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Abstract

In this thesis, we calculate gravitational scalar particle creation in quantum cosmological bouncing models

derived from the de Broglie–Bohm interpretation of quantum mechanics applied to the Wheeler–DeWitt equa-

tion in minisuperspace. We consider the scalar field either conformally or minimally coupled to gravity, and it

may be massive or massless, without self interaction. The generalization to any other constant value of the grav-

itational coupling is simple enough. We consider particle creation in two bouncing models: the first is a single

fluid model dominated by radiation; the second, more realistic model is composed of dust and radiation such that

radiation dominates near the bounce, while the dust fluid only dominates far from the bounce. The conformally

coupled case is a useful prototype to investigate the minimally coupled case because the asymptotic solutions

to the Klein–Gordon equation do not depend on the gravitational coupling. Moreover, in the pure radiation

model, the solutions with conformal coupling are exact. However, particle creation with conformal coupling is

negligible in both models. In the case of massive minimally coupled particles, we find the same results in both

models within observational constraints: particle number is most important at the bounce energy scale, and it is

not sensitive neither to its mass nor whether there is dust in the background model. This conclusion, however,

may change for supermassive particles with masses near or larger than the bounce energy scale, which we did

not consider. Nevertheless, the energy density of the massive particles do depend on their masses and on the

energy scale of the bounce. For very large masses and deep bounces, this density may even overcome that of the

background. In the case of massless minimally coupled particles, the energy density may become comparable to

that of the background only for extreme bounces at energy scales close to the Planck scale, which lies beyond

the scope of our calculations: the Wheeler–DeWitt approach we take is expected to break near such high energy

regime. Finally, in the model with dust and radiation, there is an infrared divergence for massless minimally

coupled particles, which becomes important only for scales much larger than the present Hubble radius.
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Resumo

Nesta tese, calculamos a criação gravitacional de partículas escalares em modelos cosmológicos com ricochete

derivados da equação de Wheeler–DeWitt na interpretação de Broglie–Bohm da mecânica quântica. Conside-

ramos que o campo escalar está conformemente ou minimamente acoplado à gravidade e pode ser massivo ou

sem massa, sem auto–interação. A generalização para qualquer outro valor constante do acoplamento gravi-

tacional é imediata. Consideramos a criação de partículas em dois modelos: o primeiro é um modelo com um

fluido de radiação apenas; o segundo modelo, mais realista, é composto por poeira e radiação, de modo que

a radiação domina no ricochete, enquanto a poeira domina apenas assintoticamente. O caso conforme é um

protótipo útil para investigar o caso minimamente acoplado, uma vez que as soluções assintóticas da equação

de Klein–Gordon não dependem do acoplamento gravitacional. Além disso, no modelo apenas com radiação, as

soluções com acoplamento conforme são exatas. Contudo, a criação de partículas com acoplamento conforme

é desprezível em ambos os modelos. No caso de partículas massivas minimamente acopladas, para valores dos

parâmetros de acordo com os vínculos observacionais, encontramos os mesmos resultados em ambos os modelos:

o número de partículas criadas é mais importante na escala de energia do ricochete, e não é sensível nem à

massa, nem a presença de poeira no modelo. Contudo, esta conclusão não inclui partículas supermassivas com

massas próximas ou maiores que a escala de energia do bounce, caso que não consideramos. No entanto, a

densidade de energia das partículas massivas depende das suas massas e da escala de energia do ricochete. Para

massas muito grandes e ricochetes profundos, a densidade de energia das partículas criadas pode até superar

a densidade do background. No caso de partículas minimamente acopladas sem massa, a densidade de energia

pode tornar–se comparável à do background apenas para ricochetes extremos em escalas de energia próximas

à escala de Planck, que está além do limite de validade de nossos cálculos: a equação de Wheeler–DeWitt que

usamos não deve ser válida em um regime de energia tão extremo. Finalmente, no modelo com poeira e radia-

ção, existe uma divergência infravermelha para partículas minimamente acopladas sem massa, que só se torna

importante para escalas muito maiores do que o atual raio de Hubble.
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Notation

Here we collect some of the notation used throughout the text. They are also explained within the text.

Throughout this work we use the metric with signature (+,−,−,−), except in the section on the Hamiltonian

of general relativity.

ȧ denotes the derivative with respect to cosmic time.

a′ denotes the derivative with respect to conformal time.

Lb is curvature scale at the bounce.

Lc = 1/m is the Compton wavelength of a particle with mass m.

rb = Lb/Lc.

a0 is the present value of the scale factor and H0 the present Hubble rate.

ab is the scale factor at the bounce.

ae is the scale factor at radiation–matter equality.

x = a0/a is a redshift–like parameter.
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Chapter 1

Introduction

In order to seek truth, it is necessary once in the course of our life to doubt, as far as possible,

of all things.

René Descartes

The persistence of long-standing issues in the scenario of cosmic inflation, the leading framework to explain

the initial conditions for the standard Big Bang model of cosmology, motivates the search for alternatives.

One such alternative that has been gaining attention is the paradigm of bouncing cosmology [1–3]. In this

scenario, the universe contracts from a very large size and, as it becomes sufficiently small, some exotic material

or quantum gravity effects take place and make the universe bounce, thereby expanding into the standard

model afterwards. In this case, the initial singularity present in the standard model is solved by construction.

Moreover, the bouncing scenario can also solve other puzzles of the standard cosmology (as the horizon and

flatness problems) and provide a causal mechanism to generate primordial cosmological perturbations from

quantum vacuum fluctuations, with an almost scale invariant spectrum, just like inflation does but from a

different perspective. The bouncing scenario may therefore be viewed as a realistic alternative to inflation,

although they do not necessarily exclude each other.1

There are many known mechanisms that can generate a bounce, and there are also many open questions and

issues to be investigated concerning these models, for general reviews see [1,3]. Sadly, but also understandably,

most studies on such alternative models are restricted to cosmological perturbation theory and to the question

whether these models can generate an almost scale invariant spectrum that could have given birth to the
1However, we only consider the observationally interesting cases where the bouncing effects are not diluted by inflation.
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present large scale structure of the universe through gravitational instability. This is simply because there lies

the greatest possibility to make contact with observations. However, other important physical mechanisms such

as particle creation, baryogenesis, and others remain largely unexplored in those scenarios. It is interesting

though that much of the research on these processes already done in the inflationary scenario may be adapted

to alternative scenarios, or at least be useful as a starting point.

In this thesis we are concerned with gravitational particle creation by the bouncing background dynamics.

Is it large enough to modify the background and even prevent the bounce causing a collapse? Can it induce

some sort of reheating, making the model asymmetric around the bounce? Or is it always negligible? The aim

of this thesis is thus to calculate gravitational particle creation in bouncing models. In the models considered,

the bounce is due to quantum cosmological effects when the curvature of space–time becomes very large: the

models are derived from the de Broglie–Bohm interpretation of quantum mechanics applied to the Wheeler–

DeWitt equation restricted to minisuperspace (the usual Copenhagen point of view cannot be used in quantum

cosmology, see [2] and references therein for a review on this subject). The Bohmian trajectories describing the

scale factor evolution are calculated and they are non–singular, presenting a bounce due to quantum effects at

small scales, and turning to a classical standard evolution when the scale factor becomes sufficiently large. These

models contain one single hydrodynamical fluid, or two: the usual observed radiation and dust contents which

are present in our universe. Note that apart from the use of the de Broglie–Bohm interpretation of quantum

mechanics, these models are conservative in that the Hamiltonian of general relativity is quantized and there is

only radiation and dust in the background, with no exotic fluids violating the energy conditions.2 We expect that

the simple Wheeler–DeWitt approach we are using should be valid only at scales some few orders of magnitude

below the Planck energy, being a limit of some more fundamental theory of quantum gravity suitable for energy

scales close to or above the Planck scale.

In chapter 2, we present a brief review on classical cosmology. We introduce the standard big bang model

in section 2.1. In section 2.2, we introduce the paradigm of inflation. In section 2.3, we try to motivate the

ideia of a bouncing universe. In chapter 3, we derive the two models we use to calculate particle creation.

In section 3.1, we briefly introduce the Hamiltonian approach to general relativity. In section 3.2, we explain

why the Copenhagen interpretation of quantum mechanics, usually taught in classes and in text–books, is not

suitable to quantum cosmology. In section 3.3, we give a sketchy derivation of the models we use to calculate

the Bogoliubov coefficients. These first two chapters are completely review with nothing whatsoever original.

In chapter 4, we finally arrive at the results. In sections 4.1 and 4.2, we give a very brief review on quantization

of scalar fields in curved space. After that, we are finally in place to calculate the Bogoliubov coefficients in

section 4.3. Note that this thesis is very interdisciplinary and there are whole books dedicated to most of the
2Although, in practice, the models can be effectively described as if there is stiff matter with negative energy density dominating

near bounce.
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sections. That is why this thesis is necessarily incomplete or not self-contained. A note on the bibliography. I

have made no attempt to make references to the original literature. Instead, the selection of the works, where

the original literature can be found, come from my own biased point of view. Finally, our results can also be

found in [4].

3



Chapter 2

Standard Cosmology, Inflation, and the

Bouncing Universe

Few if any seemed to have grasped the truest principle of reality: new knowledge leads to yet more

awesome mysteries.

Stephen King, The Gunslinger.

In this chapter, we outline the basic cosmological theory that is relevant to our work. In section 2.1, we

briefly introduce the standard big bang model [5–13], which is based on two well–tested pillars of physics, general

relativity and nuclear physics. It explains the origin of the cosmic microwave background radiation (CMBR) and

it accounts for the abundances of light elements through the process of primordial nucleosynthesis. However,

the picture is clearly incomplete for some reasons that are mainly theoretical in nature; a fact that calls for

speculations on the physics of the early universe.

At present, the leading working hypothesis to explain the initial conditions for the standard model is the

paradigm of cosmic inflation [14–19], which is the subject of the section 2.2. In that picture, the universe

underwent an early period of nearly exponential growth driven by a scalar field that dominated at that time. In

that way, inflation is intended to solve the classic puzzles of the standard model and to account for the observed

temperature perturbations in the CMBR that gave rise to the present large–scale structure of the universe

through gravitational instability.

Finally, in the section 2.3, we try to motivate the idea of a bouncing cosmology [1–3,20–22]. Unlike the stan-

dard model and the inflationary paradigm, the bouncing universe is singularity–free by construction and it can
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also solve the classic puzzles [20]. Moreover, it can produce an almost scale invariant spectrum of perturbations.

However, tensor perturbations in these models are generally very tiny and undetectable: if primordial gravita-

tional waves are confirmed, many bouncing models would be in trouble [3]. Like inflation or any other paradigm

of the early universe, the bouncing paradigm has its own problems, which deserve further investigation.

It should be noted that everything in this chapter has the character of a review, that is, nothing here is

original. Also, I will mainly quote the cosmological parameters from [23], but one should keep in mind that the

precision of observations is constantly increasing, and that these values (with their errors) do slightly depend

on the experiment so that they may be taken in a qualitative fashion. As a final note, I mention that the

inflationary paradigm is so successful that it is indeed included in the "standard model", however, only for the

sake of presentation I keep it separated.
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2.1 Standard Model

There are many excellent books on cosmology [5–13]. Interesting accounts on conceptually related issues

include [24–26]. The standard model of cosmology accurately describes the history of the universe since the

radiation-dominated phase some 13.8 billion years ago [23].

The starting point is the assumption of the cosmological principle.1 It states that the distribution of matter

in the universe can be described as approximately homogeneous and isotropic when averaged at large enough

spatial scales, ∼ 100 Mpc. This is important because these symmetries [28] result in simplifications in the

Einstein equations, which allow to describe the universe with simple mathematical models. The cosmological

principle is supported by several observations, in particular the CMBR and deep galaxy surveys.

Another pillar of the standard model was the discovery by Edwin Hubble that the universe is actually

expanding. At that time, around the 1920s, the universe was believed to be static. His discovery followed from

observations of redshifts of nearby galaxies. He also found a linear correlation between the distances and velocities

of galaxies. There are now several independent observations that support the expansion of the universe. In the

light of general relativity, the expansion means that space is stretching itself with the result that the physical

distance between co-moving galaxies is increasing. Hubble’s discovery (together with the realization that the

nebulae are actually galaxies outside the Milk Way) marks the beginning of modern cosmology.

The current expansion also means that the universe was smaller in the past, and therefore denser and

also hotter. In fact, so dense and hot that the short-range nuclear interactions were more effective than the

gravitational expansion. The creation of the first atoms can be accurately described from basic principles of

nuclear physics and thermodynamics. This process is called primordial nucleosynthesis. It accounts for the

abundances of the light elements (the ones not formed in the interiors of stars or supernovae) with the possible

exception of the lithium problem [29], and it also explains the origin of the CMBR.

2.1.1 Friedmann Expansion

In general relativity, as in any geometric theory of gravity,2 the cosmological principle implies that the

background metric of the universe can be approximately described by a very simple geometry with only one

unknown function of time. The metric written in coordinates such that the symmetries of the cosmological
1An interesting historical account of the cosmological principle up to the end of the 1970s can be found in [27] and references

therein. Moreover, Weinberg cites some alternative views in [10].
2The FLRW metric can be deduced based on purely geometric reasoning, without any reference to the Einstein equations.
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principle are explicit is called the Friedmann-Lemaître-Robertson-Walker metric [9, 28]

ds2 = dt2 − a2(t)

[
dr2

1−K r2
+ r2

(
dθ2 + sin2θ dφ2

)]
(2.1)

where r, θ and φ are the comoving coordinates and t is the cosmic time [28]; the scale factor a(t) describes

the stretching (or contraction) of physical space over time; K = 0,±1 represents the constant curvature of the

spatial sections. Sometimes, it is also convenient to use the conformal time η defined as

dη =
dt

a(t)
(2.2)

which may simplify some equations. The expansion (contraction) of the universe is determined by the Hubble

rate,

H =
ȧ

a
, (2.3)

which also furnishes a relevant time scale. It also links the radial speed of a galaxy to its distance trough the

Hubble law, v = Hd, which is the only expansion law consistent with the cosmological principle. The present

value of the Hubble rate is H0 = 100 h km sec−1 Mpc−1 = 2 h × 1042 GeV, where h = 0.67 [23] contains the

uncertainty on the value of H0.

Assuming a perfect fluid description for the matter in the universe, with energy density ρ and pressure p, the

cosmological principle also restricts the shape of the energy-momentum tensor which implies that the Einstein

equations reduce to the Friedmann equations

H2 =
8πG

3
ρ− K

a2
+

Λ

3
(2.4)

ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
(2.5)

The stress-energy conservation equation, Tµν;ν = 0, reduces to a single equation

ρ̇+ 3H (ρ+ p) = 0, (2.6)

but this equation is not independent of the Friedmann equations [9]. These equations need to be supplemented

by one more equation that relates ρ and p, which is called the equation of state,

p = ωρ. (2.7)

Note that this equation is always true: whatever is the relation between density and pressure, one can always

define ω so that (2.7) is satisfied. However, even in the simple cases where ω is constant there is some interesting

7



physics. A few examples are shown bellow.

Non-Relativistic Matter or Dust (with K = 0 and Λ = 0)

The simplest case is that of dust, which can be described as a pressureless fluid, so that ω = 0 → p = 0.

Equation (2.6) implies that

ρ ∼ 1

a3
, (2.8)

as expected. Also, using (2.8) in (2.4),

a(t) ∼ t2/3 ∼ η2. (2.9)

Relativistic Matter or Radiation (with K = 0 and Λ = 0)

In that case, ω = 1/3 so that p = ρ/3. Equation (2.6) implies that

ρ ∼ 1

a4
, (2.10)

so that the density of radiation is not only affected by the stretching of space, but also by the redshift of the

wavelentghs. Again, using (2.10) in (2.4),

a(t) ∼ t1/2 ∼ η, (2.11)

so that the pressure of radiation somewhat slows expansion or contraction. Similarly, radiation pressure also

works against gravitational instability [9].

Stiff Matter (with K = 0 and Λ = 0)

This is a more exotic example where the speed of sound equals the speed of light. This is sometimes

postulated to be the effective behavior of matter at extremely high densities [30]. In that case, ω = 1 so that

p = ρ. Equation (2.6) implies that

ρ ∼ 1

a6
, (2.12)

Again, using (2.12) in (2.4),

a(t) ∼ t1/3 ∼ η1/2. (2.13)
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Constant Density (with K = 0)

Another interesting case is the one for which ω = −1. Equation (2.6) implies that

ρ ∼ const, (2.14)

so that the energy density is constant in time as in space. Note that Λ may be included in that energy density.

Again, using (2.14) in (2.4)

a(t) ∼ exp{Ht} ∼ − 1

Hη
, (2.15)

where H is constant and η < 0. An exponential expansion may have interesting consequences for early universe

cosmology.

Constant Equation of State (with K = 0 and Λ = 0)

Finally, for any constant equation of state, equation (2.6) implies that

ρ ∼ a−3(1+ω), (2.16)

and (2.4) implies (as long as ω 6= −1)

a(t) ∼ a
2

3(1+ω) , (2.17)

which can be seen to agree with (2.9), (2.11) and (2.13) with the corresponding values of ω.

2.1.2 Density Parameters

It is useful to write the Friedmann equation in terms of dimensionless parameters so that different cosmo-

logical models can be compared according to their density parameters. The critical density ρc is defined as the

energy density necessary to make the universe spatially flat. From the Friedmann equation (2.4), the critical

density reads

ρc =
3H2

8πG
. (2.18)

The present critical density is

ρc0 =
3H2

0

8πG
= 1.88 h2 × 10−29g cm−3, (2.19)
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where, again, h = 0.67 [23]. Observations show that the present universe density is actually very close to the

present critical density. The density parameters are defined as

Ω =
ρ

ρc
=

8πG

3H2
ρ. (2.20)

They are therefore the ratios of the different contributions to the total energy density of the universe. The

Friedmann equation (2.4) can thus be written as

Ωm0

(a0

a

)3

+ Ωγ0

(a0

a

)4

+ Ωs0

(a0

a

)6

+ ΩK 0

(a0

a

)2

+ ΩΛ = 1, (2.21)

where the subscriptsm, γ, s, K and Λ denote the different contributions from non-relativistic matter, radiation,

stiff matter, curvature and dark energy (briefly explained below), respectively; moreover, ΩK 0 = −K /a2
0H

2
0

and ΩΛ = Λ/3.

According to cosmological observations, the contribution of baryons (protons, nuclei) into the total present

energy density is only about Ωb0 ≈ 0.049 [23]; while the contribution from radiation is even smaller Ωγ0 ≈

9.2× 10−5.3 The largest fraction of the total energy density in our universe is therefore unknown.

The dominant contribution of bound astronomical systems like galaxies or clusters, detectable only by its

gravitational influence, is called dark matter [31]. There is convincing astronomical evidence (rotation curves of

galaxies, dynamical stability of galaxies) that show that there is more clustering matter than one can see and

cosmological evidence (primordial nucleosynthesis, CMBR anisotropy, cosmic structure formation) that show

that dark matter cannot consist of known particles in the standard model of particle physics [12]. The present

mass density of baryons and dark matter together is Ωm0 ≈ 0.31 [23].

The other unknown material is even more mysterious than dark matter. It is called dark energy and it is

believed to drive the current accelerated expansion of the universe. This is not matter consisting of unknown

particles, but some vacuum-like kind of energy. It does not aggregate into clusters like ordinary matter and,

therefore, its effects are only observed at cosmological scales. An important property of dark energy is that

as the universe expands, its density either depends on time very weakly or does not depend on time at all.

Hence, as the energy density of radiation and matter fall with a−4 and a−3, respectively, dark energy starts

to dominate at some stage of the cosmological evolution. The transition from dust-dominated to dark energy

dominated expansion occurred very recently in our universe at redshift z ≈ 0.29.4 The age of the universe,

structure formation, CMBR anisotropy all indicate that the present density of dark energy is ΩΛ ≈ 0.69 [23].
3Ωγ0 can be calculated from Ωm0 and zeq , the redshift at radiation-matter equality, as Ωγ0 = Ωm0/(zeq + 1) [9]. These can be

found in table 4 in [23].
4Similarly to the calculation of the radiation density parameter, we can calculate this using ΩΛ = Ωm0(zΛ + 1)3 at equality [9].
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2.1.3 Thermal History

From very basic principles, one can understand the behavior of matter at different stages in the history of

the universe. Here, we are concerned with the beginning of the primordial nucleosynthesis which is one of the

cornerstones of the standard model of cosmology. We then estimate a conservative lower bound on the energy

scale (time scale) at which an early universe paradigm may have taken place. A more detailed account can be

found, for instance, in [9].

Let Γ be the reaction rate for a given particle interaction. If that reaction rate is much higher than the

expansion rate H, then the involved interaction can maintain those particles in a thermodynamic equilibrium at

a temperature T : they can then be treated as Fermi-Dirac or Bose-Einstein gases, obeying their correspondent

distribution functions. However, if Γ < H the particle is said to be decoupled and evolves free of that reaction.

Given that the temperature decays as the universe expands, there is always a temperature for which the

interaction is not effective anymore; it is said to be "frozen".

At T ∼ 1 MeV certain weak interaction processes fall out of equilibrium [9]. The primordial neutrinos

decouple from the other particles and the ratio of neutrons to protons freezes out. The surviving neutrons

determine the abundances of the primordial elements. At higher temperatures, photodissociation prevents any

complex nuclei to form. This temperature therefore marks the beginning of primordial nucleosynthesis. At that

time the universe was radiation-dominated with temperature described by the Stefan–Boltzmann law,

ρ ∼ T 4, (2.22)

which, together with equation (2.10), implies

a ∼ 1

T
. (2.23)

Assuming (correctly) that the universe was radiation-dominated for most of its expanding history, one can use

the CMB temperature to estimate the scale factor at the beginning of primordial nucleosynthesis

xn =
a0

an
=
Tn
T0
≈ 10 Mev

2.7 K
≈ 1011. (2.24)

Later, we will use this to restrict the scale factor at which a bouncing model may take place without spoiling

the predictions of nucleosynthesis, xb > 1011. Note that we have used a conservative value of the temperature

to calculate (2.24).
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In passing, one may also estimate the scale factor at the Planck energy scale

xp =
a0

ap
=
Tp
T0
≈ 1.2× 1019 Gev

2.7 K
≈ 1031, (2.25)

which implies that in a semi-quantum bouncing model, xb < 1031.5 Putting (2.24) and (2.25) together, gives

the allowable range

1011 < xb < 1031, (2.26)

for the minimum scale factor at the bouncing phase.

5We use the unusual term "semi-quantum" instead of the commonly used "semi-classical" because the Bohmian trajectories for
the scale factor are obtained in a quantum cosmological setting (more on this later).
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2.2 Cosmic Inflation

The leading working hypothesis to explain the initial conditions for the standard big bang model is the

paradigm of cosmic inflation [14–19]. According to inflation, the universe underwent a period of exponential

growth driven by a scalar field that dominated the very early universe when it emerged from the quantum

gravity era.6 It is claimed that inflation solves the classic puzzles of the standard big bang model [14] and

accounts for the observed temperature perturbations in the CMBR that gave rise to the present large-scale

structure of the universe through gravitational instability.

2.2.1 Puzzles in the Hot Big Bang Model

Although the standard big bang model can explain many observed features in the history of the universe, it

presents some issues that cannot be explained within the model. These issues point to the inevitable conclusion

that the standard model is incomplete. Some of these problems are listed below. Except for the singularity

issue [33], inflation is usually claimed to solve these problems.

Singularity

The use of classical general relativity to describe the standard model of cosmology implies that there was in

a finite past a gravitational singularity. This is a point (more precisely, a space-like surface) where no physics is

possible [1, 25].

Horizon Problem

The distant regions of the universe, which could never have been in causal contact in the big bang model,

seem to be at almost the same temperature. In other words, in the standard model there can be no causal

mechanism that can explain why such remote regions have the same temperature.
6There are exceptions as described for instance in [32] where inflation is driven by gauge fields.
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Flatness Problem

The observed flat geometry of the universe is unstable in a matter or radiation dominated phase, according

to the Friedmann equations. The hot big bang model requires a fine-tuning of the density parameter in the past.

Exotic Relics Problem

As the universe cools down from the big bang, grand unified theories propose that the electro-weak and the

strong forces arise due to spontaneous symmetry breaking from a single gauge theory. Such phase transition is

model dependent but it generally predicts that heavy amounts of exotic relics are produced, which is in conflict

with observations.

Structure Formation

The standard model cannot explain the observed large scale structure of the universe. If the perturbations

are originated at the radiation dominated phase of the hot big bang model, then there has been no time for

these perturbations to grow at the level observed today.

2.2.2 Inflationary Expansion

Consider a toy mo del with a single fluid. The second Friedmann equation (2.5) says that an accelerating

universe requires

p < −ρ
3
. (2.27)

In the particular case that p = −ρ, equation (2.14) says that the density is constant and the expansion is

exponential as in (2.15). Note that once exponential expansion begins, the curvature term K in the first

Friedmann equation (2.4) is justified in being neglected as it is soon redshifted away as a−2, also ordinary

matter and radiation are redshifted as a−3 and a−4, respectively as shown in equations (2.8) and (2.10).

While the equation of state of ordinary matter does not satisfy (2.27), this situation can be mimicked by a

scalar field. The action for a minimally coupled scalar field ϕ is given by

S =

∫
d4x
√
−gL =

∫
d4x
√
−g
[

1

2
gµνϕ,µϕ,ν − V (ϕ)

]
. (2.28)
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In a FLRW universe described by the Metric (2.1), the equation for ϕ obtained from (2.28) is

ϕ̈+ 3Hϕ̇− ∇
2ϕ

a2
+ V (ϕ),ϕ = 0. (2.29)

Note that the expansion of the universe introduces a friction term in the scalar field equation. The energy–

momentum tensor is obtained from the Lagragian as

Tµν = −2
∂L

∂gµν
+ gµνL (2.30)

A homogeneous scalar field ϕ(t) (if the ∇2ϕ term can be neglected) behaves like a perfect fluid with background

energy density and pressure given by

ρϕ =
ϕ̇2

2
+ V (ϕ), (2.31)

pϕ =
ϕ̇2

2
− V (ϕ). (2.32)

Now, if

V (ϕ)� ϕ̇2, (2.33)

we obtain

pϕ = −ρϕ. (2.34)

Therefore, if a causally connected patch of the early universe is dominated by the potential energy of a scalar

field such that V (ϕ) � ϕ̇2 and the initial conditions are such that the field is sufficiently smooth so that the

∇2ϕ term can be neglected in (2.29), then there is exponential expansion.

2.2.3 Numerical Example

Next, since it is simple enough and usually not found in cosmology text-books, we consider a simple numerical

toy model of a spatially homogeneous scalar field with a quadratic potential. The Friedmann equation (2.4) and

the scalar field equation (2.29) read

(
ȧ

a

)
=

4πG

3

(
ϕ̇2 + ϕ2

)
(2.35)

ϕ̈+ 3
ȧ

a
ϕ̇+ ϕ = 0 (2.36)

The solutions of equations (2.35) and (2.36) are shown in figure 2.1. ti = 0 just marks the beginning of
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Figure 2.1: Solutions of equations (2.35) and (2.36) with initial conditions ai = 1, ϕi = 3.06 Mp and ϕ̇i = 0. The
dashed line corresponds to a dust–dominated expansion, a(t) ∼ t2/3. In this toy model, inflation ends after ∼ 60
e-foldings. The inflaton field starts decaying slowly, linearly and then it begins damped oscillations. At the end of
inflation, a mechanism like reheating is necessary to smoothly connect the scenario to the radiation–dominated
phase of the standard model [34,35].

inflation, having nothing to do with a beginning of physical time. Inflation starts as the energy of the inflaton

field is dominated by its slowly decaying potential. At some point, the potential stops dominating and inflation

ends, when the scalar field starts oscillating. The scale factor grows about 1026 times during inflation in this

toy model and the universe is left in a cold, dust–like dominated expansion.

The initial conditions in this toy model, with the inflaton field energy near the Planck mass, cast doubts on

the applicability of the classical equations of motion. This is representative of a family of models called large–

field inflation. More generally, the problem of the robustness of the predictions with respect to full quantum

gravity effects needs to be addressed in any model of the very early universe, but it is specially important in

the inflationary scenario because its initial conditions are placed in a high energy density regime.

2.2.4 (P)reheating After Inflation

After inflation, the universe is left in a cold, low density, dust–like dominated expanding state. An extra

mechanism is therefore necessary to smoothly connect the end of inflation to the hot big bang phase so that the

predictions of the standard model, in agreement with observations, are not spoiled. This mechanism is generally

called reheating [34–36]. Since all kinds of energy (except quantum fluctuations) present before inflation are

diluted away, almost all the matter is created at that time and this is also where baryogenesis takes place.

The first stage of reheating is a non-perturbative process of quantum particle creation called preheating.

This is similar in spirit to gravitational particle creation and the creation of pairs by electromagnetic fields,

more generally it is creation of particles from an external classical source. The fields, whose particles are created,

interact with the classical coherently oscillating inflaton field resulting in a Mathieu-like differential equation [37].

For certain values of the parameters in a given range, there is parametric resonance which greatly enhances
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particle creation. In general, however, there is no explanation as to why these parameters should be in a resonant

configuration. If there is resonance, it takes only a few oscillations to the deplete the energy of the inflaton field.

The non–perturbative nature of preheating allows, for instance, the copious production of superheavy parti-

cles with masses greater than the inflaton mass (∼ 13 GeV), which is clearly forbidden in a perturbative regime.

This issue is important because interactions and decay of such heavy particles may lead to baryogenesis in

grand unified theories. On the other hand, there is also the danger of overproduction of gravitons which could

in principle close the universe before nucleosynthesis takes place, and of neutrinos which could also spoil the

predictions of nucleosynthesis.

After preheating the particles interact among themselves and slowly decay after which follows an eventual

thermalization. This can be treated within perturbation theory as described in [38]. The final temperature

obtained, constrained by the temperature at the primordial nucleosynthesis, is determined by the strength of

the couplings of the inflaton field to the other fields, which makes it model dependent. The necessity of new

parameters and models of interactions of course weakens the predictability of the scenario.

As a final remark, in the bouncing scenario the hot big bang phase after the bounce follows by construction

if there was a radiation dominated phase before the bounce, resulting in a nearly symmetric bounce. It is still

necessary to explain why it should be so, but the point is that reheating is not strictly required although particle

creation is not forbidden either. It is important though to investigate if the bounce is stable against cosmological

perturbations or particle creation.
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2.3 Bouncing Cosmology

The bouncing cosmology paradigm [1–3, 20–22] is a theoretical framework according to which the standard

big bang expansion is preceded by a phase of contraction. The scale factor starts at a huge classical value, where

the initial conditions are placed, and then shrinks up to a minimum at the bounce before growing again into

the standard hot Big Bang phase. It is a very general idea that can be implemented in many ways and, just

as inflation but from a different perspective, it may solve the cosmological puzzles in the standard model and

produce an almost scale invariant spectrum of perturbations.7

The raison d’être of the bouncing paradigm is to avoid the initial singularity. The use of classical general

relativity to describe the standard model of cosmology implies that there was in a finite past, some 13.8 billion

years ago, a so called big bang singularity: a regime where physical variables, such as the strength of the

gravitational field, go to infinity. Singularities in general relativity [39] are even worse than those found in

quantum field theory for they are not regarded as part of the physical, real space-time and physics laws can

only work in the realm of space-time. The standard model (including inflation [33]) thus imply that the universe

started in a state that cannot even in principle be described by the laws of physics, a source of lawlessness [1,25],

which is of course not acceptable.

2.3.1 Issues in the Inflationary Picture

The persistence of long standing issues in the inflationary picture may cast doubts on its reality and motivates

the search for alternatives. Some of these problems are listed below.

Singularity

Even though the inflaton field does not satisfy the energy conditions of the singularity theorems of the 1960s,

it has been shown that a past singularity is still unavoidable in the inflationary context [33]. Therefore, scalar

field driven inflation cannot be the ultimate theory of the early universe.
7We consider only bouncing models that are not followed by inflation for they are more interesting from the point of view of

observations.

18



Trans-Planckian Window

If the period of inflation lasted sufficiently long, then all scales inside the Hubble radius today started out

with a physical wavelength smaller than the Planck scale at the beginning of inflation. It is unclear how the

predictions of inflation are robust with respect to quantum gravity effects.

Particle Physics Motivation

This concern the nature of the inflaton field. The required prop erties of the p otential to yield inflation are

not well motivated by fundamental particle physics theory. In general, it is necessary to invoke super–symmetry

and even then special initial conditions are required.

Energy Scale of Inflation

The energy scale at which inflation takes place may be too high to justify the use of classical general relativity.

In simple toy models, the energy scale during inflation is very close to the Planck scale, where the classical notion

of space–time is in check. In fact, in large field models the initial amplitude of the scalar field may be even

higher than the Planck energy.

Measure Problem

It turns out that essentially all inflationary mo dels are eternal which leads to the notion of a multiverse. It

means that inflation never ends globally, only lo cally. The inflating region grows exp onentially without limit,

while pieces of it break off to form "bubble" universes. This makes it difficult to extract meaningful predictions.

Uniqueness of Observations

Contrary to what is usually advertised, the observed patterns in the CMBR at the current precision level

are not uniquely explained by inflation; some alternative models can also do the job. This remark alone should

be reason enough to pay some attention to these alternatives.
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2.3.2 Classical Bounce

At the classical level, the possibility of a bouncing universe is determined by the Einstein equations. Since

the Hubble rate is negative during the contracting phase, while it is positive during the subsequent expanding

phase, the bounce must allow the Hubble rate to increase so that Ḣ > 0. The Friedmann equations (2.4)

and (2.5) may be combined to show that

Ḣ = −1

2
(ρ+ p) +

K

a2
. (2.37)

Note that general relativity forbids a flat (K = 0) FLRW bouncing universe dominated by a fluid that respects

the null energy condition (NEC), ρ+ p > 0, at the bouncing phase.

Moreover, note that the condition

p < −ρ. (2.38)

is even stronger than (2.27). It may thus be argued that the bouncing paradigm is even more exotic than

inflation. There must be either an exotic fluid that violates the NEC, or modifications to the Einstein equations

that act effectively as repulsive gravity. These modifications may be due to additional terms in the classical

Lagrangian of gravity or due to quantum gravitational effects.

Solution of the Standard Puzzles in the Bouncing Scenario

Horizon: The existence of a singularity in the past, a beginning of time, implies that there is a finite distance

that light may have travelled since then. This is called the horizon. The size dH of the horizon is given by the

time integral dH(t) ≡ a(t)
∫ t
ti
a−1(τ)dτ , where ti is the initial time (we assume for simplicity that the bounce

takes place at t = 0, so that t < 0 represents the contracting phase and t > 0, the expanding phase). Assuming

that the dynamics is driven by a perfect fluid with constant equation of state, we can use equation (2.17) to

calculate the horizon

dH(t) =
3(1 + ω)

1 + 3ω

[
|ti|

1+3ω
3(1+ω) − |t|

2
3(1+ω) + t

]
. (2.39)

If ω > −1/3, as ti → ∞ (in the bouncing scenario), the horizon dH diverges. At any finite time before or

after the bounce, the horizon is infinite. Note that this solution requires ω > −1/3 so that the universe was

not dominated by some kind of dark energy in the contracting phase, as is the case in the present expanding

phase. It thus appears to require a nonsymmetric bounce.
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Flatness: The flatness problem refers to the fact that the curvature contribution to the Friedmann equa-

tion (2.4) is unstable in the standard model (it grows with time)

d

dt
|Ω− 1| = − ȧ

3

ä
, (2.40)

Given that Ω is observed to be close to unity today, it must be fine-tuned in the past in a radiation– or a

dust–dominated expansion. In the bouncing scenario, this is solved through a decelerated contracting phase,

ä < 0 and ȧ < 0, such that the curvature contribution decreases with time. The universe is thus seen to be

almost flat now because it has expanded much less than it has contracted before.

2.3.3 Advantages of the Bouncing Scenario

Some of the advantages of the bouncing picture are summarized in the list below.

Absence of Singularity

The bouncing scenario solve the initial singularity problem by construction, meaning that the scale factor

stops contraction at a finite value so that the density does not reach arbitrarily high values.

Cosmological Puzzles

It may solve the cosmological puzzles, just as inflation but from a different perspective.

Trans-Planckian Window

The initial conditions may be placed in a classical coherent state in the past contracting phase away from

the bounce so that the trans-Planckian window is a non issue at least in semi-classical models.

Particle Physics

It does not rely on any extension of the standard model of particle physics; in particular it does not require

supersymmetry, although it does not forbid it either. It do es not even require a scalar field, although it does
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require some new physics. To be fair, note that (2.38) is a stronger requirement than (2.27). In that sense, the

bouncing scenario can be considered to be more exotic than inflation.

Classical and Quantum Gravity

It can be embedded in all the known paradigms of classical and quantum gravity, including the most popular

ones: superstring theory and loop quantum gravity. The bouncing scenario seems to be a general prediction of

the latter [40]. However, string theory seems to favor the inflationary scenario [19,41].

Observations

It may give rise to a scale invariant spectrum of scalar perturbations in accord with observations, which is

the motto of inflationary theory practitioners.

Falsifiability

The specific models in the bouncing paradigm may have clear distinct predictions from inflation [3,42]: the

tensor ratio, the index running, non-Gaussianities. Therefore, they can be falsified in future observations.

2.3.4 Scale-Invariant Spectrum

In this section, we sketch a simple demonstration that a matter dominated contracting universe can give

rise to a scale invariant spectrum of perturbations. In this toy model, matter is modeled by some scalar field ϕ

in a gravitational field with total action given by

S = − 1

16πG

∫
d4x
√
−gR+

∫
d4x
√
−g
[

1

2
gµνϕ,µϕ,ν − V (ϕ)

]
. (2.41)

The background equations of motion for the scale factor and for the scalar field are, respectively,

H2 =

(
ȧ

a

)2

=
8πG

3

[
1

2
ϕ̇2 + V (ϕ)

]
and ϕ̈+ 3Hϕ̇+ V,ϕ = 0, (2.42)

which can be combined to show that

Ḣ = −4πGϕ̇2. (2.43)
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Since matter and gravitational perturbations, respectively δϕ and Φ, are related by the Einstein equations,

they can be combined into a single variable v, called the Mukhanov–Sasaki variable [43], which is a gauge–

invariant potential given by

v = a
(
δϕ+

z

a
Φ
)
, (2.44)

where z determines the time–dependent mass scale of v and is given by

z =
aϕ′0
H

. (2.45)

The equations of motion for the Fourier modes of the Mukhanov–Sasaki variable are [43]

v′′k +

(
k2 − z′′

z

)
vk = 0. (2.46)

In the case of a matter dominated phase of contraction, the scale factor is a ∼ t2/3 ∼ η2 so that H ′ ∼H 2.

Equation (2.43) written in conformal time can then be used together with (2.45) to show that z ∼ a, which is

also valid in the more general case of a time–independent background equation of state. Hence, the negative

square mass term in (2.46) is H 2. Therefore, on length scales smaller than the comoving scale, k � H , the

solutions for vk are constant amplitude oscillations, so these modes are stable. On super–Hubble scales, k �H ,

the solutions are frozen in as standing waves, and their amplitude depend on the time evolution of z; equation

(2.46) for vk gives

vk(η) = c1η
2 + c2η

−1, (2.47)

where c1 and c2 are constants. The c1 mode is the mode for which the physical perturbations, vk/a, are constant

on super–Hubble scales. In a contracting phase, it is the c2 mode which dominates and leads to a scale-invariant

spectrum

Pζ(k, η) ∼ k3 |vk(ηH(k))|2
(
ηH(k)

η

)2

∼ const, (2.48)

where vacuum conditions are given at the Hubble crossing, ηH(k) ∼ k−1 and vk ∼ k−1/2.

In the bouncing scenarios, it is necessary to show that the scale-invariant spectrum obtained in the con-

tracting branch survives to the expanding branch in order to fit observations. This is a difficult task, since it is

expected that quantum gravity effects may become important at the bouncing phase, precluding the use of clas-

sical general relativity. The solution to this issue, which may be referred to as matching conditions, depend on

the physics that drives the cosmic bounce. In some cases, the scale-invariant spectrum is known to be preserved.

To conclude this section, note from the dominant term of (2.47) that the physical amplitude of the pertur-
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bations are vk/a ∼ a−3/2 ∼ t−1, and their kinetic energy density is roughly

(
d

dt

vk
a

)2

∼ 1

t4
∼ 1

a6
. (2.49)

Therefore the energy density of the perturbations grows as fast as a−6 which is faster than non–relativistic matter

and radiation. The perturbations may then eventually dominate and destroy the homogeneous bounce, which

renders the model unstable. This is called the Belinsky–Khalatnikov–Lifshitz instability. Since the constants

of integration have been ignored, it may be argued that this is really a matter of initial conditions: using the

observed density parameters to estimate the relative importance of the perturbations at the contracting phase,

it can be shown that this is not necessarily a fine–tuning problem. Note that the quantum cosmological model

that we consider later is effectively stiff–matter–dominated at the bounce, ρ ∼ a−6. In this particular case, this

is clearly a matter of initial conditions.
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Chapter 3

Quantum Cosmological Bounce in the de

Broglie-Bohm Theory

Deep in the human unconscious is a pervasive need for a logical universe that makes sense. But

the real universe is always one step beyond logic.

Frank Herbert, Dune.

A definitive answer to the problem of the initial singularity cannot be given without a fully consistent

quantum theory of gravity. In the meantime, one can only hope that one of the existing approaches may give a

solution close to what is realized in the early universe. Since these approaches are constructed with low energy

physics as an effective limit, it might not be wishful thinking to expect so. It is certainly possible that quantum

gravity turns out to be something completely new, but even then it would have to satisfy low energy constraints.

Currently, the most popular approach to quantum gravity is super–string theory [44, 45]. Starting with the

seemingly simple ideia that particles are actually strings, it has far reaching consequences both for gravitation

and cosmology [19,41]. If it turns out to be correct, it will be another revolution in the understanding of space–

time. In particular, it predicts (more accurately, requires) that space-time has more than the usual 4 dimensions.

Another important feature is that it treats gravity and particle physics in the same framework.

Another interesting and popular approach to quantum gravity is loop quantum gravity [46, 47]. This is an

approach that is both more modest and more conservative than string theory. It is more modest because it

deals only with gravity. It is more conservative because it comes from an Hamiltonian approach to general

relativity. An interesting prediction of LQG is that space can be fundamentally divided in atoms of space. As a
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consequence, space behaves as a sponge that can only absorb a limited amount of water (energy), and gravity

becomes repulsive beyond that limit [40]. Thus, the bouncing scenario seems to be a general prediction of LQG.

In this chapter, however, we follow a less popular approach [2] that is based on the de Broglie–Bohm

interpretation of quantum mechanics [48–51] applied to the Wheeler-deWitt equation [52], which is expected to

work up to the Planck scale, in mini–superspace. It makes no assumptions on the quantum nature of space–time,

except that the commutation relations must be consistent with the classical Hamiltonian constraints. It gives a

well defined trajectory for the scale factor, not just an expectation value for some operator that would describe

the volume of space. The scale factor thus obtained can be used as a simple c-number in other dynamical

equations, without any quantum–mechanical ambiguities.
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3.1 Quantum Cosmology

The subject of quantum cosmology is an attempt to apply the principles of quantum mechanics to the

universe as a whole, with the hope to renormalize the initial singularity. The expression "quantum cosmology"

seems a bit paradoxical, as cosmology is a very large scale science and quantum mechanics is supposed to govern

small quantum systems. However, there has been over the years a growing consensus that quantum theory should

be a universal theory of nature. In that sense, all classical systems emerge from some set of quantum laws. This

is the case in early universe cosmology, as the singularity in the standard model seems to imply. In this section,

we briefly sketch the canonical approach to quantum cosmology. This is by far the most conservative method

among the attempts to quantize gravity.1 This is based on an approach pioneered by Dirac to the quantization

of constrained systems [55]. The constraints, in our case, are the Hamiltonian constraints of general relativity.2

3.1.1 Classical Hamiltonian Formalism

An inspection of the Einstein equations show that only the spatial part of the metric, hij , appear with second

order time derivatives. These are thus the dynamical variables of general relativity. The other components of

the metric are constraints. The presence of constraints shows not only that initial values cannot be chosen

arbitrarily, but also that there are underlying symmetries. Constraints of a certain type called first class, as

they are realized in general relativity, generate gauge transformations. Classically, the gauge transformations

of general relativity are equivalent to coordinate changes. Gauge invariance thus implies the general covariance

under coordinate changes.

In the Hamiltonian formulation of general relativity, it is assumed that space–time can be split into a

family of space–like hypersurfaces and a time–like direction. Thus, the topology of the manifold is restricted

to M4 = R ×M3. This excludes space–times with rotations and pathologies such as closed time–like curves.

The non–intersecting space–like hypersurfaces can be defined by the equations φ(xµ) = constant. The vector

ηµ = φ,µ is normal to the hypersurface, because the value of φ can only change in the orthogonal direction.

Since these hypersurfaces are space–like, they can be parameterized by a time–like coordinate x0 = t yielding

ηµ = δ0
µ, where N is a normalization factor. gµνgµν = −1 implies that g00 = −1/N2. The projector onto the

hypersurfaces is given by hµν = gµν + ηµην , whose components are h00 = 0, h0i = 0 and hij = gij +N2g0ig0j .
1We will not be concerned with claims that this approach is not renormalizable for two reasons: first, because this method

may be seem as an effective approach with a cut-off near the Planck scale; second, because there are examples of exactly solvable
non-perturbative theories in which the perturbation expansion is not renormalizable [53] (see also the introduction in [54]). We take
the former point of view, which is safer.

2A useful introduction to the purely classical Hamiltonian formulation of GR can be found in [56].
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Assuming the 3 + 1 decomposition, the metric can thus be written in the ADM form

ds2 = gµνdxµdxν

= (NiN
i −N2)dt2 + 2Nidx

idt+ hijdx
idxj (3.1)

= N2dt2 + hij
(
N idt+ dxi

) (
N jdt+ dxj

)
The lapse function N(t, xk) is the rate of change with respect to the coordinate time t of the proper time of an

observer with 4–velocity ηµ(t, xk). The shift function N i(t, xk) is the rate of change of the shift of the points with

the same label xi from one hypersurface to another with respect to coordinate time t. The shift function can

also be viewed as the projection of the tangent vector ∂/∂t to the t–time coordinate curves onto the spacelike

hypersurface.

A hypersurface characterized by the metric hij has its own curvature associated with its 3–geometry that

can be calculated in the usual way. However, another quantity is necessary to define how these 3–dimensional

hypersurfaces are curved with respect to the 4–dimensional manifold in which they are immerse, so that the

spacetime foliation is uniquely defined. This is the extrinsic curvature. It compares the normal vector ηµ at one

point with the parallel transported normal vector from a neighboring point

Kµν = −hαµhβν∇(α ηβ), (3.2)

with hαµ = δαµ + ηαηµ the projector onto the hypersurface at which ηµ is normal and ∇αηβ = ηβ,α − Γγαβηγ is

the covariant derivative of ηµ. The relevant components are

Kij = −NΓ0
ij (3.3)

=
1

2N

[
2D(iN j) −

∂hij
∂t

]
,

where Di is the 3–dimensional (intrinsic) covariant derivative with respect to hij .

Using these definitions, the 4–dimensional Ricci scalar can be written in terms of the 3–geometry as [56,57]

R = R(3) +KabKab +K2 − 2

N
∂tK +

2N i

N
∂iK −

2

N
Di

(
∂iN

)
, (3.4)

where R(3) is the 3–dimensional Ricci scalar. After discarding surface terms, the Einstein–Hilbert Lagrangian

density becomes

L
[
N,N i, hij

]
= N
√
h
(
R(3) +KabKab −K2

)
. (3.5)

Since the Lagrangian density (3.5) does not depend on ∂tN nor on ∂tN i, their canonical conjugate momenta
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are constraints [55,58,59]

Π =
δL

δ (∂tN)
≈ 0, (3.6)

Πi =
δL

δ (∂tN i)
≈ 0. (3.7)

(3.6) and (3.7) are called primary constraints. The canonical momenta conjugate to hij is

Πij =
δL

δ (∂thij)
= −
√
h (Kij − hijK) . (3.8)

The Hamiltonian density is

H = Πij∂th
ij −L , (3.9)

and the Hamiltonian is

H =

∫
d3xH =

∫
d3x

(
NH+NjHj

)
, (3.10)

with

H = Gijklπ
ijπkl −

√
hR(3), (3.11)

Hj = −2Diπ
ij , (3.12)

where Gijkl is the DeWitt metric

Gijkl =
1

2
√
h

(hikhjl + hilhjk − hijhkl) . (3.13)

For consistency, the primary constraints must be conserved in time, π̇µ = {πµ,H } = 0. This implies the weak

equations

H ≈ 0, (3.14)

Hj ≈ 0. (3.15)

The equations (3.14) and (3.15) are secondary constraints called super–Hamiltonian and super–momentum

constraints, respectively. They are closely tied with general covariance and their conservation in time do not

lead to new constraints. The equation (3.14) leads to the problem of time after quantization. Since N and

N i have no dynamics and multiply secondary constraints in the Hamiltonian (3.10), they can be seen as the

Lagrange multipliers of these constraints, and they may be eliminated from the phase space of the theory.

The secondary constraints (3.14) and (3.15) have weakly zero Poisson brackets among each other. They are
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called first–class constraints. The Dirac conjecture, proven in [60], states that all first–class are generators of

gauge transformations. In the case of the super–Hamiltonian and the super–momentum constraints, it can be

shown that [58]

δhij(x) =

{
hij(x),

∫
d3y ζ(y)H(y)

}
= −2ζ(x)Kij(x) = ζ(x)£ηhij , (3.16)

δhij(x) =

{
hij(x),

∫
d3y ξk(y)Hk(y)

}
= Diξj(x) +Djξi(x) = £ξhij , (3.17)

where where £ξ is the Lie derivative along the infinitesimal space–like vector ξ and £η is the Lie derivative

along the direction orthogonal to the space–like hypersurfaces with metric hij . The function ζ(x) is infinitesimal.

Analogous results can be obtained for the momenta πij . The super Hamiltonian constraint (3.14) is the generator

of time reparametrization. As can be seen from equation (3.16), (3.14) is connected to time evolution. The super

momentum constraints (3.15) are the generators of spatial coordinate transformations.

3.1.2 Quantization of the Hamiltonian Constraints

According to the Dirac quantization procedure, physical states are annihilated by the operator representa-

tions of the classical constraints, where

hij → hij and πij → −i δ

δhij
, (3.18)

and the wavefunction must satisfy a Schrödinger–like functional equation

i
∂Ψ

∂t
= HΨ, (3.19)

where H is the operator obtained from the classical Hamiltonian (3.10). The superspace constraints (3.14)

and (3.15) become

HΨ = 0, (3.20)

HjΨ = 0. (3.21)

The equations (3.20) and (3.21) imply that the right–hand side of equation (3.19) is zero, which means that Ψ

does not depend on time. This is also true in the presence of matter.

The momentum constraint (3.21) implies that the wavefunction is invariant with respect to spatial coordinate

transformations on the three–surface. To see this, consider the effect of a diffeomorphism xi → xi − ξi on the
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three–surface [61]

δΨ = Ψ
[
hij +D(i ξ j)

]
−Ψ [hij ] =

∫
d3xD(i ξ j)

(
δΨ

δhij

)
= −

∫
d3x ξjDi

(
δΨ

δhij

)
=

1

2i

∫
d3x ξiHiΨ = 0,

(3.22)

where the third equality follows from integration by parts and the boundary term is assumed to vanish; and the

last equality follows from the super momentum constraints (3.21). Therefore, the wavefunction is a functional

of an equivalence class of metrics which describe the same geometry, not of one particular metric. The space of

all three–dimensional space–like geometries is called superspace.

The equation (3.20) is called the Wheeler–DeWitt equation. Using equation (3.11), it can be written as

[
Gijkl

δ

δhij

δ

δhkl
−
√
hR(3) +Hmatter

]
Ψ = 0. (3.23)

Note that this contains products of local operators acting on the same "point", therefore it must be regularized.

There is also a factor ordering issue, just as in the usual non–relativistic quantum mechanics. The equation (3.23)

is therefore only formal at this stage. The issue of time [62, 63] refers to the remark previously made that Ψ

does not depend on cosmic time. A possible solution is to introduce a perfect fluid with a constant equation of

state [2]. The momentum −iδ/δϕ conjugate to the fluid variable ϕ appears linearly in the matter contribution

to the Hamiltonian in (3.23) [64, 65]. This makes it possible to write down the Wheeler-DeWitt equation in a

Schrödinger–like form. The fluid variable ϕ may therefore play the role of time.

The fact that the gravitational Hamiltonian is not bounded from below also has implications for quantum

gravity. In particular, a perturbative approach based on such Hamiltonian is rendered unstable. However, as an

effective theory (3.23) is expected to be a useful approximation up to the Planck energy scale.

3.1.3 Minisuperspace Models

The Wheeler–DeWitt equation (3.23) is a complicate functional differential equation, which is equivalent

to a system of partial differential equations for each space point. Such a system is pathological and impossible

to solve in general. However, one would like to investigate issues related to the quantization of the universe,

such as the singularity problem in classical cosmology, more deeply. Hence, it should be a good strategy to get

rid of the difficult technical problems characteristic of the Wheeler–DeWitt equation in full superspace, and

work in a more restricted framework while hoping that the essential features of quantum cosmology remain.

Furthermore, the great degree of space homogeneity of the primordial universe suggests that this simplification

can be physically reasonable when dealing with quantum cosmology.

In order to do that, one simplifies the Wheeler–DeWitt equation by freezing out degrees of freedom of gravity
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and matter, reducing the superspace to a minisuperspace where only a finite amount of the degrees of freedom

are still available. A minisuperspace is the set of spacelike geometries and matter fields where all but a finite

set of the canonical variables and their corresponding momenta are set to zero. Evidently, this violates the

uncertainty principle. However, we expect that the quantization of these minisuperspace models retains many

of the qualitative features of the full quantum theory, which are easier to study in these simplified models.
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3.2 de Broglie–Bohm Quantum Cosmology

The de Broglie–Bohm interpretation of quantum mechanics [48–51], also referred to as the causal interpreta-

tion, the quantum theory of motion, and sometimes the ontological interpretation, is an alternative description

of quantum processes as opposed to the usual standard view of the Copenhagen interpretation of quantum

mechanics. The main points in the general philosophical view adopted in the de Broglie–Bohm interpretation

are that quantum processes are real, objectively existing physical processes which take place independently of

conscious observers (or an external system to which quantum theory does not apply), and that the quantum

theory can describe individual processes as opposed to being restricted to the description of ensembles. It is

thus an appealing framework if quantum theory is to be regarded as universal.

3.2.1 Why Not Copenhagen?

As explained in [2] (and references therein), the Copenhagen interpretation of quantum mechanics [66],

the orthodox one usually taught in text–books and standard undergraduate courses, cannot make sense as a

quantum theory of the universe. A central feature is that it assumes from the start the existence of a classical

domain outside the observed quantum system and not subject to quantum laws. Moreover, objective reality

seems to be intricate with the notions of observer and measurement. For example, questions related to physical

quantities prior to a measurement are often disregarded as meaningless. The measurement process randomly

picks out exactly one of the many possibilities allowed by the wavefunction in such a way that probability

has a fundamental (as oposed to emergent) status. The interaction of an external observer or apparatus to the

quantum system causes the wavefunction to collapse. Since the collapse of the wavefunction can not be described

as a unitary evolution according to the Schrödinger equation, and there is no superposition in the final state

of the apparatus so that the measurement is robust, it follows that the measurement takes place outside the

quantum world with an apparatus not subject to quantum laws. Note that these features are directly opposite

to the widely spread belief among the scientific community that quantum theory is a universal and fundamental

theory, applicable to any physical system, from which classical physics can be recovered. Moreover, the necessity

of an external classical domain precludes the application of the Copenhagen interpretation as it stands as a

quantum theory of the universe.

Some approaches to this problem are summarized in [2]. Here, we are interested in an alternative approach,

the de Broglie-Bohm interpretation of quantum mechanics. The splitting of the wavefunction is explained as

follows. A point–particle in configuration space describing the observed system and apparatus is objectively

real, meaning that it exists by itself, it has an ontological status that does not depend on observations. In the
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splitting, this point particle enters into one of the wavefunction branches (depending on the initial position of

the point particle before the measurement, which is unknown) and the other branches will be empty. The empty

waves can neither interact with other particles, nor with the point particle containing the apparatus. This looks

effectively as a collapse of the wavefunction but the empty branches continue to exist. Schrödinger evolution is

always valid, and there is no artificial division between classical and quantum worlds. This is thus suitable to

quantum cosmology.

3.2.2 de Broglie–Bohm Interpretation

The best way to introduce the de Broglie–Bohm interpretation of quantum mechanics is through the example

of a quantum particle. Let Ψ(t, x) be the wavefunction of a non–relativistic particle. The Schrödinger equation

in coordinate representation reads

i~
d

dt
Ψ(t, x) =

[
− ~2

2m
∇2 + V (x)

]
Ψ(t, x). (3.24)

Writing Ψ = R exp(iS/~) in (3.24) results in the following equations

∂S

∂t
+

(∇S)
2

2m
+ V − ~2

2m

∇2R

R
= 0, (3.25)

∂R2

∂t
+∇ ·

(
R2∇S

m

)
= 0. (3.26)

The basic postulates of the de Broglie-Bohm interpretation are [2, 49]

1. An individual physical system comprises a wave propagating in space and time together with a point

particle which moves continuously under the guidance of the wave.

2. The wavefunction is a solution to the Schrödinger wave equation.

3. The particle motion is obtained as the solution x(t) to the equation

ẋ =
∇S
m

(3.27)

This is the so–called guidance equation. The precise trajectory depends on the initial condition x(t0) = x0,

which is however unknown. An ensemble of possible motions associated with the same wave is generated

by varying x0.

4. Equation (3.25) is an Hamilton–Jacobi equation for a particle submitted to an external potential which
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is the classical potential plus a new quantum potential

Q = − ~2

2m

∇2R

R
. (3.28)

Hence, the particle trajectory x(t) satisfies the equation of motion

mẍ = −∇V −∇Q. (3.29)

Note that the quantum potential is present even when the classical potential vanishes.

5. In a statistical ensemble, if the probability density for the unknown initial position is given by P (x0) =

R2(t = t0, x = x0), equation (3.26) guarantees that R2(t, x) gives the distribution of positions at any time,

and all statistical predictions of quantum mechanics are recovered.

Note from equation (3.28) that the quantum potential depends only on the shape of Ψ, not on its absolute

value. Also, it is clearly non–local in systems with many particles. This is consistent with the Bell inequalities,

which show that a quantum theory must be either non–local or non–ontological. The quantum potential is

responsible for the quantum effects. Note that even a classically free particle may be subject to a non–vanishing

quantum potential. The classical limit is obtained when Q ≈ 0 compared with the classical kinetic and potential

energy terms. Note also that the definition of an individual physical system is not restricted to atomic or

subatomic particles [49]. It applies to all matter, regardless of scale, although the wave aspect is generally

apparent only in phenomena involving microscopic particles. There is no arbitrary division into subject and

object, or observer and observed: it applies to the world as a whole.
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3.3 Bouncing–Solutions

In the next subsections, we briefly sketch how the Bohmian trajectories for the scale factor are obtained

in the case of a single perfect fluid, and later in the case of a two–components perfect fluid. The way these

solutions are obtained is not essential for the calculations of the Bogoliubov coefficients for particle creation in

these models. However, it is important that acording to the de Broglie–Bohm interpretation these solutions are

simply c-numbers, even when the scale factor approaches the minimum value near the bounce. Therefore, the

scale factor introduces no operator related complications in the field equations.

3.3.1 Single Fluid

The total minisuperspace Hamiltonian for a single perfect fluid with equation of state p = λρ in a flat FLRW

universe reads [2]

H = N

[
−p

2
a

4a
+
pT
a3λ

]
, (3.30)

where a is the scale factor, and T represents the degree of freedom associated to the fluid, which will play the

role of time. The Wheeler-DeWitt equation (3.20) (with N = a3λ, for convenience) reads

i
∂Ψ(a, T )

∂T
=

1

4

∂2Ψ(a, T )

∂χ2
, (3.31)

where

χ =
2

3
(1− λ)

−1
a3(1−λ)/2. (3.32)

This is just the time–reversed one-dimensional Schrödinger equation for a free particle constrained to the positive

axis. Since a and χ are positive, unitary evolution implies

(
Ψ∗

∂Ψ

∂χ
−Ψ

∂Ψ∗

∂χ

)∣∣∣∣
χ=0

= 0. (3.33)

We take a Gaussian wavepacket as the initial normalized wave function,

Ψi(χ) =

(
8

πTb

)1/4

exp

(
−χ

2

Tb

)
, (3.34)
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where Tb is an arbitrary constant. Ψi satisfies the condition (3.33). Using the propagator procedure explained

in [67,68], we obtain the wave solution for all times

Ψ(a, T ) =

[
8Tb

π (T 2 + T 2
b )

]1/4

exp

[
− 4Tb a

3(1−λ)

9 (T 2 + T 2
b ) (1− λ)

2

]

× exp

{
−i

[
4T a3(1−λ)

9 (T 2 + T 2
b ) (1− λ)

2 +
1

2
arctan

(
Tb
T

)
− π

4

]}
. (3.35)

Due to the chosen factor ordering (momentum to the left), the probability density ρ(a, T ) has a non–trivial

measure and it is given by ρ(a, T ) = a(1−3λ)/2 |Ψ(a, T )|2. The continuity equation from equation (3.31) reads

∂ρ

∂T
− ∂

∂a

[
a3λ−1

2

∂S

∂a
ρ

]
= 0, (3.36)

which implies in the de Broglie-Bohm interpretation that

∂a

∂T
= −a

3λ−1

2

∂S

∂a
, (3.37)

in accordance with the classical relations ȧ = {a,H} = −a3λ−1Pa/2 and Pa = ∂S/∂a.

Inserting the phase from (3.35) into (3.37), we obtain the Bohmian quantum trajectory for the scale factor

a(T ) = ab

[
1 +

(
T

Tb

)2
] 1

3(1−λ)

. (3.38)

Note that this solution has no singularities and tends to the classical solution when T → ±∞. Remember that

we are in the gauge N = a3λ, and T is related to conformal time through

N dT = a dη ⇒ dη = a(T )3λ−1dT (3.39)

Therefore, Tb is the characteristic time–scale of the bounce.

Note from (3.31) (with Ψ = R eiS) that S satisfies the modified Hamilton–Jacobi equation,

∂S

∂T
− a3λ−1

4

(
∂S

∂a

)2

−Q = 0, (3.40)

with the quantum potential given by

Q = −a
(3λ−1)/2

4R

∂

∂a

[
a(3λ−1)/2 ∂R

∂a

]
. (3.41)

Hence, the trajectory (3.37) will not coincide with the classical trajectory whenever Q is comparable with the
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other terms present in equation (3.40). In particular, the quantum potential justifies the bounce in solution (3.38)

even when it is classically forbiden (for a radiation–dominated universe, for instance). In fact, using (3.41)

together with (3.38), and extracting R from (3.35), it can be shown that the quantum potential assumes the

simple form
1

(T 2 + T 2
b )

[
Tb
2
−

4 a
3(1−λ)
b

9 (1− λ)
2

]
, (3.42)

which is stronger near the bounce. Moreover, the fact that the quantum potential vanishes at infinity is consistent

with the universe becoming classical away from the bounce.

3.3.2 Radiation and Matter

A more elaborated and detailed model containing two fluids, dust and radiation, can be found in [69]. The

model parameters can be chosen such that the radiation fluid dominates during the bounce, and the dust fluid

dominates far from the bounce scale. The Bohmian trajectory for the scale factor coming from the phase of the

wave solution of the corresponding Wheeler-DeWitt equation reads

a(η) = ae

( η

η∗

)2

+ 2
ηb
η∗

√
1 +

(
η

ηb

)2
 , (3.43)

where ae is the scale factor at matter–radiation equality, and the parameters η∗ and ηb are related to the

wavefunction parameters (similar to the case of a single fluid where the spread of the initial Gaussian distribution

Tb ends up being the bouncing time scale).

It is, nonetheless, more convenient to reparametrize the bouncing trajectory with observable related quan-

tities. In this section, all quantities calculated at a time when the scale factor has the same value as today will

be denoted by the subscript 0. Expanding equation (3.43) for large η, we obtain the Hubble parameter

H2 ≈ 4 ae
η2
∗

(
1

a3
+
ae
a4

)
, (3.44)

from where we can readily identify the dimensionless density parameters today Ωm0 = ρm0/ρcrit0 and Ωr0 =

ρr0/ρcrit0 as the coefficients of (a0/a)3 and (a0/a)4, respectively

Ωm0 =
ae
a0

4R2
H

η2
∗
, Ωr0 =

(
ae
a0

)2
4R2

H

η2
∗
, (3.45)

where ρcrit0 = 3H2
0/(8πG) is the critical density today, RH = 1/(a0H0) is the co–moving Hubble radius, ρm0

and ρr0 the energy densities of matter and radiation.
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Next, expanding the Hubble parameter for large η∗, that is, considering the fluid near the bounce, we get

H2 ≈ H2
0

(
x4 − η2

b x
6

R2
H

)
,

where we introduced the redshift–like variable x = a0/a. From the expression above, we see that near the

quantum bounce the Hubble parameter evolves as a classical Hubble parameter in the presence of a radiation

fluid with density parameter Ωr0, and a stiff matter fluid with negative density parameter given by

Ωq0 = −Ωr0
x2
b

, xb =
RH

ηb
√

Ωr0
. (3.46)

Hence, the quantum effect we have calculated, which stops the contraction and realizes the bounce, is effectively

equivalent to a bounce caused by the presence of an additional stiff matter fluid with negative energy, besides

the usual matter and radiation fluids, in a classical cosmological scenario obeying the Friedmann equation. Note,

however, that this equivalence is valid only at the background level. Using these new parameters, we obtain

H2 ≈ H2
0x

4

[
1−

(
x

xb

)2
]
, (3.47)

Consequently, xb provides the scale factor where the bounce takes place (apart from a small correction com-

ing from the dust matter density). Finally, we can invert the expressions above to obtain the wave–function

parameters in terms of the observable related ones,

ae = a0
Ωr0
Ωm0

, η∗ = 2RH

√
Ωr0

Ωm0
, ηb =

RH

xb
√

Ωr0
. (3.48)

The curvature scale at the bounce can be calculated as

L =
1√
R

∣∣∣∣
η=0

=

√
a3(η)

6 a′′(η)

∣∣∣∣∣
η=0

=
ab ηb√

6 (2γb + 1)
=

1√
(2γb + 1)

a0RH

x2
b

√
6 Ωr0

(3.49)

where R is the four dimensional Ricci scalar and

γb =
Ωm0

(4xbΩr0)
(3.50)

is the ratio of the dust and radiation matter density at the bounce (where the factor of 4 was included for

later convenience). Imposing that the bounce scale is larger than the Planck scale, Lb > Lp, we can obtain an

upper bound on xb. This bound is relevant since we expect that the Wheeler–DeWitt equation should be a valid

approximation for any fundamental quantum gravity theory at scales smaller than the Planck length. Using
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H0 = 70 Km s−1 Mpc−1 we obtain
a0RH
Lp

≈ 8× 1060, (3.51)

and consequently,

xb .

√
8

(6 Ωr0)1/4
× 1030 ≈ 2× 1031. (3.52)

In the above calculation, we assumed γb � 1 because the bounce must also happen at energy scales higher than

the start of the nucleosynthesis (around 10 MeV), which implies xb � 1011 (using cosmic microwave background

radiation temperature Tγ0 ≈ 2.7 K), and we are assuming that Ωr0 should not be much smaller than its usual

value Ωr0 ≈ 8× 10−5. Hence we get

1011 � xb < 1031. (3.53)

Next, using the parameters above, we define

η̄ =
η

ηb
, k̄ = k ηb, rb = mab ηb, (3.54)

which are the natural parameters appearing in the equations we will solve, as we will see in the following sections

(m here is the mass of the scalar field whose particles are created at the bounce). With this definition, it is easy

to see that

rb =
ab ηb
Lc
≈ Lb
Lc
, Lc =

1

m
, (3.55)

where Lc is the Compton wavelength of the massive particle. Note that usually rb � 1 because the curvature

scale at the bounce is much smaller than the Compton wavelength, or the mass of the particle is much smaller

than the mass–energy scale at the bounce.

In terms of the new parameters, the Bohmian trajectory reads (compare it with (2.9) and (2.11))

a(η) = ab

(
η̄2 γb +

√
1 + η̄2

)
(3.56)

Note that, the dust and radiation terms have equal weight at η̄e ≈ 1/γb, which is the same result one would

obtain substituting ae in the equation above. In the case of pure radiation (Ωm0 = 0 and, therefore, γb = 0),

the scale factor reduces to

a(η) = ab
√

1 + η̄2, (3.57)

which is exactly the trajectory given in equation (3.38) for a radiation fluid (λ = 1/3).
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Chapter 4

Gravitational Particle Creation in de

Broglie–Bohm Quantum Bouncing Models

... then you’ll see that it is not the spoon that bends, it is only yourself.

The Matrix.

In this chapter, we finally calculate the Bogoliubov coefficients of scalar particle creation in the two bouncing

models derived in the last chapter. However, we first give a lightspeed review of quantization in a curved

spacetime. More details can be found, for instance, in [70–75]. Only the very basics though is necessary for the

calculation of the Bogoliubov coefficients.
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4.1 Scalar Field in Curved Space-Time

In a curved space–time, the generalization of the action of a scalar field ϕ reads

S =
1

2

∫
d4x
√
−g

[
gµνϕ,µϕ,ν −

(
m2 + ξR

)
ϕ2

]
(4.1)

where g = |detgµν |, R is the curvature Ricci scalar and ξ is a dimensionless number taken as free parameter just

as m, the mass of the field. ξ is called the coupling term between the scalar field and gravity. The Klein-Gordon

equation from the above action reads

(
�+m2 + ξR

)
ϕ = 0 or

1
√
g

(√
g gµνϕ,µ

)
,ν

+
(
m2 + ξR

)
ϕ = 0. (4.2)

where the second form is more convenient for an actual calculation. It looks like ξ induces a mass correction

proportional to the curvature scalar (see, however, [76]). The case ξ = 0 is called minimal coupling. Another

particularly interesting case is

ξ =
n− 2

4 (n− 1)
(4.3)

where n is the space–time dimension. This is called conformal coupling, because the Klein–Gordon equation

becomes invariant with respect to conformal transformations whenm = 0 [39,71]. A conformal transformation is

a transformation of the form gµν(x)→ ḡµν(x) = Ω2(x) gµν , where Ω is a real, continuous but otherwise arbitrary

function. In 2–dimensional models there is no difference between minimal and conformal coupling. The conformal

symmetry simplifies the field equations in a conformally flat space–time, where gµν(x) = Ω2(x) ηµν , as in the

flat FLRW universe.

As in Minkowski space–time, the solutions to the Klein–Gordon equation in a curved space-time define a

scalar product

(u, v) = −i
∫
dΣµ
√
gΣ

(
u
←→
∂µv

∗
)

= −i
∫
dΣµ
√
gΣ

(
u v∗,µ − u,µ v∗

)
(4.4)

where dΣµ = ηµ dΣ, dΣ is the volume element in a space–like surface Σ, ηµ is a future directed normalized

vector orthogonal to Σ, and gΣ is the determinant of the space part of the metric in Σ. The product of two

solutions is conserved, it does not depend on Σ,

(u, v)Σ1
= (u, v)Σ2

. (4.5)

The proof is as follows. Consider two solutions u and v that vanish at spatial infinity (if space is compact, one
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can impose time–like conditions such that u = v = 0), and V the volume limited by Σ1 and Σ2. We have

(u, v)Σ1
− (u, v)Σ2

= −i
∮
∂V

dΣµ
√
gΣ

(
u
←→
∂µv

∗
)

= −i
∫
V

dV gµν
(
u
←→
∂µv

∗
)

;ν
= 0, (4.6)

where the Gauss law has been used and the last equality follows since u and v are both solutions to the

Klein–Gordon equation, so the integrand vanishes.
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4.2 Bogoliubov Coefficients

The quantization of a theory in a curved space–time follows analogously the formalism in Minkowsky space:

the equations of motion are postulated together with the operator algebra, the Fock space is constructed, then

the physical states and the observables are interpreted.

From the action (4.1) it follows that the momentum canonically conjugate to ϕ(x) reads

π(x) =
∂L

∂(ϕ,0)
=
√
g g0µ ϕ,µ (4.7)

and the operator algebra reads

[
ϕ(x0, xi), ϕ(x0, x′i)

]
Σ

=
[
π(x0, xi), π(x0, x′i)

]
Σ

= 0, (4.8)[
ϕ(x0, xi), π(x0, x′i)

]
Σ

= i δn−1(xi − x′i), (4.9)

where
∫
dΣ δn−1(xi − x′i) = 1. The commutation relations do not depend on the chosen space–like surface Σ.

The construction of the Fock space follows as in Minkowski space–time.

There is, however, an ambiguity in the choice of a particular representation. The commutation relations

define the canonical variables for a particular problem: they are algebraic relations that do not depend on

the Hamiltonian, that is the dynamics. These variables completely define the system at each moment so that

any physical quantity can be expressed in terms of them. However, to determine the dynamical evolution it is

necessary to represent the variables as operators in a Hilbert space subject to the Heisenberg equations.

In non–relativistic quantum mechanics, that is, in systems with finitely many degrees of freedom, the choice

of the representation is irrelevant since the irreducible representations of the canonical commutation relations

are unitarily equivalent. This is the Von Neumann theorem. The choice of a particular representation reduces

to a matter of convenience.

In systems with infinitely many degrees of freedom, as in quantum field theory, the Von Neumann theorem

does not apply and the choice of a particular representation of the field operators algebra may have a physical

meaning due to the existence of inequivalent representations.

The Bogoliubov transformations are linear transformations between the expansion bases of a field operator

such the the canonical commutation relations are preserved. They are thus also called canonical transformations.

The calculation of the Bogoliubov coefficients is a way of verifying the equivalence of two representations, in

particular, of vacuum states relative to two different observers.

Let there be two complete orthonormal bases of solutions, {ui(x), u∗i (x)} and
{
vj(x), v∗j (x)

}
, such that the
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field ϕ(x) can be expanded in one or another basis,

ϕ(x) =
∑
i

[
ai ui(x) + a†i u

∗
i (x)

]
=
∑
j

[
bj vj(x) + b†j v

∗
j (x)

]
. (4.10)

In general, each decomposition defines a different vacuum state, |0u〉 and |0v〉, that is

ai |0u〉 = 0, ∀i (4.11)

bj |0v〉 = 0, ∀j

and, in general,

ai |0v〉 6= 0, (4.12)

bj |0u〉 6= 0.

There are thus two distinct Fock states. Since both sets are complete, the modes
{
vj(x), v∗j (x)

}
can be written

as linear combinations of the modes {ui(x), u∗i (x)}

vj(x) =
∑
i

[
αji ui(x) + βji u

∗
i (x)

]
, and, inversely ui(x) =

∑
j

[
α∗ji vj(x)− βji v∗j (x)

]
. (4.13)

These are the Bogoliubov transformations and the αij and βij are the Bogoliubov coefficients. Since the bases

are orthonormal, the Bogoliubov coefficients can be calculated as internal products between the modes,

αij = (vi, uj), (4.14)

βij = −(vi, u
∗
j ).

The Bogoliubov coefficients have the following properties

∑
k

(
αik α

∗
jk − βik β∗jk

)
= δij , (4.15)

∑
k

(
αik βjk − βik αjk

)
= 0.
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With these coefficients, the operators ai and a
†
i can be written as linear combinations of bj and b

†
j

∑
i

[
ai ui(x) + a†i u

∗
i (x)

]
=
∑
j

[
bj vj(x) + b†j v

∗
j (x)

]
(4.16)

=
∑
j

{
bj
∑
i

[
αji ui(x) + βji u

∗
i (x)

]
+ b†j

∑
i

[
α∗ji u

∗
i (x) + β∗ji ui(x)

]}
=
∑
i,j

[(
αji bj + β∗ji b

†
j

)
ui(x) +

(
βji bj + α∗ji b

†
j

)
u∗i (x)

]

such that

ai =
∑
j

(
αji bj + β∗ji b

†
j

)
, and, similarly, bj =

∑
i

(
α∗ji ai − β∗ji a

†
i

)
. (4.17)

It follows immediately that Fock spaces are not equivalent if βij 6= 0. In particular, the vacuum state

associated to the modes {ui(x), u∗i (x)} does not correspond to the vacuum state associated to
{
vj(x), v∗j (x)

}
ai |0v〉 =

∑
j

β∗ji b
†
j |0v〉 6= 0 (4.18)

The expectation value of the number operator of the particles associated to the modes {ui(x), u∗i (x)}, Ni = a†i ai,

in the state |0v〉 is

〈0v|Ni|0v〉 =
∑
j

|βji|2 , (4.19)

which means that the vacuum associated to the modes
{
vj(x), v∗j (x)

}
contains

∑
j |βji|

2 particles associated

to the modes {ui(x), u∗i (x)}. From equation (4.13), if any one of the βji is nonzero, vj contains a mixture of

positive and negative frequency modes, ui(x) and u∗i (x), and the observer associated to the base
{
vj(x), v∗j (x)

}
will detect particles where there is just vacuum for the observer associated to {ui(x), u∗i (x)}. Only when all the

βji are zero, the states |0u〉 and |0v〉 are equivalent. In that case, bi |0u〉 and aj |0v〉, so that both representations

share the same vacuum state.

The field must be decomposed into positive and negative frequency components before the creation and

annihilation operators are defined. This decomposition is different for inequivalent observers, although they

are related by a Bogoliubov transformation. This explains why the number of particles, defined in terms of

creation and annihilation operators, are different in one or another representation. In Minkowski space–time,

the Poincaré group allows a natural choice: the modes uk(x) associated with the Lorentz observers that are

eigenfunctions of the Killing vectors ∂/∂t orthogonal to the surfaces t = constant. Since the vacuum state

is invariant with respect to the Poincaré group, the Lorentz observers form an equivalence class. In a curved

space–time, however, the Poincaré group is no longer a symmetry group. In general, there are no Killing vectors

to define positive frequency modes, and even when there is a symmetry that allows us to define these modes, the
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principle of general covariance does not allow us to consider a particular coordinate system. Coordinate systems

are physically irrelevant. Consequently, the concept of particles is ambiguous, and the physical interpretation

of quantum states is more subtle.

The concept of particles was originally introduced with respect to inertial observers and it was assumed

to be independent of the state of motion of the observer. However, the concept of vacuum, and therefore the

concept of particles, depends on the field operators algebra representation and, in particular, on the state of

motion of the observer and on the geometry of space–time. The ambiguity in the concept of particles may seem

counterintuitive at first sight. However, by the Heisenberg uncertainty principle, the concept of vacuum is not

the same as empty space, since all space is filled by the fields that make up all the matter in the universe. The

vacuum state is simply the state of least possible energy of these fields. The energy states are defined by the

Hamiltonian operator based on local conditions in space–time. Since each observer amounts to one equivalence

class of coordinate systems, they observe different quantum states and, in particular, distinct vacuum states.
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4.3 Gravitational Particle Creation in Bouncing Models

The Klein–Gordon equation for the modes of a free massive scalar field ϕ in a flat FLRW background reads

∂2φk
∂η2

+

[
k2 +m2a2 −

(
1− 6 ξ

)a′′
a

]
φk = 0, (4.20)

where φk = aϕk. Using the scale factor from equation (3.56) and the parameters (3.54), the mode equation

reads

φ′′k +
(
ν2 − V

)
φk = 0, (4.21)

where

V =
(

1− 6 ξ
)[(1 + η̄2

)−3/2

+ 2 γb

]
(

1 + η̄2
)1/2

+ η̄2 γb

, (4.22)

ν2 = k̄2 +
r2
b a

2

a2
b

. (4.23)

V is the gravitational potential felt by the modes φk, and ν the frequency of the mode k. It should be noted

that, in the presence of the dust fluid, the potential decays slower away from the bounce, see figure 4.1.

Given a complete set of solutions for the mode equation (4.21), a set of creation and annihilation operators

is defined, and consequently a vacuum state [71,77]. The ambiguity in defining the vacuum state stems from the

fact that we do not have a general procedure to define a unique set of modes when space–time does not possess a

global time-like Killing vector. One special and suitable choice is the so called adiabatic vacuum [71,72,75]. One

of the main physical properties of this vacuum state choice is that its vacuum expectation value of the number

operator varies minimally when the expansion rate of the universe becomes arbitrarily slow (see also [77] for a

good review on that). As discussed in [77], for a given mode k at a time η, the adiabatic vacuum can be defined

up to a maximum order Nk,η.1 The maximum order Nk,η is a monotonically increasing function of k. Therefore,

large k’s have less ambiguity in their vacuum definition than small k’s.

The adiabatic vacuum state has two points relevant to our problem. First, it may depend on the time

chosen to define it. If we impose the adiabatic vacuum condition at a time ηi and evolve the modes through

equation (4.21) until ηf , we may obtain a different set of mode functions we would otherwise get by imposing

the adiabatic vacuum condition at ηf . The other point about this procedure, which is a consequence of the

existence of the maximum adiabatic order Nk,η discussed above, is that it cannot be applied for all modes k, as

it depends on the behavior of the mode functions, and for a given time η only a subset of modes behave in an
1 This is a consequence of the fact that the adiabatic expansion is asymptotic. However, in some special cases the series is

convergent, and the vacuum can be defined up to an arbitrary function that decreases faster than any finite power of k−1.
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Figure 4.1: This shows the gravitational potential V = a′′/a and the mass term m2a2 in equation (4.21). In
the initial phase, the potential V grows as a power law. If there is dust, then the power–law changes during the
dust radiation transition. The potential attains its maximum near the bounce. In the minimally coupled case
(ξ = 0), the maximum of the potential is V ≈ 1. These features of the potential V are shown in the continuum
and dashed lines. In the massive case, the mass term dominates the mode evolution at early times and the larger
the mass, the longer it dominates. This is shown by the dotted and dot–dashed lines in the figure. Note that
the mass term dominates the gravitational potential V up to the radiation dominated epoch, unless the particle
mass is very small (m < 10 eV). Hence the presence of dust does not affect much the particle production. For
the same reason, the solutions at past and future infinity do not depend on ξ.

adiabatic manner.2

The first point can be laid down as follows: given a mode k at ηi, we impose that the mode initial conditions

for φk are given by the adiabatic approximation up to the maximum order Nk,ηi . Using this as the initial

condition in (4.21), we obtain the solution φ
(i)
k (η). Repeating the process at a time ηf and comparing both

solutions at ηf , we have

φ
(i)
k (ηf )− φ(f)

k (ηf ) . O
(
k
−Nk,[ηi,ηf ]

)
, (4.24)

where Nk,[ηi,ηf ] is the maximum adiabatic order attainable in the interval [ηi, ηf ].3 To measure the difference

between vacua, we introduce the norm squared of the Bogoliubov coefficients given by [71,75]

∣∣∣β(i,f)
k

∣∣∣2 =
∣∣∣φ(i)
k φ

(f)
k
′ − φ(f)

k φ
(i)
k
′
∣∣∣2 = n

(i,f)
k , (4.25)

The quantity n
(i,f)
k is the number density of particles with mode k measured by observers in the adiabatic

vacuum defined at ηf if the initial state was the adiabatic vacuum defined at ηi.

Suppose that the adiabatic approximation is valid through the whole interval [ηi, ηf ]. It means that there is
2Alternatively, one can impose a vacuum state by choosing a boundary condition. This asymptotic state is sometimes called

"Bunch-Davies vacuum". Nonetheless, this choice is not free from ambiguities, and coincides with the adiabatic vacuum up to its
approximation order [77].

3See, for example, eq. (33) of [77].
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some Nk,[ηi,ηf ] > 0, and consequently

n
(i,f)
k . O

(
k
−Nk,[ηi,ηf ]

)
. (4.26)

In other words, in the ultraviolet limit (k → ∞), the k̄2 frequency present in (4.21) dominates over all other

terms. Also, it can be shown that the maximum adiabatic order Nk,η increases to infinity in this limit. This is

equivalent to say that in the ultraviolet limit there is a strong suppression in the number of particles created: as

the adiabatic order goes to infinity, any ambiguity in the vacuum definition must fall faster than any finite power

of k−1, as an exponential decay. Hence, there is no divergence in the UV limit, and the particle production is

finite (unless some infrared divergence is present).

Inspecting figure 4.1, we note that the potential V has a maximum at the bounce. Therefore, any mode with

k̄2 � V (η = 0) will be in the adiabatic regime during its whole evolution, including through the bounce itself,

and hence particle production of such modes will be exponentially suppressed. This was verified numerically, as

we will see. The maximum of the potential thus provides a natural cutoff. On the other hand, for k̄2 . V (η = 0)

there is a time interval where the adiabatic approximation fails, and particle creation takes place.

An important comment has to be made now: in [78], all calculations are done for modes much less than the

Hubble radius at all epochs of their cosmological scenario, which is physically the ultraviolet limit (k̄2 � V ).

Hence, as we discussed above, there is an exponential cutoff for these modes, and particle production is heavily

suppressed. Another way to phrase it can be: for modes which never cross the potential, the adiabatic vacuum

solution, which matches the boundary condition in the far past before the bounce, is always a good approximation

at any time. Hence, it coincides with the solution obtained through the adiabatic boundary condition prescribed

in the far future after the bounce. Consequently, one must have βk ≈ 0 for these modes. The particle production

which is obtained in [78] comes from the matching conditions they impose, which does not capture the precise

quantitative evolution of mode function for these large k modes. In other words, they artificially introduce

a background discontinuity through the matching approximation. Note that, in [79], a discontinuity in the

background between the different phases is assumed from the beginning, and this gives rise to particle production

which depends explicitly on the assumed discontinuity. In practice, the discontinuity creates an infinite potential,

invalidating the adiabatic approximation at that point.

As for the second point, we want to calculate the amount of particle creation using the above adiabatic

vacuum prescription for all modes k. Thus, if the adiabatic vacua are defined at η̄i → −∞ and η̄f → ∞, the

first order adiabatic vacuum state, given by the zeroth order WKB solutions of equation (4.21), coincides with

the infinite order adiabatic vacua, and hence they precisely define state solutions for all modes k. In practice, we

will consider that the scalar field is initially in the adiabatic vacuum state in the far past (η̄i � 1), compute the

evolution of such modes until the expansion era far from the bounce (η̄f � 1), and compare it to the adiabatic

vacuum at η̄f . That is why we numerically prescribe our initial conditions far from the bounce, in the past and
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in the future, through first order adiabatic approximated solutions, and we verify that the initial approximations

coincide with the numerical solutions obtained with such boundary conditions for a long interval of time η̄ before

the adiabatic approximation looses its validity.

We are also interested in the energy density of the created particles. Using a vacuum definition at η̄i as our

system state, the expectation value of the energy density at any time η̄ with respect to this vacuum is

〈ρ〉(i) =
1

a4 ηb

∫
d3k

(2π)3

1

2

[∣∣∣φ(i)
k

′
∣∣∣2 +

(
ν2 +H2

) ∣∣∣φ(i)
k

∣∣∣2 −H(φ(i)
k
∗ φ

(i)
k

)′]
, (4.27)

where H = a′/a.

As it is well known, the energy density of a scalar field in curved space time is divergent. Not only the usual

divergence obtained in Minkowsky but new ones must be taken care of. Nonetheless, in this work we want to

study the amount of energy resulting from particle creation in bouncing models. For this reason we introduce

the expected value of the energy density for the adiabatic vacuum defined at +∞, that is, 〈ρ〉(f). Then, the

difference of the average energy density of scalar particles evaluated in the far past adiabatic vacuum state and

in the far future adiabatic vacuum state,

∆ρ = 〈ρ〉(i) − 〈ρ〉(f) , (4.28)

yields a finite quantity (see [71]), which represents the amount of energy of scalar particles created between the

far past and the far future of a bouncing model as seen from the point of view of observers in the far future,

with their appropriate choice of adiabatic vacuum state. As we will see, this production is effective mainly in

the bouncing phase itself. We can relate the mode functions associated to both states as

φ
(f)
k (η̄) = α

(i,f)
k φ

(i)
k (η̄) + β

(i,f)
k φ

(i)
k
∗(η̄). (4.29)

The Bogoliubov coefficients β(i,f)
k can be readily calculated using (4.25). In the far future, when the modes φ(f)

k

are deep in the adiabatic phase, the energy difference is given by

∆ρ =
1

2π2 η4
b a

4

∫ ∞
0

dk̄ k̄2 n
(i,f)
k ν, (4.30)

and the number density of created particles is

n =
1

2π2 η3
b a

3

∫ ∞
0

dk̄ k̄2 n
(i,f)
k . (4.31)

In the massive case, this provides the energy density when a is large enough and consequently ν ≈ a rb for modes
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relevant to the integral above, that is, when modes satisfying k̄ � a rb/ab are dominant for the integral. As we

will see below, the particle number density n(i,f)
k has an exponential cutoff in the ultraviolet limit, therefore,

for the massive case and a large enough, we have

∆ρ ≈ mn, (4.32)

In the massless case, m = 0, where the frequency term is ν = k̄, the energy density yields the usual result for a

relativistic fluid,

∆ρ =
1

2π2 η4
b a

4

∫ ∞
0

dk̄ k̄3 n
(i,f)
k . (4.33)

4.3.1 Bouncing with a Radiation Fluid

In this section, we consider a Bohmian solution of the Wheeler–DeWitt equation obtained in [80] for the

case of a universe dominated by a radiation perfect fluid only. In this case, the scale factor is described by

equation (3.57). The Klein–Gordon equation (4.21) simplifies to

φ′′k +

k̄2 + r2
b

(
1 + η̄2

)
−

(
1− 6 ξ

)
(

1 + η̄2
)2

φk = 0. (4.34)

Note that the ξ dependent term in (4.34) goes to zero at both past and future infinity, η̄ → ±∞, for whatever

value of ξ. Therefore, the vacuum solutions at these asymptotic limits do not depend on ξ. Figure 4.1 shows the

gravitational potential and the mass term for a few different cases. The potential goes to zero whether there is

dust or not, but it goes to zero slower if there is. In the massless case, the total modification to the frequency

vanishes asymptotically, giving simple plane–waves as asymptotic solutions of (4.34) for any value of ξ. In the

massive case, the mass term dominates for |η̄| � 1, while the ξ dependent term vanishes in this limit. Hence,

the asymptotic solutions are mass dependent, but still do not depend on ξ.

Radiation Fluid with Conformal Coupling

Let us start with the simple conformally coupled case (ξ = 1/6), which is well–known in the literature

[71, 81, 82]. The time dependency of the frequency is determined by the mass term alone, shown in figure 4.1,

and equation (4.34) reduces to

φ′′k +

[
k̄2 + r2

b

(
1 + η̄2

)]
φk = 0. (4.35)
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This has exact solutions in terms of parabolic cylinder functions [83]. The normalized solutions that match the

adiabatic vacuum solution are [71]

φ
(i)
k (η̄) = (2 rb)

−1/4
exp

(
−π

8
λ
)
D iλ−1

2

[
(i− 1)

√
rb η̄
]
, η̄ < 0 (4.36)

φ
(f)
k (η̄) = φ

(i)
k
∗(−η̄), η̄ > 0 (4.37)

where

λ = rb

(
1 +

k̄2

r2
b

)
. (4.38)

To calculate the Bogoliubov coefficients, we use the identity [83]

Dν(z) = eiπνDν(−z) +

√
2π

Γ(−ν)
ei
π
2 (ν+1)D−ν−1(−iz) (4.39)

to show that

φ
(i)
k (η̄) =

√
2πeiπ/4

Γ( 1−iλ
2 )

φ
(f)
k (η̄)− i e−π λ/2 φ(f)

k
∗(η̄) (4.40)

It follows that

n
(i,f)
k = e−π λ = exp

[
−π rb

(
1 +

k̄2

r2
b

)]
, (4.41)

which falls off faster than any inverse finite power of k or m. As it was explained in [81], this is the spectrum

of a non–relativistic thermal gas of particles.

From equation (4.41), the number density of created particles is

n =
1

2π2 η3
b a

3

∫
dk̄ k̄2 n

(i,f)
k =

( √
rb

2 ηb a

)3

e−π rb =

( √
Ωr0

a0RH Lc

)3/2
x3

8
e−π rb . (4.42)

The quantity rb = ab ηb/Lc ≈ Lb/Lc is usually very small. For instance, assuming xb = 1030 (which gives

roughly Lb ≈ 103Lp) and the Higgs particle, one of the most massive scalar particles in the standard model,

one gets rb = 8.4× 10−15. Hence, we can neglect the exponential in equation (4.42) due to the smallness of rb.

In other words, the exponential provides a very large mass cutoff

mc = 4.7
( xb

1030

)2

× 1015 GeV. (4.43)

Using equation (4.32), one can write the energy density of created particles for very large scale factors as

∆ρ = mn ≈ m

[
xΩ

1/4
r

2(RH Lc)1/2

]3

≈
(
m

mH

)5/2

x3 × 10−44 g/cm3
, (4.44)
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Figure 4.2: The Bogoliubov coefficients in the conformal coupling case for a few values of rb. Our numerical
solutions are compared with the exact solutions (4.41). See also [4].

where mH is the Higgs mass (125 GeV), yielding

Ωφ =
∆ρ

ρcrit0
≈
(
m

mH

)5/2

x3 × 10−15. (4.45)

In order to test our algorithm, we have also calculated equation (4.41) numerically. Later, we will follow anal-

ogous steps to calculate the Bogoliubov coefficients for the minimal coupling case. We have used equation (4.25),

where φ(f)
k is given in (4.37), and we used (4.36) and its derivative as the initial conditions to numerically evolve

φ through (4.35) from an initial time η̄i before the bounce to a final time η̄f after the bounce. Since the solu-

tions (4.36) and (4.37) are exact, we can choose any η̄i and η̄f . However, we want to use the same algorithm in

the minimal coupling case (with minor modifications). Therefore, we use as initial time η̄i such that

k̄2 + r2
b

(
1 + η̄2

i

)
= 106 × 1

(1 + η̄2
i )

2 (4.46)

and, for convenience, η̄f = −η̄i. Note that the time of integration from η̄i to η̄f is greater for smaller values of

k and rb. The results are shown in figure 4.2.

Radiation Fluid with Minimal Coupling

Next, we calculate numerically the Bogoliubov coefficients for equation (4.34) in the minimal coupling case,

ξ = 0, the generalization for any constant value of ξ being simple enough. As it can be seen from equation (4.34),

the solutions do not depend on ξ at a sufficient time distance from the bounce, |η̄| � 1. However, in this case,

we have to distinguish the massive case from the massless case: the massless case is trivial only in the conformal

coupling case, where equation (4.34) reduces to a collection of free harmonic oscillators and there is no particle
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production.

Massless Case

In the massless minimally coupled case, the equation (4.34) for the modes reduces to

φ′′k +

[
k̄2 − 1

(1 + η̄2)
2

]
φk = 0, (4.47)

It can be seen from the equation above that the minimal coupling term goes to zero at infinity, and the equation

reduces to that of a simple harmonic oscillator. The vacuum mode solution is then given by

φk(η̄) =
(
2 k̄
)−1/2

exp
(
−i k̄ η̄

)
. (4.48)

In practice, from (4.47), the plane–wave vacuum solutions can be consistently used for k̄ � 1/(1 + η̄2). Note

that the maximum of the potential

V =
1

(1 + η̄2)
2 (4.49)

is at the bounce, η̄ = 0. Any k̄ < 1 will therefore result in particle creation: there is an interval where the

adiabatic approximation no longer holds. On the other hand, the modes k̄ > 1 are adiabatic during the whole

evolution, and particle production is suppressed. Therefore, we expect an exponential cutoff at k̄ & 1. These

assertions are verified numerically.

To calculate the Bogoliubov coefficients, we follow the same algorithm as in the conformally coupled case,

but with (4.48) to determine the initial conditions at η̄i given by (4.46) (with rb = 0). Our results are shown in

figure 4.3 together with the massive case explained below. Integrating numerically in k̄, we obtain the particle

number density

n ≈ 6.7× 10−2

a3 η3
b

≈ 3× 10−2 x3
( xb

1030

)3

cm−3. (4.50)

We obtained this same result for massive particles, within the numerical precision, as we describe later. For

massless particles, the energy density calculated through equation (4.33) gives

∆ρ ≈ 3× 10−2

a4 η4
b

, Ωφ = 2.5× 10−10 x4
( xb

1030

)4

. (4.51)

Hence, only for xb > 1031 one should have a significant amount of massless scalar particles, which could exceed

the radiation density in the universe. Note, however, that such xb would imply ab ηb > Lp, which goes beyond

the scope of our calculations.
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Figure 4.3: The Bogoliubov coefficients in the minimal coupling case for a few values of rb. See also [4]. It can be
seen that particle creation takes place mostly for k̄ near the boucing energy scale. The curves above only differ
for very small values of k̄ which give negligible contributions to particle creation. Integration over k̄ gives the
same result for all rb not too close to the boucing energy scale, rb � 1.

Massive Case

In the massive minimally coupled case, the equation (4.34) reduces to

φ′′k +

k̄2 + r2
b

(
1 + η̄2

)
− 1(

1 + η̄2
)2

φk = 0, (4.52)

and it can be seen that the potential term again goes to zero at infinity. The asymptotic solutions are then the

same as in (4.36) and (4.37). Thus, we used (4.36) and its derivative again to place the initial conditions at

η̄i given by (4.46), being understood that this is exact only at infinity. In order to test the consistency of the

choice of initial time, we evaluated the initial exact solutions along with our numerical solutions. We did this

for a number of values of the parameters, with k̄ < 10 and rb � 1, and found no inconsistency: the numerical

evolution was indistinguishable from the exact solution (4.36) for sufficient early times. An example of this is

shown in figure 4.4. The figure 4.3 shows the Bogoliubov coefficients in the minimal coupling case with a few

different masses. It can be seen that the Bogoliubov coefficients are many orders of magnitude greater than

in the conformal case, see figure 4.2. The shape of the spectrum is similar to the massless case because it is

determined by the potential near the bounce, which does not depend on the mass. Another way to say this is

that the mass–dependent term in the Klein–Gordon equation is only dominant away from the bounce, where the

adiabatic conditions are valid, and it is therefore not effective. Note that we are not considering super–massive

particles with masses near the bouncing energy scale.

Finally, as remarked before, the total particle number density for the massive and massless particles are

equal, within the required precision, and they are both given in equation (4.50). In the ultra–relativistic limit,
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Figure 4.4: Evolution of the numerical solution (in the minimal coupling case) and the initial WKB solution (4.36)
for a particular k̄ and rb. Since the Klein–Gordon equation is real, the real and imaginary components of the
solutions can be considered separately. It is shown that the initial conditions are consistent. Both solutions
evolve together until very near the bounce where the ξ–dependent potential term becomes relevant. This is very
similar to the one–dimensional potential problem in non–relativistic quantum mechanics.

the energy density is given in equation (4.51). In the non–relativistic limit, the energy density is described by

a dust like fluid (equation (4.32)), namely

Ωφ =
mn

ρcrit0
= 2.1x3

(
m

mH

)( xb
1030

)3

× 106. (4.53)

Hence, for scalars with the Higgs particle mass, any bouncing model of this type with xb > 1027 will produce a

dust–like fluid of particles with energy density larger than the critical density today.
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4.3.2 Bouncing with Radiation and Dust

In this section, we consider a model of the universe where its energy content is dominated by two fluids,

dust and radiation, such that the radiation fluid dominates during the bounce and the dust fluid dominates in

the far past before the bounce, and in the far future after the bounce. This is a more realistic bouncing model,

not only because it takes into account the observed dark matter distribution in the universe, but also because

the matter domination epoch can account for the almost scale invariant spectrum of cosmological perturbations

indicated by observations.

The solution for the scale factor is given by equation (3.56). Using the interval for xb defined at equation

(3.53), we get the following interval for γb,

3.7× 10−29 < γb � 7.5× 10−9, (4.54)

where we used the values for Ωm0 and Ωr0 discussed in section 3.3.2. In order to understand the effect of

adding a dust–like fluid to the background model, let us first consider the potential term, given by (4.22) in the

Klein–Gordon equation (4.21), which dictates the mode cutoff on n(i,f)
k . This is a decreasing function of η̄ with

maximum at η̄ = 0,

V
∣∣∣
η̄=0

= 1 + 2 γb. (4.55)

Within the allowed interval (4.54), we see that the presence of dust does not change significantly the maximum,

which will be approximately the same for this whole interval. Therefore, the cutoff does not change significantly

in the presence of dust.

To calculate the Bogoliubov coefficients, we follow the same algorithm as in the pure radiation case. Now,

however, the mass–term in the Klein–Gordon equation has a different behavior which precludes us from us-

ing (4.36) as asymptotic vacuum solutions to place the initial conditions. Following [71], we find that the first

order WKB solutions to equation (4.21) with conformal coupling and scale factor (3.56), in the case of massive

particles, are

φik(η̄) =

(
2
√
k̄2 + r2

b γ
2
b η̄

4

)−1/2

exp

{
− i η̄

3

√
k̄2 + r2

b γ
2
b η̄

4

[
1 + 2 2F1

(
3

4
, 1;

5

4
;−r

2
b γ

2
b η̄

4

k̄2

)]}
, η̄ < 0,

(4.56)

φfk(η̄) =

(
2
√
k̄2 + r2

b γ
2
b η̄

4

)−1/2

exp

{
− i η̄

3

√
k̄2 + r2

b γ
2
b η̄

4

[
1 + 2 2F1

(
3

4
, 1;

5

4
;−r

2
b γ

2
b η̄

4

k̄2

)]}
, η̄ > 0,

(4.57)

where 2F1 is an Hypergeometric function [83]. In the case of massless particles, we can still use plane–wave
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Figure 4.5: Evolution of the numerical solution (in the minimal coupling case) and the initial WKB solution (4.56)
for a particular k̄ and rb inside the range of integration. The same comments in figure 4.4 apply here.

solutions (4.48). A word of caution is needed here. In [4], we have found an infrared divergence in the two–fluid

model for massless particles using the more reliable action–angle variables numerical approach. This happens

for particles with wavelengths such that k̄ < γb. Using (4.56) and (4.56) as WKB approximations, we have found

no such divergencies. The WKB approximations fail because such long–wavelength particles are more sensitive

to the time–dependence of the curvature scale [71] and there is no mass term to prevent the infrared divergence

(and the dust–dominated universe grows slightly faster than the radiation–dominated one, see equations (2.9)

and (2.11)). This discrepancy is not present in the range of k̄ that we use to integrate the Bogoliubov coefficients

(near the bounce energy scale, where massive and massless spectra are indistinguishable) to calculate the total

particle number density. We also verified the consistency of the initial conditions inside the range of integration.

An example is shown in figure 4.5. The infrared divergence is shown in figure 4.6. The infrared increase of β(i,f)
k

begins at k̄ < γb, implying that the adiabatic approximation is not good in this interval.

We are only interested in the minimal coupling case, since we verified that particle creation in the conformal

coupling case is again very small. Apart from the infrared divergence in the massless case, we obtained the same

result as in equation (4.50). Therefore, the amount of particle creation not only does not depend on the mass of

the particles (except for the conformal case, of course), but also does not depend on the radiation–matter equality

constant γb, for values within the constraint (4.54). The amount of gravitational particle creation away from

59



the bounce is negligible compared to that near the bounce, where the radiation fluid dominates. In particular,

the fluid that dominates before radiation is not important. All that matters is the gravitational coupling and

which fluid dominates during the bouncing phase. If, for instance, we bring the moment of radiation–matter

equality close enough to the bounce, then the amount of particle creation becomes sensitive to γb. However, this

happens only for values far outside the observational constraint (4.54), γb � 10−9. Hence, the results of the last

section for the number density of particles created and their energy densities are the same.

The infrared divergence of n(i,f)
k in the massless case takes place at very long wave–lengths. In figure 4.6a,

for example, it starts at k̄ ≈ γb = 10−27, which is roughly 0.4 Mpc, but it begins with a very small amplitude

≈ 10−25. It only becomes relevant for much larger wave–lengths ≈ 108 Gpc. These modes leave the adiabatic

regime at early times k̄η̄ ≈ 1, so that a contracting model with a large but finite initial time η̄i has an infrared

cutoff at k̄i = 1/η̄i. The adiabatic vacuum is therefore not well defined for long wave–lengths. These modes,

however, correspond to wavelengths larger than the initial time scale of the universe, and one could simply choose

to neglect these non–causal modes. If the universe is finite in volume, there is also a maximum wavelength

and the infrared divergence should disappear. Alternatively, this divergence can be seen as a constraint on

the initial conditions of the model. Also note that, since the equation for the Mukhanov–Sasaki variables are

essentially identical to the Klein–Gordon equation [43], a similar feature is found in the semi–classical approach

to cosmological perturbations generated by a quantum scalar field. The matter–bounce scenario thus naturally

leads to a heavy production of long wave–length massless particles, unless constraints on initial time and/or

volume are placed.
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(a) γb = 10−27

(b) γb = 10−11

Figure 4.6: The Bogoliubov coefficients in the minimal coupling case in the model with radiation and dust.
These pictures are taken from [4]. In the top figure, γb = 10−27. In the bottom, γb = 10−11, therefore the
bounce is more shallow, which means that the bouncing phase ends closer to nucleosynthesis. Both pictures
present similar spectra, however, the infrared divergence for massless particles is more evident in the latter case.
Near the bouncing energy scale, massive and massles spectra are indistinguishable.
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Chapter 5

Conclusions

Habe nun, ach! Philosophie,

Juristerei und Medizin,

Und leider auch Theologie

Durchaus studiert, mit heissem Bemühn.

Da steh’ ich nun, ich armer Tor,

Und bin so klug als wie zuvor.

Johann Wolfgang von Goethe, Faust.

In this thesis, we calculated the gravitational creation of scalar particles in a set of quantum cosmological

bouncing models obtained from the Bohm–de Broglie interpretation of the Wheeler–DeWitt equation restricted

to minisuperspace. The first model considered is a single–fluid radiation–dominated model with scale factor

given by (3.57). The second, more realistic model consists of two fluids, dust and radiation, such that the

radiation fluid dominates near the bounce and the dust fluid dominates in the far past and in the far future,

away from the bounce. This is described by the scale factor (3.56), of which (3.57) is a particular case.

The Bogoliubov coefficients for conformally coupled scalar particles, ξ = 1/6, in the single radiation fluid

model has exact solutions known in the literature [71,81,82]. However, we have also calculated numerically the

Bogoliubov coefficients in order to test our algorithm. Figure 4.2 shows that our method is consistent. Proceeding

to the minimal coupling case, we found that particle creation is considerably enhanced, figure 4.3, and that the

final number density is not sensitive to the particle mass. This is because realistic values of the masses of the
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particles are much smaller than the bouncing energy scale given by the potential at the bounce, where particle

creation takes place. Moreover, although the Bogoliubov coefficients differ at the infrared, particle creation is

only effective for k̄ near the boucing energy scale, where the Bogoliubov coefficients are the same. Then, we

went on to consider the two–fluid model. We used the same algorithm as before but with new WKB solutions

(appropriate to the scale factor (3.56)) as vacuum initial conditions. Again, the minimal coupling considerably

enhances particle production in comparison with the conformal coupling case. We found the same final number

density as in the single radiation model. Therefore, particle creation with minimal coupling in such models not

only does not depend on the mass of the particles, but it also does not depend on the nature of the fluid that

dominates away from the bounce. In particular, it does not depend on the time of matter–radiation equality

for values of γb within the observational constraint (4.54). The energy density of massless particles is given in

equation (4.51). This is in general small for the allowed range of parameters. The energy density of massive

particles is given in equation (4.53). In this case, for scalars with the Higgs particle mass, any bouncing model

of this type with xb > 1027 will produce a dust–like fluid of particles with energy density larger than the critical

density today. Note that this value of xb is inside the allowed range (3.53). Therefore (4.53) gives a nontrivial

constraint. Our numerical results are further confirmed in the action-angle variable approach explained in [4]

throughout the text and in the appendice.

Finally, in the massless case with two fluids, there is an infrared divergence which leads to a heavy production

of long wave–length massless particles, unless constraints on their initial time and/or volume are imposed. Given

that photons are also massless bosons, this may have observable consequences. This calls for more research. This

infrared divergence is important only for wavelengths much larger than the size of the universe. Hence, for models

with a finite age and/or volume, as long as these initial conditions are consistent with constraints from standard

cosmology and its puzzles, this strong infrared production disappears. The same infrared divergence must be

present in the calculation of scalar cosmological perturbations in the two–fluids background considered here.

Some important omissions in this thesis include the following.

Dirac Particles

The gravitational creation of particles in bouncing models is analogous to the mechanism of preheating

where a semi–period of oscillation of the classical coherent inflaton field corresponds to the bouncing of the

scale factor. The literature on preheating in inflation is rather extensive and may be exploited in a bouncing

context. We did some preliminary calculations following the Hamiltonian instant diagonalization (explained, for

instance, in [84, 85]) for free fermions in a radiation–dominated bouncing universe with the scale factor (3.57).

Apparently, gravitational creation of fermions in such model is a few orders of magnitude smaller than the
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creation of scalar particles with conformal coupling for the masses we considered in this thesis. This is not

surprising, since the free massless Dirac equation in a curved space–time is conformally invariant without any

coupling term and, moreover, fermions are restricted by the Pauli exclusion principle. If this is confirmed, it

means that these bouncing models are stable against the gravitational creation of particles subject to the Dirac

equation, which may include neutrinos and the spin 1/2 components of the gravitinos. Further calculations are

required though.

Interactions

We could also exploit the same algorithm used in this thesis if we add an interaction with another field such

that the interaction term in the Klein–Gordon equation falls faster than the ξ–dependent potential term. In this

case, we could use the same vacuum initial conditions as before. Apparently, for these interactions to have any

impact on particle creation with minimal coupling, the interaction constant would have to be unusually large

so that the interaction term could be of the same order of magnitude of the potential near the bounce. A more

detailed calculation is required though. A similar conclusion in a different context is found in Quintin et al [78].

Back–Reaction

In this thesis, we did not consider back–reaction from particle creation in bouncing models. The issue of

back–reaction in a quantum cosmological solution is a complicated problem that deserves a work of its own.

In our case this would involve an understanding of field quantization in curved space in the de Broglie–Bohm

interpretation. This issue is particularly important if one takes into consideration the infrared divergence for

massless particles in the two–fluid model. Moreover, we found that the energy density of the massive minimally

coupled particles gravitationally created may be comparable to the density of the background. In such cases,

back–reaction is also expected to be relevant for the bouncing dynamics.
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Appendix A

Action Angle Variables

In this thesis, we chose to present our numerical results using WKB approximations as initial conditions.

Our results are further confirmed by the action–angle variables approach. For convenience, we have reproduced

here the appendix in [4], where more details can be found throughout the text.

The equation of motion (4.21) describes the evolution of the modes. Its solutions oscillate when the positive

terms (k̄2 or the mass term) dominate over the potential V. During this period of the evolution, the highly

oscillatory behavior forbid a precise numerical calculation [86].

The usual approach to this problem is to use a WKB approximation up to a point with less oscillations,

and then change for a numerical evaluation of the solutions. Although it is also possible to work with the WKB

approximation passing from the oscillatory to the non–oscillatory regimes, this approach is cumbersome and can

lead to wrong conclusions if care is not taken [87]. Finally, the WKB approximation describes the solution in

terms of the positive and negative solutions separately. However, we are interested in the growth of the negative

frequency solutions whenever we start with only positive ones.

For the reasons above we use the Action Angle (AA) variables approach, originally used in [88, 89] in this

context. Here we argue that this methodology provides both an approximation method and a better suited system

of equations to solve numerically. It is also particularly convenient for the computation of particle creation, since

it describes both the positive and the negative frequencies solution within the same approximation scheme.

The AA variables are related to the modes through the expressions

qk =

√
2I

ν
sin θ, q′k =

√
2Iν cos θ (A.1)
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where qk are real solutions of (4.21). Using these variables, the equations of motion are recast as

θ′ = ν − V

ν
sin2 θ +

ν′

2ν
sin 2θ, (A.2)

(ln I)′ = −ν
′

ν
cos 2θ +

V

ν
sin 2θ. (A.3)

Note that this choice of variables decouples the equations, that is, the evolution of the angle variable θ is

independent from the adiabatic invariant I. Thus, the integral solution for I is simply,

I = I0 exp

[
−
∫ η

η0

dη1

(
ν′1
ν1

cos 2θ1 −
V1

ν1
sin 2θ1

)]
. (A.4)

To build a complex solution, we introduce another set of AA variables J and ψ, satisfying the same set above,

that is,

ψ′ = ν − V

ν
sin2 ψ +

ν′

2ν
sin 2ψ, (A.5)

(ln J)′ = −ν
′

ν
cos 2ψ +

V

ν
sin 2ψ. (A.6)

from which we introduce another real field variable

vk =

√
2I

ν
sinψ, v′k =

√
2Iν cosψ.

Thus, the complex solution can be written as

φk =
qk + ivk

2i
=

1

i
√

2ν

(√
I sin θ + i

√
J sinψ

)
(A.7)

φ′k =
q′k + iv′k

2i
=

1

i

√
ν

2

(√
I cos θ + i

√
J cosψ

)
(A.8)

The mode normalization conditions

i (φ∗k φ
′
k − φ∗k′ φk) = 1,

imply
√
I J sin (ψ − θ) = 1. (A.9)

Note that the normalization condition is proportional to the Wronskian of the real and imaginary solutions,

that is,

W(qk, vk) = 2
√
I J sin (ψ − θ) = 2.
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Considering the adiabatic limit (V → 0 and ν′/ν → 0), the solutions are simply

I = I0, J = J0 (A.10)

θ = θ0 +

∫
dη ν, ψ = ψ0 +

∫
dη ν.

In this limit, the choices ψ0 = θ0 + π/2 and I0 = J0 = 1 satisfy the normalization condition in (A.9), and we

obtain the correct adiabatic vacuum, namely

φk =
1√
2ν

exp

(
−i
∫
dη ν

)
. (A.11)

It is worth emphasizing that in the ultraviolet limit (k →∞), the same approximate solution above applies.

The potential V goes to zero in the limits η → ±∞, therefore, we can choose two initial conditions, each

one matching the adiabatic vacuum in the limit. Looking at the integral solution in (A.4), it is easy to see that

the solutions

I(i) = exp

[
−
∫ η

−∞
dη1

(
ν′1
ν1

cos 2θ
(i)
1 −

V1

ν1
sin 2θ

(i)
1

)]
(A.12)

J (i) = exp

[
−
∫ η

−∞
dη1

(
ν′1
ν1

cos 2ψ
(i)
1 −

V1

ν1
sin 2ψ

(i)
1

)]
(A.13)

and the condition

lim
η→−∞

ψ(i) − θ(i) = π/2

produce the right solution matching the asymptotic in the η → −∞ limit, namely, φ(i)
k . Analogously, for the

η → +∞ limit we obtain the solution φ(f)
k through the following AA variables

I(f) = exp

[∫ ∞
η

dη1

(
ν′1
ν1

cos 2θ
(f)
1 − V1

ν1
sin 2θ

(f)
1

)]
, (A.14)

J (f) = exp

[∫ ∞
η

dη1

(
ν′1
ν1

cos 2ψ
(f)
1 − V1

ν1
sin 2ψ

(f)
1

)]
, (A.15)

and the condition

lim
η→∞

ψ(f) − θ(f) = π/2.

Both solutions φ(i)
k and φ(f)

k provide a well defined adiabatic vacuum for η � 1 accordingly. In these intervals

V/ν2 � 1 and ν′/ν � 1 and consequently

I ≈ 1, J ≈ 1, ψ − θ ≈ π

2
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Particularly, this means that both solutions remain close to the form given in (A.11) during this time interval.

Finally, we need to compute the products between these two solutions. The Bogoliubov coefficients are given

by,

α
(i,f)
k = i

(
φ

(i)
k
∗ φ

(f)
k
′ − φ(i)

k
′∗ φ

(f)
k

)
, (A.16)

β
(i,f)
k = i

(
φ

(i)
k φ

(f)
k
′ − φ(i)

k
′ φ

(f)
k

)
. (A.17)

Writing these expression in terms of the real solutions we get,

α
(i,f)
k = −1

2

[
W(q

(i)
k , v

(f)
k ) +W(q

(f)
k , v

(i)
k )
]

+
i

2

[
W(q

(i)
k , q

(f)
k ) +W(v

(f)
k , v

(i)
k )
]

(A.18)

and

β
(i,f)
k = +

1

2

[
W(q

(i)
k , v

(f)
k )−W(q

(f)
k , v

(i)
k )
]
− i

2

[
W(q

(i)
k , q

(f)
k )−W(v

(f)
k , v

(i)
k )
]

(A.19)

Since these Wronskians are constant we can evaluate them at any time. In the limit ηf � 1 we obtain,

∣∣∣α(i,f)
k

∣∣∣2 =
1

4

(
I(i) + J (i) + 2

)∣∣∣
η=ηf

, (A.20)∣∣∣β(i,f)
k

∣∣∣2 =
1

4

(
I(i) + J (i) − 2

)∣∣∣
η=ηf

. (A.21)

The result above shows the convenience of this approach. The adiabatic invariants I(i) and J (i) provide the

value of β(i,f)
k when evaluated at ηf . It is also worth noting that although I(i) and J (i) are adiabatic invariants,

their logarithm is not. In the initial regime η � 1, I(i) can be approximated as

I(i) ≈ 1−
∫ η

−∞
dη1

(
ν′1
ν1

cos 2θ
(i)
1 −

V1

ν1
sin 2θ

(i)
1

)
, (A.22)

showing that, as long as V/ν � 1 and ν′/ν � 1, I(i) ≈ 1 provides a good approximation for this variable, where

the same reasoning applies to J (i).

During the oscillatory regime, we can also obtain the first order approximation of the integrals I(i) and J (i)

as [90]

ln
(
I(i)
)
≈ − ν′

2ν2
sin 2θ(i) − V

2ν2
cos 2θ(i), (A.23)

ln
(
J (i)

)
≈ − ν′

2ν2
sin 2ψ(i) − V

2ν2
cos 2ψ(i). (A.24)
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Similarly, for θ(i) and ψ(i) we get

θ(i) ≈ σ − ν′

4ν2
cos 2θ(i) +

V

4ν2
sin 2θ(i), (A.25)

ψ(i) ≈ π

2
+ σ − ν′

4ν2
cos 2ψ(i) +

V

4ν2
sin 2ψ(i), (A.26)

where

σ =

∫
dη ν

(
1− V

ν2

)
. (A.27)

In the numerical calculations, we used the approximations above. We set the initial time for each mode at

the point η < −1 where

MAX(
∣∣V/ν2

∣∣ , ∣∣ν′/ν2
∣∣) = ε, (A.28)

where ε controls the precision required.

During the non–adiabatic evolution, we can compute the solutions for (A.2) and (A.3) in two cases. Ignoring

all terms but the ν′/ν we get

θ = cot−1
(

cot θ0
ν0

ν

)
, (A.29)

I = I0

(
sin2 θ0

ν

ν0
+ cos2 θ0

ν0

ν

)
. (A.30)

When evolving through the bounce phase, since ν is an even function and considering η0 < 0, we obtain

I(−η0) = I(η0), where subindex 0 denotes some arbitrary initial time. In short, for an even ν, the evolution

through the bounce for modes for which ν′/ν2 dominates, makes I return to the same value it started.

The second case, where the term V/ν is the only relevant one, have the following solutions

θ = cot−1
[

cot θ0 + f(η, η0)
]
, (A.31)

I = I0

[
1 + f(η, η0)

(
f(η, η0) sin2 θ0 + sin2θ0

)]
, (A.32)

where

f(η, η0) =

∫ η

η0

dη1
V1

ν1
.

The solution above is valid for both I and J . Remembering that θ and ψ have a π/2 difference, if θ0 = 0, then

I = I0 and J = J0

(
1 + f(η, η0)2

)
. Therefore, the adiabatic invariants have their amplitude increased by a factor

of 1 + f(η, η0)2.

69



Bibliography

[1] M. Novello and S. E. P. Bergliaffa, “Bouncing Cosmologies”, Physics Reports, vol. 463, 2008.

arXiv:0802.1634.

[2] N. Pinto-Neto and J. Fabris, “Quantum Cosmology from the de Broglie–Bohm perspective”, Classical and

Quantum Gravity, vol. 30, 2013. arXiv:1306.0820.

[3] D. Battefeld and P. Peter, “A Critical Review of Classical Bouncing Cosmologies”, Physics Reports, vol. 571,

2015. arXiv:1406.2790.

[4] D. C. F. Celani, N. Pinto-Neto, and S. D. P. Vitenti, “Particle Creation in Bouncing Cosmologies”, Physical

Review D, vol. 95, 2017. arXiv:1610.04933.

[5] E. Kolb and M. Turner, The Early Universe. Westview Press, 1990.

[6] T. Padmanabhan, Structure Formation in the Universe. Cambridge University Press, 1993.

[7] P. J. E. Peebles, Principles of Physical Cosmology. Princeton University Press, 1993.

[8] S. Dodelson, Modern Cosmology. Academic Press, 2003.

[9] V. Mukhanov, Physical Foundations of Cosmology. Cambridge University Press, 2005.

[10] S. Weinberg, Cosmology. Oxford University Press, 2008.

[11] P. Peter and J.-P. Uzan, Primordial Cosmology. Oxford University Press, 2009.

[12] D. Gorbunov and V. Rubakov, Introduction to the Theory of the Early Universe: Hot Big Bang Theory.

World Scientific Publishing, 2011.

[13] D. Gorbunov and V. Rubakov, Introduction to the Theory of the Early Universe: Cosmological Perturbations

and Inflationary Theory. World Scientific Publishing, 2011.

[14] A. Guth, “Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems”, Physical

Review D, vol. 23, 1981.

70

https://arxiv.org/abs/0802.1634
https://arxiv.org/abs/1306.0820
https://arxiv.org/abs/1406.2790
https://arxiv.org/abs/1610.04933


[15] A. D. Linde, “The Inflationary Universe”, Reports on Progress in Physics, vol. 47, 1984.

[16] K. Olive, “Inflation”, Physics Reports, vol. 190, 1990.

[17] D. H. Lyth and A. Riotto, “Particle Physics Models of Inflation and the Cosmological Density Perturbation”,

Physics Reports, vol. 314, 1999.

[18] M. Lemoine et al. (eds.), Inflationary Cosmology. Lecture Notes in Physics, vol. 738. Springer, Berlin

Heidelberg, 2008.

[19] D. Baumann and L. McAllister, Inflation and String Theory. Cambridge University Press, 2015.

[20] P. Peter and N. Pinto-Neto, “Cosmology without Inflation”, Physical Review D, vol. 78, 2008.

arXiv:0809.2022.

[21] R. H. Brandenberger, “Unconventional Cosmology”, Lecture Notes in Physics, vol. 863, 2013.

arXiv:1203.6698.

[22] B. Xue, Nonsingular Bouncing Cosmology. PhD thesis, Princeton, 2013.

[23] P. A. R. Ade et al. (Planck Collaboration), “Planck 2015 Results XIII. Cosmological Parameters”,

Astronomy & Astrophysics, vol. 594, 2016. arXiv:1502.01589.

[24] J. D. Barrow and F. J. Tipler, The Anthropic Cosmological Principle. Oxford University Press, 1986.

[25] J. Earman, Bangs, Crunches, Whimpers and Shrieks: Singularities and Acausalities in Relativistic Space–

Times. Oxford University Press, 1995.

[26] K. Chamcham et al. (eds.), The Philosophy of Cosmology. Cambridge University Press, 2017.

[27] P. Peebles, The Large-Scale Structure of the Universe. Princeton University Press, 1980.

[28] S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity.

John Wiley & Sons, 1972.

[29] A. Coc, J.-P. Uzan, and E. Vangioni, “Standard Big Bang Nucleosynthesis and Primordial CNO Abundances

after Planck”, Journal of Cosmology and Astroparticle Physics, vol. 10, 2014. arXiv:1403.6694.

[30] Ya. B. Zel’dovich, “A Hypothesis, Unifying the Structure and the Entropy of the Universe”, Monthly Notices

of the Royal Astronomical Society, vol. 160, 1972.

[31] R. Sanders, The Dark Matter Problem: A Historical Perspective. Cambridge University Press, 2010.

[32] A. Maleknejad, M. M. Sheikh-Jabbari, and J. Soda, “Gauge Fields and Inflation”, Physics Reports, vol. 528,

2013. arXiv:1212.2921.

71

https://arxiv.org/abs/0809.2022
https://arxiv.org/abs/1203.6698
https://arxiv.org/abs/1502.01589
https://arxiv.org/abs/1403.6694
https://arxiv.org/abs/1212.2921


[33] A. Borde, A. H. Guth, and A. Vilenkin, “Inflationary Spacetimes are Incomplete in Past Directions”,

Physical Review Letters, vol. 90, 2003. arXiv:gr-qc/0110012.

[34] L. Kofman, A. Linde, and A. Starobinsky, “Reheating after Inflation”, Physical Review Letters, vol. 73,

1994. arXiv:hepth/9405187.

[35] L. Kofman, A. Linde, and A. Starobinsky, “Towards the Theory of Reheating After Inflation”, Physical

Review D, vol. 56, 1997. arXiv:hep-ph/9704452.

[36] L. Kofman, “Preheating After Inflation”, Lecture Notes in Physics, vol. 738, 2008.

[37] C. C. Rulli and J. P. Rino, “Oscilações Paramétricas: uma simulação numérica”, Revista Brasileira de

Ensino de Física, vol. 29, 2007.

[38] A. Linde, Particle Physics and Inflationary Cosmology. Harwood Academic Publishers, 1990.

[39] R. M. Wald, General Relativity. University of Chicago Press, 1984.

[40] M. Bojowald, Quantum Cosmology: A Fundamental Description of the Universe. Lecture Notes in Physics,

vol. 835. Springer, 2011.

[41] J. Erdmenger (ed.), String Cosmology. Wiley-VCH, 2009.

[42] J.-L. Lehners and E. Wilson-Ewing, “Running of the Scalar Spectral Index in Bouncing Cosmologies”,

Journal of Cosmology and Astroparticle Physics, vol. 10, 2015. arXiv:1507.08112.

[43] V. F. Mukhanov, H. A. Feldman, and R. H. Brandenberger, “Theory of Cosmological Perturbations”,

Physics Reports, vol. 215, 1992.

[44] M. B. Green, J. H. Schwarz, and E. Witten, Superstring Theory. Cambridge University Press, 1987.

[45] J. Polchinski, String Theory. Cambridge University Press, 1998.

[46] C. Rovelli, Quantum Gravity. Cambridge University Press, 2004.

[47] C. Kiefer, Quantum Gravity. Oxford University Press, 2007.

[48] D. Bohm and B. J. Hiley, The Undivided Universe: An Ontological Interpretation of Quantum Theory.

Routledge, 1993.

[49] P. R. Holland, The Quantum Theory of Motion. Cambridge University Press, 1993.

[50] P. R. Holland, “The de Broglie-Bohm Theory of Motion and Quantum Field Theory”, Physics Reports,

vol. 224, 1993.

72

https://arxiv.org/abs/gr-qc/0110012
https://arxiv.org/abs/hep-th/9405187
https://arxiv.org/abs/hep-ph/9704452
https://arxiv.org/abs/1507.08112


[51] P. N. Kaloyerou, “The Casual Interpretation of the Electromagnetic Field”, Physics Reports, vol. 244, 1994.

[52] B. S. DeWitt, “Quantum Theory of Gravity. I. The Canonical Theory”, Physical Review D, vol. 160, 1967.

[53] E. Witten, “2+1 Dimensional Gravity as an Exactly Soluble System”, Nuclear Physics B, vol. 311, 1988.

[54] A. Ashtekar and J. Pullin (eds.), Loop Quantum Gravity: The First 30 Years. World Scientific Press, 2017.

[55] P. A. M. Dirac, Lectures on Quantum Mechanics. Yeshiva University, 1964.

[56] E. Poisson, A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics. Cambridge University Press,

2004.

[57] A. P. Lightman, W. H. Press, R. H. Price, and S. A. Teukolsky, Problem Book in Relativity and Gravitation.

Princeton University Press, 1975.

[58] K. Sundermeyer, Constrained Dynamics. Springer, 1982.

[59] M. Henneaux and C. Teitelboim, Quantization of Gauge Systems. Princeton University Press, 1992.

[60] M. E. V. Costa, H. O. Girotti, and T. J. M. Simões, “Dynamics of Gauge Systems and Dirac’s conjecture”,

Physical Review D, vol. 32, 1985.

[61] J. J. Halliwell, Introductory Lectures on Quantum Cosmology, in Quantum Cosmology and Baby Universes.

World Scientific, 1991.

[62] C. J. Isham, “Canonical Quantum Gravity and the Problem of Time”, 1992. arXiv:gr-qc/9210011.

[63] K. V. Kuchar, “Time and Interpretations of Quantum Gravity”, 1992.

[64] B. F. Schutz, “Perfect Fluids in General Relativity: Velocity Potentials and a Variational Principle”, Physical

Review D, vol. 2, 1970.

[65] B. F. Schutz, “Hamiltonian Theory of a Relativistic Perfect Fluid”, Physical Review D, vol. 4, 1971.

[66] R. Omnès, The Interpretation of Quantum Mechanics. Princeton University Press, 1994.

[67] J. A. de Barros, N. Pinto-Neto, and M. A. Sagioro-Leal, “The Causal Interpretation of Dust and Radiation

Fluids Non–Singular Quantum Cosmologies”, Physics Letters A, vol. 241, 1998. arXiv:gr-qc/9710084.

[68] F. G. Alvarenga, J. C. Fabris, N. A. Lemos, and G. A. Monerat, “Quantum Cosmological Perfect Fluid

Models”, General Relativity and Gravitation, vol. 34, 2002. arXiv:gr-qc/0106051.

[69] N. Pinto-Neto, E. S. Santini, and F. T. Falciano, “Quantization of Friedmann Cosmological Models with

Two Fluids: Dust plus Radiation”, Physics Letters A, vol. 344, 2005. arXiv:gr-qc/0505109.

73

https://arxiv.org/abs/gr-qc/9210011
https://arxiv.org/abs/gr-qc/9710084
https://arxiv.org/abs/gr-qc/0106051
https://arxiv.org/abs/gr-qc/0505109


[70] B. S. DeWitt, “Quantum Field Theory in Curved Spacetime”, Physics Reports, vol. 19, 1975.

[71] N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space. Cambridge University Press, 1982.

[72] S. Fulling, Aspects of Quantum Field Theory in Curved Spacetime. Cambridge University Press, 1989.

[73] N. F. Svaiter, Teoria Quântica de Campos em Sistemas de Coordenadas Curvilíneas no Espaço-Tempo de

Minkowski e em Espaços Curvos. PhD thesis, Centro Brasileiro de Pesquisas Físicas, 1989.

[74] L. C. B. Crispino, A. Higuchi, and G. E. A. Matsas, “The Unruh effect and its applications”, Reviews of

Modern Physics, vol. 80, 2008.

[75] L. E. Parker and D. J. Toms, Quantum Field Theory in Curved Spacetime. Cambridge University Press,

2009.

[76] I. L. Shapiro, “Effective Action of Vacuum: The Semiclassical Approach”, Classical and Quantum Gravity,

vol. 25, 2008. arXiv:0801.0216.

[77] D. J. H. Chung, A. Notari, and A. Riotto, “Minimal Theoretical Uncertainties in Inflationary Predictions”,

Journal of Cosmology and Astroparticle Physics, vol. 10, 2003. arXiv:hep-ph/0305074.

[78] J. Quintin, Y.-F. Cai, and R. H. Brandenberger, “Matter Creation in a Nonsingular Bouncing Cosmology”,

Physical Review D, vol. 90, 2014. arXiv:1406.6049.

[79] J. Haro and E. Elizalde, “Gravitational Particle Production in Bouncing Cosmologies”, Journal of Cosmol-

ogy and Astroparticle Physics, vol. 10, 2015. arXiv:1505.07948.

[80] P. Peter, E. J. C. Pinho, and N. Pinto-Neto, “Noninflationary Model with Scale Invariant Cosmological

Perturbations”, Physical Review D, vol. 75, 2007. hep-th/0610205.

[81] J. Audretsch and G. Schäfer, “Thermal Particle Production in a Contracting and Expanding Universe

Without Singularity”, Physics Letters A, vol. 66, 1978.

[82] J. Audretsch and G. Schäfer, “Thermal Particle Production in a Radiation Dominated Robertson–Walker

Universe”, Journal of Physics A: Mathematical and General, vol. 11, 1978.

[83] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products. Elsevier, 7 ed., 2007.

[84] G. F. Giudice, M. Peloso, A. Riotto, and I. Tkachev, “Production of Massive Fermions at Preheating and

Leptogenesis”, Journal of High Energy Physics, vol. 08, 1999. arXiv:hep-ph/9905242.

[85] M. Peloso and L. Sorbo, “Preheating of Massive Fermions After Inflation: Analytical Results”, Journal of

High Energy Physics, vol. 05, 2000. arXiv:hep-ph/0003045.

74

https://arxiv.org/abs/0801.0216
https://arxiv.org/abs/hep-ph/0305074
https://arxiv.org/abs/1406.6049
https://arxiv.org/abs/1505.07948
https://arxiv.org/abs/hep-th/0610205
https://arxiv.org/abs/hep-ph/9905242
https://arxiv.org/abs/hep-ph/0003045


[86] A. Iserles, “Think Globally, Act Locally: Solving Highly–Oscillatory Ordinary Differential Equations”, Ap-

plied Numerical Mathematics, vol. 2002, 43.

[87] J. Martin and D. J. Schwarz, “WKB Approximation for Inflationary Cosmological Perturbations”, Physical

Review D, vol. 67, 2003.

[88] S. D. P. Vitenti, “Unitary Evolution, Canonical Variables and Vacuum Choice for General Quadratic

Hamiltonians in Spatially Homogeneous and Isotropic Space–Times”, 2015. arXiv:1505.01541.

[89] P. Peter, N. Pinto-Neto, and S. D. P. Vitenti, “Quantum Cosmological Perturbations of Multiple Fluids”,

Physical Review D, vol. 93, 2016. arXiv:1510.06628.

[90] A. Erdelyi, Asymptotic Expansions. Dover Publications, 1956.

75

https://arxiv.org/abs/1505.01541
https://arxiv.org/abs/1510.06628

	Abstract
	Resumo
	Contents
	Acknowledgements
	Notation
	Introduction
	Standard Cosmology, Inflation, and the Bouncing Universe
	Standard Model
	Friedmann Expansion
	Density Parameters
	Thermal History

	Cosmic Inflation
	Puzzles in the Hot Big Bang Model
	Inflationary Expansion
	Numerical Example
	(P)reheating After Inflation

	Bouncing Cosmology
	Issues in the Inflationary Picture
	Classical Bounce
	Advantages of the Bouncing Scenario
	Scale-Invariant Spectrum


	Quantum Cosmological Bounce in the de Broglie-Bohm Theory
	Quantum Cosmology
	Classical Hamiltonian Formalism
	Quantization of the Hamiltonian Constraints
	Minisuperspace Models

	de Broglie–Bohm Quantum Cosmology
	Why Not Copenhagen?
	de Broglie–Bohm Interpretation

	Bouncing–Solutions
	Single Fluid
	Radiation and Matter


	Gravitational Particle Creation in de Broglie–Bohm Quantum Bouncing Models
	Scalar Field in Curved Space-Time
	Bogoliubov Coefficients
	Gravitational Particle Creation in Bouncing Models
	Bouncing with a Radiation Fluid
	Bouncing with Radiation and Dust


	Conclusions
	Action Angle Variables
	Bibliography



