
CENTRO BRASILEIRO DE PESQUISAS EM FÍSICA
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FORMATION OF SPIN-POLARIZED
MAJORANA FERMIONS IN NANORIBBONS

RENAN BENTO RIBEIRO CAMPOS

Dissertação apresentada ao Programa de Pós
Graduação do Centro Brasileiro de Pesquisas em
Fı́sica, como parte dos requisitos para a obtenção do
tı́tulo de Mestre em Ciências
Orientador: Prof. Dr. Mucio Amado Continentino

Niterói
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RESUMO

Esta tese tem como principal objetivo estudar modelos de materiais quase-bidimensionais

do tipo nanofitas que são infinitas (ou de comprimento muito grande na direção x e são

pequenas na direção y), particularmente feitas de carbono e silicio, do ponto de vista teórico.

O foco principal está na aplicação de conceitos topológicos a esses materiais, levando à

investigação de suas propriedades eletrônicas e ao surgimento de modos zero de Majorana

(MZMs) em diversos sistemas.

Os capı́tulos iniciais da tese apresentam o modelo Su-Schrieffer-Heeger (SSH), uma estru-

tura fundamental para a compreensão de materiais topológicos. O modelo SSH é usado para

analisar estruturas de bandas eletrônicas, espectros de energia de sistemas finitos e funções

de onda, esclarecendo sua natureza topológica. Generalizações do modelo SSH, como o

modelo Rice-Mele, são exploradas, levando à compreensão sobre seu comportamento e a

presença de estados localizados de energia zero.

A tese também aborda o impacto de campos magnéticos externos (efeito Zeeman) sobre

estes modelos, levantando a degenerescência do spin e influenciando os nı́veis de energia.

A análise leva em conta aspectos topológicos e eletrônicos, revelando seus efeitos nas es-

truturas eletrônicas.

Uma parte significativa da tese é dedicada à cadeia Kitaev, que desempenha um papel cen-

tral. As propriedades de acoplamento supercondutor da cadeia Kitaev são examinadas e os

férmions de Majorana tornam-se um ponto focal de investigação. Esforços experimentais

relacionados aos férmions de Majorana são discutidos, destacando sua presença em diversos

sistemas que serão tratados nos capitulos 3 e 4 da tese onde vamos usar a cadeia de kitaev

como fundamento para a elaboração de um modelo para nanofitas.

Os ingredientes apresentados levam ao desenvolvimento de um modelo para nanofitas he-

xagonais e pentagonais com bordas spin polarizadas, que podem potencialmente hospedar

férmions de Majorana. O modelo considera parâmetros como hopping do vizinho mais

próximo, interação spin-órbita de Rashba, acoplamento de supercondutores do tipo tripleto

e um campo de efeito Zeeman externo. Várias transições de fase topológicas são observa-

das, ligadas a férmions de Majorana polarizados por spin, demonstrando a conexão entre

transições topológicas e a presença de férmions de Majorana que é apresentado no terceiro

capitulo.

Além disso, o estudo enfatiza o potencial dos MZMs para distinguir estados de spin em

nanofitas em forma de honeycomb em zigue-zague, oferecendo novas perspectivas para a



identificação de MZMs polarizados por spin em vários materiais. Nanofitas baseadas em

siliceno em supercondutores com acoplamento spin-órbita Rashba e campos magnéticos

externos são exploradas por seu potencial em computação quântica.

Em resumo, esta tese apresenta uma exploração abrangente de materiais quase-bidimensionais,

propriedades topológicas e o surgimento de férmions de Majorana. fornecendo uma base

sobre as possibilidades interessantes desses materiais na computação quântica.

Palavras-chave: nanofita, ligações fortes, Majorana férmions, transições de fase topológicas



ABSTRACT

This thesis has as its main objective models of quasi-two-dimensional nanoribbon-type ma-

terials that are infinite (or very long in the x direction and small in the y direction), par-

ticularly made of carbon and silicon, from a theoretical point of view. The main focus is

on the application of topological concepts to these materials, leading to the investigation of

their electronic properties and the emergence of zero Majorana modes (MZMs) in several

systems.

The initial chapters of the thesis present the Su-Schrieffer-Heeger (SSH) model, a fun-

damental framework for understanding topological materials. The SSH model is used to

analyze electronic band structures, energy spectra of finite systems and wave functions, cla-

rifying their topological nature. Generalizations of the SSH model, such as the Rice-Mele

model, are explored, leading to understanding of its behavior and the presence of localized

zero-energy states.

The thesis also addresses the effect of external magnetic fields (Zeeman effect) on these

models, increasing spin degeneracy and influencing energy levels. The analysis takes into

account topological and electronic aspects, revealing their effects on electronic structures.

A significant part of the thesis is devoted to the Kitaev chain, which plays a central role.

The superconducting coupling properties of the Kitaev chain are examined and Majorana

fermions become a focal point of investigation. Experimental efforts related to Majorana

fermions are discussed, highlighting their presence in several systems that will be discussed

in chapters 3 and 4 of the thesis where we will use the kitaev chain as a basis for developing

a model for nanoribbons.

Bringing together all the presented ingredients leads to the development of a model for

graphene nanoribbons with ferromagnetic edges, which can potentially host Majorana fer-

mions. The model considers parameters such as nearest-neighbor hopping, Rashba spin-

orbit interaction, triple superconductor coupling, and an external Zeeman effect field. Seve-

ral topological phase transitions are observed, linked to spin-polarized Majorana fermions,

demonstrating the connection between topological transitions and the presence of Majorana

fermions that is presented in the third chapter.

Furthermore, the study emphasizes the potential of MZMs to distinguish spin states in zig-

zag honeycomb and pentagonal nanoribbons, offering new perspectives for identifying spin-

polarized MZMs in various materials. Silicene-based superconductor nanoribbons with

Rashba spin-orbit coupling and external magnetic fields are explored for their potential in



quantum computing.

In summary, this thesis presents a comprehensive exploration of quase two-dimensional

materials, topological properties, and the emergence of Majorana fermions. providing a

background on the interesting possibilities of these materials in quantum computing.

Keywords: nanoribbons, tight binding, Majorana fermions, topological phase transitions
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APÊNDICE A – STEP-BY-STEP EXPLANATION OF THE CHIRAL MATRIX CAL-

CULATION

REFERÊNCIAS



Chapter 1
INTRODUCTION

Since the synthesis of graphene, two-dimensional materials have attracted much interest,

both from theoretical and experimental points of view. From a theoretical perspective, sev-

eral models were made for the prediction of electronic properties, and with these studies, new

analysis techniques were introduced. One technique that has garnered significant interest is

the utilization of topological concepts in materials. This involves examining how energy bands

evolve in response to varying parameters, such as the chemical potential. This approach will

be extensively employed starting from the second chapter, particularly in the discussion of the

Kitaev chain model. (3).

In chapter two we will give a small introduction to some models that will be important for

understanding the thesis, we will briefly mention their subsections

In subsection One, we provide an introductory exploration into understanding topologi-

cal models through the lens of the Su-Schrieffer-Heeger (SSH) model—a fundamental model

showcasing topology (4). Through this model, we delve into the analysis of electronic band

structures, energy spectra of finite systems, and wave functions, unveiling their inherent topo-

logical properties. This foundational understanding sets the stage for our examination of various

systems that exhibit topological characteristics or are categorized as such. The incorporation of

these concepts within condensed matter physics enables us to reevaluate numerous models and

categorize them through a topological point of view.

In subsection two, we investigate generalized SSH chains, known as the Rice-Mele (5)

model. Our objective is to understand the consequences of these generalizations and how they

affect the behavior of SSH with new parameters, also impacting localized zero energy states

(6).

In subsection three we focus on the effect of applying external magnetic fields (Zeeman ef-

fect) to these structures, breaking spin degeneracy and consequently breaking the time-reversal

symmetry. So we will analyze the SSH and Rice-Mele models with these new elements and
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show the effect on the energy levels. We will add a spin texture to better visualize the changes

in the bands, considering both the topological and electronic aspects and their impact on elec-

tronic structures.

In the fourth and final subsection, motivated by Kitaev’s ideas, researchers conducted ex-

periments over the last decade (7–10). They used thin wires, s-wave superconductors and mag-

nets, in an attempt to observe zero Majorana modes (MZMs) under specific conditions (11).

The domain of MZMs has expanded with innovative configurations, such as hybrid systems

combining semiconductors (12) and the fusion of chains of ferromagnetic atoms with specific

superconductors (13, 14).

The Kitaev chain has a central role in the thesis, and the two main results depend both on

the application of the concepts of the Kitaev chain and on the model itself. The Kitaev chain is

a toy model where the main element to be explored is the superconducting coupling, so using

that new ingredient we will explore the chain with the techniques seen in the previous sections,

and add a small discussion about Majorana fermions which would be the main phenomenon

associated with the chain of Kitaev.

Now with these three main components: hopping of first neighbors studied in the chains,

spin effects, and superconductivity, we will build a model for hexagonal nanoribbons where we

will also characterize the model from the topological point of view of the system.

No third chapter will present the model of the hexagonal nanoribbons, the edges of zigzag

nanoribbons exhibit a magnetic order, making them favorable sites for the emergence of Majo-

rana fermions at the ribbon ends. However, the spins along these edges aren’t fully aligned. The

material’s bands feature crossings with different spin orientations. To convert these crossings

into a Kitaev chain, spin organization is necessary because the system requires spin polarization

to exhibit the effects characteristic of the Kitaev chain. Fortunately, established methodologies

exist in the literature (15), and many models could potentially demonstrate Majorana fermions

due to the straightforward requirements (16). Essentially, a superconductor is needed where

certain spins and time-reversal symmetries are eliminated. By varying parameters such as the

chemical potential, we can open and close gaps in the material’s energy levels.

In our investigation, closing this gap in a finite zigzag nanoribbon marks a transition from a

conventional region to a distinct topological one. At this juncture, Majorana fermions emerge at

the ribbon ends with zero energy. Our model serves as a basic framework for examining these

ribbons, considering fundamental factors such as nearest-neighbor atomic interactions, spin

dynamics, superconducting connections at the edges, and the influence of an external magnetic

field.
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Analyzing the model for infinite zigzag nanoribbons revealed various transitions between

different topological phases, correlated with organized-spin Majorana fermions. Essentially, we

identified regions within the material where only Majorana fermions with spins aligned either

up or down were present. Furthermore, we established a direct linkage between these model

transitions and the appearance of zero-energy Majorana fermions in the finite-length version,

constituting the primary finding of the third section of our study, which resulted in a published

paper (17).

Our study emphasizes the ability of MZMs to distinguish the spin in double-spin zigzag

honeycomb nanoribbons (KzHNRs) of the Kitaev model. This arrangement offers a new per-

spective for identifying the spin states of MZMs beyond traditional 1D Majorana threads.

Our findings inspire cutting-edge experimental efforts, especially those aimed at spin-polarized

MZMs in silicene-based zHNRs paired with a Pb superconductor, incorporating Rashba spin-

orbit coupling (RSOC) and an external magnetic field (EMF).

Motivated by the work of ZGNRs, Finally, after a quarter of a chapter, we will present you

with pentagonal nanoribbons a new type of material that in principle has a structure made exper-

imentally, silicene, a two-dimensional layer of silicon atoms, which has gained prominence as

a potential basis for tiny electronic devices (18–20). Penta-silicene nanoribbons (p-SiNRs) on

Ag(110) substrates have emerged as a testing ground for theories related to MZMs, particularly

the Kitaev (2, 17) model. Although concrete evidence for MZMs in current settings remains

elusive (21, 22), researchers are optimistic that p-SiNRs can provide vital insights for new types

of topological phases where we will have spin polarized majoranas (17).

Our initial exploration addressed a hexagonal configuration model, using graphene or sil-

icene as the base material. We analyze these structures under various parameters, creating a

platform for Majorana fermions and topological states. In the same way, we will now pro-

pose a model based on Pentasilicene, characterized by its irregular pentagonal shape, to build

a theoretical model that would predict its topological dynamics without increasing complexity

(23). The interesting thing about this lattice is the symmetry breaking in real space and we can

analyze a model completely different from the one previously analyzed.

In the field of quantum computing, silicon nanowires, especially those with topological

properties, have potential as bases for (24) quantum computing systems. Challenges persist, as

even closely located nanowires exhibiting robust spin-orbit coupling have yet to conclusively

showcase topologically protected MZMs (21, 22). The researchers seek to experimentally man-

ifest the Kitaev model on a silicon-based platform (3).

we conclude in chapter five with a sumary of out results and mention the publications that
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resulted from the work presented in this thesis.



Chapter 2
THEORETICAL BACKGROUND

In this chapter, we will explore basic models to comprehend the following two chapters. In

the first section, we will introduce the SSH model, which is a simple model but helps understand

how topological model analyses can be conducted. In the second section, we introduce the Rice-

Mele model (25), which serves as an extension of the SSH model where the chiral symmetry

of the SSH model is broken, offering a more comprehensive perspective. It provides valuable

insights into the changes and behaviors observed in topological systems and will discuss its

impacts on topological analyses.

In the third section, we will provide a brief introduction to the finite model for the systems

presented (SSH and Rice-Mele).

In sections four and five, we will introduce an external magnetic field to both presented

models and discuss how the behavior changes with this new parameter.

In section six, we will introduce the Kitaev model (3), which is the main model to un-

derstand the following two chapters as it introduces triplet-type superconducting pairing to the

problem. We will also discuss Majorana fermions and how they appear in one-dimensional

systems.

2.1 SSH Model

The SSH model is important in the study of one-dimensional topological chains, offering a

simple exploration of topology. It was inspired by Trans-polyacetylene, a carbon chain known

for its alternating double and single bonds. In the SSH model, we only look at electron energies,

so all energy modes studied in both this section and the next section do not have Majorana zero

modes, this is because in the SSH model there is no p-type superconducting pairing, which is the

main ingredient for the emergence of Majorana fermions, which will be presented in the next

topic along with the kitaev chain. some works may have other approaches on how majorana
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fermions can appear in this type of system (26, 27), but here, we simply aim to understand

the behavior of a simple chain. Similarly, the SSH model is a linear chain of uniform atoms

connected by hopping interactions V1 and V2. This mimics the double and single bonds in

Trans-polyacetylene. To understand the complexity and its properties, we use the effective tight-

binding model, as discussed earlier. In this explanation, we will present the model structure by

examining its associated Hamiltonian

HSSH = ∑
n

V1anb†
n +V2anb†

n−1 +Hc., (2.1)

Where a unit cell runs as a region starting in orange in the Fig2.1

Figure 2.1: Scheme showing the model of the SSH chain with a chain with the same atom (in blue)
with alternating bonds V1 and V2

In Hamiltonian Eq.(2.1), the operators a† and a represent the creation and annihilation

operators, respectively. In this notation, an electron is annihilated at site ”n” and created at

site ”n+1”. The parameter V1 corresponds to the energy probability associated with this event,

commonly known as hopping.

Figure 2.1 provides a schematic illustration of the SSH chain. In this diagram, we can

observe that there are two atoms per unit cell connected by V1 and V2 is the coupling between

neighboring cells, rendering them non-equivalent. Specifically, on the left side of atom A, there

is a V1 bond, while on the right side, there is a V2 bond. Conversely, for atom A, the situation is

reversed; the left side has a V2 bond, and the right side has a V1 bond. Consequently, the unit cell

is delineated by the orange rectangle. To initiate the physical characterization of the system, it

is crucial to construct a set of graphs to characterize the band structure and energies of the finite

system that offer insights into the system’s behavior.

The first step in this process involves using the Hamiltonian and performing a Fourier trans-

form. This transformation takes us into reciprocal space (k-space), where we work with wave

vectors k and can examine the structure of degenerate bands to understand how the model is

established to make the band structure.
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To derive the band structure in reciprocal space, we conduct the Fourier transform. To

elucidate this procedure, let us analyze the effects of the operators on the atoms within the unit

cell:

ak =
1√
N

N

∑
i

aiei⃗k.⃗ri ; a†
k =

1√
N

N

∑
i

aie−i⃗k.⃗ri (2.2)

In Eq. (2.5), the operators ak and a†
k in reciprocal space are derived from the original

operators an and a†
n in real space through a Fourier transform. This transformation involves

summing over all unit cells (N) and multiplying each term by a phase factor determined by the

wave vector k⃗ and the position vector r⃗i of the unit cells. These transformations yield valuable

insights into the electronic properties and band structure of the SSH chain in reciprocal space,

we can also observe that there is chirality in this system as there is a matrix S that respects

SH(k)SSHS = H(k)SSH .

The SSH model with the Fourier transform can be expressed in matrix form.

H(k)SSH =
[
a† b†

][ 0 V1 +V2eik

V1 +V2e−ik 0

][
a

b

]
(2.3)

With this matrix form, we can create a program to analyze the accessible eigenvalues of

the system for a specific set of values. In this case, I will fix the parameter V1 = 1 and vary the

parameter V2 freely, allowing us to obtain the corresponding graphs.

In the following graphs, Fig. (2.2a), Fig. (2.2b), and Fig. 2.2c, we observe different band

structure variations, representing distinct phases in the SSH model. These phases include an

insulating state with a band gap, a metallic state with a gapless band, and a topological insulator

state with a unique gapped band pattern. Let us briefly explore each phase before delving into

energy dispersion plots.

Fig. (2.2a) illustrates the insulating phase, where electrons are confined to the lower energy

band. The Fermi energy determines the band occupation, resulting in only the lower half being

filled. Because of the absence of accessible states in the system, electron mobility is severely

restricted, leading to insulating behavior.

In Fig. (2.2b), we observe the metallic phase, characterized by the touching or crossing of

the two energy bands at a specific point. The Fermi energy remains at zero, favoring electronic

transitions between nearby energy levels gapless. This allows electrons to flow freely, leading

to electrical conductivity in the material.
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(a) SSH Band Structure at V2 = 1.2: This
subfigure displays the band structure of the
SSH model with V2 = 1.2, representing an
insulating phase.

(b) SSH Band Structure at V2 = 1.0: This
subfigure shows the band structure of the
SSH model with V2 = 1.0, illustrating the
metallic phase

(c) SSH Band Structure at V2 = 0.5: This
subfigure exhibits the band structure of the
SSH model with V2 = 0.5, highlighting the
topological insulator phase.

In Fig. (2.2c), we find the topological insulator state, a fascinating phase that exhibits

unique band structure characteristics. Unlike conventional insulators, the topological insulator

possesses an insulating behavior in the bulk of the material but harbors conducting states along

its edges or surfaces, known as edge states.here we cannot observe any effective difference in

the band structure for the infinite case because we are looking at the energy states of the bulk,

so we will have to do other analyzes of the energy of the finite system

To generate the energy dispersion plot, we will use the Hamiltonian (2.1). However, this

time, we will apply it to a finite system. This involves selecting a specific number, N, of unit

cells to form a finite chain, leading to a matrix representation of the Hamiltonian.

This approach allows us to investigate how the energies of the finite system change when

one of the hoppings varies while the other remains constant in this one-dimensional chain. Em-

ploying this method enhances our comprehension of the specific topological alterations present

within the system.

To proceed with the construction of the energy dispersion plot, we will employ numerical

methods and utilize a computational program to diagonalize the matrix and obtain its eigenval-
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ues. By systematically varying the parameter V2, we can explore the behavior of the system and

obtain the corresponding energy energies.

The energy dispersion will then depict the relationship between the energy and the parame-

ter V2. This allows us to visualize how the electronic states in the SSH chain respond to changes

in the coupling strength V2 and gain insights into the energy dispersion of the finite system.

This approach enables us to study the electronic properties of the SSH chain in a finite

setting, providing valuable information about its energy levels and electronic band behavior,

which is crucial for understanding the behavior of one-dimensional systems and exploring their

potential applications in various areas of condensed matter physics.

Figure 2.3: Energy Dispersion in Finite SSH Chain: This figure presents the energy dispersion
plot for a finite SSH chain with V2 varying, picture the band gap in the energy spectrum and its
relationship with the bulk transition with V2 varying.

The energy dispersion plot shown in Fig. 2.3 illustrates the behavior of the finite SSH

chain as a function of the parameter V2. Each value of V2 corresponds to a particular system

configuration, and within each of them, there are multiple accessible energy levels.

In this specific case, we can observe that there is a range of energies centered around zero

within the system. This region extends from approximately -1 to 1, indicating a band gap (this

gap is exact for infinite chain) in the energy spectrum. This interesting transition aligns with the

Bulk transition, establishing a significant relationship known as the bulk-bound correspondence,

which implies the presence of a phase transition in the system.

Further investigation into the correlation between these two graphs would provide valuable
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insights into the underlying physics of the SSH chain and its finite behavior. Before proceeding

with this analysis, it is essential to calculate the wave functions for a finite system. For this

purpose, I will perform the necessary calculations to explore the electronic states within the

finite SSH chain thoroughly.

This calculation incorporates the previously obtained eigenvectors for the finite case, en-

abling us to examine all possible wave functions within the system. Focus specifically on wave

functions corresponding to zero energy. Now we can create a new graph of the energies of the

finite system as a function of its size n where we can observe whether for a given value of V2

we have zero energies which are the localized and topologically protected edge states

Figure 2.4: Zero-Energy States in Finite SSH Chain: This figure displays energy eigenvalues as
a function of n for a finite SSH chain, emphasizing the existence of zero-energy states and their
implications.

In Fig 2.4, we can see that there are only two energies at zero, and we filter out these

energies to plot the vectors (eigenvectors) by n which is the size of the one-dimensional system,

obtaining the wave functions at zero as follows. Here, we do not see Majorana fermions because

our model does not have superconduction coupling. Therefore, we are examining only the

potential energies of two electrons in the chain.

To characterize the phase transition in the SSH model, we make use of a combination of

graphs, each providing valuable insights into the system behavior. The different plots contribute

to a comprehensive understanding of the topological phase transition:

In fig2.2b The bulk plot displays the opening and closing of the band gap as the parameter

V2 varies. Although this observation alone does not offer conclusive evidence, it serves as an

initial indication of a potential topological phase transition.
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Figure 2.5: Squared wave function or probability per site in SSH Chain: This figure showcases
wave functions within a finite SSH chain, particularly focusing on zero-energy states and electron
localization at the chain edge.

In fig2.3 the finite SSH chain plot, we find zero-energy states occurring at specific values

of V2 associated with the phase transition. For example, when V2 = 1, the gap closes, and the

system exhibits zero-energy modes, further supporting the occurrence of a topological phase

transition here we are in phase transition and we have no localized edge states.

In fig2.4 the energy for a fixed V2 in the region with zero-energy modes (e.g., V2 = 0.5),

we identify two zero-energy states. This specific analysis provides more detailed information

about the corresponding wave functions and adds to the evidence for the topological transition.

In fig2.5 The computation of the wave functions for a particular value of V2 (e.g., V2 =

0.5) reveals electron states localized at the edges of the system. This observation reinforces

the notion of a topological phase transition without requiring the calculation of more complex

topological invariants like the Chern number which will be explained later.

In subsequent chapters, our research will search into the numerical calculation of various

topological invariants for other systems. The initial numerical approach has laid the groundwork

for further investigations in our work.

2.2 Rice-Mele chain

Now we would like to introduce another model, which is a generalization of the SSH model.

Instead of having the same atom repeating in the chain, we would have two different atoms. It

may seem like a simplistic generalization, but this model hides a rich physics, especially in its

structure. First, let us write it Hamiltonian. Here we are interested in knowing how the topology
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of the system would change for a chain with two different types of atoms with different system

energies.

Ht = ∑
n
(ε −µ)ana†

n − (ε +µ)bnb†
n +∑

n
V1anb†

n +V2anb†
n−1 +Hc. (2.4)

Where a unit cell runs as a region starting in orange in Fig. 2.6 With the Hamiltonian defined, the

Figure 2.6: Scheme showing the Rice-Mele chain model with a chain with two different atoms (in
blue and red) with alternating bonds V1 and V2

key distinction lies in the terms ε1 and ε2 which are the energies of sites A and B, respectively

but here we are interested in a specific case where ε1 = −ε2 = ε which is the case of Eq.2.4,

which govern the energies of the sites in the generalized SSH model. In this chain, the first site

is denoted as N = 1, where the operators a†
i,α and b j,α create and annihilate electrons at site A

and B in the unit cell, respectively. Employing the Fourier transform allows us to explore the

band structure in reciprocal space, providing valuable insights into the electronic properties of

the system.

Here we will do the Fourier transform in the same way as we did previously, but now we

have two different types of sites A and B:

ak =
1√
N

N

∑
i

aiei⃗k.⃗ri ; a†
k =

1√
N

N

∑
i

aie−i⃗k.⃗ri

bk =
1√
N

N

∑
i

biei⃗k.⃗ri ; b†
k =

1√
N

N

∑
i

aie−i⃗k.⃗ri

(2.5)

The Hamiltonian in reciprocal space takes the form:

Ht =
N

∑
n

∑
kx

∑
k′x

(ε −µ)
1
N

a†
ke−i⃗knak′e

i⃗kn +(−ε −µ)
1
N

b†
ke−i⃗knbk′e

i⃗kn+

V 1
1
N

a†
ke−i⃗knbk′e

i⃗k′n +V 2
1
N

a†
ke−i⃗knbk′e

i⃗k′n−1 +h.c..

(2.6)

we can organize like
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Ht = ∑
kx

∑
k′x

(ε −µ)a†
kak′

N

∑
n

1
N

ein(k⃗′x−k⃗x)+(−ε −µ)b†
kbk′

N

∑
n

1
N

ein(k⃗′x−k⃗x)

+V 1a†
kbk′

N

∑
n

1
N

ein(k⃗′x−k⃗x)+V 2(e−ik′)a†
kbk′

N

∑
n

1
N

ein(k⃗′x−k⃗x)+h.c..

(2.7)

but ∑n
1
N ein(⃗k′−⃗k) = δk,k′ this,

Ht = ∑
kx

∑
k′x

(ε −µ)a†
kak′δk,k′ +(−ε −µ)b†

kbk′δk,k′V 1a†
kbk′δk,k′ +V 2(e−ik′)a†

kbk′δk,k′ +h.c..

(2.8)

Performing the sum into k’, we can express the Hamiltonian as:

Ht = ∑
kx

(ε −µ)a†
kak +(−ε −µ)b†

kbk +V 1a†
kbk +V 2(e−ik)a†

kbk +h.c.. (2.9)

we can now observe that there is no chirality in this Hamiltonian because is not a matrix S

that respects SH(k)SSHS = H(k)SSH like in the SSH model 2.3.

Ht =

(
ε −µ V1 +V 2(e−ik)

V1 +V 2(eik) −ε −µ

)
(2.10)

Figure 2.7: SSH Band Structure where V2 = 1t.
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Figure 2.8: Rice Mele Band Structure (ε = 0.1) and V2 = 1t .

as we can see in the upcoming figures, the energy gap only closes for epsilon equal to zero.

This observation provides a deeper understanding of the energy band behavior under specific

parameter settings.

As we search deeper into the analysis of the band structure across a variety of parameters,

similar observations are made as in the finite case. Particularly of note is the parameter V2 =

1t, which serves as a pivotal value for our explorations because at this value we indicate a

topological phase transition.

In our thorough examination of band structures, various interesting patterns and features

become apparent because depending on the parameter V1 we have metallic structures and struc-

tures with gaps, so we will show some points about these analyzes.

From our presented information, a key point is the behavior of the energy gap. It becomes

clear that this gap gets smaller, especially when epsilon is zero. This observation enhances our

understanding,because with the variation of a parameter we can control the gap.

As we go deeper into analyzing the band structure, we start to notice both similarities and

differences compared to previous model (SSH) in finite systems. An important factor in our

analysis is the parameter V2 = 1t, which has consistently played a significant role in energy

levels of the energy spectrum.

Figure (2.7) offers valuable insights into this investigation. In this figure, we see the band

structure as defined by the Hamiltonian in Equation (2.10). Among the various V1 values shown,
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the emergence of a zero-gap semiconductor is especially noteworthy. This observation may

suggest a potential phase transition, a hypothesis that gains credibility, especially when the

parameter V2 is adjusted to 1t.

Additionally, Figure (2.9) highlights another aspect of our investigation. It reveals a distinct

band gap whenever ε ̸= 0, a behavior that distinguishes it from patterns documented in previous

studies.

Figure 2.9: Band structure of the Eq.2.10. Here we can see that the band structure is shifted by ε

value downwards the red line is the fermi energy E(k)=0 when ε ̸= 0.

Figure 2.10: Visual depiction of the band structure as dictated by the Hamiltonian in Eq.2.10.
Highlights the unique position of the Fermi level when ε = µ ̸= 0. .
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A noteworthy observation pertains to the Fermi level. When we set ε = 0.1 and µ = −ε

as our parameters, the Fermi level precisely intersects the peak of the valence band. However,

when µ matches ε , it tends to align itself with the conduction band.

Taken together, these observations and figures provide a detailed understanding of the var-

ious subtleties associated with band structures, particularly within the context of the infinite

form framework.

2.3 Finite SSH and Rice Mele Chains

This section explores the intricacies of energy dispersion patterns governed by the Hamil-

tonian, specifically particularized for a system with N = 40 atoms. The figures presented here

illuminate the dispersion characteristics under varius values of chemical potentials (µ) and site

energies (ε).

When we shift our focus to a finite system with a limited number of atoms, we can compute

the energy levels supported by the system for each value of t1. Notably, this system exhibits a

different behavior compared to the SSH model, which features a plateau at zero energy. Instead,

in this case, we observe two distinct shifted plateaus, one at a positive epsilon value and the

other at a negative epsilon value. To modify this behavior, Now we will demonstrate cases

where the chemical potential is non-zero because with this analysis we will see that there are

cases from a topological point of view and zero energy modes. This addition allows us to control

the occupation of the Fermi level, with this adjustment, we can set one of the plateaus to zero

energy, resulting in a difference of two epsilon units between the two plateaus as we can see

in(2.13).

Now, let us proceed to examine the energy levels of a specific system, for instance.
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Figure 2.11: The energy dispersion described by the Hamiltonian in Eq.2.4, with parameters as
shown in the graph. Notably, the presence of Zero Modes is evident, and a transition from a trivial
to a topological phase becomes apparent at V2 = 1t.”.

After looking at Figure 2.11, we can see that there are energy modes with zero energy in

the red line on the graph. These zero-energy modes exist between the V1 = 1t and V1 = −1t

regions in the finite system. These states with zero energy indicate a transition in the topological

phase of the system. This means that for V1 > 1t, the system has a gap and is considered trivial.

However, the system exhibits localized energies in the region where these zero-energy states

appear.
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Figure 2.12: Energy spectrum of the Hamiltonian in Eq.2.4, with the parameter ε = 0.1. It is clear
that when ε ̸= 0, the zero modes disappear and now there is a gap separating the energies.

After analyzing Figure 2.12, we observe a shift away from the previous prevalence of zero-

energy states. When a non-zero ε value is introduced, a gap emerges in the region where these

zero-energy states used to dominate. This indicates that the system has become more responsive

to variations in site energy.
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Figure 2.13: the Energy spectrum corresponds to the Hamiltonian described in Eq.2.4 and com-
plies with the specified parameters ε = 0.1 and µ = 0.1, the structure that previously featured a gap
now reverts to zero modes, primarily due to the chemical potential aligning with the local energy
level.

The patterns depicted in Figure 2.13 introduce an additional dimension to the conversation.

When µ equals ε , the energy dispersion behavior undergoes a further alteration, reintroducing

zero modes. This implies a subtle interplay between µ and ε , where they can either here we

have two situations where we can have zero majorana modes where we have ε =−µ or ε = µ .
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Figure 2.14: This figure presents the energy dispersion in line with the Hamiltonian from Eq.2.4
and the defined parameters. Observations reveal that with ε = 0.1 and µ = −0.1, the structure
that previously exhibited a gap now displays zero modes once again, a phenomenon resulting from
the chemical potential being the negative counterpart of the local energy level.

Finally, Figure 2.14 highlights the reappearance of zero modes when µ equals the negative

value of ε . This underscores the intricate interplay between the chemical potential and site

energy in shaping the overall topological properties of the system.

In summary, these observations provide a comprehensive insight into energy dispersion

patterns with varying V1. They emphasize the significant impacts of µ and ε on the topological

traits of the system.
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Figure 2.15: (a) SSH dispersion energy. (b) Energy per site in the SSH case for V1 = 0.5. (c) Wave
function of SSH zero modes for V1 = 0.5. d) Rice-Mele dispersion energy for ε = 0.1. (e) Energy per
site in the Rice-Mele case ε = 0.1 and V1 = 0.5. (f) Wave function of the Rice-mele shifted modes
for ε = 0.1 and ε =−0.1 for V1 = 0.5.

In the figure (2.15), we can see the case of SSH in (a), (b), (c) in (a) is the energy spectrum

where we can see that there are zero energy modes depending on the value of V1, in (b) we have

the energies per site of the system where we can see that we have two modes of energy at zero

and in (c) are the wave functions of one of these two energy modes.

in the same figure we have in (d), (e) and (f) the behavior of Rice-Mele for ε = 0.1, in

(d) we can observe that we no longer have zero energy modes, but now we have a gap and

two energy plateaus one for ε = 0.1 and one for −0.1. In (e) we have the energies per site for

V1 = 0.5 where we can see that where before in the ssh model we had two zero energy modes,

now we have one energy shifted by 0.1 and one shifted by -0.1. In f) we can observe two wave

functions, one located on the left and the other located on the right, which correspond to the

modes described in f)

2.4 Spinful SSH Chain

In this section, we have introduced a new term to our SSH model, referred to as the Zeeman

term, as presented in equation (2.12). This addition allows us to account for the influence of

magnetism on our system. Consequently, our matrix representation expands to accommodate

these changes. We now describe our system using a revised set:

Φ = (ak,σ ,bk,σ ,ak,−σ ,bk,−σ )



When we examine the Hamiltonian in the vector k-space, our model transforms according

to the representation shown in Eq. (2.14). As a result of this modification, we obtain new energy

values, as we can see below. This provides an alternative perspective on understanding the SSH

chain when spin considerations are taken into account.

The SSH Hamiltonian is given by:

HSSH =−V1 ∑
n

a†
n,σ ab,σ −V2 ∑

n
a†

n+1,σ bn,σ +H.c., (2.11)

The Zeeman term is

HZ = ∑
n,σ

λzsign(σ)
(

an,σ a†
n,σ +bn,σ b†

n,σ

)
+Hc. (2.12)

where the term sigma is the spin component of the system lambdazistheparameterproportionaltothemagnetic f ieldappliedtotheribbonandnistheunitcello f thessh.T hetotalHamiltonianisthesumo f theabovetwo :

Htotal = HSSH +HZ(2.13)
−µ +VZ V1 +V 2(e−ik) 0 0

V1 +V 2(eik) −µ +VZ 0 0

0 0 −µ −VZ V1 +V 2(e−ik)

0 0 V1 +V 2(eik) −µ −VZ

 (2.14)

This matrix represents the magnetic field on the nanoribbon in the space of wave vectors k,

now we can diagonalize it and obtain its self-energies.From the Hamiltonian, we can derive the

eigenenergies analytically:

E1 = λz −µ −
√(

V1 +V2eik
)(

V1eik +V2
)

eike−ik (2.15)

E2 = λz −µ +
√(

V1 +V2eik
)(

V1eik +V2
)

eike−ik (2.16)

E3 =−λz −µ −
√(

V1 +V2eik
)(

V1eik +V2
)

eike−ik (2.17)

E4 =−λz −µ +
√(

V1 +V2eik
)(

V1eik +V2
)

eike−ik (2.18)

In this first figure (2.16), we show how the magnetic field affects the SSH energy spectrum.

In figure (2.16) a) for N=40, we can observe that without the presence of a magnetic field, there

are zero-energy modes, as previously observed, which contain topologically protected end states

between V1 =−1 and V1 = 1. With the application of a small magnetic field in Figure 2.16 b),

the spin degeneracy is broken, and we now have two energy states near zero energy, separated

by twice the magnetic field parameter. In the case with the application of a field λz = 0.05t,

we have states that are no longer at zero energy and have been shifted by λz = 0.05t. Thus as



can be seen from the spin texture color (in the figure (2.16) shown we have the spin up with the

color red and the spin down with the color blue, we will continue with these guidelines until

the end of the thesis), these states are all polarized with spin-up. Conversely, we can see that

the same effect occurs for spin-down states, but these states are shifted downwards. Therefore,

the displacement between the two bands is 2λz. We observe in Figures 2.16 c) and 2.16 d)

that increasing the magnetic field also increases the separation, keeping the effect consistent.

It is important to note that if the applied field were is reverse, the result wall be the opposite,

meaning that energies for spin-down would shift upwards, and spin-up would shift downwards.

Figura 2.16: Fig of the Energy bond spectra about the influence of the external magnetic field on
the SSH model where λz = 0.0,0.05t,0.1t,0.15t. the color bar is the spin orientation where spin up
is 1 and spin down is -1

In Fig Fig.(2.17), we display several plots illustrating the behaviors of the SSH chain under

the influence of parameters V1 and λz. In the graphs of Fig Fig. 2.17, we have the bulk figures

from Fig. (2.17) a) to Fig. (2.17) e), which represent the Fourier transform of the Hamiltonian

for different values of V1 = 0.5t,0.5t,1t,0.5t,1t. In the second level, we have finite energy

spectrum figures for the system. Specifically, we have Fig. a) for the chemical potential µ = 0t,



Fig.(2.17) g) for µ = 0.1t, and Fig.(2.17) h) for µ = −0.1t. In the third level, Fig.(2.17) i)

to Fig. (2.17) m) shows the energy spectra for specific values of V1. Finally, Fig.(2.17) n) to

Fig.(2.17) r) display the wave functions for the finite system for each value of V1.

From graphs (f) to (g), we have the finite case with a variation in hopping V 1. Figures

(2.17) (i) to (m) represent auto energies organized in ascending order. Finally, Fig. (2.17) from

(n) to (m) are the wave functions.

Now, in Fig. 2.17, we examine of how the SSH chain behaves for a specific field λz = 0.1t.

We can see in Fig 2.17 the bulk (infinite case) from (a) to (e), where in Fig (a), there is a gap.

The value of V1 is indicated by a gray vertical line in graph (f), which corresponds to the region

covered by the energy graph (i) and the wave function in figure (n). Now, let us conduct a brief

analysis of the graphs.

In Fig. 2.17 (a), there is a gap, but no specific indications can be made. However, when

we look at Fig. 2.17 (f), as explained earlier, with the application of a magnetic field, there are

no longer zero modes because they have shifted in value up and down. Therefore, the energies

are no longer accessible in the system because of the parameters. Continuing the discussion,

in Fig. (i), we can observe that there are now two up modes shifted upwards and two down

modes shifted downwards. In Fig. n), we can see that the wave function is not localized. Thus,

we conclude that for these parameters, we do not obtain any topological states as there are no

localized wave functions or zero-energy modes.

Now, continuing the analysis, let’s move to Fig. (b), where, in addition to the previous

elements, we add a chemical potential of the order of the field µ = λz = 0.1t. However, we

observe that in the bulk, nothing has changed for the same value of V1. Now, moving to Fig.

(g), we can see a difference where the energy modes are now zero for spin-up. Therefore, the

leftmost vertical line in the region of zero energies is now inside. This can be confirmed in

the energies of this system in Fig. (j), where there are now two zero-energy modes with spin

projection along the z-axis up. Finally, we can observe the localized wave functions in Fig. (o).

Therefore, here we are in a topological region.

As complementary figures, we have Fig. c), which represents a topological transition region

where the gap closes for the red bands at k= π , indicating a metallic region. The value of V1 = 1t

from the second gray vertical line in Fig. g) is observed here. In Fig. k), we can see that there

are no more zero-energy levels and a more continuous energy spectrum where the energy levels

are continuous, and the wave function in Fig. p) is not localized at the edges.

Analyzing the problem further, we move on to Fig. d), where the chemical potential is



of the opposite order to the field, µ = −λz = −0.1t. However, we observe that in the bulk,

nothing has changed for the same value of V1. Now, moving to Fig. h), we can see a difference

where the energy modes are now zero for spin-down. Therefore, the leftmost vertical line in the

region of zero energies is now inside. This can be confirmed in the energies of this system in

Fig. j), where there are now two zero-energy modes with spin projection along the z-axis down.

Finally, we can observe the localized wave functions in Fig. o), which have colors compatible

with spin-down. Therefore, here we are in a topological region but with opposite spin.

We have Fig. (e), which represents a topological transition region where the gap closes for

the blue bands at k = π , indicating a metallic region. The value of V1 = 1t from the second gray

vertical line in Fig. h) is observed here. In Fig. m), we can see that there are no more zero-

energy levels and a more continuous energy spectrum where the energy levels are continuous,

and the wave function in Fig. p) is not localized at the edges.



Figura 2.17: Representation of the SSH chain behaviors influenced by parameters V1, µ , and
λz=0.1. The Figures a), b), c), d) and e) show the bulk plots for the infinite case, the plots f) is
the energy spectra for specific values of V2 and V1 =1t and the plots g), h) is finite energy spectra
influenced by chemical potentials with values 0.1t and -0.1 respectively, and the plots i), j), k), l),
m) are the plots where we have specifics values of V2 shown in highlights in the graph above in gray
and the plots n), o), p), q) and r) are the wave functions for the finite system of the cases above.

Through our comprehensive analysis of the SSH chain, particularly when considering the

inclusion of the spin component λz, several significant findings. The SSH chain demonstrates

a clear sensitivity to parameter variations, across a spectrum of scenarios, encompassing both

infinite and finite settings. Furthermore, the chain behavior, especially under the influence

of changing chemical components, contributes valuable insights to our comprehension of the

system.



The visual representations in the figures (2.16) -(2.17) provide an exploration of the SSH

chain characteristics, encompassing energy spectra and wave functions. the introduction of the

spin component λz introduces an additional complexity to our investigation. The importance of

considering spin when analyzing the system. It is worth noting that even with the addition of

the magnetic effect in this chain, we still do not have Majorana fermions here because we do

not have any coupling effects between electrons and holes, such as a superconducting type p

which is a main ingredient.

In short, this exploration of the SSH chain, with the spin component λz, we can see new

behaviors of the system resulting in new phenomena of the SSH chain with magnetic fild apply.

2.5 Rice-Mele Model with spin

Now let us apply the external magnetic field to the Rice-mele model (RM) chain, we applied

the same approach used in the previous section, where we introduced the Zeeman effect into

the RM Hamiltonian, as described in Eq. 2.19, and its matrix form in the reciprocal space of

wave vectors k is given in Eq. (2.20), and the eigenenergies accessible by the system are given

by Eq. (2.21).

HRM =−V1 ∑
n

c†
A,ncB,n −V2 ∑

n
c†

A,n+1cB,n+ (2.19)

(εA −µ)∑
n

c†
A,ncA,n +(εB −µ)∑

n
c†

B,ncB,n +H.c.,


λz + ε −µ V1 +V2eik 0 0

V1 +V2e−ik λz − ε −µ 0 0

0 0 −λz + ε −µ V1 +V2eik

0 0 V1 +V2e−ik −λz − ε −µ

 (2.20)

Now we can put it in martial form where we can identify a matrix with two blocks, one up and

one down and we can diagonalize it using sympy analytically



E1(k) = λz −µ − e−ik
√

∆ (2.21)

E2(k) = λz −µ + e−ik
√

∆ (2.22)

E3(k) =−λz −µ − e−ik
√

∆ (2.23)

E4(k) =−λz −µ + e−ik
√

∆. (2.24)

∆ =
(

V 2
1 eik +V1V2e2ik +V1V2 +V 2

2 eik + ε
2eik
)

eik. (2.25)

Now we used a Python program to numerically calculate the energy states accessible by

the system for specific parameters. In the same manner as we did previously, we will begin by

analyzing the energy spectrum for a finite system of 40 atoms.

In Fig 2.18, we can observe four different plots. In Fig. 2.18 a), we have the pure SSH case,

as the parameters ε and λz are both zero. Even though they are added to the Hamiltonian, we

obtain the same results as before. It is worth noting that all energy spectrum graphs are plotted

a function of V2 on the horizontal axis. Moving on to Fig. 2.18 b), it’s the RM model with the

parameter ε = 0.1t, but with λz = 0. In this case, we can compare the two graphs and notice

that we no longer have zero-energy modes, and there is a gap region of 2ε between the energy

levels in the energy spectrum.

In Fig. 2.18 c), now with λz = 0.05t, we have a similar effect to the SSH case, but now

each energy plateau has experienced a degeneracy breaking due to the magnetic field. We now

have regions of allowed energies only for spin-up and only for spin-down, and each energy

plateau has undergone this splitting, resulting in four energy plateaus, two for spin-up and two

for spin-down. In Fig. 2.18 d), we analyze a specific set of parameters where ε = λz. In

this scenario, the energy that suffered the symmetry breaking, which had higher energy than

the chemical potential, now overlaps with the accessible energies for spin-down exactly on top

of the energies accessible for spin-up from the symmetry-breaking in the lower energy levels.

Consequently, we now have a region of zero-mode energies where both spin-up and spin-down

states, and they are no longer degenerate.

Now that we have systems with this profile described in Fig. 2.18 d), let us delve deeper

into Fig 2.19, where we will analyze the generated figures, ranging from bulk energies to wave

functions.

In Fig. 2.19, we have defined the parameters as V1 = 1, λz = 0.1t, and ε with two values,



Figura 2.18: Comparative energy spectra for the Rice-Mele model with varying parameters and
applied magnetic field. Fig a) represents the pure SSH case, where ε and λz parameters are nulli-
fied. Fig b) depicts the RM model behavior with an introduced ε . Fig c) displays the response to
a magnetic field λz in the system, emphasizing the broken degeneracy. Fig d) gives an overview of
specific parameter combinations, highlighting the effects of symmetry breaking and energy acces-
sibility for different spin orientations In the color bar we have values that can vary from 1 to -1
where 1 would be spin up and -1 spin down.

±1. From Fig.2.19 a) to d), we see the energy dispersions of the system. Essentially, we are

examining the allowed energies in the wave vector k space. This system might be referred to

as ”infinite”or ”bulk”since translational symmetry exists along the x-axis. In Fig.2.19 e) and f),

we present the energy spectrum for a finite system, implying it lacks translational symmetry,

across various V1 values. This means we are looking at multiple distinct systems. Notably, both

systems maintain zero-state energies up to V1 = 1. In Fig.2.19 g) to j), we have the energy spec-

trum for certain curves highlighted in light gray in the preceding figures (2.19). For instance,

Fig.2.19 g) corresponds to the value V1 = 0.5t. Lastly, Fig.2.19 k) to n) show wave functions

of the zero energies from the figures above them, be they continuous spectra or those without

zero energies. We will select a random wave function mode from all possible modes to analyze



further.

In Fig.2.19 a), we observe an energy dispersion with a gap. This figure corresponds to

V1 = 0.5t, as indicated by the vertical gray line in Fig. 2.19 e) - the energy spectrum for this

system. Here, we can see two zero states, each with a defined spin direction: one upwards and

the other downwards. In Fig.2.19 k), the two wave functions plotted for each energy level are

discerned; blue represents the energy with spin down and red indicates the energy with spin up.

With these parameters in this system, we have spin-polarized ends, with each tip having an edge

state opposite to the other, thereby constituting a topologically protected state.

Continuing the discussion with Fig.2.19 b), we witness a phase transition where V1 = 1. We

can observe that the second line of Fig.2.19 e) aligns with this value, indicating closed bands,

which suggests a metallic state. Further, in Fig.2.19 h), the energy spectrum now appears con-

tinuous, meaning there are no zero modes, and its wave function in Fig.2.19 l) is not localized.



Figura 2.19: Energy dispersions and wave functions of the spin-polarized Rice-Mele model under
various parameters. Figs a) to d) depict the energy dispersions for an infinite (bulk) system, with
a focus on permitted energies in the wave vector space k. Figs e) to j) illustrate the energy spec-
trum for finite systems with varied V1 values. Figs k) to n) showcase the localized wave functions
corresponding to zero-energy modes or other selected modes based on the energy spectra above.

In Fig.2.19 c), we have the parameters λz = ε =−0.1t. This represents the inverse situation

of Fig.2.19 a). In this case, the bands are inverted from a spin perspective. This inversion can

also be observed in Fig.2.19 f), where previously, the blue energies that were pointing upwards

have been replaced by up energy states. In Fig.2.19 i), we notice that the energies remain at zero

but are inverted. Moving to Fig.2.19 m), the wave functions localized at the boundaries now

appear to be the inverse of what is shown in Fig.2.19 k). With these parameters, we can discern

that the system is inverted from the standpoint of spin in this topologically protected system.



Lastly, this inversion is also evident in Fig.2.19 d), where Fig.2.19 j) is the inverse of Fig.2.19

h). However, the energy spectrum remains continuous, and as a result, the wave function is not

localized as seen in Fig.2.19 n).

From our observations, it is evident that by applying an external magnetic field, we can

achieve zero-energy modes without the need for a chemical potential. Moreover, we can obtain

polarized spin modes on different edges of the nanowire for the RM chain. Furthermore, we

can determine the spin on each side using the magnetic field and the energy of the sites, it is

worth mentioning that this result is the first original result of this thesis, this work has yet to be

written.

2.6 Kitaev chain

Starting from the seminal work of Read and Green (28) on two-dimensional p-wave super-

conductors, Kitaev proposed a simplified one-dimensional (1D) toy model (3). In this model,

unpaired Majorana zero modes (MZMs) appear at opposite ends of a p-wave superconducting

tight-binding chain. Remarkably, it took less than a decade (7) to understand that it could ex-

perimentally realize Kitaev original proposal. Some setups (8–10) employed hybrid devices

composed of a 1D semiconductor nanowire with strong Rashba spin-orbit coupling (RSOC), in

contact with a conventional s-wave superconductor and under an external magnetic field (EMF)

longitudinal to the nanowire. Topological protected MZMs emerge at the nanowire ends (11)

when the nanowire chemical potential lies on the bulk p-wave superconducting induced-gap.

In the study of condensed matter physics, Majorana modes are notable as they behave as

both particles and their own anti-particles(29). These modes are commonly explored in super-

conducting systems because of a characteristic known as particle-hole symmetry (PHS). You

can find them on the surfaces of p-wave superconductors, especially when their wave function

has a spin of p = 1 (triplet state). This tells us that Cooper pairs formed from electrons in a

specific state (30).

This brings us to the Kitaev model, a concept based on depositing iron atoms onto a super-

conducting lead surface (31). At its core, the model revolves around three main components:

1. The natural interactions, known as spin-orbit and Rashba interactions, seen in a system

like a zigzag nanoribbon.

2. An external magnetic field that helps set the spin direction in the nanowire and fine-tune

the size of the gap between them.



3. Using an ”s” superconductor as a base for the nanowires, promoting the formation of a

”p” type pairing due to their close proximity.

In simpler terms, the Kitaev model describes a chain of spinless particles that support p-

wave superconductivity.Here the Kitaev model is interpreted as spinless, but in reality it would

already be spinpolarized with only one type of spin, for example the chain would be completely

spin polarized with spin up or down.

While Kitaev initial research did not search into spin, later studies have. For instance, Jeon’s

team(14) used advanced tools to differentiate between Majorana modes and other states in iron

atom chains. There are also additional spin-focused studies that search into unique effects and

behaviors in specific setups(32–34).

The Kitaev chain is a one-dimensional theoretical model spinless of spinless fermions, that

helps us understand the properties of Majorana-bound states. the Hamiltonian for the Kitaev

chain, is:

H =−µ

N

∑
n

c†
ncn − t

N−1

∑
n
(c†

n+1cn +h.c.)+∆eiφ
N−1

∑
n
(cncn+1 +h.c.), (2.26)

,

where c†
n and cn respectively create and destroy an electron at position n. t refers to the

electron ”hop” from one position to another. µ is the chemical potential, indicating the energy

difference from the ground state. ∆ and φ are related to a special kind of electron pairing,

p-wave pairing, and its phase.

It is worth noting that this Hamiltonian does not consider both electron spins, which means

it is not symmetric under time reversal, summetry terms transformation

To determine the energy spectrum and eigenstates for any set of parameters, we can express

the problem in matrix form. We first use the fermionic anticommutation relations

{cx,c
†
x′}= δx,x′ and {cx,cx′}= {c†

x ,c
†
x′}= 0, (2.27)

This allows us to represent the Hamiltonian in a more simmetric form



H =−µ

N

∑
n
(c†

ncn −
1
2
)− t

4

N−1

∑
n
(c†

n+1cn − cn+1c†
n)

+
∆eiφ

4

N−1

∑
n
(cncn+1 − cn+1cn)+h.c.).

(2.28)

For a more concise representation, we use a column vector of fermion operators

Ψ ≡
(

c1, c†
1, c2, c†

2, ... ,cn, c†
n

)T
, (2.29)

Resulting in

H = Ψ
†M Ψ. (2.30)

where M is given by

M =



−µ 0 −t ∆e−iφ . . . 0 0 0

0 µ −∆eiφ t . . . 0 0 0

−t −∆e−iφ −µ 0 . . . 0 0 0

∆eiφ t 0 µ . . . 0 0 0
...

0 0 0 . . . −µ 0 −t ∆e−iφ

0 0 0 . . . 0 µ −∆eiφ t

0 0 0 . . . −t −∆e−iφ −µ 0

0 0 0 . . . ∆eiφ t 0 µ



, , (2.31)

By diagonalizing matrix 2.31, we can obtain the energy spectrum as a function of the che-

mical potential, µ .



Figura 2.20: Finite Kitaev chain for N = 30.

Fig. 2.20 shows the energy spectrum for a 30-site Kitaev chain, where the zero energy

modes appear at µ/t < 1.0, being a signature of the emergence of Majorana fermions. Another

feature we can notice is the particle-hole symmetry which comes from the construction of the

Hamiltonian displayed in the system on the vertical axis in relation to the chemical potential

µ = 0.0 energy.

Now we consider the Born–von Karman boundary condition, to study the bulk properties

of the chain. The Fourier transform the creation and annihilation operators,

cn =
1√
2π

∑
k

eikxnck ; c†
n =

1√
2π

∑
k

e−ikxnck, (2.32)

in which xn = na, and a = 1 is the lattice constant, we can rewrite the Hamiltonian 2.26 in terms

of the wave vectors, in momentum space

H =
1
2 ∑

k

(
(−µ − tcos(k))c†

kck +(µ + tcos(k))c†
−kc−k − i∆sin(k)c−kck

)
+h.c. . (2.33)

Using the matrix representation:

H =
(

c†−k ck

)( −µ − tcos(k) i∆sin(k)

−i∆sin(k) µ + tcos(k)

)(
c−k

c†k

)
. (2.34)

To better characterize Majorana fermions, we can rewrite the Hamiltonian (2.26) in forms

of MF operators, that must follow the properties of these quasi-particles:

γ
† = γ and γ

2 = 1, (2.35)



where γ operator. We can write the fermionic operators in terms of usual Majorana operators as

follows:

c†
n =

(γ2n−1 − iγ2n)

2
,

cn =
(γ2n−1 + iγ2n)

2
,

(2.36)

and from the relation above we have

γ2n = i(c†
n − cn),

γ2n−1 = c†
n + cn.

(2.37)

Considering the model consisting of a one-dimensional chain of N sites, each capable of

carrying a fermionic state c†
n|Ψ > , or equivalently, two modes of Majorana γ2n−1 and γ2n, as

shown in the Fig. (2.21).

Figura 2.21: Representation of the Kitaev chain.

In terms of Majorana operators the Hamiltonian (2.26) reads

H =−µ

2

N

∑
n=1

(1+ iγ2n−1γ2n)−
i
4

N−1

∑
n=1

[(∆+ t)γ2nγ2n+1)+(∆− t)γ2nγ2n+1)] . (2.38)

We can analyze this Hamiltonian in two limit cases. The first one corresponds to µ < 0 but

t = ∆ = 0, which we can interpret as a pairing between Majoranas γ2n−1 and γ2n at the same

lattice site, as we can see in Fig. (2.22)

Figura 2.22: No unpaired Majoranas.



The Hamiltonian 2.38 reduces to

H =−µ

2

N

∑
n=1

(1+ iγ2n−1γ2n), (2.39)

where the spectrum of the system presents a gap, since it costs a finite energy |µ| to add a

spinless electron to the chain. These conclusions are still valid even away from this fine-tuned

condition as long as the gap persists, the chain remains in the trivial phase, and this case are

called topologically trivial phase.

The second case is more complex and interesting, which t = ∆ ̸= 0 and µ = 0 this case is

called topological phase (non-trivial). The Hamiltonian (2.38) is now given by

H =−i
t
2

N−1

∑
n=1

(γ2nγ2n+1), (2.40)

which corresponds to pairing Majoranas at adjacent sites, as indicated in the Fig.2.23

Figura 2.23: Unpaired Majoranas states.

Observe that the first and last modes do not participate in the Hamiltonian, this chain has

two states with zero energy located at its edges. We then have a one-dimensional system with a

bulk gap and zero energy states at the edges in the topological phase for |µ|
t < 1



Capı́tulo 3
DOUBLE ZIGZAG HONEYCOMB NANORIBBONS

3.1 Introduction

As discussed in the previous chapter, we now have a solid foundation to develop a theore-

tical model of a nanoribbon. Let’s begin constructing this model by considering a honeycomb-

type nanoribbon with zigzag terminations. In this initial stage, we will describe the nanoribbon,

including the hoppings and superconductivity, but excluding the spin degree of freedom. This

model will be similar to the Kitaev model but adapted to our nanoribbon system. After cons-

tructing the model, we will proceed to create graphs and evaluate the initial results.

In the second part of the model, we will introduce the spin degree of freedom in a manner

similar to what was done in the SSH and Rice-Mele models. Then, we will apply the same

methodology to analyze the generated graphs and describe the underlying physics of this more

complex system.

Another kind of setup came up after the development of epitaxially grown hybrid semiconductor-

superconductor systems in which two or three facets of the hexagonal InAs nanowire core were

covered by Al (12). This setup is a hybrid platform that employs a naturally occurring quantum

dot (QD) at the end of the nanowire as a spectrometer (35–38) to measure the nonlocality degree

and the spin canting angles of the nonlocal MZMs (33, 39). A chain of ferromagnetic atoms

aligned over a conventional s-wave superconductor with strong RSOC also was considered as

a hybrid system supporting the existence of MZMs (13, 14). In this scenario, the essential in-

gredients to generate MZMs at the ends of the chain are the ferromagnetic interaction between

atoms that composes the chain and the RSOC induced on the chain by the superconducting

substrate. A helpful review of the experimental state-of-the-art on this subject can be found in

Refs. (22, 40).

The manifestation of MZMs in 1D hybrid semiconductor-superconductor nanowires, known

as Majorana nanowires, and magnetic chains on top of s-wave superconductors are fully unders-



tood from a theoretical point of view (11, 41, 42). Recent studies have been pointing out the

need to fabricate cleaner and disorder-free Majorana nanowires with an induced hard super-

conducting gap (43–45), in which distinct measurements have to be performed to corroborate

indeed the existence of topologically protected MZMs (46–48). In this scenario, alternative

2D honeycomb lattice setups offer a prolific and little-explored platform wherein topological

Majorana quasiparticle excitations can emerge. Between them, we can indicate two theoretical

precursor studies: One proposes the generation of MZMs on quantum wires formed in bilayer

graphene by electrostatic confinement(49) and the other studied the formation of MZMs on an

armchair nanoribbon in the presence of spatially varying magnetic fields (50). Both systems are

put in contact with an s-superconductor.

We also draw attention to zigzag honeycomb nanoribbons (zHNRs) built up from Xenes

graphene-like family (51–53), where X represents single elements from group III to group

VI of the periodic table. Despite the challenges of growing zHNRs of the Xenes family in

conventional s-wave superconductors (54–56), such a kind of 2D lattice offers an alternative

for engineering p-wave superconducting pairing required to realize MZMs. Probably, silicene

(X=Si) is the most promising candidate of this family for obtaining a zHNR geometry with the

ability to host MZMs (57, 58). Its energy spectra (59) can be spin-polarized by applying an

external electric field perpendicular to the zHNR sheet plane (60–62), giving rise to an effective

extrinsic RSOC that breaks its mirror symmetry [see Eq. (3.18)]. Silicene also presents an

excellent potential to produce half-metallic transport and pure spin-current (63–65).

Another possibility discussed in section 3.5 to realize p-wave superconductivity to produce

a Kitaev chain is related to the property of zHNRs from Xenes materials to exhibit ferromag-

netic ordering at their edges (66) due to internal repulsive Coulombic interactions (53). Thus,

this inborn spin alignment at the zHNR edges can be employed to induce the superconducting

pairing with p-wave symmetry when the zHNRs are put in proximity with a s-wave supercon-

ductor. This procedure is similar to previous studies with ferromagnetic chains from Yazdani’s

group (13, 14), but we do not theoretically implement it in this work.

Despite the spinless nature of Kitaev work, some proposals have explored the spin pro-

perties of MZMs in different contexts. Jeon et al. (14), employed a spin-polarized STM for

distinguishing between topological MZMs and other trivial in-gap states in chains of Fe atoms

deposited on top of superconducting Pb. Spin-polarization of MZMs was also accounted to

investigate the Kondo effect in a QD coupled to a metallic contact and a pair of MZMs (32),

and to study the transport properties of a finite-length Majorana nanowire placed between a dot

and a metallic lead (33, 34).



Since the theoretical work by Fu and Kane that MZMs was predicted to be present inside a

core of vortex topological superconductors (67) and the possibility of spin-polarized them was

pointed out in reference (68). Its experimental detection was realized in a topological insulator-

superconductor Bi2Te3/NbSe2 heterostructure(69). The spin polarization of those core states

can be probed by measuring the local polarized density of states (LDOS) employing scanning

tunneling microscopy and spectroscopy (STM/STS) via excitations in the vortex state (70, 71).

Moreover, the MZMs was also employed as an alternative way of performing quantum compu-

ting operations (72–74), allowing the transference of spin qubits QDs and unpolarized MZMs,

and also realizing nontrivial two-qubit gates. As proposed in this work, the discrimination of

the spin degrees of freedom of the MZMs in topological superconductor vortices or zigzag na-

noribbons can contribute to building topological quantum gates employing the spins of both

MZMs and QDs simultaneously.

In this work, we report the possibility of spin discriminating MZMs in zHNRs geome-

try [Fig. 3.1(a)], which we refer to as double-spin Kitaev zigzag honeycomb nanoribbons

(KzHNR). This double nanoribbon structure mimics two parallel Kitaev chains connected by

the hopping t, as indicated in Fig. 3.1(c). Our findings reveal that we can access the spin species

of the MZMs in a double spin KzHNR by tuning the chemical potential of the chains, which is

not feasible in standard 1D Majorana nanowires. In this scenario, we suggest an experimental

proposal to discriminate spin-polarized MZMs in zHNRs structures of silicene grown over a

Pb superconductor in the presence of RSOC and an EMF. Our findings could contribute to pa-

ving the way for studying hybrid topological-conventional polarized QD qubits using Majorana

spintronics.

3.2 Spinless model and topological phase transitions

We first consider a double-spinless KzHNR as a generalization of the Kitaev chain (3)

to characterize the topological phase transitions (TPT) of the system through corresponding

winding numbers (75), computed for the infinite case . By considering a tight-binding chain in

a zHNR geometry, we define a spinless phenomenological model as a Kitaev ladder-type (76).

We represent in Fig. 3.1(c), the first nearest neighbor (NN) hopping t between nonequivalent

sites A and B and the p-wave superconducting pairing, indicated by arrows, between equivalent

sites A or B located at the edges of the KzHNR. The Hamiltonian describing such a model reads



Figura 3.1: (a) Sketch of the 2D zHNR geometry adopted here, where N represents its width (n =
1, · · · ,N). The region within the red dashed area composed of 2N nonequivalent A (blue) and B
(orange) sites along the y direction represents the unit cell employed in the numerical simulations.
The M number of unit cells defines the nanoribbon length (m = 1, · · · ,M). (b) Representation of the
nearest-neighbor hopping t, which is adopted as the energy unit. (c) Schematic of a double-spin
KzHNR of width N = 2. The equivalent B (A) atoms of the upper (lower) KzHNR are paired with
each other via a p-wave superconducting parameter ∆.

H = Ht +H∆, (3.1)

where,

Ht = ∑
m,n

[t(a†
m,nbm,n−1 +a†

m,nbm−1/2,n+

a†
m,nbm+1/2,n)−∑

n
µ[a†

n,nan,n +b†
n,nbn,n]+H.c.],

(3.2)

corresponds to the NN hopping term t, as indicated in Fig. 3.1(b), where, µ is the chemical

potential and the operators a†
m,n/bm,n creates/annihilates an electron at site A/B of the unit cell.



Moreover, the Hamiltonian

H∆ = ∑
m,n

∆[a†
m,na†

m+1,n −a†
m,na†

m−1,n+

b†
m,n+1b†

m+1,n+1 −b†
m,n+1b†

m−1,n+1 +H.c.],
(3.3)

describes the p-wave superconducting pairing of the double-spinless KzHNR, where ∆ is the

pairing strength between sites B in the top and between sites A in the bottom of each KzHNR,

as indicated in Fig. 3.1(c). Once particle-hole, time-reversal, and chiral symmetries are preser-

ved by the Hamiltonian [Eqs. (3.1)-(3.3)], it belongs to the BDI symmetry group class with Z
index (77, 78).

3.3 Phase Transition Calculation in the Spinless Case

We will consider the infinite double KzHNR case. We are interested in calculating the

winding numbers, the band structure, and the topological phase transitions exhibited by the

system. In the main text of the work, we use this information as guidelines to interpret the

emergence of MZMs in the finite case. By considering the Fourier transform of Eqs. 3.2 and

3.3, the total Hamiltonian can be written as

H = Ht +H∆, (3.4)

with the first nearest neighbor hopping and the superconductor pairing term. In the momentum

representation, the Hamiltonian can be written as

Ht =−∑
k,n
[µ(a†

k,nak,n +b†
k,nbk,n)+

t(a†
k,nbk,n−1 −2a†

k,nbk,n cos(ka/2))+H.c.],

H∆ = ∑
k,n
[2i∆sin(k)(a†

k,na†
−k,n +b†

k,n+1b†
−k,n+1)+H.c.], (3.5)

where n = 1,2, corresponding to the top and bottom chain index. In the Bogoliubov-de

Gennes (BdG) form we can express the Hamiltonian as:

1
2 ∑

k
Ψ

†h(k)Ψ,

Ψ ≡
(

ak,1,a
†
−k,1,bk,1,b

†
−k,1,ak,2,a

†
−k,2,bk,2,b

†
−k,2

)
.

(3.6)



We obtain the total Hamiltonian in the following matrix form

h(k) =



−2µ ∆k −ε 0 0 0 0 0

∆k∗ +2µ 0 ε 0 0 0 0

−ε 0 −2µ ∆k −t 0 0 0

0 ε ∆k∗ +2µ 0 t 0 0

0 0 −t 0 −2µ ∆k −ε 0

0 0 0 t ∆k∗ +2µ 0 ε

0 0 0 0 −ε 0 −2µ ∆k

0 0 0 0 0 ε ∆k∗ +2µ


, (3.7)

where ∆k = 2i∆sin(k) and ε = −2t cos(k/2). This Hamiltonian has the dispersion relations

given by

E1,2,3,4 =±
√

−2∆2 +2ζ1 + t2 ± ε̃(4µ + t)
2

,

E5,6 =±
√

−2∆2 +2ζ2 + t2 − ε̃(4µ − t)
2

,

and E7,8 =±
√

−∆2 + ε2 +2ζ3 + ε̃(2µ − t/2),

(3.8)

with ζ1 = ε2 + 2µ2 + 2µt, ζ2 = ε2 + 4µ2 − 2µt, ζ3 = 2µ2 − µt + t2 and ε̃ =
√

4ε2 + t2. It is

worth noting that Eq. (3.7) satisfies both the particle-hole and time-reversal symmetries, since

C h(k)C−1 =−h(−k), (3.9)

and

T h(k)T −1 = h(−k), (3.10)

where C and T are charge conjugation and time-reversal operators (77, 78), respectively.

Eq. (3.7) also satisfies the chiral symmetry

K h(k)K −1 =−h(k), (3.11)

in which the chiral operator is defined by the anti-commutation relation [K ,h(k)]+ = 0. Thus,

one can write h(k) in its corresponding chiral form by performing the following unitary trans-

formation:

h̃(k) = U †h(k)U =

[
0 A(k)

A∗(k) 0

]
, (3.12)

where A(k) is a 4×4 chiral matrix given by



A(k) =


−4i∆sin(k)+4µ −4t cos

( k
2

)
0 0

−4t cos
( k

2

)
−4i∆sin(k)+4µ 2t 0

0 2t −4i∆sin(k)+4µ −4t cos
( k

2

)
0 0 −4t cos

( k
2

)
−4i∆sin(k)+4µ

 .

(3.13)

Once particle-hole, time-reversal, and chiral symmetries are preserved by h(k), the cor-

responding system belongs to the BDI symmetry group class with Z index (77, 78), with its

topology being characterized by the associated Chern number invariant (79), i.e., the winding

number (75, 76)

W = Tr
∫

π

−π

dk
2πi

A−1
k ∂kAk =−

∫
π

−π

dk
2πi

∂kln[Det(Ak)], (3.14)

which gives the number of MZMs at the edges of the spinless KzHNR, as discussed in Fig.

3.3.For a better understanding of this calculation, you can refer to the appendix A.



Figura 3.2: Figs (a)-(d): band structure for a N = 2 infinity double-spinless KzHNR, considering
µ values where the TPTs occur. Figs (e)-(k): the same as top Figs, but considering both spin
components (infinite double-spin KzHNR) 3.4. The energies are measured in units of t, and we
fix the p-wave superconducting pairing parameter ∆ = 0.5t. Additionally, the parameters of the
double-spin case (middle and bottom Figs) are λR = 0.05t and λZ = 0.1t. In the double-spinless
case we have four TPTs occurring at: a)µ =−1.28t b) µ =−0.78t c) µ =−0.50t d) µ = 0. For the
double-spin case, the TPTs occur at e)µ =−1.33t with spin down, f)µ =−1.23t with spin up g)µ =
−0.84t with spin down, h)µ =−0.73t with spin up, i)µ =−0.55t with spin down j) µ =−0.45t with
spin up k)µ = −0.05t with spin down. The density of states, corresponding to the band structure
depicted in (k), is plotted in (l), where we can observe the half-metallicity characteristic of those
TPTs.

.

In Fig. 3.2 (a)-(d), we plot the band relation dispersion [Eq. (3.8)] for a N = 2 infinity

double-spinless KzHNR, considering µ/t values where the TPTs occur. For a) µ =−1.28t and

b) µ = −0.78t, the gap closes at k = 0, defining two TPTs and forming a topological phase in

this interval with winding number equal to W = 1. A new TPT occurs at c) µ = −0.50t, with

the gap closing at k⃗ = π , and defining a new topological region with winding number equal to

W = 2 between µ =−0.78t and µ =−0.50t. Finally, at d) µ = 0 the gap closes again at k⃗ = π ,

defining another TPT, and forming a topological phase with winding number equal to W = 1

between µ = −0.50t and µ = 0. The same transitions appears at the same values for positive

chemical potentials, once the system described by Eq. (3.7) exhibits a particle-hole symmetry.



Figura 3.3: (a) Energy spectrum of a 2D double-spinless KzHNR [Eq. (3.1)] as a function of µ

and p-wave pairing ∆ = 0.5t, for a KzHNR of width N = 2 and length M = 200. The numbers on
the real axis represent the W associated with the corresponding topological region. (b) Schematic
representation of the emergence of MZMs at the ends of the KzHNR for each associated W . Each
semicircle represents an MZM generated on the site of the active border of the KzHNR. The two
Majoranas connected with the dotted ellipses form a standard fermion. In the topological phase,
unpaired Majorana fermions emerge at both ends of each KzHNR, as represented by the semicir-
cles outside the dotted ellipses. The situations (I) and (III) describes W = 1, where only the top or
bottom KzHNR generates one MZM at each of its ends. Otherwise, in (II) W = 2, indicating that
both the KzHNRs generate MZMs simultaneously at their corresponding ends.

For simplicity, we only have considered a double-spinless KzHNR of width N = 2 in our

numerical simulations. However, the results presented here are also valid for nanoribbons of

larger widths.

Fig. 3.3(a) shows the bulk energy spectrum E/t of the double-spinless KzHNR [Eq. (3.1)]

as a function of the chemical potential µ/t. Several TPTs characterized by the closing-and-

reopening of superconducting induced gap appear at the µ = −1.28t, −0.78t, −0.50t, and

−0.02t, respectively. According to the bulk-boundary correspondence principle (80), the mul-

tiplicities of modes on the boundaries associated with the TPTs in bulk are characterized by

topological invariants of the bulk energy bands, as the so-called winding number W , for ins-

tance. Here, we have found W = 0, W = 1 and W = 2 [see Fig. 3.2(a)-(d)], which are in-

dicated in the corresponding regions of Fig. 3.3(a). Following the bulk-boundary principle,

W = 0 (µ > |1.28t|) characterizes the trivial phase, where MZMs are absent at the ends of both

the KzHNRs. Between µ = −1.28t and µ = −0.78t, a topological region is characterized by

W = 1, indicating the emergence of MZMs at opposite ends of either bottom or top KzHNR

[Fig.3.3(b), cases (I) and (III)].

Fig. 3.3(a) also exhibits another topological region characterized by W = 2 in the interval

−0.78t < µ < −0.50t, for instance, corresponding to the situation in which the MZMs arises



simultaneously in the ends of both top and bottom KzHNR, as indicated in the sketch (II) of

Fig. 3.3(b). In Fig. 3.3(a), we also can notice that the same TPTs which occur for µ < 0 appear

for positive values of µ due to the particle-hole symmetry exhibited by the Hamiltonian of

Eq. (3.1) 1.

3.4 Spin full model and emergence of spin-polarized MZMs

To analyze the possibility of distinguishing the spin species of the MZMs, we now dis-

cuss the emergence of MZMs at the double-spin KzHNR geometry edges, considering both

spin orientations explicitly. We account for the infinite version of the whole spin case (see Fig.

3.2(e-k)). Here we discuss the finite version of the model. To properly break the spin dege-

neracy of the system, we introduce two additional effects in the Hamiltonian of Eq. (3.1): the

extrinsic RSOC and an EMF. The extrinsic RSOC lifts the corresponding bands’ spin degene-

racy, unless at k = 0. Additionally, the EMF applied perpendicularly to the ribbon plane drives

the system through TPTs exhibiting spin-polarized MZMs. In this situation, spin-discriminated

MZMs emerge at the ends of the double-spin KzHNR structure. The corresponding generalized

Hamiltonian is given by

H = Ht +H∆ +HR +Hz, (3.15)

which can be written in a new basis of four distinct atoms as indicated in Fig. 3.4. On this basis,

䈀

Figura 3.4: Scheme of the basis adopted in the Hamiltonian given by the Eqs. (4-8) describing
the finite double-spin KzHNR chain of width N = 2. The unit cell B, represented by the dashed
rectangular area is built with four distinct atoms ai, bi, ci and di.

1It also should be noticed in Fig. 3.3(a) that there is an uncharacterized small region in the interval −0.02t <
µ < 0.02t, which is an effect produced by the finite length of the KzHNR chain considered in the calculations
(M = 200) and therefore tends to disappear for larger values of M, giving rise to a single TPT at µ = 0.



Figura 3.5: Formation of MZMs parameter study: Energy spectra for a N = 2 finite double-spin
KzHNR as a function of µ . We employed the same parameters set used in all the simulations
of the work: ∆ = 0.5t, λR = 0.05t and λZ = 0.1t, but only changing the particular parameter in-
dicated in the figure: I)Length: M = 10,50,100. II) Extrinsic Rashba spin-orbit coupling λR =
0.01t,0.03t,0.05t. III) Superconductor pairing ∆ = 0.1t,0.3t,0.5t. IV) EMF λZ = 0.005t,0.03,0.08t.

the Hamiltonian describing the NN hopping and the p-wave superconducting pairing reads

Ht =−µ

2

M

∑
i,σ
(a†

iσ aiσ −aiσ a†
iσ +b†

iσ biσ −biσ b†
iσ+

c†
iσ ciσ − ciσ c†

iσ +d†
iσ diσ −diσ d†

iσ )−

t
4

M

∑
i
(a†

iσ biσ −biσ a†
iσ +b†

iσ ciσ − ciσ b†
iσ +d†

iσ ciσ − ciσ d†
iσ )−

M−1

∑
i

t
4
(a†

iσ bi+1σ −bi+1σ a†
iσ +d†

iσ ci+1σ − ci+1σ d†
iσ )+H.c.,

(3.16)

and

H∆ =
M−1

∑
i
[∆(aiσ ai+1σ −ai+1σ aiσ+

diσ di+1σ −di+1σ diσ )+H.c.],

(3.17)

respectively.
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Figura 3.6: (a)Energy spectra of a finite double-spin KzHNR [Eq. 3.15] as a function of µ , N = 2
and M = 200. The model parameters are ∆= 0.5t, λR = 0.05t and λZ = 0.1t. The blue and red colors
correspond to spin up and down regions at the real axis, respectively. The green lines describe the
formation of a regular fermion coming from the combination of Majorana excitations belonging
to opposite KzHNRs. (b) Zoomed region of (a) around E = 0 for µ < 0, showing in detail the
formation of spin-polarized MZMs.

The extrinsic RSOC induced in the KzHNR can be generated by breaking the inversion

symmetry due to either a substrate with strong spin-orbit interaction (13) or modulated by the

action of an external electric field E⃗ applied perpendicularly to the nanoribbon plane (60–62,

64, 81, 82). Its corresponding general Hamiltonian reads

HR = ∑
i, j,σ

[ia†
i,σ (⃗ui j .⃗σ)a j,σ +H.c.], (3.18)

where u⃗i j =
(

e
2m2av f

)
E⃗ × δ⃗i j = −λR

a k̂ × δ⃗i j, with e and m being the charge and mass of the

electron, respectively. Moreover, v f is the Fermi velocity, the lattice constant is given by a and

the vector-position δ⃗i j corresponds to the three nearest neighbors, as represented in Fig. 1(b).



Writing Eq. (3.18) in the basis defined in Fig. 3.4, we can write the Rashba Hamiltonian as

HR =
M

∑
i,σ

iλRsign(σ)
[
γ1(a

†
iσ biσ −biσ a†

iσ )+(
−1

2

)
(b†

iσ ciσ − ciσ b†
iσ )+ γ2(c

†
iσ diσ −diσ c†

iσ )
]

+
M−1

∑
i,σ

iλRsign(σ)
[
γ2(b

†
iσ ai+1σ −ai+1σ b†

iσ )+

γ1(d
†
iσ ci+1σ − ci+1σ d†

iσ )
]
+H.c.,

(3.19)

where γ1 =
(

1
2 + i

√
3

2

)
, γ2 =

(
1
2 − i

√
3

2

)
, λR is the extrinsic RSOC parameter and σ =↑,↓ is the

spin index for each operator. The last term of Eq. (3.15)

Hz =
1
2

M

∑
i,σ

λZsign(σ)[(a†
i,σ ai,σ −ai,σ a†

i,σ )+

(b†
i,σ bi,σ −bi,σ b†

i,σ )+(c†
i,σ ci,σ − cic

†
i,σ )+

(d†
i,σ di,σ −di,σ d†

i,σ )]+H.c.,

(3.20)

represents an EMF with the magnetization vector pointing to the azimuthal direction (83, 84),

where λZ is the EMF strength.

Now, we perform a detailed analysis of how the KzHNR length M, the extrinsic RSOC

λR, the superconducting pairing ∆ and the EMF λZ affects the emergence of MZMs on the real

axis. The Hamiltonian given by Eqs. (4-8), is solved numerically using the basis represented in

Fig. 3.4. The calculation becomes more time-consuming as the Hamiltonian matrix dimension

grows with the value of M.

In Figs. 3.5(I)-(IV), we plot the energy spectra as a function of µ of a double-spin KzHNR

with width N = 2 and lenght M = 100, for distinct parameters of the Hamiltonian: ∆ = 0.5t,

λR = 0.05t, and λZ = 0.1t except the corresponding varied parameter. We explicitly indicate it

in the Figs.

The emergence of polarized MZMs at the edges of the double-spin KzHNR is calculated

by computing the mean value of ⟨Sz⟩ = ⟨ψ| Ŝz |ψ⟩ of MZMs solutions. The label ψ represents

eigenvectors of the total Hamiltonian given by Eq. (3.15) and Ŝz is the Pauli matrix in the ẑ

direction.

Figure 3.5-I shows the dependence of the energy spectra as a function of µ/t for lengths

M = 10(a), 50(b) and 100(c) of the double-spin KzHNR, respectively. In Fig (a), we can verify

oscillatory patterns for the smallest double spin-KzHNR structure. The oscillating behavior is



expected to appear for short Majorana nanowires due to overlapping MZMs of opposite edges.

For M = 50 (b), we observe the appearance of MZMs at the real axis around µ = 0 and in

the inferior band region in the range, µ = [−1.2,−1.3]. Fig (c) depicts the case of M = 100,

showing the MZMs on the real axis in all the available topological regions.

Figure 3.5-II shows the dependence of the energy spectra as a function of µ/t with the

extrinsic RSOC parameters λR = 0.01t, 0.03t and 0.05t. The result shows that a low value of

λR is sufficient to generate well-defined MZMs on the real axis in all the topological regions.

In Fig. 3.5-III, we observe the dependence of the energy spectra as a function of µ/t for

∆ = 0.1t, 0.3t and 0.5t, in Figs (a), (b) and (c), respectively. These profiles indicate that the

p-wave paring ∆ strongly affects the MZMs formation on the real axis. The MZMs are formed

first, for ∆= 0.1t (a) in the range µ = [−1.2,−1.3]. Only when ∆= 0.5t (b), the MZMs emerges

around µ = 0. Well-defined MZMs arises in the region of µ ≃ 0 only for higher values of ∆.

Fig. 3.5-IV shows the dependence of the energy spectra with the EMF for λZ = 0005t(a),

003t(b) and 008t(c) as a function of µ/t. The EMF acts uniformly over the MZMs formation

for all µ values. The enhancement of λZ also increases the number of MZMs over the real axis.

The parameters analysis presented in Fig. 3.5 help us to chose the parameters used in

Fig. 3.6, that shows the high-resolution energy spectrum E/t of a finite double-spin KzHNR

with N = 2, M = 200,∆ = 0.5t, λR = 0.05t and λZ = 0.1t as a function of µ/t. Fig. 3.6(a)

has the same shape of the double-spinless case [Fig. 3.3(a)], but with spin-polarized energies

resolved into spin-up (blue color) and spin-down (red color) regions at the real axis. A mirror

spin-symmetry concerning µ = 0 is observed in the plot: a spin-up MZMs for µ < 0 changes to

spin-down for µ > 0. Moreover, spin-polarized MZMs can be accessed by tunning µ slightly

below or above µ = 0.

Fig. 3.6(b) shows the zoomed region of (a) around E = 0 for µ < 0, where it is possible to

see in detail the emergence of spin-polarized MZMs as µ changes. We can detect these MZMs

with well-defined spin orientation via spin-polarized STM measurements (85). The green lines

depicted in both Figs of Fig. 3.6 do not represent MZMs, but ordinary fermions, resulting from

the combination of MZMs localized at the ends of opposite KzHNRs. This effect tends to

disappear as the width N of the double-spin KzHNR increases.

As discussed in the spinless case of Fig. 3.3, the emergence of spin-polarized MZMs on the

real axis depicted in Fig. 3.6 is also related to TPTs in the bulk gap. However, each value of µ

related to a TPT in the spinless scenario splits into two values of µ , describing TPTs for both

spin up and down components. The strength of this splitting is given by the RSOC parameter



λR. For details, see Fig. 3.2.

Considering the Fourier transform of the total Hamiltonian given by 3.15, we calculate the

topological phase transitions for the infinite spinfull case as a function of the chemical potential.

By considering again n = 1,2, as the top and bottom chain indexes,

Ht =−
N

∑
k,n,σ

µ(a†
k,n,σ ak,n,σ +b†

k,n,σ bk,n,σ )+

t(a†
k,n,σ bk,n−1,σ −2a†

k,n,σ bk,n,σ cos(ka/2))+H.c.,

(3.21)

H∆ =
N

∑
k,n,σ

∆k(a
†
k,n,σ a†

−k,n,σ +b†
k,n+1,σ b†

−k,n+1,σ )+H.c.;

∆k = 2i∆sin(k),

(3.22)

HR =
N

∑
k,n,σ

ΛRσ

[
−a†

k,n,σ bk,n−1,σ−

2cos
(

k/2− 2π

3

)
a†

k,n,σ bk,n,σ+

b†
k,n,σ ak,n+1,σ +2cos

(
k/2+

2π

3

)
b†

k,n,σ ak,n,σ

]
+H.c.;

ΛRσ = iλRsign(σ),

(3.23)

and

Hz =
N

∑
k,n,σ

sign(σ)λZ(a
†
k,n,σ ak,n,σ +b†

k,n,σ bk,n,σ )+H.c.. (3.24)

In Fig. 3.2(e)-(k), we plot the band structure [Eqs. (3.21) - (3.24)] for a N = 2 infinity double-

spin KzHNR, considering µ values where the TPTs occur. To discriminate the two possible spin

orientations in the edges of the KzHNR, we introduce two new physical effects: the extrinsic

RSOC and the EMF given by Eqs. (3.23) and Eq. (3.24). When compared to the previous

case, each transition splits into two, one with spin up and the other with spin down, where the

split is tuned by the λR = ±0.05t parameter. For example, the TPT that occurs at Fig 3.2(a)

µ = −1.28t, for the spinless case splits into µ → µ ±λR = −1.33t;−1.23t in Figs 3.2(e) and

(f), respectively. However, in the double-spin case, we did not obtain the winding numbers due

to the involved complexity of the calculations.

In Fig. 3.2(l), we plot a typical density of states for µ = −0.05t in a point where a TPT

occurs and that exhibits half-metallicity; what is another striking characteristic that occurs in all

the other Majorana TPTs of the system. This effect leads the double-spin KzHNR into a half-

metallic state as indicated in Fig. 3.2(l), resulting in insulating behavior for one spin component



and metallic behavior for the other component (86, 87).

3.5 Experimental perspectives

Among available experimental results for realizing a double-spin KzHNR structure, we

suggest the silicene deposited on a Pb superconducting substrate as a possible candidate. In

the superconducting phase, under the presence of a strong RSOC coming from the Pb and an

applied EMF, the Cooper pairs of the Pb substrate can enter into the silicene region via proximity

effect, giving rise to a p-wave-induced pairing in the double KzHNR structure.

The growth of silicene under Pb substrates was experimentally investigated using guidelines

of DFT simulations results (88–91). However, the production of silicene nanoribbons inducing

Pb reconstructions on Si(111) surface (92) was not successful. It was obtained short silicene-

like nanoribbons directly bonded to the Si(111) layers, and Pb only acted as a surfactant.

A possible route to produce silicene nanoribbons (93) is to use Pb layers on vicinal Si

surfaces (54–56), like Si(553) or Si(557). In the case of Pb/Si(553), Pb forms a dense layer.

The Pb layer is electronically decoupled from the substrate to a large extent. This is entirely

different from the case of Pb-induced Si(111) reconstruction. Strong Pb-Pb bonding within the

layer should favor the growth of Si on it without migration of Pb atoms on top of silicene.

Moreover, several previous theoretical studies have shown that the zHNRs accumulate elec-

trons to form localized magnetic moments (94) at its edges. The coupling of atoms belonging

to the same edge is ferromagnetic and between atoms from different edges is antiferromagnetic

(95–98). This situation is depicted in Fig. 3.1(c). In particular, low-width silicene nanoribbons

are predicted to have an antiferromagnetic ground state (99, 100). Another possibility to expe-

rimentally realize a double spin-polarized KzHNR is following the recipe of the reference (13):

growing an antiferromagnetic nanoribbon or some artificial antiferromagnetic ladder over a

strong spin-orbit conventional s-wave superconductor. In Appendix B, we present an estimative

about the possibilities to experimentally realize a double-spin KzHNR based on silicene layers

deposited on top of a Pb superconducting substrate.

3.6 Conclusions

This work reports the possibility of obtaining spin-polarized MZMs at opposite edges of a

double-spin KzHNR structure. The regions of energy spectrum E/t with MZMs having well-

defined either spin up or down orientations can be accessed by tunning the µ/t of the KzHNRs.



Moreover, these spin-polarized intervals in the E/t × µ/t profile are associated with distinct

topological phases, characterized by the topological invariant winding number W = 1 or W =

2. Interestingly enough, for the situation wherein W = 2 four MZMs emerge in the double

KzHNR geometry: two at the opposite ends of the top zHNR and two at the opposite ends of

the bottom one. In this scenario, it should be emphasized that at least four MZMs are required

for defining a qubit (101–104). Thus, the proposal is a natural candidate for realizing hybrid

quantum computing operations (72, 73) between conventional spin qubits and topological qubits

based on MZMs with well-defined spin orientation, suggesting a possible route for performing

Majorana spintronics.



Capı́tulo 4
STUDYING THE EMERGENCE OF MAJORANA

ZERO MODES IN PENTA-SILICENE NANORIBBONS

4.1 Introduction

Ultra-scaling of nanoelectronic devices, beyond Moore’s law, still using the ubiquitous sili-

con technology, could come from silicene (18–20), the first silicon-based graphene-like artificial

two-dimensional (2D) quantum material, which further engendered the Xenes family (105), and

which was used to fabricate an atom-thin channel in a field effect transistor (106, 107). Mo-

reover, topological silicon nanowires hosting Majorana fermions could be a materials platform

for a quantum computer (24). However, like other nanowire candidates, even proximitized

ones based on heavier constituents with larger spin-orbit coupling, until now, no conclusive

experimental measurements guarantee incontrovertibly the existence of topologically protected

Majorana-zero-modes (MZMs) for the possible realization of qubits (21, 22). A paradigmatic

breakthrough would be the experimental implementation of the generic Kitaev toy model with

a silicon platform (3). Theoretically, spin-polarized MZMs could be harbored at the opposite

ends of a one-dimensional (1D) linear zig-zag honeycomb nanoribbon (zHNR) mimicking two

parallel Kitaev chains connected by a hopping term (17). However, no such setup based on

zHNRs has been realized until now. Instead, a realistic implementation might be obtained by

using the straight, highly perfect, and massively aligned atom-thin penta-silicene nanoribbons

with a very high aspect ratio (p-SiNRs), purely composed of silicon pentagonal building blocks

and grown by molecular beam epitaxy on the (110) surface a silver crystal template (2). These

p-SiNRs are displayed in Fig. 4.1. We will theoretically demonstrate that these p-SiNRs could

constitute a tantalizing disruptive new Kitaev platform.



Figura 4.1: (Color online) Si SNR on Ag(110) surface. (a) and (b) Experimental STM images
(uncorrected drift), (c) High-resolution nc-AFM image. (d) Top and cross view of the arrange-
ment of the Si pentagonal building blocks. (a) and (b) Courtesy Eric Salomon, (c) Reprinted with
permission from (1). Copyright 2023 American Chemical Society. (d) From Cerda et al.(2).

Since the appearance of the generic Kitaev model (3), several platforms were proposed

to realize it, both from theoretical (11, 15, 36–38, 41, 42), and experimental points of view

(9, 10, 12–14, 35, 108). A helpful review of the experimental state-of-the-art on this subject can

be found in Refs. (22, 40, 109).

This model takes into account p-wave superconductor pairing between electrons in different

sites of a one-dimensional chain (Kitaev chain) and predicts the existence of unpaired MZMs at

opposite ends of a finite Kitaev chain. However, until now, there are no conclusive experimental

measurements that guarantee without doubt the existence of topologically protected MZMs (46–

48) except, possibly, rare cases, such as chains comprising a few magnetic adatoms placed one

by one on a superconducting surface (110, 111). Per se, this situation justifies the search for

new platforms.

One possible alternative platform is the one-dimensional (1D) HNRs that have been recei-

ving growing attention in the literature(17, 49, 50, 76). Nevertheless, the mono-elemental 2D

graphene-like materials coined Xenes, where X represents elements from group IIIA to group

VIA of the periodic table, could constitute possible candidates to build zHNRs with the abi-

lity to harbor MZMs at their ends (51–53, 112). Penta-Silicene (X=Si) is a highly promising

candidate in this family for obtaining a zHNR geometry that can host MZMs (1, 2, 113).

In a previous work (17), we addressed the problem of Majorana spin discrimination em-



ploying a double-spin Kitaev zigzag honeycomb nanoribbons (KzHNR), which mimics two

parallel Kitaev chains connected by the hopping t (see figure 1 of (17)). Since such KzHNRs

have not been realized in experiments, we look instead in the present work at the possibility

of obtaining MZMs in p-SiNRs, harboring Dirac fermions, which have been epitaxially grown

on Ag(110) surfaces (2, 114–116). Typically, highly perfect, atom thin, massively aligned sin-

gle strand p-SiNRs, 0.8 nm in width, and with lengths extending to tens of nanometers were

obtained by molecular beam epitaxy upon in situ Si deposition onto Ag(110) surfaces held

at room temperature, as shown in Fig. 4.1(a). In scanning tunneling microscopy (STM) and

high-resolution nc-AFM images, these p-SiNRs appear as two shifted lines of protrusions along

the [110] direction as shown in Fig. 4.1(b-c) and are separated by twice the nearest neighbor

Ag-Ag distance, i.e., 0.577 nm. Their hidden internal atomic structure was initially uncovered

employing thorough density functional theory (DFT) calculations and simulations of the STM

images (2), pointing to an arrangement of pure Si pentagonal building blocks, as displayed in

Fig. 4.1(d), which defines the missing pentagonal row (P-MR) model employed in the Supple-

mental information of reference (2) to optimize the angles and the distance between the silicon

atoms in the pentagonal arrangement. This unique atomic geometry was later directly visualized

by high-resolution non-contact atomic force microscopy (Fig. 4.1(c) from (1)).

We propose an experimental implementation for discriminating spin-polarized MZMs in

p-SiNRs grown on the Ag(110) surface and all aligned along the [110] direction. Since silver is

not a superconductor, we will proximitize them with lead, a conventional Bardeen–Cooper–Schrieffer

(BCS) superconductor with a relatively high critical temperature of Tc = 7.2 K, upon evapora-

ting in situ a thin lead film on top through a mask, as already mentioned in (105). Indeed, Pb

can be easily grown on Ag(110) surfaces (117) and is known to interact only very weakly with

the SiNRs, preserving their integrity and their electronic properties (88, 90). Then, detecting

and distinguishing the MZMs at the ends of the SiNRs will be done in situ at low temperatures

with the sSTM following the methodology of Yazdani and co-workers (118).

In this work, we will show that the spinless and spinful p-SiNRs with p-wave supercon-

ducting pairing reveal the emergence of topologically protected MZMs at opposite ends of the

p-SiNRs.

4.2 Lattice transformations

In Fig. 4.2(a), to reduce the geometry complexity of the p-SiNR and facilitate the tight-

binding calculations, we redefine its structure using square-shaped pentagons. Now the projec-



Figura 4.2: (Color online) (a) Penta-silicene (p-SiNRs) lattice transformation adopted. (b) Penta-
silicene angles. (c) Sketch of nonequivalent Si atoms placed at the vertices of the “square” penta-
gonal lattice. We also represent the unit cell employed by the atoms inside the dashed rectangle in
the simulations.

tion of the atoms that make three bonds over the x-axis are symmetrical. In the geometry of

the pentagons that constitute the p-SiNRs of Fig. 4.2(b), four silicon atoms are located on the

missing row plane, and only one exhibits a buckling structure (pink atoms). We neglect the buc-

kling structure of these atoms and employ a planar configuration composed of square-shaped

pentagons. As the distance between the silicon atoms that constitute the pentagons are close,

we consider them equal to the lattice parameter of the p-SiNR, a0, and the nearest neighbor

hopping equal to t. M ≡ 2na0, where a0 is the distance between atoms, as indicated in Fig. 4.2

and M is the size of the nanoribbon and N is the number of rowed unit cells. Fig. 4.2(c) exhibits

the shape of the p-SiNR and the unit cell composed of six atoms inside the dashed rectangle

employed in the calculations. We expect these simplifications will not change the results once

we keep the lattice features.



Figura 4.3: (Color online) Sketch of the penta-silicene nanoribbons: The penta-silicene system can
be viewed as a top and a bottom Kitaev chains hybridized via hopping t. The ellipses represent
the superconducting p-wave pairing between the pink (above) and yellow (below) silicon atoms (in
the real material, these atoms correspond to the bucked one). The arrows only indicate the spin
polarization needed to define a Kitaev chain.

4.3 Effective Hamiltonian - spinless case

The total Hamiltonian, which describes the p-SiNR of Fig. 4.3 is given by

H = Ht +H∆, (4.1)

with

Ht =−
N

∑
i=1

µ

(
a†

i,+ai,+−a†
i,−ai,−+b†

i,+bi,+−b†
i,−bi,−+

c†
i,+ci,+− c†

i,−ci,−+d†
i,+di,+−d†

i,−di,−+

e†
i,+ei,+− e†

i,−ei,−+ f †
i,+ fi,+− f †

i,− fi,−
)
−

N

∑
i=1

t
(

a†
i bi −bia

†
i +b†

i ci − cib
†
i +

c†
i di −dic

†
i + d†

i ei − eid
†
i + e†

i fi − fie
†
i

)
−

N−1

∑
i=1

t
(

a†
i+1 fi − fia

†
i +a†

i+1ci − cia
†
i +d†

i+1 fi − fid
†
i

)
+H.c,

(4.2)

where µ is the chemical potential, all the hopping terms between the atoms equal t, which is

considered the energy unit. The index (-) and (+) differentiate the creation and annihilation

operators of electrons and holes. The system Hamiltonian of Eq. (4.2) was built according to



the unit cell of nonequivalent Si atoms (a,b,c,d,e,f) shown in Fig. 4.2(b).

The p-SiNRs are grown on Ag(110) surfaces in the setup proposed here. However, silver

is not a superconductor, and to generate a p-wave pairing ∆ on the pink atoms of Fig. 4.3, we

evaporate in situ a thin lead film over the Ag(110) surface in such a way that the buckled silicon

atoms enter in contact with the lead atoms. Under the presence of a strong RSOC coming from

the Pb atoms and an applied magnetic field, the s-wave Cooper pairs of the Pb film can enter

into the p-SiNH region via proximity effect (Andreev reflections) (11), giving rise to a p-wave-

induced pairing in the double p-HNRs structure. By following the same procedure done in our

previous work (17) and based on the Kitaev model (3), we introduce a spinless superconducting

pairing between the “external” atoms of the same type as shown in Fig. 4.3. The Hamiltonian,

which describes such a pairing, reads

H∆ =
N−1

∑
i=1

∆

(
b†

i b†
i+1 −b†

i+1b†
i + e†

i e†
i+1 − e†

i+1e†
i +H.c.

)
, (4.3)

where ∆ is the superconducting pairing strength associated with the symmetry of the supercon-

ducting (SC) gap, and H.c is the hermitian conjugate.

4.3.1 Bulk calculations

To do the fourier transform and to calculate the properties we are interested in we can

simplify the system by doing the projection of atoms “b” and “e” on the x axis. Now as we

can see in the figure 4.4 we have two chains interconnected by atoms “c”, “d” and “a” , “f”.

Considering this new lattice, and considering that all hoppings (“t”) are equal, we can build the

Hamiltonian Eq.4.2. The parameter a0 is the side of the square and the distance between ’a’ and

’b’ (’d’ and ’e’) is a0/2.

Taking into account that our system has transnational symmetry in the direction of the x

axis, we can make the transformation to the space of the wave vectors k, where we can calculate

the band structures of the Bulk, for this we have to make a discrete Fourier transform .

an =
1√
N ∑

k
akeikRa (4.4)

whereRa is the position of the atom in the x axis. Using this transformation in a arbitrary case

for operator “aa j+Ra” and “ba j+Rb” where Ra and Rb are the positions of the atoms a and b



Figura 4.4: Representation of the simplified pentasilicene scheme with x-projections

respectively.

N

∑
n

a†
jb j = ∑

j

1√
N ∑

k
a†

ke−ik(a j+Ra)∑
j

1√
N ∑

k
bk′e

ik′(a j+Rb)

=
1
N ∑

k
∑
k′

a†
kb†

k′ ∑
j

e−ik(a j+Ra)bk′e
ik′(a j+Rb)

= ∑
k

∑
k′

a†
kb†

k′
1
N ∑

j
e−i(k−k′)a je−i(k′Ra)ei(kRb)

(4.5)

using
1
N

N

∑
n

e−ian(k−k′) = δk,k′ (4.6)

∑
k

∑
k′

a†
kbk′(δk,k′)e

−i(k′Ra)ei(kRb)

= ∑
k

a†
kbkeik(Rb−Ra)

(4.7)

now we can use the Eq. 4.7 to make the Fourier transform to our Hamiltonian. for example the

first term in the Hamiltonian Eq.4.2 (a†
i bi) where the position in x axis for “a” is Ra = 0 and for

“b” is Rb = a/2 and substitute in Eq. 4.7 we have the first term in k space.

N

∑
n

a†
i bi = ∑

k
a†

kbkeik(a0/2) (4.8)

Doing for the other terms, we have our Hamiltonian in k space (H(k) ).

H(k) = ∑
k

a†
kbkeik(a0/2)+a†

k fk +a†
kckeik(−a0)+b†

kckeik(a0/2)+

c†
kdk +d†

k ekeik(a0/2)+d†
k fkeik(−a0)+ e†

k fkeik(a0/2)H.c
(4.9)



H(k) =
[
Φ

]T



0 −te
ia0k

2 −te−ia0k 0 0 −t

−te−
ia0k

2 0 −te
ia0k

2 0 0 0

−teia0k −te−
ia0k

2 0 −t 0 0

0 0 −t 0 −te
ia0k

2 −te−ia0k

0 0 0 −te−
ia0k

2 0 −te
ia0k

2

−t 0 0 −teia0k −te−
ia0k

2 0


[
Φ

]
(4.10)

where

Φ = [a,b,c,d,e, f ] (4.11)

4.4 Superconductor coupling

To introduce superconducting coupling we will make the couplings on the two edges of

the nanoribbon, on the upper edge we will use the coupling on atoms “b”, and for the lower

edge we will use the coupling on atoms “e” . Now we can see that we have two kitaev chains,

one at the top and one at the bottom. these chains are connected by hopping but not by the

superconducting coupling.

The Hamiltonian for this case is described as

H∆ =−µ ∑
n

a†
nan +b†

nbn + c†
ncn +d†

ndn + e†
nen + f †

n fn+

∆∑
n

b†
n+1/2b†

n+1/2+2 −b†
n+1/2b†

n−1/2−1+

e†
n+1/2+1e†

n+1/2−2 − e†
n+1/2+1e†

n+1/2−2 +H.c,

(4.12)

where now we have a fermionic creation operator (b†) and a hole creation operator (b†) together.

the fourier transform for electrons are

c j =
1√
N ∑

k
ckeikRa (4.13)

the fourier transform for holes are

c j =
1√
N ∑

k
c−ke−ikRa (4.14)

In the same way that we made an arbitrary case for the bulk, we will make it for this case.



N

∑
j

c†
jc

†
j =∑

j

1√
N ∑

k
c†

keik(a j+Ra)∑
k′

1√
N

c†
−k′e

−ik′(a j+Rb)

=
1
N ∑

k
∑
k′

c†
kc†

−k′ ∑
j

eik(a j+Ra)e−ik′(a j+Rb)

= ∑
k

∑
k′

c†
kc†

−k′
1
N ∑

j
e−i(k′−k)a jei(kRa)e−i(kRb)

= ∑
k

∑
k′

c†
kc†

−k′(δk,k′)e
i(k′Ra)e−i(kRb)

N

∑
j

c†
jc

†
j = ∑

k
c†

kc†
−keik(Ra−Rb)

(4.15)

Ra and Rb are the positions on the x axis. Now apply Eq.4.15 in the Hamiltonian Eq. 4.12

H∆ = ∆∑
n

b†
kb†

−ke−2ika0 −b†
kb†

−ke2ika0 + e†
ke†

−ke−2ika0 − e†
ke†

−ke2ika0 +H.c,

H∆ = ∆∑
n
−2isin(2a0k)b†

kb†
−k −2isin(2a0k)e†

ke†
−k +H.c,

(4.16)

To accommodate the holes, a redundancy must be introduced in the old Hamiltonian Eq.4.16

, but now for the hole operators, and the new form of the Hamiltonian is

Ht = ∑
n

a†
nbn+1/2 −anb†

n+1/2 +a†
ncn−1 −anc†

n−1 +a†
n fn −an f †

n

b†
n+1/2cn+1 −bn+1/2c†

n+1+

c†
n+1dn+1 − cn+1d†

n+1+

d†
n+1 fn −dn+1 f †

n +d†
n+1en+3/2 −dn+1e†

n+3/2+

e†
n+3/2 fn+2 − en+3/2 f †

n+2 +H.c.

(4.17)

in the k space the total Hamiltoninan (H(k)) is

H(k) = Ht(k)+H∆(k) =
[
Φ

]T
[

H(k) H∆(k)

H∗
∆
(k) −H∗(−k)

][
Φ

]
(4.18)

where

Φ = (ak,bk,ck,dk,ek, fk,a
†
−k,b

†
−k,c

†
−k,d

†
−k,e

†
−k, f †

−k) (4.19)



4.5 Topological Classification and Zak phase topological in-
variant

The classification of the topological phases of matter is provided by the analysis of fun-

damental symmetries for a given Hamiltonian in the discrete reciprocal space (77, 79, 119),

namely time-reversal (T R), particle-hole (PH ) or charge conjugation and chiral symmetries

(K ).

For the particular case of the spinless penta-silicene nanoribbons (p-SiNRs) with p-wave

superconducting pairing at their edges [Eq. (1) of main text], it is verified that both T R and

PH symmetries are preserved, once

T h(k)T −1 = h(−k) (4.20)

and

C h(k)C−1 =−h(−k), (4.21)

where T and C are the time-reversal and charge conjugation operators, respectively, and h(k) is

a matrix coming from the Hamiltonian of Eq. (1) in the manuscript, rewritten in the Bogoliubov-

de Gennes (BdG) representation, i.e.,

H (k) =
1
2 ∑

k
Ψ

†
kh(k)Ψk, (4.22)

with

Ψk ≡ (ak,a
†
−k,bk,b

†
−k,ck,c

†
−k,dk,d

†
−k,ek,e

†
−k, fk, f †

−k)
T (4.23)

being the spinor, which accounts the assumption of PH symmetry.

The fulfilment of both T R and PH symmetries directly implies that the K symmetry

is also preserved (119), meaning that

K h(k)K −1 =−h(k), (4.24)

where K = T ·C corresponds to the chiral operator. Moreover, from the relations expressed

in Eqs. (A.2), (A.4) and (A.6), we obtain T 2 = 1, C 2 = 1 and K 2 = 1, meaning that the

BdG Hamiltonian [Eq. (4.22)] of the spinless superconducting p-SiNR [Eq. (1), main text] is

a representative of the BDI symmetry class (119), the same class of the well-known Kitaev

chain (3).

It is worth mention that spinless superconducting p-SiNR is a simplification which takes

into account an “intrinsic” magnetic field. The presence of this field is crucial for inducing the



formation of p-wave superconducting pairing along the nanoribbon edges. However, in prac-

tical experimental setups, the source of the spin-polarization is an external magnetic field that

naturally breaks the T R symmetry and hence, K symmetry. From this argument, the “arti-

ficial” T R symmetry of the spinless model can be neglected, and thus the BdG Hamiltonian

of Eq. (4.22) belongs to the D symmetry class (79, 119). Therefore, the p-SiNR in presence of

an applied magnetic field is a Z2 superconductor in one-dimension (11, 119), once the propo-

sed double-spin Kitaev zigzag nanoribbon configuration can be regarded as two interconnected

Kitaev chains with a hopping term (cf. discussion in the main text).

From the previously discussed perspective, the topological and trivial phases of the spinless

p-wave superconducting p-SiNR, as described by the BdG Hamiltonian of Eq. (4.22), can be

distinguished by the Zak number topological invariant (120)

ϕZak =−
∫

π

−π

dk
2πi

∂k ln [Det(A(k))]. (4.25)

A nonzero quantized Zak phase ϕZak is associated to the emergence of topologically protected

edge states, which is an outcome of the conventional bulk-boundary correspondence (77, 119).

Specifically, the integer values of ϕZak topological invariant corresponds to the number of to-

pologically protected edge modes present in the system and characterizes its topological phase

transitions (TPTs).

To compute the Zak number through Eq. (4.25), it is necessary to obtain a chiral matrix

A (k) associated with h(k), which is performed through the computation of an unitary transfor-

mation outlined below:

h̃(k) = U †h(k)U =

[
0 A(k)

A∗(k) 0

]
, (4.26)

bringing h(k) to its chiral form, where

A(k) =



2µ 2te
ik
2 2te−ik 0 0 2t

2te−
ik
2 2Φk +2µ 2te

ik
2 0 0 0

2teik 2te−
ik
2 2µ 2t 0 0

0 0 2t 2µ 2te
ik
2 −2te−ik

0 0 0 2te−
ik
2 2Φk +2µ 2te

ik
2

2t 0 0 −2teik 2te−
ik
2 2µ


, (4.27)

is the chiral matrix, with Φk = i∆sin(2k).

By considering Eq. (4.27) and Eq. (4.25), and employing numerical integration, it beco-

mes feasible to compute the Zak number for several values of chemical potential µ . The ma-



Figura 4.5: Energy dispersion of the bulk system as a function of the chemical potential µ , for the
spinless p-SiNR with p-wave superconducting pairing between the atoms localized at the edges, cf.
Eq. (1) of the main text. The Zak phase ϕZak, represented by the values 0, 1, and 2, corresponds to
the number of MZMs present at the edges of either one or both chains comprising the p-SiNR.

nipulation of µ triggers the closing and subsequent reopening of the superconducting gap, a

phenomenon closely related to the TPTs, as discussed in the main text.

In this context, Fig. 4.5 illustrates the Zak number across distinct regions in the bulk energy

dispersion of the spinless p-wave superconducting p-SiNR. Notably, a Zak phase of zero cor-

responds to regions where zero-modes are absent, indicating that the system resides within the

topologically trivial phase. Conversely, for ϕZak ̸= 0, zero-energy modes emerge, indicating the

presence of topologically protected Majorana zero modes (MZMs) at the edges of either one

(ϕZak = 1) or both top/bottom chains (ϕZak = 2) of the p-SiNR (17).

4.6 Effective Hamiltonian - spinful case

In order to properly account for the spin degree of freedom in the superconducting p-SiNRs,

we follow our previous work (17). We introduce a Zeeman effect due to the application of an

external magnetic field perpendicular to the p-SiNRs plane. We also consider a Rashba spin-

orbit coupling (RSOC) from an external electric field perpendicular to the chain. Such criterion

comes from the fact that our chain is in contact with a substrate that produces a break time-

reversal symmetry (121–123).



The Hamiltonian, which accounts for the Zeeman effect, reads:

Hz = ∑
n,σ

Z sgn(σ)
(

a†
i,σ ai,σ +b†

i,σ bi,σ+

c†
i,σ ci,σ +d†

i,σ di,σ + e†
i,σ ei,σ + f †

i,σ fi,σ +H.c.
)
,

(4.28)

wherein Z is the effective strength of the Zeeman field and σ =↑,↓ is the spin index of each

operator representing the Si atoms in the p-SiNRs structure.

The extrinsic RSOC induced in the p-SiNRs can be modulated by the action of an external

electric field E⃗ applied perpendicularly to the nanoribbon plane (60, 62, 81, 82). Its correspon-

ding general Hamiltonian reads

HR = ∑
n,σ

ic†
i,σ (⃗ui, j .⃗γ)c j,σ̄ +H.c., (4.29)

where u⃗i, j = −R
a0

k̂ × δ⃗i, j, with R being the extrinsic RSOC parameter, δ⃗i, j is the vector that

connects the adjacent lattice sites i and j, γ⃗ the Pauli matrices and σ =↑,↓, is the spin index for

each operator, to the system in the p-SiNRs the Eq. 4.29 turns into

HR = ∑
n,σ

(
γ1(a†

n,σ bn+1/2,σ̄ )+ γ2(b
†
n+1/2,σ an,σ̄ )+

(a†
n,σ cn−1)− (c†

n−1an,σ̄ )+(−i)(a†
n,σ fn,σ̄ )+

(i)( f †
n,σ an,σ̄ )+ γ3(b

†
n+1/2,σ cn+1,σ̄ )+ γ4(c

†
n+1,σ bn+1/2,σ̄ )+

(−i)(c†
n+1,σ dn+1,σ̄ )+(i)(d†

n+1,σ cn+1,σ̄ )− (d†
n+1,σ fn,σ̄ )+

( f †
n,σ dn+1,σ̄ )+ γ3(d

†
n+1,σ en+3/2,σ̄ )+ γ4(e

†
n+3/2,σ dn+1,σ̄ )+

γ1(e
†
n+3/2,σ fn+2,σ̄ )+ γ2( f †

n+2,σ en+3/2,σ̄ )+H.c.,
)

(4.30)

where γ1 =
−1
2 + i

√
3

2 , γ2 =
1
2 − i

√
3

2 , γ3 =
−1
2 − i

√
3

2 and γ4 =
1
2 + i

√
3

2 .

Notice that from Eqs. (4.28) and (4.29), we are assuming the external Zeeman field Z per-

fectly perpendicular to the RSOC, i.e, Z ≡ Z⊥ ̸= 0 and Z∥ = 0. In Rashba nanowires setups,

this condition is responsible for the vanishing of the induced superconducting gap at zero mo-

mentum (inner gap) and the opening of a constant gap at finite momentum (outer gap), which

characterizes the topological phase transition and the concomitant emergence of MZMs protec-

ted by the outer gap (11).

However, from the experimental perspective, ensuring that the magnetic field is applied

only in the perpendicular direction of the RSOC field can be challenging. Then, it is natural to



consider also the effects of Z∥ ̸= 0. In this situation, we have both components of the Zeeman

field, and the critical magnetic field condition for the topological phase transition remains the

same. However, the behavior of the outer gap is not constant anymore, which affects the topolo-

gical protection of the MZMs towards fault-tolerant quantum computing operations. The effect

of Z∥ in the outer gap is not so detrimental if the RSOC is strong.

It is worth noticing that the limiting case of Z ≡ Z∥ ̸= 0 and Z⊥ = 0 can lead to the vanishing

of the outer gap, hence preventing the topological phase and emergence of MZMs. Therefore,

since our system is qualitatively described by the similar underlying physics of Rashba nanowi-

res, it is appropriate to experimentally ensure the dominance of the magnetic field component

perpendicular to the Rashba field.

Considering also the spin degree of freedom on both Ht and H∆ [Eqs. (4.2) and 4.12)], we

now can define the total system Hamiltonian as

Htotal = Ht +HZ +HR +H∆, (4.31)

which can be written in the corresponding Bogolyubov-de Gennes (BdG) form in k-space as
Htotal(k) = ΦT HBdG(k)Φ, with

HBdG(k) =


H↑,↑(k) H↑,↓(k) H∆,↑,↑(k) H∆,↑,↓(k)

H↑,↓(k) H↓,↓(k) H∆,↓↑(k) H∆,↓,↓(k)

H∗
∆,↑,↑(−k) H∗

∆,↑,↓(−k) H∗
↑,↑(−k) H∗

↑,↓(−k)

H∗
∆,↓,↑(−k) H∗

∆,↓,↓(−k) H∗
↓,↑(−k) H∗

↓,↓(−k)

 , (4.32)

where Hσ ,σ ′(±k) and H∆,σ ,σ ′(±k) represent the matrix elements for different spin directions

and the matrix elements corresponding to the part of the matrix where superconducting cou-

plings ∆ appear, respectively. The spinor Φ was constructed with the fermionic operators in the

following order:

Φ
T = (ak,↑,bk,↑,ck,↑,dk,↑,ek,↑, fk,↑,

ak,↓,bk,↓,ck,↓,dk,↓,ek,↓, fk,↓,

a†
−k,↑,b

†
−k,↑,c

†
−k,↑,d

†
−k,↑,e

†
−k,↑, f †

−k,↑,

a†
−k,↓,b

†
−k,↓,c

†
−k,↓,d

†
−k,↓,e

†
−k,↓, f †

−k,↓).

(4.33)

The spin alignment for each situation in the next section is computed numerically. We

calculate the mean value of the Pauli matrix in ẑ direction Ŝz, i.e., ⟨Ŝz⟩ = ⟨Ψ|Ŝz|Ψ⟩, where |Ψ⟩
are the eigenvectors of the total Hamiltonian given by Eq. (4.31).

In hybrid semiconducting-superconducting nanowires, sometimes dubbed Majorana na-

nowires, the following features strongly suggest the emergence of MZMs at the nanowire



ends (11):

(a) Closing and subsequent reopening of the superconducting gap in the bulk relation disper-

sion as the chemical potential µ changes, indicating a topological phase transition (TPT).

(b) Emergence of persistent zero-modes for specific system parameter values associated with

nonoverlapping wave functions localized at the opposite ends of the nanowire.

To investigate the possibility of MZMs in the p-SiNRs, we will analyze the energy spectrum

as a function of the chemical potential µ . Initially, we will consider the simplest case of a

spinless p-SiNRs with finite size N = 100, given by the Hamiltonian of Eq. (4.1); the bulk band

structure and the probability density function associated with the zero-energy states which arise

in the system energy spectrum.

Both the energies En and eigenvectors ψn per site are obtained by numerically solving the

Schrödinger equation Hψn = Enψn for the Hamiltonian of Eq. (4.1). To evaluate the position

dependence of the wave functions associated with zero energy states, we numerically calculate

the eigenvector ψn when En = 0, which allows obtaining the probability density per lattice site

according to

|ψn|2 = ψnψ
∗
n . (4.34)



4.7 Finite spinless p-SiNRs

Figura 4.6: (Color online) Spinless case: (a)-(c) Bulk energy dispersion for the spinless p-SiNRs
as a function of kx, for µ = 0.0t, 0.4t, and 0.7t, respectively. (d) Energy spectrum as a function of
the chemical potential. Vertical lines indicate the chosen values of chemical potential shown on top
Figs. (e)-(g) The energy spectrum with labels the energy levels in increasing order for µ = 0.0t, 0.4t,
and 0.7t, respectively. (i)-(k) Probability density [Eq. (4.34)] associated with zero-energy states, as
a function of the lattice site N = 1 . . .100.

In all the calculations we employed the following parameter set: ∆ = 0.5t, t = 1, Z = 0.1t,

and R = 0.05t. The top Figs of Fig. 4.6 show the bulk energy dispersion of the p-SiNRs in the

presence of the superconducting p-wave pairing described by Eq. (4.1), along the kx direction,

for three representative values of chemical potential µ [vertical arrows in Fig (d)]. Fig.4.6(a)

depicts the closing of the SC gap at kx = 0 for µ = 0.0t. As the value of µ enhances, the SC



gap opens and closes again at kx = 0, as shown in Figs (b) and (c), where µ = 0.4t and µ =

0.7t, respectively. This closing and reopening of the SC gap with the tuning of µ characterize

a topological phase transition. The bulk-boundary correspondence principle (80) ensures the

topologically protected MZMs at the ends of the p-SiNRs.

To verify the emergence of MZMs associated with the topological phase transition depicted

in Fig. 4.6(a)-(c), in Fig. 4.6(d), we plot the p-SiNRs energy spectrum as a function of µ . There

is no zero-energy mode for the values of µ where the gap closes (red and magenta vertical

lines). However, when µ = 0.4t (green vertical line), a zero-energy state arises, indicating the

presence of MZMs at the opposite ends of the p-SiNRs, topologically protected by the effective

p-wave SC gap [Fig. 4.6(b)]. This finding is similar to what was obtained in our previous

work (17), wherein the MZMs emerge at the opposite ends of a finite double zigzag honeycomb

nanoribbon.

Fig. 4.6(f) shows isolated zero-energy modes for µ = 0.4t, which are associated with a no-

noverlapping wave function, well-localized at the ends of the p-SiNRs, as depicted in Fig. 4.6(j);

which together with the topological phase transition [Fig. 4.6(a)-(c)], is a piece of strong evi-

dence that topologically protected MZMs emerge at the opposite ends of the spinless p-SiNRs.

In the Supplemental Material (SM), we developed an extensive analysis of the topological and

trivial phases of the spinless p-wave superconducting p-SiNR, that can be distinguished by the

Zak number topological invariant (120). However, due to the extreme mathematical complexity,

we cannot afford to do the same study for the spinful case.

Although there are zero-energy modes for other values of µ [Fig. 4.6(e) and (g)], they are

not associated with wave functions well-localized at the ends of the system, as can be seen in

Figs. 4.6(i) and (k), for µ = 0.0t and µ = 0.7t, respectively.

We also highlight that we analyze only one representative region of all energy spectrum

shown in Figs. 4.6(d), which presents other ranges of chemical potentials wherein a zero-energy

state, associated with the emergence of MZMs, arises. We can also observe that, unlike the

system of our previous work (17), the energy spectrum of Figs. 4.6(d) is asymmetric at about

µ = 0.



Figura 4.7: (Color online) Spinful case - Magnetic field up: (a)-(e) Bulk energy dispersion of the
superconducting p-SiNRs for the spinful situation, as a function of kx, for µ =−2.7t, −2.35t, 1.1t,
2.09t and 2.2t, respectively. (f) Energy spectrum as a function of the chemical potential. Vertical
lines indicate the chosen values of chemical potential shown on top Figs. (g)-(k) Energy levels sorted
in ascending order. respectively. (l)-(q) Probability density [Eq. (4.34)] associated with zero-energy
states, as a function of the lattice site N = 1 . . .100.



Figura 4.8: (Color online) Spinful case - Magnetic field down: The same situation of Fig. 4.7 but
with the magnetic field pointing in the opposed direction.

4.8 Finite spinful p-SiNRs

Now we will analyze how the spinless scenario shown in Fig. 4.6 is affected by the presence

of both Zeeman field [Eq. (4.28)] and extrinsic RSOC [Eq. (4.29)] coupling within the spinful

description [Eq. (4.31)]. In the following, we have adopted the strength of the magnetic field

Z = 0.1t and the intensity of the RSOC, R = 0.05t.

Figs. 4.7(a)-(e) exhibit the energy dispersion of the p-SiNRs given by the eigenenergies of

BdG Hamiltonian [Eq. (4.32)] as a function of kx, for distinct values of the chemical potential µ ,

indicated by vertical lines in Fig. 4.7(f). The spin polarization is indicated by the vertical color



bar, in which the red color represents the spin ↑= 1, while the blue color stands for spin ↓=−1,

and the light shades of colors mean the spin is neither up nor down. As µ is tuned, we can

see the opening and closing of the superconducting gap, thus indicating a TPT, as previously

verified in the spinless situation [Fig. 4.6(a)-(c)]. However, here we can notice that each TPT

associated with a specific value of µ has a preferential spin orientation, except Fig 4.7(c), where

the system exhibits a conventional band gap.

The spin-polarized TPTs in Figs. 4.7(a),(b),(d), and (e) lead to the appearance of spin-

polarized zero-modes in Fig. 4.7(f), which shows the system energy spectrum as a function

of µ . These zero-modes indicate the emergence of spin-polarized MZMs at the ends of the

p-SiNRs as µ is changed, similar to those found in (17).

The Figs (g)-(k) of Fig. 4.7 depict the corresponding energy levels sorted in ascending order,

respectively; the different values of µ used to calculate the MZMs are indicated by vertical black

lines in Fig. 4.7(f). For µ = −2.7t [Fig. 4.7(g)], there are two zero modes on the real axis of

spin up (red points), associated with nonoverlapping wave functions shown in Fig. 4.7(l). For

µ =−2.35t [Fig. 4.7(h)], there are two energy-states in the spin-up direction and other two with

spin-down, associated with degenerate (blue and red) nonoverlapping wave functions shown in

Fig. 4.7(m). For µ = 1.1t [Fig. 4.7(h)], there are four spin-down energy states outside the

real axis, there are no MZMs, and the wave functions completelly overlap along the ribbon.

For µ = 2.09t [Fig. 4.7(j)], there are two zero modes on the real axis of spin up (red points).

Finally, for µ = 2.2t [Fig. 4.7(k)], there are four MZMs with spin-down energy states on the

real axis. This situation happens because, at µ = 2.09t, a TPT occurs for spin-up, the gap

closes at k = ±π , and for µ > 2.09t the gap defines a trivial band insulator and MZMs with

spin-up are not available anymore. These well-localized probability densities describing wave

functions centered at the opposite ends of the superconducting p-SiNRs, associated with zero-

energy edge states, indicate the emergence of MZMs in the same way previously found for the

spinless system.

Fig. 4.8 represents the same situation as Fig. 4.7 but with the magnetic field pointing in the

opposite direction. The net effect on the p-SiNRs is to change the MZMs, for all µ values, in

spin up to down and vice versa. Therefore, it is possible to select the spin polarization of the

MZMs by changing the chemical potential µ or the magnetic field.



Figura 4.9: (Color online) Analysis in detail of the µ = 0 case of Fig. 4.7 with the magnetic field
pointing in the up direction.



Figura 4.10: (Color online) Energy spectrum as a function of the chemical potential µ , for distinct
lengths of superconducting p-SiNRs N, namely, for N = 10 (a), N = 20 (b), N = 40 (c), N = 60 (d)
and N = 100 (e).

In Fig. 4.9, we mainly analyze the dispersion relation, energy spectrum, and nature of the

zero-modes at µ = 0 of Fig. 4.7, with the magnetic field pointing in the up direction. Fig. 4.9(a)

depicts E(k) as a function of kx, showing that there is a finite topological superconducting gap

only for the spin-down orientation (blue line), while the spin-up (red line) remains gapless.

This behavior suggests a spin-polarized TPT at zero chemical potential, implying that only the

system spin-down component is within the topological regime. At the same time, the spin-up

belongs to a metallic phase. Fig. 4.9(b),(c) represent two MZMs of spin-down with its cor-

respondent nonoverlapped wave function, respectively, and Fig. 4.9(d), shows detail at around

µ = 0 region.

We also investigate how the energy spectrum as a function of µ is affected by the length of

the p-SiNRs. Fig. 4.10 exhibits the energy spectrum of the superconducting p-SiNRs for increa-

sing values of nanoribbon length N. From the smallest system considered [N = 10, Fig. 4.10(a)]

to the largest one [N = 100, Fig. 4.10(e)], it can be noticed a decrease of the amplitude of os-



cillations at around the real axis (E = 0), and at the same time the definition of the MZMs

on the real axis improves as N increases, and for N = 100 the MZMs are well defined in all

the real axis. It should be mentioned that these oscillations around zero energy are expected

for short Majorana nanowires due to the overlap between Majorana wavefunctions of opposite

ends. Therefore, such oscillations are expected to decrease as the system becomes larger. The

same behavior was verified in our previous work (17).

4.9 Conclusions and Perspectives

In this work, we demonstrate the emergence of topologically protected MZMs at opposite

ends of both spinless and spinful p-SiNRs with p-wave superconducting pairing. These MZMs

exhibit spin discrimination, and their polarization can be controlled by adjusting the nanoribbon

chemical potential or applied magnetic field. To implement our findings experimentally, we

propose a material engineering of p-SiNRs grown over a Ag(110) surface [cf. Fig. 4.1(a)], with

a thin Pb film deposited on top (105, 117). In this device, the proximity effect will enable

the penetration of Cooper pairs from the Pb s-wave superconductor into the p-SiNRs (11), and

in combination with an external magnetic field and the inherent strong RSOC of Pb, it will

induce p-wave pairing in the buckled atoms of the double p-SiNRs structure [cf. Fig. 4.1(d)].

In the end, the underlying mechanism driving p-wave induced pairing is similar to that reported

in one-dimensional chains of magnetic atoms on the surface of a superconductor, through the

formation of Shiba states (40, 118).

We should highlight the potential applications driven by the spin-polarized MZMs presen-

ted in this work, particularly demonstrated in Figs. 4.7 and 4.8. When two MZMs appear at

opposite ends of the p-SiNR with either a spin up or down orientation, the reverse spin com-

ponent exhibits metallic behavior. In other words, one spin component (e.g., up) is associated

with MZMs, while the opposite component (down) displays metallic features, resulting in a

half-metallic behavior for the system (63, 65). This property harnessed to design a kind of

single Majorana transistor (SMT), built up from a quantum dot (QD) sandwiched by a finite

proximitized p-SiNR leads. This setup bears resemblance to the conventional single electron

transistor (SET) (107) [Please, also insert some Ref regarding to SET, with leads made by

graphene nanoribbons, for instance]. The SMT can serve as a valuable tool for discerning

between MZMs and trivial Andreev bound states (38, 42). Particularly, the leakage of MZMs

through the QD (124), along with both local and crossed Andreev reflections induced by a spe-

cific spin orientation within the p-SiNR-QD-p-SiNR SMT structure, is expected to generate

distinct electronic transport signatures, enabling the identification of MZMs.



In addition to the spin-polarization of MZMs, our proposal also features the emergence of

four MZMs at the ends of the p-SiNR, as illustrated in Figs. 4.7(h,k) and 4.8(h,k). Two MZMs

are located at opposite ends of the top chain, while another two are situated at the bottom

chain. These MZMs can exhibit either the same or opposite spin orientations, depending on

the chemical potential and applied magnetic field orientation. Having four MZMs, at least, is

crucial for implementing quantum computing operations between two qubits, as it requires the

presence of two fermionic sites, i.e., four MZMs (101, 103). Therefore, our proposal naturally

lends itself as a promising candidate for realizing hybrid quantum computing operations (72, 73)

between conventional qubits and spin-polarized Majorana-based qubits. This paves the way for

defining quantum computing operations using Majorana spintronics (125).



Capı́tulo 5
CONCLUSION

In conclusion, this thesis focused on the exploration of quasi-two-dimensional materials,

investigating their theoretical and experimental aspects with a particular focus on topological

properties.

The first model presented was the Su-Schrieffer-Heeger (SSH), followed by the Rice-Mele

model and the Kitaev chain. These models allowed us to study topological phases, electronic

properties, localized zero-energy states, and Majorana zero-energy states.

The application of external magnetic fields to break spin degeneracy brought a new di-

mension to the study, changing energy levels and leading to the emergence of spin-polarized

Majorana fermions in zigzag honeycomb-shaped nanoribbons. The link between topological

transitions and the appearance of these zero-energy modes was one of the main aspects studied

in Chapter 3.

Furthermore, our research achieved zero Majorana modes with spin degeneracy breaking

in zigzag double honeycomb nanoribbons (KzHNRs), as shown in Chapter 3 we obtained the

modes in the energy spectrum and hints of the phase transitions in the band structure, as well as

the topological indices of the system were calculated in several parameters.

The next topic covered was silicene-based structures, such as penta-silicene nanoribbons,

offered a unique platform for the study of fermions and Majorana topological states. We have

shown that, besides being a different structure from the honeycomb, it does not have certain

symmetries in real space, thus having new effects not foreseen in previous work.

In the context of quantum computing, silicon nanowires with topological properties have

potential, albeit with continued challenges in demonstrating topologically protected MZMs.

The quest to experimentally manifest the Kitaev model on a silicon-based platform continues.

In the chapters of this thesis, we studied fundamental topological models to nanoribbon

models, each contributing new approaches to the field. As we synthesize our findings, we



recognize the transformative potential of zero modes and topological Majorana phases, not just

in quantum computing.

To conclude, this thesis highlights that there are still many other properties of quasi two-

dimensional materials and topological phenomena. We hope that our work inspires further

research, innovation and experimentation in this field.

The main results of this thesis appeared in two publications:

1) Spin-polarized Majorana zero-modes in double zigzag honeycomb nanoribbons (17).

2) Spin-polarized Majorana zero modes in proximitized superconducting penta-silicene na-

noribbons (126).



Apendice A
STEP-BY-STEP EXPLANATION OF THE CHIRAL

MATRIX CALCULATION

In this chapter, we will provide a detailed explanation of how to calculate the topological

invariant shown in Chapter 3. The first step is to represent the matrix in the k-space in its matrix

form

The Hamiltonian H(k) for this system has been formulated as an 8x8 matrix, which reads

as

H(k) =



−2µ ∆k −ε 0 0 0 0 0

∆k∗ +2µ 0 ε 0 0 0 0

−ε 0 −2µ ∆k −t 0 0 0

0 ε ∆k∗ +2µ 0 t 0 0

0 0 −t 0 −2µ ∆k −ε 0

0 0 0 t ∆k∗ +2µ 0 ε

0 0 0 0 −ε 0 −2µ ∆k

0 0 0 0 0 ε ∆k∗ +2µ


. (A.1)

Its basis is written in the following order:

Ψ ≡
(

a1,a
†
1,b1,b

†
1,a2,a

†
2,b2,b

†
2

)
.

Now we will present the main properties of symmetries and their characteristics. The first

matrix we will introduce is the time-reversal symmetry, which has the following properties: A

Hamiltonian with time-reversal symmetry satisfies

T H(k)T−1 = H(−k), (A.2)



And T is a unitary matrix

T 2 =±1 (A.3)

Next is the particle-hole symmetry matrix, which has the following properties:

It anti-commutes with the matrix H(k) if H(k) satisfies particle-hole symmetry as follows:

CH(k)C−1 =−H(−k), (A.4)

And C is a unitary matrix

C2 =±1 (A.5)

Finally, we have the chiral matrix, which, if the matrix H(k) possesses this symmetry, anti-

commutes as follows.

KH(k)K−1 =−H(k), (A.6)

And K is a unitary matrix

K2 = 1 (A.7)

If we have two of these three symmetries present, then the third is also present, due to the

relation K=TC

To proceed with this calculation, we will start by trying to find the K matrix because, by

construction, the H(k) matrix is built with the particle-hole symmetry matrix, so we already

know that it is satisfied.

Since we do not know the form of the K matrix, we’ll rewrite the equation in a different

way, like this:

KH(k)K−1 =−H(k), (A.8)

KH(k)K−1K =−H(k)K, (A.9)

(A.10)

Using K2 = 1= K−1K = 1



{H,K}= HK(k)+KH(k) = 0, (A.11)

Now, with this form, we can see that we need both the H(k) matrix and the K matrix to

perform the calculation.

Given these conditions, when we work with a generic Hermitian matrix, we can represent

the matrix K as:

K =



a1 a2 a3 a4 a5 a6 a7 a8

a2 b1 b2 b3 b4 b5 b6 b7

a3 b2 c1 c2 c3 c4 c5 c6

a4 b3 c2 d1 d2 d3 d4 d5

a5 b4 c3 d2 e1 e2 e3 e4

a6 b5 c4 d3 e2 f1 f2 f3

a7 b6 c5 d4 e3 f2 g1 g2

a8 b7 c6 d5 e4 f3 g2 h1


(A.12)

Now, by performing this anticommutation with the generic K matrix, we can typically

express this system in the form Ax = b, which allows us to find the resulting solution.

In this way, we have created a Python program to calculate the elements of K, which are in

the form of N linear equations.

a1 = 0, a2 = g2, a3 = 0, a4 = 0, a5 = 0, a6 = e2 −g2, a7 = 0, a8 = 0,

b1 = 0, b2 = 0, b3 = 0, b4 = e2 −g2, b5 = 0, b6 = 0, b7 = 0, c1 = 0, c2 = e2, c3 = 0,

c4 = 0, c5 = 0, c6 = e2 −g2, d1 = 0, d2 = 0, d3 = 0, d4 = e2 −g2, d5 = 0,

e1 = 0, e3 = 0, e4 = 0, f1 = 0, f2 = 0, f3 = 0, g1 = 0, h1 = 0

(A.13)



When substituting the given values e2 = g2 = 1, the matrix K takes the following form:

K =



0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0


(A.14)

This matrix K also satisfies the condition:

K2 =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


= 1 (A.15)

Now that we have this matrix, our next objective is to find its eigenvectors. Identifying the

eigenvectors will be crucial for building the change of basis matrix U . From this point on, all

calculations were performed using Python.



λ =
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0

0

0
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0

0
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0
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0

0

0

0

1

1

0
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0

0

0

0

0

0

1

1





(A.16)

Each eigenvector λ is a column of the matrix U , hence U is given by:

U =



−1 0 0 0 1 0 0 0

1 0 0 0 1 0 0 0

0 −1 0 0 0 1 0 0

0 1 0 0 0 1 0 0

0 0 −1 0 0 0 1 0

0 0 1 0 0 0 1 0

0 0 0 −1 0 0 0 1

0 0 0 1 0 0 0 1


(A.17)

To obtain the matrix H(k) in the new basis H̃(k):

H̃(k) =U†H(k)U (A.18)

H̃(K) =

[
0 A(k)

A(k)∗ 0

]
(A.19)



where

A(k) =


−4i∆sin(k)+4µ −4t cos

( k
2

)
0 0

−4t cos
( k

2

)
−4i∆sin(k)+4µ 2t 0

0 2t −4i∆sin(k)+4µ −4t cos
( k

2

)
0 0 −4t cos

( k
2

)
−4i∆sin(k)+4µ


(A.20)

∆k = i2∆sin(kx), (A.21)

ε =−2t cos(kx/2), (A.22)

and A(k) is the 4x4 matrix: The Chern number invariant can be calculated by the integration:

W = Tr
∫

π

−π

dk
2πi

A−1
k ∂kAk (A.23)

=−
∫

π

−π

dk
2πi

∂k ln(Det(Ak)) (A.24)

=−
∫

π

−π

dk
2πi

∂k ln(λ (Det(AK))) (A.25)

=−
∫

π

−π

dk
2πi

(∂k ln(λ )+∂k ln(Det(AK))) (A.26)
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64 CHICO, L.; LATGé, A.; BREY, L. Symmetries of quantum transport with rashba
spin–orbit: graphene spintronics. Phys. Chem. Chem. Phys., The Royal Society of Chemistry,
v. 17, p. 16469–16475, 2015. Disponı́vel em: ⟨http://dx.doi.org/10.1039/C5CP01637A⟩.

65 JIANG, P. et al. Robust generation of half-metallic transport and pure spin current
with photogalvanic effect in zigzag silicene nanoribbons. Journal of Physics: Condensed
Matter, IOP Publishing, v. 31, n. 49, p. 495701, sep 2019. Disponı́vel em: ⟨https:
//doi.org/10.1088/1361-648x/ab3dd6⟩.

66 WANG, T.-C. et al. Tunable magnetic states on the zigzag edges of hydrogenated
and halogenated group-iv nanoribbons. Sci. Rep., v. 6, p. 39083, 2016. Disponı́vel em:
⟨https://doi.org/10.1038/srep39083⟩.



67 FU, L.; KANE, C. L. Superconducting proximity effect and majorana fermions at the
surface of a topological insulator. Phys. Rev. Lett., American Physical Society, v. 100, p. 096407,
Mar 2008. Disponı́vel em: ⟨https://link.aps.org/doi/10.1103/PhysRevLett.100.096407⟩.

68 NAGAI, Y.; NAKAMURA, H.; MACHIDA, M. Spin-polarized majorana bound states
inside a vortex core in topological superconductors. Journal of the Physical Society of Japan,
v. 83, n. 6, p. 064703, 2014. Disponı́vel em: ⟨https://doi.org/10.7566/JPSJ.83.064703⟩.

69 XU, J.-P. et al. Experimental detection of a majorana mode in the core of a magnetic
vortex inside a topological insulator-superconductor bi2te3/nbse2 heterostructure. Phys.
Rev. Lett., American Physical Society, v. 114, p. 017001, Jan 2015. Disponı́vel em:
⟨https://link.aps.org/doi/10.1103/PhysRevLett.114.017001⟩.

70 SMITH, E. D. B.; TANAKA, K.; NAGAI, Y. Manifestation of chirality in the vortex lattice
in a two-dimensional topological superconductor. Phys. Rev. B, American Physical Society,
v. 94, p. 064515, Aug 2016. Disponı́vel em: ⟨https://link.aps.org/doi/10.1103/PhysRevB.94.
064515⟩.

71 TANAKA, K. K.; ICHIOKA, M.; ONARI, S. Spin-polarized local density of states in the
vortex state of helical p-wave superconductors. Phys. Rev. B, American Physical Society, v. 95,
p. 134502, Apr 2017. Disponı́vel em: ⟨https://link.aps.org/doi/10.1103/PhysRevB.95.134502⟩.

72 LEIJNSE, M.; FLENSBERG, K. Quantum information transfer between topological and
spin qubit systems. Phys. Rev. Lett., American Physical Society, v. 107, p. 210502, Nov 2011.
Disponı́vel em: ⟨https://link.aps.org/doi/10.1103/PhysRevLett.107.210502⟩.

73 LEIJNSE, M.; FLENSBERG, K. Hybrid topological-spin qubit systems for two-qubit-spin
gates. Phys. Rev. B, American Physical Society, v. 86, p. 104511, Sep 2012. Disponı́vel em:
⟨https://link.aps.org/doi/10.1103/PhysRevB.86.104511⟩.

74 HOFFMAN, S. et al. Universal quantum computation with hybrid spin-majorana qubits.
Phys. Rev. B, American Physical Society, v. 94, p. 045316, Jul 2016. Disponı́vel em:
⟨https://link.aps.org/doi/10.1103/PhysRevB.94.045316⟩.

75 ZHOU, B.-Z.; XU, D.-H.; ZHOU, B. Majorana zero modes in a ladder of density-
modulated kitaev superconductor chains. Physics Letters A, v. 381, n. 30, p. 2426 – 2431,
2017. ISSN 0375-9601. Disponı́vel em: ⟨http://www.sciencedirect.com/science/article/pii/
S0375960117304887⟩.

76 MAIELLARO, A.; ROMEO, F.; CITRO, R. Topological phase diagram of a kitaev ladder.
The European Physical Journal Special Topics, v. 227, n. 12, p. 1397–1404, Dec 2018. ISSN
1951-6401. Disponı́vel em: ⟨https://doi.org/10.1140/epjst/e2018-800090-y⟩.

77 CHIU, C.-K. et al. Classification of topological quantum matter with symmetries.
Rev. Mod. Phys., American Physical Society, v. 88, p. 035005, Aug 2016. Disponı́vel em:
⟨https://link.aps.org/doi/10.1103/RevModPhys.88.035005⟩.

78 WAKATSUKI, R.; EZAWA, M.; NAGAOSA, N. Majorana fermions and multiple
topological phase transition in kitaev ladder topological superconductors. Physical Review B,
APS, v. 89, n. 17, p. 174514, 2014.



79 BERNEVIG, B. A.; HUGHES, T. L. Topological Insulators and Topological
Superconductors. STU - Student edition. Princeton University Press, 2013. ISBN
9780691151755. Disponı́vel em: ⟨http://www.jstor.org/stable/j.ctt19cc2gc⟩.

80 ALASE, A. Boundary Physics and Bulk-Boundary Correspondence in Topological Phases
of Matter. 1. ed. Springer Nature Switzerland AG: Springer Theses, 2019.

81 MIN, H. et al. Intrinsic and rashba spin-orbit interactions in graphene sheets.
Phys. Rev. B, American Physical Society, v. 74, p. 165310, Oct 2006. Disponı́vel em:
⟨https://link.aps.org/doi/10.1103/PhysRevB.74.165310⟩.

82 ZAREA, M.; SANDLER, N. Rashba spin-orbit interaction in graphene and zigzag
nanoribbons. Phys. Rev. B, American Physical Society, v. 79, p. 165442, Apr 2009. Disponı́vel
em: ⟨https://link.aps.org/doi/10.1103/PhysRevB.79.165442⟩.

83 DINIZ, G. S.; GUASSI, M. R.; QU, F. Controllable spin-charge transport in strained
graphene nanoribbon devices. Journal of Applied Physics, v. 116, n. 11, p. 113705, 2014.
Disponı́vel em: ⟨http://dx.doi.org/10.1063/1.4896251⟩.

84 TSE, W.-K. et al. Quantum anomalous hall effect in single-layer and bilayer graphene.
Phys. Rev. B, American Physical Society, v. 83, p. 155447, Apr 2011. Disponı́vel em:
⟨https://link.aps.org/doi/10.1103/PhysRevB.83.155447⟩.

85 JEON, S. et al. Distinguishing a majorana zero mode using spin-resolved measurements.
Science, American Association for the Advancement of Science, v. 358, n. 6364, p. 772–776,
2017. ISSN 0036-8075. Disponı́vel em: ⟨https://science.sciencemag.org/content/358/6364/
772⟩.

86 KHOEINI, F.; SHAKOURI, K.; PEETERS, F. M. Peculiar half-metallic state in zigzag
nanoribbons of mos2: Spin filtering. Phys. Rev. B, American Physical Society, v. 94, p. 125412,
Sep 2016. Disponı́vel em: ⟨https://link.aps.org/doi/10.1103/PhysRevB.94.125412⟩.

87 XU, R. et al. Half-metallicity in co-doped wse2 nanoribbons. ACS Applied Materials
& Interfaces, American Chemical Society, v. 9, n. 44, p. 38796–38801, Nov 2017. ISSN
1944-8244. Disponı́vel em: ⟨https://doi.org/10.1021/acsami.7b12196⟩.

88 PODSIADłY-PASZKOWSKA, A.; KRAWIEC, M. Dirac fermions in silicene on pb(111)
surface. Phys. Chem. Chem. Phys., The Royal Society of Chemistry, v. 17, p. 2246–2251,
2015. Disponı́vel em: ⟨http://dx.doi.org/10.1039/C4CP05104A⟩.

89 STEPNIAK-DYBALA JALOCHOWSKI, M.; KRAWIEC, M. Silicene nanoribbons
on pb-reconstructed si(111) surface. Condens. Matter, v. 1, n. 1, 2016. Disponı́vel em:
⟨https://www.mdpi.com/2410-3896/1/1/8\#cite⟩.

90 STEPNIAK-DYBALA, A.; KRAWIEC, M. Formation of silicene on ultrathin
pb(111) films. The Journal of Physical Chemistry C, American Chemical Society,
v. 123, n. 27, p. 17019–17025, Jul 2019. ISSN 1932-7447. Disponı́vel em: ⟨https:
//doi.org/10.1021/acs.jpcc.9b04343⟩.

91 OWCZAREK, S.; MARKOWSKI, L. The role of surfactant in two-components structures
formation on si(111) surface. Surface Science, v. 693, p. 121552, 2020. ISSN 0039-6028.
Disponı́vel em: ⟨https://www.sciencedirect.com/science/article/pii/S0039602819306909⟩.



92 STEPNIAK-DYBALA A.; KRAWIEC, M. Structural model of silicene-like nanoribbons
on a pb-reconstructed si(111) surface. Beilstein J. Nanotechnol., v. 8, p. 1836, 2017.

93 Suggestion of Prof. Mariuz Krawiec in a private correspondence.

94 NAKADA, K. et al. Edge state in graphene ribbons: Nanometer size effect and edge shape
dependence. Phys. Rev. B, American Physical Society, v. 54, p. 17954–17961, Dec 1996.
Disponı́vel em: ⟨https://link.aps.org/doi/10.1103/PhysRevB.54.17954⟩.

95 WAKABAYASHI, K. et al. Electronic states of graphene nanoribbons and analytical
solutions. Science and Technology of Advanced Materials, Taylor and Francis, v. 11, n. 5, p.
054504, 2010. Disponı́vel em: ⟨http://dx.doi.org/10.1088/1468-6996/11/5/054504⟩.

96 FU, B.; ABID, M.; LIU, C.-C. Systematic study on stanene bulk states and the edge states
of its zigzag nanoribbon. New Journal of Physics, IOP Publishing, v. 19, n. 10, p. 103040, nov
2017. Disponı́vel em: ⟨https://doi.org/10.1088/1367-2630/aa8c46⟩.

97 CORREA, J. H.; PEZO, A.; FIGUEIRA, M. S. Braiding of edge states in narrow
zigzag graphene nanoribbons: Effects of third-neighbor hopping on transport and magnetic
properties. Phys. Rev. B, American Physical Society, v. 98, p. 045419, Jul 2018. Disponı́vel
em: ⟨https://link.aps.org/doi/10.1103/PhysRevB.98.045419⟩.

98 ZHU, X.; GUO, H.; FENG, S. Quantum magnetism of topologically-designed graphene
nanoribbons. Journal of Physics: Condensed Matter, IOP Publishing, v. 31, n. 50, p. 505601,
sep 2019. Disponı́vel em: ⟨https://doi.org/10.1088/1361-648x/ab3f81⟩.

99 XU, C. et al. Giant magnetoresistance in silicene nanoribbons. Nanoscale, The Royal
Society of Chemistry, v. 4, p. 3111–3117, 2012. Disponı́vel em: ⟨http://dx.doi.org/10.1039/
C2NR00037G⟩.
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