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Abstract

This work consist of two parts. In the first one, we will introduce the de Broglie-

Bohm interpretation of quantum mechanics, giving examples of how to compute the called

Bohmian trajectories and introducing a numerical method for this purpose. We plan to

show the validity of the Ehrenfest theorem within this approach, analysing the driven

quantum harmonic oscillator for different types of force and finding numerical solutions of

the associated Schrödinger equation and the guidance equation for different sets of initial

conditions. After we compute average properties over the trajectories, finding a classical

trajectory law that depends on the quantum number of initial states considered. In this

same part we demonstrate how this quantum-classical treatment of quantum systems

can facilitate the study of complex subjects like quantum chaos, presenting the two-

dimensional quantum harmonic oscillator and the coupled quantum anharmonic oscillator

as examples.

In the second part, we investigate the behavior of the Minkowski ground state asso-

ciated with a massless scalar field in Rindler space according to this interpretation. We

use the Schrödinger picture to obtain the wave functional associated with the Minkowski

vacuum and write it in terms of Rindler coordinates. Then we calculate the Bohmian

averages of each energy component present in the Hamilton-Jacobi equation, reproduc-

ing the Unruh temperature, and analyzing their behavior in low and high temperature

regimes. Finally, we find a set of Bohmian trajectories with astonishing properties and

obtain the power spectrum. This study encompasses both the right-wedge problem and

its extension to the left side as well.

Key Words: Bohmian mechanics, Unruh effect, Bohmian trajectories, quantum

chaos



Resumo

Este trabalho consiste em duas partes. Na primeira delas, introduziremos a inter-

pretação de de Broglie-Bohm da mecânica quântica, dando exemplos de como calcular as

chamadas trajetórias Bohmianas e introduzindo um método numérico para esse propósito.

Planejamos mostrar a validade do teorema de Ehrenfest dentro dessa abordagem, anal-

isando o oscilador harmônico quântico impulsionado por diferentes tipos de força e encon-

trando soluções numéricas da equação de Schrödinger associada e das equações guias para

diferentes conjuntos de condições iniciais. Depois, calculamos propriedades médias ao

longo das trajetórias, encontrando uma lei de trajetória clássica que depende do número

quântico dos estados iniciais considerados. Nessa mesma parte, demonstramos como esse

tratamento quântico-clássico de sistemas quânticos pode facilitar o estudo de assuntos

complexos, como o caos quântico, apresentando o oscilador harmônico quântico bidimen-

sional e o oscilador quântico anarmônico acoplado como exemplos.

Na segunda parte, investigamos o comportamento do estado fundamental de Minkowski

associado a um campo escalar sem massa no espaço de Rindler de acordo com essa in-

terpretação. Utilizamos a representação de Schrödinger para obter o funcional de onda

associado ao vácuo de Minkowski e escrevemo-lo em termos de coordenadas de Rindler.

Em seguida, calculamos as médias de Bohm de cada componente de energia presente

na equação de Hamilton-Jacobi, reproduzindo a temperatura de Unruh e analisando seu

comportamento em regimes de baixa e alta temperatura. Por fim, encontramos um con-

junto de trajetórias de Bohm com propriedades surpreendentes e obtemos o espectro de

potência. Este estudo abrange tanto o problema da cunha direita quanto sua extensão

para o lado esquerdo também.

Palavras-Chave: Mecânica Bohmiana, efeito Unruh, trajetórias Bohmianas, caos

quântico
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Part I

General aspects of de Broglie-Bohm

interpretation of quantum mechanics
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Chapter 1

Introduction

The de Broglie-Bohm interpretation of quantum mechanics [6, 7, 8], also known as the

pilot wave interpretation, has received considerable attention in recent decades. Its broad

applicability and ability to dialogue with diverse areas of physics have been key factors

driving its extensive interest. The study of quantum systems through a quantum-classical

treatment allowed the exploration of topics like quantum chaos [9, 10, 11, 12, 13], quantum

synchronization [14], quantum information [15], quantum hydrodynamics [16, 17, 18],

molecular dynamics [19], and strong-field ionization [20], among others.

This view of quantum mechanics is based on the Hamilton-Jacobi formulation for

classical systems, differing from it by the presence of a nonlinear effective potential of

quantum origin, called the quantum potential. In this formulation, the wave function,

besides its probabilistic character, described here in terms of the initial conditions (which

are unknown and impossible to determine), also exhibits a dynamic nature, guiding the

trajectories of quantum particles throughout their evolution via the guidance equations.

When the quantum potential approaches zero, Bohmian trajectories tend towards their

classical analog, so that, in this limit, Bohmian mechanics reproduces classical mechanics.

Since this approach provides the same predictions as the usual interpretation, it appears to

be a promising way to study the transition between quantum to classical regimes. One of

the challenges of this approach, however, is the numerical difficulty in obtaining quantum

trajectories that are, at the same time, precise and stable, which has been mitigated in

recent decades with the use of increasingly faster computers.

While it has been a well-known topic, Bohmian mechanics remains a fertile field of

research with several fundamental questions still open. For example, it is not yet clear

how to fully explain the standard model of particles solely from Bohmian mechanics.

Additionally, there is no clear consensus on how to handle fermionic degrees of freedom

within this interpretation. Furthermore, technological application problems, such as en-

tanglement, have been relatively underexplored in this context, with Bohmian mechanics

offering a promising alternative due to its non-local nature. Lastly, questions arise regard-

ing the possibility of this formulation leading to experimental predictions different from
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the usual interpretation, which may occur in systems outside the quantum equilibrium

hypothesis. For these reasons, in this first part, we will focus on general aspects of the

Bohmian approach in non-relativistic quantum systems.

This part is divided into two main chapters. Firstly, we will provide a brief introduction

to the Bohmian interpretation of quantum mechanics, drawing a parallel with the classical

Hamilton-Jacobi theory. Guided by Schrödinger’s work [21], we are going to show how

to interpret quantum phenomena from a classical point of view. To accomplish this,

we will derive, from Schrödinger equation, a quantum version of the Hamilton-Jacobi

equation, besides a continuity equation where the velocity field of the quantum particles

is identified. To illustrate the concepts being discussed, we will solve the one-dimensional

quantum harmonic oscillator as an example, presenting a fully numerical approach to

obtain the Bohmian trajectories. Also, we will study the Ehrenfest theorem [22] for non-

conservative systems, where we will consider the effect of a driven force in the Bohmian

trajectories of the harmonic oscillator. Despite being an important theme in traditional

quantum mechanics, is a poorly explored subject in de Broglie-Bohm literature. The

validity of such theorem provides a good understanding of the conservation of the phase

space for a given system. In the Bohmian perspective, the mean values are computed

over a set of initial positions distributed according to |Ψ(x, t = 0)|2. By consequence,

if we consider a simple one-dimensional harmonic oscillator, classically the position is

x(t) = A cos (ωt+ ϕ). Since in the Bohmian mechanics the trajectories of the particles

have objective reality, we expect that the mean value of a considerable number of possible

trajectories associated to quantum harmonic oscillator will follow this sinusoidal form,

with the amplitude and the phase to be determined. We will explore how the quantum

forces affects the Bohmian trajectories, then compute the averages and connect the results

with the correspondent classical equations of motion. In addition, we intend to analyse

the quantum Duffing oscillator as well.

In a second moment, we will show how the de Broglie-Bohm interpretation of quantum

mechanics can facilitate the study of quantum chaos. By solving the quantum equations

of motion, we obtain the quantum analogues of classical trajectories, allowing us to adopt

the same techniques used to study classical chaos in quantum systems. In this scenario,

nonlinearities are a quite common feature, being an indispensable component for chaotic

dynamics. With this purpose, we plan to study two examples: the anisotropic quantum

harmonic oscillator, where we will explain the main mechanism responsible for the expo-

nential deviation of neighboring trajectories by computing the Lyapunov exponent, and

the coupled quantum anharmonic oscillator featuring cubic and quartic potentials, explor-

ing the importance of the coupling potential in inducing chaotic behavior and investigate

the effect of explicitly consider the Planck’s constant in the numerical simulations.We will

present a numerical approach to solve the two-dimensional time-dependent Schrödinger

equation, yielding stable and precise solutions.
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Chapter 2

de Broglie-Bohm interpretation of

quantum mechanics

The de Broglie-Bohm interpretation (dBB) of quantum mechanics has its roots in the

analogy between geometric optics and classical mechanics, given in terms of Hamilton-

Jacobi’s formulation [23, 24, 25, 26, 27, 28, 29]. The main object in the Schrödinger

representation of quantum mechanics is the wave function Ψ, obtained from the time-

dependent Schrödinger equation iℏ∂tΨ = ĤΨ, with Ĥ the Hamiltonian operator derived

from the classical Hamiltonian H.

In his seminal work [21], Schrödinger introduces a quantum theory based in wave

mechanics, where the classical mechanics is considered a particular case. According to

him, the classical physics fails to describe quantum process in the same amount that

geometric optics fails to describe wave-like phenomena such as interference and diffraction.

Therefore, a more fundamental theory is necessary, one that encompasses geometric optics

as a limiting case, or in our case, classical mechanics. In this context, the quantum

mechanics is more fundamental than classic mechanics, with the last one obtained from

the first in the limit when the distance between the energy levels is close to zero, which

is equivalent to have a continuous energy spectrum.

Based on this assumption, Schrödinger suppose a wave process expressed by a function

Ψ in the following form [29]

Ψ = ei
S
ℏ = e

i
ℏ (W−Et), (2.1)

where E is the energy andW = W (x, y, z) is a function related to the particle momentum

through p⃗ = ∇⃗W =
√

2m(E − V )n̂, with V the classical potential and n̂ the unitary

vector orthogonal to the constant surface S = c. It is plausible to assume that, in order

to represent a undulatory process, Ψ should obey the wave equation

∇2Ψ =
1

v2
∂2Ψ

∂t2
, (2.2)
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with v the phase velocity. Since the phase S = W − Et, the infinitesimal distance ds

between two consecutive surfaces with constant S (Figure 2.1) is such that dW = Edt,

with dW = |∇⃗W |ds. Consequently,

v =
ds

dt
=

E√
2m(E − V )

. (2.3)

Using this expression for the phase velocity and explicitly computing the time derivatives

of Ψ, from the wave equation we gain the time-independent Schrödinger equation ĤΨ =

EΨ, with the Hamiltonian operator Ĥ = − ℏ2
2m

∇2 + V . Given that iℏ∂tΨ = EΨ, we

obtain from this heuristic argumentation that iℏ∂tΨ = ĤΨ, which is just the Schrödinger

equation.

t
t+ dt

S

S
ds

·
n̂

Figure 2.1: Infinitesimal distance ds between two consecutive wave fronts, which are
assumed to have constant values of the parameter S = W −Et. The particle momentum
is perpendicular to the surface S, along the direction defined by n̂.

So, the quantum mechanics can be formulated based on the same classical framework

used to describe the dynamics of objects at the macroscopic scale. However, there are

crucial differences regarding both descriptions. First, we can cite that the results of ex-

periments performed at submicroscopic levels are given in terms of probabilities, where

the possible outcomes are the eigenvalues of Hermitian operators that represents the ob-

servables, obtained at rates proportional to the square modulus of the associated wave

function representing the quantum system. There is no such analogue in classical me-

chanics. Concerning the mathematical structure, quantum mechanics is formulated in

Hilbert space, while classical mechanics can be formulated in configuration space or in

phase space, depending on the description being used.

2.1 The pilot wave interpretation

In the Bohmian interpretation of quantum mechanics, also known as pilot wave inter-

pretation, the trajectories of the quantum particles have objective reality. The position

at any time is guided by the wave function, which we assume can be written in the polar
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form Ψ(x⃗, t) = R(x⃗, t)eiS(x⃗,t)/ℏ. The velocity field is determined through the guidance

equation

dx⃗

dt
=

∇⃗S
m

, (2.4)

where S(x⃗, t) is the phase of the wave function and m is the mass. Given a set of initial

positions, we can integrate (2.4) to obtain the associated trajectories. Inserting Ψ(x⃗, t)

into Schrödinger equation iℏ∂tΨ = ĤΨ and separating it into its real and imaginary parts,

we arrive at two real equations. These are

∂S

∂t
+

(∇⃗S)2

2m
+ V +Q = 0, (2.5)

∂R2

∂t
+ ∇⃗ ·

(
R2 ∇⃗S

m

)
= 0. (2.6)

The first one can be seen as a Hamilton-Jacobi equation for S(x⃗, t), where in addition to

the classical potential V (x⃗, t) we have a supplementary quantum potential Q(x⃗, t) given

by

Q(x⃗, t) = − ℏ2

2m

∇2R

R
. (2.7)

The second can be interpreted as a continuity equation, from which we can give a prob-

abilistic interpretation for R(x⃗, t)2 as a probability density and understand ∇⃗S/m as, in

fact, a velocity field. As a consequence, (∇⃗S)2/2m play the role of the kinetic energy, in

such way that E = −∂S/∂t is the total energy of the system.

This view of quantum mechanics is completely different from Copenhagen interpreta-

tion (sometimes treated as usual interpretation). The first and most noticeable difference

is the role of the wave function. In Bohmian mechanics Ψ admits a statistical interpre-

tation because the possible initial positions are distributed according with |Ψ(x⃗, t = 0)|2.
Therefore, equation (2.6) guarantees that the position of the particles at any instant will

be distributed with |Ψ(x⃗, t)|2, according to Born’s rule. Consequently, the statistical re-

sults are the same as in Copenhagen [30]. Furthermore, Ψ also has a dynamical meaning

because it guides the particles through (2.4). Thus, the wave function is responsible for

communicating to particles their interaction with other particles around them and with

the environment.

This last statement is best formulated in terms of the quantum potential Q. Taking

the time derivative of the guidance equation (2.4) and using (2.5), we find an acceleration

equation:

m
d2x⃗

dt2
= −∇⃗V − ∇⃗Q. (2.8)
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So, the quantum potential, expressed in terms of R(x⃗, t), is responsible for a quantum

force, supplementary to the classical one, that influences the particles in their trajectories.

From equation (2.7), we can see that different initial conditions taken in the solution of the

Schrödinger equation leads to different quantum potentials, and consequently, to different

Bohmian trajectories. Also, eventual boundary conditions affect both the phase S(x⃗, t)

and Q(x⃗, t), implying that experimental conditions affects the quantum systems. Another

aspect is the complexity of the initial conditions, in the sense that we can have trajectories

quite different from their classical correspondents if we consider complicated initial wave

functions. Additionally, near regions where the quantum potential is not well defined,

it has a very fast spatial variation, implying in a significant amount of force that can

attracts or repels particles of these points. In the limit when the quantum potential is

negligible compared with the other quantities, we have a classical behavior.

These quantum-classical trajectories have two important properties worth mentioning.

First, they do not intersect each other. Secondly, due the probabilistic interpretation of

the wave function, the trajectories do not pass through points where |Ψ(x⃗, t)|2 = 0 (this

is also true in nodal points where the phase S(x⃗, t) is not defined). The opposite is also

true. In the vicinity of points where |Ψ(x⃗, t)|2 is maximum, the probability distribution of

the particles is large, generating regions of agglomeration of positions. The existence of

forbidden and most probably points, together to the first property, implies in an apparent

squeezing of the trajectories, quite similar to hydrodynamics.

One last important feature of Bohmian mechanics is that is a non-local theory [31, 32].

For multiparticle states whose wave functional can be decomposed as the tensor products

of individual states, that is, Ψ(x⃗1, ..., x⃗N , t) = Ψ(x⃗1, , t) ⊗ ... ⊗ Ψ(x⃗N , , t), with N the

total number of particles, the total phase and the quantum potential are the sum of

its individual contributions. So, S(x⃗1, ..., x⃗N , t) =
∑N

i=1 Si(x⃗i, t) and Q(x⃗1, ..., x⃗N , t) =∑N
i=1Qi(x⃗i, t). This means that each particle obeys a individual guidance equation

dx⃗i
dt

=
∇⃗iSi(x⃗i, t)

mi

, i = 1, ..., N. (2.9)

On the other hand, for entangled states, the tensorial product decomposition hypothesis

is not valid. Consequently, the phase cannot be expanded as before. Thus, the guidance

equation for each particle is

dx⃗i
dt

=
∇⃗iS(x⃗1, ..., x⃗N , t)

mi

, i = 1, ..., N, (2.10)

which is fundamentally different from the previous one. Equation (2.9) states that each

one of the quantum particles are guided by a phase that depends only on its individual

coordinates. However, for the entangled state, the Bohmian trajectories of each particle

depend on the coordinates of all the others. Therefore, we have a non-local theory, since
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the dynamics of an individual particle depends on what happens in the regions where the

other particles are.

2.2 Measurements

An important question to quantum mechanics as a whole is how to describe a measure-

ment, which is a hard task that takes into account the knowledge of the quantum-classical

frontier, since the quantum systems are observed by classical devices. One manner to

avoid this controversial subject is to evoke the collapse postulate, which states that after

a measurement process with an output that is an eigenvalue of some self-adjoint operator,

the system collapses to the corresponding eigenstate, which is, indeed, the position of the

orthodox interpretation. An effort to address the question of quantum measurements can

be attributed to von Neumann [33, 34], yielding to important future developments, such

as the decoherence phenomenon [35, 36, 37, 38].

For some quantum observable Ô with eigenvalues Oi and eigenstates |Oi⟩, we know

that Ô|Oi⟩ = Oi|Oi⟩. Before an experimental process, when there is no interaction

between the device and the measured system, the state corresponding to the quan-

tum system+apparatus is |Ψ⟩ = |ψQS⟩ ⊗ |ψA⟩. The interaction introduces a correla-

tion between these states in terms of the eigenstates of the position operator X̂ associ-

ated with the device pointer. As an example, consider that initially |Ψinit⟩ = |si⟩ ⊗ |x⟩,
with |si⟩ an eigenstate of the discrete operator Ŝ and |x⟩ an eigenstate associated with

X̂. A measurement of Ŝ do not change the correspondent eigenstate, but definitely

changes the state of the apparatus in order to register si, being plausible to assume that

|Ψinit⟩ → |Ψfinal⟩ = |si⟩ ⊗ |x+ αsi⟩, with α a real parameter. 1

For a general state vector, |ψQS⟩ and |ψA⟩ are a linear combination of |si⟩ and |x⟩,

respectively, so that |ψQS⟩ =
∑

i ci |si⟩ and |ψA⟩ =

∫
f(x) |x⟩ dx. Therefore, after a

measurement, |ψA⟩ → |ψA(si)⟩ ≡
∫
f(x) |x+ αsi⟩ dx =

∫
f(x−αsi) |x⟩ dx, which implies

that |Ψ⟩ → |Ψfinal⟩ = |ψQS⟩⊗|ψA(si)⟩. If we assume that originally the pointer is centered

in x = 0, what is possible to obtain with a Gaussian weight f(x) =
(

1
π∆x2

)1/4
exp

(
− x2

2∆x2

)
such that the separation ∆s of two adjacent values is much greater than the width ∆x

of the packet in order to obtain a readable result, which is mathematically expressed by

∆s≫ ∆x, than the product ⟨ψA(si)|ψA(sj)⟩ = e−
α2

4

(si−sj)
2

∆x2 ≃ δij. This shows that after a

experimental procedure the final state of the device is a orthogonal superposition of states

with the pointer centered in x = αsi, implying in a correlation between the apparatus

and the observable eingenstates.

1This interaction can be expressed in terms of the Hamiltonian Ĥ = −h(t)Ŝ ⊗ P̂ , where P̂ is the
momentum operator of the pointer and h(t) is an impulsive function with weight such that this interaction
overcomes all the others in a short period of time, being irrelevant for values of t not so distant from the
maximum of h(t).[8]
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However, of all the possibilities contained in |Ψfinal⟩, just one is manifested in the

end of a measuring, namely the state correspondent to the observed value. This is a

delicate issue that according to Copenhagen interpretation is explained by the collapse

postulate, which claims that we just have access to the result of each measurement, not

being explainable how such result is obtained. So, we are limited to statistical predictions.

The Bohmian’s view can handle this subject without using this new type of evolution for

the wave function. Admitting that the degrees of freedom related to quantum system and

to the apparatus have a real position defined in the phase space through the guidance

equation (2.4), it is possible for us to explain how the devices record specific values of the

observables without using the collapse of Ψ. Once the probability density is given by |Ψ|2,
the pointer variable x, which has a non-trivial correlation with the quantum system, must,

in fact, be (and not to be found) in one of the packets, staying there thereafter, since the

region between two consecutive packets has an almost zero probability [7]. To determine

exactly what will be the branch of the wave function, we need to have access to the initial

conditions, that is, we need to know the initial position (and consequently the momenta)

of all the degrees of freedom. The evolution of the Bohmian trajectories will say to us

in what branch we will end up. Unfortunately, we are not able to know this information

with precision, but just the initial distribution given by the Born’s rule. In this sense, the

positions and momenta are considered as hidden variables in this interpretation, implying

that the experimental results are given in terms of statistical descriptions involving these

(unknown) variables.

Indeed, the probability Pi that an interaction leads to a specific branch i is |ci|2.
If we consider the wave function in coordinate representation, the associated proba-

bility is given by the integral of |Ψfinal|2 over the configuration space, with Ψfinal =(
⟨x| ⊗ ⟨y|

) (
|ψQS⟩ ⊗ |ψA(si)⟩

)
= ψQS(y)ψ

i
A(x), where for simplicity we assume the quan-

tum system as a single particle of position y and general wave function ψQS(y) =
∑

j cjψj(y).

Here, ψj(y) are the eigenvectors related to sj. For the apparatus, we have ψi
A(x) =

⟨x|
∫
f(x′ − αsi) |x′⟩ dx′ = f(x− αsi). So, the value of Pi is given as follows:

Pi =

∫
|Ψfinal|2dxdy ≈

∫ ∑
j

|cj|2|ψj(y)|2|f(x− αsj)|2dxdy

≈ |ci|2
∫

|ψi(y)|2dy
∫

|f(x− αsi)|2dx

= |ci|2. (2.11)

In this proof we made two assumptions. In the first approximation, we consider that

all non-diagonal terms responsible for interference are negligible and do not contribute

to Pi [39], while in the second line we use the fact that given an initial condition, the

only branch that has a non-null probability at (x, y) in the configuration space is the one

9



associated with the eigenvalue si. Therefore, according to this interpretation, an initial

configuration will lead the system to a specific branch, without the necessity to invoke

the collapse postulate. There is, however, an apparent collapse in Bohmian mechanics,

as the other ramifications are considered empty waves, inaccessible to the representative

particle. In fact, this waves will not be detected by any device [39].

In this sense, the Bohmian formulation of quantum mechanics allow us to understand

how the outcome of a measurement depends not only on the state of the system being

measured, but also on the context of other experiments being performed. While the

position of particles may be independent of context, other quantities are obtained from

the wave function, which has a clear dependence on the measurement-related context.

For example, measuring the momentum of a particle changes the wave function phase,

and consequently changes the momentum value due to the guidance equation (2.4). This

issue is deeply connected with the entanglement between the quantum system and the

apparatus. When an experiment is performed, it introduces a correlation between the

quantum system and the experimental device, changing the wave function. For this

reason the trajectory in the configuration space will be different of the trajectory of the

unmeasured system, potentially leading to different experimental outcomes.

2.3 The 1D quantum harmonic oscillator

In order to illustrate some of the features explained so far, we will study the one-

dimensional quantum harmonic oscillator from a Bohmian perspective since it is a very

well-known system. So, in order to make the dBB interpretation a plausible theory, a

thorough understanding of this system is essential. However, due the non-linear aspect

of the quantum potential, the trajectories do not have, in general, an analytical solution.

Therefore, we choose to follow a complete numerical approach, including the solution of

the Schrödinger equation.

The first step is solve the Schrödinger equation iℏ∂tΨ = ĤΨ, with the Hamiltonian

Ĥ given by Ĥ = p̂2

2m
+ 1

2
mω2x̂2, being x̂ and p̂ the position and momentum operators

respectively. In order to make the numerical analysis we replace temporal and spatial

variables by dimensionless ones, that is, t → ωt and x → x/
√

ℏ/mω. Writing the wave

function in the Cartesian form Ψ(x, t) = Φr(x, t)+ iΦi(x, t) and inserting into Schrödinger

equation, we have two coupled dimensionless equations

−1

2

∂2Φr

∂x2
+

1

2
x2Φr = −∂Φi

∂t
, (2.12)

−1

2

∂2Φi

∂x2
+

1

2
x2Φi =

∂Φr

∂t
. (2.13)

The radial part of the wave function can be expressed as R(x, t) =
√
Φ2

r + Φ2
i , while the
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phase is S(x, t) = arctan
(
Φi/Φr

)
.

To solve this system we use the Method of Lines [40], considering the Tensor-Product

Grid technique to make the spatial discretization2[41]. We consider Dirichlet boundary

conditions for Ψ, demanding that Ψ(−L, t) = Ψ(L, t) = 0, where we take L = 10. Also

we consider the maximum time tmax = 100, which is good enough to evaluate averages

and achieve good precision in our problem. As an initial condition we set Ψ(x, 0) as a

combination of the eigenstates of the harmonic oscillator properly normalized, namely

Ψ(x, 0) =
1√
n+ 1

n∑
α=0

ψα(x), (2.14)

with ψα(x) such that

ψα(x) =
1√
2αα!

π−1/4Hα(x)e
−x2

2 , (2.15)

where Hα(x) are the Hermite polynomials of order α. Note that each initial wave function

Ψ(x, 0) gives a different phase S(x, t) and, consequently, we have different associated

trajectories.

In a second stage we integrate the guidance equation (2.4), which in terms of the

dimensionless variables is

x(t)ℏ =

∫ t

0

∂S(x, t′)

∂x
dt′. (2.16)

So, the quantum trajectories are given in unities of ℏ, which we can assume as 1. To

perform this integration we use the Explicit Runge-Kutta method of order 8, with a fixed

step size of 0.01. For the initial positions we set a total of 400 points randomly distributed

according to |Ψ(x, 0)|2, each one leading to a different trajectory.

A common alternative to the method presented here is to consider a semi-analytical

approach. For systems with an analytical solution for the Schrödinger equation, we can

skip step one. This is, in fact, the case of the harmonic oscillator. However, we just

have an analytical wave function for a few number of examples which, in general, are

too simple to describe real physical systems. Therefore, an advantage of obtaining the

wave function numerically is that it allow us to solve more complex cases, since we do not

have knowledge of exact expressions for Ψ(x, t). However, the pure numerical approach

of Bohmian trajectories has three sources of error: the first and most important is the

solution of the Schrödinger equation. As the time evolves, the errors associated to the

boundary effects starts to interfere with the wave function and becomes more and more

2The Method of Lines is a method of solving PDEs consisting in discretize all the dimensions except
by one (tipically the time), turning the problem into a system of ODEs, where we can apply the numerical
techniques available.
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relevant. We can control this error demanding that the integral of |Ψ(x, t)|2 inside the

box must be 1 with an error of ∼ 10−3, what can be done choosing appropriately the

size of the grid and the degree of the difference order. Grids of size 100 works well when

we consider the sum of few eingenstates, while is necessary use a size of 400 for larger

numbers. The degree of the difference taken was from 4 to 6.

The second source is the integration (2.16). Even though it is easy to control using

an adequate stepsize, a complex expression for the phase can demand a big computa-

tional time, making hardy work with a large number of trajectories. This is intimately

connected with the third cause of error, that is the random distribution of the initial po-

sitions according to |Ψ(x, 0)|2. The more complicated the initial wave function, the more

difficult is to obtain a histogram of initial conditions that reproduces this distribution.

So, in order to minimize this error we need to consider a set with a larger number of

initial points, implicating in compute more trajectories. Since one of our objectives is to

calculate the dBB average of the x(t) over time, we need set a good initial distribution

that approximately matches with |Ψ(x, 0)|2. From a sample of 400 initial positions, we

construct a smooth histogram and visually compare with |Ψ(x, 0)|2. If it is not close

enough, we randomly take a new set of starting positions until we get one that matches

with the wave function distribution. In this way, we guarantee a good initial set of points

without having to calculate a high number of trajectories.

2.3.1 The ground state

Let us consider the special case where the initial wave function is the ground state

Ψ(x, 0) = π−1/4e−x2/2. Since we start with an eingenstate of the harmonic oscillator, the

wave function phase will not depend on x. As a consequence, ∇⃗S = 0, implying in a

null velocity field. Therefore, the trajectories are static, with x(t) = x(0). This fact can

be explained by examining the effective potential Veff = V +Q. The quantum potential

(2.7) is Q = (1− x2)/2, canceling the spatial contribution of V . As a result, the classical

and quantum forces counterbalance each other, maintaining the particles in equilibrium.

Thus, if a particle starts at a given position, it will remain there. While we demonstrate

this phenomenon for the ground state of the quantum harmonic oscillator, it holds true

in general within Bohmian mechanics. Initial wave functions that are eigenstates of any

considered system will yield static trajectories.

2.3.2 The linear superposition of the excited states

Linear superpositions of excited states are quite interesting since they present more

complicated trajectories. For example, for an initial condition that is a superposition of

eigenstates of the harmonic oscillator, the general solution of the Schrödinger equation

depends on time. From the usual quantum mechanics textbooks [42, 43, 44], we know
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Figure 2.2: In the left, the bohmian trajectories for the quantum harmonic oscillator with
Ψ(x, 0) = ψ0(x). In the right, the quantum and classical potential. The effective potential
is constant, so its derivatives and, by consequence, the total force is null. Since neither Q
and V depends on time, the quantum trajectories are static.

that an initial condition of the type Ψ(x, 0) =
1√
n+ 1

(ψ0(x) + ψ1(x) + ...+ ψn(x)), with

the same weight for each individual contribution, leads to

Ψ(x, t) =
1√
n+ 1

(ψ0(x)e
−i

E0
ℏ t + ψ1(x)e

−i
E1
ℏ t + ...+ ψn(x)e

−iEn
ℏ t), (2.17)

with Eα =
(
α + 1

2

)
ℏω the energy of each eingenstate. In the polar form, this expression

becomes

Ψ(x, t) =
1√
n+ 1


(

n∑
α=0

Rα cosSα

)2

+

(
n∑

α=0

Rα sinSα

)2


1/2

×

exp

i tan−1

(∑n
α=0Rα sinSα∑n
α=0Rα cosSα

) , (2.18)

where Rα(x) = ψα(x) and Sα(t) = −
(
α + 1

2

)
ωt are the radial part and the phase of each

mode. Therefore, for the total wave function we have that

R(x, t) =
1√
n+ 1


(

n∑
α=0

Rα cosSα

)2

+

(
n∑

α=0

Rα sinSα

)2


1/2

(2.19)

and

S(x, t) = tan−1

(∑n
α=0Rα sinSα∑n
α=0Rα cosSα

)
. (2.20)

From these expressions, we can see that despite being a simple case, we will have

complicated Bohmian trajectories, especially for larger values of n. Because of that, we
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do not have an analytical solution for the Bohmian trajectories (2.16). Also, it is evident

from (2.7) and (2.19) the non-linear character of the quantum potential.

n=1

Let us consider the case Ψ(x, 0) =
1√
2
(ψ0(x)+ψ1(x)). From the numerical solution of

the equations (2.12) and (2.13), we obtain |Ψ(x, t)|2 = R2(x, t). Since the initial state is

not an eingenstate of the harmonic oscillator, but a combination of the ground state and

the first excited state, the probability density, which in de Broglie-Bohm interpretation is

associated with the probability of a particle actually be in a given position, changes with

time.

The numerical solution of the system (2.12), (2.13) and (2.16) is represented in figure

2.3. The initial distribution is slightly inclined to the positive direction, near x = 1,

because the choice of the initial wave function. As the time evolves, the trajectories tend

towards the center until they reach the negative semi-axis up to values close to -1, staying

there for a while until they cross the origin again and come back near to 1, completing

the cycle.

n=1
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t

x
(t
)

n=1

-3 -2 -1 0 1 2 3
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p
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)

Figure 2.3: In the left, the Bohmian trajectories for the quantum harmonic oscillator

with Ψ(x, 0) =
1√
2
(ψ0(x) + ψ1(x)). In the right, the phase space. Both, the positions in

function of time and the phase space are completely different of the classical harmonic
oscillator. This difference is due the quantum potential Q, which is relevant in this case.

As we said, this behavior can be explained through the graph of |Ψ(x, t)|2. For t = 0,

the major part of |Ψ|2 is in the positive semi-axis, with peak around 1. The evolution of

the wave function makes the distribution go to the left, arriving a point of symmetry at

t = π/2. For t = π we have the same initial distribution, but mirrored in relation to the

vertical axis. Since we are dealing with a periodic system we eventually returns to the
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Figure 2.4: The evolution of |Ψ(x, t)|2 over time for n = 1. Initially the trajectories are
concentrate in the positive part of the x-axis, where is the major contribution of |Ψ|2. The
temporal evolution shows that the probability distribution oscillates around the origin.
This oscillation is translated in the trajectories oscillations in figure 2.3.

initial probability density, from where another cycle begins again (Fig. 2.4). The reason

behind this is the effective potential. Initially, Veff has a positive inclination everywhere.

So, the effective force that acts in all the particles is negative, causing them to move in

to negative x direction. As a consequence, |Ψ|2 will follow the trajectories density. This

force is stronger near the singularity (Fig. 2.5), where Veff varies very quickly. As the

time passes, this singularly shrinks and becomes a small slope. At t = π/2, the effective

potential is symmetric in relation to the x-axis. The particles on the right feel a negative

force that accelerates them, until they eventually cross the origin, where the effective force

becomes positive, slowing the particles down. Since the trajectories do not intersect each

other, this generates an apparent squeezing of the trajectories near the origin. The slope

grows until become a singularity at t = π, where the Veff is negative everywhere, making

|Ψ(x, t)|2 to return to its initial state at t = 2π.

n = 2, 3, 4, ...

The same analysis we made for n = 0 and n = 1 is valid when we consider more

excited states. For this reason, we will content ourselves in just showing the numerical

results of the trajectories and their respective phase spaces.

As we can see from Figure 2.6, the trajectories become more complicated as we increase
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Figure 2.5: The evolution of Veff over time for n = 1. Near the singularities the quantum
potential varies very rapidly, implying in an immense amount of force. The changes in
Veff dictates the behavior of the Bohmian trajectories trough the acceleration equation
(2.8).

the number of initial states. Also, these quantum trajectories differ significantly from the

classical case, even exhibiting master equations that allow us to understand the quantum

systems based on classical mechanics. As mentioned earlier, this disparity arises from the

presence of the quantum potential and its non-linear nature. Nevertheless, in consonance

with the Ehrenfest theorem, we can speculate that a classical behavior could be achieved

if we consider the mean values, since we have a quadratic classical potential. This is the

primary objective of the next section.

2.4 The Ehrenfest theorem

In usual quantum mechanics, the temporal evolution of a Hermitian operator Ô is

given by the Heisenberg equation of motion

dÔ
dt

=
∂Ô
∂t

+
i

ℏ
[Ĥ, Ô], (2.21)
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Figure 2.6: The Bohmian trajectories and the associated phase space for n = 2, 4, 8. As
we increase the number of initial states, more complicated are the trajectories.

where Ĥ is the Hamiltonian. In terms of expectation values we have that

d ⟨Ô⟩
dt

=

〈
∂Ô
∂t

〉
+
i

ℏ
⟨[Ĥ, Ô]⟩ , (2.22)

where the mean values in the usual interpretation are calculated via

⟨Ô⟩ =
∫

Ψ∗(ÔΨ)dx. (2.23)

For Hamiltonians which can be written as Ĥ = p̂2/2m + V (x̂), equation (2.22) provides

for position and momentum operators the Ehrenfest theorem

m
d ⟨x̂⟩
dt

= ⟨p̂⟩ , (2.24)

d ⟨p̂⟩
dt

= −⟨∇V̂ ⟩ . (2.25)

Since Bohmian mechanics and Copenhagen interpretation have the same statistical

predictions, the mean values defined in both interpretations should be equal, that is,

⟨Ô⟩ = ⟨O⟩dBB, where we denote ⟨O⟩dBB as the Bohmian average. However, in Bohmian

Mechanics |Ψ|2 is interpreted as the probability density of an ensemble of positions. If

at t = 0 the initial positions are distributed with |Ψ(x0, 0)|2, each point will follow one

individual trajectory so that, at a time t, the probability distribution of positions is
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|Ψ(x, t)|2. Consequently, |Ψ(x, t)|2dx measure the probability of a particle being in an

infinitesimal displacement dx. Hence,

⟨O(t)⟩dBB =

∫
|Ψ(x, t)|2O(x, t)dx (2.26)

is the mean value of O, where O represents a physical property of the particles [32]. De-

spite the ensemble average in dBB be essentially different of the usual method of compute

internal products of operators via the wave function (Equation (2.23)), the quantities

from which we calculated the averages may have, beyond the classical part, contributions

of quantum nature that should be considered. For instance, when computing the mean

energy, we need to explicitly include the quantum potential contribution in addition to

the kinetic and classical potential terms, according to Hamilton-Jacobi equation (2.5).

This fact is also true when we consider the Bohmian version of the Ehrenfest theorem.

Taking the time derivative of the average position given in terms of Equation (2.26), we

have that

d

dt
⟨x⟩dBB =

d

dt

∫
R2xdx =

∫
∂

∂t
(R2x)dx

= − 1

m

∫
x
∂

∂x

(
R2∂S

∂x

)
dx

=
1

m
⟨p⟩dBB , (2.27)

where, in this sequence of equations, we neglect the boundary terms and use the continuity

equation (2.6) and guidance equation (2.4). Analogously, for the average momentum we

have that

d

dt
⟨p⟩dBB =

d

dt

∫
R2pdx =

∫
∂

∂t
(R2p)dx

= − 1

m

∫
∂

∂x

(
R2∂S

∂x

)
∂S

∂x
dx−

∫
R2

[
1

2m

∂

∂x

(
∂S

∂x

)2

+
∂V

∂x
+
∂Q

∂x

]

= −
〈
∂V

∂x

〉
dBB

−
〈
∂Q

∂x

〉
dBB

, (2.28)

where, in addition to the previous considerations we also used the Hamilton-Jacobi equa-

tion (2.5). So, at first glance, beyond the classical force average, we have to consider the

average of the quantum force as well. However, as we can verify, the contribution of the
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second term vanishes, since〈
∂Q

∂x

〉
dBB

=

∫
R2∂Q

∂x
dx

= − ℏ2

2m

∫
R2(x, t)

∂

∂x

(
1

R(x, t)

∂2R(x, t)

∂x2

)
dx

=
ℏ2

m

∫
∂R(x, t)

∂x

∂2R(x, t)

∂x2
dx

= −ℏ2

m

∫
∂2R(x, t)

∂x2
∂R(x, t)

∂x
dx. (2.29)

Since the last two equations are equal, they should necessary be zero, and consequently〈
∂Q

∂x

〉
dBB

= 0. Therefore, the average of the quantum trajectories must obey

m
d2

dt2
⟨x⟩dBB = −

〈
∂V

∂x

〉
dBB

, (2.30)

which can be identified as Newton’s law if the average of the classical force is equal

to the classical force applied to the average position, or in other words, if the relation〈
∂V

∂x

〉
dBB

=
∂V

∂x

∣∣∣∣
x=⟨x⟩dBB

holds. For instance, considering potentials of the type V =

αxn, in order to the averages obeys Newton’s classical law we should have ⟨xn−1⟩dBB =

⟨x⟩n−1
dBB, which is valid, for example, when n = 2. So, for the harmonic oscillator potential

both quantities are equal, allowing us to see this ensemble of quantum particles collectively

as one single classical particle. Yet, equation (2.30) can almost represent a classical

law for ⟨x⟩dBB in some cases, namely when we have a quadratic potential with small

perturbations, or when the wave function is highly concentrate near to a single point

during the Schrödinger evolution [45], being approximated by a delta function.

It is worth mentioning that in order to derive the equation (2.30), it was inherently

necessary to use the fact that trajectories are distributed according to |Ψ|2 = R2, as

shown in the sequence of equations (2.27), (2.28) and (2.29). Consequently, if we consider

a distribution P(x, t) that does not satisfy the quantum equilibrium hypothesis, specifi-

cally a P(x, t) such that P(x, t) ̸= |Ψ(x, t)|2, we must necessarily take into account the

contribution due to the quantum force (Equation (2.28)), leading to a different result from

the usual Ehrenfest theorem. As far as we know, this is a question that has not yet been

explored.
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2.4.1 Numerical validation of Ehrenfest theorem for the quan-

tum harmonic oscillator

In the last section we saw how the Bohmian trajectories for the harmonic oscillator are

completely different from the classical ones due the quantum effects, manifested by the

presence of the quantum potential. This is true even in the case with n = 0. However, from

the equation (2.30) and from the fact that for this specific case

〈
∂V

∂x

〉
dBB

=
∂V

∂x

∣∣∣∣
x=⟨x⟩dBB

,

we expect that the Bohmian average of the quantum trajectories obeys a classical law.

Remembering that, according to classical mechanics, the classical harmonic oscillator

position can be obtained integrating Newton’s second law. The result is a sinusoidal

function of the form x(t) = A cos(ωt + ϕ), implying that p = −mAω sin(ωt + ϕ), with

A being the amplitude of the oscillations and ϕ the phase. The energy is given by E =
p2

2m
+ V = 1

2
mA2ω2. So, the ensemble of trajectories must, somehow, translate those

properties.

Once we obtain the solution of equation (2.16) by distributing the initial positions ac-

cording to the initial wave function used to solve Schrödinger equations (2.12) and (2.13),

we guarantee that the probability distribution along the trajectories follows the wave

function’s evolution. So, for a relatively large number of trajectories, we can approximate

the mean value of the positions by

⟨x(t)⟩dBB =

∫
|Ψ(x, t)|2x(t)dx ≈ 1

N

N∑
i=1

xi(t), (2.31)

where we perform a sum over the N = 400 trajectories. We have a similar result for the

momentum,

⟨p(t)⟩dBB =

∫
|Ψ(x, t)|2p(t)dx ≈ 1

N

N∑
i=1

pi(t). (2.32)

Thus, considering different initial wave functions given by (2.14), we compute the

evolution of the average position and the average phase space. The results are plotted

in Figure 2.7. The fit of all the curves results in the classical expression for x, but with

a dependence on the quantum parameter n, that determines the number of eigenstates

considered in the initial wave function. Specifically, we obtain that ⟨x(t)⟩n = An cos(ωt),

with An the amplitude, depending on n according to a power law of the form An =
√
n (see

Figure 2.8). Hence, we can consider that the quantum particles represent, on average,

a classical harmonic oscillator that is initially displaced at a distance of
√
n from its

equilibrium point. For n = 0, for example, we have a symmetric distribution, implying

a classical oscillator initially located at the origin, which remains at rest all the time.

However, as we increase the value of n, we change the initial position of the classical
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oscillator, in response to consider an asymmetric distribution. Consequently, we obtain

an oscillatory dynamics. This is a very interesting result because, despite in average we

have a classical behavior, the amplitude has a dependence of a quantum nature. More

precisely, the classical mean trajectory relies on the initial wave function. As we saw,

classically the amplitude of the oscillations is related with the energy through the phase

space. If we substitute the position and momentum by their respective dimensionless

averages, we find that the mean phase space is a circle of radius An, with a volume that

increases linearly with n, such as in 2.7.
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Figure 2.7: In the left, the dynamics of ⟨x(t)⟩dBB. All functions are optimally fitted by
⟨x(t)⟩n = An cos(ωt). In the right, the average phase space of the harmonic oscillator
obtained by numerical results.
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Figure 2.8: The amplitude An versus the total number of initial eigenstates. Performing
a fit with n ranging from 0 to 50, we obtain a power law of the type An ∼ n1/2.
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2.4.2 Forced Harmonic Oscillator

Despite the harmonic oscillator being a very studied case, it is not so evident the effect

of an external force in the Bohmian trajectories. According to section 2.3, the Schrödinger

equation in dimensionless variables can be reduced to

− 1

2

∂2Φr

∂x2
+

(
1

2
x2 − F (t)x

)
Φr = −∂Φi

∂t
, (2.33)

− 1

2

∂2Φi

∂x2
+

(
1

2
x2 − F (t)x

)
Φi =

∂Φr

∂t
, (2.34)

where we made the substitution F (t) → F (t)/
√
ℏmω3

0 to obtain a dimensionless force,

with ω0 the fundamental frequency. Also, the Hamilton-Jacobi equation (2.5) has a cor-

recting term F (t)x that should be considered:

∂S

∂t
+

(∇⃗S)2

2m
+ V +Q− F (t)x = 0, (2.35)

implying in a acceleration equation of the form

m
d2x⃗

dt2
= −∇⃗V − ∇⃗Q+ F (t). (2.36)

The effect of the external force on the solution of (2.33) and (2.34) changes the quan-

tum potential and the continuity equation in a non-trivial manner, modifying the shape

and the distribution of the trajectories. Nevertheless, the averages still follow a classical

law, namely

m
d2

dt2
⟨x⟩dBB = −⟨∇V (x)⟩dBB + F (t), (2.37)

since F (t) does not depend on x.

As is well known, the classical equation of motion for a driven harmonic oscillator is

mẍ+mω2
0x = Fext, which admits as solution

x(t) = x(t)HO +

∫ t

0

d τ Fext(t− τ) sin(τ) (2.38)

where x(t)HO is the particular solution of the unforced case, while the second term is a

convolution relating the external force. Therefore, to verify the validation of the Ehrenfest

theorem we expect something similar to Eq. (2.38). In order to elucidate this issue, we

consider three distinct cases: a simple constant force, a fast-acting Gaussian impulse, and

a sinusoidal signal where we investigate the resonance phenomenon.
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Constant Force

The most simple case is consider a constant force F = F0 without any time dependency,

where we take F0 = 0.7 without loss of generality (see Figure 2.9). This system can be

used to simulate a charged harmonic oscillator in a uniform electric field, for example,

admitting an analytical solution that is expressed in terms of a shift in the position [43].

As a consequence, the mean distribution of the trajectories is also shifted by the same

amount, which is well noted in the phase space. Classically, this represents an oscillator

with the equilibrium point displaced of the original position as a result of the external

force, similar to a vertical mass attached to a spring and subject to the gravitational field.

Since the initial wave function corresponds to the ground state of the unforced case for

n = 0, the mean initial position represents a point particle with an oscillatory dynamics,

oppositely to what happens when F0 = 0.

The averages (Figure 2.10) are in excellent agreement with the fit ⟨x(t)⟩dBB = ⟨x(t)⟩HO+

0.7(1−cos(t)), obtained from equation (2.38), showing the efficacy of the numerical proce-

dure. The classical solution has the same structure of the harmonic oscillator without any

external force, but the amplitude and the equilibrium point are change with F0, namely,

x→ x+ F0 and A→ |A− F0|.
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Figure 2.9: (top) Representative trajectories of a charged harmonic oscillator in the pres-
ence of an uniform electric field, for n = 0, in the left, and n = 4, in the right. (bottom)
The phase for trajectories close to max {|Ψ(x, t)|2}. Note that the center is shifted to the
right.
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Figure 2.10: The average trajectories ⟨x(t)⟩dBB (left) and the average phase space (right)
for a constant force F (t) = 0.7. Note the change in amplitude and the shift in the
oscillations.

Impulsive Force

Impulsive forces have numerous applications in quantum mechanics. For example,

in optomechanics [46, 47], in non-adiabatic transitions [48] and in prediction of quantum

Gaussian systems [49]. To model such impulses we consider a fast acting force of Gaussian

type F (t) =
1√
2πσ2

exp
(
− (t−tµ)2

2σ2

)
, with the parameters chosen such that tµ = 5 and

σ = 0.4.

This system is interesting because the asymptotically initial and final states are just

the quantum harmonic oscillator. So, at the beginning, the trajectories are the same

founded in sections 2.3 and 2.4. Since we are dealing with a non-conservative Hamiltonian,

the Gaussian impulse increases the energy, leading the system to a more energetic level.

Consequently the interaction excite more eingenstates in the wave function and the phase

space expands (see Figure 2.11).
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Figure 2.11: (top) Trajectories of the impulsive case for n = 0, in the left, and n = 4, in
the right. (bottom) The associated phase space for central trajectories
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Figure 2.12: In the left, the dynamics of ⟨x(t)⟩dBB for the impulsive force. In the right,
the classical phase space obtained by the numerical procedures.

The mean trajectories are plotted in Figure 2.12. As expected, the averages coincides

with the convolution (2.38), given two distinct regimes, before and after the force. The

final vibrations have a greater amplitude, indicating a higher energy according to the

classical laws. Note that for n = 0 the oscillator that is at rest pass to vibrate after the

impulse, indicating that the particles in the ensemble are not in an eigenstate anymore,

but in some linear combination, no longer having static trajectories. Concerning the

phase space, such effect can be viewed by the fast change of the trajectories into a circle

of larger radius orbit. Thence, the quantum averages represent the classical analogue of

a harmonic oscillator perturbed by a fast external impulse in the direction of movement,
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which is responsible for increasing the amplitude of the vibrations and transferring energy

to the system.

Sinusoidal Force

The last example considered is the sinusoidal force F (t) = F0 cos (Ωt), with Ω = ω/ω0

the ratio between the frequency of the oscillatory signal and the fundamental frequency.

In the simulations we consider an amplitude of F0 = 0.8 for Ω = 0.6 and Ω = 1.4. Each

individual trajectory is the result of two periodic motions, so that the frequency is a

combination of ω and ω0, as can be seen in Figure 2.13. Once again the averages follow

the convolution (2.38), satisfying the Ehrenfest theorem.
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Figure 2.13: (top) The Bohmian trajectories for the sinusoidal force with n = 0. We
considered F0 = 0.8, Ω = 0.6 (left), and Ω = 1.4 (right). (bottom) Average trajectories
⟨x(t)⟩dBB for different values of n.

The resonant case Ω = 1 deserves special attention. Once the external frequency and

the fundamental frequency are equal, we expect the force to make the amplitude of the

oscillations grows indefinitely. This phenomenon is called quantum resonance, having ap-

plications in atomic optics [50], Polymethine dyes [51], multichromophoric energy transfer

[52], electric-dipole moment experiments [53], and quasi-momentum measurements [54].
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In order to avoid undesirable boundary effects in the results, we take F0 = 0.2 and

L = 15. The numerical results reveals that the phase space exhibit a continuous increment

of energy, with an expanding phase space volume, characterized by a periodic motion with

increasing amplitude. The mean trajectories for n = 0 also have a resonant motion, with

a linear grow given by F0t/2, as shown in figure 2.14. This result is expected from the

classical equations.
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Figure 2.14: (top) Resonant trajectories for n = 0 with F0 = 0.2 and (bottom) the mean
trajectories.

As a conclusion, we verify that the average trajectories of all the cases considered obeys

the classical equation (2.38), validating the Ehrenfest theorem even for those examples

of non-conservative systems. It is worth to emphasize that the numerical approach is

in great agreement with the expected classical solution, how is possible to see in all the

fits. Therefore, our method can be used to study other quantum models that demands

high precision, as chaotic trajectories and integrable systems exhibiting unstable orbits.

Lastly, we wish to draw attention to the fact that, although obtaining such Bohmian

trajectories may seem simple, as far as we know, there are few works referring to Bohmian

trajectories with a time-dependent Hamiltonian. We believe that the main reason for this

comes from the fact that usually such trajectories are obtained from a prior analytical

knowledge of the wave function solution for any instant, which amounts to finding an
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analytical solution of the time-dependent Schrödinger equation, a task that is not trivial

when considering a generic system. Even knowing such a solution for the case of the

quantum harmonic oscillator subjected to a constant force or that the solution for the

impulsive case can be obtained in the asymptotic limits when the force is negligible, as

we consider more complicated external forces, such as the sinusoidal one, for example,

the analytical form of Ψ becomes too complicated. Therefore, to treat such cases, the

numerical technique presented here is extremely useful. To the best of our knowledge,

no one has ever presented the quantum trajectories for the three cases we consider: F =

F0, F = 1√
2πσ2

exp
(
− (t−tµ)2

2σ2

)
and F = F0 cos (Ωt), where in this last one, we observe

the resonance in the quantum trajectories. As an example of this discussion, in the

next section we will illustrate the practicality of obtaining the numerical solution of the

Schrödinger equation by considering the Duffing oscillator case.

2.5 The Duffing Oscillator

The Duffing Oscillator [55, 56] is a type of nonlinear oscillator with restoring force

consisting of a linear and a cubic contributions, whose dynamics are described by a second-

order nonlinear differential equation. It has a wide range of applications, such as in the

modeling of electrical circuits [57, 58], in the analysis and detection of mechanical signals

[59], in the study of chaotic phenomena [60, 61, 62, 63], and even employed in biological

systems [64, 65, 66].

Let us consider the quantum version of the Duffing oscillator given in terms of the

Hamiltonian

Ĥ =
p̂2

2
+
x̂2

2
+
λ

4
x̂4 − F0x̂ cos(Ωt). (2.39)

This system can be interpreted as a driven anharmonic oscillator, where Ω is defined as

the ratio between the external force frequency ω and the natural frequency ω0, obtained

when λ = 0, which corresponds to the harmonic oscillator driven by an oscillatory force

studied in section 2.4.2. In order to compare this system with the results founded in

the resonant case, we choose n = 0, F0 = 0.2, and Ω = 1 as the simulation parameters,

while for the quartic potential V̂anh = λ
4
x̂4, which is responsible for the anharmonicity, we

consider λ = 0.01 as a small perturbation.

Since the potential is not quadratic anymore, but have a quartic contribution, a differ-

ence between the first and third momentum, namely ⟨x(t)⟩dBB and ⟨x(t)3⟩dBB, arises.

Therefore, as a consequence, we have that ⟨∇⃗V (x)⟩dBB ̸= ∇⃗V (⟨x⟩dBB). Thus, the

Bohmian averages do not exactly follow a Newton’s second law-type equation, but in-
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stead we have that

d2

dt2
⟨x⟩dBB = −⟨x⟩dBB − λ⟨x3⟩dBB + F0 cos (Ωt), (2.40)

which can be approximately considered a Newton’s law for small perturbations of the

parameter λ. On the other hand, the corresponding classical equation for the Duffing

oscillator is

d2x

dt2
= −x− λx3 + F0 cos (Ωt), (2.41)

whose solution can be obtained by numerical techniques.

The quantum solution of (2.40) is a little bit different from the classical solution

obtained from (2.41) in reason of the difference ⟨x(t)3⟩dBB − ⟨x(t)⟩3dBB ̸= 0. Even for a

small perturbation constant, as the values of the coordinate become large, this difference

also increases because of the anharmonicity. For small values of x, the quadratic term in

the potential prevails. Therefore, we have the action of a resonant force in the Bohmian

trajectories that gradually increases the amplitude of the oscillations, what causes the

trajectories to deviate significantly from the origin, where the cubic term has a non-

negligible contribution. Thus, in these regions we have a clear effect of anharmonicity,

as can be seen in Figure 2.15. Even with the Ehrenfest theorem not corresponding to an

exactly classical solution, it still holds. The mean trajectories have just a small deviation

from the numerical solution obtained from the classical equation (2.41), showing that we

have an approximately correspondence between the classical and quantum equations for

small perturbations.
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Figure 2.15: (left) Time evolution of the Bohmian averages ⟨x(t)⟩dBB for the quantum
Duffing oscillator (black points) and for the classical analogue (red line) with initial con-
ditions (x0, p0) = (0, 0). (right) Difference between ⟨Fanh(x)⟩dBB and Fanh(⟨x⟩dBB) where
Fanh(x) = −λx3 is the anharmonic force.

It is interesting to note that the behavior of the averages can be explained in the light
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of a classical phenomenon. Instead of having a constantly increasing amplitude as happens

in the resonant force case, we observe a beat-like pattern, one time that the anharmonic

perturbation changes the fundamental frequency of the system from ω0 to ω0 + ϵ, with

ϵ a small correction. Because of that, we have the interference between two signs of

almost equal frequencies, specifically the anharmonic vibration and the external force

excitation, implying in a typical beating phenomenon. Such effect also can be observed

in the individual Bohmian trajectories for n = 0 (see figure 2.16), showing that this is not

just an average effect. Conversely, as we increase the value of n, we start to have more

complicated trajectories, losing this classical analogy. This arises primarily from the fact

that a higher number of initial eingenstates lead to a distribution of initial positions more

distant from the origin, where the effect of nonlinearity becomes more prominent.
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Figure 2.16: Bohmian trajectories for the Duffing oscillator in the cases n = 0 and n = 4.
Note that the beat pattern model the shape of the individual quantum trajectories, being
more prominent in the central ones.

In the next chapter, we will pass to a two-dimensional problem, where we will use the

numerical approach to obtain the Bohmian trajectories and study chaotic systems.
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Chapter 3

Quantum Chaos and Bohmian

Mechanics

The dynamics of chaotic systems [67, 68, 69] has been a topic of great interest in

physics, with important discoveries in astronomy and celestial dynamics [70, 71], with

special application in the study of the solar system [72, 73], as well as in the study of fluid

dynamics [74, 75, 76], optics [77, 78], and plasma physics [79, 80]. Roughly speaking, a

dynamical system is said to be chaotic if it exhibits some typical characteristics. The first,

and perhaps the most important, is sensitivity to initial conditions. In chaotic systems,

trajectories that start with very close initial conditions eventually tend to diverge and

occupy very distinct regions of phase space, possessing completely different behaviors for

sufficiently long times. Consequently, a second characteristic factor is the unpredictability

of such systems. Due to the complexity of the equations of motion, this trajectories

divergence, which occurs in an exponential ratio, makes it extremely difficult to predict

the behavior of the physical system. In other words, there is no preferential representative

position in phase space for a given time. Another important attribute that characterizes

the presence of chaos is the aperiodicity of trajectories, which means that these systems

do not exhibit regularities or repeated behaviors in a finite (long) time interval and do not

follow periodic or quasiperiodic orbits. Lastly, even with the exponential divergence of

neighboring particles, chaotic systems are expected to occupy a compact region in phase

space, with highly dense trajectories.

From the previous discussion, we can define chaos for a deterministic system as a kind

of long-term aperiodic behavior that presents sensitivity to initial conditions [69], with

the nearby trajectories separating exponentially fast. Such sensitivity can be quantified

by what we call of Lyapunov exponent λ. If two trajectories with initial conditions v⃗1 =

(x⃗1, p⃗1) and v⃗2 = (x⃗2, p⃗2) in phase space are separated at the beginning by an infinitesimal

amount ξ̃0 = |v⃗1 − v⃗2| =
√∑

i

[
(δxi)2 + (δpi)2

]
, with δxi and δpi the individual distance

concerning the i-th component of the position and momentum respectively, then for a

generic time t the separation between the trajectories is ξ̃(t) = ξ̃0e
λt. For a chaotic system,
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if we plot the graphic of ln ξ̃(t) versus t, the tendency will be to obtain a monotonically

increasing line with positive slope. Usually, the Lyapunov exponent is a time-dependent

quantity, with its evolution dictated by the dynamics of each system. Initially, when

the separation between trajectories is small, it exhibits many oscillations, with often

abrupt changes occurring over relatively short time intervals. However, as we increase

the temporal variable, these oscillations become increasingly smaller, eventually reaching

a saturation point. This occurs when the distance between the trajectories becomes

comparable to the size of the geometric objects that causes chaos, which varies from

system to system. Typically, these objects are referred to as strange attractors, which

are geometric structures with a fractal dimension that characterizes their degree of self-

similarity on different scales. For further clarifications on these structures, see [69].

Formally, the Lyapunov exponent is defined as follows:

λ(t) = lim
t→∞

1

t
ln

(
ξ̃(t)

ξ̃0

)
. (3.1)

It is worth mentioning that its value depends on the choice of the set of initial conditions.

Different initial positions in the phase space lead to different values of the Lyapunov

exponents. It is common for a single physical system to have regions with almost non-

exponential separation of trajectories, as well as regions with a high number of them,

resulting in highly chaotic behavior. The calculation of the Lyapunov exponent in both

regions provides quite different results, so we cannot treat the value of this quantity

as a global characteristic for the entire phase space. The intermediate regions between

the presence and absence of chaos are known as wedge of chaos and presents interesting

features. For example, these regions can obey the q-statistics [81, 82, 83].

Although chaos in classical systems is well-understood, the study of chaos in quantum

systems is, in a sense, limited due to the probabilistic nature of quantum mechanics, which

contrasts with the deterministic nature of classical equations. Therefore, the quantum

chaos [84, 85, 86, 87, 88, 89] is an open problem in the theory of quantum mechanics,

with a wide range of applications, such as in nuclear physics [90, 91], quantum dots

[92, 93], quantum computing [94, 95, 96, 97], and in black holes associated effects [98],

being the main motivating topic behind this issue the correspondence between quantum

and classical chaotic dynamics. Furthermore, chaotic dynamics are an important point in

obtaining the Born rule for systems with initial conditions that do not obey the quantum

equilibrium hypothesis, i.e., not distributed with |Ψ(x⃗, 0)|2 [99, 100, 101]. Attempts to

study quantum chaos from a classical point of view involve searching for chaotic signatures

at quantum level, by quantizing classical chaotic systems and analyzing the limits in which

ℏ → 0 or n→ ∞, where n is the total number of eigenstates in the initial wave function.

Such signatures are known in the literature as quantum scars, being quite recurrent in

systems such as billiards [102, 103, 104] and quantum dots [105, 106]. In this approach, it
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is interesting to analyze the energy levels of the studied system, for which one can use: 1)

the random matrix theory [107], which assumes that the Hamiltonian of a complex system

can be represented by a random matrix with appropriate statistical properties, allowing

the extraction of important information regarding the spatial distribution between energy

levels and the intensity distribution of the eigenfunctions, 2) the perturbation theory [108],

which considers a small perturbation to the system’s Hamiltonian due to an external

parameter and verifies how this parameter influences the associated eigenenergies, and 3)

the periodic orbit expansions [109], which is based on the idea that the energy spectrum

of the quantum system in question can be represented by a sum over the contributions

due to different periodic orbits.

Despite each one of these approaches allowing the understanding of important phe-

nomena, they all need to deal with the problem of having a discrete energy spectrum,

which makes it difficult to comprehend chaos from a quantum perspective. Therefore,

it is often argued that dynamics at a quantum level do not strictly exhibit chaos as we

know it classically, but only some indications of chaotic behavior at a macroscopic level.

This is mainly due to the fact that a fundamental element for chaos to occur and we

have an exponentially rapid divergence of nearby initially conditions, is the presence of

nonlinearities. However, they are absent in the Schrödinger equation, iℏ∂tΨ = ĤΨ, which

is linear in Ψ 1. Thus, if we only look at the Schrödinger equation, we are led to believe

that chaotic dynamics, if they exist at the quantum level, must be the product of very

specific conditions. However, this contradicts the fact that classical mechanics, which can

be seen as a byproduct of quantum mechanics, exhibits chaos in the most different ways

(see, for a few examples, [73, 112, 113, 114]).

This apparent paradox may be an indication that we are not approaching this prob-

lem correctly. From a classical point of view, we can inspect the presence or absence of

nonlinearities through Newton’s laws, for example. However, if we only look at Liouville’s

theorem, which states that the Hamiltonian evolution of a system preserves the volume

of phase space, we are not able to observe any indication of nonlinearities. In fact, the

Liouville equation ∂tρ = −{ρ,H} is linear in ρ, where ρ is the distribution of particles

in phase space and {., .} represents the Poisson brackets. Thus, following the previous

reasoning, if we based ourselves solely on this result, we should not observe any exponen-

tial divergence of initially close trajectories, which contradicts various observations and

computational experiments on classical systems that clearly exhibit chaos. Therefore, the

Liouville equation is not the way to determine whether there will be chaos in a particular

system. Similarly, perhaps for quantum systems, the correct way to discern the presence

or absence of chaos is not through the Schrödinger equation, but rather at some other

1The only chance to have a nonlinear Schrödinger equation is if the potential explicitly depends on
Ψ, as occurs, for example, in the Gross-Pitaevskii equation, which is very important in condensed matter
physics for studying solitons and superfluids [110, 111].
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dynamic equation of this theory.

In this sense, Bohm’s interpretation of quantum mechanics fits very well. The intro-

duction of quantum trajectories guided by the wave function results in highly nonlinear

dynamic equations, attributed to the action of the quantum potential (see equation (2.8)).

Thus, Bohm’s view allows us to draw a perfect parallel between quantum and classical

dynamics, so that chaotic trajectories appear as a natural phenomenon in both regimes.

Note that this approach does not require the development of new techniques or tools to

study quantum chaos. Due to the similarity between quantum and classical trajectories,

we can import the same tools used in the study of classical chaos to quantum systems.

In other words, we just need to integrate the equations of motion to determine whether

a system is dissipative, ordered, weakly chaotic, or strongly chaotic.

Due to the computational advances of recent years, Bohmian mechanics has shown

to be a very promising path in the study of chaos at quantum level, with many works

carried out in the last decades, with theoretical and numerical developments on the subject

founded in [11, 115, 116, 117, 118, 119, 120, 121, 122]. Examples of exponential divergence

of initially close trajectories and the computation of positive Lyapunov exponents from

this deterministic view of quantum mechanics are provided in [123, 124, 125], while the

works [126, 127] present simple models of quantum chaotic systems. More recently, it

has been shown how Bohmian dynamics explains the emergence of chaos from entangled

qubits and its connection to ergodicity and Born rule [10, 128, 129].

The mechanism behind the emergence of chaos from Bohmian dynamics is extensive

and complex, requiring knowledge of a range of specific concepts related to dynamical and

complex systems. For detailed information on these aspects, please see reference [122]. In

this chapter, we will provide a concise overview of the main known formalism responsible

for the spreading of neighboring trajectories, applying it to two different examples: the

anisotropic two-dimensional harmonic oscillator, which provides an analytically tractable

solution, and the two-dimensional anharmonic oscillator featuring cubic and quartic in-

teractions, where we developed a purely numerical approach to address the problem [3].

3.1 Nodal-Point-X-Point-Complex and vortices

The main mechanism responsible for the appearance of chaotic patterns in quantum

system according to dBB formalism is the dynamical formation of vortices [11, 122], where

due to the similarity between Bohmian trajectories and hydrodynamics, the formation of

quantum vortices is quite common [130, 131, 132, 133, 134, 135] 2. So, in order to approach

this issue, we will consider two-dimensional systems, namely the 2D quantum harmonic

2Despite the majority of the studies in the literature indicating that the emergence of vortices may be
the most viable path to achieve chaotic dynamics, there are cases of Bohmian systems that exhibit chaos
even in the absence of this element [136].
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oscillator and its derivatives. For Bohmian mechanics, the requirement of classical chaos

is not a necessary or even sufficient condition for the existence of quantum chaos. Just

as there are cases of systems that are classically chaotic but do not exhibit chaos at the

quantum level [122], there are cases of systems that do not exhibit classical chaos but

whose quantum counterpart is clearly chaotic [123].

To better understand this phenomenon, it is interesting to rewrite the velocity field in

terms of the wave function as follows

p⃗ = ℏℑ

(
∇⃗Ψ

Ψ

)
, (3.2)

where ℑ represents the imaginary part of the term in question. The quantum vortices are

associated with points where the wave function vanishes [11], that is, regions where

ℜ(Ψ) = ℑ(Ψ) = 0, (3.3)

what is equivalent to saying that ΨR = ΨI = 0 in our previous notation. These regions are

called nodal points in 2D systems and nodal lines in 3D systems, resulting in singularities

in the phase of the wave function. In this hydrodynamic scenario, the creation and

annihilation of vortices are dynamic and intrinsically associated with the evolution of

the wave function through the guidance equations. As the system evolves in time, the

phase of the wave function, which is also a function of time, changes. Thus, the nodal

points move along the configuration space, carrying their respective vortices with them.

This movement drastically affects neighboring trajectories, which can be attracted or

repelled by the vortex center. The specific quantity of nodal points varies from system to

system, ranging from a finite number to an infinite number. In general, the greater the

number of such points, the more susceptible the system is to exhibiting chaos [134, 137],

although there are cases where strong chaos manifests even with a small number of nodal

points. This is a fundamental point, as systems with a high degree of chaos, measured

by the Lyapunov exponent, for example, are capable of causing an initially probability

distribution outside the quantum equilibrium to converge to the Born rule, without the

need to postulate it [138, 139].

This resulting spreading of neighboring Bohmian trajectories can be better understood

in a reference frame centered at the nodal point, with the help of the geometric structures

known as Nodal-Point-X-Point-Complexes [122, 140, 141, 142, 143, 144]. A nodal point

is said to be stable if sufficiently close trajectories are attracted towards it, while it is

said to be unstable if they are repelled away from it towards regions of higher probability

density around the nodal point. It is important to note that the presence of attractors

or repellors does not contradict the fact that trajectories are found in regions of higher

probability density, as the density remains small in the vicinity of the nodal point, making
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it more likely for particles to be found in other regions. Additionally, due to the evolution

of the wave function, the stability of the nodal point varies with time, and it can shift

from stable to unstable. Thus, trajectories can be captured and circles the nodal points

for a period of time and then be repelled when the transition occurs, significantly altering

the topological aspect of the configuration space.

The other type of structure that, together with nodal points, generates the vorticity

aspect observed when plotting the velocity field, is called X-points, which are unstable

hyperbolic points in the nodal point reference system that accompany its evolution in

configuration space [122]. From the perspective of dynamical systems, the X-points are

equivalent to fixed points of the system, that is, points where the velocity field is zero.

Physically, this implies that trajectories with an initial condition at one of these points

will remain there indefinitely, being referred as fixed. The stability of a fixed point X⃗ can

be determined by linearizing the system in its vicinity and examining the convergence

or divergence of the trajectories, which can be done by studying the eigenvalues of the

correspondent Jacobian matrix, evaluated at X⃗. If we can approximate the velocity field

as a linear system of the form v⃗ = f⃗(x⃗) = J(x⃗)
∣∣
x⃗=X⃗

x⃗, where f⃗(x⃗) =
(
f1(x⃗), f2(x⃗)

)
is the

vector function that gives the velocity field, x⃗ = (x, y) are the system coordinates, and

J(x⃗)
∣∣
x⃗=X⃗

x⃗ is its linearization, with J(x⃗) being the Jacobian matrix given by

J(x⃗) =


∂f1
∂x

∂f1
∂y

∂f2
∂x

∂f2
∂y

 , (3.4)

then the eigendirections will reveal whether the trajectories tend to approach or move

away from the fixed point. In a reference system centered at X⃗, the Jacobian matrix

takes a diagonal form, with its entries being the eigenvalues of J . In two dimensions, this

corresponds to having a system of equations in the following form

ẋ′ = σ1x
′,

ẏ′ = σ2y
′,

(3.5)

where σ1 and σ2 are the respectively eigenvalues, and (x′, y′) are the new coordinates.

The solution to this system is simply x′(t) = x′0e
σ1t and y′(t) = y′0e

σ2t, which means that

for negative eigenvalues, the associated eigendirections indicate an exponential approach

to the fixed point, while positive eigenvalues indicate an exponential divergence. In other

words, trajectories starting along a certain axis with an eigenvector corresponding to a

negative (positive) eigenvalue will remain along that axis and tend to approach (move

away from) the fixed point in this direction as time passes. Therefore, it is possible to

determine the stability of trajectories by calculating the eigenvalues of J(x⃗)
∣∣
x⃗=X⃗

. The
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X-points, in particular, have two divergent eigendirections along the positive eigenvalue

axis and two convergent eigendirections along the negative eigenvalue axis, as indicated in

Figure 3.1. As a result, trajectories tend to move away from the X-points, making them

points of instability.

X-points

Figure 3.1: General configuration of a X-point, represented by the open dot. While the
trajectories tend to approximate of X⃗ in one direction, they move away from it along the
other. Therefore the X-points acts as a saddle point that repels trajectories.

The nodal points together with the X-points form complex geometric structures,

known as Nodal-Points-X-Points-Complexes (NPXPCs), responsible for the scattering

of initially nearby trajectories. In Figure 3.2, we illustrate a typical velocity field (in the

nodal point reference frame) of a Bohmian quantum system exhibiting such structure.

Quantum trajectories tend to follow the flow defined by the vector field, leading to three

scattering regions and one stability region around the vortex. Trajectories close to the

nodal point N are confined within the region bounded by the gray loop (left figure), being

either attracted to or repelled from N depending on the stability of the nodal point, while

the remaining trajectories tend to follow one of the positive eigenvalue eigendirections

associated with the X-point (right figure).

In the following, we will discuss two Bohmian systems that can exhibit chaos at quan-

tum level and serve as good examples for the concepts presented here: the anisotropic

two-dimensional harmonic oscillator studied at [11, 121, 122, 123] and the coupled two-

dimensional anharmonic oscillator [3]. Regarding the first system, we will employ a semi-

analytical approach since it admits a known solution to the Schrödinger equation. How-

ever, for the second case, we will adopt a fully numerical approach.

3.2 Anisotropic two-dimensional harmonic oscillator

As a direct extension of what was done in section 2.3, we will consider the case of

the two-dimensional harmonic oscillator. In addition to the dimensional factor, we will

also introduce an anisotropy in terms of the natural oscillation frequencies along the x
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Figure 3.2: Typical velocity field of a Bohmian system. The nodal point N and the X-
point are highlighted in green. The red vectors represent the approaching eigendirections,
while the black vectors represent the departing eigendirections. The gray contour (left
figure) delineates the scattering regions. Trajectories outside this contour will be scattered
by the NPXPC, while trajectories inside it will orbit the nodal point (right figure).

and y axes. The Hamiltonian of such a system can be written as Ĥ =
p̂x

2

2m
+
p̂y

2

2m
+

1

2
mω2

xx̂
2 +

1

2
mω2

y ŷ
2, where ωx and ωy are the frequencies. In dimensionless variables, the

corresponding Schrödinger equation is

−1

2
∇2Ψ+

1

2

(
x2 + ω2y2

)
Ψ = i

∂Ψ

∂t
, (3.6)

where ∇2 = ∂2x + ∂2y is the Laplacian operator, and ω = ωy/ωx is the ratio between

the frequencies along the y and x axes, respectively. The associated eigenfunctions are,

therefore,

ψmn(x, y, t) =
ω1/4

√
2m+nm!n!π

Hm(x)Hn(
√
ωy) exp

[
−1

2

(
x2 + ωy2

)]
e−iEmnt, (3.7)

with Emn =

(
m+

1

2

)
+

(
n+

1

2

)
ω the correspondent eigenenergy.

Let us consider an initial state that is the sum of the three following eigenfunctions

Ψ(x, y, 0) = c0ψ00 + c1ψ10 + c2ψ11, (3.8)

with c0, c1, c2 real constants [11, 123]. In our numerical simulations we set c0 =
√

4
7
,

c1 =
√

2
7
and c2 =

√
1
7
in order to have a properly normalized initial wave function.

At first glance, despite the anisotropy, we expect that the oscillations concerning the
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individual spatial dimensions occur independently since there is no coupling between the

x and y directions. Thus, we can analyze this system from the perspective of two separate

individual oscillations with different frequencies. Since the one-dimensional harmonic

oscillator does not exhibit any trace of chaotic behavior (the trajectories are periodic

and do not show exponential divergence), as shown in Section 2.3, we predict that the

two-dimensional extension will also be devoid of chaos. However, as we will demonstrate

shortly, this is not true in the case of an irrational ratio between the individual frequencies,

i.e., when ω is not a rational number.

After simplification, the time dependent wave function can be expressed as

Ψ(x, y, t) =
ω1/4e

1
2(−3it(ω+1)−x2−y2ω)

√
π

(
c0e

it(ω+1) +
√
2c1xe

itω + 2c2xy
√
ω
)
, (3.9)

which will be null when the term inside the parentheses vanishes. This condition implies

that

c0 cos[t(ω + 1)] +
√
2c1x cos(tω) + 2c2xy

√
ω = 0, (3.10)

c0 sin[t(ω + 1)] +
√
2c1x sin(tω) = 0. (3.11)

The solution to this system gives us the location of the nodal point as a function of time.

Namely, we have that

xN(t) = −c0 sin[t(ω + 1)] csc(tω)√
2c1

, (3.12)

yN(t) = −c1 sin(t) csc[t(ω + 1)]√
2ωc2

, (3.13)

which are oscillatory functions that changes significantly as we vary the value of ω. In

Figure 3.3, we present a parametric plot in two distinct situations: for ω = 7/10 = 0.7 and

for ω = 1/
√
2 = 0.7071..., up to the time t = 1000. It is worth noting that while in the first

case, the trajectory is more limited due to the periodicity manifested in equations (3.12)

and (3.13), in the second one, we observe a much more dispersed nodal point trajectory

that occupies a significantly larger region in the configuration space, making the system

more susceptible to manifest a chaotic regime. Despite that, for a rational value of ω,

the more complicated the ratio between the frequencies is, the more complex and sparse

will be the trajectory defined by xN(t) and yN(t) and we will have a behavior similar to

the irrational case [145]. However, for sufficiently long times, the periodic nature of the

associated solutions becomes evident and this apparent chaos ends up disappearing [122],

which can be verified by calculating the Liapunov exponent.

As we mentioned, the other important structure are the X-points, defined in the nodal

points reference frame and that accompanies its evolution. Using the guidance equation
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Figure 3.3: Comparison between the trajectory of the nodal point in the cases of a rational
ratio (ω = 7/10 = 0.7) in the left figure and an irrational ratio (ω = 1/

√
2 = 0.7071...)

in the right figure. In the first case, the trajectory of the nodal point is simpler and
occupies a significantly smaller region in the configuration space compared to the second
case, which exhibits a much more dispersed trajectory.

(3.2) for the wave function (3.9) we obtain the velocity field components

vx(t) = −
c0

(√
2c1 sin(t) + 2c2y

√
ω sin[t(ω + 1)]

)
D

, (3.14)

vy(t) =
2c0x

(
c0
√
ω sin[t(ω + 1)] +

√
2ωc1x sin(tω)

)
D

, (3.15)

with D a common denominator given by

D = c20 + 2
√
2c0c1x cos(t) + 2x2

(
c21 + 2

√
2c1c2y

√
ω cos(tω) + 2c22y

2ω
)
+ (3.16)

4c0c2xy
√
ω cos[t(ω + 1)].

Also, from equations (3.12) and (3.13) we can derive the velocity components associated

with the nodal point. More precisely,

vNx (t) = −c0 csc(tω)√
2c1

{
(ω + 1) cos[t(ω + 1)]− ω sin[t(ω + 1)] cot(tω)

}
, (3.17)

vNy (t) =
c1 csc[t(ω + 1)]√

2ωc2

{
(ω + 1) sin(t) cot[t(ω + 1)]− cos(t)

}
. (3.18)

Now, from the perspective of a comoving reference frame centered on the nodal point,

with coordinates u = x − xN and v = y − yN , the trajectory of a Bohmian particle is
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determined by the velocity field components vu = vx − vNx and vv = vy − vNy , which have

a somewhat complicated analytical form

vu = −2c0c2
√
ωv sin[t(ω + 1)]

D
− vNx (t), (3.19)

vv = −

√
2ωc2u

(√
2c0 sin[t(ω + 1)]− 2c1u sin(tω)

)
D

− vNy (t). (3.20)

Here, D = D1 +D2 +D3, with the coefficient D1 given by

D1 = c20 + 2c0 cos(t)
(√

2c1u− c0 sin(t(ω + 1)) csc(tω)
)
, (3.21)

with D2 such that

D2 =
c0
c1

cos[t(ω + 1)]
(√

2c0 sin[t(ω + 1)] csc(tω)− 2c1u
)
×(√

2c1 sin(t) csc[t(ω + 1)]− 2c2v
√
ω
)
, (3.22)

and with D3 being

D3 =
1

2c21

(√
2c0 sin[t(ω + 1)] csc(tω)− 2c1u

)2
×{

c21 +
1

2

(√
2c1 sin(t) csc[t(ω + 1)]− 2c2v

√
ω
)2

+

√
2c1 cos(tω)

(
2c2v

√
ω −

√
2c1 sin(t) csc[t(ω + 1)]

)}
. (3.23)

The X-point (uX , vX) is defined as the point where this velocity field (equations (3.19)

and (3.20)) vanishes, that is, the solutions of the system vu = 0 and vv = 0, which

can be obtained numerically. In this particular case, we employed the Newton-Raphson

optimization method [146], available within the FindRoot routine in Mathematica [147,

148]. In summary, this method involves using a linear approximation of a given system

and iteratively finding its solution starting from an initial guess. In order to ensure the

convergence to the X-Point, it is advisable to visually inspect the velocity field and use

a initial guess close to the nodal point, calculated through equations (3.12) and (3.13),

and compare the obtained result with the apparent position of X-Point. In Figure 3.4,

we plot the trajectory of the nodal point in configuration space along with the X-point

until time t = 10. It is worth mentioning that for this time interval, there is not much

difference between the dynamics described for ω = 7/10 and ω = 1/
√
2.

How is possible to observe, the distance between these two structures is quite variable.

Therefore, the volume defined by the NPXPC changes with time, which significantly

affects the trajectories of the neighboring quantum particles. Indeed, the average radius
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Figure 3.4: (left) The evolution of the nodal point, in blue, accompanied by the X-point,
in black, in the original reference frame, with coordinates (x, y). (right) The trajectory
of the X-Point in the reference frame centred at the nodal point, with coordinates (u, v).
Please note that the distance between the nodal point and the X-point varies significantly
as time passes, implying in a changing of volume of the NPXPC.

r̄ of the NPXPC varies by approximately 105 ∼ 106 orders of magnitude throughout its

evolution, resulting in an extremely small volume for instances of close proximity between

the nodal point and the X-Point (regions of intersection between the blue and black curves

in the first plot of Figure 3.4). This change in the size of the NPXPC can occur rapidly,

as illustrated in Figure 3.5. In the left photo, taken at t = 1.3, we plot the velocity

field for the rectangular region [−0.20, 0.15] × [−0.20, 0.15], where an NPXPC with an

r̄ ∼ 10−1 is observed. Shortly after, at t = 1.73, the velocity field in the same region

appears almost constant. However, upon zooming in, we observe an NPXPC with an

average radius 103 times smaller, i.e., with r̄ ∼ 10−4. As a consequence of this dynamics,

these geometric structures can be highly effective in scattering neighboring trajectories,

in different directions, with initial conditions differing by a distance |δx⃗| ∼ r̄. In cases

where |δx⃗| ≪ r̄, the trajectories tend to be scattered in the same direction and there is

no effective separation between them. However, since the average radius varies with time,

even if the trajectories initially remain close, they may eventually diverge as |δx⃗| becomes

comparable to r̄.

The interaction between Bohmian trajectories and NPXPCs depends primarily on

the positions of the quantum particles at each instant. To understand the behavior of

these structures and their impact on the system’s dynamics, it is interesting to study the

eigendirections associated with the X-point. This can be accomplished by tracing the

velocity field at a fixed time and analyzing the subsequent evolution of the particles, as-

suming the field configuration remains constant. To achieve this, we numerically integrate
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Figure 3.5: The representation of the velocity field in two different moments. At t = 1.3,
in the left, we observe a NPXPC with size r̄ ∼ 10−1. At t = 1.73, into the right, we
observe the same structure but with r̄ ∼ 10−4.

the associated ordinary differential equation (ODE) to obtain the particle positions for

an auxiliary fictitious time. In practical terms, it is as if we pause a movie at a specific

moment and use this frozen scene to predict what will happen next. As expected, this

prediction is not reliable since we cannot fully anticipate the details of the entire scene

by analyzing only a specific segment. We would need to let the movie play to uncover

its exact unfolding. Nonetheless, through this analysis, we gain a predictive power, albeit

brief, of how these geometric structures will affect the trajectories in the near future.

From Figure 3.6, where stable eigendirections (with negative eigenvalues) are repre-

sented by red curves and unstable eigendirections (with positive eigenvalues) by black

curves, we observe three scattering regions due to the unstable eigendirections and a re-

gion of orbit around the vortex. In the left photo, taken at t = 2.35, we have a stable

vortex that attracts trajectories. That is, particles with initial positions close to the un-

stable eigendirection pointing to the vortex are repelled from the X-point towards the

nodal point, while those with initial positions close to the red curves approach the X-

point but are gradually repelled. In contrast, in the right photo, taken at t = 2.43, we

observe that the vortex in question is unstable and tends to repel trajectories whose initial

conditions lie in its vicinity, directing them towards the X-point. Again, even if we start

close to the red curve outside the vortex, the velocity field configuration eventually leads

us towards the regions near the black curves, causing the particles to be repelled. This

stability transition of the nodal point is characteristic of what is known in the literature as

a Hopf bifurcation [149, 150, 151, 152], which is typically accompanied by the appearance

of a limit cycle [69, 122]. In some cases, two or more particles near a stable vortex may

follow it as it evolves, but they eventually are expelled when it becomes unstable, which
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can result in the divergence of trajectories. The same thing can happen if they approach

distinct unstable eigendirections, which is more likely to happen if δx⃗ ∼ r̄.
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Figure 3.6: The evolution of NPXPC: for t = 2.35 we have a stable vortex, whereas for t =
2.43 we have an unstable one. The black curves are associated with X-point eigendirections
with positive eigenvalues, while the red curves correspond to eigendirections with negative
eigenvalues. Particles inside the red loop (left figure) are repelled by the X-point in the
direction of the nodal point, while particles outside the loop are scattered by the NPXPC.
On the contrary, particles inside the black loop (right figure) are repelled away from the
vortex center, tending towards the X-point. Once again, particles outside this region are
repelled by the NPXPC due to the presence of unstable eigendirections

The Bohmian particles tend to approach the NPXPC intermittently during their evo-

lution, being subject to its influence during each approach. The greater the number of

interactions, the higher the probability of observing exponential deviation of trajectories

and, consequently, chaotic behavior. On the other hand, trajectories that are not subject

to the influence of NPXPC tend to exhibit ordered behavior. Thus, a notable difference

is observed between the cases when ω = 7/10 and ω = 1/
√
2. In the first one, due to

the periodic nature of equations (3.12) and (3.13), the nodal point, which is the center of

NPXPC, has a more restricted action in configuration space compared to the case with

an irrational frequency ratio (see Figure 3.3). Conversely, the latter presents a much

sparser nodal point trajectories in configuration space, allowing for a greater number of

interactions with quantum particles throughout its evolution, leading to their eventual

spreading. In Figure 3.7 we plot the quantum trajectories obtained integrating the guid-

ance equations (3.14) and (3.15) in the ω = 7/10 case, for five different initial conditions.

All curves were plotted up to a time t = 150. The central trajectory, shown in

black, occurs in a region practically free from the presence of nodal points, resulting in

a highly regular orbit. In the other trajectories, despite the action of NPXPC, it is not

capable of introducing a chaotic character. The quantum particles start at the chosen
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Figure 3.7: The quantum trajectories in configuration space for ω = 7/10. We consider
five different initial conditions: (x0, y0) = (−0.5,−0.75) in red, (x0, y0) = (0.8, 0.6) in
black, (x0, y0) = (1.8,−1.0) in green, (x0, y0) = (2.0, 2.0) in purple, and finally (x0, y0) =
(−1.0, 1.5) in yellow. In the background, the blue points represent the evolution of the
nodal point.

initial condition and propagate according to the velocity field until reaching a point of

return, after which there is a backtrack along the path, returning to the starting point.

This cycle repeats continuously, confining the particles to the region delimited by the

highlighted curves, with no evidence of chaos. In Figure 3.8, we plot the evolution of

x(t) and y(t) separately for the case where (x0, y0) = (−0.5,−0.75) (red curve), where we

verify the periodicity associated with this particular trajectory. It is a regular, periodic

motion without the presence of exponential divergence of particles.

We can rigorously prove this assertion by numerically calculating the Lyapunov expo-

nent (equation (3.1)), which can be obtained using the method presented in [153, 154].

Given the guidance equations 3.14 and 3.15, we can obtain the associated variational

equations, namely,

d

dt
δx =

∂vx
∂x

δx+
∂vx
∂y

δy, (3.24)

d

dt
δy =

∂vy
∂x

δx+
∂vy
∂y

δy, (3.25)

which must be solved together with the guidance equations and used for the calculation of

λ. To solve this system of ODEs, we employed the eighth-order fixed-step Runge-Kutta
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Figure 3.8: Evolution of x(t) and y(t) for the initial condition (x0, y0) = (−0.5,−0.75).
Note that, shortly after t = 30, the particle describes the reverse path in both spatial
directions, such that the right side of each plot is a mirrored image of the left side.

method [155, 156] with a step size of 10−4, available within the NDSolveValue routine in

Mathematica [157]. It is worth noting that the numerical calculation indicates a tendency

of the system to exhibit regular or chaotic behavior, as it does not precisely give us the

limit as t → ∞, but only provides the value associated with a fixed time, which we

assume to be much greater than the characteristic temporal parameters of the system

under study. In our case, we calculated this value up to t = 104. For periodic trajectories,

which do not exhibit exponential divergence, although the distance fluctuates over time,

it is limited by an upper bound. Therefore, by the definition of the Lyapunov expoent

(3.1), λ(t) ∝ 1/t. In Figure 3.9, we plot the results of the computation of the Lyapunov

exponent for all five initial conditions considered on a logarithmic scale. In all cases, a

tendency curve with a slope of −1 was observed, consistent with the expected asymptotic

behavior. Consequently, we have that λ(t) = 0, indicating the absence of chaos.

In the case where ω = 1/
√
2, on the contrary, we have a very different scenario with

more complex and sparse trajectories due to the greater number of interactions with the

NPXPC, as observed in Figure 3.10, where we plot the corresponding evolution of the

Bohmian particles under the same initial conditions as in the ω = 7/10 case. It is impor-

tant to highlight that these interactions do not always lead to chaotic behavior, as seen

in the trajectories marked in black, green, and yellow. In the case of the central trajec-

tory, an ordered behavior was expected since it is concentrated in a region where there is

practically no influence of the nodal points. The trajectories in green and yellow, on the

other hand, exhibit apparent order despite being in a region with a higher probability of
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Figure 3.9: The absolute value of the Lyapunov expoent for the five initial positions
considered in Figure 3.7, identified by color. In all the cases we observe a tendency curve
such that λ(t) ∝ 1/t, indicating ordered trajectories.

interactions. This can be explained, firstly, by the fact that these regions only indicate a

probability of quantum particles being subject to the action of the NPXPC during their

evolution, without a definitive assurance that such interaction actually occurs. For an

effective approximation between the nodal point and the particles to occur, both must

occupy positions close to each other in the configuration space in the same time interval.

Moreover, this interaction needs to be effective and allow for the scattering of neighboring

trajectories. Otherwise, they can be scattered in the same direction without an eventual

separation. In Figure 3.11 we plot the individual position coordinates of two trajectories:

one with an initial position of (x0, y0) = (−0.5,−0.75), corresponding to the red curve in

Figure 3.10, and the other starting very close to it, with x(0) = x0 + δ and y(0) = y0 + δ,

where δ = 10−4. Although initially the trajectories remained quite close, as time passes

their eventual separation became evident.

At last, in Figure 3.12, we compute the corresponding Lyapunov exponents. The

black, green, and yellow curves indeed show ordered behavior. As for the red and purple

curves, we observe a stabilization in the value of λ, corresponding to a positive exponent

approximately equal to 0.03, which is an indicative of weakly chaotic behavior. As men-

tioned at the beginning of this section, the Lyapunov exponent is a local quantity that

depends on the initial conditions, and different initial positions can yield different values

of λ. This explains why we obtained λ = 0 in some regions while in others λ = 0.03.
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Figure 3.10: The quantum trajectories in configuration space for ω = 1/
√
2 up to a time

of t = 150. We consider the same five initial conditions: (x0, y0) = (−0.5,−0.75) in red,
(x0, y0) = (0.8, 0.6) in black, (x0, y0) = (1.8,−1.0) in green, (x0, y0) = (2.0, 2.0) in purple,
and (x0, y0) = (−1.0, 1.5) in yellow. The dynamics of the black, green, and yellow curves
are ordered, while the red and purple trajectories are chaotic.

In conclusion, even for a simple system such as the case of the two-dimensional

anisotropic harmonic oscillator, we observe the emergence of a chaotic regime when im-

posing an irrational ratio between the oscillation frequencies along the y and x axes, re-

spectively. It is noteworthy that, despite being a quantum system, the de Broglie-Bohm

interpretation of quantum mechanics, through the calculation of Bohmian trajectories, al-

lows us to use the same tools available for classical systems in studying chaos at quantum

level. To be more precise, there is not much practical difference, according to this ap-

proach, between classical and quantum systems. Just as we investigate chaos in classical

systems by calculating the Lyapunov exponent, we can study quantum chaos by numer-

ically solving the associated equations of motion, which here have a natural nonlinearity

due to the action of the quantum potential. Therefore, the use of Bohmian mechanics

for this purpose is extremely advantageous. In the next example we consider the coupled

two-dimensional anharmonic oscillator, where we investigate qualitative evidences of a

chaotic regime.
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Figure 3.11: Evolution of x(t) and y(t) for two very close initial conditions, being (x0, y0) =
(−0.5,−0.75) and δ = 10−4. We can see that as time passes the NPXPC promotes the
effectively separation of the Bohmian particles.

3.3 The quantum anharmonic membrane

Now, let us consider the two-dimensional anharmonic oscillator with cubic and quartic

terms, whose Hamiltonian is given by [3]

H =
p2x
2m

+
p2y
2m

+
1

2
ω2
(
x2 + y2

)
+
α

3

(
x3 + y3

)
+
β

4

(
x4 + y4

)
− κxy, (3.26)

where α and β are the anharmonicity strength constants and κ is the coupling constant

that connects the two spatial coordinates. Therefore, the vibrations in the x and y

directions are not independent. On the contrary, a perturbation in the x direction affects

the dynamics associated with the y direction, and vice versa, simulating some type of

quantum membrane. Note that in the case where α ≫ β, there is a high dominance

region of the cubic term over the quartic one, which leads to unstable dynamics. To

avoid this issue, we consider α being larger than β only as a perturbation, ensuring the

confinement of quantum particles by the potential defined by the quartic term. The

Schrödinger equation, already in dimensionless variables, corresponding to this system is

−1

2
∇2Ψ+

1

2
ω2
(
x2 + y2

)
Ψ+

α

3

(
x3 + y3

)
Ψ+

β

4

(
x4 + y4

)
Ψ− κxyΨ = i

∂Ψ

∂t
. (3.27)

Contrary to the previous example, in this specific case, we do not have knowledge of the
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Figure 3.12: The absolute value of the Lyapunov expoent for the five considered situations,
in logarithmic scale. As we can see, in the top three graphs we have ordered trajectories,
with λ = 0. In the two cases bellow, the Lyapunov exponent reaches a saturation at
λ = 0.03, implying a chaotic regime.

corresponding analytical expression for the solution of this equation. The most we could

do in this situation is to consider both the anharmonic potential and the coupling term as

small perturbations to the quadratic potential and construct solutions based on the known

solutions of the quantum harmonic oscillator using perturbation theory. However, at the

end of the day, we would have to compute the Bohmian trajectories associated with

such solutions, which is done numerically due to the complexity of the correspondent

equations. Thus, it becomes interesting, as we did for the numerical validation of the

Ehrenfest theorem, to consider a completely numerical approach, which would allow us

to explore a larger set of solutions. Such an analysis involves numerically solving the

previously mentioned time-dependent Schrödinger equation, which is a highly non-trivial

problem due to the dimensionality of the system. For numerical purposes, we consider

as initial state a superposition of eigenstates of the quantum harmonic oscillator, given

by the expression (3.7). Note that in a regime of negligible coupling and anharmonicity,

we approximately have a two-dimensional quantum harmonic oscillator. We consider as

initial wave function the sum

Ψ(x, y, 0) =
1

2
(ψ00 + ψ01 + ψ10 + ψ11) , (3.28)

with same weight for all terms in the linear superposition. This choice of initial condition
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is quite interesting because the Hamiltonian (3.26) is symmetric in the change of x and y,

which is also verified for this particular wave function (see Figure 3.13). Thus, we expect

this symmetry regarding the reflection with respect to the y = x line to manifest at some

level within the calculation of the Bohmian trajectories.
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Figure 3.13: The contour plot of the initial probability density |Ψ(x, y, 0)|2. Notice the
symmetry referring to the change of the spatial variables.

Let us emphasize that obtaining an accurate and stable solution for the two-dimensional

time-dependent Schrödinger equation is a highly nontrivial numerical problem that de-

mands significant computational effort. Since our objective is to study chaotic systems

through the integration of the guidance equations (3.2), it is crucial to have a precise

solution for the wave function in order to minimize the propagation of errors and main-

tain stability over an extended period of time so that we can follow the evolution of the

Bohmian particles. Thus, to solve the Schrödinger equation (3.27) with the initial con-

dition (3.28), we employed a combination of various numerical methods. Firstly, we em-

ployed the Finite Element Method (FEM) [158, 159, 160] to discretize the spatial domain,

considering a square lattice with size L = 5. More precisely, we considered the domain

D = [−L,L] × [−L,L] and imposed Dirichlet boundary conditions Ψ(x, y, t)|∂D = 0 to

avoid spurious effects resulting from the extrapolation of the wave function. The FEM is a

powerful technique that involves subdividing a continuous domain into smaller finite-sized

subdomains, where we obtain an approximated local solution. Connecting all these subdo-

mains provides a global representation of the system. In our specific problem, the domain

D was discretized using a uniform square grid with a maximum cell size of l = 0.025.

In conjunction with the FEM, we employed the Method of Lines [40, 41] for temporal

discretization. Finally, we utilized the BiConjugate Gradient Stabilized (BiCGSTAB)

method [161, 162] to obtain the wave function within each cell. This method is highly

effective in solving linear systems involving large sparse matrices. We integrated the

transient part of the Schrödinger equation with high accuracy and precision, employing

adaptive time steps in the process. By combining the FEM, the Method of Lines, and the

BiCGSTAB solver, we obtained efficient and accurate solutions for relatively long times
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while preserving the wave function’s normalization with an error of 10−3 throughout its

evolution. In our simulations we use α = 0.15 and β = 0.16 while we vary the value of

the coupling constant.

In Figure 3.14, the numerical results obtained from solving the Schrödinger equation

(3.27) with the initial condition (3.28) are represented in a contour plot of |Ψ(x, t)|2 for

three distinct situations: k = 1.0, k = 0.5, and k = 0.05. As can be seen the wave

packet spreads during its evolution, due to the cubic potential and the coupling. When

|x|, |y| > 1, the cubic term becomes highly unstable, allowing the system to escape the

potential well. The presence of the quartic term in the Hamiltonian (3.26) is responsible

for prevent such effect, avoiding excessive spreading and the stretching of the wave function

into regions far from the origin. In fact, the evolution primarily takes place inside the

region [−3, 3] × [−3, 3], exhibiting behavior significantly different from that of a typical

quantum harmonic oscillator. It is worth noting that even at this level, the effect of the

symmetry of both, the Hamiltonian and the initial condition, is observed in the change

of the x and y variables. More precisely, the line x = y serves as a symmetry axis for all

the figures, such that the region above this line is the mirrored image of the region below

it. As expected, the evolution of the wave function follows the same symmetry present in

the Hamiltonian and the adopted initial condition, supporting our numerical result.

Once in possession of the wave function, we calculate the evolution of the velocity field

generated from the guidance equation (3.2). Due to the non-trivial form of the Hamil-

tonian in question, we obtain a much more complex velocity field than in the previous

case, with the emergence of simultaneous vortices propagating in the configuration space.

In Figure 3.15, obtained for κ = 0.1, we observe the presence of four dynamical vortices

coexisting in a very close region, which eventually leads to their interaction. Over a

short period of time, we notice two distinct events: first, we observe the creation of the

two superior vortices at t = 2.8. After that, at t = 3.2 we detect the approximation of

the other two lower vortices and their subsequent collision, resulting in their disappear-

ance. As we have stated, there is no reason for the velocity field not to be symmetric

under the exchange of x and y. Thus, the eventual creation and annihilation of vor-

tices must necessarily occur in pairs, which are equally distant from the symmetry axis

y = x (gray line). Additionally, using the guidance equation together with the fact that

Ψ(x, y, t) = Ψ(y, x, t), we can see that the exchange of x and y implies a change in the

sign of the vorticity (given by the ∇⃗ × v⃗, with v⃗ the velocity), while keeping the same

absolute value. Therefore, each vortex of the pair will have the same diameter but spin in

opposite directions, exactly as we observe. As a result, in both processes, the total final

vorticity is zero. Since before the creation of vortices there is no vorticity, they originate

in such a way that their combination results a null vorticity. Similarly, as a result of the

collision, the final vorticity is also zero, consequently leading to the annihilation of the

pair.
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Figure 3.14: From top to bottom, we present the evolution of the probability density
|Ψ(x, y, t)|2 at the moments t = 60, 120, 180, 240. We consider three different situations:
from left to right, we have κ = 1.0, κ = 0.5 and κ = 0.05. Due to the coupling, the
spreading in x and y directions are connected, resulting in a dynamics resembling the
movement of a membrane.

Due to the large number of nodal points in the system and their consequently fast

appearance and subsequent dispersion, the Bohmian trajectories obtained from the nu-

merical integration of the guidance equations are highly complex. In Figure 3.16, we plot
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Figure 3.15: Evolution of the quantum vortices obtained for κ = 0.1. At t = 2.8 we observe
the formation of the two superior vortices. After formation, the pair start to deviate from
the symmetry axis y=x, represented in gray. At t = 3.2 we notice the collision of the two
inferior vortices, causing their eventual annihilation. Due to the symmetry, each vortex
of the pair spins in opposite directions.

four trajectories for each of the cases presented in Figure 3.14, corresponding to different

values of the coupling constant. Similarly to before, we utilized the eighth-order fixed-step

Runge-Kutta method [155, 156] with a step size of 0.5× 10−5. As we can notice, decreas-

ing the value of κ implies an increase in the degree of ordering. For κ = 1.0, is evident

the unpredictability of the associated trajectories, since they occupy a significant part

of the configuration space. Conversely, when κ = 0, which is equivalent to removing the

coupling, the system looks like ordered, with the quantum particles confined to a small re-

gion. This comparison shows the crucial role of the coupling constant in inducing chaotic

behavior. For the uncoupled case, even keeping the cubic term, which is responsible for

bring instabilities to the system, we have an apparent ordered pattern.

It is important to note that to obtain these trajectories, first we numerically solved the

time-dependent Schrödinger equation, then we calculated the velocity field based on this

solution, and finally we integrated it to obtain the particle positions. Thus, we performed

three sequential numerical procedures, which may introduce potential error propagation.

However, as we can observe in the figures, the symmetry corresponding to the change

of the spatial variables is still preserved even at the level of the quantum trajectories,

reinforcing the effectiveness of the adopted numerical procedure.

54



Figure 3.16: The quantum trajectories obtained considering κ = 1.0, 0.5, 0.05, 0. As
initial conditions we take (x0, y0) = (1.4, 0.5) in green, (x0, y0) = (0.5, 1.4) in yellow,
(x0, y0) = (0.6,−0.5) in blue, and finally, (x0, y0) = (−0.5, 0.6) in purple. In all the plots,
the two lower trajectories are the mirrored images of the upper two.

In order to examine the divergence of initially neighboring trajectories, we plotted, in

Figure 3.17, the graph corresponding to very close initial conditions. We consider three

trajectories in total, one at (x0, y0) = (0.6,−0.5), another with a distance of 10−4 in the

x coordinate, and the last one with a distance of 10−4 in the y coordinate. We notice

that initially the particles move practically together, but as time passes, they start to

demonstrate significant differences in their trajectories as a consequence of the nonlinear

dynamics. Additionally, due to the coupling and the dependence of the velocity field on

both spatial coordinates (equation (3.2)), we observe a consequent divergence in both the

x and y components, even considering a difference in just one of them at the beginning.

To demonstrate the chaotic nature associated with this quantum system, we compute

the average of the quantity ξ(t) = ξ̃(t)/ξ̃(0), where ξ̃(t) =
√
(δx)2 + (δy)2 + (δpx)2 + (δpy)2

is the distance, in phase space, associated with neighboring trajectories for different initial

conditions. As we have seen in the previous example, this is a quantity that varies from

point to point in the initial phase space, such that different positions lead to distinct

outcomes. Therefore, the average corresponding to different values of ξ(t), presented in

Figure 3.18 for a total of 60 initial conditions (with other 60 separated by an amount

of 10−4), provides a more accurate measure of the chaotic tendency of a given system.
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Figure 3.17: Plot evidencing the sensitivity to initial conditions. We plot three trajectories
with very close initial conditions, at a distance of 10−4. Initially, the positions of the
particles are nearly identical, but as time passes we have a significant deviation in both
spatial dimensions.

Another important point is that due to the computational effort involved in numerically

solving the time-dependent Schrödinger equation, we computed the results only up to

time t = 300, which prevents exact stabilization. However, we can clearly observe in the

left plot an increasing tendency in the curves referring to κ = 1.0, κ = 0.5, and κ = 0.05,

which indicates a positive slope, and, as a result, a positive Lyapunov number. Thus,

we can affirm that this system is, indeed, chaotic. The curve obtained for κ = 0, on the

other hand, oscillates around a constant value, not indicating an exponential deviation of

trajectories, which is indicative of ordered behavior. To be more precise, the decreasing in

the coupling strength, measured by κ, implies in a weaker degree of deviation, what was

a expected feature anticipated from Figure 3.16. Even with the anharmonic nature of the

oscillations, a null coupling results in two independent motions, incapable of generating

chaotic dynamics since the adopted frequency in both axes is the same. In this situa-

tion, instead of having a quantum membrane, we have an isotropic anharmonic oscillator.

Therefore, the eventual decrease in the constant κ implies a weaker chaotic dynamics, as

observed in Figure 3.18.

Additionally, as stated earlier, because the Bohmian interpretation allow us to discuss

the trajectories of the quantum particles, quantum and classical chaos can be seen as

two sides of the same coin according to this view. Therefore, it becomes interesting to

investigate how the system behaves when we vary the value of ℏ, which can be achieved
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Figure 3.18: In the left, the plot of ⟨ln ξ(t)⟩ versus t for κ = 1.0, 0.5, 0.05, 0 and ℏ = 1.0.
We consider a total of 60 initial conditions regularly spaced in the interval (x0, y0) ∈
[−1.5,−1.1] ∪ [1.1, 1.5]. In the right, a similar plot, but considering κ = 1.0 and ℏ =
1.0, 0.5, 0.05, for a average computed with 60 initial conditions regularly spaced in the
interval (x0, y0) ∈ [−0.5,−0.1] ∪ [0.1, 0.5].

by modifying the Planck’s constant in the Schrödinger equation (3.27). For this purpose,

we fix the value of the coupling constant at κ = 1.0 and perform the same numerical

procedures, varying the value of ℏ instead. We consider three scenarios: ℏ = 1.0, ℏ = 0.5,

and ℏ = 0.05. In the right plot of Figure 3.18, we present the average of ξ(t) for these

three cases. Similar to before, we observe a increasing tendency for all three values,

indicating a positive Lyapunov exponent and, consequently, a propensity towards chaotic

behavior. The difference is that, unlike the previous case where the decrease in the value

of κ resulted in a decrease in the degree of separation between the trajectories, for the

three considered values of ℏ we observed the same behavior, with oscillations around the

same tendency curve. Although we cannot guarantee with complete certainty that the

classical limit is attained in the regime where ℏ → 0 [32] (the assurance of obtaining

classical trajectories from the quantum analogues occurs in the limit where the quantum

potential goes to zero), this analysis is important because it shows that in this specific

model, the transition from considering values of ℏ close to unity to low values of ℏ barely

affects the chaotic behavior of the system within the considered time interval. For larger

values of t, there is likely to occur a stabilization at different values, but this fact does

not affect the qualitative result of having a positive Lyapunov exponent and consequent

chaotic dynamics.

Therefore, as a conclusion, we can assert that this model for the anharmonic quantum

membrane exhibits chaotic dynamics, once again proving the presence of quantum chaos

through an analysis based on the de Broglie-Bohm interpretation of quantum mechanics.
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This tendency was observed when varying the coupling constant κ and varying the value of

ℏ as well. Thus, even for complex systems like the one under consideration, we are capable

of employing the same techniques used in the study of classical chaos at the quantum

level, obtaining the Lyapunov exponent from the numerical solution of the time-dependent

Schrödinger equation and from the guidance equations. As a future perspective, we intend

to improve the numerical approach with the objective to obtain values of the Lyapunov

exponent for longer time intervals. This will allow us to explore the effects of chaotic

dynamics in situations outside the quantum equilibrium and how they may lead us to

obtaining the Born rule. Another objective would be the study of classical systems whose

chaotic dynamics leave imprints on their quantum counterparts. If we are able to obtain

classical mechanics from Bohmian interpretation, could it be that chaos at quantum level

is actually responsible for leaving traces on classical systems, rather than the other way

around?
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Chapter 4

Concluding Remarks

The Bohmian interpretation of quantum mechanics brings enlightening discussions

about quantum reality and finds useful applications in various areas, ranging from statis-

tical mechanics to quantum field theory. In this first part, we provide a brief overview of

the subject, exploring the potential to study quantum phenomena from a classical per-

spective. The introduction of the guidance law enables us to interpret the Schrödinger

equation as a Hamilton-Jacobi equation along with a continuity equation, endowing the

wave function with both a dynamic and probabilistic role.

To illustrate these features, we examine the case of the simple harmonic oscillator. We

have developed a numerical procedure to derive Bohmian trajectories from the numerical

solution of the Schrödinger equation. This method facilitates the investigation of more

complex systems that lack an analytical expression for the wave function. As examples,

we explore the driven harmonic oscillator subjected to various types of forces, with a

particular focus on Gaussian and oscillatory impulses.

In the Gaussian scenario, the initial and final states correspond to the simple harmonic

oscillator case. However, the impulse is responsible for transferring energy to the system,

exciting additional eigenstates. This effect was observed in the Bohmian trajectories as an

increase in the amplitude of the oscillations and the expansion of the phase space volume.

In the case of the oscillatory force, we observe the combined effect of two different types

of oscillations: the natural oscillation of the system and the induced oscillation due to the

external force. When the natural frequency was equal to the frequency of the oscillatory

signal, we observed the phenomenon of quantum resonance in the Bohmian trajectories.

This was marked by a continuous expansion of the trajectories amplitudes and the phase

space volume.

A natural extension of this problem is the Duffing oscillator, which, in addition to the

sinusoidal force, also takes into account the effect of a quartic interaction. For low values of

the anharmonicity parameter, the Bohmian trajectories exhibit a beat-like phenomenon.

This occurs because the anharmonic perturbation slightly alters the natural frequency, a

change that is more pronounced for regions farther from the origin.
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Once the quantum trajectories are obtained, we calculate the averages of the position

and the momentum of the quantum particles, showing that the mean values mimic classical

laws of motion, but with the amplitude of the oscillations and the volume of the phase

space related to Bohmian averages depending on quantum properties. This quantum-

classical treatment of particle trajectories aligns with the Ehrenfest theorem, as illustrated

in the figures presented throughout Chapter 2.

On Chapter 3 we discussed a more complex topic: the quantum chaos from the point

of view of Bohmian Mechanics. We show that is possible to address this issue without

make any reference about the energy levels or the discrete nature of the quantum observa-

tions. Instead, we employed the quantum trajectories approach to calculate the Lyapunov

exponent, which quantifies the degree of separation between neighboring trajectories. It’s

important to note that this approach aligns with the method used to study chaos at the

classical level. Consequently, Bohmian mechanics allow us to view classical and quantum

chaos as two facets of the same phenomenon, with the latter distinguished from the former

by the presence of the nonlinear quantum potential. In fact, the analogy between classical

and quantum equations of motion, exemplified by Newton’s equation, vividly illustrates

that particle trajectories can exhibit nonlinear behavior during their evolution in both

regimes, a critical aspect in the study of chaos.

We have reviewed the primary mechanism responsible for generating chaotic behavior

at the quantum level, namely, the dynamic formation of vortices through Nodal-Points-

X-Points-Complexes (NPXPCs). We have observed that the presence of these geometric

structures promotes the divergence of neighboring trajectories, potentially resulting in

exponential divergence. In the context of the anisotropic two-dimensional harmonic os-

cillator example, we have noted that in the case of irrational frequency ratios, NPXPCs

have a broader range of influence compared to the rational case, with the NPXPC tra-

jectory occupying a more extensive region in configuration space. We have computed the

Bohmian trajectories and, consequently, the Lyapunov exponent. For ω = 7/10, we have

observed ordered behavior. However, for ω = 1/
√
2, we have noticed the coexistence of

both ordered and chaotic trajectories, with a non-zero Lyapunov exponent in the latter

case indicating a weak chaotic behavior.

Finally, we study the two-dimensional coupled anharmonic oscillator featuring cubic

and quartic interactions with the objective to observe evidences of chaos. Due to the

inherent complexity of this system, we have developed a numerical procedure to solve

the 2D Schrödinger equation and obtain Bohmian trajectories over relatively long peri-

ods with high precision and stability. In this example, we have observed the dynamic

formation and subsequent annihilation of vortices, resulting in highly intricate Bohmian

trajectories. Notable chaotic features have been identified in the quantum trajectories,

including compactness, unpredictability, sensitivity to initial conditions, and a positive

Lyapunov number, all confirming the presence of robust chaos in both limits, ℏ = 1 and
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ℏ → 0. Remarkably, in the absence of coupling (κ = 0), chaos disappears, underscoring

its crucial function in inducing the emergence of vortices and driving chaotic behavior.

In conclusion, the results presented here can be used as a point of departure in the

study of more intricate systems, since the numerical methods provide the Bohmian tra-

jectories without the necessity of using an analytical expression for the wave function. For

instance, we can investigate condensed matter phenomenons in the mean-field approxima-

tion within this approach. Another possibility, with applications in quantum information,

is the study of entangled Bohmian systems, with the numerical methods we used being a

promising path on this investigation. Regarding the quantum equilibrium hypothesis, we

may wonder what is the effect in considering an initial probability distribution that is not

given in terms of Born’s rule in the quantum-classical relations obtained for the average

values, especially the ones referring to the position and momentum of the quantum parti-

cles. Additionally, it is known that chaotic dynamics is a critical component in validating

Born’s rule for these types of systems. Hence, exploring systems of this nature for further

study becomes an intriguing avenue of research. Finally, in the future, we aim to delve

deeper into understanding the intricate dynamics of the quantum-to-classical transition

in chaotic scenarios, with a focus on elucidating the role of the quantum potential in this

process.
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Part II

Quantum Field Theory and the

Unruh effect: A Bohmian approach
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Chapter 5

Introduction

Quantum gravity remains one the most captivating challenges in current theoretical

physics, with numerous endeavors in its understanding. Despite the inherent difficulty

in constructing a quantum theory for the gravitational field, one plausible approach to

comprehend how quantum effects emerge in gravitational theories is to consider a quan-

tum field theory in curved spacetimes, where significant phenomena such as cosmological

particle production in an expanding universe and Hawking radiation take place.

Within this scenario, the concept of particles as field excitations from a vacuum state

is reference-frame dependent. As an example of such a phenomenon, we can cite the well-

known Unruh effect [163, 164, 165], which yields similar results to those obtained from a

Schwarzschild geometry [166, 167] through much simpler calculations.

In order to illustrate such effect we can consider a free scalar field in a flat 2-dimensional

Minkowski space from two different perspectives: according to an inertial frame and

according to a Rindler observer, uniformly accelerated in relation to the first one. It turns

out that the vacuum state for both observers is different. While for the inertial observer,

the vacuum state is |0⟩M , for the Rindler observer, it is actually |0⟩R. Consequently, the
number of particles defined as excitations of |0⟩M and |0⟩R respectively, are different, as

expected by quantum field theory. More precisely, the state of zero particles defined in

the inertial reference frame corresponds to a Bose-Einstein distribution for the Rindler

observer, with temperature1

T =
ℏa

2πκbc
, (5.1)

proportional to the acceleration a. This is an important result that relates three important

constants in physics: the Planck’s constant ℏ, the Boltzmann’s constant κb and the speed

of light c. While a captivating phenomenon, its observation is considerably challenging.

As a rough estimation of its scale, to achieve a temperature of 1K, an acceleration on the

order of 1019m/s2 is required. Nevertheless, experimental observations are discussed in

1A similar result can be obtained if we consider fermions instead of a scalar field. In this case we
obtain a Fermi-Dirac distribution with same the temperature [168, 169].
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[170, 171, 172, 173, 174], whereas for Hawking radiation see [175, 176, 177, 178, 179].

Usually, to obtain the Unruh temperature (5.1), we expand the field in terms of the

mode solutions obtained from the equations of motion. With this expansion, we obtain

the creation and annihilation operators, from which we define the vacuum state and its

respective excited states. However, it is important to note that this expansion, in general,

depends on the reference frame we are considering, as different frames can lead to different

equations of motion. By connecting both expansions, in Rindler and Minkowski frames,

through Bogoliubov transformations, it is possible to calculate the expectation value of

the number operator, defined in the Rindler frame, in the Minkowski vacuum. Such

calculation gives us the Bose-Einstein distribution with the mentioned temperature. This

is the standard approach, reviewed for example in the works [180, 181, 182], and uses the

Heisenberg picture of quantum mechanics in the framework of the usual interpretation.

Additionally to this fact, it is known that there is a kind of entanglement between the left

and right Rindler wedge fields [183], which is hard to explain due the locality inherent

to quantum field theory. Thereferore, since Bohmiam mechanics is manifestly non-local,

could be interesting to address this phenomenon according to this interpretation.

In the relativistic Bohmian approach of the quantum field theory the element of ob-

jective reality are the fields that represents the particles [31, 32, 184, 185]. With the aim

of obtain a guidance law like in the non-relativistic case it is usual to use the Schrödinger

representation of the fields [186], where we substitute the particle trajectories by field tra-

jectories, being the velocity field the canonical conjugated momentum. In this context,

the quantum potential is responsible for the quantum interactions between the bosonic

fields and matter, as the result of its non-linear and non-local nature [187, 188, 189, 190].

Following this lines of investigation, in this chapter we explored the Unruh effect using

the de Broglie-Bohm framework, where from the Minkowski vacuum wave functional in

Rindler spacetime [191] we obtained the guidance equations and, as consequence, the

Bohmian field trajectories. Within this formalism, we were able to separate the quantum

and classical contributions to the total energy and the temperature associated effects

through the computation of the Bohmian averages. For this purpose, in a first moment

we will introduce the Unruh effect in the standard interpretation. After that we intend

to give a concise introduction to the Schrödinger picture in the context of quantum field

theory. Then, we will present the principal results regarding the Bohmian version of the

Klein-Gordon theory and review relevant aspects concerning the wave functional for a

massless scalar field in the right Rindler wedge. Following this, we plan to present the

associated de Broglie-Bohm theory, calculating the field trajectories and also the power

spectrum, studying the regimes of low and high accelerations. Finally, we will investigate

the complete manifold problem, extending our findings to the left Rindler wedge as well.

We carry out the same calculations and asymptotic expansions. By doing so, we pretend

to address the entanglement problem with the help of the non-local nature of guidance
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equations, potentially paving the way for the black hole analysis.
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Chapter 6

The Unruh effect from a Bohmian

perspective

6.1 The Unruh effect in the standard approach

In the context of a two-dimensional Minkowski flat spacetime, we can mimic the

effect of a curved geometry by considering the trajectory of an observer with a constant

acceleration a and with coordinates (t, x) in some Minkowski inertial frame. We can

describe its trajectory through the Rindler transformations [180, 181, 182, 192, 193]

x (τ, ξ) =
eaξ

a
cosh(aτ),

t (τ, ξ) =
eaξ

a
sinh(aτ),

(6.1)

where τ and ξ represent the Rindler coordinates, taking values from −∞ to ∞. Here, τ

takes the role of a temporal variable, while ξ represents the spatial one.

The effect of the Rindler spacetime (τ, ξ) is very similar to the Schwarzschild geometry.

From equation (6.1), we can observe that −x < t < x. Consequently, these transforma-

tions are valid only in region I of the Minkowski spacetime, as indicated in the diagrams

presented in Figure (6.1). The curves t = ±x, in red, act as horizons, being reached as

τ → ±∞, while the origin is attained when ξ → −∞. In Rindler coordinates, a Rindler

observer is just an observer who moves along a constant parameter ξ, which corresponds

to the hyperbolas x2 − t2 =
e2aξ

a2
in Minkowski space, represented by the yellow curves in

the left diagram. Initially, the observer is located at x → ∞, approaching the origin as

time passes, reaching a minimum distance at t = τ = 0, after which the observer starts

moving away again until x→ ∞. As we change the value of the parameter ξ, we change

the point of closest proximity to the origin, in such a way that each hyperbola corresponds

to a different Rindler observer. On the other hand, the yellow dashed lines are hyper-

surfaces with constant value of the temporal variable τ , implying constant foliations in
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proper time.

Considering that the line element of the Minkowski space is ds2 = −dt2 + dx2 and

using equation (6.1), we obtain the line element of the Rindler spacetime, which is ds2 =

e2aξ(−dτ 2+dξ2), revealing a conformal invariance between both metrics, with a conformal

factor of eaξ. Additionally, ∂τ = a(x∂t + t∂x) is a Killing vector in Rindler spacetime,

where to obtain the expression related to ∂τ we invert relation (6.1) and we use the chain

rule. In fact, ∂τ is a timelike Killing vector associated with temporal translations, given

that (∂τ )
µ(∂τ )µ = −[(∂τ )

t]2 + [(∂τ )
x]2 = a2(−x2 + t2) < 0 in region I. Additionally, we

can see from the Rindler transformations (6.1) that as we increase the value of τ , we

also increase the value of t, indicating that both temporal variables evolve in the same

direction, as shown in Figure (6.1). Furthermore, the lines t = ±x are called the Killing

horizons, in which (∂τ )
µ(∂τ )µ = 0.

IIV

II

III

x

t

Figure 6.1: Diagram of the Rindler spacetime. The Rindler transformations are valid only
in the region I of Minkowski space, where −x < t < x and x > 0 (shaded area). The
thick curves represent the trajectories of a Rindler observer in Minkowski space, while the
dashed lines denote the hypersurfaces of constant parameter τ . The temporal evolution
of the parameter τ is indicated by the yellow arrows, pointing in the same direction as t.

In what follows let us consider a real massless scalar field with action

S =
1

2

∫
dtdx

{(
∂ϕ

∂t

)2

−
(
∂ϕ

∂x

)2}
(6.2)

in Minkowski space. From the extremization of S, we obtain the Klein-Gordon equation

of motion (
− ∂2

∂t2
+

∂2

∂x2

)
ϕ(t, x) = 0, (6.3)

which admits as mode solutions

uk(t, x) =
1√
4πωk

ei(kx−ωkt), (6.4)
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where ωk = |k| and k is a continuous index that labels the solutions. Conventionally,

k is interpreted as the wave number, while ωk represents the frequency. The uk modes

correspond to positive frequency modes (p.f.m.) with respect to t, such that they are

eigenfunctions of ∂t, that is, ∂tuk = −iωkuk. Analogously, ∂tu
∗
k = iωku

∗
k, establishing the

u∗k modes as negative frequency modes (n.f.m.).

Defining the Klein-Gordon inner product acting in the solution space

(ϕ1, ϕ2)M := i

∫
Σ

dx

(
ϕ∗
1

∂ϕ2

∂t
− ϕ2

∂ϕ∗
1

∂t

)
, (6.5)

with Σ a Cauchy hypersurface specifying a hyperplane of simultaneity at a constant time,

we can see from (6.4) that {uk, u∗k} form a normalized orthogonal basis according to (6.5),

since

(u∗k, uk′)M = 0,

(uk, uk′)M = δ(k − k′), (6.6)

(u∗k, u
∗
k′)M = −δ(k − k′).

So, in order to quantize the system we promote the scalar field ϕ to an operator and we

impose the canonical commutation relations at equal times1

[ϕ(t, x), ϕ(t, x′)] = 0,[
Πϕ(t, x),Πϕ(t, x

′)
]
= 0, (6.7)

[ϕ(t, x),Πϕ(t, x
′)] = iδ(x− x′),

where Πϕ = ∂tϕ is the canonical conjugated momentum associated to ϕ. As a consequence,

the field can be expanded in terms of the mode solution basis {uk, u∗k}. Therefore,

ϕ(t, x) =

∫
dk
{
akuk + a†ku

∗
k

}
. (6.8)

Here, the integral represents a sum over the continuous index k, while ak and a†k are

the coefficients of this expansion. With the help of the inner product we can invert the

1Throughout the text, we will omit the hat symbols above the operators in order to maintain a lighter
notation, except when their use becomes necessary.
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previous expression and write ak and a†k in terms of ϕ and the mode solutions. In fact,

(uk, ϕ)M = i

∫
Σ

dx (u∗k∂tϕ− ϕ∂tu
∗
k)

= i

∫
Σ

dx

{
u∗k

∫
dk′
(
ak′∂tuk′ + a†k′∂tu

∗
k′

)
− ∂tu

∗
k

∫
dk′
(
ak′uk′ + a†k′u

∗
k′

)}
=

∫
dk′
{
ak′ (uk, uk′) + a†k′ (uk, u

∗
k′)
}

= ak, (6.9)

where we used (6.6). With this result we can compute the commutation relations con-

cerning the coefficients ak and a†k in the following manner:[
ak, a

†
k′

]
=
[
(uk, ϕ)M , (uk′ , ϕ)

†
M

]
=

[
i

∫
Σ

dx
{
u∗k(x, t)Π(x, t)− ∂tu

∗
k(x, t)ϕ(x, t)

}
,

−i
∫
Σ′
dx′
{
uk′(x

′, t)Π(x′, t)− ∂tuk′(x
′, t)ϕ(x′, t)

}]
=

∫
ΣΣ′

dxdx′
{
u∗k(x, t)uk′(x

′, t)
[
Π(x, t),Π(x′, t)

]
− u∗k(x, t)∂tuk′(x

′, t)
[
Π(x, t), ϕ(x′, t)

]
+

−∂tu∗k(x, t)uk′(x′, t)
[
ϕ(x, t),Π(x′, t)

]
+ ∂tu

∗
k(x, t)∂tuk′(x

′, t)
[
ϕ(x, t), ϕ(x′, t)

]}
= i

∫
Σ

dx {u∗k∂tuk′ − ∂tu
∗
kuk′}

= δ(k − k′). (6.10)

In this sequence of equations we take into account that [A + B,C] = [A,C] + [B,C], we

use the canonical commutation relations (6.7), and consider the fact that {uk, u∗k} form

an orthogonal basis. In the same manner

[ak, ak′ ] = 0,

[a†k, a
†
k′ ] = 0. (6.11)

Consequently, drawing an analogy to the quantum harmonic oscillator, we can inter-

pret the field expansion coefficients ak and a†k as the creation and annihilation operators,

respectively. By doing so, we can span the Hilbert space in terms of the quantum states

defined from ak and a†k. The vacuum state |0⟩M , where the label M indicates that we are

in Minkowski space, is defined as the state annihilated by the operator ak for any wave

number k, that is, ak |0⟩M = 0. From |0⟩M we can construct the states of one or more par-

ticles by successive applications of the creation operator a†k. For instance, the one-particle

state is represented as |1k⟩M = a†k |0⟩M . Applying a†k to |1k⟩M yields the state of two par-

ticles, applying a†k to |2k⟩M produces the state of three particles, and so on. Similarly, it is
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possible to build the multi-particle state as |1k1 , 1k2 , ..., 1kn⟩ = a†k1a
†
k2
...a†kn |0⟩M , where we

are supposing a total of n particles with different wave numbers. It is worth mentioning

that when the number of particles remains fixed, we only need to use the appropriate

Hilbert space to provide a quantum description of our system. However, in cases where

the number of particles fluctuates, as commonly seen in Quantum Field Theory, it be-

comes necessary to consider all the possible particle states. In this manner, the Hilbert

space becomes the direct sum of all possible individual particle states. Consequently,

H = C ⊕H1 ⊕ (H1 ⊗H1)sym ⊕ (H1 ⊗H1 ⊗H1)sym ⊕ · · · , (6.12)

where C is associated with the vacuum state, H1 represents the Hilbert space of a single

particle, and because of the bosonic nature of the field, we must consider the symmetrized

Hilbert space for multi-particle states.

As a conclusion, we can say that expand the field in terms of positive and negative

frequency modes allow us to physically interpret the coefficients âk and â†k as operators

from which we construct the Fock space. But note that this construction is intrinsically

tied to the basis {uk, u∗k}, obtained from the equation of motion (6.3). As a result, if

we use another basis {ūk, ū∗k}, the coefficients appearing in the expansion of ϕ would be

different, so that the Fock space associated with this new basis could be slightly distinct.

In particular, nothing guarantees that the vacuum state from which we construct the

multi-particle state is the same. More clearly, we can assume an expansion for the field

as follows

ϕ(t, x) =

∫
dk′
{
bk′ūk′ + b†k′ū

∗
k′

}
, (6.13)

where bk′ and b
†
k′ are interpreted as creation and annihilation operators in this new basis,

obeying commutation relations similar to (6.10) and (6.11), and with a vacuum state |0̄⟩M
satisfying bk′ |0̄⟩M = 0.

Since both basis are assumed complete, we can write ūk in terms of {uk, u∗k} and vice-

versa, with the correspondent expressions called Bogolubov transformations [194, 195].

For instance, we have that

ūk′ =

∫
dk(αk′kuk + βk′ku

∗
k), (6.14)

where the matrices αk′k and βk′k are the Bogolubov coefficients. Taking into account

that the inner product (6.5) is antilinear in the first entry, meaning that for any complex

constant c the relation (cϕ1, ϕ2)M = c∗(ϕ1, ϕ2)M holds, and considering the orthonormality
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of {uk, u∗k} expressed by the set of equations (6.6), we have that

(ūk′ , uk)M = α∗
k′k,

(ūk′ , u
∗
k)M = −β∗

k′k. (6.15)

So, we can invert expression (6.14) and expand uk in terms of ūk′ as follows:

uk =

∫
dk′(α∗

k′kūk′ − βk′kū
∗
k′). (6.16)

By inserting this previous equation into (6.14), we obtain a normalization condition sat-

isfied by the Bogolubov coefficients,∫
dk (αk′kα

∗
k′′k − βk′kβ

∗
k′′k) = δ(k′ − k′′). (6.17)

Concerning the creation and annihilation operators bk′ and b†k′ , we can also express

them in terms of inner products associated with this new basis, similarly to equation

(6.9). As a matter of fact,

bk′ = (ūk′ , ϕ)M . (6.18)

Now, inserting the expansion (6.8) in this relation we obtain that

bk′ =

∫
dk
{
ak (ūk′ , uk)M + a†k (ūk′ , u

∗
k)M

}
=

∫
dk
{
α∗
k′kak − β∗

k′ka
†
k

}
. (6.19)

As a consequence, when βk′k ̸= 0, the annihilation operator bk′ , defined in the
{
ūk′ , ū

∗
k′

}
basis, does not annihilate the |0⟩M vacuum, meaning that |0⟩M and |0̄⟩M are not equiv-

alent. More precisely, the average of the number operator N̄k′ ≡ b†k′bk′ , computed in the

|0⟩M vacuum, is not null, but actually

⟨N̄k′⟩M ≡ M⟨0|N̄k′ |0⟩M =

∫
dk|βk′k|2. (6.20)

Therefore, we can conclude that the vacuum definition and the particle concept are not

unique, depending on the positive and negative frequency modes used to expand the field.

In other words, different coordinate systems can lead to different vacuum definitions and,

consequently, different particle numbers, as is the case of Minkowski and Rindler observers.

In order to give a Rindler description of the Minkowski vacuum, we need to quantize

the field using the coordinates associated with the accelerated observer, which are given
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by (6.1). With these transformations the action (6.2) becomes

S =
1

2

∫
dτdξ

((
∂ϕ

∂τ

)2

−
(
∂ϕ

∂ξ

)2
)
, (6.21)

admitting (
− ∂2

∂τ 2
+

∂2

∂ξ2

)
ϕ(τ, ξ) = 0, (6.22)

as equation of motion, as expected due the conformal equivalence of the metrics. Analo-

gously to the previous case, the mode solutions are

vk(τ, ξ) =
1√
4πωk

ei(kξ−ωkτ), (6.23)

with the vk modes identified as positive frequency modes with respect to τ , such that

∂τvk = −iωkvk, while v
∗
k correspond to the negative frequency modes, with ∂τv

∗
k = iωkvk.

However, there is a slight difference here. Whereas in the action (6.2) the field ϕ is defined

all over Minkowski spacetime, in (6.21) the field is defined only in the region I of figure

6.1, mathematically expressed for −x < t < x and x > 0.

With the effort to expand the field in terms of vk and v∗k, we can define the equivalent

to the Klein-Gordon inner product in Rindler space2:

(ϕ1, ϕ2)R := i

∫
Σ

dξ

(
ϕ∗
1

∂ϕ2

∂τ
− ϕ2

∂ϕ∗
1

∂τ

)
, (6.24)

on which Σ is the Cauchy hypersurface given by constant foliations of the Rindler temporal

variable. From this definition, we realize that {vk, v∗k} form a completely orthonormal

basis, satisfying

(v∗k, vk′)R = 0,

(vk, vk′)R = δ(k − k′), (6.25)

(v∗k, v
∗
k′)R = −δ(k − k′).

2The generalization of the Klein-Gordon product in curved spacetimes can be expressed as

(ϕ1, ϕ2) := i

∫
Σ

√
σdΣµ

(
ϕ∗
1∇µϕ2 − ϕ2∇µϕ

∗
1

)
,

with dΣµ = dΣnµ representing an infinitesimal normal vector associated to the Cauchy hypersurface Σ
and σ = detσij , where σij is the induced metric. When applied to Minkowski and Rindler spacetimes,
this inner product returns the expressions (6.5) and (6.24), respectively.
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similarly to (6.6). Then, the field can be expanded as

ϕ(τ, ξ) =

∫
dk′
{
dk′vk′ + d†k′v

∗
k′

}
, (6.26)

where dk′ and d
†
k′ are the annihilation and creation operators, respectively. These opera-

tors define particle states in Rindler spacetime and obey canonical commutation relations

similar to those presented in (6.10) and (6.11). Specifically, the vacuum state |0⟩R is such

that dk′ |0⟩R = 0, for all values of k′.

To compute the Bogolubov coefficients, it is interesting to introduce the null variables

in both, Minkowski and Rindler spaces. They are given by

U = t− x V = t+ x, (6.27)

Ũ = τ − ξ Ṽ = τ + ξ. (6.28)

So, the expansions (6.8) and (6.26) can be written as

ϕ(t, x) =

∫ ∞

0

dk√
4πk

{
e−ikUak + eikUa†k + e−ikV a−k + eikV a†−k

}
, (6.29)

ϕ(τ, ξ) =

∫ ∞

0

dk′√
4πk′

{
e−ik′Ũdk′ + eik

′Ũd†k′ + e−ik′Ṽ d−k′ + eik
′Ṽ d†−k′

}
, (6.30)

where, in order to obtain this result, we separate the expansions into positive and negative

contributions of the wave number, performing the change of variables k → −k in the

negative part. After this we identify ωk = |k| just as k since the integrals run from zero

to infinity. The first two terms are identified as right-moving modes, while the last two

correspond to left-moving modes.

In terms of these variables, the equations of motion (6.3) and (6.22) take the form

∂U∂V ϕ = 0 ∂Ũ∂Ṽ ϕ = 0. (6.31)

Thus, it is reasonable to assume that the field admits the following separation

ϕ(U, V ) = A(U) +B(V ) ϕ(Ũ , Ṽ ) = Ã(Ũ) + B̃(Ṽ ), (6.32)

corresponding to a sum of right-moving and left-moving modes. Now, taking into consid-

eration the explicit form of the Rindler transformations (equation (6.1)) in the definition

of the null variables, we obtain that

U = −e
−aŨ

a
V =

eaṼ

a
, (6.33)

that is, U = U(Ũ) can be considered a function of Ũ alone, without any dependency in
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Ṽ . Similarly we have that V = V (Ṽ ). Since in region I of Minkowski spacetime we can

equivalently expand the field in terms of the (U, V ) and (Ũ , Ṽ ) variables, which means that

ϕ(U, V ) = ϕ(Ũ , Ṽ ) in this region, we must have that A(U) = Ã(Ũ) and B(V ) = B̃(Ṽ ).

Considering the first equality, we obtain∫ ∞

0

dk√
4πk

{
e−ikUak + eikUa†k

}
=

∫ ∞

0

dk′√
4πk′

{
e−ik′Ũdk′ + eik

′Ũd†k′
}
. (6.34)

Applying the Fourier transformation in relation to Ũ in both sides and using the definition

of the delta function, we have that∫ ∞

−∞

dŨ√
2π
eik

′′Ũ

∫ ∞

0

dk√
4πk

{
e−ikUak + eikUa†k

}
=

∫ ∞

−∞

dŨ√
2π
eik

′′Ũ

∫ ∞

0

dk′√
4πk′

{
e−ik′Ũdk′ + eik

′Ũd†k′
}
,

=

∫ ∞

0

dk′√
2k′

δ(k′ − k′′)dk′ +

∫ ∞

0

dk′√
2k′

δ(k′ + k′′)d†k′

=
dk′′√
2k′′

, (6.35)

from which we obtain the following Bogolubov transformation for dk′′

dk′′ =

∫ ∞

0

dk


(∫ ∞

−∞

dŨ

2π

√
k′′

k
ei(k

′′Ũ−kU)

)
ak +

(∫ ∞

−∞

dŨ

2π

√
k′′

k
ei(k

′′Ũ+kU)

)
a†k

 , (6.36)

with the Bogolubov coefficients given by

α∗
k′′k =

∫ ∞

−∞

dŨ

2π

√
k′′

k
ei(k

′′Ũ+ k
a
e−aŨ ),

β∗
k′′k = −

∫ ∞

−∞

dŨ

2π

√
k′′

k
ei(k

′′Ũ− k
a
e−aŨ ), (6.37)

where we have used equation (6.33). Then, the explicit computation of the integrals yields

α∗
k′′k =

1

2πa

√
k′′

k
exp

(
πk′′

2a

)(
a

k

)− ik′′
a

Γ

(
−ik

′′

a

)
,

β∗
k′′k = − 1

2πa

√
k′′

k
exp

(
−πk

′′

2a

)(
a

k

)− ik′′
a

Γ

(
−ik

′′

a

)
. (6.38)

As a result, the Bogolubov coefficients are related in such manner that |αk′′k|2 = e
2πk′′

a |βk′′k|2.
Additionally, the normalization condition (6.17) for the Bogolubov coefficients returns∫ ∞

0

dk
(
|αk′k|2 − |βk′k|2

)
= δ(0) (6.39)
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when k′ = k′′. Therefore, if NR
k′ ≡ d†k′dk′ is the number operator defined in Rindler

spacetime, then its mean value computed in Minkowski vacuum is just (see equation

(6.20))

⟨NR
k′⟩M =

1

e
2πk′
a − 1

δ(0), (6.40)

with δ(0) a divergent factor due the infinite volume of the space. After a proper regu-

larization process, for example considering the quantization of the field in a finite box of

volume V , with the integrals substituted by discrete sums, the δ(0) factor give place to

V , in such manner that the mean density ⟨nR
k′⟩M ≡ ⟨NR

k′⟩M /V becomes

⟨nR
k′⟩M =

1

e
2πk′
a − 1

, (6.41)

which is a Planck spectrum with Unruh temperature

T =
a

2π
. (6.42)

The significance of this result is profound: Minkowski and Rindler observers do not

share the same vacuum. While the Minkowski vacuum represents a state of no particles for

an inertial observer, the same vacuum state corresponds to a Bose-Einstein distribution in

Rindler spacetime. This means that an uniformly accelerated detector will see a thermal

bath of particles, with temperature proportional to the acceleration, exemplifying the fact

that the particle concept is, in general, frame-dependent.

6.2 The Schrödinger representation and the scalar

field wave functional in Minkowski space

A key element in the Bohm interpretation is the wave function, which provides the tra-

jectories of particles through the guidance equations. In the previous chapter, we saw that

by writing the wave function in polar form and substituting into the Schrödinger equa-

tion, we obtain a Hamilton-Jacobi-like equation and a continuity equation, from which

we infer the quantum particles velocity field and, consequently, the Bohmian trajectories.

Nevertheless, we derived the Unruh effect in the previous section only using the vacuum

eigenstates |0⟩M and |0⟩R, without any reference to any wave function. Thus, in order to

give a Bohmian description of the Unruh effect we need to introduce the Schrödinger rep-

resentation of the fields, from which we are able to establish a wave functional associated

with the vacuum states.

In this approach, wave functionals are essentially coordinate representations of state

vectors, similar to the usual Quantum Mechanics. The main difference here is that the
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coordinates are given in terms of fields, with canonically conjugate momenta replaced

by their respective functional derivatives. In this scenario, the Schrödinger equation

becomes a functional differential equation, with the solutions representing the eigenstates,

expressed in terms of eigenfunctionals.

More formally, for a field operator ϕ̂(x) with eigenstate |ϕ⟩ and eigenvalue ϕ(x), we

have that ϕ̂(x) |ϕ⟩ = ϕ(x) |ϕ⟩. Therefore, the wave functional Ψ[ϕ, t], a functional of

the complex function ϕ(x), is the projection of the state |Ψ(t)⟩ on the coordinate basis

|ϕ⟩, which is mathematically expressed as Ψ[ϕ, t] ≡ ⟨ϕ|Ψ⟩. If the field operator satis-

fies the canonical commutation relations (equation (6.7)), then the functional differential

representation of the conjugated momentum is Π̂ϕ = −i δ

δϕ(x)
, where

δ

δϕ(x)
denotes the

functional derivative with respect to the eigenvalue ϕ(x). Thus, the following relations

hold for the field operator and its conjugated momentum:

ϕ̂(x)Ψ[ϕ, t] = ϕ(x)Ψ[ϕ, t], Π̂ϕΨ[ϕ, t] = −iδΨ[ϕ, t]

δϕ(x)
. (6.43)

Once in possession of (6.43), we can write the Hamiltonian Ĥ as a functional differential

operator, from which we can define a functional Schrödinger equation

i
∂Ψ[ϕ, t]

∂t
= ĤΨ[ϕ, t], (6.44)

and find the functional eigenstates.

For the real massless scalar field in Minkowski space considered in the last section and

described by the action (6.2), the associated Hamiltonian operator is

H =
1

2

∫
dx

{(
∂ϕ

∂t

)2

+

(
∂ϕ

∂x

)2
}

=
1

2

∫
dx

{
− δ2

δϕ2
+

(
∂ϕ

∂x

)2
}
, (6.45)

where we identify Π̂ϕ = ∂tϕ as the canonical momentum, described in terms of the func-

tional derivatives. Therefore, the correspondent Schrödinger equation is

i
∂Ψ[ϕ, t]

∂t
=

1

2

∫
dx

{
− δ2

δϕ2
+

(
∂ϕ

∂x

)2
}
Ψ[ϕ, t], (6.46)

with the coordinate x being a continuous index summing over all the “particles”, in an

analogy with a many-body quantum system, and with the term 1
2

∫
dx (∂xϕ)

2 acting as

an “external” potential.

In order to give a Bohmian description for the scalar field, we will proceed similarly

as outlined in the previous chapter and write the wave functional in the polar form

Ψ[ϕ, t] = R[ϕ, t]eiS[ϕ,t]. By inserting this expression into Schrödinger equation (6.46) and

separating in real and imaginary parts, we obtain two equations (compare with (2.5) and
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(2.6))

∂S

∂t
+

1

2

∫
dx

{(
δS

δϕ

)2

+

(
∂ϕ

∂x

)2
}

+Q = 0, (6.47)

∂R2

∂t
+

∫
dx

δ

δϕ

(
R2 δS

δϕ

)
= 0. (6.48)

The first one is a Hamilton-Jacobi-like equation, with a supplementary non-local quantum

potential

Q[ϕ, t] = − 1

2R

∫
dx
δ2R

δϕ2
, (6.49)

resembling equation (2.7). The second is a continuity-like equation, from which we can

identify R2[ϕ, t] as a probability density. In this sense, we can interpret R2Dϕ as the

probability for the field lie in an infinitesimal hypervolume Dϕ =
∏

x dϕ. Also, we can

identify the field velocity

∂ϕ

∂t
=
δS

δϕ
, (6.50)

from which we obtain the field trajectories. So, in this Bohmian field interpretation we

are presuming that at each instant the field possesses a clearly defined value in all the

space, with its evolution determined by the integration of the guidance equation (6.50).

In this sense, the quantum theory, which in this case is a quantum field theory, is built

based in the Hamilton-Jacobi formalism for the classical field theory, similar to what we

have done in the previous chapter.

The key element that brings quantum properties to this classical-based theory is the

quantum potential. For instance, taking the time derivative of equation (6.50) and using

the Hamilton-Jacobi equation (6.47), we obtain that(
∂2

∂t2
− ∂2

∂x2

)
ϕ = −δQ

δϕ
, (6.51)

which is exactly the equation of motion (6.3) but with a corrective ”quantum force”. It

is this extra term that gives rise to the distinctive individual quantum effects observed

in quantum field theory. When the quantum potential is negligible compared to the

other quantities, from equations (6.47) and (6.51) we recover the classical Hamilton-

Jacobi equation and the Klein-Gordon equation (6.3), respectively, in such manner that

it is possible to connect the classical and quantum field theories with this approach.

Nevertheless, it is important to emphasize that here ϕ is the eigenvalue of the field operator

ϕ̂ computed throughout the field trajectory. Then, while ϕ follows equation (6.51), in the
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Heisenberg representation the operator ϕ̂ obeys the equation(
∂2

∂t2
− ∂2

∂x2

)
ϕ̂ = 0. (6.52)

In summary, starting from a general quantum state Ψ[ϕ, t] defined through the func-

tional Schrödinger equation, the Bohmian interpretation allows us to study events in

quantum field theory in an individualized manner, not solely restricted to statistical ob-

servables. For each different initial condition considered in the guidance equation (or

equivalently, in the respective equation of motion), we have a distinct occurrence, or

more precisely, a different field trajectory. When we take into account all possible field

trajectories, we can calculate the Bohmian averages as

⟨O(t)⟩dBB =

∫
Dϕ
∣∣Ψ[ϕ, t]

∣∣2O[ϕ, t], (6.53)

withO[ϕ, t] being a physically meaningful property related to the field trajectories thought-

fully chosen to yield the same results as the conventional mean values of the quantum

operators

⟨Ô⟩ =
∫

DϕΨ∗[ϕ, t](ÔΨ[ϕ, t]). (6.54)

The advantage of such an interpretation is that it allows for the separation of contributions

of classical and purely quantum nature, which is not possible in the usual interpretation.

This distinction is exemplified, for instance, in the Hamilton-Jacobi equation (6.47), where

the energy

E = −∂S
∂t

(6.55)

is composed by the “kinetic” and “classical” potential terms,

K =
1

2

∫
dx

(
δS

δϕ

)2

and V =
1

2

∫
dx

(
∂ϕ

∂x

)2

, (6.56)

respectively, in addition to the quantum potential (6.49). This differentiation remains

possible even when we calculate the individual mean contributions of each term in the

Hamilton-Jacobi equation, as we will further explore when considering the Unruh effect.

However, a relevant issue arises: how to address a non-local quantum potential in

a quantum field theory, given that one of its foundational principles is locality? In a

first moment, it is important to note that the expression for Q[ϕ, t] (equation (6.49))

takes into account the contribution of field states across all of space. Therefore, the

corrective quantum force present on the right-hand side of the equation of motion (6.51)
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instantaneously connects field elements in different spatial regions. Secondly, observe that

this same term breaks Lorentz covariance, as time and space are treated differently in its

presence. This is an expected result since we quantize the system through the Schrödinger

representation of fields, with a wave functional satisfying the Schrödinger equation (6.46),

which is not Lorentz-covariant.

While these ideas may initially appear counter-intuitive, it is worth emphasizing that

the non-locality of fields and the breaking of Lorentz covariance are both purely quantum

effects stemming from individual processes. As we have previously stated, in the limit

where the quantum potential is negligible, the quantum force vanishes, and consequently,

we recover the Klein-Gordon equation, thus restoring notions of locality and covariance.

Hence, we can assert that the quantum potential is responsible for these peculiar charac-

teristics.

Another aspect in favor of the Bohmian interpretation is that, as mentioned before, in

field theory we do not measure individual field configurations due to specific trajectories.

Instead, we obtain expected values, which are not subject to the peculiarities of the quan-

tum potential. In this manner, locality and covariance are restored at the experimental

level, both being statistical effects according to this framework.

To conclude this section and illustrate how the functional formalism works, it is inter-

esting to obtain an explicit form for the wave functional of the scalar field from equation

(6.46). In pursuit of this objective, let us consider the Fourier expansion for ϕ(t, x)

ϕ(t, x) =

∫ ∞

−∞

dk√
2π
eikxϕk(t). (6.57)

Because of the reality of the field, the mode ϕk(t) should be such that ϕk = ϕ−k. Inserting

this expression into equation (6.45) and using the definition of the delta function, the

Hamiltonian operator can be expanded as

H =

∫ ∞

0

dk

{(
∂ϕk

∂t

)(
∂ϕ∗

k

∂t

)
+ k2|ϕk|2

}
, (6.58)

where we use the fact that the sum over positive and negative k yields the same result.

So, in this form, the effective contribution to the energy in (6.58) for each mode k is

half the value obtained, since the contribution due −k is hidden in the value of the

energy. Identifying Πϕk
= ∂tϕ

∗
k as the mode decomposition of the canonical momentum

and considering that the functional derivative admits the following expansion

δ

δϕ
=

∫ ∞

−∞

dk√
2π
e−ikx ∂

∂ϕk

, (6.59)
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the Schrödinger equation (6.44) becomes

i
∂Ψ[ϕ, t]

∂t
=

∫ ∞

0

dk

{
− ∂2

∂ϕk∂ϕ∗
k

+ k2|ϕk|2
}
Ψ[ϕ, t]. (6.60)

Assuming that the wave functional can be expressed by a product state over the continuous

index k as

Ψ[ϕ, η] =
∏
k>0

Ψk[ϕk, ϕ
∗
k, η], (6.61)

with η a general temporal parameter (which in Minkowski represents the variable t), then

each individual Ψk will satisfy an independent Schrödinger equation

i
∂

∂t
Ψk[ϕk, ϕ

∗
k, t] =

{
− ∂2

∂ϕk∂ϕ∗
k

+ k2|ϕk|2
}
Ψk[ϕk, ϕ

∗
k, t], (6.62)

being identical to the Schrödinger equation for a quantum harmonic oscillator.This con-

firms, therefore, the notion that the Klein-Gordon field can be viewed as a collection of

infinite harmonic oscillators, each one indexed by a wave number k. Hence, the ground

state solution is just

Ψk[ϕk, ϕ
∗
k, t] =

√
ωk

π
e−k|ϕk|2e−iωkt, (6.63)

Since in the Hamiltonian (6.58) we just consider the positive values of k, each mode

Ψk in the wave functional decomposition (6.61) corresponds to a product of two terms,

one due to k and another due to −k, both given the same contribution according to

equation (2.15). Also, as mentioned earlier, each k is counted twice in the Hamiltonian,

in such manner that the ground state energy in (6.63) is two times the expected value.

Consequently, the original wave functional Ψ[ϕ, t] is

Ψ[ϕ, t] =

∏
k>0

√
ωk

π

 exp

(
−
∫ ∞

0

k|ϕk|2dk
)
e−iΩ0t (6.64)

with Ω0 =

∫ ∞

0

ωkdk being the zero-point energy, which does not have a finite value due

to the infinity number of oscillators.

Once in possession of the wave functional, we can apply the Bohmian formalism by

identifying the radial part R[ϕ, t] and the phase S[ϕ, t], present in the Hamilton-Jacobi

equation (6.47), the continuity equation (6.48), and the guidance equation (6.50). For the

80



ground state (6.64) we have that

R[ϕ, t] =

∏
k>0

√
ωk

π

 exp

(
−
∫ ∞

0

k|ϕk|2dk
)

(6.65)

and

S[ϕ, t] = −Ω0t, (6.66)

such that the phase is independent of ϕ. Therefore, the derivative of S[ϕ, t] with respect

to ϕ is zero, implying in a solution of the guidance equation independent of time, that is,

a static field configuration

ϕ(x, t) = ϕ0(x). (6.67)

This is a result previously anticipated: eigenstates of a quantum system generate static

Bohmian trajectories, in perfect analogy to the result presented in subsection 2.3.1 of the

previous chapter. Also, the total energy of the system is, indeed, Ω0, since according to

Hamilton-Jacobi equation,

E = −∂S
∂t

= Ω0. (6.68)

Once that the canonical momentum is null (static trajectory), we do not have a “ki-

netic” contribution K (equation (6.56)), only remaining the potential V as a “classical”

contribution to the total energy. Then

K = 0 and V =

∫ ∞

0

k|ϕk|2dk. (6.69)

As a consequence, the quantum potential can be expressed simply as

Q = Ω0 − V. (6.70)

Please note that the calculation of these quantities takes into account the contribution

of an infinite number of oscillators, which can make it challenging to analyze these results

according to physical grounds. Furthermore, when dealing with complex systems, the

need to employ complex variational calculation techniques, which can be quite compli-

cated depending on the specific model under consideration. With this in mind, working

in momentum space becomes more advantageous, because we can explicitly observe the

contribution of each term in the Hamilton-Jacobi equation for every value of k, thus sim-

plifying the calculation of averages. In the following sections, we will apply the formalism
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presented here to the case of the Unruh effect, where we will demonstrate that for each k

an associated Hamilton-Jacobi equation and a continuity equation are derived.

6.3 The Rindler wave functional and its Bohmian in-

terpretation in the right-wedge

Our goal in this section is essentially to calculate the wave functional associated with

the vacuum state of the massless scalar field in Rindler spacetime and gives its Bohmian

description. The strategy for studying the Unruh effect is similar to what was developed

in Section 6.1 when comparing Minkowski and Rindler vacua. The difference here is that

instead of defining the vacuum states from the annihilation operators in their respective

spaces, we define the vacuum states from the wave functionals associated with the scalar

field. The idea is essentially to express the wave functional (ΨM)0 of the Minkowski

vacuum in terms of Rindler variables, obtaining its temporal evolution [191]. However,

we cannot directly apply the results from the previous section since those were obtained

considering the entire spacetime, not just region I in Figure 6.1 (−x < t < x and x > 0),

which slightly alters the wave functional.

With the objective to achieve a normal mode decomposition for (ΨM)0, we expand the

field in terms of Minkowski modes using the half-Fourier expansion, taking into account

the fact that we are restricted to the right-Rindler wedge. So,

ϕ(t, x) =

√
2

π

∫ ∞

0

dk sin(kx)ϕM
k (t), (6.71)

with (ϕM
k )∗ = ϕM

k being the Minkowski modes. From action (6.2) and the expansion

(6.71), we can express the Minkowski Hamiltonian for the right wedge as

HM =
1

2

∫ ∞

0

dk


(
∂ϕM

k

∂t

)2

+ k2
(
ϕM
k

)2 =
1

2

∫ ∞

0

dk

{
− ∂2

∂(ϕM
k )2

+ k2
(
ϕM
k

)2}
, (6.72)

where we identify ΠM
ϕk

= ∂tϕ
M
k . Assuming a decomposition for the wave functional anal-

ogous to the one given in equation (6.61), we have an independent Schrödinger equation

for each Ψk, that is,

i
∂

∂t
ΨM

k [ϕM
k , t] =

1

2

{
− ∂2

(∂ϕM
k )2

+ k2
(
ϕM
k

)2}
ΨM

k [ϕM
k , t], (6.73)
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which is slightly different from (6.60). The ground state solution for this case is

Ψk[ϕ
M
k , t] =

(
ωk

π

)1/4

e−
1
2
k(ϕM

k )2e−
i
2
ωkt, (6.74)

implying in a wave functional of the form,

(ΨM)0[ϕ
M
k , t] =

∏
k>0

(
ωk

π

)1/4

 exp

(
−1

2

∫ ∞

0

k
(
ϕM
k

)2
dk

)
e−iΩ0t, (6.75)

with Ω0 =
1

2

∫ ∞

0

ωkdk, being half of the value obtained for the entire space problem.

The wave functional (ΨR)0 of the Rindler ground state can be obtained in a similar

manner. Considering that the spatial variable ξ runs from minus infinity to infinity, the

field admits a complete Fourier expansion in terms of the Rindler variables, namely,

ϕ(τ, ξ) =

∫ ∞

−∞

dk′√
2π
eik

′ξϕR
k′(τ), (6.76)

with (ϕR
k′)

∗ = ϕR
−k′ . As a result, from the action (6.21) we obtain the Rindler Hamiltonian

HR =

∫ ∞

0

dk′


(
∂ϕR

k′

∂t

)(
∂ϕR∗

k′

∂t

)
+ k′2|ϕR

k′|2
 =

∫ ∞

0

dk′

(
− ∂2

∂ϕR
k′∂ϕ

R∗
k′

+ k′2|ϕR
k′|2
)
. (6.77)

In virtue of the conformal invariance between Minkowski and Rindler spaces, the Hamil-

tonians (6.58) and (6.77) have the same format. As a consequence, we will have a similar

functional Schrödinger equation

i
∂

∂τ
ΨR

k′ [ϕ
R
k′ , ϕ

R∗
k′ , τ ] =

{
− ∂2

∂ϕR
k′∂ϕ

R∗
k′

+ k′2|ϕR
k′ |2
}
ΨR

k′ [ϕ
R
k′ , ϕ

R∗
k′ , τ ], (6.78)

with alike ground state solution

ΨR
k′ [ϕ

R
k′ , ϕ

R∗
k′ , τ ] =

√
ωk′

π
e−k′|ϕR

k′ |
2

e−iωk′τ . (6.79)

Despite the appearance, the vacuums defined by equations (6.74) and (6.79) are es-

sentially different, seeing that we have distinct field configurations. However, as they

are defined in different temporal variables, we need to consider a simultaneous Cauchy

hypersurface in both spaces in order to compare them, what is achieved for t = τ = 0.

By inverting equation (6.71) we obtain the Minkowski modes in terms of the field, that
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is to say,

ϕM
k (t) =

√
2

π

∫ ∞

0

dx sin(kx)ϕ(t, x). (6.80)

Now, using the field expansion (6.76) in terms of Rindler variables, we have that

ϕM
k (t) =

∫ ∞

−∞
dk′A(k, k′)ϕR

k′(τ), (6.81)

with the coefficient A(k, k′) being

A(k, k′) =
1

π

∫ ∞

0

dx sin(kx)eik
′ξ(x) =

1

aπ
Γ

(
1 +

ik′

a

)
cosh

(
πk′

2a

) ∣∣∣∣ka
∣∣∣∣−1−i k

′
a

, (6.82)

where in order to solve the integral we utilize the Rindler transformations (6.1) to express ξ

in terms of x for τ = 0. Therefore, substituting equations (6.81) into (6.75), the Minkowski

ground state wave functional can be written in terms of the Rindler field variables as

(ΨM)0[ϕ
R
k′ , ϕ

R∗
k′ , 0] = N0 exp

(
−I
2

)
, (6.83)

with N0 the properly normalization constant and with I given by the following integral

I =

∫ ∞

0

dkk

∫ ∞

−∞

∫ ∞

−∞
dk′dk′′A(k, k′)A(k, k′′)ϕR

k′ϕ
R
k′′ . (6.84)

Although the coefficient A(k, k′) in equation (6.82) exhibits a complex form, this ex-

pression can be simplified through a more straightforward relation. In pursuit of this

objective, first notice that we can explicitly express the coefficient I as

I =

∫ ∞

−∞

∫ ∞

−∞
dk′dk′′Γ

(
1 +

ik′

a

)
Γ

(
1 +

ik′′

a

)
cosh

(
πk′

2a

)
cosh

(
πk′′

2a

)
ϕR
k′ϕ

R
k′′ × J(k′, k′′),

(6.85)

with J(k′, k′′) an integral over k

J(k′, k′′) =
2

π

∫ ∞

0

dk

2πk

(
k

a

)−i k
′+k′′
a

, (6.86)

which can be reformulated in a more advantageous manner by observing that

(
k

a

)−i k
′+k′′
a

=

exp

{
−ik′+k′′

a
ln
(

k
a

)}
. Thus, through the substitution u = ln

(
k
a

)
, we can represent the
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coefficient J(k′, k′′) in terms of a delta function. Specifically,

J(k′, k′′) =
2

π
δ

(
k′ + k′′

a

)
=

2a

π
δ
(
k′ + k′′

)
, (6.87)

where we use the fact that δ(αx) = δ(x)/|α|. Introducing this result into equation (6.85)

implicates that

I =
2a

π

∫ ∞

−∞
dk′Γ

(
1 +

ik′

a

)
Γ

(
1− ik′

a

)
cosh2

(
πk′

2a

)
ϕR
k′ϕ

R
−k′ . (6.88)

Now, taking into account the properties Γ(1 + y) = yΓ(y) and Γ(y)Γ(1− y) = π/ sin (πy)

concerning the gamma function, the following relation holds

Γ

(
1 +

ik′

a

)
Γ

(
1− ik′

a

)
= −i πk′/a

sin

[
π
(
1 + ik′

a

)] =
πk′/a

sinh
(

πk′

a

) . (6.89)

Hence, after all this calculation, the integral I can be simplified to

I =

∫ ∞

−∞
dk′k′ coth

(
πk′

2a

)
ϕR
k′ϕ

R∗
k′ , (6.90)

which provides the Minkowski vacuum in terms of Rindler variables in the t = τ = 0

hypersurface

(ΨM)0[ϕ
R
k′ , ϕ

R∗
k′ , 0] = N0 exp

(
−
∫ ∞

0

dk′k′ coth

(
πk′

2a

)
ϕR
k′ϕ

R∗
k′

)
, (6.91)

where we take into consideration that the positive and negative values of k′ have the

same contribution for I. It should be noted that this form of (ΨM)0 is compatible with

the normal mode decomposition for the wave functional previously mentioned in equation

(6.61), where we can identify (ΨM
k′ )0 as

(ΨM
k′ )0[ϕ

R
k′ , ϕ

R∗
k′ , 0] = Nk′ exp

(
−k′ coth

(
πk′

2a

)
ϕR
k′ϕ

R∗
k′

)
, (6.92)

with Nk′ being the normalization constant for each mode. In this form, we can clearly

see that the vacuums defined by equations (6.92) and (6.79) are essentially different for

τ = 0. However, in the limit of low accelerations, when πk′/2a≫ 1, both results become

approximately equal. In fact, for this regime the conformal factor is almost 1, which says

that there is no such difference between the Minkowski and Rindler perspectives.

Now, the temporal evolution of (ΨM
k′ )0 on the Cauchy hypersurface defined in the

accelerated frame is given in terms of the Schrödinger equation in this same referential,
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namely equation (6.78), but considering (6.92) as initial condition. Therefore, a good

ansatz for the vacuum wave functional is

(ΨM
k )0[ϕ

R
k , ϕ

R∗
k , τ ] = Nk exp

(
−kfk(τ)ϕR

k ϕ
R∗
k + Ωk(τ)

)
, (6.93)

where we have omitted the primes for the sake of clarity. Here, fk(τ) and Ωk(τ) are

complex coefficients with initial values settled as fk(0) = coth
(

πk
2a

)
and Ωk(0) = 0.

Inserting this expression into Schrödinger equation (6.78) give us that

−ik∂fk(τ)
∂τ

|ϕR
k |2 + i

∂Ωk(τ)

∂τ
= kfk(τ) + (1− fk(τ)

2)k2|ϕR
k |2, (6.94)

which can be decomposed in two differential equations

− i

k

∂fk(τ)

∂τ
= 1− f 2

k (τ) and
∂Ωk(τ)

∂τ
= −ikfk(τ), (6.95)

having as respective solutions

fk(τ) = coth

(
πk

2a
+ ikτ

)
(6.96)

and

Ωk(τ) = − ln

[
sinh

(
πk

2a
+ ikτ

)]
, (6.97)

where we absorb the integration constant coming from the equation for Ωk(τ) in the

normalization factor Nk.

Lastly, in order to get a probabilistic interpretation for the wave functional we need

to impose that

∫
|ΨM

k |2dϕR
k dϕ

R∗
k = 1. For the ground state solution,

|(ΨM
k )0|2 = |Nk|2 exp

(
−2kℜ[fk(τ)]|ϕR

k |2 + 2ℜ[Ωk(τ)]
)
, (6.98)

with ℜ[fk(τ)] and ℜ[Ωk(τ)] representing the real part of the respective coefficients. Con-

sidering that the integral in question could be performed in terms of |ϕR
k | and arg (ϕR

k ),

we obtain as a normalization constant

Nk =

√
kℜ[fk(τ)]

π
e−ℜ[Ωk(τ)]. (6.99)
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As a consequence, the Minkowski vacuum can be expressed as

(ΨM
k )0[ϕ

R
k , ϕ

R∗
k , τ ] =

√
kℜ[fk(τ)]

π
exp

{
−kℜ[fk(τ)]|ϕR

k |2 + i
(
−kℑ[fk(τ)]|ϕR

k |2 + ℑ[Ωk(τ)]
)}

.

(6.100)

The explicit form of the real and imaginary parts of fk(τ) are, respectively,

ℜ[fk(τ)] =
sinh

(
πk
a

)
cosh

(
πk
a

)
− cos(2kτ)

, ℑ[fk(τ)] =
− sin(2kτ)

cosh
(

πk
a

)
− cos(2kτ)

, (6.101)

while for the Ωk(τ) we have that

ℜ[Ωk(τ)] = −1

2
ln

[
cosh2

(
πk

2a

)
− cos2(kτ)

]
, ℑ[Ωk(τ)] = − tan−1

(
coth

(
πk

2a

)
tan(kτ)

)
.

(6.102)

Starting from equation (6.100), in the next section we will provide the Bohmian descrip-

tion for this vacuum state, deriving the Hamilton-Jacobi equation and the corresponding

guidance equation, thereby identifying the individual contributions to the energy.

6.3.1 The de Broglie-Bohm approach

With the purpose of obtaining the de Broglie-Bohm approach for the Minkowski wave

functional in Rindler variables, we need to identify the radial part and the phase from its

polar form (ΨM
k )0 = Rke

iSk . So, according to equation (6.100), we can see that

Rk(ϕ
R
k , ϕ

R∗
k , τ) =

√
kℜ[fk(τ)]

π
exp

(
−kℜ[fk(τ)]|ϕR

k |2
)
, (6.103)

Sk(ϕ
R
k , ϕ

R∗
k , τ) = −kℑ[fk(τ)]|ϕR

k |2 + ℑ[Ωk(τ)]. (6.104)

Since each (ΨM
k )0 obeys an independent Schrödinger equation, we can derive the Hamilton-

Jacobi formalism for each mode individually, which enables us to extract information

about the energy contributions much more easily. By employing the polar form of the

ground state into Schrödinger equation obtained in Rindler space (equation (6.78)), and

assuming that the modes ϕR
k are indeed modes of the scalar field guided by the wave

functional (6.100) and evolving in spacetime through the dBB guidance equations

∂ϕR
k

∂τ
=

∂Sk

∂ϕR∗
k

= −kℑ[fk(τ)]ϕR
k , (6.105)
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we once again arrive at a Hamilton-Jacobi equation and a continuity equation, but this

time for each value of k. Specifically, we have that

∂Sk

∂τ
+

∂Sk

∂ϕR∗
k

∂Sk

∂ϕR
k

+ k2|ϕR
k |2 −

1

Rk

∂2Rk

∂ϕR
k ∂ϕ

R∗
k

= 0, (6.106)

∂R2
k

∂τ
+

∂

∂ϕR
k

(
R2

k

∂Sk

∂ϕR∗
k

)
+

∂

∂ϕR∗
k

(
R2

k

∂Sk

∂ϕR
k

)
= 0. (6.107)

As a result, the energy of each mode will consist of a classical term, composed by the

kinetic energy and a classical potential energy, in addition to a quantum potential term.

Taking into consideration the fact that the modes with wave numbers k and −k make

equivalent contributions and are counted twice in (6.77), the effective contribution of each

wave number need to be divided by 2 in the Hamilton-Jacobi equation (6.106). Therefore,

we define

Ek(τ) ≡ −1

2

(
∂Sk

∂τ

)
=

1

2

(
k
∂ℑ[fk(τ)]

∂τ
|ϕR

k |2 −
∂ℑ[Ωk(τ)]

∂τ

)
, (6.108)

Kk(τ) ≡
1

2

(
∂Sk

∂ϕR∗
k

∂Sk

∂ϕR
k

)
=

1

2

(
k2ℑ2[fk(τ)]|ϕR

k |2
)
, (6.109)

Vk(τ) ≡
1

2

(
k2|ϕR

k |2
)
, (6.110)

Qk(τ) ≡
1

2

(
− 1

Rk

∂2Rk

∂ϕR
k ∂ϕ

R∗
k

)
=

1

2

(
kℜ[fk(τ)]− k2ℜ2[fk(τ)]|ϕR

k |2
)
, (6.111)

with

Ek(τ) = Kk(τ) + Vk(τ) +Qk(τ). (6.112)

In the previous equations Ek represents the total energy of the system, Kk plays the role

of kinetic energy, while Vk and Qk denote the classical and quantum potential, respec-

tively. An important observation is that such separation of terms in the total energy is

allowed only in the dBB approach for quantum theory, not being possible in the usual

interpretation. Also, when the quantum potential term is overwhelmed by the others, the

classical evolution is restored.

The guidance equations (6.105) gives the dynamic evolution of the ϕR
k modes in terms

of the Rindler variable τ , where each solution has an integration constant given by some

initial condition, which are unknown and practically impossible to determine trough exper-

iments. Nevertheless, if at some initial time τ0 the initial conditions are distributed accord-

ing to a probability density satisfying the Born rule, that is, with P(ϕR
k (τ0)) = R2

k(ϕ
R
k , τ0),

then equation (6.107) in addition with the guidance equations (6.105) guarantee that

R2
k(ϕ

R
k , τ) gives the probability density that the field mode has the value ϕR

k at any time

τ , in such manner that all the statistical predictions of quantum theory are recovered.
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So, equation (6.107) can then be understood as a continuity equation for an ensemble of

field trajectories in configuration space with probability distribution P = R2
k and velocity

field given in Eq. (6.105). Now, if we use the explicit expressions of the real an imaginary

parts of fk(τ) and Ωk(τ) from equations (6.101) and (6.102), we obtain that

Ek(τ) =
1− cosh

(
πk
a

)
cos(2kτ)[

cosh
(

πk
a

)
− cos(2kτ)

]2k2|ϕR
k |2 +

k sinh
(

πk
a

)
2

[
cosh

(
πk
a

)
− cos(2kτ)

] , (6.113)

Kk(τ) =
sin2(2kτ)

2

[
cosh

(
πk
a

)
− cos(2kτ)

]2k2|ϕR
k |2, (6.114)

Vk(τ) =
1

2
k2|ϕR

k |2, (6.115)

Qk(τ) =
sinh

(
πk
a

)
2

[
cosh

(
πk
a

)
− cos(2kτ)

]k − sinh2
(

πk
a

)
2

[
cosh

(
πk
a

)
− cos(2kτ)

]2k2|ϕR
k |2, (6.116)

which explicitly depends on the mode ϕR
k . As a consequence, the field trajectories can

exhibit very distinct dynamics, with different solutions of the guidance equations leading

to different values of energy, as well as different values of each one of its individual

contributions.

Regarding the equations of motion, we can proceed similarly to what we did in section

6.2 and from the Hamilton-Jacobi equation (6.106) and the guidance equations (6.105),

obtain a Klein-Gordon equation for the Bohmian field, with a source of quantum nature.

Specifically, we have that

∂2ϕR
k

∂τ 2
+ k2ϕR

k = −2
∂Qk

∂ϕR∗
k

= k2ℜ2[fk(τ)]ϕ
R
k , (6.117)

corresponding to a linear source that plays the role of an effective mass. In what follows

we will calculate the average value of each term in the Hamilton-Jacobi equation and

analyze the limits of low and high accelerations.

6.3.2 Mean values and Unruh temperature

As observed in the previous subsection, equations (6.105), (6.106), and (6.107) enable

us to interpret |(ΨM
k )0|2 = R2

k as the probability density of the Minkowski ground state

associated with an ensemble of quantum trajectories determined by the guidance equations

in Rindler space. As a result,

⟨O(τ)⟩dBB =

∫
dϕR

k dϕ
R∗
k

∣∣∣ΨM
k (ϕR

k , ϕ
R∗
k , τ)

∣∣∣2O(ϕR
k , ϕ

R∗
k , τ) (6.118)
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is the mean value in dBB interpretation of a physically meaningful property O related to

the field trajectories (see equation (6.53)). For the Hamiltonian operator Ĥk, its mean

value is shown to be identical to the mean value of the propertyO = Ek defined in equation

(6.108), which shows the necessity of considering the contribution of the quantum potential

in the calculation. Hence, according to equation (6.112), the mean energy ⟨Ek⟩dBB can

be expressed as

⟨Ek⟩dBB = ⟨Kk⟩dBB + ⟨Vk⟩dBB + ⟨Qk⟩dBB , (6.119)

being the sum of the mean values of each term present in Hamilton-Jacobi equation.

Given that equations (6.108-6.111) depend on |ϕR
k |2 and taking into account that

|(ΨM
k )0|2 =

kℜ[fk(τ)]
π

e−2kℜ[fk(τ)]|ϕR
k |2 , (6.120)

the computation of the mean values in (6.119) is reduced to the calculus of the following

integrals:

I1 = υk(τ)

∫
dϕR

k dϕ
R∗
k |(ΨM

k )0|2,

I2 = Υk(τ)

∫
dϕR

k dϕ
R∗
k |ϕR

k |2e−2kℜ[fk(τ)]|ϕR
k |2 , (6.121)

with υk(τ) and Υk(τ) general functions depending on the property O in question. Because

of the normalization condition, the first integral is trivial. In relation to the second one,

using the polar form of ϕR
k and remembering the fact that

∫ ∞

0

dρρ3e−cρ2 =
1

2c2
, with

ρ =
∣∣ϕR

k

∣∣ and c = 2kℜ[fk(τ)], we have that

I1 = υk(τ) and I2 =
π

2k2
Υk(τ)

ℜ2[fk(τ)]
. (6.122)

In the case of the total energy Ek given by equation (6.108), for instance, ⟨Ek⟩dBB =

I1 + I2, with υk(τ) = −1

2

∂ℑ[Ωk(τ)]

∂τ
and Υk(τ) =

k2

2π
ℜ[fk(τ)]

∂ℑ[fk(τ)]
∂τ

. Hence,

⟨Ek⟩dBB =
k

2
coth

(
πk

a

)
= k

(
1

2
+

1

e
2π
a
k − 1

)
. (6.123)

This result can be further examined to derive the average number of Rindler particles

within the Minkowski vacuum taking advantage of the fact that the Hamilton operator

can be expressed in terms of the number operator as Ĥk =
(
n̂k +

1
2

)
k. Consequently,
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⟨nk⟩dBB = 1
k
⟨Ek⟩dBB − 1

2
, yielding,

⟨nk⟩dBB =
1

e
2π
a
k − 1

, (6.124)

which is the mean number corresponding to a Bose-Einstein distribution with Unruh

temperature T = a/2π. This demonstrates that within the Bohmian formalism, we are

also capable of reproducing such effect.

In a parallel fashion, we can calculate the average values of the different parts of the

energy, which lead us to

⟨Kk⟩dBB =
k

4

ℑ2[fk(τ)]

ℜ[fk(τ)]
=

k csch
(

πk
a

)
sin2(2kτ)

4

[
cosh

(
πk
a

)
− cos(2kτ)

] , (6.125)

⟨Vk⟩dBB =
k

4

1

ℜ[fk(τ)]
=

k

[
cosh

(
πk
a

)
− cos(2kτ)

]
4 sinh

(
πk
a

) , (6.126)

⟨Qk⟩dBB =
k

4
ℜ[fk(τ)] =

k sinh
(

πk
a

)
4

[
cosh

(
πk
a

)
− cos(2kτ)

] . (6.127)

Note that each one of the above expressions has a non-trivial time dependence, however

their sum, the total mean energy, is completely time-independent. It is interesting to

examine the behavior of these quantities under different acceleration values. Figure (6.2)

presents plots of the Bohmian averages as functions of the acceleration a, where we observe

two distinct moments: τ = 0 and τ = π/2. We observe that for low accelerations, the

classical and quantum potentials exhibit close magnitudes in both cases. However, as the

acceleration increases, Figure (6.2a) illustrates the average quantum potential tending

asymptotically to ⟨Ek⟩dBB, whereas in Figure (6.2b), the classical potential primarily

governs the mean energy as the dominant factor. In the upcoming section, we shall

explore the temporal dependence of the mean values in the low and high acceleration

limits, studying the transitions between quantum and classical dominances.

6.3.3 Low and high temperature regimes

Low acceleration limit:

Let us initiate this analysis by considering the limit where πk
a

≫ 1, which can be

attained in the regime of low accelerations (temperatures). Under these circumstances,
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Figure 6.2: The Bohmian averages as functions of the acceleration parameter a for τ = 0
and τ = π/2. While for low accelerations, the quantum and classical potentials are
equivalents, in the high acceleration limit we have very distinct behaviors.

the coefficients fk(τ) and Ωk(τ), as given by equations (6.101) and (6.102), are such that

ℜ[fk(τ)] ≈ 1, ℑ[fk(τ)] ≈ 0,

ℜ[Ωk(τ)] ≈ − k

4T
, ℑ[Ωk(τ)] ≈ −kτ.

(6.128)

As a consequence, we obtain the following approximation for the wave functional (6.100):

(ΨM
k )0[ϕ

R
k , ϕ

R∗
k , τ ] ≈

√
k

π
e−k|ϕR

k |2−ikτ , (6.129)

which is exactly equal to the Rindler vacuum (ΨR
k )0 given in equation (6.79). This is an

expected result, as when we approach this limit, the accelerated observer can be considered

as an inertial one, resulting in little differentiation between the Rindler and Minkowski

representations. Therefore, the vacuum descriptions in both frameworks are equivalent.

In the context of equations (6.108-6.111), the low acceleration regime recovers the

expressions for the total energy of the Minkowski vacuum and its parts in the dBB in-

terpretation, that is, Ek ≈ k/2, Kk ≈ 0, and Qk ≈ k/2 − Vk. On the other hand, the

guidance equation (6.105) becomes ∂τϕ
R
k ≈ 0, implying in a set of static trajectories where

ϕR
k (τ) = ϕR

k (0). In relation to the average values, we have that

⟨Kk⟩dBB ≈ k sin2(2kτ)e−k/T ≈ 0, (6.130)

⟨Vk⟩dBB ≈ k

4
− k cos(2kτ)e−k/(2T )

2
≈ k

4
, (6.131)

⟨Qk⟩dBB ≈ k

4
+
k cos(2kτ)e−k/(2T )

2
≈ k

4
, (6.132)

⟨Ek⟩dBB ≈ k

2
, (6.133)

meaning that the energy of the field is equally shared between the classical and quantum

potential, with the energy average being precisely the energy of a single harmonic oscillator
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with wave number k = ℏw in the ground state, that is, ⟨Ek⟩dBB = k/2. Thus, the Bohmian

approach of the Rindler vacuum restores the same results of the massless scalar field in

Minkowski space in its ground state, which is a robust consistent test of our findings.

High acceleration limit:

Let us now consider the limit where πk
a

≪ 1, which can be achieved in the regime

of high accelerations (temperatures). In this scenario, two distinct moments need to be

highlighted:

i) τ ̸= nπ/k, with n an integer (classical dominance)

In this case, the coefficients fk(τ) and Ωk(τ) admit the subsequent expansions:

ℜ[fk(τ)] ≈
k

4T sin2(kτ)
, ℑ[fk(τ)] ≈ − cot(kτ),

ℜ[Ωk(τ)] ≈ ln
√
2− 1

2
ln
(
1− cos(2kτ)

)
, ℑ[Ωk(τ)] ≈ −π

2
sign

(
tan(kτ)

)
,

(6.134)

where T is the Unruh temperature. Therefore, this allows us to approximate the wave

functional as

(ΨM
k )0[ϕ

R
k , ϕ

R∗
k , τ ] ≈ k√

4πT

1

| sin(kτ)|
exp

{
− k2

4T sin2(2kτ)
|ϕR

k |2
}
×

exp

{
ik cot(kτ)|ϕR

k |2 − i
π

2
sign(tan(kτ))

}
. (6.135)

An interesting point is that the Bohmian averages are primarily governed by the classical

parts when τ ̸= nπ
k
, with a negligible contribution from the quantum potential. This can

be seen by using the expansions (6.134) in equations (6.125-6.127). As a result,

⟨Kk⟩dBB ≈ T cos2(kτ), (6.136)

⟨Vk⟩dBB ≈ T sin2(kτ), (6.137)

⟨Qk⟩dBB ≈ k2

16T sin2(kτ)
≈ 0, (6.138)

⟨Ek⟩dBB ≈ T, (6.139)

with ⟨Kk⟩dBB and ⟨Vk⟩dBB being oscillatory functions that dictate the field dynamics.

Please note that the total mean energy ⟨Ek⟩dBB is exactly the energy of a thermal dis-

tribution of oscillators at temperature T , in complete agreement with the equipartition

theorem.

ii) τ = nπ/k, with n an integer (quantum dominance)

In the majority part of the time, the total mean energy is primarily determined by the
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classical contributions. However, the situation changes significantly when τ approaches

nπ/k, with n being an integer. In this case, we have that

ℜ[fk(τ)] ≈
4T

k
, ℑ[fk(τ)] = 0,

ℜ[Ωk(τ)] ≈ ln

(
4T

k

)
, ℑ[Ωk(τ)] = 0,

(6.140)

with the wave functional having the simple form

(ΨM
k )0[ϕ

R
k , ϕ

R∗
k , τ ] ≈

√
4T

π
exp

{
−4T |ϕR

k |2
}
.

Then, the mean values are just

⟨Kk⟩dBB ≈ 0, (6.141)

⟨Vk⟩dBB ≈ k2

16T
≈ 0, (6.142)

⟨Qk⟩dBB ≈ T, (6.143)

⟨Ek⟩dBB ≈ T, (6.144)

showing the dominance of the quantum potential over the negligible values of the classical

contributions. This result reveals that the total mean energy is constant, but there is

a notable transition from classical to quantum contributions occurring periodically at

τ = nπ/k, which instigates us to think about the possibility of measuring such an effect.

To illustrate such phenomenon, in Figure 6.3 we plot the graphic of the mean energy,

along with its classical and quantum components, for two distinct scenarios: one with

an intermediate acceleration (a = 1), highlighting the non-trivial temporal variations of

the individual terms present in Hamilton-Jacobi equation, and another with a high value

of the acceleration (a = 100), where we show the sum of the classical energies together

with the quantum potential. In the latter, it is possible to observe the periodic abrupt

transitions from classical to quantum dominance in the vicinity of τ = nπ/k.

As a matter of fact, these abrupt changes can be seen already in the effective Klein-

Gordon equation for the Bohmian field (equation (6.117)). In the high temperature regime

and for τ ̸= nπ/k, is valid the approximation

∂2ϕR
k

∂τ 2
+ k2ϕR

k ≈ k4

16T 2sin2(kτ)
ϕR
k ≈ 0 ; τ ̸= nπ/k. (6.145)

So, the quantum force is negligible, and the Bohmian field obeys a classical Klein-Gordon
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Figure 6.3: Left: Average values for a = 1 and k = 0.1. We observe a quantum dominance
around τ = nπ/k, although the classical terms remain relevant. Right: Average values
for a = 100 and k = 1. In the vicinity of τ = nπ/k, there is an abrupt transition between
the classical (⟨Vk⟩dBB + ⟨Kk⟩dBB) and quantum (⟨Qk⟩dBB) contributions. The quantum
potential rapidly becomes the dominant part of ⟨Ek⟩ dBB as the classical terms suddenly
drop to zero.

equation. For τ = nπ/k, on the other hand, we obtain that

∂2ϕR
k

∂τ 2
+ k2ϕR

k ≈ 16T 2ϕR
k ; τ = nπ/k, (6.146)

indicating that the quantum force drives the field dynamics. Hence, also in this perspec-

tive, there is a substantial change from classical to quantum dominance in the vicinity of

τ = nπ/k. Since the field dynamics are very different for these two distinct moments, it

allows us to speculate whether such an effect can be observed.

6.3.4 Field Trajectories

In this subsection, we derive the general solution to the guidance equations, obtaining

the ensemble of possible field trajectories. Among them, we highlight one particularly

remarkable trajectory with astonishing properties and study its behavior under both low

and high acceleration conditions.

By using the expression (6.101) for ℑ[fk(τ)], we can integrate the guidance equation

(6.105), resulting in the following field trajectory

ϕR
k (τ) = Ck(a)

√
cosh

(
πk

a

)
− cos(2kτ), (6.147)

that can be presented in a more convenient form if we write the integration constant Ck(a)

as Ck(a) = Dk(a)/[2k sinh((πk/a))]
1/2. By doing so,

ϕR
k (τ) =

Dk(a)√
2kℜ[fk(τ)]

= Dk(a)

√√√√√cosh
(

πk
a

)
− cos(2kτ)

2k sinh
(

πk
a

) . (6.148)
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As a result, the probability distribution associated with the field trajectories, namely

|(ΨM
k )0|2, admits a very simple form: the Gaussian distribution |(ΨM

k )0|2 ∝ e−|Dk(a)|2 .

Moreover, each trajectory will possess an energy configuration that depends on the con-

stant Dk(a),

Ek = k

|Dk(a)|2 − 1 + cosh
(

πk
a

)[
cosh

(
πk
a

)
− |Dk(a)|2 cos(2kτ)

]
2

[
cosh

(
πk
a

)
− cos(2kτ)

]
sinh

(
πk
a

) . (6.149)

An immediate consequence of this result is that the total energy of the Bohmian fields

will be time-independent if, and only if, we choose Dk(a) such that |Dk(a)|2 = 1. This

condition is achieved when Dk(a) = exp(iθk(a)), with θk(a) being a real constant. For

this subset of initial conditions, disregarding the normalization factor, the probability dis-

tribution |(ΨM
k )0|2 ∝ e−|Dk(a)|2 is fixed and does not depend on either k or a. Additionally

to this fact, the energy configuration arising from this choice precisely corresponds to the

mean energy (6.123), that is,

Ek = k

(
1

2
+

1

e
2π
a
k − 1

)
. (6.150)

Furthermore, these specific field trajectories exhibit a noteworthy property: each com-

ponent of their total energy exactly matches the average values of their respective con-

tributions, that is, Qk = ⟨Qk⟩dBB, Vk = ⟨Vk⟩dBB, and Kk = ⟨Kk⟩dBB (see equations

(6.127), (6.126), and (6.125)). Thus, the examination of the asymptotic limits of the

mean quantities, as discussed in the preceding subsection, applies to all the Bohmian

fields characterized by Dk(a) = exp(iθk(a)), including the sudden transitions from classi-

cal to quantum dominance occurring periodically at τ = nπ/k. These particular Bohmian

fields follow the mean value evolution exactly. As far as we know, this is the first time

that non-static Bohmian field trajectories with such characteristics are exhibited.

Lastly, the asymptotic behaviors of these particular Bohmian fields, disregarding their

phase, read

ϕR
k =

1− cos(2kτ)e−k/(2T )

√
2k

, T << 1 (6.151)

ϕR
k =

√
2T | sin(2kτ)|

k
, T >> 1 (6.152)

In order to present a proper visualization of these Bohmian trajectories, in Figure 6.4

we plot the graphics of the Bohmian fields (6.148) as functions of τ , considering θk(a) =

0, since the phase dependence is quite trivial. We consider the cases where a = 0.1,

a = 1, a = 10, and a = 100, with each curve representing a different value of the wave
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number. We observe static trajectories in the low-temperature regime, in agreement with

the results in the last subsection. On the other hand, the field trajectories exhibit non-

trivial behavior for high-temperatures, indicating that they become more dynamic as

temperature (acceleration) increases.
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Figure 6.4: The Bohmian trajectories (6.148) as functions of time. Each curve represents
a different value of the parameter k. For low temperatures we have static trajectories,
whereas in the high-temperature regime the field has a non-trivial behavior.

6.3.5 Power Spectrum

An important property that provides us with statistical insights is the power spectrum,

defined as

Pk(τ) =

∫
dξe−ikξ

〈
ϕ(ξ)ϕ(0)

〉
dBB

. (6.153)

Here,
〈
ϕ(ξ)ϕ(0)

〉
dBB

is the two-point correlation function, calculated in dBB interpreta-

tion as an average over all the field configurations. Assuming the quantum equilibrium

hypotheses for the initial conditions, it is possible to establish the equivalence between the

two-point function in the dBB interpretation and the one calculated in the usual manner

[196], which can be expressed as

〈
ϕ(τ, ξ)ϕ(τ, ξ + σ)

〉
dBB

=
〈
ϕ(τ, ξ)ϕ(τ, ξ + σ)

〉
, (6.154)

with

〈
ϕ(τ, ξ)ϕ(τ, ξ + σ)

〉
=

∫
Dϕ|Ψ(ϕ(τ, ξ))|2ϕ(ξ)ϕ(ξ + σ)∫

Dϕ|Ψ(ϕ(τ, ξ))|2
. (6.155)
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The integration measure is expressed as Dϕ ≡
∏

k dϕ
R
k , and we consider the ground

state wave functional (ΨM)0 =
∏

k>0(Ψ
M
k )0 (equation (6.61)) to evaluate the correlations

associated with the Minkowski vacuum. Using the Fourier decomposition (6.76) in terms

of Rindler variables, the two-point function assumes the non-trivial form

〈
ϕ(τ, ξ)ϕ(τ, ξ + σ)

〉
=

∫ ∫ +∞

−∞

dk̄dk̄′

2π
ei(k̄+k̄′)ξeik̄

′σ

∫ ∏
k′′
dϕR

k′′

∏
k>0

|(ΨM
k )0|2ϕR

k̄
ϕR
k̄′∫ ∏

k′′
dϕR

k′′

∏
k>0

|(ΨM
k )0|2

. (6.156)

The probability distribution |(ΨM)0|2 =
∏

k>0 |(ΨM
k )0|2 is proportional to e−2

∫ ∞

0
kℜ[fk(τ)]ϕ

R
k ϕR

−k

(see equation (6.120)), with ϕR∗
k = ϕR

−k. So, if we define the operator

O(k, k′) ≡ −
(
|k||k′|ℜ[fk(τ)]ℜ[fk′(τ)])

)1/2
δ(k + k′), (6.157)

the integral in the exponential is conveniently written as

−2

∫ +∞

0

dkkℜ[fk(τ)]ϕR
k ϕ

R
−k =

∫ +∞

−∞

∫ +∞

−∞
dkdk′ϕR

k O(k, k′)ϕR
k′ . (6.158)

The advantage of such definition is that it permits us to evaluate the integral in the

Rindler modes in terms of the generating functional

Z[jk] =

∫ ∏
k

dϕR
k exp

(∫ +∞

−∞

∫ +∞

−∞
dkdk′ϕR

k O(k, k′)ϕR
k′ +

∫ +∞

−∞
dkϕR

k jk

)
. (6.159)

In fact,

δ2Z[jk′′ ]

δjk̄δjk̄′

∣∣∣∣∣
jk′′=0

=

∫ ∏
k′′

dϕR
k′′ exp

(∫ +∞

−∞

∫ +∞

−∞
dkdk′ϕR

k O(k, k′)ϕR
k′

)
ϕR
k̄ ϕ

R
k̄′ . (6.160)

Thus, the two-point function is simplified to

〈
ϕ(τ, ξ)ϕ(τ, ξ + σ)

〉
=

∫ +∞

−∞

∫ +∞

−∞

dk̄dk̄′

2π
ei(k̄+k̄′)ξeik̄

′σ δ
2Z[jk′′ ]

δjk̄δjk̄′

∣∣∣∣∣
jk′′=0

Z[0]
. (6.161)

The derivatives of the generating functional are determined by implementing the

change of variables ϕR
k = ϕ̃R

k − 1

2

∫
dk′O−1(k, k′)jk′ , where O−1 is the inverse operator

O−1(k, k′) = − δ(k + k′)

|k|ℜ[fk(τ)]
. (6.162)
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After simplification, we obtain that∫ ∫
dkdk′ϕR

k O(k, k′)ϕR
k′ +

∫
dkϕR

k jk =

∫ ∫
dkdk′ϕ̃R

k O(k, k′)ϕ̃R
k′ −

1

4

∫
dkdk′O−1(k, k′)jkjk′ ,

(6.163)

where all the integrals are performed from minus infinity to infinity. Thus, the generating

functional becomes

Z[j] = N exp

(
−1

4

∫ +∞

−∞

∫ +∞

−∞
dkdk′O−1(k, k′)jkjk′

)
, (6.164)

with N =

∫ ∏
k′′
dϕ̃R

k′′ exp

(∫ +∞

−∞

∫ +∞

−∞
dkdk′ϕ̃R

k O(k, k′)ϕ̃R
k′

)
. As a consequence,

δ2Z[jk′′ ]

δjk̄δjk̄′

∣∣∣∣∣
jk′′=0

= −1

2
Z[0]O−1(k̄, k̄′). (6.165)

Inserting this expression into equation (6.161) and using (6.162), we derive the simplified

form of the two-point function:

〈
ϕ(τ, ξ)ϕ(τ, ξ + σ)

〉
=

1

2π

∫ +∞

−∞
dk

e−ikσ

2|k|ℜ[fk(τ)]
. (6.166)

With this result at our disposal, we can finally calculate the power spectrum (6.153)

by setting ξ + σ = 0, yielding

Pk(τ) =
1

2kℜ[fk(τ)]
=

cosh
(

πk
a

)
− cos(2kτ)

2k sinh
(

πk
a

) =
2

k2
⟨Vk⟩dBB . (6.167)

Therefore, the correlations between the field modes appear to be closely connected to

the average classical potential, raising the possibility that this could be a purely classical

effect, without any contribution coming from the quantum potential. This suggests that

this quantity may not be the ideal candidate for observing prominent quantum effects.

Nonetheless, this result is a novelty since such conclusion was only possible because of the

Bohmian interpretation’s unique capability to separate the individual components of the

energy, allowing us to distinguish between contributions of quantum and classical nature.

Perhaps distributions outside the quantum equilibrium hypothesis may generate different

outcomes. For example, in reference [197] is argued that quantum black holes can violate

the Born rule, potentially impacting the Hawking radiation. So, the simple model we have

explored here could serve as a starting point for further investigations into this intriguing

possibility.
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In the regime of high temperatures the power spectrum can be approximated by

Pk(τ) ≈
2T

k2
sin2(kτ), T ≫ 1 (6.168)

while for low temperatures it is independent of time, with

Pk(τ) ≈
1

2k
. T ≪ 1 (6.169)

It is important to highlight that the results presented in this section are specific to the sce-

nario of a single spatial dimension. In cases involving two or more spatial dimensions, the

wave functional displays different dependencies on longitudinal and transverse momenta

with respect to the acceleration direction, as indicated in [191, 181]. While the Bose-

Einstein distribution remains applicable, it is notable that certain quantities lose their

rotational invariance in this context, such as the Bogoliubov coefficients [181] and even

the wave functional itself [191]. In the next section we will start the complete manifold

analysis.

6.4 The complete manifold problem

In the last section, we presented the Bohmian description of the Minkowski vacuum

in Rindler variables obtained for region I in the spacetime diagram shown in Figure 6.1

(−x < t < x and x > 0), involving a half-Fourier transform of the scalar field in terms

of Minkowski variables (equation (6.71)). To describe the vacuum associated with the

entire Minkowski space, we introduce a new set of Rindler variables that covers the left

side as well, providing an analytical extension for the Rindler modes. These two-wedge

coordinates are

RR-wedge (x > 0): LR-wedge (x < 0):

x =
eaξR

a
cosh (aτ) x = −e

aξL

a
cosh (aτ)

t =
eaξR

a
sinh (aτ) t = −e

aξL

a
sinh (aτ).

(6.170)

In Figure 6.5 bellow, we represent this set of coordinates. Region I, where −x < t < x

and x > 0, corresponds to the right-wedge problem studied in the last section. As we

saw, in this region ∂τ is the timelike Killing vector associated with temporal translations.

On the other hand, in region IV of the diagram, where x < t < −x and x < 0, the

associated timelike Killing vector is ∂−τ = −∂τ , which is past-directed. This means that
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as τ increases, the temporal variable t decreases, with this region referred as left-Rindler

wedge.

IIV

II

III

x

t

Figure 6.5: Diagram for the two-wedges problem. The right-Rindler wedge (region I)
is the same one presented in the last section. The left-Rindler wedge (region IV) is a
time-reversed copy of region I, with past-directed evolution (thick curves). The dashed
lines represent the hypersurfaces of constant time.

The diagram of the two-wedge geometry is quite similar to what occurs in the black

hole situation, since the time evolves in opposite directions in the timelike regions I and

IV, which exhibit similar characteristics to those observed in the extended Schwarzschild

geometry. Additionally, regions II and III are causally analogous to a black hole and a

white hole, respectively, with the horizons identified as t = ±x. Therefore, the study of

the de Broglie-Bohm analysis of the two-wedge problem can pave the way to the under-

standing of quantum effects associated with black holes according to this interpretation.

Moreover, the two-wedge perspective introduces novel characteristics to the Unruh effect,

with manifestation also in Hawking radiation. For example, it establishes a non-local

connection between the fields defined in distinct wedges [198]. Given that the Bohmian

mechanics is inherently non-local, this alternative perspective offers an intriguing point of

view that holds potential for future investigations. In this section we will address the Un-

ruh effect for the complete manifold problem, focusing on the two-wedge scalar massless

field in (1 + 1)−dimensions, giving the de Broglie-Bohm’s description.

6.4.1 The vacuum wave functional for the two-wedge problem

We will follow the steps presented in the first part of section 6.3 and derive the wave

functional of the Minkowski vacuum in Rindler variables considering the right and left

wedges. In section 6.2, we saw that the ground state wave functional is (equation (6.64))

(ΨM)0[ϕ
M
k , ϕ

M∗
k , t] =

∏
k

(
ωk

π

)1/4

 exp

(
−1

2

∫ ∞

−∞
|k||ϕM

k |2dk

)
e−iΩ0t, (6.171)
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where, this time, we have assumed the complete Fourier decomposition of the field, that

is,

ϕ(t, x) =

∫ ∞

−∞

dk√
2π
eikxϕM

k (t), (6.172)

with ϕM∗
k = ϕM

−k because the reality of ϕ. So, in an effort to obtain the Rindler description

of the Minkowski vacuum, we must provide the appropriate expansion of the scalar field

in Rindler modes, where it is essential to consider both wedges to cover the right and left

sides. Specifically, we have that

ϕ(τ, ξ) = θ(x)

∫ ∞

−∞

dk√
2π
eikξRϕR

k (τ) + θ(−x)
∫ ∞

−∞

dk√
2π
eikξLϕL

k (τ), (6.173)

with ξR and ξL the Rindler coordinates defined in (6.170).

Inverting equation (6.172) allows us to express ϕM
k in terms of ϕ. Thus, the field

expansion with respect to the Rindler modes implicates that

ϕM
k =

∫ ∞

−∞
dk′AR(k, k′)ϕR

k′ +

∫ ∞

−∞
dk′AL(k, k′)ϕL

k′ . (6.174)

For τ = 0, the coefficients AR(k, k′) and AL(k, k′) are

AR(k, k′) =
1

2π

∫ ∞

−∞
dxe−ikxeik

′ξR(x)θ(x) = − i

2πa
Γ

(
1 +

ik′

a

) ∣∣∣∣ka
∣∣∣∣−1−i k

′
a
(
θ(k)e

πk′
2a − θ(−k)e−

πk′
2a

)
,

AL(k, k′) =
1

2π

∫ ∞

−∞
dxe−ikxeik

′ξL(x)θ(−x) = − i

2πa
Γ

(
1 +

ik′

a

) ∣∣∣∣ka
∣∣∣∣−1−i k

′
a
(
θ(−k)e

πk′
2a − θ(k)e−

πk′
2a

)
,

(6.175)

therefore satisfying AL(k, k′) = AR(−k, k′) and AL(−k, k′) = AR(k, k′). The Minkowski

vacuum is, then,

(ΨM)0[ϕ
R
k , ϕ

R∗
k , 0] = N0 exp

(
−I
2

)
, (6.176)

with the integral I given by

I =

∫ ∞

−∞
dk|k||ϕM

k |2 =
∫ ∞

−∞
dk|k|

∑
i,j=R,L

∫ ∞

−∞

∫ ∞

−∞
dk′dk′′I ij(k, k′, k′′)ϕi

k′ϕ
j
k′′ . (6.177)
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The coefficients I ij(k, k′, k′′) are identified as

I ij(k, k′, k′′) ≡ Ai(k, k′)Aj(−k, k′′)

=
1

4π2a2
Γ

(
1 +

ik′

a

)
Γ

(
1 +

ik′′

a

) ∣∣∣∣ka
∣∣∣∣−2− i

a
(k′+k′′)

M ij(k, k′, k′′), (6.178)

with the M ij(k, k′, k′′) elements such that

MRR(k, k′, k′′) = θ(k)e
π
2a

(k′−k′′) + θ(−k)e− π
2a

(k′−k′′),

MRL(k, k′, k′′) = −θ(k)e π
2a

(k′+k′′) − θ(−k)e− π
2a

(k′+k′′),

MLR(k, k′, k′′) = −θ(k)e− π
2a

(k′+k′′) − θ(−k)e π
2a

(k′+k′′),

MLL(k, k′, k′′) = θ(k)e−
π
2a

(k′−k′′) + θ(−k)e π
2a

(k′−k′′).

(6.179)

As we did in the last section, it is convenient to solve the integrals in k first. Hence,

it is interesting to rearrange equation (6.177) in the following form

I =
∑

i,j=R,L

∫ ∞

−∞

∫ ∞

−∞
dk′dk′′Γ

(
1 +

ik′

a

)
Γ

(
1 +

ik′′

a

)
ϕi
k′ϕ

j
k′′ × J ij(k′, k′′), (6.180)

with

J ij(k′, k′′) =
1

4π2a2

∫ ∞

−∞
dk|k|

∣∣∣∣ka
∣∣∣∣−2− i

a
(k′+k′′)

M ij(k, k′, k′′). (6.181)

Using the expressions for theM ij in equation (6.179), we can reformulated these integrals

in terms of delta functions in such manner that

JRR = JLL =
a

π

(
1

a

)− i
a
(k′+k′′)

cosh

[
π

2a
(k′ − k′′)

]
δ(k′ + k′′),

JRL = JLR = −a
π

(
1

a

)− i
a
(k′+k′′)

cosh

[
π

2a
(k′ + k′′)

]
δ(k′ + k′′).

(6.182)

Then, using this result and the same properties concerning the gamma functions we used

in the single-wedge problem, we finally obtain

I =

∫ ∞

−∞
dk′

[
k′ coth

(
πk′

a

)(
|ϕR

k′|2 + |ϕL
k′ |2
)
− k′ csch

(
πk′

a

)(
ϕR
k′ϕ

L∗
k′ + ϕL

k′ϕ
R∗
k′

)]
. (6.183)

As a result, the Minkowski vacuum (6.176) in the hypersurface t = τ = 0 admits the
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following expression in terms of Rindler variables:

(ΨM)0 = N0 exp

−1

2

∫ ∞

−∞

[
−k coth

(
πk

a

)(
|ϕR

k |2 + |ϕL
k |2
)
+ k csch

(
πk

a

)(
ϕR
k ϕ

L∗
k + ϕL

kϕ
R∗
k

)] .

(6.184)

Therefore, in addition to the individual contributions of each wedge given by the terms

|ϕR
k |2 and |ϕL

k |2 inside the exponential, there are also mixed terms involving ϕR
k ϕ

L∗
k and

ϕL
kϕ

R∗
k , indicating a non-trivial correlation between ϕR

k and ϕL
k . In other words, the vacuum

is not composed simply by the sum of the contributions from each individual wedge, but

it also contains a kind of mixture concerning the field modes from both sides. In fact, is

precisely this second contribution the responsible for the entanglement between the right

and left wedges observed in [198]. In the regime of low accelerations, coth (πk/a) ≈ 1 and

csch (πk/a) ≈ 0, implying that, in this limit, this wave functional is the product of the

individual ground states corresponding to the right and left sides and does not exhibit

entanglement properties. This occurs because, as a approaches to zero, the Minkowski

and Rindler spaces become equivalent.

Notably, the wave functional (6.184) aligns with the normal mode decomposition given

in (6.61). So, it can be decomposed as a product of the form (ΨM)0 =
∏

k>0(Ψ
M
k )0, where

is possible to identify that

(ΨM
k )0[ϕ

R
k , ϕ

R∗
k , ϕL

k , ϕ
L∗
k , 0] = Nk exp

[
−k coth

(
πk

a

)(
|ϕR

k |2 + |ϕL
k |2
)

+k csch

(
πk

a

)(
ϕR
k ϕ

L∗
k + ϕL

kϕ
R∗
k

)]
. (6.185)

As such, a suitable ansatz for the ground state wave functional at a generic time τ is

(ΨM
k )0 = Nk exp

(
−kFk(τ)

(
|ϕR

k |2 + |ϕL
k |2
)
+ kGk(τ)

(
ϕR∗
k ϕL

k + ϕR
k ϕ

L∗
k

)
+Θk(τ)

)
, (6.186)

with Fk(τ), Gk(τ), and Θk(τ) coefficients to be determined. The Rindler Hamiltonian in

this case is the sum of the Hamiltonians in each wedge (see equation (6.77)), that is,

HR =

∫ ∞

0

dk

(
− ∂2

∂ϕR
k ∂ϕ

R∗
k

+ k2|ϕR
k |2
)

+

∫ ∞

0

dk

(
− ∂2

∂ϕL
k∂ϕ

L∗
k

+ k2|ϕL
k |2
)
. (6.187)

Since each (ΨM
k )0 satisfies an independent Schrödinger equation, we obtain that

i
∂(ΨM

k )0
∂τ

=

(
− ∂2

∂ϕR∗
k ∂ϕR

k

− ∂2

∂ϕL∗
k ∂ϕ

L
k

+ k2
(
|ϕR

k |2 + |ϕL
k |2
))

(ΨM
k )0, (6.188)
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which leads to the set of differential equations

i

k

∂Fk

∂τ
− (F 2

k +G2
k) + 1 = 0,

i

k

∂Gk

∂τ
− 2FkGk = 0,

i

k

∂Ωk

∂τ
− 2Fk = 0, (6.189)

with Fk(0) = coth
(

πk
a

)
, Gk(0) = csch

(
πk
a

)
, and Ωk(0) = 0 as the initial conditions. The

solution is,

Fk(τ) = coth

(
πk

a
+ 2ikτ

)
, Gk(τ) = csch

(
πk

a
+ 2ikτ

)
, (6.190)

and

Θk(τ) = − ln

[
sinh

(
πk

a
+ 2ikτ

)]
, (6.191)

where we absorb the integration constant coming from Θk in the normalization factor.

Note the similarity with the solution for the right-wedge case (equations (6.96) and (6.97)).

The value ofNk is determined through the requirement that

∫
|(ΨM

k )0|2dϕR
k dϕ

R∗
k dϕL

k dϕ
L∗
k =

1, implying that

Nk(τ) =
k

π
sinh

(
πk

a

)
. (6.192)

In what follows, we will give the de Broglie-Bohm’s approach concerning the wave func-

tional (6.185).

6.4.2 Bohmian interpretation for the two wedges

Because of the non-trivial correlation between the field modes in both wedges observed

in the wave functional, the field on the right side depends on the field on the left side,

even without an interaction between them. This mutual dependence is evident when we

look at the dBB guidance equations. So, turning to the Bohmian theory and expressing

the wave functional in the polar form (ΨM
k )0 = Rke

iSk reveals that

Rk = Nk exp
(
−kℜ[Fk(τ)]

(
|ϕR

k |2 + |ϕL
k |2
)
+ kℜ[Gk(τ)]

(
ϕR
k ϕ

L∗
k + ϕL

kϕ
R∗
k

)
+ ℜ[Θk(τ)]

)
Sk = −kℑ[Fk(τ)]

(
|ϕR

k |2 + |ϕL
k |2
)
+ kℑ[Gk(τ)]

(
ϕR
k ϕ

L∗
k + ϕL

kϕ
R∗
k

)
+ ℑ[Θk(τ)],

(6.193)
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with the real and imaginary parts of Fk(τ) and Gk(τ) being

ℜ[Fk(τ)] =
sinh

(
2πk
a

)
cosh

(
2πk
a

)
− cos(4kτ)

, ℑ[Fk(τ)] =
− sin(4kτ)

cosh
(

2πk
a

)
− cos(4kτ)

, (6.194)

ℜ[Gk(τ)] =
2 sinh

(
πk
a

)
cos (2kτ)

cosh
(

2πk
a

)
− cos(4kτ)

, ℑ[Gk(τ)] =
−2 cosh

(
πk
a

)
sin (2kτ)

cosh
(

2πk
a

)
− cos(4kτ)

, (6.195)

whereas for Θk(τ),

ℜ[Θk(τ)] = −1

2
ln

[
cosh2

(
πk

a

)
− cos2(2kτ)

]
, ℑ[Θk(τ)] = − tan−1

(
coth

(
πk

a

)
tan(2kτ)

)
.

(6.196)

Inserting the polar decomposition of (ΨM
k )0 into Schrödinger equation (6.188) leads to

the usual dBB equations,

∂Sk

∂τ
+
∑
i=R,L

( ∂Sk

∂ϕi∗
k

∂Sk

∂ϕi
k

)
+ k2|ϕi

k|2
− 1

Rk

∑
i=R,L

(
∂2Rk

∂ϕi
k∂ϕ

i∗
k

)
= 0 (6.197)

and

∂R2
k

∂τ
+
∑
i=R,L

 ∂

∂ϕi
k

(
R2

k

∂Sk

∂ϕi∗
k

)
+

∂

∂ϕi∗
k

(
R2

k

∂Sk

∂ϕi
k

) = 0, (6.198)

which consist of the Hamilton-Jacobi and continuity equations. While R2
k is interpreted as

the field probability distribution,
∂Sk

∂ϕR
k

and
∂Sk

∂ϕL
k

correspond to the velocity fields, yielding

the dBB guidance equations

∂ϕR
k

∂τ
=

∂Sk

∂ϕR∗
k

= −kℑ[Fk(τ)]ϕ
R
k + kℑ[Gk(τ)]ϕ

L
k , (6.199)

∂ϕL
k

∂τ
=

∂Sk

∂ϕL∗
k

= −kℑ[Fk(τ)]ϕ
L
k + kℑ[Gk(τ)]ϕ

R
k . (6.200)

Hence, according to these, a change in ϕR
k has an immediate effect on ϕL

k and vice-versa,

indicating a non-local connection between them, which, in this case, is not an exclusive

feature of Bohmian interpretation but rather a characteristic of the two-wedge problem. In

this regard, Bohmian Mechanics effectively addresses this issue due to its non-local nature.

This is further supported by the effective Klein-Gordon equations for the Bohmian fields,
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since

∂2ϕR
k

∂τ 2
+ k2ϕR

k = k2(ℜ2[fk] + ℜ2[gk])ϕ
R
k − 2k2ℜ[fk]ℜ[gk]ϕL

k (6.201)

∂2ϕL
k

∂τ 2
+ k2ϕL

k = k2(ℜ2[fk] + ℜ2[gk])ϕ
L
k − 2k2ℜ[fk]ℜ[gk]ϕR

k . (6.202)

As in the previous section, we can identify the total energy and its components from

the Hamilton-Jacobi equation (6.197):

Ek(τ) ≡ −1

2

(
∂Sk

∂τ

)
, Kk(τ) ≡

1

2

[(
∂Sk

∂ϕR∗
k

∂Sk

∂ϕR
k

)
+

(
∂Sk

∂ϕL∗
k

∂Sk

∂ϕL
k

)]
,

Vk(τ) ≡
k2

2

(
|ϕR

k |2 + |ϕL
k |2
)
, Qk(τ) ≡ − 1

2Rk

(
∂2Rk

∂ϕR
k ∂ϕ

R∗
k

− ∂2Rk

∂ϕL
k∂ϕ

L∗
k

)
,

(6.203)

with each part being the sum of the contributions coming from the right and left wedges.

From equation (6.193), we obtain the corresponding expressions in terms of Fk(τ), Gk(τ)

and Θk(τ), which are

Ek(τ) =
1

2

[
k
∂ℑ[Fk]

∂τ

(
|ϕR

k |2 + |ϕL
k |2
)
− k

∂ℑ[Gk]

∂τ

(
ϕR
k ϕ

L∗
k + ϕL

kϕ
R∗
k

)
− ∂ℑ[Θk]

∂τ

]
,

Kk(τ) =
1

2

[
k2
(
ℑ2[Fk] + ℑ2[Gk]

) (
|ϕR

k |2 + |ϕL
k |2
)
− 2k2ℑ[Fk]ℑ[Gk]

(
ϕR
k ϕ

L∗
k + ϕL

kϕ
R∗
k

)]
,

Vk(τ) =
1

2

(
k2|ϕR

k |2 + k2|ϕL
k |2
)
,

Qk(τ) = −1

2

[
k2
(
ℜ2[Fk] + ℜ2[Gk]

) (
|ϕR

k |2 + |ϕL
k |2
)
− 2k2ℜ[Fk]ℜ[Gk]

(
ϕR
k ϕ

L∗
k + ϕL

kϕ
R∗
k

)
− 2kℜ[Fk]

]
.

(6.204)

Despite the rather complicated form due to the cross terms present in the last equalities

and its non-local effect in dBB guidance equations, these expressions simplify considerably

when we introduce the field variables

χ1,k =
ϕR
k + ϕL

k√
2

, χ2,k =
ϕR
k − ϕL

k√
2

. (6.205)

In fact, these variables have the capacity to decouple the system into two independent

states, so that the wave functional can be written as the product

(ΨM
k )0 =

k

π
eΘk(τ) sinh

(
πk

a

)
e−kH1,k(τ)|χ1,k|2e−kH2,k(τ)|χ2,k|2

≡ Ψ1,k[χ1,k, χ
∗
1,k, τ ]⊗Ψ2,k[χ2,k, χ

∗
2,k, τ ], (6.206)
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with

H1,k ≡ Fk −Gk = tanh

(
πk

2a
+ ikτ

)
, H2,k ≡ Fk +Gk = coth

(
πk

2a
+ ikτ

)
, (6.207)

in such a wise that

ℜ[H1,k(τ)] =
sinh

(
πk
a

)
cosh

(
πk
a

)
+ cos(2kτ)

, ℑ[H1,k(τ)] =
sin(2kτ)

cosh
(

πk
a

)
+ cos(2kτ)

, (6.208)

ℜ[H2,k(τ)] =
sinh

(
πk
a

)
cosh

(
πk
a

)
− cos(2kτ)

, ℑ[H2,k(τ)] = − sin(2kτ)

cosh
(

πk
a

)
− cos(2kτ)

. (6.209)

So, Ψ1,k and Ψ2,k represent two separated states, with Ψ2,k corresponding to a squeezed

state [199], characterized by a squeezing parameter rk such that tanh rk = e−πk/a, and a

squeezing angle αk = −kτ . Similarly, Ψ1,k can be viewed in the same manner but with

the squeezing angle rotated by π/2. With this parameterization, we obtain that

ΨA,k[χA,k] ∝ exp

(
−k1 + e2iαk tanh rk

1− e2iαk tanh rk
|χA,k|2

)
, (6.210)

with A = 1, 2. Note that H2,k has the same expression as fk(τ) in equation (6.96). Then,

Ψ2,k can be understood in the same manner as the right-wedge wave functional, but

with ϕR
k substituted for χ2,k. Analogously, Ψ1,k corresponds to the left-wedge version of

the ground state (6.93). Therefore, the decomposition (6.206) can be interpreted as the

product of two decoupled Minkowski wave functionals in Rindler-like variables.

In terms of χ1,k and χ2,k, the energy components of the Hamilton-Jacobi equation and

the total energy itself are simplified to

Ek(τ) =
1

2

[
k
∂ℑ[H1,k]

∂τ
|χ1,k|2 + k

∂ℑ[H2,k]

∂τ
|χ2,k|2 −

∂ℑ[Θk]

∂τ

]
,

Kk(τ) =
1

2

[
k2ℑ2[H1,k(τ)]|χ1,k|2 + k2ℑ2[H2,k(τ)]|χ2,k|2

]
,

Vk(τ) =
1

2

[
k2|χ1,k|2 + k2|χ2,k|2

]
,

Qk(τ) =
1

2

[
k
(
ℜ[H1,k(τ)] + ℜ[H2,k(τ)]

)
− k2

(
ℜ2[H1,k(τ)]|χ1,k|2 + ℜ2[H2,k(τ)]|χ2,k|2

)]
,

(6.211)

with no presence of crossed terms. Furthermore, the guidance equations are decoupled
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into two independent equations

∂χ1,k

∂τ
= −kℑ[H1,k(τ)]χ1,k,

∂χ2,k

∂τ
= −kℑ[H2,k(τ)]χ2,k, (6.212)

a property that also extends to the effective Klein-Gordon equations,

∂2χ1,k

∂τ 2
+ k2χ1,k = k2ℜ2[H1,k(τ)]χ1,k, (6.213)

∂2χ2,k

∂τ 2
+ k2χ2,k = k2ℜ2[H2,k(τ)]χ2,k, (6.214)

which, as before, are Klein-Gordon-type equations supplemented by a linear source of

quantum origin. In the forthcoming subsections, we will proceed to derive Bohmian

averages, investigate the limits of low and high accelerations, and subsequently compute

the field trajectories.

6.4.3 Mean values for the extended geometry

The Bohmian averages related to the field trajectories considering the two wedges are

calculated as follows:

⟨O(τ)⟩dBB =

∫
Dϕk

∣∣∣Ψk[ϕ
R
k , ϕ

R∗
k , ϕL

k , ϕ
L∗
k , τ ]

∣∣∣2O(ϕR
k , ϕ

R∗
k , ϕL

k , ϕ
L∗
k , τ), (6.215)

with Dϕk = dϕR
k dϕ

R∗
k dϕL

k dϕ
L∗
k the integration measure. However, due the complexity of

the wave functional (6.186), it is more straightforward to compute the mean values in

terms of χ1,k and χ2,k, which provides

⟨O(τ)⟩dBB =

∫
Dχk

∣∣∣Ψk[χ1,k, χ
∗
1,k, χ2,k, χ

∗
2,k, τ ]

∣∣∣2O(χ1,k, χ
∗
1,k, χ2,k, χ

∗
2,k, τ), (6.216)

with Dχk = dχ1,kdχ
∗
1,kdχ2,kdχ

∗
2,k.

In those variables,

|Ψk|2 =
k2

π2
ℜ[H1,k(τ)]ℜ[H2,k(τ)]e

−2kℜ[H1,k(τ)]|χ1,k|2e−2kℜ[H2,k(τ)]|χ2,k|2 . (6.217)

So, according to the relations (6.211) and the previous form of the probability density,

the average values of the kinetic energy Kk, the classical potential Vk, and the quantum
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potential Qk are

⟨Kk⟩dBB =
k

4

(
ℑ2[H1,k(τ)]

ℜ[H1,k]
+

ℑ2[H2,k(τ)]

ℜ[H2,k]

)
=

k coth
(

πk
a

)
sin2(2kτ)

cosh
(

2πk
a

)
− cos(4kτ)

, (6.218)

⟨Vk⟩dBB =
k

4

(
1

ℜ[H1,k(τ)]
+

1

ℜ[H2,k(τ)]

)
=
k

2
coth

(
πk

a

)
, (6.219)

⟨Qk⟩dBB =
k

4

(
ℜ[H1,k(τ)] + ℜ[H2,k(τ)]

)
=

k sinh
(

2πk
a

)
2

[
cosh

(
2πk
a

)
− cos(4kτ)

] , (6.220)

while for the total energy, we have that

⟨Ek⟩dBB = k coth

(
πk

a

)
= 2k

(
1

2
+

1

e
2π
a
k − 1

)
. (6.221)

which is twice the value obtained for the right-wedge case. This result is consistent with

the fact that each wedge should contribute with the same amount of energy, as we can

see by equation (6.187). Note that, in this case, the average of the classical potential

is time-independent, being half the value of the total mean energy. In Figure (6.6), we

examine the behavior of the Bohmian averages for different values of the acceleration pa-

rameter. For τ = 0, we have an equivalence between quantum and classical contributions,

since ⟨Qk⟩dBB = ⟨Vk⟩dBB. Conversely, for τ = π/4, this equality is valid only for low

accelerations, with ⟨Qk⟩dBB dropping to zero as a increases.

〈Ek 〉dBB 〈Qk 〉dBB

〈Vk 〉dBB 〈Kk 〉dBB

k=1, τ=0
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a

(a) k = 1.0 and τ = 0

〈Ek 〉dBB 〈Qk 〉dBB

〈Vk 〉dBB 〈Kk 〉dBB

k=1, τ=
π

4
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(b) k = 1.0 and τ = π/4

Figure 6.6: The mean values as functions of the parameter a for τ = 0 and τ = π/4. Note
that for τ = 0, ⟨Qk⟩dBB = ⟨Vk⟩dBB.

As we did in section (6), it is possible to determine the mean number of Rindler

particles in the Minkowski vacuum through the Hamiltonian operator Ĥk = (2n̂k + 1) k,

since we have two massless non-interacting scalar fields. Thus, ⟨nk⟩dBB = ( 1
k
⟨Ek⟩dBB −

1)/2, which implies that

⟨nk⟩dBB =
1

e
2π
a
k − 1

, (6.222)
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being precisely the Bose-Einstein distribution with Unruh temperature T = a/2π.

6.4.4 Low and high acceleration regimes

Low acceleration limit:

Let us suppose a regime of low accelerations in such wise that πk
a

≫ 1. In this limit,

the following expansions for the wave functional coefficients are valid

ℜ[H1,k(τ)] ≈ ℜ[H2,k(τ)] ≈ 1, ℑ[H1,k(τ)] ≈ ℑ[H2,k(τ)] ≈ 0,

ℜ[Θk(τ)] ≈ − k

2T
, ℑ[Θk(τ)] ≈ −2kτ,

(6.223)

with (ΨM
k )0 becoming

(ΨM
k )0[χ1,k, χ2,k, τ ] ≈

k

π
e−k|χ1,k|2−k|χ2,k|2−2ikτ

≈

(√
k

π
e−k|ϕR

k |2−ikτ

)(√
k

π
e−k|ϕL

k |
2−ikτ

)
. (6.224)

This is precisely the product of the Rindler vacuums in equation (6.79) for the right and

left wedges, indicating that in this limit the vacuum defined in the entire Minkowski space

and in the extended Rindler geometry are equivalent.

The energy components of the Hamilton-Jacobi equation are approximately equal to

those associated with the ground state of two non-interacting fields in Minkowski space,

that is, Ek = k, Kk ≈ 0, and Qk = k − Vk. Moreover, the guidance equations ∂τχk,1 ≈ 0

and ∂τχk,2 ≈ 0 lead to static solutions in terms of the χ variables, χk,1(τ) = χk,1(0)

and χk,2(τ) = χk,2(0), characteristic also present in the original fields ϕR
k (τ) = ϕR

k (0) and

ϕL
k (τ) = ϕL

k (0), reflecting the equivalence between Minkowski and Rindler vacuums in this

limit. Regarding the mean values we have that

⟨Kk⟩dBB ≈ 2k sin2(2kτ)e−k/T ≈ 0, (6.225)

⟨Vk⟩dBB ≈ k

2
+ ke−k/T ≈ k

2
, (6.226)

⟨Qk⟩dBB ≈ k

2
+ k cos(4kτ)e−k/T ≈ k

2
, (6.227)

⟨Ek⟩dBB ≈ k. (6.228)

Once more, we recover the familiar de Broglie-Bohm representation of the Minkowski

vacuum state, with the field energy equally distributed between the classical and quantum

potentials, while its kinetic energy remains negligible.
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High acceleration limit:

Now, let us consider the expansions for the wave functional coefficients in the limit

when πk
a

≪ 1, that is to say, the regime of high accelerations. As before, we have two

distinct scenarios for this situation:

i) τ ̸= nπ/(2k), with n a an integer (classical dominance)

This first case is characterized by a classical dominance, where

ℜ[H1,k(τ)] ≈
k

4T cos2(kτ)
, ℑ[H1,k(τ)] ≈ tan(kτ),

ℜ[H2,k(τ)] ≈
k

4T sin2(kτ)
, ℑ[H2,k(τ)] ≈ − cot(kτ),

ℜ[Ωk(τ)] ≈ ln
√
2− 1

2
ln
(
1− cos(4kτ)

)
, ℑ[Ωk(τ)] ≈ −π

2
sign

(
tan(2kτ)

)
,

(6.229)

with the Minkowski wave functional being

(ΨM
k )0[χ1,k, χ

∗
1,k, χ2,k, χ

∗
2,k, τ ] ≈

k2

2πT

1

| sin(2kτ)|
exp

{
− k2

4T cos2(kτ)
|χ1,k|2 −

k2

4T sin2(kτ)
|χ2,k|2

}
×

exp

{
i

[
−k tan(kτ)|χ1,k|2 + k cot(kτ)|χ2,k|2 −

π

2
sign

(
tan(kτ)

)]}
.

(6.230)

As a consequence, the mean values are such that

⟨Kk⟩dBB ≈ T, (6.231)

⟨Vk⟩dBB ≈ T, (6.232)

⟨Qk⟩dBB ≈ k2

4T sin2(2kτ)
≈ 0, (6.233)

⟨Ek⟩dBB ≈ 2T. (6.234)

In this regime, the classical components, the kinetic and classical potential energies, ac-

count for the entire total energy of 2T , while we have a negligible contribution from the

quantum potential.

ii) τ = nπ/(2k), with n a an integer (quantum transition)

Similar to the right-wedge case, the classical components predominantly influence the

average energy ⟨Ek⟩dBB for most part of the time. Nevertheless, a significant shift occurs
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in the vicinity of τ = nπ/(2k). In this case, we have that

ℜ[H1,k(τ)] ≈
k

4T
, ℑ[H1,k(τ)] ≈ 0,

ℜ[H2,k(τ)] ≈
4T

k
, ℑ[H2,k(τ)] ≈ 0,

ℜ[Ωk(τ)] ≈ ln

(
4T

k

)
, ℑ[Ωk(τ)] ≈ 0,

(6.235)

implying in a wave functional of the form

(ΨM
k )0[χ1,k, χ

∗
1,k, χ2,k, χ

∗
2,k, τ ] ≈

k

π
exp

{
− k2

4T
|χ1,k|2 − 4T |χ2,k|2

}
. (6.236)

Regarding the Bohmian averages we obtain

⟨Kk⟩dBB ≈ 0, (6.237)

⟨Vk⟩dBB ≈ T, (6.238)

⟨Qk⟩dBB ≈ T, (6.239)

⟨Ek⟩dBB ≈ 2T, (6.240)

meaning that the energy now is shared between the classical and quantum potentials,

with no contribution of the kinetic component.

As previously stated, the average of the classical potential remains constant over time

and always contributes with half of the total mean energy. The remaining part is now

furnished by the mean kinetic energy, marked by sudden transitions to the dominance of

the mean quantum potential occurring periodically around τ = nπ/(2k). Consequently,

in the two-wedges case, the periodic spikes involve solely the mean kinetic and quantum

potential energies, interchanging half of the total energy.

It is interesting to examine the behavior of the Bohmian averages in relation to χ1,k

and χ2,k separately. Since the coefficient H2,k that accompanies χ2,k is equal to fk of the

right-wedge case (equation (6.96)), the contributions of χ2,k to the total energy and its

components exhibit the same patterns as previously discussed in the non-extended case.

Hence, this mode is responsible for the abrupt spikes occurring at τ = nπ/k in the high

temperature regime, marking the transitions from classical to quantum dominance. For

the χ1,k, on the other hand, the coefficient H1,k can be derived from H2,k substituting the

denominator cosh
(

πk
a

)
− cos(2kτ) for cosh

(
πk
a

)
+ cos(2kτ) (as delineated in equations

(6.208,6.209)). Thus, the properties are similar but the jumps between classical and
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quantum predominance attributable to χ1,k occur in the vicinity of τ =
(
n+ 1

2

)
π
k
.

In Figure 6.7 we plot two graphics of the average values ⟨Kk⟩dBB, ⟨Vk⟩dBB, and

⟨Qk⟩dBB: the first corresponds to an intermediate acceleration (a = 1), while the second

relates to a high value of the acceleration parameter (a = 100). We observe that ⟨Kk⟩dBB

and ⟨Qk⟩dBB exhibit opposite behaviors. When one reaches its maximum amplitude,

the other have a minimum value, with both periodically interchanging their contribution

to the total energy. For higher accelerations, abrupt transitions occur, as illustrated in

the right plot. The difference between the two-wedges problem illustrated bellow and

the single-wedge in Figure 6.3 lies precisely in the presence of spikes at π/2 and 3π/2,

representing the moments when τ =
(
n+ 1

2

)
π
k
. As a result of the wave functional decom-

position (6.206), (ΨM
k )0 = Ψ1,kΨ2,k can be regarded as the product of two single-wedge

wave functionals for the field modes χ1,k and χ2,k, respectively, with the right-wedge rep-

resented by Ψ2,k and the left-wedge by Ψ1,k. In this sense, the additional spikes result

from considering the left version of the single-wedge problem in the wave functional.

〈Qk〉dBB 〈Vk〉dBB 〈Kk〉dBBk=0.1 , a=1

0 5 π 10 π
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Figure 6.7: Left: Plot of the Bohmian averages for a = 1 and k = 0.1. Right: The
same plot, but considering a = 100 and k = 1. Notice the sudden transitions in the
neighborhood of τ = nπ/(2k). The spikes at τ = nπ/k are a consequence of χ2,k, while
the spikes at τ =

(
n+ 1

2

)
π/k are attributed to χ1,k.

Similar to the right-wedge case, this effect is also evident from the effective Klein-

Gordon equations for χ1,k and χ2,k, namely the expressions (6.213) and (6.214). Con-

cerning the field χ2,k, we have the same relations presented in the previous section, hence

yielding the same limits for ϕR
k in (6.145) and (6.146). Concerning the mode χ1,k, however,

the high temperature limit implies that

∂2χ1,k

∂τ 2
+ k2χ1,k ≈

k4

16T 2cos2(kτ)
χ1,k ≈ 0 ; τ ̸=

(
n+

1

2

)
π

k
, (6.241)

indicating a negligible quantum force for τ ̸=
(
n+ 1

2

)
π
k
, with the Bohmian field obeying

a classical Klein-Gordon equation, while

∂2χ1,k

∂τ 2
+ k2χ1,k ≈ 16T 2χ1,k ; τ =

(
n+

1

2

)
π

k
, (6.242)
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revealing an effective mass that drives the field dynamics when τ =
(
n+ 1

2

)
π
k
. As a

consequence, the abrupt changes at τ = nπ/(2k) are not an exclusive property of the

Bohmian averages, but also occurring in the field equations of motion. In fact, this effect

is observable even at the wave function level, suggesting that it may not be an exclusive

attribute of the Bohmian interpretation. However, the significance of this effect becomes

distinctly evident when viewed through this alternative perspective.

6.4.5 Extended field trajectories

Like the situation in the non-extended Rindler geometry, we encounter a particu-

lar field configuration, solution to dBB guidance equations (6.212), exhibiting analogous

properties of the average values to those discussed in the previous subsection. Specifically,

we obtain that

χ1,k(τ) =
D1,k√

2kℜ[H1,k(τ)]
, χ2,k(τ) =

D2,k√
2kℜ[H2,k(τ)]

. (6.243)

The trajectories probability density assumes a very simplified form, resembling a Gaus-

sian shape: |Ψk|2 ∝ e−|D1,k(a)|2−|D2,k(a)|2 . Just as discussed in section (6), field config-

urations with |D1,k| = |D2,k| = 1 represent the exclusive scenario for Bohmian fields

with time-independent energy, mirroring the average value outlined in equation (6.221).

Moreover, for these specific Bohmian trajectories each component of the total energy

precisely matches its respective average, meaning that Kk = ⟨Kk⟩dBB, Vk = ⟨Vk⟩dBB,

and Qk = ⟨Qk⟩dBB. Hence, the asymptotic limits established in the previous subsec-

tion hold true for every individual Bohmian field characterized by the phases D1,k(a) =

exp(iθ1,k(a)), D2,k(a) = exp(iθ2,k(a)), including the periodic abrupt transitions from clas-

sical kinetic to quantum potential dominance discussed earlier.

The asymptotic tendencies of these specific Bohmian fields, without considering their

phase, can be expressed as

χ1,k =
1 + cos(2kτ)e−k/(2T )

√
2k

, χ2,k =
1− cos(2kτ)e−k/(2T )

√
2k

, T << 1. (6.244)

χ1,k =

√
2T | cos(kτ)|

k
, χ2,k =

√
2T | sin(kτ)|

k
, T >> 1. (6.245)

In Figure 6.8, we show the field trajectories (6.243) for the original fields ϕR
k and ϕL

k as

functions of the Rindler time, assuming θ1,k = θ2,k = 0. We investigate different situations

ranging from low (a = 0.1) to high (a = 100) temperature regimes. For each case, we plot

distinct trajectories considering different values of the parameter k, reveling a non-trivial

behavior. We have static trajectories in the low-temperature domain, consistent with

the predictions of Bohmian Mechanics. In contrast, at elevated temperatures, the field

trajectories present intricate patterns. Therefore, with the increase of the temperature,
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the field trajectories become more dynamic.
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Figure 6.8: The field trajectories, plotted as functions of time, with θ1,k = θ2,k = 0. Each
curve represents a distinct value of k. Within the low-temperature domain, both ϕR

k and
ϕL
k exhibit static trajectories. As we approach the high-temperature conditions the field

dynamics become considerably more complex.

6.4.6 Power Spectrum for the complete manifold problem

Addressing the two-wedge scenario, our goal in this last part is to derive the power

spectrum for the right and left modes. In order to consider the correlations of ϕR
k and

ϕL
k with themselves, besides the crossed correlations regarding the right and left sides as
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well, we define

(P ij)k(τ) =

∫ ∞

−∞
dξe−ikξ

〈
ϕi(ξ)ϕj(0)

〉
dBB

, (6.246)

with ϕi representing the inverse Fourier transform of ϕi
k, where i, j = R,L. Additionally,

in terms of the field variables χ1,k and χ2,k, we have that

(PAB)k(τ) =

∫ ∞

−∞
dξe−ikξ

〈
χA(ξ)χB(0)

〉
dBB

, (6.247)

where χA is the inverse Fourier transform associated with χA,k, and A,B = 1, 2. Through

a straightforward implementation of the steps presented in subsection 6.3.5, we obtain

the correlations among χ1 and χ2, having, as a result

〈
χA(ξ)χB(0)

〉
dBB

=
1

2π

∫ ∞

−∞
dkeikξ

δAB

2|k|ℜ[HA,k(τ)]
. (6.248)

This indicates a null crossed correlation, a consequence of the wave functional be a direct

product of two independent states (equation (6.206)). The nonzero components of the

associated power spectrum are

(P11)k(τ) =
1

2kℜ[H1,k(τ)]
=

cosh
(

πk
a

)
+ cos(2kτ)

2k sinh
(

πk
a

) , (6.249)

(P22)k(τ) =
1

2kℜ[H2,k(τ)]
=

cosh
(

πk
a

)
− cos(2kτ)

2k sinh
(

πk
a

) , (6.250)

The expansion in the high temperature regime give us a very simple expression, with

(P11)k(τ) ≃
2T

k2
cos2(kτ), (P22)k(τ) ≃

2T

k2
sin2(kτ), T ≫ 1. (6.251)

For low temperatures, on the other hand, we have a constant power spectrum,

(P11)k(τ) ≃ (P22)k(τ) ≃
1

2k
, T ≪ 1. (6.252)

These findings exhibit a remarkable parallel with the results obtained in the right-wedge

scenario, primarily because the wave functional (6.206) behaves like two independent

Minkowski ground states. As a matter of fact, (P 11)k and (P 22)k are closely related with

the respective classical potential contributions attributable to χ1,k and χ2,k. Specifically,

(P11)k(τ) =
2

k2
⟨V1,k⟩dBB , (P22)k(τ) =

2

k2
⟨V2,k⟩dBB , (6.253)
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where V1,k =
1
2
k2|χ1,k|2 and V2,k =

1
2
k2|χ2,k|2.

The original correlations
〈
ϕi(ξ)ϕj(0)

〉
dBB

can be expressed in terms of
〈
χA(ξ)χb(0)

〉
dBB

,

resulting in the following power spectrum

(PRR)k(τ) = (PLL)k(τ) =
1

4k

(
1

ℜ[H1,k(τ)]
+

1

ℜ[H2,k(τ)]

)
=

coth
(

πk
a

)
2k

, (6.254)

(PRL)k(τ) = (PLR)k(τ) =
1

4k

(
1

ℜ[H1,k(τ)]
− 1

ℜ[H2,k(τ)]

)
=

cos(2kτ)

2k sinh
(

πk
a

) , (6.255)

with the presence of non-null correlations between the right and left modes. Intriguingly,

the power spectrum associated with modes in the same side are related to the mean value

of the total classical potential,

(PRR)k(τ) = (PLL)k(τ) =
1

k2
⟨Vk⟩dBB , (6.256)

suggesting that such correlations could have a classical nature.

For high-temperature conditions,

(PRR)k(τ) = (PLL)k(τ) ≃
T

k2
, (PRL)k(τ) = (PLR)k(τ) ≃

T

k2
cos(2kτ). (6.257)

It’s worth noting that on the common spacelike hypersurfaces at t = τ = 0, the findings

derived above align with the power spectrum of a classical field at a finite temperature in

Minkowski space, as obtained in references [200, 201].

Conversely, for low accelerations the power spectrum becomes

(PRR)k(τ) = (PLL)k(τ) ≃
1

2k
, (PRL)k(τ) = (PLR)k(τ) ≃ 0, (6.258)

with negligible correlations between the right and left sides. In such regime, the effect of

the horizon is notably weak, in such manner that the correspondent non-local connection

between the left and right wedges can be disregarded.
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Chapter 7

Concluding Remarks

In this second part, we explored the dynamics of a massless scalar field in the context

of Rindler spacetime, adopting the de Broglie-Bohm (dBB) framework. Our investigation

had the primary goal of comprehending Bohmian aspects related to the Unruh effect.

Initially, we focused on the right Rindler wedge, further extending our analysis to include

the left side as well. In both scenarios, we derived Hamilton-Jacobi-like equations for

the Bohmian fields, along with their corresponding guidance equations. This approach

allowed us to recover the well-established results associated with a Bohmian scalar field

in the Minkowski vacuum in the context of low accelerations.

By applying dBB methods to scenarios involving arbitrary accelerations, we computed

the average energy, deriving the Bose-Einstein distribution with the Unruh temperature

as the mean value of the total energy. Since the initial field configuration satisfies the

Born rule, the final results obtained through the dBB approach should be identical to

that achieved using the standard techniques. So, on the surface, it may seem like there’s

nothing fundamentally new. However, the dBB approach, utilizing the Hamilton-Jacobi-

like equation for the Bohmian fields, provides a different perspective on this phenomenon.

It enables the separation of the total mean energy into classical and quantum components,

which is not possible with the standard approach. Specifically, the total energy is the sum

of a kinetic and a classical potential contributions, together with the quantum potential

term.

Inspecting these terms, we observed a periodic interchange between the quantum and

classical components as the leading cause of temperature-related effects, more pronounced

for large accelerations. To be exact, in the regime where a/k ≫ 1, this alternation between

quantum and classical behaviors exhibits sudden, sharp transitions around τ = nπ/(2k),

with n an integer. It remains uncertain whether these effects can be experimentally

observed. It’s worth noting that, assuming the Born rule, the statistical predictions of the

dBB quantum theory align with those of the conventional approach. However, exploring

a quantum phenomenon from an alternative perspective may provide insights into novel

experimental consequences that are challenging to discern using the traditional viewpoint
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[202]. In our current scenario, the abrupt shifts from classical to quantum dominance do

not seem to be mere artifacts of the dBB approach, since they also manifest at the wave

functional level (see equations (6.100) and (6.186) for a/k ≫ 1), suggesting the possibility

of experimental observations.

We addressed the guidance equations, leading to the discovery of a rather unique

Bohmian field configuration where individual total energy, classical potential, classical

kinetic energy, and quantum potential all coincided precisely with their respective mean

values, also leading to an effective Unruh temperature. Intriguingly, this configuration

also unveiled a time-independent energy with the effective Unruh temperature. So, the

presence of the Unruh temperature is not limited to an averaged property of the quantum

state, but it is manifest even with an individual field configuration. Additionally, we

demonstrate that the Bohmian field in the Rindler space obeys an effective Klein-Gordon

equation, with a temperature-dependent effective mass, according to equations (6.145),

(6.146), (6.241) and (6.242). Given their resemblance to quantum fields, these equations

may offer opportunities for constructing analog models of the Unruh effect.

In our exploration of the complete manifold scenario, we have uncovered the non-local

characteristics inherent to the guidance equations governing the Bohmian field modes

localized in the right and left wedges (equations (6.199) and (6.200)). It is notable that the

behavior of the right (left) mode is influenced by the left (right) mode, despite their spatial

separation by a horizon. This analysis may provide valuable insights into comprehending

the entanglement between these two field modes and exploring potential ramifications.

Such findings may serve as a stepping stone for conducting further analysis within the

context of black hole phenomena.

As a final speculative consideration, we have commented that the dBB approach may

yield distinct outcomes compared to standard quantum theory under certain circum-

stances. Particularly, when the distribution of initial field configurations deviates from

the Born rule, the dBB approach might exhibit different behaviors before eventually

reaching quantum equilibrium. Given the ensemble of field configurations as described in

equations (6.148) and (6.243) and considering distributions of the integration constants

DA,k(a) that differ from |Ψk|2 at some initial time, it would be interesting to investigate

what kind of particle distribution would emerge, any possible associated temperature, and

the time required to reach the quantum equilibrium. In a related context, reference [197]

has proposed the possibility of quantum black holes violating the Born rule, potentially

affecting the Hawking radiation. The simplified model we have examined here may serve

as a point of departure for conducting more precise investigations into this intriguing

prospect.
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[149] H. Poincaré, Les méthodes nouvelles de la mécanique céleste: Méthodes de MM.

Newcomb, Gyldén, Linstadt et Bohlin Vol. 2. (Gauthier-Villars et fils, imprimeurs-

libraires, 1893).

130

https://reference.wolfram.com/language/ref/FindRoot.html
https://reference.wolfram.com/language/ref/FindRoot.html
https://reference.wolfram.com/language/tutorial/UnconstrainedOptimizationMethodsForSolvingNonlinearEquations.html
https://reference.wolfram.com/language/tutorial/UnconstrainedOptimizationMethodsForSolvingNonlinearEquations.html


[150] A. A. Andronov and A. Witt, Sur la théorie mathématique des auto-oscillations,
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[176] J. R. Muñoz de Nova, K. Golubkov, V. I. Kolobov, and J. Steinhauer, Observation

of thermal Hawking radiation and its temperature in an analogue black hole. Nature

569, 688 (2019).

[177] J. Steinhauer, Observation of quantum Hawking radiation and its entanglement in

an analogue black hole. Nature Phys. 12, 959 (2016).

132



[178] R. Balbinot, A. Fabbri, S. Fagnocchi, A. Recati, and I. Carusott, Nonlocal density

correlations as a signature of Hawking radiation from acoustic black holes. Phys. Rev.

A 78, 021603(R) (2008).

[179] F. Belgiorno, S. L. Cacciatori, M. Clerici, V. Gorini, G. Ortenzi, L. Rizzi, E. Rubino,

V. G. Sala, and D. Faccio Hawking Radiation from Ultrashort Laser Pulse Filaments.

Phys. Rev. Lett. 105, 203901 (2010).

[180] Mera, G. A review on the Unruh Effect and the Thermofield-double state. arXiv-

hepth: 2001.09869v1.

[181] Crispino, L. C. B.; Higuchi, A.; Matsas, G. E. A. The Unruh effect and its applica-

tions. Rev. Mod. Phys. 2008, 80, 787–838.

[182] Frodden, E.; Valdés, N. Unruh Effect: Introductory notes to quantum effects for

accelerated observers. Int. J. Mod. Phys. A 2018, 33, 1830026.

[183] W. G. Unruh and R. M. Wald, What happens when an accelerating observer detects

a Rindler particle, Phys. Rev. D 29, 1047 (1984).

[184] Struyve, W. Pilot-wave approaches to quantum field theory. J. Phys. Conf. Ser. 2011,

306, 012047.

[185] Duerr, D.; Goldstein, S.; Tumulka, R.; Zanghi, N. Bohmian mechanics and quantum

field theory. J. Phys. A 2005, 38 R1.

[186] Hatifield, B., Quantum Field Theory of Point Particles and Strings (Frontier in

Physics)(Addison-Wesley Publishing Company, Redwood City, California,1992).

[187] Bohm, D.; Hiley, B. J.; Kaloyerou, P.N An ontological basis for the quantum theory.

Phys. Rep. 1987, 144, 321-375;

[188] Bohm, D.; Hiley, B. J.; Kaloyerou, P.N. An ontological basis for the quantum theory

Pt 2.. Phys. Rep. 1987, 144, 349-375;

[189] Kaloyerou, P.N. The causal interpretation of the electromagnetic field. Phys. Rep.

1994, 244, 287;

[190] Kaloyerou, P.N. The causal interpretation of quantum fields and the vacuum. Found.

Phys. Lett. 2000, 13, 41–54;

[191] Freese, K.; Hill, C.T.; Mueller, M. Covariant Functional Schrödinger Formalism

and Application to the Hawking Effect. Nucl.Phys.B 1985, 255, 693-716.

[192] Rindler, W. Hyperbolic Motion in Curved Space Time, Phys. Rev. 1960, 119, 2082.

133



[193] Rindler, W. Kruskal Space and the Uniformly Accelerated Frame, American Journal

of Physics 1966, 34, 1174.

[194] N. N. Bogoliubov, On a new method in the theory of superconductivity. Nuovo Cim.

7, 794 (1958);

[195] J. G. Valatin, Comments on the theory of superconductivity. Nuovo Cim. 7, 843

(1958);

[196] N. Pinto-Neto, G. Santos, and W. Struyve, Quantum-to-classical transition of pri-

mordial cosmological perturbations in de Broglie–Bohm quantum theory Phys. Rev.

D 85, 083506 (2012).

[197] A. Valentini, Beyond the Born rule in quantum gravity, Found. Phys. 53, 6 (2023).

[198] Unruh, W. G.; Wald, R. M.; What happens when an accelerating observer detects a

Rindler particle Phys. Rev. D 1984, 29, 1047-1056.

[199] C. Kiefer, Hawking radiation from decoherence, Class. Quantum Gravity 18, L151

(2001).

[200] Aarts, G.; Smit, J. Classical approximation for time dependent quantum field theory:

Diagrammatic analysis for hot scalar fields. Nucl.Phys.B 1998, 511, 451-478.

[201] Aarts, G. The Classical approximation for real time scalar field theory at finite

temperature. Contribution to 5th International Workshop on Thermal Field Theories

and Their Applications. hep-ph/9809339.

[202] X. Oriols and J. Mompart, Applied Bohmian Mechanics: from Nanoscale Systems

to Cosmology (Singapore: PanStanford Publishing, 2019)

[203] R. Omnès, The Interpretation of Quantum Mechanics (Princeton University Press:

Princeton, NJ, USA, 1994).

[204] N. Pinto-Neto The de Broglie-Bohm Quantum Theory and Its Applications to Quan-

tum Cosmology. Universe 7, 134 (2021).

[205] N. Pinto-Neto and J. C. Fabris, Quantum cosmology from the de Broglie-Bohm

perspective. Class. Quant. Grav. 30, 143001 (2013).

[206] J. A. Barros, N. Pinto-Neto, and M. A. Sagioro-Leal, The causal interpretation of

dust and radiation fluid non-singular quantum cosmologies, Phys. Lett. A 241, 229

(1998).

[207] N. Pinto-Neto, Bouncing Quantum Cosmology Universe 241, 110 (2021).

134
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