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Abstract

The physics of graphene has provided an important connection between quantum field theory and
condensed-matter physics due to the particular features of the graphene quasiparticles which can be de-
scribed as massless two-dimensional Dirac fermions. An approach that has been given promising results in
this context is the reduced quantum electrodynamics. In this work we consider the natural generalization
of this formalism to curved spaces. As an application, we calculate the one-loop optical conductivity of
graphene taking into account the presence of curvature-inducing defects, such as disclinations and possible
ripples due to thermal fluctuations. Such defects are modeled by curvature effects. When positively curved,
these deffects can be incorporated locally by taking into account a suitable chemical potential, at least as
far as the free fermion conductivity goes. In addition, we demonstrate how such effects may contribute to a
decisive increase in the minimal conductivity.

Keywords: Quantum field theory, reduced quantum electrodynamics, graphene, curved space



Resumo

A f́ısica do grafeno forneceu uma ligação importante entre a teoria quântica de campos e a f́ısica da
matéria condensada, devido às caracteŕısticas particulares das quasipart́ıculas do grafeno que podem ser
descritas como férmions de Dirac bidimensionais não massivos. Uma abordagem que tem obtido resultados
promissores nesse contexto é o da eletrodinâmica quântica reduzida. Neste trabalho consideramos a general-
ização natural deste formalismo para espaços curvos. Como aplicação, calculamos a condutividade ótica do
grafeno a um laço, considerando a presença de curvatura induzida por defeitos, como declinações e posśıveis
ondulações devido a flutuações térmicas. Esses defeitos podem ser modelados por efeitos de curvatura.
Quando positivamente curvados, esses defeitos podem ser incorporados localmente através de um potencial
qúımico adequado, ao menos no caso da condutividade de férmions livres. Ainda mais, demonstramos como
esses efeitos podem contribuir decisivamente para um acréscimo da condutividade mı́nima.

Palavras-chave: Teoria quântica de campos, eletrodinâmica quântica reduzida, grafeno, espaço curvo



Introduction

In the last decades condensed-matter systems of diverse natures have been increasingly studied under the
methods of quantum field theory (QFT). This has emerged as an important tool in the condensed-matter
community in the sense that QFT allows us to theoretically explore the prominent physics developing on the
relevant low-energy scale probed in experiments. Remarkably, it has also been realized that elusive particles
that appear in the context of high-energy physics, such as Weyl and Majorana fermions, can naturally emerge
in the form of quasi-particles in a condensed-matter setting [1, 2]. On the other hand, on the footsteps of
Unruh’s seminal work [3] back in 1981, one has recently witnessed the outbreak of investigations dedicated
to collectively understand the prospects of exploiting condensed-matter models as possible experimental
realizations of physical situations that arise in the context of general relativity and of quantum field theories
in curved backgrounds. For instance, it now has been well established that kinematic aspects of black holes
can be investigated in weakly interacting Bose gases [4–9]. In this analog model configuration, theoretical
surveys have also probed aspects of interesting kinematical effects that arise in classical and quantum systems,
such as, for example, phenomena involving superradiance processes [10–17].

The investigation proposed here considers this current trend to borrow concepts originally developed
in high-energy physics for the study of low-energy systems commonly found in condensed matter. We are
particularly interested in the transport properties of graphene. The low-energy physics of two-dimensional
carbon systems [18, 19] is governed by the presence of two generations of Dirac fermions. The electronic
interactions in Dirac liquids lead to a wealth of intriguing transport phenomena [20–23] which have attracted
a fair amount of attention since the first synthesization of graphene in 2004 [24]. Indeed, recent experiments
uncover the relevance of such electronic interactions at low temperatures [25–28]. In turn, the interplay
between strong Coulomb interactions and weak quenched disorder in graphene has also been elucidated, and
the general expectation is that vector-potential disorder may play a key role in the description of transport
in suspended graphene films [29]. Motivated by clear evidence of the strongly coupled nature of graphene,
transport coefficients were calculated within a modern holographic setup [30].

The specific structure of the 2D crystal lattice permits graphene systems to be viable settings to study
some of the interesting effects which arise in QFT in curved spacetimes [31–33]. In this context, measur-
able effects of QFT in a curved-background description of the electronic properties of graphene represent a
growing ongoing line of research. A number of proposals to interpret several observed effects in graphene
sheets such as curved ripples [34], corrugations [35], pure strain configurations [36] and even nonuniform
elastic deformations [37] in the light of a curved-space description of the electronic properties of graphene
has occupied much of the contemporary associated literature. The appearance of gauge fields in graphene
systems has also made it possible to establish a firm bridge between the physics of graphene and gravity-like
phenomena allowing the unification of concepts from elasticity and cosmology [38].

The chiral nature of the charge carriers in graphene is responsible for the existence of a minimal AC
conductivity in the collisionless regime which is universal [39]. In this respect much theoretical effort has
been devoted to understand the effects of electronic interactions on the optical conductivity in such a scenario.
Despite the manifest progress toward a better comprehension of this issue, the theoretical determination of
this minimal conductivity and its dependence on interactions is still a matter of intense debate (for an
interesting discussion, see Ref. [40] and references cited therein). One possible framework with which one can
address this issue is given by the so-called reduced quantum electrodynamics (RQED). This is a quantum field
theory describing the interaction of an Abelian U(1) gauge field with a fermion field living in flat spacetimes
with different dimensions [41, 42]. Motivations for the investigation of such reduced theories comprise their
feasible application in low-dimensional condensed-matter settings, in particular graphene systems. Indeed,
it has been claimed that calculations within the formalism of RQED reproduce as close as possible the
experimental results for the minimum conductivity of graphene [43]. Electromagnetic current correlation
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has also been computed within the context of RQED [44]. Other interesting, noteworthy features of RQED
include the validity of the Coleman-Hill theorem and the existence of quantum scale invariance [45, 46].
For recent studies of chiral symmetry breaking in RQED at finite temperature and in the presence of a
Chern-Simons term, see Refs. [47, 48].

In the first chapter we introduce the physics of graphene. We focus only on those aspects that will
be of interest, namely the emergence of relativistic chiral particles and the possible ways curvature can
arise in graphene. We also discuss the continuum field theoretic model, Pseudo-Quantum Electrodynamics,
or Reduced-Quantum Electrodynamics, appropriate for the flat graphene layer. In the second chapter we
discuss the curved space generalization of the model and carry a one-loop analysis. Then we finish by applying
the model to graphene, with a focus on the implications for the free fermion optical conductivity, following
our work in [49].

In the present exploration our theoretical laboratory will be the generalization of the formalism of RQED
to curved spaces. We do not wish to single out one particular metric in our exploration, but instead we will
keep our discussion to general spatial geometries. For that we will use a momentum-space representation of
the Feynman propagator in arbitrary curved spacetimes [50, 51]. As usual the construction rests upon the
usage of Riemann normal coordinates [52,53]. As an application, our discussion will allow us to calculate the
one-loop high-frequency behavior of the optical conductivity in the presence of curvature effects in graphene
by using the Kubo formula. We envisage these curvature effects as modelling possible ripples that may appear
in graphene substrates. We will demonstrate how such effects can be incorporated by taking into account a
suitable chemical potential when the Ricci scalar is positive. We will also explore the intriguing possibility
that such curvature effects can actually contribute to an increase in the minimum conductivity of graphene.
We employ units such that ~ = c = 1.



Chapter 1

Graphene

Graphene is an one atom thick layer of graphite. It was first synthesized in laboratory in 2004 by Geim
and Novoselov [24]. For their feat they were awarded the 2010 Nobel prize in physics. However it’s theoreti-
cal exploration began in 1947 with Wallace as a stepping stone to understand the conduction properties of
graphite [54]. A decade later the same approach was taken by McClure [55], and Slonczewski and Weiss [56] in
exploring the band structure of graphite. Shortly afterwards these theoretical findings received experimental
confirmation [57–61], cementing the approach originally employed by Wallace. Although graphene’s charac-
teristic conical band structure, along with it’s linear dispersion, at the Brillouin zone corners had already
been identified in these works it took another 16 years until the emergence of pairs of relativistic chiral Dirac
excitations was first pointed out by DiVincenzo and Mele in early 1984 [62]. Later the same year Semenoff
argued that the chiral nature of graphene’s excitations would lead to an observable zero-energy state in an
external magnetic field [63]. The zero-modes were observed by Novoselov et al. [18] in 2005, shortly after
their pioneering manufacturing of graphene, see also [19] and [22]. This so-called anomalous quantum Hall
effect amounts to a strong evidence of the relativistic chiral Dirac quasiparticles in graphene. Additionally,
the observation of Klein tunneling [20,21], in connection with backscattering suppression, adds more weight
for the chiral nature of the excitations [23]. Yet another trademark feature of relativistic fermions worth
mentioning is the so-called zitterbewegung [64, 65], or trembling motion, i.e., high oscilations of the wave-
function. This phenomenon has been observed for the first time for trapped ions in [66]. It is believed that
graphene in a magnetic field is the best bet to observe zitterbewegung, see [67] and references therein.

The content in this section is standard and exhaustively covered throughout the literature. For greater
details regarding our exposition, and many more applications, we refer to the excellent review [68]. For a
more pedagogical take, see the book by Katsnelson [69].

1.1 The honeycomb lattice

Chemically graphene is a carbon allotrope with sp2 hybridization. Three out of the four valence electrons
of carbon, those from the s, px and py orbitals, are strongly bond together, the so-called σ-bonds. These
are responsible for the planar honeycomb lattice structure of graphene. The fourth valence electron in the
pz orbital is only weakly bond to the others, the so-called π-bond. This is responsible for the conduction
properties of graphene. Because graphene is single layer and its σ bonds are planar, it is said to be a two-
dimensional material. The π-bond electron’s momentum kz perpendicular to the layer is quantized inside a
very thin interval of the order 10−10m. The kz modes are therefore widely spaced and can be taken to be
frozen in it’s ground state. This then completely justifies the treatment of graphene as a two-dimensional
material.

The honeycomb lattice is shown in figure 1.1a. Each lattice site hosts a single conduction electron, ideal
graphene is hence half-filled. Each site is connected to three others at angles of 2π/3. The nearest neighbor
vectors are taken as

a1 =
a

2
(1,
√

3), a2 =
a

2
(1,−

√
3), a3 = a(−1, 0), (1.1)

where a ≈ 1.42Å is the lattice spacing. Any two nearest sites are topologically distinct due to the different
orientation to their nearest neighbors. The honeycomb lattice is therefore not a Bravais lattice, but rather
is composed of two interpenetrated triangular sublattices (a bipartite lattice), commonly termed A and B,
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(a) Honeycomb lattice of graphene. Blue and red
sites represent A and B sublattice sites. Nearest
neighbors vectors ai are shown.

(b) 1st Brillouin zone of graphene. Reciprocal lattice
vectors b1 and b2 are shown. K and K′ are the spe-
cial corners of the Brillouin zone where Dirac physics
arises.

Figure 1.1

respectively depicted as blue and red in figure 1.1a. This sublattice structure is reponsible for the so-called
pseudo-spin degree of freedom of graphene. As will be shown in the following the inherent spinorial structure
of graphene’s massless Dirac quasiparticles arises from it’s pseudo-spin degree of freedom, rather than real
spin.

To construct the first Brillouin zone of graphene the triangular lattice vectors are required, they are

r1 =
a

2
(3,
√

3), r2 =
a

2
(3,−

√
3). (1.2)

Then the reciprocal lattice vectors bi are determined by bi.ai = 2πδij yielding

b1 = b(1,
√

3), b2 = b(1,−
√

3), (1.3)

with b = 2π/3a. The first Brillouin Zone (BZ) can be constructed in the usual fashion and is shown in figure
1.1b. It will be shown in the following that the corners of BZ (i.e., the vertices of the hexagon) are the special
points where the Dirac physics emerges. Only two out of the six corners are inequivalent, conventionally
called the K and K ′ points, which are taken to be

K = b

(
1,

1√
3

)
, K′ = b

(
1,− 1√

3

)
. (1.4)

The other corners are reached from (1.4) by linear combinations of (1.3). These points constitute yet another
binary degree of freedom usually called the valley degree of freedom, or sometimes isospin. Taking into
account real spin it follows that graphene excitations display a total of 2× 2× 2 = 8 degrees of freedom. In
the absence of external magnetic fields real spin plays only a spectator role, amounting just to a degeneracy
factor of gs = 2 on physical observables. For ideal pristine graphene there is also perfect symmetry between
the valleys. In this case the total degeneracy factor is g = gsgv = 4.

1.2 Emergence of Dirac physics

The properties advertised above follow from a simple tight-binding analysis of the honeycomb lattice
taking into account only nearest neighbors hopping. In this case there are couplings only between sites A
and B. The Hamiltonian reads

H = −t
∑
σ,〈ij〉

(a†σ,ibσ,j + b†σ,jaσ,i), (1.5)

where t ≈ 2.8 eV is the overlap integral. Here aσ,i, a
†
σ,i annihilates/creates (real) spin σ electrons at site i

on sublattice A, and similarly for bσ,j , b
†
σ,j . These two independent sets of modes mean the wavefunction
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has an internal degree of freedom corresponding to it’s amplitude on either lattice site. This is the so-called
pseudo-spin. After a Fourier transform the Hamiltonian reads, in matrix form

H = −t
(

0 f(k)
f∗(k) 0

)
, (1.6)

where
f(k) = e−ikxa + eikx

a
2 +iky

√
3a
2 + eikx

a
2−iky

√
3a
2 . (1.7)

Some straightforward algebra yields the dispersion relation

E(k) = ±t

√√√√3 + 2 cos(
√

3kya) + 4 cos

(
3kxa

2

)
cos

(√
3kya

2

)
(1.8)

The positive sign is for the conductance band and the negative for the valence band. The dispersion is shown
in figure 1.2. The figure hints at the special property of (1.8), namely that the valence and conduction bands
touch only at six points. These are precisely the corners of the BZ. To see that it is so it suffices to insert (1.3)
for the K and K’ points into (1.8) and recall that the remaining four are related to K and K’ by reciprocal
lattice vectors. Given the symmetry between the valence and conduction bands, it follows that the Fermi
surface of half-filled graphene lies exactly at the Dirac points.

In order to uncover the linear dispersion characteristic of Dirac fermions it is only necessary to expand
(1.8) around any of the corners of the BZ. This can again be anticipated by figure 1.2 noticing these points
serve as a vertex to the conical shaped dispersion in their vicinity. Expanding then around the K point
k = q−K, qa� 1, reveals the characteristic linear dispersion of graphene

E(q) = ±3ta

2
|q|. (1.9)

The coefficient is the Fermi velocity of the Dirac quasiparticles (temporarily restoring an ~ factor)

vF =
3ta

2~
. (1.10)

It turns out that vF ≈ c/300, with c the speed of light. Graphene is therefore definitely not a strictly
relativistic system. It is however relativistic-like, in the sense that (1.9) resembles the relativistic dispersion

E =
√

q2c2 +m2c4 for massless particles with the single replacement of c→ vF .
The density of states per spin, per valley, near the Dirac points follows directly from counting the number

of energy states using (1.9), the result is

ρ(ω) =
|ω|

2πv2
F

. (1.11)

For the full density of states, that can actually be analytically computed from (1.8), see [68]. The remarkable
feature is the vanishing of the density of states precisely at the Dirac points ω = 0. This is also the Fermi
level in ideal graphene. For this reason graphene is frequently termed either a gapless semiconductor, or a
semi-metal with vanishing density of states.

To uncover the massless Dirac quasiparticles that produce (1.9) we need to analyze the Hamiltonian
(1.6) close to the Dirac points. It saves some time to absorb a global phase factor e−ikxa from f(k). It is

Figure 1.2: Dispersion relation of clean graphene.
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also convenient to define Kζ = b(1, ζ 1√
3
), with ζ = ±1, such that it corresponds to the K and K’ points,

respectively. Taylor expanding around the Dirac points lead to

f(q−Kζ) ≈ −i
3a

2
(qx − ζiqy) +O(q2). (1.12)

From (1.6) it follows the Hamiltonian HKζ in the vicinity of the Dirac point Kζ

HKζ = vF

(
0 i(qx − ζiqy)

−i(qx + ζiqy) 0

)
. (1.13)

The factors of i can be removed by an unitary transformation of the base spinors. The Hamiltonian assumes
the simple form

HKζ = vF (σxqx + ζσyqy), (1.14)

with σx and σy being the Pauli matrices. Going back to configuration space the Schrödinger equation
iσz∂tψ = HKζψ, with the Pauli matrix σz accounting for the positive and negative energies (1.9), becomes

iσz∂tψ = ivF (σx∂x + ζσy∂y)ψ. (1.15)

Equation (1.15) is the massless Dirac equation. Taking γµ = (σz, σx, σy) forms a representation of the
Clifford algebra {γµ, γν} = 2ηµν , and allows to recast (1.15) in the familiar Dirac form

ivF γ
µ∂µψζ,σ = 0, (1.16)

where we have restored the real spin label σ for completeness, and the ζ label denotes the spinor on the
respective Dirac cone. Here ∂µ = (v−1

F ∂t,∇) in analogy with the usual relativistic notation, with the
replacement of c→ vF for the same reasons discussed following (1.10).

The eigenfunctions ψζ,σ of graphene describe chiral particles. To see this note that (1.14) is proportional
to the projection of pseudo-spin along the momentum σ.q̂. It follows that the energy eigenstates have definite
helicity, or in this case, chirality. Therefore the spectrum of half-filled graphene around the K point consists
of a right-handed positive energy particle in the conduction band and a left-handed negative energy hole in
the valence band. Similarly, the spectrum around the K’ point is composed of a left-handed positive energy
particle (conduction band) and a right-handed negative energy hole (valence band).

It is also commonplace to consider four-dimensional spinors incorporating both Dirac points. In this case
the γ-matrices can be defined by γµ = (σz, σx, σy)⊗ τx, where τ i is another set of Pauli matrices acting on
the valley degrees of freedom. In this case the Dirac equation is written simply

ivF γ
µ∂µψ = 0, (1.17)

where we have also dropped the real spin label σ. The physical significance of working with this representation
is that it more naturally generalizes to cases where the pseudo-spin and valley symmetries are broken, e.g.,
by a mass term representing for instance different on-site energies between nearest neighbors.

1.3 Stability of Dirac physics

Before proceeding with a discussion of curvature inducing defects in graphene, it is sensible to understand
how robust is the existence of the Dirac points over general departures from the ideal graphene monolayer. It
turns out the Dirac points are pretty robust. Here we follow closely the presentation on Bernevig’s book [70].
The Dirac points and cones will be lost if a perturbation causes a gap to open. A gap is tantamount to
a mass term in the Dirac equation, which has the form mv2

Fσz. This is so because it shifts the valence
band by −mv2

F and the conduction band by mv2
F , opening a gap of energy 2mv2

F . Therefore the question
to be answered is “When does a perturbation induce a mass term?” It will be shown in the following that
the Dirac points are not only locally protected by symmetry, but also globally protected by topology. Only
strong enough perturbations, in a sense to be made more precise below, may destroy the Dirac cones.

Naturally such a discussion begins with the symmetries of graphene. The honeycomb lattice has a
sublattice symmetry A↔ B, it does not matter how we label the sites, only that the lattice is bipartite. It

has the effect of interchanging a
(†)
σ,i ↔ b

(†)
σ,−i. It is identical to an inversion about either an arbitrary lattice
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site, or, more symmetrically, the center of the hexagonal rings. It imposes on a generic bipartite Hamiltonian
the transformation

H(q) = σxH(−q)σx (1.18)

Including the mass term mv2
Fσz in the Hamiltonian (1.14) around the Dirac points it is found

HKζ (q) = vF (−qxσx + ζqyσy −mvFσz). (1.19)

Recalling that −K is equivalent to K′, we see that the K and K’ point Hamiltonians (1.14) are mapped into
each other under inversion, up to a global phase of π. More dynamically stated, hopping from pseudo-spin
A to B on the K point is equivalent to hopping from pseudo-spin B to A on the K’ point. Therefore a gap
is consistent with inversion symmetry. More symmetry is needed.

Ideal graphene also has time-reversal symmetry, reflected on the real hopping parameter t1. For a generic
Hamiltonian time-reversal symmetry imposes

H(q) = H∗(−q), (1.20)

which for graphene becomes
HKζ (q) = vF (−qxσx + ζqyσy +mvFσz). (1.21)

It has a similar picture as for the inversion transformation. If we rewind time, then an A to B hopping
becomes B to A and momentum is also inverted. However contrary to the inversion transformation (1.19),
the mass term does not flip sign. For this reason it may seem that time-reversal symmetry forbids the opening
of a gap. This conclusion can be avoided if the gap is momentum dependent m = m(q). Assuming linearity
around the Dirac points m(q) ∼ q would then make the mass term flip sign. Thus time-reversal too does
not generally rule out the mass term.

Inversion and time-reversal symmetries alone cannot protect the Dirac points in graphene, but collectively
they do. Taking both (1.18) and (1.20) together imposes on a generic Hamiltonian the condition

H(q) = σxH
∗(q)σx. (1.22)

whose virtue is to constraint the Hamiltonian at any single point, as opposed to inversion (1.18) and time-
reversal (1.20) transformations relating q to −q. It implies that a momentum dependent mass behaves as a
scalar under the combined T I transformation. For the same reason it does not exchange the Dirac points in
graphene. Indeed, explicitly, it yields

HKζ (q) = vF (qxσx + ζqyσy −mvFσz). (1.23)

which does require m = 0. Therefore perturbations that preserve both inversion and time-reversal cannot
open a gap, the Dirac physics is safe. An extension of this argument is also applicable to multilayered
graphene, see [71].

An alternative topological explanation for the stability of Dirac cones in graphene makes use of the idea
of Berry phases. The explicit eigenspinors for the K and K’ points carry a nontrivial winding number. It
follows that smooth deformations cannot destroy these vortices, unless they collide. This possibility can
indeed occur under T I symmetric perturbations that shift the location of the Dirac points by (δhx, ζδhy)

HKζ + δH = (qx − δhx)σx + ζ(ζqy − δhy)σy. (1.24)

If hx and hy are tuned to join the Dirac points then the vortex-anti-vortex annihilate. In this case a gap
indeed opens [70]. This however requires a large perturbation of the order of the bandwidth.

1.4 Curved graphene layers

In this short section we will quickly describe how curvature may arise in graphene layers. We will see how
to account for curvature in more detail during the field theoretic discussion. Curvature has been observed to
arise in both suspended graphene and upon substrates [72–80]. First of all let us point that throughout this
work we will always mean intrinsic curvature, i.e., there can be no flat directions. For example, fullerene, a
graphene soccer ball, is said to be curved, whereas a graphene nanotube is not.

1A change of basis can make t complex, however this has no physical consequence for transition probabilities.

5



Figure 1.3

Figure 1.4: Positive and negative curvature inducing defects in graphene.

As described in [38] positive or negative curvature in graphene can arise by removing or introducing sites
in a given hexagonal lattice ring. This leads to a so-called disclination. The geometrical reason disclinations
lead to curvature is as follows. Three hexagons joined together as in figure 1.1a make a 2π angle at their
common vertex. If we substitute a pentagon (heptagon) for a hexagon there arises a deficit (surplus) angle,
leaving the lattice no option but to curve in order to stick together. This principle is illustrated in figure 1.3
for three regular triangles. If the sides with matching colors (except the black ones) are the same, the only way
to compensate for the deficit angles between these sides is to curve out of the plane to make a tetrahedron.
Figure 1.4 shows the analogous situation for graphene. On the left it is shown a square defect leading to a
deficit angle. On the right a surplus angle arises from the octagon. For a related elegant topological argument
based on the Euler characteristic of the lattice see [81]. Importantly, these lattice defects do not spoil the
Dirac physics because the distortion can only be appreciated a few lattice sites away from the location of the
defect. What matters for the Dirac cones to arise is the three-fold orientation between sites.

The precise relationship between defects and gravity was developed in [82]. The displacement vector field
of elastic theory is approached from a geometrical standpoint as defining a diffeomorphism between ideal and
deformed spaces. One is then able to define a nontrivial metric for the deformed system and bring in the
tools of differential geometry and gravity. The information encoded in the Frank angle and Burges vector
in the theory of elasticity is now available in the curvature Rµναβ and torsion Tµαβ tensors, respectively.
Disclinations are indeed found to lead to non-trivial curvature tensor but zero torsion, whereas dislocations
(pairs of adjacent disclinations of opposite curvature) lead to zero curvature and non-trivial torsion tensor.
A summary for quick reference is shown on table 1.1.

Finally we mention that ripples due to thermal fluctuations have also been observed [79]. In this case
lattice spacings may have varying lengths. This then may also lead the lattice to curve for the same reason
as before. The difference is that now the angle deficit or surplus are produced without the need of elastic
defects.

Defects Geometry
Elastic deformations Rµναβ = 0 Tµαβ = 0

Disclinations Rµναβ 6= 0 Tµαβ = 0

Dislocations Rµναβ = 0 Tµαβ 6= 0

Disclinations and dislocations Rµναβ 6= 0 Tµαβ 6= 0

Table 1.1: Summary of the relation between defects and geometry.
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Chapter 2

Reduced-Quantum Electrodynamics
in flat space

In this chapter we introduce the continuum field theory model for the electronic properties of ideal
graphene. Presently the model is frequently discussed under three distinct names, which in chronological
order are Pseudo-Quantum Electrodynamics, Reduced-Quantum Electrodynamics and Mixed Dimensional
Quantum Electrodynamics. The general setting involves a low dimensional system hosting charged fermions,
whereas the photons mediating the interactions fully permeate all dimensions. It is a widely applicable
model across physics, from low dimensional systems in condensed matter to braneworld scenarios in string
theory. For us the low dimensional system is graphene and the full dimensional environment is the laboratory.
Independent development seems to be the reason for the multiplicity of names for the same model.

Historically it’s exploration began in the late 80’s by Marino [41], who baptized the model Pseudo-
Quantum Electrodynamics, or PQED. In the early 90’s Miransky et al. discussed the same model in [42]
within the context of D-branes, wherein the name Reduced-Quantum Electrodynamics, RQED, was put
forward. Mixed Dimensional Quantum Electrodynamics, or mixed QED for short, has gained space recently,
specially within the conformal field theory community, probably because of the prevalence of configuration
space methods in the field [83–85].

2.1 The model

From our previous discussion it is clear that the physics is described by (2+1)-dimensional chiral fermions
for each valley and spin. For simplicity then we will ignore the valley and spin degrees of freedom as they play
no fundamental role in the general features we wish to discuss presently. The electromagnetic interaction is
mediated by the photon, which in contrast lives in (3+1) dimensions. The action of this mixed dimensional
QED reads

S =

∫
d4x

(
−1

4
FµνFµν −

1

2ξ
(∂µA

µ)2

)
+

∫
d3x (ivF ψ̄γ

µe∂µeψ − jµeAµe), (2.1)

where we have adopted the standard notation, to note, Fµν = ∂µAν − ∂νAµ, ξ is the gauge fixing parameter,
ψ̄ = ψ†γ0 is the Dirac adjoint and jα = eψ̄Aγ

αψA = e(ψ̄γ0ψ, vF ψ̄γ
iψ), with i = 1, 2 the fermionic current.

The indices run as µ = 0, 1, 2, 3 and µe = 0, 1, 2. Sometimes this model is also referred to as QED4,3 for
the dimensions of the gauge and fermion fields, respectively. General mixed dimensional QEDdγ ,de is also
frequently considered in the literature, both from a purely formal perspective to access generic features of
the model, as well as to applications for other dimensionally reduced systems, like nanowires or boundaries
of topological insulators [86]. Due to our focus on graphene in this work, mixed QED will always implicitly
mean QED4,3.

Action (2.1) has two unique properties compared to standard QED. First the momentum in the orthogonal
direction to the graphene plane, p3 for definiteness, plays no role. As discussed previously for the electrons
in graphene, it is quantized with huge level spacing, rendering it frozen in it’s lowest value at all times for
typical probed energies in condensed matter settings. In this case the interaction vertex cannot scatter p3.
This implies then that loops of virtual intermediate states do not include any p3 integral. p3 is effectively
an inert degree of freedom. Secondly, note that the gauge field A3 does not participate in the interaction
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vertex. It is merely a spectator free field tagging along. Graphene physics therefore can be described solely
by three-dimensional fields and momenta. This is indeed reflected in both the Feynman rules for the theory
and the resulting effective field theory model. The reduction process going from the mixed dimensional model
to the purely three-dimensional model by properly removing these sterile degrees of freedom was detailed
in [41], which we follow.

The reduction affects only the gauge field terms as it is where p3 or A3 appear. It is useful however to
rewrite everything in (3 + 1)d First express the current as

jµ(x0, x1, x2, x3) =

{
jµe(x0, x1, x2)δ(x3), µ = µe = 0, 1, 2

0, µ = 3.
(2.2)

This allows to write all terms with the gauge field under the (3+1)-dimensional integral. The partition
function of the theory is

Z =

∫
DψDψ̄DAµeiS[ψ,ψ̄,A]+iS[ψ,ψ̄], (2.3)

with

S[ψ, ψ̄, A] =

∫
d3xdx3

(
1

2
Aµ (�ηµν + ∂µ∂ν)Aν + jµAµ

)
, (2.4)

and S[ψ, ψ̄] the three-dimensional free fermion action. S[ψ, ψ̄, A] is quadratic and so Aµ can be readily
integrated out in the partition function

Z =

∫
DψDψ̄ exp

(
1

2

∫
d3xdx3d3x′dx′3 jµ(x, x3)Dµν(x− x′, x3 − x′3)jν(x′, x′3)

)
eiS[ψ,ψ̄], (2.5)

where Dµν(x− x′, x3 − x′3) is the gauge field propagator

Dµν(x− x′, x3 − x′3) =

∫
d3q

(2π)3

dq3

2π

1

q2 + q2
3

(
ηµν −

(
1− 1

ξ

)
qµqν
q2 + q2

3

)
eiq.(x−x

′)+iq3(x3−x′3). (2.6)

Making use of the Dirac deltas δ(x3), δ(x′3) in the currents kill the x3 and x′3 integrals and wipe out all
dependence on them. What’s left is the momentum q3 on the gauge propagator (2.6). Momentum-space
current conservation qµj

µ = 0 allows us to drop the longitudinal term on (2.6), leaving only the gauge-
independent contribution

Dµeνe(x− x′) = ηµe,νe

∫
d3q

(2π)3

dq3

2π

eiq.(x−x
′)

q2 + q2
3

, (2.7)

which can also be integrated exactly, yielding

Dµeνe(x− x′) = ηµeνe
i

2

∫
d3q

(2π)3

eiq.(x−x
′)√

q2
. (2.8)

The gauge propagator (2.8) contains only three-dimensional quantities.
Together with the remaining, unaltered, momentum-space Feynman rules for the fermion and interaction

vertex in QED we have

Dµν(q) =
1

2
√
q2

(
ηµν − (1− ξ̃)qµqν

q2

)
(2.9a)

iS(k) = i
γ0ω + vFγ.k

ω2 − v2
F k

2
(2.9b)

− ieΓµ0 = −ieγµ = −ie(γ0, vFγ). (2.9c)

These are the Feynman rules of mixed QED. The reduction process is now formally complete. The set of
Feynman rules (2.9) is commonly known as Reduced Quantum Electrodynamics (RQED) [42, 44]. Notice
the gauge fixing parameter ξ̃ appearing in (2.9) is in general different from the ξ in (2.1). Gauge choices are
always meant with respect to ξ̃, e.g., the Feynman gauge adopted throughout means ξ̃ = 1, which in turn
will not correspond to the ξ = 1 Feynman gauge in (2.1).
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We notice that it is possible to reverse engineer (2.9) and explicitly write down a purely (2+1)-dimensional
action

SPQED =

∫
d3x

(
−1

2
Fµν

1√
−�F

µν − 1

2ξ̃

(∂µA
µ)2

√
−� + iψ̄ /Dψ

)
. (2.10)

In this form the theory is known as Pseudo-Quantum Electrodynamics, or PQED, on account of the pseudo-
differential operator (−�)−1/2. Do take note that we commit a harmless abuse of notation here. The gauge
field Aµ in (2.10) is not the same as in (2.1). The latter was integrated out, while the former was defined so
as to reproduce it’s physical features in a reduced number of dimensions. The context easily distinguishes
them so no confusion should arise. Furthermore the covariant derivative is defined Dµ = ∂µ − ieAµ and the
Feynman slash notation /D = γµ∂µ is employed.

Action (2.10) is non-local. Non-local models usually suffer from many issues. Non-locality itself poses
interpretation issues seemingly in conflict with basic principles of quantum field theory. At first however
such issues does not appear to be too serious as PQED is not a fundamental theory. Nevertheless there
has been many efforts to establish PQED as a sensible theory. The pseudo-differential operator itself was
carefully discussed in [87]. Canonical quantization and asymptotic states of nonlocal theories were discussed
in [88, 89]. In [90] it was found that PQED is indeed an unitary theory. Standing on a solid basis, PQED
is being increasingly explored, extended and applied. Some examples, by no means exhaustive, include
bosonic interactions [91], chiral symmetry breaking [92, 93], Proca electrodynamics [94], dynamical mass
generation [95], cavity effects [96], Pseudo-Chern-Simons extension [97,98] and many more.

So far we have presented mixed QED, RQED and PQED. They are all physically equivalent up to the
erasure of the trivial x3 dependence and the free A3 field. The only element that could distinguish between
mixed QED and RQED/PQED would be the excitation of higher p3 modes of the electrons in graphene, but
that is ruled out for realistic experiments. More theoretically this would be completely justified for a brane
model. In this case the fermions are restricted to a zero thickness brane, whereas the gauge fields permeate
the entire space. This is indeed the context whence RQED was discussed in [42].

Although equivalent it will prove useful to make a formal distinction between them. For now this will
be purely a matter of nomenclature. Throughout this work we will call the set of Feynman rules (2.9) alone
RQED. On the other hand, action (2.10) will be called PQED. The motivation for this distinction is that
for curved spaces it seems possible to generalize (2.9), under some hypothesis to be discussed opportunely,
whereas (2.10) seems to resist any attempts to such generalizations so far. Finally mixed (dimensional) QED
will stand exclusively for (2.1). When discussing general features we will collectively refer to any one of these
theories simply as the model.

2.2 Features of the model

The model enjoys some striking features in contrast with usual four-dimensional QED. A discussion of
these features is therefore desirable to better familiarize with the model.

First of all we observe, importantly, that the reduced photon propagator (2.9a) reproduces the familiar
1/r2 Coulomb interaction in the (2 + 1)d graphene layer. It can be readily anticipated on grounds of

dimensional analysis: from the gauge propagator ∝
∫
d3q
√
q−2 has dimensions of [E]−2. This is in stark

contrast with the 1/r interaction predicted by QED3. The standard 1/r2 is clearly the correct power-law for
planar condensed matter systems as it lives itself in the three-dimensional laboratory.

Still within the theme of dimensional analysis we carry out a power counting analysis on (2.1). The
kinetic terms for the gauge and fermion fields give [Aµ] = [ψ] = 1. This already differs from QED, where
[ψ] = 3/2, due to the low dimensionality of the fermions. This in turn implies that the coupling constant
is dimensionless [e] = 0 as it only shows up in the low dimensional sector. The electromagnetic interaction
therefore remains marginal at tree-level in mixed QED. Naturally this can also be done on PQED (2.10) with
the same outcome: the lower dimensionality in the gauge kinetic term is compensated by the square-root of
the d’Alembertian sitting at the denominator.

The vanishing of scaling dimension of the coupling [e] = 0 causes the beta function in mixed QED to
vanish at the classical level. So far this is the same as in QED4. It turns out however that contrary to QED4,
quantum corrections in mixed QED are UV finite and therefore

βe = 0. (2.11)
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(2.11) has been verified at the two-loop level by Teber [44] . This hints towards an emerging scale invariance
in mixed QED, which has subsequently been proved in [99]. A frequent argument made for the conformal
invariance of mixed QED points that the renormalization of the coupling e happens only on the three-
dimensional plane. Furthermore the Ward identity ties the photon’s wavefunction renormalization to that of
the electric charge e. However due to the local nature of UV divergences it cannot be that e is renormalized
away from the plane. In this case the photon’s wavefunction would renormalize on the plane, but not
anywhere else. This inconsistency can only be avoided if e does not renormalize at all, hence βe = 0 exactly.
This result will be verified to one-loop level in the next section.

So far we have left the Fermi velocity vF out of the discussion, i.e., the considerations so far apply only
to the relativistic limit vF = 1 of mixed QED. In the non-relativistic domain of graphene (in the strict sense
of vF < 1) the story gets new twists. First and foremost, [vF ] = [E]0 for being a velocity. Alternatively from
(1.10) we see that it vF is the product of an energy t with a length a, hence dimensionless in natural units.
However

βv > 0, (2.12)

that is, interactions renormalize the Fermi velocity up. The renormalization of vF has been extensively
discussed in the literature [100]. Most important is that the running of vF ends on a fixed point at the speed
of light vF = c as it should. More details on the renormalization in graphene can be found in [101,102].

The running of vF enables the fine-structure constant of graphene

αv =
e2

4πvF
(2.13)

to run despite the fact that βe = 0 The flow here is in the opposite direction of QED4, as vF increases
in the UV, αv decreases. An important observation is that for graphene αv ≈ 2.2. Therefore mixed QED
applied to graphene looks like a strongly coupled theory. Nonetheless it has been shown by Das Sarma et
al. in [103] that the multiplicity of fermionic states in graphene effectively suppresses non-leading order
corrections, effectively rendering perturbation theory applicable.

2.3 Renormalization

To formalize much of the discussion, let us introduce the renormalized parameters

ψ = Z
1/2
2 ψR

Aµ = Z
1/2
3 AR,µ

e = ZeeR

v = ZvvR (2.14)

The subscript R denotes the renormalized quantities. To avoid clutter we suppress the F subscript of the
Fermi velocity, i.e., vF → v. The PQED action in the Feynman gauge ξ̃ = 1 (2.10) then becomes

S =

∫
d3x

[
−Z3

2

FR,µνF
µν
R√

−� + iZ2ψ̄R

(
γ0(∂0 − iZe

√
Z3eRAR,0) + ZvvRγ

i(∂i − iZe
√
Z3eRAR,i)

)
ψR

]
,

(2.15)
with the renormalized field strength FµνR = ∂µAνR−∂νAµR. The computation of the Z’s goes almost identically
as in QED, with the exception that now frequency and momentum parts renormalize differently because the
latter picks an extra factor of Zv. Therefore it proves useful to parametrize the fermion self-energy and the
vertex corrections as follows

−iΣ(ωk,k) = −iΣω(ωk,k)γ0ω − iΣk(ωk,k)vγ.k (2.16a)

−ieΓµ(0, 0) = −ie
(
Γωγ

0,Γkvγ
i
)
. (2.16b)

Here we skip the vacuum polarization for expediency, as we know already it does not renormalize (a fact we
will verify shortly). The renormalization parameters δZn, with n = 1, 2, 3, e, v a general label, defined

Zn = 1 + δZn +O(α2
v), (2.17)
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are responsible for cancelling the UV divergences in the one-loop functions. Whereas the frequency parts
go just like QED, e.g., Σ1ω (the 1 indicates the one-loop approximation) has its UV divergence cancelled by
δZ2, the spatial part Σ1k contains an extra δZv which may be obtained as the residual UV divergence after
the subtraction of the one from Σ1ω. Put into equations this simply means

δZ2 = ΣUV
1ω (2.18a)

δZv = ΣUV
1k − ΣUV

1ω . (2.18b)

where the UV label denotes we’re considering only the UV divergent part of the function. In the same fashion
we find the same result for the vertex corrections as well

δZ2 = ΓUV
1ω (2.19a)

δZv = ΓUV
1k − ΓUV

1ω . (2.19b)

Agreement between (2.18) and (2.19) serves as a consistency check for the model both in flat and curved
spaces, hence we will dedicate some time to verifying their equality.

We observe that the Ward Identity
Z1 = Z2 (2.20)

still holds, as argued above. To verify this one must consistently compare the frequency (momentum) part
of the vertex renormalization Z1 with it’s respective frequency (momentum) counterpart in the electron
wavefunction renormalization Z2. Thus the well-known connection between the photon’s wavefunction and
electric charge renormalizations follow

Ze = Z
−1/2
3 . (2.21)

The issue of gauge invariance and the Ward Identity may be a bit more involved in curved spaces, specially
so for RQED. We will come back to it in due time in the next chapter.

2.4 Predictions of the model

In this section we discuss some of the predictions of the model. The results presented here have all been
obtained already in the literature. It’s value here is to set the stage for future reference for the curved space
generalization.

2.4.1 Density of States

One particular observable that can be readily computed, and will be of interest later when we introduce
curvature, is the free fermion density of states. It is given by the retarded fermion propagator as [105]

ρ(ω) = − 1

π
Im

∫
d2kTr

[
S0(ω + iε,k)γ0

]
, (2.22)

where Tr is the trace over the Dirac matrices. By virtue of Tr[γµγν ] = 2ηµν , the trace vanishes when µ 6= ν,
leaving only the frequency term of (2.9b) to contribute

ρ(ω) = −ω
π

Im

∫
d2k

1

ω2 − v2k2
. (2.23)

The imaginary part of this integral can be computed by the standard identity

P

(
1

x± iε

)
=

1

x
∓ iπδ(x), (2.24)

furnishing

ρ(ω) =
ω

π

∫ ∞
0

dk k δ(ω2 − v2k2) =
ω

2πv2
, (2.25)

by use of standard delta function identities. To account for spin and valley degeneracy in graphene one must
multiply (2.25) by the degeneracy factor gsgv = 4. It agrees with (1.11) as it should.
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Figure 2.1: Photon’s 1 loop vacuum polarization.

2.4.2 Optical Conductivity

The conductivity tensor σµν can be computed in linear response theory as the response to external
electromagnetic field. A famous formula by Kubo links the conductivity to the photon’s vacuum polarization
tensor Πµν as

σµν(ω) = lim
p→0

iΠµν(ω,p)

ω + iε
. (2.26)

For a derivation of (2.26) see [104].
The goal then is to compute the vacuum polarization, shown in figure 2.1. To one-loop level it is

iΠµν(p) = −
∫

d3k

(2π)3
Tr [iS0(k)(−ieΓµ0 )iS0(p+ k)(−ieΓν0)] . (2.27)

The computation is entirely analogous to that of QED. Notice that there are no internal photon lines in the
bubble of figure 2.1 and correspondingly no photon propagator in (2.27). It follows that the result is identical
to that in QED3. The distinction between mixed QED and QED3 can be accessed only at the two-loop level
and higher (when it comes to the vacuum polarization). More physically this can be quickly understood
from the fact that the one-loop contribution accounts for the free-fermion conductivity. Electron-electron
interaction effects start at two-loops through the appearance of internal photon lines.

This consideration indicates that the minimum conductivity is independent of the Fermi velocity vF . To
see this first write (2.27) explicitly

iΠµν(p) = −e2

∫
dωk
2π

d2k

(2π)2

Tr[γαγµγβγν ]kα(p+ k)β
(ω2
k − v2k2)((ωk + ωp)2 − v2(k + p)2)

. (2.28)

Rescaling the spatial momenta k → vFk should factor an overall v−2
F factor off the integral. However the

longitudinal conductivity is encoded in the µ = ν = i, which itself contributes exactly a factor of v2
F coming

from the spatial component of the interaction vertices. A residual vF dependence survives together with
the external momentum vFp, but this then vanishes in the local limit in (2.26). This exact cancellation
disappears from two-loops and higher, once the internal photon lines with the speed of light c = 1 enter the
diagram, providing a new dimensionless parameter vF /c. We will see this arises in the remaining one-loop
diagrams for the self-energy and vertex correction.

For the limit of interest in (2.26), we can deal with the relativistic analog of (2.27) without losing anything

iΠµν(p) = −2e2

∫
d3k

(2π)3

kµ(p+ k)ν + kν(p+ k)µ − k.(p+ k)ηµν

k2(p+ k)2
, (2.29)

where we have made use of Tr[γαγµγβγν ] = 2(ηαµηβν − ηαβηµν + ηανηβµ). This loop integral is standard
and can be quickly solved by introducing Feynman parameters and symmetry considerations. One finds

iΠµν(p) = −2e2

∫ 1

0

dx

∫
d3k

(2π)3

1

(k2 −∆)2

(
−1

3
k2ηµν + x(1− x)(p2ηµν − 2pµpν)

)
, (2.30)

where ∆ =
√
−x(1− x)p2. There are two different loop integrals which in DR evaluate to∫

ddk

(2π)d
k2

(k2 −∆)2
=
i(−1)−1

(4π)d/2
1

∆1−d/2
Γ
(
1 + d

2

)
Γ
(
1− d

2

)
Γ (2) Γ

(
d
2

) (2.31)∫
ddk

(2π)d
1

(k2 −∆)2
=
i(−1)−2

(4π)d/2
1

∆2−d/2
Γ
(
d
2

)
Γ
(
2− d

2

)
Γ (2) Γ

(
d
2

) . (2.32)
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Notice that for d → 3 − 2ε neither are UV divergent. This confirms what has been previously stated about
the UV finiteness of Z3 and Ze as promised. After a bit of elementary algebra we find

iΠµν
1 (p) = − e

2

2π

p2ηµν − pµpν√
p2

∫ 1

0

dx
√
x(1− x). (2.33)

It has the expected structure for the vacuum polarization, it is explicitly transverse and comes with the
characteristic 1/

√
p2 factor of PQED.

Finally for the limit (2.26) it is found for the longitudinal conductivity

lim
p→0

iΠij

ω
=
e2

π

∫ 1

0

√
x(1− x)ηij . (2.34)

The integral evaluates to π/8, leading to a finite longitudinal conductivity per spin, per valley

σ =
e2

4
. (2.35)

It is worth pointing out that there has been some confusion in the literature regarding the minimal conduc-
tivity of graphene. This is neatly summarized in Teber’s thesis [40].

For the two-loop computation, see Teber [44]. A discussion about the conductivity up to two-loops can
be found in Marino [43]. Ordinarily electron-electron interactions have no impact in the conductivity, this is
usually a role played by disorder. The reason being that typically momentum conservation directly implies
velocity, and thus current, conservation. This is the content of the so-called Kohn’s theorem [106]. However
for graphene, and Dirac materials in general, there is no such connection, all electrons travel at the Fermi
velocity regardless of their momentum. As pointed out in [107] this allows for electron-electron interactions,
i.e., higher-loop contributions to the vacuum polarization, to affect the conductivity.

Notice that the off-diagonal elements vanish because (2.34) is proportional to the metric tensor. Hall
conductivity can be obtained from the inclusion of a Chern-Simons term to the action of PQED. In [108] it
is shown that this is in turn one-loop exact, i.e., no higher-order corrections arise. This is a consequence of
the topological nature of Hall physics and so is expected to remain unaltered in curved spaces discussed later
on this work as long as the topology is not modified.

2.4.3 Running of the Fermi velocity

The Fermi velocity renormalization can be seen from the fermionic self-energy or the vertex correction.
Indeed the Ward Identity guarantees that these should match. It turns out to be simpler to compute the
fermionic self-energy, to which we now turn. In the next subsection we will confirm that the Ward Identity
holds in mixed QED by computing the UV-diverging part of the vertex correction. Contrary to the vacuum
polarization, both these diagrams involve internal photon lines and so are not related to the corresponding
QED3 diagrams. This then constitutes a legitimate non-trivial test of the inner consistency of mixed QED
and for this reason we will be more detailed in the computation.

The fermion self-energy is shown in figure 2.2 and translates to

−iΣ1(k) =

∫
d3q

(2π)3
(−ieΓµ0 )iS0(k − q)(−ieΓν0)iD0,µν(q). (2.36)

The computation uses the standard manipulations. To deal with the UV divergencies we will use dimensional
regularization (DR), which shall be employed throughout this work. Our convention for DR is to take
d = 3− 2ε, which then makes the charge scale as µε/2e. The loop-integrals are somewhat more involved than
in the bubble diagram due to the presence of the photon propagator as mentioned previously, explicitly

−iΣ1(k) = −µ
εe2

2

∫
dd−1q

(2π)d−1

dωq
2π

γµ(γ0(ωk − ωq)− vγ.(k− q))γµ
((ωk − ωq)2 − v2(k− q)2)(ω2

q − q2)1/2
. (2.37)

The safest way to navigate these loops is to first do the frequency integration. Notice that in this case it is
a d = 1 integral and is UV finite. The result is

−iΣ1(k) = −µ
εe2

4π

∫ 1

0

dx
1√

1− x

∫
dd−1q

(2π)d−1

γ0(1− x)ωk + vγ.(k− q)

x(1− x)ω2
k + xv2(k− q)2 + (1− x)q2

, (2.38)
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Figure 2.2: Fermion’s 1 loop self-energy.

with x being a Feynman parameter. The integral can be manipulated into the more pleasant form

−iΣ1(k) = −µ
εe2

4π

∫ 1

0

dx

√
1− x

1− x(1− v2)

∫
dd−1q

(2π)d−1

γ0ωk + v
1−x(1−v2)γ.k

q2 −∆
, (2.39)

where

∆ = x(1− x)

(
ω2
k

1− x(1− v2)
+

v2k2

(1− x(1− v2))2

)
. (2.40)

From equation (2.39) we can write down useful expressions for the parameters Σ1ω and Σ1k appearing in
(2.16) for the frequency and momentum parts of the self-energy

−iΣ1ω = −µ
εe2

4π

∫ 1

0

dx

√
1− x

1− x(1− v2)

∫
dd−1q

(2π)d−1

1

q2 −∆
(2.41a)

−iΣ1k = −µ
εe2

4π

∫ 1

0

dx

√
1− x

(1− x(1− v2))2

∫
dd−1q

(2π)d−1

1

q2 −∆
. (2.41b)

The loop integral is the same in both cases∫
dd−1q

(2π)d−1

1

q2 −∆
=
i(−1)−1

(4π)
d−1
2

1

∆1− d−1
2

Γ
(
d−1

2

)
Γ
(
1− d−1

2

)
Γ (1) Γ

(
d−1

2

) (2.42)

and it is indeed UV divergent this time when d→ 3− 2ε. The UV divergences are therefore given by

ΣUV
1ω = − e2

16π2

∫ 1

0

dx

√
1− x

1− x(1− v2)
(2.43a)

ΣUV
1k = − e2

16π2

∫ 1

0

dx

√
1− x

(1− x(1− v2))2
. (2.43b)

Under the condition that v2 ≤ 1, within the physically allowed interval, the integrals can be done and the
results are finally given by

ΣUV
1ω =

e2

16π2

2

1− v2

(
1− v cos−1 v√

1− v2

)
(2.44a)

ΣUV
1k = − e2

16π2

1

1− v2

(
cos−1 v

v
√

1− v2
− 1

)
. (2.44b)

Equation (2.44a) gives the renormalization of the fermion wavefunction

δZ2 =
e2

8π2

(
1

1− v2
− v cos−1 v

(1− v2)3/2

)
. (2.45)

whose discussion will be postponed. Subtracting (2.44a) from (2.44b) one obtains δZv according to (2.18b)

δZv = −αv
4π

(
3v

1− v2
− (1 + 2v2) cos−1(v)

(1− v2)3/2

)
. (2.46)

The beta function βv that follows from (2.46) is shown in figure 2.3. It is clear that the βv approaches a
fixed point as v → 1.

14



0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

vF

βv

Figure 2.3: Fermi velocity 1-loop beta function.

2.4.4 βv from vertex

We can obtain the same result from the UV behavior of the one-loop correction to the vertex function.
We emphasize that this serves primarily as a consistency check for the model. Figure 2.4 shows the diagram
for the one-loop vertex correction. We will compute the time and spatial components separately, beginning
with the former which is given by

−ieΓ0
1(k1, k2) =

∫
d3q

(2π)3
(−ieΓ0

0)iS0(k1 + k)(−ieΓ0
0)iS0(k2 + k)(−ieΓ0

0)iD0,00(k). (2.47)

For the UV behavior we evaluate (2.47) at zero externa momenta, k1 = k2 = 0. The one-loop vertex
correction then takes the form

−ieΓ0
1 = γ0 e

3

2

∫
dd−1k

(2π)d−1

∫
dωk
2π

ω2
k + v2k2

(ω2
k − v2k2)2(ω2

k − k2)1/2
. (2.48)

Notice that a potential term proportional to γ drops out because of symmetry considerations, it comes out
as a mixed ωkk contribution in the loop momenta.

The loop integrals are done in the same fashion as that detailed for the one-loop self-energy diagram.
Introducing a Feynman parameter and doing the frequency integral first is straightforward

−ieΓ0
1 = −γ0 e

3

8π

∫ 1

0

dx
x√

1− x
(1− x)(1− v2)− v2

(1− x(1− v2))2

∫
dd−1k

(2π)d−1

1

k2
. (2.49)

Notice that again there is no UV divergence from the frequency integral, so the it must come from the
momentum integration. Additionally there is also an infrared divergence that can be regulated in the usual
way. Focusing only on the UV divergence we find for Γ1ω defined in (2.16)

Γ1ω =
−e2

32π2

∫ 1

0

dx
x√

1− x
(1− x)(1− v2)− v2

(1− x(1− v2))2
. (2.50)

Finally

δZ2 =
e2

8π2

(
1

1− v2
− v cos−1(v)

(1− v2)3/2

)
. (2.51)

This agrees exactly with (2.44a) for the fermion wavefunction renormalization as anticipated on physical
grounds. This consists in the first positive consistency check of the Ward Identity in mixed QED.

To compute now the renormalization of the Fermi velocity we need to compute the one-loop correction
to the spatial component of the vertex

−ievΓi1(k1, k2) =

∫
d3k

(2π)3
(−ieΓ0

0)iS0(k1 + k)(−ieΓi0)iS0(k2 + k)(−ieΓ0
0)iD0,00(k). (2.52)

In the same fashion as before we take the k1 = k2 = 0

−ievΓi1 =
µεve3γi

2

∫
dd−1k

(2π)d−1

dωk
2π

ω2
k + v2 3−d

d−1k
2

(ω2
k − v2k2)(ω2

k − k2)1/2
. (2.53)
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Figure 2.4: One-loop vertex correction.

The explicit dimensional factors in the numerator arise from manipulations of the γ matrices. We can
immediately anticipate that this term is not UV divergent as it is proportional to ε, which promptly cancels
with the usual ε−1 factor from the expansion of the Γ-function arising from the loop integral. We thus keep
only the frequency term in the following. Performing first the frequenct integral

−ievΓi1 = −µ
εe3vγi

8π

∫ 1

0

dx
x√

1− x(1− x(1− v2))

∫
dd−1k

(2π)d−1

1

k2
. (2.54)

Once again we skim over the infrared divergence directly into the UV divergent term

ΓUV
1k = − e2

32π2

∫ 1

0

dx
x√

1− x(1− x(1− v2))
, (2.55)

which evaluates to

ΓUV
1k = − e2

16π2

(
− 1

1− v2
+

cos−1(v)

v(1− v2)3/2

)
. (2.56)

Once again we find perfect match with (2.44b) from the self-energy computation. According to (2.19b)
subtracting (2.51) from (2.56) furnishes an independent computation of the Fermi velocity renormalization

δZv = −αv
4π

(
3v

1− v2
− (1 + 2v2) cos−1(v)

(1− v2)3/2

)
. (2.57)

in complete agreement with (2.46). This also concludes the test of the Ward Identity for the model.
These results are readily comparable to those of the existing literature, specially that of Vozmediano [100],

which have been essentially reproduced. The only difference is an extra term proportional to v2 in which comes
from considering the full interaction vertex, that is, the terms proportional to (−ievΓi0)2 (schematically).
These however do not significantly alter the fundamental features of the model. Just as pointed in [100,101],
the Fermi velocity renormalizes up until it reaches a fixed point at v = c = 1 in natural units. This is
illustrated in figure 2.3.
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Chapter 3

Reduced-Quantum Electrodynamics
in curved space

We begin this chapter with a quick overview of curved spacetime quantum field theory. In particular
we focus more heavily on the generalization to curved spacetimes of the spinorial quantities as this topic
tends to be ignored on more introductory levels. Once again the goal is to lay down the conventions herein
adopted and at the same time to keep the work self-contained. Standard introductory books to the subject
include [50,51].

3.1 Curved spacetime mathematics

The standard curved spacetime generalization is achieved by promoting the Minkowski metric to a general
spacetime dependent metric ηµν → gµν(x) and following the minimal coupling prescription for derivatives,
i.e.

∂µVν → ∇µVν = ∂µVν − ΓλµνVλ, (3.1)

where Γλµν is the Christoffel symbol defined from the metric as

Γλµν =
1

2
gλρ(∂µgλν + ∂νgµλ − ∂λgµν). (3.2)

Notice that the Christoffel symbol is symmetric in the lower indices. For a contravariant vector V µ the sign
of the Christoffel symbol term in (3.1) is reversed. Covariant derivatives of tensors follow the appropriate
recipe for every index separately, e.g., for a mixed tensor Tαβ

∂µT
α
β → ∇µTαβ = ∂µT

α
β − ΓαµλT

λ
β + ΓλµβT

α
λ. (3.3)

The Riemann curvature tensor Rµναβ is defined as

Rµναβ = ∂αΓµνβ − ∂βΓµνα + ΓµαρΓ
ρ
νβ − ΓµβρΓ

ρ
να. (3.4)

Rµναβ enjoys some useful properties, such as anti-symmetry in α↔ β, as is evident from the definition, and
also Bianchi’s identity

Rµναβ +Rµβνα +Rµαβν = 0. (3.5)

The completely covariant Riemman tensor Rµναβ is also antisymmetric in µ ↔ ν and symmetry under the
exchange of the pair of indices (µν) ↔ (αβ). Tracing Riemman’s curvature tensor once yields the Ricci
tensor

Rαβ = Rµαµβ , (3.6)

which is always symmetric Rαβ = Rβα. Finally one obtains the Ricci scalar by tracing the Ricci tensor

R = Rαα. (3.7)

We emphasize that every index contraction is done with the curved metric gµν or its inverse gµν .
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As mentioned back in section 1.4 it is possible to produce both curvature and torsion in the graphene
layer. So far we have only discussed the formulae relating to curvature. This has been implicitly fixed
by the symmetric Christoffel symbol in (3.2). When torsion is admitted Γλµν acquires an anti-symmetric
component in the two low indices. In this work however we will be looking only into curvature effects. The
inclusion of torsion, and the most general curvature-torsion combination, is presently a natural open direction
of development of the model we will briefly remark upon later.

Turning now to spinors we notice a different approach than that for vectors and tensors is needed to
achieve coupling to curvature. The blatant practical reason being that the spinor’s absence of spacetime
indices render the usual algorithm inapplicable as it is. This problem is resolved by introducing at every
point of the curved spacetime a locally flat Minkowskian frame with a local Lorentz invariant metric ηab.
Henceforth latin indices from the beginning of the alphabet will denote spacetime indices of the local frame.
The link between the curved and flat spaces is encoded by the so-called vielbeins eaµ(x) through

gµν = eaµe
b
νηab. (3.8)

Operationally speakingthe vielbeins effectively transform local flat spacetime quantities into their curved
spacetime analogs. In this fashion we can therefore define the curved spacetime γ-matrices as

γµ(x) = eµa(x)γa, (3.9)

where now γa are the standard flat space γ matrices obeying {γa, γb} = 2ηab, whereas for γµ we get

{γµ, γν} = 2gµν . (3.10)

Now it is possible to define the so-called spin connection

ω a
µ b = e νb (−δλν∂µ + Γλµν)eaλ. (3.11)

Then the curved space covariant derivative for spinors is written

∂µψ → ∇µψ = ∂µψ +
1

8
ω ab
µ [γa, γb] . (3.12)

The covariant derivative of the vielbeins must vanish, a result known as the metricity condition

∇µea ν = ∂µe
a
ν − Γλ µνe

a
λ + (ωµ)a be

b
ν = 0. (3.13)

Although unnecessary for our purposes, it is possible to completely rewrite every quantity and formulae
exclusively in terms of the vielbeins.

The Dirac equation for graphene then takes the form

iγµ(x)∇µψ = 0. (3.14)

Already from this equation it has been shown [34] that smooth curvature in graphene sheets tend to decrease
the Fermi velocity. The way it works is that vF gets accompanied by a factor λ ≤ 1 that depends exclusively
on the geometry (equality holding for flat space). Notice this is an effect of the curvature alone and does not
take into account interactions.

The last ingredient in the recipe concerns integrals over the spacetime volume, such as those appearing
in the action. Volume integrals pick up a Jacobian factor from the non-trivial metric∫

ddx→
∫
ddx
√−g, (3.15)

with g = detgµν the metric determinant. This ensures the volume element is a scalar quantity and is therefore
necessary to write down a meaningful action in curved spacetime.

3.2 On the curved space generalization of the PQED action

Armed with the tools just described it is we are ready to generalize the mixed QED action (2.1) for curved
space. For the sake of generality we work in general mixed (dγ , de) dimensions

S =

∫
ddγx

√−g
[
−1

4
FµνF

µν − 1

2ξ
(∇µAµ)

]
+

∫
ddex
√
−hψ̄A iγµ(x)(∂µ + Ωµ + ieAµ)ψA, (3.16)
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where Ωµ = (1/8)ω ab
µ [γa, γb] is a commonly used shorthand convention for the spin connection term in the

spinorial covariant derivative. Notice that the gauge field strength can still be written Fµν = ∂µAν − ∂νAµ
without error, because of the Christoffel symbol terms cancel out due to their symmetry in the two low
indices. Furthermore h = −dethαβ is the induced metric on the boundary of the spacetime with metric
gµν . Besides the hypothesis of weak curvatures made in section 3.4, the formalism presented here can be
elaborated without fixing a particular form to the metric. That said, for application to the specific case of
graphene, one usually considers metrics in a normal Gaussian-coordinate form, that is (in four spacetime
dimensions)

gµνdx
µdxν = dt2 − dz2 − hijdxidxj . (3.17)

This captures spatial defects only, which is precisely what we expect. However we must comment that it is
also possible to effectively devise time curvature, see [Lewenkopf] where this is achieved within an external
magnetic field. Finally since we don’t expect the curvature-inducing graphene defects to be dynamical we
refrain from including the Einstein-Hilbert action in the model.

Attempting the minimal coupling prescription directly on PQED action (2.10) is immediately met with
the challenge of trying to make sense of the operator (∇ρ∇ρ)−1/2. In flat PQED the non-local operator
is promptly interpreted in the convolutional sense and momentum space methods were still applicable. In
the curved case one is faced with the inverse of a complicated spacetime dependence in the metric through
the Christoffel symbols within the covariant derivatives. Furthermore the PQED action (2.10) employs an
effective gauge field designed to reproduce the appropriate behavior of QED’s interactions. For this reason
it is not obvious if an application of the minimal coupling to (2.10), if one even exists, would lead to an
equivalent model as that in (3.16). For these reasons we do not make any attempt to tackle a curved space
generalization of (2.10) in this work. Instead we will work with the curved mixed QED (3.16) and show that
under appropriate conditions to be discussed a set of Feynman rules generalizing (2.9) exists and is just as
easily employed for real computations.

To achieve this goal we follow a similar path as the one that lead us from mixed QED (2.1) to RQED
(2.9). First we define

ēa µ(x) =

{
ea µ(x)δ(xdγ−de) a, µ = µe

0 a, µ = de, . . . , dγ − 1.
(3.18)

This allows us to rewrite everything in the same dimension without spoiling the model in any way. The only
difference from what was done in chapter 2 is that here we have used the vielbein in place of the current
previously. In the case of graphene, xdγ−de = z, see Eq. (3.17). Moreover, we consider that the extra
dimensions dγ − de are all flat which justifies the usage of the standard Dirac delta function. In this way the
action displays a form which closely resembles the one of the standard QED in curved space, namely

S =

∫
ddγx

√−g
[
−1

4
FµνF

µν − 1

2ξ
(∇µAµ) + ψ̄A iγ̄

µ(x)(∂µ + Ωµ + ieAµ)ψA

]
(3.19)

where γ̄µ(x) = ē µa (x)γa. Action (3.19) will be the starting point of our analysis. The next step is to integrate
out the orthogonal degrees of freedom, but clearly this is not as straightforward as in a flat world. Luckily
there exists some conditions that ultimately enable us to achieve this task that will be discussed later in
section 3.4. Right now it is useful to make a parenthesis to go through the Ward Identity for curved space
RQED.

3.3 Ward Identity for curved space RQED

Here we will quickly derive the Ward Identity within curved space RQED. Doing so at this point will
establish the gauge invariance of the model from the get-go. This is useful because, as we will see, the
Feynman rules for curved RQED will look like they violate gauge invariance, more specifically the gauge field
propagator.

Consider the path-integral formulation of the theory, whose generating functional is given by

Z =

∫
DAµDψDψ̄ exp

{
iS + i

∫
ddγx

√−g
(
JµAµ + η̄ψ + ψ̄η

)}
(3.20)

where S is given by (3.19). There should be also the contribution of the Faddeev-Popov ghost fields to the
generating functional which is important in the evaluation of the one-loop effective action; since they will
not play a role in our investigation, we choose to omit them for brevity.
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Using functional methods, it is not difficult to exhibit the Schwinger-Dyson equation for the fermion
propagator:

−iS−1(x, x′) = −iS−1
0 (x, x′) + iΣ(x, x′) (3.21)

where S0 is the free curved-space counterpart of the fermion propagator and the self-energy reads

−iΣ(x, x′) =

∫
ddγz

√
−g(z)

∫
ddγu

√
−g(u)(−ieγµ(x))iS(x, u)

(
−ieΓν(u, x′; z)

)
iGµν(z, x) (3.22)

with Gµν being the exact gauge propagator. In addition, Γν(u, x′; z) is the exact three-point function with
the external exact propagator removed:

Γν(u, x′; z) =
δ3Γ

δAν(z)δψ(u)δψ̄(x′)
(3.23)

where Γ is the proper vertex and the functional derivatives are taken with respect to the so-called classical
fields. The inverse fermion propagator can also be given as

S−1(x, x′) =
δ2Γ

δψ(x)δψ̄(x′)
. (3.24)

The derivation of the Schwinger-Dyson equation for the gauge propagator follows along similar lines; one
finds

−iG−1
µν (x, x′) = −iG−1

0µν(x, x′)− iΠµν(x, x′) (3.25)

where G0µν is the free gauge propagator in curved space. The vacuum polarization is defined as

iΠµν(x, x′) = −
∫
ddγy

√
−g(y)

∫
ddγy′

√
−g(y′)Tr

[
(−ieγµ(x))iS(x, y)

(
−ieΓν(y, y′;x′)

)
iS(y′, x)

]
. (3.26)

The proof of the Ward-Takahashi identity for QED in curved space can be found in Ref. [110]. In the present
case we can follow a similar procedure. Namely, let Aµ change by ∇µϕ(x). This amounts to consider a
change in ψ̄ and ψ,

ψ̄(x)→ e−ie ϕ(x)ψ̄(x).

This implies the following change in S−1(x, x′):

δS−1(x, x′) = e

∫
ddγy

√
−g(y)ϕ(y)∇µΓµ(x, x′; y). (3.27)

But δS−1(x, x′) can also be calculated from the transformation for in ψ̄ and ψ, which gives

δS−1(x, x′) = ie

∫
ddγy

√
−g(y)ϕ(y)[δ(x, y)− δ(x′, y)]S−1(x, x′) (3.28)

where δ(x, y) = (−g(y))−1/2δdγ (x − y). Comparing both expressions, one arrives at the Ward-Takahashi
identity

∇µΓµ(x, x′; y) = i[δ(x, y)− δ(x′, y)]S−1(x, x′). (3.29)

Simple usage of the definition of the vacuum polarization together with Eq. (3.29) leads us to the Ward
identity in curved space:

∇x′ν Πµν(x, x′) = 0. (3.30)

This derivation was carried out for the model defined by the action (3.19). But since this is equivalent to the
action given by Eq. (3.16), the validity of the Ward identity for RQED in curved space is hence established.

3.4 Local Momentum Space Representation

In this section we discuss momentum space versions for the curved photon and electron propagators in
RQED. We employ two expansions, namely the Riemann normal coordinates (RNC) and the proper-time
Schwinger-DeWitt expansion. Together they yield the local momentum space representation for the propa-
gators. Due to the rather involved technical details we decide to focus mainly on the physical fundamentals
of the approach, referring the details to the literature [50, 51]. Following the theme we start with QED4,
where results are already available, then proceed with the dimensional reduction to RQED.
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3.4.1 QED4

The starting point are the wave equations obeyed by the propagators Gij(x, x
′) [109][

δik�+Qik(x)
]
Gkj(x, x

′) = ϑδijδ(x, x
′) (3.31)

where the indices i, j indicate any appropriate indices carried by the fields of interest (spinor or vector),
ϑ = +1 for the gauge field and ϑ = −1 for the spinor field. Qik(x) is a function with indices of the indicated
type arising from manipulation of the covariant derivative (which acts on the x-dependence)

∇µGij(x, x′) = ∂µG
i
j(x, x

′) + Γµ
i
k(x)Gkj(x, x

′) (3.32)

where Γµ
i
k is the appropriate connection for the given spin. It turns out that for the photon Qµν = Rµν

and for the electron Qij = δijR/4, with i, j here spinor indices.
Let us first discuss the Riemann normal coordinates expansion. In simple terms it amounts to the

application of the Equivalence Principle on some point x′. This allows a strictly flat spacetime description
on x′ where the standard methods of field theory are valid. For points within the normal neighborhood of x′,
defined as the region around x′ where no geodesic crossings occur, we pick corrections that are polynomial
in the curvature tensors and their derivatives computed at x′. For explicit expressions and further details
see [50,51].

The Schwinger-DeWitt expansion on the other hand is done directly on the fields’ propagators. It makes
use of the fact that G(x, x′) is a transition amplitude 〈x, s|x′, 0〉 evolving under a Schrödinger equation from
proper time τ = 0 to τ = s. For x → x′ we fall into the domain of validity of the RNC expansion, which
ultimately leads to the following fermionic and gauge propagators

S0(x, x′) =

∫
dDk

(2π)D
e−iky

[
γνkν

k2 −M2
e

+
1

(k2 −M2
e )2

(
1

2
Rνργ

νkρ − γνkν
6

R

)
+

2

3

γνkνk
σkρRρσ

(k2 −M2
e )3

+ · · ·
]

D0µν′(x, x
′) = −

∫
ddγk

(2π)dγ
e−iky

[
ηµν′

k2 −M2
γ

+
1

(k2 −M2
γ )2

(
2

3
Rµν′ −

1

6
Rηµν′

)
− 2

3

(2Rµαβν′ −Rαβηµν′)kαkβ
(k2 −M2

γ )3
+ · · ·

]
. (3.33)

In the above M2
e = R(x′)/12 and M2

γ = −R(x′)/6 are the result of a non-perturbative ressumation. Some
comments are in order. First notice that R(x′) being computed at x′ is formally a number. Furthermore
since this is a semiclassical approximation neither M2

e nor M2
γ are subject to renormalization. Finally we

must be careful before interpreting the poles at M2
e and M2

γ as physical masses because for a generic curved
spacetime there is no unambiguous split between positive and negative frequencies to define one-particle
states. For instance our general proof of the Ward Identity guarantees that there is no conflict between the
parameter Mγ and gauge invariance.

Obviously, the local-momentum space representation provides only a local approximation to the propa-
gator. However, it should give reasonable approximate results as long as curvature effects remain weak. It is
in this sense that the expression for the optical conductivity to be calculated later on is to be regarded as a
high-frequency expansion.

3.4.2 Reduced QED

Up until now our discussion parallels the one for standard curved QED4. We still need to reduce the
gauge sector down to (2 + 1) dimensions. This is a difficult task for a general curved spacetime, but within
the regime of validity of the local momentum space representation it can be done in the exact same fashion
as in the flat spacetime case. We find to first order in the Feynman gauge

D0µν′(k
2) =

−iηµν′
2(k2 −M2

γ )1/2
. (3.34)

This is the propagator we shall employ in the following one-loop analysis.
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In a general gauge the gauge field propagator in QED4 is to first order in the local momentum space
representation

D0µν′(k
2) =

−i
k2 −M2

γ

[
ηµν′ − (1− ξ) kµkν′

k2 −M2
γ

]
. (3.35)

Within this approximation we find upon projection

D0µν′(k
2) =

−i
(k2 −M2

γ )1/2

[
ηµν′ − (1− ξ̃) kµkν′

k2 −M2
γ

]
. (3.36)

The above propagator seems to violate gauge invariance at first glance. The presence of Mγ inside the square
brackets completely spoils the transversality of the propagator

kµD0µν = −i ξ̃k2 −M2
γ

(k2 −M2
γ )3/2

kν 6= 0. (3.37)

This is precisely what was alluded to when we set to prove the Ward Identity. So what is going on? We
must remember that the M2

γ = −R/6 is next-to-leading order in the LMSR, whereas propagator (3.35) and

consequently (3.36) are only of leading order in (3.33). The other offending term ξ̃k2 is just the usual gauge
dependent-term. Therefore it follows that (3.36) is indeed transversal and gauge invariant at leading order
in the LMSR.

It is not straightforward, if possible at all, to infer a purely (2+1)-dimensional action that reproduces (3.36)
in analogy to the passage from (2.9) to (2.10) - i.e. a curved space generalization to PQED. Furthermore,
if indeed possible this would only be an UV limit of curved PQED. Finally we notice this is the reason for
choosing the name curved RQED instead of curved PQED for the approach we adopt in this work.

3.5 One-Loop Analysis

We are now ready to compute the one-loop diagrams. In curved space the one-loop functions are written

iΠµν
1 (x, x′) = −Tr

[
(−ieγµ(x))iS0(x, x′)(−ieγν(x′))iS0(x′, x)

]
−iΣ1(x, x′) = (−ieγµ(x))iS0(x, x′)(−ieγν(x′))iD0µν(x′, x)

−ieΓµ(y, y′;x) = (−ieγβ(x))iS0(x, y)(−ieγµ(y))iS0(x, y′)(−ieγα(y′))iD0αβ(y′, y) (3.38)

These diagrams have the same UV divergences as their flat space counterparts. This is easily understood
from the highly local nature of high energies. A theorem proved by Collins states that all counterterms are
necessarily local in a flat background [111]. An important consequence of this theorem is that a non-local
contribution in the action does not get renormalized (i.e., the associated δZ = 0). In the case of RQED in flat
space, this implies that the beta function is zero to all orders in perturbation theory, producing thereby an
explicit example of an interacting boundary conformal field theory. On the other hand, in a general curved
space, by combining the local-momentum representation and the usual Feynman technique, one obtains that
the necessary counterterms should also be covariant local expressions. This suggests that the beta function
of curved-space RQED should also be zero to all orders in perturbation theory. The one-loop proof of this
statement will be given in due course.

Although the actual computation of the divergences will greatly benefit from the LMSR it might still not
be obvious how renormalization works out along the intricate technicalities of curved space. For this reason
we will illustrate how renormalization goes for the one-loop fermion propagator in more detail at the expense
of being a bit repetitive. For the complete story for quantum electrodynamics see [110].

The one-loop fermion propagator is given by

iS(x, x′) = iS0(x, x′) +

∫
ddγz

√
−g(z)

∫
ddγz′

√
−g(z′)iS0(x, z)

(
−iΣ1(z, z′)

)
iS0(z′, x′). (3.39)

In the spirit of generality this time we follow Teber [44] in keeping the dimension dγ for the photon general.
Loop integrals will depend on de which is given as a function of suitable quantities εγ and εe:

de = 4− 2εγ − 2εe.

After evaluating the loop integrals for a general de, we employ the above expression for a fixed value of εe,
namely εe = 1/2. The associated divergences will correspond to poles in 1/εγ . The relation between bare
and renormalized quantities follows the usual recipe (2.14).
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(a) One-loop fermion Self-Energy.
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(b) One-loop vertex correction. (c) One-loop vacuum polarization.

Figure 3.1: One-loop diagrams.

3.5.1 One-loop fermion Self-Energy

Now we turn to the task of studying the one-loop diagrams in detail. We start our discussion with
the fermion self-energy. This is given by the second expression in Eq. (3.38), see also Fig. 3.1a. Considering
Riemann normal coordinates with origin at x′, one must insert into such an expression the fermion propagator
in (3.33) and the photon propagator (3.36). One finds the following local-momentum representation for the
one-loop fermionic self-energy:

Σ1(k, x′) =
1

2

∫
d3q

(2π)3
(−ieγµ)

i(/k − /q)
(k − q)2 −M2

e + iε
(−ieγν)

iηµν
(q2 −M2

γ + iε)1/2
. (3.40)

As is clear from the above expression, we are working in the Feynman gauge, ξ = 1. Moreover, notice that
we kept only the leading-order terms in the expansion in curvatures for the propagators. These are the only
ones that will generate a divergence at de = 3 and hence to a µ̃ dependence. Accordingly, we also kept only
the leading-order term in the expansion of the gamma matrices, so the γ’s in the above equation are just the
standard flat-space gamma matrices in three dimensions.

Using that γµγαγµ = −γα and introducing standard Feynman parameters, one obtains

Σ1(k, x′) =
e2/k

16π2

∫ 1

0

du
√

1− u
[

1

ε̄γ
− ln

(
∆− iε
µ2

)]
(3.41)

where
1

ε̄γ
≡ 1

εγ
− γE + ln 4π, (3.42)

γE is Euler’s constant and ∆ = uM2
e + (1− u)M2

γ − u(1− u)k2.
Now let us present an explicit expression for the renormalization constant Z2. Consider Eq. (3.39). Let us

employ Riemann normal coordinates with origin at x′. In general, the expansions for S0(x, z) and Σ1(z, z′)
will be different from the expressions given previously since it is x′ that is fixed and the arguments of such
quantities do not contain x′. Then one should consider for S0(x, z) and Σ1(z, z′) a more general momentum-
space representation [112]. Nevertheless, at leading order the results are the same. Therefore, one finds the
following one-loop local-momentum representation at leading order in the expansion in curvatures

S(k, x′) = S0(k, x′) + S0(k, x′)Σ1(k, x′)S0(k, x′). (3.43)

Now consider the leading term in the expansion of S0(k, x′). Since curvature effects are supposed to be
sufficiently small, this can also be written as

S0,leading(k, x′) =
γνkν

k2 −M2
e

=
γνkν
k2

+
γνkν
k4

R(x′)

12
+ · · · (3.44)

in other words, we obtain the standard local-momentum representation. Then Eq. (3.43) can be written as

iS(k, x′) =
i

/k
+
i

/k

[
−iΣ1(k, x′)

] i
/k

+ · · · (3.45)

where we are focusing only on the first term in the expansion for S0 since this is the one important in

discussing the renormalization. On the other hand, since ψ = Z
1/2
2 ψR, one obtains that S = Z2SR. Thus the
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counterterm Lagrangian density will produce the following local-momentum representation for the fermionic
propagator (at leading order)

iSR(k, x′) =
i

/k
+
i

/k

[
iδZ

(1)
2 /k

] i
/k

+ loops + · · · (3.46)

where δZ
(1)
2 is the one-loop counterterm. Hence, adding the one-loop contribution calculated from Eq. (3.45)

to Eq. (3.46), one obtains that

iSR(k, x′) =
i

/k
+
i

/k

[
−i
(
Σ1(k, x′)− δZ(1)

2 /k
)] i
/k

+O(α2) (3.47)

at leading order in the expansion in curvatures. One can choose δZ
(1)
2 in such a way to cancel the divergence

in Σ1(k, x′). In this way one finally obtains

Z2 = 1 +
2

3

αR
4πε̄γ

+O(α2) (3.48)

where we have replaced α by αR in such an expression (this is correct to leading order). This has the
same form as in flat space [44]. Observe also that renormalization constant Z2 at one-loop is unaffected by
spacetime curvature, a result similar to the standard quantum electrodynamics in curved spacetime [110].
Curvature terms only contribute to the finite part of the self-energy:

Σ1F(k, x′) = − e2/k

16π2

∫ 1

0

du
√

1− u ln

(
∆− iε
µ2

)
(3.49)

3.5.2 One-loop vertex correction

Let us now we turn our attentions to the vertex correction at one-loop order. This is given by the third
expression in Eq. (3.38), see Fig. 3.1b. Again considering Riemann normal coordinates with origin at x′, one
must insert into such an expression the fermion propagator in (3.33) and the gauge propagator (3.36). By
taking into account only the leading-order term of such an expansion, one finds that

eΓµ1 (k1, k2, x
′) =

1

2

∫
d3q

(2π)3

iηαβ
(q2 −M2

γ + iε)1/2
(−ieγβ)

i(/k1 + /q)

(k1 + q)2 −M2
e + iε

(−ieγµ)
i(/k2 + /q)

(k2 + q)2 −M2
e + iε

(−ieγα)

(3.50)
where as above we have considered the reduced gauge propagator in the Feynman gauge. The UV divergence
is produced solely by the q2 term, which is physically interpreted as a contribution to the charge form factor.
So let us compute the vertex function for k1 = k2 = 0. Again following the standard procedure, one has that

Γ̃µ1 (x′) =
e2

32π2

∫ 1

0

dydz
θ(−y − z + 1)θ(y + z)√

1− y − z

[
1

ε̄γ
− 2

3
− ln

(
∆̃− iε
µ̃2

)]
γµ, (3.51)

where ∆̃ = (1− y − z)M2
γ + (y + z)M2

e .
Now we must discuss the one-loop renormalization of the vertex function. This amounts to calculate the

renormalization constant Z1 at one-loop level. Proceeding as in the previous section, the vertex function up
to one-loop level in the local-momentum representation can be written as

−ieΓµ(k1, k2, x
′) = −ieγµ − ieΓµ1 (k1, k2, x

′) (3.52)

where as above we considered only the leading order in the expansion in curvatures. On the other hand, the
renormalized vertex function ΓµR is given in terms of the associated bare quantity Γµ and Z1 as

ΓµR(k1, k2, x
′) = Z−1

1 Γµ(k1, k2, x
′) (3.53)

again in leading order in the expansion in curvatures. The standard renormalization procedures then yields

Z1 = 1 +
2

3

αR
4πε̄γ

+O(α2). (3.54)

where as above we have replaced α by αR. A simple comparison between Eqs. (3.54) and (3.48) shows that
Z1 = Z2. So we have explicitly verified the constraint between such renormalization constants at one-loop
order: This result, which is a consequence of the Ward-Takahashi identity, is still valid for the curved-space
version of RQED.
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3.5.3 One-loop vacuum polarization

Finally let us discuss the one-loop vacuum polarization. This is given by the first expression in Eq. (3.38).
See also Fig. 3.1c. Again considering Riemann normal coordinates with origin at x′, one must insert into such
an expression the fermion propagator in (3.33) and the photon propagator (3.36). By taking into account
only the leading-order term of such an expansion, one finds that

iΠµν
1 (p, x′) = −e2

∫
d3k

(2π)3
Tr[γµγαγνγβ ]

(p+ k)αkβ
((p+ k)2 −M2

e + iε)(k2 −M2
e + iε)

. (3.55)

As above, in such an equation use is made of the flat-space version of the gamma matrices. Using properties
of the traces of products of gamma matrices and introducing Feynman parameters, one finds the finite result

iΠµν
1 (p, x′) = − ie

2

2π
(p2ηµν−pµpν)

∫ 1

0

dx
x(1− x)√

M2
e − iε− x(1− x)p2

+
ie2M2

e

4π
ηµν

∫ 1

0

dx
1√

M2
e − iε− x(1− x)p2

.

(3.56)
Apparently the Ward identity is violated by the presence of an anomalous contribution, given by the second
term on the right-hand side of the above equation. However, by evaluating the x-integrals one finds that the
transversality breaking term is actually longitudinal; more importantly, since the numerator is proportional
to M2

e = R(x′)/12, such a term is of higher order in the curvature expansion currently considered. Thus at
leading order

iΠµν
1 (p, x′) =

ie2

4π
(p2ηµν − pµpν)

[√
M2
e − iε
p2

+
1

4p
ln

(
2
√
M2
e − iε− p

2
√
M2
e − iε+ p

)]
(3.57)

and the Ward identity at one-loop order is satisfied.
The most relevant upshot from this calculation is that the vacuum polarization is finite, at least at one-

loop order. This means that such a contribution does not get renormalized, δZ
(1)
3 = 0. This in turn implies

that the beta function of the curved-space version of RQED is zero at one-loop order.

3.6 Application to curved graphene layer

In this section we describe how to apply the formalism developed so far to the case of graphene. There
are two small modifications to be made. First of all photons, contrary to electrons, are not subjected to a
curved space. Therefore we set M2

γ = 0. Notice however that the one-loop vacuum polarization (3.57) is not
affected by M2

γ as there are no internal gauge field propagators. Importantly the Ward Identity still holds

for M2
γ = 0 as only a few immaterial factors of |g|1/2 drop out. This is confirmed by the recovery of the

known UV divergences from flat graphene, see from [101]. Secondly we must substitute γi by vF γ
i, with

vF ≈ 1/300. This takes into account the actual Fermi velocity of the Dirac excitations.
The Feynman rules for the application of the theory to graphene for the case of retarded Coulomb

interaction produce the following expressions for the fermionic and gauge-field propagator, and the photon-
fermion-fermion vertex, respectively:

iS0(ωp,p) =
i(γ0ωp−vF γipi)
ω2
p−v2Fp2−M2

e v
4
F

iD0(ωp,p) = 1
2

i√
−ω2

p+p2

−ieΓ0
0 = −ieγ0. (3.58)

The free fermion propagator above has the feature that it does not modify the density of states at x′ because
M2
e (x′) is a momentum-independent constant within our framework. This readily follows from a similar

computation as in (2.25)

ρ(ω) = − 1

π
Im

∫
d2kTr

[
γ0ω − vFγ.k

(ω + iε)2 − v2
Fk

2 −M2
e v

4
F

γ0

]
=

ω

2πv2
F

, (3.59)

where the M2
e v

4
F term fails to contribute because the Jacobian from polar coordinates cancels with a scale

factor from the delta function δ(ω2 − v2
F k

2 − M2
e v

4
F ) after integration, leading to the usual linear ω/v2

F

behavior around the Dirac points. Therefore a gap does not open.
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3.6.1 1-loop fermion self-energy

Let us discuss the one-loop self-energy. One finds that

−iΣ1(ωp,p) =
e2

2

∫
dd−1k

(2π)d−1

dωk
2π

γ0(γ0(ωk + ωp)− vF γi(k + p)i)γ
0

((ωk + ωp)2 − v2
F (k + p)2 −M2

e v
4
F )(ω2

k − k2)1/2
. (3.60)

Having already established that the UV divergences are in general the same as in the flat model, we just
state the result for the Fermi velocity renormalization

δZv = −αg
4π

(
3

1− v2
F

− (1 + 2v2
F ) cos−1 vF

vF (1− v2
F )3/2

)
, (3.61)

which, apart from a constant factor proportional to the square of the Fermi velocity (coming from the current
density interaction of the vertex we have dropped), we recover the results from Ref. [100], which we refer
for further details. The beta function βv is shown in Fig. 2.3. The crucial point here is that, according
to our model, the relativistic fixed point achieved for vF → 1 is predicted to survive in the presence of
disclination-induced curvature.

As for the finite part of the self energy, we are particularly interested in the imaginary part of ΣF1 as it
translates to the scattering time among the charge carriers in graphene due to the electromagnetic interaction
in the presence of curvature. The local p→ 0 limit is relevant when considering level-broadening effects on
the conductivity

ΣF1 (ωp) = −αg
4π
γ0ωp

∫ 1

0

dx

√
1− x

1− x(1− v2
F )

log

(
µ̄2

x
(
M2
e v

4
F − (1− x)ω2

p

)
− iε

)
(3.62)

There are now two possible cases to consider, namely positive or negative Ricci scalar. For positive Ricci
scalar, i.e. M2

e > 0, we obtain, for the scattering time:

τ−1
+ (z) =

αg
4
Mev

2
F z

∫ 1

0

dx

√
1− x

1− x(1− v2
F )
θ((1− x)z2 − 1), (3.63)

where z2 = ω2
p/M

2
e v

4
F . This integrates to

τ−1
+ (z) =

0, z < 1

αg
4 Mev

2
F z

(
2

1−v2F

(
1− 1

z

)
+ 2

(1−v2F )3/2

(
cot−1

(
vF z√
1−v2F

)
− cos−1 vF

))
, z > 1.

(3.64)

For negative Ricci scalar, i.e. M2
e < 0, the self-energy always acquires an imaginary part. In this case, the

scattering time is given by

τ−1
− (z) =

αg
4
Mev

2
F z

(
2

1− v2
F

− 2vF cos−1 vF
(1− v2

F )3/2

)
. (3.65)

3.6.2 1-loop vertex correction

Now let us consider the one-loop vertex correction at zero external momenta. This is given by

−ieΓµ1 (0, 0) =
e3

2

∫
dd−1k

(2π)d−1

dωk
2π

γ0γαγµγβγ0kαkβ
(ω2
k − v2

Fk
2)2(−ω2

k + k2)1/2
. (3.66)

It is straightforward to verify that the UV divergences match those of −iΣ1. We once more refer to [100] for
further details. The finite parts of the time and spatial components read

Γ0,F
1 γ0 = −αγ

0

8π

∫ 1

0

dx
x√

1− x

(
1

1− x(1− v2
F )
− 2v2

F

(1− x(1− v2
F ))2

)
log

(
(1− x(1− v2

F ))µ̄2

xM2
e v

4
F

)
, (3.67)

and

vFΓi,F1 γi = −αvF γ
i

8π

∫ 1

0

dx
x√

1− x

(
1

1− x(1− v2
F )

log

(
(1− x(1− v2

F ))µ̄2

xM2
e v

4
F

)
+

v2
F

(1− x(1− v2
F )2

)
. (3.68)

26



These allow us to define a suitable effective Fermi velocity:

1

veff
=

1

vF

(
1 +

(Γ0,F
1 )3

Γi,F1

)
. (3.69)

Fixing µ̄2 = M2
e v

4
F the correction leads to a higher effective Fermi velocity in accordance with expectation

from the running in figure 2.3
veff ≈ 1.0072vF . (3.70)

In Ref. [34] it was shown that the curvature has the effect of decreasing the Fermi velocity. On the other
hand, electron-electron interactions tend to increase the Fermi velocity. Eq. (3.70) shows that the impact of
electron-electron interactions is stronger than that of the curvature.

3.6.3 Higher-frequency behavior of the optical conductivity

As an application of the above results, let us determine the high-frequency behavior of the optical con-
ductivity in the presence of curvature effects in graphene by using the Kubo formula, which describes the
linear response to a static external electric field. In real time, it is given by

σik = lim
p→0

i
〈jijk〉
ω + iε

(3.71)

where the current correlation function is meant to contain only one-particle irreducible (1PI) diagrams. A
simple analysis shows that [43]

〈jµjν〉1PI = Πµν (3.72)

where Πµν is the vacuum polarization tensor of the electromagnetic field. The optical conductivity is then
given by

σjk(ω) = lim
p→0

iΠjk

ω + iε
. (3.73)

To derive the optical conductivity from the above formula, one must change the boundary conditions employed
so far. This amounts to considering the various Green functions appearing in Eq. (3.38) with retarded
boundary conditions. In this case the loop integrals in the vacuum polarization are to be calculated using
the in-in formalism, see for instance Ref. [113]. The result has the same functional dependence, but with a
different iε prescription:

q0 → q0 + iε.

The one-loop vacuum polarization is then given by

iΠµν
1 (p, x′) =

ie2

4π
(p2ηµν − pµpν)

[√
M2
e v

4
F

p2
+

1

4p
ln

(
2
√
M2
e v

4
F − p

2
√
M2
e v

4
F + p

)]
, pµ = (p0 + iε,p). (3.74)

Geometrically it is perfectly plausible for M2
e to be either negative or positive. Both possibilities seem to lead

to qualitatively different behavior due to extra factors of i arising for M2
e < 0. In the following we will focus

mostly on the positive scalar-curvature case where the physics is clearer, and we give only a brief discussion
on the negative case at the end of this section. With that in mind, we combine our results to obtain the
high-frequency behavior of the optical conductivity:

σjk(z, x′) =
e2

4

[
4

π

i

z + iε
+ 1 +

i

π
ln

(
z + iε− 2

z + iε+ 2

)]
ηjk. (3.75)

Observe that σjk a function of the ratio z = ω/
√
M2
e v

4
F . The conductivity for the case M2

e > 0 is depicted in
Fig. 3.2a. A similar result was obtained in [114] which we reproduce here for convenience for zero temperature
and mass gap but finite chemical potential in the local limit, suggesting a chemical potential interpretation
of
√
M2
e . In this way we can understand the first term as due to intraband transitions, and the remaining as

the interband contribution. The latter is just the minimal graphene conductivity σ0 = e2/4 for z > 2
√
M2
e .

The absence of interband transitions for z < 2
√
M2
e is due to the kinematics of momentum conservation of
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(a) Real and imaginary parts of σjj(z, x′) normalized
to σ0 without broadening effects.

(b) Origin of conductivity jump under a finite chem-
ical potential (blue line).

Figure 3.2: Non-interacting conductivity in graphene with a finite chemical potential.

chiral fermions as illustrated in Fig. 3.2b. Even though the validity of the local momentum representation
translates to high-frequency regime, our result seems to work for all z given the identification

√
M2
e = µ.

If one wishes to include curvature effects of level broadening due to scattering of the fermion, then one
should replace iε by τ−1

+ (z) in the expression of the optical conductivity. One obtains

σjk(z, x′) =
e2

4

[
4

π

i

z + iτ−1
+ (z)

+ 1 +
i

π
ln

(
z + iτ−1

+ (z)− 2

z + iτ−1
+ (z) + 2

)]
ηjk. (3.76)

If Im[ΣF1 (ω)] is small, we can approximate it as a constant value, which results in a constant τ−1
+ . This

implies that in this case this expression can also be obtained by employing resummed fermionic propagators
in the calculation of the vacuum polarization. The result will resemble a simple one-loop calculation, even
though higher-order corrections are being taken into account with the usage of dressed propagators. This is
somewhat reminiscent of the standard discussion on unstable particles in high-energy scattering amplitudes
within the narrow-width approximation. In the context of condensed-matter settings, a vanishingly small
imaginary part of the self-energy (around the Fermi surface) implies that the criterion for the Fermi-Landau
liquid theory is fully justified.

Let us first consider the full frequency dependence of τ−1
+ . When M2

e > 0 we see from Fig. 3.3 that there
is no longer a jump on the real part of the conductivity at z = 2. Instead, the conductivity starts to increase
smoothly at z = 1. Accordingly the imaginary part of σ(z) is also smoothened at z = 2, as dictated by the
Kramers-Kronig relations. For z →∞ we still recover σ0. Eq. (3.76) is similar to the one found in Ref. [115],
except for the fact that here the scattering time given by Eq. (3.64) kicks in only at z = 1.
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Figure 3.3: Real and imaginary parts of optical conductivity normalized to σ0 with broadening effects
for positive Ricci curvature scalar. Dotted line shows that the minimum conductivity σ0 is approached
asymptotically.

28



One may consider the conductivity for a fixed value of τ−1
+ , somewhat partially similar to what was

undertaken in Ref. [115]. We explore this situation for the case in which Im[ΣF1 (ω)] is small so that τ−1
+ can

be taken to be approximately constant. This will take place near the Fermi energy. In fact, just above the
Fermi energy the imaginary part of the self energy with p = 0 obeys a linear relationship with ωp, indicating
that the (undoped) graphene behaves as a marginal Fermi liquid – a result consistent with the conclusions of
Ref. [116]. As an illustration, let us quote our result for a matching scale of z = z0, z0 & 1, for the scattering
time (Fermi energy amounts to choosing z0 = 1):

σjk(z, x′) =
e2

4

[
4

π

i

z + iτ−1
+ (z0)

+ 1 +
i

π
ln

(
z + iτ−1

+ (z0)− 2

z + iτ−1
+ (z0) + 2

)]
ηjk. (3.77)

It is easy to see that there is an enhancement in the minimal conductivity for z ≥ 2:

σ0 → σ0 +
e2

π

τ−1
+ (z0)

z2 + τ−2
+ (z0)

. (3.78)

For z < 2 the intraband contribution produces a positive contribution to the real part of the optical con-
ductivity, whereas the log yields a (constant) negative contribution. However, for z → 0, the intraband
transition is the dominant term, and a positive contribution remains. In order to confirm this analysis we
would have to calculate the optical conductivity for all regimes of frequency which would mean going beyond
the large-momentum expansion used above for the propagators. We do not have a clear evaluation of this
physics, but at least the conclusion seems indeed to be that curvature effects should contribute positively to
the minimal DC conductivity of graphene. This is in line with the arguments and expectations of Ref. [43].

Let us now turn our attentions to the M2
e < 0 case. The optical conductivity reads now

σjk(z, x′) =
e2

2

[
4

π

1

z + iτ−1
− (z)

+ 1 +
i

π
ln

(
z + iτ−1

− + 2i

z + iτ−1
− − 2i

)]
. (3.79)

Fig. 3.4a describes the non-interacting optical conductivity (τ−1
− = 0 above). Here the model seems to run

into trouble with the Kramers-Kronig relations as pointed out by the vanishing of the imaginary component.
In comparison with Eq. (3.75), we note the source of its imaginary component is solely due to the first term,
i.e., the intraband transitions. For M2

e < 0 (and τ−1
− = 0) this term becomes purely real. Inclusion of

broadening effects seems to lift the problem as shown in Fig. 3.4b. Here the real component also assumes a
form similar to Ref. [115] although it always stays very close to σ0 after it crosses it from the above.
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(a) Real and imaginary parts of non-interacting op-
tical conductivity normalized to σ0.
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(b) Real and imaginary parts of optical conductivity
normalized to σ0 with broadening effects.

Figure 3.4: Conductivity in graphene with for negative Ricci scalar.
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Chapter 4

Conclusions

In the first part of this work we developed a formalism to study the curved-space RQED by employing
the local momentum representation. Then we applied the model, with slight modifications, to graphene. In
particular the optical conductivity was computed to one-loop and at leading adiabatic order revealing the
appearance of an effective chemical potential for the positive Ricci scalar case. Importantly this effect is non-
perturbative as it stems from the partial ressumation of the Ricci scalar. Furthermore, we demonstrated how
the combined effect of the ripples of the graphene sheet (modeled here by curvature effects) and electron-
electron interactions as described by the curved-space RQED could be responsible for the minimal DC
conductivity. Even taking into account the limitations of the present model, this conclusion seems to be true.

There are many open questions outside our scope that are nonetheless of great importance. Most obvious
is developing curved space RQED beyond the approximations presented here for the local momentum space
representation. In particular it would be interesting to investigate whether such higher order corrections can
impact the density of states. It is known that around a defect the local density of states is either enhanced
or suppressed according to the whether the curvature is positive or negative [35]. Another matter that has
been left out of this work was the treatment of dislocations. The local momentum space representation does
not take torsion into account, thus a generalization of the method is needed. This issue was tackled in [117],
thus it seems like a natural path to take. Within our approach it would also be interesting to study the trace
anomaly and conformal invariance of the model. Research into possible holographic models (both for flat and
curved RQED) would be most welcome for providing a tool into the non-perturbative regime. Furthermore
boundary CFTs within holography have seen some interesting recent activity, see, e.g. [118]. A two-loop
analysis is also desirable specially for a more rigorous account of electron-electron interaction contributions
to the optical conductivity for a better comparison with the literature [43]. Additionally a computation of
the global conductivity σ(ω) from the local σ(ω, x′) by a disorder averaging treatment of M2

e (x′) is expected
to accurately model real samples. We hope to access these issues in future works.

30



Appendix A

Riemann normal coordinates
expansion

The construction of Riemann normal coordinates about some point x′ in the manifold goes as follows.
On x′ it is possible to make gµν(x′) = ηµν(x′) along with Γαµν(x′) = 0. Now suppose that points x in
the neighborhood of x′ can be reached by a unique geodesic starting from x′. This is the so-called normal
neighborhood of x′. We can make use of the tangent vectors to the geodesics to introduce a normal coordinate
system Xµ with origin at x′ such that

d2Xα

dλ2
= 0 (A.1)

along any geodesic, with λ some affine parameter describing the geodesic. By expanding with respect to
these coordinates one finds that [109,119]

gµν(x) = ηµν −
1

3
Rµρσν(x′)XρXσ + · · ·

(−g(x))1/2 = 1 +
1

6
Rµν(x′)XµXν + · · ·

Γµ
i
j(x) = −1

4
Rµρab(x

′)(Jab)ijX
ρ + · · ·

Qij(x) = Qij(x
′) + · · ·

e µa (x) = e νa (x′)

(
δµν +

1

6
Rνα

µ
β(x′)XαXβ

)
+ · · · (A.2)

where only the lowest-order terms are retained. Here Rµρab is the Riemann curvature tensor with two vielbein
indices and Jab is the Lorentz generator for the representation appropriate to the field under consideration.
Also Qij is a quantity proportional to the curvature. Let us derive the expansion for the spin connection.
From Eq. (A.2), one finds

ωµab = −1

2
Rµρab(x

′)Xρ (A.3)

where we used the cyclicity property of the Riemann tensor. Then

Ωµ =
1

2
ωµabJ

ab = −1

4
Rµρab(x

′)XρJab = −1

8
Rµρab(x

′)γaγbXρ (A.4)

which implies that

γµ(x)∇µ = γae µa (x)(∂µ + Ωµ) = γν(x′)

(
∂ν +

1

6
Rµανβ(x′)XαXβ∂µ −

1

8
Rabνρ(x

′)γaγbXρ

)
. (A.5)

However, using the anticommutation relations for the gamma matrices and again the cyclicity property of
the Riemann tensor, one finds that

Rabcργ
cγaγb = 2Raργ

a

which yields

γµ(x)∇µ = γν(x′)

(
∂ν +

1

6
Rµανβ(x′)XαXβ∂µ −

1

4
Rνρ(x

′)Xρ

)
. (A.6)
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A.1 Local-momentum representation of the fermionic propagator

In this Appendix we consider the local-momentum representation for the fermion propagator. The stan-
dard representation has been extensively discussed in the literature, see for instance Refs. [109, 120, 121].
Tipically, since curvature effects are small, we will be interested only in the leading terms in the Riemann
curvature. But for the moment we will keep our discussion as general as possible. In principle, we could
follow the same steps outlined above. There is, however, another alternative form of proper-time expansion
for propagators in curved space-time which could be useful here. It is based on a partial resummation of the
above series [122]. Consider Eq. (3.31) with ϑ = −1. One can write the Green’s function as

G(x, x′) = −i
∫ ∞

0

ds〈x, s|x′, 0〉 (A.7)

where we omitted matrix indices, and the kernel 〈x, s|x′, 0〉 has a Schwinger-DeWitt expansion given by [123]

〈x, s|x′, 0〉 = i(4πis)−d/2eiσ(x,x′)/2s∆
1/2
VM(x, x′)F (x, x′; is)

F (x, x′; is) = 1 +

∞∑
j=1

(is)jfj(x, x
′) (A.8)

where 2σ(x, x′) is the square of the proper arc length along the geodesic from x′ to x and ∆VM(x, x′) is the
Van Vleck-Morette determinant defined by [124]

∆VM(x, x′) = −|g(x)|−1/2|g(x′)|−1/2 det

[
−∂

2σ(x, x′)

∂xµ∂′ν

]
. (A.9)

In turn, such an expansion can be rewritten in the form

〈x, s|x′, 0〉 = i(4πis)−d/2eiσ(x,x′)/2s∆
1/2
VM(x, x′)F̄ (x, x′; is)e−is[Q(x′)− 1

6R(x′)]

F̄ (x, x′; is) = 1 +

∞∑
j=1

(is)j f̄j(x, x
′) (A.10)

an assertion which was proved in Ref. [122]. The coefficients f̄j(x, x
′) are R independent to all orders, but

generically depend on the Ricci curvature and the Riemann tensor and their powers and derivatives. In
addition, we stress that such coefficients in the fermionic case should be envisaged as bispinors; hence to
perform properly the above expansion one should form the contraction between such bispinors with the
bispinor of parallel displacement σ(x, x′). It can be proved that σ(x, x′) = f̄0(x, x′) = 1 [128].

The term e−is[Q(x′)− 1
6R(x′)1] should be defined as a a formal matrix power series (1 is the unit spinor, in

the case of fermions). A straightforward calculation yields

F̄ (x, x′; is)e−is[Q(x′)− 1
6R(x′)1] = 1 + (is)

(
f̄1(x, x′)−A(x′)

)
+ (is)2

(
f̄2(x, x′) +

1

2
A2(x′)− f̄1(x, x′)A(x′)

)
+ · · · (A.11)

where A(x′) = Q(x′)−R(x′)/6. Since such expansions should be equal, one finds that

f̄1(x, x′) = f1(x, x′) +A(x′)

f̄2(x, x′) = f2(x, x′)− 1

2
A2(x′) + (f1(x, x′) +A(x′))A(x′) (A.12)

and so on. On the other hand, with Riemann normal coordinates yµ for the point x with origin at the point
x′, one has that

f1(x, x′) = f1(x′) + f1α(x′)yα + f1αβ(x′)yαyβ +O(y3)

where an expansion about the point x′ was considered. The coefficients fjαβ··· are all proportional to deriva-
tives of the fj evaluated at the origin of the Riemann normal coordinates (i.e., at x′). The coefficients fj
have been calculated in the literature [128]. In particular, f̄1 = 0.
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Now use the fact that, in Riemann normal coordinates about x′, ∆VM(x, x′) = |g(x)|−1/2, together with
the results ∫

dDk

(2π)D
e−is(−k

2+m2)−iky = i(4πis)−d/2eiσ(x,x′)/2se−ism
2

(A.13)

where σ(x, x′) = −yαyα/2, and ∫ ∞
0

ids e−is(−k
2+m2) =

1

−k2 +m2

to obtain that

G(x, x′) = ∆
1/2
VM(x, x′)

∫
dDk

(2π)D
e−ikyF̄

(
x, x′;− ∂

∂m2

)
1

k2 −m2
(A.14)

where m2 = Q(x′)−R(x′)/6 (Q now is just a function). Here D = de for the case of the fermionic propagator.
We also consider the replacement

yα → i
∂

∂kα
(A.15)

in the above expression.
Now we are in the position of presenting an explicit expression for the fermionic propagator using Riemann

normal coordinates about x′. Using that m2 = M2
e = R(x′)/12 for fermions as well as the above expansions

for ∆VM(x, x′) and γµ∇µ, one finds, for the fermionic propagator

S0(x, x′) =

∫
dDk

(2π)D
e−iky

[
γνkν

k2 −M2
e

+
1

(k2 −M2
e )2

(
1

2
Rνργ

νkρ − γνkν
6

R

)
+

2

3

γνkνk
σkρRρσ

(k2 −M2
e )3

+ · · ·
]

(A.16)

where in the above equation γµ is the usual gamma matrix in flat space and R = Rµνη
µν when considering

only terms linear in the curvature for the expansion of gµν in Riemann normal coordinates.

A.2 Local-momentum representation of the gauge propagator

In this Appendix we present the local-momentum representation of the gauge propagator. For a standard
discussion, see for instance Refs. [109,119,125]. In the present case, one has that the gauge propagator obeys

[ηµλ�+Rµλ]Gλν′ = ηµν′δ(x, x
′). (A.17)

Following [122,126] one has, for the gauge propagator (in the Feynman gauge ξ = 1)

Gµν′(x, x
′) = i

∫ ∞
0

ds〈x, s|x′, 0〉µν′ (A.18)

with

〈x, s|x′, 0〉µν′ = i(4πis)−d/2eiσ(x,x′)/2s∆
1/2
VM(x, x′)H̄µ

ν′(x, x
′; is)eisR(x′)/6

H̄µ
ν′(x, x

′; is) = gµν′(x, x
′) +

∞∑
j=1

(is)j h̄j
µ
ν′(x, x

′) (A.19)

We stress that h̄j
µ
ν′ is a bivector. Recall that, for a proper expansion of a bivector, such as the gauge

propagator, one must form the combination gνλ′G
µλ′ , which is a contravariant tensor of rank two at x and a

scalar at x′. The object gνλ′ is the bivector of parallel transport from x′ to x [127]. Note that gµν′(x, x) = gµν .
Proceeding with analogous considerations as above, one obtains that

h̄1
µ
ν′(x

′) = h1
µ
ν′(x

′) +B(x′)gµν′

h̄1α
µ
ν′(x

′) = h1α
µ
ν′(x

′)

h̄1αβ
µ
ν′(x

′) = h1αβ
µ
ν′(x

′)

h̄2
µ
ν′(x

′) = h2
µ
ν′(x

′) +
1

2
B2(x′)gµν′ +B(x′)h1

µ
ν′(x

′) (A.20)
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where B(x′) = −R(x′)/6, h̄1
µ
ν′(x, x

′) = h̄1
µ
ν′(x

′) + h̄1α
µ
ν′(x

′)yα + h̄1αβ
µ
ν′(x

′)yαyβ + O(y3). Here the
coefficients hj

µ
ν′ can also be found in the literature [127].

As above, we are interested only in terms linear in the Riemann curvature. Using Riemann normal
coordinates about x′, one obtains

Gµν′(x, x
′) = −∆

1/2
VM(x, x′)

∫
ddγk

(2π)dγ
e−ikyH̄µν′

(
x, x′;− ∂

∂M2
γ

)
1

k2 −M2
γ

(A.21)

where M2
γ = −R(x′)/6 and we used that [126]

gµν′(x, x
′) = ηµν′ −

1

6
Rµρσν′(x

′)yρyσ + · · · . (A.22)

By using the aforementioned expansion for the Van Vleck-Morette determinant, together with previous
results, one finds that

Gµν′(x, x
′) = −

∫
ddγk

(2π)dγ
e−iky

[
ηµν′

k2 −M2
γ

+
1

(k2 −M2
γ )2

(
2

3
Rµν′ −

1

6
Rηµν′

)
− 2

3

(2Rµαβν′ −Rαβηµν′)kαkβ
(k2 −M2

γ )3
+ · · ·

]
. (A.23)

Recall that the gauge propagator obtained above corresponds to the one in dγ dimensions. Since here we are
interested in the properties of the system in the reduced space where the fermion field is living, we integrate
over the dγ − de bulk gauge degrees of freedom.
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