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Abstract

The work aims effective and low-dimensional systems. Some different contexts

involving gravitational and electromagnetic interactions are investigated. The elec-

tromagnetic one approaches bosonic and fermionic Effective Quantum Field Theories

non-minimally coupled in three spacetime dimensions submitted to the expansion of

Foldy-Wouthuysen Transformation, what generates (non-)relativistic corrections. A

study of the effects of an external electromagnetic field derived from the Maxwell-

Chern-Simons Electrodynamics on the obtained interactions are executed, as well as

the impact produced by the dimensional reduction on expanded higher dimensional

fermionic system in comparison to the low-dimensional one. In the scenario of gravi-

tational effective model, scalar and fermionic particle scatterings reveal inter-particles

interactions beyond monopole-monopole, leading to velocity and spin contributions,

and the results are compared to a modified Electrodynamics effective model. A non-

perturbative model resourcing to Casual Dynamics Triangulation data is adopted to

serve as consistency check of the potentials resultants. Low-dimensional Maxwell-

Higgs effective models with modified kinetic terms are studied, submitting them to a
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Bogomol’nyi prescription-type for calculation of inferior (non-trivial) bound energy

and the self-dual equations. Vortex solutions for gauge field non-specified by an

ansatz are achieved and their topological feature detailed.

Keywords: low-dimensional phenomenology; non-minimum couplings; quantum

gravity; vortices.
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Resumo

O trabalho é voltado para sistemas efetivos e de baixa dimensionalidade. Alguns

diferentes contextos são investigados, incluindo Teorias de Campos Quânticos Efe-

tivos bosônicos e fermiônicos não-minimamente acoplados em três dimensões espaco-

temporais submetidos a expansão da Transformação de Foldy-Wouthuysen, o que

gera correções (não-)relativísticas. Uma análise dos efeitos de um campo eletro-

magnético externo derivado da Eletrodinâmica de Maxwell-Chern-Simons sobre as

interações obtidas é considerada, da mesma forma que os impactos produzidos por

uma redução dimensional sobre o sistema fermiônico de dimensionalidade maior em

comparação com o de baixa dimensionalidade. No cenário de modelo efetivo gravita-

cional, espalhamentos de partículas escalares e fermiônicas revelam interações entre

partículas além de monopolo-monopolo, levando a contribuições de velocidade e spin,

e os resultados são comparados aos de um modelo efetivo de Eletrodinâmica modi-

ficada. Um modelo não-perturbativo recorrendo a dados de Triangulação Dinâmica

Causal é adotado para servir como cheque de consistência dos potenciais resultantes.

Modelos efetivos de Maxwell-Higgs de baixa dimensão com termos cinéticos modifi-
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cados são estudados, submetendo-os a uma prescrição tipo Bogomol‘nyi para cálculo

de limite mínimo (não-trivial) de energia e as equações auto-duais. Soluções de vór-

tices para campo de calibre não especificado através de palpite são alcançadas e as

características topológicas deles detalhadas.

Palavras-chave: fenômenos planares; acoplamentos não-mínimos; gravidade quân-

tica; vórtices.
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Presentation and Contextualization

A Tribute to Paulo Freire - One Brazilian Exponent:

Educator, Intellectual and Militant

“Se não amo o mundo,

se não amo a vida,

se não amo os homens,

não me é possível o diálogo.”

(Paulo Freire)

The thesis starts with a brief and unassuming tribute to Paulo Reglus Neves

Freire, the brilliant Brazilian Professor Paulo Freire, in his birth centenary. He was
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born in Recife, capital of Pernambuco state, in 1921, September 19th. He developed

and elaborated a revolutionary methodology of education, centered in the idea of

promoting the liberty of the students by the education, considering the education

process as an exchanging of knowledge among teachers and students, developing a

critical conscience in the students by self-inquiring and the capacity of reading the

world that is around them, moving them away from the oppressed condition. In

parallel, criticizing the conventional educational methodology (untitled by him as

"bank account methodology") which assumes the students as an empty box ("bank

account"), inspired in the Aristotle and Locke‘s philosophy of the "tabula rasa",

where is deposited the information, so the students are only docile recipients of what

is brought to them as ultimate truth. He used to say: "it is about to learn how to

read the reality to then be able to rewrite this reality." His endeavor to teach poor

people how to read and write became a inspiration in Latin America and Africa.

Paulo Freire and some mates, from 1960 to 1962, worked in the Brazilian North

East region alphabetizing adults. In the famous case of Angicos, a small city in the

Rio Grande do Norte state, where they alphabetized 300 persons in 40 hours, he

registered:

"Three hundred persons were alphabetized in Angicos in less than 40 hours. Not

only alphabetized. 300 persons were raising awareness in Angicos. Three hundred

persons were learning how to read and write, and arguing Brazilian problems (...)

Themes as regional and national development, base reformulation, which is among

them the constitutional, nationalism, imperialism, profit remittance abroad, illiter-

ate’s vote, "colonelism", socialism (...) were debated with the participants of the
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Circles. We had the opportunity to watch some of those debates. Impressed me the

attitude of decision they revealed (...) - "Ma’am do you know what is exploitation?

- asked certain visitor to one of the Circles participant (...) - Maybe you, whom is a

rich young person - said her - do not know. Me, who is a poor woman, know what

exploitation is." "I make shoes, and now I discover that I have the same value of

the versed who makes books." "The land only lives because the peasant works." "The

union results in force: if the designer draws the building, it is the workman who

knows the brick that builds it, and both forces united that make the progress." "

In the begin of 1964, he was named the general coordinate of the National Plan of

Alphabetization during João Goulart‘s Presidency. But, few months later, with the

military political coup, he was arrested for seventy days and, then, exiled. During

the exiling in Chile he published his first book in Brazil ("Education: the Practice of

the Freedom"), organized alphabetization planning for Africa countries, worked to

the Movement of Agrarian Reform of the Christian Democracy and wrote in 1968 his

most famous work - Pedagogy of Oppressed -, which was translated for over than 40

languages, third most cited reference in social science in the world. In 1979, he was

amnestied, but returned to Brazil in 1980, affiliating to the Workers Party (Partido

dos Trabalhadores) and assuming the Secretary of Education of São Paulo city from

1989 to 1991. Received 30 titles of Doctor of Honoris Causa and 6 in memoriam.

We selected "The Concept of Technology", one excelsior Brazilian literature piece

of his Master, Professor Álvaro Borges Vieira Pinto, which Paulo Freire used to refer

to him as the "Brazilian Master", (in an independent translation version):
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"The role of the philosophers belonging to underdeveloped environment in the

comprehension of their world, of the reasons of such conditions and in the propo-

sitions of guidelines and political and cultural actions capable of transforming the

ambient reality is decisive. To do it so, however, is imperative, as initial point, to

comprehend what signify being a philosopher in a poor and dependent country. The

first requirement consists in to accept that it can not signify the same thing being

a philosopher in a developed, imperialist and autonomous country and in one which

vegetates in underdevelopment, in the ignorance of the literate knowledge and in the

absence of sovereignty and capacity of determination and management of its own ex-

istence process as particular historical being. In the underdeveloped world and in the

largest extension illiterate, the philosopher, to think authentically the reality, must

be illiterate. It does not mean, evidently, to ignore the ability of reading and writing

- nevertheless, we well know that it is not exclusively this lack what constitutes the

illiteracy - but because firstly, in the attempting of conceiving and interpreting the

world in its real conditions, among them is included being a world of illiterates. One

will consider odd the culture accumulation and the multiple cogitations, past and

present, known through the study of books, a subsidiary source, although indispens-

able, to the formation of the conscience of oneself. One will have to learn much

more from what sees than from what reads. The philosophic conscience will only be

legitimate if explains the state of its environment, not as an external passive reflec-

tion, even truthful, but by the apprehension of the social being essence in which the

thinker is part of. The philosopher must identify himself with the illiterate masses,

constitute the figure apparently paradoxical of the illiterate literate, to reach the

foundations which support his thinking with maximized possibilities of legitimacy."
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After this masterful piece, which refreshes in our minds and hearts the role of

the philosopher, as well as it extends to professors, scientists, teachers and a vast

number of positions (possibly to all one) in the society, in an underdeveloped and

dependent country, we initiate the contextualization and presentation of the thesis.

Back to Physics

Maybe looking to mathematics as a tool conceded by God to the humanity to

describe the world in which it is inserted, the ordinary physical world, one could

accept that, as any regular tool, it accomplishes the finality what was designed for,

but, in parallel, has its limitations, mainly performing a task different than the one it

is project to. Thereby, for example, thinking the irrational feature of the pi number,

one could interpret it as result of the tool (mathematical) limitation to describe the

world of ideas, once the tool is made for the non-ideal world description. Addition-

ally, maybe the infinity and continuum are essences of the ideas Universe (or mental

world), and, if so, is comprehensive to expect some deviations produced by the tool,

taking into account its foundations is in a discrete counting base, and artifices like

the Dirac‘s delta to comply with both Nature features. Therefore, imprecision occurs

in attempt to cover a wide spectra of energy with a single theory. Effective theories

restricts the covered energy range, what circumvents the obstacle of parametrization
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of the infinity and permits a more suitable application of the mathematics. Be-

sides, the continuum is sufficiently reproduced, specially in theories with presence

of higher spacetime derivatives, which delineates more accurately this feature, de-

creasing the intrinsic "lack" characteristic of the discrete system of counting (what

is aggravated, for instance, by the description of the interaction system by point par-

ticles exchanging a mediated point particle). In a concurrent way, theories covering

undefined spacetime dimensionality or carrying high dimension, when dimensional

reduced, tends to diverge from one in low dimension due to the algebra inaccuracy to

manipulate the continuum and infinity. Then, a tool, intrinsically based on discrete

counting, describing continuity and infinity, two inseparable properties, is vulnera-

ble to generate divergent and imprecise theories, mainly the ones that try to cover

wide ranges, say, of energy, of space, of dimensions. Thus, theories restricted in its

range action are an alternative to address both Natures imposition, in a way that the

inaccuracies of the tool are not sensible, or at least, observable to the practiced mea-

surements. After some reflection and to divagate about Nature aspects, the present

thesis works on effective and low dimension theories analysing particles interactions

in some scenarios, where is investigated gravitation in semi-classical arrangement,

Maxwell electrodynamics and extensions.

The chapter 1 opens the debate about the gratifying work [1] developed with

Leonardo P.R. Ospedal, which is centred in effective low-dimensional systems in

bosonic and fermionic context, non-minimally coupled. The expectation is, through

a Foldy-Wouthuysen Transformation, to unfold these systems in Hamiltonian formal-

ism and emerge (non)relativistic corrections. It is also questioned the influence of an
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external electromagnetic field on the interaction terms constituent of the Hamiltonian

originated from the transformation, in this way, is proposed to alter the Maxwell Elec-

trodynamics by the Maxwell-Chern-Simons one in the fermionic scenario. A second

questioning is raised, in which is inquired the impacts on the interactions formula-

tion when a Foldy-Wouthuysen transformed higher dimension system is dimensional

reduced, and a comparative evaluation is carried out confronting it with the previ-

ous low-dimensional result. This chapter closes with some lines of conclusions and

comments regarding to its content.

The chapters 2 and 3, which are part of the work [2] in collaboration with Gustavo

P. de Brito, Judismar T. Guaitolini Jr., Leonardo P.R. Ospedal and Kim P.B. Veiga,

move the effective theories inspection to the perspective of gravitational interaction.

At this site, the physics is brought to the four spacetime dimensions and a gravitation

model, with higher derivative terms containing form factors, is the starting point to

calculation of inter-particle potentials beyond the monopole-monopole interaction,

considering scalars and fermions. Then, the chapters are two parts of one body, where

the chapter 2 is essentially theoretical-methodological approach presentation and the

potentials resulted for scalar and fermionic scattering. In chapter 3 is discussed the

latter chapter results and pushed them into some analysis. Firstly, comparing them

to results of a modified effective Electrodynamics inter-particle potentials, published

in the paper ref. [3] of "Republic of Diracstan" collaborators and presented in the

PhD Thesis [4]. Secondly is taking a non-perturbative model subsidized by Casual

Dynamics Triangulation data [5] to verify the consistency of the potential results.

This chapter is finalized with partial conclusions and perspectives.
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The last chapter 4 is an investigation in progress, dedicated to low-dimensional

Maxwell-Higgs models with modified kinetic term. The modification aggregates a

strong electromagnetic background field to the systems. The Bogomol’nyi type pre-

scription is adopted to express the inferior (non-trivial) bound energy and the self-

dual equations. Hence, the results are obtained in vortex configuration, promoting

an evaluation about the topological feature of them. Some effort to work with an

unspecified gauge field is done, in a manner that, it is attempted to determine it

naturally by the evolution of the calculations. It has been developed few variations

of the models and progress have been made on it. At this stage is commented in the

partial conclusions section the overall results so far and works on progress.

The general conclusions concerning the PhD program and incoming possibilities

are synthesized in the Finals Conclusions topic 5. A Foldy-Wouthuysen Transfor-

mation review and Fourier transform integrals belonged to potential expressions in

Chapters 2 and 3 are in the appendixes A and B.
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Chapter 1

Effective Theories and Non-minimal

Couplings in Low-dimensional

Systems

1.1 Introduction

1.1.1 A Brief Historical Review

The low dimensional systems are active participants in the history of theoretical

and experimental physics researches. Over the years, physicists developed a brilliant

group work in such arrangements, understanding its phenomenological particulari-
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ties, grubbing new lands, formulating theories, discovering properties in materials

and creating new ones.

It seems opportune to recapitulate some remarkable novels that compound the

mentioned history. Here is recorded few moments of a period incredibly vast of

fruitful research productions. There is no intention of covering minutely the theory

and/or the history, even it was the case, the author has no knowledge enough to

accomplish it. Sailing through the superconductors and superfluids sea, aiming to

reach topological phases of matter, one returns to the second decade of twentieth

century, precisely at 1911, when Heike Kamerlingh Onnes [6] studied the electric

resistance of solid mercury at the cryogenic temperature of the liquid helium and

observed that its electric property disappeared in such condition. Paul Dirac largely

contributed to elucidated the conceit, interpretation and importance of symmetry

to Quantum Mechanics. His perspective converges to the principle of emergence in

condensed matter, which states that the properties of a material are mainly deter-

mined by how particles are organized in the material. One of his works in 1926

[7] and a later one in 1931 [8] guided the formulation of symmetry and topological

perspectives, which probably influenced Landau later. In early of 1930, Lev Landau,

a prominent theorist, for describing superconductivity, published his theory [9] to

describe quantizations of cyclotron orbits of charged particles, resulting in degener-

ated and discrete energy values, called Landau levels. Three years later, Meissner

and Ochsenfeld [10] found out that magnetic field could not deeply penetrate in lead

cylinders cooled below a critical temperature, but only in an extreme thin region

on surface (the London length [11]), what was named the Meissner effect. Lon-
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don brothers in 1935 proposed a phenomenological Electrodynamics model [11] to

describe superconductivity based on Meissner findings and on two fluids theory of

Hendrik Casimir e Cornelis Gorter [12]. Landau resurged in 1937 with the theory of

second order phase transitions, introducing the concept of an order parameter that

increases, starting from zero, for systems at the critical temperature and lower ones

[13]. He realized that the difference among the phases (or orders) is due to the fact

they have different symmetries, thus a phase transition is a change of the symmetry.

Before the closure of thirty´s, Pyotr Kapitza and, independently, J.F. Allen and A.D.

Misener, with the papers published in sequence [14, 15], discovered the superfluid
4He, in which is supposed that the transition to superfluid occurs via Bose-Einstein

condensation [16, 17], and presents properties like zero viscosity.

The postulation of a phenomenological model for description of superconductiv-

ity, dividing the superconductors in two classes according to their behaviour in a

magnetic field, was proposed by Vitaly Ginzburg and Lev Landau in 1950 [18]. The

different phases of matter are classified by a pair of groups, which are the sym-

metry group of the system and the unbroken symmetry group of the equilibrium

state. Through a parameter – Ginzburg-Landau parameter –, which transforms non-

trivially under symmetry transformation, the superconductors are distinguished in

the ones which superconductivity and strong magnetic field coexist and the ones

which not. Still this year, a German and a North American physicists, Hebert Fröh-

lich [19] and John Bardeen [20], independently elaborated the idea of the supercon-

ductor state as a result of the interaction among the electrons and the crystal atoms

vibrations (phonons) – the further interaction electron-phonon. After six years, Leon
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Cooper described the process of formation of electrons pairs strongly coupled to each

other – Cooper pairs – due to their interaction with the crystals lattice of a Fermi

gas [21]. Finally, in 1957, the celebrated BCS theory [22] – Bardeen, Cooper and

Schrieffer –, a theory for microscopic superconductivity, was published and could

completely explain the superconductivity resourcing to the Cooper pairs, which,

with helium atoms, are spherically symmetric objects, forming isotropic superfluids

on condensation. It is important to remark that, in the same period, Nikolay Bo-

goliubov also explained superconductivity through the Bogoliubov transformations

[23, 24] and Philip Anderson presented his theory introducing the pseudospins [25].

Motivated by the Ginzburg-Landau theory, still in 1957, the young soviet physi-

cist A. A. Abrikosov predicted vortices forming a lattice in superconductors under

strong magnetic field and their core overlapping, what suppresses the order parame-

ter allover the superconductor material [26] and, hence, allows the coexistence of the

field and superconductivity. Therefore, covering an non-previewed situation by the

Meissner effect and confirming the new type of superconductor, the anisotropic one

named type-II, already appeared in Ginzburg-Landau theory and non-contemplated

by BCS theory. Later, it was showed by Gor’kov [27] that the Ginzburg-Landau

equations are passive of being deduced in an appropriated limit from BCS theory.

The invention of MOSFET – metal-oxide-semiconductor field-effect transistor – in

1959 permitted closer analysis of the electrons behavior and quantum effects in a

nearly ideal two-dimensional space gas, once conducted electrons travel in a thin

surface layer.

In the begin of sixties, the graduating student Brian Josephson, inspired by Gi-
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aever tunnel experiments [28], predicted new phenomena in superconductors – the

Josephson effects – [29], for instance, a Cooper pair tunneling through a thin insu-

lating barrier.

Ten years later (1972), the anisotropic superfluidity in 3He was discovered by

David Lee, Douglas Osheroff and Robert Richardson [30]. The condensation of

Cooper pairs formed by 3He atoms are "quasiparticles" in a way that it is an emer-

gent phenomenon involving many particles and oppositely to what occurs in 4He

atoms, 3He generates fermions. A breakthrough in anisotropic superfluid theory was

revealed by Anthony Leggett in that year [31] (see also [32] for reviewing), when

he demonstrated that several breaks of symmetries can manifest simultaneously in

condensed matter. In fact, the pairs in 3He are organized in spin-triplet states what

incurs in broken of the rotational symmetry in spin space, equivalently, the sponta-

neous symmetry break of orbital rotation is provoked by the anisotropy of the Cooper

pairs wave functions and the gauge symmetry is broken as well, then, three symme-

tries are broken in this superfluid. Three years passed to the Japanese researches

Tsuneya Ando, Yukio Matsumoto and Yasutada Uemura predicted the quantization

of the Hall conductance in planar system [33]. Another Japanese team of researches,

Jun-ichi Wakabayashi and Shinji Kawaji, observed the quantum Hall effect in MOS-

FETs [34]. In three spacetime dimensions, theoretical particles may not be submitted

to Fermi-Dirac or Bose-Einstein statistics, but to both at the same time, continu-

ously intermingling between them as Jon M. Leinaas and Jan Myrheim detailed in

[35].

In the beginning of 1980, Klaus von Klitzing, working with samples of silicon-
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based MOSFET elaborated by Michael Pepper and Gerhard Dorda, verified the

existence of exactly quantized Hall resistance, rising the current integer quantum

Hall effect [36]. The Hall resistance manifested itself in plateaus as function of the

electron and magnetic flux densities, what determine the filling factor. Once the

factor assumes integer values, degenerated electron energy levels or Landau levels

are formed in a two-dimensional space electron gas. One year after, Robert Laugh-

lin proposed a mental experiment [37] to explain the exactness of Hall conductance

based on gauge invariance. Disposing of lower temperatures and magnetic fields of

higher insensitivity, Störmer and Tsui, manipulating gallium arsenide heterostruc-

tures developed by Arthur Gossard, observed a Hall resistance plateau three times

higher than the highest measured by Klitzing and they noted fractional values for

the physical property. In this sense, in 1982 the fractional quantum Hall effect in a

quantum fluid of electrons in three spacetime dimensions arrangement was observed

[38]. Frank Wilczek published two papers [39, 40], being chronologically one before

and the other after the discovery of fractional quantum Hall effect, where he expati-

ated the fractional statistics of quasiparticle in two space dimensions and coined the

term "anyon". In the next year, Laughlin presented a phenomenological explanation

to the fractional quantum Hall effect [41], where fractionally charged quasiparti-

cles are created. Arovas, Schrieffer and Wilczek explicitly deduced the statistic of

quasiparticles proving that it is governed by fractional statistics and, hence, that

the particles presented in such planar systems are anyons [42]. In 1986, Bednorz

and Müller working with a new class of ceramics of copper oxides, encountered that

its electric resistance was zero at the temperature around –238°C (35.1 K) [43], the

starting point in superconductivity research in high temperatures.
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In a superficial manner, the core of the theoretical and experimental unfolding

was illustrated. At this stage, it is convenient to branch the historical review in

anyons, quantum spin liquid and topological phases of matter.

The hunting for (Abelian and non-Abelian) anyons expended over forty years

since Leinaas and Myrheim predicted theoretically the fractional statistics particles

and Störmer and Tsui achieved the superconductivity phase in heterostructures and

observed fractional quantum Hall effect. The construction of adequate instrumenta-

tion for measuring anyons has demanded great endeavour. Experimental attempts

involving single-particles interferometers [44, 45, 46, 47, 48, 49, 50, 51] were made,

but the results contained noises from Coulomb blockage and Aharanov-Bohm in-

terference. Current noise from fractional quasiparticles pointed out that they carry

fractional charge [52, 53]. For non-Abelian anyons [54] some indirect evidences of this

state were measured [55, 56]. In 2020, two different teams of researches announced

the detection of anyons by micro-interferometers [57, 58].

Philip Anderson [59] suggested the existence of a new phase of matter, the quan-

tum liquid (the current quantum spin liquid), with a lattice formed by a frustrated

geometry of the spins disposition, what would result in a superposition of singlet

pairs of spins, named resonating valence bond. This model failed, however, in 1987,

moved by the Bednorz and Müller discovery [43], he connected the resonating valence

bond with Cooper pairs [60] and originated the concept of spin-charge separation, in

which the electron is transformed in two quasiparticles: a spinon with neutral charge

and spin-1/2 and a holon electrically charged and spin-0. In the same year, topology

was linked to quantum spin liquid by Kalmeyer and Laughlin [61], introducing the
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‘chiral spin liquid’ state, and by Kivelson, Rokhsar and Sethna [62]. Two years after,

Wen proposed the modern notion of topological order, describing it by Chern-Simons

theory [63]. Around 2000, Senthil and Fisher pointed out that spinons could present

fractional quantum number [64, 65]. In 2003, Kitaev published his toric code model

[66], interrelating a two-dimensional anyonic quantum system with quantum compu-

tation. Only passed three years and he developed the honeycomb model disposing

of quantum spin liquid ground states and a solvable Hamiltonian [67]. Recently, in

2015, the first signatures of Majorana fermions in two-dimensional materials were

detected, and the results matching with Kitaev honeycomb model for quantum spin

liquids [68] (see also ref. [69]). Quantum spin liquid is at the forefront current

research, as discussed in refs. [70, 71, 72].

In the third branch, Kosterlitz and Thouless, in 1972, came across with the

determinant role of topological defects (vortices) in two dimensional solids phase

transition [73, 74]. Ten years later, Thouless, Kohmoto, Nightingale and den Nijs

explained the quantization of the Hall conductance of electron gases in two space

dimensions in the absence of external magnetic field using topological concepts [75],

specified by an integer topological invariant – TKNN invariant also called the first

Chern number. Since that, passed six years, Haldane [76] suggested in a model of

graphene [77] that a quantum Hall effect – with energy bands not following Landau

levels – may also result from breaking of time-reversal symmetry in a three spacetime

dimensional system with no net magnetic flux through it. The mentioned Chern

topological index of Thouless et al. was interpreted as a topological property of

bands in two dimensional insulators without time reversal symmetry. This phase of
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matter was named Chern insulators and took twenty five years to be observed in

particular thin films by Chang et al. [78].

In 2004 Murakami, Nagaosa and Zhang theoretically predicted the spin Hall in-

sulators [79], describing some classes of band insulators presenting finite spin-Hall

conductivity but no charged current. After one year, Kane and Mele [80, 81], also

working on a graphene model, but preserving the time-reversal symmetry, proposed

a new insulating phase, the further called quantum spin Hall insulator. Their model

contained a Z2 topological index which reflects the constraints imposed on the elec-

tronic states by the time-reversal symmetry, indicating that it is a symmetry-related

topological property. Independently, few months later, the Bernevig and Zhang’s

two-dimensional semiconductors model [82] also proposed the quantized spin Hall

effect. The same former duo and Hughes elaborated a two space dimensional model

to produce a Z2 topological phase, what resulted in a prediction of generation of

quantum spin Hall effect in semiconductor quantum wells [83]. In less than one year,

electronic transport measurements executed by König et al. [84] confirmed that a

thin layer of mercury and tellurium compound is a topological insulator. In 2007,

Novoselov et al. reported the detection of integer quantum Hall effect in graphene at

room temperatures [85]. Haldane and Raghu [86] described the unidirectional elec-

tromagnetic waves propagation effect in photonic crystals analogous to quantum Hall

effect. Since this description, photonic topological phases [87] has been aroused the

attention of physicists, with the capacity to provide robust unidirectional channels

for light propagation [88]. Photonic topological insulators [89], similar to quantum

spin Hall states, were recently proposed in planar meta-surfaces [90, 91]. See also
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ref. [92] for a more detailed material about the paragraph contents.

For last, a relatively recent predicted material by Wang et al. [93, 94] (see also

[95, 96, 97, 98]) is the organic topological insulator, moving into a new research

area. Organic materials are recognized by their abundant electronic and condensed

structures, although, their relatively weak interactions are a challenge to produce

highly ordered structures for identification of this type of insulator.

This introduction tries to minimally elucidate how wide is the research in low-

dimensional systems and how deeply it composes the forefront of physics researches.

The number of ramified areas under investigation increases, so that, this simple intro-

duction is far away from encompass all the branches of low dimensionality studying.

1.1.2 Foldy-Wouthuysen Transformation and

Non-minimal Couplings

The Foldy-Wouthuysen (FW) Transformation, which is also called Pryce-Tani-

Foldy-Wouthuysen Transformation [99, 100, 101, 102], is detailed in appendix A.

This transformation enables to diagonalize the Hamiltonian in an approximate way

or, in some cases, in an exact form (check some examples in [103, 104, 105, 106,

107]). The Foldy and Wouthuysen methodology, initially developed to set the Dirac

equation in a comparable form to the Pauli Hamiltonian [100], is applied to describe

particles with different spin configurations [107, 108, 109, 110, 111, 112], as well as
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to analyse fundamental and excited states of atomic nuclei [113], some interactions

with gravitational and torsion fields [114, 115, 116, 117, 118]. It was also considered

in scenarios with Lorentz symmetry violation [119, 120, 121, 122], accelerated frames

[123, 124], topological defects [125, 126] and topological insulators [127, 128]. There

are different approaches to the FW transformation, in a way that, in the present work

is adopted the non-relativistic method, explained in the Appendix A. For details on

relativistic methods and their validity, see [129] and references therein.

The FW transformation is also a methodology suitable for systems in different

spacetime dimensions rather than four. In a seminal paper by Binegar [130], where he

structured the irreducible representations of the Poincaré group in three-dimensions,

the author also contemplated the correspondent FW transformation for a free par-

ticle. Here, it is considered the effects of non-minimal electromagnetic couplings

in interactions of three-dimensional systems. The inclusion of these couplings con-

tributes, among others, to effects such as the Aharonov-Casher phase [131], quantum

Hall effect [132, 133] and high-temperature superconductivity [134]. Moreover, the

Chern-Simons term and non-minimal couplings in three dimensions allow spinless

particles to acquire anomalous magnetic moments [135, 136]. Therefore, investi-

gations on FW transformation in electromagnetic systems non-minimally coupled

have potential to reveal new interactions and relativistic corrections to the scientific

community and contribute to the literature.

This chapter starts with an introductory section about non-minimal coupling,

contemplating definitions and conventions. The section 1.3 contains the resultant in-

teractions of scalar and fermionic effective systems in low-dimensional scenario and
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submitted to the Foldy-Wouthuysen transformation. It is also analysed the impacts

due to substitution of the Maxwell Electrodynamics by the Maxwell-Chern-Simons

one, which are structuring the external electromagnetic field in the fermionic case,

and some comments around this modification and their consequences are elaborated.

In section 1.4 is evaluated the influence of a dimensional reduction on a fermionic

higher dimensional system FW transformed when compared to the low-dimensional

result of the antecedent section. This chapter, in section 1.5, finishes with the con-

clusions and perspectives.

1.2 Non-minimal Electromagnetic Coupling

The local presence of an electromagnetic field at the vicinity of a charged field

naturally provokes changes in the equation structures. These changes are manifested

through several theories. One manifestation emerges from the local transformations

of the charged field, demanding the insertion of the Abelian gauge field in order to

assure the Lagrangian invariance due to the transformation and promoting the re-

definition of the regular derivative to the covariant one due to the addition of the

minimal coupling (see, for instance, [137]). In the Hamiltonian formalism [138, 139],

one observes the modification of the canonical moment with the presence of the gauge

vector potential, as well as the gauge scalar potential, both yielding from Helmholtz

Theorem [140], representing the consequences of the external electromagnetic field

presence acting on a charged particle. A third manifestation comes from the Topo-
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logical Theory [141], where the electric and magnetic fields are agents responsible

for varying the velocity of the particle in direction and module, implying a similar

behaviour of gravitation geometry. Therefore, the appearance and a possible in-

terpretation to the minimal coupling as an affine connection gains relevance and a

common origin for electromagnetism and gravity. Then, the minimal coupling in

four spacetime dimensions,

Dµ = ∂µ + iqAµ , (1.1)

alters the conventional derivative ∂µ to the covariant one Dµ, which carries the gauge

potential Aµ ≡ Aµ
aX

a, where Aµ
a are fields associated to each generator Xa of the

group symmetry. In the present case, the Abelian one, it works with the simplest

scenario of U(1) group, Xa = 1 and one has Aµ = (ϕ, A⃗ ). The coupling constant q

assumes the electrical charge dimension in a system settled in natural unity c = ℏ = 1.

Whether the system under analyses is a planar one, the dual F̃µ of the field

strength Fµν = ∂µAν − ∂νAµ is a rank-1 tensor, bringing it to a vector condition

F̃µ ≡ 1
2
ϵµνκF

νκ, with ϵµνκ representing the Levi-Civita symbol obeying the conven-

tion ϵ012 = ϵ012 = +1 and the Minkowski metric ηµν = diag(+,−,−). Hence, this

particular property of the planar configuration opens the possibility to write a gen-

eralized prescription to the covariant derivative

Dµ = ∂µ + iqAµ + igF̃µ , (1.2)
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with the introduction of the non-minimal coupling represented by the dual tensor

F̃µ and the new coupling constant g, which performs the anomalous magnetic dipole

moment and points out the feature of effective field theory, once it acquires negative

mass dimension, [g] = −1/2, implying in a non-renomalizable theory. It is worthy to

observe that the non-minimal coupling conserves the gauge invariance of the system.

Throughout the development of the calculations is defined the dual vector ˜⃗f i = ϵij f⃗j.

In this context, it is implicit ϵij ≡ ϵ0ij, where Latin indexes denote the purely spatial

sector i, j = (1, 2), and, consequently, ˜⃗f is perpendicular to f⃗ .

The covariant derivative eq. (1.2) is rewritten in the electromagnetic prescription

i∂t → Π0 ≡ i∂t − qϕ+ gB , (1.3a)

p⃗ → Π⃗ ≡ p⃗− qA⃗+ g
˜⃗
E , (1.3b)

it already reveals the anomalous magnetic dipole moment gB and the generalized

canonical moment Π⃗. The contributions from the non-minimal coupling, contrarily

from the minimal one, are manifested in terms of the electric and magnetic fields

themselves. In time, remembering that, in three spacetime dimensions, the electric

and magnetic fields are given by E⃗ = −∇⃗ϕ− ∂tA⃗ and B = ∇⃗ × A⃗ ≡ ϵij∂iA⃗j.

The non-minimal coupling shows up in a wide variety of applications in the liter-

ature. One relevant appearance is in the fractional quantum Hall effect theme, pre-
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cisely the magnetic field redefinition in Jain’s model for composite fermionic objects

[142] is effectively described by Helayël-Neto and Paschoal [143] through means of a

Maxwell–Chern–Simons (MCS) gauge field model non-minimally coupled to matter.

It is also possible to achieve fractional spin resourcing to this kind of coupling term,

which configures an alternative to the Chern-Simons one [144, 145, 146]. Dalmazi

(and Mendonça) analyzed the influence of the non-minimal coupling of Pauli-type in

static potentials for planar scalar and fermionic Electrodynamics cases (see [147, 148],

and references therein). There are also investigations applying F̃µ in supersymmetry

[149, 150]. Moreover, in ref. [151], the authors demonstrated that neutral bosonic

particles acquire magnetic properties when immersed in a scenario with Lorentz sym-

metry violation. Additionally, a comparative evaluation demonstrates a similar be-

haviour among inter-particle potentials in non-commutative Maxwell-Chern-Simons

Electrodynamics minimally coupled to matter and in the MCS with non-minimal

Pauli interaction [152].

The panorama about non-minimal Abelian gauge coupling and, derived from

it, non-minimal electromagnetic prescription articulated above paves the road to

explorer its application in some particular cases involving coupling to scalar and

fermionic matter fields. These cases, since they become structured in Hamiltonians,

are subjected to the FW transformation, what reveals (non)relativistic corrections

to the systems. In the following two sections are developed these steps for scalar and

fermionic fields, respectively.
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1.3 Low-dimensional Systems

1.3.1 Scalar Field

The scalar field is taken firstly. It reveals a distinct particularity in this arrangement

of non-minimal coupling in planar system, that is the coupling of the scalar particle

to the magnetic field, probing, through a Pauli-type term, magnetic dipole moment

[135, 136]. Moreover, there is a possibility of generating a pure Chern-Simons term

by spontaneous symmetry breaking of a generalized Abelian Higgs non-minimally

coupled model [153, 154]. The relevance of anyons in the phenomenology is notorious

and its possibility of description resourcing to scalar fields and non-minimal coupling

turned attentions to this kind of structure.

A simpler formulation is chosen: a scalar field carrying charge and matter non-

minimally coupled to the gauge field, i.e., the Klein Gordon Lagrangian (density),

LKG = (Dµφ)
∗ Dµφ−m2φ∗φ . (1.4)

Manipulating eqs. (1.1) and (1.2) permits one to write the Lagrangian in terms of

the covariant derivative

LKG = (Dµφ)
∗Dµφ−m2φ∗φ− g JµF̃µ + g2φ∗φF̃ 2

µ , (1.5)
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and to define the three-current

Jµ = i [(Dµφ)φ∗ − (Dµφ)∗ φ] . (1.6)

As anticipated, the coupling constant assumes the physical property of the anomalous

magnetic dipole moment and the term g JµF̃µ evidences the occurrence of this effect

coupled to the scalar field φ. The term g2φ∗φF̃ 2
µ is characteristic of the scalar system.

Terms proportional to quadratic and cubic powers of φ∗φ are suitable to compose the

Lagrangian (1.5), nonetheless, they are out of the research scope due to the interest

in terms coupled to external electromagnetic field.

The FW procedure demands the Hamiltonian of the system under investigation.

To determine it for the case expressed through eq. (1.5), one starts from the equation

of motion

(D2
µ −m2)φ = 0 , (1.7)

which is passive of being written in two first-order equations with the inclusion of

the auxiliary field χµ

mχµ = Dµφ , (1.8a)

Dµχµ = mφ . (1.8b)
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However, taking the spatial sector of eq. (1.8a) with µ = i, the constraints χi =
1
m
Πiφ

is manifested, remaining only χ0 and φ as dynamical fields. Working on the temporal

sector of eqs. (1.8), is possible to establish the relations

i∂tφ = mχ0 + (qϕ− gB)φ , (1.9a)

i∂tχ0 = mφ+ (qϕ− gB)χ0 +
Π⃗2

m
φ , (1.9b)

and recast them in a Schrödinger-like equation, i∂tρ = H0ρ, with a two-component

field

ρ =

 ρa

ρb

 =
1

2

 φ+ χ0

φ− χ0

 . (1.10)

These algebraic manipulation described above allow to set the Hamiltonian

H0 =
Π⃗2

2m
(R+N ) +mN + (qϕ− gB)I , (1.11)

where I denotes the identity 2 × 2, R = iσy and N = σz, with σy and σz being the

Pauli matrices.
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Recovering the formulation presented in Appendix A, more specifically in eq.

(A.6), H0 = βm+ E +O, the operators E and O are

O =
Π⃗2

2m
R , E =

Π⃗2

2m
N + (qϕ− gB)I , (1.12)

noticing that, in three spacetime dimensions, β ≡ N . Thus, the diagonalization pro-

cess culminates in the expression (A.11) which deliveries a diagonalized Hamiltonian

HFW,0 up to order O(1/m3),

HFW,0 ≈ mN + E +N O2

2m
− 1

8m2
[O, [O, E ] + iȮ]−N O4

8m3
, (1.13)

where the leading terms of the positive energy solution are

HFW,0 ≈ m+
(p⃗− qA⃗+ g

˜⃗
E )2

2m
+ qϕ− gB − (p⃗− qA⃗+ g

˜⃗
E )4

8m3
. (1.14)

This Hamiltonian contains the familiar non-relativistic kinetic term composed by

the canonical momentum Π⃗ = p⃗ − qA⃗ + g
˜⃗
E. It is worthy to signalize this canoni-

cal momentum is capable of generating the Aharonov-Casher and Aharonov-Bohm

phases [131, 155, 144]. The electric potential term qϕ is also present. In the se-

quence, the anomalous magnetic dipole interaction gB and the last term contributes

to the relativistic mass correction. In a heuristic way, this mass correction emerges
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from the Taylor expansion of the relativistic kinetic energy
√

Π⃗2 +m2. Finally, it is

highlighted that there is no term proportional to O(1/m2), which is a particularity

of the spin-0 system.

The fermionic case is developed in the next subsection, following the same steps

adopt for the spin-0 system, with the presentation of the Lagrangian, structuring

of the Hamiltonian and the calculation of the Foldy-Wouthuysen transformation.

Furthermore, the resulted Hamiltonian in eq. (1.14) is obtained again in the next

subsection. It occurs, as will be demonstrated, due to the convergence of a fermionic

system into a scalar one, when the former is exposed to a Maxwell-Chern-Simons

external electromagnetic field in a particular settlement.

1.3.2 Fermionic Field

At this stage, the fermionic field system is investigated. The presence of spin, be-

ing a quantum number, widely enriches the physical content, aggregating the group

representation manifested in the Pauli matrices, new degrees of freedom and the dy-

namic associated to it, also the spin-statistics theory and spin peculiar properties as

its unpredictability presented in Stern-Gerlach experiment (see, for instance, [156]),

or its states rising in discrete values and so on.

Taking the massive fermionic field non-minimally coupled to an external field,

represented through the Dirac Lagrangian,
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LD = iψ̄γµDµψ −mψ̄ψ , (1.15)

or in an unfolded expression resourcing to the minimal covariant derivative (1.1),

LD = iψ̄γµDµψ −mψ̄ψ − g jµF̃µ , (1.16)

with jµ = ψ̄γµψ and ψ̄ = ψ†γ0. It is convenient to introduce some definitions. The

Dirac representation conducts the three dimensional spacetime matrix algebra, which

is defined in terms of the Pauli matrices: γ0 = σz, γ1 = iσx and γ2 = iσy, respects

the Clifford algebra {γµ, γν} = 2ηµνI and satisfies the identity

γµγν = ηµνI− iϵµνκγκ . (1.17)

The traditional Dirac equation is written in function of Dµ,

(iγµDµ −m)ψ = 0 , (1.18)

and defining β ≡ γ0 and α⃗ ≡ βγ⃗, one is able to rearrange eq. (1.18) into the form

i∂tψ = HD ψ and to determine the Dirac Hamiltonian

HD = mβ + α⃗ · Π⃗ + (qϕ− gB) I . (1.19)
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Since the Hamiltonian is found, one is in condition of beginning the FW proce-

dure. Then, the terms of HD are grouped in the operators E and O

HD = mβ + E +O , (1.20)

O = α⃗ · Π⃗ , E = (qϕ− gB) I , (1.21)

remembering the commutation and anti-commutation relationships pointed out in

Appendix A, Eβ = βE and Oβ = −βO, respectively. Proceeding to the last stage

of the diagonalization of HD – eq. (1.19) –, the odd and even operators specified in

(1.21) are substituted in the diagonalized Hamiltonian HFW – eq. (A.11) –

HFW,D ≈ mβ + E + β
O2

2m
− 1

8m2
[O, O, E + iȮ]− β

O4

8m3
. (1.22)

At this point is convenient to observe that the structures of the diagonalized Hamil-

tonians in three spacetime dimensions for the scalar eq. (1.13) and fermionic eq.

(1.22) cases are the same (recovering that β = N = σz), where both derived from eq.

(A.11). The leading terms for positive energy solutions of the Hamiltonian resulted

from the substitutions are
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HFW,D ≈ m+
(p⃗− qA⃗+ g

˜⃗
E )2

2m
+ qϕ− gB − q

2m
B − g

2m
∇⃗ · E⃗

− iq

8m2
∇⃗ × E⃗ − q

4m2
E⃗× ( p⃗− qA⃗+ g

˜⃗
E ) − q

8m2
∇⃗ · E⃗ , (1.23)

with

E⃗ ≡ E⃗ +
g

q
( ∇⃗B + ∂t

˜⃗
E ) . (1.24)

Immediately at the first glance is verified the effects of the presence of the spin

generating a Hamiltonian with a physical content more robust than the spin-0 sce-

nario in HFW,0 (eq. (1.14)). At the first line of HFW,D are the nonrelativistic con-

tributions, then, comparing them with the ones in HFW,0 is patent the existence of

two new terms in eq. (1.23). The first from left to right is the usual Pauli term

− q
2m
B representing the dipole magnetic moment of spin, in which the spin projec-

tion Sz = σz/2 is not evident, and the next is a Darwin-type term − g
2m

∇⃗ · E⃗ coming

from the non-minimal coupling [157]. Moving to the relativistic contributions sector

at the second line of HFW,D and starting from left to right, one comes across the spin-

orbit term with the non-minimal corrections. At last, a Darwin term concerning to

a correction on the electrostatic energy qϕ due to the electron fluctuation position

(for detailing the physical origin of the last two terms, see ref. [158]). Whether g

is taken trivial, g = 0, hence (E⃗ → E⃗) , the spin-orbit components and the Darwin

term assume the familiar interaction form of the four dimensions system. The re-

sults of HFW,D are restricted to order O(1/m2), in a way that the relativistic mass
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correction to the kinetic term appeared in the spin-0 system, −(p⃗− qA⃗+g
˜⃗
E )4/8m3 ,

is unrevealed in spin-1/2 Hamiltonian eq. (1.23), once it is a contribution proceeding

from the O4 term (of order O(1/m3)) in eq. (1.22). In the coming section 1.4, a

dimensional reduction is performed on a FW transformed Hamiltonian for a mas-

sive fermionic system non-minimally coupled in four spacetime dimensions and the

resulting interactions are compared to the ones of HFW,D in eq. (1.23).

So far, the whole discussion works with no specification of the Electrodynamics

which dictates the external electromagnetic field behaviour. For a more refined and

profound examination, probing subtle and particular information about the intrinsic

physics interactions, is specified the external Electrodynamics, adopting Maxwell-

Chern-Simons theory through the Lagrangian

LMCS = −1

4
F 2
µν +

λ

2
ϵµαβAµ∂αAβ − JµAµ , (1.25)

where Jµ = (ρ, J⃗) is an unspecified current and λ denotes the Chern-Simons param-

eter. MCS theory, in a context of topologically massive gauge theory was extensively

studied by Deser, Templeton and Jackiw in ref. [159]. The equations of motion from

LMCS are

∇⃗ × E⃗ = −∂tB , (1.26a)

∇⃗ · E⃗ − λB = ρ , (1.26b)
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˜⃗∇B − λ
˜⃗
E = J⃗ + ∂tE⃗ . (1.26c)

An appropriated manipulation on eq.(1.26c) allows to rewrite it as ∇⃗B + ∂t
⃗̃
E =

λE⃗ − ⃗̃
J , which is in a suitable form to be substituted in eq. (1.24), altering it to

E⃗ =

(
1 +

λg

q

)
E⃗ − g

q
˜⃗
J . (1.27)

This new configuration to E⃗ suggests some inspections for particular values of the

constants and current contented in the equation. Therefore, initially rescuing the

Maxwell theory in vacuum, λ = 0 and ˜⃗J = 0⃗, what leads to E⃗ → E⃗ and, consequently,

is verified that the only relativistic correction by non-minimal coupling remained

in eq. (1.23) is an electric density energy q
4m2 gE⃗

2. Within the approximations

practiced in eq. (1.23), the non-minimal relativistic interactions are relevant only in

the presence of matter, where J⃗ ̸= 0⃗. Zeldovich anapole moment in four spacetime

dimensions also presents a close behaviour, vanishing in absence of matter [160].

A second inspection occurs setting ˜⃗J = 0⃗ and ρ = 0, giving the Maxwell-Chern-

Simons theory in vacuum. An effective form for the electric field appears E⃗ →

E⃗eff =
(
1 + λg

q

)
E⃗ and the same is applicable to the magnetic field Beff =

(
1 + λg

q

)
B

just managing the Pauli and Darwin-type terms, situated at the non-relativistic

contributions sector of HFW,D, with the modified Gauss equation ∇⃗ · E⃗ − λB = 0

(eq. (1.26b)). These effective forms for the electric and magnetic fields depend on

the value of the coupling constant g, what permits a critical value to it, namely
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gc = −q/λ. In the critical condition, the relativistic corrections for HFW,D are null

and the Pauli and Darwin-type terms cancel each other, remaining

Hc ≈ m+
(p⃗− qA⃗+ gc

˜⃗
E )2

2m
+ qϕ− gcB (1.28)

that is the convergence of the spin-1/2 Hamiltonian to the spin-0 one (eq. (1.14)) up

to order O(1/m2). The critical situation appears in different physical contexts and

is demanded to achieve specific effects, for example as a special condition to acquire

first order vortex solutions [161] or disappearance of one-loop quantum corrections

to the photon mass [162].

1.4 Dimensional Reduction Analysis

At this stage is brought up a philosophical reflection about the interpretation and

connection among physical systems in different dimensionalities. Upon this point,

by construction, systems in low dimensions were studied, thus, they carry implic-

itly the conception of a planar geometry as representative of the Nature. A second

proposal is to start from higher dimensions, so as to describe a system as a whole

and containing the aimed physical environment. Then, executing a dimensional re-

duction, it creates a specie of delimited view on the original system, establishes

particular physical conditions to it, approximates the higher to the low dimensional

environment and brings physical information from the original one. Therefore, it
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seems worthy to inspect what impact a physical system originally designed in higher

dimensions suffer under a dimensional reduction and, also, what information is ag-

gregated or, even, lost with the procedure. Witten, Qi and Zhang demonstrated

theoretical advantages of structuring in higher dimensions topological superconduc-

tors [163], while in ref. [164] the authors presented an emergence of a dark sector

through a dimensional reduction from a five dimensional Electrodynamics coupled

to 3-form gauge field to four dimensional. An investigation over the transformation

of the spin properties under compactification of a spatial dimension is done in ref.

[165] and Helayël-Neto and Ospedal calculated new effects for interparticle poten-

tials initially in five dimensions and, then, reduced to four [166]. Analysis of effects

of boundary conditions on fermionic and bosonic dimensionally reduced models are

developed by Cavalcanti et al [167]. The listed papers are some examples of how the

dimension reduction, and its philosophy inherent, is a potential theme to reflect and

debate. In the current research, is consider a fermionic field non-minimally coupled

to an external electromagnetic field in four dimensions, which Hamiltonian is diago-

nalized by FW prescription and its result, (non)relativistic interactions, are submit

to a dimensional reduction rendering a three spacetime dimensions physical system.

The reduced Hamiltonian is analytically compared to the one originally construct in

three dimensions (1.23). Henceforth, the indexes nomenclature is µ̂, ν̂ = (0, 1, 2, 3)

and the Minkowski metric ηµ̂ν̂ = diag(+,−,−,−) for four dimensional spacetime and

the three dimensional space vectors are in bold, e.g., the gauge potential is denoted

as Aµ̂ = (ϕ, A⃗).

The described fermionic Lagrangian is the Dirac one with the minimal covariant
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derivative and the Pauli interaction as an extra term,

LDP = iψ̄γµ̂Dµ̂ψ −mψ̄ψ +
f

2
ψ̄σµ̂ν̂ψ Fµ̂ν̂ (1.29)

with Dµ̂ = ∂µ̂+ iqAµ̂ and σµ̂ν̂ = i
2

[
γµ̂, γ ν̂

]
. The non-minimal coupling constant f , as

occurred in the low dimensional cases, has negative mass dimension [f ] = −1, signal-

izing that the theory should be treated as effective. The Pauli interaction, recently

investigated in the context of spin Hall effect [168], is passive of being connected

to the non-minimal coupling in three dimensions jµF̃µ. The resulting manipula-

tion of the previous coupling and of the eq. (1.17) is susceptible to be written as
1
2
ψ̄σµνψ Fµν , representing, in three spacetime dimension, the analogous to the Pauli

term. In ref. [144], the authors worked on some comparisons in the non-relativistic

limit involving these couplings, and now, is intended to extended the analyses to the

relativistic interactions, connecting them though dimensional reduction.

The equation of motion of the Lagrangian (1.29) is

(
iγµ̂Dµ̂ −m+

f

2
σµ̂ν̂Fµ̂ν̂

)
ψ = 0 , (1.30)

where the gamma matrices are in the Dirac representation

γ0 =

 I 0

0 −I

 , γi =

 0 σi

−σi 0

 . (1.31)
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Reorganizing the equation of motion (1.30) and managing some algebra, is obtained

the Dirac-Pauli Hamiltonian

HDP = βm+ α⃗ · π⃗ + qϕ I − if β α⃗ · E⃗ + f β Σ⃗ · B⃗ , (1.32)

in which I stands for the identity 4 × 4 , π⃗ ≡ p⃗ − qA⃗, β ≡ γ0, α⃗ ≡ βγ⃗ and Σ⃗

corresponds to the spin matrix

Σ⃗ =

 σ⃗ 0

0 σ⃗

 . (1.33)

Exactly as proceeded in lower dimensional systems, the resulting Hamiltonian, in

this case, the Dirac-Pauli one in eq. (1.32), is set in terms of odd (O) and even (E)

operators (H = βm+ E +O), which are defined as

O = α⃗ · π⃗ − if β α⃗ · E⃗ , E = qϕ I + f β Σ⃗ · B⃗ . (1.34)

Substituting O and E in eq. (1.22) and considering the four dimensional gamma

matrices eq. (1.31), one is prompted to the diagonalized Hamiltonian (for positive

energy solutions)
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HFW,DP ≈ m I+
1

2m

(
π⃗ I− fE⃗ × σ⃗

)2
+ qϕ I+

(
f − q

2m

)
σ⃗ · B⃗ − f 2

2m
E⃗2 I

+

(
f

2m
− q

8m2

)
∇⃗ · E⃗ I− i

q

8m2
σ⃗ ·
(
∇⃗ × E⃗

)
− q

4m2
σ⃗ ·
(
E⃗ × π⃗

)
− qf

4m2
E⃗2 I− i

f

8m2

[
∇⃗ ·
(
∂tE⃗

)]
I+

f

8m2
σ⃗ ·
(
∇⃗ × ∂tE⃗

)
+i

f

4m2

(
∇⃗ · B⃗

)
σ⃗ · π⃗ +

f

4m2
I
[
∂tE⃗ − ∇⃗ × B⃗

]
· π⃗

+
f

8m2

[
∇2
(
σ⃗ · B⃗

)]
+ i

f

4m2

[(
σ⃗ · ∇⃗

)
B⃗
]
· π⃗ − f

2m2
B⃗ ·

[(
σ⃗ · π⃗

)
π⃗
]

+
f 2

4m2
σ⃗ ·
(
E⃗ × ∂tE⃗

)
− f 2

4m2

[
σ⃗ · ∇⃗

(
E⃗ · B⃗

)]
+

f 2

4m2

[
E⃗ · ∇⃗

(
σ⃗ · B⃗

)]
− f 2

4m2
E⃗ ·

[(
σ⃗ · ∇⃗

)
B⃗
]
− f 2

4m2

[
B⃗ · ∇⃗

(
σ⃗ · E⃗

)]
− f 3

2m2

(
E⃗ · B⃗

)(
σ⃗ · E⃗

)
. (1.35)

This Hamiltonian with terms until order O(1/m2) contains new interactions and

properties which demand some notes. Most of the (non)relativistic interactions are

fruit of the non-minimal coupling, hence, a familiar expression is recovered for f = 0

[157] with the habitual spin-dependent interactions σ⃗ ·B⃗, σ⃗ ·(∇⃗×E⃗) and σ⃗ ·(E⃗×π⃗) ,

noticing that S⃗ = σ⃗/2. At the non-relativistic sector are the previewed anomalous

magnetic moment fσ⃗ · B⃗ and the correction to Darwin-type term f
2m

∇⃗ · E⃗. Along

the Hamiltonian, at the fourth line, the expressions ∇⃗ · B⃗ and ∂tE⃗ − ∇⃗ × B⃗ are

maintained once the Electrodynamics is unspecified. In case of Maxwell theory in

vacuum describing the external electromagnetic field, both contributions are iden-

tically null. In counterpart, ∇⃗ · B⃗ may perform contribution in the presence of

magnetic monopole, for example, as suggested in ref. [169] for spin ice configura-

tion. In parallel, extensions of Maxwell Electrodynamics theories such as non-linear
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ones [170, 171], model contemplating Lorentz symmetry violation [172], manifesting

quantum gravity effects [173, 174], are subjected to manifest non-trivial contribu-

tions of Ampère-Maxwell equation, even in vacuum. The diagonalized Dirac-Pauli

Hamiltonian is compound by new spin-dependent interactions of magnitude f 2/m2

and f 3/m2, involving magnetic and electric fields and preserving parity symmetry.

A last pointing is the observation that Chen and Chiou [175], in regime of weak,

homogeneous and static field, worked on the high-order contributions of the FW

transformation for the Dirac-Pauli Hamiltonian and obtained some interactions sim-

ilar to HFW,DP .

Following the script, the next step is to reduce the dimensionality of the system in

eq. (1.35), generating a three spacetime dimension Hamiltonian (for a detailed his-

torical review of reduction dimension approach, consult ref. [4]). The methodological

approach adopted is similar to the Scherk-Schwarz reduction [176], taken in a simple

formulation. The core idea is to assume that the fields are independent of the re-

duced spatial coordinate – "z" in the present text –, what leads to ∂z(any field) = 0.

Facing this condition, the integration of the action over the reduced coordinate (nor-

mally taken compact) renders a length dimension factor. This factor is absorbed by

the coupling constants and fields, what assures the suitable mass dimension in the

three-dimensional spacetime. In this configuration, the gauge vector potential A⃗ is

decomposed in a planar vector A⃗ and a new scalar field φ, thus A⃗ = (A⃗, φ). The

calculus is conducted assuming φ = 0 (which is the simplest choice based on the pur-

poses of this Thesis), producing B⃗ → (0, 0, Bz) , E⃗ → (E⃗, 0) and π⃗z → 0 . Then,

inserting these formulations for the electric and magnetic fields and for the canonical
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moment in Dirac-Pauli Hamiltonian eq. (1.35) and manipulating it algebraically, one

finds the reduced Hamiltonian

Hred ≈ m I+
1

2m

[(
p⃗− qA⃗

)
I− f

˜⃗
E σz

]2
+ qϕ I

+
(
f − q

2m

)
Bz σz +

f

2m
∇⃗ · E⃗ I

−i q

8m2
σz ∇⃗ ×

[
E⃗ I− f

q
∂t
˜⃗
E σz

]
− q

8m2
∇⃗ ·
[
E⃗ I− f

q

(
∇⃗Bz + ∂t

˜⃗
E

)
σz

]
− q

4m2
σz

[
E⃗ I− f

q

(
∇⃗Bz + ∂t

˜⃗
E

)
σz

]
×
[(
p⃗− qA⃗

)
I− f

˜⃗
E σz

]
,(1.36)

where is recognized ϵ3 ij = ϵij to recover the dual electric field ˜⃗Ei = ϵijE⃗j.

The eq. (1.36) precisely recovers the Hamiltonian set originally in three spacetime

dimensions in eq. (1.23). This verification is facilitated resourcing to the associations

among the magnetic fields Bz → B and the non-minimal couplings f → −g and

projecting the result on the upper state (ψ1) of the two-components spinor ψ =

(ψ1, ψ2)
T . In the end is demonstrated that the non-minimal interactions in eq. (1.32),

after a particular dimensional reduction, become the ones in (1.23), suggesting an

existence of connection through them.

Turn the attention to the matrix structure of both systems, one observes that

the spin arrangement in Hred (eq. (1.36)) is evident (Sz = σz/2) and hidden in

HFW,D (eq. (1.23)). Hred is generated from the Hamiltonian HFW,DP (eq. (1.32))
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conceived in four spacetime dimensions, based on gamma matrices 4 × 4 and four-

components spinors. Considering only the positive energy solutions of HFW,DP , set

this Hamiltonian in Pauli matrices and two-components spinors. On the other hand,

the three-dimensional HFW,D is structured in Pauli matrices and two-components

spinors, in a way that, projecting its positive energy solutions results in a subspace

1× 1 and one-component spinor, hiding the spin representation.

It is important to emphasize that the external electromagnetic field is determi-

nant to achieve the connection of the Hamiltonians through the dimensional reduc-

tion. For example, taking the Maxwell Electrodynamics, the Hamiltonians Hred and

HFW,D converge to the same expression. However, remembering the Maxwell-Chern-

Simons Electrodynamics in eq. (1.25), the Levi-Civita symbol ϵµαβ is peculiar to

three spacetime dimensions, whereas an extension of four-dimensional Maxwell Elec-

trodynamics, when submitted to a dimensional reduction, results in a theory with

non-trivial equations of motion.

1.5 Partial Conclusion

This work is dedicated to effective low-dimensional systems carrying non-minimal

electromagnetic couplings expanded through the Foldy-Wouthuysen transformation,

revealing (non)relativistic interactions in the Hamiltonian formalism. The proce-

dure of expanding is applied directly on systems genuinely constructed in the low

dimension scenario or in reduced ones originated in higher dimensions.

54



In the Klein-Gordon Lagrangian with the non-minimal coupling in three space-

time dimensions, the FW Transformation until O(1/m3) presented the usual anoma-

lous magnetic dipole interaction and the relativistic kinetic term contributing to

corrections on mass.

The three-dimensional fermionic system non-minimally coupled to electromag-

netic field, after the transformation up to O(1/m2), unveiled that relativistic inter-

actions are relevant only in presence of matter (J⃗ ̸= 0⃗), with the Maxwell Electrody-

namics describing the external electromagnetic field. Exchanging the Maxwell Elec-

trodynamics by the Maxwell-Chern-Simons one, results in non-trivial contributions

even in vacuum. Besides, in vacuum configuration, the effective electric field (eq.

(1.27)) vanishes when pushed to a particular critical coupling constant (gc = −q/λ),

converging Hamiltonians from bosonic and fermionic systems to the same one. Tak-

ing the Hamiltonian generated from four dimensional fermionic Lagrangian contain-

ing non-minimal Pauli coupling, and reducing it dimensionality through a method

similar to Scherk-Schwarz procedure, one recovers the Hamiltonian obtained for

the low-dimensional fermionic system. This result should be taken as a particu-

lar achievement and not be generalized, once this is not expected for systems with

extension of Maxwell Electrodynamics. This opens possibilities of further investiga-

tions, in which are contemplated the influence of the different dimensional reduction

methods in overall results. The fermionic higher dimension is also passive of being

analysed in detail in the future due to its relativistic interactions manifested from

the FW transformation (eq. (1.35)).

One more study branch is the Landau-Lifshitz-Gilbert (LLG) equation, observing
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that the magnetic sector of eq. (1.35) is capable of originating the corresponding

extension to the LLG equation and its non-minimal relativistic interactions may

result in torque or damping contributions to magnetization. Relativistic interactions

in magnetization dynamics are matter of research (see refs. [177, 178] and references

therein) and may motivate further works.
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Chapter 2

Beyond Monopole-Monopole

Gravitational Interactions

2.1 Introduction

One of the front line researches is the attempting to conciliate the General Rel-

ativity and the Quantum Field Theory, fusing Riemannian geometry and particle

interaction physics. To elaborate a quantum gravity theory conciliating unitarity

and renormalizability (covering from infrared to ultraviolet regime) stands as incom-

patible, until nowadays. On the other hand, consistent unitary theories respecting a

cutoff scale have been formulated as effective field theories [179] and gained relevance

in the last forty years.
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The gravitation theories containing terms with higher order derivatives back to

around the begin of twenties with Weyl [180] and Eddington [181]. Utiyama and

De-Witt [182] pointed the necessity of inclusion of high-order curvature terms in

Einstein-Hilbert action to permit a renormalizable theory at one-loop. Such the-

ories were promoted when Stelle [183] (see also ref. [184]) demonstrated they are

renormalizable in purely gravitational scenario or when coupled to a neutral mas-

sive scalar field, although their non-unitarity formulation, manifesting a complex

pole in the modified graviton propagator [185]. This aspect was reinforced by John-

ston [186], observing that the appearance of ghost pole is independent of the chosen

gauge. In parallel, it was verified that, whether taken the General Relativity as a

perturbative theory, this theory was non-renormalizable at one-loop condition cou-

pled to neutral scalar particle [187]. However, the paper kept opened the possibility

of the theory be renormalizable in a free particle scenario at two-loops. In the middle

of eighties, it was refuted by Marc Goroff and Augusto Sagnotti [188], proving the

non-renormalizability of the Einstein gravity at two-loops.

As the challenges around General Relativity renormalization and its harmoniza-

tion with Quantum Field Theory have raised, modified gravitation theories contain-

ing high-order curvature terms have been unfolding in several models. Among them,

one finds theories that switch the Ricci curvature scalar R by a general function f (R)

in the Einstein-Hilbert action (see the review [189]), massive three spacetime dimen-

sion and unitary at tree-level [190] (for a review, see ref. [191]), non-perturbative

methods considering 4 − ϵ dimensionality systems [192], approaches proposing the

re-scaling of a mass parameter associated to the Einstein-Hilbert action, which leads
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the system to a strongly interacting regime type [193], non-local D-dimensional

gravity [194] (see also ref. [195]), a Yang-Mills gauge theory assisting a weakly

coupled quadratic gravity, in a way to provide a ultraviolet completion [196], super-

renormalizable theory with complex poles [197] and propositions involving Lee-Wick

prescription to construct an unitary S-matrix [198].

In effective field theories and some other methods, the calculation of gravitational

quantum corrections for inter-particle potentials have been received attention ( e.g.

refs. [199, 200, 201, 202, 203, 204, 205]) since pointed by Donoghue in ref. [179]

that these corrections for Newtonian potential, derived from quantum gravity model

based in Quantum Field Theory, compose an efficient evaluation of consistency of

the model. The research on inter-particles potentials reaches beyond the traditional

monopole-monopole interaction, delivering also velocity- and spin-dependent correc-

tions. The authors in [206] obtained spin contributions to a graviton exchanging

between particles of varied spin representations, Khriplovich and Kirilin [207] calcu-

lated "spin" (in the particular case, they defined as the internal angular momenta

of rotating compound body) and velocity corrections to the Newtonian potential

for scalar particles and, latter, Kirilin compared these results with spinorial system

and calculated spin-orbit and spin-spin quantum corrections [208]. A Dirac-Einstein

system forming an effective field theory is studied in ref. [209], where the leading

quantum corrections to gravitational coupling of a charged massive particle with

spin-1/2 are achieved. Ross and Holstein [210, 211] analysed the non-relativistic

gravitational scattering amplitudes for different spin combinations, obtaining classi-

cal and quantum corrections in spin-orbit and spin-spin sectors. They extended the
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similar investigation for amplitudes of electromagnetic-gravitational scattering sys-

tems [212]. For theoretical and experimental reviews about the spin role in gravity,

see refs. [213, 214].

The chapters 2 and 3 are part of the fruitful collaboration with Gustavo P. de

Brito, Judismar T. Guaitolini Jr., Leonardo P.R. Ospedal and Kim P.B. Veiga, which

resulted in the paper [2]. They are organized in a total of seven sections, so that, four

are in the chapter 2 and three in the third one. The former is divided in the section

2.2, containing some definitions and main structural tensors of the linearized gravity;

followed by sec. 2.3 with a very short oversight about effective action definition and

formulation. The section 2.4 describes the methodological approach and formalism

that supported the calculation of the gravitational potentials and in the sec. 2.4

are obtained the inter-particles non-relativistic potentials for two scalars and two

spinors exchanging one graviton. The next chapter is composed by the sec. 3.1,

dedicated to detailing and comparison of the non-relativistic potentials sector by

sector (velocity-velocity, orbit-spin and spin-spin) and in static limit; the subsequent

section 3.2 contains a comparative analysis among the obtained potentials and the

results of ref. [3], where the authors, in a modified (effective) electrodynamics,

calculated inter-particles potentials for spin-0, -1/2 and -1, achieving velocity and

spin contributions. Then, the results are submitted to a praxis test in section 3.3,

where is chosen a particular effective quantum gravity model for low-energy condition

(based on Casual Dynamics Triangulation) [5] to support the definition of the form

factors and, thereby, to calculate the particular inter-particle potentials. The last

section (3.4) is dedicated for final comments and conclusions.
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2.2 Linearized Gravity

The starting point is to set the building blocks of the linearized gravity. In this

way, it is worked in a Riemannian four dimensional spacetime, where an approxima-

tion of a local flat spacetime is regarded, keeping the coordinate invariance. With

this approximation is possible to work with the Riemannian metric (gµν) equal to

the Minkowski one (ηµν = diag(1,−1,−1,−1) - convention adopted) summed to a

smooth perturbation designated by the symmetric rank two tensor hµν . Making use

of the familiar choice

gµν = ηµν + κhµν , (2.1)

with κ being the Einstein constant (κ =
√
32πG , G denotes the Newtonian constant)

and also considering |κhµν | ≪ 1. It is demanded gµαgαν = δ ν
µ , what results in

gµν = ηµν − κhµν + κ2hµαhα
ν + ..., (2.2)

still in time, it is defined

√
−det(gµν) ≡

√
−g = 1 +

1

2
κh+O(h2), (2.3)

in which h ≡ hµ
µ.
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The next step is the linearization of the main geometric elements of the General

Relativity. Thus, the Riemann-Christoffel connection Γ (Γα
µν = 1

2
gαρ(∂µgνρ+∂νgµρ−

∂ρgµν)), after linearization, assumes the form

Γα
µν =

1

2
κ(∂µhν

α + ∂νhµ
α − ∂αhµν) +O(κ2), (2.4)

in the same way, the Riemann-Christoffel tensor (Rα
µνβ = ∂νΓ

α
µβ −∂βΓα

µν +Γα
ρνΓ

ρ
µβ −

Γα
ρβΓ

ρ
µν), the Ricci tensor (Rµν = Rα

µνα) and the curvature scalar (R = gµνRµν) are

linearized, respectively,

Rα
µνβ =

1

2
κ(∂µ∂νhβ

α + ∂α∂βhµν − ∂µ∂βhν
α − ∂ν∂

αhµ
β) +O(κ2), (2.5)

Rµν =
1

2
κ(2hµν + ∂µ∂νh− ∂ρ∂µhν

ρ − ∂ρ∂νhµ
ρ) +O(κ2), (2.6)

R = κ(2h− ∂µ∂νh
µν) +O(κ2), (2.7)

using the symbol 2 = ∂µ∂
µ to represent the d‘Alembertian differential operator.

Those are the main elements of the Riemannian geometry and their linearized

form and the tensor hµν , in this specific context, assumes the role of the graviton as

a spin-2 field [215, 216, 217].
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2.3 The Effective Action: A Brief Review

The n-point Green‘s functions have a central role in the Quantum Field Theory,

once they structure the S-Matrix elements. They are the expected vacuum value of

the chronological ordered product of the field operators

Gn = ⟨0|TΦ1Φ2...Φn|0⟩. (2.8)

In the functional approach, one extracts the Green‘s function Gn(x) (where x ≡

x1, x2, ..., xn) of a system from the differentiation of its generating functional Z[J ] by

an external source J(x)

inG(x1, x2, ..., xn) =
δnZ[J ]

δJ(x1)δJ(x2)...δJ(xn)

∣∣∣∣
J=0

. (2.9)

In a similar way, the connected Green‘s function Gc(x) - "connected" refers to the

Feynman diagrams that are impossible to separate the parts which are not directly

joined by a line - is expressed by

inGc
n(x1, x2, ..., xn) =

δnW [J ]

δJ(x1)δJ(x2)...δJ(xn)

∣∣∣∣
J=0

, (2.10)

withW [J ] representing the generating functional ofGc
n(x). The generating functional

in eqs. (2.9) and (2.10) are related by Z[J ] = exp(iW [J ]).
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Now, defining the so called effective action as a functional Legendre transforma-

tion (for more details, see ref. [218])

Γ[Φ] = W [J ] +

∫
d4xΦ(x) J(x), (2.11)

with Φ(x) representing a function of infinity class decreasing fast and Γ[Φ] being the

generating functional of the n-point vertex function Γn(x), n ≥ 2,

Γn(x) =
δnΓ[Φ]

δΦ(x1)δΦ(x2)...δΦ(xn)

∣∣∣∣
J=0

, (2.12)

noting that Γn(x) involves strictly the n-point connected Feynman diagrams that are

one particle irreducible - means the diagram that is impossible, by breaking one of

its line, to transform it in two - and have no external lines (named "amputated").

After this superficial and brief presentation of the functional effective action

concept, which stands as the protagonist of this study, the focus is moved toward

the description of the methodological approach adopted for calculation of the non-

relativistic potentials.
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2.4 Non-relativistic Potentials

Methodological Approach and Mathematical Formalism

It seems convenient firstly to introduce the fundamental equations, conventions

and methodology chosen to calculate the potentials. They are achieved through the

Fourier transform of the Born approximation to first order in V (r) (see, for example,

ref.[219])

V (r) = −
∫

d3q⃗

(2π)3
MNR(q⃗) e

iq⃗·r⃗ , (2.13)

where MNR(q⃗) denotes the scattering amplitude in the non-relativistic limit. The for-

mer amplitude can be obtained from the adequate normalized relativistic scattering

amplitude (M(q⃗))

MNR(q⃗) = limNR

∏
i=1,2

(2Ei)
−1/2

∏
j=1,2

(2E ′
j)

−1/2M(q⃗) , (2.14)

noting that the normalization factor is composed by the product of the scattered

particles energies Ei and E ′
j, which are resulted of the Taylor expansion around the

rest mass limit of the in and out going particles, respectively.

An important remark on the physics approach methodology is the fact that the
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endeavour is destined exclusively to calculations of the graviton propagator quantum

corrections. Therefore, the vertices are carried in their tree-level processes. This

structure is pictorially expressed by the Feynman diagram in the fig. 2.1, in which

the centered circle represents the quantum corrections to the graviton propagator.

Then, the relativistic scattering amplitude is expressed by

iM = i T µν(p1, p
′
1) ⟨hµν(−q)hαβ(q)⟩ i Tαβ(p2, p

′
2) , (2.15)

being T µν (and Tαβ) the tree-level energy-momentum tensors of the scattered parti-

cles 1 and 2 (see fig. 2.1) and ⟨hµν(−q)hαβ(q)⟩ the graviton propagator (accompanied

by their quantum corrections).

(2)

p2

(1)

p1

(2′)

p′2

(1′)

p′1

qq

Figure 2.1: Diagrammatic representation of the 3-momentum convention and ap-

proximation adopted for the calculation of the scattering amplitude and potential.

The opted 3-momentum conventions to the scattering amplitudes and potentials

calculations are represented in the fig. 2.1. The algebra is developed in the center-

of-mass (CM) reference frame, what allows to assume the following 3-momentum

convention
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p⃗1 = −p⃗2 = p⃗− q⃗

2
, p⃗′1 = −p⃗′2 = p⃗+

q⃗

2
, (2.16)

in which is made use of the 3-momentum arithmetic average p⃗, obtained from each

pair p⃗i and p⃗′i, and the momentum transfer q⃗. For the analyses of the system dy-

namics is considered an elastic scattering behaviour, what means the conservation

of the system energy Efinal = Einitial. Expanding the energies around p⃗i = 0⃗ one

has Ei ≈ mi+
p⃗2i
2mi

, hence, applying the mentioned conservation of the energy system

and resourcing to eqs. (2.16), the condition q⃗ · p⃗ = 0 is acquired. Due to the former

condition, new relations among the energies come out E1 = E ′
1 and E2 = E ′

2.

At this point, it is introduced the functional effective action formalism. The

generating functional - conventionally named effective action - has the general form

Γ = Γ̄ + Γ̂, in which, Γ̄ expresses the sector containing diffeomorphism transforma-

tions invariance (δdiffΓ̄ = 0) and Γ̂ the sector that does not dispose of this property

(δdiffΓ̂ ̸= 0). In terms of covariant gauge theory, the diffeomorphism transformations

are interpreted as the gauge symmetry transformations. In this context of Quan-

tum Gravity Field Theory scenario, with the field hµν being a small perturbation

associated to the metric gµν , the effective action assumes the form

Γ[h; g] = Γ̄[g] + Γ̂[h] . (2.17)

The eq. (2.17) is composed by a gauge invariant term (Γ̄[g]) for gauge transforma-

tions on gµν and by a non-invariant term (Γ̂[h]), representing the gauge-fixing sector
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δhµν Γ̂ ̸= 0. The portion Γ̄[g] represents

Γ̄[g] =
2

κ2

∫
d4x

√
−g
(
−2Λ−R− 1

3
RF (2)R + CµναβW (2)Cµναβ

)
+O(R3) ,

(2.18)

with Λ standing for the cosmological constant, R the scalar of curvature, Cµναβ the

Weyl tensor

Cµναβ = Rµναβ +
1

2
(gµβRαν + gναRβµ − gµαRβν − gνβRαµ)

+
1

6
(gµαgβν − gµβgαν)R, (2.19)

where Rµναβ and Rµν are the Riemann and Ricci tensors. Each one of the mentioned

tensors, including the constant
√
−g, will be linearized following the equations (2.7),

(2.5), (2.6) and (2.3) respectively. F (2) and W (2) denote the form factors as func-

tions of the covariant d‘Alembertian operator and O(R3) includes terms contribu-

tions involving curvature invariant compositions of order higher than 2. The action

(2.18) in a region around Minkowskian four dimensional background scenario, rep-

resents the more general torsion-free and parity invariant form that holds unitarity

(ghost-free) [220, 221, 222]. Γ̄[g] contains explicitly the Einstein-Hilbert action term

(ΓEH ∼
∫
d4x

√
−gR) and two others geometrical ones quadratic in curvature. They

are associated to form factors, which, in this approach, once expanded the Green‘s

functions, the quantum corrections of the interactions potentials are calculated in
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function of them. The effective action piece displayed above can be faced as a gen-

eralization of the van Nieuwenhuizen proposal [223], where F (2) and W (2) could

assume the form of non-local arrangements [224], as adopted, for instance, by Moffat,

Barvinsky and Modesto [225, 226, 227], until the form of local polynomials functions

(some references are available in Giacchini and Netto [228] and Accioly et al [222]).

Now, turning the attention to the expression Γ̂[h],

Γ̂[h] =
1

2α

∫
d4x

√
−g ηµνFµ[h]Fν [h] , (2.20)

where α is the gauge parameter and Fµ[h] = ∇̄νhµν − 1
2
∇̄µh, with ∇̄µ indicating the

covariant derivative ∇̄µ ≡ ∂µ + Γ̄µ, with Γ̄µ representing an appropriate connection.

Basically, it exhibits the same appearance of the usual gauge-fixing term in the

classical action. However, it is worked on the mass shell, what results in trivial Ward

identities and makes the calculation gauge-independent.

From the eq. (2.17) is calculated the Green‘s functions for the graviton propa-

gator, which are the ones described in Sec (2.3) - diagrammatically represented by

connected, amputated and one particle irreducible Feynman diagrams. This is ac-

complished taking the vertex function (2.12) and calculating the inverse of its two

point function δ2Γ/δh2
∣∣
h=0

. In this way, the graviton propagator reads (in chapter

2 of ref. [218], there is the detailing of this approaching)
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⟨hµν(−q)hαβ(q)⟩ =
i

q2

[
1

Q2(q2)
P(2)

µναβ −
1

2Q0(q2)
P(0)

µναβ

]
+ i∆µναβ(q) , (2.21)

where Q0 and Q2 are defined as

Q2(q
2) = 1 +

2Λ

q2
+ 2q2W (−q2) , (2.22a)

Q0(q
2) = 1 +

2Λ

q2
+ 2q2 F (−q2) , (2.22b)

and the tensors P(2)
µναβ and P(0)

µναβ denote

P(2)
µναβ =

1

2
(ηµαηνβ + ηµβηνα)−

1

3
ηµνηαβ , (2.23a)

P(0)
µναβ =

1

3
ηµνηαβ . (2.23b)

Additionally, the structure ∆µναβ encloses the terms that contracted to the energy-

momentum tensors of the scattered particles and vanish. It seems relevant to point

out the disconnection feature manifested by the propagator (2.21) through the "Q"
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factors (eqs. (2.22a) and (2.22b)). The form factor W (−q2) is restricted to Q2 and,

likely, F (−q2) is to the factor Q0, what evidences their exclusive contribution by the

tensor P(2)
µναβ, in the case of W , and by P(0)

µναβ to F .

In the next subsection is evolved the calculations of the scattering amplitudes

and potentials between two spin-0 scattered particles and two spin-1/2.

Results

2.4.1 Spin-0 External Particles

The start point is the calculation of the gravitational potential in an elastic scat-

tering among massive spin-0 and spin-2 particles. The vertex is taken in the tree level.

To suppress quantum corrections for the vertex and the external particles propagator

is unfeasible when one tries to reach results experimentally reliable. Therefore, it

is decided to work with this configuration as an approximation and a first stage for

further calculations. In this way, the scalar particles dynamic assumes the form

Γscalar[ϕ, g] =

∫
d4x

√
−g

(
1

2
gµν∂µϕ∂νϕ− 1

2
m2ϕ2

)
, (2.24)

observing that it derives from the classical Klein-Gordon Lagrangean density sub-

mitted to the principle of minimal gravitational coupling (d4x → d4x
√
−g. In this
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case, the covariant derivative is identical to the regular derivative, ∇µ ≡ ∂µ). Then,

the energy-momentum tensor resulted from the interaction sector of eq. (2.24) is

written in the momenta space,

Tµν(p, p
′) = −κ

2

[
pµp

′
ν + pνp

′
µ − ηµν

(
p · p′ −m2

) ]
, (2.25)

noting that is considered terms up to first order in κ and the "prime" symbol on mo-

menta follows the definition expressed in fig. 2.1, namely, the particle 4-momentum

after the scattering. It is worthy to remember that E1 = E ′
1 and E2 = E ′

2 and the

external particles in the vertex are on-shell, p12 = p′1
2 = m1

2 and p2
2 = p′2

2 = m2
2.

The algebraic manipulation of eqs. (2.21) and (2.25) based on eq. (2.15) provides

the relativistic scattering amplitudes. Firstly, presenting the partial result

iM(s=0) =
i

q2

[
1

3Q2

(
T µ
1 µT

β
2 β − 3T µν

1 T2µν

)
+

1

6Q0

T µ
1 µT

β
2 β

]
, (2.26)

in which is adopted the notations T µν
i ≡ T µν(pi, p

′
i) and Qi ≡ Qi(q

2). The expression

for the amplitude in terms of the 4-momentum and masses is
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M(s=0) =
κ2

6q2Q2

[
2m2

1m
2
2 − 3(p1 · p2)(p′1 · p′2)− 3(p1 · p′2)(p′1 · p2)

+ 2(p1 · p′1)(p2 · p′2)−m2
1 p2 · p′2 −m2

2 p1 · p′1
]

+
κ2

6q2Q0

[
(p1 · p′1)(p2 · p′2)− 2m2

1 p2 · p′2

− 2m2
2 p1 · p′1 + 4m2

1m
2
2

]
. (2.27)

Following the methodology prescribed along the subsection 2.4, it is opted by the

reference of center-of-mass and, hence, the 3-momentum transfer q⃗ and the average

p⃗, both detailed in eq. (2.16). Thus, normalizing the relativistic scattering amplitude

according to eq. (2.14), one finds the non-relativistic limit of the amplitude

M(s=0)
NR =

κ2m1m2

6Q2 q⃗ 2

[
1 + p⃗ 2

(
3

m1m2

+
1

m2
1

+
1

m2
2

)
+
q⃗ 2

8

(
1

m2
1

+
1

m2
2

)
+O(3)

]
− κ2m1m2

24Q0 q⃗ 2

[
1− p⃗ 2

2

(
1

m2
1

+
1

m2
2

)
− 5 q⃗ 2

8

(
1

m2
1

+
1

m2
2

)
+O(3)

]
, (2.28)

where O(3) indicates terms higher than second order in |p⃗|/m1,2 and/or |q⃗|/m1,2,

which are neglected.

Then, once substituted the expression (2.28) in (2.13), the Fourier transform of

the non-relativistic scattering amplitude determines the non-relativistic inter-particle

(gravitational) potential
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V (s=0)(r) = −κ
2m1m2

6

[
I
(2)
1 (r) + p⃗ 2

(
3

m1m2

+
1

m2
1

+
1

m2
2

)
I
(2)
1 (r)

+
1

8

(
1

m2
1

+
1

m2
2

)
I
(2)
0 (r)

]
+
κ2m1m2

24

[
I
(0)
1 (r)

− p⃗ 2

2

(
1

m2
1

+
1

m2
2

)
I
(0)
1 (r)− 5

8

(
1

m2
1

+
1

m2
2

)
I
(0)
0 (r)

]
, (2.29)

being the integrals I(a)n (r) defined in Appendix B, eq. (B.1), with n = 0, 1 and

a = 0, 2. The potential V (s=0)(r) reveals a structure compounded by terms beyond

the monopole-monopole sector. This theme will be debated in the section 3.1, in

which both potentials results (scalar and fermionic) are compared. In a section

apart (sec. 3.2), the analyses are extended to a comparison with the electromagnetic

potential cases. The next subsection is dedicated to the calculations of the fermionic

non-relativistic gravitational potential.

2.4.2 Spin-1/2 External Particles

In this subsection is established the non-relativistic gravitational potential involv-

ing two fermionic particles. As practiced in the last subsection 2.4.1 for the scalar

case, the fermionic particles are taken on-shell, calculated quantum corrections for

the graviton propagator and treated the fermion-graviton vertices at the classical

level, suppressing their quantum corrections.
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The start point is the Dirac Lagrangean density, described by the functional

action Γferm[ψ̄, ψ, g]

Γferm[ψ̄, ψ, g] =

∫
d4x

√
−g
[
i

2
(ψ̄ γµg ∇µψ −∇µψ̄ γ

µ
g ψ)−mψ̄ψ

]
, (2.30)

which is rewritten in the context of gravitational geometry scenario. It means to

submit it to the prescription of gravitational minimal coupling, although, in this

case, differently from what occurs in the scalar one (2.24), the covariant derivative

∇µ carries the Lorentz connection Γµ responsible for restoring the local Lorentz

symmetry [229], thus ∇µψ = ∂µψ + Γµψ or ∇µψ̄ = ∂µψ̄ − ψ̄Γµ. One comes across

with the gamma matrices γµg that obey to the Clifford‘s algebra
{
γµg , γ

ν
g

}
= 2 gµν ,

the symbols ψ, meaning the spin-1/2 field, and ψ̄ = ψ†γ0, where γ0 belongs to the

usual gamma matrices in a flat background.

Once substituted eq. (2.3) in the action (2.30), one expands Γferm[ψ̄, ψ, g] in terms

of the fluctuation field hµν , up to its first order, and extracts the energy-momentum

tensor relative to the fermion-graviton tree-level vertex

Tµν(p, p
′) =

κ

8

{
2ηµν

[
(p+ p′)α J α(p, p′)− 2mρ(p, p′)

]
− (p+ p′)µJν(p, p

′)− (p+ p′)νJµ(p, p
′)
}
. (2.31)

The tensorial expression in eq. (2.31) has the bi-linear ρ(p, p′) = ū(p′)u(p) and
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J µ(p, p′) = ū(p′)γµu(p), where u(p) denotes the free positive energy solution for the

four-component spinor and ū(p) = u†(p)γ0. In detail

u(p) =
√
E +m

 ξ

σ⃗·p⃗
E+m

ξ

 , (2.32)

with ξ representing the two component spinor eigenstates and σ⃗ the Pauli matrices.

In on-shell condition, the Dirac equation reads (γµ pµ −m)u(p) = 0.

Repeating the same procedure as done for the scalar case and described in section

2.4, specifically working on the eq. (2.15), one calculates the relativistic scattering

amplitude

iM(s=1/2) =
i

q2

[
1

3Q2

(
T µ
1µT

β
2β − 3T µν

1 T2µν

)
+

1

6Q0

T µ
1µT

β
2β

]
(2.33)

This equation has the same form of the scalar one (2.26) with its appropriated

energy-momentum tensors. After some algebraic manipulations and using a compact

notation ρj ≡ ρ(pj, p
′
j) and J µ

j ≡ J µ(pj, p
′
j), noting that the particles are recognized

by index j = 1, 2, M(s=1/2) is obtained in the following result
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M(s=1/2) =
κ2

q2Q2

{
1

16
(p1 + p′1)µ(p2 + p′2)νJ

µ
1 J ν

2 − m1

8
ρ1(p2 + p′2)µJ

µ
2

− m2

8
ρ2(p1 + p′1)µJ

µ
1 − 1

32
(p1 + p′1)

ν(p2 + p′2)νJ
µ
1 J2µ

− 1

32
(p1 + p′1)µ(p2 + p′2)νJ

µ
2 J ν

1 +
m1m2

3
ρ1ρ2

}

+
κ2

q2Q0

{
3

32
(p1 + p′1)µ(p2 + p′2)νJ

µ
1 J ν

2 +
2m1m2

3
ρ1ρ2

− m1

4
ρ1(p2 + p′2)µJ

µ
2 − m2

4
ρ2(p1 + p′1)µJ

µ
1

}
, (2.34)

with m1 and m2 standing for the fermion masses. Then, moving toward the non-

relativistic amplitude, one transfers the physical system to the center-of-mass refer-

ential writing the eq. (2.34) in function of the momentum transfer q⃗ and the average

p⃗ (see eq. (2.16)). The bi-linear J µ
j and ρj in non-relativistic approach are

ρj|NR = 2mj

[
1 +

1

8m2
j

(
q⃗ 2 − 4i(q⃗ × p⃗ ) · S⃗j

)
+O(3)

]
, (2.35a)

J 0
j |NR = 2mj

[
1 +

1

2m2
j

(
p⃗ 2 + i(q⃗ × p⃗ ) · S⃗j

)
+O(3)

]
, (2.35b)

J⃗j|NR = 2χj

[
p⃗− i(q⃗ × S⃗j)

]
. (2.35c)
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The eqs. (2.35) are managed in order to present them in a compact form, hence,

S⃗j = ξ′†j σ⃗ξj, the factors ξ′†j ξj are omitted, χ1 = 1, χ2 = −1 and terms in powers

higher than quadratic order for |p⃗|/m1,2 and/or |q⃗|/m1,2 are neglected (referenced as

O(3)), highlighting that eq. (2.35c) is exact.

The non-relativistic elastic scattering amplitude is achieved after the substitution

of the eqs. (2.35) in eq. (2.34) and following the same procedure commented in the

scalar case and described in sec. 2.4, precisely by eq. (2.14), resulting in

M(s=1/2)
NR =

κ2m1m2

6Q2 q⃗ 2

{
1 + p⃗ 2

(
3

m1m2

+
1

m2
1

+
1

m2
2

)
+ i

[(
1

m2
1

+
3

2

1

m1m2

)
S⃗1 +

(
1

m2
2

+
3

2

1

m1m2

)
S⃗2

]
· (q⃗ × p⃗ )

− 3

4

q⃗ 2

m1m2

S⃗1 · S⃗2 +
3

4

1

m1m2

(
q⃗ · S⃗1

)(
q⃗ · S⃗2

)
+O(3)

}

− κ2m1m2

24Q0 q⃗ 2

{
1− p⃗ 2

2

(
1

m2
1

+
1

m2
2

)

− i

2

[
1

m2
1

S⃗1 +
1

m2
2

S⃗2

]
· (q⃗ × p⃗ ) +O(3)

}
, (2.36)

and, therefore, the gravitational potential for two spin-1/2 particles interacting via

a graviton, resulted from the application of the first Born approximation (2.13) on

the amplitude (2.36), is
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V (s=1/2)(r) = −κ
2m1m2

6

{
I
(2)
1 (r) + p⃗ 2

(
3

m1m2

+
1

m2
1

+
1

m2
2

)
I
(2)
1 (r)

+

[(
1

m2
1

+
3

2

1

m1m2

)
S⃗1 +

(
1

m2
2

+
3

2

1

m1m2

)
S⃗2

]
· L⃗
r

d

dr
I
(2)
1 (r)

− 3

4

S⃗1 · S⃗2

m1m2

I
(2)
0 (r) +

3

4

3∑
i,j=1

(S⃗1)i (S⃗2)j
m1m2

I
(2)
ij (r)

}

+
κ2m1m2

24

{
I
(0)
1 (r)− p⃗ 2

2

(
1

m2
1

+
1

m2
2

)
I
(0)
1 (r)− 1

2

[
S⃗1

m2
1

+
S⃗2

m2
2

]
· L⃗
r

d

dr
I
(0)
1 (r)

}
,

(2.37)

observing that L⃗ = r⃗× p⃗ denotes the orbital angular momentum and the appearance

of a derivative in the spin-orbit sector is due to the manipulation of particulars Fourier

transform and the adoption of spherical coordinate to solve their angular components

(for more details, see eq. (B.3)). A last comment is about the anisotropic integral

I
(2)
ij (r) which is defined in eq. (B.2).

The analyses finalizes with the richness of the gravitational potentials results. The

next chapter is dedicated to an exploration of their particularities and a comparison

among both expressions eqs. (2.29) and (2.37).
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Chapter 3

Spin and Velocity Corrections in

Gravitational Potentials

3.1 Scalar and Fermionic Gravitational Potentials:

Aspects and Comparisons

Continuing the analysis of the gravitational potentials for external spin-0 and

spin-1/2 particles calculated in the last two subsections 2.4.1 and 2.4.2, each one of

the potentials is segregated according to the sectors that compound them. Beginning

by the spin-0 scenario, one evidences its two sectors:
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• Monopole-monopole sector

V (s=0)
mon-mon(r) = − κ2m1m2

6

[(
I
(2)
1 (r)− 1

4
I
(0)
1 (r)

)

+

(
1

m2
1

+
1

m2
2

)(
1

8
I
(2)
0 (r) +

5

32
I
(0)
0 (r)

)]
. (3.1a)

• Velocity-velocity sector

V
(s=0)
vel-vel(r) = − κ2m1m2

6
p⃗ 2

[
3

m1m2

I
(2)
1 (r)

+

(
1

m2
1

+
1

m2
2

)(
I
(2)
1 (r) +

1

8
I
(0)
1 (r)

)]
. (3.1b)

In the same way, is presented the spin-1/2 sectors:

• Monopole-monopole sector

V (s=1/2)
mon-mon(r) = −κ

2m1m2

6

(
I
(2)
1 (r)− 1

4
I
(0)
1 (r)

)
. (3.2a)

• Velocity-velocity sector

V
(s=1/2)
vel-vel (r) = − κ2m1m2

6
p⃗ 2

[
3

m1m2

I
(2)
1 (r)

+

(
1

m2
1

+
1

m2
2

)(
I
(2)
1 (r) +

1

8
I
(0)
1 (r)

)]
. (3.2b)
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• Spin-orbit sector

V
(s=1/2)
spin-orbit(r) = −κ

2m1m2

6

{[(
1

m2
1

+
3

2

1

m1m2

)
S⃗1

+

(
1

m2
2

+
3

2

1

m1m2

)
S⃗2

]
· L⃗
r

d

dr
I
(2)
1 (r)

+
1

8

(
1

m2
1

S⃗1 +
1

m2
2

S⃗2

)
· L⃗
r

d

dr
I
(0)
1 (r)

}
. (3.2c)

• Spin-spin sector

V
(s=1/2)
spin-spin(r) = −κ

2m1m2

6

[
− 3

4

S⃗1 · S⃗2

m1m2

I
(2)
0 (r) +

3

4

3∑
i,j=1

(S⃗1)i (S⃗2)j
m1m2

I
(2)
ij (r)

]
. (3.2d)

The difference of the potential expressions related to both spin cases are evident and

expected, since the spin-1/2 field is richer in terms of physical content. Observing

the monopole-monopole sector for both scenarios, one verifies the universal potential

term present in eqs. (3.1a) and (3.2a). At the same time, it points out the extra

term proportional to the Fourier transform eq. (B.1) containing the form factors

W and F in spin-0 potential (eqs. (2.22a) and (2.22b)). Once chosen a particular

action which defines W and F , this term may be managed to recover the universal

potential due to its suppressed behaviour. This is exemplified for a specific choice of

form factors in the subsection 3.3. On the other hand, the velocity dependence exists

in the two cases under analysis and, comparing eqs. (3.1b) and (3.2b), they have

identical structure. The spin-1/2 particles potential reveals two exclusive sectors:

the spin-orbit and spin-spin manifestations (eqs. (3.2c) and (3.2d), respectively).

Taking a closer look at V (s=1/2)
spin-orbit, one realizes that both form factors are present in

82



the mentioned potential, while in the sector V (s=1/2)
spin-spin there is participation only of W .

An important note is the fact that, even though the particularities of the scalar and

fermionic fields as the existence of an extra term in monopole-monopole sector for

spin-0 particle and the exclusive contributions of spin sectors in spin-1/2 case, the

gravitational potential resulted from the imposition of the static limit restrictions

(p⃗→ 0⃗ and mi → ∞),

1

m1m2

V
(s)
stat.(r) = lim

p⃗→0⃗
mi→∞

1

m1m2

V (s)(r), (3.3)

is equal for both type of particles,

V
(s)
stat.(r) = −κ

2m1m2

6

(
I
(2)
1 (r)− 1

4
I
(0)
1 (r)

)
, (3.4)

and recovers V
(s=1/2)
mon-mon(r) (3.2a). Furthermore, the classical Newtonian potential

V
(s)
stat.(r) = −κ2m1m2

32πr
= −Gm1m2

r
is recovered when the form factors and the cos-

mological constant tend to zero.

One last observation should be done, the obtained results for spin-0 are passive

of being extended to gravitational interaction of spin-0 particles in arbitrary dimen-

sions as worked in refs.[230] and [231] for modified theories of gravity in monopole-

monopole sector. Things are not so trivial for spin-1/2 particles. The spin arrange-

ment assumes varied structure as the spacetime dimension vary. For instance, see
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refs. [232] and [233] for electromagnetic cases, where spacetime with odd dimension

are considered and the rising of new spin-dependent effects are discussed.

3.2 Comparison with Electromagnetic Potentials

At this stage, there is the opportunity of comparing the gravitational potentials

results achieved in the last section 3.1 with the electromagnetic potentials calculated

in ref. [3] for modified electrodynamics. In the mentioned paper, the authors adopted

a very similar physical system configuration and approaching of the problem. The

target was the electromagnetic potentials in the non-relativistic limit derived from

spin-0, -1/2 and -1 particles interactions with the exchanging of one bosonic vector,

what is summarized by the Feynman diagram fig. 2.1. Turning the attention to

spin-0 and -1/2 particles interactions, the same path chosen in sec. 2.4 was gone

through by the authors in the last mentioned reference, in which the first Born ap-

proximation (2.13), amplitude expressions (2.15) and (2.14), center-of-mass reference

frame, 3-momentum convention (2.16) and elastic scattering behaviour were took in

account identically. In addition, they worked until the second order in 3-momentum

O
(
|p⃗ | 2/m2

)
, so the spin and orbit couplings became notables. The electrodynamics

effective action worked on was

ΓEM[A] = −1

4

∫
d4xFµν(1 +H(2))F µν − 1

2α

∫
d4x (∂µA

µ)2 +O(F 3), (3.5)
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the structure H(2) equally stood for a form factor as function of d’Alembertian op-

erator. The additional integral was the gauge-fixing term. Vertices and the modified

photon propagator were calculated at the tree level. The found resultant photon

propagator was

⟨Aµ(−q)Aν(q)⟩ = − i

q2
1

(1 +H(−q2))
ηµν + i∆µν(q) , (3.6)

which presented similar configuration to eq. (2.21), with H(2) factoring the longi-

tudinal and transversal projections operators contented in the Minkowskian metric

ηµν and ∆µν(q) concentrating the terms that contracted with the vector current and

vanish. For spin-0 case the 3-vertex originated from an Abelian vector and scalar

particles, once they worked on-shell, was V µ(p, p′) = −ie(p′µ + pµ). In parallel,

for spin-1/2 situation the conserved vector current taking place of the vertex was

Jµ(p, p′) = eū(p′)γµu(p), being u(p) the positive solutions for Dirac equation and

ū(p) its conjugated (the same terminology and convention described in subsection

2.4.2) and "e" the electric charge.

This brief description of the elegant and rich content paper points out the prox-

imity of physics scenarios and methodology applied among it and the present work,

constituting a powerful voluntary to offer a valuable comparison between gravita-

tion and electromagnetic modified theories settled in very close physics arrange-

ments. Segregating the electromagnetic potentials, one has the monopole-monopole

and velocity-velocity sectors for spin-0 particles interaction:
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• Monopole-monopole sector

V
(s=0)
EM, mon-mon(r) = e1e2I

EM
1 (r) . (3.7a)

• Velocity-velocity sector

V
(s=0)
EM, vel-vel(r) =

e1e2
m1m2

p⃗ 2IEM
1 (r) . (3.7b)

And monopole-monopole, velocity-velocity, spin-orbit and spin-spin for spin-1/2 par-

ticles:

• Monopole-monopole sector

V
(s=1/2)
EM, mon-mon(r) = e1e2

[
IEM
1 (r)− 1

8

(
1

m2
1

+
1

m2
2

)
IEM
0 (r)

]
. (3.8a)

• Velocity-velocity sector

V
(s=1/2)
EM, vel-vel(r) =

e1e2
m1m2

p⃗ 2IEM
1 (r) . (3.8b)

• Spin-orbit sector

V
(s=1/2)
EM, spin-orbit(r) = e1e2

[(
1

2m2
1

+
1

m1m2

)
S⃗1 +

(
1

2m2
2

+
1

m1m2

)
S⃗2

]
· L⃗
r

d

dr
IEM
1 (r) .

(3.8c)
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• Spin-spin sector

V
(s=1/2)
EM, spin-spin(r) = e1e2

[
− S⃗1 · S⃗2

m1m2

IEM
0 (r) +

3∑
i,j=1

(S⃗1)i (S⃗2)j
m1m2

IEM
ij (r)

]
. (3.8d)

The integrals IEM
n (r) and IEM

ij (r) assume the forms described in eqs. (B.1) and (B.2)

respectively, considering the substitution of Qa(q
2) by 1 +H(−q2). Comparing the

results for gravitational and electromagnetic potentials, one realizes some correspon-

dences of the sectors acquired in both spin-0 and spin-1/2. In eqs. (3.1a) and (3.7a)

are observed the universal terms (Newtonian and Coulombian), adequate to each

interaction. For the electromagnetic situation, the integral IEM
1 (r) "agglutinates"

the contributions from the longitudinal (trivial) and transversal projections once is

considered a massless photon and no anisotropy, while, for gravitational case, their

projections appear separately through the integrals I(2)1 (r) and I(0)1 (r). The velocity

sector manifests the same behaviour as the monopole-monopole one does, that is,

contributions of I1(r). There is no quantum corrections attributed to IEM
0 (r) in-

side the electromagnetic potential for spin-0 external particles. Dislocating towards

spin-1/2 particles, the electromagnetic and gravitational potentials in monopole and

velocity sectors perform a similar relation as obtained for spin-0. The monopole-

monopole sector (eq. (3.8a)) contains the IEM
1 (r) term and, differently of occurred

for spin-0, manifests a quantum correction with IEM
0 (r), in contrast to gravitational

potential monopole sector that has its result (eq. (3.2a)) concentrated in the inte-

grals I1. Moving to the velocity-dependent part, the expressions for both potentials

are preserved in relation to spin-0 case. At last, the potentials dependencies on the
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spin-orbit and spin-spin contributions conserve close form. When V (s=1/2)
spin-orbit(r) (3.2c)

is compared to V (s=1/2)
EM,spin-orbit(r) (3.8c), the rising of the equivalent terms are observed,

which differ in factors of proportionality but maintain the major arrangement based

on the spins S⃗1 and S⃗2 participation. One may extend the later analysis to the

spin-spin sector, confirming the similarity of the eqs. (3.2d) and (3.8d). Noting that,

for the gravitational scenario, only the term proportional to P(2)
µναβ contributes to

this sector, remembering it is associated to Q(2)(q2) in the propagator (2.21) and the

same Q(2) is part of the integral I(2)0 (r).

3.3 Form Factors Motivated by Quantum Gravity

Model

At this section the developed theory is submitted to analyses when applied to a

model. The central reference that supports this model is an article by Knorr and

Saueressig [5], where the authors, through a non-pertubative method, established a

reverse engineering procedure to determine a quantum effective action for gravity

under low-energy conditions.

The matching-template formalism, as named by the authors, begun with an ef-

fective action in terms of parameters, that, in their case, is composed by one local

and one non-local parts, respectively,
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Γlocal =
1

16πGN

∫
d4x

√
−g
(
2Λ−R

)
, (3.9a)

ΓNL =
−1

96πGN

∫
d4x

√
−g
(
b2R2−2R + b̃2Cµναβ 2

−2Cµναβ
)
, (3.9b)

with R being the regular Riemannian curvature scalar (see, for instance, [229]) and

Cµναβ the Weyl tensor, eq. (2.19). The criteria to definition of the (non)local parts

were the construction of an effective quantum action for gravity and make a connec-

tion with cosmological scales, in a way that the authors required the Einstein-Hilbert

action and diffeomorphism-invariant contributions quadratic in the curvature tensors

and presence of two inverse powers of the Laplacian 2−2 (keeping in mind that the

spacetime coordinate system is the Euclidean one). The Ricci tensor Rµν was absent,

once is possible to write it in terms of the curvature scalar and the Weyl tensor. For

the determination of the parameters b, b̃, GN and Λ, they worked with a methodology

based on foliation structure [234, 235]. This demanded the calculation of two-point

autocorrelation functions derived from fluctuations of 3-volume around a toroidal

geometry background [236, 237]. The algebra indicated no contribution of the mass-

type parameter b̃, leaving only b. By matching the analytical approach with the

lattice data from Monte Carlo simulation within Causal Dynamics Triangulation

(CDT) (see the ref. [238] for a wide review), the authors could reverse engineering

the couplings through an establishment of a bind between continuum and lattice.

The final non-local gravitational model
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Γ =
2

κ2

∫
d4x

√
−g
(
2Λ−R− b2

6
R2−2R

)
(3.10)

is the central part of the Maggiore-Mancarella cosmological model [239] (for a re-

view of extended gravity models for cosmological scales involving non-local terms,

see refs. [240, 241]), in which the authors studied a case with undefined number

of spatial dimensions, hence, achieved an automatically dark energy manifestation

and self-accelerating background evolution. In ref. [242] the authors studied a very

similar non-local gravity model focusing in low energy cosmological dynamics, but

altering the Einstein equation Gµν −m2 ˜gµν = 8πGTµν , where ˜gµν ≈ gµν2
−1R. The

inclusion of the non-local term with a mass parameter m generates a dynamical

dark energy component, which reproduces the observed dark energy density with no

introduction of the cosmological constant. According to the ref. [243], the terms

R2−2R and Cµναβ2
−2Cµναβ appeared due to the decoupling phenomena in a renor-

malization group analysis. The Weyl tensor was also considered for cosmological

perturbation and background evolution levels in non-local gravity in the ref. [244],

indeed, performing an action in the mold of eq. (2.18).

For completeness of the present study, the Weyl tensor term is also considered.

Putting in practice the form factors methodology, one takes the sum of the effective

actions Γlocal and ΓNL, eqs. (3.9), as the guide to the analyses and defines

F (2) = − ρ0
22

and W (2) = − ρ2
22

, (3.11)
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adopting ρ0 and ρ2 as positive parameters motivated by b2 and b̃2 from eq. (3.9b)

and imposing any restriction on them. It seems worthy to clarify that the recon-

struction program content in ref. [5] is apart from the current example and the

main contribution to it, besides the precious research delivered to the community

and enlargement of its knowledge, is to supply with an effective action applicable

(and not a toy model) to reproduce observed data. One more note should be done,

the effective actions eqs. (3.9) and (3.10) are structured on Euclidean signature, and

a transformation to Lorentzian one demands a Wick rotation, e.g. ref. [245], what

is not addressed inside this work. From the form factors (3.11) are determined the

integrals I(s)0 (r), I(s)1 (r) and I
(s)
ij (r) participants of the potentials eqs. (2.29) and

(2.37)

I
(s)
1 (r) =

∫
d3q⃗

(2π)3
1

q⃗ 2 + µ2
s

eiq⃗·r⃗ =
e−µsr

4πr
, (3.12a)

I
(s)
0 (r) =

∫
d3q⃗

(2π)3
q⃗ 2

q⃗ 2 + µ2
s

eiq⃗·r⃗ = δ3(r⃗)− µ2
s

e−µsr

4πr
, (3.12b)

I
(s)
ij (r) =

∫
d3q⃗

(2π)3
q⃗iq⃗j

q⃗ 2 + µ2
s

eiq⃗·r⃗

=
1

3
δijδ

3(r⃗) +

[
(1 + µsr)δij − (3 + 3µsr + µ2

sr
2)
xixj
r2

]
e−µsr

4πr3
, (3.12c)
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where is defined µ2
s = 2(ρs−Λ) and (ρs−Λ) > 0, what assures that the non-local form

factors introduce mass-type terms in the graviton propagator. At last, the particular

gravitational potentials, derived from the integrals above (eqs. (3.12)), are absent of

Dirac deltas. Firstly, it is presented the case for spin-0 external particles:

• Monopole-monopole sector

V (s=0)
mon-mon(r) =− κ2m1m2

24π r

[(
e−µ2r − 1

4
e−µ0r

)

− 1

8

(
1

m2
1

+
1

m2
2

)(
µ2
2 e

−µ2r +
5

4
µ2
0 e

−µ0r

)]
. (3.13a)

• Velocity-velocity sector

V
(s=0)
vel-vel(r) = −κ

2m1m2

24πr
p⃗ 2

[(
1

m2
1

+
1

m2
2

)(
e−µ2r +

1

8
e−µ0r

)
+

3

m1m2

e−µ2r

]
.

(3.13b)

In the sequence, for spin-1/2 external particles:

• Monopole-monopole sector

V (s=1/2)
mon-mon(r) = −κ

2m1m2

24π r

(
e−µ2r − 1

4
e−µ0r

)
. (3.14a)
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• Velocity-velocity sector

V
(s=1/2)
vel-vel (r) = −κ

2m1m2

24πr
p⃗ 2

[(
1

m2
1

+
1

m2
2

)(
e−µ2r +

1

8
e−µ0r

)
+

3

m1m2

e−µ2r

]
.

(3.14b)

• Spin-orbit sector

V
(s=1/2)
spin-orbit(r) =

κ2m1m2

24πr3

[(
1

m2
1

S⃗1 · L⃗+
1

m2
2

S⃗2 · L⃗+
3(S⃗1 + S⃗2) · L⃗

2m1m2

)
(1 + rµ2)e

−µ2r

+
1

8

(
1

m2
1

S⃗1 · L⃗+
1

m2
2

S⃗2 · L⃗
)
(1 + rµ0)e

−µ0r

]
. (3.14c)

• Spin-spin sector

V
(s=1/2)
spin-spin(r) =− κ2m1m2

32π r3

[
S⃗1 · S⃗2

m1m2

(1 + rµ2 + r2µ2
2)e

−µ2r

− 3
(r̂ · S⃗1) (r̂ · S⃗2)

m1m2

(1 + rµ2 +
1

3
r2µ2

2)e
−µ2r

]
. (3.14d)

The equations are accompanied by exponential factors that generate a damping

effect on the potentials sectors in general. This is consequence of the mass-type
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term presents in the graviton propagator. Concentrating on the respective equations

(3.13a) and (3.14a) for V (s=0)
mon-mon(r) and V

(s=1/2)
mon-mon(r), one observes that they are pro-

portional to r−1, what reaffirms the presence of the universal term. Furthermore,

both monopole sectors – for spin-0 and -1/2 – carry the static limit potential (see

eqs. (3.3) and (3.4) to review the definitions and result), nonetheless, the spin-0

expression still contains an extra component, as already commented, in a manner

that the latter referred potential is written as

V (s=0)
mon-mon(r) = V

(s=0)
stat. (r) + ∆V (s=0)

mon-mon(r) , (3.15a)

where

V
(s=0)
stat. (r) = −κ

2m1m2

24π r

(
e−µ2r − 1

4
e−µ0r

)
(3.15b)

and

∆V (s=0)
mon-mon(r) =

κ2m1m2

192π r

(
1

m2
1

+
1

m2
2

)(
µ2
2 e

−µ2r +
5

4
µ2
0 e

−µ0r

)
, (3.15c)

in which the suppressed behaviour of ∆V (s=0)
mon-mon(r) is passive of being demonstrated.

Assuming the Newtonian potential is a suitable theory to describe interactions

within the bound of the Solar System perimeter, being aware that the experimental

data evidence points out that the Newtonian theory, for large distances, presents

deviation from the observed data within the galaxy and extra-galaxy scales [246, 247,

248, 249]. To define the Solar System range or area is not a trivial task, however,
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considering, in rough way, its radius (rs) as the semi-major axis of the Pluto’s orbit,

one finds approximately 39 A.U. [250]. Rescuing the Pioneer anomaly [251, 252] that

registered from Pioneer 10 and 11 spacecrafts the presence of a small anomalous blue-

shifted frequency among the distances of 20 to 70 A.U. from the Sun and kept an

unsolved question, it is adopted the distance rs ≈ 10 A.U., whereby the Newtonian

physics is assumed valid. Since is provided that µirs ≪ 1, then µi ≪ 10−25MeV,

what incurs in (µ2
i /m

2
j) → 0 – even to particle masses (order ∼ MeV) – and vanishes

the spin-0 extra term in monopole potential sector, recovering the Newtonian one.

The velocity sector keeps the same r-dependency order (r−1) as the monopole

one. As already argued, under the static limit scenario, where p⃗→ 0⃗ and mi → ∞,

this sector is suppressed in both types of particles. The same happens upon the non-

relativistic limit, once the characteristic factor of the sector, p⃗ 2/mimj, tends to a

value far smaller than the unity, what practically annuls the velocity sector influence

in these gravitational potentials.

The r-dependency assumes different orders in the spin-orbit and spin-spin sectors.

In the spin-orbit (3.14c) there are terms in r−1 and r−2, noticing that the angular

momentum L⃗ is proportional to r. In its turn, V (s=1/2)
spin-spin(r) contains orders from r−1 to

r−3. In these two cases, the r−1 terms are suppressed by the same reasons that leaded

the extra monopole term ∆V
(s=0)
mon-mon(r) to be suppressed, namely, (µ2

i /m
2
j) → 0 .

Therefore, it is notable the predominance of V (s)
mon-mon(r) ∼ r−1, restricted to the

static one V (s=0)
stat. (r) in the spin-0 case (see eqs. (3.15)), over the others in the long-

range assumption. Things are quite different when the interactions of short-range
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distances are analysed. Firstly, taking the spin-0 potential, one observes that

• Monopole-monopole sector

V (s=0)
mon-mon(r) ∼− κ2m1m2

32π r

(
1−

∑
i=0,2

∑
j=1,2

cij
µ2
i

m2
j

)
. (3.16a)

• Velocity-velocity sector

V
(s=0)
vel-vel(r) ∼ −κ

2m1m2

32πr
p⃗ 2

∑
i,j=1,2

cij
mimj

. (3.16b)

and, then, the gravitational potential for spin-1/2 externals particles

• Monopole-monopole sector

V (s=1/2)
mon-mon(r) ∼ −κ

2m1m2

32π r
. (3.17a)

• Velocity-velocity sector
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V
(s=1/2)
vel-vel (r) ∼ −κ

2m1m2

32πr
p⃗ 2

∑
i,j=1,2

cij
mimj

. (3.17b)

• Spin-orbit sector

V
(s=1/2)
spin-orbit(r) ∼

κ2m1m2

32πr3

∑
i,j=1,2

(
cij

mimj

S⃗i · L⃗
)
. (3.17c)

• Spin-spin sector

V
(s=1/2)
spin-spin(r) ∼− κ2m1m2

32π r3

(
S⃗1 · S⃗2

m1m2

)
. (3.17d)

in which, cij stands for particular constants to each one of the eqs. (3.16) and

(3.17). The potentials lose their damping effect, which tends to the unity as r goes

to zero. The expressions presented above (eqs. (3.16) and (3.17)) are the major

contributions for the gravitational potentials in both external particles under short-

range restrictions. In spin-0 situation, the monopole sector, eq. (3.16a), still holds

as the predominant term, since the velocity part, eq. (3.16b), is suppressed in the

non-relativistic limit.
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The behaviour of the potential in the static limit (eq. (3.3)) is straight forward.

The condition µirs ≪ 1 is guaranteed because r already tends to zero. Considering

the static limit premise mj → ∞ , one has (µ2
i /m

2
j) ≪ 1 , what rises the static

potential V (s=0)
stat. (r) = −κ2m1m2

32πr
. In contrast, taking a look at the spin-1/2 potential

equations (3.17), one notices an inversion of the relevance among the sectors when

compared to long-range results manifested in eqs. (3.14). The spin interaction

potential, expressed in eq. (3.17d), assumes the leading contribution due to its order

r−3, followed by V (s=1/2)
spin-orbit(r) (eq. (3.17c)), which carries an order r−2. The monopole-

monopole term equation (3.17a) tends naturally to the Newtonian potential, but

occupying a suppressed position in the gravitational potential under analysis. In the

short-range panorama, one concludes that the leading gravitational potential terms

for spin-0 and spin-1/2 external particles are absent of the form factors described in

eq. (3.11). This finding may express the infrared nature of them.

3.4 Partial Conclusion

The analysis aims a quantum linearized gravity model, sustained by effective field

theory, structured with form factors associated to squared curvature terms, from

which is obtained quantum corrections to non-relativistic inter-particle potentials

involving scattering of scalars and spinors. The form factors are capable of revealing

the relevant information attributed to the graviton propagator in a framework of met-

ric perturbative fluctuations around a flat background. The work contemplates tree
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level vertices and graviton propagator, for which is obtained quantum corrections.

The research is passive of further investigations including loop corrections.

The comparison of spin-0 and −1
2

potential sectors, points the presence of the

universal potential contribution in both monopole-monopole interactions (eqs. (3.1a)

and (3.2a)) and a presence of extra sub-leading correction for the scalar one. The

velocity-velocity sectors (3.1b) and (3.2b) are identical for both particles. The spin-

orbit one (3.2c) manifests contributions of both form factors F (2) and W (2), while

the spin-spin (3.2d) only from W (2). In spite of the particularities for each sector,

it is observed that, in the static limit (eq. (3.3)), both gravitational potentials (for

spin-0 and −1
2

particles) converge to V (s=1/2)
mon−mon(r) (eqs. (3.2a) and (3.4)).

An investigation confronting the potentials results of the currently gravitational

system with the modified effective electrodynamics [3] unveils similar structures in

each sector contribution of the spin-0 and -1/2 inter-particles potentials.

The results are submitted to a specific model, in order to evaluate its performance.

The model is grounded in a non-perturbative method combined to Casual Dynamics

Triangulation to establish a quantum gravity effective action, which subsidizes the

information to determine the form factors. The non-relativistic potentials for spin-

0 and -1/2 particles in long-range regime present exponential formulation ∼ e−µr

characterizing the damping effect and the universal term leading the contribution

for both scenarios. In short-range distances the damping effect disappears, anyway

the major spin-0 contribution keep coming from the universal term in monopole

sector. To spin-1/2, the spin-spin sector assumes the main contribution, once it is
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proportional to 1/r3 and the monopole-monopole becomes a suppressed correction.

Besides the possibility of expanding the calculations of the quantum corrections

present in this study beyond the tree-level propagator and vertices, there is also the

opportunity of developing the spin-1 inter-particle potential in the non-relativistic

scattering process exchanging a graviton. In ref. [211], the authors achieved contri-

butions of velocity, spin and involving quadrupole nature for massive spin-1 scattered

particle, what endorses the motivation to explore this theme in the future.
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Chapter 4

Modified Maxwell-Higgs Model in an

Effective Scenario

Work in Progress

4.1 Introduction

Since the phenomenological formulation of superconductivity by Landau and

Ginzburg in 1950 [18] and its extension for Type-II superconductors by Abrikosov

[26], the investigation on topological systems presenting vorticity has been increased

and reached several areas of physics, specially in condensate matter, particles physics

and cosmology. In the begin of the 70’s, Nielsen and Olesen [253] generalized

101



the Landau-Ginzburg-Abrikosov description through a relativistic Abelian Maxwell-

Higgs model revealing a quantized magnetic flux electrically neutral and obtained

approximate solutions for the equations of motion. Three years later, Bogomol’nyi

[254] introduced an algebraic manipulation that, stipulating some specific values to

the potential coupling constant – the Bogomol’nyi-Prasad-Somerfield (BPS) limit

[255]–, was capable of converting the second order differential equations of the sys-

tem in first ones. Along the history of physics, planar topological defects have been

unfolded in a large variety of research branches. Some of these branches widely de-

veloped are the fractional statistics and anyons (see, for instance, [39, 40, 256, 257]).

In condensed matter systems are observed giant vortices [258, 259, 260]. Super-

symmetric models [261] and cosmic strings [262] integer prominent branches as well,

while topological arrangements are directly related to the early Universe period dur-

ing phases transitions [263]. Topological theories involving different dimensionalities

with unusual kinetic terms are explored in the context of inflationary phase of the

Universe [264, 265, 266], dark [267, 268] and tachyonic matter [269], gravitational

waves [270], alternatives proposals for Yang-Mills theory in infrared regime [271],

strongly interacting particles [272], solitons mapped by Hopf index [273, 274, 275]

and defects in D-dimensional systems [276].

The vortex description has multi faces. Diversified formulations structuring mod-

els to describe the phenomenology of topological defects has been developed since

Nielsen and Olesen in 1973. The Maxwell-Higgs model in Abelian version was ex-

actly solved [277], adopted for two votices interaction [278], extended to generate the

Chern-Simons term from spontaneous symmetry breaking [153], altered to include
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non-conventional kinetic terms (see, for example, [279, 280] and references therein),

added Born-Infeld non-linear Electrodynamics (see [281] and references therein), gen-

eralized such that presented compact vortices [282] and non-minimally coupled in

non-Abelian version [283]. Models formed just by Higgs for two-component super-

conductors [284] and associated to Born-Infeld [285] are derivations from the 70’s

too.

In the manufacturing process of construction of models, the Chern-Simons term

stands out due to the possibility of obtaining vortex solutions in Lagrangian possess-

ing its presence summed to the Higgs (kinetic and potential scalar terms). These

vortex solutions carry magnetic flux and, contrarily to the Nielsen-Olesen solution,

electric charge. In this way, theorists have been explored models in different configu-

rations with the Chern-Simons term. One of them is the pure Chern-Simons theory

[286], with multivortex solution [287], supporting topological and non-topological

solitons solutions [288], there is also non-relativistic model [289] and non-minimally

coupled in Abelian [161] and non-Abelian [290] theory generating non-topological

magnetic flux. Other configurations investigated are the Maxwell-Chern-Simons-

Higgs models [291], with addition of two neutral fields [292, 293] to enable the devel-

opment of Bogomol’nyi prescription [254], in non-Abelian theory [294, 295], carrying

non-minimal coupling (see refs. [296, 297, 298] and references therein) and structured

in generalized models with unconventional kinetic term [299] and modified Maxwell

term [300, 301]. There are researches segments involving supersymmetry [149], sigma

model (see, for instance, refs. [302, 303, 304]), Lorentz symmetry violation [305] (see

also references therein from paper 21 to 24), fermionic theory [306, 307] and diversi-
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fied geometry [308] (see references therein).

The present work aims to analyse an Abelian Maxwell-Higgs model, minimally

coupled and involved by a strong electromagnetic background field. A cosmic star like

a neutron star (pulsars or magnetars) could assume the background field source role,

perturbing the vacuum structure, spontaneously breaking its symmetry. This per-

turbation is manifested in the Lagrangian through a modification in the (Minkowski)

metric of the kinetic scalar term, similarly practiced in the gravitational theory in

eq. (2.1), originating a new metric which absorbs the field strength representing

the Maxwell Electrodynamics of the background field. It is taken into account the

scenario with the new metric constant in relation to space-time derivatives. The Bo-

gomol’nyi [254] equations are determined in the energy ground state condition and

vortex solutions are implemented, what leads to quantized magnetic flux coming from

the propagating electromagnetic wave. The chapter starts with the Lagrangian con-

taining the constant metric, in a matter that firstly is developed the field equations

and achieved the energy (density) of the system (Sec. 4.2.1). Then, in subsection

4.2.2, the energy equation is diagonalized, the Bogomol’nyi equations are calculated

and the Bogomol’nyi limits obtained. In the sequence 4.2.3, the scalar and vec-

tor fields are achieved, where is analysed their structure in terms of quantization,

anisotropy and continuity. The charge of the system is also found. One last analysis

around the energy in the lower bound is executed, where, through the equations

system formed by the self-dual type expressions, are formulated the gauge potential

a(r) and the Higgs potential. The partial conclusions in Sec. 4.3 close the chapter.
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4.2 Maxwell-Higgs Model with a Strong Electromag-

netic Background Field

4.2.1 The Model and Field Equations

The first model proposed is the Maxwell-Higgs Lagrangian (density), similar to

the one studied, for example, in refs. [253, 277], containing the particularity of mod-

ified metric in relation to the kinetic scalar term, what could classify it as theory of

modified kinetic term as pointed above (refs. [279, 299] and references therein). The

Maxwell term representing the background field responds for the modification in the

Minkowski metric, equivalently to practice in linearized gravitation (eq. (2.1)), in-

citing the interpretation of the background field as perturbation of elevate intensity

in the system. As intensity as capable of perturbing the propagating electromag-

netic wave and the vacuum and promoting alteration in the physical properties of

the propagating wave as frequency, incurring in birefringence or some anisotropy,

as well as collapsing the vacuum through a spontaneous symmetry breaking, what

could alter the masses of the gauge field. Such a strong field occurs at the proxim-

ity of neutron stars, which could suggest a(n) (ultra)superconducting behavior and

topological defects formation.

The conventions adopted are: ηµν = (+,−,−), xµ = (x0, xi) = (t,−x⃗) and

natural unities c = ℏ = 1, observing that latin index means spatial components and

greek space-time ones. Along the text, φ stands for a charged complex scalar field,
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fµν is the usual field strength for the gauge field aµ = (ϕ,−a⃗), fµν = ∂µ aν − ∂ν aµ,

and the covariant derivative associated to the minimal coupling is identified by Dµ

where Dµφ = (∂µ + ig aµ)φ with g being a constant. Gµν is a symmetric tensor

playing the role of effective modified Minkowski metric

Gµν = ηµν + ζFµκF
κ
ν , (4.1)

where the modification is due to the presence of ζFµκF
κ
ν , which represents the field

strength for an external strong electromagnetic background field, and ζ a constant.

This term carries no mass dimension, following ηµν . In first moment, Gµν is consid-

ered to be space-time constant. At last, the Higgs potential U is left unspecified.

The first Maxwell-Higgs model evaluated is

L = −1

4
f 2
µν +GµνD

µφ∗Dνφ− U . (4.2)

The Lagrangian conserves the gauge invariance in relation to the transformations

φ(x) → φ(x)eiΛ(x) , φ∗(x) → φ∗(x)e−iΛ(x) , aµ(x) → aµ(x)−
1

g
∂µΛ(x) . (4.3)

The field equations that arise from (4.2) are

106



ig G ν
µ (φDµφ∗ − φ∗Dµφ) + ∂µf

µν = 0 , (4.4a)

−Gµν D
µDνφ = δφ∗U , (4.4b)

−Gµν D
µDνφ∗ = δφU , (4.4c)

noticing that δφ(∗)U denotes the functional variational principle applied on the Higgs

potential in relation to the scalar field φ∗ in (4.4b) and φ in (4.4c).

4.2.2 Energy and Bogomol’nyi Type Equations

Moving toward the energy-momentum tensor Θµ
ν , it presents the structure

Θµ
ν = Gµκ(Dκφ

∗Dνφ+DκφDνφ
∗)− fµκfνκ − ηµνL . (4.5)

The component Θ0
0 is passive of being algebraically manipulated. The energy as-

sumes the equation

E =

∫
d 2x(1 + ζE 2

i )D0φ
∗D0φ+ [(1− ζB 2) δij + ζEiEj]Diφ

∗Djφ

+
1

2
(e 2i + b 2) + U , (4.6)
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which is exempted of crossed spatio-temporal terms. Ei and B stand for the electric

and magnetic background fields, respectively, as well as ei and b for the propagating

wave fields. This configuration suggests a matrix diagonalization trial through rota-

tion of the elements. The eigenvalues, which compound the diagonalized Hamiltonian

(density), are 1 + ζE2 and 1, turning the equation (4.6) in

E =

∫
d 2x(1 + ζE⃗ 2)D̄0φ

∗D̄0φ+ (1 + ζE⃗ 2) D̄1φ
∗D̄1φ+ D̄2φ

∗D̄2

+

∫
d 2x

1

2
(e⃗ 2 + b 2) + U , (4.7)

observing that D̄µ means the covariant derivative expressed in the rotated base.

Along the diagonalization calculus, an intrinsic constrain emerges: ζB2 = 0. Then,

the equality (dropping the "bar" sign)

−
∣∣(aD0 + bD1 + cD2

)
φ
∣∣2 + ∣∣(aD0 + bD1

)
φ
∣∣2 + ∣∣(aD0 + cD2

)
φ
∣∣2

+
∣∣(bD1 + cD2

)
φ
∣∣2 = a2D0 φ

∗D0 φ+ b2D1 φ
∗D1 φ+ c2D2 φ

∗D2 φ (4.8)

is adopted in eq. (4.7), where a, b and c are constants. In this case, the usual

relation (DiφDiφ
∗ ∼ |(D1 ± iD2)φ|2, few examples in [282, 288]) is rewritten in a

form including the time component. Noteworthy of the left side of eq. (4.8), which

is supported by triangular inequality – establishes that: being M⃗ and N⃗ vectors,

|M⃗ |+ |N⃗ | ≥ |M⃗ + N⃗ | (see, for instance, ref. [309]) – and it guarantees that the right
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side of eq. (4.8) is equal or bigger than zero (even toughD0 being a scalar). Managing

the second integral of the right side of eq. (4.7) to determine the Bogomol’nyi type

equations and the inferior energy bound, one finds for the electromagnetic field of

the free propagating wave and Higgs potential that

∫
d 2x

1

2
(e⃗ 2 + b2) + U =

∫
d 2x

1

2

[
(|e⃗ | ± b)±

√
2U
]2 ∓ ∫ d 2x (|e⃗ | ± b)

√
2U

∓
∫
d 2x |e⃗ | b (4.9a)

or ∫
d 2x

1

2
(e⃗ 2 + b2) + U =

∫
d 2x

1

2
(|e⃗ | ±

√
U)2 ∓

∫
d 2x |e⃗ |

√
U

+

∫
d 2x

1

2
(b±

√
U)2 ∓

∫
d 2x b

√
U . (4.9b)

The liberty of choosing the minus and plus signals in equations (4.9) guarantees to

each term be bigger than zero and, consequently, the energy be positive. In order

to obtain the ground energy value from equation eq. (4.7), taking into account eqs.

(4.8) and (4.9), are determined the self-dual expressions

D0 φ
∗D0 φ = −(D1 φ

∗D1 φ+
1

1 + ζE⃗ 2
D2 φ

∗D2 φ) , (4.10a)

(|e⃗ | ± b)−
√
2U = 0 for eq. (4.9a) (4.10b)
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or

|e⃗ | −
√
U = 0 and b−

√
U = 0 for eq. (4.9b) , (4.10c)

and the Bogomol’nyi limit-type equation in the saturated scenario (eq. (4.10)) is

E ′ ≥ +
√
2U(Φe ± Φb)∓

∫
d 2x |e⃗ |b for (4.9a) , (4.11a)

or

E ′′ ≥ +
√
U(Φe + Φb) for (4.9b), (4.11b)

with Φb representing the magnetic flux
∫
d 2x b. One observes in both equations

(4.11) the appearance of the electric flux
∫
d 2x |e⃗ | ≡ Φe , which is not commonly

obtained and, depending on a0, it will or not be quantized. Besides, in eq. (4.11a),

one of the energy parcel‘s is originated from the Poynting vector
∫
d 2x |e⃗ | b , where

both are unexpected. No stationary condition is imposed and the gauge choice is

opened, so far. The possibility of expressing in two formulations (4.9) the same

energy term
( ∫

d 2x 1
2
(e⃗ 2 + b2) +U

)
opens an alternative to define the energy lower

bound in function of the Poynting vector (4.11a). The self-dual type equations (eqs.

(4.10b) and (4.10c)) should converge in some moment. Then, demanding E ′ = E ′′,

the Poynting vector becomes ∓
∫
d 2x |e⃗ | b =

√
U [(Φe+Φb)−

√
2(Φe±Φb)] . So, the

convergence of the energy formulations E ′ and E ′′ enables to express the Poynting

vector as function of the magnetic and electric fluxes.
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4.2.3 Topological Vortices Solutions

The proposition of this section is to find vortices solutions to the Maxwell-Higgs

model in scene, starting from generalized (reads initially unspecified) vector field

carrying, in principle, radial and angular degrees of freedom in a polar coordinate

system. The expectation is to determine algebraically a0 and a⃗ from the field equa-

tions. Thus, is defined

a0(x, y) → a0(r, θ) (4.12a)

a(x, y) → a(r, θ) (4.12b)

where, in principle, the gauge potentials a0 and a are assumed dependent on both

coordinates (r and θ). Aiming vortex solution, is chosen for the scalar field a recurrent

ansatz (e.g., refs. [161, 277, 286, 310])

φ(r, n, θ) = f(r, n)einθ (4.13)

with n being an integer and f(r, n) a function of the radius r and the integer n. In

this context, maintaining the raised constraint ζB2 = 0 along the whole subsequent

analysis, the temporal component of the field equation (4.4a) given by the charge

(density) J0 ≡ ig G 0
µ (φDµφ∗ − φ∗Dµφ), the so called Gauss equation, becomes
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(
∇2 − (1 + ζE⃗2)2g2f 2

)
a0 = 0 , (4.14)

where is restricted to the stationary case (∂0 aµ = 0 and ∂0 φ = 0 ). These constrains

are adopted from this point on. The eq. (4.14) is algebraically resolvable setting(
1
r

∂2

∂θ2
+ ∂

∂r

)
a0 = 0, resulting in an exponential form to a0(r, n, θ) = l e−χ(r,n,θ) where l

is a constant and the function χ(r, n, θ) allows a few different combinations of terms

involving r and θ. Some matching varying the power degree of the radius r and

considering χ a pure real or pure imaginary, were tried. In general, in the limit

r → 0, they presented a divergent or vanishing behaviour. In a way that the chosen

option is χ(r, n, θ) = χ(r, n) + inθ, where χ(r, n) is a general function of r and n.

This choice naturally leads to χ(r, n) ∼ n2 ln r, with f from eq. (4.14) being resolved

explicit and presenting an unexpected quantization n,

a0(r, n, θ) = l rn
2

e−inθ , (4.15a)

f(r, n) =

√
n2(n2 − 1)

2g2(1 + ζE⃗ 2)

1

r
, (4.15b)

lim
r→0

a0 = 0 and lim
r→∞

a0 = ∞ ,

lim
r→0

f = ∞ and lim
r→∞

f = 0 , (4.15c)

observing that l absorbs the constant emergent from the integral calculation of

χ(r, n). The scalar potential a0 points out an anisotropic solution dependent on
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θ. It also contains a topological feature manifesting quantization and a particular

direct proportionality to r and n. The limit of a0 is divergent for long ranges, in

other hand, the function f(r, n) detains a singularity at r → 0, which reflects in

the scalar field φ (4.13). In generalized models including effects of magnetic perme-

ability [282] (which is an extension of multivortex study in ref. [287]) is obtained

resembling quadratic dependence on n for scalar functions like f(r). Analysing the

current (density) – Ampère-Maxwell equation –, extracted from eq. (4.4a),

(
∇2δij − ∂i∂j + 2f 2g2(ηij + ζEiEj)

)
aj = −2f 2gn(ηij + ζEiEj)∂jθ (4.16)

in which are explicit the individualized contributions of the vector potential compo-

nents a1 and a2. Particularizing to the already mentioned conditions of stationary

scenario, one finds that, firstly for i = 1,

(
sin θ

∂

∂r
− cos θ

1

r

∂

∂θ

)(
∂a

∂r
+

1

r
a

)
= 2gf 2

(
ga+

n

r

)(
sin θ + ζE1(cos θ E2 − sin θ E1)

)
, (4.17)

and for i = 2

(
cos θ

∂

∂r
+ sin θ

1

r

∂

∂θ

)(
∂a

∂r
+

1

r
a

)
= 2gf 2

(
ga+

n

r

)(
cos θ + ζE2(sin θ E1 − cos θ E2)

)
. (4.18)
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Equations (4.17) and (4.18) reveal a potential source of anisotropy due to the back-

ground electric field components E1 and E2 presented in both equations. In Amperè-

Maxwell equation, the stationary scenario transfers exclusively the source of the

current to the magnetic field, which in this case is b =
(

∂
∂r

+ 1
r

)
a. There are two

extra approaches to solve the differential equations system formed by eqs. (4.17) and

(4.18), which consist in impose a magnetic field b only in function of r or θ, that

means ∂b
∂θ

= 0 or ∂b
∂r

= 0, respectively. In both situations, a(r, θ) results in

a(r, n) = −n
g

1

r
θ̂ . (4.19)

The solution leads b to zero, has a topological feature with vorticity n and is de-

pendent only on r. It also presents the expected angular direction of movement θ̂,

perpendicular to the radius direction r̂. Noticing the bound limits in (4.19), when

r → ∞ it has a convergent behaviour with a = 0, while it diverges in r → 0. Sit-

uations of singularities in r → 0 for a(r) ∼ 1
r

are commonly prevented inserting a

general function at the gauge potential expression, which controls the limit bound

(see some examples in ref. [298], in the context of a Maxwell-Chern-Simons model

coupled to an external background charge, in ref. [299], which treats a generalized

Maxwell-Chern-Simons-Higgs model with modified Maxwell and kinetic terms and

in ref. [288], where is demonstrated that Chern-Simons solitons support topologi-

cal and non-topological solutions). At the same time, exists in literature a case of

non-vanishing gauge potential at large distances [300]. An observation in relation

to these examples is the fact that they start from an ansatz a(r) ∼ 1
r
, while a very
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similar result was obtained naturally from the calculation of the field equations in

the present work. A third option is to solve, probably numerically, the expression

resultant from the manipulation and summing of eqs. (4.17) and (4.18),

Ω

(
∂2

∂r2
+

1

r

∂

∂r
−
(
1 +

1

Ω

)
1

r2

)
a =

n

g

1

r3
θ̂ (4.20)

with

Ω(θ, n, E) =
1 + tan2 θ

2g2τ 2(1 + tan2 θ + ζ(tan θ E1 − E2)2)
,

observing that τ(r, n) = rf(r, n) (4.15b). The algebraic resolution is feasible impos-

ing ∂a
∂r

−
(
1 + 1

Ω

)
a
r
= 0, so that

a(r, θ, n, E) =
Ω

Ω + 1

n

g

1

r
θ̂,

in an explicitly way

a(r, θ, n, E) =
1 + ζE⃗ 2

1 + ζE⃗ 2 +
(
1 + ζ(E1 sin θ − E2 cos θ)2

)
n2(n2 + 1)

n

g

1

r
θ̂ . (4.21)

a(r, θ, n, E) conserves the main structure manifested in (4.19), however the gauge

potential is also in function of θ and E. Beyond that, it carries vorticity more

elaborated and anisotropy because of θ and E components dependency.

Turning the attention to the charge Q, it reveals an electrically neutral flux

Q =

∫
r⃗ dr⃗dθ 2 g2(1 + ζE⃗2)f 2a0 = 0 , (4.22)
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in which a0 is given by (4.15a). Paul and Khare [153] also found neutral vortices from

a model containing Chern-Simons term generated by spontaneous symmetry breaking

and a line of investigation developed by a Brazilian group works with neutral vortices

as consequence of the gauge-fixing adopted (see refs. [280, 299] just as a start point

for a long researching line), noticing that the particular investigation of this group

on generalized Maxwell-Higgs models [282] resulted in ones with neutral charge and,

in spite of it, with existence of quantized magnetic flux, as observed in the present

study. Additionally, in this thesis there is the presence of the electric flux too.

A last analysis is an inspection on the energy functional equation (4.7) expressed

in terms of polar coordinates

E =

∫
r drdθ (1 + ζE⃗ 2)

(τ
r
ga0

)2
+2

τ 2

r4
+
τ 2

r2

(
− 1

r2
+
n2

r2
+ g2a2 +

2n

r
ga
)

+ζE⃗ 2

[
τ 2

r4
+
τ 2

r2
sin2 θ

(
− 1

r2
+
n2

r2
+ g2a2 +

2n

r
ga
)]

+
1

2

[(
1

r

∂a0
∂θ

)2

+

(
∂a0
∂r

)2

+

(
∂a

∂r
+
a

r

)2]
+ U , (4.23)

what evidences the topological structure associated to τ and to the gauge potentials

a0 and a, endorsing the quantized characteristic of the energy. The dependency

on θ indicates an anisotropy in the energy value. Moving towards the calculation

of the Bogomol’nyi limit (4.11), one rescues the self-dual relations (4.10) in polar

coordinates,
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− (1 + ζE⃗ 2) a20 =

(
a2 +

2n

g

a

r

)
(1 + ζE⃗ 2 sin2 θ)

+
1

g2r2
(
n2 − 1

)
(1 + ζE⃗ 2 sin2 θ) +

1

g2r2
(2 + ζE⃗2) , (4.24a)

where one has for eqs. (4.9a) and (4.10a)[(
1

r

∂a0
∂θ

)2

+

(
∂a0
∂r

)2] 1
2

±
(
∂a

∂r
+
a

r

)
−
√
2U = 0

(4.24b)

or for eqs. (4.9b) and (4.10b)[(
1

r

∂a0
∂θ

)2

+

(
∂a0
∂r

)2] 1
2

=
∂a

∂r
+
a

r
=

√
U . (4.24c)

With the equations above is possible to calculate U . The self-dual expression (4.24a)

enables to set the gauge potential a0 in function of a and vice versa, which in asso-

ciation with eq. (4.24b) or (4.24c) forms a equations system and provide material

enough to calculate a0, a and U explicitly in the inferior bound energy regime. Then,

one taking (4.24a) demonstrates that

a(r, θ, n) = −n
g

1

r
θ̂ ±H(r, θ, n) θ̂ (4.25a)

where

H(r, θ, n) =

[
1

g2r2

(
1− 1

1 + ζE⃗ 2 sin2 θ

)
+

(
a20 −

1

g2r2

)(
1 + ζE⃗ 2

1 + ζE⃗ 2 sin2 θ

)] 1
2

,

(4.25b)
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and substituting eq. (4.25a) in (4.24c), one writes that

∓
(
∂H

∂r
+
H

r

)
=

√
U . (4.26)

The results presented in (4.25) and (4.26) are in function of a0. Remember that,

working with the expression for the electric field in eq. (4.24c), a0 may be determined

probably numerically due to the complexity of the equations system. The eq. (4.25a)

preserves a similar structure to eqs. (4.19) and (4.21), but has no dependency on the

background electric field. It contains an anisotropy generated by θ and the singularity

when r → 0. All the features just described for a(r, θ, n) are propagated to the Higgs

potential U in eq. (4.26), which means that it carries anisotropy and is quantized

in the minimum energy bound scenario. And finally, once obtained the potential U ,

one is in condition of calculating the energy lower bound E ′ (4.11a) or E ′′ (4.11b).

Observing that the magnetic flux (and probably the electric too) generator of E ′ and

E ′′ is quantized.

This closes the present section involving the Maxwell-Higgs model with a strong

electromagnetic background field with constant metric. Some comments about the

results achieved along the section are exposed in the Partial Conclusions 4.3. In the

next section is proposed a similar model to the first one, differing by a non-constant

metric.
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4.3 Partial Conclusion

The exploration through the two Maxwell-Higgs models unveiled some aspects

of the topological physics around these systems. Initially, it seems worthy to briefly

debate about the methodology applied to approach the cases, which has few varia-

tions in relation to the usually one adopted [254]. The diagonalization of the energy

density equation (4.6) allows to write it in a simplified arrangement (4.7) carrying

the differential temporal component and naturally manifesting an anisotropy associ-

ated to the energy (see eq. (4.7) or (4.23)). It should be added that the triangular

inequality (4.8) permits to express the differential terms from the diagonalized eq.

(4.7) in definite positive ones, keeping the temporal component, and assures that

the equation (4.8) is equal or bigger than zero. This procedure generates equations

(4.10) (and (4.24) in polar coordinates) alike to self-dual ones, what enables to deter-

mine the energy lower bound of the system (4.11). Then, the methodology described

may be an alternative to calculate this energy value, which has no requesting of sta-

tionary condition or imposition of the gauge-fixing to achieve the energy expression.

However, so far, it is tested just in one model and certainly there is room for im-

provements or even discarding it. Besides, the diagonalization of the energy density

is a vulnerable step depending on the complexity of the Hamiltonian and maintain

differential equations of second order. The unexpected constraint on the background

magnetic field ζB2 = 0, emerged from the diagonalization of eq. (4.6), simplified

the calculation, although imposed a severe limitation to physical systems, probably

turning it in an unfeasible proposition as model for an neutron star scenario.
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Some comments related to the field formulations should be done, once one of

the purposes of the study is to determine algebraically the vector field from the

field equations, assuming, initially , undefined a0 and a, both containing radial and

angular degrees of freedom. Starting with the function f(r), representing the radial

component of the field φ, it is quantized and presents a divergent behaviour when

r → 0. Such difficult could be circumvented defining boundary conditions for f(r) as

practiced in refs. [312] and [313] (in magnetic monopoles scenario), for instance, or

redefining φ. Another option, which diverges from one of the premises of the working,

is to consider a0(r), eliminating the angular degree of freedom, and recalculating the

Gauss equation (4.14). In this case, f(r) is undefined and a0(r) is in function of f(r)

(a similar result is also observed for an Abelian Chern-Simons-Higgs model in ref.

[312]). The obtained exponential and the θ dependency resulting for the gauge scalar

potential are unusual in the literature. Moving the debate to the results to a(r), the

structure ∼ 1
r

of the solutions in eqs. (4.19), (4.21) and (4.25a) is generally adopted as

ansatz in diversified context of the literature as magnetic monopoles [255], Maxwell-

Chern-Simons model [301], sigma model [303], Lorentz violation [310], are just few

examples. In all the scenarios described, the gauge potential a has vorticity and a

singularity for short distances. The particular case of a(r, θ, n, E) (4.21) (and also

f(r) (4.15b)) presents a richer vorticity structure manifested in generalized Maxwell-

Higgs models [282]. The former gauge potential carries an anisotropy originated by

the angular dependency and by the background electric field components E1 and

E2. The background field anisotropy is not manifested in a(r, θ, n) (4.25a), what

incurs in an energy lower bound expression (4.25) absent of them. Nevertheless, one

consideration must be done: both a(r, θ, n) and the energy E have an anisotropy

120



source from the presence of the sin θ in their equations.

The equations (4.9) revealed that, besides the contribution of a magnetic flux,

the one from an electric flux and a possibility of writing the lower energy bound in

terms of the Poynting vector (4.11a). In other hand, the system in (4.22) pointed

out a neutral charge. The potential U is algebraically calculated from the self-dual

type equations (4.24) and from the results for a0 (not calculated here) and a (4.25a)

in the context of the inferior energy bound. The result is unstable when r → 0, what

is frequently controlled by imposition of boundary conditions and betaking auxiliary

functions [279, 280, 314]. It inherit the anisotropy and the quantized characteristic

from a(r, θ, n).

The motivation is to let the mathematics points whether the θ is feasible or

not. In general line, to work with generalized a0 and a tends to a complicated

equation system, what imposes a hard task to find the solutions to the equations

(which frequently are determined only numerically). At the same time, work with

this assumption of generalized gauge potentials, whenever possible, allows the system

speak "by itself" and to manifest its inner formation.
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Chapter 5

Concluding Considerations

Throughout the PhD program, an extremely deep theoretical foundation was laid

by the researchers, postdocs and guest lectures in our scientific coordination, where a

great variety of courses that approached the forefront themes in physics have been de-

livered. During this period, I collaborated in a workgroup to produce chapters 2 and

3, and paper [2]. The research for chapter 1 and the publication of [1] was conducted

with another researcher; whilst chapter 4 was individually produced. This work took

form in a complete experience of multifaceted production scenario, collaboration,

and working environment. The group of researchers working at the Great "Republic

of Diracstan" of CBPF also promoted an inclusive and participative workspace, con-

ducting internal debates, collaborative studies, and experiences, as well as knowledge

sharing, which were continuously supported and encouraged by the staff members.

The opportunities and frequently encouraged chances of presentation of ongoing or

122



concluded works, equally enriched the supervised researcher’s development.

Observing the theoretical contentment of the present construction, the low dimen-

sional effective theories with non-minimal coupling explored in the chapter 1 are a

wide territory. In the context of the particular study approached in this thesis, there

are room for investigation of terms in higher orders of O(1/m), for diversification of

the electrodynamics which describes the external field and for testing the impact of

different dimensional reduction methodologies. The calculation of higher order terms

in fermionic case, apart from revealing new relativistic interactions, is a consistent

checking for the validity of the dimensional reduction result obtained in eq. (1.36)

and for verification of the matter relevance (J⃗ ̸= 0⃗) in orders beyond O(1/m2) in

non-minimal relativistic interactions in eq. (1.23) when the external electromagnetic

field is governed by Maxwell-Chern-Simons electrodynamics (see eqs. (1.26)). Still in

the chapter 4, now turning to the scalar field configuration, considering the surging

of a Chern-Simons term when a non-minimal Abelian Higgs model is submitted to

a spontaneous symmetry breaking [153], maybe to find out the Hamiltonian den-

sity of this resultant Lagrangian and FW transform it, comparing the results with

the one achieved in eq. (1.14), or even better for the situation containing terms in

order superior to O(1/m3), will permit to establish some notices. This analysis is

extended to an inspection which quests if the critical Hamiltonian Hc in eq. (1.28)

is maintained in the breaking symmetry scenario mentioned.

In chapters 2 and 3 around effective gravitational quantum theory structured with

higher derivatives, naturally comes the perspective of advancing the results consider-

ing vertices and/or graviton propagator beyond the tree level. The work developed in
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the present thesis was a first step in the inter-particle potentials investigation among

bosonic and fermionic particles mediated by graviton, in a sense that the calcula-

tions involving one-loop quantum corrections are the next step. Other perspective is

to develop similar inter-particles potential study involving massive spin-1 particles

under gravitational scattering, partially worked by Holstein and Ross [211]. There

is one more investigation, the inter-particle potential involving the scattering of two

anti-fermions or one fermion and one anti-fermion, which could reveal, theoretically,

whether the gravitational potentials for fermions are the same that to anti-fermions

(considering that their rest energy (mass) are numerically equal).

An invitation to address a reflection about the interpretation of gravity is pro-

posed. Does the gravity emanate from matter (as a charge) or it is there yet, in-

dependently from the matter? Maybe, this is the bifurcation where one way (the

emanation concept) leads to interpret gravity as a discrete point (virtual) particle

and analyzes it as the mediator of inter-particle potentials between massive (or en-

ergy holder) particles. The other way leads to the geometrical consideration (General

Relativity), a continuum interpretation of the field, which is deformed in presence

of energy. This impasse among discrete and continuum, commented in the presen-

tation section of the thesis, maybe summarize the difficult in conciliate the General

Relativity and the Standard Model. It seems a materialism tendency to work with

point particles. The Green functions, fundamentally settle in the delta‘s Dirac, per-

form this connection/switch from discrete to continuum description of the Universe

in a great accuracy. Even though, the struggle to conciliate unitarity and renormal-

izability is patent. Then, one could inquiry whether the electromagnetism field is
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a geometric continuum occupying the Universe, which deforms in a presence of an

electric charge, reading the gauge field as an affine connection.

The chapter 4 is fully opened in relation to the directions definitions. A sec-

ond model with the same Lagrangian expression but carrying a non-constant metric

(∂κḠµν ̸= 0) is proposed. The algebraic development of the energy-momentum ten-

sor resulted in a non-conservative system. The condition to attend the Noether’s

theorem is demanding that −(Dκ Ḡµν)D
µφ∗Dνφ = 0, what violates the premise of

the model (non-constant metric). There are other two local gauge invariant models

to be explored, in which the modified (non-)constant metric acts on the kinetic and

Maxwell terms (L ∼ Gµν

(
− 1

4
fµκf ν

κ +Dµφ∗Dνφ
)
− U). In these cases, it is eval-

uated the effect of the strong electromagnetic background field on the propagating

wave as well. The analysis of the Lagrangian with constant metric is already on the

road with the energy density equation calculated. In this scenario, the constraint

ζB2 = 0 is present, once the index structure of GµνD
µφ∗Dνφ is the same of the mod-

els investigated in this work. A possible alternative to detour it, is a modification in

the index arrangement L ∼ Gµκ

(
− 1

4
f κξf µ

ξ +Dκφ∗Dµφ
)
− U . The exploration of

these models will probably rise insights about the structure of the gauge scalar and

vector potentials, pointing their vorticity and topological behaviour. In these cases,

the diagonalization methodology applied in the thesis (eq. (4.7)) keeps validated,

as well as the triangular inequality (eq. (4.8)), once the kinematic scalar sector is

unmodified. Then, the anisotropy manifested (see, for instance, eq. (4.23)) will be

present in these two models. The modifications will appear in the Bogomol’nyi type

equations (see eqs. (4.9) and (4.10)) and the field equations due to the metric tensor
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associated to the Maxwell term.

One of the most relevant lessons and thought-provoking experiences during the

PhD program was the publication of the paper [1], which was co-produced with

Professor Leonardo Ospedal. We selected its publication to be in a free-of-charge

journal, so the Brazilian people would not be encumbered with fees. However, upon

the publication of our paper, we confirmed that we were not granted access to the

journal and in order for us to be able to access our own work we would need to pay

for it.

In our group of researchers, we follow the practices of publishing every single work,

from the preliminary versions up to the final manuscript, in the arXiv repositor and,

at the same time, is awaited to submit the results to the appreciation of the com-

munity. This procedure grants open access for the community to the whole research

developed by the group. Such attitude is widely adopted by researchers, transform-

ing arXiv in a place where is possible to find the forefront and breakthrough works,

like the one uploaded by the Russian mathematician Grigori Perelman [315] which

awarded him the Fields Medal in 2006, but he never published it in any magazine or

journal or even accepted the award, or like the complete Field Theory book Fields by

Warren Siegel [316], which material he just published in arXiv. Therefore, one can

see arXiv as a start point of the emancipation process from the private publication

companies.

Maybe we should raise the question: are private scientific magazines and journals

really indispensable for the promotion of science? It seems important to promote
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this debate in the scientific community involving researchers and public scientific

institutions (and, immediately thereafter, the State and government) with the aim

to structure a centralized social system of paper review, analysis and publication

that are independent from these private journals and magazines, which, in a general

way, set a monopolistic and domineering stage in the world of science.

Researchers must have awareness of this situation in order not to become alien-

ated. Those who are basically, and sometimes almost exclusively, focused on the

betterment of their own curriculum vitae (which clearly is a tool of classification,

distinction, and social status), may not realize how harmful these publication and

impact factor processes are on scientific community, which in turn, subjects itself

and abides before the magazines and journals system (that is inherently bind to the

productivity system). As a result, providing to the oppressive hands the fruit of

our hard labour and the societal investment, granting them the control of the global

scientific work.

One of the roles of the researcher is to question and argue if the environment in

which they and their labor activities enter are ethic. We should not unquestionably

insert and immerse ourselves in a pre-built structure, which is presented and sold

as the best and/or only one existent. We need to be aware of the social context

of our country and understand that we (as researchers, professors, middle and high

economic classes) live a privileged condition, in which the vast majority of our people

will not have access to the scientific community due to the sequestration of social

inclusion, sequestration of opportunity, sequestration of racial equality, sequestration

of gender equality, sequestration of education, sequestration of basic constitutionals
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rights. A solid foundation of inequality supports the world of researchers and assures

our position. We have to step out of this self-centered sense of accomplishment

where we believe our achievements are exclusively a result of our own merits and

realize that the positions we occupy as researchers only exist because they have been

supported by the foundational work of the less fortunate and working class, which find

themselves very distant from any possibility and chance of frequenting and accessing

"our" positions, academic spaces and of spaces in science in general, those who, due

to their level of disadvantage, frequently cannot merely comprehend the specificity

of the craft of a researcher. We must unite ourselves, work towards modifying this

injustice and we cannot consent and connive with this enormous loot of our nation

and to our work as nation. Science, Nature, politics and social principles work and

walk together.
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Appendix A

Foldy-Wouthuysen Transformation

Review

It expends seventy years Leslie Foldy and Siegfried Wouthuysen contemplated the

literature with the transformation methodology that takes their names [100]. In this

paper, which was curiously followed by a José Lopes Leite paper [317] in the sequence

of the magazine, the authors presented an approach to diagonalize Hamiltonians

in approximate and, in particulars cases, exact way. The FW Transformation is

described in several Chemistry and Physic text books, e.g. [158, 157, 318], thus it

is possible to find a wide number of discussions and developed applications. With

the spirit of facilitate and make more comfortable the reading of the Thesis, the

FW transformation procedure is detailed below, in a way to possibility an eventual

consultation by the reader.
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The central idea of the FW transformation is to interpret it as an unitary trans-

formation on a Hamiltonian H which permits to decouple equations in a linear sys-

tem, in order to avoid mixed terms and, in parallel, has the potential to reveal new

terms and to establish corrections of higher order. Considering the Wigner principle

that demands the eigenfunctions be (anti)unitarity transformed in a way to assure

the conservation of the probability amplitudes of the eigenstates, one establishes a

canonical unitary transformation on an eigenfunction ψ

ψ′ = e−iSψ , (A.1)

where S is a Hermitian operator. Then, substituting the expression (A.1) in a

Schröndiger Equation

i∂t(e
−iSψ) = H(e−iSψ)

ie−iS∂tψ + (i∂t e
−iS)ψ = H(e−iSψ)

(eiS ×) i∂tψ = −eiS(i∂t e−iS)ψ + eiSH(e−iSψ)

i∂tψ = eiS(H − i∂t) e
−iSψ , (A.2)

one obtains the Hamiltonian transformed H ′

H ′ = eiS(H − i∂t)e
−iS . (A.3)
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The apparent exponential in eq. (A.3) is passive of being expanded through the

Baker–Hausdorff identity

eAB e−A = B + [A,B] +
1

2
[A, [A,B]] +

1

6
[A, [A, [A,B]]] + ...+

1

n!
[A, ...[A, [A,B]]...] ,

(A.4)

with [A,B] meaning the commutator of the operators A and B, resulting in

H ′ = H+i[S,H]+
i2

2
[S, [S,H]]+

i3

6
[S, [S, [S,H]]]+ ...−(Ṡ+

i

2
[S, Ṡ]+

i2

6
[S, [S, Ṡ]] ... ),

(A.5)

noticing that the dotting above the operators, like Ṡ, stands for the time derivative of

the operator S. The substitution of the Hamiltonian H in the eq. (A.5) is preceded

by one step. The Hamiltonian must be organized in a particular form

H = βm+ E +O , (A.6)

where β, E and O are operators which attend to the (anti)commutation relations

βE = Eβ and βO = −Oβ, with E meaning "even" operators and O "odd" ones. This

arrangement (in eq. (A.6)) is fundamental to achieve the diagonilized Hamiltonian,

once the products E2 and O2 result in even operators, while EO and OE in odd

ones. β is usually represented as a diagonal matrix and m stands for the mass. The

generator S is defined as
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S = −i βO
2m

, (A.7)

in which the presence of O performs the conversion of odd operators in even ones,

diagonalizing the Hamiltonian order by order, where the orders are in terms of the

mass inverse. Substituting eqs. (A.6) and (A.7) in eq. (A.5), one obtains the

Hamiltonian

H ′ = βm+E+βO
2

2m
− 1

8m2
[O, [O, E ]+iȮ]−β O4

8m3
+

β

2m
[O, E ]− O3

3m2
+
iβȮ
2m

... , (A.8)

in which the highest order of odd terms is m−1. Therefore, H is diagonalized until

order m0 and written as H ′ = βm+ E ′ +O′, in a way that the terms present in eq.

(A.8) are passive of being regrouped in one even operator E ′, holding the odd powers

of O, and one odd O′

E ′ = E + β
O2

2m
− 1

8m2
[O, [O, E ] + iȮ]− β

O4

8m3
... , (A.9a)

O′ =
β

2m
[O, E ]− O3

3m2
+
iβȮ
2m

... , (A.9b)

and, consequently, a new S operator is determined
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S ′ = −i βO
′

2m
. (A.9c)

Once defined the new operators E ′, O′ and S ′ - eqs. (A.9) -, the Hamilotnian H ′ is

submitted to the unitary transformation in eq. (A.3), what results in a Hamiltonian

H ′′ diagonalized until order m−1

H ′′ = βm+E ′+β
O′2

2m
− 1

8m2
[O′, [O′, E ′]+ iȮ′]−β O′4

8m3
+

β

2m
[O′, E ′]− O′3

3m2
+
iβȮ′

2m
... ,

(A.10)

indeed, the odd term with the lowest order in H ′′, β
2m

[O′, E ′] , is a term of order

O(1/m2). Then, from H ′′, new even, odd and S terms are defined, namely E ′′′, O′′′

and S ′′′, and the process may be repeated n+1 times till the odd components achieve

the desired (n + 1)th order to m−1, resulting in a Hamiltonian diagonalized up to

order O(1/mn).

In the present work is considered the Hamiltonian diagonalized until the order

O(1/m3)

HFW ≈ βm+ E + β
O2

2m
− 1

8m2
[O, [O, E ] + iȮ]− β

O4

8m3
. (A.11)

This formulation for the diagonalized Hamiltonian is the one applied to all cases
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investigated in the present Thesis. Since the scalar to fermionic systems or from

three to four spacetime dimensions, the general structure of the HFW is that ex-

pressed in (A.11). What varies is the definition of the operators and the dimensional

adjustments, basically manifested through matrices dimensionality and their algebra.

134



Appendix B

Integrals

The integrals indicated along the chapters 2 and 3 are

I(a)n (r) =

∫
d3q⃗

(2π)3
eiq⃗·r⃗

(q⃗ 2)nQa

, (B.1)

I
(a)
ij (r) =

∫
d3q⃗

(2π)3
eiq⃗·r⃗

q⃗ 2Qa

q⃗iq⃗j , (B.2)

where n ∈ N and a = 0, 2. For Fourier transform of the type eq. (B.1) is possible to

solve its angular part passing the function Qa(q⃗
2) to the spherical coordinate system,

leaving only radial dependence (see, for instance, ref. [319]). This artifice enables

one to recast some integrals, for example:
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∫
d3q⃗

(2π)3
eiq⃗·r⃗

q⃗ 2Qa

iA⃗ · q⃗ = A⃗ · ∇⃗
[
I
(a)
1 (r)

]
= A⃗ · r⃗

r

d

dr
I
(a)
1 (r) , (B.3)

being A⃗ a vector independent of q⃗.
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