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Abstract

In this work we investigate the validity of Bekenstein bounds and inequalities
within nonlinear electrodynamics (NLED). Bekenstein bounds provide relations be-
tween physical quantities such as energy, angular momentum and charge, and have
been proved to hold within classical electrodynamics. We investigate what condi-
tions must a NLED have in order to satisfy the inequalities. We provide proofs
for the validity of these inequalities within some examples of NLED present in the
literature and conjecture the violation condition for each of the inequalities. We pro-
vide examples of NLED violating each of the inequalities and explore the physical
consequences of each violation. In particular, an inequality between energy and an-
gular momentum that is considered to be related to the causal structure of physical
theories is proven to not be defined univocally by causality. We show that within
NLED the fulfillment of the partial inequalities does not assure the fulfillment of
the complete inequality. We provide an additional requirement for the attainment
of the complete inequaltiy.

Key-words: Nonlinear Electrodynamics; Bekenstein Bounds and Inequalities; Ge-
ometric Inequalities.



Resumo

Neste trabalho investigamos a validez dos vínculos e desigualdades de Be-
kenstein no contexto da eletrodinâmica não linear (NLED). As desigualdades de
Bekenstein fornecem-nos relações entre distintas quantidades físicas tais como a
energia, momento angular e carga, a validez delas foi provada na eletrodinâmica
clássica. Investigamos quais condições deve satisfazer uma NLED de tal forma que
ela cumpra as desigualdades. Fornecemos provas para a validez destas desigualdades
em alguns exemplos de NLED presentes na literatura e conjecturamos as condições
de violação para cada uma das desigualdades. Provamos exemplos de NLED que
violam cada uma das desigualdades e exploramos as consequências físicas de cada
uma das violações. Em particular, uma desigualdade entre a energia e o momento
angular que se considera relacionada com a estrutura causal das teorias físicas é
provada não ser definida univocamente pela causalidade. Mostramos que na NLED
o cumprimento das desigualdades parciais não assegura a validade da desigualdade
completa. Fornecemos uma condição adicional para a validade da desigualdade com-
pleta.

Palavras-chaves: Eletrodinâmica Não Linear; Vínculos e Desigualdades de Be-
kenstein; Desigualdades Geométricas.
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Notation and Conventions

The following notation and conventions will be adopted throughout the work.

∙ Bold characters, A, denote vectors in 3 dimensions.

∙ Latin indices 𝑖, 𝑗, 𝑘, ... run through 1, 2, 3, while Greek indices 𝜇, 𝜈, 𝜆, ... take the
values 0, 1, 2, 3.

∙ The Minkowski metric for flat spacetime has the signature 𝜂𝜇𝜈 = diag (1, −1, −1, −1).

∙ Gaussian-Heaviside-Lorentz units are adopted, this means 𝜖0 = 1 and 𝜇0 = 1. And
~ = 𝑐 = 1 unless otherwise stipulated.
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Introduction

The research on Nonlinear electrodynamics (NLED) has its main cornerstone on
two different assumptions: (1) Maxwell electrodynamics is only an approximate theory,
hence it is necessary to look for a more general (nonlinear) theory of electrodynamics
and (2), nonlinear phenomena of electrodynamics are due to the vacuum polarization
in QED leading to nonlinear effective lagrangians [1]. Among the many motivations for
postulating nonlinear extensions of electrodynamics it is worthy to highlight the quest
for a formulation of electrodynamics with no divergences (Born-Infeld electrodynamics
[2]) and the appearance of nonlinearities in the quantum domain (Euler-Heisenberg elec-
trodynamics [3]), which led to the formulation of the first plausible theories.1 Thus, the
search for a nonlinear extension of electromagnetism in fact may be motivated by a wide
range of philosophical reasons and theoretical evidence that Maxwell theory might not be
complete. Then, the question that arises when formulating a NLED is: what should the
minimum requirements for generalizing Maxwell electrodynamics be?

Due to the extreme success of Maxwell electrodynamics, an acceptable nonlinear
extension of electrodynamics is supposed to agree with Maxwell’s theory at the appropri-
ate limit. We will accept this requirement as the minimum requirement for postulating a
NLED. Thus a NLED is not a priori required to obey any other assumption rather than
having the adequate limit. However, is the requirement of a NLED recovering Maxwell
electrodynamics in an adequate limit a necessary and sufficient condition for it to be con-
sidered a physical theory? We should note that such a requirement, alone, opens the gate
to potentially pathological theories, then there should be other criteria, either theoreti-
cal [4] or experimental [5], in order to discern between physical and unphysical theories.
Nonetheless, there may also exist other criteria for testing NLED.

The appearance of geometric inequalities in General Relativity offers a powerful
framework for characterizing different solutions and conjectures in the theory. One of the
most remarkable geometric inequalities is the one given by Penrose [6, 7], which offers a
criterion for characterizing gravitational collapse, specifically the cosmic censorship con-
jecture. Likewise, geometric inequalities appear equally when studying stationary black
holes, and remarkably many of these inequalities also hold for more general cases un-
der certain symmetry assumptions [8, 9]. When studying geometric inequalities for black
holes generally the area is the best geometrical parameter to compare different physical
quantities. However, it seems that when trying to expand such inequalities to bodies dif-
ferent than black holes, the area is no longer the best parameter for describing the size
1 Since the earlier tentatives of generalizing Maxwell electrodynamics were not taken serious for suffering

of several pathologies.
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of a body, hence, other geometrical definitions for relating the size of a body with re-
spect to other physical quantities must be explored. A special class of inequalities relating
the radius of a circumscribing sphere to a body of arbitrary shape and different physical
quantities known as Bekenstein inequalities [10, 11, 12, 13], which were initially proposed
as an enforcement to the Generalized Second Law (GSL). Remarkably, despite its purely
gravitational origin, these inequalities have proved to be valid universally, and "provide
a striking illustration of the unity of physics"2. In fact, as showed by Schiffer and Beken-
stein in [14], free scalar and electromagnetic fields satisfy the original bound. Also, when
fixing the entropy to zero, it has been proved by Dain [9] that Maxwell electrodynamics
satisfies the complete Bekenstein inequality, which relates the energy, angular momentum
and charge. That being so, should any acceptable nonlinear extension of electrodynamics
also satisfy Bekenstein inequalities?

The aim of this dissertation is to analyze the physical implications of Bekenstein in-
equalities through NLED. The fact that such inequalities are valid through a wide range
of physical theories and that they are considered to have a universal character should
provide us with an argument in favor of testing NLED through Bekenstein inequalities.
Given this, an acceptable theory of NLED should satisfy identically all Bekenstein in-
equalities. However, the universality arguments of Bekenstein inequalities may also allow
for pathological situations to arise, and since it is widely known that NLED may possess
pathologies intrinsic to the theory the converse of the previous statement may also hold,
i.e. a pathological theory satisfying Bekenstein inequalities may disprove the universality
arguments behind the inequalities, or at least prove them too loose.

The dissertation is organized as follows: in Chapter 1 we give a review of geometric
inequalities for black holes and Bekenstein bounds, making more emphasis in the latter
and the arguments behind each of the bounds, together with its most important charac-
teristics and its physical implications in the classical regime; in Chapter 2 we introduce
nonlinear electrodynamics, first by reviewing the covariant formulation of electrodynam-
ics and its lagrangian formulation, then by exposing some well known examples of NLED
present in the literature together with its most important properties relevant for our work
and finally by exposing the observer decomposition of the energy-momentum tensor and
the energy conditions imposed to the energy momentum tensor; in Chapter 3 we analyze
the behavior of each of the Bekenstein inequalities within the presented NLED, we look
for counterexamples for each of the inequalities and analyze the physical implications of
each of the counterexamples and finally derive a new inequality that should be required
to a NLED for it to satisfy the complete inequality; finally, in Chapter 4 we present the
conclusions together with some perspectives for future developments.

2 As stated by Hod in [12].
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1 Geometric Inequalities.

The mathematical considerations of geometry give place to the appearance of
geometric inequalities. These inequalities very often relate properties of curves such as
area, perimeter or radius between each other. In fact, the most famous geometric inequality
in mathematics is the isoperimetric inequality, 𝐿2 ≥ 4𝜋𝐴, which relates the area of a closed
curve with its perimeter. Very often the equal signs in such geometric inequalities hold
for curves with a variational characterization.

The analysis of geometric inequalities is widely studied in mathematics, however,
the study of such inequalities in physics is, as well, a very interesting research topic since
physical theories can lead to the appearance of highly non-trivial geometrical inequalities
from the mathematical point of view. With this in mind, physical geometric inequali-
ties define an interplay between geometry and physics. In virtue that it is possible to
geometrize many physical theories, the study of these type of inequalities seems to be
a potentially powerful tool to define global inequalities that should be testable in many
branches of physics.

The best known candidate to present geometric inequalities is, obviously, Gen-
eral Relativity (GR), since it is a geometric theory from the very beginning. Also, GR
present a very special type of solutions (i.e. black holes) for the metric. Black holes can
be characterized ideally by very few parameters and represent the perfect candidates for
such studies. Over the years, many inequalities for black holes, relating different physical
quantities, have been proposed. For example, a well known inequality for the characteri-
zation of gravitational collapse is the one given by Penrose [6]. Also, Dain [15] has widely
studied a set of inequalities for black holes that remarkably hold even for dynamical black
holes. Also, there have been proposals for relating a black hole’s entropy with different
quantities. This was initially presented by Bekenstein [10] and over the years there have
appeared several generalizations to Bekenstein original inequality.

However, black holes represent only the most simple candidates for studying their
physical characteristics in terms of geometric inequalities. It is always possible to try
to generalize, or conjecture, such inequalities which would be valid for a wider range
of objects. In the present section we will present a brief review of known black hole
inequalities and a larger review of Bekenstein’s inequality for ordinary objects. In the
following section we will explicitly use the constants 𝑐, 𝐺, ~ and 𝜅𝐵, unless otherwise
stipulated.
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1.1 Inequalities for Black Holes.
Black holes represent a very special kind of solutions for Einstein’s equations. They

are described by a few parameters, namely the area 𝐴, angular momentum 𝐽 and charge
𝑄, and, by virtue of black hole uniqueness theorem, stationary black holes in electro-
vacuum are characterized by the Kerr solution of Einstein’s equations. However, these
solutions also describe naked singularities and it should be important to have a criterion
for discriminating between Kerr solutions for black holes and naked singularities. Also it
is important to note that black holes can be described by a few parameters only when
they are stationary. However, it seems that restricting ourselves to stationary black holes
is not the optimal way for modeling all of the phenomena that we can observe and predict,
such as the black hole formation by gravitational collapse, which is not stationary at all.

As it will be seen in this section, it is possible to obtain several inequalities for
stationary black holes, which are generalizable to dynamical black holes under certain
assumptions. This fact is very important because it provides us with more evidence in
order to prove the picture of gravitational collapse as right or wrong. Gravitational collapse
relies on the weak cosmic censorship conjecture, that states that there cannot exist naked
singularities due to gravitational collapse. The following section is mainly based in the
review articles [9] and [8]. In this section we will use natural units 𝑐 = 𝐺 = 1 for simplicity.

1.1.1 Stationary Black Holes.

As stated before, in general, a stationary black hole can be characterized by a
few parameters, namely the mass 𝑚, angular momentum, 𝐽 and charge 𝑄, which can
be either electric, magnetic or both; however, we will not deal with charge throughout
this section. And also, within General Relativity, all stationary black holes in vacuum
are described by the Kerr exact solution. From this, it is interesting to note that some
elementary geometric inequalities must be satisfied in order for the Kerr solution to be,
indeed a black hole solution. We may start by describing the area of the horizon for a
Kerr black hole, which is given by [16]

𝐴 = 8𝜋
(︁
𝑚2 +

√
𝑚4 − 𝐽2

)︁
(1.1)

from which it is possible to derive three geometric inequalities; from the case where 𝐽 = 0
in the latter we get, √︃

𝐴

16𝜋
≤ 𝑚 (1.2)

which truly represent the total amount of rotational energy of the black hole, thus, if the
difference between both quantities is zero, it means that the black hole is not rotating
(𝐽 = 0). It is important to note that in the dynamical regime, this is the Penrose inequality.
Also, from the fact that the square root in (1.1) should have real values it is possible to
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bound the mass and angular momentum as,√︁
|𝐽 | ≤ 𝑚 (1.3)

Now, note that we asked for the square root to be real in order to have a well-defined
area. In fact, inequality (1.3) gives us a criterion for discriminating between black holes
and naked singularities. If the inequality is satisfied, then that Kerr solution represents
a black hole; if the equality is satisfied, then that solution represents an extreme Kerr
black hole, and thus an extreme Kerr black hole represents the ’optimal shape’ for the
corresponding inequality; and finally, if the inequality (1.3) is violated, then that Kerr
solution is a naked singularity.

Finally by using (1.3) in (1.1), we arrive at

8𝜋|𝐽 | ≤ 𝐴 (1.4)

where the equality is attained when the equality in (1.3) holds. The inequality (1.4) is
related to the temperature of the black hole, 𝜅/2𝜋, where 𝜅 is the surface gravity. The
inequality holds when 𝜅 > 0, and the equality in the latter holds for a black hole with
𝜅 = 0. It is also possible to obtain other geometric inequalities relating the area, mass and
angular momentum for Kerr black holes which are important in the spirit of the Penrose
inequality, however we will not deal with such inequalities in this brief review. The three
inequalities presented above were derived from the area of a stationary Kerr solution,
however it is remarkable that these inequalities hold even for dynamical black holes. Now
we will assess the inequalities for dynamical black holes.

1.1.2 Dynamical Black Holes.

Nature itself is highly dynamical, then it is important to obtain relations between
physical quantities in dynamical cases. It is remarkable that the three geometric inequal-
ities (1.2), (1.3) and (1.4) valid for the Kerr black holes are expected to hold also for
axially symmetric, dynamical black holes. The main issue regarding the generalization
of the inequalities to the dynamical case has to be with the fact that, in general, it is
no longer possible to have well-defined quantities, so the way to deal with this is to de-
fine physically significant quantities that are either global or quasi-local1, so it should be
suitable to find inequalities relating only global or quasi-local quantities.

For instance, well-defined quasi-local quantities are the angular momentum and
the area, and (1.4) only relates quasi-local quantities and should hold. Then, it will be
possible to obtain a quasi-local mass from (1.4) and (1.1), which from the fact that it
increases monotonically with the area and that the angular momentum is conserved in
1 Quantities that are defined within an extended, but finite, region of spacetime. For a review on the

subject see [17]
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vacuum it is reasonable to think of this quasi-local mass as the non-stationary black hole’s
mass, then from (1.1) we define the black hole’s mass as

𝑚bh =
√︃

𝐴

16𝜋
+ 4𝜋𝐽2

𝐴

where 𝑚bh is a quasi-local mass, which is identified as the non-stationary black hole
mass. The validity of 𝑚bh describing adequately the black hole mass is related to the
validity of the inequality (1.4) in axial symmetry. Nevertheless, the violation of (1.4)
in the dynamical regime will only indicate us that 𝑚bh is not an adequate parameter
to describe the black hole’s mass since it doesn’t have the desired physical behavior. In
that sense, the violation of (1.4) would not carry as much physical consequences as the
violation of the other inequalities.

It is also possible to relate global and quasi-local quantities in the inequalities, a
well-defined global quantity is the ADM mass, which is the mass of the whole spacetime.
It is possible to relate the ADM mass with a quasi-local mass, and thus with other quasi-
local quantities such as area and angular momentum. Namely, it is possible to bound the
latter inequality with the ADM mass. From the fact that 𝑚bh ≤ 𝑚 holds it is possible to
obtain

𝑚 ≥
√︃

𝐴

16𝜋
+ 4𝜋𝐽2

𝐴

which is the Penrose inequality with angular momentum. This inequality is intrinsically
related to inequalities (1.2) and (1.3) and the way of deriving the latter is by the area
theorem and the nontrivial fact that in axial symmetry the angular momentum is con-
served. Penrose inequalities are intimately related to the standard picture of gravitational
collapse, in fact, firstly Penrose [6] proposed the original inequality 𝑚 ≥

√︁
𝐴/16𝜋 without

any symmetry assumption in order to provide a criterion for proving that the standard pic-
ture of gravitational collapse is wrong, more specifically, the cosmic censorship conjecture
which states that no naked singularities can be formed through gravitational collapse.

The standard picture of gravitational collapse is mainly characterized by the fol-
lowing two statements [9]: i) Gravitational collapse results in a black hole, i.e. naked
singularities cannot be formed in gravitational collapse (cosmic censorship) and ii) The
spacetime settles down to a stationary state, i.e. after a finite time all the matter surround-
ing the black hole falls into it, leaving a vacuum exterior region. So far, many Penrose-like
inequalities have been proved, while the most general case remains open, for a review on
the Penrose inequality see [7]. It is important to note that any counterexample of any
of the inequalities (1.3), (1.2) in the dynamical regime above will prove that the actual
picture of gravitational collapse is wrong.
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1.2 Bekenstein Bounds and Inequalities
In the previous section we have seen inequalities relating the mass, area and angular

momentum for black holes. However, it is also possible to relate other relevant quantities
for black holes in such a way that the resulting inequalities will reach its ’optimal shape’
for the black hole cases, while the inequalities will hold for every other body. Since it is
possible to associate an entropy to a black hole, and it is known that such an entropy is in
fact several times higher than the thermal entropy for a star of the same mass, the original
idea presented by Bekenstein was to bound the black hole’s entropy with its energy, such
that the equality should be satisfied for the black hole, and the inequality satisfied for
every other body.

Although the area represents an adequate size measure for black holes, it is not
the case for every other body. For that purpose it will be necessary to change the ge-
ometrical parameter used to compare different physical quantities, such that, now, the
resulting inequalities will be valid within an effective radius. Bekenstein based his original
arguments in a gedanken experiment where a stationary black hole absorbs a body with
energy ℰ and effective radius ℛ then the rate between entropy and energy must have a
limit in order to respect the generalized second law (GSL). When a black hole absorbs a
body of negligible self-gravity, its surface area increases by 8𝜋ℰℛ, then, in order for the
GSL (the total entropy increase be nonnegative) to remain valid, the body’s entropy must
be bounded by 2𝜋ℰℛ [18]. In the present section we will explicitly write all the constants
in every inequality for purposes of clarity.

The original bound purposed by Bekenstein [10] relates entropy to energy as
~𝑐

2𝜋𝜅𝐵

𝑆 ≤ ℰℛ (1.5)

where the equality in the latter is attained for the case of a Schwarzschild black hole,
thus, a black hole’s entropy is the maximum reachable entropy. In (1.5) ℛ represents the
effective radius of an arbitrary system, ℰ is interpreted as the energy above the ground
state for such system. In fact it is interesting that from gravitational arguments of a
black hole absorbing a body and independently attaining the bound in the case of the
Schwarzschild black hole, the latter bound is universal, and it does not exhibit the constant
𝐺 explicitly, hence it can always be probed in non-gravitational regimes.

Definition 1.2.1 (Effective radius ℛ). The effective radius ℛ is the radius of the smallest
sphere ℬℛ that encloses the region Σ in flat space (see Fig. 1).

However, we know that there are other relevant parameters in order to parametrize
more general black holes, such as the charge and angular momentum. The generalization
is non-trivial, and in fact, it took several attempts to try to generalize Bekenstein’s orig-
inal inequality to the more general, charged and rotating, case. It is important to note
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Figure 1 – The sphere ℬℛ is the smallest sphere of radius ℛ centered in 𝑥0 that encloses the region Σ.

that the bound (1.5) attains the equality for a Schwarzschild black holes, while a Kerr
black hole respects the inequality. In the following subsections we will point out several
generalizations that have been done in order for the bound (1.5) to be conformed by the
other black hole solutions from General Relativity.

It is also important to note that (1.5) depends on the definition of ℛ, in fact, other
definitions of ℛ may be used in entropy bounds [19]. For the purposes of this work, ℛ is
defined as in 1.2.1. Bekenstein bound was originally proposed for systems to respect the
GSL, however there are still many discrepancies about this argument being necessary for
the validity of the GSL [18].

1.2.1 Zaslavskii’s bound.

The first attempt to generalize (1.5) was done by Zaslavskii in [11], who derived
an entropy bound considering a system composed of a charged black hole and thermal
radiation. Zaslavskii noticed that the electromagnetic part of the system’s energy is irrel-
evant for the statistical properties of the system, namely the entropy, finally arriving to
the bound

~𝑐

2𝜋𝜅𝐵

𝑆 ≤ ℛℰ − 𝑄2

8𝜋
(1.6)

where ℰ is the total energy of the system. It is possible to arrive to the bound by making
the substitution ℰ0 = ℰ − 𝑄2

8𝜋ℛ in (1.5), thus the remaining energy part in the bound
ℰ0 is the part that contributes to the statistical2 properties of the system, where the
term involving 𝑄 is a part of the electromagnetic energy outside the system. Originally,
Zaslavskii made the derivation of the latter using a constant 𝛼 ≥ 1 in the right hand
side of (1.6), in order to simplify the proof. However, later on he argues that, indeed,
that constant should be set to 1 from the facts that when treating uncharged bodies
2 By making an analogy with Statistical Mechanics. Since the system can be a black hole, this analogy

is not always true because a black hole’s entropy does not have a statistical origin.
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Bekenstein’s original bound (1.5) must be recovered and that even in the case of charged
bodies, the bound should not depend upon the charge density of the bodies, then that
constant should be set to 1 in order to provide the most general character of the bound.
Note that the bound (1.6) is saturated for the charged case of a black hole, i.e. the
Reissner-Nordström solution. It is possible to arrive at an analogous reasoning for this
inequality from merely classical arguments as it will be seen later on.

1.2.2 Hod’s bound.

As it has been seen, Bekenstein’s original bound is saturated for the case of a
Schwarzschild black hole, and all the other black hole solutions respect the inequality.
However it is still possible to perform gedanken experiments for different situations in-
volving self-gravitating objects in order to probe the bound. Although, as argued by Hod
in [12], the original bound may be only a necessary and not a sufficient condition for the
GSL to hold, thus, it may be necessary to strengthen the original bound. Hod idealized an
experiment where a rotating body is absorbed by a black hole, then, by virtue of the first
law of black hole thermodynamics it is possible to find a minimal increase in the black
hole’s surface area (Δ𝐴)min, then, by applying the GSL, namely (Δ𝑆)tot = Δ𝑆BH+Δ𝑆 ≥ 0
and 𝑆BH = 𝐴/4 it is possible to find the bound

~𝑐

2𝜋𝜅𝐵

𝑆 ≤
√︁

(ℰℛ)2 − 𝑐2𝐽2 (1.7)

It is noteworthy that one of the most intriguing conclusions from Bekenstein’s first
bound (1.5), is that it imposes that the Schwarzschild black hole will have a maximum
entropy since it attains the equality, while the other black hole solutions never attain the
equality, leaving the Schwarzschild solution as a unique black hole among the general Kerr
family of solutions. This led physicists to conjecture generalizations of the entropy bound
for more general black holes, where the original bound is recovered for the appropriate
limit, such that a generic black hole could always attain the bound. Thus, for the latter
example it is possible to conclude that all Kerr black holes saturate (1.7). The bound is
supposed to be essential for the validity of GSL, however there exist many discrepancies if
the bound is truly necessary for the validity of GSL [18, p. 21]. It is important to note that
all of the latter entropy bounds follow from the application of GSL, i.e. from gravitational
considerations, however all of them represent universal bounds for the entropy for different
systems. It is still possible to find a more general bound, which will be reviewed in the
next subsection.

1.2.3 Bekenstein’s full bound.

As we have seen, it is possible to tighten Bekenstein’s original bound from diverse
gedanken experiments. Then it is reasonable to conjecture tighter bounds for different
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quantities of a black hole. In accordance with the diverse generalizations presented before,
Bekenstein and Mayo [13] conjectured a tighter bound for (1.5). First of all it is noteworthy
that Zaslavskii’s original arguments for obtaining a tighter bound were based not on a
situation were the GSL may be violated, but rather on a feature of a static black hole in
presence of thermal radiation. In their work, Bekenstein and Mayo prove that the bound
derived by Zaslavskii is indeed recovered as a minimum area increase for the case of a
charged black hole absorbing some charged object, where the area increase is given by the
increase of the black hole’s charge, and they have also obtained the same bound by the
analysis of an electrically grounded black hole, where the potential at the event horizon
is zero and the infall of a charged object produces an increase in the black hole’s mass.

Thereafter, based on Hod’s results of Sec. 1.2.2, they conjecture the following
bound for entropy, energy, angular momentum and charge

~𝑐

2𝜋𝜅𝐵

𝑆 ≤
√︁

(ℰℛ)2 − 𝑐2𝐽2 − 𝑄2

8𝜋
(1.8)

it is important to note that a first order approximation (for 𝑐𝐽 ≪ ℰℛ) of the latter gives
~𝑐

2𝜋𝜅𝐵

𝑆 ≤ ℛ
(︃

ℰ − 𝐽2

2𝜇ℛ2 − 𝑄2

8𝜋ℛ

)︃
where 𝜇 is the rest mass of the object and now the term involving the angular momentum
resembles very much the classical rotational energy. The term in parenthesis in the latter
inequality is in fact the maximal possible energy for a charged and rotating system.
When deducting the rotational energy, the internal energy will be ℰint = ℰ − 𝐽2

2𝐼
and,

for a fixed ℰ , in order for it to attain its maximum, the contribution of the rotational
energy should attain its minimum, thus the moment of inertia 𝐼 should be the maximum
possible too, thus, it should be the one of a spherical shell. The same holds for a charged
system where the maximum possible internal energy is achieved when the electrostatic
energy is minimum, i.e. it is the energy of a charged shell with constant charge density, 𝜌,
thus ℰint = ℰ − 𝑄2

8𝜋ℛ . Now, the classical approximation showed above relates the entropy
of a system with a system whose internal energy is not maximum since only 2/3 of the
minimum possible rotational energy is deducted form the total energy. In fact, from purely
classical arguments the bound should be stricter, and such restrictions could eventually
lead to inconsistencies in the bound. However the expansion performed is not the only
way of obtaining the bound above, so it does not represent a powerful argument for the
validity of the conjectured inequality (1.8).

Nevertheless, the conjectured inequality saturates for any Kerr-Newman black
hole, and this fact suggests that it may indeed be correct. Any variation of (1.8) will
not saturate for a Kerr-Newman black hole. Besides, when conjecturing (1.8), Bekenstein
and Mayo offered arguments in favor that this bound cannot be lowered in virtue of the
no hair conjecture, thus, the bound presented above is the most general bound relating
conserved quantities for black holes so far.
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From (1.8) and the fact that the entropy is always nonnegative, three other in-
equalities can be obtained. Furthermore, the equality in those inequalities will only hold
when the entropy is zero, which means that the remaining bound should be valid for a
system with well-defined energy. These there inequalities relate energy, charge and angular
momentum, namely; by making the angular momentum zero we get

ℰ ≥ 𝑄2

8𝜋ℛ
(1.9)

by making the charge zero
ℰ(Σ) ≥ 𝑐

|𝐽(Σ)|
ℛ

(1.10)

and finally, when none of the quantities is zero

ℰ2 ≥ 𝑄4

64𝜋2ℛ2 + 𝑐2𝐽2

ℛ2 (1.11)

Note that in the more general inequality (1.11) the only constant that appears is 𝑐, then
a suitable theory to prove such inequalities is electromagnetism. Each of the latter in-
equalities can, in fact, be proved for the case of Maxwell’s electrodynamics. This work
has been done by Dain in [20] and it is the main guide for the present dissertation. As
it has been initially pointed out by Bekenstein, these bounds appear from gravitational
considerations, however they have a universal character, then it should be possible (and
a theoretical task) to prove such bounds in non-gravitational theories. The main ques-
tions that we want to investigate are related with the physical implication of the latter
inequalities and whether or not these inequalities remain valid for nonlinear regimes of
electrodynamics. By now we will start by exposing the main tools used to prove the in-
equalities (1.9) to (1.11) in electrodynamics, as well as the main physical consequences of
these inequalities.

1.2.3.1 Bekenstein’s full bound in electrodynamics.

Now we will review the theorems obtained by Dain in [20] for Bekenstein inequal-
ities in Maxwell’s electrodynamics.The first inequality (1.12) relates the total energy of
the field with the electrostatic energy of a spherical shell of radius ℛ and charge 𝑄. In
this case, we know that a charged shell has the minimum electrostatic energy, thus, the
bound can be stated as follows:

Theorem 1.2.1. Assume that the charge density 𝜌 has compact support contained in the
region Σ. In electrostatics, the following inequality holds:

𝑄2 ≤ 8𝜋ℰℛ (1.12)

where 𝑄 is the charge contained in Σ, ℛ is the radius of Σ defined in Def. 1.2.1, and ℰ
is the total electromagnetic energy. The equality in (1.12) holds if and only if the electric
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field is equal to the electric field produced by a spherical thin shell of constant surface
charge density and radius ℛ. In particular, this implies that the electric field vanishes
inside Σ.

The proof of (1.12) is simple. Since the above theorem involves the energy of a
charged shell, it is possible to start from a generic potential which will be split into a
potential (which coincides with the one of the charged spherical shell), and an auxiliary
potential. Then, by virtue of Maxwell’s equations, it is easy to show that the total energy
of a generic field will, in fact, be greater than or equal to the energy of a spherical thin
shell. This procedure will be detailed later on when treating the inequality (1.12) in
nonlinear electrodynamics. However, by now it is important to point out that since the
respective bound explicitly involves the electrostatic energy of a spherical shell within
Maxwell electrodynamics, the violation of (1.12) seems very plausible for a nonlinear
regime of electrodynamics.

The validity of the second inequality (1.10) is less obvious. It relates the energy of
a field in a region, Σ, and the total angular momentum of the same region. A priori there
is no physical reason to think that such a restriction may be imposed to any physical
system. However it seems to be a fairly reachable condition for a wide variety of physical
theories as it will be addressed later on. For the case of Maxwell electrodynamics, the
inequality can be stated as follows [20]

Theorem 1.2.2. Consider a solution of Maxwell’s equations in the domain Σ. Let ℛ be
the radius of Σ defined in Def. 1.2.1 and let 𝑥0 be the center of the corresponding sphere.
Then the following inequality holds:

𝑐|𝐽(Σ)| ≤ ℛℰ(Σ) (1.13)

where 𝐽(Σ) is the angular momentum of the electromagnetic field with respect to the point
𝑥0. Moreover, the equality holds if and only if the electromagnetic field vanishes in Σ.

Proof. The scheme of the proof is the following: via the definitions of energy for an
electromagnetic field

ℰ(Σ) = 1
2

∫︁
Σ

𝑑3𝑥(|E|2 + |B|2)

and the angular momentum projected along the direction of the unit vector k

𝐽(Σ) =
∫︁

Σ
𝑑3𝑥 [x × (E × B)] · k

within Maxwell electrodynamics, it is possible to evaluate the difference ℰ(Σ) − |𝐽(Σ)|/ℛ
of both quantities and maximize the difference as

ℰ(Σ) − |𝐽(Σ)|
ℛ

≥
∫︁

Σ
𝑑3𝑥

{︃
|E|2 + |B|2

2 − 1
ℛ

|[x × (E × B)] · k|
}︃
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where we have used the inequality |
∫︀

𝐴 𝑑𝑥𝑓(𝑥)| ≤
∫︀

𝐴 𝑑𝑥|𝑓(𝑥)|. It is possible to further
reduce the integrand by applying the vector triangular inequalities |a · b| ≤ |a||b|, and
|a × b| ≤ |a||b| together with the fact that k is a unitary vector, obtaining

ℰ(Σ) − |𝐽(Σ)|
ℛ

≥
∫︁

Σ
𝑑3𝑥

{︃
|E|2 + |B|2

2 − |x|
ℛ

|E × B|
}︃

furthermore it is possible to bound the last term in the integrand as

|E × B|2 =
(︃

|E|2 + |B|2

2

)︃2

−

⎧⎨⎩
(︃

|E|2 − |B|2

2

)︃2

+ (E · B)2

⎫⎬⎭ ≤
(︃

|E|2 + |B|2

2

)︃2

where the equality is attained when |E| = |B| and E ⊥ B. With this in hand it is possible
to express the difference between energy and angular momentum is the region Σ as

ℰ(Σ) − |𝐽(Σ)|
ℛ

≥
∫︁

Σ
𝑑3𝑥

(︃
|E|2 + |B|2

2

)︃(︃
1 − |x|

ℛ

)︃
≥ 0 (1.14)

Since the evaluated difference in the latter is always positive, the corresponding integral
will always be positive too. Thus, (1.13) is proved. Then, the equality will be achieved if
and only if the integral is zero, since the integrand in (1.14) is a function of the fields,
both electric and magnetic fields must be zero in order for the equality to be valid. Let us
note that the inequality (1.13) can also be derived from the Dominant Energy Condition
(DEC) for any field theory, the details and consequences of this fact will be explored later
on.

It is noteworthy that the inequality (1.13) can also be expressed for slow rotations
as

ℰ(Σ) ≥ 1
2

𝐽2

𝜇ℛ2 (1.15)

here it is possible to interpret the bound in classical terms as follows: a system of total
energy ℰ(Σ) is bounded from below by 2/3 of its minimum rotational energy. Thus, the
bound can be recasted as follows

ℰ(Σ) ≥ 2
3

𝐽2

2𝐼𝑠

(1.16)

where 𝐼𝑠 is the moment of inertia of a spherical shell. It is not clear when does the equality
in the latter holds, since the right hand side represents a minimum rotational energy for
a rigid body. Perhaps it is possible to tighten the classical bound, but such a bound will
no longer be derivable from the relativistic inequality.

Finally, the complete inequality (1.11) relates the total energy of a system with its
charge and angular momentum. As in the previous bound, there is a priori no physical
reason to think that such a bound can be possible because of the presence of the angular
momentum. The previous approximation (1.16) can be performed obtaining the same
result for the rotational energy, however the rigidity statement is not clear at all. Moreover,
for Maxwell electrodynamics the inequality can be stated in the following theorem [20]
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Theorem 1.2.3. Assume that 𝜌(𝑥, 𝑡0), for some 𝑡0, has compact support contained in
Σ. Consider a solution of Maxwell’s equations that decay at infinity. Then the following
inequality holds at 𝑡0:

𝑐|𝐽(Σ)|
ℛ

+ 𝑄2

8𝜋𝑅
≤ ℰ

that in particular implies
𝑄4

64𝜋2ℛ2 + 𝑐2|𝐽(Σ)|2
ℛ2 ≤ ℰ2 (1.17)

If the equality holds, then the electromagnetic field is that produced by an electrostatic
spherical thin shell of radius ℛ and charge 𝑄. For that case, the magnetic field vanishes
everywhere and hence 𝐽 = 0.

The proof of the theorem is performed in an analogous way as in the electrostatic
case, i.e. splitting the potential in two and calculating the electromagnetic energy from
Maxwell’s equations for electrodynamics, then splitting the total energy in two different
regions, namely Σ and R3 ∖ Σ, then it is possible to associate the angular momentum
in Σ to the contribution of the energy in that region. Then, it is possible to estimate
the difference as in the previous inequality and note that the remaining integrals will be
always nonnegative in virtue of the fulfilment of the inequality between energy and angular
momentum. With this in mind, from Maxwell electrodynamics it is possible to conclude
that the complete inequality (1.17) only requires the fulfilment of inequality (1.13) and
not (1.12). It will be seen later on that for the case of nonlinear electrodynamics there
may be additional requirements for the fulfilment of the complete inequality.



25

2 Nonlinear Electrodynamics.

2.1 Covariant Formulation of Maxwell’s Theory.
The genesis of Special Relativity is related to inconsistencies between Classical

Dynamics and Electrodynamics. More precisely, the transformation between two inertial
systems in Classical Dynamics, such that Newton’s First Law remains invariant, requires
the existence of Galilean transformations. Nevertheless, this invariance group does not
leave the electromagnetic wave equation invariant, thus, Maxwell’s electromagnetism is
not invariant under Galilean transformations. Furthermore, it is possible to obtain the
minimum set of transformations that leave the electromagnetic wave equation invariant
for inertial observers, this set of transformations is known as Lorentz transformations and
constitute the natural invariance group of electrodynamics.

Since electrodynamics is invariant under these transformations, it is suitable to
obtain the well-known equations of the theory in a form invariant, i.e. manifestly covariant
way. Maxwell’s equations in vacuum read,

∇ · E = 𝜌 (2.1a)

∇ × B = J + 𝜕E
𝜕𝑡

(2.1b)

∇ × E = −𝜕B
𝜕𝑡

(2.1c)

∇ · B = 0 (2.1d)

where (2.1a) and (2.1d) are known as the Gauss’ law for the electric and magnetic field
respectively, while (2.1c) is known as the Faraday-Lenz law and (2.1b) as the Ampere-
Maxwell equation. From (2.1d), it is possible to associate the rotational of a vector field,
∇ × A, to the magnetic field, B. Using this into (2.1c) it is possible to show that E =
−∇Φ − 𝜕A

𝜕𝑡
. Also, manipulating the equations with source terms we obtain,

∇ · J + 𝜕𝜌

𝜕𝑡
= 𝜕𝜇𝐽𝜇 = 0 (2.2)

which is the continuity equation, which implies the conservation of electric charge. Here,
𝐽𝜇 is the current 4-vector with components (𝜌, J), and the electric charge is given by

𝑄 =
∫︁
R3

𝑑3𝑥𝜌(𝑥) (2.3)

Since we have shown that both the electric and magnetic field can be written in terms
space and time derivatives of a scalar and a vector potential, Φ and A it should be possible
to express both potentials as a 4-vector,

𝐴𝜇 = (Φ, A)
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such that Maxwell’s equations should be written in a manifestly covariant way as

𝜕𝜇𝐹 𝜇𝜈 = 𝐽𝜈 (2.4a)

𝜕[𝛼𝐹𝛽𝛾] = 0 (2.4b)

where 𝐹𝜇𝜈 = 𝐹[𝜇𝜈] = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇 is the antisymmetric Faraday tensor that reproduces
Maxwell’s equations and 𝐽𝜇 is the current 4-vector with components (𝜌, J). Note that
(2.4a) reproduces (2.1a) and (2.1b), while (2.4b) reproduces (2.1c) and (2.1d). The identity
in (2.4b) is called Bianchi identity and can be rewritten as 𝜕𝜇

̃︀𝐹 𝜇𝜈 = 0, where ̃︀𝐹𝜇𝜈 is the
dual of 𝐹𝜇𝜈 given by ̃︀𝐹 𝜇𝜈 = 1

2𝜂𝜇𝜈𝛼𝛽𝐹𝛼𝛽 (2.5)

and 𝜂𝜇𝜈𝛼𝛽 = − 1√
−𝑔

𝜖𝜇𝜈𝛼𝛽 is the Levi-Civita tensor, while 𝜖𝜇𝜈𝛼𝛽 is the Levi-Civita tensor
density. Writing explicitly both the Faraday tensor and its dual

𝐹 𝜇𝜈 =

⎛⎜⎜⎜⎜⎜⎜⎝
0 −𝐸1 −𝐸2 −𝐸3

𝐸1 0 −𝐵3 𝐵2

𝐸2 𝐵3 0 −𝐵1

𝐸3 −𝐵2 𝐵1 0

⎞⎟⎟⎟⎟⎟⎟⎠ ; ̃︀𝐹 𝜇𝜈 =

⎛⎜⎜⎜⎜⎜⎜⎝
0 −𝐵1 −𝐵2 −𝐵3

𝐵1 0 𝐸3 −𝐸2

𝐵2 −𝐸3 0 𝐸1

𝐵3 𝐸2 −𝐸1 0

⎞⎟⎟⎟⎟⎟⎟⎠ (2.6)

it may be seen that by performing the transformation E → B and B → −E it is possible
to pass from 𝐹 𝜇𝜈 to ̃︀𝐹 𝜇𝜈 . In fact, Maxwell’s equations (2.4a) and (2.4b) without sources
are invariant under duality transformations

𝐹 ′
𝜇𝜈 = 𝐹𝜇𝜈 cos 𝜃 + ̃︀𝐹𝜇𝜈 sin 𝜃 (2.7a)̃︀𝐹 ′

𝜇𝜈 = −𝐹𝜇𝜈 sin 𝜃 + ̃︀𝐹𝜇𝜈 cos 𝜃 (2.7b)

which represent rotations between the electric and magnetic fields. Note that this invari-
ance argument is also valid for Maxwell’s equations with sources such that there exists a
magnetic monopole, i.e. (2.4b) should be of the form 𝜕𝜇

̃︀𝐹 𝜇𝜈 = 𝐽𝜈
m with 𝐽𝜇

m the magnetic
current 4-vector. If so, then it is possible to perform a duality transformation between 𝐽𝜇

and 𝐽𝜇
m such that, for an appropriate rotation we obtain 𝐽𝜇

m = 0 [21, p. 252]. Now, note
that the transformation present in (2.6) implies 𝜃 = 𝜋/2 in (2.7).

2.2 Lagrangian Formulation of Maxwell’s Theory.
When treating a physical theory, specially in the context of classical mechanics, it

is important to have a representation of it in a Lagrangian formalism since it will allow
us to find the equations of motion and define conserved currents via Noether’s theorem.
The Lagrangian theory for fields resembles the particle treatment such that now, since
the systems treated have infinite degrees of freedom, we will treat fields as the generalized
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coordinates for the particle analogous. Given this, the system is governed by an action of
the form

𝑆 =
∫︁

𝒰
𝑑4𝑥

√
−𝑔ℒ (2.8)

where ℒ is the Lagrangian density, which will be called Lagrangian for shortage and 𝒰 is
a domain bounded by spacelike surfaces that vanish at infinity [22]. Here, ℒ can depend
on fields of any kind (scalar, tensorial, etc).

When treating a field theory in the Lagrangian formalism, it is important to con-
struct invariant scalar quantities for the fields such that, after performing the usual vari-
ation we obtain the covariant Euler-Lagrange equations. For example, electrodynamics is
invariant under Lorentz transformations, then the Lagrangian must be a Lorentz scalar.
Now, since the aim is to reproduce Maxwell’s equations through an action, then the in-
variant scalars in the action must be contractions of the two tensors defined in (2.6) and
(2.5).

For such a purpose, we can construct the following invariants, 𝐹 𝜇𝜈𝐹𝜇𝜈 and ̃︀𝐹 𝜇𝜈𝐹𝜇𝜈 .
For purposes of simplicity, we will define them in the following way,

𝐹 = 1
2𝐹 𝜇𝜈𝐹𝜇𝜈 = (|B|2 − |E|2) = 𝐸𝛼𝐸𝛼 − 𝐵𝛼𝐵𝛼 (2.9)

𝐺 = 1
2
̃︀𝐹 𝜇𝜈𝐹𝜇𝜈 = −2(B · E) = 2𝐵𝛼𝐸𝛼 (2.10)

where 𝐸𝛼 and 𝐵𝛼 are spacelike vectors. It can be shown that any other invariant for
electrodynamics can be expressed as a linear combination of the two invariants above [23,
§ 25]. Thus, those are the basic invariants for electrodynamics. The physical implication
of these invariants is obvious, if the invariant 𝐹 is zero in one reference frame, then it will
be zero in every other reference frame, thus |E|2 = |B|2 in every inertial reference frame.
Also, if the invariant 𝐺 is zero in one reference frame, then it means that the electric and
magnetic field are perpendicular in every other reference frame, and if this quantity is
different from zero, E and B make an angle different than 𝜋/2 in every reference frame,
we can find a frame where both fields are parallel at some point. And if |E| > |B| (or
|E| < |B|) in one reference frame, then the inequality will be valid in any other reference
frame.

It is convenient to introduce the following algebraic identities for various contrac-
tions of 𝐹 𝜇𝜈 and ̃︀𝐹 𝜇𝜈 which will be used later on,

̃︀𝐹 𝜇𝛼 ̃︀𝐹𝛼𝜈 − 𝐹 𝜇𝛼𝐹𝛼𝜈 = 𝐹𝛿𝜇
𝜈 (2.11a)

̃︀𝐹 𝜇𝛼𝐹𝛼𝜈 = −1
2𝐺𝛿𝜇

𝜈 (2.11b)

𝐹 𝜇
𝛼𝐹 𝛼

𝛽𝐹 𝛽
𝜈 = −1

2𝐺 ̃︀𝐹 𝜇
𝜈 − 𝐹𝐹 𝜇

𝜈 (2.11c)

𝐹 𝜇
𝛼𝐹 𝛼

𝛽𝐹 𝛽
𝜆𝐹 𝜆

𝜈 = 1
4𝐺2𝛿𝜇

𝜈 − 𝐹𝐹 𝜇
𝛼𝐹 𝛼

𝜈 (2.11d)
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Since the aim is to reproduce Maxwell’s equations from the variation of ℒ, knowing
that Maxwell’s equations are linear on the fields it is reasonable to express a generic
Lagrangian as linear on the invariants 𝐹 and 𝐺 (because both of them are quadratic
on the fields, leading to linear field equations). Nevertheless, it can be shown that the
variation of 𝐺 is a total divergence of the action. Thus, linear (Maxwell’s) electrodynamics
has the following Lagrangian,

ℒ = −1
4𝐹 𝜇𝜈𝐹𝜇𝜈 = −1

2𝐹 (2.12)

which is known as the Larmor Lagrangian1. By varying the action for Maxwell’s electro-
dynamics with respect to the potential 𝐴𝜇 and velocity 𝜕𝛼𝐴𝜇 we obtain the equations of
motion as in (2.4a) and (2.4b).

It is possible to obtain the energy-momentum tensor due to a given Lagrangian by
varying its action with respect to the metric 𝑔𝜇𝜈 . And, in addition we have the following
useful identities: from the identity for a matrix 𝑀 , ln det 𝑀 = Tr ln 𝑀 we get 𝛿(√−𝑔) =
−1

2
√

−𝑔𝑔𝜇𝜈𝛿(𝑔𝜇𝜈); from 𝛿𝜇
𝜈 = 𝑔𝜇𝛼𝑔𝛼𝜈 and varying it we get 𝛿(𝑔𝜇𝜈) = −𝑔𝜇𝛼𝛿(𝑔𝛼𝛽)𝑔𝛽𝜈 . The

energy-momentum tensor by varying the action with respect to the metric is defined as,

𝑇𝜇𝜈 = 2√
−𝑔

𝛿(√−𝑔𝐿)
𝛿𝑔𝜇𝜈

(2.13)

which is known as metric energy-momentum tensor. This strategy was initially proposed
by Hilbert and it is remarkable to see that it always returns a symmetric tensor, so, with
this technique there is no need of using the symmetrization procedures as in the Noether’s
theorem. Also this definition will allow us to define the energy-momentum tensor in curved
spacetimes, something that can’t be done by Noether’s theorem.

However, it is important to emphasize the importance of Noether’s theorem in the
development of field theory. Noether’s theorem states that for each continuous symmetry
of ℒ there exists a conservation law, which will allow us to find all the conserved quanti-
ties for a determined action. For example, if the action is invariant under the spacetime
translations 𝑥′𝜇 = 𝑥𝜇 − 𝜖𝜇, then there exists a tensor 𝑆𝜇𝜈 such that 𝜕𝜇𝑆𝜇𝜈 = 0. However,
in general 𝑆𝜇𝜈 must be symmetrized in order to obtain the symmetric energy-momentum
tensor. Throughout this work we will employ Hilbert’s method for obtaining 𝑇𝜇𝜈 .

Now, applying the Hilbert operation to the Larmor Lagrangian, we obtain the
energy-momentum tensor for Maxwell’s electrodynamics,

𝑇𝜇𝜈 = 𝐹𝜇𝜆𝐹 𝜆
𝜈 + 1

4𝐹 𝛼𝛽𝐹𝛼𝛽𝑔𝜇𝜈 (2.14)

Note that in the following development we will consider only the flat space case (𝑔𝜇𝜈 =
𝜂𝜇𝜈). From the latter it is useful to define the energy density, 𝑢, and momentum density,
1 It was discovered by Joseph Larmor in 1900.
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𝑠𝑖, as
𝑢 = 𝑇00 = 1

2
(︁
|E|2 + |B|2

)︁
(2.15)

𝑠𝑖 = 𝑇0𝑖 = (E × B)𝑖 (2.16)

We may recognize (2.16) as the ith component of the Poynting vector. These quantities
will allow us to define other relevant physical quantities.

Other interesting features of 𝑇𝜇𝜈 for Maxwell’s electrodynamics are that it is a
traceless quantity, and in flat space it is easy to show that 𝜕𝜇𝑇 𝜇𝜈 = 0, which implies the
conservation of 𝑇𝜇𝜈 .

Now, let 𝜂𝜇 be a Killing vector representing space rotations and 𝑡𝜇 a timelike vector
normal to a spacelike surface 𝑈 . Then, the angular momentum in the region Σ can be
obtained from the energy-momentum tensor as

𝐽(Σ) =
∫︁

Σ
𝑑3𝑥𝑇𝜇𝜈𝑡𝜇𝜂𝜈 (2.17)

where, choosing 𝑡𝜇 = (1, 0, 0, 0) and 𝑥𝑖 are spacelike Cartesian coordinates on Σ, the
rotations are characterized byf

𝜂𝑖 = 𝜖𝑖𝑗𝑘𝑘𝑗𝑥𝑘 (2.18)

where 𝑘 is a constant spacelike unit vector that represents the axis of rotation. Note that
this definition coincides with the one given by Weinberg [24, p. 46]. Given this definition,
we can derive the angular momentum on a region Σ for Maxwell’s electrodynamics as

𝐽(𝑈) =
∫︁

Σ
𝑑3𝑥 [x × (E × B)] · k. (2.19)

2.3 Theories of Electrodynamics of the form ℒ(𝐹 ) and ℒ(𝐹, 𝐺).
As it has been argued before, there exist only two independent scalar invariants

that can be constructed from the Faraday tensor 𝐹 𝜇𝜈 and its dual ̃︀𝐹 𝜇𝜈 , which are given
by the contractions 𝐹 𝜇𝜈𝐹𝜇𝜈 and 𝐹 𝜇𝜈𝐹𝜇𝜈 . With this in mind, and the fact that the Larmor
Lagrangian is linear and only depends on the invariant 𝐹 , it is natural to search for more
general Lagrangians that may describe situations that Maxwell’s theory can’t (e.g. self-
interaction, singularity-free theories). Thus, it is possible to think of Maxwell’s theory as
an approximate theory such that every acceptable nonlinear extension of electrodynam-
ics should recover Maxwell’s electrodynamics. Among other alternative formulations of
electrodynamics, it is important to note that the superposition principle is a consequence
of the linearity of the field equations, thus, in nonlinear electrodynamics (NLED), there
may not exist superposition of solutions and there could also be vacuum birefringence so
that the field equations in vacuum can represent material phenomena in vacuum.
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Historically, since its first formulation [25], the research on nonlinear electrodynam-
ics has not been taken as a priority task for the community, mainly because the appearance
of nonlinear differential equations for the fields results into complicated computations; as
well as that, up to now, Maxwell electrodynamics has been a very successful theory for
describing electromagnetic phenomena that we have been able to observe. Nonetheless, in
the recent years, the research on NLED obtained much interest both from theoretical and
experimental physicist due to the fact that NLED emerges naturally from String Theory,
and effective actions for quantum electrodynamics can be obtained by perturbations of
the Born-Infeld action. It is important to note that before the current interests behind
NLED, some very important contributions have appeared [26, 27], as well as the analy-
sis of causality for NLED and cosmological applications have been developed at CBPF
[28, 29, 1].

In the following section we will introduce some known examples of NLED together
with their most important consequences and finally expose the expressions for those im-
portant quantities for the work purposes for generic Lagrangians ℒ(𝐹 ) and ℒ(𝐹, 𝐺).

2.3.1 Born-Infeld Electrodynamics.

The most remarkable example of NLED is the one given by Born and Infeld [2,
30]. After the seminal works of Mie [25], Born, initially inspired by the Lagrangian for
a relativistic free particle, proposed the following Lagrangian to generalize Maxwell’s
electrodynamics

ℒ = 𝛽2
(︃

1 −
√︃

1 − 𝐹

𝛽2

)︃
(2.20)

based on the assumption that the problem of quantization of the electromagnetic field
was due to the non-accounting of a radius for the electron [31]. Subsequently, based on
Born’s initial ideas, Born and Infeld derived a Lagrangian such that the action integral
is an invariant, this is, the integrand should be a tensor density of weight −1, so that it
may be decomposed in a symmetric part, 𝑔𝜇𝜈 , and an antisymmetric part, 𝐹𝜇𝜈 , namely

ℒ =
√︁

− det(𝑎𝜇𝜈) + 𝐴
√︁

− det(𝑔𝜇𝜈) + 𝐵
√︁

− det(𝐹𝜇𝜈) (2.21)

with 𝑎𝜇𝜈 = 𝑔𝜇𝜈 + 𝐹𝜇𝜈 . The constants 𝐴 and 𝐵 can be determined with the constraint that
(2.21) must have the adequate Maxwellian limit arriving to 𝐴 = 1 and 𝐵 = 0. Thus, in
cartesian coordinates, the Born-Infeld Lagrangian reads

ℒ = 𝛽2
(︁
1 −

√
𝑈
)︁

(2.22)

where 𝑈 = 1 + 𝐹
𝛽2 − 𝐺2

4𝛽4 , and 𝛽 is a maximum field parameter. Noteworthy, the expres-
sion for the Lagrangian (2.21) has the particularity that can be generalizable to higher
dimensions, a property that has given Born-Infeld electrodynamics a modern appeal. It is
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appropriate to point out that the initial formulation of Born’s (2.20) action was proposed
only in concordance with the principle of finiteness, and achieved its goal. The principle
of finiteness states that in a satisfactory theory the physical quantities should not become
infinite. However, in many theories the principle of finiteness is obtained as a consequence
of deeper principles, e.g. a finite maximum speed is obtained from the principle of rel-
ativity in SR. Hence, Born and Infeld started looking for a theory that could recover
Maxwell’s theory under the appropriate symmetry assumptions. Their main guiding line
was based that the passage from relativistic mechanics to classical mechanics implies a
reduction on the symmetry group from the Lorentz group to the Galilean group. Similarly,
they searched for a case where a Lagrangian invariant under general coordinate transfor-
mations reduces to the Larmor Lagrangian (which is Lorentz invariant) in an adequate
field limit. Following this line of thought they postulated a simple invariant action and
arrived to (2.22), where the invariant 𝐺 arises naturally. This modification of electro-
dynamics was proposed in order to avoid the infinite self-energy of a point charge, such
that a consistent theory of the electron could be developed. It was then believed that by
avoiding these classical divergences it could be easier to find a complete quantum field
theory of electrodynamics. It is noteworthy that the Larmor Lagrangian is recovered for
the first order approximation of (2.22) (weak-field approximation). By varying the action
with respect to the potential 𝐴𝜇 we obtain the corresponding field equations,

𝜕𝜇

[︃
1√
𝑈

(︃
−𝐹 𝜇𝜈 + 𝐺

2𝛽2
̃︀𝐹 𝜇𝜈

)︃]︃
= −𝐽𝜈 (2.23)

which can be recasted in vector notation, defining D ≡ 1√
𝑈

(︁
E + (E·B)

𝛽2 B
)︁

and H ≡
1√
𝑈

(︁
B − (E·B)

𝛽2 E
)︁

in analogy with the electric displacement and magnetic field strength
respectively, as

∇ · D = 𝜌 ∇ × H − 𝜕D
𝜕𝑡

= j (2.24)

that resemble Maxwell’s equations in matter. Note that in general the electric permittivity
𝜀 and the magnetic permeability 𝜇 in the constitutive relations D = 𝜀E and B = 𝜇H
are nonlinear. Also, from the Bianchi identities the other pair of Maxwell’s equations will
remain valid. So, Born-Infeld electrodynamics can be interpreted as an electrodynamics
presenting matter effects in vacuum due to the modification in the constitutive relations.

Given the Lagrangian we can derive the respective energy-momentum tensor for
the theory,

𝑇𝜇𝜈 = 1√
𝑈

(︃
𝐹 𝜆

𝜈 𝐹𝜆𝜇 + 1
4𝛽2 𝐺2𝑔𝜇𝜈

)︃
+ 𝑔𝜇𝜈𝛽2(

√
𝑈 − 1) (2.25)

where the energy-momentum tensor for Maxwell’s electrodynamics is recovered in the limit
when 𝐹

𝛽2 → 0, 𝐺
𝛽2 → 0. Note that the above expression is not traceless, this fact is related

to Born-Infeld electrodynamics not being conformally invariant. For the electrostatic case,
from the Gauss law in (2.24) it is possible to obtain the electric field for a point charge,
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where the charge density is given by 𝜌 = 𝑒𝛿3(x), such that D = 𝑒/4𝜋𝑟2r̂, then the
electrostatic constitutive relation will be.

D = 1√︂
1 − |E|2

𝛽2

E

inverting the latter equation and evaluating it at the point 𝑟 = 0 leads

|E|𝑟=0 = 𝑒

4𝜋𝑟2
√︁

1 + 𝑒2

16𝜋2𝑟4𝛽2

= 𝛽 (2.26)

the behavior of the electric field for a point charge in (2.26) compared to the Maxwell
case can be seen in Fig. 2, where it is clear that the electric field approaches a finite value
at the origin.

Figure 2 – The electrostatic field of a point charge as a function of 𝑥 = 𝑟
√︀

𝛽/𝑒 for Born-Infeld (solid line)
and Maxwell (dashed line).

Also, from the energy-momentum tensor (2.25) it is possible to obtain the energy
for a point charge 𝑒 by expressing the electrostatic part of the energy density 𝑢 as

𝑢 = 𝛽2

⎛⎜⎜⎝ 1√︂
1 − |E|2

𝛽2

− 1

⎞⎟⎟⎠ = 𝛽2

⎛⎝√︃1 + |D|2
𝛽2 − 1

⎞⎠
then, in virtue that we know the functional form of |D| it is possible to integrate the
energy density to obtain the total energy as

ℰ0 = 𝛽2
∫︁ ∞

0
𝑑𝑟 𝑟2

(︃√︃
1 + 𝑒2

16𝜋2𝛽2𝑟4 − 1
)︃

=
√︃

𝑒3𝛽

4𝜋

∫︁ ∞

0
𝑑𝑥 𝑥2

⎛⎝√︃1 + 1
𝑥4 − 1

⎞⎠ = 0.3486
√︁

𝑒3𝛽

(2.27)

Now, from (2.25) it is possible to derive the angular momentum in a given region,
Σ, as presented in the previous section, obtaining,

𝐽(Σ) =
∫︁

Σ
𝑑3𝑥

1√
𝑈

[x × (E × B)] · k (2.28)
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Even though the motivations for proposing these electrodynamics turned out to
be mistaken because of the fact that it is a non-renormalizable theory, Born-Infeld elec-
trodynamics stands over the rest of nonlinear theories of electromagnetism due to some
unique features that this theory has. For example, it is the only nonlinear theory that does
not exhibit birefringence, which is associated with the fact that it has a single lightcone.
This theory has gained attention in the past decades due to the fact that it emerges nat-
urally from D-Brane theory, such that the way of coupling strings to electromagnetism
is by Born-Infeld’s Lagrangian, and effective actions in QED present perturbative cor-
rections of the form of Born-Infeld’s Lagrangian. It is also important to point out that
at the moment when the theory was proposed there wasn’t an adequate procedure for
treating divergences in QFT, later on it was showed that it is possible to quantize the
electromagnetic field despite of its divergences. Furthermore, Born-Infeld electrodynamics
turns to be a non-renormalizable theory when treated in the quantum level. It turns out
that, in this case, avoiding divergences in a Classical Field Theory makes the passage
to a Quantum Field Theory impossible. It is important to note that at the moment of
Born’s proposal QFT was not developed at all, thus, it entirely made sense that avoiding
classical divergences could help the passage from electromagnetism to QED.

Born-Infeld electrodynamics have been widely studied in many branches of physics
since they were initially proposed. Among the contributions there are solutions for Born-
Infeld electrostatics [32], the coupling of Born-Infeld electrodynamics to Einstein’s equa-
tions [33], and the study of the magnetic sector [34]. Also, Born-Infeld construction of
electrodynamics and the fact that it leads to a finite energy for a point charge has in-
spired alternative formulations of the gravitational action known as Born-Infeld inspired
modifications of gravity2 [35], where it is possible to obtain singularity-free solutions for
black holes and cosmological scenarios.

2.3.2 Exponential Electrodynamics.

Another example of NLED is given by a Born-Infeld like Lagrangian presented
originally by Hendi [36], the Lagrangian for this electrodynamics reads,

ℒ = 𝛽2
(︂

𝑒
− 𝒳

𝛽2 − 1
)︂

(2.29)

with 𝒳 = 𝐹
2 − 𝐺2

8𝛽2 . Note that (2.29) is constructed in such a way that Maxwell’s electrody-
namics is recovered when 𝐹 ≪ 𝛽 as in Born-Infeld electrodynamics. Hendi originally used
this formulation of NLED in order to obtain Reissner-Nordström type of solutions for
charged black holes. However, this formulation of NLED electrodynamics presents some
other important aspects that will be exposed here.
2 This formulation uses a metric affine, à la Palatini formalism.
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Let us start by deriving the energy-momentum tensor for this electrodynamics,

𝑇𝜇𝜈 = 𝐹𝜇𝛼𝐹 𝛼
𝜈𝑒

− 𝒳
𝛽2 + 𝑔𝜇𝜈

(︃
1
4

𝐺2

𝛽2 𝑒
− 𝒳

𝛽2 − 𝛽2𝑒
− 𝒳

𝛽2 + 𝛽2
)︃

(2.30)

while the angular momentum corresponding to exponential electrodynamics is given by

𝐽(Σ) =
∫︁

Σ
𝑑3𝑥𝑒

− 𝒳
𝛽2 [x × (E × B)] · k (2.31)

The field equations for exponential electrodynamics will also be expressible in
terms of the fields D and H, with

D ≡ 𝑒
− 𝒳

𝛽2

(︃
E + (E · B)

𝛽2 B
)︃

, H ≡ 𝑒
− 𝒳

𝛽2

(︃
B − (E · B)

𝛽2 E
)︃

(2.32)

Hendi’s initial arguments for proposing Born-Infeld type theories of electrodyna-
mics were that these theories don’t present shock waves, birefringence, and that they are
duality invariant. However, despite being originally inspired by Born-Infeld electrodyna-
mics, it possesses an infinite electric field at the origin of the point charge and birefrin-
gence, which are features not present in Born-Infeld electrodynamics. In fact, from the
above equation it is easy to show that in the electrostatic case the dependence of D with
respect to E is, D = E 𝑒

|E|
2𝛽2 , then |D|2

𝛽2 = |E|2
𝛽2 𝑒

|E|2

𝛽2 which can be written in terms of the

Lambert W function3 as E = 𝛽

√︂
𝑊
(︁

𝑄2

𝛽2𝑟4

)︁
with 𝑄 = 𝑒/4𝜋, then performing the expansion

for 𝛽 → ∞ leads to [37],

E = 𝑄

𝑟2

√︃
1 + 𝑄2

𝛽2𝑟4 r̂ (2.33)

the electric field in this case diverges slower than in the Maxwell case.

2.3.3 Logarithmic Electrodynamics.

The photon-photon scattering in QED gives rise to the nonlinear phenomena of
vacuum birefringence, which is not present in Born-Infeld electrodynamics. Given this
fact and that many effective actions in QED have lagrangians with logarithmic functions
of 𝐹 and 𝐺, Gaete and Helayël [38] proposed the following logarithmic Lagrangian,

ℒ = −𝛽2 ln
(︃

1 + 𝐹

2𝛽2 − 𝐺2

8𝛽4

)︃
(2.34)

among other features, this Lagrangian exhibits birefringence and a finite energy for the
point particle. The field equations for this particular Lagrangian can also be recasted as
in the Born-Infeld case such that the resulting equations resemble Maxwell’s equation in
material media, with the following expressions for D and H,

D ≡ 1
𝑉

(︃
E + (E · B)

𝛽2 B
)︃

, H ≡ 1
𝑉

(︃
B − (E · B)

𝛽2 E
)︃

(2.35)

3 Or Product Log function, is the inverse function of 𝑓(𝑊 ) = 𝑊𝑒𝑊 .
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with 𝑉 = 1 + 𝐹
2𝛽2 − 𝐺2

8𝛽4 . The energy-momentum tensor for such a Lagrangian reads

𝑇𝜇𝜈 = 1
𝑉

(︃
𝐹𝜇𝛼𝐹 𝛼

𝜈 − 𝐺

2𝛽2 𝐹𝜇𝛼
̃︀𝐹 𝛼

𝜈

)︃
+ 𝑔𝜇𝜈𝛽2 ln 𝑉 (2.36)

and the respective angular momentum for a region Σ takes the form

𝐽(Σ) =
∫︁

Σ
𝑑3𝑥

1
𝑉

(x × (E × B)) · k̂ (2.37)

This type of electrodynamics also possesses the feature that the field of a point charge is
finite. It is possible to obtain the electric field for a point charge by setting 𝜌 = 𝑒𝛿3(r)
and inverting the relation between D and E in (2.35) for the electrostatic case, doing this
we finally obtain the expression for the electric field that reads,

E = 𝛽2

𝑄

(︃
−𝑟2 +

√︃
𝑟4 + 2𝑄2

𝛽2

)︃
r̂ (2.38)

Thus, for 𝑟 = 0 the electric field has a maximum value of
√

2𝛽, which is higher than the
maximum allowed field in Born-Infeld electrodynamics. However it is important to note,
for further considerations, that the parameter 𝛽 can be associated to a fundamental field
given by

|E|fund = 𝑚2
𝑒𝑐

3

𝑒~
or, adopting the natural units,

|E|fund = 𝑚2
𝑒

𝑒
(2.39)

where 𝑚𝑒 and 𝑒 are the mass and charge of the electron respectively. Then, since the
electric field is bounded by |E|fund, 𝛽 = |E|fund√

2 such that the maximum possible value of
the quotient |E|/|E|fund = 1.

For this particular theory birefringence arises when studying the dispersion rela-
tions of a plane wave decomposition in the presence of a constant magnetic field. Never-
theless, this phenomenon disappears for the low field approximation, 𝐵0

𝛽
≪ 1, and it is

known that QED with one loop corrections has birefringence. This led Kruglov [39] to
generalize (2.34), proposing the following Lagrangian ,

ℒ = −𝛽2 ln
(︃

1 + 𝐹

2𝛽2 − 𝐺2

8𝛽2𝛾2

)︃
(2.40)

where the Lagrangian presented in (2.34) is recovered for 𝛾 = 𝛽. With this new Lagrangian
the energy-momentum tensor reads,

𝑇𝜇𝜈 = 1
𝑊

(︃
𝐹𝜇𝛼𝐹 𝛼

𝜈 − 𝐺

2𝛾2 𝐹𝜇𝛼
̃︀𝐹 𝛼

𝜈

)︃
+ 𝑔𝜇𝜈𝛽2 ln 𝑊 (2.41)

with 𝑊 = 1 + 𝐹
2𝛽2 − 𝐺2

8𝛽2𝛾2 . And the angular momentum for this electrodynamics has the
same form as (2.37) with the substitution of 𝑊 instead of 𝑉 . All the other electrostatic
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characteristics presented before remain valid. But it is important to note that with the
addition of the new parameter 𝛾, the low field approximation also presents birefringence
by virtue of 𝛾 ̸= 𝛽. In fact, Kruglov estimates the difference between both parameters to
be

1
𝛾2 − 1

𝛽2 ≈ 10−20T

Hence, Kruglov’s proposal offers an alternative viewpoint where the birefringence phe-
nomena is also present for the weak field approximation.

2.3.4 ℒ(𝐹, 𝐺) Electrodynamics.

The previously exposed lagrangians all come from a particular choice of functions,
inspired by Born-Infeld theory. We have seen that each of those lagrangians has its own
particularities. However, in principle a nonlinear electromagnetic Lagrangian can have any
functional form with the only restriction that it must reduce to the Larmor Lagrangian in
the appropriate limit. In virtue of this, it is useful for our analysis to derive the previously
exposed quantities, as well as the invariance constraints, for an arbitrary Lagrangian of
the type ℒ(𝐹, 𝐺).

In order to do so, let us first derive the energy-momentum tensor for an arbitrary
Lagrangian by varying its action with respect to the metric. So, for this case it is suitable
to write (2.13) as,

𝑇𝜇𝜈 = 2 𝛿ℒ
𝛿𝑔𝜇𝜈

− 𝑔𝜇𝜈ℒ(𝐹, 𝐺) (2.42)

with 𝛿ℒ = ℒ𝐹 𝛿𝐹 + ℒ𝐺𝛿𝐺. Then, writing both invariants 𝐹 and 𝐺 as explicit functions of
the metric and performing the respective variation we get

𝛿𝐹 = 𝐹 𝜆
𝜇 𝐹𝜈𝜆𝛿𝑔𝜇𝜈 = −𝐹𝜇𝜆𝐹 𝜆

𝜈𝛿𝑔𝜇𝜈

𝛿𝐺 = 1
4𝐹𝛼𝛽

̃︀𝐹 𝛼𝛽𝑔𝜇𝜈𝛿𝑔𝜇𝜈 = −𝐹𝜇𝜆
̃︀𝐹 𝜆

𝜈𝛿𝑔𝜇𝜈

where the relation (2.11b) was used to arrive to the last equation. Given this, we finally
obtain the energy-momentum tensor for an arbitrary Lagrangian,

𝑇𝜇𝜈 = −2𝐹𝜇𝛼

(︁
ℒ𝐹 𝐹 𝛼

𝜈 + ℒ𝐺
̃︀𝐹 𝛼

𝜈

)︁
− ℒ(𝐹, 𝐺)𝑔𝜇𝜈 = −𝐹𝜇𝛼𝐸𝛼

𝜈 − 𝑔𝜇𝜈ℒ(𝐹, 𝐺) (2.43)

where 𝐸𝜇𝜈 is known as the excitation tensor defined by 𝐸𝜇𝜈 = 𝜕ℒ
𝜕𝐹𝜇𝜈

. It is also possible to
rewrite 𝑇𝜇𝜈 in terms of the Maxwell energy-momentum tensor 𝜏𝜇𝜈 as

𝑇𝜇𝜈 = −2ℒ𝐹 𝜏𝜇𝜈 + 𝑔𝜇𝜈 (ℒ𝐺𝐺 + ℒ𝐹 𝐹 − ℒ(𝐹, 𝐺)) (2.44)

From the above equation (2.44), it is clear that not all the energy-momentum
tensors for NLED will be traceless. The fact of having a traceless energy-momentum
tensor is intimately related to conformal invariance. It is possible to obtain a condition
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for general energy-momentum tensors being traceless. By taking the trace of (2.44) and
noting that 𝜏𝜇

𝜇 = 0 we get

𝑇 𝜇
𝜇 = 4 [𝐹ℒ𝐹 + 𝐺ℒ𝐺 − ℒ(𝐹, 𝐺)] (2.45)

For the trace to be zero, we obtain the following differential equation [22, p. 388],

𝐹ℒ𝐹 + 𝐺ℒ𝐺 − ℒ(𝐹, 𝐺) = 0

which can be conveniently written in logarithmic form and using the chain rule as

𝑙𝑓 + 𝑙𝑔 = 1 (2.46)

where 𝑙 = ln ℒ, 𝑙𝑥 = 𝜕ln ℒ
𝜕ln 𝑋

. Solving this equation and expressing it in terms of ℒ, 𝐹 , and
𝐺 yields to the solution

ℒ =
√

𝐹𝐺ℋ
(︂

𝐹

𝐺

)︂
(2.47)

where ℋ is an arbitrary function. Note that the Larmor Lagrangian is recovered when
ℋ = −1

2

√︁
𝐹
𝐺

. Neither the Born-Infeld, exponential nor logarithmic lagrangians can be
expressed as functions of 𝐹/𝐺, hence, those electrodynamics are not conformally invariant.

It is also useful to derive the angular momentum for an arbitrary Lagrangian in a
given region Σ,

𝐽(Σ) =
∫︁

Σ
𝑑3𝑥2ℒ𝐹 [x × (B × E)] · k (2.48)

note that the above expression is independent of the invariant 𝐺.

Also, the field equations derived for an action given by an arbitrary Lagrangian
read,

2𝜕𝜇

(︁
ℒ𝐹 𝐹 𝜇𝜈 + ℒ𝐺

̃︀𝐹 𝜇𝜈
)︁

= 𝜕𝜇𝐸𝜇𝜈 = −𝐽𝜈 (2.49)

while the second pair of equations comes from the Bianchi identitiy. Since (2.49) can be
written more simply in terms of the excitation tensor, resembling the original equation
from Maxwell electrodynamics, the natural question that arises is whether it is possible
or not to have any duality transformation between ̃︀𝐹 𝜇𝜈 and 𝐸𝜇𝜈 . In fact, if 𝐸𝜇𝜈 and ̃︀𝐹 𝜇𝜈

were independent variables then such a transformation would take 𝐸𝜇𝜈 → ̃︀𝐹 𝜇𝜈 . However,
both tensors are not always independent, thus a reduced set of lagrangians will be duality
invariant. In order to prove this let us set (2.49) to zero in order to perform the following
rotation [40]

𝐸 ′
𝜇𝜈 = 𝐸𝜇𝜈 cos 𝜃 + ̃︀𝐹𝜇𝜈 sin 𝜃 (2.50a)̃︀𝐹 ′

𝜇𝜈 = −𝐸𝜇𝜈 sin 𝜃 + ̃︀𝐹𝜇𝜈 cos 𝜃 (2.50b)

then, by considering infinitesimal transformations of the form 𝛿𝐹𝜇𝜈 = ̃︀𝐸𝜇𝜈 and 𝛿𝐸𝜇𝜈 = ̃︀𝐹𝜇𝜈

it is possible to arrive to the following condition of duality for an ℒ(𝐹, 𝐺) theory
̃︀𝐸𝜇𝜈𝐸𝜇𝜈 = ̃︀𝐹 𝜇𝜈𝐹𝜇𝜈 (2.51)

it can be shown that Born-Infeld electrodynamics satisfy the latter, thus, it is duality
invariant, while neither exponential nor logarithmic electrodynamics are duality invariant.
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2.4 Observer Decomposition of 𝑇𝜇𝜈 and Energy Conditions.
From considerations primarily concerning General Relativity and Cosmology, dur-

ing the decade of the 1970s, Hawking, Ellis, Penrose, among others, developed a series
of singularity theorems, most of them in accordance with some energy conditions. The
energy conditions are requirements imposed to the energy-momentum tensor that imply
specific relations between physical quantities. It is always possible to extend the energy
conditions to other types of spacetime theories. In the following section we will start
by reviewing a relativistic way of decomposing the energy-momentum tensor in an ir-
reducible representation. This is done in order to introduce properly the most relevant
energy conditions for our work and their respective consequences.

2.4.1 Observer decomposition of 𝑇𝜇𝜈.

As we have seen before, it is possible to define the energy-momentum tensor cor-
responding to an arbitrary electromagnetic Lagrangian ℒ(𝐹, 𝐺), however, in this section
we will introduce a relativistic way of decomposing 𝑇𝜇𝜈 in terms of its irreducible compo-
nents. Let 𝜆𝜇 be a vector at a point 𝑃 of a smooth, future directed timelike curve with
unit tangent vector 𝑣𝜇, which represents the normalized 4-velocity of an observer, i.e.
𝑣𝜇𝑣𝜇 = 1, then, it is always possible to decompose 𝜆𝜇 into its components proportional to
𝑣𝜇 and orthogonal to 𝑣𝜇 as [41]

𝜆𝜇 = 𝜆𝜈𝑣𝜈𝑣𝜇 + (𝜆𝜇 − 𝜆𝜈𝑣𝜈𝑣𝜇) (2.52)

where the first term is obviously proportional to 𝑣𝜇, while the second term is the difference
between the original vector and it projection along 𝑣𝜇, thus, it is perpendicular to 𝑣𝜇. It
is therefore suitable to introduce the following projectors:

𝑘𝜇𝜈 = 𝑣𝜇𝑣𝜈 (2.53)

ℎ𝜇𝜈 = 𝑔𝜇𝜈 − 𝑣𝜇𝑣𝜈 (2.54)

where (2.53) defines a projector along the direction of 𝑣𝜇, while (2.54) is a projector in
the orthogonal direction of 𝑣𝜇, such that (2.52) can be now expressed as

𝜆𝜇 = 𝜆𝜈𝑘 𝜇
𝜈 + 𝜆𝜈ℎ 𝜇

𝜈

Note that they are true projectors, as 𝑘𝜇𝛼𝑘𝛼
𝜈 = 𝑘𝜇𝜈 , ℎ𝜇𝛼ℎ𝛼

𝜈 = ℎ𝜇𝜈 , and 𝑘 𝛼
𝜇 ℎ𝛼𝜈 = 0.

Moreover, note that both of them represent induced metrics along the temporal direction
(along 𝑣𝜇) and the spatial direction respectively; thus, ℎ𝜇𝜈 is an induced metric in a
hypersurface Σ which is orthogonal to 𝑣𝜇.
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With this in mind, it is possible to decompose any tensor in its irreducible rep-
resentations. For instance, we can use this tool to decompose the Faraday tensor in its
components, namely the electric and magnetic fields, 𝐸𝜇 and 𝐵𝜇 as

𝐸𝜇 = 𝐹 𝜇
𝜈𝑣𝜈 , and 𝐵𝜇 = ̃︀𝐹 𝜇

𝜈𝑣𝜈 = 1
2𝜂𝜇𝜈𝛼𝛽𝑣𝜈𝐹𝛼𝛽

then, it is possible to invert both relations above in order to express 𝐹 𝜇𝜈 in terms of the
fields 𝐸𝜇 and 𝐵𝜇 as

𝐹𝜇𝜈 = 2𝐸[𝜇𝑣𝜈] + 𝜂𝜇𝜈𝛼𝛽𝑣𝛼𝐵𝛽

Furthermore, it is also possible to decompose the energy-momentum 4-vector in a projec-
tion along the two directions as

𝑇 𝜇
𝜈𝑣𝜈 = (𝑇𝛼𝜈𝑘𝛼𝜇) 𝑣𝜈 + (𝑇𝛼𝜈ℎ𝛼𝜇) 𝑣𝜈 (2.55)

where the first term in parenthesis is the energy density, while the second is the momentum
density. Then, it should also be possible to decompose the energy-momentum tensor,
𝑇𝜇𝜈 in its irreducible representation. For that purpose, we will start by exposing the
general decomposition of an energy-momentum tensor representing a fluid. Let us start
by performing all the possible contractions of a tensor 𝑇 𝜇𝜈 with the respective projectors
𝑣𝜇 and ℎ𝜇𝜈 ,

𝑇 𝜇𝜈 = 𝜌𝑣𝜇𝑣𝜈 + (𝑞𝜇𝑣𝜈 + 𝑞𝜈𝑣𝜇) + 𝜋𝜇𝜈 − 𝑝ℎ𝜇𝜈 (2.56)

it is possible to identify each of the components above with quantities representing the
energy-momentum tensor of a fluid; hence, we identify 𝜌 as the energy density, 𝑝 as
the isotropic pressure, 𝜋𝜇𝜈 as the anisotropic pressure, which is a traceless quantity and
𝑞𝜇 as the heat flux. It is important to note that any energy-momentum tensor can be
decomposed in a similar way as above, i.e. it is possible to relate each of the components
of an arbitrary 𝑇𝜇𝜈 with 𝜌, 𝑝, 𝜋𝜇𝜈 and 𝑞𝜇. For the following development of the energy
conditions, it is useful to write the energy-momentum tensor for a perfect fluid, i.e. where
the only non-vanishing components are the energy density and the isotropic pressure:

𝑇 𝜇𝜈 = (𝜌 + 𝑝) 𝑣𝜇𝑣𝜈 − 𝑝𝑔𝜇𝜈 (2.57)

With this tool in hand it is possible to obtain the irreducible decomposition for
an energy-momentum tensor of an arbitrary nonlinear electromagnetic Lagrangian of the
form ℒ(𝐹, 𝐺), which was previously presented in (2.43). By performing the corresponding
contractions we arrive to the following identities for the hydrodynamical quantities: the
energy density 𝜌 = 𝑇𝜇𝜈𝑣𝜇𝑣𝜈 reads,

𝜌 = 2ℒ𝐹 𝐸𝛼𝐸𝛼 + 2ℒ𝐺𝐸𝛼𝐵𝛼 − ℒ(𝐹, 𝐺)

recalling that both 𝐸𝛼 and 𝐵𝛼 are spacelike vectors (𝐸𝜇𝐸𝜇 < 0). The heat flux, 𝑞𝛼 =
𝑇𝜇𝜈𝑣𝜇ℎ𝜈𝛼, reads

𝑞𝛼 = −2ℒ𝐹 𝜂𝛽𝛼𝜌𝜎𝐸𝛽𝑣𝜌𝐵𝜎 + 2ℒ𝐺𝜂𝛽𝛼𝜌𝜎𝐸𝛼𝑣𝜌𝐸𝜎 = −2ℒ𝐹 𝜂𝛽𝛼𝜌𝜎𝐸𝛽𝑣𝜌𝐵𝜎
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since the second term in the first equality is identically zero. Now, the isotropic pressure,
𝑝 = −1

3𝑇𝜇𝜈ℎ𝜇𝜈 reads,

𝑝 = −4
3ℒ𝐹 𝐹 − 4

3ℒ𝐺𝐺 + 2
3ℒ𝐹 𝐸𝛼𝐸𝛼 + 2

3ℒ𝐺𝐸𝛼𝐵𝛼 + ℒ(𝐹, 𝐺)

and finally, the anisotropic pressure, 𝜋𝜇𝜈 = 𝑇𝛼𝛽ℎ𝛼
𝜇ℎ𝛽

𝜈 + 𝑝ℎ𝜇𝜈 , is

𝜋𝛼𝛽 = −4
3ℒ𝐹 𝐹ℎ𝛼𝛽 + 2

3ℒ𝐹 𝐸𝜆𝐸𝜆ℎ𝛼𝛽 − 4ℒ𝐺𝐸𝜆𝐵𝜆ℎ𝛼𝛽+

+2ℒ𝐺 (−𝐵𝛼𝐸𝛽 + 𝐸𝛼𝐵𝛽) + 2ℒ𝐹

(︁
𝐸𝛼𝐸𝛽 + 𝐵𝛼𝐵𝛽 − 𝐵𝜆𝐵𝜆ℎ𝛼𝛽

)︁
Thus, we have derived all the irreducible parts of the energy-momentum tensor for an
arbitrary Lagrangian of the form ℒ(𝐹, 𝐺), note that the corresponding Maxwellian limits
are correctly recovered in the latter equations.

2.4.2 Energy Conditions.

Einstein’s equations, in principle, have an infinite number of solutions, many of
them representing unphysical situations. Hence, it is important to have some criteria for
defining physically reasonable matter content, this is, imposing some constraints on the
right hand side of Einstein’s equations

𝐺𝜇𝜈 = 𝜅𝑇𝜇𝜈

by introducing these constraints, the range of possible solutions should be considerably
reduced. In fact, initially such energy conditions were imposed in order to prove certain
singularity theorems [42]. The most studied energy conditions are the Null Energy Condi-
tion (NEC), the Weak Energy Condition (WEC), the Dominant Energy Condition (DEC)
and the Strong Energy Condition (SEC). Despite the energy conditions were initially for-
mulated in the context of GR, they are in principle valid for any classical spacetime theory.
Nevertheless, it is important to note that the ideal theoretical setup for imposing these
energy conditions is clearly GR, since the dynamical equations depend explicitly on the
energy-momentum tensor, while other alternative spacetime theories may also serve as an
adequate framework for using the energy conditions. In this section we will introduce the
most relevant energy conditions for the purposes of the present dissertation, presenting
both the physical and geometrical interpretations for the energy conditions following [43].

2.4.2.1 Weak Energy Condition.

We begin by assessing the simplest energy condition for the sake of the present
work. The Weak Energy Condition (WEC) reads:

𝑇𝜇𝜈𝜉𝜇𝜉𝜈 ≥ 0 (2.58)
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for all timelike vectors 𝜉𝜇. This means, the energy density must be nonnegative for any
observer transversing a timelike curve. Note that by continuity 𝜉𝜇 may also be a null
vector. In principle, such a condition seems rather consistent from the physical point of
view, it may even seem to be a very basic assumption for the energy density of some
classical matter field. However, the WEC in fact is not the weakest energy condition, in
fact WEC reduces to the Null Energy Condition (NEC) when 𝜉𝜇 → 𝑘𝜇 in (2.58) with
𝑘𝜇 being a null vector. Hence, WEC includes NEC. It is important to note that many
singularity theorems are formulated through the fulfillness of NEC, and so, they hold for
all the other conditions that include NEC.

In order to see the physical implication of the WEC, let us invoke the energy-
momentum tensor for a perfect fluid presented in (2.57), note that this 𝑇𝜇𝜈 is diagonal,
thus it is of type I according to the classification presented in [42, p. 89]. For a perfect
fluid, performing the respective projections on (2.57), the requirement that (2.58) holds
for all timelike vectors 𝜉𝜇 gives

𝑇𝜇𝜈𝜉𝜇𝜉𝜈 = (𝜌 + 𝑝) (𝑣𝜇𝜉𝜇)2 − 𝑝 ≥ 0 (2.59)

now by the wrong way Schwarz inequality [41] (𝜂𝜇𝜉𝜇)2 ≥ |𝜂𝜇|2|𝜉𝜇|2 = 1 the first condition
is 𝜌 ≥ 0, then since WEC must be valid for all timelike vectors and clearly the wrong
way Schwarz inequality is not bounded from above, the only form to ensure that the
WEC (2.59) will hold for all timelike vectors is to impose that 𝜌 + 𝑝 ≥ 0. It is important
to note that if the inequality is satisfied for a unitary timelike vector, then it will hold
for all timelike vectors. Here, the physical implication is clear, the WEC implies that
the energy density must be nonnegative and the pressure is bounded from below by the
energy density, this is, the pressure cannot exceed the energy density for any observer
transversing a timelike curve. Note that the WEC can also be stated in a geometrical
form as 𝐺𝜇𝜈𝜉𝜇𝜉𝜈 ≥ 0, however, there is not any straightforward interpretation of such a
condition.

It is important to note that, despite being a vary basic condition, the WEC is
violated for many situations in quantum regimes and even in some classical situations
[43, p. 35]. In fact, an argument for imposing some stronger conditions on the energy-
momentum tensor was the fact that there are some situations where an infinite number of
particles could be created in a finite region of space, this apparent contradiction is saved
with the Dominant Energy Condition [44].

2.4.2.2 Dominant Energy Condition.

As we have seen, the WEC only ensures us that the energy density will be nonneg-
ative and the pressure is bounded form below by the energy density, nevertheless it does
not restrain any other pathologies that a given energy-momentum tensor might have. For
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that sake, there exists a stricter energy condition, the Dominant Energy Condition (DEC)
which is stated as

𝑇𝜇𝜈𝜉𝜇𝜉𝜈 ≥ 0 , and 𝑇𝜇𝜈𝜉𝜇 is a causal vector (2.60)

which can also be restated as 𝑇𝜇𝜈𝜉𝜇𝑘𝜈 ≥ 0 for all 𝜉𝜇 and 𝑘𝜇 timelike or null vectors. The
second condition in (2.60) implies directly the prohibition of superluminal propagation
of energy-momentum. There is also a stronger version of DEC, called the Strengthened
Dominant Energy Condition (SDEC), the only difference between DEC and SDEC is the
fact that SDEC imposes 𝑇𝜇𝜈𝜉𝜇 to be a timelike vector, while DEC only asks the energy-
momentum density to be a causal vector. Now, for a perfect fluid, DEC imposes the
conditions 𝜌 ≥ 0, which comes from WEC and from the causality imposition on 𝑇𝜇𝜈𝜉𝜈 we
find (︁

𝑇 𝛼
𝛽𝜉𝛽

)︁
(𝑇𝛼𝛾𝜉𝛾) =

(︁
𝜌2 − 𝑝2

)︁ (︁
𝑣𝛽𝜉𝛽

)︁2
+ 𝑝2 ≥ 0

which again by applying the wrong way Schwarz inequality we find that 𝜌 ≥ 𝑝, which
together from the lower bound that WEC imposes on the pressure turns to be 𝜌 ≥ |𝑝|,
such that now, the pressure has an upper and a lower bound imposed by the energy
density.

As the fact that DEC imposes the restriction of superluminal propagation of the
energy-momentum density is very important for the development of this work, we will
review the conservation theorem as presented in [42, p. 94]

Theorem 2.4.1 (Conservation theorem). If the energy-momentum tensor obeys the dom-
inant energy condition and is zero on (𝜕𝒰)3, a timelike boundary of 𝒰 and on the initial
surface (𝜕𝒰)1, a past non-timelike boundary of 𝒰 , then it is zero everywhere on 𝒰 .

Proof. Let

𝑥(𝑡) =
∫︁

𝒰(𝑡)
𝑇 𝛼𝛽𝜉𝛼𝜉𝛽𝑑𝑣 =

∫︁ 𝑡
(︃∫︁

ℋ(𝑡′)∩𝒰
𝑇 𝛼𝛽𝜉𝛼𝑑𝜎𝛽

)︃
𝑑𝑡′ ≥ 0

Then 𝑑𝑥/𝑑𝑡 ≤ 𝑃𝑥 (by Lemma 4.3.1 in [42, p. 92]). But for sufficiently early values of 𝑡,
ℋ(𝑡), a surface in 𝒰 at 𝑡 =constant, will not intersect 𝒰 and so 𝑥 will vanish. Thus 𝑥 will
vanish for all 𝑡 which implies that 𝑇 𝛼𝛽 is zero on 𝒰 .

Then, if the energy-momentum tensor vanishes on the initial surface then it will
be zero everywhere, since if no matter is present at the beginning there is no possibility
of finding matter in the future domain of dependence.

The latter theorem Thm. 2.4.1 can be rephrased as follows [43]: if a covariantly
divergence-free 𝑇𝜇𝜈 is required to satisfy the DEC and it vanishes on a closed, achronal set,
then it vanishes in the domain of dependence of that set. An achronal surface 𝑆 is a subset
𝑆 ∈ 𝑀 where no two points are connected by timelike curves, it allows us to determine
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the domain of dependence 𝐷(𝑆). An achronal surface becomes a Cauchy surface when its
domain of dependence is the whole manifold 𝑀 .

The energy-momentum cannot propagate locally outside the lightcone. This con-
sequence of DEC constitutes an important building block for spacetime theories since a
theory satisfying DEC will not present the possibility of causality violations. So far, all
known classical matter fields satisfy DEC, and as it will be seen later on, it seems that
such a condition obeys the very nontrivial inequality ℛℰ(Σ) ≥ |𝐽(Σ)| (1.13). By now, we
will begin the study of DEC for arbitrary nonlinear electrodynamics.

2.4.2.3 The Dominant Energy Condition for Nonlinear Electrodynamics.

It is useful to derive a general expression for DEC in the context of general, ℒ(𝐹, 𝐺),
nonlinear electrodynamics. From the general energy-momentum tensor (2.43) with the use
of the identities (2.11) we can arrive to the following result for 𝑇𝜇𝜈𝜉𝜈 being a causal vector,
i.e. 𝑇𝜇𝜈𝑇 𝜈𝜆𝜉𝜇𝜉𝜆 ≥ 0,

ℒ2 + 𝐺2
(︁
ℒ2

𝐺 + ℒ2
𝐹

)︁
− 2ℒ𝐺ℒ𝐺 − 4

(︁
ℒ2

𝐹 𝐹 + ℒ𝐹 ℒ𝐺𝐺 − ℒ𝐹 ℒ
)︁

𝐸2 ≥ 0 (2.61)

this expression will allow us to determine whether or not the nonlinear lagrangians treated
throughout this work satisfy DEC. Note that the latter simplifies drastically for the case
of a Lagrangian of the form ℒ(𝐹 ),

ℒ2 + 𝐺2ℒ2
𝐹 − 4ℒ2

𝐹 𝐹𝐸2 + 4ℒ𝐹 ℒ𝐸2 ≥ 0

it is easy to check that the Larmor Lagrangian satisfies the latter, as well as the Lagrangian
for Born ℒ(𝐹 ) electrodynamics.
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3 Bekenstein Bounds and Inequalities for
Nonlinear Electrodynamics.

In the previous chapters we have introduced the main theoretical information and
tools for the analysis that will be done in this chapter. Bekenstein inequalities have the
particularity that are formulated in order to have a universal character, i.e. they should
remain valid in all the branches of physics. Particularly in electrodynamics there are still
many open questions on whether Maxwell’s theory can be considered complete1 or just a
very good approximation of a wider theory. With this in mind, many reformulations and
generalizations of electrodynamics have been proposed over the years, including theories
with massive photons, formulated in higher and lower dimensions and nonlinear theories of
electrodynamics, which themselves have a huge range of motivations for being formulated
(the main motivation being the finiteness of the point charge energy and the photon’s self
interaction).

Hence, following Bekenstein’s universal argument, all the bounds presented in
Sec. 1.2 should remain valid in every acceptable generalization of Maxwell’s electrody-
namics. This may sound a very strong statement to be taken for granted. As it has been
argued before, there does not exist any trivial conjecture about the validity of neither of
the inequalities. The main goal of this chapter is to test these inequalities in particular
situations of nonlinear electrodynamics and to see what conditions must be imposed to
an arbitrary ℒ(𝐹, 𝐺) lagrangian in order to satisfy these inequalities. As long as one of
the reasons of a nonlinear theory of electrodynamics is to generalize Maxwell’s theory it
is expected that any reasonable extension must have the corresponding Maxwell limit.

In the present chapter we will start by analyzing the validity of Bekenstein bounds
and inequalities for Born-Infeld electrodynamics.

3.1 Born-Infeld Electrodynamics.

3.1.1 Inequality between charge and energy.

We will begin by exploring the inequality between charge and energy (1.12) in
Born-Infeld electrodynamics. It is important to note that this inequality is valid for
Maxwell’s electrostatics, then the natural way to test it in Born-Infeld theory is to use
its static limit, 𝐹 → −|E|2 and 𝐺 = 0 in (2.22) which represents the particular case of
Born’s original lagrangian (2.20). Therefore, we are interested in the electrostatic energy
1 In the sense that it suffice to describe all electromagnetic phenomena in nature.



Chapter 3. Bekenstein Bounds and Inequalities for Nonlinear Electrodynamics. 45

density for this particular theory, recasting the general energy-momentum tensor (2.25)
and applying the respective limit we get that the electrostatic energy is given by

ℰBI =
∫︁
R3

(︃
𝛽2

√
𝑈

− 𝛽2
)︃

𝑑3𝑥 (3.1)

where the expression in parenthesis is the energy density. Now, since we are treating
the electrostatic case, the quantity

√
𝑈 is just

√︂
1 − |E|2

𝛽2 . So it is possible to expand the
integrand as,

ℰBI =
∫︁
R3

𝑑3𝑥

[︃
𝛽2
(︃

1 + |E|2

2𝛽2 + 3
8

|E|4

𝛽4 + ...

)︃
− 𝛽2

]︃
(3.2)

Note that this expansion is performed because of the fact that the electric field is bounded
form above by 𝛽, then for the series above to be convergent |E|

𝛽
< 1, thus, we will exclude

the case where |E| = 𝛽. All the terms in the series expansion of the latter are positive,
and we can recognize the Maxwell part in the integrand above so

ℰBI =
∫︁
R3

𝑑3𝑥

[︃
|E|2

2 + 3
8

|E|4

𝛽2 + ...

]︃
= ℰM +

∫︁
R3

𝑑3𝑥

[︃
3
8

|E|4

𝛽2 + ...

]︃
(3.3)

where ℰM is the Maxwell energy. Consequently, we have that, for the electrostatic case,

ℰBI ≥ ℰM (3.4)

and the equality holds only when the fields are very small compared to 𝛽, i.e. |E|
𝛽

→ 0.
For every other case, where |E|

𝛽
∈ (0, 1) we have ℰ𝐵𝐼 > ℰ𝑀 .

Since for the Maxwell case it is proven that the inequality (1.12) holds [20], then for
the electrostatic Born energy the inequality will also hold as well as the rigidity statement
for |E|

𝛽
→ 0. Moreover, for every other case, the inequality will also hold, but it is no longer

possible to assume the rigidity statement because of (3.4). Thus, in general we have,

ℰBI ≥ 𝑄2

8𝜋ℛ
(3.5)

where the equality will hold if and only if the electric field is equal to the electric field
produced by a spherical shell of radius ℛ and total charge 𝑄, and |E|

𝛽
<< 1.

As for now, the static bound seems to work for Born-Infeld electrodynamics be-
cause this nonlinear theory has an adequate Maxwell limit since the equality is reached
for the weak field approximation. Furthermore, such a scenario should not be plausible
when the nonlinear energy density is lower that the Maxwell one. We will explore this
scenario later on.

3.1.2 Inequality between energy and angular momentum.

In order to analyze the inequality between energy and angular momentum (1.13) in
the regime of Born-Infeld electrodynamics we will proceed to take the difference between
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the energy and angular momentum in the region Σ. Using the energy-momentum tensor
(2.25), the energy density after some algebraic manipulations can be expressed as

𝑢 = 1√
𝑈

(︁
𝛽2 + |B|2 − 𝛽2

√
𝑈
)︁

Then, taking the difference between this energy density and the angular momentum de-
fined in (2.28) we obtain

ℰ(Σ)− 1
ℛ

|𝐽(Σ)| =
∫︁

Σ
𝑑3𝑥

(︃
1√
𝑈

(︁
𝛽2 + |B|2 − 𝛽2

√
𝑈
)︁)︃

− 1
ℛ

⃒⃒⃒⃒
⃒
∫︁

Σ
𝑑3𝑥

(︃
1√
𝑈

[x × (E × B)] · k
)︃⃒⃒⃒⃒
⃒

(3.6)
We will estimate the difference above, showing that the integrand after all the minimiza-
tions remains positive hence the inequality will be proved; this strategy was first employed
by Dain in [20]. Then, using the inequality |

∫︀
𝑓(𝑥)| ≤

∫︀
|𝑓(𝑥)|, the vector triangular in-

equalities and the fact that k is a unitary vector we arrive at

ℰ(Σ) − 1
ℛ

|𝐽(Σ)| ≥
∫︁

Σ
𝑑3𝑥

1√
𝑈

(︃
𝛽2 + |B|2 − 𝛽2

√
𝑈 − |x|

ℛ
|E||B|

)︃
(3.7)

Now in order to see whether the integrand is positive for every field configuration we must
note that in Born-Infeld electrodynamics both the electric and magnetic fields are bounded
from above by the parameter 𝛽. Then, defining the numbers 𝛼 := |E|

𝛽
and 𝛾 := |B|

𝛽
, we

obtain,

ℰ(Σ) − 1
ℛ

|𝐽(Σ)| ≥
∫︁

Σ
𝑑3𝑥

𝛽2
√

𝑈

(︃
𝛾2 + 1 −

√
𝑈 − |x|

ℛ
𝛼𝛾

)︃
(3.8)

Now, we can write 𝑈 in (2.22) in terms of 𝛼 and 𝛾 as,

𝑈 = 1 + 𝛾2 − 𝛼2 − 𝛼2𝛾2 cos2 𝜃

where 𝜃 = arccos(E · B/|E||B|). Using this definition, it is possible to write (3.8) as

ℰ(Σ)− 1
ℛ

|𝐽(Σ)| ≥
∫︁

Σ
𝑑3𝑥

𝛽2

2
√

𝑈

⎡⎣(︃𝛾 − |x|
ℛ

𝛼

)︃2

+
(︁
1 −

√
𝑈
)︁2

+ 𝛼2𝛾2 cos2 𝜃 + 𝛼2
(︃

1 − |x|2

ℛ2

)︃⎤⎦
(3.9)

It is obvious that the right-hand side of the latter is nonnegative. Thus, the inequality
(1.13) between energy and angular momentum is proven directly. Also we may infer that
the equality will be reached when the integrand in (3.9) is zero, which means that the
electric and magnetic fields must vanish in Σ, which is the same condition as in Maxwell’s
electrodynamics. Moreover it is remarkable that in the case where 𝛼 = 𝛾 and 𝜃 = (2𝑛 −
1)𝜋/2, i.e. 𝑈 = 1 the integrand is still positive and has the value

ℰ(Σ) − 1
ℛ

|𝐽(Σ)| ≥
∫︁

Σ
𝑑3𝑥

𝛽2

2
(︁
𝛾2 + 𝛼2

)︁(︃
1 − |x|

ℛ

)︃
=
∫︁

Σ
𝑑3𝑥

1
2
(︁
|E|2 + |B|2

)︁(︃
1 − |x|

ℛ

)︃
(3.10)
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The last equality in the latter equation is, remarkably, the same expression as the one
obtained for the case of Maxwell electrodynamics! Therefore, the same conclusions for the
rigidity statement in the classical case hold for the Born-Infeld case. Moreover, this result
is particularisable for the Born ℒ(𝐹 ) electrodynamics.

In conclusion, since we have seen that the equality in the bound between charge
and energy is attained in the classical approximation for the Born-Infeld case, it is rea-
sonable to expect that it will also happen with the inequality between energy and angular
momentum. However, as we have proved above, that assumption is not necessary at all
in order to prove the inequality and the rigidity statement. Furthermore, the exact same
expression as in the Maxwell case is recovered for the particular configuration of E ⊥ B
and |E| = |B|. This result is non-trivial since it is expected to recover the Maxwell ex-
pression for the weak field limit, in fact, by making the assumption of 𝑈 = 1 and 𝐺 = 0
in the energy-momentum tensor it is impossible to obtain the classical expression, as well
as by doing the same in the lagrangian.

3.1.3 Inequality between charge, energy and angular momentum.

For the analysis of the full inequality (1.17) we begin with the total energy for
Born-Infeld electrodynamics expressed in terms of 𝛼 and 𝛾 from the previous section

ℰ =
∫︁
R3

𝑑3𝑥
𝛽2

√
𝑈

(︃
1 + 𝛾2 −

√
𝑈 +

√
𝑈

(︃
𝛼2

2 − 𝛼2

2

)︃)︃
(3.11)

we have explicitly added and subtracted the term |E|2/2, which might be identified as the
Maxwell energy. This is done in pursuance of isolating the electrostatic term in order to
obtain the corresponding bound between energy and charge (1.12) as it will be seen later
on. Now, as it has been discussed, it is possible to express both the electric and magnetic
fields in terms of the vector and scalar potentials as E = −∇Φ − 𝜕𝑡A and B = ∇ × A.
Now, we can express the scalar potential as

Φ = Φ0 + Φ1

such that Φ1 is an auxiliary potential and Φ0 the potential of an spherical shell of radius
ℛ,

Φ0 =

⎧⎪⎨⎪⎩
𝑄
𝑟
, if 𝑟 ≥ ℛ,

𝑄
ℛ , if 𝑟 ≤ ℛ,

(3.12)

note that ∇Φ0 = 0 inside ℬℛ, then, by construction ∇Φ = ∇Φ1 inside ℬℛ. Then, it is
possible to show that the integral over the space of the squared modulus of the electric
field is ∫︁

R3
𝑑3𝑥|E|2 =

∫︁
R3

𝑑3𝑥
{︁
|∇Φ|2 + |𝜕𝑡A|2 + 2∇Φ · 𝜕𝑡A

}︁
but the last term in the above integral is indeed zero using the Coulomb gauge because
it can be split as

∫︀
R3 𝑑3𝑥 {∇Φ · 𝜕𝑡A} =

∫︀
R3 𝑑3𝑥 {∇ · (Φ𝜕𝑡A) − Φ𝜕𝑡(∇ · A)} = 0, where
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the first term is a surface term and the second vanishes because of the Coulomb gauge
(∇ · A = 0). Meanwhile, the term with the scalar potential can be expressed in terms
of both Φ0 and Φ1 as |∇Φ|2 = |∇Φ0|2 + |∇Φ1|2 + 2∇Φ0 · ∇Φ1 where the last term also
vanishes, it can be written as∫︁

R3
𝑑3𝑥∇Φ𝑜 · ∇Φ1 =

∫︁
R3∖ℬℛ

𝑑3𝑥
{︁
∇ · (Φ0∇Φ1) − Φ0∇2Φ1

}︁
= 0

where the integral over the domain ℬℛ vanishes from the fact that Φ0 is constant, hence
the remaining domain of integration is R3 ∖ ℬℛ; and the the first term in the right side
is a surface term, and the second term vanishes because by construction ∇2Φ1 = 0; this
strategy of splitting the scalar potential and using the Coulomb gauge was first applied by
Dain in [20] in the proof of the inequality in Maxwell electrodynamics. Therefore, (3.11)
can be rewritten as

ℰ = 𝑄2

2ℛ
+ ℰ(Σ) +

∫︁
R3∖Σ

𝑑3𝑥

[︃
1
2 |∇Φ1 + 𝜕𝑡A|2 + 𝛽2

√
𝑈

(︃
1 + 𝛾2 −

√
𝑈

(︃
1 + 𝛼2

2

)︃)︃]︃
(3.13)

where we have split the integral for the energy in two domains Σ and R3 ∖ Σ and used
the properties described above for the scalar potentials, i.e. the fact that in Σ, |∇Φ1|2 =
|∇Φ|2 = |E|2, so the total integral evaluated in Σ is, effectively, the energy in that region,
ℰ(Σ). Since we have been able to isolate the energy in the region Σ we can invoke the
result from Sec. 3.1.2 for the relation between the energy and angular momentum in that
region (3.9), then we get

ℰ − 𝑄2

2ℛ
− |𝐽(Σ)|

ℛ
≥
∫︁
R3∖Σ

𝑑3𝑥

[︃
1
2 |∇Φ1 + 𝜕𝑡A|2 + 𝛽2

√
𝑈

(︃
1 + 𝛾2 −

√
𝑈

(︃
1 + 𝛼2

2

)︃)︃]︃
+

+
∫︁

Σ
𝑑3𝑥

𝛽2

2
√

𝑈

⎡⎣(︃𝛾 − |x|
ℛ

𝛼

)︃2

+
(︁
1 −

√
𝑈
)︁2

+ 𝛼2𝛾2 cos2 𝜃 + 𝛼2
(︃

1 − |x|2

ℛ2

)︃⎤⎦
(3.14)

The only term that might be negative in the right hand side of the latter expression is
the last term in the integral in R3 ∖ Σ, notwithstanding we can write it as

1 + 𝛾2 −
√

𝑈

(︃
1 + 𝛼2

2

)︃
= 1

2

[︃(︁
1 −

√
𝑈
)︁2

+ 𝛼2𝛾2 cos2 𝜃 + 𝛼2
(︃

1 −
√

𝑈 + 𝛾2

𝛼2

)︃]︃

where it is not clear that the last term is nonnegative since 𝑈 ∈ [0, 2], however, 𝑈 > 1
implies 𝛾 > 𝛼, thus, the last term in the latter expression is nonnegative for every field
configuration. Finally, since all the terms in the right hand side of (3.14) are nonnegative,
we can state that the inequality

ℰ ≥ 𝑄2

8𝜋ℛ
+ |𝐽(Σ)|

ℛ
(3.15)

holds for Born-Infeld electrodynamics, and thus, inequality (1.17) is satisfied. Now, for
the equality to hold in (3.15) it is necessary for both the integrals in the right side to
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vanish, as in the Maxwell case, this will be achieved only when the electric field is the
field of a spherical shell, i.e. it vanishes in Σ, then ∇Φ1 = 0 and for A = 0, then B = 0
everywhere, hence 𝑈 = 1 and both integrands will vanish. Thus, the equality is achieved
only by an static spherical shell, which means that there is no dynamics present in the
fields when the equality is achieved.

Born-Infeld electrodynamics constitute a very important example of NLED. This
theory, despite respecting the Maxwell limit, offers a wide variety of peculiar consequences,
in the sense that it possesses many unique features among NLED. The proofs performed
in this section can be interpreted as follows: since Bekenstein’s inequalities are valid uni-
versally in physics, they should offer us a criteria for discerning between physically realiz-
able and unrealizable theories, then, following this argument, Born-Infeld electrodynamics
should constitute a physically plausible theory because it satisfies all of Bekenstein’s in-
equalities. We shall test other theories of NLED in order to probe the validity of these
partial conclusions.

3.2 Exponential Electrodynamics.

3.2.1 Inequality between charge and energy.

Now we will begin the analysis of Bekenstein bounds in the regime of exponential
electrodynamics as defined in Sec. 2.3.2. This formulation of NLED has the particularity
that despite being a Born-Infeld inspired formulation of NLED, the electric field diverges
near the origin, then it will not be possible anymore to normalize the electric field with
the parameter 𝛽, however there is still an analogous procedure of working the inequality.
We will begin with the electrostatic energy for exponential electrodynamics,

ℰ =
∫︁
R3

𝑑3𝑥
[︂
−𝐹𝑒

− 𝐹
2𝛽2 − 𝛽2

(︂
𝑒

− 𝐹
2𝛽2 − 1

)︂]︂
(3.16)

as we are dealing with the electrostatic case we have assumed 𝐺 = 0 in (2.29), as well
as for now, since |B| = 0, then the invariant 𝐹 = −|E|2, so we can write the latter only
in terms of the electric field. Additionally we will subtract explicitly the Maxwell energy
density |E|2/2, leaving the expression

ℰ − ℰM =
∫︁
R3

𝑑3𝑥

[︃
|E|2𝑒

|E|2

2𝛽2 − 𝛽2
(︃

𝑒
|E|2

2𝛽2 − 1
)︃

− |E|2

2

]︃
(3.17)

now we proceed in an analogous way as it has been done in the previous section, i.e.
we define 𝜔 := |E|/𝛽. Note that we do this in order to be able to compare the electric
field with the parameter 𝛽 which has field dimensions. Since in the case given by this
electrodynamics the electric field is not bounded by 𝛽 as in the standard Born-Infeld
electrodynamics, we explicitly introduce the number 𝜔 which can be greater than unity2.
2 For purposes of clarity in the calculations we change 𝜔 which in fact is different form 𝛼 in the previous

section which was a bounded number.
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Consequently, we can write the energy of the field as

ℰ − ℰM =
∫︁
R3

𝑑3𝑥𝛽2
[︃
𝑒

𝜔2
2
(︁
𝜔2 − 1

)︁
+ 1 − 𝜔2

2

]︃
(3.18)

so far it is not possible to see directly if the difference above is nonnegative always. Since
we know that 𝜔 ∈ [0, ∞], we can start by taking the respective limits both when 𝜔 → 0
and 𝜔 → ∞, and we can see that, effectively both limits are nonnegative, in fact

lim
𝜔→0

[︃
𝑒

𝜔2
2
(︁
𝜔2 − 1

)︁
+ 1 − 𝜔2

2

]︃
= 0

lim
𝜔→∞

[︃
𝑒

𝜔2
2
(︁
𝜔2 − 1

)︁
+ 1 − 𝜔2

2

]︃
= ∞

Moreover, since we are not able anymore to fix a maximum possible value for the electric
field, in fact the difference between the energy density in this exponential electrodynamics
compared to standard Maxwell electrodynamics diverges rapidly as 𝜔 > 1, this behavior
can be seen in Fig. 3. It is remarkable that the energy density in this formulation of
exponential electrodynamics diverges more rapidly than in the standard case. This shows
us that even in Born-Infeld inspired theories of electrodynamics it is not possible to obtain
regular field distributions on the origin, and many ’pathologies’ of the classical theory are
exaggerated by nonlinear generalizations of the theory. In fact, the divergence in this case
is exponential, while the divergence in Maxwell’s case is only quadratic. Note that even
though the field diverges slower than in the Maxwell case, we have the converse situation
for the energy density.

As for the case of the inequality (1.12), since we have proved that ℰ ≥ ℰM we
can conclude that exponential electrodynamics satisfy the inequality between charge and
energy. As in the Born-Infeld case, we can state that the equality will hold in the case
where the field is small compared to 𝛽, i.e. it is possible to obtain the Maxwell limit for
the energy density.

3.2.2 Inequality between energy and angular momentum.

Regarding the inequality (1.13) that relates the energy and angular momentum in
the region Σ, we will proceed in the same way as before, estimating the difference between
the energy and the angular momentum in that region. The energy density from (2.30) is

𝑢 = 𝛽2𝑒
−𝒳
𝛽2

(︃
𝜔2 + 𝐺2

4𝛽4 − 1
)︃

+ 𝛽2

where we have explicitly isolated the factor 𝛽2. Furthermore, the angular momentum is
defined in (2.31). Then we can estimate the difference between the two quantities as

ℰ(Σ)− 1
ℛ

|𝐽(Σ)| =
∫︁

Σ
𝑑3𝑥

{︃
𝛽2𝑒

−𝒳
𝛽2

(︃
𝜔2 + 𝐺2

4𝛽4 − 1
)︃

+ 𝛽2
}︃

− 1
ℛ

⃒⃒⃒⃒∫︁
Σ

𝑑3𝑥𝑒
−𝒳
𝛽2 [x × (E × B)] · k

⃒⃒⃒⃒
(3.19)
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Figure 3 – The difference between the energy density for exponential electrodynamics in the electrostatic
regime compared to the Maxwell electrostatic energy density.

Now, using the inequalities for the absolute value of the integral and the vector triangular
inequalities as in the previous section, we estimate the difference as

ℰ(Σ) − 1
ℛ

|𝐽(Σ)| ≥
∫︁

Σ
𝑑3𝑥

{︃
𝛽2𝑒

−𝒳
𝛽2

(︃
𝜔2 + 𝐺2

4𝛽4 − 1
)︃

+ 𝛽2 − 𝑒
−𝒳
𝛽2 |x|

ℛ
|E × B|

}︃
(3.20)

in order to reduce the latter integral, we will use the vector inequality |E × B| ≤
(|E|2 + |B|2) /2, then we will extremize the inequality by maximizing the negative contri-
bution, which is given when |x| = ℛ. After rearranging the terms, and defining 𝛿 := |B|/𝛽,
it is possible to express the remaining integral as

ℰ(Σ) − |𝐽(Σ)|
ℛ

≥ 𝛽2
∫︁

Σ
𝑑3𝑥

[︃
𝑒−𝒳 /𝛽2

(︃
− 𝒳

𝛽2 − 1 + 1
2𝜔2𝛿2 cos2 𝜃

)︃
+ 1

]︃
≥ 0 (3.21)

Again, since the fields are no longer upper bounded it is no longer possible to assume that
𝒳 will be bounded too, nevertheless it is still possible to see how this function behaves
at its critical points, both when 𝒳 goes to ±∞ the expression in parenthesis goes to 0,
leaving only a constant, 𝛽2 in the integral, when 𝒳 goes to 0,which is the case when both
the electric and magnetic field have equal magnitude and are mutually perpendicular, the
expression in the parenthesis goes to −1 (because E ⊥ B), which will cancel the other
positive term in the integral in (3.21), leaving a null integrand, which is the case when
the equality is identically satisfied. By this, we can argue that the rigidity statement, as
in the cases treated before, is attained when both of the fields vanish inside ℬℛ and, by
continuity, they are also zero in |x| = ℛ. Hence, we can conclude that in the regime of
exponential electrodynamics the inequality between energy and angular momentum (1.13)
is satisfied.

3.2.3 Inequality between charge, energy and angular momentum.

Continuing the analysis for the complete inequality (1.17), we begin by expressing
the total energy adding and subtracting the term |E|2/2 which we will later associate
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with the term 𝑄2/2ℛ as in the previous section. The total energy reads

ℰ =
∫︁
R3

𝑑3𝑥𝛽2
[︃
𝑒

−𝒳
𝛽2

(︃
𝜔2 + 𝐺2

4𝛽4 − 1
)︃

+ 1 − 𝜔2

2

]︃
+
∫︁
R3

𝑑3𝑥
|E|2

2 (3.22)

As in the previous section, it is possible to express the scalar potential as a sum of two
potentials, where one is the potential for an spherical thin shell. Then, it is possible to split
both integrals in two domains, Σ and R3 ∖ Σ respectively, consequently, the last term in
the latter equation leads to our desired term of 𝑄2/2ℛ and a positive term that depends
on the potential Φ1 when the integral is evaluated in the domain R2 ∖ Σ, while inside Σ,
the terms added an subtracted in (3.22) will identically vanish because |∇Φ1| = |E| in
that region, hence, as in the previous section, we obtain

ℰ = 𝑄2

2ℛ
+ ℰ(Σ) +

∫︁
R3∖Σ

𝑑3𝑥

[︃
1
2
(︁
|∇Φ1|2 + |𝜕𝑡A|2

)︁
+ 𝛽2

(︃
𝑒

−𝒳
𝛽2

(︃
𝜔2 + 𝐺2

4𝛽2 − 1
)︃

+ 1 − 𝜔2

2

)︃]︃
(3.23)

and now that we have isolated the term involving the energy in the region Σ, we can use
the bound obtained in Sec. 3.2.2 to bound our result with the angular momentum, leaving
the expression

ℰ − 𝑄2

2ℛ
− |𝐽(Σ)|

ℛ
≥
∫︁
R3∖Σ

𝑑3𝑥

[︃
𝛽2
(︃

𝑒
−𝒳
𝛽2

(︃
𝜔2 + 𝐺2

4𝛽2 − 1
)︃

+ 1 − 𝜔2

2

)︃
+

1
2
(︁
|∇Φ1|2 + |𝜕𝑡A|2

)︁]︂
+ 𝛽2

∫︁
Σ

𝑑3𝑥

[︃
𝑒−𝒳 /𝛽2

(︃
− 𝒳

𝛽2 − 1 + 1
2𝜔2𝛿2 cos2 𝜃

)︃
+ 1

]︃ (3.24)

From the discussion in Sec. 3.2.2 we know that the inequality between energy and angu-
lar momentum (1.13) is satisfied because the integral evaluated in the region Σ above is
positive, then we are only concerned with the integral in the first line of (3.24), which we
do not know if it is positive or negative. Note that when assessing the inequality between
energy and charge we have used an analogous expression when comparing the electrostatic
energy density of this formulation of exponential electrodynamics and Maxwell electro-
dynamics, we have shown that indeed the difference is always nonnegative. However, this
might not hold when treating the dynamical case, for specific field configurations, indeed,
when |B| ≫ |E| the respective integrand is negative, since it is no longer possible to
assume that |E| nor |B| are bounded by 𝛽. Then, the fulfillness of the partial inequalities
(1.12) and (1.13) does not guarantee the fulfillness of the total inequality (1.17).

3.3 Logarithmic Electrodynamics.
So far the two electrodynamics studied satisfy the inequalities (1.12) and (1.13).

For purposes of clarity in the development of this study, it would be useful to find examples
of physically plausible NLED which violate one of the inequalities, or both at the same
time. Thus, it is plausible to study one more case of NLED in order to better see how is
the behavior of these inequalities under certain NLED regimes. Now we will study such
inequalities in logarithmic electrodynamics presented in Sec. 2.3.3.
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3.3.1 Inequality between charge and energy.

For logarithmic electrodynamics, the electrostatic energy density is the same for
both formulations of [38] and [39] and reads

𝑢 = 2|E|2𝛽2

2𝛽2 − |E|2
+ 𝛽2 ln

(︃
1 − |E|2

2𝛽2

)︃

We shall express the latter energy density in terms of a ‘normalized’ field as in the last
section. Noteworthy, logarithmic electrodynamics possess a regular field in the origin but
it is not fixated to the constant 𝛽, then we will define the numbers 𝛼 := |E|/

√
2𝛽 and

𝛾 := |B|/
√

2𝛽, with, 𝛼, 𝛾 ∈ [0, 1]. Then, we can write the difference between logarithmic
energy density and the Maxwell energy density as

ℰ − ℰ𝑀 = 𝛽2
∫︁
R3

𝑑3𝑥

{︃
2𝛼2

1 − 𝛼2 + ln
(︁
1 − 𝛼2

)︁
− 𝛼2

}︃
(3.25)

Analogously to the case of exponential electrodynamics, it is possible to see that, in
fact, the above expression is always positive, i.e. the energy corresponding to logarithmic
electrodynamics is greater than the Maxwell energy. We can see this behavior in Fig. 4.
In fact, it is possible to see that the logarithmic energy density goes to infinity faster than
the Maxwell part. Then, since the logarithmic static energy is greater that the Maxwell
energy, the energy of a spherical shell within logarithmic electrodynamics will be greater
that 𝑄2/2ℛ. Thus, (1.12) will be satisfied within this regime of electrodynamics.

Figure 4 – The electrostatic energy density for logarithmic electrodynamics and the electrostatic energy
density for Maxwell electrodynamics.

3.3.2 Inequality between energy and angular momentum.

With respect to the inequality between energy and angular momentum in loga-
rithmic electrodynamics, since in this formulation of electrodynamics the field is finite
and bounded by

√
2𝛽, we will express our quantities using the definitions 𝛼 := |E|/

√
2𝛽

and 𝛾 := |B|/
√

2𝛽 as in the Born-Infeld case, where 𝛼 and 𝛾 are bounded from above
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by 1. With these definitions, it is possible to write the energy density for logarithmic
electrodynamics as

𝑢 = 𝛽2
[︂ 1
𝑉

(︁
2𝛼2 + 𝛼2𝛾2 cos2 𝜃

)︁
+ ln (𝑉 )

]︂
(3.26)

where 𝑉 = 1 + 𝛾2 − 𝛼2 − 𝛼2𝛾2 cos2 𝜃, and the angular momentum in the region Σ can be
written as

𝐽(Σ) =
∫︁

Σ
𝑑3𝑥

1
𝑉

[x × (E × B)] · k (3.27)

In order to analyze the relationship between these two quantities, we will follow the same
procedure as in the previous sections. Consequently, estimating the difference between
energy and angular momentum in the region Σ leads to the following inequality for the
difference

ℰ(Σ) − 1
ℛ

|𝐽(Σ)| ≥
∫︁

Σ
𝑑3𝑥

{︃
1
𝑉

(︁
2𝛼2𝛽2 + 𝛽2𝛼2𝛾2 cos2 𝜃

)︁
+ 𝛽2 ln (𝑉 ) − |x|

ℛ
1
𝑉

|E × B|
}︃

(3.28)
where we have performed the same steps for reducing the difference as in the previous
sections. Now, we use the inequality |E×B| ≤ (|E|2 +|B|2)/2, then, we can further reduce
the difference as,

ℰ(Σ) − 1
ℛ

|𝐽(Σ)| ≥
∫︁

Σ
𝑑3𝑥𝛽2

[︃
1
𝑉

{︃
𝛼2
(︃

2 − |x|
ℛ

)︃
− |x|

ℛ
𝛾2 + 𝛼2𝛾2 cos2 𝜃

}︃
+ ln (𝑉 )

]︃
(3.29)

Since 𝛼 and 𝛾 are bounded by 1, then 0 ≤ 𝑉 ≤ 2, it may be possible for the inequality to
not be valid when 𝑉 = 0 because ln(0) = −∞, however, the above integrand is positive
for every allowed field configuration. For instance, when the contribution of the integrand
is most negative (|x|/ℛ = 1), the above expression (3.29) reduces to

ℰ(Σ) − |𝐽(Σ)|
ℛ

≥
∫︁

Σ
𝑑3𝑥𝛽2

{︂ 1
𝑉

(1 − 𝑉 ) + ln (𝑉 )
}︂

(3.30)

then, taking the limit where 𝑉 → 0 leads

lim
𝑉 →0+

(︂ 1
𝑉

(1 − 𝑉 ) + ln(𝑉 )
)︂

= ∞

Consequently, we can state that the inequality (1.13) between energy and angular momen-
tum is satisfied within logarithmic electrodynamics. Note that in the limit when 𝑉 = 1,
the latter integrand for the case when E ⊥ B can be reduced to the form of the standard
Maxwell case, as well as it happened in the Born-Infeld case, thus, the same arguments
hold for the rigidity statement in this formulation of electrodynamics. It is possible to see
the behavior of the integrand present in (3.30) where |x| = ℛ in Fig. 5. The only point
where the difference between enegy and angular momentum is null is when 𝑉 = 1 which
means that all the rigidity conditions from Maxwell electrodynamics hold.
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Figure 5 – The integrand in the difference, 𝑓(𝑉 ), between energy and angular momentum in (3.30) as a
function of 𝑉 .

3.3.3 Inequality between charge, energy and angular momentum.

With respect to the complete inequality (1.17) between the charge, energy and an-
gular momentum, as well as in the other sections, we will use the results for the inequality
between the angular momentum and energy presented in Sec. 3.3.2 and an analogous de-
velopment for the inequality as for the other examples of NLED. We start form the total
energy, given by (3.26), with an added an subtracted term of |E|2/2

ℰ =
∫︁
R3

𝑑3𝑥𝛽2
[︃
2𝛼2

𝑉
+ ln (𝑉 ) + 1

𝑉
𝛼2𝛾2 cos2 𝜃 − 𝛼2

]︃
+
∫︁
R3

𝑑3𝑥
|E|2

2 (3.31)

We know that it is possible to split the scalar potential associated to the electric field in
two, and the last integral in the above expression can also be split in two domains, Σ and
R3 ∖ Σ. Then, by the construction of the scalar potentials exposed above, it is possible to
express the above expression as

ℰ = ℰ(Σ) + 𝑄2

2ℛ
+
∫︁
R3∖Σ

𝑑3𝑥𝛽2
[︂
𝛼2
(︂ 2

𝑉
− 1

)︂
+ 1

𝑉
𝛼2𝛾2 cos2 𝜃 + ln (𝑉 )

]︂
+

+
∫︁
R3∖Σ

𝑑3𝑥
1
2 |∇Φ1 + 𝜕𝑡A|2

(3.32)

then by using the result obtained in the previous section, we can bound the energy with
the angular momentum as

ℰ − 𝑄2

2ℛ
− |𝐽(Σ)|

ℛ
≥
∫︁

Σ
𝑑3𝑥𝛽2

[︃
1
𝑉

{︃
𝛼2
(︃

2 − 1 |x|
ℛ

)︃
− |x|

ℛ
𝛾2 + 𝛼2𝛾2 cos2 𝜃

}︃
+ ln (𝑉 )

]︃
+

+
∫︁
R3∖Σ

𝑑3𝑥𝛽2
[︂
𝛼2
(︂ 2

𝑉
− 1

)︂
+ 1

𝑉
𝛼2𝛾2 cos2 𝜃 + ln (𝑉 )

]︂
+
∫︁
R3∖Σ

𝑑3𝑥
1
2 |∇Φ1 + 𝜕𝑡A|2

(3.33)

Since the values of 𝑉 are bounded it is possible to see that the only term that could be
negative above (the integral in R3 ∖ Σ) is positive for every field configuration, in fact,
when 𝑉 = 0, the limit of the integrand is ∞. Consequently, logarithmic electrodynamics
satisfy the complete inequality (1.17).
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3.4 Counterexamples.
As we have discussed in the previous sections, a reasonable formulation of NLED

should include Maxwell electrodynamics as a limit in the Lagrangian. The NLEDs that we
have discussed in this chapter all possess the Maxwell limit for the low-field approximation;
the Born-Infeld lagrangian reduces to the Maxwell lagrangian when 𝐹/𝛽2 → 0, and also,
the energy densities for each of the cases were higher than the Maxwell one. Since the
inequality involving the charge and the energy is derivable from the electrostatic energy
density, it should be natural to think that a reasonable formulation of NLED might
have, indeed, a lower energy density than that of Maxwell, resulting on a violation of the
inequality (1.12).

A similar reasoning may also be valid for the inequality involving energy and
angular momentum. It is important to note that this inequality, a priori, is not derivable
from any physical principle, and in fact, a classical limit for this inequality would result
in a fulfillness of it for every system. All the NLEDs studied above satisfy the inequality
and there is no physical reason whatsoever to conjecture a violation of this inequality
by the arguments exposed above. However, it should be highlighted that this inequality
is also derivable from DEC. Given that DEC states that there cannot be superluminal
propagation of energy-momentum, in flat space this inequality is intimately related to
the causal structure of the theory. Then, the natural conjecture from the fact that the
inequality is a consequence of DEC is to argue that a violation of such inequality will be
given by a noncausal NLED.

This section is aimed to look for counterexamples of both inequalities based on
the arguments exposed here.

3.4.1 Counterexample for the inequality between charge and energy.

Given the behavior of the NLED studied above and the fact that all of them satisfy
the respective Maxwell limit, it is suitable to look for a counterexample resembling one
of the above electrodynamics, with the same Maxwell limit, but with a different series
expansion. Since in this section we are only interested in the electrostatic case, we will
only focus our attention to Lagrangians of the form ℒ(𝐹 ), then, a suitable electromagnetic
Lagrangian should always recover the term −𝐹/2 in a series expansion, even though we
will only focus in the electric part of the Lagrangian. Then, we can write the logarithmic
lagrangian (2.34) as a ℒ(𝐹 ) as

ℒ(𝐹 ) = −𝛽2 ln
(︃

1 + 𝐹

2𝛽2

)︃
∼ −𝐹

2 + 𝐹 2

8𝛽2 − 𝐹 3

24𝛽4 + ...

and we note that, indeed, the Larmor Lagrangian is recovered as a first order approxima-
tion. However, in principle, there is no reason why this functional form of a logarithmic
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Lagrangian must be unique. For example, we can try by inverting the order of signs in
the latter Lagrangian and expressing it as a series expansion

ℒ(𝐹 ) = 𝛽2 ln
(︃

1 − 𝐹

2𝛽2

)︃
∼ −𝐹

2 − 𝐹 2

8𝛽2 − 𝐹 3

24𝛽4 − ... (3.34)

remarkably, this last expression also possesses the adequate limit as a first order ap-
proximation, so, in principle there is no reason why this should be taken as a physically
reasonable Lagrangian. Therefore, we will begin by looking for the properties that a La-
grangian of this form possess. First of all, the energy density for this Lagrangian is

𝑢 = |E|2

1 − 𝐹
2𝛽2

− 𝛽2 ln
(︃

1 − 𝐹

2𝛽2

)︃
(3.35)

Now arises the question on whether this Lagrangian provides a bound for the electric
field, in order to analyze this we must see how is the constitutive relation between D and
E for the electrostatic regime. Then, for the electrostatic regime we have

D = E
1 + |E|2

2𝛽2

(3.36)

for a point charge, 𝑒, by virtue of Gauss theorem we have D = 𝑒/4𝜋𝑟2r̂, then we can
obtain the electric field at the point 𝑟 = 0 by inverting (3.36), nevertheless, the field at
that point becomes complex. Since we are not interested particularly in a theory with
a regular electric field at 𝑟 = 0 but a modification of Maxwell electrodynamics we can
impose a minimum radius for the electron within this theory. Then, by inverting the
constitutive relation (3.36) for the point charge we get

|E| =
1 ±

√︁
1 − 2𝑞2/𝑟4𝛽2

𝑞/𝑟2𝛽2 =
√

2𝛽𝑟2

⎛⎝1 ± 1
𝑟2

√︁
𝑟4 − 𝑟4

0

𝑟2
0

⎞⎠ (3.37)

where 𝑞 = 𝑒/4𝜋 and 𝑟2
0 :=

√
2𝑄/𝛽. Consequently, evaluating the field at the point 𝑟 = 𝑟0

leads to |E|𝑟0 =
√

2𝛽, which coincides with the value obtained for the standard logarith-
mic electrodynamics in Sec. 2.3.3. Note that with this definition it is not necessary to
choose a sign for the solution of the resulting quadratic equation. Now that we know that
logarithmic electrodynamics return a finite field for a given critical radius, let us see how
the energy density of this alternative formulation behaves with respect to the standard
(Maxwell) energy density. It can be seen (Fig. 6) the electrostatic energy density for this
modification of logarithmic electrodynamics is smaller than the Maxwell counterpart for
strong fields. Therefore, since the equality in the inequality between charge and energy
in Maxwell electrodynamics is characterized by the charge distribution of a spherical thin
shell, which has the variational characterization of possessing the minimal electrostatic
energy, and the modified Lagrangian exposed here leads to a lower energy density than
in the Maxwell case, the inequality between charge and energy (1.12) will no longer be
satisfied for every field configuration in this formulation.
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In order to clarify the previous statement let us calculate the binding energy for
a spherical thin shell of radius 𝑟0 and charge 𝑄 within Maxwell electrodynamics and this
modified version of logarithmic electrodynamics. For Maxwell electrodynamics we know
that the binding energy for a spherical shell of radius 𝑟0 is

ℰM = 𝑄2

8𝜋𝑟0
∼ 0.1186

√︁
𝑄3𝛽 (3.38)

For the case of modified logarithmic electrodynamics we get that the binding energy for
a thin shell of charge 𝑄 and radius 𝑟0 is

ℰlog =
∫︁ ∞

𝑟0
𝑟2𝑑𝑟

⎧⎨⎩ |E|2

1 + |E|2
2𝛽2

− 𝛽2 ln
(︃

1 + |E|2

2𝛽2

)︃⎫⎬⎭ =
∫︁ ∞

𝑟0
𝑑𝑟

⎧⎨⎩ 𝑄2/4𝜋𝑟2

1 + 𝑄2

8𝜋𝛽2𝑟4

− 𝛽2𝑟2 ln
(︃

1 + 𝑄2

8𝜋𝛽2𝑟4

)︃⎫⎬⎭
=
√︃

𝑄3𝛽

8𝜋
√

2

∫︁ ∞
√

2
𝑑𝑦

⎧⎨⎩ 2
𝑦2 + 1

𝑦2
− 𝑦2 ln

(︃
1
𝑦4 + 1

)︃⎫⎬⎭ ∼ 0.1108
√︁

𝑄3𝛽

(3.39)

where we have made the substitution 𝑦 := 𝑟
√︁

4𝜋
√

2𝛽/𝑄. Finally, we can compare both
results obtained in (3.38) and (3.39),

ℰM > ℰlog (3.40)

and proving that in fact, for this case the Maxwellian energy of a spherical thin shell is
greater than the logarithmic one. Since the equality for the bound between energy and
charge (1.12) is attained when the field is the one given by a spherical thin shell, the
inequality will be violated within this modified logarithmic electrodynamics.

Figure 6 – The electrostatic energy density for modified logarithmic electrodynamics and the electrostatic
energy density for Maxwell electrodynamics.

Now, does the violation of one of the inequalities implies the violation of the other
inequalities? The worked inequalities only have in common the energy, thus, it is natu-
ral to expect that the violation of one partial inequality will have no consequences on
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the behavior of the other partial inequality. In order to see this, we will evaluate the
inequality between energy and angular momentum for this modified logarithmic electro-
dynamics. The energy density expressed in terms of the normalized numbers 𝛼 and 𝛾 for
this electrodynamics is

𝑢 = 2𝛼2𝛽2

1 − 𝛾2 + 𝛼2 − 𝛽2 ln
(︁
1 − 𝛾2 + 𝛼2

)︁
(3.41)

while the angular momentum for this electrodynamics reads,

𝐽(Σ) =
∫︁

Σ
𝑑3𝑥

1
1 − 𝛾2 + 𝛼2 [x × (E × B)] · k (3.42)

With this quantities in hand, we proceed in the same way as in the other examples, then,
the estimate for the difference between energy and angular momentum in the region Σ is

ℰ(Σ) − 1
ℛ

|𝐽(Σ)| ≥
∫︁

Σ
𝑑3𝑥

{︃
|E|2

1 − 𝛾2 + 𝛼2 − 𝛽2 ln
(︁
1 − 𝛾2 + 𝛼2

)︁
− |x|

ℛ
1

1 − 𝛾2 + 𝛼2 |E × B|
}︃

(3.43)
which can be further minimized as

ℰ(Σ) − 1
ℛ

|𝐽(Σ)| ≥
∫︁

Σ
𝑑3𝑥𝛽2

[︃
1

1 − 𝛾2 + 𝛼2

{︃
𝛼2
(︃

2 − |x|
ℛ

)︃
− |x|

ℛ
𝛾2
}︃

− ln
(︁
1 − 𝛾2 + 𝛼2

)︁]︃
(3.44)

Which is possible to see that is always positive. In fact, the same conclusions as in all the
cases can be obtained in this case: when 𝛼 = 𝛾 then the integrand reduces exactly to the
one of Maxwell electrodynamics, which ensures us that the rigidity statement will hold
too. Thus, this modified logarithmic Lagrangian satisfies the inequality between energy
and angular momentum.

3.4.2 Counterexample for the inequality between energy and angular momen-
tum.

The quest for a counterexample of the inequality between energy and angular
momentum based on the ground of NLED is obscure, since all the worked examples
preserve such inequality, and a priori there is no physical reason to conjecture such an
inequality nor to conjecture the violation of it. However, it is very important to note that
the inequality can be obtained as a consequence of DEC [20], due to the importance of
this result, the explicit calculation can be found in Appendix A.

Since the DEC is associated with the energy-momentum vector being causal, in flat
space it is directly associated with causal structure of the theory. Thus, any causal theory
will, indeed, satisfy the inequality between energy and angular momentum. As nonlinear
photons propagate along effective null geodesics then it is expected that every causal
theory, i.e. with effective null geodesics either null or timelike in the Minkowski background
will satisfy the inequality. This leads to the following question: is the inequality between
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energy and angular momentum governed univocally by DEC? If that were the case, then
any noncausal theory of NLED will violate the given inequality. Thus, if that were the case,
such an inequality will provide us of a strong criterion for discerning between physically
viable (causal) theories, and pathological, unphysical (noncausal) ones.

In order to prove whether the assumption of the inequality ℰ(Σ)ℛ ≥ |𝐽(Σ)| is
related to the DEC, and consequently to a well behaved causal structure, we will begin
by assessing the causality conditions for NLED as given by Shabad in [4], as well as by
Goulart and Perez Bergliaffa in [28]. For the case where ℒ = ℒ(𝐹 ) the causality principle
requires

ℒ𝐹 ≤ 0 (3.45)

together with the unitarity principle

ℒ𝐹 + ℒ𝐹 𝐹 ≤ 0 (3.46)

which requires that the residue of the propagator be positive. Shabad has showed that
these requirements are analogous to requiring DEC to hold.

Hence, it should be possible to probe lagrangians where the causality is violated
for all field configurations, as well as lagrangians where the causality is violated only
for certain field configurations. The aim of this section is to analyze the behavior of the
inequality (1.13) in the case where noncausal NLED is present.

3.4.2.1 Noncausal lagrangian.

A strong noncausal lagrangian violates (3.45) for every field configuration. Then, it
should be suitable to probe a lagrangian with a similar structure as the Born lagrangian,
for example

ℒ = 𝛽2
(︃√︃

1 + 𝐹

𝛽2 − 1
)︃

= 𝛽2
(︁√

𝑈 − 1
)︁

(3.47)

with 𝑈 := 1+ |B|2
𝛽2 − |E|2

𝛽2 . Note that despite being very alike the Born-Infeld lagrangian, this
lagrangian does not reduce correctly to the Larmor lagrangian for the adequate field limit.
Moreover, the causality condition (3.45) is broken since ℒ𝐹 = 1

2
√

𝑈
> 0. Furthermore, the

energy density and angular momentum for this lagrangian read

𝑢 = −|E|2√
𝑈

+ 𝛽2 − 𝛽2
√

𝑈 (3.48)

𝐽(Σ) =
∫︁

Σ
𝑑3𝑥

1√
𝑈

(x × (B × E)) · k (3.49)

Then, estimating the difference between energy and angular momentum leads to

ℰ(Σ) − |𝐽(Σ)|
ℛ

=
∫︁

Σ
𝑑3𝑥

𝛽2
√

𝑈

(︁
−𝛼2 +

√
𝑈 − 𝑈

)︁
− 1

ℛ

⃒⃒⃒⃒
⃒
∫︁

Σ
𝑑3𝑥

1√
𝑈

(x × (B × E)) · k
⃒⃒⃒⃒
⃒ (3.50)
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which we can further estimate by the same ways as it has been done before: first we will
use the inequality |

∫︀
𝑓(𝑥)| ≤

∫︀
|𝑓(𝑥)| where the equality holds when 𝑓(𝑥) is positive on

the integration domain, and later use the inequality |a · b| ≤ |a||b|, the fact that k is a
unitary vector, and the inequality |a × b| ≤ |a||b| for the remaining product, leaving the
estimate as

ℰ(Σ) − |𝐽(Σ)|
ℛ

≥
∫︁

Σ
𝑑3𝑥

𝛽2
√

𝑈

(︃√
𝑈 − 1 − 𝛾2 − |x|

ℛ
|B × E|

𝛽2

)︃
(3.51)

now we can make a further estimation, as before, |a × b| ≤ (|a|2 + |b|2)/2 and, with the
conventions for 𝛼 and 𝛾 we obtain

ℰ(Σ) − |𝐽(Σ)|
ℛ

≥
∫︁

Σ
𝑑3𝑥

𝛽2
√

𝑈

(︃√
𝑈 − 1 − 𝛾2 − |x|

ℛ
𝛼2 + 𝛾2

2

)︃
(3.52)

Note that the integrand in the last expression may be negative for certain field con-
figurations, however since we are only estimating the difference there is, up to now, no
straightforward conclusion regarding the overall sign of the integral. Nevertheless, it is still
possible to assume that all the inequalities in the above lines will be indeed equalities,
namely: the integrand in the absolute value in (3.50) is always positive, x is perpendicular
to the Poynting vector, and, furthermore, the fields E and B are perpendicular and have
the same magnitude. With the fulfillment of these assumptions, then the total estimate
between the energy and angular momentum is

ℰ(Σ) − |𝐽(Σ)|
ℛ

= −
∫︁

Σ
𝑑3𝑥𝛽2

(︃
𝛾2
(︃

1 + |x|
ℛ

)︃)︃
< 0 (3.53)

where the overall sign of the integral is negative for every field configuration such that
|E| = |B|. However, this result implies the particularity that 𝐹 = 0, then it should also be
suitable to perform a similar estimative for the case of 𝐹 ̸= 0, i.e. without the estimative
done in the last step. Such a procedure leads to the result

ℰ(Σ) − |𝐽(Σ)|
ℛ

=
∫︁

Σ
𝑑3𝑥

𝛽2
√

𝑈

(︃√
𝑈 − 1 − 𝛾2 − |x|

ℛ
𝛼𝛾| sin 𝜃|

)︃
(3.54)

which is possible to see that is, in fact, negative for every field configuration, since 𝑈 > 1
implies 𝛾2 > 𝛼2 and

√
𝑈 < 𝑈 + 𝛾2 and when 𝑈 < 1,

√
𝑈 < 1.

This case constitutes an example of how the inequality (1.13) can be violated.
Nevertheless, the present example represents a physically unrealizable example and an
extremely pathological one, because besides it violates the causality for every field config-
uration, it also violates the WEC, which means the energy density for such a lagrangian
is mostly negative. Then, it is suitable to see how is the behavior of the inequality for a
lagrangian that is noncausal only for certain field configurations.
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3.4.2.2 Weakly noncausal lagrangian.

In order to find a partially noncausal lagrangian, due to condition (3.45), it is
suitable that ℒ𝐹 be a linear combination of constants and the invariant 𝐹 . Following this,
one possible lagrangian may be the one proposed by Kruglov in [45], which reads

ℒ = −𝐹

2 𝑒
− 𝐹

2𝛽2 (3.55)

this particular lagrangian constitutes a modification of exponential electrodynamics pre-
sented before, with the particularity that Maxwell electrodynamics is recovered only in
the zeroth order of the expansion for the exponential. The derivative of this lagrangian is
given by

ℒ𝐹 = 1
2𝑒

− 𝐹
2𝛽2

(︃
−1 + 𝐹

2𝛽2

)︃
(3.56)

Since the requirement of causality is ℒ𝐹 ≤ 0, this particular lagrangian has a causality
bound given by

|B|2 ≤ 2𝛽2 + |E|2 (3.57)

note that this is a bound only on the magnetic field, the electric field is unbounded with
respect to causality conditions. Because a causal theory satisfies directly the inequality in
question, we will only focus our following study in the sector where 2𝛽2 < 𝐹 , i.e. ℒ𝐹 > 0.
Therefore, we begin by calculating the energy density for this type of electrodynamics,
which is given by

𝑢 = 𝑒
− 𝐹

2𝛽2

(︃
|E|2 + |B|2

2 − 𝐹

2𝛽2 |E|2
)︃

Note that the causality condition does not always imply that the energy density will be
positive, however, for this particular example the causality condition does imply the non-
negativity of the energy density, since for the case where 𝐹 = 2𝛽2, which is in accordance
to ℒ𝐹 = 0, the energy density will be 𝑢 = 𝐹/2 = 𝛽2, which is positive. The angular
momentum is

𝐽(Σ) =
∫︁

Σ
𝑑3𝑥𝑒

− 𝐹
2𝛽2

(︃
𝐹

2𝛽2 − 1
)︃

[x × (B × E)] · k

Then, the difference between energy and angular momentum in the region Σ is given by

ℰ(Σ)−|𝐽(Σ)|
ℛ

=
∫︁

Σ
𝑑3𝑥𝑒

− 𝐹
2𝛽2

(︃
|E|2 + |B|2

2 − 𝐹

2𝛽2 |E|2
)︃

−
⃒⃒⃒⃒
⃒
∫︁

Σ
𝑑3𝑥𝑒

− 𝐹
2𝛽2

(︃
𝐹

2𝛽2 − 1
)︃

[x × (B × E)] · k
⃒⃒⃒⃒
⃒

(3.58)
which, by using the same inequalities for the absolute value of the integral |

∫︀
𝑓(𝑥)| ≤∫︀

|𝑓(𝑥)|, and the vector triangular inequalities and noting that since we are treating the
case where ℒ𝐹 > 0, then⃒⃒⃒⃒
⃒
∫︁

Σ
𝑑3𝑥𝑒

− 𝐹
2𝛽2

(︃
𝐹

2𝛽2 − 1
)︃

[x × (B × E)] · k
⃒⃒⃒⃒
⃒ ≤

∫︁
Σ

𝑑3𝑥𝑒
− 𝐹

2𝛽2

(︃
𝐹

2𝛽2 − 1
)︃

|x × (B × E) · k|
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where the equal will hold when |x × (B × E) · k| is positive in Σ. Consequently, we can
write the estimative as

ℰ(Σ) − |𝐽(Σ)|
ℛ

=
∫︁

Σ
𝑑3𝑥𝑒

− 𝐹
2𝛽2

(︃
|E|2 + |B|2

2 − 𝐹

2𝛽2 |E|2 − 1
ℛ

(︃
𝐹

2𝛽2 − 1
)︃

|x × (B × E) · k|
)︃

(3.59)

≥
∫︁

Σ
𝑑3𝑥𝑒

− 𝐹
2𝛽2

(︃
|E|2 + |B|2

2 − 𝐹

2𝛽2 |E|2 − |x|
ℛ

(︃
𝐹

2𝛽2 − 1
)︃

|B × E|
)︃

(3.60)

We know that 𝐹 > 2𝛽2, then we will assign the define 𝑎 := 𝐹/2𝛽2, such that 𝑎 > 1,
leaving the integral

≥
∫︁

Σ
𝑑3𝑥𝑒

− 𝐹
2𝛽2

{︃
|E|2 + |B|2

2 + |x|
ℛ

|E||B|| sin 𝜃| − 𝑎

(︃
|E|2 + |x|

ℛ
|E||B|| sin 𝜃|

)︃}︃
(3.61)

It is possible to see that the certain noncausal field configurations can, indeed, preserve the
inequality between energy and angular momentum. This particular behavior as compared
with the causality condition for different values of 𝜃 can be seen in Fig. 7.

Figure 7 – The values where the integrand in (3.61) is positive (blue region) compared to the values
where the causality condition (3.57) holds (red region) for (a) 𝜃 = 0 and (b) 𝜃 = 𝜋/2.

A very interesting and peculiar consequence of the inequality between energy and
angular momentum (1.13) is the fact that it can be derived as a consequence of DEC. It is
particularly encouraging to think that such a condition could allow us to have a criterion
whether a physical theory may be valid or not3. However, as we have seen in this section
such an inequality can also be attained even when noncausal propagation is present. As
for the inequality in question allows pathological cases to occur it should be necessary to
search for a stricter inequality such that DEC can univocally determine the validity of it.

3.5 Arbitrary ℒ(𝐹 ) Electrodynamics.
We have seen examples of NLED that satisfy both of the inequalities (1.12) and

(1.13), and counterexamples of NLED that violate one of those inequalities. It is expected
3 In the sense that all reasonable matter fields obey DEC.
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that the fulfillment of both the inequalities implies the fulfillment of the full inequality
(1.17). Nevertheless, we have seen that such an assumption might not hold for every case
since there are configurations in exponential electrodynamics for which the electromag-
netic energy density is smaller than the electrostatic energy density, which allows for the
complete inequality (1.17) to be violated despite the partial inequalities being satisfied.
Then, it should be necessary to obtain which extra conditions must be imposed in order
for the complete inequality to hold.

In the present section we will begin deriving general requirements for the inequality
between energy and angular momentum to hold within a general NLED, then, using the
result obtained we will obtain the general requirements for the inequality between energy,
charge and angular momentum to hold.

3.5.1 Inequality between energy and angular momentum.

Since the inequality between energy and angular momentum is purely quasi-local,
it follows that all quantities involved in the inequality must be evaluated within a region
in space, Σ. The direct way of evaluating such inequalities is by comparing them, as we
have done in the previous examples in this chapter. For arbitrary NLED the difference
between energy and angular momentum is

ℰ(Σ) − 1
ℛ

|𝐽(Σ)| =
∫︁

Σ
−2ℒ𝐹 |E|2 − ℒ(𝐹 ) − 1

ℛ

⃒⃒⃒⃒∫︁
Σ

2ℒ𝐹 [x × (B × E)] · k
⃒⃒⃒⃒

(3.62)

Then, we can perform the same estimations for the absolute value of the integral and the
vector triangular inequalities, obtaining

≥
∫︁

Σ
−2ℒ𝐹 |E|2 − ℒ(𝐹 ) − 1

ℛ
2 |ℒ𝐹 | |x||B||E| (3.63)

Since the causality condition imposes a sign on ℒ𝐹 but does not guarantees that the
energy density will be nonnegative, the reasonable situation to evaluate the integral in
(3.63) is where the causality is assured. However, as we have seen in the previous section,
there exist noncausal theories that can satisfy the inequality between energy and angular
momentum, then it is also important to study the case where ℒ𝐹 > 0. Then, |ℒ𝐹 | must
be evaluated as

|ℒ𝐹 | =

⎧⎪⎨⎪⎩ℒ𝐹 if ℒ𝐹 ≥ 0,

−ℒ𝐹 if ℒ𝐹 < 0,

We get a set of two inequalities depending on the overall sign of ℒ𝐹 , which can be stated
as follows, ∫︁

Σ
𝑑3𝑥

{︃
−2ℒ𝐹

(︃
|E|2 ± |x|

ℛ
|B||E|

)︃
− ℒ(𝐹 )

}︃
≥ 0 (3.64)

Where the sign inside the parenthesis is positive for ℒ𝐹 ≥ 0 and negative for ℒ𝐹 < 0. If the
integrand in (3.64) is positive then the inequality between energy and angular momentum
(1.13) will be immediately satisfied.
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3.5.2 Inequality between energy, charge and angular momentum.

For deriving the conditions that an arbitrary NLED lagrangian of the form ℒ(𝐹 )
must accomplish in order to satisfy the complete inequality between energy, charge and
angular momentum (1.17) we will start by obtaining the total energy in R3 for an arbitrary
NLED from the energy-momentum tensor presented in (2.43) and add and subtract the
term |E|2/2 corresponding to the Maxwell electrostatic energy density. Then, the energy
is

ℰ =
∫︁
R3

𝑑3𝑥

{︃
|E|2

2 − 2ℒ𝐹 |E|2 − ℒ(𝐹 ) − |E|2

2

}︃
(3.65)

Since the Bianchi identities remain unaltered for NLED of the form ℒ(𝐹, 𝐺), it is always
possible to perform the same decomposition of the electric and magnetic fields in terms
of the scalar potential Φ and the vector potential A. Furthermore, the construction of the
potentials performed in the other sections will also be valid within general NLED, then
it is possible to express the electric field in terms of two potentials Φ0 and Φ1 and then
separate the integral corresponding to the positive contribution of the Maxwell part in
the domains Σ and R3 ∖ Σ obtaining

ℰ = 𝑄2

2ℛ
+
∫︁

Σ
𝑑3𝑥

|E|2

2 +
∫︁
R3∖Σ

𝑑3𝑥
|∇Φ1 + 𝜕𝑡A|2

2 +
∫︁
R3

𝑑3𝑥
{︂

−|E|2
(︂

2ℒ𝐹 + 1
2

)︂
− ℒ(𝐹 )

}︂
(3.66)

It is possible to split the last integral in the same two domains where the other integrals
are evaluated, then, the integral evaluated in the region Σ will be exactly the energy in
that region ℰ(Σ) leaving

ℰ = 𝑄2

2ℛ
+ ℰ(Σ) +

∫︁
R3∖Σ

𝑑3𝑥

{︃
|∇Φ1 + 𝜕𝑡A|2

2 − |E|2
(︂

2ℒ𝐹 + 1
2

)︂
− ℒ(𝐹 )

}︃
(3.67)

Now we use the result obtained in (3.64) to bound ℰ(Σ) with |𝐽(Σ)|/ℛ, obtaining,

ℰ − 𝑄2

2ℛ
− |𝐽(Σ)|

ℛ
≥
∫︁
R3∖Σ

𝑑3𝑥

{︃
|∇Φ1 + 𝜕𝑡A|2

2 − |E|2
(︂

2ℒ𝐹 + 1
2

)︂
− ℒ(𝐹 )

}︃
+

+
∫︁

Σ
𝑑3𝑥

{︃
−2ℒ𝐹

(︃
|E|2 ± |x|

ℛ
|B||E|

)︃
− ℒ(𝐹 )

}︃ (3.68)

From the condition obtained in the previous section we know that the inequality between
energy and angular momentum will only be valid when the integral evaluated in Σ is
positive, then the other integral must also be positive in order for the inequality to be
satisfied. Then, since the first term in the remaining integral evaluated in R3 ∖ Σ is also
nonnegative, we may impose the following condition,∫︁

R3∖Σ
𝑑3𝑥

{︁
−2|E|2ℒ𝐹 − ℒ(𝐹 )

}︁
≥
∫︁
R3∖Σ

𝑑3𝑥
|E|2

2 (3.69)

Which can finally be rewritten as,

ℰℒ(𝐹 )(R3 ∖ Σ) ≥ ℰMs(R3 ∖ Σ) (3.70)
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where ℰMs is the electrostatic energy form Maxwell electrodynamics and ℰℒ(𝐹 ) is the
electromagnetic energy for NLED. Then, if the inequality (3.70) holds as well as the
inequality between energy and angular momentum (1.13) then the complete inequality
(1.17) will be valid within NLED, hence, the fulfillment of the partial inequality between
energy and charge (1.12) is not needed to prove the complete inequality. It is important
to note that the inequality (3.70) obtained in this section relates the total electromagnetic
energy for a NLED with the Maxwell electrostatic energy in the region Σ. As it has
been discussed when treating the inequality between energy and charge, it is natural
to assume that a NLED with bigger electrostatic energy density than the Maxwellian
one will immediately satisfy the inequality 2ℰℛ ≥ 𝑄2. However, NLED may reproduce
self-interaction phenomena, and, in general, it is possible that the total electromagnetic
energy of a NLED is smaller than the electrostatic part. This fact will influence directly
in the validity of the static inequality between ℰ and 𝑄. Consequently, if the inequality
between energy and charge holds within a NLED in the electrostatic regime, then for
the inequality to be valid in the electrodynamic regime, the total electromagnetic energy
must be necessarily greater or equal than the electrostatic part

ℰℒ(𝐹 ) ≥ ℰℒ(𝐹 )s ≥ ℰMs

This inequality in fact offers a stronger restriction for NLED than the previous inequality
2ℰℛ ≥ 𝑄2 as the fulfillment of the inequality between 𝑄 and ℰ does not always imply
the fulfillment of the total inequality, while the inequality (3.70) is a necessary condition
for the fulfillment of the complete inequality.



67

4 Conclusions and Perspectives.

Geometric inequalities represent a powerful framework for obtaining bounds for
different classes of theories. Spacetime theories constitute a particular example of field
theories for which geometry is embedded in spacetime, hence, it is natural to expect
that geometric inequalities arise within these theories. Then, it is natural to conjecture
the validity of such inequalities under certain conditions both in spacetime theories and
in other field theories. As for Bekenstein’s inequality, despite it being formulated for
sustaining the GLS, it is important to note that throughout the years it has proved to be
more important providing universal arguments, because such inequality is respected both
in the classical domain as well as in the quantum domain.

When fixing the entropy in Bekenstein’s bounds to zero we get non-trivial relations
between dynamical variables, which are not expected to hold from classical arguments. It
is necessary to make assumptions about the relation between such dynamical variables in
order to get analogies in classical mechanics, for example, the case of slow rotation and the
deduction of the minimum rotational energy to the total system’s energy. By performing
these analogies we infer that in fact, such inequalities may be considered too loose, since
the ‘minimum’ rotational energy is a fraction of the actual minimum rotational energy
for a rigid body.

We have provided proofs for each of the inequalities within particular examples
of NLED in the literature, where each of the partial inequalities holds. In particular,
these proofs have allowed us to conjecture the regime of validity of each of the inequal-
ities when nonlinear regimes of electrodynamics are present. Then we have provided a
counterexample for each of the partial inequalities. It is important to note that each of
the counterexamples were due to Lagrangians with the adequate limit for weak fields. In
particular, the violation of the inequality between energy and charge is given by a non-
linear logarithmic Lagrangian that represents a modification of the original logarithmic
electrodynamics presented by Gaete and Helayël [38] which recovers the same limit for
weak fields, such a Lagrangian provides a smaller energy density than the one given by the
Larmor Lagrangian. Hence, the physical assumption behind the conjecture of violation
of the inequality is clear: the inequality will be violated when a theory possesses a lower
energy than in the Maxwell case, where the inequality holds.

The quest for a counterexample for the inequality between energy and angular
momentum was far from obvious from the physical point of view. There does not exist
any physical assumption derived from the nature of nonlinear Lagrangians in order to
conjecture the violation of such an inequality. However, we have used the fact that the
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inequality can indeed be derived as a consequence of the Dominant Energy Condition.
Therefore, it is reasonable to check if the inequality is violated when a physical theory
does not satisfy DEC. We have seen that the violation of DEC is, indeed, necessary for
the violation of the inequality. Furthermore, we have showed that DEC is not a neces-
sary condition for the fulfillment of the inequality but only a sufficient one. This fact is
very important since it has allowed us to provide an example of noncausal propagation of
light present in the literature [45] where the inequality is satisfied for particular cases of
noncausal propagation. The inequality between energy and angular momentum seemed to
offer a strong criterion for discerning between physically reasonable theories and unphys-
ical ones, nevertheless, the fact that this inequality is not univocally determined by DEC
has the consequence that this inequality is not strict enough because pathological theo-
ries satisfy the inequality. We conclude that the inequality between energy and angular
momentum is not directly connected with causality.

Finally, we have shown that the fulfillment of both partial inequalities does not
assure the fulfillment of the complete inequality between energy, charge and angular mo-
mentum in NLED. This is due to the fact that, in general, there may appear situations
arising from NLED where the total electromagnetic energy density is smaller than the
electrostatic energy density. Thus, we have derived an additional inequality that must be
satisfied for NLED to satisfy the complete inequality. Furthermore, the general require-
ments for the fulfillment of the complete inequality are that the inequality between energy
and angular momentum and the new inequality must both hold.

There is a broad range of future developments that can be addressed from this
work. First of all, it is particularly interesting that the original arguments behind Beken-
stein’s inequalities are of gravitational origin, despite it is extremely difficult to have a
notion of radial distance in curved spacetimes and the only proofs of gravitating objects
satisfying the inequalities are for black holes. Since we have proved that there exist NLED
that satisfy such inequalities, it could be interesting to analyze the behavior of such in-
equalities when an effective geometry is taken into account. Basically, it is possible to
’covariantize’ the field equations for NLED, such that the covariant equations are analo-
gous to the linear case but the covariant derivative is taken with respect to an effective
metric. The effective metric arises when analyzing photon propagation in NLED, non-
linear photons indeed propagate along effective null geodesics, rather than null geodesics
in the Minkowski background as linear photons do, this gives rise to the phenomenon
of birefringence and the possibility of having noncausal theories of NLED (where the
effective light cones are defined outside the Minkowski light cone). With an effective ge-
ometry approach it could be possible to provide proofs of the inequalities due to analog
gravitational scenarios, which might provide analogies for purely gravitational systems.

Second, it has been proved by Schiffer and Bekenstein [14] that the free scalar
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and electromagnetic fields satisfy the original bound (1.5), nevertheless up to now there
is no proof for these fields’ entropy satisfying the complete inequality. Then, the possible
developments regarding this are twofold: (i) provide a proof of the complete inequality
for free fields and (ii) provide a proof of the original bound (1.5) for fields generated by
NLED.

Third, the universality assumptions behind Bekenstein’s inequalities provide a
wide range of work for proving such inequalities in scenarios different than electromag-
netism or general relativity.

Last, since the inequality between energy and angular momentum is somehow
connected to DEC but it allows pathological theories to satisfy the inequality, it is partic-
ularly encouraging the try to strengthen the inequality in order for it to only be univocally
determined for causal theories, i.e. only to theories that satisfy DEC.
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APPENDIX A – The Inequality ℛℰ(Σ) ≥
|𝐽(Σ)| from the DEC.

The inequality (1.13), ℰ(Σ)ℛ ≥ |𝐽(Σ)|, can be derived as a consequence of the
Dominant Energy Condition (DEC)

𝑇𝜇𝜈𝜉𝜇𝑙𝜈 ≥ 0 (A.1)

for every 𝜉𝜇 and 𝑙𝜇 causal vectors. Then, choosing an adequate coordinate system where
𝜉𝜇 = 𝛿𝜇

0 is a timelike vector, and constructing the null vector 𝑙𝜇 = 𝛿𝜇
0 − 𝜂𝜇 where 𝜂𝜇 = 𝜂𝑖

is a spacelike vector that represents spatial rotations,

𝜂𝑖 = 𝜖𝑖𝑗𝑘𝑘𝑗𝑥𝑘

and, consequently, 𝜂𝜇 = 𝜂𝜇/
√

𝜂, is a unitary vector and 𝜂 = −𝜂𝛼𝜂𝛼 is the square norm
of this vector. Then, it is easy to show that 𝑙𝜇𝑙𝜇 = 0 since 𝛿𝜇

0 𝜂𝜇 = 0. By applying this
construction into the DEC (A.1) we get

𝑇𝜇𝜈𝜉𝜇𝜉𝜈 ≥ 𝑇𝜇𝜈𝜉𝜇𝜂𝜈 (A.2)

Now, since 𝜂𝜇 depends linearly on 𝑥, the distance to the axis, then the square norm, 𝜂,
will be bounded by

𝜂 ≤ ℛ2

being ℛ the minimum sphere that encloses Σ. Then, integrating both sides of (A.2) in
the domain Σ we get ∫︁

Σ
𝑇𝜇𝜈𝜉𝜇𝜉𝜈 ≥

∫︁
Σ

𝑇𝜇𝜈𝜉𝜇𝜂𝜈 (A.3)

≥ 1
ℛ

∫︁
Σ

𝑇𝜇𝜈𝜉𝜇𝜂𝜈 (A.4)

Finally, by using the definitions for 𝜉𝜇 and 𝜂𝜇, we obtain

ℰ(Σ) ≥ 1
ℛ

𝐽(Σ) (A.5)

which is the desired inequality.

Nevertheless, it is interesting to point out that, from (A.2), such an inequality is
indeed valid at every point. This is a striking consequence of the DEC, since it directly
relates the energy and angular momentum densities at each and every point. However,
as far as we know, there does not exist a good notion of angular momentum as a global
quantity, and that may be the reason behind defining quasi-local quantities from the
DEC. Moreover, the equality will hold when 𝑇𝜇𝜈𝜉𝜇𝑙𝜈 = 0, which means that 𝑇 𝜇𝜈𝜉𝜇 is a
null vector and is zero everywhere but at the point where 𝜂 = ℛ2.
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