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Bottomless wonders spring from

simple rules, which are repeated

without end.

Benoit Mandelbrot
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Abstract

The superstatistics has been applied to interpret Nuclear Magnetic Resonance

(NMR) data on transverse relaxation on porous media with application in

petrophysics. Porous media are very important kind of structures, and many

areas in Science and Technology have studied these materials [1], including

mathematics, physics, chemistry, engineering, biology, medicine, and indus-

trial areas such as Oil & Gas. The NMR technique has raised many interesting

questions about porous media through the study of the transverse relaxation

of fluids in these materials [2]. This thesis aims to contribute to the discussion

about the ill-posed problem of the inversion of transverse relaxation T2 decay

measured with the standard CPMG sequence, by the application of mathe-

matical tools and ideas from superstatistics and nonextensive statistics. The

T2 time decay of one single pore is a statistical sum of the time evolution of

spins states inside it. One pore yields a well defined T2 time that is a solu-

tion of diffusion equation with boundary conditions. If the porous media is a

statistical sum of pores, the total T2 time will be given by a distribution of

values rather than a single value. We show that the NMR transverse decay

can be modelled by q-exponential functions, represented by the distribution

fi(T2) ∝ T−2
2 χ2(T−1

2 ). To test the validity of these parametric statistical

model, we perform high-field NMR T2 relaxation measurements on porous

media built from glass microsphere with different ranges of two different com-

panies, the Multiesferas and Cospheric, and three samples of outcrop rocks.
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The Multiesferas set is of soda lime glass and the spheres radii are in the

following ranges: A (425-600µm); B (250-425µm); C (106-212µm); D (75-

125µm); and E (45-90µm). The Cospheric’s microspheres are in the following

ranges: A (710-850µm); B (425-500µm); C (212-250µm); D (106-125µm);

and E (45-53µm). The outcrops rocks used were the Berea and the Buff Berea

sandstone, and the Indiana Limestone. This new model for NMR petrophysics

includes statistical assumptions for the constitution of rocks and porous media

and can be very useful to estimate petrophysical parameters like, water satu-

ration (Sw), clay bound water (CBW ), bound volume index (BV I), free fluid

(FF ), T2cutoff and even a pore size distribution. We show the mathematical

formulation to find these petrophysical parameters without inversion and use

experimental data to evaluate the applicability of the model.
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1. Introduction

Nuclear Magnetic Resonance (NMR) was discovered in the first half of 20th

century and is a technique widely used in both, industry and basic science

[18–24]. NMR has been applied to studies and characterization of chemical

molecules [25–27], proteins [28–30], implementation of quantum computational

algorithms [31–35] and prediction of petrophysical properties, such as pore

distribution and fluid contents [36–39]. Other areas have benefited from NMR,

such as medicine [40–42], mainly from the techniques of Magnetic Resonance

Imaging (MRI) [43].

Superstatistics theory, on the other hand, was proposed and developed at

the beginning of the 21th century. The theory was created to describe nonequi-

librium systems with complex dynamics in stationary states with large fluc-

tuations of intensive quantities (e.g. the temperature, chemical potential or

energy dissipation) over long time scales [44]. Many areas of research have

used superstatistics [45–55].

The third subject that we will explore in this thesis is Petrophysics, the

study of properties of rocks and their interactions with fluids [56]. Petrophysics

also appeared on the first half of 20th century, with well log measurements

of resistivity by the Schlumberger brothers [57, 58], and theoretical studies of

Archie [56]. Today petrophysics is a very important area in Oil & Gas Industry

[59]. The petrophysicist is responsible, among other things, for evaluating

the saturation of hydrocarbons and water in rock reservoirs and quantifing
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the hydrocarbon reserves, based on well log, laboratory measurements and

petrophysical models. It is common that a petrophysical evaluation to decide

whether a reserve is economically feasible. There are many companies that

offer well log services and plug laboratory measurements for Oil & Gas industry

[60].

The central thesis presented here is that superstatistics is a good theory to

describe phenomena in rocks, in particular the transverse relaxation in NMR

experiments in porous media. With this approach a new model emerges to

interpret NMR petrophysical data. The superstatistical petrophysical model

is based on the idea that the fundamental properties of rocks can be given by

an analytical distribution of values. For example, if we consider that a sample

of rock is a porous media with a random distribution of porous sizes we can

construct a statistical model for these porous sizes. It is natural to apply

superstatistics to the NMR T2 decay in rocks because in the length scale of

one spin state, the relevant dynamics of this spin, inside one single pore, is the

reflected Brownian motion, so in the pore scale, the statistical sum of all spins

is described by the diffusion equation with boundary conditions. Therefore

in the scale of the sample, the total relaxation is composed by a statistical

sum of each pore, see Fig 1.1. In the NMR relaxation of fluids in rocks we

can identify two relevant statistical behaviours in two different length scales:

i) the scale of a single pore size; ii) and the scale of sample size. The main

objective of this thesis is to evaluate the applicability of this new conceptual

model, based on statistical assumptions, to describe NMR transverse decay

experiments in porous media.

The thesis is organized as follows: Chapter 1 review briefly the petrophysics

concepts to introduce the subject. The Chapter 2 show the fundamentals of

superstatistics theory and q-statistics, with some examples of application. The

Chapter 3 shows the basics theory of NMR phenomena, experiments and the
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Figure 1.1.: The dynamics of spins in one pore drive its NMR relaxation T2

time. The porous media is composed by a sum of different pore
sizes and geometries with different T2 time each. To describe T2

time of porous media it is necessary to consider two statistical
behaviors in two different length scales, one in a pore scale and
other in a sample scale.

application of NMR on porous media. The Chapter 4 show the main results

of the thesis. The superstatistical model to describe the transverse magne-

tization decay is developed. The high-field NMR data from ten samples of

unconsolidated microsphere packing and three different rocks are explained

using the proposed model. In the Chapter 5 show the discussions and con-

cluding remarks.

1.1. Petrophysics

The term Petrophysics was coined by G. E. Archie in 1940’s [61] but the first

log measure was made, in 1927, by H. Doll, R. Jost and C. Scheibli, employees

of a small geophysical exploration company [3] founded in 1926 by two broth-

ers, Conrad and Marcel Schlumberger, to map the geological subsurface with

electrical methods. These first steps on wireline techniques showed that it is

possible to correlate geological features in subsurface (Fig.1.2). A field team

25



in the year of 1933 can be seen in Fig.1.3.

A porous media, in general, is a very complex structure constituted by the

solid part and the pores, which are empty spaces that can stock and con-

duct fluids. The porous media is a research subject in many areas, from

basic sciences, mathematics, physics and chemistry to petrophysics, biology,

and medicine [1]. Petrophysics, in particular, is the study of rock properties

and their interactions with fluids (gases, liquid hydrocarbons, and aqueous

solutions) [62]. The various kind of rocks, fluids and the correlation between

properties has made the petrophysical world a very rich subject to study.

Many elements and processes are present in a rock sample, since the basic

constituents mineral until secondary post-depositional diagenetic features, like

cementation, compression and dissolution. Based on models, experiments and

their geological expertise, the petrophysicist tries to draw conclusions about

absolute and relative permeability, porosity, resistivity, fluid saturation, nu-

clear radiation features, bulk modulus and many other properties [63].

In general, a rock reservoir is sedimentary, despite of existing reservoirs of

fractured igneous rock. The sedimentary rocks can be divided in two classes,

the sandstones, that are composed by quartz and others minerals, and the

carbonates that have as major constituent calcium carbonate. The sediments

of sandstones come mainly from mechanical weathering, while the carbonates

can be constructed by biological structures or chemical deposition. Other im-

portant kind of rock is the shale, but in general it is not a reservoir, although

nowadays some shale formations can be considered as non-conventional reser-

voirs, that is, produced by fracking process [64].

1.2. Petrophysical models and concepts

For the Oil & Gas Industry, some important petrophysical properties are the

permeability and porosity, because the hydrocarbons production are very de-
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Figure 1.2.: First resistivity log measurement made by Schlumberger brothers:
Pechelbronn field, Alsace-Lorraine, France, 1927 [3]. The vertical
axis is the well depth in meters and horizontal axis is resistivity
given in Ω.m.
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Figure 1.3.: The picture shows a logging well operation near Bakersfield, Cal-
ifornia, in 1933 [3].

pendent on them. For a rock reservoir to present high values of permeability

and porosity a three-dimensional network of interconnected pores is necessary

in order to store the fluids and allow hydraulic connection for their move-

ment. The storage capacity, driven by porosity, is a necessary condition for

hydrocarbon production but is not sufficient. It is important that the rock

has hydraulic connections and it allow fluid mobility, and this is the essence of

permeability. The fluid properties and its interaction with rocks are essential

to petrophysics too; for example the wettability and saturation affect directly

the fluid transport properties [63].

The porosity of a rock is defined as the ratio of the empty volume space on

a sample (Vp), and the total volume VT , that is the the volume of pores plus

the volume of grains:

φ =
Vp
VT
. (1.1)

From Equation (1.1) the maximum theoretical value of porosity is φ = 1,
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but for structural reasons, a rock never reaches values too high. For packed

spheres in cubic arrangement the porosity is 47.6% and for rhombohedral

(close-packed) is 25.9% [65], for random packing of spheres the porosity is

around 36% [66, 67]. In general for rock reservoirs the porosity ranges from

5% to 40%. Basically there are two forms to rate porosity: i) the engineering

classification (connected or not connected) or ii) the geological classification

(primary and secondary porosity). The connected porosity is called effective

porosity and is responsible for the fluid transport. The sum of all porosity

is called total porosity. The primary porosity occurs when the depositional

process happens, and the secondary porosity in a posteriori process such as

diagenetic process.

The permeability is the capacity of a piece of rock to conduct fluid. The

standard fluid flow equation in petroleum engineering is the Darcy equation

[68]:

v = −k
µ

dp

dl
, (1.2)

where v is the fluid velocity, k is the permeability, µ is the viscosity and dp
dl

is the pressure gradient in the direction of the flow. The permeability given

by Eq.(1.2) is the absolute permeability if the rock is fully saturated with one

single fluid. In the presence of more than one fluid, the permeability of each

fluid is called effective permeability. The ratio of effective permeability of one

single fluid phase to the absolute permeability is called relative permeability

[63].

The fluid flow studies of porous rocks began with Kozeny works in 1927 [69],

who solved the Navier-Stokes equation for fluid flow by considering a porous

media as an assembly of pores of the same length, and obtained a relationship

between permeability, porosity, and surface porous area:

k =

(
1

2s2
gr

)
φ3

(1− φ)2
, (1.3)
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where sgr is the specific surface area of a porous material or the total area

exposed within the pore space per unit of grain volume [63].

An important concept in petrophysics in the that of flow units. Several

authors have defined flow units for description of reservoir zones as storage

containers and reservoir conduits for fluid flow. The concept of unit flow has

the following characteristics [63]: i) it is a specific volume of reservoir and can

be composed by one or more lithologies types (ex: sandstone, limestone, shale,

dolomite etc.); ii) it is mapable and correlative at the interval scale; iii) it is

reconizable on wire-line log; iv) it may be in communication with other flow

units.

Amaefule et al., based on Kozeny permeability-porosity relationship, pro-

posed the concept of reservoir quality index (RQI) [4], that is

RQI = 0.0314

√
k

φ
. (1.4)

The flow zone indicator concept (FZI) can be defined as

RQI = FZI × φz, (1.5)

where φz = φ
1−φ is the ratio of pore volume to grain volume. The Kozeny

Equation (1.3) can be rewritten as

√
k

φ
= FZI

φ

1− φ
. (1.6)

An application of these concepts in Brazilian presalt rocks can be viewed in

Fig. 1.4.

Other important concepts, in particular to NMR petrophysics, are the

bound volume index (BVI) and free fluid index (FFI). The BVI yields the

total irreducible water in a rock, an is defined by the product of porosity and
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Figure 1.4.: The figure above is the Flow Zone Indicator (FZI) classification
proposed by Amaefule et al. [4] applied to plugs of one pre-salt
well. The second image is the optical microscopic images of one
representative sample of each petrofacies set. The blue color rep-
resent the pores and decreases from A to D. Possibly the FZI is
a good definer of unit flows for this well [5].
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Figure 1.5.: Prediction of BVI and FFI from NMR T2 distribution f(T2). The
area under T2 curve is calibrated to predict the total porous vol-
ume (Vφ = BV I+FFI) and with a cut off in this curve (T2cutoff )
is possible to infer these quantities.

water irreducible saturation (Swi), BV I = φSwi. The FFI is a measure of

movable liquids and is expressed as FFI = φ(1−Swi). Some NMR models of

permeability and hydrocarbons storage are based on inference of these quan-

tities from T2 distribution. In this case it is important the concept of T2cutoff ,

as illustrated in Fig. 1.5, see Ref.[70].

Due the complexity involved in porous media, see Fig. 1.6, many petro-

physical models are based on exponents like power laws. In general, it is

necessary to calibrate these parameters of the model with a set of samples to

be analysed. One of the important aspects of laboratory experiments in plug,

samples, is to give more reliability for these parameters. For one reservoir of

one particular field the petrophysical parameters can change if we compared

with a reservoir of other field. One example of power law is the Archie law for

rock resistivity, see Ref.[61]

R = aRwφ
−mS−nw , (1.7)

where a is called tortuosity factor, Rw is the brine water resistivity, φ is poros-
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Figure 1.6.: Image of cryo-scanning electron microscopy (backscattered elec-
trons) of a fragment of bioclastic limestone showing complex struc-
tural formation. Water (light gray) is in the middle of pore and
oil (dark gray) is adsorbed on calcitic matrix (white). This rock
is strongly wettable to oil and is a quite rare case in oil reservoirs
[6].
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ity, Sw is saturation of brine water in rock and m is the cementation factor

(usually in the range 1.8-2.0 for sandstones in literature [63]) and n is the

saturation exponent (usually close to 2 [63]). For the application of Archie

law, it is necessary to perform laboratory measurements to calibrate m and n.

A plug from one well is an attempt to sampling the reservoir. By petro-

physics experimental methods and modelling, it is possible to obtain knowl-

edge about the reservoir. The procedure to infer properties of reservoir based

on petrophysics is called upscaling [71]. Of course the values of the physical

properties of sampled plugs may differ depending on the position in the reser-

voir. Our proposal to circumvent this problem is to use the superstatistical

approach that will be better explained in Chapter 2, but we can illustrate the

idea using Archie law.

Consider the Archie equation for prediction of resistivity of rock Eq.(1.7).

The literature considers that cementation index m may fluctuate between two

values. This means that given two different sample sets, each set can belong

to different universality class. Suppose that the two boundary values are m1

and m2. To describe the resistivity of one random sample, we have to use

one value of m between m1 and m2. Suppose now that the m value that we

want is not described by only one single parameter but by an equiprobable

distribution f(m), such as Fig.(1.7). Since we do not know the real value of

m, we have to consider all possible values, so the rock resistivity will be an

integral of Archie equation and a probability density function f(m):

R = aRwS
−n
w

∫ m2

m1

dmf(m)φ−m. (1.8)

Eq.(1.8) reminds a superstatistics generalization of Boltzmann factor [72],

where all values of fluctuating parameter are considered. The result for Archie
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Figure 1.7.: Homogeneous distribution for cementation m needs parameter in
Archie law. All values of m needs to be considered to generalize
Archie law in a supestatistical approach.

law considering all possible values of m given by distribution f(m) is

R = aRwS
−n
w

φ−m2 − φm1

√
12σm log φ

, (1.9)

where σm is the variance of f(m) distribution. The ratio of rock resistivity

saturated with fluid and fluid resistivity is called formation factor (F = R
Rw

)

and is plotted in Fig. 1.8, where aS−nw = 1.

Equation (1.9) is an example of generalization Archie law considering a

distribution of values of m parameter. Other kind of generalization can be

found in [73]. It is possible to calculate a standard deviation to resistivity R

due f(m) distribution:

σR =

∣∣∣∣ ∂R∂m̄
∣∣∣∣σm, (1.10)

where m̄ is the mean of m. If we suppose another f(m) parameter distribution

the result will be different. The validity of statistical assumptions to predict

f(m) will give a better petrophysical model, and this validity can be tested

empirically by experiments. This example is just for introducing the main

argument of this thesis: in NMR relaxation of porous media, the fluctuating

quantity is T2, and a similar argument is therefore applicable. We hypothesized

and successfully tested a specific statistical distribution f(T2) with different
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Figure 1.8.: Comparison between Archie equation with fixed values for m,
Eq.(1.7) and superstatistical generalized Archie equation with ho-
mogeneous distribution of m, Eq(1.9). The formation factor is
F = R

Rw
and aS−nw = 1.

kinds of samples in high- an low-field NMR experiments and well log data

too. The advantage of this method is to take into account all possibilities

of fluctuating parameter, even if the range of fluctuation is very large. The

drawback can be the emergence of new parameters such as the variance of the

distribution f(m). However, new parameters can be useful if the statistical

assumption about the f(m) is valid.

1.3. Wireline logging Petrophysics

The wireline logging petrophysics is the standard way to gather information

about a well, such as location in depth, the amount and the producibility of

hydrocarbons. The technology is based on a cable with a tool lowered into the

well which perform active and passive measurements of the rock formation,

such as resistivity, sonic measurements, gamma ray, neutron density, NMR and
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others. A schematic wireline can be view in Fig. 1.9. In the next paragraphs

we will explain quickly some wireline log tools and measurements principles.

The gamma ray log (GR) is a shale indicator, it is a passive tool and de-

tects the natural emission of gamma-ray photons of isotopes in reservoir rock.

The feldspar and micas, minerals presents in sandstones, contains Potassium,

Thorium and Uranium. The clay minerals like illite, smectite and chlorite, are

main constituents of shales and have content of radioactive isotopes, which

are detected by GR log. The GR measurements are used to calculate the

amount of shale as a function of depth. The vertical resolution of GR tools

is approximately 0.3m with a depth of investigation of 0.4-0.6m depending on

the density of the rock.

Another gamma ray tool is the density log tool and is a porosity indicator.

It emits medium gamma ray and the 100-300 keV range interacts with rock

by Compton scattering and is, therefore, an indicative for the electron density

of the rock. The bulk density of rock is closely related to electron density, so

upon calibration, a porosity value can be derived. The low energy photons

are dominated by the photoelectric effect, and with these two phenomena it

is possible to determine the porosity and lithology, such as sand, limestone,

anhydrite and dolomite. The vertical resolution is approximately 0.25m and

the depth of investigation of the density tool is about 0.15m.

The neutron log is an indicator of porosity, shale and gas. The neutron tool

emits high-energy neutrons into the formation from a radioactive source, most

often plutonium-beryllium, and a single detector, or an electrically powered

accelerator source called a minitron. The neutrons interact first with hydro-

gen, and for formation filled by fluid is possible to quantify porosity. The

formations with gas have less content of hydrogen than water or oil, so due

to a low measurements of neutrons, this log is a good indicator of regions of

the reservoir with hydrocarbon gas. The depth of investigation of the neutron
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Figure 1.9.: Schematic of wireline log: a cable with the tool is lowered into the
well and makes measurements of rock formation [7].
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log is approximately 0.25m with some 0.4m depth resolution. Neutron tool

readings are very sensitive to clays too and vary from one clay kind to the

other.

The resistivity log is an indicator of hydrocarbon saturation. Electrical

currents are sent to formation and resistivity is measured. The resolution of

resistivity tools depends on the depth of investigation. Shallow reading tools

can have resolutions down to 2.5 centimetres while the deeper reading tools

have resolutions of approximately one metre.

Sonic (acoustic) log is an indicator of porosity. The tool emits an acoustical

stimulus to the formation and measures the interval transit time, which is the

time that rock formation transmits a seismic wave. The velocity of transmis-

sion of seismic wave in geological formation depends of the effective porosity

and if the velocity of the rock matrix and pore fluid is known the porosity

can be estimated. Two other important logs are the imaging logs, made from

acoustical or resistivity measurements, an example is given in Fig. 1.10.

The NMR log are indicators of porosity and permeability. The NMR tool

has one magnet to apply a static field, and one probe with radiofrequency

to measures relaxation. The NMR experiment accesses only the fluid in the

formation and because of this it is the only log that allows a permeability

model, despite its limitations.
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Figure 1.10.: Examples of wireline log data. The first image shows gamma ray,
photoelectric, caliper, sonic, density, neutron, and resistivity logs
[8]. The second figure shows the modern high resolution wireline
imaging tools. (a) The FMI resistivity imager (Schlumberger).
(b) The STAR resistivity imager (Baker Atlas). (c) The CBIL
acoustic imager Baker Atlas.
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2. Superstatistics

Superstatistics was proposed by Beck and Cohen to describe nonequilibrium

systems with complex dynamics in stationary states with large fluctuations of

intensive quantities (e.g. the temperature, chemical potential or energy dissi-

pation) on long time scales [74]. After that, many applications and interesting

developments have appeared in the literature [75].

The superstatistics approach applies to situations in which an intensive ther-

modynamical parameter, such as the temperature of the system, fluctuates

(Fig. 2.1), in such a way that the probability of occurrence of a microstate is

not a Boltzmann weight, but rather a sum of Boltzmann weights [53]. This

approach leads to a density function concept of the fluctuating intensive pa-

rameter. In this way, the generalized Boltzmann weight or Beck-Cohen weight

is similar to a Laplace transform of that density function:

B(E) =

∫ ∞
0

e−βEf(β)dβ (2.1)

where E is the energy of a microstate, β is the inverse of temperature and

f(β) is the distribution function of β’s divided by partition function.

One of the most important derivation of superstatistics occurs if f(β) is a

χ2-distribution. In this case the microstate of the system is the q-exponential

function or Tsallis weight, [72]:

B(E) =

∫ ∞
0

e−βEχ2
q,β0

(β)dβ, (2.2)
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Figure 2.1.: Representation of system in which the β parameter fluctuates lo-
cally. To describe correctly the particle dynamics or the global
behavior of the system, all possible values of β must be considered.

where χ2
q,β0

(β) is the χ2-distribution, which after integration leads to

B(E) = (1− (1− q)β0E)
1

1−q , (2.3)

which, in turn, is the definition of q-exponential function [10]:

B(E) = e−β0E
q , (2.4)

Therefore, a q-exponential can be represented as a particular infinite sum of

exponentials.

Let us introduce how to generate a χ2-distribution. If we get some values,

about one hundred for example, of one Gaussian random variable (Xj) the

result can be seen in Figure 2.2. The χ2-distribution is the distribution of

a random variable given by a sum of squares of Gaussian variables (β =∑ν
j=1X

2
j ) and is specially important to generate random variables with strictly

positive values. Here, the superscript ν is the number of degrees of freedom.

The result of a hundred values of one random variable given by a sum of ten

square Gaussian random variable can be see in Figure 2.3.
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Figure 2.2.: One hundred values for a Gaussian random variable and their
respective histogram and probability density function (PDF) in
vertical axis.

Figure 2.3.: One hundred values for a sum of ten square Gaussian random
variable and their respective histogram and probability density
function (PDF) in vertical axis.
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The relationship between ν and q is

q = 1 +
2

ν
, (2.5)

so when ν → ∞ is the same that q → 1. The probability density function

(PDF) of χ2-distribution is

χ2
q,β0

(β) =

(
1

(q−1)β0

) 1
q−1

Γ
(

1
q−1

) β
1
q−1
−1
e
− β

(q−1)β0 , (2.6)

where β0 is the mean of the distribution and q is the so-called nonextensive

parameter in q-statistics. This parameter is related to the mean, β0, and

standard deviation, σ2, of χ2
q,β0

(β):

q = 1 +
σ2

β2
0

. (2.7)

Equation (2.7) shows that the q parameter cannot be smaller than unit, so

the superstatistics is a generalization of q-statistics only for q > 1 [74].

In Equation (2.1), f(β) distribution cannot be Gaussian, because β is strictly

positive by construction. For pratical applications of superstatistical distribu-

tions, Beck (2005) [76] and Kiyono (2013) [77] pointed out that there are three

physically relevant universality classes in experiments: i) the χ2 superstatis-

tics; ii) the inverse-χ2; and iii) the log-normal. The χ2 and inverse-χ2 are

associated to additive process and log-normal to multiplicative ones. We show

in this thesis that the χ2 distribution of βs is adequate to describe transverse

relaxation in porous media, because the porous sample can be viewed like a

large random sum of βs positive values, i.e., each pore of sample has an specific

positive and random βi and the β sample is the sum of them all.

We see above, that if many squared random Gaussian variable (X2
j ) con-

tribute in additive way to β =
∑ν

j=1X
2
j variable, the result of this approach
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leads to a χ2-distribution, Eq.(2.6). We will suppose the following assumption

for T2 in porous media:

1

T2
=

ν∑
j=1

X2
j , (2.8)

and because of this the distribution for the inverse of T2 will be given by a

χ2-distribution.

The other two universality classes that appear in experiments analysed by

superstatistics, the inverse χ2 and log-normal distribution, are associated to

additive stochastic processes and multiplicative stochastic processes respec-

tively. If the same consideration made for obtain χ2 is applied to the inverse

of β, i.e. the β−1 =
∑N

i=1X
2
i , which now can represent the temperature (T )

or T2 time in NMR, the result will be the inverse χ2-distribution:

invχ2
q,β0

(β) = β0

(
1

(q−1)β0

) 1
q−1

Γ
(

1
q−1

) β
1

1−q−2
e
− β0

(q−1)β . (2.9)

Finally, there are situations in which the β variable can be given by a mul-

tiplicative process β = Πν
i=1Xi of Gaussian random variables, which leads to

log β =
∑ν

j=1 logXi and β will be log-normally distributed:

f(β) =
a

β
e−c(log β−b)2

, (2.10)

where a, b and c are constants. This type of log-normal superstatistics is

particularly relevant for turbulent flows. In Figure 2.4 it is possible to see the

comparision between χ2, inverse χ2 and log-normal distributions fitting data

of turbulent flow.
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Figure 2.4.: Comparision between χ2, inverse χ2 and log-normal distributions
fitting data of turbulent flow. Details can be seen in [9].

.

2.1. Nonextensive Statistical Mechanics

The nonextensive statistical mechanics was proposed by Tsallis in 1988 [78].

The new entropic form proposed, as a possible generalization of Boltzmann-

Gibbs statistical mechanics, is nonadditive and the energy is nonextensive.

The Boltzmann-Gibbs entropy is:

SBG = −k
∑
i

pi log pi, (2.11)

where k is the Boltzmann constant and pi is a probability function of a mi-

crostate of the system. The entropy has a maximum when pi is an equiprobable

function like pi = 1/W , where W is the total number of microstates. The SBG

function is additive, and this means that when the whole system is partitioned
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in subsystems, the total entropy is the sum of entropies of each subsystem:

SBG(A+B) = SBG(A) + SBG(B). (2.12)

The Tsallis entropy, or q-entropy, is based on a generalization of logarithm

function:

Sq = −k
∑
i

pi lnq pi, (2.13)

where q-logarithm is lnq x = x1−q−1
1−q . The Sq entropy is a nonadditive function:

Sq(A+B) = Sq(A) + Sq(B) +
(1− q)
k

Sq(A)Sq(B). (2.14)

Detailed discussion about SBG and Sq properties and concepts can be found

in [10].

The concept of extensivity applies for a quantity linear with the size of

the system, or the number of particles. The thermodynamical entropy, for

instance, is an extensive quantity, i.e.:

S(N) ∝ N, (2.15)

where S is the entropy and N is the number of particles. In nonextensive

statistical mechanics, the functional form of entropy is changed and the q

parameter is introduced to preserve the extensivity property of entropy Sq.

This will be explained below.

In Figure 2.5 it is possible to see the relation between additivity and ex-

tensivity properties of Boltzmann-Gibbs (SBG) and Tsallis (Sq) functional en-

tropies and W (N) function, that is the probability of occurence of a microstate

configuration. If W (N) ∝ µN , when one particle is introduced in the system,

and so N becomes N+1, the probability of a microstate configuration is given

by all possibilities of arrangements with this new particle. For example, in a
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system of N coins, or any system with two levels, the probability of occurrence

of one microstate configuration is given by W (N) = 2N , but if one more coin

is introduced in the system, the probabity will be W (N + 1) = 2N+1. This

kind of system has equiprobable distribution of microstates, and is closely

related to the concept of ergodicity. Systems with W (N) ∝ µN will have

S(N) ∝ log(W (N)) ∝ log(µN ) ∝ N , so S(N) ∝ N . This is the reason

why SBG is the most appropriate function form for classical thermodynamic

systems.

There are many thermodynamical systems in nature for which the function

W (N) is polynomial rather than exponential function, i.e. W (N) ∝ Nρ. Intro-

ducing the q-logarithm function lnq x = x1−q−1
1−q , with q = 1− 1/ρ, it is easy to

see that the entropy based on q-logarithm will be extensive when W (N) ∝ Nρ:

S(N) ∝ lnq(W (N)) ∝ lnq(N
ρ) ∝ Nρ(1−q)−1

1−q ∝ N . The polynomial dependence

of W (N) is the microscopic reason to use Sq entropy. However it is very

difficult to predict the q value from first principle. The physical meaning of

W (N) ∝ Nρ is supported by long range interactions, fractal behavior, corre-

lations, non-ergodicity or many other considerations [10,79].

The following example show a theoretical set of correlated probabilities that

suggest it has W (N) ∝ Nd, and in this case the q = 1 − 1/d turns the

Sq functional an extensive quantity. The system is the Leibniz triangle rule

to generate a marginal probability function with N -subsystems. The rule

is the sum of two successive joint probabilities of the N -system coincides or

asymptotically approaches the corresponding joint probability of the (N − 1)-

system. This idea can be better see in Fig.2.6, where:

πN,n + πN,n+1 = πN−1,n, (2.16)

with n = 0, 1, . . . , N − 1; and N = 2, 3, . . . . Figure 2.6 shows one specific
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Figure 2.5.: The function W (N) is the probability of occurrence of a mi-
crostate configuration. Systems with W (N) ∝ µN , are de-
scribed by SBG, and systems with microstates dependence like
W (N) ∝ Nρ are described by Sq entropy [10].

model for generating the πN,n probabilities that the entropy Sq is extensive

for q 6= 1. Details about the model can be seen in Tsallis et al. 2005 [11].

A physical example where nonadditive entropy Sq is extensive for a spe-

cial value of q can be view in Fig 2.7. The system studied in [12] is a one-

dimensional spin-1/2 ferromagnetic chain with an exchange coupling and sub-

jected to an external transverse magnetic field, i.e., the quantum XY model.

There are many geological, geophysical and petrophysical models there are

based on fractal geometry [13, 80–91] (Fig. 2.7). The q-Gausssian solutions

for porous media equation can be found in [92]. We advocate that q-statistics

is applicable to model and explain NMR transverse decay due T2 of a porous

sample, in special rocks, are associated to a random additive process, and

therefore the χ2-distribution is appropriated to be a statistical model. Physi-

cally, the porous sample is constituted by a sum over all pores and each pore

has a random value of T2 due to random geometrical properties of each one.

The T2 distribution of sample will be a sum over all pores.
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Figure 2.6.: Example of system where the entropy is extensive (Sq ∝ N) for
q 6= 1. Details of the model can be found in [11]. In this case the
q parameter is suggested to be q = 1− 1

d , where d is an important
parameter to generate the πN,n values. The figures a) and b),
shows the results of Sq versus N for d = 1 and d = 2, respectively.
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Figure 2.7.: The figure on top shows Sq versus the size of system L of one-
dimensional spin-1/2 ferromagnetic chain with an exchange cou-
pling and subjected to an external transverse magnetic field [12].
The figure on bottom shows a model based on fractal geometry of
porous media, details can be see in [13].
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3. Nuclear Magnetic Resonance

3.1. Fundamentals of NMR

3.1.1. Spin in a static magnetic field

The basic of a NMR experiment is an ensemble of nuclear spins in a static

magnetic field, given by a magnet, and the application of an orthogonal ra-

diofrequency field produced in a sample probe. The spins will precess in the

region of static magnetic field with a Larmor Frequency, and for the resonance

to occur, the frequency of electromagnetic field applied needs to be tuned to

be the same as the Larmor frequency. In this section we will show that one

isolated magnetic moment aligned with a static magnetic field will rotate if an

orthogonal oscillating magnetic field is applied in a resonance condition [24].

The spin is an intrinsic angular moment of particles and is a quantum prop-

erty. The magnetic properties of particles are defined by their magnetic mo-

ments, a quantity closely related to the spin. When one magnetic moment (~µ)

is placed in a magnetic field ( ~B) the energy of interaction is described by the

Hamiltonian

H = −~µ · ~B. (3.1)

When the magnetic moment (~µ) is proportional to the 1
2 -spin, it is conve-

nient to represent it in terms of the Pauli matrices, ~µ = h̄γ
2 ~σ, where the h̄ is

the Planck constant and γ is the gyromagnetic ratio. The gyromagnetic ra-

tio appear due quantum-relativistic effects and emerges naturally from Dirac
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equation for fundamental particles like electron, but not for protons that are

constituted by two quarks up and one quark down. The solution of Dirac equa-

tion for half-integer spin particles and discussion about gyromagnetic ratio can

be found in the reference [93].

A particle of 1
2 -spin can stay in one of two quantum pure states or in an

arbitrary superposition of both. To analyse the evolution of a spin with Hamil-

tonian (3.1) given by Schroedinger equation, let us consider the initial quantum

state, |ψ(0)〉 = 1√
2
(| ↑〉+ | ↓〉),

ih̄
d

dt
|ψ(t)〉 = H|ψ(t)〉. (3.2)

The time evolution can be calculated by the propagator U(t) applied in |ψ(0)〉,

|ψ(t)〉 = U(t)|ψ(0)〉 = e−
i
h̄
Ht|ψ(0)〉. (3.3)

Suppose that the static and constant magnetic field aligned on z-axis, the

Hamiltonian is

H =
h̄γ

2
B0σz, (3.4)

and the calculation of |ψ(t)〉 is

|ψ(t)〉 = e−
iγB0

2
σz
(

1√
2
(| ↑〉+ | ↓〉)

)
= 1√

2

(
e−

iγB0
2

t| ↑〉+ e
iγB0

2
t| ↓〉

)
= 1√

2

(
| ↑〉+ eiγB0t| ↓〉

)
.

(3.5)

Let us have a closer look on the state |ψ(t)〉 of Eq.(3.5). One general quantum

state can be represented on the Bloch sphere [94] by

|ψ〉 = cos(θ/2)| ↑〉+ sin(θ/2)eiφ| ↓〉,
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Figure 3.1.: Bloch sphere representation of a quantum state |ψ〉. Observe that
for a time dependent azimuthal angle such as φ(t) = γB0t, the
state precess around z-axis.

where θ and φ are the polar and azimuthal angles, respectively. We can identify

in Equation (3.5) the time dependent azimuthal angle φ(t) = γB0t, so the spin

precess around the z-axis with the Larmor frequency ωL = γB0, see Fig. 3.1.

3.1.2. Applying radio frequency

In NMR experiments the magnet provides the static field in the z-axis and the

probe the radiofrequency field with an oscillating magnetic field with frequency

ω. The Hamiltonian of this problem is

H(t) =
1

2
h̄γ(B0σz +B1 cos(ωt)σx). (3.6)

It is convenient to analyse the problem in a frame that is rotating with the

Larmor frequency around z-axis. The quantum state in the new frame will be

the state represented in laboratory frame times a time-dependent phase:

|ψ′(t)〉 = eiωLσzt/2|ψ(t)〉. (3.7)
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Replacing the transformed state, Eq. (3.7), in the Schroedinger equation we

find the transformed Hamiltonian,

ih̄
d

dt
|ψ′(t)〉 = H ′|ψ′(t)〉, (3.8)

where the Hamiltonian in the new frame is

H ′(t) =

(
− h̄ωL

2
σz + eiωLσzt/2H(t)e−iωLσzt/2

)
. (3.9)

The first term in the right hand side of equation is a rotation about the z-axis,

but it will be canceled as we shall see below. The last term can be calculated

by replacing H(t),

eiωLσzt/2H(t)eiωLσzt/2 = h̄γ
2 e

iωLσzt/2(B0σz +B1 cos(ωt)σx)e−iωLσzt/2

= h̄γ
2 (B0σz + eiωLσzt/2B1 cos(ωt)σxe

−iωLσzt/2)

(3.10)

As we can see from Equation (3.10) the first term on the right hand is a

rotation about z-axis that cancels the first term on the right hand side of

Equation (3.9). The term cos(ωt)σx can be rewritten in terms of raising and

lowering Pauli operators,

cos(ωt)σx = 1
2 ((cos(ωt)σx + sin(ωt)σy) + (cos(ωt)σx − sin(ωt)σy))

=
(
(e−iωtσ+ + eiωtσ−) + (eiωtσ+ + e−iωtσ−)

)
.

(3.11)

Substituting Equation (3.11) in Eq. (3.10) and using the identity

eiασzσ±e
−iασz = e2iασ±, we find the transformed Hamiltonian only as a func-

tion of the magnetic field and frequency of radiofrequency field. In the rotating

frame, the spin precession around z-axis are not observed and the hamiltonian
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Figure 3.2.: Representation of spin state on the Bloch sphere in a resonance
experiment. The states precess around z-axis due static magnetic
field and rotates around x-axis due radiofrequency field.

H ′(t) becomes

H ′(t) =
h̄γ

2
B1

(
(ei(ωL−ω)tσ+ + ei(ω−ωL)tσ−) + (ei(ωL+ω)tσ+ + e−i(ωL+ω)tσ−)

)
(3.12)

The resonance condition occurs when the frequency ω is equal to the Larmor

frequency. In this case Hamiltonian will be

H ′(t) =
h̄γ

2
B1

(
(σ+ + σ−) + (e2iωLtσ+ + e−2iωLtσ−)

)
. (3.13)

The second term on the second hand side of Eq. (3.13) is negligible [95]

and this is called the Rotating Wave Approximation (RWA) [95]. Finally,

in the rotating frame, in the resonance condition (ω = ωL) and with RWA

approximation, the Hamiltonian becomes

H ′ =
h̄γ

2
B1σx. (3.14)

Hamiltonian represents a rotation about the x-axis. So in the laboratory

frame, the spin precess around z-axis and rotates around x-axis; this is known

as Rabi oscillation [96] (see the representation on Bloch sphere in Fig.(3.10)).
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3.1.3. Relaxation: Bloch-Torrey equations

In petrophysics we are usually interested in the resonance of the protons of the

hydrogen nucleus H1 in the pore fluid (e.g., water or hydrocarbon) [62]. The

resonance effect was explained in the last section with quantum approach for

one single spin. The magnetization of the fluid in porous media is a result of a

huge number of spin particles. Because of this the relaxation phenomena can

be explained classically as we will do in this chapter. The phenomenological

equations for NMR relaxation are the Bloch-Torrey equations [94, 97], see

Eq.(3.15):

∂ ~m

∂t
= γ ~m× ~Bext −


~mx′/T2

~my′/T2

(~mz′ − ~m0)/T1

−∇( ~D∇~m). (3.15)

The quantity ~m = ~m(~r, t) is the magnetization density vector in the rotating

frame of reference, γ is the gyromagnetic ratio of the protons, Bext is the ex-

ternal magnetic field, (x′, y′, z′) denotes the spatial coordinates in the rotating

frame of reference, and the ~D is the diffusion tensor. In the case of isotropic

diffusion the tensor ~D simplifies to D = | ~D|. The values T1 and T2 are the

longitudinal and transverse relaxation times, respectively. T1 is the character-

istic time to magnetization relaxe in z-axis and T2 is the characteristic time

to decay of transverse macroscopic magnetization.

The Bloch-Torrey equations are the fundamental equations of motion of

the magnetic moment vector ~m. They are derived from the Newton second

law for angular momentum plus a damping term governing the attenuation of

magnetization, and a diffusion term. We can decompose the Eq.(3.15) in the
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three components:



d~mx

dt
= γ(~myBz − ~mzBy)− ~mx/T2 −D

d2 ~mx

dx2

d~my

dt
= γ(~mzBx − ~mxBz)− ~my/T2 −D

d2 ~my

dx2

d~mz

dt
= γ(~mxBy − ~myBx)− (~mz − ~m0)/T2 −D

d2 ~mz

dx2

(3.16)

Is interesting to analyse the solution of Bloch-Torrey Equations (3.16) when

a static field is applied in z-axis and a radio frequency field is applied in the

xy-plane. The components of magnetic field are components of the

Bx = B1 cos(ωt)

By = B1 sin(ωt)

Bz = B0

(3.17)

First we will analyse the slow diffusion regime, so the diffusion term will be

neglected. After that the fast diffusion regime will be considered. To evalu-

ate the solution of Eqs.(3.16) with field (3.17) is conveniently transform the

coordinates to rotating frame with Larmor frequency. The transformation of

coordinates are

mx = mx′ cos(ω0t) +my′ sin(ω0t)

my = mx′ cos(ω0t)−my′ sin(ω0t)

mz = mz′ .

(3.18)

The Bloch equations for magnetization in a rotation frame becomes



dMx

dt
= (ω0 − ω)My − Mx

T2

dMy

dt
= −(ω0 − ω)Mx + ω1Mz − Mx

T2

dMz

dt
= −ω1My − Mz−M0

T1
,

(3.19)
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We have dropped the primes of coordinates and written the equations in

magnetization variables that are the volumetric integral of magnetic moment

Mi(t) =
∫∞

0 ~mi(x, y, z, t)dV . The steady state solution of Eq.(3.19) is ob-

tained by setting the time derivative magnetizations components equal to zero,

dMx
dt =

dMy

dt = dMz
dt = 0. In this regime the solutions are:



Mx =
ω1T

2
2 δω

1 + ω2
1T1T2 + (T2δω)2

M0

My = − ω1T2

1 + ω2
1T1T2 + (T2δω)2

M0

Mz =
1 + T 2

2 δω
2

1 + ω2
1T1T2 + (T2δω)2

M0,

(3.20)

In the limit where ω1 is so small that ω1T2 � 1, these equation reduce to:



Mx =
ω1T

2
2 δω

1 + (T2δω)2
M0

My =
ω1T2

1 + (T2δω)2
M0

Mz = M0.

(3.21)

The solution for Mx (absorption mode) and My (dispersion mode) is repre-

sented in Fig.(3.3).

Is interesting to analyse when we apply a radio frequency pulse (r.f. pulse

method) in resonance condition. The spins will precess by the angle θ = ω1τ ,

where τ is the time pulse duration. When the r.f. is switched off the longi-

tudinal component relaxes back to its equilibrium value [98]. The transverse

magnetization induces a radiofrequency field that can detected in a form of a

complex signal:

F (t) = M0 sin θ exp(−t/T2) exp(iδt), (3.22)

called free induction decay signal (FID) (3.4). Is possible to show that its

Fourier transform have the same form of absorption and dispersion modes
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Figure 3.3.: The absorption and dispersion modes.

seen above.

3.1.4. Spin echo and CPMG pulse sequence

The spin echo was discovered by Hahn in 1950 [99] and is one of the most

important contributions to NMR. A spin-echo is a refocusing of the transverse

magnetization, following a π
2 -π pulse sequence. The echo occurs because the

magnetization is a sum of all spins in the sample and each spin feels a slightly

different magnetic field δB. Because of this the spins will precess at different

rates around the z-axis, so the relative phase is lost. When a second pulse of

π is applied, in time t = τ , the spins change the signal of precession and turn

back to initial configuration in a time t = 2τ , so the relative phase, between

spins, tends to zero and the echo is observed (Fig.3.5).

If the sample is a fluid, the spins are in diffusion motion, and at different

positions when the pulses are applied, so they feel a slightly different inhomo-

geneity when the π-pulse is applied. This means that the amplitude of echo is
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Figure 3.4.: Representation of a component of free induction decay (FID).

Figure 3.5.: Representation of spin echo that is a phase recovery due applica-
tion of a π

2 -π pulse sequence.
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Figure 3.6.: Representation of spins in a Bloch sphere of phase recovery in a
π
2 -π pulse sequence: (A) initial state; (B) π

2 -pulse; (C) and (D)
lost of phase; (E) π-pulse; (F) and (G) phase recovery.

Figure 3.7.: Representation of CPMG pulse sequence. The T2 time is the mean
lifetime of the transverse relaxation decay.

less than the first FID. If more than one π-pulse is applied, at equally spaced

intervals of time τ , we observe an echo train, as shown in Fig.(3.6). This pulse

sequence is known as CPMG, and is a standard way to measure the transverse

magnetization from which we can infer the T2-distribution.

3.2. NMR on Porous Media

In this section we solve the Bloch-Torrey equations in a restricted domain.

This is the problem of one single pore fully saturated with a fluid. The confined

diffusion is an eigenvalue problem with boundary conditions, where the shape
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of boundary defines the eigenvalues and the eigenvectors spectrum.

After the application of 90o RF pulse, the transverse magnetization in a

static magnetic field is described by

D∇2m(~r, t)− Γm(~r, t) =
∂m(~r, t)

∂t
(3.23)

where D is the diffusion coefficient, m(~r, t) is the magnetization density and

Γ is the bulk relaxation coefficient. The boundary condition associated to the

surface of the pore, known as Robin condition [14], is:

(
D
∂m(~r, t)

∂n̂
+Km(~r, t)

)∣∣∣∣
surface

= 0 (3.24)

where n̂ is a vector normal to the surface, andK is called surface relaxivity coef-

ficient. The Neumann boundary condition

(
∂m(~r,t)
∂n̂

∣∣∣
surface

= 0

)
emerges from

Robin boundary condition in the limit of D � Kl, where l is a characteristic

length of pore size and the Dirichlet boundary condition (m(~r, t)|surface = 0)

applies when D � Kl. The Neumann and Dirichlet boundary conditions rep-

resent the fast and slow diffusion regime, respectively. The physical meaning

of these two regimes is the strength of spins in the fluid coupling with spins of

the solid matrix. In the slow diffusion regime (Dirichlet condition, D � Kl),

the spins in the fluid close to the surface have a larger strength coupling with

the surface, where the spins have a random configuration of magnetization,

and the magnetization will be null at the surface. In the fast diffusion regime

(Neumann condition, D � Kl), the coupling strength is weaker and m(~r, t) is

not zero, but only its spatial derivative.

The initial condition of the magnetization density is simply:

m(~r, 0) =
M0

V
(3.25)
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where M0 is the value of initial magnetization and V is the total volume of

the pore. The diffusion coefficient for bulk water is D ≈ 10−9m/s and surface

relaxivity is K ≈ 10−6m2/s, for sandstones [100]. As we will see the relaxivity

appears as a product with the pore radius, Kl, in the calculation of eigenvalues

ζn in T2 equation, so varying K is analogous to varying the radius.

The solution of Equation (3.23) can be written as a multiexponential sum

[14]

m(~r, t) =

∞∑
n=0

AnFn(~r)e−t/T2n , (3.26)

where An are coefficients, Fn(~r) are the eigenvectors, and T2n is the n-th

multiple transverse relaxation time, dependent on the dimensionless eigenvalue

ζn. Therefore, the multiexponential decay behavior is intrinsic to the solutions

of the diffusion equation upon the boundary conditions specified in Eq. (3.24),

even for one single pore. Replacing Eq.(3.26) into Eq.(3.23) one obtains:

∇2Fn(~r) =

(
Γ

D
− 1

DT2n

)
Fn(~r). (3.27)

The multiexponential solution reduces the problem to that of solving the

boundary Equation (3.24) for a given geometry. Finally, to obtain the magne-

tization as a function of time, M(t), it is necessary to integrate m(~r, t) over the

volume domain. It can be shown [17] that the magnetization can be written

as:

M(t) = M0

∞∑
n=0

Ine
−t/T2n . (3.28)

The In coefficients are normalised and can be calculated from volumetric in-

tegrals of eigenvectors in a pore space domain:

In =
1

V

[
∫
Fn(~r)dτ ]2∫
F 2
n(~r)dτ

, (3.29)
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as well as the An coefficients:

An =
M0

V

∫
Fn(~r)dτ∫
F 2
n(~r)dτ

. (3.30)

It is insightful to apply the above results to a known geometry to obtain the

eigenvalues spectrum, and consequently the T2 distribution for a single pore.

We will discuss this problem for a spherical geometry, but it can be done for

other geometries, as well [14], see Fig.(3.8). The statistical model that we

want to approach is one for porous media built from spheres of different radii.

Figure 3.8.: Usual geometries to analytically solve diffusion equation with
boundary conditions, and obtain a solution for transverse NMR
relaxation [14].

3.2.1. Single spherical pore

We will consider one single spherical pore, which means that the boundary

conditions will have spherical symmetry (Fig.3.9). This case is interesting

because, whereas we deal with a three dimensional surface, the differential

equation will be radial, and so it is a didactic example.
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Figure 3.9.: Spherical geometry representation. This geometry has analytical
solution for T2 relaxation. Considering a special sum of spherical
pores is possible to predict a q-exponential decay for T2.

The diffusion equation, Eq.(3.27), in spherical coordinates is

F ′′n (r) +
2

r
F ′n(r) +

(
1

T2nD
− Γ

D

)
Fn(r) = 0. (3.31)

The solutions for the eigenvectors are

Fn(r) =
1

r
sen

(
ζnr

l

)
, (3.32)

where l is the radius of sphere and ζn = l
√

1
T2nD

− Γ
D are the eigenvalues. The

ζn are calculated using the Robin boundary condition, Eq.(3.24), which leads

to:

cot(ζn) =

(
1− lK

D

)
1

ζn
. (3.33)

The spectrum of T2n as a function of eigenvalues ζn are

T2n =
l2

Dζ2
n + l2Γ

. (3.34)

The result of Eq.(3.34) was obtained for a sphere but the analytical solution

of Eq.(3.23) and Eq.(3.24) for other geometries such as cubic or cylindrical,

the formal result for T2 is the same as Eq.(3.34), the only difference being the
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equation to calculate ζn, that will no longer be Eq.(3.33). So the problem to

find the T2 spectrum for one pore is reduced to solving an eigenvalue problem.

The effects of surface relaxivity K are considered in ζn equation. The T2

spectrum for one pore, or even T2 distribution in porous media are correlated

with the pore size or pore size distribution by the function Eq.(3.34). In the

asymptotic pore size regime (l → ∞) T2 is equal the inverse of Γ, i.e. free

diffusion.

The total magnetization is a sum of exponential functions Eq.(3.28), where

each exponential are multiplied by a coefficient In given by Eq.(3.29). For the

spherical pore the In coefficients are

In =
12(senζn − ζncosζn)2

ζ3
n(2ζn − sen(2ζn))

. (3.35)

The magnetization solution is therefore:

M(t) = M0

∞∑
n=0

Ine
−
(
Dζ2n
l2

+Γ

)
t
. (3.36)

For typical values of parameters [70], D = 10−9m/s, K = 10−6m2/s,

l = 0.5mm, the eigenvalue set, numerically solved, Eq.(3.33), is ζ = {(ζ0 =

1.16); (ζ1 = 4.60); (ζ2 = 7.79); (ζ3 = 10.95); . . . }. Considering Γ = 0 the nor-

malised magnetization decay with time given in ms will be:

M(t)

M0
= 0.996e−

t
184.02 +0.0034e−

t
11.79 +0.0004e−

t
4.12 +0.0001e−

t
2.08 + ... (3.37)

Note that the first mode contributes with 99, 6% for the total intensity.

It is instructive to analyse the modes intensities In as a function of the

eigenvalues ζn. If we choose the radius l = 1mm, the Equation (3.33), for the
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Figure 3.10.: The left figure shows the graphical solution for ζn eigenvalues
transcendental equation in spherical pores Eq.(3.33) for D =
10−9m/s, K = 10−6m2/s and l < 1mm. The right figure shows
variations in curves intersection by change pore size l. The first
eigenvalue will be always 0 ≤ ζ0 ≤ π.
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Figure 3.11.: The left figure shows the T2n spectrum and the intensities modes
In for a single spherical pore for D = 10−9m/s, K = 10−6m2/s,
l = 0.5mm and Γ = 0. The right figure shows the first four
magnetization modes given by Eq.(3.37); the first one is the most
important.
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eigenvalue spectrum, will be no longer a transcendental equation:

cot(ζn) =

(
1− lK

D

)
1

ζn
(3.38)

cot(ζn) =

(
1− 10−310−6

10−9

)
1

ζn
(3.39)

cot(ζn) = 0 (3.40)

ζn = (n+ 1)
π

2
. (3.41)

The first mode, n = 0, has eigenvalue ζ0 = π
2 . In Fig. 3.12 are shown two

graphics, the first one shows the intensities of modes In as a function of the

variable ζ, and the second one shows the variable ζ is limited to ζ = π
2 . Note

that with these values of D and K, any value of l less than 1mm implies

ζ0 <
π
2 , see Fig.(3.11). From the analysis of the Fig.(3.12) it is possible to see

that the first mode I0 is always larger than 0.986.

3.2.2. Two spherical pores

As we saw in the previous section, the solution to the decay of the magnetiza-

tion in one single pore can be expressed in a multiexponential form, in which it

appears an infinity and discrete set of eigenvalues. However, for typical values

for the parameters, we found that the first order, that is, the first exponential

in magnetization equation corresponds to more than 98% of the measured sig-

nal. Therefore, it is reasonable to assume that a pore of a given fixed radius

size l, contributes with a single exponential decay to the total signal when we

have a distribution of pore sizes. Before looking at the consequences of this

approach, we will analyse a possible degeneracy of modes of different spheres,

i.e., we will analyse if it is possible the second eigenvalue of one sphere to be

comparable to the first eigenvalue of the other in a system with two spherical

pores.
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Figure 3.12.: Plots of the intensities In, Eq. (3.35) as function of ζn. If the
pore radius is l ≤ 0.5mm the first mode is I0 ≥ 98.6%.
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Figure 3.13.: Representation of two spherical pores with different radii with
analytical solution for transverse relaxation. The total magneti-
zation of this system will be a sum of the contribution from the
two spheres.

Suppose now that we have two isolated pores, and that our measuring device

will measure the signal from both (Fig.3.14). We saw in the previous section

what is the response of the magnetization from each pore. The total response

that our new system will be the weighted average by volume of each pore, vi,

we mean that

M(t)

M0
=

1

v1 + v2
(v1m1(t) + v2m2(t)) . (3.42)

The magnetization of each pore is given by Eq.(4.4),

M(t)

M0
=

1

v1 + v2

(
v1

∞∑
n=0

In,1e
−t/T2n,1 + v2

∞∑
n=0

In,2e
−t/T2n,2

)
(3.43)

where the index after comma in In,i and T2n,i is the pore index. If we change

the volume vi by the radius li and with the relation vi = 4
3πl

3
i we get:

M(t)

M0
=

1

l31 + l32

(
l31

∞∑
n=0

In,1e
−t/T2n,1 + l32

∞∑
n=0

In,2e
−t/T2n,2

)
. (3.44)

There should be values of radii l1 and l2 such that the second eigenvalue of

the sphere 1 has the same value that the first eigenvalue of the pore 2. This

degeneracy reveals a kind of ambiguity in the inversion of magnetization signal

and therefore in the prediction of pore size distribution from T2 distribution.

Let’s take a concrete example. Using l1 = 1mm and l2 = 0.132mm, we obtain
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the following the normalised magnetizations

m1(t) = 0.985e−
t

405.28 +0.012e−
t

45.03 +0.0015e−
t

16.21 +0.0004e−
t

8.27 +... (3.45)

and

m2(t) = 0.9997e−
t

45.03 + 0.0002e−
t

0.847 + 0.00002e−
t

0.145 + ... (3.46)

Note that in the above equations, the second magnetization mode in Eq.(3.45)

(0.012e−
t

45.03 ) and the first mode in Eq.(3.46) (0.9997e−
t

45.03 ), have the same

value of T2, i.e., T21,1 = T20,2, where the first index only indicates that we

are working with the transverse relaxation T2, the second index indicates the

eigenvalue number, and the third index indicates the sphere number.

The total magnetization is given by Eq.(3.44),

M(t)

M0
=

(0.985e−
t

405.28 + 0.012e−
t

45.03 + ...) + (0.132)3(0.9997e−
t

45.03 + ...)

1 + (0.132)3

(3.47)

M(t)

M0
= 0.983e−

t
405.28 + 0.014e−

t
45.03 + 0.0015e−

t
16.21 + ... (3.48)

If we compare Eq.(3.48), that describe the normalised transverse magneti-

zation decay of a system with two spherical pores of radii l1 = 1mm and

l2 = 0.132mm with Eq.(3.37), that describe one spherical pore of radius

l = 0.5mm, the first magnetization mode, of each equation, correspond to

98.3% and 99.6% of the total signal measured, respectively. So in a T2 experi-

ment the correlation between T2 times and pore sizes, and even the number of

pores cannot be made directly. Of course these results are obtained without

approximation and in the regime where diffusion and superficial relaxation are

competing, i.e., Dl ≈ K. The fast diffusion regime (Dl � K) corresponds to the

Neumann boundary condition
(
dFn(r)
dr

∣∣∣
r=l

= 0
)

and the slow diffusion regime

(Dl � K) corresponds to the Dirichlet boundary condition (Fn(r = l) = 0).
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These limits will be discussed in the next section.

3.2.3. Spherical pore in slow and fast regimes

The Robin boundary condition, Eq.(3.24), is an intermediate case between

Newmann and Dirichlet boundary conditions. The Newmann boundary con-

ditions is the limit of Robin boundary condition when D
l � K, that correspond

to the fast diffusion regime:

lim
D
l
�K

(
D
∂m(~r, t)

∂n̂
+Km(~r, t)

)∣∣∣∣
surface

= D
∂m(~r, t)

∂n̂

∣∣∣∣
surface

= 0. (3.49)

The Dirichlet boundary condition is the limit of Robin boundary condition

when D
l � K, that correspond to the slow diffusion regime:

lim
D
l
�K

(
D
∂m(~r, t)

∂n̂
+Km(~r, t)

)∣∣∣∣
surface

= Km(~r, t)|surface = 0. (3.50)

The two limits represent, in spherical pores, conditions on the eigenvector

Fn(r). In the two cases the T2 spectrum can be represented formally by

Eq.(3.34), rewritten here:

T2n =
l2

Dζ2
n + l2Γ

. (3.51)

The difference is the equation to calculate the eigenvalues ζn which is no longer

Eq.(3.33). In the Neumann condition (fast diffusion) the eigenvalue equation

is

tan(ζn) = ζn, (3.52)

and in the Dirichlet condition (slow diffusion) the eigenvalue equation is

ζn = nπ. (3.53)
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The first eigenvalue ζ0 is a number between 0 ≤ ζ ≤ π and its exact value

depends on the pore geometry and the surface relaxivity.

3.2.4. Cubic pore

Figure 3.14.: Representation of cubic geometry. This kind of boundary
for a pore surface has analytical solution for transverse NMR
magnetization.

The solution of eigenvalue Equation (3.27) for the cubic symmetry is given

by writing the Laplacian operator in the cartesian coordinates:

(∂2
x + ∂2

y + ∂2
z )Fnxnynz(x, y, z) +

(
1

DT2
− Γ

D

)
Fnxnynz(x, y, z) = 0. (3.54)

The solution of Eq.(3.54) will depend of boundary conditions. In the fast diffu-

sion regime
(
D
l � K

)
, or Neumann boundary condition

(
∂
∂n̂Fnxnynz(x, y, z)

∣∣
surface

= 0
)

,

the solution will be:

Fnxnynz(x, y, z) = cos
(nxπ

l
x
)

cos
(nyπ

l
y
)

cos
(nzπ

l
z
)
, (3.55)

where l is the cubic side size. The eigenvalue spectrum is

ζ2
nxnynz = π2(n2

x + n2
y + n2

z) (3.56)

In the slow diffusion regime
(
D
l � K

)
, or Dirichlet boundary condition
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(
Fnxnynz(x, y, z)

∣∣
surface

= 0
)

, the solution will be:

Fnxnynz(x, y, z) = sin
(nxπ

l
x
)

sin
(nyπ

l
y
)

sin
(nzπ

l
z
)
, (3.57)

where l is the cubic side size. The eigenvalue spectrum is

ζ2
nxnynz = π2(n2

x + n2
y + n2

z). (3.58)

In the two cases the T2 spectrum is:

T2 =
l2

Dπ2(n2
x + n2

y + n2
z) + l2Γ

(3.59)

Observe that Eq.(3.59) has the same form as Eq.(3.34).

The solution for eigenvectors Fnxnynz(x, y, z) with Robin boundary condi-

tions is a linear combination of sines and cosines. The eigenvalues will be:

cot(ζni) =
Dζni − lK
Dζni + lK

, (3.60)

where i = (x, y, z) and the ζ2
nxnynz = ζ2

x + ζ2
y + ζ2

z . The T2 spectrum in given

by Eq.(3.34).

3.2.5. Bimodal distribution of spherical pores

Let us now consider a bimodal distribution of spherical pores (Fig.3.15). Con-

sider a sphere of radius l1 and n spheres of radius l2, the magnetization is

M(t)

M0
=

1

l31 + nl32

(
l31

∞∑
n=0

In,1e
−t/T2n,1 + nl32

∞∑
n=0

In,2e
−t/T2n,2

)
. (3.61)
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Figure 3.15.: Representation of a system with one big pore and many small
pores. Depending of the number of small pores, the relaxation
can be dominated by them.

With the approximation that only the first mode contributes to the magneti-

zation decay, the solution can be written as

M(t)

M0
≈ 1

a3
1 + na3

2

(
a3

1I0,1e
−t/T20,1 + na3

2I0,2e
−t/T20,2

)
. (3.62)

If we chose D = 10−9m2/s, K = 10−6m/s, Γ = 0, l1 = 1mm and l2 =

0.132mm, is possible to write the transverse magnetization function of the

number of small pores n:

M(t)

M0
≈ 1

1 + 0.002n

(
0.98× e−

t
405.28 + (0.012 + 0.002n)× e−

t
45.03

)
. (3.63)

Figure 3.16 shows the behavior of magnetization, T2 and pore radius distribu-

tions when the small pore number n vary about three orders of magnitude.

3.3. NMR Petrophysics

The NMR relaxation measurements of rocks with fluid content can yield infor-

mation about porosity, pore-size distribution, bound water and permeability.

It has been observed that fluid in porous media exhibit transverse and longi-

tudinal relaxation faster than their bulk value (Figure 3.17). Observe that in
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Figure 3.16.: The three figures on the left show the behavior of the magneti-
zation, T2 and pore radius distributions for n = 1. The three
figures on the right show the behavior of the magnetization, T2

and pore radius distribution for n = 1000. It is necessary three
orders of magnitude in the number of small pores, relative to the
big pore, for fast relaxation to be evident in magnetization signal
and consequently in T2 distribution.
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the second graphics of Figure 3.17, the oil doesn’t change their time relaxation

if it is in sandstone or in bulk form. The petrophysical model explains this

result by the interaction of fluid with pore walls. If the rock has a residual

water saturation and is saturated by oil, the interaction of this oil with the

pore walls are not present and so the time relaxation are not affected.

The petrophysical model for relaxation is based on three mechanisms: i)

the surface relaxation; ii) the bulk relaxation; and iii) relaxation by diffusion

in a gradient field, (Fig. 3.18). For the transverse relaxation T2 all the three

mechanisms are present, and the longitudinal relaxation is not affected by

relaxation due diffusion in a gradient field. The equations are:

1

T2
=

1

T2S
+

1

T2B
+

1

T2DG
(3.64)

and

1

T1
=

1

T1S
+

1

T1B
. (3.65)

The surface relaxation is due the interaction of the spin fluid with pore

walls. The paramagnetic ions present in pore surface cause a faster relaxation

of spin fluid. All the molecular characteristics of pore surface are modelled

by the relaxivity surface K term, that describes the capacity of the surface to

cause relaxation. The surface relaxation time is related to the surface-volume

ratio:

1

TS
= K

S

V
, (3.66)

where the TS time is either the transverse or longitudinal time, S is the pore

surface area and V is the pore volume. Essentially, the ratio V/S has dimen-

sion of size, so when the term of surface relaxation is the most important in

relaxation process, the T2 or T1 time is linear with pore size.

The time for a particle to diffuse across the pore is Td = l2/D. The fast

diffusion regime is given when Td � TS and in this regime, the TS is the most
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Figure 3.17.: The figure on the top is from Kenyon [15] and shows the longitu-
dinal NMR data to extract T1 time. When water is in the Berea
sandstone the T1 value is 214ms and their bulk value is 3.9s. The
second figure [16] shows relaxation time as a function of the ratio
viscosity/temperature. When water is present in sandstone the
relaxation time is smaller.
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Figure 3.18.: Schematic representation of diffusive spin inside a pore. The
relaxation is due three mechanisms, surface, bulk and diffusion
(see text).

important mechanism of relaxation and so the time relaxation is linear with

pore size. The fast diffusion regime is:

Td
TS

=
l2/D

l/K
=
lK

D
� 1. (3.67)

The relaxation time decay for one pore is associated to one single exponential

in the fast diffusion regime in the NMR petrophysical model. Because of this,

the porous media can be modelled by a sum of exponentials, where each pore

contribute with one single exponential:

M(T ) =

Npore∑
i

aie
− t
Ti , (3.68)

where ai is a number proportional to the total number of excited spins in each

pore. Observe that the NMR petrophysical model has no considerations about

statistics of pores. With this model the problem to find the relaxation time

distribution is given by the inversion of the data decay to find the exponential

modes that explain the data. In the next section we will discuss how to invert
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the data with a regularization procedure.

3.3.1. The inversion of T2 decay

The inversion of NMR transverse relaxation data from porous media is an

ill-posed problem [101] in which noise can severely affect the prediction of

the transverse relaxation time, T2, distribution. The standard way to give a

solution to an ill-posed problem is introduce some kind of regularization [102].

When the data is too noisy, the regularization parameter, α, will be large and

the solution can be far from the initial problem proposed. To minimize the

effects of noise, high-field NMR experiments can be applied in order to validate

new models, subsequently applied to noisy low-field experiments. Discussion

about the characteristics of high- vs. low-field NMR experiments in porous

media can be found in references [103,104].

We propose a method to describe NMR transverse relaxation based on the

superstatistics of Beck-Cohen [74]. Different from standard inversion methods

in which single exponentials and regularization parameters priori fix T2 values

to calculate numerically the coefficients of the expansion, our method assumes

a distribution for T2 given by an analytical function, and a least-square fit

yields the statistical parameters. The main advantage of the method is to

eliminate common numerical flaws, and to yield analytical function for T2

distributions, from which the fluid contents and petrophysical properties can

be easily obtained.

The multiexponential is a non-linear function and, given a set of data di,

the best solution is the set of values (T2i, ai) that minimize the function:

∣∣∣∣∣∣
Ndata∑
j=1

(
Nexp∑
i=1

aie
−

tj
T2i − dj

)∣∣∣∣∣∣
2

, (3.69)

where Ndata is the experimental sampling size, Nexp is the number of expo-
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nentials chosen and the set (T2i, ai) is the T2 distribution. In general, company

services of NMR well log provide data with Nexp ≥ 32 and NMR petrophys-

ical laboratories generally uses Nexp ≥ 100. Analysis about the number of

exponentials can be found in literature [105]. With this large value for Nexp

it is impossible to find the minimum of Eq. (3.69), and at this point a regu-

larization procedure is introduced to the least-square problem:

min


∣∣∣∣∣∣
Ndata∑
j=1

(
Nexp∑
i=1

aie
−

tj
T2i − dj

)∣∣∣∣∣∣
2

+ α

Nexp∑
i=1

|ai|2
 , (3.70)

where the second term is the Tikhonov zero order regularization. Now the set

of non-linear variables T2i is fixed and log spaced, the least-square problem

is linear and it consists of finding the ai set values for a given α. The regu-

larization stabilizes the numerical problem and is based only in mathematical

assumptions. Our proposal is to use a non-linear least-square fit in which each

parameter involved has a physical interpretation, see Section(4.1).
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4. Results

4.1. q-Exponential model for magnetization decay

In the Section 3.2.1 we analysed the solution of diffusion equation with bound-

ary conditions for one single sphere. The solution for parallel plates and cylin-

der can be found in [14]. It is possible to show that, independently of the

geometry, the first eigenvalue ζ0 will be the most relevant when the fast diffu-

sion regime is satisfied (D � lK). Let us consider the fast diffusion condition

and analyse a statistical model with this consideration.

For three different kinds of geometries given by cartesian, cylindrical and

spherical coordinates, is possible to solve analytically the diffusion equation

with boundary conditions. The dependence of T2 time with pore size is given

by Equation (3.34), rewritten here:

T2n =
l2

Dζn + l2Γ
. (4.1)

If we consider that only the first eigenvalue is needed to describe T2 the NMR

transverse relaxation, will be:

T2 =
l2

Dζ0 + l2Γ
. (4.2)

This result is not new and can be found in Brownstein and Tarr 1979 [14]. The

novelty in this thesis is a construction of a statistical model using analytical
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Figure 4.1.: Geometrical model of Brownstein and Tarr 1979 [14] applied to
explain data of rat gastronemius muscle NMR decay. An annular
cylinder geometry is assumed and the ratio of radius R = b/a is
tuned to give the best fit.

results of [14].

In Brownstein and Tarr 1979 paper [14], they search for the best geometry

to explain data from NMR decay of rat gastronemius muscle and found that

the best model is an annular cylinder with one free parameter R = b/a, where

b and a are the outer and inner cylinder radius, (Figure 4.1). Other conclusion

is that the system is in slow diffusion regime, because they found aK
D ≈ 4.9

for R = 3, a being related with l pore size parameter, as previously discussed.

The work of Tangyan et.al. 2012 [17] uses a sphere-cylinder model to explain

data of NMR decay from porous rock saturated by oil and water and the result

is a model with three exponential functions to describe fine, middle and macro

pores, (Figure 4.2).

We advocate that it is not necessary to know exactly the shape of pore

geometry, but if we consider that each pore has a random geometry and con-
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Figure 4.2.: Geometrical model of Tangyan et. al. 2012 [17] to describe porous
rock saturated by oil and water.

sequently a random ζ0, the time of magnetization decay will be a large sum of

all randomic T2 time of each pore. All the complication about geometry and

even the surface relaxivity will be given by one value of the first eigenvalue ζ0

that is a number between 0 ≤ ζ0 ≤ π. If the assumption of the fast diffusion

regime is not valid, the further eigenvalues can be considered, and the model

refined. In this thesis we will construct the most simple statistical model and

will apply it to successfully explain NMR data decay in porous media.

In order to construct a statistical model for NMR data decay we will sup-

pose, at first, that only the first eigenvalue contribute to T2. Suppose that

Eq.(4.2) describes T2 for one single pore given, independently of its geometry.

The magnetization such a this pore is:

m(t)

m0
= I0e

−β0t. (4.3)

where β0 = Dζ0
l2

+Γ, the zero index refers to the first eigenvalue. For a discrete

distribution of pores, the total magnetization will be:

M(t)

M0
=

Npore∑
i=1

I0ie
−β0it, (4.4)
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where the i index refers to each pore in the sample. Observe that the set

(I0j , T2i), where T2i = β−1
0j , defines a discrete T2 distribution, where the fast

relaxation given by small values of T2 represent small pores and the slow

relaxation the big pores.

We can generalize the result of Eq.(4.4) for a continuous distribution of

pores:

M(t)

M0
=

∫ ∞
0

dβf(β)e−βt, (4.5)

where f(β) is a probability density function. Each pore of the sample will

contribute with a value of β. As we saw in Chapter 2, the β value can be

consider a sum of squared Gaussian random variables

β =

ν∑
j

X2
j , (4.6)

β must be positive because it is the inverse of T2 time. Also, as we see

in Chapter 2, the distribution of β variable given by Eq.(4.6) will be χ2-

distribution given by Eq.(2.6). The total magnetization will be therefore:

M(t)

M0
=

∫ ∞
0

dβχ2
q,β0

(β)e−βt, (4.7)

where β0 = 〈β〉 is the mean of distribution. The result of magnetization is a

q-exponential

M(t) = M0e
−β0t
q . (4.8)

Equation (4.8) is an analytical model for magnetization decay from NMR

experiments, based on statistical assumption that the β variable is a sum of

squared Gaussian random variables, or in other words, the β = 1
T2

distribution

for porous media, the f(β), is a χ2-distribution.
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Figure 4.3.: Analytical function for T2 distribution used in NMR experiments
on porous media. In the limit of q → 1, fq,β0(T2) tends to a
distribution highly concentrated around in 〈T2〉, and recovers one
single exponential for the magnetization. The inset a log-log plot
showing the tail behavior of distributions.
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The q parameter as a function of T2 is

q = 2− 1〈
1
T2

〉
〈T2〉

, (4.9)

and the T2 distribution is

fq,β0(T2) =

(
1

(q−1)β0

) 1
q−1

Γ
(

1
q−1

) T
q

1−q
2 e

− 1
(q−1)β0

1
T2 . (4.10)

In the limit q → 1, the analytical distribution for T2 Eq.(4.10) tends to a

Dirac delta-like distribution, as can be seen qualitatively in Figure (4.3). The

relation between the chi-square distribution of βs and T2 distribution is

fq,β0(T2) =
1

T 2
2

χ2
q,β0

(
1

T2

)
, (4.11)

where β = 1
T2

and β0 = 〈 1
T2
〉. The area under fq,β0(T2) represents the total

amount of fluid in the porous media. In order to compare curves from different

models, we must normalize the curves to the same area. In what follows it is

important to observe that the higher the value of 〈T2〉, the smaller will appear

the peak of fq,β0(T2). It is important to keep in mind, however, that the curves

have all the same normalised area, as exemplified in Fig. (4.4).

4.2. NMR High-field experiments

The petrophysics NMR data has, in general, a large amount of noise, in par-

ticular log well data, (Fig 4.5). The presence of large noise in data can makes

the inversion problem unstable and, to circumvent this problem, a large value

of regularization is needed. For testing a new model it is specially impor-

tant, if possible, that the experimental data to have a minimum amount of

noise and samples need to be well behaved. On this direction, we performed
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Figure 4.4.: The area under each curve in the graphics is equal to one, and
the q parameter is chosen q = 1.5 for this example. Because the
logarithm scale, the peak of the distribution becomes smaller as
〈T2〉 increases.
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Figure 4.5.: Example of typical NMR log well data with a large amount of
noise.

high-field NMR experiments on a VARIAN Shielded 500 MHz spectrometer

at the Brazilian Center for Research in Physics. The CPMG sequence was

applied to measure transverse relaxation times decay of 1H in water imbibed

on microspheres glass with different granulometries ranges.

We used two sets of glass microsphere with five different ranges of two

different companies, the Multiesferas and Cospheric, and three samples of

outcrop rocks. The Multiesferas set is of soda lime glass and the spheres radii

are in the following ranges: A (425-600µm); B (250-425µm); C (106-212µm);

D (75-125µm); and E (45-90µm). The Cospheric’s microspheres are in the

following ranges: A (710-850µm); B (425-500µm); C (212-250µm); D (106-

125µm); and E (45-53µm); see the Fig. 4.6. The outcrops rocks used were the

Berea and the Buff Berea sandstone, and the Indiana Limestone, (Fig.4.7).

The samples from the Microesfera set can be view in Fig. 4.8. We have

used a NMR probe of 10mm in the experiment, which means that we have a

tube of 10mm of external diameter to pack the glass microspheres. In Fig. 4.8
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Figure 4.6.: The colored bars represent the diameter size range of ten sam-
ples of soda lime glass microsphere from two different companies.
The Cospheric’s microspheres have the follow ranges: A (710-
850µm); B (425-500µm); C (212-250µm); D (106-125µm); and E
(45-53µm); and the Microesferas sample have the follow ranges:
A (425-600µm); B (250-425µm); C (106-212µm); D (75-125µm);
and E (45-90µm).

Figure 4.7.: Outcrop rocks used in high-field NMR experiments. From left to
right is the Buff Berea Sandstone, Berea Sandstone and Indiana
Limestone.

92



the left tube contains the finest grains (45-90µm), and in crescent order the

last one at right has the largest grains (425-600µm). Figs. 4.8 and 4.9 show a

x-ray microtomography (µCT), made in one of the samples. The µCT image

was performed in PETROBRAS/CENPES µCT lab.

4.2.1. Microesferas A: 425-600µm range diameter

In order to compare the different models, in this case the multiexponential

and the q-exponential models, it is necessary to analyse the values of the reg-

ularization parameter α used in the multiexponential model. There are many

methods and discussions about how to choose the regularization parameter

[101,106]. For the glass microspheres pack of Microesferas A, the result of the

α parameter value on the T2 distribution in the multiexponential model can

be seen in Fig.4.10. Observe that when the α parameter is decreasing, the T2

distribution tends to spike the distributions, and the fast relaxation domain

becomes more pronounced.

On the other hand, the fitting model of three q-exponentials yields

M(t) = 89336.7× e−
t

62.9
1.39 + 276036.0× e−

t
412.3

1.15 + 29979.2× e−
t

1695.3
1.16 , (4.12)

or in terms of initial magnetization:

M(t)

M0
= 0.226× e−

t
62.9

1.39 + 0.698× e−
t

412.3
1.15 + 0.076× e−

t
1695.3

1.16 . (4.13)

The above result means that the magnetization decay is composed by three

q-exponential modes. The first, and fastest, contributes with 22.6% of signal,

and has qfast = 1.39 and β−1
0 = 62.9ms. The second mode contributes with

69.8%, qmedium = 1.15 and β−1
0 = 412.3ms. The third mode has 7.6%, qslow =

1.16 and β−1
0 = 1695.3ms. The error calculated from Eq.(4.14) and associated

to the fit models are Errorα=0.1 = 0.002, Errorα=1 = 0.01 and Errorq−exp =
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Figure 4.8.: The figure on top shows the soda-lime glass microspheres set of
samples with five different diameter ranges inside 10mm tubes,
imbibed on water for perform NMR experiments. The figure on
the bottom shows one raw image of the x-ray microtomography
of the glass microsphere sample of range 106-212µm diameter of
Microesfera.
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Figure 4.9.: The figure on top shows the renderized 3D volume of microto-
mography images of soda-lime glass microspheres from Cospheric
with range of 710-850µm. The figure on the bottom shows one
horizontal 2D slice of the first image.
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Figure 4.10.: Analyses of the regularization parameter effect, α, on the T2

distribution for Microesferas sample A.
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0.002.

Error =
1

N

N∑
i=1

|Model(i)−Data(i)|
Data(i)

(4.14)

The relation between model parameters q and β−1
0 with the mean 〈T2〉 and

standard deviation σ of the distribution fq,β0(T2) is given by

〈T2〉 =
β−1

0

2− q
(4.15)

and

σ =

√
q − 1

3− 2q
〈T2〉. (4.16)

The values of q, β−1
0 , 〈T2〉 and σ for the microesferas sample A can be seen in

table 4.1.

fast medium slow

Intensity (%) 22.6 69.8 7.6

q 1.39 1.15 1.16

β−1
0 (ms) 62.9 412.3 1695.3

〈T2〉 (ms) 103.1 485.1 2012.1

σ (ms) 137.3 224.6 964.0

Table 4.1.: Statistical parameters of three q-exponentials model for Microes-
feras sample A.

The T2 distribution associated to three q-exponential model and multiex-

ponential model with regularization parameter α can be view in Fig.(4.12). Is

possible to observe a smoothing in the multiexponential distribution for larger

α parameters. The analytical model for T2 distribution is composed by three

fq,β0(T2) and the statistical parameters of distribution is given by nonlinear

model fit procedure. The equation of black solid line in Fig. 4.12 is:

F (T2) = 0.226f1.39,62.9(T2) + 0.698f1.15,412.3(T2) + 0.076f1.16,1695.3(T2), (4.17)
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Figure 4.11.: The figure on top shows the spectrum decay in CPMG pulse se-
quence. The figure on bottom shows the comparison between the
q-exponential and multiexponential models decay to prediction
of T2 distribution in Microesferas sample A.

98



Figure 4.12.: Comparison of T2 distribution given by q-exponential model and
multiexponential model in Microesferas sample A.
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where each fq,β0(T2) is given by Eq.(4.10) and represent fast, medium and

slow relaxation respectively.

Observe in Fig.4.12 that the most pronounced mode in the three distribution

is close to each other around T2 = 400ms. In the log-log plot is possible

to see that some zero values of T2, from multiexponential modes, disappear

when α change from α = 0.1 to α = 1, in times closed to T2 = 40ms and

T2 = 2000ms. The T2 relaxation time is related to real physical dynamics of

spin in porous space and in multiexponential model this time are biased by the

regularization parameter value. The q-exponential model give analytical and

continuous distribution for T2 with statistical parameter for each spin behavior

regime, (Table 4.1). In general the T2 distribution modes in multiexponential

model tends to be broader than than q-exponential model. This behavior is

due to the fact that the multiexponential model has a finite range on the T2

axis, and therefore do not present long tail behavior.
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4.2.2. Microesferas B: 250-425µm range diameter

The values of statistical parameters for the q-exponential model applied to

NMR relaxation T2 experiment of Microesferas B (250-425µm) can be viewed

in Table 4.2. Most of the signal comes from the medium relaxation, and

corresponds to the 70.7% of the total signal, with 〈T2〉medium = 499.3ms and

σmedium = 256.1ms.

fast medium slow

Intensity (%) 22.6 70.7 6.7

q 1.32 1.17 1.07

β−1
0 (ms) 69.0 413.2 1631.6

〈T2〉 (ms) 101.3 499.3 1764.2

σ (ms) 95.2 256.1 524.7

Table 4.2.: Statistical parameters of three q-exponentials model for Microes-
feras sample B.

The comparison between the q-exponential model and multiexponential can

be viewed in Fig. 4.13. We choose two values of regularization parameter, α =

0.1 and α = 1 for the multiexponential fit. The error calculated by Eq.(4.14)

and associated to the fit models are Errorα=0.1 = 0.002, Errorα=1 = 0.009

and Errorq−exp = 0.003. All the three fits have comparable errors and the

best fit is the multiexponential with α = 0.1, however the T2 distribution

associated with it exhibits artefacts for long times decay due finite size effect

of T2 range chosen (Fig.4.15). For smaller values of α, the T2 distribution

exhibit non-zero values for fast relaxation that maybe not be related to the

dynamics of spins in the porous space, (Fig.4.14), but with inversion artefacts.

The multiexponential fit gives a continuous T2 distribution defined from

zero to infinite, and exhibit long tail behavior. The multiexponential model

for T2 is very depending on the regularization parameter α. The behavior of

T2 distribution with α can be viewed in Fig.4.14.

The experimental results, as well as their analusis, for Microesferas samples
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Figure 4.13.: The figure on top shows the spectrum decay in CPMG pulse se-
quence. The figure on bottom shows the comparison between
the q-exponential and multiexponential models for the of T2 dis-
tribution in Microesferas sample B.
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Figure 4.14.: Analyses of the regularization parameter effect, α, on the T2

distribution for Microesferas sample B.
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Figure 4.15.: Comparison of T2 distribution given by q-exponential model and
multiexponential model decay.
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C, D and E are described in Appendix A. We will now describe the results for

some Cospheric samples and rocks.
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4.2.3. Cospheric A: 710-850µm range diameter

Fig.4.16 shows the multiexponential and q-exponential fit models for Co-

spherisample C A (710-850µm), the inset shows the error along the decay,

between the model and the measured data. The α parameters chosen were

α = 0.1 and α = 1. The errors associated with fits are: i) Errorα=0.1 = 0.0008;

ii) Errorα=1 = 0.003; and iii) Errorq−exp = 0.001. The statistical parameters

associated with q-exponential model can be viewed in Table 4.3.

fast medium slow

Intensity (%) 12.4 − 87.5

q 1.5 − 1.35

β−1
0 (ms) 175.1 − 1892.1

〈T2〉 (ms) 350.2 − 2929.7

σ (ms) 39773.8 − 3228.1

Table 4.3.: Statistical parameters of two q-exponentials model for Cospheric
sample A.

The Fig.(4.17) shows the behavior of T2 distribution, given by multiexpo-

nential model, with α regularization parameter. In the Fig.(4.18) is possible

to see the comparison between the T2 distributions of multiexponential model,

with two values of α parameter, and the fq,β0(T2) model proposed.
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Figure 4.16.: The figure on top shows the spectrum decay in CPMG pulse se-
quence. The figure on bottom shows the comparison between
the q-exponential and multiexponential models for the of T2 dis-
tribution in Cospheric sample A.
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Figure 4.17.: Analyses of the regularization parameter effect, α, on the T2

distribution for Cospherisample C A.
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Figure 4.18.: Comparison of the T2 distributions given by q-exponential and
multiexponential models.
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4.2.4. Cospheric B: 425-500µm range diameter

Fig.4.19 shows the multiexponential and q-exponential fit models for Microes-

fera sample C (425-500µm), the inset shows the error along the decay, between

the model and the measured data. The α parameters chosen were α = 0.1

and α = 1. The errors associated with fits are: i) Errorα=0.1 = 0.001; ii)

Errorα=1 = 0.008; and iii) Errorq−exp = 0.002. The statistical parameters

associated with q-exponential model can be viewed in Table 4.4.

fast medium slow

Intensity (%) 27.6 61.9 10.5

q 1.40 1.10 1.30

β−1
0 (ms) 149.5 638.2 5736.8

〈T2〉 (ms) 249.1 707.6 8147.6

σ (ms) 351.9 247.3 6936.4

Table 4.4.: Statistical parameters of three q-exponentials model for Co-
spherisample C B.

The Fig.(4.20) shows the behavior of T2 distribution, given by multiexpo-

nential model, with α regularization parameter. In the Fig.(4.21) is possible

to see the comparison between the T2 distributions of multiexponential model,

with two values of α parameter, and the fq,β0(T2) model proposed.
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Figure 4.19.: The figure on top shows the spectrum decay in CPMG pulse se-
quence. The figure on bottom shows the comparison between
the q-exponential and multiexponential models for the of T2 dis-
tribution in Cospheric sample B.
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Figure 4.20.: Analyses of the regularization parameter effect, α, on the T2

distribution for Cospherisample C B.
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Figure 4.21.: Comparison of T2 distributiongiven by q-exponential model and
multiexponential model.
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4.2.5. Berea Sandstone

Fig.4.22 shows the multiexponential and q-exponential fit models for Berea

Sandstone, the inset shows the error along the decay, between the model and

the measured data. The α parameter chosen were α = 0.1 and α = 1. The

errors associated with fits are: i) Errorα=0.1 = 0.003; ii) Errorα=1 = 0.02;

and iii) Errorq−exp = 0.005. The statistical parameters associated with q-

exponential model can be viewed in Table 4.5.

fast medium slow

Intensity (%) 37.3 58.8 3.8

q 1.15 1.18 1.04

β−1
0 (ms) 7.15 122.3 731.5

〈T2〉 (ms) 8.46 149.3 759.7

σ (ms) 4.0 79.5 152.1

Table 4.5.: Statistical parameters of three q-exponentials model for Berea
Sandstone.

The Fig.(4.23) shows the behavior of T2 distribution, given by multiexpo-

nential model, with α regularization parameter. In the Fig.(4.24) is possible

to see the comparison between the T2 distributions of multiexponential model,

with two values of α parameter, and the fq,β0(T2) model proposed.
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Figure 4.22.: The figure on top shows the spectrum decay in CPMG pulse se-
quence. The figure on bottom shows the comparison between
the q-exponential and multiexponential models for the of T2 dis-
tribution in Berea Sandstone.
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Figure 4.23.: Analyses of the regularization parameter effect, α, on the T2

distribution for Berea Sandstone.
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Figure 4.24.: Comparison of the T2 distributions given by q-exponential and
multiexponential models.
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4.2.6. Buff Berea Sandstone

Fig.4.25 shows the multiexponential and q-exponential fit models for Buff

Berea Sandstone, the inset shows the error along the decay, between the model

and the measured data. The α parameter chosen were α = 0.1 and α = 1. The

errors associated with fits are: i) Errorα=0.01 = 0.008; ii) Errorα=0.1 = 0.04;

and iii) Errorq−exp = 0.01. The statistical parameters associated with q-

exponential model can be viewed in Table 4.6.

fast medium slow

Intensity (%) 52.4 43.9 3.7

q 1.47 1.04 1.48

β−1
0 (ms) 8.97 56.6 326.0

〈T2〉 (ms) 16.8 59.9 627.8

σ (ms) 44.6 12.5 2213.1

Table 4.6.: Statistical parameters of three q-exponentials model for Buff Berea
Sandstone.

The Fig.(4.26) shows the behavior of T2 distribution, given by multiexpo-

nential model, with α regularization parameter. In the Fig.(4.27) is possible

to see the comparison between the T2 distributions of multiexponential model,

with two values of α parameter, and the fq,β0(T2) model proposed.
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Figure 4.25.: The figure on top shows the spectrum decay in CPMG pulse se-
quence. The figure on bottom shows the comparison between
the q-exponential and multiexponential models for the of T2 dis-
tribution in Buff Berea Sandstone.
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Figure 4.26.: Analyses of the regularization parameter effect, α, on the T2

distribution for Buff Berea Sandstone.
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Figure 4.27.: Comparison of the T2 distributions given by q-exponential and
multiexponential models.
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4.2.7. Indiana Limestone

Fig.4.28 shows the multiexponential and q-exponential fit models for Indiana

Limestone, the inset shows the error along the decay, between the model and

the measured data. The α parameter chosen were α = 0.1 and α = 1. The

errors associated with fits are: i) Errorα=0.1 = 0.002; ii) Errorα=1 = 0.004;

and iii) Errorq−exp = 0.004. The statistical parameters associated with q-

exponential model can be viewed in Table 4.7.

fast medium slow

Intensity (%) 46.9 32.9 21.1

q 1.49 1.06 1.40

β−1
0 (ms) 4.26 28.3 123.0

〈T2〉 (ms) 8.48 30.0 206.5

σ (ms) 94.0 7.7 299.7

Table 4.7.: Statistical parameters of three q-exponentials model for Indiana
Limestone.

The Fig.(4.29) shows the behavior of T2 distribution, given by multiexpo-

nential model, with α regularization parameter. In the Fig.(4.30) is possible

to see the comparison between the T2 distributions of multiexponential model,

with two values of α parameter, and the fq,β0(T2) model proposed.
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Figure 4.28.: The figure on top shows the spectrum decay in CPMG pulse se-
quence. The figure on bottom shows the comparison between
the q-exponential and multiexponential models for the of T2 dis-
tribution for Indiana Limestone.
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Figure 4.29.: Analyses of the regularization parameter effect, α, on the T2

distribution for Indiana Limestone.
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Figure 4.30.: Comparison of T2 distribution q-exponential model and multiex-
ponential model decay.
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5. Conclusions and Discussions

5.1. Prediction of pore sizes

The fast relaxation can be analytically modelled by n small pores. This sug-

gests to use the T2 spectrum, given by Eq.(3.34), to be used in digital petro-

physics where a size attribute can be extracted for each pore of sample from

x-ray microtomography images. The surface relaxivity K and geometry of

pore will contribute to determine the exact value of ζ0 that is a dimensionless

number between 0 ≤ ζ ≤ π. With the approximation by the first eigenvalue

ζ0 to the calculation of T2 we can explicit the dependency of pore size distri-

bution, g(l), and T2 distribution f(T2):

f(T2)dT2 = g(l)dl, (5.1)

which leads to

g(l) = f(T2)
dT2

dl
, (5.2)

and using Eq.(3.34), we find

g(l) =
2Dlζ0

(Dζ2
0 + l2Γ)2

f

(
l2

Dζ2
0 + l2Γ

)
. (5.3)

Equation (5.3) is an analytical pore size distribution that emerge from q-

exponential model for NMR transverse decay on porous media. The only

problem of that model is to estimate the real value of ζ0, that is function of D,
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l and K in a non trivial manner, ζ0 = ζ0(D,K, l). However, the ζ0 eigenvalue

is a number between 0 < ζ0 < π, and can be estimated by high resolution

image analysis of microtomography, comparing with pore size distribution of

3D images. Of course that there are many assumptions in this approach, but

it is an analytical function with statistical assumptions and can be used to

extract petrophysical information of porous media.

In order to analyse the prediction of pore sizes from T2 measures we use a

multiexponential model without inversion, using a nonlinear fit. The number

of exponentials are chosen based in the spike that appear in T2 distribution

with inversion when regularization parameter is low. In Fig. 4.10 is possible

to see six spikes in T2 distribution when α = 0.001. This spikes is in general

interpreted like inversion artefacts, although this values of T2 can be related

to discrete eigenvalues of diffusion equation for pore structure. If this is true,

the model with six exponential with T2 values close to the values of the spikes,

can describe well the data. However if the six exponential fit well the data, it

is not a proof that these values are the pore structure eigenvalues.

The fit of one six exponentials model and three q-exponentials is shown in

Fig.5.1. The two models were found by one nonlinear fit and not by regular-

ization procedure. The error associated to the T2 decay is around 0.1% and is

less than thick plot bullet. It impossible to distinguish visually the difference

between the data decay and the two models. One plot of the ratio model/data

was shown too in the Fig.5.1 for multiexponential model with regularization

procedure, with nonlinear fit and q-exponential model with nonlinear fit. All

models fit well the data with acceptable error.

The model with six exponentials for magnetization decay found is:

M(t) = 31496.2× e−
t

9.86 + 22838.8× e−
t

22.3 + 75287.2× e−
t

111.2 +

184812.0× e−
t

384.4 + 94527.2× e−
t

796.0 + 15973.0× e−
t

3414.8 .
(5.4)
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It is most convenient to write the magnetization in terms of the initial mag-

netization:

M(t)

M0
= 0.074× e−

t
9.86 + 0.054× e−

t
22.3 + 0.177× e−

t
111.2 +

0.435× e−
t

384.4 + 0.222× e−
t

796.0 + 0.038× e−
t

3414.8 .

(5.5)

The above equation means that the decay M(t) have six modes with relative

intensities of 7.4%, 5.4%, 17.7%, 43.5%, 22.2% and 3.8%. In the approxima-

tion of the fast diffusion, only the first eigenvalue of each pore is representative

for the magnetization signal, so consequently the only one exponential is cor-

respondent to each pore. This assumptions leads to a interpretation of that

the pore structure of Microesferas sample A is composed by only six pore sizes.

Using Equation (5.1) we can estimate the pore diameters associated to these

relaxation T2 times. The pore diameter associated to one T2 time is:

l =

√
Dζ2

0T2

1 + T2Γ
. (5.6)

Using Γ → 0, D = 10−9m2/s and ζ0 = π/2, we found the following pore

diameters with relative percent value for total volume: 7.4% of 3.93µm, 5.4%

of 5.92µm, 17.7% of 13.2µm, 43.5% of 24.6µm, 22.2% of 35.9µm and 3.8% of

73.2µm.

When we predict pore sizes from T2 times, we are supposing implicitly

a value for surface relaxivity K. The value of K will influence in value of

eigenvalue ζ0. The eigenvalue ζ0 is function of diffusion coefficient D, surface

relaxivity K and geometry of that can be simplified by the pore size attribute l,

ζ0 = ζ0(D,K, l). However, as we seen before, the ζ0 is a dimensionless number

between 0 ≤ ζ0 ≤ π. The pore diameters estimation by magnetization decay

and function of eigenvalue ζ0 can be view in Fig.5.2.

This spikes can be related to the eigenvalues of pore structure, but to prove
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Figure 5.1.: The figure on top show the model fit of six exponentials and three
q-exponentials. The bottom figure show the ratio model/data to
analyse the quality of fit. All models fit well with less than 0.4%
of error.
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Figure 5.2.: Discrete distribution of six exponentials model in function of
eigenvalue ζ0. The blue lines are the distribution of pore diam-
eters for ζ0 = 0.1π, the black lines for ζ0 = 0.1π and red is for
ζ0 = 0.9π. The pore size diameter is linear with the eigenvalue ζ0.
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or disprove this statement, more investigation is needed. One way to treat

this problem and possibly elucidate this point, is numerically solve diffusion

equation with boundary condition in a 3D microtomography image.

5.2. Concluding remarks

Prediction of T2 distribution from transverse relaxation decay in NMR ex-

periments on porous media is an ill-posed problem [1, 14], but the diffusion

equation with boundary and initial conditions, commonly used to describe this

phenomenon, is a well-posed problem [107]. Well-posedness means that solu-

tion exists, is unique, and changes continuously with initial condition [108].

Porous media is composed by many pores of different sizes and shapes, and

the total transverse magnetization signal is a statistical sum of the signal from

each pore. In each one the magnetization is described by the diffusion equation

with boundary and initial conditions, but due to the statistical nature of the

signal response, the inversion of transverse relaxation data of a porous media

becomes an ill-posed problem. There are yet other difficulties associated to

the description of NMR on porous media, such as the distance of correlation

between the spin in the fluid and the spin in the matrix, contributing to su-

perficial relaxation, superficial mineralogical spatial distribution, which results

in a distribution of values for the superficial relaxation parameter, effects of

paramagnetic impurities, which may be present in the fluid and in the solid,

and so on.

The multiexponential model emerges naturally from the concept that each

pore contributes with one single exponential, so the total signal can be ap-

proximated by a finite sum of exponentials. The Robin boundary condition,

considers that the relaxation in one pore has a contribution from diffusion,

driven by diffusion coefficient D, and another from the surface driven by sur-

face relaxativity K. By solving the analytical problem for only one spherical
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pore, it is possible to see that the solution is a discrete infinite sum of ex-

ponentials Eq. (4.4), and that the second eigenvalue ζ1 contributes less than

0.4% to the intensity in Eq. (3.37) if compared to the first eigenvalue ζ0, when

the radius of sphere is less than 0.5mm, and D = 10−9m2/s and K = 10−6m/s

[70].

The superstatistical model proposed for transverse relaxation decay, yields

an analytical function for T2 distribution, and therefore is free from numerical

artefacts. Basically, the model is an infinite sum of exponentials with a known

distribution. For χ2 distributions, the sum is represented by the so-called

q-exponentials. We illustrated the model with χ2-distribution for inverse of

T2 and this leads naturally to a new basis function fq,β0(T2), Eq. (4.10).

For q → 1 the distribution is a Dirac delta-like: f1,β0(T2) ∝ δ(T2 − 〈T2〉).

Therefore, the superstatistical model can be viewed as a generalization of a

multiexponential basis. The main advantages of this model are: (i) with only

two fq,β0(T2) functions it is possible to solve non-linear least squares problem

and obtain a good description of porous media, without introducing the bias of

regularization; (ii) the function fq,β0(T2) yields information about a population

of spins with a well defined mean and standard deviation of T2, describing

naturally collective and statistical behavior; (iii) this function is defined in all

positive domain of real numbers and goes to zero when T2 →∞, so it does not

have artefacts from finite size effect; iv) small number of non-linear parameters

and physical interpretation of each one.

In order to verify the applicability of the model to the routine of a porous

media laboratory, we used low-field data from PETROBRAS NMR Labora-

tory in CENPES of Indiana Limestone. Figure 5.3 shows the decay of the

magnetization. We see that from 500ms onwards the noise becomes rather

important. This amount of noise is yet not comparable to well log data, but

in this last case our methodology can also be applied, as well. The data were
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fitted by the two models, three multiexponentials with different regulariza-

tion parameters α, and two q-exponentials with no regularization at all. The

three sets of two hundred exponentials are close to each other for most of

the time interval. The q-exponential model is comparable to the others up to

t ∼= 1200ms, after which a small divergence can be observed. However, from

Fig 5.4, it is possible to see how regularization can lead to spiky distributions.

An important statistical parameter to compare distribution is the logarithmic

mean T2LM [109] and for the distribution of Fig. (5.4) the q-exponential yields

T2LM = 130.3ms, whereas for the multiexponetials T2LM = 107.8ms, 107.3ms

and 111.1ms for α = 0.01; 0.1; and 1, respectively, which are in good agree-

ment with each other. The q-exponential provides average slightly larger due

long tail behavior of distribution, i.e., the q-exponential model has infinite and

continuous spectrum of exponentials while multiexponential model has finite

spectrum of exponentials.

The minimization of non-linear least square in a two q-exponential model,

M(t) = I1e
−β01t
q1 + I2e

−β02t
q2 , (5.7)

yields directly the statistical parameters of the analytical distribution of T2:

g(T2) = I1fq1,β01(T2) + I2fq2,β02(T2), (5.8)

where fq,β0(T2) is given by Equation (4.10). Note that the normalization coef-

ficients of the distributions g(T2), and the amplitudes of the multiexponential

functions, Eq. (3.69), are given by initial magnetization M0:

I1 + I2 =

Nexp∑
i=1

ai = M0. (5.9)

In summary, we have presented a method which allows the analysis T2 decay
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Figure 5.3.: Low-field NMR transverse data decay for Indiana Limestone
sample. We have fitted four curves, three multiexponentials
with different values for Tikhonov regularization, and a two q-
exponentials curves.
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Figure 5.4.: Normalised four distributions of T2 NMR low-field data decay of
Indiana Limestone. The squares obtained from the multiexponen-
tial model with low value of regularization, and exhibits a non-
physical oscillating behavior.
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on porous media based on superestatistics. It would be interesting to attempt

the method using distributions other than χ2. Among the petrophysical infor-

mation which can be obtained with the analytical function fq,β0(T2) are the

same one with multiexponential analysis: i) fluid content (gas, water or oil) in

geological reservoir; ii) permeability and porosity analysis; iii) volumes of free

and bound fluid and etc. Analysis of other petrophysical parameters, such as

T2cutoff , can be improved using the method. If we identify the parameters I1

and I2 in Eq. (5.8) with the Bound Volume Index (BVI) and the Free Volume

Index (FVI), the model can predict the T2cutoff directly from the data of only

one experiment. The transcendental equation for T2cutoff prediction will be:

∫ T2cutoff

0
[BV Ifq1,β01(T2) + FFIfq2,β02(T2)]dT2 = BV I, (5.10)

which leads to

BV I
Γ
(

1
q1−1 ,

1
(q1−1)β01T2cutoff

)
Γ
(

1
q1−1

) + FFI
Γ
(

1
q2−1 ,

1
(q2−1)β02T2cutoff

)
Γ
(

1
q2−1

) = BV I.

(5.11)

All the parameters in Eq. (5.11) are obtained from the fitting procedure, and

the T2cutoff can be easily calculated from this expression. The presence of Clay

Bound Water (CBW) can be taken into account by using three q-exponentials:

g(T2) = CBWfq1,β01(T2) +BV Ifq2,β02(T2) + FFIfq3,β03(T2). (5.12)

These possibilities will be exploited in future works.
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A. Microesferas samples C, D and

E

A.1. Microesferas C: 106-212µm range diameter

Fig.A.1 shows the multiexponential and q-exponential fit models for Microes-

fera sample C (106-212µm), the inset shows the error along the decay, between

the model and the measured data. The α parameters chosen were α = 0.01

and α = 0.1. The errors associated with fits are: i) Errorα=0.01 = 0.0007; ii)

Errorα=0.1 = 0.003; and iii) Errorq−exp = 0.004. The statistical parameters

associated with q-exponential model can be viewed in Table A.1.

fast medium slow

Intensity (%) 23.2 64.0 12.8

q 1.31 1.07 1.18

β−1
0 (ms) 42.5 165.3 344.4

〈T2〉 (ms) 61.7 178.6 422.4

σ (ms) 56.0 52.9 228.6

Table A.1.: Statistical parameters of three q-exponentials model for Microes-
feras sample C.

The Fig.(A.2) shows the behavior of T2 distribution, given by multiexpo-

nential model, with α regularization parameter. In the Fig.(A.3) is possible to

see the comparison between the T2 distributions of multiexponential model,

with two values of α parameter, and the fq,β0(T2) model proposed. The mul-

tiexponential model predicts a regime of very fast decay, with values close to
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Figure A.1.: The figure on top shows the spectrum decay in CPMG pulse se-
quence. The figure on bottom shows the comparison between the
q-exponential and multiexponential models for the T2 distribution
in Microesferas sample C.
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T2 = 10ms. The most part of spins decay with time close to T2 = 200ms for

all the three fit models.
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Figure A.2.: Analyses of the regularization parameter effect, α, effect on the
T2 distribution for Microesferas sample C.
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Figure A.3.: Comparison of the T2 distributions given by q-exponential and
multiexponential models.
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A.2. Microesferas D: 75-125µm range diameter

Fig.A.4 shows the multiexponential and q-exponential fit models for Microes-

fera sample D (75-125µm), the inset shows the error along the decay, between

the model and the measured data. The α parameter chosen were α = 0.1

and α = 1. The errors associated with fits are: i) Errorα=0.1 = 0.005; ii)

Errorα=1 = 0.03; and iii) Errorq−exp = 0.006. The statistical parameters

associated with q-exponential model can be viewed in Table A.2.

fast medium slow

Intensity (%) 33.2 59.3 7.4

q 1.34 1.04 1.30

β−1
0 (ms) 50.8 242.2 802.6

〈T2〉 (ms) 77.4 253.2 1144.6

σ (ms) 80.7 55.0 986.3

Table A.2.: Statistical parameters of three q-exponentials model for Microes-
feras sample D.

The Fig.(A.5) shows the behavior of T2 distribution, given by multiexpo-

nential model, with α regularization parameter. In the Fig.(A.6) is possible to

see the comparison between the T2 distributions of multiexponential model,

with two values of α parameter, and the fq,β0(T2) model proposed.
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Figure A.4.: The figure on top shows the spectrum decay in CPMG pulse se-
quence. The figure on bottom shows the comparison between the
q-exponential and multiexponential models for the of T2 distri-
bution in Microesferas sample D.
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Figure A.5.: Analyses of the regularization parameter effect, α, on the T2 dis-
tribution for Microesferas sample D.
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Figure A.6.: Comparison of the T2 distributions given by q-exponential and
multiexponential models.
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A.3. Microesferas E: 45-90µm range diameter

Fig.A.7 shows the multiexponential and q-exponential fit models for Microes-

fera sample E (45-90µm), the inset shows the error along the decay, between

the model and the measured data. The α parameter chosen were α = 0.1

and α = 1. The errors associated with fits are: i) Errorα=0.1 = 0.005; ii)

Errorα=1 = 0.041; and iii) Errorq−exp = 0.002. The statistical parameters

associated with q-exponential model can be viewed in Table A.3.

fast medium slow

Intensity (%) 41.2 56.9 1.9

q 1.21 1.04 1.32

β−1
0 (ms) 38.3 111.9 493.9

〈T2〉 (ms) 48.4 116.8 731.8

σ (ms) 28.9 24.8 705.6

Table A.3.: Statistical parameters of three q-exponentials model for Microes-
feras sample E.

The Fig.(A.8) shows the behavior of T2 distribution, given by multiexpo-

nential model, with α regularization parameter. In the Fig.(A.9) is possible to

see the comparison between the T2 distributions of multiexponential model,

with two values of α parameter, and the fq,β0(T2) model proposed.

146



Figure A.7.: The figure on top shows the spectrum decay in CPMG pulse se-
quence. The figure on bottom shows the comparison between the
q-exponential and multiexponential models for the of T2 distri-
bution in Microesferas sample E.
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Figure A.8.: Analyses of the regularization parameter effect, α, on the T2 dis-
tribution for Microesferas sample E.
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Figure A.9.: Comparison of the T2 distributions given by q-exponential and
multiexponential models.
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B. Cospheric samples C, D and E

B.1. Cospheric C: 212-250µm range diameter

Fig.B.1 shows the multiexponential and q-exponential fit models for Cospheric

sample C (212-250µm), the inset shows the error along the decay, between

the model and the measured data. The α parameter chosen were α = 0.1

and α = 1. The errors associated with fits are: i) Errorα=0.1 = 0.002; ii)

Errorα=1 = 0.02; and iii) Errorq−exp = 0.002. The statistical parameters

associated with q-exponential model can be viewed in Table B.1.

fast medium slow

Intensity (%) 24.4 70.4 5.2

q 1.37 1.13 1.29

β−1
0 (ms) 56.8 279.7 3507.9

〈T2〉 (ms) 90.7 320.5 4974.4

σ (ms) 109.8 132.4 4216.1

Table B.1.: Statistical parameters of three q-exponentials model for Cospheric
sample C.

The Fig.(B.2) shows the behavior of T2 distribution, given by multiexpo-

nential model, with α regularization parameter. In the Fig.(B.3) is possible to

see the comparison between the T2 distributions of multiexponential model,

with two values of α parameter, and the fq,β0(T2) model proposed.
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Figure B.1.: The figure on top shows the spectrum decay in CPMG pulse se-
quence. The figure on bottom shows the comparison between the
q-exponential and multiexponential models for the of T2 distribu-
tion in Cospheric sample C.
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Figure B.2.: Analyses of the regularization parameter effect, α, on the T2 dis-
tribution for Cospheric sample C.
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Figure B.3.: Comparison of the T2 distributions given by q-exponential and
multiexponential models.
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B.2. Cospheric D: 106-125µm range diameter

Fig.B.4 shows the multiexponential and q-exponential fit models for Cospheric

sample D (106-212µm), the inset shows the error along the decay, between

the model and the measured data. The α parameter chosen were α = 0.1

and α = 1. The errors associated with fits are: i) Errorα=0.1 = 0.007; ii)

Errorα=1 = 0.07; and iii) Errorq−exp = 0.007. The statistical parameters

associated with q-exponential model can be viewed in Table B.2.

fast medium slow

Intensity (%) 44.3 52.5 3.1

q 1.28 1.01 1.37

β−1
0 (ms) 35.5 119.6 772.2

〈T2〉 (ms) 49.4 121.2 1218.9

σ (ms) 39.6 14.0 1427.9

Table B.2.: Statistical parameters of three q-exponentials model for Cospheric
sample D.

The Fig.(B.5) shows the behavior of T2 distribution, given by multiexpo-

nential model, with α regularization parameter. In the Fig.(B.6) is possible to

see the comparison between the T2 distributions of multiexponential model,

with two values of α parameter, and the fq,β0(T2) model proposed.
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Figure B.4.: The figure on top shows the spectrum decay in CPMG pulse se-
quence. The figure on bottom shows the comparison between the
q-exponential and multiexponential models for the of T2 distribu-
tion in Cospheric sample D.

155



Figure B.5.: Analyses of the regularization parameter effect, α, on the T2 dis-
tribution for Cospheric sample D.
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Figure B.6.: Comparison of the T2 distributions given by q-exponential and
multiexponential models.
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B.3. Cospheric E: 45-53µm range diameter

Fig.B.7 shows the multiexponential and q-exponential fit models for Cospheric

sample E (45-53µm), the inset shows the error along the decay, between the

model and the measured data. The α parameter chosen were α = 0.01 and

α = 0.1. The errors associated with fits are: i) Errorα=0.01 = 0.02; ii)

Errorα=0.1 = 0.1; and iii) Errorq−exp = 0.006. The statistical parameters

associated with q-exponential model can be viewed in Table B.3.

fast medium slow

Intensity (%) 36.0 − 63.9

q 1.40 − 1.02

β−1
0 (ms) 27.1 − 66.5

〈T2〉 (ms) 45.5 − 67.7

σ (ms) 66.3 − 9.1

Table B.3.: Statistical parameters of three q-exponentials model for Cospheric
sample E.

The Fig.(B.8) shows the behavior of T2 distribution, given by multiexpo-

nential model, with α regularization parameter. In the Fig.(B.9) is possible to

see the comparison between the T2 distributions of multiexponential model,

with two values of α parameter, and the fq,β0(T2) model proposed.
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Figure B.7.: The figure on top shows the spectrum decay in CPMG pulse se-
quence. The figure on bottom shows the comparison between the
q-exponential and multiexponential models for the of T2 distribu-
tion in Cospheric sample E.
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Figure B.8.: Analyses of the regularization parameter effect, α, on the T2 dis-
tribution for Cospheric sample E.
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Figure B.9.: Comparison of the T2 distributions given by q-exponential and
multiexponential models.
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