE),

Gaussian Unitary Ensemble (GUE), and Gaussian Symplectic Ensemble (GSE), each

corresponding to different symmetry properties of the system.

2.1.1 Eigenvalue distribution

We now delve into what is arguably the most distinctive feature of RMT systems:

their spectral statistics. Our focus will particularly be on the statistical properties of
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level spacings, providing insight into the behavior and characteristics of eigenvalue

distributions within these systems.

To guide our discussion, consider the case of a 2 × 2 real symmetric matrix H.

The diagonal elements of H follow a Gaussian distribution with zero mean and unit

variance. Meanwhile, the off-diagonal elements follow a Gaussian distribution still

with zero mean, but now with a variance 1/2. This choice often simplifies analytical

calculations, which will become clear in what follows. The matrix H can thus be

written as

H =

H11 H12

H12 H22

 . (2.2)

The eigenvalues are then

λ1,2 = H11 +H22

2 ±

√
(H11 −H22)2 + 4H2

12

2 . (2.3)

We now wish to find the probability distribution for the difference between the eigen-

values, s = λ2 − λ1, where we take λ2 > λ1.

p(s) = 1
2π3/2

∫ ∞

−∞
dH11 dH22 dH12 e

−
H2

11+H2
22+2H2

12
2 δ

(
s−

√
(H11 −H22)2 + 4H2

12

)
.

(2.4)

The integrals can be calculated through a change of variables, yielding

p(s) = s

2e
− s2

4 . (2.5)

This distribution, known as the Wigner-Dyson distribution, characterizes the spacings

between energy levels of a matrix sampled from the GOE. One can verify that this
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distribution is normalized. Further, it is customary in the literature to rescale this

distribution such that the mean level spacing is set to one, ⟨s⟩ = 1. The distribution

then takes the form

p̄(s) = πs

2 e− πs2
4 . (2.6)

While here we have obtained this results for a 2 × 2 matrix, it turns out that while

there does not exist a closed form solution for finite matrix size N , the result for finite

N is qualitatively and quantitatively similar to Eq. (2.5).

One important takeaway from these results is that the eigenvalues of the random

matrix are not independent. In fact, they present level repulsion, meaning that the

probability to find a degenerate energy level is zero.

The same reasoning applies if we now use a Hermitian random matrix, that is, one

sampled from the GUE. The normalized distribution for energy spacing, with mean

level spacing set to one, now reads

p(s) = 32s2

π2 e− 4s2
π . (2.7)

Note that for the GUE level repulsion is stronger than for GOE. In comparing the

results for GOE and GUE, we can observe a notable difference in their level repulsion.

Namely, in the small s limit, the probability for GUE behaves as p(s) ∼ s2, and thus

displays stronger level repulsion than GOE, where p(s) ∼ s.

2.1.2 Structure of Many-Body Eigenstates

Due to the invariance of the Gaussian ensemble to unitary transformations, the

eigenvectors are only constrained by their normalization. Therefore, it is straightforward

to write the joint distribution for their components.
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The Gaussian ensemble’s invariance under similarity transformations implies that

the eigenvectors are solely constrained by normalization. Therefore, we can directly

derive their joint distribution. Specifically, if ψ is an eigenvector of H, the joint

probability density function of its components ψi can be expressed as:

P (ψ1, ψ2, . . . , ψN) ∝ δ

(
1 −

N∑
i=1

|ψi|2
)
, (2.8)

where δ(x) is the Dirac delta function, ensuring the normalization |ψ| = 1. This is a

uniform distribution on the unit sphere in CN . This uniform distribution highlights the

lack of preferred direction for the eigenvectors in the high-dimensional complex space,

reiterating the fundamental property of unitary invariance in the Gaussian ensemble.

For N×N within the GUE ensemble, the eigenvectors ψ will generally have complex

components. Consequently, the joint distribution for the components ψn, n = 1 . . . N ,

is given by

pGUE ({ψn}) = N δ

(
1 −

N∑
n=1

|ψn|2
)
, (2.9)

where N is a normalization constant. A convenient change of variables to the amplitudes

yn = |ψn|2 simplifies the expression to,

pGUE (y) = (N − 1)(1 − y)N−2, (2.10)

where we also substituted the value for the normalization constant. Similarly, for

matrices within the GOE ensemble, the joint distribution for eigenvector amplitudes

yn = |ψn|2 is given by

pGOE (y) = 1√
π

Γ(N/2)
Γ((N − 1)/2)

(1 − y)(N−3)/2
√
y

. (2.11)
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In both scenarios, the average intensity is ⟨y⟩ = 1/N . By rescaling to η = yN and

considering the limit N → ∞, the distributions converge to

pGUE (η) = 1√
2πηe

−η/2, (2.12)

pGOE (η) = e−η. (2.13)

These are known as the Porter-Thomas distributions, which describe the behavior of

the (squared) components of eigenvectors in RMT. This result is crucial in applications

such as quantum chaos, where the distribution of eigenstate components can provide

insights into the underlying physical phenomena.

In the previous analysis, we made an implicit assumption about the independence

of distinct eigenvectors, treating them as statistically independent. However, this

assumption is only an approximation, since eigenvectors corresponding to different

eigenvalues of a Hermitian matrix must be orthogonal. Nevertheless, this assumption

is justified for large enough dimension N , since orthogonality is the only constraint on

the N components. Thus, for two distinct eigenvectors, their inner product will be a

random variable with a narrow distribution, converging to zero as N → ∞.

The moments Iq = ⟨yq⟩ of the Porter-Thomas distribution also play an important

role in RMT. Specifically, the second moment, known as the inverse participation ratio

(IPR), is commonly used as a measure of localization. For ergodic systems, the IPR

scales as

I2 = 2N−1, (2.14)

where N is the dimension of the Hamiltonian matrix.

It is crucial to note that this scaling behavior is consistent across all generic bases

for ergodic systems. On the other hand, localized systems exhibit a different behavior:



2.1 Quantum Chaos and Random Matrix Theory 11

there exists a unique basis, the one that diagonalizes the disorder, where the IPR

remains constant, not affected by system size. This characteristic serves as marker of

localization in such systems.

Note that in what follows we will use N to denote the number of fermions, such

that the dimension of Hilbert space is D = 2N . In this case, the IPR can be written as

I2 = 2N−1.

2.1.3 Matrix Elements of Operators

For a system described by RMT, we now consider computing the average value of

matrix elements for a certain observable O, considering the eigenvectors of the RMT

Hamiltonian. Let {|ψm⟩ ,m = 1 : D} be these eigenvectors, with D the Hamiltonian’s

dimension. We express the ensemble average of the matrix elements of the operator O

between eigenvectors m,n as:

⟨ ⟨ψm|O|ψn⟩⟩ =
∑
jk

Ojk

〈
(ψmj )∗ψnk

〉
, (2.15)

where the average is over the different sets of eigenvectors of matrices in the ensemble.

Since different eigenvectors of the same matrix are approximately independent, and

eigenvectors of different realization of the matrix are independent, this ensemble

averaging process amounts to averaging over the Porter-Thomas distribution Eq. (2.12).

We can then show that the expectation value of the product of components j, k of

eigenvectors m,n, to first order in 1/D, is
〈
(ψmj )∗ψnk

〉
∼ 1

D
δmnδjk. This leads to the

following expression for the matrix element of O:

⟨ ⟨ψm|O|ψn⟩⟩ = 1
D

∑
j

Ojjδmn = Oδmn, (2.16)

where we have defined O = 1
D

trO.
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Further, can can obtain the fluctuations around this mean value by considering the

variance of the matrix element:

⟨ ⟨ψm|O|ψn⟩ ⟨ψn|O|ψm⟩⟩ − ⟨ ⟨ψm|O|ψn⟩⟩2 =
∑
jkpq

OjkOpq

〈
ψmj

∗ψnkψ
n
p

∗ψmq
〉

−O
2
δmn

= 1
D
O2, (2.17)

where we have used Wick’s theorem to rewrite
〈∣∣∣ψaj ∣∣∣4〉 = 2

〈∣∣∣ψaj ∣∣∣2〉.

Consequently, the matrix elements of any observable within the RMT framework

can be written as

⟨ψm|O|ψn⟩ ≃ Oδmn +
√
O2

D
Rmn, (2.18)

where Rmn is a random number, with mean zero and variance equal to one.

Note that the fluctuations around the mean are suppressed by a factor 1/D,

becoming negligible in the thermodynamic limit. Hence, this result should hold for

eigenvectors of a single realization of a RMT ensemble, that is a single Hamiltonian,

provided the dimension is large enough.

2.1.4 Quantum Chaos and Entanglement

In this section, we now discuss the seminal result by Page [19] regarding the average

entanglement entropy in subsystems of ergodic systems. Specifically, that for such

systems the entanglement entropy grows with a “volume law” with regard to the

subsystem size, in contrast to the “area law” of localized systems. Thus, the character

of entropy growth serves as a marker of ergodicity/localization.

Consider a quantum system with Hilbert space dimension D, partitioned into

two subsystems, A and B, each with Hilbert space dimensions DA and DB=D/DA
,
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respectively. The entanglement entropy of subsystem A is defined as the von Neumann

entropy of the reduced density matrix

SA(ρA) = − tr ρA log ρA, ρA = trB ρ. (2.19)

If the whole system is prepared in a pure state, ρ = |ψ⟩⟨ψ|, it is possible to compute

the average entropy over all possible initial states

⟨SA⟩ = logDA − DA

2DB

. (2.20)

This result shows that when subsystem A is small enough relative to the entire

system, DA ≪ D, the entanglement entropy closely approximates the thermodynamic

microcanonical entropy, Sth = logDA. This suggests that the complement of subsystem

A acts as a thermal bath to A.

2.2 Thermalization in Quantum Systems and the

Eigenstate Thermalization Hypothesis

Consider a closed system with N ≫ 1 degrees of freedom, described by a Hamiltonian

H with a discrete energy spectrum, H |n⟩ = En |n⟩. We prepare this system in a generic

initial state |ψ(t)⟩ = ∑
n cne−iEnt |n⟩, characterized by a mean energy ⟨E⟩ = ∑

n |cn|2En.

Here, the term “generic” means that the initial state resides within the bulk of the

spectrum, with its energy lying far above the ground state as well as far below the

most excited state.

Similar to our prior exploration of RMT, we now consider on the matrix elements of

an operator, only now relative to the initial state |ψ(t)⟩. The time-averaged expectation
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value of the observable O is given by

⟨O⟩ = lim
t→∞

1
t

∫ t

0
dτ ⟨ψ(τ)|O|ψ(τ)⟩

=
∑
n

|cn|2Onn, (2.21)

where all the off-diagonal terms average to zero due to the oscillating exponential in

the integral—a process known as dephasing.

Conversely, if the system reaches thermal equilibrium, the expectation value of

measurements of the observable is given by the microcanonical ensemble,

⟨O⟩m.c. = 1
N

∑
E∈S

Onn. (2.22)

where S is the energy shell [E,E + ∆E] and N is the number of states within the

shell. Thermalization of a system implies that a system initially prepared in the state

|ψ(t)⟩ will evolve, after sufficiently long time, to a state that is properly described by

the microcanonical ensemble. For thermalization to be possible, it is then necessary to

reconcile equations (2.21) and (2.22). This reconciliation is far from trivial, given that

the time-averaged expectation value of the operator is solely determined by the initial

state via the coefficients cn, whereas the microcanonical expectation value depends

only on the energy, allowing for several different on-shell initial state configurations

being equivalent. Nonetheless, under a set of broad assumptions, it turns out to be

possible to reconcile both expressions.

Referring back to the RMT matrix elements result Eq. (2.18), one can verify that

for such a scenario, the time average and the microcanonical average are indeed equal,

thereby indicating system thermalization. This convergence stems from the structure

of the matrix elements in RMT, such that the diagonal elements are constant in time,
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Onn = O. That is, using Eq. (2.18),

⟨O⟩ =
∑
n

|cn|2Onn = O
∑
n

|cn|2 = O, (2.23)

⟨O⟩m.c. = 1
N

∑
E∈S

Onn = O
1
N

∑
E∈S

1 = O. (2.24)

However, this requirement that the diagonal elements of ⟨ψm|O|ψn⟩ be constant across

the whole spectrum is too strict. We are then led to consider a more general expression

that nevertheless still satisfies this notion of thermalization through equivalence between

time and microcanonical averages. Specifically, it is sufficient to require that the

diagonal elements depend smoothly on the energy. This generalization is the known as

the Eigenstate Thermalization Hypothesis (ETH) ansatz [20–23], and can be expressed

as

Omn = O(Ē)δmn + e−S(Ē)/2fO(Ē, ω)Rmn, (2.25)

where the parameters are defined as Ē = (Em − En)/2, ω = Em − En, and Rmn

is a Gaussian-distributed random number with zero mean and unit variance. The

functions O(Ē) and fO(Ē, ω) remain constant within the energy shell, and S(Ē) is

the thermodynamic entropy. The ETH ansatz extends the RMT result, allowing for

variability in the diagonal elements and Gaussian fluctuations in the off-diagonal, thus

accommodating a broader class of systems, beyond those described by RMT.

A remarkable feature of ETH is that knowledge of a single eigenstate is sufficient to

compute thermal averages, since within the microcanonical energy shell any eigenstate

is interchangeable.

As shown, a system that satisfies the ETH evidently thermalizes. However, the

converse—that thermalization implies ETH—remains an open question despite sub-

stantial numerical evidence. The direct numerical verification of ETH presents compu-
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tational challenges because obtaining exact eigenstates for large quantum systems is

computationally costly, and thus numerical simulations are limited to relatively small

systems sizes, which limits their generalization to the thermodynamic limit.

A useful alternative formulation of the ETH is in terms of subsystems. In this case,

the full system is in an eigenstate of energy En of the Hamiltonian, ρ = |n⟩⟨n|. The

state of a subsystem A is then ρA = trB ρ. If the subsystem A is small enough, then

the subsystem B acts as a bath, inducing thermalization in A. In this framework, the

ETH implies that the reduced density matrix in the subsystem gets exponentially close

to the microcanonical density matrix ρth in the energy shell defined by the initial state

of the whole system.

2.3 Many-body Localization

ETH is not true for a broad class of systems, those that are many-body localized, or

many-body localized (MBL). To understand localization in interacting many-body

systems, it is helpful to have in mind the picture for single-particle localization.

To advance the discussion to MBL, let us now consider a spin-1
2 system,

H =
∑
i

hiσ
z
i +

∑
ij

Jijσi · σj, (2.26)

with hi static random local field, and the interaction matrix Jij is short range. We

are then interested if the many-body eigenstates of this Hamiltonian obey the ETH.

For J = 0, the many-body eigenstates are simply product states, and the system

is fully localized. For finite J ≪ W , states on different sites do not hybridize, so

thermalization does not occur. As we decrease disorder strength W , there is a quantum

phase transition in which the system thermalizes and all eigenstates obey ETH.
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2.4 Non-Ergodic Extended States

As discussed in the introduction, open questions remain about the MBL transition. In

particular, we are interested in the possibility of an intermediate phase. Some work in

single-particle Anderson localization on hierarchical lattices points to the existence of a

second transition, between ergodic and non-ergodic extended states [9, 12]. This would

be a transition at a lower disorder strength than the transition to (non-ergodic) localized

states. A single random matrix model that has this behavior is the Rosenzweig-Porter

model. It is an ensemble of random Hermitian matrices with off-diagonal entries

being random Gaussian numbers with variance
〈
H2
ij

〉
= 1

Nγ , and diagonal elements

are random Gaussian numbers with unit variance. Here γ is the parameter that will

control the “disorder strength”. At γ ≤ 1, we have regular RMT behavior, for γ ≥ 2,

regular Anderson localization. For 1 < γ < 2, non-ergodic extended states.





Chapter 3

Model and Methods

3.1 The Sachdev-Ye-Kitaev Model

In recent years, the Sachdev-Ye-Kitaev (SYK) model quickly rose to become an

influential model in research on quantum many-body systems [13, 14]. This rise is due

to it being an exactly solvable model, which enables several analytical insights into the

dynamics of complex quantum systems. In particular, it has been shown that the SYK

model is fully ergodic [17] and equivalent to RMT at long time scales.

The SYK model describes a system of 2N ≫ 1 Majorana fermions χi, {χi, χj} = 2δij ,

with random all-to-all 4-body interaction. We express the Hamiltonian as

H4 = 1
4!

2N∑
i,j,k,l=1

Jijklχiχjχkχl, (3.1)

where Jijkl are random, Gaussian-distributed coupling constants, with zero mean and

variance
〈
|Jijkl|2

〉
= 6J2

(2N)3 . The constant J defines the bandwidth of the system as

γ = (J2 )(2N)1/2.

It is worth noting that when rewriting this Hamiltonian in terms of N complex

fermions ĉi = 1
2(χ̂2i−1 + iχ̂2i), it becomes evident that the SYK model does not conserve
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particle number. Consequently, the Hamiltonian incorporates terms such as cccc and

c†c†c†c, along with all possible similar combinations. However, due to the structure of

these terms, fermion parity is still conserved. That is, states with even (odd) number of

fermion are coupled only to other states with even (odd) number. This non-conservation

of particle number, only of parity, is a distinguishing feature, making the SYK model

analytically more tractable in contrast to systems with regular fermions.

Regarding other possible discrete symmetries, the SYK model’s symmetry class

is determined by the number of Majoranas 2N . Specifically, for N odd, the system

belongs to the GUE symmetry class and thus does not have time-reversal symmetry,

while for N even it belongs to either GOE or GSE, depending on a certain periodicity

modulo 4, and thus is symmetric under time-reversal. For more details, see [17].

3.2 The “extended” SYK Model

In order to investigate possible non-ergodic extended states, we have to include another

term which will induce Fock space localization. To this end, we will investigate two

possible perturbations. First, we will consider a perturbation H2a which takes the form

of a “1 toN” particle potential, where each occupation state |n⟩ = |n1, n2, . . . , nN⟩ , ni =

0, 1 is coupled to every other occupation state through a random potential. Second,

we will consider a more physical model, representing a single-particle contribution.

More specifically, for the first model we add to the Hamiltonian a term which is

diagonal in Fock space with random coefficients,

H2a = γ
2N∑
n=1

vn |n⟩⟨n| , (3.2)

where γ is the energy bandwidth of the SYK model, and the coefficients vn are drawn

from a random distribution. For the distribution in this case, we choose as a uniform
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distribution with width ∆, but different choices would yield qualitatively similar results.

This parameter ∆ then sets the strength of the perturbation in units of the SYK

bandwidth, and in the limit ∆ ≫ 1 it induces localization in Fock space on states with

energies vn.

For the second model, we start from the single-particle Hamiltonian in terms of

Majorana fermions,

H2b =
2N∑
i=1

Jijχiχj. (3.3)

For the Hamiltonian to be Hermitian, Jij is a random antisymmetric matrix, with

elements drawn from a Gaussian distribution with variance
∣∣∣J2
ij

∣∣∣ = δ2/2N . The matrix

iJij is diagonalizable, with eigenvalues ±vi. This allows us to rewrite the Hamiltonian

above, as

H2b =
N∑
i=1

viχ2i−1χ2i. (3.4)

This can further be rewritten in terms of regular fermionic operators,

H2b =
N∑
i=1

vi(2n̂i − 1). (3.5)

The two models introduced, Ha/b = H4 +H2a/b, present two contrasting approaches

to modifying the SYK model to probe the nature of non-ergodic extended states. Model

Ha all-to-all interaction in Fock space provides an analytically simpler starting point

to investigate the effects of a localization-inducing disorder on the ergodicity of the

SYK model. In contrast, the model Hb retains the flavor of the original SYK model’s

interactions, simplified to single-particle terms. This model allows for a more physical

interpretation of the dynamics and their contributions to the overall behavior of the
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system. Together, these models serve as valuable tools for examining the delicate

balance between interaction, disorder, and quantum chaos in many-body systems.

3.3 Numerical Methods

To analyze the models outlined above, we employ the exact diagonalization (ED)

technique.

Exact diagonalization involves selecting an appropriate Hilbert space basis, express-

ing the Hamiltonian in its matrix form, and diagonalizing this matrix using standard

numerical algorithms.

The ED method yields exact energies and eigenstates without the biases and

approximations that other methods, such as Markov Chain Monte Carlo and variational

methods, introduce. However, it is worth noting that the “exactness” of ED comes

with a significant computational expense. The cost scales as O(D3), where D is the

dimension of matrix. In quantum systems, the Hamiltonian matrix size often grows

exponentially with the particle count. Consequently, ED is typically constrained to

smaller systems. As of now, the state-of-the-art for spin chains has a length of the

order L = 50, although this makes extensive use of the systems symmetries to reduce

the Hilbert space dimension [24]. This size limitation restricts the use of ED, especially

when we are interested in the behavior of systems in the thermodynamic limit.

Much of the computation cost of ED can be alleviated if, instead of the entire

spectrum of the Hamiltonian, we are interested only in the ground state and a few

low-lying excitations. In this case, the Lanczos algorithm provides an efficient way to

partially diagonalize the matrix, returning only a few energies and eigenstates, with a

large gain in computational efficiency. The Lanczos algorithm is an iterative algorithm

which leverages matrix-vector multiplication, in place of the more computationally
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expensive matrix-matrix multiplication in regular diagonalization, to achieve a more

efficient scaling with respect to matrix size.

If we are interested in states deep in the band, an alternative is the shift-invert

method [25]. This method consists of defining the operator G = (Ĥ − ϵÎ)−1, where

ϵ is the target energy and Î is the identity matrix. The iterative Lanczos method is

then applied to this new operator. This effectively transforms the problem of finding

eigenvalues in the interior of the band to the extremal problem of finding the lowest

(highest) eigenvalues of the operator G. However, computational efficiency is only

gained when one requires just a few eigenpairs near the target energy. For analysis

where one requires more eigenpairs, it might still be more efficient to perform full

diagonalization.

The choice of basis is crucial, as it determines the complexity of the diagonalization

process. Usually, the best approach is to opt for a basis that simplifies the matrix form

of the Hamiltonian, for example by making it banded or sparse. This choice might

also depend on the particular symmetries present in the system, as well as the physical

properties that one wishes to investigate. As it pertains to the models described above,

the natural basis to choose is that which diagonalizes the disorder potential, i.e. the

H2 term.

More specifically, in our work, we generate a family of Hamiltonians by fixing one

random realization of the disorder potential H2 and varying the random H4. We then

diagonalize each of these matrices, taking only energies and eigenstates in the center

of the band, which we take to mean the middle 1/7th of the spectrum. This is a

compromise between selecting a region small enough such that density of states is

constant, but large enough such that there are enough states to obtain robust statistics.

Taking into account the parity symmetry of the Hamiltonian, we can reorder the labeling

of the basis such that the Hamiltonian is block-diagonal. We then split the eigenstates
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into the different parity sectors, and treat them as effectively 2N−1-dimensional vectors.

This leads to some gain in computational efficiency while not influencing results for wave

function statistics, but introducing a subtlety in calculating the entanglement entropy,

which we will discuss below. The typical procedure of numerically analyzing spectral

statistics involves, for each realization of the Hamiltonian in question, calculating

the spacings sn = en+1 − en between adjacent energy levels en. By performing these

calculations across several realizations of disorder and pooling the resulting spacings,

we are able to compile a histogram representing the distribution of spacings.

This distribution is subsequently compared with the theoretical distributions asso-

ciated with ergodic or localized systems—specifically, the Wigner-Dyson or Poisson

distributions, respectively [26]. This comparison serves as a conventional methodology

for determining whether a system resides in one phase or the other, typically by

assessing how well the numerical level statistics align with the anticipated distributions.

However, this seemingly straightforward calculation conceals a layer of complex-

ity. The fluctuations in the level spacing derive from two distinct sources: a global

dependence on energy density and local fluctuations in the energy levels [27]. To

distinguish these contributions, it is necessary to “unfold” the spectrum, which involves

normalizing the local level spacing by the average level spacing at a given energy. This

unfolding process is non-trivial and has the potential to introduce additional finite-size

effects.

A more convenient alternative was proposed by Oganesyan and Huse [28], who

introduced an analysis based on the ratio of neighboring spacings, rn = sn/sn−1.

This ratio is advantageous as it circumvents the need for spectral unfolding, thereby

enhancing the precision of statistical tests applied to the spectrum. It is worth noting

that while the distribution of spacing ratios P (r) for ergodic (localized) systems exhibits



3.3 Numerical Methods 25

quantitative differences from the conventional Wigner-Dyson (Poisson) distribution,

qualitative similarities persist [29].

In our work, we chose to quantitatively compare the numerical and theoretical

distributions for spacings ratio using the Kullback-Leibler divergence, defined as

DKL(P ∥ Q) =
∑

P (r) log
(
P (r)
Q(r)

)
, (3.6)

where P (r) is the distribution obtained from the numerical histogram of spectrum

data, and Q(r) is the expected distribution for ergodic or localized systems. For wave

function statistics, we exploit the parity symmetry inherent in the Hamiltonian to

perform block-diagonalization, resulting in two distinct sets of eigenvectors. Each set

corresponds to either even or odd parity and has a reduced dimension of 2N−1. To

further improve statistics, we can treat both sets of eigenvectors as different independent

samples.

Upon gathering all the eigenvectors from various realizations of the Hamiltonian

under investigation, we proceed to compute the second moment in order to obtain

the inverse participation ratio (IPR), ∑n |ψn|4. The IPR serves as a measure of the

localization of the wave functions.

We are particularly interested in observing how the IPR changes with varying

strengths of disorder in the system. This analysis could potentially reveal transition

points or regimes where the behavior of the system shifts, providing valuable information

about the underlying physics of the system. The computation of the entanglement

entropy involved calculating the reduced density matrix and the average entanglement

entropy of eigenstates situated at the center of the energy band of the composite

Hamiltonian Ĥ = Ĥ2 + Ĥ4. The entanglement entropy was averaged across eigenstates

that corresponded to energy levels within the central 1/7th of the spectrum. In the

same way as for wave function statistics, the eigenstates of even and odd fermion
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parity were considered as an independent samples. Considering the density matrix ρ

defined by an eigenstate, which has definite parity, the partial trace leads to a block

diagonal structure ρA = trB ρ =
(
ρe

A
ρo

A

)
, with matrices ρoA and ρoA acting in even and

odd parity subspaces of subsystem A Hilbert space. A trace over the two-dimensional

parity sector defines the normalized reduced density matrix trP ρA = ρeA + ρoA. This

parity-traced density matrix then has the same entropy as the reduced density matrix

of a pure state in the 2N−1 system with broken fermion parity conservation. This can

be verified by comparing our results in the fully ergodic phase to Page’s prediction for

a Fock space of Dimension D = 2N−1. We further improve the statistics by averaging

over all
(
N
NA

)
Fock space bi-partitions.
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Introduction.—In recent years, classifications of many
body quantum systems as either “ergodic” or “many body
localized” (MBL) have become mainstream. This reflects
the discovery of a growing number of systems supporting
MBL phases [1–12] and naturally extends the distinction
between single particle ergodic and Anderson localized
systems to many body quantum disorder. However,
recently, we are seeing mounting evidence [13–21] that
the above dichotomy may be too coarse to capture the
complexity of chaotic many body systems. Specifically,
recent work has put the focus on the study of statistical
properties of many body wave functions. It has been
reasoned that, sandwiched between the extremes ergodic
and many body localized, there might exist intermediate
phases of nonergodic extended (NEE) states, i.e., quantum
states different from localized in that they have unbounded
support, and different from ergodic in that their amplitudes
are not uniformly distributed. One reason why this option
comes into focus only now is that standard tools in
diagnosing chaos—spectral statistics applied to systems
of small size of Oð101Þ physical sites—are too coarse to
resolve the spatial structure of quantum states in Fock
space. Indeed, the above indications are indirect in that they
are based on numerical and analytic work on disordered
graphs with high coordination numbers, artificial systems
believed to share key characteristics with genuine random
Fock spaces. The complexity of the matter shows in that,
even for this synthetic system, there is a controversy
between work suggesting an NEE phase [13–16] and other
refuting it [17].
In this Letter, we present a first principles analytic

description of NEE states in a deformed version of the
Sachdev-Ye-Kitaev (SYK) model [22,23]. The standard
SYK model is a system of 2N ≫ 1 Majorana fermions,
½χi; χj�þ ¼ 2δij, governed by the interaction Hamiltonian

Ĥ0 ¼
1

4!

X2N

i;j;k;l¼1

Jijklχ̂iχ̂jχ̂kχ̂l; ð1Þ

where the coupling constants are drawn from a Gaussian
distribution, hjJijklj2i ¼ 6J2=ð2NÞ3, and the constant J
defines the effective bandwidth of the system as γ ¼
ðJ=2Þð2NÞ1=2 [24]. The model (1) is known to be in
an ergodic phase with eigenfunctions uniformly distributed
in Fock space [24,25]. To make the situation more
interesting, we generalize the Hamiltonian to Ĥ¼Ĥ0þĤV ,
where

FIG. 1. Left: Cartoon of Fock space sites n;m; l;… (indicated
by dots) connected by hopping operator P (solid lines). ForΔ≫1
exceeding the bandwidth of the unperturbed model, one may
approach the problem perturbatively, i.e., taking the isolated
eigenstates of levels vn, vm, vl as a starting point. The hybridi-
zation leads to level broadening κ of resonant neighbors (indicated
by hatched link) which have both energies vn, vm ≲ 1 within the
SYK band. Right side: Typical energy distributions of Fock-space
neighbors connected by P. The hybridization does, in general,
not generate overlap between neighboring sites. For Δ < N2

wave functions are thus extended (→ Wigner-Dyson statistics)
yet confined to only a fraction ∼1=Δ2 of the total Fock space.
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ĤV ¼ γ
XD

n

vnjnihnj; ð2Þ

is a sum over projectors onto the occupation number
eigenstates jni ¼ jn1; n2;…; nNi, ni ¼ 0, 1, of a system
of complex fermions ci ¼ 1

2
ðχ2i−1 þ iχ2iÞ, i ¼ 1;…; N

defined via the Majorana operators. The coefficients vn
can be chosen to represent any operator diagonal in the
occupation number basis fjnig pertaining to a fixed one-
body basis. For example, any one-body operator [26,27]
Ĥ0 ¼ 1

2

P
i;jJijχ̂iχ̂j can be diagonalized in the fermion

representation and described in this way. However, for
our discussion below it will be sufficient to consider
realizations of maximal entropy with coefficients vn drawn
from a box distribution of width Δ symmetric around zero.
In this way Δ sets the effective strength of the coupling in
units of the SYK bandwidth, and in the limit of asymptoti-
cally large Δ enforces Fock space localization in states n
with energies vn. TheHamiltonian Ĥ0 perturbs this “Poisson
limit” via transitions jni → jmi between states nearby in
Fock space. (The two-body Ĥ0 changes the occupation of a
state jni by at most four, and it preserves the number parity,
where we focus on even parity states throughout.) It does so
via only an algebraically small number ∼N4 ∼ lnðDÞ of
independent matrix elements, and thus defines an operator
with strong statistical correlation. However, we will see that
Ĥ0 is very efficient in introducing many body chaos, as
evidenced by the onset of Wigner-Dyson (WD) spectral
statistics, including for values Δ ≫ 1, where the diagonal
still dominates. Our main objective is to explore the profile
of the many body wave functions in this setting.
Qualitative picture.—Before turning to the quantitative

analysis of the problem, let us outline an intuitive picture of
nonergodic wave function statistics. Let us work in
dimensionless units, where the SYK bandwidth 1∼JN1=2

is set to unity, or J ∼ N−1=2. Consider a situation where the
strength of the diagonals Δ ∼ Nα, α > 0 parametrically
exceeds the bandwidth. In this case, we have a situation
where the “hopping” in Fock space induced by the SYK
Hamiltonian does not effectively hybridize the majority of
the ∼N4 states, m; l;…, neighboring a given n, cf. Fig. 1.
With the characteristic hopping amplitude t∼JN−3=2∼N−2,
a self-consistent golden rule argument may be applied
to estimate the residual smearing κ of n as κ ∼ jtj2
½N4ðκ=ΔÞ�ð1=κÞ ∼ ð1=ΔÞ ∼ N−α, where the term in paren-
theses is the number of neighbors that are in resonance, and
∼κ−1 is the broadened energy denominator. The effective
hybridization of two nearest neighbors requires overlap of
their smeared levels, a condition satisfied only by a fraction
ðκ=ΔÞ ∼ Δ−2 of neighbors. From this argument we infer
that typical wave functions occupy only a number D=Δ2 ∼
D=N2α of the available D sites in Fock space. We also note
that for N4=Δ2 ¼ N4−2α ∼ 1 the number of resonant
neighboring levels becomes of Oð1Þ. This is when we

expect the wave functions to fragment and a transition to
the Poisson regime to take place.
Matrix integral representation.—To obtain a more

quantitative picture, we start from a first quantized repre-
sentation, where the Hamiltonian Ĥ is considered as a
sparse matrix acting in a huge Fock space. This perspective
is complementary to that of the more conventional many
body GΣ formalism [22] probing the physics of collective
fluctuations close to the ground state. Formulated in this
language, the problem becomes one of random matrix
diagonalization and methods such as the powerful super-
symmetry technique, originally designed to solve single
particle hopping problems, become applicable. Specifically,
the occupation number basis fjnig plays a role analogous to
the position basis of a fictitious quantum state and Ĥ0 and ĤV

act as hopping and “on-site potential”Hamiltonians, respec-
tively. Within the first quantized approach, information on
the statistics of themany bodywave functions jψi at the band
center, ϵψ ¼ 0 (generalization to generic energies is straight-
forward but omitted for simplicity), is contained in thematrix
elements of the resolvent, G�

nn0 ¼ hnj � iδ − ĤÞ−1jn0i.
Specifically, the qth moment is defined as Iq ≡ ð1=ν0ÞP

nhjhψ jnij2qδðϵψ Þi, where h…i denotes averaging over
the randomness in the model, and ν0 ¼ hPψ δðϵψÞi is
the density of states in the band center. Using the eigen-
function decomposition Gþ

nn ¼
P

ψ jhψ jnij2ðiδ − ϵψ Þ−1,
this can be expressed as Iq ¼ −ð1=πν0Þlimδ→0ð2iδÞq−1P

n ImGþ
nnG

þðq−1Þ
nn [28], where the last equality relies on

the absence of degeneracies Eψ ≠ Eψ 0 , for ψ ≠ ψ 0 in a
disordered system. (For completeness, we apply the same
setup to compute the eigenvalue statistics and diagnose
Wigner-Dyson or Poisson statistics. See Supplemental
Material [29] for details.) Our principal workhorse in
computing the realization average of these expressions is
an exact integral representation hIqi¼∂β∂q−1

α
R
dYe−SðY;α;βÞ.

Here, the integration variables Y ¼ fYss0;σσ0
nn0 g are 2 × 2 ×D-

dimensionalmatrices which on top of the Fock space index n
contain an index s; s0 ¼ � labeling advanced and retarded
states, and a two-component index σ; σ0 ¼ b; f distinguish-
ing between commuting (Ybb, Yff ) and Grassmann valued
(Ybf , Yfb) matrix blocks [31]. This “supermatrix structure”
[29] is required to cancel unwanted fermion determinants
appearing in the computation of purely commuting or
anticommuting matrix integrals. (We cannot use replicas
to achieve determinant cancellation because the analysis
will involve one nonperturbative integration, not defined in
the replica formalism.)
Referring for a derivation of the above integral, and the

discussion of the source parameters α, β required to generate
the wave function moments to the Supplemental Material
[29], the action SðYÞ≡ SðY; 0; 0Þ of the field integral is
given by
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SðYÞ¼−
1

2
STrðYP−1YÞþSTr lnðiδσ3−ĤVþ iγYÞ; ð3Þ

where STrðXÞ≡P
n;s;σð−ÞσXss;σσ

nn is the canonical trace
operation for supermatrices [32]. To understand the structure
of the action, notice that the Green functions describe the
propagation of wave functions subject to random scattering
in Fock space. Contributions surviving the configuration
average are correlated as indicated in Fig. 2. The first term
in the action describes how the pair amplitudes Yss0;σσ0

n;n0

represent the propagation of two such states, specified by a
doublet of indices ðn; s; σÞ and ðn0; s0; σ0Þ. It is defined by an
operator P, which acts as PY ≡ ð1=N ÞPa XaYX

†
a, where

N ¼ ð2N
4
Þ, i.e., the multiplication of the two states repre-

sented by Y by the Majorana product operators contained in
the Hamiltonian, where Xa ≡ χiχjχkχl, and the shorthand
a ¼ ði; j; k; lÞ is used. The second term couples the Y
matrices to the fermion propagator effectively describing
the propagation in between SYK-scattering events, where
ðσ3Þss0 ¼ ð−Þsδss0 does the bookkeeping on causality.
Stationary phase approach.—Our strategy is to evaluate

the matrix integral by stationary phase methods backed by
excitation gaps present in the limit δ → 0. The structure of
the action suggests looking for solutions of the stationary
phase equations δȲSðȲÞ ¼ 0 diagonal in Fock space
Ynn0 ¼ Ynδnn0 . Physically, this restriction means that for
a fixed realization of the diagonals vn ≠ 0 phase coherence
of the pair propagation requires n ¼ n0 in the representation
of Fig. 2. The stationary phase equation then assumes the
form

Yn ¼ i
X

m

Πnm
1

i δγ σ3 − vm þ iYm
; ð4Þ

where the projection of the pair-scattering operator
PdPPd ≡ Π on the space of diagonal matrix configurations
acts on diagonal configurations as ðΠXÞn ¼

P
mΠnmXm ¼

ð1=N ÞPa;m jðX̂aÞmnj2Xm. The solution of the equation
now essentially depends on the structure of this operator.
We first note that the operators X̂a change at most four of
the N binary occupation numbers contained in n, implying
that Π is a local hopping operator in the space of n
states. The permutation symmetry inherent to the sum
over all configurations a ¼ ði; j; k; lÞ further implies that
the hopping strengths Πnm ¼ Πjn−mj depend only on the
occupation number difference between Fock space states,
where a straightforward counting procedure yields Π0 ¼
NðN − 1Þ=2N , Π2 ¼ 4ðN − 2Þ=N , and Π4 ¼ 16=N , and
all other matrix elements vanish. Armored with this result,
we interpret the right-hand side (r.h.s.) of the mean field
equation Eq. (4) as a sum over a large number of terms,
which are effectively random due to the presence of the
coefficients vm. In this way, YnðvÞ becomes a random
variable depending on the realizations v ¼ fvmg.
The structure of the mean field equation, and the

transition rates Πnm identifies the components Yss
n as the

self energies dressing the retarded (s ¼ þ) and advanced
(s ¼ −) Fock space propagators (also cf. inset of Fig. 2.).
The solutions Yn are obtained as sums over large numbers
of random contributions, which for small Δ implies a self
averaging property Yn ≃ hYniv ≡ Y0, where the r.h.s.
denotes the average over the independent distribution over
vm. Ignoring the imaginary part of Yn (which does no more
than inducing a weak shift vn → vn þ ImYn ≃ vn of the
random energies), and averaging v over a box distribution
h…iv ¼

Q
m

RΔ=2
−Δ=2ðdvm=ΔÞð…Þ, we obtain Y0 ¼ κσ3,

where the self energy κ obeys the equation κ ¼
ð2=ΔÞ arctanðΔ=2κÞ. The solution smoothly interpolates
between κ ≃ 1 for the weakly perturbed model Δ ≪ 1 and
κ ≃ π=Δ for Δ ≫ 1. In accordance with the qualitative
discussion above, this decay reflects that for Δ ≫ 1 the
majority of sites neighboring a fixed n are off resonant
and decouple from the self energy. We also note that the
averaged density of states ν0 ¼ −ImhtrðGþÞi ¼ Dκ=πγ
shows the same behavior. Before proceeding, let us ask
when the above approximations break down and the
stationary solutions become strongly fluctuating in the
sense varðYnÞ > Y2

0. Assuming that Ym ≃ Y0 on the r.h.s.
of Eq. (4), a straightforward calculation leads to
varðYnÞ ≃ ð10π=N4κ2ÞF ðΔ=2κÞ, where F ðxÞ is a function
monotonically increasing from F ð0Þ ¼ 0 to F ðxÞ ¼ Oð1Þ
at x ∼ 1 before decaying as F ðxÞ ∼ 1=x at x ≫ 1 [33].
A balance varðYnÞ ∼ Y2

0 is reached when κ2 ∼ Δ−2 ∼
ð1=N4κ2Þðκ=ΔÞ ∼ N−4, where κ ∼ Δ−1 was used. This
shows that only for disorder strength Δ > ΔP ∼ N2 para-
metrically larger than the bandwidth, the homogeneity
of the stationary phase configuration in Fock space
gets compromised. This observation is one of the most

FIG. 2. The scattering of wave function amplitudes in Fock
space. Variables Yss0;σσ0

nn0 describe the correlated propagation of
resolvents (solid lines) labeled by a conserved index ðs; σÞ.
Scattering processes (indicated by dots) can be distinguished into
those dressing propagators by “self energies” (dashed lines
connecting same resolvent) and vertex contributions (dashed
lines connecting different resolvents). Hatched regions summa-
rize repeated, ladder-diagrams of vertex contributions and define
the slow modes in the system. Inset: Self consistency equation for
self-energy Eq. (4).
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important results of this Letter. As we will demonstrate in
the following, it provides the basis for the analytical
extraction of wave functions and spectra.
Wave function statistics.—In the limit δ → 0, Y0 ¼ κσ3

is but one element of a manifold of stationary solutions,
Y0 ¼ κTσ3T−1 ≡ κQ, where T ¼ fTss0;σσ0 g is a 4 × 4
rotation matrix in advanced-retarded and super space.
The absence of Fock-space indices implies ½P; Q� ¼ 0,
which in combination withQ2 ¼ 1means that the first term
in Eq. (3) is independent of T. We conclude that the
stationary phase action of the matrix integral is given by

S½Q� ¼ STr lnðiδσ3 − ĤV þ iγκQÞ: ð5Þ

This action is known to describe [34] the Rosenzweig-
Porter (RP) model [35]: a D-dimensional Gaussian random
matrix ensemble perturbed by a fixed diagonal, ĤV . We
thus conclude that for diagonals withΔ < ΔP the deformed
SYK model and this much simpler model are in the same
universality class. The first step of the computation of
the wave function statistics [34] based on Eq. (5) is the
integration over the matrix T. This integration is not
innocent, because the 2 × 2 block Tbb defines a non-
compact integration manifold [32]. The convergence of
the corresponding integral is safeguarded only by the
infinitesimal symmetry breaking parameter iδ, and inte-
gration over T [29] indeed produces a singular factor δ−qþ1

canceling the δ dependence in the definition of the wave
function moments, and leading to the result

Iq ¼
q!
νq0

X

n

hνðnÞqiv; νðnÞ≡ ν0
Dðv2n þ κ2Þ : ð6Þ

Intuitively, the r.h.s. contains the qth moments of local
Green’s function matrix elements, with energy denomina-
tors broadened by the self energy κ. It is straightforward to
average this expression over the box distribution of the
individual vn and obtain

Iq ¼ −ð−2ÞqqD1−q∂q−1
y2
0

ð1=y0ΔÞ arctan ðΔ=2y0Þ: ð7Þ

For Δ ≪ 1 smaller than the SYK bandwidth, this asymp-
totes to the random matrix result IðqÞ ¼ q!ðD=2Þ1−q,
demonstrating a uniform state distribution. In the
opposite case, Δ ≫ 1, y0 ¼ π=Δ and the moments Iq ¼
ð2π2Þ1−qqð2q − 3Þ!!Δ2ðq−1ÞD1−q, show power law scaling
in Δ. Finally, for Δ ∼ Nα the wave functions become
nonergodic Iq ∼ ½D=N2α�1−q, and now only occupy a
∼1=N2α fraction of Hilbert space, in line with the quali-
tative discussion above. In Fig. 3, these predictions are
compared to wave function moments obtained by exact
diagonalization forN ¼ 13 as a function of the deformation
parameter (main panel), or as a function of system
size N ¼ 7;…; 13 at fixed deformation (lower left panel).

The figure demonstrates excellent, and parameter free
agreement with the analytic result.
The figure also confirms the statement that throughout

the entire window Δ < ΔP, or 0 ≤ α < 2, the spectral
statistics remains Wigner-Dyson like. This is probed by
comparing the relative, or Kullback-Leibler entropies [37]
KLðpjqÞ≡P

k pk lnðpk=qkÞ between the numerically
obtained moments qk and the Wigner-Dyson, or Poisson
distribution pk, respectively. The upper inset of Fig. 3
shows that the change between the two statistics takes place
at the deformation strength analytically predicted as
Δ ∼ ΔP ≃ 120, beyond which both saturation of the wave
function moments [36], and the level statistics indicate
Poissonian behavior.
Conceptually, the robustness of spectral correlations

follows from the equivalence (SYK ∼Δ<ΔP RP), the latter
being a model demonstrating the strong resilience of a
single random matrix against perturbations on its diagonal.
The domain of the above equivalence is limited by both the
deformation strength of SYK Δ≲ N2, and the width of the
probed spectrum ϵ≲ δN2, where δ is the many body level
spacing [38]. Outside this window, for Δ≳ N2, the theory
predicts a fragmentation of the Fock space homogeneous
mean field (equivalent to the fluctuations of a single
random matrix ensemble) into inhomogeneous stationary
configurations, κ → κn. On the background of this inho-
mogeneous configuration one may construct a lattice
field theory that indeed predicts a Fock space localiza-
tion transition at Δ ∼ ΔP [39]. Finally, models of the
perturbation different from the identically distributed vn,
lead to similar results. Specifically, a random one-body

FIG. 3. Inverse participation ratio as a function of Δ, normal-
ized by I2ðΔ ¼ 0Þ, from exact diagonalization N ¼ 13; the
analytical prediction Eq. (7) is indicated by the solid line. Left
inset: Relative entropy (Kullback-Leibler) between numerical
and Wigner Dyson (dashed), respectively, Poisson (solid) dis-
tributions. Right inset: Inverse participation ratio as a function of
N, normalized by I2ðN ¼ 7Þ, from exact diagonalization at
Δ ¼ 10; solid line is the analytical prediction from Eq. (7) [36].
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term, Ĥ1 ≡P
N
j¼1 η2j−1η2jvj is equivalent to ĤV with

statistically correlated vnðfvjgÞ. Referring to Ref. [39]
for details, this leads to similar scaling over a slightly
higher tolerance window, ΔP ≲ N9=4.
Summary and discussion.—The model considered in this

Letter defines the perhaps simplest many body system
showing a competition between Fock space localization
and ergodicity. We are seeing unambiguous evidence that
the passage between the two limits is not governed by a
single many body localization transition but contains a
parametrically extended intermediate phase characterized
by a coexistence of Wigner-Dyson spectral statistics and
non-trivial extension of wave functions over Fock space.
Methodologically, this phenomenon emerged as the result
of a competition: the hopping in Fock space generated by
the SYK two-body interaction stabilized a uniform mean
field against the “localizing” tendency of the Fock-space
diagonal operator Ĥv. We have identified an intermediate
regime, where the corresponding low energy theory is
governed by a homogeneous fluctuation mode T0, acting
on top of a background containing inhomogeneous energy
denominators. This mechanism appears to be of a rather
general nature and makes one suspect that nonergodic
wave function statistics in coexistence with random matrix
theory spectral correlations could be a more frequent
phenomenon than previously thought.
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We present a fully analytical description of a many-body localization (MBL) transition in a microscopically
defined model. Its Hamiltonian is the sum of one- and two-body operators, where both contributions obey a
maximum-entropy principle and have no symmetries except Hermiticity (not even particle number conservation).
These two criteria paraphrase that our system is a variant of the Sachdev-Ye-Kitaev model. We will demonstrate
how this simple zero-dimensional system displays numerous features seen in more complex realizations of
MBL. Specifically, it shows a transition between an ergodic and a localized phase, and nontrivial wave-function
statistics indicating the presence of nonergodic extended states. We check our analytical description of these
phenomena by a parameter-free comparison to high performance numerics for systems of up to N = 15 fermions.
In this way, our study becomes a test bed for concepts of high-dimensional quantum localization, previously
applied to synthetic systems such as Cayley trees or random regular graphs. The minimal model describes a
many-body system for which an effective theory is derived and solved from first principles. The hope is that the
analytical concepts developed in this study may become a stepping stone for the description of MBL in more
complex systems.

DOI: 10.1103/PhysRevResearch.3.013023

I. INTRODUCTION

Quantum wave functions subject to strong static ran-
domness may show nonergodic localized behavior. To date,
we distinguish between two broad universality classes of
quantum localization: Anderson localization [1] in low-
dimensional single-particle systems and many-body local-
ization (MBL) in random many-particle systems [2,3]. In
principle, there is no fundamental distinction between these
two. They both reflect the lack of ergodicity of wave functions
on random lattices due to massive quantum interference. How-
ever, the all important difference is that the lattice structure is
defined in the former case by a low-dimensional solid and in
the latter by the high-dimensional Fock-space lattice formed
by the occupation number states of a many-particle system.

Many-body localization is traditionally discussed in the
context of spatially extended many-body systems, such as
interacting quasi-one-dimensional electron systems [2,3] or
random spin chains [4–13]. However, that spatial extension
is an added layer of complexity to a problem that manifests
itself already in spatially confined geometries: a competi-

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

tion between hopping and randomness on the complex lattice
structure defined by an interacting particle problem. In fact,
there appears to be a paradigm shift in the field away from
studying the quantum critical phenomena of the localiza-
tion transition in extended systems towards manifestations of
MBL in systems of mesoscopic extension, such as interacting
quantum dots [14–18], small-size optical lattices [19–21], or
small-size superconducting qubit arrays [22,23]. This devel-
opment is driven in part by pragmatism. The explosion of
Fock-space dimensions with increasing system size makes nu-
merical access infamously hard and classical computers may
never be powerful enough to probe the scaling regime of the
MBL transition with sufficient reliability. Another motivation
lies in the fascinating and only partly understood physics of
localization in many-body systems of intermediate size.

At this point, even basic aspects of MBL remain enigmatic,
including in small-size systems. Among these, one of the most
controversial topics concerns the presence or absence of a
phase of nonergodic but extended (NEE) states intermediate
between the regime of ergodic wave functions at weak and
localized wave functions at strong disorder. If existent, such
a phase must be born out of the main principles distinguish-
ing MBL from low-dimensional Anderson localization: the
high coordination number of Fock space lattices, the strong
correlation of their disorder potentials, and the sparsity of the
hopping matrix elements in Fock space (see the next section
for a more detailed discussion). Reflecting the complexity of
the problem, the physics of NEE states is often discussed for

2643-1564/2021/3(1)/013023(19) 013023-1 Published by the American Physical Society



MONTEIRO, MICKLITZ, TEZUKA, AND ALTLAND PHYSICAL REVIEW RESEARCH 3, 013023 (2021)

synthetic [24–28] or phenomenological models [29], sidestep-
ping one or several of the above complications. (However,
even for these, the existence of NEE phases is discussed
controversially.)

Clearly, a numerically and analytically solvable minimal
model defined by a microscopic Hamiltonian would provide
an important contribution to our understanding of MBL. It
would provide a test bed for the validity of analytical ap-
proaches by comparison to numerical diagonalization and
might turn into a building block in the study of more com-
plex systems. In this paper we report on the definition and
solution of such a system. Here the term “solution” refers
to the following: (a) the construction of an effective theory
of the microscopically defined system by parametrically con-
trolled approximation, (b) the computation of observables
(many-body wave function and spectral statistics) from that
theory, and (c) parameter-free comparison to numerics. In
this hierarchy, the perhaps most important element is (a).
The effective theory we derive assumes the form of a matrix
path integral in Fock space; see Eq. (40) for an impression.
From this representation, observables can be extracted by
powerful methods developed in the localization theory of
high-dimensional lattices. [For a pioneering previous compar-
ison between analytical and numerical results for a concrete
model system we refer to Ref. [30]. However, that work was
based on scaling theory for a specific class of observables.
Lacking element (a), it did not have the scope of the present
analysis.]

The model we consider is implicitly defined by the follow-
ing criteria: Its Hamiltonian Ĥ = Ĥ2 + Ĥ4 contains the sum of
a one-body and a two-body part. Both are maximally entropic
and have no symmetries besides Hermiticity (not even particle
number conservation). In the noninteracting case Ĥ4 = 0, the
product eigenstates of Ĥ2 define a basis in which the system
is trivially localized. The Hamiltonian Ĥ4 acts as a hopping
operator and at a critical strength will induce a many-body
localization transition. In a manner detailed in the next sec-
tion, the criteria listed above state that Ĥ is the Majorana
Sachdev-Ye-Kitaev (SYK) Hamiltonian.

The maximum-entropy criterion makes the SYK model
much simpler than MBL systems with spatial extension. At
the same time, it displays a wealth of phenomena charac-
teristic of MBL. Foremost among these is a change from
delocalized to localized behavior. For finite N , this is a
crossover. However, the exponential dependence of the Fock-
space lattice extension on N implies that it rapidly acquires
signatures of a transition as N increases. Second, the model
supports a regime (not a phase) of NEE states prior to the
onset of localization. We will discuss how the diminishing
support of these states upon approaching the transition reflects
the structure of the system’s Fock space and how this differs
from phenomenological models. However, the most important
point of all is that the spectral and wave-function statistics of
the model can be computed analytically and that these results
can be numerically tested in a parameter-free comparison. The
analytical approach is based on matrix integral techniques im-
ported from the theory of high-dimensional random lattices.
We apply these techniques subject to a number of assumptions
which should generalize to other many-body systems of small
spatial extension and/or a high degree of connectivity. We

therefore hope that the approach discussed in this paper may
become a stepping stone for the solution of more complex
manifestations of MBL.

Plan of the paper. In the next section we introduce our
model system, qualitatively discuss its physics, and summa-
rize our main results. The remaining parts of the paper discuss
the derivation of these findings, where we try to keep the
technical level at a bare minimum. In Sec. III we map the com-
putation of disorder-averaged correlation functions onto that
of an equivalent matrix integral. In Sec. IV a stationary-phase
approach is applied to reduce the matrix integral to an effec-
tive theory describing physics at large timescales. In Secs. V
and VI we apply this representation to the discussion of wave-
function statistics and the localization transition, respectively.
We conclude in Sec. VII with a discussion comparing our
results to those obtained for other models and on possible
generalizations to other MBL systems. Technical parts of our
analysis are relegated to a number of Appendixes.

II. MODEL AND SUMMARY OF RESULTS

In this section we first introduce the SYK model and
then discuss its physics of quantum localization in qualitative
terms. Much of this outline is formulated in general terms
which should carry over to similar models. In the remaining
parts of the section we get more concrete and summarize our
results in comparison to numerics.

A. The SYK model

The SYK Hamiltonian [31,32]

Ĥ4 = 1

4!

2N∑
i, j,k,l=1

Ji jkl χ̂iχ̂ jχ̂kχ̂l (1)

describes a system of 2N Majorana fermions {χ̂i, χ̂ j} = 2δi j ,
subject to an all-to-all interaction, with matrix elements {Ji jkl}
drawn from a Gaussian distribution of variance 〈|Ji jkl |2〉 =
6 J2/(2N )3. Defined in this way, it defines an ideal of a
massively interacting quantum system lacking any degree of
internal structure. Due to the least information principle re-
alized through the stochastic interaction, all single-particle
orbitals i stand on equal footing and the absence of a continu-
ous U(1) symmetry prevents the fragmentation of the Fock
space into sectors of conserved particle number. Reflecting
these features, the physics of the SYK Hamiltonian at large
timescales becomes equivalent to that of random matrix the-
ory (RMT), with wave functions homogeneously distributed
over the full Hilbert space.

A tendency to Fock-space localization is included by
adding to Ĥ4 a free-particle contribution [33,34]

Ĥ2 = 1

2

2N∑
i, j=1

Ji j χ̂iχ̂ j, (2)

with a likewise random antisymmetric matrix Ji j = −Jji, with
matrix elements {Ji j} drawn from a Gaussian of variance
〈|Ji j |2〉 = δ2/2N . Without loss of generality, we may assume
{Ji j} to be diagonalized into a form Ĥ2 = i

∑N
i viχ̂2i−1χ̂2i,

where ±vi are the eigenvalues of the Hermitian matrix i{Ji j}.

013023-2
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FIG. 1. Hypercubical Fock space of a 2N = 14 Majorana sys-
tem. The numbers indicate the bit depth of states in the computational
fermion basis and the lines are a qualitative representation of the con-
nectivity of the reference state |0, 0, 0, 1, 1, 0, 0〉. For large values of
N , the pattern of connections becomes sparse. However, there remain
exponentially many, proportional to D connections, statistically cor-
related due to the small number, order of N4, independent random
amplitudes.

For the above distribution of the matrix elements Ji j these
eigenvalues are random numbers with variance order of δ.

We next translate from the Majorana many-body Hamil-
tonian formulation to one in terms of a fermion Fock space
(lattice). To this end, we define N complex fermion annihi-
lation operators ĉi = 1

2 (χ̂2i−1 + iχ̂2i ) satisfying {ĉi, ĉ†
j } = δi j .

With the number operators n̂i = ĉ†
i ĉi, we then have

Ĥ2 =
N∑

i=1

vi(2n̂i − 1), var(vi ) = δ2. (3)

Representing this Hamiltonian in the basis of 2N occupation
number states |n〉 = |n1, n2, . . . , nN 〉, ni = 0, 1, it assumes the
form of a random potential vn = ∑

i vi(2ni − 1) on the hy-
percube defined by all sites n = (. . . , 0, 0, 1, 0, 0, 1, 0, . . .).1

In the same basis, the interaction Ĥ4 assumes the role of a
fermion number conserving hopping operator Ĥ4 connecting
sites of bit separation 2 and 4.2 This hopping introduces a

1Although the eigenvalues {±vi} of Ji j are correlated, their sums,
i.e., the eigenvalues of Ĥ2, become uncorrelated for large N .

2For two states |n〉 and |m〉 we define the Hamming distance
|n − m| as the number of bits in which the states differ. Containing

complex connectivity pattern on the two decoupled sublattices
of definite (even, say) parity, containing

D = 2N−1 (4)

sites each. Figure 1 illustrates this structure for a Fock space of
14 Majorana fermions. The lines indicate the states connected
to the arbitrarily chosen site |0, 0, 0, 1, 1, 0, 0〉. Notice the
high coordination number and the absence of lattice period-
icity, symptomatic for this and for other Fock-space lattices.
The competition between the localizing random potential Ĥ2

and the delocalizing hopping Ĥ4 defines the MBL problem,
regardless of their detailed realization.

B. Qualitative discussion

In this section we discuss the physics of the above random
system in qualitative terms. Specific topics include the exis-
tence of a localization-delocalization transition, its signatures
in spectral and wave-function statistics, and a regime of noner-
godically extended states. Most parts of this discussion do not
make specific reference to the SYK model and should equally
apply to other systems.

The single most important system quantity relevant to the
understanding of the above observables at a specific energy,
say, E , is the local density of states in Fock space

νn ≡ − 1

π
Im

〈
〈n| 1

E+ − Ĥ2 − Ĥ4
|n〉

〉
J

, (5)

where E+ ≡ E + iε and 〈· · · 〉J indicates that we consider νn

averaged over realizations of Ĥ4, but at a single realization
of Ĥ2. (The discussion above shows that the large coordina-
tion number of the lattice makes νn a largely self-averaging
quantity. Averaging over Ĥ4 is largely a matter of technical
convenience.) From the perspective of site n, the large number
of nearest neighbors represents an environment and on this
basis one expects a Lorentzian profile

νn = 1

π

κn

v2
n + κ2

n

, (6)

where we have set E = 0 for definiteness and the broaden-
ing κn = κn(�4, δ, α) must be self-consistently determined
[cf. Eq. (32) below] in dependence on the following param-
eters: (a) the many-body band width �4 of the interaction
operator (�4 =

√
J2N/2 for the SYK Hamiltonian Ĥ4),3 (b)

the disorder strength δ or, equivalently, the distribution width
�2 of the on-site random potential (3) (for large N , the central-
limit theorem implies �2 = δN1/2),4 and (c) the number
order of Nα of nearest neighbors m connected to Fock-space

four fermion creation/annihilation operators and conserving fermion
number parity, the matrix elements of the interaction operator couple
states of Hamming distance 0, 2, and 4.

3Here we ignore corrections of O( 1
N ). However, for numerically

accessible sizes it is important to keep in mind the full expression for

the H4 band width �4 =
√

3J2

4N3

(2N
4

)
.

4In order to compare the analytical predictions with numerical
results without any fitting parameters it is important to use the full

expression for the H2 band width �2 =
√

δ2

2N

(2N
2

)
.
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FIG. 2. Four regimes I–IV of increasing disorder strength. The
band width �4 of the interaction operator is shown in comparison to
the band width of the on-site randomness �2. The distance between
neighboring levels is order of δ = �2N−1/2 and the relative magni-
tude of these scales defines the regimes discussed in the text.

sites n by the interaction Ĥ4 (α = 4 for the SYK Hamiltonian).
On this basis, we must distinguish between four regimes of
qualitatively different level hybridization κ (see Fig. 2).

Regime I: δ < �4N−1/2. In this regime, the Ĥ2 band width
�2 < �4 is below that of Ĥ4. The on-site randomness is
largely irrelevant and states are ergodically spread over the
full Fock-space lattice. Hybridization of levels over the full
�4 band width implies κn = �4.

Regime II: �4N−1/2 < δ < �4. The Ĥ2 band width �2

exceeds �4, implying that the majority of sites become inac-
cessible. States of fixed energy now populate only a fraction
of Hilbert-space sites. However, for a given site with energy
vn inside the accessible window �4, the hopping nearest
neighbors have accessible energy vn ± O(δ) and thus are
also accessible. As a consequence, κn = �4 for all sites with
energy |vn| � �4.

Regime III: �4 < δ < �4Nα/2. In this regime, the en-
ergetic separation even between nearest neighbors δ > �4

exceeds the interaction band width. In the consequence, the
hybridization of levels with energy vn ≈ 0 is suppressed down
to κn ∼ �4 × (�4/δ) and the band of accessible sites narrows
to this width. For a given site n inside the resonant window,
nearest neighbors of energy approximately O(δ) typically lie
outside it. However, a fraction order of (�2

4/δ)/δ = (�4/δ)2

of the nearest neighbors does satisfy the resonance condi-
tion. With order of Nα neighbors, this gives a number of
Nα (�4/δ)2 > 1 of hybridizing partner sites, which safeguards
the extension of states.

Regime IV: Nα/2�4 < δ. The number of nearest neighbors
satisfying the resonance condition becomes lesser than unity,
which implies strong localization of states in Fock space.

Regimes I–IV cover the entire spectrum from fully ex-
tended states I over NEE states II and III to localization IV.
(In regimes II and III states cover only a fraction of the Fock-
space sites. In this paper we are following the convention to
call such nonuniformly distributed states nonergodic. This is
a misnomer in that the states do remain uniformly distributed
over an energy shell of resonant sites.) The level broaden-
ing characterizing the local spectral density in the respective

regimes is described by the universal formula

κn ≈ κe−v2
n/κ2

, (7)

where the value of the hybridization parameter and the corre-
sponding disorder strengths are summarized in Table I.

Before leaving this section, it is worthwhile to com-
ment on various phenomenological approaches to MBL. We
distinguish between three categories of phenomenological
formulations. The most phenomenological class models Fock
space by a random matrix. For example, the Rosenzweig-
Porter model contains a Gaussian distributed random matrix
(as a proxy of the interaction operator Ĥ4) perturbed by a
likewise random diagonal representing Ĥ2 [29,35]. The sec-
ond class replaces Fock space by a high-dimensional synthetic
lattice, such as the Bethe lattice [24,25,36], or a random reg-
ular graph [26,27,37,38]. Finally, there is the random energy
model, which retains the microscopic structure of Fock space
but replaces the amplitudes vn by 2N uncorrelated random
variables (see our previous publication [39] for an applica-
tion of this idea to the SYK Hamiltonian). These models
are designed to mimic specific aspects of localization and
wave-function statistics in high-dimensional environments.
However, they fall short of describing the characteristic cor-
relations between site energies and high lattice coordination
number essential to the distinction of regimes I–IV and their
statistical properties reviewed in the next section.

One of the main messages of this paper is that the analytical
theory for real systems need not be more difficult than that
for synthetic models. What at first sight looks like a com-
plication,i.e., the combination of high coordination numbers
and correlations in the microscopic Fock space, actually is a
resource and leads to self-averaging (a source of simplicity) at
several stages of our computations below.

On this basis, we now discuss quantitative results obtained
for the description of regimes I–IV. For notational simplicity,
we work in units where the variance of the Ĥ4 matrix elements
equals J = (2/N )1/2. At this value, the band width of the
interaction operator �4 ≡

√
J2N/2 = 1.

C. Spectral statistics

We describe the statistics of the system’s many-body spec-
trum in terms of the spectral two-point correlation function at
the band center

K (ω) ≡ 1

ν2

〈
ν
(ω

2

)
ν
(
−ω

2

)〉
c
, (8)

where ν = ν(E = 0), with ν(E ) = ∑
ψ 〈δ(E − εψ )〉J the Ĥ4

averaged many-body density of states at zero energy E � 0,
and the subscript c stands for the cumulative average 〈AB〉c =
〈AB〉J − 〈A〉J〈B〉J .

1. Regimes I–III

In these regimes, wave functions are extended and their
eigenenergies are correlated and described by Wigner-Dyson
statistics. Assuming an odd number N of complex fermions
(for which the SYK model is in the unitary symmetry class A),
this reflects in the spectral statistics of the Gaussian unitary
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TABLE I. Different regimes of disorder strength, the associated level hybridization, spectral statistics, and eigenfunction support in
Fock space.

Regime Disorder δ Level broadening κ Spectral statistics State extension

I RMT δN1/2 = �2 < �4 κ ∼ �4 Wigner-Dyson D
II NEE1 �4N−1/2 < δ < �4 κ ∼ �4 Wigner-Dyson D�4/

√
Nδ

III NEE2 �4 < δ < �4Nα/2 κ ∼ �2
4/δ Wigner-Dyson D�2

4/
√

Nδ2

IV localization �4Nα/2 < δ κ = 0 Poisson O(1)

ensemble (GUE),

K (s) = 1 − sin2 s

s2
+ δ

( s

π

)
, s = πων, (9)

where ν = ∑
n νn is the average density of states. With the

local densities given by Eq. (6) and the vn distributed over a
range N1/2δ, we find

ν ≡
∑

n

νn = cD ×
{

1 in regime I
1√
Nδ

in regimes II and III. (10)

Here and throughout, c = O(1) represents numerical con-
stants. The second line of Eq. (10) states that in the regimes of
intermediate disorder strength, only a fraction D/

√
Nδ of ac-

tive sites contributes to the spectral support of wave functions.

2. Regime IV

In the regime of strongly localized states, eigenenergies
become uncorrelated and we expect Poisson statistics. In this
paper we use the change from Wigner-Dyson to Poisson statis-
tics as one of two indicators for the Anderson transition at the
boundary between regimes III and IV. Referring for a more
detailed discussion of the localization transition to Sec. II E
below, we note that in the literature [5], the difference between
the two types of statistics is often monitored by analysis of
r ratios [40], i.e., numerical comparison of the ratios rk ≡
εk+1−εk

εk−εk−1
between nearest-neighbor many-body energy levels εk

with the expected ratios for Poisson and Wigner-Dyson statis-
tics. However, we have observed that naked eye comparisons
can easily trick one into premature and qualitatively wrong
conclusions. Instead, we adopt a more sophisticated entropic
procedure detailed in Sec. V C and compute Kullback-Leibler
divergences, where the latter are defined as relative entropies
of the numerically observed distribution to the Poisson and
Wigner-Dyson distribution, respectively. Figure 3(b) shows
how this entropic measure changes abruptly at the localization
transition.

D. Wave-function statistics

The second class of observables considered in this paper is
the moments of wave functions |ψ〉 of zero energy εψ = 0,

Iq ≡ 1

ν

∑
n

〈|〈ψ |n〉|2qδ(εψ )〉J . (11)

The statistics of these moments not only indicate the localiza-
tion transition but, unlike spectral statistics, also differentiate
between the three weak-disorder regimes I–III.

1. Regime I

Wave functions are ergodically distributed over the
full Fock space, with moments given by those of the

FIG. 3. (a) Scaling of the inverse participation ratio I2 for system
sizes N = 11, 13, 15 as a function of the dimensionless disorder
strength δ/δc, where δc is the critical strength obtained by analytical
solution of the model in Eq. (F3). (b) Plot of the relative Kullback-
Leibler entropies KL between the numerical spectral statistics and
the Wigner-Dyson (dashed lines) and Poisson distributions (dotted
lines), respectively, for the same set of system sizes. In either case,
the analytically obtained δc overestimates the critical strength by an
N-independent factor of O(1). (c) and (d) Scaling of I2 and KL,
respectively, as a function of δ/δc, employing Eq. (16) with two
adjusted numerical parameters (see the discussion in the text).
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FIG. 4. Comparison of the numerical computation of the inverse participation ratio I2 as a function of the disorder strength δ for system
sizes (a) N = 11, (b) N = 13, and (c) N = 15 with the analytical prediction I2 = 8

√
Nδ2/πD [see Eq. (E8)]. Vertical dashed lines mark the

end of region I, the beginning of region III, and the scale δc at which Fock-space localization sets in [estimated from Eq. (F3)]. (Notice that the
inverse participation ratio here has not been normalized by its value at δ = 0, as in our previous publication [39].)

Porter-Thomas distribution

Iq = q!D1−q in regime I, (12)

otherwise found for the wave functions of random matrix
Hamiltonians. The result states that the complex ampli-
tudes 〈n|ψ〉 are independently distributed Gaussian random
variables.

2. Regimes II and III

The wave functions no longer ergodically occupy the full
Fock space. The bulk of their support is concentrated on the
subset of resonant sites vn ∼ κn. This behavior reflects in the
moments

Iq = cq

(
D√
Nδ

)1−q 2q(2q − 3)!!

κq−1
in regimes II and III,

(13)

where c = O(1). To make the connection of this expression to
Eq. (12) more transparent, consider the case of large q, where

Iq = cq!D1−q
res , q 	 1,

Dres = D ×
{

1√
Nδ

in regime II
1√
Nδ2 in regime III.

(14)

These moments again coincide with those of a Gaussian
distribution, now defined on the diminished number Dres of
resonant sites in Fock space, over which the wave functions
are uniformly spread.

Noting that δ ∼ Nη, η < 2, the dependence of Dres on D is
approximated as

Dres = D/ ln Dβ, β =
{

η + 1
2 in regime II

2η + 1
2 in regime III.

(15)

This suggests an interpretation in terms of a fractal whose
dimension differs from the naive dimension by a factor
D/ ln Dβ ∼ D/D0, rather than the more usual D/Dγ with
some γ > 0. Alternatively, we may interpret the wave func-
tions as ergodically or thermally extended over an energy shell
of sites defined by the condition vn ≈ κn.

Figures 4 and 5 show a comparison of our analytical
predictions for the wave-function moments dependence on
δ (Fig. 4) and on q and N (Fig. 5) to numerical simulations
for 2N = 22, 26, 30 Majorana fermions. Vertical dashed lines

FIG. 5. Verification of the scaling of our analytical prediction
(13) in q and N , respectively. In both panels we consider δ =
3 deep in regime III and Ĩq ≡ Iq/q(2q − 3)!! = (4

√
Nδ2/πD)q−1,

where the constants are taken from the accurate result for Iq in
regime III [Eq. (E8)].
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in Fig. 4 mark the boundaries between different regimes and
δc is the scale at which Fock-space localization sets in [see
Eq. (16) and the refined expression (F3) accounting for 1/N
corrections]. For the numerically accessible N values, regime
II, N−1/2 
 δ 
 1, lacks the width required for the compari-
son with power laws and we concentrate on regime III. Given
that there is no fitting of numerical parameters and numerical
error bars are smaller than symbol size, the comparison is
good. We notice a slight deviation in the q scaling, increasing
for large moments q. However, this mismatch does not show
consistent system size dependence and we cannot attribute a
clear trend to it. Starting from N = 13, we also see deviations
of the predicted δ scaling at large values, which is a first
indication of the proximity of the Anderson transition. At
first sight, it may seem paradoxical that these signatures are
first seen for larger N , where the parametric dependence of
the localization threshold δ � N2 increases in N . However,
the situation becomes clearer when we represent the inverse
participation data as a function of a scaled parameter, as we
will discuss next.

E. Strong localization

The wave functions describing random hopping on a lattice
are localized on small-size clusters if statistically the nearest-
neighbor hopping matrix elements become smaller than the
variations of the local site energies. In this work we numer-
ically and analytically compute the threshold strength of the
disorder where this happens.

1. Analytical approach

Above we reasoned that the problem of MBL is defined
by a competition of localizing on-site disorder and delocal-
izing hopping in a complex high-dimensional lattice. Unlike
in previous work on Anderson localization in high dimen-
sions, which is formulated on simplified synthetic lattice
structures such as the Bethe lattices [41,42] or random regular
graphs [24,41,43,44], here we directly work in Fock space.
What helps to keep this more complicated problem under con-
trol is the huge effective lattice coordination number of O(N4)
and a simplification known as the effective-medium approx-
imation [45]. This approximation is commonly applied in
the discussion of Anderson localization on high-dimensional
lattices and backed by their large coordination numbers. It
describes transport as a process avoiding local loops (see
Fig. 6), while multiple link traversals [Fig. 6(a)] are included.
The rationale behind this simplification is that at any given
order in hopping perturbation theory, amplitudes with the low-
est number of statistically independent energy denominators
contribute the strongest. Its application to the SYK lattice, de-
tailed in Sec. VI, sums these processes via recursion relations
[such as Eq. (44)] whose solution leads to prediction (F3) for
the critical disorder strength. For large N 	 1 this formula
simplifies to

δc � N2

4
√

3
ln N, N 	 1. (16)

The characteristic δc ∼ N2 ln N scaling was first predicted in
Ref. [14], where the logarithmic correction relative to the

FIG. 6. (a) Cartoon representation of a subset of sites in Fock
space connected by a hopping amplitude containing a loop inser-
tion. The four hopping amplitudes constituting the loop come with
four independent energy denominators. (b) This fourth-order hop-
ping amplitude with site revisits has only two independent energy
denominators and contributes parametrically stronger. (c) Hopping
amplitudes resumed according to the procedure shown in (d).

naive estimate δc ∼ N2 mentioned in the Introduction ac-
counts for resonant hybridization with sites beyond nearest
neighbors.

However, our aim here is to compare to the real world
of small-size systems N = O(10) where things get more
complicated. For one, the difference between the asymptotic
result and the more precise expression (F3) becomes notice-
able. Second, various approximations in the execution of the
effective-medium program rely on the largeness of N and
again may lead to errors in terms subleading in N . These
uncertainties must be kept in mind when we compare to the
numerical computation of the threshold.

2. Numerical approach

As indicated above, we detect the onset of localization via
two indicators. The first is the wave-function statistics, where
I2 serves as a transition order parameter jumping between
the values I2 ∼ D−1 in the ergodic weak-disorder regime to
I2 ∼ 1 in the localized phase. Here the first value must be
taken with a grain of salt, again due to finite system size. Our
discussion in the preceding section shows that before reaching
the transition, in regimes II and III, we have deviations away
from the ergodic limit I2 ∼ 1/D. In the thermodynamic limit,
these are inessential [because D is exponential in N while
the corrections of Eq. (14) are in powers of N]. However,
for system sizes in numerical reach, we cannot expect an
actual jump in the order parameter. The best one can hope
for is gradual steepening of the curve I2(δ) for δ → δc upon
increasing system size.

The second diagnostic is spectral statistics, where we mon-
itor the proximity to a Wigner-Dyson or Poisson distribution
via the Kullback-Leibler entropy as discussed in Sec. V A.
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Ideally, one would hope that both signatures, inverse partic-
ipation ratio and spectral statistics, reveal a phase transition
via a crossing point when subjected to appropriate finite-size
scaling and that these crossing points sit at the same value.
In reality, we almost, but not fully, observe this behavior.
In Fig. 3 we show the inverse participation ratio I2 and the
Kullback-Leibler entropy as a function of the scaled variable
δ/δc, where δc is given by the analytical prediction (F3) in
terms of the Lambert W function. We observe that (i) both
observables show reasonably well defined crossings with a
tendency of sharpening behavior for increasing system size,
however, (ii) these crossings deviate from the analytically
predicted value δ/δc = 1 by a numerical factor of O(1) and
by a factor of similar magnitude among themselves. Turning
to different scaling variables, one may sharpen the finite-size
scaling of either one of the two observables. For example,
Fig. 3(c) shows I2 as a function of δ/δc, with δc from Eq. (16)
with two numerical parameters outside and inside the loga-
rithm adjusted to improve visibility of the crossing point.5

However, this comes at the expense of a more diffuse scal-
ing of the entropy, as shown in Fig. 3(d). We observe that
the numerically obtained scaling for small systems responds
sensitively to the finite-N corrections [Eq. (F3) vs Eq. (16)].

All in all, we consider the agreement with the numerics
quite favorable. We see clear evidence of critical behavior in
two observables and the position of the transition is obtained
without free fit parameters from the analytical solution of an
effective lattice model. This is a genuine Fock-space localiza-
tion problem where a first-principles solution of this kind is
possible.

In the following sections we discuss the derivation of the
analytical results mentioned above. Hoping that elements of
this computation might become blueprints for the analysis of
other models of MBL, we try to be as pedagogical as we can.
Various technical details are relegated to the Appendixes.

III. MATRIX MODEL

We start the derivation of the results summarized above
by constructing an exact matrix integral representation of the
correlation functions introduced above to describe many-body
wave functions and spectra. The unconventional perspective
of this approach is that there will be no second quantized
representation of Fock space: We think of the SYK Hamil-
tonian as a big matrix and treat it like that. In this section
we discuss the construction of a matrix integral representing
the theory averaged over Ĥ4 disorder. The physics behind this
formulation and that of a subsequent stationary-phase analysis
of the theory will be discussed in the next section.

All information on spectra and wave functions of the
system is contained in the Fock-space matrix elements of
resolvent operators

G±
nm = 〈n|(z± − Ĥ )−1|m〉, (17)

where z± = ±( ω
2 + iη) and, here and throughout, η is in-

finitesimal (with a limit η ↘ 0 to be taken in the final step of

5More specifically, we used δc =
√

πZ
2
√

ρ
ln(

√
πZ

32π2 ).

all calculations). Specifically, the correlation functions above
are obtained as

Iq = (2iη)q−1

2iπν

∑
n

〈G+(q−1)
nn G−

nn〉J ,

K (ω) = 1

2π2ν2

∑
nm

Re〈G+
nnG−

mm〉J , (18)

where Iq is computed at ω = 0 and 〈· · · 〉J denotes the average
over coupling constants {Ji jkl} of Ĥ4.

A. Construction of the matrix integral

Following standard protocols, we raise the Green’s
functions to an exponential representation before perform-
ing the Gaussian average. The basic auxiliary formula
in this context is M−1

nm = ∫
D(ψ̄, ψ )e−ψ̄Mψψσ

mψ̄σ
n , where

M is a general L × L matrix and the 2L-dimensional
graded vector ψ = (ψb, ψ f )T contains L-commuting compo-
nents ψb

n and an equal number of Grassmann components
ψ f

n . The double integral over these variables cancels un-
wanted determinants det(M ), while the preexponential fac-
tors, either commuting or anticommuting, σ = b, f, isolate
the inverse matrix element. With the identification M =
diag(−i[G+]−1, i[G−]−1) = −iσ3(E + z − Ĥ ), we are led to
consider the generating function

Z[ j] =
∫

D(ψ̄, ψ )〈e−ψ̄ (E+z−Ĥ− j)ψ 〉J . (19)

Here z ≡ ( ω
2 + iη)σ3 contains the energy arguments of the

Green’s functions and σ3 is a Pauli matrix distinguishing
between advanced and retarded components. The matrix
j acts as a source for the generation of the required moments
of Green’s-function matrix elements. Specifically, we define

jK (α, β ) = απb ⊗ π+ + βπ f ⊗ π−, (20)

jI,n(α, β ) = jK (α, β ) ⊗ |n〉〈n|, (21)

where πb,f is a projector onto commuting and anticommuting
variables, respectively, ψ̄πσψ = ψ̄σψσ , and π± projects in
causal space ψ̄π sψ = ψ̄ sψ s, s = ±. With these definitions,
an elementary computation shows that

K (ω) = 1

2π2ν2
Re∂2

βαZ[ jK ]|α,β=0, (22)

Iq = cq(2iη)q−1
∑

n

∂β∂q−1
α Z[ jI,n]|α,β=0, (23)

with cq ≡ 1/2iπν(q − 1)!. In the following, we consider the
sources absorbed in a redefined energy matrix z → z − j and
recall their presence only when needed.

At this point, the averaging over Ĥ4 can be performed and
it generates a quartic term

Z =
∫

D(ψ̄, ψ ) exp

(
−ψ̄Ĝ−1ψ + w2

2

∑
a

(ψ̄X̂aψ )2

)
, (24)

where we defined w2 = 6J2/(2N )3 ≡ 3
2 N−4 for the scaled

variance of the SYK Hamiltonian Ĥ4, Ĝ ≡ (E + z − Ĥ2)−1,

X̂a ≡ χ̂iχ̂ jχ̂kχ̂l , (25)
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and a = (i, j, k, l ) with i < j < k < l . We next perform an
innocuous but physically meaningful (see the next section)
rearrangement (ψ̄X̂aψ )2 = STr[(ψψ̄X̂a)2], where the super-
trace [45] STr(X ) ≡ tr(X bb) − tr(X ff ) accounts for the minus
sign caught when exchanging anticommuting variables. The
next step is a Hubbard-Stratonovich transformation decou-
pling the matrices ψψ̄X̂a ∼ Aa in terms of (2N )4/4! auxiliary
matrix fields Aa. Referring for details of the procedure to
Appendix A, we note that after the decoupling the integral
over ψ variables has become Gaussian and can be carried
out. A more interesting statement is that of the ρ ≡ (2N

4

)
Hubbard-Stratonovich fields Aa, all but one can be removed
too by straightforward Gaussian integration. Upon restricting
to E = 0 this leaves us with a single integration

Z =
∫

DYe−S[Y ],

S[Y ] = −1

2
STr(Y PY ) + STr ln(z − Ĥ2 + iPY ), (26)

over a (2 × 2 × D)-dimensional matrix Y = {Y σσ ′,ss′
nn′ } carry-

ing indices in causal space, superspace, and Fock space. The
information on the SYK system now sits in the site-diagonal
one-body term Ĥ2 and the hopping operator P , which rep-
resents the interaction and acts on matrices Z = {Znm} in
Fock space as

PZ ≡ 1

ρ

∑
a

X̂aZX̂ †
a . (27)

Finally, γ = wρ1/2 = 1 represents the Ĥ4 band width, which
we have set to unity. To simplify formulas, we will consider
energies Ĥ2 → γ Ĥ2 and ω → γω scaled by this parameter
and suppress it throughout.

B. Discussion of the matrix integral

This is now a good point to discuss the meaning of the
above Hubbard-Stratonovich transformation and of the ma-
trix representation. The two-fermion vertices ψ̄X̂aψ entering
the theory after disorder averaging describe the scattering
of Fock-space states off the four Majorana operators con-
tained in the Hamiltonian and in this way introduce the
lattice connectivity indicated in Fig. 1. While a direct anal-
ysis of individual Fock-space amplitudes seems hopeless,
progress can be made if the propagators are paired to two-
amplitude composites as indicated in Fig. 7. For two reasons,
the pair amplitudes Y ss′,σσ ′

nn′ = ψ sσ
n ψ̄ s′σ ′

n′ are more convenient
degrees of freedom. First, the pair action Y → ∑

a X̂aY X̂a =
ρPY governing scattering in the two-state channel [cf. the
structure of the action (26)] is relatively easy to describe
(discussed below). Second, the advanced/retarded combina-
tions Y −+,σσ ′

nn = ψ−σ
n ψ̄+σ ′

n appear as terminal vertices in the
computation of Green’s functions G+

·nG−
n·, where the dots stand

for the unspecified final points of the correlation function.
With the exact identity (G+)−1 − (G−)−1 = ω+ ≡ ω + 2i0,
we have 〈G+

mnG−
nm〉J = 〈tr(G+G−)〉J = 1

ω+ 〈tr(G+)[(G+)−1 −
(G−)−1]G−〉J = 1

ω+ 〈tr(G− − G+)〉J � 2π i
ω+ ν, where ν is the

density of states at the band center. The way to read this
(Ward) identity is that the product of Green’s functions
contains a singularity, provided tr(G− − G+) ∼ ν is a struc-

FIG. 7. Composite matrix degree of freedom Y ss′,σσ ′
nn′ representing

the pair propagation of Fock-space scattering amplitudes. See the text
for discussion.

tureless quantity. (The latter condition does not hold in
systems with localization, where the isolated eigenstates sup-
port a point spectrum with poles rather than a uniform cut.)
This argument indicates that the soft mode G+G− ∼ ω−1 is
key to the understanding of observables probing the spectrum
and eigenfunctions of the system.

In the matrix integral framework, the above singularity
shows in the presence of a soft mode in the integration over the
variables Y −+,σσ ′

nn . To isolate this mode, we note that Eq. (26)
has an approximate symmetry

Y → TY T −1, T = {T ss′,σσ ′ } (28)

under rotations homogeneous in Fock space. The set of these
transformations defines GL(2|2), i.e., the group of invertible
4 × 4 matrices with anticommuting entries. Invariance under
this symmetry is weakly broken only by the frequency/source
matrix z, which, ignoring the infinitesimal sources, transforms
as ω

2 σ3 → ω
2 T −1σ3T . This reduces the symmetry down to

the transformations diagonal in advanced-retarded (s-index)
space GL(1|1) × GL(1|1).

The essential question now is whether the above weak
explicit symmetry breaking is spontaneously broken in the
matrix integral (much as a weak explicit symmetry breaking
by a finite magnetic field gets upgraded to spontaneous sym-
metry breaking in a ferromagnetic phase). In the latter case,
we expect a soft Goldstone mode whose mass is set by the
symmetry-breaking parameter ω and ω−1 singularities in line
with the observation above. To investigate this question and
the consequences in the observables K (ω) and Iq, we next
subject the theory to a stationary-phase analysis.

IV. EFFECTIVE THEORY

In this section we map the exact theory (26) to an approx-
imate but more manageable effective theory. The conceptual
steps are standard and consist of a saddle-point analysis, fol-
lowed by a Ginzburg-Landau-style expansion (see Sec. VI)
of the exact action in fluctuations around a homogeneous
saddle point.

We have already established the presence of an exact (in
the limit ω → 0) rotational soft mode isotropic in Fock space.
Since much of the analysis below will focus on strong Ĥ2

with eigenvalues vn of Ĥ2 comparable to or exceeding the Ĥ4,
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we anticipate that fluctuations of lowest action cost will be
commutative in the sense [Ĥ2,Y ] = 0. We thus start from an
ansatz 〈n|Y |m〉 = Ynδnm where fluctuations are diagonal in the
occupation basis. In view of the fermion parity conservation of
both Ĥ2,4, we focus on a sector of definite parity, chosen to be
even. The locality of Ĥ2 in the occupation number basis is in
competition with the hopping described by P . However, what
works to our advantage is that the action of P on the states Y
is remarkably simple: Thinking of Ynm as the matrix elements
of a density matrix Yn represents a state without off-diagonal
matrix elements. It is a nontrivial feature of P that it preserves
this structure, (PY )m = ∑

n P|n−m|Ym, i.e., the adjoint action
X̂aY X̂a on Fock-space diagonal matrices Y does not generate
superpositions of off-diagonal states. A straightforward com-
binatorial exercise shows that (see Appendix B for details)

P0 = N (N − 1)

2ρ
, P2 = 4(N − 2)

ρ
, P4 = 16

ρ
, (29)

with all other matrix elements vanishing, and normalization∑
m Pm,n = 1. Notice that for a given n, we have

(N
4

)
neigh-

bors with hamming distance 4, connected to n by
(N

4

)
P4

N	1∼
1. This shows that distance 4 hopping is the most important
by phase volume.

With these structures in place, a variation of action (26)
leads to

−iY = 1

z − Ĥ2 + iPY
. (30)

Notice that Y resembles −i times the local propagator (see the
inset of Fig. 7) of site n, dressed with a self-energy iPY due
to hopping via P to neighboring sites. It is this term which
makes the stationary-phase equation nontrivial. In a first step
towards the solution, we neglect imaginary contributions to Y
and focus on the local spectral density Re(Y ) instead. (In the
effective action, the imaginary part of Y describes an energy
shift vn → vn + ImYn, which is inessential to our problem.)
Causality requires sgnY = sgn Imz, i.e., the sign of the self-
energy is dictated by that of the imaginary part contained in
the energy arguments. Otherwise the saddle-point equation is
rotationally invariant in the internal indices of the theory. This
motivates an ansatz

ReY =
∑

n

(ReY )n|n〉〈n| ≡
∑

n

πνn|n〉〈n| ⊗ σ3 ⊗ 1bf (31)

with real coefficients νn. Inspection of Eq. (30) shows that
these coefficients afford an interpretation as a mean-field local
density of states.

Substituting this expression into the equation and tem-
porarily ignoring the small energy argument z as small
compared to both Ĥ2 and Y , we obtain the variational equation

νn = 1

π
Im

1

vn − iκn
,

κn ≡ π (P ν̂)n ≡ π
∑

m

P|n−m|νm, (32)

where ν̂ denotes the matrix diagonal in the occupation basis,
with elements νn, and where we introduce the variational
level hybridization κn. The structure of this equation con-
tains the key to its solution: For vn = 0, the normalization

∑
m P|n−m| = 1 implies that it is solved by κn = 1. In the

chosen units, this is π times the density of states at the SYK
band center. For finite vn, the summation over m implements
an effective average over the connected states, which now
carry random energy. In Appendix C we show that the average
stabilizes the solution (33),

κn � κ�(C − |vn|),

(κ,C) =
{

(1, 1), δ < 1 (regimes I and II)
(δ−1, δ), δ > 1 (regimes III and IV),

(33)

where � stands for equality up to corrections exponentially
small in exp[−(vn/δ)2]. We interpret this result as the spectral
density of sites with energy vn and decay rate κn into neigh-
boring sites. The latter is finite for states below a threshold
|vn| < C. For δ > 1, the rate is given by the energy denom-
inator κ ∼ δ−1 of neighboring sites. In the opposite regime
δ < 1, the energy denominators of states vn ∼ 1 in resonance
with the SYK band width are of O(1), leading to the second
line in Eq. (33).

The saddle-point solutions discussed thus far are distin-
guished for their diagonality in all matrix indices. However,
we now recall that the z = 0 action is invariant under Fock-
space uniform rotations (28), implying that uniformly rotated
saddle-point configurations Yn → TYnT −1 are solutions too.
(Technically, this follows from the cyclic invariance of the
trace.) Next to this uniform Goldstone mode, configurations
Yn → TnYnT −1

n with site-diagonal rotations commutative with
Ĥ2 are expected to cost the least amount of action. With Yn =
πνnσ3, this makes Yn → πνnQn, Qn = Tnσ3T −1

n , the effective
degrees of freedom of the theory, and substitution into Eq. (26)
defines the Goldstone mode integral

Z =
∫

DQ e−S[Q],

S = −π2

2
STr[(ν̂Q̂)P (ν̂Q̂)] + STr ln[z − Ĥ2 + iπP (ν̂Q̂)],

(34)

where Q̂ again denotes the matrix diagonal in the occupation
basis, with elements Qn. In the next two sections, we investi-
gate what this integral indicates about wave-function statistics
and Fock-space localization, respectively.

V. SPECTRAL AND WAVE-FUNCTION STATISTICS

In this section we explore the spectral and wave-function
statistics in regimes I–III. The presumption is that wave
functions are not yet localized and correlated with each
other. This should lead to Wigner-Dyson spectral statistics
and wave-function moments reflecting the extended nature
on the subsets of Fock space corresponding to active or
resonant sites.

To test these hypotheses it is sufficient to consider the in-
tegral (34) in the presence of effectively infinitesimal explicit
symmetry breaking z: Besides the sources j, this parameter
contains a frequency argument ω ∼ D−1 of the order of the ex-
ponentially small inverse many-body level spacing in the case
of spectral statistics, Eq. (22), or the infinitesimal parameter η

in the case of wave-function statistics, Eq. (23). On general
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grounds, we expect the smallness in the explicit symmetry
breaking in a Goldstone mode integral to lead to singular
contributions order of z−n proportional to the inverse of that
parameter after integration. (Inspection of the prefactors ηq−1

in the definition of the wave-function statistics shows that
such singularities are actually required to obtain nonvanishing
results.) These most singular contributions to the integral must
come from the Goldstone mode fluctuations of least action,
which are fluctuations homogeneous in Fock space,

Qn = Tnσ3Tn → T σ3T −1 ≡ Q. (35)

With [T,P] = 0, the substitution ν̂Q̂ → ν̂Q into the action
(34) leads to

S0[Q, j] = STr ln(z − j − Ĥ2 + iκ̂Q), (36)

where we made the dependence z → z − j of the action on the
sources j ≡ jI,n required to calculate moments via Eq. (21)
explicit again and we used that πP ν̂ = κ̂ .

Before proceeding, we note that the structure of this action
is identical to that describing the Rosenzweig-Porter model,
a single random matrix of dimension D containing Gaussian
distributed disorder on the matrix diagonal [46]. An impor-
tant difference is however that the diagonal disorder in the
latter is uncorrelated, while the Fock-space diagonal disorder
induced by Ĥ2 is highly correlated. As a consequence, the
effective action for the Rosenzweig-Porter model only allows
for homogeneous saddle-point solutions [39,46], while here
we encounter solutions that become inhomogeneous in Fock
space once on-site disorder exceeds the Ĥ4 band width. The
inhomogeneity accounts for a site-dependent broadening κn,
induced by correlations in the disorder amplitudes and also
manifests in a separation into regimes II/III of the regime
of nonergodic extended states. In the following, we discuss
what this reduction of the model reveals about spectral and
wave-function statistics.

A. Spectral statistics

To obtain a prediction for spectral correlations based on the
representation (34) with Fock-space zero mode, we consider
the correlation function (8), represented through matrix inte-
gral Green’s functions as in Eqs. (18) and (22). To compute
these quantities from the effective theory, we need to expand
the action (36) to lowest order in the parameter ω/κ ∼ 1/D
and to second order in the sources (20). The straightforward
ω expansion yields [cf. Eq. (D3)]

Sω[Q] ≡ −i
πν(ω + iη)

2
STr(Qσ3), (37)

where ν is the zero-energy density of states (10). What re-
mains is the source differentiation and the integration over
the matrix Q. To get some intuition for the integral, note that
the nonlinear degree of freedom Q = T σ3T −1 affords a rep-
resentation Q = UQ0U −1, where U contains various compact
angular variables (cf. Appendix E) and

Q0 =
(

cos θ̂ i sin θ̂

−i sin θ̂ − cos θ̂

)
, (38)

a rotation matrix in causal space. Diagonal in superspace,
this matrix is parametrized in terms of the two Bogoliubov

angles θ̂ = (iθb, θf )T , where θf ∈ [0, π ] is a compact rotation
variable and θb ∈ R+ a noncompact real variable. This rep-
resentation reveals the geometry of the integration manifold
as the product of a sphere θf and a hyperboloid θf (coupled
by variables contained in U ). Where the physics of nonpertur-
bative structures in spectral and wave-function statistics and
localization is concerned, the most important player is the
noncompact variable θb as only this one has the capacity to
produce singular results. Heuristically, one may think of the
model reduced to its dependence on this variable as a noncom-
pact version of a Heisenberg model, containing hyperboloidal
rather than compact spins as degrees of freedom.

Referring for details of the source differentiation and
the subsequent integration over the matrix Q [45] to
Appendix E, the above reduction of the model yields the
GUE spectral correlation function (9) for the spectral statistics
on scales of the many-body level spacing in regimes I–III.
With increasing energies, the assumption of homogeneity of
fluctuations in Fock space breaks down (cf. the next section)
beyond a Thouless energy whose value depends on the spe-
cific observable under consideration.6 However, the detailed
investigation of Thouless thresholds for the present model is
beyond the scope of the paper.

B. Wave-function statistics

In the same manner, we may consider the local moments
of wave functions (11), represented via Green’s functions
(18) and obtained from the matrix integral through Eq. (23).
A key feature of this expression is that it contains a limit
limη→0 ηq−1(· · · ); the factor ηq−1 must thus be compensated
for by an equally strong singularity η1−q from the inte-
gral, where η couples through z = iησ3. Setting ω = 0 in
Eq. (37) and integrating over the functional differentiated in
sources (a calculation detailed in Appendix E) then yields the
moments (12)–(14).

The support of wave functions in regimes II and III is dif-
ferent [as indicated by the different value of Dres in Eqs. (14)],
while the density of states (DOS) (10) assumes the same
value. The reason for this is that, in regime II, there is no
distinction between active and resonant sites: There are order
of D/

√
Nδ active sites contributing with unit weight to the

DOS. By contrast, in regime III, the dominant contribution to
the DOS comes from the smaller number of Dres ∼ D/

√
Nδ2

resonant sites, with sharply peaked spectral weight order of δ,
ν ∼ Dresδ ∼ D/

√
Nδ.

C. Comparison to numerics

To numerically check the predictions for the statistics
of many-body wave functions and spectra, we calculated
eigenfunctions and spectrum from exact diagonalization of

6Unlike with low-dimensional single-particle problems, the ef-
fectively high dimension of Fock space implies nonuniversality of
the Thouless energy. For example, nonzero-mode corrections to
the spectral form factor (the Fourier transform of the two-point
correlation function in energy) and the two-point function itself,
respectively, become visible at different energy scales.
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the Hamiltonian Ĥ = Ĥ4 + Ĥ2 [see (1) and (3)] for {vi} ob-
tained by diagonalizing (2) as a one-body problem, for 2N =
22, 26, 30 Majorana fermions and varying values of δ. We
kept 1

7 of the total spectrum and verified both a nearly constant
density of states and that results remain unchanged when we
restrict to a smaller energy window. From the selected eigen-
functions in the center of the band, we calculated the statistics
of the moments of the wave function according to Eq. (11).
The eigenfunctions are normalized in each definite parity sub-
space. For the spectrum we compared the numerical statistical
distribution with both Wigner-Dyson and Poisson distribu-
tions by calculating the Kullback-Leibler divergence KL ≡
D(P||Q) = ∑

k pk ln( pk

qk
), where pk is the spectral statistics

from numerical data and qk the respective distribution. In or-
der to avoid level unfolding, we followed Ref. [40] and studied
the statistics of ratios of energy spacings r j = min( s j

s j−1
,

s j−1

s j
),

where s j = ε j+1 − ε j is the nearest-neighbor spacing of the
eigenenergies {ε j}. The qk are then given by numerically
integrating either the Wigner-Dyson or the Poisson distribu-
tion for the variable r over each bin centered at rk , given
by Ref. [47],

P(r) =
{

81
√

3
2π

(r+r2 )2

(1+r+r2 )4 + δP(r) [Wigner-Dyson (GUE)]

2
(1+r)2 (Poisson),

(39)

where δP is a numerical correction given by δP = 2C
(1+r)2 [(r +

1/r)−2 − c2(r + 1/r)−3], with c2 = 4(4 − π )/(3π − 8) and
C = 0.578 846 is obtained from fitting numerical results in
the GUE [47].

In all figures the numerical values result from averaging
over eigenvectors and the spectrum, taken from the band cen-
ter and from both parity sectors, of at least 1000 independent
realizations of the model. In computing the Kullback-Leibler
divergence, the numerical distribution for r j is obtained by
splitting the interval [0, 1] into 50 bins of equal widths.

VI. EXTENDED-TO-LOCALIZED TRANSITION

In regimes II and III, the dominant contribution to the ma-
trix integral at the lowest energies comes from homogeneous
contributions Q. Upon approaching the localization threshold
III/IV, inhomogeneous fluctuations Q → Q̂ = {Qn} gain in
importance and eventually destabilize the mean-field theory.
To describe this physics, we need an effective action gener-
alized for inhomogeneous fluctuations and more manageable
than Eq. (34). We derive it in Appendix D under the assump-
tion that the sum over a large number of fluctuating terms
represented by the term P (ν̂Q̂) is largely self-averaging. An
expansion to lowest order in fluctuations around the homoge-
neous average then leads to the effective hopping action

S[Q] = SP [Q] + Sω[Q],

SP [Q] = π2

2

∑
n,m

νnνmPn,mStr(QnQm), (40)

Sω[Q] = −iπ
∑

n

νnStr(zQn), (41)

where Qn = T −1
n σ3Tn and Str traces only over internal degrees

of freedom. Equations (40) and (41) are the main result of this
section. Depending on the value of κn [Eq. (33)], this action
describes the entire range from vanishing to large deforma-
tions Ĥ2. We next discuss what this action reveals about the
ergodic-to-localization transition.

The key element in this problem is the hopping term (40),
where Q matrices at Ĥ4-neighboring sites are coupled, subject
to a weight which contains the local spectral densities. In an-
alytic approaches to localization on high-dimensional lattices,
it is common to set these weights to unity. However, in view
of the massive site-to-site fluctuations of νn, we prefer not to
make this assumption and work with a given realization {νn}
for as long as possible. Approaching the transition from the
localized side where the integration over Q’s is subject to only
small damping νn, the essential degrees of freedom are once
again the noncompact variables θb contained in Q0 [Eq. (38)].

To better understand the significance of this structure,
we write QnQm = (Qn − σ3)(Qm − σ3) + σ3Qn + σ3Qm − 1

to represent the hopping part of the action as

SP [Q] = π
∑

n

�nStr(Qnσ3)

+ π2

2

∑
n,m

νnνmPn,mStr[(Qn − σ3)(Qm − σ3)],

where �n ≡ νn
∑

m Pn,mνm. Consider a situation where the
accumulate hopping weights �n out of site n are small. In
this case, large fluctuations of the noncompact angles λb,n ≡
cosh(θb,n) dominate the functional integral. To understand the
consequences, we note that the measure of the Q integration
in the angular representation is given by [45]∫

dQ =
∫

dU
∫ 1

−1
dλf

∫ ∞

1
dλb

1

(λb − λf )2
,

where λf = cos(θf ). For small typical values � ∼ �n 
 1, the
exponential weights effectively cut off the integration over
λb at ∼�−1 	 1. Individual terms in the second line of the
above representation of SP are smaller than the accumulated
weights in the first line, and so the integral can be approached
by perturbative expansion in the hopping terms. As an ex-
ample, consider the sixth-order expansion indicated via the
highlighted links in Fig. 6. Retaining only the information on
the noncompact integrations λ ≡ λb, the contribution with a
loop (left) and that with doubly occurring links evaluate to∫ �−1

1

dλ1

λ2
1

dλ2

λ2
2

dλ3

λ2
3

dλ4

λ2
4

λ3
1λ

3
2λ

2
3λ

2
4 ∼ �−6 (loop),

∫ �−1

1

dλ1

λ2
1

dλ2

λ2
2

dλ3

λ2
3

λ3
1λ

5
2λ

2
3 ∼ �−7 (no loop), (42)

where the indices refer to the participating Q matrices Q1,...,4.
This estimate shows that the contribution of loops in the
perturbation expansion is suppressed. At the same time,
the largeness of the individual contributions signals that
infinite-order summations are required. The effective-medium
approximation achieves this summation, loops excluded. The
approximation is called an effective medium because from the
perspective of individual sites in Fock space the contribution
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FIG. 8. Idea of the effective-medium approximation. Sites n are
connected to the stems of coral-like structures, each labeled by a con-
nected neighbor m, which represent the summation over all hopping
terms excluding loops. The recursive nature of the structure allows
for a self-consistent resummation.

of all hopping processes terminating at that site adds up to the
influence of an effectively homogeneous background medium,
transmissive or not depending on the strength of the couplings.

To see how this comes about, consider a site n with local
configuration Qn and let �n,m(Qn) = ∫

coral m,Q DQ e−S[Q] be
the contribution to the functional integrated over all links con-
nected to n via the neighbor m, through the loopless coral-like
structure indicated in Fig. 8. The essence of the approximation
is the recursion relation

�nm(Q) =
∫

dQ′Nwnm (Q, Q′)e−S0(Q′ )
∏

o

�mo(Q′),

Nw(Q, Q′) = ew Str(QQ′ ),

where the product extends over all sites o connected to m by
hopping, S0(Q) ≡ Sω→iδ (Q) acts as a convergence generating
factor, and we defined

wnm ≡ π2

2
νnνmPn,m (43)

for the coupling constants weighting the hopping kernel. If
we now take the product �n(Q) ≡ ∏

m �n,m(Q) [assuming
self-averaging in the sense that the fully integrated amplitude
�n depends on the terminal site n but not on the detailed val-
ues of the O(N4) neighbor amplitudes], the equation assumes
the form

�n(Q) =
∏

m

∫
dQ′Nwn,m (Q, Q′)�m(Q′),

where the presence of the convergence generator exp(−S0)
is left implicit. In the deeply localized regime Nwn,m ≈ 1, the
integral decouple and �n = 1 is a solution by supersymme-
try (i.e., the unit normalization of all sourceless integrals
in the present formalism). This suggests [45] a linearization
�n(Q) = 1 − �n(Q), where the emergence of a nontrivial
solution �n is taken as a criterion for the localization transi-
tion. Substituting this ansatz into the equation and again using
supersymmetry

∏
m

∫
dQ′Nw(Q, Q′) = 1, we obtain

�n(Q) =
∑

m

∫
dQ′Nwnm (Q, Q′)�m(Q′). (44)

This is a linear integral equation governed by a random lattice
structure in Fock space via the couplings wnm and an internal
structure encoding the randomness of the Ĥ4 system via the Q′
integrals. Although the integral equation may look helplessly
complicated, progress is possible recalling our previous ob-
servation: We again have a situation where the Q integrations
extend over wide parameter intervals such that the leading
noncompact variable is the key player. Assuming that the so-
lutions depend on the noncompact variable as �(Q) → �(t ),
t ≡ ln(λ1/δ), and referring to Ref. [48] for details of the
integration over remaining variables, the reduction of Eq. (44)
to the regime of interest t 
 0 and wmn 
 1 reads

�n(t ) =
∑

m

∫
dt ′Lwmn (t − t ′)�m(t ′),

Lw(t ) =
( w

2π

)1/2
e−w cosh(t )+t/2

(
w cosh t + 1

2

)
. (45)

Reference [48] contains a pedagogical discussion of the solu-
tion of the homogeneous variant wmn = const of this equation,
including the somewhat subtle issue of boundary conditions.
It turns out that the key to the stability of the localized solution
� = 1 lies in the spectrum of the linear kernel {Lwmn (t − t ′)}:
A spectrum with lower bound ε > 1 means that perturba-
tions δψ will grow under the application of the linearized
kernel, signifying destabilization of the null solution � = 1.
We thus declare the existence of a minimal eigenvalue ε = 1
as a delocalization criterion. Due to translational invariance
in t − t ′ eigenstates are of the form eθ (t−t ′ )�n, where the
coefficients are determined by the reduced equation �n =∑

m Lθ,nm�m, with

Lθ,nm =
∫ ∞

−∞
dtLwmn (t )e−θt .

Substitution of the kernel in Eq. (45) followed by differen-
tiation in θ shows that the positive matrix Lθ,nm assumes its
smallest values at θ = 1/2 and the straightforward integration
at that value defines the matrix

Lnm ≡ L1/2,nm

=
(wnm

2π

)1/2
∫

dt e−wnm cosh t

(
wnm cosh t + 1

2

)

�
(wnm

2π

)1/2
ln

(
2

wmn

)
.

We thus arrive at the eigenequation

�n = 2
√

π√
ρ

∑
|n−m|=4

anm�m,

anm = √
νnνm ln

(
ρ

(2π )2νnνm

)
, (46)

where the sum extends over Z ≡ (N
4

)
sites in Hamming dis-

tance 4 to the reference site7 n and we recall that ρ ≡ (2N
4

)
. We

7We here neglect the parametrically smaller number of sites with
|n − m| = 2 connected to n by matrix elements changing the occu-
pation of just two fermion orbitals.

013023-13



MONTEIRO, MICKLITZ, TEZUKA, AND ALTLAND PHYSICAL REVIEW RESEARCH 3, 013023 (2021)

read Eq. (46) as an equation for the existence of a unit eigen-
value whose solvability depends on the value of δ determining
the local density of states νn. In Appendix F we show that the
summation in this equation is dominated by resonant sites and
how this simplifies its logarithmic dependence. Once again us-
ing the self-averaging feature to replace the sum by an average
over the distribution of νm, we find that Eq. (46) has a solu-
tion for δ = δc determined by the criterion (F3). In the limit
N 	 1 the latter simplifies to Eq. (16). However, as discussed
in Sec. II E, the numerical data for small values N = 101

responds sensitively to such approximations and improved
agreement is obtained by working with the solution (F3).

VII. DISCUSSION

In this paper we have presented a first-principles analysis
of Fock-space localization in the Majorana SYK4+2 model,
describing a competition of the two-body interaction and one-
body potential. Within this setting, we provided a complete
description from an ergodic regime, over an intermediary
regime of nonergodic extended states to the localized phase,
all formulated in the eigenbasis of the one-body Hamiltonian.
Our main results are the identification of the MBL transition
point and the quantitative characterization of wave functions,
particularly in regimes where they are neither localized nor
trivially extended.

We compared the analytical results to numerical data
for systems of size N = 11–15 without fitting parameters.
For systems of this size, the intermediate regime II is too
narrow for a reliable comparison. However, in the ergodic
regimes I and the strongly nonergodic regime III we obtained
good agreement between analytical and numerical results.
The finite-size scaling of both wave-function and spectral
statistics revealed an Anderson transition at a critical point
which agreed with the theoretically predicted value up to
a size-independent numerical constant of O(1). In view of
the numerous large-N approximations involved in the con-
struction of the theory, we consider this a reassuring test for
the applicability of localization theory on high-dimensional
lattices to realistic systems.

Conceptually, the main contribution of the present work is
an analytical description which actually is not more complex
than theories for phenomenological models of MBL. The
high coordination number of the microscopic Fock space gave
the system self-averaging properties facilitating its analytic
description. The resulting theory was tested for small-size
systems N = O(10). However, it is expected to work better
the larger N is, while the situation with computers is the other
way around. On this basis, one may be cautiously optimistic
that the concepts discussed here may become building blocks
for the description of more complex MBL problems, including
those with spatial structure.
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APPENDIX A: DERIVATION OF THE ACTION (26)

We here derive the action (26) from the averaged
functional (24). We start by rewriting the quartic term
as (ψ̄X̂aψ )2 = STr[(ψψ̄X̂a)2]. To decouple this nonlinear-
ity, we multiply the functional with the unit normalized
Gaussian integral 1 = ∫

DA exp[− 1
2

∑
a STr(AaX̂a)2], where

DA ≡ ∏
a dAa and Aa = {Ass′,σσ ′

nn′ } are 4D-dimensional matri-
ces. A shift Aa → Aa + wψψ̄ then removes the quartic term
and the subsequent integration over ψ leads to

Z[ j] =
∫

DA exp

[
− 1

2

∑
a

STr(AaX̂a)2

− STr ln

(
Ĝ−1 + w

∑
a

Aa

)]
,

where Ĝ−1 = z − Ĥ2 and we changed Aa �→ X̂aAaX̂a. We
now observe that the nonlinear part of the action couples
only to the combination

∑
a Aa. This motivates the defini-

tion Aa = i
ρ

(Y + Ya), where the factor of i is included for
later convenience and

∑
a Ya = 0. Adding a Lagrange mul-

tiplier i
ρ

∑
a STr(Ya�) to enforce the constraint, we are led

to consider the functional Z[ j] = ∫
DY D� exp(−S[Y,�]),

with action

S[Y,�] = − 1

2ρ2

∑
a

STr[(Y + Ya)Pa(Y + Ya)]

+ i

ρ

∑
a

STr(�Ya) + STr ln(Ĝ−1 + iwY ),

where ρ = (2N
4

)
and we defined the operator P̂aB = X̂aBX̂a.

Note that P̂a is self-inverse, P̂2
a B = X̂ 2

a BX̂ 2
a = B, and Hermi-

tian in the sense that STr(CP̂aB) = STr(P̂aCB). We now do
the Gaussian integrals over Ya to obtain

S[Y,�] = −STr

(
ρ

2
�P� + i�Y

)
+ STr ln(Ĝ−1 + iwY ),

where P = 1
ρ

∑
a P̂a. The Gaussian integration over � may

now be performed and after rescaling Y → ρ1/2Y and defin-
ing γ = wρ1/2 = J

2 (2N )1/2 we obtain the action S[Y ] =
− 1

2 STr(Y P−1Y ) + STr ln(z − Ĥ2 + iγY ). In a final step, we
perform a linear transformation P−1Y → Y and recall that in
our units J2 = 2/N and γ = 1 to arrive at Eq. (26).

APPENDIX B: OPERATOR P
In this Appendix we discuss the action of the operator

P states |n〉〈n| diagonal in the occupation number basis. To
this end, note that for a state |n〉 = |n1, . . . , ni, . . . , nN 〉, the
action of the Majorana operator χ̂2i = ci + c†

i produces the
state |ni〉 ≡ χ̂2i|n〉 = |n1, . . . , n̄i, . . . , nN 〉, where n̄ is 0 for
n = 1 and vice versa. Similarly, χ̂2i−1|n〉 = i(−)ni |ni〉. Except
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for ni all other occupation numbers remain unchanged and
no superpositions of states are generated. The adjoint ac-
tion thus generates χ̂2i|n〉〈n|χ̂2i = χ̂2i−1|n〉〈n|χ̂2i−1 = |ni〉〈ni|,
which we interpret as nearest-neighbor hopping in Fock
space. Notice that (χ̂2iχ̂2i−1)|n〉〈n|(χ̂2i−1χ̂2i ) = |n〉〈n| leaves
the state unchanged.

With these structures in place, it is straightforward to
describe the action of P|n〉〈n| = 1

ρ

∑
a X̂a|n〉〈n|X̂a. The sum-

mation contains contributions changing the particle number
|n| by 0, 2, and 4. With Pn,m = 〈m|(P|n〉〈n|)|m〉, the diagonal
contribution P0 is obtained from the

(N
2

)
terms of the struc-

ture χ̂2iχ̂2i+1χ̂2βχ̂2β+1. Similar counting for the contributions
changing |n| by 2 and 4 gives the matrix elements in (29) and
it is verified that∑

m

Pm,n =
(

N

0

)
N (N − 1)

2ρ
+

(
N

2

)
4(N − 2)

ρ
+

(
N

4

)
16

ρ

= 1. (B1)

APPENDIX C: SADDLE-POINT EQUATIONS

In this Appendix we address the solution of the saddle-
point equation (32). The nontrivial element in this equation
is the quantity κn ≡ π (P ν̂)n in the denominator. In terms of
this quantity, Eq. (32) becomes the simple algebraic equation
(33). A closed yet site nonlocal equation for κ is obtained by
acting on Eq. (32) with the operator P ,

κn =
∑

m

P|n−m|Im
1

vm − iκm

=
∑

m

P|n−m|Re
∫ ∞

0
dt eivmt−κmt ,

where in the second line we switch to a temporal Fourier rep-
resentation to facilitate the treatment of the argument vm. The
solution of this equation relies on two conceptual elements,
first the ansatz (33) and second a replacement of the sum over
the ρ neighboring sites m by a Gaussian average over energies
vm. Specifically, we note that up to corrections small in N−1,
the neighbor sites m are separated by Hamming distance 4
from n and each change in ni changes vn �→ vn ± 2vi. This
means that vm = vn + v, where we assume v to be Gaussian
distributed with width

√
42δ = 4δ. Substituting the ansatz

κm = κ�(C − |vm|) into the equation and splitting the inte-
gral over v into regions with C − |vm| = C − |vn + v| smaller
and larger than zero, respectively, we obtain, after shifting
v �→ v − vn,

κn = 1√
32πδ

Re
∫ ∞

0
dt

(∫
dv e−(v−vn )2/32δ2

+
∫ C

−C
dv e−(v−vn )2/32δ2

(e−κt − 1)

)
eivt .

With Re
∫ ∞

0 dt eivt = πδ(v), the first and the third term in the
second line cancel out, and the t integration of the second
term gives

κn =
√

π√
32δ

∫ C

−C
dv e−(v−vn )2/32δ2 κ

π (v2 + κ2)
, (C1)

where the notation emphasizes that the κ-dependent term
effectively represents a δ function δκ (v) = κ

π (v2+κ2 ) in v,
smeared over scales order of κ . This expression defines the
mean-field amplitude κn at site n, in dependence on the toler-
ance window C for the energy vn, and κ itself. We now explore
for which configurations (C, κ ) it represents a self-consistent
solution.

The details of this analysis depend on whether we work
with weakly (I and II) or strongly (III and IV) distributed
on-site energies.

Strong on-site disorder regimes III and IV. Anticipating
that all solutions satisfy κ 
 1, the width of δκ (v) is much
smaller than that of the Gaussian weight δ. The function δκ

thus collapses the integral and we obtain

κn =
√

π√
32δ

e−v2
n/32δ2

. (C2)

This is consistent with our ansatz with C = 2δ and κ ∼ δ−1.
Narrow on-site disorder regimes I and II. In these regimes,

we test for the validity of the ansatz with C = 1 and
κ = 1. First assume |vn| > 1 = C 	 δ. In this case, the
ansatz requires exponentially suppressed κ , the δv function
again becomes effective, and the integral collapses to κn =√

π√
32δ

exp(− v2
n

32δ2 ), consistent with the assumed smallness of κ .
Conversely, for |vn| < 1 = C, the ansatz requires κ = 1. The
function δκ = δ1 is now much wider than the width of the
Gaussian, order of δ, and the integration boundaries can be
extended to infinity. Doing the integral, we obtain κn ≡ κ =
1/κ , or κ = 1, consistent with Eq. (33).

APPENDIX D: EFFECTIVE MATRIX THEORY

In this Appendix we discuss the derivation of Eqs. (40) and
(41) from Eq. (26). In Eq. (26) we substitute Y → πν̂Q̂ with
Qn = Tnσ3T −1

n . The expansion of the action in fluctuations
then comprises three parts: the Gaussian weight, the expan-
sion of the Str ln in site-to-site fluctuations, and the expansion
of the Str ln in small frequency arguments z (reflecting the
noncommutativity [z, Tn] �= 0).

Gaussian weight. A straightforward substitution yields

− 1

2
STr(Y PY ) → −π2

2
STr[ν̂Q̂P (ν̂Q̂)]

= −π2

2

∑
nm

νnνmP|n−m|StrQnQm, (D1)

where STr includes the Fock-space trace, while Str is only
over internal degrees of freedom.

Fluctuation action. Substituting the ansatz into the Str ln
and temporarily neglecting the frequency arguments z,
we obtain

STr ln[−Ĥ2 + iπP (ν̂Q̂)]

= STr ln[−Ĥ2 + iT̂ −1πP (ν̂Q̂)T̂ ]

= STr ln{−Ĥ2 + iπP (ν̂σ3)

+ iπ [T̂ −1P (ν̂Q̂)T̂ − P (ν̂σ3)]}
� STr ln{1 + π2ν̂σ3[T̂ −1P (ν̂Q̂)T̂ − P (ν̂σ3)]}
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� π2STr{ν̂σ3[T̂ −1P (ν̂Q̂)T̂ − P (ν̂σ3)]}
= π2STr[ν̂Q̂P (ν̂Q̂)], (D2)

identical to (−2×) the Gaussian weight. In the sec-
ond line we used the cyclic invariance STr ln(· · · ) =
STr ln[T̂ −1(· · · )T̂ ] and in the fourth the saddle-point equation
[−Ĥ2 + iπP (ν̂σ3)]−1 = −iπν̂σ3.

Frequency action. In a similar manner, we obtain

STr ln[−Ĥ2 + iπP (ν̂Q̂) + z]

� STr ln{T̂ [−Ĥ2 + iπP (ν̂σ3)]T̂ −1 + z}
= STr ln[−Ĥ2 + iπP (ν̂σ3) + T̂ −1zT̂ ]

� −iπSTr(ν̂σ3T̂ −1zT̂ ) = −iπSTr(ν̂Q̂z), (D3)

where in the second line we neglected local fluctuations
P(ν̂T̂ σ3T̂ −1) � T̂ P(ν̂σ3)T̂ −1, in the third we used cyclic in-
variance, and in the fourth we used the saddle-point condition.
Combining terms, we obtain the effective action (40).

APPENDIX E: WAVE-FUNCTION AND SPECTRAL
STATISTICS FROM THE MATRIX MODEL

In this Appendix we provide details on the computation
of wave-function and spectral statistics in the deformed Ĥ4

model. The starting point for both statistics is Eq. (36), with
sources j = JK or J = JI,n, respectively, given in Eq. (20).
Using the commutativity [T, Ĥ2] = 0, we represent the
action as

S[T ] = STr ln(1 + ĜOT ) =
∞∑

k=1

(−1)k

k
STr(ĜOT )k,

where OT ≡ T −1[z − j(α, β )]T is an operator in which we
need to expand to the order required by the correlation func-
tion and we have made the source contribution j(α, β ) to the
matrix z = ω+iη

2 σ3 explicit again. Concerning the resolvent
Ĝ−1 ≡ iκ̂σ3 − Ĥ2, we notice that fluctuation variables com-
mute through the real part of Ĝ and keep only i ImĜ = −iπν̂,
with local components νn defined in Eq. (32). Specifically, to
zeroth order in the sources and first order in an expansion in
zνn ∼ ω/�, the action assumes the form (37).

For the computation of the spectral and wave-function
statistics, we need the expansion in sources to first order in
β and higher orders in α. With the above definitions, the
expansion of the action assumes the form

S[T ] = −π

∞∑
k=1

(−iνnα)k

(
1

k
[Q++

bb ]k + β

α
[Q++

bb ]k−1Q−−
ff

)
,

(E1)

where in the terms k > 2 we used the approximation
Q+−

bf Q−+
fb � Q++

bb Q−−
ff valid in the limit η → 0 implied in

the calculation of wave-function moments [45]. Doing the
derivatives in the source parameters, we arrive at

∂q−1
α ∂βZ|α,β=0 = (−iπνn)qq!〈[Q++

bb ]q−1Q−−
ff 〉, (E2)

where 〈· · · 〉 = ∫
dQ e−Sz[Q](· · · ).

The remaining integral over the four-dimensional matrix Q
is conceptually straightforward but technically the hardest part

of the calculation. Referring for details to Ref. [45], here we
review the main steps. The starting point is a polar coordinate
representation Q = UQ0U −1, with Q0 defined in Eq. (38), and
θ̂ = diag(iθ̂b, θ̂f ) containing compact and noncompact angles
0 < θf < π and θb > 0, respectively [45]. The matrix U is
block diagonal in causal space and contains four Grassmann
variables η± and η̄± and two more commuting variables
0 � φ and χ̂ < 2π . More specifically, U = diag(u1u2, v)ra,
where u2 = diag(eiφ, eiχ̂ )bf and supermatrices u1 = e−2η̂+

and v = e−2iη̂−
, generated by η̂± = (

0 η̄±
−η± 0 )bf . In this

representation, the matrix elements entering the correlation
function are given by Q++

bb = cosh θbb(1 − 4η̄+η+) and
Q−−

ff = cos θff (1 − 4η̄−η−) and the integration measure reads
dQ = 1

26π2
sinh θb sin θf

(cosh θb−cos θf )2 dφdχ̂dθbdθfd η̄+dη+d η̄−dη− [45].
The essential advantage of the polar representation is
that the action only depends on the radial variables
Sη[Q] = −i2πν(ω + iη)(cosh θb − cos θf ).

Wave-function statistics. In the calculation of the wave-
function moments, we may set ω = 0. The integration over
the noncompact angle is then cut by the parameter η at values
1 � cosh θb � 1/η, while the integration over the compact an-
gles θf is free. With this simplification, the integration over all
variables except the noncompact one θ becomes elementary
and one obtains [45]

G+(q−1)
nn G−

nn = 2q(q − 1)(−iπνn)q

×
∫ ∞

0
dθb sinh θb(cosh θb)q−2e−2πνη cosh θb .

(E3)

The final integral gives (2πνη)1−qq! and collecting all factors
we arrive at

Iq = q!

νq

∑
n

νq
n . (E4)

This result expresses the qth moment of the local wave-
function amplitudes through that of the local density of states
individually averaged over Ĥ4 fluctuations. The energies vn

at each individual site are obtained as sums of N random
coefficients vi [cf. Eq. (3)]. For large N , this makes the sum
self-averaging, and we replace Iq → 〈Iq〉v by its average over
single-particle energies vi. Using Eq. (32), we thus obtain

Iq = (−)q−1q

(πν)q

∑
n

(κn)q

〈
∂

q−1
(κn )2

1

v2
n + (κn)2

〉
.

The evaluation of this expression now depends on which
on-site disorder regime we are in. In regime I, δ < N−1/2

or |vn| < 1, the mean-field broadening assumes the uniform
value κ = 1. In this case, the dependence of Iq on site ener-
gies vn is weak. This implies ν � 1

π

∑
n 1 = D/π . Doing the

κ derivatives, we obtain

Iq = q!D1−q in regime I, (E5)

which is the RMT result for a matrix of dimension D.
For larger disorder, only a fraction of sites have finite decay

width. Using Eq. (33) and assuming self-averaging to replace
the n sum to an average over a distribution of site energies of
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width δN , the DOS is evaluated as

ν � 1

π

D√
2πNδ2

∫ C

−C
dv e−v2/2Nδ2 κ

v2 + κ2

� 1

π

D√
2πNδ2

∫ C

−C
dv

κ

v2 + κ2

= 1

π

2D√
2πNδ2

arctan(C/κ ),

where in the second line we used that the distribution of ener-
gies is much wider than the tolerance window C. Substituting
the values specified in Eq. (33), this leads to

ν = c
D√
Nδ

, (E6)

where c is of order unity and the suppression relative to
ν = cD in regime I accounts for the improbability to find
resonant sites.

In the same manner, we obtain

Iq � (−)q−1q

(πν)q

D√
2πNδ2

κq∂
q−1
κ2

∫ C

−C
dv e−v2/2Nδ2 1

v2 + κ2

� (−)q−1q

(πν)q

D√
2πNδ2

κq∂
q−1
κ2

∫ C

−C
dv

1

v2 + κ2

= 2
(−)q−1q

(πν)q

D√
2πNδ2

κq∂
q−1
κ2

1

κ
arctan(C/κ )

� 2
(−)q−1q

(πν)q

D√
2πNδ2

κq∂
q−1
κ2

1

κ

= 1

(πν)q

D√
2πNδ2

2q(2q − 3)!!

(2κ )q−1
,

where � means equality up to some constant c ∼ O(1). In-
sertion of Eq. (E6) leads to Eq. (13). Using Eq. (33), we
finally obtain

Iq = cqq!

(
D√
N

)1−q

×
{
δq−1 in regime II
δ2(q−1) in regime III

(E7)

for q 	 1. Finally, for a quantitative comparison to numerical
simulations in regime III without fitting parameter we trace all
constants c ∼ O(1) in ν and Iq. Noting that in regime III we
can substitute arctan(C/κ ) = π/2, we arrive at

Iq = q(2q − 3)!!

(2πνκ )q−1
= q(2q − 3)!!

δ2(1−q)

(
πD

4
√

N

)1−q

in regime III,

(E8)

where in the second equality we used Eq. (C2) for κ .
Level statistics. For the level statistics we need to keep

finite ω and differentiate the functional to first order in
α and β [Eq. (22)]. Application of Eq. (E2) then leads to [45]

K (ω) = 1

2
Re

∫ ∞

0
dθb

∫ π/2

−π/2
dθf

× sinh θb sin θf e
iπνω(cosh θb−cos θf ), (E9)

where θb and θf are the noncompact bosonic and compact
fermionic angle, respectively. These integrals can be carried

out in closed form and yield the two-point correlation function
of the Gaussian unitary ensemble (9).

APPENDIX F: LOCALIZATION CRITERION

In this Appendix we demonstrate how the solution of the
eigenvalue equation (46) reduces to the criterion (16). We
write the sum as

�n = 2
√

π√
ρ

∑
|n−m|=4

anm�m,

anm = √
νnνm ln

(
ρ

(2π )2νnνm

)
and make the self-consistent assumption that the sum over
neighboring sites m is dominated by resonant sites and that
the solution �n too is peaked at those sites. Under these
conditions it makes sense to consider a zeroth-order ap-
proximation anm � a0

nm ≡ √
νnνm2 ln(

√
ρ/2πνm), neglecting

site-to-site fluctuations of the logarithm. In a final step we
will refine the result by perturbation theory in δanm ≡ anm −
a0

nm = √
νnνm ln(νm/νn). Making the replacement anm → a0

nm,
we observe that the equation is solved by �n ∝ √

νn, provided

1 = 4
√

π√
ρ

∑
m

νm ln

( √
ρ

2πνm

)
, (F1)

where the sum extends over the Z ≡ (N
4

)
sites in Hamming

distance 4 to n (i.e., the parameter Z defines the effective coor-
dination number of the Fock-space lattice). We note that with
the above eigenstates the first-order perturbative correction
to the unit eigenvalue equation (F1) is given by 〈�|δα|�〉 ∝∑

nm νnνm ln(νn/νm) = 0, which we take as a self-consistent
justification to work with the zeroth-order approximation.
Turning to the consistency equation for the eigenvalue, we
again replace the sum over nearest neighbors by an average
over their distribution of energies (cf. a similar operation in
Appendix C)

∑
m

νm f (νm) � Z〈ν(v) f (ν(v))〉v � Z
f
(√

32δ√
π

)
√

32πδ
,

〈· · · 〉v = 1√
2π4δ

∫
dv e−v2/32δ2

(· · · ).

Here the second equality is based on the observation that on
the subset of active sites v < δ, where ν(v) is nonvanishing,
and ν(v) = π

δ(v2+δ−2 ) becomes a δ function of width order of

δ−1 and height ν(0) = π/κ with κ =
√

π√
32δ

[cf. Eq. (C2)].
The integral collapses to this resonance region, leading to the
stated result. (Effectively, this is saying that only resonant sites
contribute to the nearest-neighbor sum.)

Application of this auxiliary identity to the eigenvalue
equation (F1) leads to

1 = 1√
2ρ

Z

δ
ln

(√
8ρ

π
δ

)
, (F2)

which is solved by

δc = Z√
2ρ

W (2Z
√

π ), (F3)
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with W the Lambert W function. For N 	 1, we may ap-
proximate Z = (N

4

) � N4/24 and ρ = (2N
4

) � (2N )4/4!. The
asymptotic expansion for large arguments W (x) � ln(x) +
· · · then leads to the estimate (16).
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We generalize Page’s result on the entanglement entropy of random pure states to the many-body
eigenstates of realistic disordered many-body systems subject to long-range interactions. This extension
leads to two principal conclusions: first, for increasing disorder the “shells” of constant energy supporting a
system’s eigenstates fill only a fraction of its full Fock space and are subject to intrinsic correlations absent
in synthetic high-dimensional random lattice systems. Second, in all regimes preceding the many-body
localization transition individual eigenstates are thermally distributed over these shells. These results,
corroborated by comparison to exact diagonalization for an SYK model, are at variance with the concept of
“nonergodic extended states” in many-body systems discussed in the recent literature.
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Introduction.—Complex quantum systems exposed to
external disorder may enter a phase of strong localization.
About two decades after the prediction of many-body
localization (MBL) [1–3], there is still no strong consensus
about the stability of the MBL phase and/or the possible
presence of an intermediate phase between MBL and the
thermal phase. One class of models where these questions
can be explored with more analytic control is confined
many-body systems with long-range interactions. Under
these conditions, the interaction operator couples all sin-
gle-particle states, which facilitates the analysis. At the same
time, the Hilbert space dimension is still exponentially large
in the particle number, which leads to rich physics relevant to
systems such as chaotic many-body quantum devices [4–7],
small sized optical lattices [8–10], or qubit arrays [11,12].
In recent years, the complex structure of many-body

quantum states in MBL has become a focus of intensive
research. Unlike with single particle problems, where
extended wave functions uniformly cover real space,
increasing the disorder in a phase of extended many-body
states jψi leads to a diminished wave function support in
Fock space. This phenomenon, which shows, e.g., in a
suppression of wave function moments (WFM) jhnjψij2q in
an occupation number basis jni, has led to the proposal of a
phase of “nonergodic extended states” [13–16] intermedi-
ate between the phases of absent and strong localization.
An alternative scenario is that for each realization of the
disorder only a subset of states fjnig have finite overlap
with the eigenstates of energy E, and in this way define a
quantum energy shell in Fock space. A uniform (thermal)
distribution of the exact eigenstates on this shell would then
be the defining criterion for maintained quantum ergodicity
on the delocalized side of the MBL transition.

At this stage, there is mounting evidence in favor of the
second scenario [17–20]. However, in order to firmly
characterize the physics of a globally realized many-body
ergodic quantum phase, two questions need to be
addressed: How can the energy shell be described in
quantitative terms? And what is the distribution of quantum
states on that shell? As indicated above, wave function
statistics can provide at least part of an answer to the first
question. In this Letter, we focus on the equally important
second part of the problem and demonstrate that the key
to its solution lies in concepts of quantum information.
Specifically, we will compute pure state entanglement
entropies (EE) under a relatively mild set of assumptions.
Within this framework we find that to zeroth order wave
functions remain thermally distributed over the shell. This
establishes a microcanonical distribution, in agreement
with the second scenario—maintained ergodicity in all
regimes prior to the transition. In addition, the EE contains
subleading terms which reflect the characteristic way in
which the energy shell is interlaced into Fock space. These
contributions sharply distinguish the energy shells of
genuine many-body systems from those of phenomeno-
logical high dimensional models such as the random energy
model (REM) or sparse random states [21]. In this way the
combined analysis of WFMs and EEs becomes a sensitive
probe into the complex manifestation of wave function
ergodicity in many particle systems.
Pure state entanglement entropies.—For a pure state

ρ ¼ jψihψ j, the entanglement entropy relative to a parti-
tioning F ¼ FA ⊗ FB of Fock space is defined as the von
Neumann entropy, SA ¼ −trAðρA ln ρAÞ of the reduced
density matrix ρA ¼ trBðjψihψ jÞ. The entanglement entro-
pies of pure maximally random states were calculated in the
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classic Ref. [22]. More recent work [23] emphasizes the
utility of the concept in the context of random matrix
models serving as proxies of high-dimensional localizing
systems [14]. In these systems, quantum interference shows
in a contribution to the entanglement entropy proportional
to the ratio of subsystem Fock-space dimensions. A main
finding of the present work is that energy-shell correlations
distinguishing microscopic systems from random matrix
models open a second channel of quantum information and
exponentially enhance the suppression of the entanglement
below its thermal value. In this way, the entanglement
sharply distinguishes between genuine many-body wave
functions and wave functions on generic high-dimensional
random lattices.
In the rest of this Letter, we will compute the entangle-

ment entropy of pure states prior to the onset of strong
localization under a minimal set of assumptions. We will
compare our results to the entropies obtained for phenom-
enological models and to numerical data obtained for a
Majorana Sachdev-Ye-Kitaev (SYK) model.
Energy shell.—We begin with a qualitative discussion of

the Fock space energy shell. Consider a many-body
Hamiltonian Ĥ ¼ Ĥ2 þ Ĥ4, where Ĥ4 is an interaction
operator and Ĥ2 a one-body operator defined by a single
particle spectrum fmig, i ¼ 1;…; N distributed over a
range δ. Working in the eigenbasis of Ĥ2, Fock space is
spanned by the D≡ 2N occupation number states
n ¼ ðn1;…; nNÞ, ni ¼ 0, 1 for spinless fermions. We
interpret these states as sites of a hypercubic lattice,
carrying local potentials vn ¼

Pð2ni − 1Þmi with rms
value Δ2 ≡ N1=2δ. Individual states n are connected
to a polynomially large number Nα of “nearest neighbors”
m by the interaction Ĥ4. For interaction matrix elements
tnm ∼ gN−β=2, the rms eigenvalue of Ĥ4 scales as
Δ4 ∼ gNðα−βÞ=2, with g an N-independent coupling energy
for the interaction. These interactions change only an order-
one number of occupation numbers, so jvn − vmj is of order
δ and thus for large N much smaller than the “bandwidth”
Δ2 of Ĥ2.
In the competition of the operators Ĥ2 and Ĥ4, states n

may hybridize with states m via the coupling tnm. When
the eigenstates of Ĥ are delocalized in Fock space, this
hybridization gives the local spectral density

νnðEÞ≡ −
1

π
ImhnjðEþ − ĤÞ−1jni; ð1Þ

a linewidth κ ¼ κðvn; δ; gÞ which must be self-consistently
determined [24]. The solution of Eq. (1) for a given
realization of the disorder contains the essential informa-
tion on the distribution of the energy shell in Fock space.
Specifically, for generic values of the energy E (we set
E ¼ 0 for concreteness), the strength of the disorder δ
defines four regimes of different shell structure:

Regime I: δ ≪ N−1=2Δ4: the characteristic disorder band
width δN1=2 ¼ Δ2 ≪ Δ4 is perturbatively small. In this
regime, the spectral density νn ≡ ν is approximately con-
stant over energy scales ∼Δ2.
Regime II: N−1=2Δ4 ≪ δ ≪ Δ4: the bandwidth of Ĥ2

exceeds that of the interaction Ĥ4, but nearest neighbors
remain energetically close jvn − vmj ∼ δ ≪ Δ4. In this
regime, κ ∼ Δ4, indicating that the full interaction
Hamiltonian enters the hybridization of neighboring sites.
Regime III: Δ4 ≪ δ ≪ δc: only a fraction ∼ðΔ4=δÞ2 of

nearest neighbors remain in resonance, and the broadening
is reduced to κ ∼ Δ2

4=δ.
Regime IV: The threshold to localization δc is reached

when less than one of the ∼Nα neighbors of characteristic
energy separation δ falls into the broadened energy win-
dow. Up to corrections logarithmic in N (and neglecting
potential modifications due to Fock space loop amplitudes)
this leads to the estimate δc ∼ Nα=2Δ4 for the boundary to
the strong localization regime.
The energy shell in the delocalized regimes II and III is

an extended cluster of resonant sites embedded in Fock
space. It owes its structure to the competition between the
large number OðNαÞ of nearest neighbor matrix elements
and the detuning of statistically correlated nearest neighbor
energies vn, vm. In regime II, only a polynomially (in N)

small fraction κ=Δ2∼
IIΔ4=ðδN1=2Þ of Fock space sites lie in

the resonant window defining the energy shell, and in III

this fraction is further reduced to ∼IIIΔ2
4=ðδ2N1=2Þ, before the

shell fragments at the boundary to regime IV.
We also note that if a site n lies on the shell, the

probability that its neighboring sites of energy vm ¼
vn �OðδÞ are likewise on-shell is parametrically enhanced
compared to that of generic sites with energy vn �OðΔ2Þ.
It is this principle which gives the energy shell of many-
body systems a high degree of internal correlations (absent
in phenomenological lattice models with statistically inde-
pendent on-site randomness) [26]. What physical quantities
are sensitive to these correlations? And how do quantum
states spread over the shell structure? As we are going to
discuss next, the pure state entanglement entropy SA
contains the answer to these questions.
Entanglement entropy.—Consider a Fock space (outer

product) partitioning defined by n ¼ ðl; mÞ where the
NA-bit vector l labels the states of subsystem A and m
those of B with NB ¼ N − NA ≫ NA. We are interested in
the disorder averaged moments Mr ≡ htrAðρrAÞi, and the
entanglement entropy SA ¼ −∂rMrjr¼1 of the reduced
density matrix ρA ¼ trBðjψihψ jÞ defined by a realization-
specific zero-energy eigenstate Ĥjψi ¼ 0. The bookkeep-
ing of index configurations entering the moments
trAðρrAÞ ¼ ψ l1m1 ψ̄ l2m1ψ l2m2…ψ lrmr ψ̄ l1mr is conveniently
done in a tensor network representation as in Fig. 1.
Introducing a multi-index N ≡ ðn1;…; nrÞ, and analo-
gously for N A;B, the figure indicates how the index-data
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N and M carried by ψ and ψ̄ is constrained by the
summation as Mi

B ¼ N i
B and Mi

A ¼ N τi
A , where

τi ¼ ðiþ 1ÞmodðrÞ. A further constraint, indicated by
red lines in the bottom part of the figure, arises from the
random phase cancellation under averaging, which in
the present notation requires N i ≡Mσi, for some permu-
tation σ. [The figure illustrates this for the identity,
σ ¼ id., and the transposition σ ¼ ð2; 4Þ.] Combining
the two constraints, we obtain the representation
Mr ¼

P
σ

P
N

Q
ihjψni j2iδN A;σ∘τN A

δN B;σN B
. This expres-

sion is universal in that it does not require assumptions
other than the random phase cancellation. In a less innocent
final step we establish contact to the previously discussed
local density of states νn and compare the two representa-
tions Dν≡P

α δðE−EαÞ¼
P

n;α jψα;nj2δðE−EαÞ¼
P

nνn
to identify jψnj2 ¼ νn=Dν. In other words, we identify
the moduli jψnj2 of a fixed eigenstate ψ ¼ ψα with the
realization specific local density of states νn at E ¼ Eα.
For the legitimacy of this replacement for single particle
random systems see Ref. [30], and for the SYK model the
Supplemental Material [31] and Ref. [25]. With this
substitution, we obtain the representation

Mr ¼
X
σ

X
N

Yr
i¼1

λniδN A;ðσ∘τÞN A
δN B;σN B

; ð2Þ

with λn ≡ νn=Dν. This expression describes two comple-
mentary perspectives of quantum states in Fock space:
their support on a random energy shell defined by the
coefficients λn ∼ νn, and random phase cancellations
implicit in the combinatorial structure. In the following,
we discuss the manifestations of these principles in the
above regimes I–IV.
Regime I, maximally random states.—Here, wave func-

tions are uniformly distributed, νn ¼ ν, and the evaluation
of Eq. (2) reduces to a combinatorial problem. The latter
has been addressed in the string theory literature [37,38]

(where high-dimensional pure random states are considered
as proxies for black hole micro states.) Inspection of
the formula shows that increasing permutation complexity
needs to be paid for in summation factors DB. Keeping
only the leading term, σ ¼ id, and the next leading
single transpositions σ ¼ ðijÞ, we obtain Mr ≈
D1−r

A þ ðr
2
ÞD2−r

A D−1
B , and the subsequent differentiation in

r yields Page’s result [22]

SA − Sth ¼ −
DA

2DB
; Sth ¼ lnDA: ð3Þ

Interestingly, higher order terms in the DA=DB-expansion
vanish in the replica limit [22,37–40], and Eq. (3) is exact
for arbitrary NA ≤ NB, up to corrections small in 1=D. (The
case NA ≥ NB follows from exchange A ↔ B.) The result
states that to leading order the entropy of the subsystem is
that of a maximally random (“thermal”) state, Sth. The
residual term results from wave function interference across
system boundaries. Reflecting a common signature of
“interference contributions” to physical observables, it is
suppressed by a factor proportional to the Hilbert space
dimension.
Regime II and III, energy shell entanglement.—The

energy shell now is structured and correlations in the local
densities fνng lead to a much stronger correction to the
thermal entropy. Since these contributions come from the
identity permutation (do not involve wave function inter-
ference), we ignore for the moment σ ≠ id, reducing Eq. (2)
toMr ≃

P
l λ

r
A;l with λA ≡ trBðλÞ. This expression suggests

an interpretation of the unit normalized density fλng as a
spectral measure

P
n λn ¼ 1, λn ≥ 0 and of λA as the

reduced density of system A. With this identification,
the entropy

SA ≈ Sρ ≡−trA½λA lnðλAÞ� ð4Þ

becomes the information entropy of that measure.
This is as far as the model-independent analysis goes.

Further progress is contingent on two assumptions, which
we believe should be satisfied for a wide class of systems
in their regimes II and III: First, the exponentially large
number of sites entering the computation of the spectral
measure justifies a self-averaging assumption,X

nX

FðvnXÞ≈DXhFðvXÞiX

≡ DXffiffiffiffiffiffi
2π

p
ΔX

Z
dvX exp

�
−

v2X
2Δ2

X

�
FðvXÞ; ð5Þ

where X ¼ A; B; AB stands for the two subsystems, or the
full space, respectively, DX are the respective Hilbert space
dimensions, and ΔX ¼ δ

ffiffiffiffiffiffiffi
NX

p
. In other words, we replace

the sum over site energies by an average over a single
variable whose Gaussian distribution follows from the

FIG. 1. Top left: graphic representation of the tensor amplitude
ψ lmψ̄ l0m0 . Top right: contraction of indices defining trðρ5AÞ.
Bottom: averaging enforces pairwise equality of indices n, n0
in tensor products h…ψn…ψ̄n0…i, as indicated by red lines.
Left: identity pairing of indices within the five factors
htrAðρAρAρAρAρAÞi. Right: pairing of indices of the second
and fourth factor.
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central limit theorem. Second, when integrated against the
distribution of subsystem energies vB, the local density of
states at zero energy E ≃ 0 acts as a smeared δ function,
setting the additive energy v ¼ vA þ vB ≃ 0, and effec-
tively smoothing the distribution λA;l. Since κ ≪ Δ2 ∼ ΔB,
the detailed value of the width of the shell κ is of no
significance in this construction.
Under these assumptions, straightforward computations

detailed in the Supplemental Material [31] yields, e.g.,
the density of states as Dν ¼ P

AB νn ≈DhδκðvÞiAB ¼
D=ð ffiffiffiffiffiffiffiffiffi

2πN
p

δÞ. Applied to the computation of the moments
Eq. (2), the averaging procedure obtains the entanglement
entropy as [31]

SA − Sth ¼ −
1

2
ln

�
N
NB

�
þ 1

2

NA

N
−

ffiffiffiffiffiffiffiffiffi
N
2NA

s
DA

2DB
: ð6Þ

A number of comments on Eq. (6) are needed: Provided the
above assumptions on the spectral measure hold, the result
has the same level of rigor as Page’s formula Eq. (3). The
main difference is that (for small subsystems, NA ≪ N) the
information entropy SA − Sth ≈ − 1

4
ðNA=NÞ2 is exponen-

tially enhanced compared to the correction in Eq. (3). Also
note that there is no dependence on the disorder strength
(see Supplemental Material [31] for more details).
Comparison to phenomenological models.—The entan-

glement entropy (6) is a universal signature of correlations
(but not the volume) of the energy shell. Conversely, the
WFMs jψnj2q describe the shrinking of the shell volume
(but not its correlations). To see that these are independent
pieces of information, it is instructive to compare to the
random energy model [41], a phenomenological model
replacing the one-body randomness by a set of statistically
independent Fock state potentials fvng. For increasing δ,
the WFMs diminish as in microscopic models [42].
However, we have verified that the EE of REM states
coincides with Page’s Eq. (3). The same result is obtained
for sparse random states [21], as even more phenomeno-
logical proxies of many-body states. What is the origin of
the difference to Eq. (6)? A genuine many-body model
describes many “bodies,” representing the microscopic
degrees of freedom. The Fock space is an outer product
over the single body spaces, and the Hamiltonian contains
only operators coupling Oð1Þ of these degrees of freedom.
In this sense the REM is not a many-body model, since
its nonlocal energy operator acts on the products of all
(or most) degrees of freedom simultaneously. Specifically,
it lacks the principle of energy subsystem additivity
E ¼ EA þ EB, required by Eq. (6). In this way, the
entanglement entropy becomes a sensitive indicator of
whether quantum states are genuine many-body states or
of different origin.
Regime boundaries.—Upon approaching the boundary

to the trivially ergodic regime I, the second condition gets

compromised, i.e., the width κ of individual states ceases
to be small compared to the statistical fluctuations ∼ΔB.
Leaving a detailed analysis of the crossover region to future
work, our numerics below shows a collapse of Eq. (6) to
Eq. (3) upon crossing the regime boundary. In the opposite
MBL regime IV, eigenstates are concentrated on a small
number Oð1Þ of isolated Fock states, and the concept of
an energy shell becomes meaningless: to exponential
accuracy in N, remote Fock states, even if they are close
in energy, have no common matrix elements with individ-
ual eigenstates.
The entanglement entropy then scales as

SA ∼ sðδ=δcÞNA=N, where s is related to the entropy of
the distribution of the localized eigenstate in Fock space.
For 1 ≪ NA ≪ N, SA ≪ 1 stays small down to δ ∼ δc,
where it jumps to SA ∼ NA at the localization transition to
regime III.
Numerical analysis.—Figure 2 shows a comparison

of the analytical predictions of Eqs. (3) and (6) with
numerical results obtained for the SYK Hamiltonian
[31]. In that case, Ĥ4 ¼ ð1=4!ÞP2N

i;j;k;l¼1 Jijklχ̂iχ̂jχ̂kχ̂l,
where fχ̂lg are Majorana operators [43,44]. The competing
one-body operator reads Ĥ2 ¼

P
N
i¼1 mið2c†i ci − 1Þ, where

ci ¼ 1
2
ðχ̂2i−1 þ iχ̂2iÞ are complex fermion operators defined

by the Majoranas [45,46]. Referring to the Supplemental
Material [31] for details, the agreement is very good, and it
becomes better with increasing NA. (We have no certain
explanation for the deviations at the smallest values of NA.)
Discussion.—In this Letter, we applied a combined

analysis of the statistics and the entanglement properties
of pure quantum states to explore the delocalized phase of
disordered many-body systems subject to long-range cor-
relations. Our analysis supports the view that the appealing
concept of “nonergodic extended states”—adopted includ-
ing in publications of the present authors [25,42]—should
be abandoned in favor of a qualified interpretation of many-
body quantum ergodicity. Its key element is the support set

FIG. 2. Numerical entanglement entropies (symbols) vs ana-
lytical (lines) for a system of size N ¼ 15 in regime I, δ ¼ 0.01
(solid) and III, δ ¼ 1 (dashed). Inset: linear scale representation
of the same data.
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fng of states of a given energy, the quantum analog of an
energy shell. We have shown how the entanglement
properties of pure quantum states reveal ergodicity and
in addition characteristic correlations distinguishing the
energy shells of genuine many-body systems from those of
phenomenological proxies.
What is the scope of the above findings? Referring to the

Supplemental Material [31] for a more detailed discussion,
the freedom to adjust the exponents α, β entering the
definition of the model Hamiltonian, implies that our result
applies to a wide class of effectively long-range interacting
systems, among them realizations whose interaction oper-
ators are short range in a microscopic (“real space”) basis
but long range in the eigenbasis of Ĥ2. It is tempting to
speculate on generalizations to yet wider system classes.
To this end, we note that the derivation of Eq. (6) relies on
a number of necessary conditions: subsystem additivity
E ≃ EA þ EB (requiring that the coupling energy between
the subsystems is negligibly small in the limit of large
system sizes), statistically independent distribution of the
energies EA;B, and dependence of the spectral density
(measure) on no more than the single conserved quantity,
energy. Whether these criteria are not only required but
actually sufficient to stabilize the result is an interesting
question left for forthcoming research [47]. However,
regardless of the scope of Eq. (6), we reason that the
combination of wave function statistics and pure state
entanglement defines the suitable diagnostic to characterize
the ergodic phase of many-body quantum chaotic systems.
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Chapter 7

Closing Remarks

One of the central premises of quantum statistical mechanics is that all systems

eventually reach thermal equilibrium. The formalization of this concept for closed

quantum systems is non-trivial, with the best formulation taking the form of the

ETH. However, open questions remain, such as understanding the conditions under

which ETH holds for various quantum systems, and exploring how it breaks down into

the transition to the MBL phase. Another important question, which we addressed

in this thesis, is the potential existence of an intermediate NEE phase between the

thermal and localized phases, where states are extended but feature non-ergodic

amplitude distributions. Addressing these complex quantum many-body systems

presents significant challenges, both theoretically and in terms of practical analytical

and numerical approaches. To explore these complexities, the SYK model significantly

facilitates numerical and analytical computations. Since the SYK is known to be fully

ergodic, in order to address the questions regarding the breakdown of ergodicity into

many-body localization, we introduced two modifications to the SYK model. The aim

was to probe the transition from ergodic to localized states, with a particular focus on

understanding the role of non-ergodic extended states.
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In this thesis, we explored the eigenstate properties and energy distributions of

two systems, both being comprised of an ergodic SYK Hamiltonian modified with a

localization-inducing perturbation. Utilizing both analytical methods and numerical

simulations, we investigated the energy and eigenstate statistical properties, as well as

entanglement entropy characteristics. While the numerical investigations pertain to

two specific models, Ha and Hb, the analytical insights extend to a broader class of

systems, particularly those exhibiting long-range interactions in Fock space. The study

underscores the importance of incorporating wave-function statistics and entanglement

properties in the analysis of ergodic systems, going beyond the conventional focus on

energy statistics.

Our main findings were an extension of Page’s result on entanglement entropy,

applied to disordered many-body systems undergoing a transition to the MBL phase.

We demonstrated how quantum interference plays a crucial role in contributing to the

entanglement entropy in such systems, especially those with long-range interactions.

This contribution is highlighted in the context of localizing systems represented by ran-

dom matrix models. Additionally, our research offers new perspectives on “non-ergodic

extended states” in quantum systems, challenging traditional views and providing

insights into wave function ergodicity and eigenstate distribution over energy shells.

A key distinction was made between the energy shells of genuine many-body systems

and those in high-dimensional random lattice models, based on their entanglement

entropies.

A natural extension for future research lies in exploring the dynamics of quantum

systems in the NEE regime. This research direction aims to uncover how the unique

structural characteristics of the NEE phase, distinguished by its restricted wave

function support in Fock space, manifest in time-dependent processes. Central to

this investigation will be the examination of quantum relaxation dynamics, transport
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properties, and the response to external perturbations within the NEE regime. Utilizing

numerical techniques such as time-dependent density matrix renormalization group

or continuous-time quantum Monte Carlo methods, alongside analytical approaches

grounded in random matrix theory and eigenstate thermalization hypothesis, this

research could provide crucial insights into the temporal behavior of disordered quantum

systems. A particular focus could be the exploration of how the NEE regime influence

the onset of quantum chaos, the spreading of entanglement, and the thermalization

processes, potentially leading to a deeper understanding of the phase diagram of

disordered quantum systems.
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Appendix A

Supplementary Material to:

“Non-ergodic extended states in the

SYK model”

A.1 SUSY Matrix integral in a nutshell

In this section we provide a concise yet self contained derivation of the supersymmetric

matrix integral representation for the computation of SYK Green functions.

Generating function

The general starting point for such constructions is the Gaussian integral identity for

the inverse elements of N ×N -matrices

M−1
nm =

∫
D(ψ̄, ψ) e−ψ̄Mψψσmψ̄

σ
n, (A.1)

where the 2N dimensional ‘graded’ vector ψ = (ψb, ψf)T contains N -component vectors

of commuting and Grassmann variables, σ = b, f, respectively. It is set up such that
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the matrix determinants generated by the commuting and the Grassmann integral,

respectively, cancel out. The advantage of this design over the alternative replica

formalism for the generation of determinant-free representations is that no spurious

analytic continuations are involved, which provides a more reliable basis for non-

perturbative calculations.

Referring to our discussion in the main text, we represent moments of the wave

functions as,

Iq = 1
2iπν0

lim
δ→0

(2iδ)q−1∑
n

G+(q−1)
nn G−

nn,

G±
nn′ =

〈
n|(±iδ − Ĥ)−1|n′

〉
, (A.2)

where we noted that products of only retarded Green functions do not contribute to

the connected average of observables and may be discarded. We now use Eq. (A.1)

with the identification M = diag(−i[G+]−1, i[G−]−1) = −iσ3(iδσ3 − Ĥ) to generate

these moments. To this end we introduce

Z(α, β) =
∫
D(ψ̄, ψ)e−ψ̄(iδσ3−Ĥ−j(α,β))ψ, (A.3)

where ψ = {ψs,σn } now is a 4D component supervector, carrying the Fock-space

index n, and the causal index s = ± in addition to σ = b, f. The source matrix

j(α, β) = (απb ⊗ π+ + βπf ⊗ π−) ⊗ |n⟩⟨n| contains projectors |n⟩⟨n| in Fock- space and

πσ/s onto subspaces of specific grading/causality, respectively. It is now straightforward

to verify that the product of resolvents appearing in Eq. (A.2) is represented as

G+(q−1)
nn G−

nn = 1
(q − 1)!∂β∂

q−1
α Z|α,β=0. (A.4)
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Effective action

Inserting the SYK-Hamiltonian, Eqs. (1),(2) in the main text, the average over couplings

J generates a term quartic in the superfields,

Z(α, β) =
∫
D(ψ̄, ψ)e−ψ̄Ôψ− 3J2

N3
∑

a
(ψ̄Xaψ)(ψ̄Xaψ), (A.5)

where Ô ≡ iδσ3 − ĤV − j(α, β), and ∑
a is a sum over all ordered index quadruples

a = (i, j, k, l), i < j < k < l. We reorganize the quartic term as (ψ̄Xaψ)(ψ̄Xaψ) =

−STr
(
ψψ̄Xaψψ̄Xa

)
, where the ‘dyads’ ψψ̄ represent the composite fields indicated in

shading in Fig. 2 of the main text. A Hubbard-Stratonovich decoupling in it via a set

of 4D-dimensional supermatrix fields Aa = {Ass
′,σσ′

a,nn′ } ∼ {ψsσn ψ̄s
′σ′
n′ } leads to

Z(α, β) =
∫
DAe− 1

2N
∑

a
STr(XaAa)2+STr ln(Ô+i cN γ

N
∑

a
Aa), (A.6)

where cN ≡ 4!N /(2N)4, N ≡ ( 2N
4 ), γ = J

2 (2N)1/2, and the Gaussian integral over ψ

has been carried out. We next observe that the ‘STr ln’ in (A.6) couples only to the

linear combination Y ≡ 1
N
∑
aAa. This motivates a variable change Aa 7→ Y +Aa, where∑

aAa = 0. Enforcing the constraint via Lagrange multipliers, it is straightforward to

carry out the Gaussian integral over Aa (see Ref. [30] for a few more details) and to

arrive at

Z(α, β) =
∫
DY e− 1

2 STr(Y P−1Y )+STr ln(Ô+icNγY ), (A.7)

where PY ≡ 1
N
∑
aXaY X

†
a. The action of the functional integral defines Eq. (3) of

the main text, where we approximated cN = 1 and the source has been suppressed,

j(α, β) = 0. (The precise value of cN = 1 + O(N−1) only enters the comparison with

numerics for small system sizes N = O(101).)
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Wave-function statistics

Upon projection onto the Fock-space homogeneous mode, Eq. (A.7) reduces to the

effective action of the Rosenzweig-Porter model (see discussion in main text)

S[T ] = STr ln
(
iδσ3 − ĤV − j(α, β) + iγκQ

)
, (A.8)

where Q = Tσ3T
−1. Using the the commutativity of the fluctuations T with ĤV

and cyclic invariance of the ‘STr-ln’ this expression can be represented as S[T ] =

STr ln (1 +GV OT ), where G−1
V ≡ iγκ σ3 − ĤV , and OT ≡ T−1 [iδσ3 − j(α, β)]T is

an operator in which we need to expand to the order required by the correlation

function. For example, to linear order in δ one arrives at the action of the zero-

dimensional σ-model Sδ[Q] = πν0δSTr (σ3Q), where we employed the saddle point

solution trFGV = −iY0 = −iκσ3. In a similar fashion, the source term gives a con-

tribution Sj[T ] = −∑∞
k=1 g

k
n

(
αk

k
[Q++

bb ]k + βαk−1[Q++
bb ]k−1Q−−

ff

)
, where gn ≡ −iπν0

D(κ2+v2
n) ,

and we approximated Q+−
bf Q

−+
fb ≃ Q++

bb Q
−−
ff [31]. Doing the derivatives in the source

parameters, we then obtain

∂q−1
α ∂βZ|α,β=0 = gqnq! ⟨

[
Q++

bb

]q−1
Q−−

ff ⟩, (A.9)

We finally need to average over the soft mode fluctuation implied by the average

⟨...⟩ =
∫
dQ e−Sδ[Q](. . . ). Referring for details of this to Ref. [32] we here sketch the prin-

cipal steps of this calculation. The starting point is a ‘polar coordinate’ representation,

Q = UQ0U
−1, where Q0 =

(
cos θ̂ i sin θ̂

−i sin θ̂ − cos θ̂

)
is a matrix in causal space and we introduced

the diagonal supermatrix θ̂ = diag(iθ̂b, θ̂f) containing compact and non-compact angles

0 < θf < π and θb > 0, respectively [32]. U is a diagonal matrix in causal space which

contains the four Grassmann variables η±, η̄±, and two more commuting variables

0 ≤ ϕ, χ < 2π. In this representation, the matrix elements entering the correlation
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function are given by Q++
bb = cosh θbb(1 − 4η̄+η+) and Q−−

ff = cos θff(1 − 4η̄−η−), and

the integration measure reads dQ = 1
26π2

sinh θb sin θf
(cosh θb−cos θf)2dϕdχdθbdθfdη̄

+dη+dη̄−dη− [32].

The essential advantage of the polar representation is that the action only depends on

the ‘radial variables’ Sδ[Q] = 2πν0δ(cosh θb − cos θf). This shows how the integration

over the non-compact angle is cut by the parameter δ at values 1 ≤ λ ≡ cosh θb ≲ 1/δ,

while the integration over the compact angles θf is free. With these structures in place,

it is straightforward to obtain

G+(q−1)
nn G−

nn ≃ 2q(q − 1)gqn
∫ ∞

0
dλ λq−2e−2πν0δλ. (A.10)

Doing the final integral and collecting all factors we arrive at Eq. (6) in the main text.

Level-level correlations

The two level correlation function K(ω) = ν−2
0 ⟨ν(ω/2)ν(−ω/2)⟩ probing spectral

statistics in the middle of the band can be obtained in similar ways. Starting from the

representation,

K(ω) = 1
π2ν2

0
⟨Im trG(ω2 )Im trG(−ω

2 )⟩, (A.11)

we introduce a source matrix j(α, β) = (απb⊗π++βπf ⊗π−) into the action generalized

for finite frequency differences, iδσ3 → (ω/2+iδ)σ3 in Eq.(3) of the main text. From this

representation, the function K is obtained as K(ω) = 1
2π2ν2

0
Re ∂2

αβZ|α,β=0. Proceeding

as in the computation of the wave-function moments, one obtains [32]

K(ω) = 1
2Re

∫ ∞

1
dλb

∫ 1

−1
dλf e

iπν0(λb−λf), (A.12)
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where λb ≡ λ is the non-compact bosonic angle introduced above and λf the compact

fermionic angle. These integrals can be carried out in closed form, and yield the two-

point correlation function of the Gaussian Unitary Ensemble, K(s) = 1 − sin2(πs)
(πs)2 + δ(s),

with s = ων0. This demonstrates that the presence of an inhomogeneous diagonal in

the Green functions affects the wave function moments, but not the spectral correlation

functions [33]. The reason for this is that the wave function moments — formally

obtained as powers of Green function matrix elements — respond more sensitively to

the presence of a fluctuating diagonal than the spectral correlation function — obtained

via tracing over single Green functions.



Appendix B

Supplementary Material to: “A

minimal model of many body

localization”

B.1 Derivation of the action (??)

We here derive the action Eq. (??) from the averaged functional (??). We start by

rewriting the quartic term as (ψ̄X̂aψ)2 = STr((ψψ̄X̂a)2). To decouple this non-

linearity, we multiply the functional with the unit normalized Gaussian integral

1 =
∫
DA exp

(
−1

2
∑
a STr(AaX̂a)2

)
, where DA ≡ ∏

a dAa, and Aa = {Ass
′,σσ′

nn′ } are

4D-dimensional matrices. A shift Aa → Aa +wψψ̄ then removes the quartic term, and

the subsequent integration over ψ leads to

Z[j] =
∫
DAe− 1

2
∑

a
STr(AaX̂a)2−STr log(Ĝ−1+w

∑
a
Aa),

where Ĝ−1 = z − Ĥ2, and we changed Aa 7→ X̂aAaX̂a. We now observe that the

nonlinear part of the action couples only to the combination ∑aAa. This motivates
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the definition, Aa = i
ρ
(Y + Ya), where the factor of i is included for later convenience,

and ∑a Ya = 0. Adding a Lagrange multiplier i
ρ

∑
a STr(YaΛ) to enforce the constraint,

we are led to consider the functional Z[j] =
∫
DYDΛ exp(−S[Y,Λ]), with action

S[Y,Λ] = − 1
2ρ2

∑
a

STr((Y + Ya)Pa(Y + Ya))

+ i

ρ

∑
a

STr(ΛYa) + STr log
(
Ĝ−1 + iwY

)
,

where ρ =
(

2N
4

)
and we defined the operator P̂aB = X̂aBX̂a. Note that P̂a is self-inverse,

P̂ 2
aB = X̂2

aBX̂
2
a = B, and hermitian in the sense that STr(CP̂aB) = STr(P̂aCB). We

now do the Gaussian integrals over Ya to obtain,

S[Y,Λ] = − STr
(ρ

2ΛPΛ + iΛY
)

+ STr log
(
Ĝ−1 + iwY

)
,

where P = 1
ρ

∑
a P̂a. The Gaussian integration over Λ may now be performed and

after rescaling Y → ρ1/2Y , and defining γ = wρ1/2 = J
2 (2N)1/2 we obtain the action

S[Y ] = −1
2STr(Y P−1Y ) + STr log

(
z − Ĥ2 + iγY

)
. In a final step, we perform a linear

transformation P−1Y → Y , and recall that in our units J2 = 2/N and γ = 1, to arrive

at Eq. (??).

B.2 The operator P

In this Appendix, we discuss the action of the operator P states |n⟩⟨n| diagonal in the

occupation number basis. To this end, note that for a state |n⟩ = |n1, . . . , ni, . . . , nN⟩,

the action of the Majorana operator χ̂2i = ci + c†
i produces the state |ni⟩ ≡ χ̂2i|n⟩ =

|n1, . . . , n̄i, . . . , nN⟩, where n̄ is 0 for n = 1, and vice versa. Similarly, χ̂2i−1|n⟩ =

i(−)ni|ni⟩. Except for ni all other occupation numbers remain unchanged, and no

superpositions of states are generated. The adjoint action thus generates χ̂2i|n⟩⟨n|χ̂2i =
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χ̂2i−1|n⟩⟨n|χ̂2i−1 = |ni⟩⟨ni|, which we interpret as nearest neighbor hopping in Fock

space. Notice that (χ̂2iχ̂2i−1)|n⟩⟨n|(χ̂2i−1χ̂2i) = |n⟩⟨n| leaves the state unchanged.

With these structures in place, it is straightforward to describe the action of

P|n⟩⟨n| = 1
ρ

∑
a X̂a|n⟩⟨n|X̂a. The summation contains contributions changing the

particle number |n| by 0, 2 and 4. With Pn,m = ⟨m|(P|n⟩⟨n|)|m⟩, the diagonal

contribution, P0 is obtained from the
(
N
2

)
terms of the structure χ̂2iχ̂2i+1χ̂2βχ̂2β+1.

Similar counting for the contributions changing |n| by two and four gives the matrix

elements stated in the main text,

P0 = N(N − 1)
2ρ , P2 = 4(N − 2)

ρ
, P4 = 16

ρ
, (B.1)

and it is verified that

∑
m

Pm,n

=
(
N

0

)
N(N − 1)

2ρ +
(
N

2

)
4(N − 2)

ρ
+
(
N

4

)
16
ρ

= 1. (B.2)

B.3 Saddle point equations

In this Appendix we address the solution of the saddle point equation Eq. (??). The

non-trivial element in this equation is the quantity κn ≡ π(P ν̂)n in the denominator.

In terms of this quantity, Eq. (??) becomes the simple algebraic equation (??). A

closed yet site non-local equation for κ is obtained by acting on Eq. (??) with the
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operator P ,

κn =
∑
m

P|n−m|Im
1

vm − iκm

=
∑
m

P|n−m|Re
∫ ∞

0
dt eivmt−κmt,

where in the second line switch to a temporal Fourier representation to facilitate the

treatment of the argument vm. The solution of this equation relies on two conceptual

elements, first the ansatz Eq. (??) and second a replacement of the sum over the ρ

neighboring sites m by a Gaussian average over energies vm. Specifically, we note that

up to corrections small in N−1, the neighbor sites m are separated by Hamming distance

4 from n and each change in ni changes vn 7→ vn ± 2vi. This means that vm = vn + v,

where we assume v to be Gaussian distributed with width
√

42δ = 4δ. Substituting

the ansatz κm = κΘ(C − |vm|) into the equation, and splitting the integral over v into

regions with C − |vm| = C − |vn + v| smaller and larger than zero, respectively, we

obtain after shifting v 7→ v − vn

κn = 1√
32πδ

Re
∫ ∞

0
dt

×
(∫

dv e− (v−vn)2

32δ2 +
∫ C

−C
dv e− (v−vn)2

32δ2
(
e−κt − 1

))
eivt.

With Re
∫∞

0 dt eivt = πδ(v), the first and the third term in the second line cancel out,

and the t-integration of the second term gives

κn =
√
π√

32δ

∫ C

−C
dv e− (v−vn)2

32δ2
κ

π(v2 + κ2) , (B.3)

where the notation emphasizes that the κ-dependent term effectively represents a

δ-function δκ(v) = κ
π(v2+κ2) in v, smeared over scales ∼ κ. This expression defines the

mean field amplitude κn at site n in dependence of the tolerance window C for the
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energy vn, and κ itself. We now explore for which configurations (C, κ) it represents a

self consistent solution.

The details of this analysis depend on wether we work with weakly (I, II) or strongly

(III, IV) distributed on-site energies.

Strong on-site disorder III, IV : Anticipating that all solutions satisfy κ ≪ 1, the

width of δκ(v) is much smaller than that of the Gaussian weight, δ. The function δκ

thus collapses the integral, and we obtain

κn =
√
π√

32δ
e− v2

n
32δ2 . (B.4)

This is consistent with our ansatz with C = 2δ and κ ∼ δ−1.

Narrow on-site disorder I, II: In this regime, we test for the validity of the ansatz

with C = 1 and κ = 1. First assume |vn| > 1 = C ≫ δ. In this case, the ansatz

requires exponentially suppressed κ, the δv-function again becomes effective, and the

integral collapses to κn =
√
π√

32δ exp
(
− v2

n

32δ2

)
consistent with the assumed smallness of

κ. Conversely, for |vn| < 1 = C, the ansatz requires κ = 1. The function δκ = δ1 is

now much wider than the width of the Gaussian, ∼ δ, and the integration boundaries

can be extended to infinity. Doing the integral, we obtain κn ≡ κ = 1/κ, or κ = 1,

consistent with Eq. (??).

B.4 Effective matrix theory

In this appendix we discuss the derivation of Eqs. (??) and (??) from Eq. (??). In

Eq. (??), we substitute Y → πν̂Q̂ with Qn = Tnσ3T
−1
n . The expansion of the action

in fluctuations then comprises three parts: the Gaussian weight, the expansion of the

‘Str log’ in site-to-site fluctuations, and the expansion of the ‘Str log’ in small frequency

arguments, z (reflecting the non-commutativity, [z, Tn] ̸= 0.)
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Gaussian weight: A straightforward substitution yields

− 1
2STr(Y PY ) → −π2

2 STr(ν̂Q̂P(ν̂Q̂))

= −π2

2
∑
nm

νnνmP|n−m|StrQnQm, (B.5)

where ‘STr’ includes the Fockspace trace, while ‘Str’ is only over internal degrees of

freedom.

Fluctuation action: Substituting the ansatz into the ‘Str log’ and temporarily neglecting

the frequency arguments, z, we obtain

STr log
(
−Ĥ2 + iπP(ν̂Q̂)

)
= STr log

(
−Ĥ2 + iT̂−1πP(ν̂Q̂)T̂

)
= STr log

(
−Ĥ2 + iπP(ν̂σ3) + iπ[T̂−1P(ν̂Q̂)T̂ − P(ν̂σ3)]

)
≃ STr log

(
1 + π2ν̂σ3[T̂−1P(ν̂Q̂)T̂ − P(ν̂σ3)]

)
≃ π2STr(ν̂σ3[T̂−1P(ν̂Q̂)T̂ − P(ν̂σ3)])

= π2STr(ν̂Q̂P(ν̂Q̂)), (B.6)

identical to (−2×) the Gaussian weight. In the second line we used the cyclic invariance

STr log(. . .) = STr log
(
T̂−1(. . . )T̂

)
, and in the fourth the saddle point equation (−Ĥ2 +

iπP(ν̂σ3))−1 = −iπν̂σ3.

Frequency action: In a similar manner, we obtain

STr log
(
−Ĥ2 + iπP(ν̂Q̂) + z

)
≃ STr log

(
T̂ (−Ĥ2 + iπP(ν̂σ3))T̂−1 + z

)
= STr log

(
−Ĥ2 + iπP(ν̂σ3) + T̂−1zT̂

)
≃ −iπSTr(ν̂σ3T̂

−1zT̂ ) = −iπSTr(ν̂Q̂z), (B.7)
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where in the second line, we neglected local fluctuations P (ν̂T̂ σ3T̂
−1) ≃ T̂P (ν̂σ3)T̂−1,

in the third used cyclic invariance, and in the fourth the saddle point condition.

Combining terms, we obtain the effective action (??).

B.5 Wave function and spectral statistics from ma-

trix model

In this section we provide details on the computation of wave-function and spec-

tral statistics in the deformed Ĥ4 model. The starting point for both statistics is

Eq. (??), with sources j = JK or J = JI,n, respectively, given in Eq. (??). Using the

commutativity [T, Ĥ2] = 0 we represent the action as

S[T ] = STr log
(
1 + ĜOT

)
=

∞∑
k=1

(−1)k
k

STr(ĜOT )k,

where OT ≡ T−1 [z − j(α, β)]T is an operator in which we need to expand to the order

required by the correlation function, and we have made the source contribution, j(α, β),

to the matrix z = ω+iη
2 σ3 explicit again. Concerning the resolvent, Ĝ−1 ≡ iκ̂ σ3 − Ĥ2,

we notice that fluctuation variables commute through the real part of Ĝ, and keep only

i ImĜ = −iπν̂, with local components νn defined in Eq. (??). Specifically, to zeroth

order in the sources, and first order in an expansion in zνn ∼ ω/∆, the action assumes

the form (??).

For the computation of the spectral and wave function statistics, we need the

expansion in sources to first order in β and higher orders in α. With the above

definitions, the expansion of the action assumes the form

S[T ] = −π
∞∑
k=1

(−iνnα)k
(

1
k

[Q++
bb ]k + β

α
[Q++

bb ]k−1Q−−
ff

)
, (B.8)
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where in the terms k > 2 we used the approximation Q+−
bf Q

−+
fb ≃ Q++

bb Q
−−
ff valid in

the limit η → 0 implied in the calculation of wave function moments [32]. Doing the

derivatives in the source parameters, we arrive at

∂q−1
α ∂βZ|α,β=0 = (−iπνn)q q! ⟨

[
Q++

bb

]q−1
Q−−

ff ⟩, (B.9)

where ⟨...⟩ =
∫
dQ e−Sz [Q](. . . ).

The remaining integral over the four-dimensional matrix Q is conceptually straight-

forward but technically the hardest part of the calculation. Referring for details to

Ref. [32], we here review the main steps. The starting point is a ‘polar coordinate’

representation Q = UQ0U
−1 with Q0 defined in Eq. (??), θ̂ = diag(iθ̂b, θ̂f) containing

compact and non-compact angles 0 < θf < π and θb > 0, respectively [32]. The matrix

U is block-diagonal in causal space and contains four Grassmann variables η±, η̄±, and

two more commuting variables 0 ≤ ϕ, χ̂ < 2π. More specifically, U = diag(u1u2, v)ra,

where u2 = diag(eiϕ, eiχ̂)bf and supermatrices u1 = e−2η̂+ , v = e−2iη̂− , generated by

η̂± =
(

0 η̄±

−η± 0

)
bf

. In this representation, the matrix elements entering the correlation

function are given by Q++
bb = cosh θbb(1 − 4η̄+η+) and Q−−

ff = cos θff(1 − 4η̄−η−), and

the integration measure reads dQ = 1
26π2

sinh θb sin θf
(cosh θb−cos θf)2dϕdχ̂dθbdθfdη̄

+dη+dη̄−dη− [32].

The essential advantage of the polar representation is that the action only depends on

the ‘radial variables’ Sη[Q] = −i2πν(ω + iη)(cosh θb − cos θf).

Wave function statistics: In the calculation of the wave function moments, we may set

ω = 0. The integration over the non-compact angle is then cut by the parameter η

at values 1 ≤ cosh θb ≲ 1/η, while the integration over the compact angles θf is free.

With this simplification, the integration over all variables except the non-compact one,
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θ, becomes elementary, and one obtains [32]

G+(q−1)
nn G−

nn = 2q(q − 1) (−iπνn)q

×
∫ ∞

0
dθb sinh θb (cosh θb)q−2 e−2πνη cosh θb . (B.10)

The final integral gives (2πνη)1−qq! and collecting all factors we arrive at

Iq = q!
νq
∑
n

νqn. (B.11)

This result expresses the qth moment of the local wave function amplitudes through

that of the local density of states individually averaged over Ĥ4 fluctuations. The

energies vn at each individual site are obtained as sums of N random coefficients vi (cf.

Eq. (??)). For large N , this makes the sum self averaging, and we replace Iq → ⟨Iq⟩v

by its average over single particle energies, vi. Using Eq. (??), we thus obtain

Iq = (−)q−1q

(πν)q
∑
n

(κn)q
〈
∂q−1

(κn)2
1

v2
n + (κn)2

〉
.

The evaluation of this expression now depends on which on-site disorder regime we

are in. In regime I, δ < N−1/2, or |vn| < 1, the mean field broadening assumes the

uniform value κ = 1. In this case, the dependence of Iq on site energies, vn, is weak.

This implies ν ≃ 1
π

∑
n 1 = D/π. Doing the κ derivatives, we obtain

Iq = q!D1−q, regime I, (B.12)

which is the RMT result for a matrix of dimension D.

For larger disorder, only a fraction of sites have finite decay width. Using Eq. (??)

and assuming self averaging to replace the n-sum to an average over a distribution of
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site energies of width δN , the DoS is evaluated as

ν ≃ 1
π

D√
2πNδ2

∫ C

−C
dv e− v2

2Nδ2
κ

v2 + κ2

≃ 1
π

D√
2πNδ2

∫ C

−C
dv

κ

v2 + κ2

= 1
π

2D√
2πNδ2

arctan(C/κ),

where in the second line we used that the distribution of energies is much wider than

the tolerance window C. Substituting the values specified in Eq. (??), this leads to

ν = c
D√
Nδ

, (B.13)

where c is of order unity and the suppression relative to ν = cD in regime I accounts

for the improbability to find resonant sites.

In the same manner, we obtain

Iq ≃ (−)q−1q

(πν)q
D√

2πNδ2
κq∂q−1

κ2

∫ C

−C
dv e− v2

2Nδ2
1

v2 + κ2

≃ (−)q−1q

(πν)q
D√

2πNδ2
κq∂q−1

κ2

∫ C

−C
dv

1
v2 + κ2

= 2(−)q−1q

(πν)q
D√

2πNδ2
κq∂q−1

κ2
1
κ

arctan(C/κ)

≃ 2(−)q−1q

(πν)q
D√

2πNδ2
κq∂q−1

κ2
1
κ

= 1
(πν)q

D√
2πNδ2

2q(2q − 3)!!
(2κ)q−1 ,
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where ‘≃’ here means equality up to some constant c ∼ O(1). Insertion of Eq. (B.13)

leads to Eq. (??). Using Eq. (??), we finally obtain

q ≫ 1 : Iq = cqq!
(
D√
N

)1−q

δq−1, II,

δ2(q−1), III.
(B.14)

Finally, for a quantitative comparison to numerical simulations in regime III without

fitting parameter we trace all constants c ∼ O(1) in ν and Iq. Noting that in regime

III we can substitute arctan(C/κ) = π/2 we arrive at,

Iq = q(2q − 3)!!
(2πνκ)q−1 = q(2q − 3)!!

δ2(1−q)

(
πD

4
√
N

)1−q

, III (B.15)

where in the second equality we used Eq. (B.4) for κ.

Level-statistics: For the level statistics we need to keep finite ω, and differentiate the

functional to first order in α and β (Eq. (??)). Application of Eq. (B.9) then leads

to [32]

K(ω) = 1
2Re

∫ ∞

0
dθb

∫ π/2

−π/2
dθf

× sinh θb sin θfe
iπνω(cosh θb−cos θf), (B.16)

where θb and θf are the non-compact bosonic and compact fermionic angle, respectively.

These integrals can be carried out in closed form, and yield the two-point correlation

function of the Gaussian Unitary Ensemble (??).
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B.6 Localization criterion

In this Appendix we demonstrate how the solution of the eigenvalue Equation (??)

reduces to the criterion (??). We write the sum as

Φn = 2
√
π

√
ρ

∑
|n−m|=4

anmΦm,

anm = √
νnνm log

(
ρ

(2π)2νnνm

)
,

and make the self consistent assumption that the sum over neighboring sites m is

dominated by resonant sites, and that the solution, Φn, too, are peaked at those sites.

Under these conditions it makes sense to consider a zeroth order approximation anm ≃

a0
nm ≡ √

νnνm2 log
(√

ρ/2πνm
)
, neglecting site-to-site fluctuations of the logarithm. In

a final step we will refine the result by perturbation theory in δanm ≡ anm − a0
nm =

√
νnνm log (νm/νn). Making the replacement anm → a0

nm, we observe that the equation

is solved by Φn ∝ √
νn, provided that

1 = 4
√
π

√
ρ

∑
m

νm log
( √

ρ

2πνm

)
, (B.17)

where the sum extends over the Z ≡
(
N
4

)
sites in Hamming distance 4 to n (i.e. the

parameter Z defines the effective coordination number of the Fock space lattice.) We

note that with the above eigenstates the first order perturbative correction to the unit

eigenvalue Eq. (B.17) is given by ⟨Φ|δα|Φ⟩ ∝ ∑
nm νnνm log(νn/νm) = 0, which we take

as a self consistent justification to work with the zeroth order approximation. Turning

to the consistency equation for the eigenvalue, we again replace the sum over nearest

neighbors by an average over their distribution of energies (cf. a similar operation in
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Appendix B.3):

∑
m

νmf(νm) ≃ Z⟨ν(v)f(ν(v))⟩v ≃ Z
f
(√

32δ√
π

)
√

32πδ
,

⟨. . . ⟩v = 1√
2π4δ

∫
dv e− v2

32δ2 (. . . ).

Here, the second equality is based on the observation that on the subset of active sites,

v < δ, where ν(v) is non-vanishing, and ν(v) = π
δ(v2+δ−2) becomes a δ-function of width

∼ δ−1 and height ν(0) = π/κ with κ =
√
π√

32δ (cf. Eq. (B.4)). The integral collapses to

this resonance region, leading to the stated result. (Effectively, this is saying that only

resonant sites contribute to the nearest neighbor sum.)

Application of this auxiliary identity to the eigenvalue equation Eq. (B.17) leads to

1 = 1√
2ρ
Z

δ
log

√8ρ
π
δ

 , (B.18)

which is solved by

δc = Z√
2ρW

(
2Z

√
π
)
, (B.19)

with W the Lambert-W function.

For N ≫ 1, we may approximate Z =
(
N
4

)
≃ N4/24 and ρ =

(
2N
4

)
≃ (2N)4/4!.

The asymptotic expansion for large arguments, W (x) ≃ log(x) + . . . then leads to the

estimate Eq. (??) in the main text.
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Supplementary Material to:

“Quantum ergodicity in the

many-body localization problem”

C.1 Entanglement entropy and local density of states

In this section we discuss the derivation of Eq. (2) describing the entanglement entropy

in terms of the local density of states. The construction parallels a similar one for

the wave functions of single particle systems [32, 31], (see also Ref. [2] for a recent

extension to Fock space), and we limit ourselves to an outline of the main construction

steps.

Moments of the reduced density matrix from Fock space resol-

vents

Working in a first quantized representation—where the Hamiltonian Ĥ is considered

as a high dimensional matrix—our starting point is a representation of the reduced
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density matrix, Mr(A) = ⟨TrA(ρrA)⟩, in terms of retarded/advanced resolvent operators,

G±
E = (E ± iη − Ĥ)−1. Introducing a formal Lehmann representation in term of exact

eigenstates, it is straightforward to verify the likewise exact relation

Mr = (2i)r−2

πνE
lim
η→0

ηn−1⟨trA
((

trB[G+
E]
)r−1

trB[G−
E]
)

⟩, (C.1)

where νE is the density of states at energy E.

Construction of the matrix integral

Following Efetov’s supersymmetry approach [32, 31], we next represent the Green

function matrix elements in Eq. (C.1) as Gaussian integrals. This representation is

obtained from the auxiliary formula M−1
nm =

∫
D(ψ̄, ψ) e−ψ̄Mψψσmψ̄

σ
n, where M is a

general L× L matrix and the 2L dimensional ‘graded’ vector ψ = (ψb, ψf)T contains

L-commuting components ψb
n, and an equal number of Grassmann components ψf

n.

The double integral over these variables cancels unwanted determinants det(M), while

the pre-exponential factors, either commuting or anti-commuting, σ = b, f, isolate

the inverse matrix element. With the identification M = diag(−i[G+]−1, i[G−]−1) =

η − iσ3Ĥ, we are then led to consider the generating function

Z[j] =
∫
D(ψ̄, ψ)

〈
e−ψ̄(iησ3−Ĥ)ψ+SJ

〉
, (C.2)

where we focus on the band center E = 0, the average ⟨...⟩ is with respect to random

coefficients of the Hamiltonian Ĥ, σ3 is a Pauli matrix distinguishing between advanced

and retarded components, and SJ = ∑
n

(
jnψn + ψ̄nj̄n

)
, with

jn = (αnπrr + βnπ
aa) ⊗ πbb,

j̄n = (ᾱnπrr + β̄nπ
aa) ⊗ πbb.
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is a source term from which the required products are obtained by differentiation

(∂αni
≡ ∂αn|n=ni

):

∑
σ∈Sr−1

GR
E(n1,mσ(1))...GR

E(nr−1,mσ(r−1))GA
E(nr,mr)

=
r−1∏
l=1

∂ᾱ
ml
∂α

nl
∂β̄mr∂βnr Z[j].

Here, πrr/aa and πbb are projectors onto the subspaces of retarded/advanced and

commuting variables, respectively. With this identity, and using the permutation

symmetry of Green function matrix elements under trace, we obtain

Mr = cr lim
η→0

ηr−1 ∑
{nl}

r−1∏
l=1

∂ᾱ
ml
∂α

nl
∂β̄mr∂βnr Z[j], (C.3)

where cr ≡ (2i)r−2/(πνE(r − 1)!) and the differentiation arguments mi are fixed as

ml = (nl+1
A , nlB), l = 1 . . . r − 1, and mr = (n1

A, n
r
B). Using the notation in the man

text this can be summarized as Mi
B = N i

B and Mi
A = N τi

A , where τi = (i+ 1)mod(r).

Effective action

We now average over the random parameters of the interaction Hamiltonian and then

apply constructions steps standard in the theory of disordered electronic systems[32, 31]

and transferred to the SYK context in Refs. [30, 2]. In regimes I-III, this procedure maps

the generating function onto the integral Z[j] =
∫

DQe−S[Q]+SJ [Q], where Q = Q⊗1Fock

is a 4 × 4 matrix in the spaces of advanced/retarded and commuting/anticommuting

indices and

Sη[Q] = πη STr(ν̂Qσ3), SJ [Q] = −iπSTr
(
j̄ν̂Qj

)
. (C.4)
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Here ‘STr’ refers to the graded trace over Fock and internal degrees of freedom, and

ν̂ is a diagonal matrix in Fock space with the local density of states as its diagonal

elements, (ν̂)n = νn.

Moments

Performing the 2r-fold derivative, we arrive at

Mr(A) = cr lim
η→0

ηr−1 ∑
σ∈Sr

∑
N
νn1 ...νnr

×⟨Qrr
bb...Q

rr
bbQ

aa
bb⟩δNA,σ◦τ(NA)δNB ,σ(NB), (C.5)

where the average ⟨...⟩ is over the action Eq. (C.4). In a final step, we perform the

matrix integral to obtain

crη
r−1⟨[Qrr

bb]r−1Qaa
bb]⟩ = 1

(Dν)r , (C.6)

In this way, the identification of wave function moduli with coefficients of the local

density of states fundamental to Eq. (2) of the main text is established.

C.2 Entanglement entropy in regimes II/III

Leading contribution

Central to the analysis of the wave function moments is the reduced spectral density,

λA,l = 1
Dν

⟨δκ(vl + vB)⟩B. Performing the Gaussian average Eq. (5) of the main text,

we obtain Dν = D⟨δκ(v)⟩AB = D√
2πNδ and similarly λA,l = 1

DA

∆
∆B

exp(−v2
l /2∆2

B).
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As discussed in the main text, the leading contribution to the entanglement entropy

comes from the identity permutation

M id
r (A) = DAD

r
B⟨λrA⟩A. (C.7)

Substituting the above result for λA and performing the Gaussian average, we obtain

M id
r (A) = D1−r

A N
r/2
A√

1 + rNA/NB

. (C.8)

Subleading contribution

Single transpositions σ = (ij), give the subleading contribution to the entanglement

entropy. Inspection of Eq.(2) of the main text (see also the index configuration defined

by the right part of the bottom panel of Fig.1) shows that they provide a contribution

Mσ
r = ∑

l1,l2

∑
m1,...,mr−1 λl1m1νl2m1λl1m2 . . . λl1mr−1 to the rth moment. Following the

same recipe as above, we substitute λl,m = (Dν)−1δ(vm+vl) and the index summations

by Gaussian averages over the energy variables vm → vA and vl → vB. It is then

straightforward to obtain

Mσ
r = D2−r

A

DB

N r/2
√
NA

N
(2−r)/2
B√

2NB + (r − 1)NA

. (C.9)

Noting that there are
(
r
2

)
such terms, the differentiation in r yields the entropy Eq.(6).

Remaining contributions

In regime I, the leading and subleading contributions discussed above give the Page

entropy Eq. (3) in the main text [19]. Permutations that are not the identity or

single transpositions vanish. This cancellation has been discussed in the string theory
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Fig. C.1 Numerical entanglement entropies (symbols) vs. analytical (lines) for a system
of size N = 14 (left), 15 (middle), 16 (right) in regime I, δ = 0.01 (solid) and III, δ = 1
(dashed). Inset: linear scale representation of the same data.

literature [34, 35], and the arguments presented there also apply to regimes II &

III. (Basically, the combinatorial factor for contributions with a given number of

transpositions are the Narayana numbers and vanish for more than one transposition

in the replica limit.) We thus conclude that Eq. (6) describes the entanglement entropy

in regime III, at the same level of rigor as Page’s result in regime I.

Comment on crossover to Regime I

The crossover between Page’s result and our Eq. (5) can be worked out, but requires a

more elaborate analysis of above integrals without approximating the local density of

states by a δ-function. We leave this analysis for future work.

C.3 Exact diagonalization

We numerically calculated the reduced density matrix and the average entanglement

entropy for generic eigenstates (in the center of the band) of the SYK Hamiltonian Ĥ =

Ĥ4+Ĥ2, where Ĥ4 = 1
4!
∑2N
i,j,k,l=1 Jijklχ̂iχ̂jχ̂kχ̂l, and the free particle contribution [36, 37]

Ĥ2 = 1
2
∑2N
i,j=1 Jijχ̂iχ̂j. Matrix elements {Jijkl} and {Jij} are drawn from Gaussian

distributions with vanishing mean and variances ⟨|Jijkl|2⟩ = 6J2/(2N)3 and ⟨|Jij|2⟩ =

δ2/2N . The many body band width, ∆4, of the interaction operator and the distribution
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width, ∆2, of the on-site random potential then read ∆4 =
√

3J2

4N3

(
2N
4

)
and ∆2 =√

δ2

2N

(
2N
2

)
, respectively. For our calculations, we generate at least 100 realizations

of the Hamiltonians (H4, H2), taking the average of the entanglement entropy over

eigenstates corresponding to energies within the middle 1/7th of the spectrum, unless

otherwise mentioned. Here, the even and odd fermion parity sectors are diagonalized

separately. We further improve the statistics by averaging over all
(
N
NA

)
Fock space

bi-partitions.

In Fig. 2 and Fig. C.2 (see below), the error bar shows the standard deviation

of the results over the realizations of the Hamiltonians. The two parity sectors are

treated as separate samples. We observe an increasing ratio of this error bar to the

value of Sth − SA for diminishing subsystem size NA. The reason is the exponential

diminishing of Sth − SA with decreasing NA, which leads to relatively larger numerical

fluctuations around this value. We have no certain explanation for the observation

that in regime III (and I) results for smallest NA lie outside the estimated error bar

(see also Fig. C.1).

A subtlety in these calculations is that the SYK Hamiltonian conserves fermion

parity. Considering the density matrix ρ defined by an eigenstate with definite parity,

the partial trace leads to a block diagonal structure ρA = trBρ =
(
ρe

A
ρo

A

)
with matrices

ρeA and ρoA acting in the even and odd fermion parity subspaces of the subsystem A

Hilbert space. A trace over the two-dimensional parity sector defines the (normalized)

reduced density matrix trPρA = ρeA + ρoA. One can then convince oneself that trPρA

has the same entropy as the reduced density matrix of a pure state in the 2N−1 system

with broken fermion parity conservation. This can be also verified by comparing our

results in the fully ergodic phase to Page’s prediction for a Fock space of dimension

D = 2N−1, as shown (by the dashed line) in Fig. 2 of the main text.
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Variation of entanglement entropy with disorder

Our analytical analysis predicts the formation of a δ-independent plateau of the

entanglement entropy in regime III. In Fig. C.2 we show the numerically calculated

entanglement entropy for the system sizes N = 14, 15, 16, as a function of δ, and for

different partitions NA. For the limited system sizes accessible to exact diagonalization,

the observation of a true plateau seems out of reach. However, one can see the formation

of the plateau around δ = 1 which becomes more pronounced with increasing NA and

N . At the same time, the value δ = 1 defines the “center” of regime III. This follows

from the recent work Ref. [2] by some of the present authors, where the regimes I-IV

were characterized in terms of their WFMs. (On the same basis, δ = 0.01 is well within

regime I.) While we cannot exclude a coincidence, the respective regime centers as

determined by wave function statistics show the best agreement between numerics and

analytics for the entropies.

C.4 Generalization

Within the above class of strong interaction coupled models, there is some freedom in

the specific realization of the Ĥ2 eigenstates. Broadly speaking, this setup is realized

in 3 types of settings: i) The system may not have any other geometry beyond that

specified by the matrix elements of Ĥ4, as in a SYK model. ii) The single-particle

eigenstates of Ĥ2 may be localized in a d-dimensional real-space, and the couplings

in Ĥ4 are such that the long-range couplings dominate (e.g., a power-law in space

that decays slowly enough) [38]. In these first two cases, as we take the limit of large

N , the sparsity of the interactions can be adjusted with N to set α, but we require

α > 0. iii) The single-particle eigenstates of Ĥ2 may be all delocalized in real space. In

this case, even local interactions couple all-to-all and for density-density interactions,



C.4 Generalization 97

for example, we will have α = 4. In all three cases, as we take the limit of large N ,

the strength of the interactions can be adjusted with N to set β. Our analysis does

not apply to models of MBL with only short-range interactions (see e.g. the recent

numerical study Ref. [39] on the multifractal scalings across the MBL transition). At

the same time, it does not specifically exclude this case, and it seems natural that

the ergodicity picture extends to it. However the corroboration of that belief requires

further study. (For very recent work on the entanglement entropy of extended random

systems, see Ref. [40].)
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Fig. C.2 Entanglement entropy as a function of the disorder strength δ for different
partitions NA, (a) N = 14, 104 realizations of the Hamiltonian and 1171 eigenvectors
(1/7 of the entire spectrum) are used. (b) N = 15, 100 realizations of the Hamiltonian
and 100 eigenvectors (∼ 0.6%) are used. (c) N = 16, at least 12 realizations of the
Hamiltonian and 20 eigenvectors (∼ 0.06%) are used.
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