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List of Figures

1.1 The image shows two wires with length L. The wire can be decomposed in

N regions, here represented in blue, that are coherent along the wire, with

coherence length lϕi < L. The observables, like resistance, in each region

has a characteristic fluctuation pattern. The total resistance is the sum of

the resistances of the regions. The fluctuation patterns average out and the

resistance becomes self-averaging. When the coherence length grows, these

coherent areas "merge" becoming larger and larger, until lϕ > L. Then all

the system is in phase. Fluctuations now have macroscopic implications.

Note also that the temperature reduces the coherence length, lϕ1 < lϕ2 as

T grows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 UCF on stadium geometry used for dynamical billiard study [12]. There

are two metal leads at at the bottom (left image), where a electrical current

enters in one lead, enters the stadium and leaves in another. The geometry

makes it a non integrable system, leaving to relevant fluctuations on con-

ductance, similar to a disordered system. Images generated from Kwant

package, with code in reference [13]. . . . . . . . . . . . . . . . . . . . . . . 4

1.3 The image illustrates the Kitaev chain. The top image represents a 1D wire,

where each "domino" is an electron. Each electron has two dots, these are

Majoranas, ten in total. The middle chain shows the paired Majoranas re-

presented by the red shade. The bottom one represents another possibility

of rearrangement, where we have paired Majoranas, but from different elec-

trons. This state is tuned by external parameters and creates at the edges

two non-local Majoranas, represented in blue. The parameters responsible

for the tunning are the chemical potential, µ, the superconducting pairing

∆ and the hopping parameter for the majoranas τ . . . . . . . . . . . . . . 5
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1.4 Model of a STIS junction. The green component is a TI thin film. Yellow

represent the two superconductors. In blue we have a the tunnelling inter-

face, for computational reasons. The red part is a lead that connects to

external electrical current. This is a model developed using Kwant [13] to

perform simulations of Josephson currents on STIS. . . . . . . . . . . . . . 6

2.1 The resistivity of three different superconductors measured at the Escola

Avançada de Física Experimental (EAFExp) in 2019. It is clear that below

a certain critical temperature, the resistivity drops to zero. Two of the

superconductors, Pb and V3Si, are Type I superconductors, which means

that there is an instant drop in resistivity as the temperature decreases.

The third superconductor, Y Ba2Cu3O6.38, is a Type II superconductor. It

exhibits a decrease in resistivity at 89K before dropping to zero at another

critical temperature, which is the temperature at which it enters a mixed

state, where magnetic field vortices are present. In a mixed state, some

parts of the material remain in a superconducting state, while others do

not [23]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 The magnetization of three different superconductors was measured at the

Escola Avançada de Física Experimental (EAFExp) in 2019 using a Quan-

tum Design PPMS Dynacool. The results show that below the critical

temperature of each superconductor, the material becomes magnetized in

response to an applied external magnetic field. Additionally, it can be ob-

served that there is a critical field at which the Meissner effect is broken.

The Meissner effect is a phenomenon in which a superconductor exhibits

diamagnetic behavior in response to an external magnetic field. This is due

to surface superconducting currents that create an opposing magnetic field

that cancels out the applied magnetic field, shielding the bulk of the mate-

rial. However, if the applied magnetic field is too strong, superconductivity

is destroyed, this the surface currents are disrupted and the Meissner effect

is broken [24]. The measurement for Y Ba2Cu3O6.38 varies temperature for

given magnetic fields. The 2K measurement behaves differently for V3Si

due to defects in the sample [25]. . . . . . . . . . . . . . . . . . . . . . . . 10
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2.3 An incoming electron and its reflected hole giving rise to a Cooper pair

entering the condensate after Andreev reflection. Image Credits [33]. . . . . 14

2.4 The image displays various weak link configurations, with gray represent-

ing superconductors and red representing other materials such as insulators

or metals. From left to right and top to bottom, we see a sandwich junc-

tion, which is later identified as a Josephson junction; a top view of a

Dayem bridge with a shorter funnel on the coherence length scale [35]; a

superposition of films, where the supercurrent is affected by the cover; a

longitudinal cross-section of a junction with variable thickness; and a grain-

boundary junction, which is also a Dayem bridge, with the superconductor

connected to a different material. Today, there are an infinite number of

nano configurations for weak links. A good example of their practical use

is the Superconducting Quantum Interference Device (SQUID). A review

by Likharev [36] covers several configurations. . . . . . . . . . . . . . . . . 15
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3.1 QHE: Here u stands for unity of magnetic field, since the code is not using

realistic parameters to perform calculations. A top view of a 2D conduct-

ing surface, Figure (a), reveals an interesting phenomenon when a magnetic

field is applied perpendicular to the current flow. In this scenario, the cur-

rent concentrates along the edges of the surface leaving the bulk as an

insulator. This occurrence can be attributed to the influence of the mag-

netic field, which exerts a Lorentz force on the electrons, causing them to

follow circular orbits. As a result, a continuous current flow is not gener-

ated; instead, near the edges, the circular electron orbits can reflect and

lead to skipping orbits. Consequently, current is observed along the edges

of the surface. These localized states as known as Landau levels. Although

the current keeps concentrating at the edge, for some values of magnetic

flux, the current is spread again due to presence of disorder, as illustrated

in Figure (b). As the magnetic field strength increases the electron or-

bits become smaller and more localized, due to the increasing spacing of

Landau levels, Figure (c). In the absence of disorder, the quantized steps

corresponding to Landau levels are well-defined. The presence of disor-

der introduces scattering, which adds some noise to the states, although

the levels keep well defined, with perfectly quantized Hall plateaus, Figure

(d). Graphics generated with an adapted model in Kwant [13], the code is

avaiable in Appendix B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 a)Kitaev model, a chain of electrons, where each electron accommodates

two Majorana modes that can interact to each other. This interaction

occurs between Majoranas belonging to the same electron and Majoranas

belonging to adjacent electrons, as depicted in the second and third lines.

In these examples, the red bars represent the bidings. b) Band structure

showing the persistence of edge zero modes of Majorana fermions. . . . . . 24
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4.1 A model of the STIS junction, already illustrated in the Introduction. The

green component is a TI thin film. Yellow bases represent the two supercon-

ductors. In blue we have a tunnelling interface, for computational reasons.

The red part is a lead that connects to external electrical current. For our

system, each color part addresses a Hamiltonian sector in (4.1). Integrat-

ing over the supercondutor degrees of freedom we derive an effective theory

for the TI-surface that accounts for the coupling to the superconductors.

This figure is the plot of a model developed using Kwant [13], to perform

simulations of Josephson currents on STIS. . . . . . . . . . . . . . . . . . . 27

4.2 (a) Density of states ν(ϵ) for the vanishing magnetic field normalized to

the density of states ν = ν(µ) in the absence of superconducting leads for

different values of et = Et/∆ = 0.1, 1, 10. Panels (b) and (c) show density of
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ϵ for different values of γ = Et/EΦ = (0.1/0.01, 0.1/0.1, 0.1/0.25) and fixed
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4.7 Left panel: JΦ at zero temperature as a function of ϕ and for various values
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numerical solution and dash-dotted lines the analytical approximation. . . 57
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Resumo

Investigamos flutuações mesoscópicas na supercorrente de uma junção Josephson, que

compreende uma microponte isolante topológica posicionada entre dois supercondutores

convencionais que induzem um gap no espectro de estados de superfície. Além disso,

consideramos um campo magnético que penetra na área de junção, levando ao desem-

parelhamento e ao preenchimento de gaps. A magnitude e o comportamento funcional

das flutuações da corrente Josephson são determinados através de meios analíticos. Do

ponto de vista técnico, as flutuações mesoscópicas, sobrepostas à representação do campo

médio, são elucidadas através de uma abordagem de teoria de campos. Especificamente,

essas flutuações são descritas usando o modelo σ não linear em réplica dentro da classe D

da classificação de simetria estendida.

Palavras-chave: Topological Insulator, Superconductivity, Josephson Junc-

tion.
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Abstract

We investigate mesoscopic fluctuations in the supercurrent of a Josephson junction, which

comprises a topological insulator micro-bridge positioned between two conventional super-

conductors that induce a gap in the spectrum of surface states. Additionally, we account

for a magnetic field that penetrates the junction area, leading to depairing and gap fill-

ing. The comprehensive magnitude and functional behavior of the Josephson current

fluctuations are determined through analytical means. From a technical standpoint, the

mesoscopic fluctuations, superimposed on the mean-field representation, are elucidated

using a field theory approach. Specifically, these fluctuations are described using a replica

nonlinear σ-model within the class-D of the extended symmetry classification.

Keywords:Topological Insulator, Superconductivity, Josephson Junction.
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Chapter 1

Introduction

Mesoscopics systems - are ones characterized by the fact that, although such systems con-

tains a large number of degrees of freedom, quantum effects take place and are relevant to

statistical calculations [1]. In these systems the dephasing length of quasiparticles – the

length scale on which quantum propagation remains phase coherent – is larger than the

system size. This implies that electrons, for example, preserve their wave function phase

when passing through the entire medium.

In statistical mechanics one usually recovers average ensemble values by taking the ther-

modynamic limit, that is, taking the system volume and number of particles to infinite,

while maintaining its ratio constant. The thermodynamic limit can be understood as

the system grows larger than all relevant length scales, specifically larger than the phase

coherence length, lϕ. Inside a system different regions behave as they are statistically

independent of each other. A system of size L can be seen as a collection of various

regions, each region with size lϕ. Expectation values of a local observable has fluctuations

in each region, but in the thermodynamic limit fluctuations of all regions average out and

observables are described by their average values. However, in cases where the coherence

length is larger than the system size, one may expect that fluctuations above the average

values remain important, for there is no cancellation of fluctuations, i.e. observables will

not be self-averaging. One can understand that the different regions grows so large that

they become one with the system, lϕ > L. Those are mesoscopic systems. A good anal-

ogy is to think about the classical experiment of synchronization of metronomes fixed in

a moving base. They start with their own phase until they are all phase coherent. At

first there is just white noise, but their fixed position makes each metronome (or each

1



Figure 1.1: The image shows two wires with length L. The wire can be decomposed in N
regions, here represented in blue, that are coherent along the wire, with coherence length
lϕi < L. The observables, like resistance, in each region has a characteristic fluctuation
pattern. The total resistance is the sum of the resistances of the regions. The fluctuation
patterns average out and the resistance becomes self-averaging. When the coherence
length grows, these coherent areas "merge" becoming larger and larger, until lϕ > L.
Then all the system is in phase. Fluctuations now have macroscopic implications. Note
also that the temperature reduces the coherence length, lϕ1 < lϕ2 as T grows.

region) to reach the other metronomes (the other regions) at some distance and become

phase coherent, and then this distance becomes larger than the whole system, since the

table is oscillating. We have also to consider, of course, a temperature dependence for

this coherence preservation. Higher temperatures make regions with smaller coherence

lengths: The larger the temperature the larger is the phase space for inelastic scattering

process, thus li, the inelastic scattering length, is smaller and there is more scattering to

break coherence, since lϕ and li usually are of the same order. Thus, ideally, for T → 0

we would have all systems becoming mesoscopic.

Universal Fluctuations - Mesoscopic systems present a variety of unusual quantum phe-

nomena, such as localization and characteristic sample-to-sample fluctuation. A powerful

idea is that many of these phenomena can have some universal characteristics, that is,

they do not depend on the microscopic details of each sample [2]. One of such univer-

2



sal phenomena is Universal Conductance Fluctuations, sample-to-sample fluctuations of

electric conductance [3, 4, 5, 6, 7, 8]. A small change on an external parameter in a single

sample, e.g. magnetic field, has a similar effect on the interference pattern as a change

in impurity configuration. It was shown [9, 6] that at low temperatures the variance of

conductance is universal, proportional to (e2/ℏ)2, where that proportionality coefficient

depends only on the symmetries and dimensionality of the system. For a wire geometry,

for example, the variance is found to be

varG = 2
15β

G2
0, G0 = 2e2

h
, β = 1, 2, 4, (1.1)

where the values of parameter β correspond to standard Dyson symmetry classes of the

orthogonal (time-reversal and spin rotational symmetry), unitary (no time-reversal sym-

metry), and symplectic (as in orthogonal but broken spin rotational symmetry) ensembles,

respectively [10]. In contrast to the sample average conductance, 〈G〉 ∼ G0(Nl/L), uni-

versality of fluctuations are manifested by the fact that there is no dependence on the

disorder mean free path l, the number of transverse modes N , and the system size L

provided l � L � Nl (the second inequality insures that the wire length is shorter than

the localization length). As expected from previous considerations, universality is also

robust against interaction effects provided that the system size is smaller than the de-

phasing length, L < lϕ(T ), although interactions determine the typical scale of lϕ(T ) and

its temperature dependence [11].

Furthermore, mesoscopic fluctuations can be fingerprints of the material. In a mesoscopic

disordered conductor (at low temperatures) the phase of the electron wave functions can be

modulated by magnetic fields, causing fluctuations as a function of this external magnetic

field. The simplest case is configured by the Aharonov-Bohm oscillations [4, 14, 15, 16],

for an electron in a ring, where it can have constructive or destructive interference, de-

pending on the phase multiplicity of π. In mesoscopic conductors such effects are much

more complicated because of impurity displacement along the material, thus complicat-

ing the magnetic field dependence of the conductance. Its patterns are known to encode

information on the material composition, such as impurity positions. Such impurity con-

figuration is unique for each material, or each type of material. Again, the same analogy

can be used from the previous metronomes case, where a magnetic field would be someone

shaking the table from the outside, the oscillating patterns are unique for each position

3



(a) Density of states inside the stadium. (b) The different colors represents different re-
alizations for different lead translated positions.

Figure 1.2: UCF on stadium geometry used for dynamical billiard study [12]. There are
two metal leads at at the bottom (left image), where a electrical current enters in one
lead, enters the stadium and leaves in another. The geometry makes it a non integrable
system, leaving to relevant fluctuations on conductance, similar to a disordered system.
Images generated from Kwant package, with code in reference [13].

configuration of the metronomes in the table, and its phase. This phenomenon is called

magneto-fingerprint and is unique for the lattice and its impurity configuration, thus, it

gives microscopic details about impurity dependence. The same way the emission spectra

of atoms can be used to identify element densities on stars and its previous stages.

Topological Insulators - From the perspective of fundamental physics and applications,

topological insulators (TI) are a recent topic of interest. TI are materials with an insulat-

ing bulk and a topologically protected metallic surface (3D) or edges (1D, 2D). When put

in proximity to the latter, superconductors (SC) can induce superconductivity on these

metallic surface (edge) states upon the proximity effect. This feature is hard to produce

experimentally, due to the interplay of spin-orbit coupling and induced superconductiv-

ity. STIS composite systems have raised a lot of interest, for they can host Majoranas

fermions, thus, it is a good candidate to perform quantum computation with Majorana

fermions as q-bits for quantum processors[18, 19].

Formally, two Majorana fermions γ1, γ2 can be defined from an electron as,

c† = 1
2

(γ1 + iγ2),

c = 1
2

(γ1 − iγ2),

[γi, γj]+ = 2δij, γi = γ∗
i , (1.2)
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Figure 1.3: The image illustrates the Kitaev chain. The top image represents a 1D wire,
where each "domino" is an electron. Each electron has two dots, these are Majoranas,
ten in total. The middle chain shows the paired Majoranas represented by the red shade.
The bottom one represents another possibility of rearrangement, where we have paired
Majoranas, but from different electrons. This state is tuned by external parameters
and creates at the edges two non-local Majoranas, represented in blue. The parameters
responsible for the tunning are the chemical potential, µ, the superconducting pairing ∆
and the hopping parameter for the majoranas τ .

where c† and c are the electron creation and annihilation operators. γi are the Majorana

modes relative to the electrons that are created and annihilated. Since Majoranas are

their own antiparticles, (1.2), they do not conserve charge. Up to now there has been

no fundamental particle identified as a Majorana fermion. However, Majorana fermion

may emerge as quasiparticles in condensed matter systems. Majorana fermions conserve

fermion parity, that is whether the number of fermions is even or odd, and this is the

reason a SC is a good medium to host them, where charge is not conserved, only electron

parity. The simplest example to illustrate the emergence of Majoranas in a superconduc-

tor is the Kitaev chain [17]. An electron chain with p-wave pairing ∆ and biding factor τ

between electrons, each electron can be expressed in term of two Majorana modes. The

Kitaev model tells us that we can manipulate Majoranas in regimes defined by energy

parameters (∆, τ , µ), as can be seen in Figure 1.3. The Majorana pairing can be changed,

such that on each edge of this chain we have an isolated Majorana that could be used to

perform quantum computation operations.

In this work we are going to study mesoscopic Josephson Junctions that are composed

of two SCs and a TI. The SCs are positioned on top of the metallic surface of the TI,
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Figure 1.4: Model of a STIS junction. The green component is a TI thin film. Yellow
represent the two superconductors. In blue we have a the tunnelling interface, for compu-
tational reasons. The red part is a lead that connects to external electrical current. This
is a model developed using Kwant [13] to perform simulations of Josephson currents on
STIS.
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in order to induce superconductivity on it. When submitted to a magnetic flux, which

modulates the relative phase of the superconductors, a supercurrent passes through the

system. These STIS junctions have been investigated theoretically and experimentally,

however we are not aware of a systematic study of mesoscopic fluctuations. This moti-

vates us to study STIS (Superconductor-Topological Insulator-Superconductor) junctions

focusing on the sample to sample mesoscopic fluctuations of the Josephson current and

its magnetic field dependence, and systematically study the different parameter regimes

and geometries. Furthermore, mesoscopic current fluctuations are a good tool to help

in the development of these (topological) superconductors. It can give hints of impurity

dependence and point out better suited materials to construct such objects with good

stability [20].
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Chapter 2

Superconductivity and Josephson

Effect

We here review the relevant concepts of superconductivity to proceed with further cal-

culations in the STIS junction. We follow a historic and technical approach on what

characterizes and creates the superconductivity.

2.1 Superconductivity Principles

Superconductivity is a phenomenon in which a material can transport electrical charge

without resistance and is characterized by a transition temperature below which the ma-

terial exhibits this behavior. Heike Onnes first observed this effect in 1911 at the Leiden

Laboratory, following his liquefaction of helium gas at the same laboratory in 1908 [22].

The Meissner effect is another defining characteristic of superconductivity, in which the

superconductor expels an external magnetic field due to surface supercurrents [23, 24].

Both features are better illustrated with experimental data in Figures 2.1 and 2.2, respec-

tively.

The first phenomenological explanation for superconductivity came with the London

equations [26], at that time called "supraconductors":

∂js
∂t

= nse
2

m
(E + ∇ϕ, (2.1)

∇ × js = −nse
2

m
B. (2.2)
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Figure 2.1: The resistivity of three different superconductors measured at the Escola
Avançada de Física Experimental (EAFExp) in 2019. It is clear that below a certain
critical temperature, the resistivity drops to zero. Two of the superconductors, Pb and
V3Si, are Type I superconductors, which means that there is an instant drop in resistivity
as the temperature decreases. The third superconductor, Y Ba2Cu3O6.38, is a Type II
superconductor. It exhibits a decrease in resistivity at 89K before dropping to zero at
another critical temperature, which is the temperature at which it enters a mixed state,
where magnetic field vortices are present. In a mixed state, some parts of the material
remain in a superconducting state, while others do not [23].
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Figure 2.2: The magnetization of three different superconductors was measured at the
Escola Avançada de Física Experimental (EAFExp) in 2019 using a Quantum Design
PPMS Dynacool. The results show that below the critical temperature of each super-
conductor, the material becomes magnetized in response to an applied external magnetic
field. Additionally, it can be observed that there is a critical field at which the Meissner
effect is broken. The Meissner effect is a phenomenon in which a superconductor exhibits
diamagnetic behavior in response to an external magnetic field. This is due to surface
superconducting currents that create an opposing magnetic field that cancels out the ap-
plied magnetic field, shielding the bulk of the material. However, if the applied magnetic
field is too strong, superconductivity is destroyed, this the surface currents are disrupted
and the Meissner effect is broken [24]. The measurement for Y Ba2Cu3O6.38 varies tem-
perature for given magnetic fields. The 2K measurement behaves differently for V3Si due
to defects in the sample [25].
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Material Al Cd Hg In Nb Pb Sn Ti Y Ba2Cu3O7
λ(0)/A0 500 1300 380-450 640 470 390 510 920 1700

A set of equations for the charge carrier for the supercurrent density js and the number

density of supercurrent carries, at the time thought to be electrons. The symbols e and m

denote the electric charge and mass, respectively, which were initially believed to corre-

spond to the electron’s charge and mass. The density number of the carriers is represented

by ns. The first equation relates to the supercurrent, given a particular external electric

field E in the leads that generates current through the SC and electric potenrial ϕ, while

the second equation describes the Meissner effect in response to a magnetic field B. The

second London equation can be solved to determine the magnetic field within a super-

conductor for an applied magnetic field B0. Specifically, it shows that the field inside the

superconductor follows an exponential decay law, B = B0e
−x/λ, where λ is the magnetic

penetration depth and x the distance from the sample surface. This depth defines the

length scale over which an applied magnetic field can penetrate a superconductor. It

varies according to material characteristics as can be seen from the table above [27].

The next successful phenomenological theory to describe superconductors was the one

known as Ginzburg-Landau [28], which considers quantum mechanics effects on the for-

mation of the superconducting state. The theory is based on Landau’s theory of phase

transition, which suggests that superconductivity can be viewed as a second-order phase

transition. A transition of this nature is characterized by a gradual change in the state

of an object, while its symmetry changes discontinuously at a specific temperature. In

the ferromagnetic transition all the magnetic momenta becomes oriented, while in su-

perconducting transition there is a change in resistivity, from finite to zero. This theory

is characterized by an order parameter, which is used to expand the free energy in a

polynomial

F = Fn + α|ψ|2 + β|ψ|4, (2.3)

with Fn the free energy in the normal state and α and β phenomenological parameters. In

the case of superconductors, the order parameter is represented by the wave function of

the superconducting electrons. This assumption may seem counterintuitive, as the wave

function ψ is an unobservable variable. However, this suggests that the wave function is
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an emergent phenomenon resulting from the coherence of all the particles. The work of

Ginzburg and Landau was recognized with the 2003 Nobel Prize in Physics [29].

To include coupling of the order parameter to electromagnetic fields we start from the

Gibbs free energy

G = Gn +
∫ [

α|ψ|2 + β|ψ|4 + 1
4m

∣∣∣∣−iℏ∇ψ − 2e
c

Aψ
∣∣∣∣2 + (∇ × A)2

8π
− (∇ × A)B0

4π

]
,

(2.4)

where Gn is the free energy of the normal state of the SC, B0 is an external magnetic field,

respectively, and the squared module term is the kinetic energy. Solving the variational

problems δψ∗G = 0 and δAG = 0 it is possible to obtain the following equations:

ξ2
(
i∇ + 2π

ϕ0
A
)2

ψ − ψ + ψ|ψ|2 = 0, (2.5)

∇ × ∇ × A = |ψ|2

λ2

(
ϕ0

2π
∇θ − A

)
, ϕ0 = πℏc

e
. (2.6)

Here, the wave function ψ is expressed as ψ = |ψ|eiθ, where θ is the phase associated with

the wave function. ϕ0 represents the magnetic flux quanta, while ξ is the superconducting

coherence length, which characterizes the extent of the wave function influence outside

the superconductor, as |ψ| ∝ ψ0e
−x/ξ, where x is the distance from the superconductor

surface. The coherence length characterizes the Proximity Effect, which is the ability of

a superconducting wave function to extend beyond the physical boundaries of a material,

inducing superconductivity in a nearby material.

Subsequently, the microscopic theory of superconductivity emerged, which offered an

explanation based on the behavior of the charge carriers in the material, rather than

on phenomenological approaches. The BCS theory [30] states that the charge carriers

responsible for superconductivity are not individual electrons, but rather Cooper pairs

[31], boson quasiparticles formed by paired electrons. This theory was named after J.

Bardeen, L. Cooper, and J. Schrieffer, recognized with the 1972 Nobel Prize in Physics

[32].

The BCS formalism provides a theoretical framework that accounts for the attractive

interaction, mediated by phonons, between electrons in the vicinity of the Fermi surface.
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The BCS Hamiltonian consists of two terms: a kinetic term and an additional term

related to the effective interaction between electrons, upon "integrating out" phonons.

Specifically, the effective Hamiltonian is given by

Ĥ =
∑
kσ
ϵkc

†
k↑c−k↓ − g

V

∑
k,k′

c†
k↑c

†
−k↓c−k↓ck↑. (2.7)

Here, the interaction constant g represents the attractive interaction with energies of the

order of the Debye energy between electrons near the Fermi surface. This Hamiltonian

characterizes s-wave superconductors, spin-singlet with S = 0, L = 0 Cooper pairs, in

which the paired electrons have no relative angular momentum. The presence of the vol-

ume normalization factor V is necessary to ensure that the interaction energy is extensive,

meaning that it grows linearly with volume. The Cooper pair formation arises from lat-

tice vibrations, phonons, with large wave numbers q ∼ kF . These phonons mediate the

interaction between electrons. To understand the nature of this phenomenon, we need to

consider two time scales. The first is the time scale of the electron propagating between

sites in the lattice with a given spacing l, which can be translated approximately as E−1
F .

The second is the relaxation lattice time, which is determined by the Debye frequency ωD,

where ωD � E−1
F . Once an electron passes through the lattice, the lattice is deformed

and needs time to relax to its equilibrium position and a second following electron can

take advantage of the deformed lattice for a time ∼ 1/ωD. This is the reason why the

superconducting interaction effects occurs at a specific energy scale around the Debye fre-

quency for electrons near the Fermi surface. The Cooper pairs form a condensate below

a critical temperature Tc, which is responsible for the superfluid current carried by these

bosons with a charge of 2e. For higher-temperature superconductors, spin fluctuations

may play a significant role in the pair formation.

2.2 Andreev Reflection

Electrons typically serve as the primary charge carriers in normal metals, whereas in su-

perconductors, charge is carried by Cooper pairs, which consist of two electrons. When

considering an interface (NS) between a normal metal and a superconductor, it is observed

that current flows between the interfaces, despite the distinct nature of the charge carri-

ers. To provide a theoretical explanation for this phenomenon, the concept of Andreev
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Figure 2.3: An incoming electron and its reflected hole giving rise to a Cooper pair entering
the condensate after Andreev reflection. Image Credits [33].

reflection has been developed. As a quasielectron from the normal metal approaches the

interface, it undergoes reflection and transforms into a quasihole with inverted velocity,

spin, charge and phase. Meanwhile, in the superconductor, a Cooper pair is formed.

In the normal (N) region, an incoming electron propagates diffusively due to impurities.

The NS interface refers to the region where the superconducting wave function extends into

N, up to the coherence length, where it reaches its maximum value within the supercon-

ductor. At this point, the electron starts experiencing the influence of superconductivity.

Upon passing through the NS interface, a hole is retro-reflected in this process. However,

an interesting scenario arises when this reflected hole diffuses along the same path as

the incoming electron, possessing opposite energy and spin. Consequently, the disordered

averaged quantity 〈c†
↑(r, 0)c†

↓(r, t)〉 becomes non-zero. Unlike cases with generic reflected

paths that vanish upon disorder averaging, the phases of these oppositely propagating

particles cancel out due to their opposite paths, leading to non-vanishing results. This

robustness of the Cooper pair correlations 〈c†
↑(r, 0)c†

↓(r, t)〉 attributes superconducting cor-

relations in the normal metal induced by the nearby superconductivity and characterizes

the proximity effect. Since the incoming electron and the reflected hole possess oppo-

site energies, energy conservation dictates that the resulting energy is transferred to the

condensate along with the Cooper pair.

2.3 Josephson Junctions

The proximity effect makes it possible to induce a superconducting gap in systems that

are located close to a superconductor. This opens up new possibilities for material config-
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Figure 2.4: The image displays various weak link configurations, with gray representing
superconductors and red representing other materials such as insulators or metals. From
left to right and top to bottom, we see a sandwich junction, which is later identified as a
Josephson junction; a top view of a Dayem bridge with a shorter funnel on the coherence
length scale [35]; a superposition of films, where the supercurrent is affected by the cover;
a longitudinal cross-section of a junction with variable thickness; and a grain-boundary
junction, which is also a Dayem bridge, with the superconductor connected to a different
material. Today, there are an infinite number of nano configurations for weak links. A
good example of their practical use is the Superconducting Quantum Interference Device
(SQUID). A review by Likharev [36] covers several configurations.

urations, including weak links between superconducting leads. Such configurations utilize

the properties of weak superconductivity and interference between wave functions with

different phases associated. When two identical superconductors are under the same con-

ditions, they exhibit the same properties such as critical temperatures, coherence, and

penetration lengths. Although their wavefunctions must have the same amplitude, their

phases may naturally differ. This phase difference creates new phenomena when the two

superconductors interact weakly.

There exists an infinite number of configurations that result in producing weak links of

superconductivity. These configurations can include a strangled neck along a supercon-

ductor, a sandwich where a different material is placed between the superconductors, or

a superposition of other materials. All of these configurations operate on dimensions that

are of the order of the coherence length, which enables the proximity effect to modify the

states near the Fermi surface.

STIS Junctions are systems that consist of a superconductor – topological insulator –

superconductor structure, sometimes as a "sandwich" of the materials. Josephson effects,

which are the result of weak superconductivity, were first predicted by B. Josephson [37].

This phenomenon is possible due to the proximity effect of superconductors. In a sandwich
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junction, electrons tunnel between the superconductors separated by a potential barrier,

establishing a proximity that is not so close as to completely alter the electron states on

both superconductors, but rather close enough for their wave functions to overlap. Al-

though, as stated, the characteristics of both superconductors can be the same, the phase

of their wave functions is not related. As a result of this overlap, phase coherence along

the junction is achieved, enabling the generation of a supercurrent between the SCs. The

Josephson effect can create different phenomena, such as the presence of magnetic flux

quanta orthogonal to the current propagation and high-frequency electromagnetic waves

[38, 39], that can have practical use.

In its simplest form, a Josephson junction can be viewed as a two-level quantum system.

Following Feynman [40], we consider Cooper pairs with 2e charge flowing through a junc-

tion creating a current subjected to a voltage V in a circuit. The energy levels E1 = eV

and E2 = −eV are occupied by the pairs and the transition energy is E12 = E21 = ET , for

E12 as the energy transition from levels 1 → 2 and E21 for the opposite. The Schödinger

equation for this system is

iℏ
dΨ1

dt
= E1Ψ1 + ETΨ2, (2.8)

iℏ
dΨ2

dt
= E2Ψ2 + ETΨ1, (2.9)

where Ψp ∼ √
nse

iθp , for θp, p = 1, 2, as the phase of the superconductors and √
ns

as the square root of the pairs density in the junction. Upon substituting Ψp, taking

the difference between equations and separating real and imaginary parts we get for the

charge density

dns
dt

= 2ETns
ℏ

sinϕ, ϕ = θ2 − θ1. (2.10)

Since the current through the junction is proportional to dns/dt, we understand that the

current through a tunnel Josephson junction is proportional to sinϕ,

js = jc sinϕ, (2.11)

with jc the maximum supercurrent through the junction. In other words, the current is

modulated by the phase difference between the two superconductors. This simple model
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helps us to understand the essential role that ϕ plays in the junction current. In the

presence of disorder these currents exhibit mesoscopic fluctuations. Previous studies of

mesoscopic fluctuations have been conducted for SNS (Superconductor-Normal Material-

Superconductor) systems, where a normal metal is sandwiched between the superconduct-

ing leads [43]. In the following sections, we will calculate the current and its fluctuations

for a system with topological insulators as a layer of the junction.

2.4 From BCS to BdG

To develop a more advanced study on the Josephson current, we need to use a more

advanced mathematical model. The BCS Hamiltonian is a suitable starting point for such

an analysis, as it directly deals with Cooper pairs. Referring to our previous discussion,

on the evolution of superconductivity theory, where we introduced the Hamiltonian (2.7),

we return to it

Ĥ =
∑
kσ
ϵkc

†
kσc−kσ − g

V

∑
k
c†

k↑c
†
−k↓c−k↓ck↑. (2.12)

We now develop a path integral formulation to construct a generating function by substi-

tuting the creation and annihilation operators in the Hamiltonian with equivalent coherent

state Grassmann variable fields. These fields are denoted as χ̄ and χ and obey fermionic

anti-commuting algebra, where χ̄χ = −χχ̄ and χ2 = 0. The generating function we obtain

is [44]:

Z =
∫
d(χ̄, χ)e−S(χ̄,χ), (2.13)

where

S =
∫ β

0
dτ

∫
ddr [χ̄σ(∂τ + ϵk − µ)χσ − gχ̄k↑χ̄−k↓χ−k↓χk↑] . (2.14)

Using a mean field theory, we understand that the fields couple via local attractive in-

teraction to form pairs of the type ∆ = g
V

〈χ̄k↑χ̄−k↓〉 and ∆̄ = g
V

〈χ−k↓χk↑〉. To rewrite

the interacting part of the Hamiltonian, the one mediated by g, we perform a Hubbard-

Stratonovich [45, 46] transformation and get

Z =
∫
d(∆̄,∆)e−

∫ β
0 dτ

∫
ddr( 1

g
∆∆̄+(∆χ̄k↑χ̄−k↓+∆̄χ−k↓χk↑)). (2.15)
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The Hubbard-Stratonovich transformation can be viewed as the opposite of the trick of

completing the square for a binomial product. The ∆ and ∆̄ bosonic fields are intensive

variables that represent the many-body macroscopic properties of the superconducting

system. Due to their intensive nature, fluctuations are negligible in the thermodynamic

limit. From the perspective of Ginzburg-Landau theory [28], these fields represent the

order parameter of phase transitions and set the gap of the superconducting system. The

action can be rewritten compactly using Nambu spinors, defined as:

ψ =

 χk↑(ϵ)

χ̄−k↓(−ϵ)

 , ψ̄ =
(
χ̄k↑(ϵ) χ−k↓(−ϵ)

)
. (2.16)

This enables us to rewrite the generating function as:

Z =
∫
d(ψ̄, ψ)d(∆̄,∆)e−

∫ β
0 dτ

∫
ddr( 1

g
∆∆̄+ψG−1ψ̄) (2.17)

where

G−1 = ∂τ −

ϵk ∆

∆̄ −ϵk

 = ∂τ −HBdG, (2.18)

and HBdG is the Hamiltonian of Bogoliubov - de Gennes or Gorkov. One can understand

the negative energy term in the lower diagonal as one a hole created in the theory. This

new Hamiltonian will be used in later sections to construct our model for STIS junctions.

It can explicitly handle the electron-hole degrees of freedom required to account for the

interface of Andreev reflections between the superconductors and surface states of TI’s.
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Chapter 3

Topological Insulators

The field of condensed matter physics has found a new application for the concept of

topology, thanks to the discovery of topological insulators. Upon closer examination,

it became clear that these insulators possess intriguing topological properties, including

topologically protected conducting surface states. An important aspect of this behavior

is the presence of a topological invariant, which remains unchanged during specific topo-

logical transformations, such as smooth deformations of parameters, adding disorder, etc.

These invariants are crucial as they capture the global structure and properties of a sys-

tem and are protected by the energy gap between valence and conduction band in band

insulators and gap for excitations in superconductors. Any changes in the Hamiltonian

that do not violate fundamental symmetries or close the gap cannot change topological

properties. A well-known example of a topological invariant in condensed matter physics

is the Chern number [47].

For topology in gapped systems that can be described by quadratic hamiltonians, a table

can be defined to establish the relationships between groups of topological invariants based

on the dimension and the discrete symmetry class associated with the model. These rela-

tions stem from Random Matrix Theory, which encompasses 10 symmetry classes. These

symmetry classes are composed of combinations of time-reversal, particle-hole (charge

conjugation), and chiral (sublattice) symmetries. Tables 3.1 and 3.2 can be used to repre-

sent and define these relationships. Next, we are going to explore some examples defined

by the table, such as the Quantum Hall Effect, which is probably the most known example

of a TI, and Kitaev’s Majorana chain, earlier mentioned. We then introduce the 3D Spin

Hall Effect, which is the one relevant for this work.
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Symmetry Class Time reversal symmetry Particle hole symmetry Chiral symmetry
A × × ×
AIII × × ✓
AI ✓, T 2 = 1 ✓ ×
BDI ✓, T 2 = 1 ✓, C2 = 1 ✓
D × ✓, C2 = 1 ×
DIII ✓, T 2 = −1 ✓, C2 = 1 ✓
AII ✓, T 2 = −1 × ×
CII ✓, T 2 = −1 ✓, C2 = −1 ✓
C × ✓, C2 = −1 ×
CI ✓, T 2 = 1 ✓, C2 = −1 ✓

Table 3.1: This is the table of discrete symmetry classes. Here, T stands for time-reversal
symmetry operator, for T = UTK, being UT an unitary matrix UTH

∗U−1
T = H, and

K complex conjugation operator. C stands for particle-hole symmetry, for C = UCK,
being UC an unitary matrix UCH

∗U−1
C = −H. S stands for chiral symmetry, where

SciS
−1 = (US)ijcj. According to the relation S = TC it is known that if at least of two

of the symmetries (S, T, C) are present, all are.

Symmetry Class d = 0 d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8
A Z 0 Z 0 Z 0 Z 0 Z

AIII 0 Z 0 Z 0 Z 0 Z 0
AI Z 0 0 0 2Z 0 Z2 Z2 Z

BDI Z2 Z 0 0 0 2Z 0 Z2 Z2
D Z2 Z2 Z 0 0 0 2Z 0 Z2
DIII 0 Z2 Z2 Z 0 0 0 2Z 0
AII 2Z 0 Z2 Z2 Z 0 0 0 2Z
CII 0 2Z 0 Z2 Z2 Z 0 0 0
C 0 0 0 2Z 0 Z2 Z2 0 0
CI 0 0 0 2Z 0 Z2 Z2 Z 0

Table 3.2: This table relates the discrete symmetry classes, as stated in the previous table,
and the dimension of the system, from 0D, point-like systems, to 3D, bulk materials, and
so on. This table is called "periodic" for it repeats after 8D, which is the same as 0D,
as ti can be seen, that is, the system is invariant over d + 8 dimensions. The factors of
Z and 2Z represent topological materials that are characterized by an integer, the Chern
or winding number, for odd or even integers, respectively. While Z2 represents the group
of integers modulo 2, which means it can take only two values: 0 and 1. It indicates the
presence or absence of surface states with protected properties, respectively.
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Quantum Hall Effect - QHE - The concept of topological insulators can be traced back

to the seminal works of Laughlin [48], Thouless [49], Haldane [50], and their collaborators

in the context of the quantum Hall effect. In the classification table it fits a 2D model in

class A. In a similar fashion to the classical Hall effect, this phenomenon occurs in a two-

dimensional system under the influence of low temperatures and a strong magnetic field

perpendicular to the 2D plane. In the quantum Hall effect, the current passing through

the system is redirected towards the edges while the bulk behaves as an insulator. In the

quantum version it presents a quantized transversal Hall resistance,

RQHE = h

e2ν
, ν ∈ N , (3.1)

where ν are Chern numbers characterizing this phenomenon. Figure 3.1 and Appendix

B gives more details on the physics. There is also the possibility to create this quantized

resistance without the use of an external magnetic field. This can be achieved through

the breaking of time-reversal symmetry due to the sublattice hoppings of graphene for

the Haldane model [50], such effect is similar to the application of a magnetic field and

brings new possibilities in constructing similar models.

Majorana Fermions - The Kitaev chain, Figure 3.2, is an example that covers the 1D

materials of class D, where the particle-hole symmetry comes from the superconducting

states. This model is constructed to form edge states of Majorana fermions. As already

mentioned in the Introduction this system considers a 1D linear chain of electrons with

p-wave pairing. These electrons can be viewed as formed by two Majoranas. Assuming

biding factor parameters in a superconducting system it can be shown that edge states

of non-local Majorana states are possible, one Majorana on each edge of the chain. The

Hamiltonian

H = −µc†
ncn − t(c†

n+1cn + c†
ncn+1) + ∆(cncn+1 + c†

n+1c
†
n) (3.2)

represents this model, here µ is the chemical potential, t a biding factor between Ma-

joranas and ∆ the superconducting pairing. Figure 3.2 shows an electron chain, where

these electrons hosts two Majorana modes each. It can be established conection between

adjacent Majoranas of two types, one for Majoranas belonging to the same electron, and

Majoranas belonging to adjacent electrons, as it is shown in the two coloured examples
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(a) No magnetic field (b) 0.07u of magnetic field

(c) 0.12u of magnetic field

(d) Quantized steps of resistivity according to
the magnetic field strength

Figure 3.1: QHE: Here u stands for unity of magnetic field, since the code is not using
realistic parameters to perform calculations. A top view of a 2D conducting surface, Figure
(a), reveals an interesting phenomenon when a magnetic field is applied perpendicular to
the current flow. In this scenario, the current concentrates along the edges of the surface
leaving the bulk as an insulator. This occurrence can be attributed to the influence of
the magnetic field, which exerts a Lorentz force on the electrons, causing them to follow
circular orbits. As a result, a continuous current flow is not generated; instead, near the
edges, the circular electron orbits can reflect and lead to skipping orbits. Consequently,
current is observed along the edges of the surface. These localized states as known as
Landau levels. Although the current keeps concentrating at the edge, for some values of
magnetic flux, the current is spread again due to presence of disorder, as illustrated in
Figure (b). As the magnetic field strength increases the electron orbits become smaller and
more localized, due to the increasing spacing of Landau levels, Figure (c). In the absence
of disorder, the quantized steps corresponding to Landau levels are well-defined. The
presence of disorder introduces scattering, which adds some noise to the states, although
the levels keep well defined, with perfectly quantized Hall plateaus, Figure (d). Graphics
generated with an adapted model in Kwant [13], the code is avaiable in Appendix B.
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of Figure 3.2, where the red bars stand for these hoppinps. This Hamiltonian comes

from summing the two types of biding contributions, one for the pairing of Majoranas

within each electron H = (i/2)µγ2n−1γ2n, summed over the pairing between Majoranas

in adjacent electrons H = itγ2n+1γ2n, with the definitions of γ2n−1, γ2n for odd and even

Majoranas, respectively, following the chain order, then

γ2n−1 = (c†
n + cn), γ2n = −i(c†

n − cn), (3.3)

where c†
n, cn are creation and anihilation electron operators. When ∆ = t, µ = 0 we are

in the regime of unpaired Majoranas at the edges, for the Majoranas are connected by

adjacent electrons and the two Majoranas at the edges are isolated. ∆ = t = 0, µ 6= 0

is the regime of isolated electrons, there is no superconductivity to bind the electrons

together, so the Majoranas can only bind within each electron. Starting from these pa-

rameters choice and increasing them, it can be shown that the system keeps unpaired

Majorana modes until energies within the range of µ = 2t. These two edge states are

separated by a superconducting gapped medium ∆. In a system that is particle-hole sym-

metric, the energy spectrum exhibits symmetry around zero energy. For µ = 0, Majorana

modes appear at the edges, which cannot be brought together due to the distance, or

individually moved without violating the symmetry. They are dependent of each other,

similar to removing a pole from a magnet, it is not possible to remove a single edge state.

Finally, we introduce the system of relevance for this work. This is the 3D Quantum Spin

Hall system in Class AII. The works of Kane [51], Bernevig [52], Roy [53] and Moore [54]

have extended the concept of the Hall effect to spin currents. The Kane-Mélé model [51]

specifically demonstrates this phenomenon in 2D graphene ribbons, where it is observed

that the edges of the ribbon exhibit conducting behavior. This approach considers the

hoppings between the two sublattices of graphene, which create a Dirac cone structure in

the energy bands. It uses spin-orbit interaction to open a gap while keeping time-reversal

symmetry. Spin-orbit interaction couples the spin of an electron to its momentum, as op-

posite to Haldane model, a system also built from graphene but that uses the sublattice

hoppings. As a result, a gapped medium is formed in the bulk of the material, while the

edges exhibit gapless states. It suggests that time-reversal symmetry protects these edge

states. Subsequently, Fu, Kane, and Mélé [55] introduced a three-dimensional model that

generalizes the spin Hall effect, a 3D system in class AII. Zhang et al [56] extrapolated
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(a)

(b)

Figure 3.2: a)Kitaev model, a chain of electrons, where each electron accommodates
two Majorana modes that can interact to each other. This interaction occurs between
Majoranas belonging to the same electron and Majoranas belonging to adjacent electrons,
as depicted in the second and third lines. In these examples, the red bars represent the
bidings. b) Band structure showing the persistence of edge zero modes of Majorana
fermions.
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the search of Dirac cones for Bi2Se3, Bi2Te3 and Sb2Te3 crystals showing surface states

consisting of a single Dirac cone, leading to "massless" electrons with linear momentum

coupled to its spin.

As we detail in the next chapter, we are here interested in a Josephson junction of a

3D TI and s-wave superconductors. Following [57], we are going to consider the 3D TI

Hamiltonian

H0 = Hbulk +Hsurf. +Hcoupl., (3.4)

where Hbulk comprise the insulating bulk and Hsurf. the metallic surface states,

Hbulk = MI2 ⊗ τz + ℏvBk · σ ⊗ τx, (3.5)

Hsurf. = ℏvSk‖ · σ. (3.6)

Here, k‖ = (kx, ky) and k = (k‖, kz) are the surface and bulk momenta, respectively,

and τi and σi are Pauli matrices for orbital and spin degrees of freedom with i = x, y, z.

Hcoupl. connects the bulk and surface states, but for our calculation for the STIS the

bulk will not be a relevant part, as for its coupling with Hsurf.. The bulk Hamiltonian

corresponds to the strong topological phase that generates a single Dirac cone on the

surface. This model provides an effective low-energy description, e.g. for Bi2Se3 TI

cited before. Usually, to guarantee an insulating bulk, Hbulk has a large band gap, as

opposition to Hsurf., that is conducting. In this type of topological insulator there are

narrow bulk band gaps, which can give rise to the presence of accidental impurities or

vacancies. Consequently, these impurities tend to occupy the bulk conduction band,

leading to fluctuations in the transport properties of the system due to interference effects.

For our STIS Josephson Junction, to be developed in the next section, we will make use

of this model (3.4), accounting only for the topological surface states described by Hsurf.

coupled to superconductors placed on top of the 3D TI. A crucial part is to also account

for the disorder on the surfaces, leading to sample-to-sample fluctuation in the Josephson

current.
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Chapter 4

STIS Junction

Building upon the previous model of a 3D topological insulator, our next step involves

coupling it to s-wave superconductors. This configuration will serve as basis of our STIS

Josephson junction. We aim to develop an effective theory from which we can calculate

the average Josephson current flowing through the junction and sample-to-sample fluc-

tuations in the currents due to disorder on the TI surfaces. Specifically, we assume that

order parameters of the superconductors have the same absolute value but tunable phase

difference, which drives the Josephson current. The presence of disorder on the TI surface,

present in any experiment, leads to sample-to-sample fluctuations and we calculate the

supercurrent I(ϕ) and fluctuations varI(ϕ1, ϕ2) across different samples as functions of

the phase differences between the superconductors.

The chapter unfolds as follows: Firstly, in Section 4.1 we define the STIS junction Hamil-

tonian and subsequently derive an effective Hamiltonian for our system. We construct a

generating function for the Josephson current and its fluctuations in terms of an effective

field theory in the following sections: In Section 4.2 we expand the dimensionality of the

field theory to accommodate the introduction of the Replica trick. We then introduce the

sample space in order to calculate sample-to-sample fluctuations. Upon developing on

disorder averaging in Section 4.3, we proceed to calculate a saddle point equation of the

effective action in Section 4.4 and after a gradient expantion in Section 4.5 we perform a

refined version of the saddle point equation ("Usadel equation") in Sections 4.6 and 4.7.

We then calculate the density of states in Section 4.8. We introduce a parametrization

of the effective field theory in Section 4.9 capable of calculating both the average current

and fluctuations in presence and absence of a finite magnetic field, in Sections 4.10 and
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Figure 4.1: A model of the STIS junction, already illustrated in the Introduction. The
green component is a TI thin film. Yellow bases represent the two superconductors. In
blue we have a tunnelling interface, for computational reasons. The red part is a lead
that connects to external electrical current. For our system, each color part addresses
a Hamiltonian sector in (4.1). Integrating over the supercondutor degrees of freedom
we derive an effective theory for the TI-surface that accounts for the coupling to the
superconductors. This figure is the plot of a model developed using Kwant [13], to perform
simulations of Josephson currents on STIS.
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4.11, respectively.

4.1 Building an Action

To model the Josephson junction the Hamiltonian of the TI junction is modified ac-

cordingly, consisting now of three elements: one for the superconductors, one for the

topological insulator, and one for the coupling between them. For the next calculations

we are assuming ℏ = 1 to simplify calculations. The Hamiltonian thus reads:

Ĥjun = ĤTI + ĤBdG1 + ĤBdG2 + ĤTun. (4.1)

Here the Hamiltonian for the topological insulator reads: ĤTI = Ĥsurf + Ĥdis, with:

Ĥsurf = v

 k.σ 0

0 −k.σ

 , (4.2)

as already introduced in the last chapter, where k = (kx, ky)t is the momentum of the

surface states, σ the Pauli matrices, v the velocity of the surface states, and

Ĥdis = V (r)I2, (4.3)

is a random disorder potential depending on the two dimensional coordinate r. As usual,

we assume a Gaussian distribution for the disorder potential with first and second moment,

〈V (r)〉 = 0, (4.4)

〈V (r)V (r′)〉 = 1
2τ
δ(r − r′), (4.5)

respectively, where τ is the elastic scattering time.

To account for superconductivity at the boundaries, we introduce Nambu spinors. These

spinors are selected in a manner that maintains the standard structure of the Bogoliubov-

de Gennes Hamiltonian and Gorkov Green’s functions, providing us with greater flexibility
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in performing the next calculations. The Nambu spinors are defined as follows:

Ψ =



χk↑(ϵ)

χk↓(ϵ)

−χ̄−k↓(−ϵ)

χ̄−k↑(−ϵ)


, Ψ̄ =

(
χk↑(ϵ) χk↓(ϵ) −χ̄−k↓(−ϵ) χ̄−k↑(−ϵ)

)
, (4.6)

with ϵ the Matsubara energies to be summed latter, and ψ, p̄si as the topological conter-

parts of the spinors. Also, note the relation

Ψt = Ψ̄iσs2 ⊗ iσph2 (4.7)

where ’s’ stands for spin (space) and ’ph’ particle-hole (space). We can then write the

surface Hamiltonian in Nambu space

Ĥ =
∑

k
vψ̄(k)

k.σ 0

0 −k.σ

ψ(k). (4.8)

Superconductors are described by the BdG Hamiltonian

ĤBdG =
∑

k

Ĥ0 ∆s

∆̄s −Ĥ t
0

⊗ Is2, Ĥ0 = k/2m, (4.9)

where Is2 is the identity matrix in spin space, and ∆s = ∆eiϕs , s = 1, 2, indicating

each superconductor, with ϕs as its associated phase difference. Regarding the tunneling

Hamiltonian, we keep the following form:

ĤTun =
∑
s=1,2

∫
dyWsΨ̄(r−

s )ψ(r+
s ) + h.c., (4.10)

where we consider a junction of length L centered at the origin and superconductor leads

that starts at |x| ≥ L/2. r±
s = (sgn(i) ∗ L/2 ± δ, y) are coordinates to account for the

tunneling interface, with s indicating superconductors 1 and 2 as the coordinates of the

interfaces of the junction, δ as a small value of deviation from the boundary.

Considering that the superconductor leads are significantly larger than the TI film in

between, we can neglect pair breaking in the superconductors due to an inverse proximity
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effect. Additionally, depairing effects in the leads can be ignored for consideration of

maintaining a finite current density through the junction. With this assumption, we can

perform a Gaussian integration for the superconductor and tunneling Hamiltonians. To

accomplish this, we need to account that iϵ+ĤBdG = G−1
BdG, which defines the inverse BdG

Green’s function. Also, we introduce the Matsubara formalism, where ϵn = (2n + 2)πT

are the fermionic Matsubara energies. This results in:

S =
∑
n

∫
drψ̄n

(
−iϵn + ĤTIσ

ph
3 + ĤΓ − µσph3

)
ψn (4.11)

where

ĤΓ =
∑
s=1,2

∫
dr W †

sGBdGs(r, r′)Ws (4.12)

=
∑
s=1,2

∫
dk W †

sGBdGs(k)Ws (4.13)

=
∑
s=1,2

∫
dϵ ν(ϵ)W †

sGBdGs(ϵ)Ws (4.14)

≈
∑
s=1,2

ν0

∫
dϵ W †

sGBdGs(ϵ)Ws (4.15)

=
∑
s=1,2

∫
dϵ

ν0|w|2

(iϵn)2 − ϵ2 − ∆2

iϵn + ϵ ∆

∆ iϵn − ϵ

 (4.16)

= −
∑
s=1,2

ν0π|w|2√
ϵ2
n + ∆2

iϵn ∆

∆ iϵn

 (4.17)

= −
∑
s=1,2

Et√
ϵ2
n + ∆2

iϵn ∆

∆ iϵn

 . (4.18)

The first step was a Fourier transformation. In the fourth line we approximated the

density of states to be constant. The integration in the fifth line is resolved around a pole

in
√
ϵ2
n − ∆2.

4.2 Replica Trick and Sample space

We have constructed our Hamiltonian, which consists of a part for the topological insu-

lator and another part for the effective coupling to the superconductor interfaces. The

primary focus here is to calculate the average Josephson current and its fluctuations in our
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STIS system. In a Josephson junction, a passage of current through it results in a phase

difference ϕ between the two superconducting leads, represented by ∆1 and ∆2. In our

case, we consider two samples of STIS junctions. Therefore, for the current fluctuations,

we expect them to depend on two distinct phases, ϕ1 and ϕ2, each corresponding to the

phase difference in the respective leads.

To calculate these current fluctuations, we can utilize the fact that the supercurrent in a

Josephson junction is a thermodynamic current, obtained by differentiating a thermody-

namic potential. Consequently, the average supercurrent can be expressed as follows:

I(ϕ) = −2ed〈F 〉V
dϕ

(4.19)

where F = −T lnZ is the free energy and 〈. . .〉V represents an average over disorder,

considering the given free energy. The partition function is

Z =
∫
D[ψ̄ψ]e−S(ψ̄,ψ,Vdis). (4.20)

The disorder will be taken into account later. To account for the sample-to-sample fluc-

tuations in the Josephson current, we introduce the correlator:

varI(ϕ1, ϕ2) = K(ϕ1, ϕ2) = 〈I(ϕ1)I(ϕ2)〉c (4.21)

where 〈AB〉c = 〈AB〉 − 〈A〉〈B〉, and 〈...〉 is an average over the ensemble. This will give

explicitly at the end

K(ϕ1, ϕ2) = 4e2d
2〈F (ϕ1)F (ϕ2)〉c

dϕ1dϕ2
. (4.22)

In order to proceed with this approach, we need to double the sample space to accommo-

date the states of the two systems. This leads to the following transformations:

Ĥ −→ Ĥ(ϕ1, ϕ2) ≡ diag
(
Ĥ(ϕ1), Ĥ(ϕ2)

)
(4.23)

ϵ̂ −→ ϵ̂ ≡ ϵ⊗ I2. (4.24)

We admit that the Mastubara energies ϵn forms a n-dimensional diagonal matrix, such

that (ϵ̂)n = ϵn. To address the disorder, we employ the Replica Trick as described in

Edwards’ work [58]. We create R replicas of the same system, using the same generating
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function, and subsequently take the limit as R approaches 0. The generating function,

or partition function, is raised to the power of R. This allows the disorder to contribute

linearly in the exponent, making it easier to handle analytically. In summary, an average

value of an observable calculated from the generating function Z with sources J gives:

F = −β lim
R→0

1
R

(eR lnZ − 1) = −β lim
R→0

1
R
ZR. (4.25)

Where it was introduced the idea of R equal replicas of Z in the limit where R → 0. The

replicated partition function can be seen as

ZR =
∫
D[ψ̄ψ]e−S(ψ̄,ψ,Vdis) (4.26)

S(ψ̄, ψ, Vdis) =
∑
r=1,2

∫
dxψ̄r

(
−iϵ̂+ Ĥ(ϕ1, ϕ2) − µσph3 ⊗ I

)
ψr. (4.27)

In our case ψ̄, ψ are 4 × (R1 + R2) dimensional fields, where the factor of 4 accounts for

the particle-hole and spin degrees of freedom.

4.3 Disorder Average

By performing an average over disorder, assuming that 〈V (r)V (r′)〉 = 1
2πν0τ

δ(r − r′), we

find that the only affected term is the one involving the disorder potential,

〈e
∫
drψ̄V (r)σph3 ψ〉dis = e

1
4πν0τ

∫
drψ̄σph3 ψψ̄σph3 ψ

. (4.28)

Considering the Grassmann field interaction, we can identify three types of scattering

diagrams: Exchange, Cooper, and Direct channels. However, in our analysis, we will

disregard the direct channel since it can be seen, in fluctuations calculations that it behaves

like an effective chemical potential. The presence of the three channels can be explicitly

observed by performing a Fourier transformation on the previously averaged action. The

Fourier transformation yields exponential factors on ki, leading to a delta function, such

that:

∑
k1k2k3k4

∫
drψ̄k1σ

ph
3 ψk2ψ̄k3σ

ph
3 ψk4δk1−k2+k3−k4 . (4.29)
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Specifically, there are three combinations of interactions at zero momentum sum:

∑
k1k2k3k4

∫
dr
(
ψ̄k1σ

ph
3 ψk2ψ̄k2+qσ

ph
3 ψk1+q + ψ̄k1σ

ph
3 ψk2ψ̄−k1−qσ

ph
3 ψ−k2−q+ (4.30)

+ψ̄k1σ
ph
3 ψk1+qψ̄k2+qσ

ph
3 ψk2

)
. (4.31)

Respectively, the three terms are known as the Exchange, Cooper, and Direct channels.

Now, utilizing the relation (4.7) and considering the symmetry of ψ and fermion anticom-

mutativity, we can rewrite the expression as follows:

ψ̄−k1−qσ
ph
3 ψ−k2−q = −ψt−k2−qσ

ph
3 ψ̄t−k1−q (4.32)

= −ψ̄k2+q(iσph2 )σph3 (iσph2 )ψtk1+q (4.33)

= ψ̄k2+qσ
ph
3 ψk1+q. (4.34)

From this observation, we can see that both the Exchange and Cooper channels are equiv-

alent within this symmetry structure. Additionally, considering the complex conjugation,

we can interpret this as two low momentum interactions involving σph3 ψk1+qψ̄k1+q with

momentum transfer −q. Thus, we have:

∫
dr ψ̄σph3 ψψ̄σph3 ψ = −2

∫
dr tr

(
σph3 ψψ̄σph3 ψψ̄

)
, (4.35)

Where the trace arises from the summation over momenta, the factor of −2 accounts for

the summation of both scattering channels and the anti-commutation, and the summation

is limited to low momentum −q. It is important to note that this expression represents

only the disorder term of the total action.

To further investigate these disorder channels, we perform a Hubbard-Stratonovich field

transformation. First, we multiply this expression by the fat unity 1 =
∫
DQe−πν0

2τ

∫
dr tr(Q2),

where Q is a bosonic field and a normalization constant has been absorbed into DQ. Then,

we transform Q → Q + iσph3 ψψ̄(πν0)−1 using the property of invariance of the Gaussian

integral under translations. This is a technique that helps us to decouple the quartic

interaction into an auxiliary field Q. It is important to note that the first expression has

33



a hidden negative sign in its usual structure:

e
− 1

2πν0τ

∫
dr tr(σph3 ψψ̄σph3 ψψ̄) = e

− 1
2πν0τ

∫
dr tr(σph3 ψψ̄σph3 ψψ̄) ×

∫
DQe−πν0

2τ

∫
dr trQ2

= e
− 1

2πν0τ

∫
dr tr(σph3 ψψ̄σph3 ψψ̄) ×

∫
DQe

−πν0
2τ

∫
dr tr

(
Q2+iQσph3

ψψ̄
πν0

+iσph3
ψψ̄
πν0

Q−σph3 ψψ̄σph3 ψψ̄

)
=
∫
DQ e−(πν0

8τ TrQ
2− i

2τ ψ̄Qσ
ph
3 ψ). (4.36)

In this procedure, we utilized the property of the cyclic product in a trace and the fact that

tr(Qψψ̄) = −ψ̄Qψ for the Grassmann variables. Now, our averaged generating function

becomes:

〈ZR〉V =
∫
DQe−S(Q), S(Q) = πν0

8τ
TrQ2 − 1

2
Tr ln(G−1

Q ), (4.37)

where

G−1
Q =

(
iϵ̂− vk.σσph3 + µσph3 ⊗ I − ĤΓ(ϕ1, ϕ2)

)
+ i

2τ
Qσph3 . (4.38)

This matrix of the bosonic field Q, in this new formalism, exhibits the following symmetry

relation:

Tr
(
Qσph3 ψ ⊗ ψ̄

)
= Tr

(
Qσph3 ψ ⊗ ψ̄

)t
= −

(
ψt ⊗ ψ̄tσph3 Qt

)
= −

(
(iσs2 ⊗ iσph2 )ψ ⊗ ψ̄(iσs2 ⊗ iσph2 )σph3 Qt

)
= −

(
(iσs2 ⊗ iσph2 )σph3 Qt(iσs2 ⊗ iσph2 )ψ ⊗ ψ̄

)
=
(
(iσs2 ⊗ iσph2 )σph3 Qtσph3 (iσs2 ⊗ iσph2 )σph3 ψ ⊗ ψ̄

)
= −

(
(σs2 ⊗ σph1 )Qt(σs2 ⊗ σph1 )σph3 ψ ⊗ ψ̄

)
. (4.39)

Then, by comparing with the left hand side, we find that Q = −σs2σ
ph
1 Qtσph1 σs2. This result

is obtained by utilizing the relation (4.7), the anti-commutation relations of Grassmann

variables, and the cyclic properties of the trace.

4.4 Saddle Point Equation

Following this action, we now seek a extremal point of the action (4.37). By performing

a variation of the action with respect to Q and requiring the linear contributions in δQ
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to vanish, we obtain the following equation:

Q0 = i

πν0

∑
k
GQ(k)

= i

πν0

∑
k

1
−vk.σs + µ+ i

2τQ

= i

πν0

∑
k

vk.σs + µ+ i
2τQ0

−v2k2 + µ2 − 1
4τ2 + iµ

2τQ0
. (4.40)

Above, we multiplied and divided by a term to simplify the denominator and allow our

saddle point equation to resemble a self-energy equation, akin to a Dyson equation. We

assumed that {∆, Et, ϵ} � 1
τ
, which represents the largest energy scale. By taking the

integral above, we can expect that the elements of Q0 will take values of ±1. The disorder

average preserves causality of the Green’s functions, so the signs of the diagonal elements

of Q0 should coincide with the imaginary part of the energy. With these considerations

and the chosen form of the Nambu spinors, a simple solution for Q0 can be given as:

Q0 = σph3 ⊗ Is2 ⊗ I
f
2 ⊗ IR. (4.41)

In the limit of small frequencies, the action exhibits a symmetry under transformations

of the form T = (iσph2 )T t(iσph2 )−1, with T = exp(W/2), where W is a generator of ro-

tations, as derived from equation (4.7). This symmetry implies the presence of long-

range low-energy excitations, or soft modes, as discussed in reference [59]. These soft

modes correspond to fluctuations around the saddle point solution. Here, T represents

a real pseudo-unitary rotation matrix. Consequently, any configuration of Q of the form

Q = TQ0T
−1 is a solution to the saddle point equation, as it preserves this symmetry.

Deviations from this form of Q would break the symmetry.
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4.5 Gradient Expansion

From this equation, we expand and rewrite the Green’s function as follows:

Tr ln(G−1
Q ) = Tr

(
iϵ̂− [vk.σs − µ]σph3 − ĤΓ(ϕ1, ϕ2) + i

2τ
Tσph3 T−1σph3

)
= Tr(iϵ̂σph3 − vk.σs + µ− ĤΓ(ϕ1, ϕ2)σph3 + i

2τ
Tσph3 T−1)

= Tr ln(G−1
Q ) = Tr(T−1

[
iϵ̂σph3 − vk.σs + µ− ĤΓ(ϕ1, ϕ2)σph3

]
T + i

2τ
σph3 ).

(4.42)

This expression should be understood as the most general representation that encom-

passes the significant physical transformations T satisfying the symmetry constraints. It

accounts for all possible solutions in the vicinity of the saddle point. Next, we introduce

a commutation relation to construct a more convenient expression:

Tr ln(G−1
Q ) = Tr ln(T−1

[
iϵ̂σph3 + T [vk.σs, T−1] − ĤΓσ

ph
3

]
T − vk.σs + µ+ i

2τ
σph3 )

≈ Tr ln(1 −G0OT ), (4.43)

where we dropped the ϕ dependence for simplicity and defined

G0 =
(

−vk.σs + µ+ i

2τ
Q0

)−1
=

vk.σs + µ+ i
2τQ0

−v2k2 + (µ+ i
2τQ0)2 (4.44)

and

OT = T−1
[
−iϵ̂σph3 − T [vk.σs, T−1] + ĤΓσ

ph
3

]
T. (4.45)

With this, we can introduce the effective action to be expanded, taking into account that

the T transformation generates small variations around the saddle point.

Seff = −1
2
Tr ln(G−1

Q )

= −1
2
Tr ln(G−1

0 − OT )

= const− 1
2
Tr ln(1 −G0OT )

≈ 1
2
Tr(G0OT ) + 1

4
Tr(G0OTG0OT ). (4.46)
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After some calculations, explicitly developed in Appendix A, we have for our action

S = πν

2

∫
dr Tr

(
D

4
(∂r − i[A, .])Q(∂r − i[A, .])Q− ϵ̂Qσph3 − iĤΓσ

ph
3 Q

)
. (4.47)

4.6 Usadel Equation

From this action, we can expect three types of terms arising from the dynamical part of it.

One term involves only derivatives, another term involves both derivatives and the vector

potential, and the third term involves only the vector potential contribution. To gain a

better understanding, we can perform a second saddle point analysis as before. We look

for a stationary configuration in the presence of weak spatial and temporal gradients, that

is, fluctuations around the saddle point. We expect then to transformate Q as T−1QT , ,

where W is the matrix generator of rotations for T = exp(W/2). Expanding to first order

in W we get that our transformation is Q 7→ Q′ − 1
2 [W,Q′]. Substituting the new Q in

the action (4.47) and imposing the linear W terms to vanish, we get:

D
(
∂xQ

′
∂xQ

′ − 4iAQ∂xQ
′ − 2AQ′AQ′)− 2[ϵ̂σph3 + iĤΓσ

ph
3 , Q

′ ] = 0. (4.48)

From this action, we can expect three types of terms arising from the dynamical part of it.

One term involves only derivatives, another term involves both derivatives and the vector

potential, and the third term involves only the vector potential contribution. To gain a

better understanding, we can perform a second saddle point analysis as before. We look

for a stationary configuration in the presence of weak spatial and temporal gradients, that

is, fluctuations around the saddle point. We expect then to transformate Q as T−1QT , ,

where W is the matrix generator of rotations for T = exp(W/2). Expanding to first order

in W we get that our transformation is Q 7→ Q′ − 1
2 [W,Q′]. Substituting the new Q in

the action (4.47) and imposing the linear W terms to vanish, we get:

[DAQ′A − 2ϵ̂σph3 − 2iĤΓσ
ph
3 , Q

′ ] = 0. (4.49)

We assume for A, with a particle-hole symmetry, A = σph3
nϕ
τ

ey = σph3 Eϕey, where nϕ =
LlB
ϕ0

= ϕ
ϕ0

represents the number of flux quanta in an area Ll, and ϕ0 is the flux quantum.
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This choice of A results in a constant magnetic field in the z direction, given byB = ∇×A:

[D
(
nϕ
τ

)2
σph3 Q

′
σph3 − 2ϵ̂σph3 − 2iĤΓσ

ph
3 , Q

′ ] = 0, (4.50)

which can be conveniently rewritten as

0 =
[
D
(
nϕ
τ

)2
Q⊥ − v̂iσ

ph
i , Q

′
]

(4.51)

v̂3 = ϵ̂τ + 2Etτ√
ϵ̂2 + ∆2

ϵ̂, v̂2 = − 2Etτ√
ϵ̂2 + ∆2

∆cos(ϕ̂), (4.52)

where Q⊥ = σph3 Q
′
σph3 − Q. Due to translational invariance parallel to the interfaces,

we further restrict ourselves to matrices Q that are independent of the y coordinate. We

make the ansatz Q̂′ = m̂iσ
ph
i and substitute it into the Usadel equation. Using the relation

[a.σ,b.σ] = (a × b).σ, we can derive a geometric statement, from the Usadel equation

just written,

(
D
(
nϕ
τ

)
m3 + v

)
× m = 0. (4.53)

The cases to be considered here are the limiting cases where there is no magnetic field

and where it is strong. First, in the case where there is no magnetic field, we have the

following Usadel equation:

0 =
[
v̂iσ

ph
i , Q

′]
. (4.54)

Such a structure has a solution for m that is parallel to v

m = n = v/v, v =
√
v2

2 + v2
3. (4.55)

For a finite strong magnetic field, we return to equation (4.53) and perform the cross

product to obtain a relation between the components of the vector m

m3(v2 −D
(
nϕ
τ

)
m2) = v3m2. (4.56)
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For m2 6= 0 it can be stated that

m =


0

m2

v3m2
v2−D(nϕτ )m2

 , (4.57)

where, using the normalization relation m2 = 1 we can solve as a function of m2 as

variable, then

v2
3m

2
2 = (m2

2 − 1)
(
v2 −D

(
nϕ
τ

)
m2

)2
,

s2β2m2
2 = (s−m2)2(m2

2 − 1), (4.58)

where s = v2/D
(
nϕ
τ

)
and β = v3/v2. These redefinition help us to propose a power series

solution for m2 for strong magnetic fields that can be understood physically. For s as the

series parameter

m2(s) =
∞∑
l−0

m2,ls
l, (4.59)

where the leading contribution of this series is

m2(s) = s

1 + |β|s
, m3(s) = m3 = 1. (4.60)

In constructing this solution, we treated the product sβ in equation (4.58) as an inde-

pendent parameter. The strong magnetic field limit requires that s is small, as it is

independent of the parameters in v2. However, when calculating the current fluctuations,

we need to consider the solution over a wide range of frequency ϵ. The parameter β, on

the other hand, depends on frequency according to the definitions of vi in equation (4.52),

which means that the product sβ is not necessarily small. Nevertheless, we have numer-

ically confirmed that the above-mentioned solution provides an excellent approximation

over a broad range of β values as long as s < 0.5.
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4.7 Rotation of the Q-field

To calculate the current fluctuations, we need to go beyond the saddle point approxima-

tion and consider fluctuations around it. This can be achieved by introducing fluctuations

around the saddle point solution. In order to incorporate these fluctuations, it is conve-

nient to express the second saddle point solution as a rotation from the first one,

Q∆ = T∆Q0T
−1
∆ . (4.61)

We need to introduce fluctuations on this Q∆ field, then we use the rotation of the

fluctuation transformation T , T̃ = T∆TT
−1
∆ , such that

Q
′ = T̃Q∆T̃

−1 = T∆QT
−1
∆ , (4.62)

where Q = TQ0T
−1. Substituting this rotated Q′ field into the action (4.47)

S = πν

2

∫
dr Tr

(
D

4
(∂r − i[A, .])T∆QT

−1
∆ (∂r − i[A, .])T∆QT

−1
∆ − viσ

ph
i × T∆QT

−1
∆

)
.

(4.63)

Then, with the cyclic invariance of the trace we eliminate T∆ in the action and arrive at

S = πν

2

∫
dr Tr

(
D

4
(∂r − i[A, .])Q(∂r − i[A, .])Q− viσ

ph′

i Q
)
, (4.64)

where σph
′

i = T−1
∆ σphi T∆, is a transformed Pauli matrix.

4.8 Density of States

With the solution of the Usadel equation at hand, we can now study the influence of the

magnetic field on the proximity induced minigap in the TI film. To this end, we first

recall that within the field theory approach the density of states (DoS) follows from

ν(ϵ)
ν

= 1
4

Re
[
tr
(
Q0(ϵ → −iϵ+)σph

3

)]
, (4.65)

where Q0 is the solution of the Usadel equation analytically continued from the discrete

set of Matsubara frequencies to the axis of real frequencies, where ϵ+ = ϵ + iη includes

40



0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
(a)

0 0.2 0.4 0.6 0.8
0

0.5

1

1.5

2

2.5

3
(b)

0.9 1 1.1 1.2 1.3 1.4
0

0.5

1

1.5

2

2.5

3
(c)

Figure 4.2: (a) Density of states ν(ϵ) for the vanishing magnetic field normalized to the
density of states ν = ν(µ) in the absence of superconducting leads for different values of
et = Et/∆ = 0.1, 1, 10. Panels (b) and (c) show density of states of the microbridge at
a finite magnetic field as a function of frequency ϵ for different values of γ = Et/EΦ =
(0.1/0.01, 0.1/0.1, 0.1/0.25) and fixed phase ϕ = 0, where eΦ = EΦ/∆ .

a positive small imaginary part, and ν denotes the density of states at energy ϵ = µ in

absence of superconducting leads. Building then on the discussion of the previous section,

the DoS reads

ν(ϵ) = νRe [m3(−iϵ+)] , (4.66)

with m3 specified through Eqs. (4.57) and (4.58). We first consider the DoS in absence of

a magnetic field, B = 0, as shown in Figure 4.2(a), and recall that the proximity induced

minigap Eg is a function of the ratio Et/∆. For the weak coupling limit, Et � ∆,

it displays the typical superconductor square-root singularity above the minigap Eg =

2Et cosϕ, ν(ϵ) ∼ θ(ϵ − Eg)(|ϵ − Eg|)1/2, and a weaker singularity ν(ϵ) ∼ 1/(|ϵ − ∆|)1/4

around the superconducting gap. In the opposite strong-coupling limit, ∆ � Et, there is

only a single singularity above the superconducting gap with Eg ∼ ∆. In the intermediate

case Et = ∆ we observe two singularities, as for Et/∆ � 1, but now the minigap becomes

large Eg ≲ ∆, as for the case Et � ∆.

Turning on finite magnetic fields, we focus on the limit Et/∆ � 1. In this limit, we can

explore the sensitivity of the minigap Eg to the magnetic field while its pair-breaking

effect on the superconducting leads is still negligible. Figure 4.2(b) shows the DoS for

Et � ∆ and various values of EΦ. Increasing the magnetic field from B = 0, the minigap

continuously reduces and closes once EΦ ≳ Eg. At the same time, the square root

singularity at Eg is smoothed out and turns into a monotonic function which displays

41



behavior qualitatively similar to that found in the Abrikosov-Gor’kov theory of gapless

superconductivity [60]. Once the gap closes, the DoS quickly evolves into the nearly

constant function ν(ϵ). As expected, the singularity at ϵ ∼ ∆ is hardly affected by small

magnetic fields EΦ � ∆, see the right panel of Fig 4.2(c). We observe, however, a small

dip above the singularity ϵ ≳ ∆ that develops and becomes more pronounced for smaller

values of γ. It should be stressed that the sub- and above the gap features in the DoS

are extremely sensitive to the boundary action used in the saddle point analysis of Usadel

equation. For instance, in the model of transparent interfaces, that can be captured by

the full circuit-theory action [61], the DoS in the sub-gap region may display secondary

gaps [62, 63, 64], while a singularity at ∆ may be turned into a vanishing DoS and an

unusual structure of the crossover to higher energies arises [65, 66].

Notice that above results were derived using the analytical solution of Equation (4.58).

The latter is a rather cumbersome expression and therefore not stated here. Although

the mean field solution obtained via power series provides a good approximation for the

full-fledged solution, in both limiting cases, strong and weak magnetic field, it fails to

fully capture the structure of the minigap. In the weak magnetic field limit, EΦ < Et, it

overestimates the size of the minigap and there is a singularity in the region ϵ < ∆. In

the opposite limit, EΦ > Et, there exists a threshold value E∗
Φ beyond which the minigap

closes. The approximated mean field solution fails to reproduce this behavior and always

results in a gapless density of states. It is also worth stating that the mean-field analysis

of DoS presented in this section misses the sub-gap tails [67, 68, 69, 70, 71, 72] and zero-

bias peaks. The latter include disorder-induced class D peak [73] and Majorana peak [74].

These fine-structure features of the DoS appear at the level of nonperturbative analysis

of Q-matrix manifold and become resolved at the energy scales of level spacing. This

parameter regime is beyond the domain of our assumptions that 1/ν � {Et, Eϕ,∆} �

{ETh, 1/τ}, with ETh the Thouless energy, to be more detailed later. The results of this

section are amenable to scanning-tunneling probes in hybrid S-TI proximity circuits and

hetero-structures, see e.g. Refs. [75, 76, 77, 78, 79].
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4.9 Introducing fluctuations around the saddle point

Now we aim to calculate the Gaussian fluctuations of our field Q. This can be done by

expanding Q in terms of its generators as Q = eWQ0 =
(
I +W + W 2

2

)
Q0. Since we are

interested only in terms of second order in W , we can neglect higher order terms. It is

important to consider the particle-hole structure of the action and take into account the

relation [W,σph3 ]+ = 0. Furthermore, note that W will have a diagonal of zeros. Therefore,

our action takes the following form:

S = πν

2

∫
dx Tr

(
D

4
(∂y − i[σph3 Eϕ, .])

(
I +W + W 2

2

)
Q0(∂y − i[σph3 Eϕ, .])×

×
(
I +W + W 2

2

)
Q0 − viσ

ph′

i

(
I + W 2

2

)
Q0

)
. (4.67)

From this lengthy equation, we need to extract the zeroth and second order terms of W .

The zeroth order term is obtained as follows:

S0 = πνAs
2

Tr
(
2De2E2

ϕm
2
2 − vimi

)
, (4.68)

where we excluded all terms that give zero trace contribution, performed the trace over

particle-hole space, resulting in a factor of two multiplying the equation, and carried out

the integral over space, yielding an area As. The Q0 factor was replaced by the ansatz for

the Usadel equation solution, Q0 = miσ
ph
i . Additionally, we used the cyclic permutation

property of the trace. The next term is more complex to solve, but the same rules apply.

In total, we will have four contributions.

S = πν

2

∫
dx Tr

(
(D[(∂yW )Q0 + ieEϕ[m3,W ]+]2

+2De2E2
ϕ

[
(m2σ

ph
1 W )2 +m2W 2

]
− 2miviW

2
)
. (4.69)

The first term in the square brackets arises from the multiplication of two first-order

factors, while the second term comes from the squared W terms, and the last term comes

from the last factor in the S action. We can derive this by utilizing the fact that ∂yQ0 =

0, [W,Q0]+, and the properties already employed for the S0 action. Thus, we obtain

an action that is convenient for studying sample-to-sample fluctuations. Now, let us

examine the form of W to understand the modes acting on it. First, we have Q0 =
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σph3 ⊗ Λ, where Λ is a diagonal matrix in Matsubara space with elements Λn = sgn(ϵn),

as other spatial domains have been traced out. Taking into account the energy scale

contributions, we will focus on Diffuson (d) and Cooperon (c) modes. This distinction

arises from considering the constraints between Q0 and W , as well as the additional

constraint [Wd,Λ]+ = 0, [Wd,Λ] = 0. Hence, we can rewrite W as W = Wd+Wc, where

W =

Pd 0

0 P t
d


ph

+

 0 Pc

−P ∗
c


ph

, P †
d = −Pd, P t

c = Pc. (4.70)

By combining all the constraints, we can determine the form of Pd and Pc, which are

Matsubara matrices, as well as the values that Λ takes for each ϵ. The resulting expressions

are given by:

Pd =

 0 d

d† 0

 , Pc =

c 0

0 c†

 . (4.71)

Wd and Wc are diagonal and off-diagonal in particle-hole space, respectively, for the

indices. Similarly, Pd and Pc are off-diagonal and diagonal in the Matsubara space. With

these definitions, we can rewrite our action in a more convenient form as follows:

S = L
∫
dy

πν

4
Tr[D (Q0∂yW − ieEϕ[m3,W ]+)2 − 2vimiW

2]+

+ πν

2
De2E2

ϕTr[(m2σ
ph
1 W )2 +m2

2W
2]

= L
∫
dy − πν

4
Tr[D(∂yW )2 + 2(vimi +De2E2

ϕ(m2
3 −m2

2))W 2]

− πνD

2
e2E2

ϕTr[m3Wm3W − (m2σ
ph
1 Wm2σ

ph
1 W )]

− iπνD

2
eEϕTr[Q0∂yW [σph3 ,W ]+], (4.72)

where L is the length along the x direction of the junction integrated. Now, we apply

W = Wd + Wc with their respective internal structures to separate our action into two
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different modes, corresponding to Diffusons and Cooperons:

Sd =L
∫
dy πνTr[D∂yd†∂yd+ d†[v̂imi, d]+] + πνDe2A2

ϕTr[d†[m2
3 −m2

2, d]+]

+ πνDe2A2
ϕTr[2m3d

†m3d+m2P
t
Dm2PD] − πνiDeAϕTr

(
∂yd

†[m3, d]+ − ∂yd[m3, d
†]+
)
,

(4.73)

Sc =L
∫
dy

πν

2
Tr[D∂yc†

i∂yci + c†
i [v̂inEi ϕ, ci]+] + πν

2
De2A2

ϕTr[c†
i [m2

3 −m2
2, ci]+]

+ πνD

2
e2A2

ϕTr[2m3c
†
1m3c1 + 2m3c

†
2m3c2 +m2c

†
1m2c

†
1 +m2c

†
2m2c

†
2 +m2c1m2c1+

m2c2m2c2] − πνiD

2
eAϕTr

(
−∂yc1[m3, c

†
1]+ + ∂yc2[m3, c

†
2]+

+∂yc†
1[m3, c1]+ − ∂yc

†
2[m3, c2]+

)
. (4.74)

According to the physical process, the d-modes ϵ1 and ϵ2 have opposite signs, while

for the Cooperon c-modes, the signs are the same. In the Matsubara space, where the

parametrization is given by Λn = sgn(ϵn), we can write:

Pd(ϵ1, ϵ2) = dϵ1,ϵ2θϵ1θ−ϵ2 − d†
ϵ1,ϵ2θ−ϵ1θϵ2 , Pc(ϵ1, ϵ2) = cϵ1,ϵ2θϵ1θϵ2 + ct−ϵ1,−ϵ2θ−ϵ1θ−ϵ2 ,

(4.75)

the sign coming from the complex conjugation in momentum representation of the func-

tions. Following this construction, the right-hand side should be seen with matrix indices

a and b for ϵ1 and ϵ2, respectively, in the Matsubara space,

Sd = πνL
{
D|[∂y − ieEϕ

2
(ma

3(ϵ1) +mb
3(ϵ2))]dα|2 + [v̂ai (ϵ1)ma

i (ϵ1) + v̂bi (ϵ2)mb
i(ϵ2)]|dα|2

+ e2Eϕ
2

4
[ma

3(ϵ1) +mb
3(ϵ2)]2|dα|2+

−e2Eϕ
2[ma

2(ϵ1)2 +mb
2(ϵ2)2]|dα|2 − 2e2Eϕ

2[ma
2(ϵ1)mb

2(ϵ2)]Re[d∗
αdᾱ]

}
, (4.76)

Sc = πνL
{
D|[∂y − ieEϕ

2
(ma

3(ϵ1) +mb
3(ϵ2))]cα|2 + [v̂ai (ϵ1)ma

i (ϵ1) + v̂bi (ϵ2)mb
i(ϵ2)]|cα|2

+ e2Eϕ
2

4
[ma

3(ϵ1) +mb
3(ϵ2)]2|cα|2+

−e2Eϕ
2[(ma

2(ϵ1))2 + (mb
2(ϵ2))2]|cα|2 + 2e2Eϕ

2[ma
2(ϵ1)mb

2(ϵ2)]Re[cαctα]
}
, (4.77)

where α = ϵ1, ϵ2, ab,mn and ᾱ = −ϵ1,−ϵ2, ab,mn. Here m,n are Replica indices.
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4.9.1 Eigenvalues

To calculate the eigenvalues of the matrix action, we can focus on solving it for either Sc or

Sd since they have the same mathematical structure. In order to simplify the calculations,

we can choose a momentum parameterization that removes the magnetic flux dependence

of the integrand. By doing so, the imaginary term inside the modulus will vanish, and

only the ∂y term will remain as the momentum dependence after a Fourier transformation.

That is,

Sd = πνL
∫
dq

{
D|qdα|2 + [v̂ai (ϵ1)ma

i (ϵ1) + v̂bi (ϵ2)mb
i(ϵ2)]|dα|2

+ e2Eϕ
2

4
[ma

3(ϵ1) +mb
3(ϵ2)]2|dα|2+

−e2Eϕ
2[ma

2(ϵ1)2 +mb
2(ϵ2)2]|dα|2 − 2e2Eϕ

2[ma
2(ϵ1)mb

2(ϵ2)]Re[d∗
αdᾱ]

}
. (4.78)

To develop the matrix structure and solve the nontrivial term in the last line for the

eigenvalue calculation, we introduce a transformation dα = d′
α + id′′

α, where d′
α and d′′

α are

real-valued fields. This transformation allows us to separate the action into two sectors,

which can be summarized as follows:

Sc
πνL

=d′
α(q)Oab

ϵ1ϵ2d
′
α(−q) + d′

α(q)Nab
ϵ1ϵ2d

′t
α(−q)

+ d′′
α(q)Oab

ϵ1ϵ2d
′′
α(−q) − d′′

α(q)Nab
ϵ1ϵ2d

′′t
α (−q), (4.79)

where we have defined

Oab
ϵ1ϵ2 = Dq2 + [v̂ai (ϵ1)ma

i (ϵ1) + v̂bi (ϵ2)mb
i(ϵ2)] + e2Eϕ

2

4
[ma

3(ϵ1) +mb
3(ϵ2)]2+

− e2Eϕ
2[ma

2(ϵ1)2 +mb
2(ϵ2)2], (4.80)

Nab
ϵ1ϵ2 = −2e2Eϕ

2[ma
2(ϵ1)mb

2(ϵ2)]. (4.81)

This is a matrix structure for the vectors dα, where the indices are given by ϵ1,2 and ab

components. The diagonal terms correspond to the case when ϵ1 = ϵ2 and a = b. In this
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case, the eigenvalues can be expressed as Oaa
ϵ1ϵ1 ±Naa

ϵ1ϵ1 . The remaining terms

Sc
πνL

= χqM
C
ϵ1ϵ2,abχ−q, (4.82)

where

Mϵ1ϵ2,ab =



OC
ϵ1ϵ2,ab Nϵ1ϵ2,ab 0 0

Nϵ1ϵ2,ab OC
ϵ1ϵ2,ab 0 0

0 0 OC
ϵ1ϵ2,ab −Nϵ1ϵ2,ab

0 0 −Nϵ1ϵ2,ab OC
ϵ1ϵ2,ab


, (4.83)

χq =
(
c′ (c′)t c′′ (c′′)t

)
q

=
(
c′
ϵ1ϵ2,ab c′

ϵ2ϵ1,ba c′′
ϵ1ϵ2,ab c′′

ϵ2ϵ1,ba

)
q
, (4.84)

χ−q =



c′

(c′)t

c′′

(c′′)t


−q

=



c′
ϵ1ϵ2,ab

c′
ϵ2ϵ1,ba

c′′
ϵ1ϵ2,ab

c′′
ϵ2ϵ1,ba


−q

, (4.85)

where the transposition occurs only in the subspaces of this matrix structure. The eigen-

values for the matrix Mϵ1ϵ2,ab are given by

λϵ1ϵ2,ab = OC
ϵ1ϵ2,ab ±Nϵ1ϵ2,ab, (4.86)

where each of them is doubly degenerate for each of the blocks accounted. With this

result in mind and with the help of definitions (4.19) and (4.22) we rewrite our variation

K(ϕ1, ϕ2) as

K(ϕ1, ϕ2) = (2eT )2∑
±

∑
q

∑
ϵ1>0,ϵ2

d2λsϵ1,ϵ2
dϕ1dϕ2

1
λsϵ1,ϵ2

−
dλsϵ1,ϵ2
dϕ1

dλsϵ1,ϵ2
dϕ2

1(
λsϵ1,ϵ2

)2

 (4.87)

where frequencies ϵ2 positive and negative account for the Cooperon and Diffuson contri-

bution, respectively. This is a useful expression to use later to calculate the fluctuations
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on the supercurrent.

4.10 Average current and sample-to-sample fluctua-

tions at zero magnetic field

We now consider the average Josephson current and its fluctuations at zero magnetic field

in the setup shown in Figure (1.4), following the results published in [83]. In this setup,

the largest energy scale is given by ETh = D/L2, the Thouless energy. It represents the

characteristic energy scale for diffusive motion in confined disordered systems. We further

distinguish between two cases: the quantum dot geometry with a confined transverse

direction, where E⊥
Th = D/W 2 � {∆, Et}, where ETh is the Thouless energy related

to the transverse direction, and the quasi-one-dimensional geometry with an extended

transverse direction, where E⊥
Th � {∆, Et}.

4.10.1 Average current

From Equation (4.19), we can derive a new expression for the supercurrent near the

saddle point. In this derivation, we use the action given by Equation (4.68), which does

not include the fluctuation factors that need to be taken into account when performing the

fluctuation calculation. The new expression for the supercurrent is obtained as follows:

I(ϕ) = 2eT d

dϕ
S0 (4.88)

= eπTV νAs
d

dϕ

∑
ϵ

(
2De2E2

ϕm
2
2 − vimi

)
. (4.89)

The solution of the saddle point equation in the absence of a magnetic field is given by

Q∆ = n̂iσ
ph
i . By setting EΦ = 0 and mi = ni in Equation (4.89), we can find the average

current I(ϕ). In this case, the mean field vector m̂ is parallel to v, resulting in the

following expression for the average current:

I(ϕ) = GEt
2e

J(ϕ), J(ϕ) = 4π sin(ϕ)T
∑
ϵ>0

∆2

ω(∆, ϵ)v(ϵ, ϕ)
. (4.90)

In the above expression, we have introduced the notation v(ϵ, ϕ) = |v| to indicate the

dependence of the scalar on the phase difference ϕ and the fermionic Matsubara frequency
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ϵ. Additionally, we defined ω(∆, ϵ) = ∆2 + ϵ2. The relation Et = δG/2e2 connects the

dwell energy with the normal-state conductance of the junction, where δ represents the

mean level spacing. Equation (4.90) is valid for arbitrary ratios et ≡ Et/∆. It is worth

noting that the average Josephson current does not depend on the width of the junction.

Equation (4.90) is consistent with previously reported results [80, 81, 82].

Next, we will explore the parameter dependence of the average current in the limiting

cases of long and short dwell times, Et � ∆ and Et � ∆, respectively. In these cases,

simple analytical solutions can be obtained. Subsequently, we will discuss arbitrary dwell

times based on a fully numerical evaluation of Equation (4.90).

Long dwell time: Et � ∆

In the limit Et � ∆, we can make the approximation v3 ≈ ϵ, as given by (4.52). The

scale for the average current is then determined by GEt/2e, and J becomes a function of

the dimensionless variables t = T/∆ and et = Et/∆ only.

In this approximation, and at low temperatures where T � ∆, the dimensionless J(ϕ)

takes on the following asymptotic form [84, 82]:

J(ϕ) = 2 sin(ϕ) ln
[

1
max(t, et cos(ϕ/2))

]
. (4.91)

Short dwell time: Et � ∆

In the short dwell time limit and at zero temperature, the dimensionless function J(ϕ) is

proportional to the complete elliptic integral of the first kind, denoted as K, as reported

in previous studies [84, 82],

J(ϕ) = 1
et

sin(ϕ)K
(

sin2 ϕ

2

)
= 1
et

sin(ϕ)
∫ ∞

0
dy

1√
cos2(ϕ/2) + sinh2 y

. (4.92)

It is worth noting that the scale of the average current is determined by the order pa-

rameter ∆. This can be observed by comparing the expressions for the average current

in Eqs. (4.90) and (4.92).
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Figure 4.3: The average current I(ϕ) at zero magnetic field as a function of the dwell
energy et = Et/∆ for various values of t = T/∆ and ϕ = π/2 on the left hand side, and
as a function of ϕ for various t and et = 0.01, on the right hand side.

Arbitrary dwell time

For the general case of arbitrary dwell times, we use (4.90) to perform numerical calcu-

lations and analyze the dependence of the average current I on t and et. The results of

these calculations are shown in Figure 4.3.

As expected from (4.91), the average current I monotonically increases as the temperature

decreases, and the weak low-temperature singularity is cutoff for finite et. Similarly, I

increases with decreasing et, but the growth is limited for finite T . The dependence

of I on the phase difference ϕ is illustrated in Figure 4.3 for a fixed et. At the lowest

temperatures, the average current reaches its maximum around ϕ = π/2. At ϕ = 0 and

ϕ = π, the average current vanishes. Overall, the ϕ-dependence of the average current I

is dominated by the prefactor sin(ϕ) in (4.90).

It is worth noting that the average Josephson current does not depend on the width of

the junction. However, this is not the case for the sample-to-sample fluctuations, which

we will discuss next.

4.10.2 Sample-to-sample fluctuations

The calculation of the current fluctuations requires knowing the eigenvalues λ±
ϵ1,ϵ2 of the

fluctuation determinant, as given in (4.86). In the case of a vanishing magnetic field, the

eigenvalues for both Diffusons and Cooperons become identical and can be expressed as
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follows:

λϵ1,ϵ2 = Dq2 + v(1) + v(2), (4.93)

where (i) = (ϵi, ϕi) is a convenient multi-index notation. At zero magnetic field, using

(4.87), we obtain the general formula for the current fluctuations,

varI(ϕ) = (4eT )2 ∑
ϵ1,ϵ2>0

∑
q

∂ϕ1v(1)∂ϕ2v(2)
[Dq2 + v(1) + v(2)]2

. (4.94)

Compared to the results reported in Refs. [84, 43], the variance in (4.94) is four times

smaller. This is due to the strong spin-orbit coupling in the topological insulator surface,

which suppresses fluctuations in the spin triplet channel, while the singlet mode remains

effective. We will discuss the current fluctuations in two limits, the quantum dot geome-

try, for which E⊥
Th � Et, and the quasi-one-dimensional limit E⊥

Th � Et. Quantum dots

are structures that confine electrons in all three spatial dimensions. The confinement

leads to discrete energy levels, similar to an atom. When quantum dots are so small in

two of its dimensions it leads to a strong confinement in one direction only. The Thouless

energy can indicate the extent of confinement in the system, a larger ETh indicates a

strong confinement, then indicating the geometry in which the model is subjected.

Quantum dot limit, E⊥
Th � Et:—In the quantum dot geometry, spatial fluctuations of the

Diffuson modes in the transverse direction can be neglected and the current fluctuations

are given by [84]

varI0(ϕ) = e2E2
t K0(ϕ),

K0(ϕ) = sin2(ϕ)T 2 ∑
ϵ1,ϵ2>0

16E2
t ∆4

ω(∆, ϵ1)ω(∆, ϵ2)v(1)v(2)[v(1) + v(2)]2
, (4.95)

where the sub-index in the sample-to-sample fluctuations denotes the effective dimension-

ality of the system. In Figure 4.4, the variance varI0 is displayed as a function of the ratio

Et/∆.

Quasi-one-dimensional limit, E⊥
Th � Et:— In the quasi-one-dimensional geometry spa-

tial fluctuations of the Diffuson modes in the transverse direction have to be taken into
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Figure 4.4: On the right hand side, the variance of the Josephson current as a function
of the phase difference ϕ in the quantum dot geometry. Solid lines represent the zero
temperature limit, whereas dashed lines denote the finite temperature limit. On the
left hand side, we display K0 as a function of et = Et/∆ for various fixed phases, ϕ =
π/6, π/3, ϕ/2, 2π/3.

account. Employing the same equation (4.87) as in the previous limit and performing the

sum over momenta q, we obtain the following expression for the variance of the Josephson

current

varI1(ϕ) = e2E2
t

√
Et
E⊥

Th
K1(ϕ),

K1(ϕ) = 4 sin2(ϕ)T 2 ∑
ϵ1,ϵ2>0

∆4E
3/2
t

ω(∆, ϵ1)ω(∆, ϵ2)v(1)v(2)[v(1) + v(2)]3/2 . (4.96)

The plot for the current fluctuations varI1(ϕ) is shown in Figure 4.5. Next, we move on

to discuss the current fluctuations specifically in the limit of long and short dwell times.

Long dwell time: Et � ∆

Quantum dot limit, E⊥
Th � Et:—In the long dwell time limit and at zero temperature, the

scale for the variance of the current is set by E2
t , and we obtain an analytical expression

varI0(ϕ) = e2E2
t K0(ϕ),

K0(ϕ) = sin2(ϕ)
π2

∫∫ ∞

0

dx1dx2√
X1(ϕ)X2(ϕ)

(√
X1(ϕ) +

√
X2(ϕ)

)2 , (4.97)
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Figure 4.5: On the right hand side, the variance of the Josephson current as a function of
the phase difference ϕ in the quasi-one-dimensional geometry. On the left hand side, we
display K1 as a function of et = Et/∆ for various fixed phases, ϕ = π/6, π/3, ϕ/2, 2π/3.

where Xi(ϕ) = cos2(ϕ/2) + x2
i and xi = ϵi/∆. Investigating the behavior of the function

K0, we observe that its dependence on the phase difference ϕ can be described by a

simple power-law in cosϕ/2, K0 ≈ sin2(ϕ)[cos(ϕ/2)]−2. At ϕ = π, we expect that both

the average current and the current fluctuations vanish. However, it is clear that K0 does

not reproduce this behavior as the phase ϕ approaches π. Such failure has to do with

the violation of the criterion of validity for our Gaussian approximation, whose existence

hinges on the small parameter λ/δ � 1, λ being an eigenvalue of the Gaussian action and

δ the mean level spacing. In this approximation, the mass of the system is proportional to

cos(ϕ/2) and as a consequence when the phase becomes close to π the criterion of validity

for our approximation is no longer satisfied. A more detailed analysis of the action reveals

the correct result in this limit [43]. As already suggested in [84], the vanishing of the

average current and the current fluctuations for ϕ → π is restored at finite temperatures

even in the Gaussian approximation, as can be seen in Figure 4.4.

Quasi-one-dimensional limit, E⊥
Th � Et:—Focusing on the zero-temperature limit, we

transform summations over Matsubara frequencies into integrations again, and express

the latter in terms of dimensionless quantities to find

varI1(ϕ) = e2E2
t

√
Et
E⊥

Th
K1(ϕ),

K1(ϕ) =
√

2 sin2(ϕ)
4π2

∫∫ ∞

0

dx1dx2√
X1(ϕ)X2(ϕ)

(√
X1(ϕ) +

√
X2(ϕ)

) 3
2
. (4.98)

53



The scale of the fluctuations is now set not only by the squared dwell energy but also by the

parameter
√
Et/E⊥

Th. The result of the integrations in x1 and x2 can be approximated by

a power law in cosϕ/2 and, as a consequence, the phase dependence of K1(ϕ) is governed

by the function sin2(ϕ)[cos(ϕ/2)]−3/2, which monotonically vanishes as ϕ approaches π.

The presence of a momentum structure in the Gaussian action leads to this significant

difference in comparison to the quantum dot geometry, for which finite temperatures had

to be invoked in order to reproduce this behavior in the Gaussian approximation.

Short dwell time: Et � ∆

Quantum dot limit, E⊥
Th � Et:—At zero temperature, the current fluctuations read as [85]

varI0(ϕ) = e2E2
t K0(ϕ), K0(ϕ) = ∆2

E2
t

KS
0 (ϕ), (4.99)

KS
0 (ϕ) = sin2(ϕ)

4π2

∫∫ ∞

0

√
X1(0)

√
X2(0)dx1dx2√

X1(ϕ)
√
X2(ϕ)

[√
X2(0)

√
X1(ϕ) +

√
X1(0)

√
X2(ϕ)

]2 . (4.100)

A quick inspection of this expression reveals that in this regime the scale is now set by ∆2.

In this limit, when ϕ approaches π the product between sin2(ϕ) and the dimensionless

function KS
0 yields a non-zero result, which clearly violates the condition varI0(π) = 0. As

already found in the long dwell time limit, finite temperatures restore the correct behavior

in our formalism, see Figure 4.4.
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Figure 4.6: The ratio between the current fluctuations and the average current as a
function of et in the absence of a magnetic field and at zero temperature. On the left
hand side, we show this ratio for the quantum dot geometry, on the right hand side for
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Quasi-one-dimensional limit, E⊥
Th � Et:—Considering the zero temperature limit, the

current fluctuations yield

varI1(ϕ) = e2E2
t

√
Et
E⊥

th
K1(ϕ), K1(ϕ) = ∆2

E2
t

KS
1 (ϕ), (4.101)

KS
1 (ϕ) =

√
2 sin2(ϕ)
16π2

∫∫ ∞

0

[X1(0)]1/4[X2(0)]1/4dx1dx2√
X1(ϕ)

√
X2(ϕ)

(√
X2(0)

√
X1(ϕ) +

√
X1(0)

√
X2(ϕ)

)3/2 .

(4.102)

In analogy to the long dwell-time limit, in a quasi-one-dimensional geometry the scale is

set by ∆2, and also by the parameter
√
Et/E⊥

Th. In addition to that, as in the previous

cases, we find that the quasi-one-dimensional geometry restores the correct result for the

fluctuations at ϕ = π, varI1(π) = 0, see details in Figure 4.5.

Arbitrary dwell time

We can now compare the magnitudes of fluctuations and the average current for the

quantum dot and the quasi-one-dimensional geometry. For the quantum dot geometry,

we find
[varI0(ϕ)]1/2

I(ϕ)
= GQ

G

[4π2K0(ϕ)]1/2

J(ϕ)
. (4.103)

In the quasi-one-dimensional geometry, we obtain the following expression

[varI1(ϕ)]1/2

I(ϕ)
= GQ

G

(
Et
E⊥

Th

)1/4 [4π2K1(ϕ)]1/2

J(ϕ)
. (4.104)

With the help of Eqs. (4.91), (4.92), (4.97), (4.98), (4.99) and (4.101), we can estimate

that the ratios in Eqs. (4.103) and (4.104) are of the order of GQ/G, where GQ = e2/π

is the conductance quantum. Furthermore, as a result of the hierarchy of energy scales,

δ � Et � ∆ � Eth, for a quasi-one-dimensional system, the ratio is proportional to

the parameter Et/E⊥
Th. As we observe in Figure 4.6, for both geometries the approximate

analytical results obtained in this section are in good agreement with numerical results. In

the long dwell-time limit, the fluctuation-to-average current ratio behaves as 1/ log(1/et)

and in the short dwell-time limit the dwell energy dependence is completely absent, hence

the ratio tends to a constant value. Next we discuss how these findings are changed in

presence of a magnetic field.
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4.11 Average current and sample-to-sample fluctua-

tions at finite magnetic field

As previously discussed, we continue to explore the weak coupling regime Et � ∆ where

the mini-gap is set by the dwell energy Et. The magnetic field then allows to tune the

population of sub-gap states, with mini-gap closure at EΦ ∼ Et, while pair-breaking effects

on the superconducting leads can be neglected. We focus on the sensitivity of the average

Josephson current and its fluctuations to the mini-gap closure at strong magnetic fields,

where an analytical solution of the mean field equation is available. These analytical

calculations are complemented by calculations building on the numerical solution of the

mean field equation and allowing to describe the crossover into the weak magnetic field

regime. Starting out from the general expression for the current phase relation

I(ϕ) = −πνeTV
∑
ϵ

[
∂ϕ
(
2vimi − EΦm

2
2

)]
, (4.105)

we find the average current in the strong magnetic field limit,

IΦ(ϕ) =
(
GEt
e

)
Re

[∑
ϵ>0

2πt sinϕ
(eΦ + |ϵ|)(1 + iϵ)

]
. (4.106)

The summation is then readily done using the identity

∞∑
n=0

1
(n+ a)(n+ b)

= ψ(a) − ψ(b)
a− b

, (4.107)

resulting in

IΦ(ϕ) =
(
GEt
e

)
Re

(1 + ieΦ)ψ
(

1
2 − i

2πt

)
− (1 + ieΦ)ψ

(
1
2 + eΦ

2πt

)
1 + e2

Φ

 sinϕ, (4.108)

where ψ is the polygamma function.
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4.11.1 Average current

From the mean field solution Q∆ = m̂iσ̂i, with m̂i in the limit EΦ � Et, and (4.19) we

find the average Josephson current at strong magnetic fields

IΦ(ϕ) = GEt
2e

JΦ, JΦ = 4π sin(ϕ)T
∑
ϵ>0

∆2

(ϵ+ EΦ)∆2 + ϵ(ϵ2 + 2Et
√

∆2 + ϵ2 + ϵEΦ)
.

(4.109)

Using that Et � ∆, we can neglect terms involving the dwell energy in JΦ, and perform

the summation arriving at an expression for the average Josephson current in terms of

polygamma functions. The result is shown in Figure 4.7.
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Figure 4.7: Left panel: JΦ at zero temperature as a function of ϕ and for various values
of γ = Et/EΦ. Right panel: JΦ as a function of temperature t = T/∆ for various values
of γ, cf. (4.109). Here the dwell energy is chosen as et = Et/∆ = 1/100 and the phase
difference as ϕ = π/2. Bottom panel: The average current at zero temperature for various
values of γ = Et/EΦ, where we fixed et = Et/∆ = 1/1000. The solid lines represent the
exact numerical solution and dash-dotted lines the analytical approximation.
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The scale for the current is set by GEt/(2e), similar to the zero magnetic field case B = 0.

In contrast to the latter, the phase dependence of JΦ in the strong magnetic field limit is,

however, fully governed by the sine function, (4.109). Technically, corrections to the mean

field solution (4.60) are suppressed in Et/EΦ � 1 giving only insignificant contributions,

and deviations from a sinusoidal behavior are therefore strongly suppressed. As evident

from (4.109), increasing the external magnetic field monotonically suppresses the average

Josephson current. At low temperatures T � ∆, the dimensionless function JΦ shares

the logarithmic asymptotic form of the zero magnetic field expression

JΦ = 2 sin(ϕ) ln
[

1
max(t, eΦ)

]
, (4.110)

where now EΦ � Et replaces the dwell energy Et found at B = 0.

From the numerical solution of the mean field equation, we can calculate the average

current for arbitrary ratios of Et/EΦ. The result is shown in Figure 4.7. The average

current as a function of the phase (left panel) shows a dominant sinusoidal behavior for all

ratios Et/EΦ, attaining its maximum at π/2 in the strong magnetic field limit, which is

slightly shifted to larger values with increasing ratio Et/EΦ. The phase-dependence of the

current does not show any signs of Fraunhofer patterns, in agreement with the discussions

in [86], [87] and [88]. The average current as a function of temperature is shown in the

right panel of Figure 4.7. Since the weak logarithmic divergence of (4.110) is cut off by

the larger of T and EΦ, the average current at low temperatures T � ∆ decreases with

increasing magnetic field, and all curves for different values Et/EΦ then collapse into a

single curve at high temperatures T � ∆.

Finally, we compare in bottom panel of Figure 4.7 the average current from the analytical

mean field solution at strong magnetic fields to the exact current obtained from the

numerical solution of the mean field equation, here at zero temperature and et = Et/∆ =

1/1000. As expected, the analytical solution describes the average current very well for

these small values Et/EΦ ≤ 0.01.

58



0 0.5 1 1.5 2 2.5 3
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

7

8
10

-3

Figure 4.8: Left panel: K0,Φ (quantum dot) as a function of phase angle ϕ for various
values of γ = Et/EΦ. Right panel: K1,Φ (quasi-one-dimensional geometry) as a function
of phase difference ϕ for various values of γ = Et/EΦ. The dashed lines indicate the
parameter region for which the semiclassical approximation becomes uncontrolled. In all
figures we fixed et = Et/∆ = 1/100 and varied EΦ.

4.11.2 Sample-to-sample fluctuations

To prepare the calculation of current fluctuations, we first notice that eigenvalues of

Diffuson and Cooperon modes (X=D,C) at strong magnetic fields become

λX,±ϵ1,−ϵ2 = Dq2 + ϵ1 + ϵ2 +M±
X (ϵ1, ϵ2), (4.111)

with Diffuson masses M s
D

M±
D (ϵ1, ϵ2) = 2E2

t ∆2 cos2
(
ϕ

2

)
×

×

 2∑
i=1

1
(EΦ + ϵi)

√
ω(∆, ϵi)

∓ 2EΦ√
(EΦ + ϵ1)(EΦ + ϵ2)ω(∆, ϵ1)ω(∆, ϵ2)

 ,
(4.112)

and Cooperon masses M±
C = M±

D + EΦ/2. Notice that the magnetic field lifts previous

degeneracies at B = 0, and all four modes (D/C,±) now contribute differently to the cur-

rent fluctuations. Then, starting out from the general expression for current fluctuations
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(4.87)

varIΦ(ϕ) = (2eT )2 ∑
s=±

[F s
2 (ϕ) − F s

1 (ϕ)] , (4.113)

we employ that in the limit of strong magnetic fields the functions F s
1 and F s

2 are given

by

F s
1 (ϕ) =

∑
X=D,C

∑
ϵ1,ϵ2>0

∑
q

∂1[M s
X(ϵ1, ϵ2)]∂2[M s

X(ϵ1, ϵ2)]
[Dq2 + ϵ1 + ϵ2 +M s

X(ϵ1, ϵ2)]2
, (4.114)

F s
2 (ϕ) =

∑
X=D,C

∑
ϵ1,ϵ2>0

∑
q

∂2
12M

s
X(ϵ1, ϵ2)

Dq2 + ϵ1 + ϵ2 +M s
X(ϵ1, ϵ2)

. (4.115)

We next explore these general expression for the two geometries of interest, that is, the

quantum dot and quasi-one-dimensional structure, defined by E⊥
Th � Et and E⊥

Th � Et,

respectively.

Quantum dot limit: E⊥
Th � Et

Current fluctuations for the quantum dot geometry in the zero temperature limit can be

simplified to

varI0,Φ(ϕ) = e2E2
t K0,Φ (ϕ) , K0,Φ(ϕ) =

(
Et
EΦ

)2
F0,Φ(ϕ), (4.116)

F0,Φ (ϕ) = sin2 (ϕ)
π2

∑
X=C/D

∑
s=±1

[
fX,s0,1 (ϕ, γ) + fX,s0,2 (ϕ, γ)

]
, (4.117)

with functions f0,1 and f0,2 defined as

fX,10,1 (ϕ, γ) + fX,−1
0,1 (ϕ, γ) = 2

∫∫ ∞

0
dxdx′ω(1, eΦx)ω(1, eΦx

′)
Ω+
X(x, x′)Ω−

X(x, x′)
, (4.118)

fX,s0,2 (ϕ, γ) =
∫∫ ∞

0
dxdx′ ηsX(x, x′)

[Ωs
X(x, x′)]2

. (4.119)
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To write the equations in a compact manner, we used ω(∆, ϵ) = ∆2 + ϵ2 and introduced

ηsX(x1, x2) =
2∏

i 6=j,i,j=1

[
ω(1, eΦxi) − sbX(xi)(1 + xj)

√
ω(1, eΦxi)ω(1, eΦxj)

]

Ωs
X(x1, x2) = (aX + x1 + x2)

2∏
i=1

(1 + xi)ω(1, eΦxi) + 2γ2 cos2
(
ϕ

2

)
×

×
[ 2∑
i=1

(1 + xi)ω(1, eΦxi) − 2s
√
ω(1, eΦx1)ω(1, eΦx2)

]
.

Here, the numerical constant aX is 0 for Diffusons and 1/2 for Cooperons, and bD(ϵ) = 1

for Diffusons, respectively, bC(ϵ) = (1/2)[1 + ϵ/(1 + ϵ)] for Cooperons.

While fluctuations in the absence of magnetic fields are set by the (squared) dwell energy,

they are suppressed by the additional factor (Et/EΦ)2 in the strong magnetic field limit.

The left panel of Figure 4.8 shows the current fluctuations varIΦ,0 as a function of ϕ

for different values γ = Et/EΦ. The increase of fluctuations with γ is clearly visible

and we also observe a shift of the maximum from close to π at weak magnetic fields to

smaller values as the magnetic field increases. We caution again that the semiclassical

approximation loses its validity once the action takes values O(1). The corresponding

regions are close to the maximum value of fluctuations and indicated by the dashed lines.

For Et/EΦ ≳ 1, the action becomes large enough to justify the semiclassical approximation

for all values of ϕ.

In the left panel of Figure 4.9, we compare the analytical solution based on the analytical

mean field solution at large magnetic fields to the fluctuations calculated using the exact

numerical solution of the mean field equation. Again we find very good agreement for all

values γ < 0.01.

Finally, we show in the left panel of Figure 4.10 the ratio between the square root of

current fluctuations and average current for the quantum dot geometry in the strong

magnetic field regime,

√
varI0,Φ(ϕ)
IΦ(ϕ)

=
(
GQ

G

)(
Et
EΦ

) √4π2F0,Φ(ϕ)
JΦ

. (4.120)

As previously noted, large magnetic fields suppresses the relative size of fluctuations by

an additional factor Et/EΦ compared to the zero magnetic field limit B = 0.
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Figure 4.9: Current fluctuations in the strong magnetic field limit as a function of phase
for various values γ = Et/EΦ (we here fixed et = Et/∆ = 1/1000 and varied EΦ). Solid
lines and markers denote the analytical result employing the approximate solution of
the mean field equation and the result building on the numerical solution of the mean
field equation, respectively. Left panel: quantum dot geometry. Right panel: quasi-one-
dimensional geometry.

Quasi-one-dimensional limit: E⊥
Th � Et

For the quasi-one-dimensional geometry current fluctuations at zero temperature read

varI1,Φ(ϕ) = e2E2
t

√
Et
E⊥

Th
K1,Φ(ϕ), K1,Φ(ϕ) =

√√√√E3
t

E3
Φ

F1,Φ(ϕ), (4.121)

F1,Φ(ϕ) = sin2(ϕ)
π2

∑
s=±

∑
X=C,D

(
fX,s1,1 + fX,s1,2

)
. (4.122)

Here, the functions fX,s1,i depend on the ratio γ = Et/EΦ and are defined as

∑
s=±

fX,s1,1 (γ) =
∫∫ ∞

0
dxdx′ 1√

(1 + x) (1 + x′) Ω+
X(x, x′)Ω−

X(x, x′)
×

× 1[√
Ω+
X(x, x′) +

√
Ω−
X(x, x′)

] , (4.123)

fX,s1,2 (γ) = 1
4

∫∫ ∞

0
dxdx′ ηsX(x, x′)√

(1 + x)(1 + x′)[Ωs
X(x, x′)]3

. (4.124)

As compared to the zero magnetic field limit, fluctuations at strong magnetic fields in

the quasi-one-dimensional geometry are suppressed by an additional factor (Et/EΦ)3/2.

In terms of this small parameter, the one-dimensional integration over momenta leads to

a mildly weaker suppression of fluctuations compared to the quantum dot geometry.
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The relative scale of current fluctuations for the the quasi-one-dimensional geometry then

reads
√

varI1,Φ(ϕ)
IΦ(ϕ)

=
(
GQ

G

)(
Et
EΦ

)3/4 ( Et
E⊥

th

)1/4
√

4π2F1,Φ(ϕ)
JΦ

, (4.125)

with an additional suppression (Et/EΦ)3/4 compared to the corresponding zero magnetic

field expression. The right panels of Figs. 4.8, 4.9, and 4.10 compare the correspond-

ing results for the quantum dot and quasi-one-dimensional geometries. Specifically, we

observe in Figure 4.10 that in both geometries the relative size of current fluctuations

monotonically increases as a function of Et/EΦ in a nearly power-law fashion.
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Figure 4.10: Relative size of current fluctuations
√

varIΦ/IΦ in the strong magnetic field
limit as a function of γ = Et/EΦ and various values of ϕ. Left panel: quantum dot
geometry. Right panel: quasi-one-dimensional geometry.
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Chapter 5

Summary

Et � ∆, EΦ = 0 Et � ∆, EΦ = 0 Et ≲ EΦ � ∆
e
G
I(ϕ) Et ln

(
∆
Et

)
sinϕ 1

2∆K
(
sin2 ϕ

2

)
sinϕ Et ln

(
∆
EΦ

)
sin(ϕ)

1
e2 varI0(ϕ) E2

t K0(ϕ) ∆2K0(ϕ) E2
t
E2
t

E2
Φ

F0,Φ(ϕ)
1
e2 varI1(ϕ) E2

t

√
Et
E⊥
Th

K1(ϕ) ∆2
√

Et
E⊥
Th

KS
1 (ϕ) E2

t

√
Et
E⊥
Th

√
E3
t

E3
Φ

F1,Φ(ϕ)

Table 5.1: Table with results obtained previously for current and fluctuations for the two
geometries considered and different dwell time and magnetic field regimes.

With the assistance of Table 5.1, we can observe that the average supercurrent exhibits

a phase dependence that conforms to the Ambegaokar-Baratoff relation [90]. In the case

of zero magnetic field and long dwell time (Et � ∆) , the sinusoidal behavior is kept

due to the logarithmic dependence, with energy scaling proportional to the dwell energy

[82]. Conversely, for short dwell time (Et � ∆), there is only a slight deviation from

the sinusoidal function, scaling with the superconducting gap [82, 81]. In the scenario of

strong magnetic field, it behaves similarly to the long dwell time case but with the energy

scale depending on EΦ.

Following Table 5.1, it is possible to concisely summarize the energy dependence of both

the supercurrent and fluctuations in each geometry domain. In the quantum-dot geometry

at zero magnetic field, we define our current and fluctuations in two categories: long and

short dwell times. These encompass the penetration and time scale of superconducting

tunneling states along the non-superconducting region and can be probed for universality

of fluctuations. For long dwell time, we observe a quadratic dependence on the dwell

energy [84], in line with the average current. Meanwhile, for short time, the quadratic

dependence is on the superconducting gap [43, 84, 85], also following the average supercur-
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rent. In the presence of a strong magnetic field, the fluctuations still exhibit a quadratic

dependence on the dwell energy but with a suppression factor due to the magnetic field.

Moving to the quasi-one dimensional system and zero magnetic field, the results for long

and short dwell times resemble those in the quantum-dot case, but now with an addi-

tional suppression factor arising from momenta integration, approximately of the order of

a square root of the ratio Et/E⊥
Th. This results in smaller fluctuations when compared to

the quantum-dot case. Upon the introduction of a strong magnetic field, the fluctuation

is marginally smaller than the quantum-dot dependence on the magnetic field.

As a final remark the universality can be analysed by the ratio varI/I2 for each of the

cases (each column). We see that only for short dwell time in quantum-dot case we have

solely the phase dependence. For the short dwell time there is a logarithmic suppres-

sion factor present. While for the quasi one-dimensional system there is always the ratio

Et/E
⊥
Th present. For the strong magnetic field cases there is a dependency of several

(if not all), the energy scales present in our work. Next we should study if there is the

necessity of introducing bulk states due to disorder presence. This necessity should be

stated according to experimental appointment on the relevance of such states. For now

we characterized the surface disordered states as expected according to energy regimes

and external magnetic fields.
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Chapter 6

Perspectives

Perspectives for the current approach - In recent research [89], significant progress has

been made in comprehending the quantum fingerprint inherent in universal phenomena,

notably conductance fluctuations (UCF). The study of universal conductance fluctuations

offers insights into the microscopic properties of material composition, such as impurity

configurations. Interpreting these fluctuations can prove challenging, as they seem to

emerge as a stochastic function of variables.

An approach utilizing image recognition and classification through Neural Networks al-

gorithms holds promise as an effective tool to shed light on the analysis of quantum

fingerprints. This approach has the potential to provide valuable insights into the intri-

cate patterns of conductance fluctuations, helping to extract meaningful information from

what appears to be a random variation. A better understanding is possible with Figure

6.1.

The computation undertaken in this study, which encompasses the determination of both

average supercurrent and the fluctuations in current across different samples, presents a

significant challenge. It involves the application of advanced techniques within mean field

theory and intricate calculations pertaining to matrix algebra. This very technique was

previously established for Josephson junctions in normal metals, serving as a preliminary

model for this method. The outcomes were derived from the findings presented in [43].

In experimental contexts, the observation of sample-to-sample fluctuations in supercur-

rents poses difficulties. Instead, it is more feasible to examine fluctuations within a specific

sample while manipulating the chemical potential. Josephson junctions that incorporate

surface states of a topological insulator (TI) in contact with superconducting elements
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Figure 6.1: An image extracted from [89] illustrates the recognition process. The neural
network is supplied with UCF data, generated using Kwant [13], for a metal connected to
leads and exposed to an orthogonal magnetic field to the current propagation. Addition-
ally, an image depicting the density of states of this metal, including randomly inserted
defects in the lattice, is also provided as input. Utilizing a convolutional neural network,
the study managed to reproduce defect information on density of states as output solely
from UCF data. This advancement introduces the potential of a novel tool for exploring
material structures, akin to how diffraction techniques have been employed over the past
decades.
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enable the manipulation of µ through gate voltage control. In such systems, one antici-

pates that when the chemical potential is adjusted over the scale of the Thouless energy,

the critical current at low temperatures will universally fluctuate by a magnitude approx-

imately equal to e∆/h. Remarkably, this fluctuation remains independent of the specific

properties of the junction itself.

A python package for simulations - Kwant stands as a Python tool designed to com-

pute tight-binding models for condensed matter systems, which are articulated as graphs

within a lattice framework. This platform offers the capability to simulate transport phe-

nomena utilizing any Hamiltonian that has been defined.

Kwant still encounters challenges when it comes to calculating Josephson currents. This

is primarily due to difficulties in accurately computing Andreev bound states at the edges

of junctions. In the near future, a proposed course of action involves the calculation of

Josephson currents within a 2D STIS model. Then, examining the fluctuations across

different samples and subsequently comparing these results with the analytical results

from this work. Furthermore, it would be interesting to extend these findings to a bulk -

surface model to facilitate a more realistic comparison to real systems, since the bulk can

interfere with edge states, even though is insulating [57].

There is a experimental promise to create Majorana fermion at STIS. At present, the

potential to create Majorana fermions in Kwant within this model remains uncertain.

However, it is noteworthy that Kwant has already demonstrated its capability to repli-

cate Majorana models, exemplified by the Kitaev Chain [17] and Haldane’s model [50].

Neural networks approach - With these results, it will be possible to adapt the neural

network proposed by Daimon et al. to assign microscopic meaning to universal super-

current fluctuations and reproduce them. Another potential avenue is to transition from

a neural network that relies on image recognition for a 2D density of states to one that

utilizes the graph structure of Kwant itself.

Recently, a technique called Dynamic Graph Convolutional Neural Network (DGCNN)

was developed [91], which could leverage the atom graph structure of a lattice in Kwant.

This could be combined with the corresponding Hamiltonian values as input for the con-

volutional operation in DGCNN. This approach provides semantic values linked to the
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Figure 6.2: An image extracted from [91] serves as an example of how a DGCNN can
gain comprehension using probes (in red) to discern the body, turbines, and wings of a
airplane in a 3D point cloud context. The process involves assessing the distance between
the red dots and all other points within the object. At each stage, the network associate
distances semantically between the points, that is, the points belonging to the wing are
nearer from each other than any point of the body, or the turbines. As a point in the left
turbine is nearer to any point in the right turbine than any point the left wing, which
it is attached. In a lattice there are several characteristics that could bring a semantic
difference.

lattice points based on associated characteristics, such as kinetic and potential energies,

hoppings, symmetries, atomic energy levels, etc. This collection of features can be trained

to help the network comprehend the role and characteristics of each sector of the lattice,

as illustrated in Figure 6.2.

In the realm of particle physics, an attempt has been made [92] to tag particle jets from

calorimeters in particle detectors. This tagging approach could potentially serve as input

alongside universal fluctuations, as demonstrated in [89], to improve lattice prediction for

universal fluctuations.
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Appendix A

Gradient Expansion

A.1 First order term

From the last expression, we can observe that there are two types of contributions: one

of first order and another of second order in the propagated perturbation OT . Let’s start

by evaluating the first term, which is of the following form:

Tr(G0A) =
∑

p
Tr(G0(p)A) = −iπν0

∫
dx tr

(
σph3 A(x)

)
, (A.1)

for a function A of the position inside the junction. We used the result of the saddle point

equation (4.40) and (4.41) to solve G0. Then A is substituted as OT

A = T−1
[
−iϵ̂σph3 − T [vk.σs, T−1] + ĤΓσ

ph
3

]
T. (A.2)

First, for the terms with σph3

Tr(G0A) = −iπν0

∫
dx tr

[
Q
(
−iϵ̂+ ĤΓ

)
σph3

]
(A.3)

where we used that Q = Tσph3 T−1 and trace properties. The commutator can be under-

stood in a more complex way, using the fact that T is also an operator.

− T−1T [vk.σs, T−1]Tψ = −v[k.σs, T−1]Tψ

= −iv
[
(σ∂XT−1)Tψ + (σT−1∂XT )ψ + σkψ − T−1(σ∂XT )ψ − T−1σTkψ

]
= ivT−1(σ∂XT )ψ − v(σ − T−1σT )kψ. (A.4)
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We now consider the commutator (A.4) and focus on the case of a singlet, where the

matrices T do not have internal structure in spin space. This implies that the second term,

which corresponds to a mass-like term in the final propagator, is null, as the commutator

[vk.σs, T−1] vanishes. Only spin singlet matrices correspond to soft modes, while spin

triplet modes have masses on the order of ∼ η/τ , which is a much larger energy scale for

our model. The final result is simple: we do not obtain contributions from the mass-like

term, since it directly arises from the vanished factor in the commutator. Therefore, for

the action S1, we have

S1 = −iπν0

2

∫
dx tr

[
Q
(
−iϵ̂+ ĤΓ

)
σph3

]
. (A.5)

and for S2, the second-order term simplifies because when k 6= 0, the trace over the spin

matrices contributes as zero.

A.2 Second order term

From a clever separation of (4.44) we shall use the Green’s function ansatz.

G0 = 1
2

2∑
i=1

∑
j=+,−

gij(1 + jQ0)σsi , (A.6)

with

gi+ =
µ+ i

2τ + vki(
µ+ i

2τ

)2
− v2k2

= (gi−)∗, (A.7)

gi− =
µ− i

2τ + vki(
µ− i

2τ

)2
− v2k2

= (gi+)∗. (A.8)

This can be understood as a separation of the saddle point equation from the result (4.41),

which states ±1 values for the saddle point. The condition 1
2(1 +Q0) represents this sep-

aration, and the sign is determined by the previous definitions of gij for the denominator,

which also involves Q0. This can be interpreted as a separation of the Green’s functions for

the Advanced and Retarded modes of propagation, corresponding to particles and holes.

In (4.44), we can see that the imaginary factor acts as a self-energy for this propagator,
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with an energy scale of 1
2τ .

S2 = 1
4
Tr(G0OTG0OT )

= −v2

16

2∑
i,k=1

2∑
j,l=1

Tr
(
gi0σ

s
iAjσ

s
jg
k
0σ

s
kAlσ

s
l

)

= −v2

16

2∑
i,k=1

2∑
j,l=1

tr
(
σsiσ

s
jσ

s
kσ

s
l

)
Tr
(
gi0Ajg

k
0Al

)

= −v2

16

2∑
i,k=1

2∑
j,l=1

tr
(
σsiσ

s
jσ

s
kσ

s
l

)
Tr
(
(gi+ + gi−)Aj(gk+ + gk−)Al

)

= −v2

16

∫
dk Tr

(
(gi+ + gi−)Ai

)2

= −v2

16

∫
dk Tr

([
gi+Ai

]2
+
[
gi−Ai

]2
+ 2gi+Aigi−Ai

)
= −µντ

8

∫
dx tr

(
A2
i −Q0AiQ0Ai

)
= −µνD

8

∫
dx tr (∂Q0∂Q0) , Q = TQ0T

−1, D = τtrv
2/2

(A.9)

The factor of 1
16 in the first term is justified by the action and the factors of 1

2 arise

from the definition of G0. The factor of v2 comes from OT as well as the presence of

the spin Pauli matrices σs. The indices j and l correspond to the spatial derivative

indices x and y, while i and k are indices associated with the gi Green’s functions. The

notation Ai = T∂iT
−1 is introduced to simplify the expression. The last simplification

step involved using ∂iQ = (∂iT )Q0T
−1 +TQ0(∂iT−1) and performing trace permutations.

For the integrals in the square brackets and the third term, respectively, the following

relations were used:

∫
dξ

ξ

(ξ ± ia)2 = 0,
∫
dξ

ξ

ξ2 ± i/a2 = πa. (A.10)

To introduce an external magnetic field into the model, we can achieve gauge invari-

ance by considering a gauge transformation. By examining equation (4.6), we see that

the transformation χ 7→ eiϕχ induces a corresponding transformation for the enlarged

field Ψ, given by Ψ 7→ eiΦΨ, where Φ(k) is a diagonal matrix defined as Φ(k) =

diag(ϕ(k), ϕ(k),−ϕ(−k),−ϕ(−k)). Since Q has a dyadic form Q ≈ ΨΨ̄, it should trans-

form as Q 7→ eiΦQeiΦ.
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In order to understand the effect of this transformation on the action, we need to incor-

porate it and examine its consequences. Since we have the transformation for Q, which

is written as Q = TQ0T
−1 before the expansion in T , it is interesting to consider this

factorization of Q in the action and analyze the implications. This will allow us to in-

vestigate how this transformation aids in introducing the external magnetic field into the

system. Considering the second order term, upon performing the gauge transformation,

we would get that

∂i(eiΦQeiΦ)∂i(eiΦQeiΦ) = (∂iQ+ i[∂iΦ, Q]) (A.11)

This additional term breaks the gauge invariance. In order to correct it we can add a

vector potential as ∂i 7→ ∂i − i[A, ...], knowing that A 7→ A + ∂iΦ. The first order

derivative vanishes due to the fact that needs a structure in spin space. Since for ϵ the

transformation gets a ∂tQ − [∂tΦ, Q] when transforming ϵ to i∂t shall transform, in the

action ϵ 7→ ϵ+ i[V, ...], knowing that V 7→ V + ∂tΦ. Now our new action is

S = πν

2

∫
dx Tr

(
D

4
(∂x − i[A, .])Q(∂x − i[A, .])Q− ϵ̂Qσph3 − iĤΓσ

ph
3 Q

)
. (A.12)
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Appendix B

Quantum Hall Effect Code

This code is an adaptation from the Notebook "kwant-tutorial-2016/3.2.Quantum-Hall-

effect-and-disorder.ipynb" avaiable on Git Hub

import kwant

from kwant . d i g e s t import uniform

import numpy as np

from cmath import exp

from types import SimpleNamespace

from ipywidgets import i n t e r a c t

−−−−−−

l a t = kwant . l a t t i c e . square ( a=1, norbs=1)

t = 1

W = 30

L = 50

de f o n s i t e ( s i t e , params ) :

r e turn params . U0 ∗ ( uniform ( repr ( s i t e ) , r epr ( params . s a l t ) ) − 0 . 5 ) + 4 ∗ t

de f hopping ( s i t e_ i , s i t e_j , params ) :

xi , y i = s i t e _ i . pos
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xj , y j = s i t e _ j . pos

re turn −exp ( −0.5 j ∗ params . phi ∗ ( x i − xj ) ∗ ( y i + yj ) )

sys = kwant . Bui lder ( )

sys [ ( l a t (x , y ) f o r x in range (L) f o r y in range (W) ) ] = o n s i t e

sys [ l a t . ne ighbors ( ) ] = hopping

lead = kwant . Bu i lder ( kwant . TranslationalSymmetry ([ −1 , 0 ] ) )

l ead [ ( l a t (0 , y ) f o r y in range (W) ) ] = 4 ∗ t

# no d i s o r d e r in l ead !

l ead [ l a t . ne ighbors ( ) ] = hopping

sys . attach_lead ( l ead )

sys . attach_lead ( l ead . r eve r s ed ( ) )

sys = sys . f i n a l i z e d ( )

−−−−−−

kwant . p l o t ( sys ) ;

−−−−−−

U0 = 0.3

s a l t = 13

energy = 0 .2

de f plot_wf ( phi =0):

params = SimpleNamespace ( phi=phi , U0=U0 , s a l t=s a l t )

wfs = kwant . wave_function ( sys , energy=energy , args =[params ] )

scat te r ing_wf = wfs (0 )

# a l l s c a t t e r i n g wave func t i on s from lead 0

kwant . p l o t t e r .map( sys , np . sum( abs ( scat te r ing_wf )∗∗2 , ax i s =0)) ;
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J_0 = kwant . operator . Current ( sys )

kwant . p l o t t e r . cu r r ent ( sys , J_0( scat te r ing_wf [ 0 ] , a rgs =[params ] ) ) ;

i n t e r a c t ( plot_wf , phi =(0 , 0 . 15 , 0 . 0 02 ) )

−−−−−−

energy = 0 .2

U0 = 0 .3

s a l t = 5

phi s = np . l i n s p a c e (0 , 0 . 1 , 51)

Gs = [ ]

f o r phi in ph i s :

params = SimpleNamespace ( phi=phi , U0=U0 , s a l t=s a l t )

smat = kwant . smatr ix ( sys , energy=energy , args =[params ] )

Gs . append (1/ smat . t r ansmi s s i on (1 , 0 ) )

p l t . p l o t ( phis , Gs ) ;

p l t . y l a b e l ( "R [R_0 ] " )

p l t . x l a b e l ( " phi " )
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