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Abstract
In this work, we present a collection of results obtained from different research projects. In the

first part, we investigate the so-called quantum-to-classical transition under the lens of coarse-grained
measurements. We show that imprecision is a key ingredient for such transition to take place, and
establish a critical value for imprecision, above which it is possible to prepare a state with magnetization
in two perpendicular directions simultaneously well-defined. We also explore how irreversible dynamics
can arise from reversible closed-system dynamics, when one only has partial access to the degrees of
freedom of the physical system being studied. Using coarse-graining methods, we indicate what are the
conditions that determine whether the emerging dynamics are reversible or not.

On the second part, we explore several areas of quantum information foundations. We first develop a
method to characterize quantum contextuality when dimension restrictions are imposed on the system,
a problem that could not, so far, be tackled efficiently. We also introduce a semi-device independent
procedure to certify, in a bipartite steering scenario, that one of the parties is able to perform at least
a certain number of measurements. Finally, we explore the framework of process matrices to investigate
scenarios of indefinite causal order and shine light on the role of signaling in imposing limitations to what
processes are physical and what are not possible.

Keywords: coarse-graining, entropic uncertainty relation, steering, contextuality
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Resumo
Nesse trabalho, apresentamos uma coleção de resultados obtidos de diferentes projetos de pesquisa.

Na primeira parte, investigamos a chamada transição clássico-quântico sob a lente de medições em coarse-
graining. Mostramos que imprecisão é um ingrediente chave para que tal transição ocorra, e estabelecemos
um valor cŕıtico para a imprecisão, acima do qual é posśıvel preparar um estado com magnetização em
duas direções perpendiculares simultaneamente bem befinidas. Também exploramos como dinâmicas
irreverśıveis podem emergir de dinâmicas de sistemas fechados (e portanto, reverśıveis), quando só se
tem acesso parcial aos graus de liberdade do sistema de interesse. Usando métodos de coarse-graining,
indicamos quais as condições para determinar se a dinâmica emergente é reverśıvel ou não.

Na segunda parte, exploramos diversas áreas de fundamentos da mecânica quântica. Primeiro, de-
senvolvemos um método para caracterizar contextualidade quântica quando restrições de dimensão são
impostas ao sistema, um problema até então sem solução eficiente. Também introduzimos um procedi-
mento semi-device independent para certificar, em um cenário bipartido de steering, que uma das partes é
capaz de realizar pelo menos um certo número de medições. Finalmente, exploramos o uso de matrizes de
processo para investigar cenários de ordem causal indefinida e iluminar o papel de sinalização em impor
limitações f́ısicas a processos, definindo quais são posśıveis e quais não.

Palavras-chave: coarse-graining, relações entrópicas de incerteza, steering, contextualidade
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destruir mural milenar, pelas consultorias clandestinas pra meter o shape, pelas caronas de bike pra cima
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Introduction

When I meet new people and go through that initial exchange of basic information, I usually get
the same reaction upon stating that I am PhD candidate in physics, specifically in the field of quantum
mechanics: they either state something about how they hated physics in high school or they actually
get somewhat interested and start making questions. Sooner or later in the conversation they realize
there is a huge gap between Hollywood blockbuster quantum mechanics and what I actually do in my
research, and get a bit disappointed or, to my dismay, even bored (though I have intentionally picked
my research topics in order to maximize their “conversa de bar” potential). Time travel in outer space,
multiverse quantum realm, or the infamous flux capacitor aren’t really quantum mechanics, I argue, and
the dreaded question usually follows: “OK, so what is quantum mechanics?”. And the answer is... well,
I don’t know either.

Any undergrad student by the end of their program can tell you about the postulates of quantum
mechanics, or apply Schrödinger’s equation in a range of scenarios, and yet, in a sense, I have spent
the last four years trying to answer this very question (without hopes, or even the ambition, of actually
doing so). To me, the complexity of this matter is made more evident if one evaluates the complementary
question: what isn’t quantum mechanics?

If one takes the atomic hypothesis and accepts that every physical system is emerging as the result of
a microscopic world, then it must be that understanding our everyday domain should boil down to the
characterization of this underlying system (as complex as this description may be). If one admits this
universality argument, then, in a sense, everything is quantum and quantum mechanics can be applied
to systems on any size scale, at least in principle.

Stating that “everything is quantum” and calling it a day, however, is somewhat unsatisfactory,
as it sure does not seem that everything is quantum. Where is everyday non-locality, measurement
incompatibility or contextuality in our lives? Quantum mechanics has so many unique aspects to it when
compared with classical physics, that it takes extra steps to make the universality argument compatible
with the seemingly non-quantum experience with have of the world.

In this work, I tried to approach the dichotomy between quantum and classical regimes by two
fronts. The first one, presented in part I is by gliding the abstract quantum-classical frontier and using
coarse-grained measurements to explore the descriptions that arise. In chapter 1, we directly tackle
the transition that must take place between a quantum and a classical description of a system. We
investigate how performing macroscopic measurements can make it possible to prepare a state that has
two simultaneously well-defined quantities even if their associated observables do not commute. This feat,
notoriously prohibited in a usual microscopic scenario, is achieved by making the model for macroscopic
measurements more realistic and considering imprecision in our evaluations. In chapter 2, we investigate
how having only coarse-grained access to a physical system can make irreversible effective dynamics
emerge from a closed microscopic evolution. We show what is the necessary interplay between coarse-
graining maps and microscopic evolutions that yields reversible dynamics on the effective level, and
propose a quantifier for uncertainty in such scenarios that physically motivates which dynamics will be
reversible or not.

On the second front, presented in part II, we explore some of the very features that make quantum
mechanics unique, highlighting a contrast with classical regimes. In chapter 4 we provide a method
to characterize the set of d-quantum behaviors, that is, the probability distributions that can result
from a quantum realization with a system of dimension d. Additionally, we improve former methods to
evaluate non-contextuality inequalities when a dimension restriction must be observed. In chapter 5 we
construct a set of increasingly strong criteria to establish, in a bipartite steering scenario, a lower bound
to the number of incompatible measurements to which Alice has access. In a one-way-device-independent
fashion, Bob can construct a series of semidefinite programs that test these conditions by only using the
information to which he has access. Finally, in chapter 6, we presently the preliminary results obtained
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from studying geometrical properties of the space of process matrices, the main tool used to investigate
scenarios of indefinite causal order. We explore the role of signaling in determining which processes are
physical and simplify a series of tasks from a semidefinite program into a set of linear equations.

Before we move on, I must highlight that this document is the physical manifestation of four years of
hard work but not only from my side. I owe a share of this thesis to the collaborators that contributed to
these projects, either directly by doing themselves part of the calculations or indirectly by discussing my
results with me. The projects presented in part I were developed under the supervision of my advisor,
Fernando de Melo, at CBPF, and our work in chapter 1 is already published [1]. In chapter 2, we
present the work we developed alongside Raul Vallejos (who was also responsible for a great deal of the
calculations, to which I made minor adaptions for more specific cases) and Frederico Borges de Brito,
now at its final stages before being compiled in a definite manuscript. The projects in part II result
from external collaborations. In chapter 4, we present a project conducted online with Xiaodong Yu and
Otfried Gühne, available as a pre-print [2] and awaiting peer-review. Chapter 5 features the outcome
of a research project conducted during my period as a visitor at University of Siegen, in collaboration
with Martin Plávala and Otfried Gühne. This project is concluded and a manuscript pre-print will follow
shortly. Finally, in chapter 6 we present a work in progress still on earlier stages, whose development
started during my visit to the Young Independent Research Group at Vienna, in collaboration with
Yelena Guryanova and Fionnuala Curran.
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Part I

Coarse-graining approach to effective
descriptions
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Chapter 1

Entropic uncertainty relations and
the quantum-to-classical transition

As far as our scientific knowledge goes, the world is fundamentally quantum. Figuring among science’s
most successful theories, quantum mechanics can make astonishingly precise predictions concerning in-
creasingly small systems. Indeed, scientists can, for instance, describe the mechanism behind the Casimir
effect and measure forces with ridiculous precision [3]. As impressive as these developments are, how-
ever, they only push the boundaries of quantum mechanics in one direction, namely the microscopic
realm. We have no evidence disputing its validity in small-scale systems, nevertheless the universality of
quantum mechanics is not a consensus among scientists: the weakest link to its universal application are
macroscopic systems.

If instead of looking downwards toward progressively small orders of magnitude we shift our gaze to
bigger, macroscopic systems, we find that in fact quantum mechanics is not an apparent key constituent
of our everyday lives. Of course, macroscopic effects of quantum mechanics can be found [4, 5, 6], but its
most distinctive and intriguing features are loudly absent. To name a few, we do not routinely experience
entanglement or tunneling in our everyday lives, neither do we endure quantum superpositions or collapses
of wave functions.

The question that naturally arises is: can one characterize this transition? Where is the cut between
the quantum and the classical realm, if there is a cut at all? The contrast between these two extreme
paradigms is indisputable, and yet not enough is known about what lies in the middle even though this
matter has been tackled since the dawn of the field. Schrödinger, for instance, presented us with his “cat
paradox” [7], illustrating the odd scenarios that come up when we naively push quantum mechanics into
macroscopic descriptions.

As old as the pioneering attempts of translating quantum mechanics into our everyday lives are,
this whole endeavor is far from being out-dated. Enticing more than foundational interest (as if it
was not enough), the need for establishing the frontiers between quantum and classical is an increasingly
pressing matter. Experimental efforts made it possible to investigate physical systems of considerable size
[8, 9, 10, 11], and recent developments [12, 13, 14] suggest that soon a quantum computer of mesoscopic
dimension may be achievable.

Setting the quantum-classical boundary is particularly relevant for the latter, since it would help
preserve the very “quantumness” of bigger physical systems, a matter that must be addressed if one
expects a quantum computer to be able to significantly outperform classical computation. On one hand,
outlining this transition is fundamental to understand the mechanism through which physical systems
lose their quantum properties in the macroscopic limit; on the other, it prescribes attributes to preserve
if one wants to actually retain quantum features in a macroscopic system.

To that end, much has been expanded since the times of Schrödinger. For instance, the understanding
that quantum systems should not be treated as completely isolated has sparked the decoherence argument
[15, 16, 17], since Schrödinger’s equation can only be used to describe isolated systems. In a similar
direction, quantum Darwinism [18] highlights the essential role played by the interaction between the
physical system and its environment in generating decoherence, as well as the vanishing of quantum
features [19, 20]

Decoherence alone, however, does not settle the mystery of the quantum-to-classical transition. As a
theory designed to address the consistency between the dynamics and statistics of open quantum systems
and the predictions of classical physics, it says nothing about closed systems (which we would likewise
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expect to exhibit classical features when large enough). In fact, as pointed out for instance in [21], the
“quantumness” of the system of interest leaks to the environment and the total system remains quantum.
It seems that the decoherence argument, in some aspects, defers the question of the quantum-to-classical
transition by redefining where to look, and thus does not completely answer it. Further criticism of
its claims of solving the measurement problem and the collapse of the wave-function can be found in
[22, 23, 24].

A major contribution to solving the classical enigma is provided by the more recently developed field
of quantum information, namely the coarse-graining method. In this approach, it is argued that the
resolution of the description of the physical system will dictate whether quantum features are preserved
or not: with access to highly precise measurements one can still observe genuine quantum behavior,
while coarse-grained measurements may cause such traits to vanish [25, 26, 27]. Some pieces of this huge
puzzle are already in the game: it is known, for instance, that imprecise measurements might render
the violation of both Bell and Leggett-Garg inequalities unachievable [28, 29, 30]. Likewise, it is shown
that if one only has access to coarse-grained descriptions then entanglement and superposition might also
vanish [31, 32, 33, 34].

A main piece still missing, nevertheless, concerns the preparation of macroscopic quantum systems.
Among the typical quantum element absent in our ordinary macroscopic life, preparation uncertainty
relations are perhaps one of the most distinctive. Even though both classical and quantum scenarios
can be described through the formalism of observables, a striking feature of the latter is that they must
additionally obey such uncertainty relations. Unlike classical systems, a quantum system cannot be
prepared in such a way that it will have both position and momentum simultaneously well-defined [35].

With these motivations in mind, we will follow the direction given by coarse-graining arguments
and use the formalism to explain why macroscopic systems don’t seem to obey preparation uncertainty
relations, or rather, why these relations only impose restrictions that are trivially obeyed. In particular,
we will employ entropic uncertainty relations to show a mechanism through which one may prepare a
macroscopic quantum system that has total magnetization in perpendicular directions simultaneously
well defined, a feat that would be prohibited for microscopic systems. This chapter will report the results
presented in [1] and adopt the following outline: first, we discuss preparation uncertainty relations and
motivate the use of entropic uncertainty relations in spite of Heisenberg’s uncertainty principle; next, we
examine the preparation of macroscopic states and suggest we focus our efforts on studying the particular
subclass of spin-coherent quantum states; finally, we propose a model for macroscopic measurements that
successfully yields the emergence of classical behavior in macroscopic quantum systems.

Figure 1.1: On top of having central relevance in physics, preparation uncertainty relations also figures
among the main quantum features that have reached pop-culture [36]

1.1 Preparation uncertainty relations

1.1.1 Heisenberg uncertainty principle

Consider the following scenario: in a lab, a quantum state ρ is prepared. Two observables, A and B
can me measured, and one wants to determine how well-defined these two quantities are for ρ. To gather
statistics, many runs of an experiment must be performed, where one prepares ρ and measures A. The
resulting outcomes of each run are recorded and presented in a probability distribution. The very same
procedure is adopted for B, and one ends up with two distributions, one for each observable.
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A common measure for how well-defined the properties associated to A and B are is the spread of the
outcome distributions. Intuitively, a well-defined quantity should yield precise results producing narrow
distributions with small spread, and bigger spreads are associated to poorly defined properties whose
outcomes are more uncertain. To capture this notion, we are virtually always introduced to Heisenberg’s
uncertainty principle [37] on quantum mechanics courses, usually presented in the form

∆p∆x ≥ h̄

2
, (1.1)

where ∆Q is the variance of an operator Q with respect to the state ρ, calculated as

∆Q =

√
⟨Q2⟩ − ⟨Q⟩2. (1.2)

⟨Q⟩ = Tr[Qρ] is, in turn, the mean value of Q with respect to ρ. This relation was extended to any two
observables by Robertson [38] and reads, for a pure state |ψ⟩, as

∆A∆B ≥ 1

2
|⟨ψ| [A,B] |ψ⟩ |. (1.3)

Mathematically, this expression states that there is a lower bound for the product of variances of any
two observables given a fixed state preparation. Physically, this preparation uncertainty relation restricts
how precise two properties can be, and we can only prepare a state with A and B simultaneously well-
defined if these observables commute, or if |ψ⟩ is a common eigenstate of A and B.

This imprecision of the outcomes of a measurement are at the core of our quest for a better under-
standing of the quantum-to-classical transition, as its origins are twofold. The first source is a plain,
classical one, namely the restrictions one faces in a lab. There will always be experimental limitations,
and finding the exact value of a physical quantity is a hopeless task, though it is possible to achieve
astonishing precision. The second source stems in the very nature of quantum mechanics, and determin-
ing the true value of any quantity is impossible because they are fundamentally undetermined. Part of
the imprecision lies in the technology to which one has access and can be reduced with clever designs of
experiments, but another part lies in the nature of quantum physics and cannot be circumvented.

Heisenberg-like uncertainty relations (HUR) play an important role in the debate over the essence
of quantum imprecision, a topic that we will explore to investigate the quantum-to-classical transition.
More generally, preparation uncertainty relations are a tool that can be used to study certain aspects
of an experiment and state whether they are consistent with a scenario operating in a classical or a
quantum regime. In a classical paradigm (unlike a quantum one) one would presume such uncertainty
relations to play no significant role, since there is no restriction to the preparation of physical systems and
their well-defined properties. Hence, the expectation is that as we deal with increasingly bigger systems
and approach the macroscopic limit, then the lower bound on the uncertainty of its properties should
progressively decrease, eventually reaching zero. Only if such a behavior is verified can we explain why
classical observables no longer seem to abide by the rules that govern quantum observables, as in fact
they are automatically satisfied, imposing no further restrictions on classical systems.

The relation presented in eq. (1.3) can be used to that end. Suppose one wants to evaluate the
restrictions over preparing a state with observables AN and BN simultaneously well-defined. AN and BN
are defined considering N , the number of particles in the physical system. For low N , if the observables do
not commute then the r.h.s. of eq. (1.3) will be different from zero, meaning they cannot be simultaneously
well-defined. However, as N → ∞ this lower bound should also approach zero, allowing the state to be
prepared in a way that both AN and BN are determined, as it is in classical regimes.

Nevertheless, we will argue that alternative preparation uncertainty relation should be employed
instead, as Heisenberg-like uncertainty relations have a few limitations and will pose some major incon-
veniences, from which we highlight the three most relevant.

We start by pointing out that the bound in HURs is state dependent. The main issue it causes is
that increases or decreases in the variance associated to A do not necessarily impose any restrictions on
B, since these can be easily compensated by accordingly changing |ψ⟩. If one wants HUR to make a
statement about the observables, one could perhaps consider a minimization over all possible states

∆A∆B ≥ min
|ψ⟩

1

2
|⟨ψ| [A,B] |ψ⟩ |. (1.4)

However, choosing |ψ⟩ to be in the kernel of A will always make this lower bound vanish. In fact, the
l.h.s. would also vanish and not much is learned.
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Secondly, HUR is not defined for the most general measurement operators. A positive operator valued
measure (POVM) is a set of n operators Ei (POVM elements) obeying Ei ≥ 0 (positivity) and

∑
iEi = 1

(completeness). With HUR one could only analyze quantities associated to projective measurements,
where the elements must additionally be orthogonal.

Finally, Heisenberg-like uncertainty relations are sensitive to re-scaling. Since the uncertainty around
an observable is measured by the variance of the probability distribution of its outcomes, a simple change
of eigenvalues will tamper with the product of ∆A and ∆B , an undesired feature, as the eigenvalues of
A and B are somewhat arbitrary. If A and B do not commute one can still change their eigenvalues and
make the norm of their commutator approach zero, even if no alterations are made to their eigenvectors
(so A and B still do not commute. As a result, the only meaning we can draw from HURs is whether
the lower bound it imposes on ∆A∆B is zero or not, since non-zero values can be inter-exchanged freely
by a re-scaling that has no concrete effects.

Let us look into the example of measurements of total magnetization in the perpendicular directions
x and z. In a quantum regime, these measurements depict a notorious example of the impossibility
of preparing a state with two well-defined characteristics. However, there is no restriction to these
quantities in macroscopic systems: both are simultaneously well-defined for a single preparation in the
classical world. Somewhere in the middle a transition must take place, and von Neumann [39] had already
suggested that , for the case of position and momentum, macroscopic observables are commuting versions
of the “true” quantum observables. It is not uncommon to have the quantum-to-classical transition laid
out to us in a simplistic way in introductory quantum mechanics courses, where merely taking the limit
N → ∞ should get the job done. Indeed, an inattentive reader might agree with this claim. Take the
normalized, dimensionless observables of total magnetization in three orthogonal directions

XN =
1

N

N∑
i=1

σ
(i)
x

2
, YN =

1

N

N∑
i=1

σ
(i)
y

2
, ZN =

1

N

N∑
i=1

σ
(i)
z

2
, (1.5)

where N is the number of 1/2-spin particles and σ
(i)
k , with k ∈ {x, y, z}, is the k-th Pauli matrix acting

on the i-th particle. These observables are defined for different numbers of particles, and as N increases
we approach a description of a macroscopic measurement of total magnetization. If we evaluate the
commutator between, say, XN and ZN , we get

[XN , ZN ] =
−iYN
N

, (1.6)

and in the macroscopic limit we, indeed, get

lim
N→∞

||[XN , ZN ]||= 0. (1.7)

Now, plug this result into the r.h.s. of HUR in eq. (1.3) and we see that the lower bound on the product
∆XN

∆ZN
tends to zero, as expected in the classical limit.

One might be tempted to dismiss it as a case-closed, but it is necessary to point out that for no finite
value of N will this limit actually reach zero nor will XN , ZN share a common eigenvector. Given HUR’s
sensitivity to re-scalings, the fact that the lower bound will never be zero cannot be overlooked and thus
this proposed solution does not solve much.

It is necessary, then, to find more reliable uncertainty relations that will not be susceptible to
these shortcomings, constructed from objects more sturdy than the ones employed in HURs. Follow-
ing Deutsch’s approach [40], a good measure of the uncertainty of measuring observables A and B on a
state ψ should hold a couple relevant properties.

First, it should reach a global minimum if and only if A and B have a shared eigenstate. This is not
the case for HUR, since by picking |ψ⟩ in the kernel of A will make the lower bound vanish regardless of
the value of [A,B]. Second, relabeling the eigenvalues of A and B should have no physical effects. As
already discussed, this makes HUR sensitive to re-scaling and not functional in many crucial scenarios.

All things considered, it is clear that an alternative to Heisenberg-like uncertainty relations must be
employed. It should maintain all the main features of HURs and have a sound physical interpretation,
while being free of its limitations.

1.1.2 Entropic uncertainty relations

In this section we present entropic uncertainty relations (EUR) [41], a set of well established tools we
will use instead of Heisenberg-like uncertainty relations to analyze the transition from a quantum into a
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classical regime when preparing a physical system.
The main ingredient in EURs is, naturally, entropy. Though somewhat elusive, the concept of entropy

tends to revolve around the notion of randomness or diversity in a system. Particularly in information
theory, it indicates how much one can learn from a measurement or yet how uncertain a state is before
performing such measurement [42].

Take the Shannon entropy of a random variableQ with n possible outcomes {o1, . . . , on} and respective
probabilities given by the vector P = {p1, . . . , pn} with

∑
i pi = 1 and pi ≥ 0 ∀i:

H(Q) = −
n∑
i=1

pi log pi. (1.8)

We can make a connection to quantum mechanics by associating P to outcomes of a measurement Q, an
observable with eigenvectors |qi⟩, on a state |ψ⟩

H(Q|ψ) = −
n∑
i=1

|⟨ψ|qi⟩ |2 log|⟨ψ|qi⟩ |2. (1.9)

The Shannon entropy is a logical candidate to compose our desired measure of uncertainty. It naturally
encompasses the notion of indeterminacy, but in a more robust way than the variance. Like the latter, it
is a quantity that increases when the spread of a distribution is larger and decreases when it is smaller.
In fact, the Shannon entropy is only maximal when the probability distribution is a uniform one, and
it is zero if and only if the distribution has a single outcome associated to probability 1. This behavior
reflects our expectation when trying to guess an outcome, we make a blind guess if we assume nothing
about the probability distribution and have absolute certainty when only one result is possible.

A very similar behavior is obtained from analyzing the variance of a probability distribution but
entropies have the major advantage of being unresponsive to re-scaling, since the only relevant quantities
to is evaluation are probabilities themselves and eigenvalues play no role in it. For this reason, using
entropy-based uncertainty relations is preferable to employing HURs. Accordingly, it is only logical
to pick the sum of the Shannon entropies of measuring A and B on a state |ψ⟩ as our measure of
uncertainty1. Indeed, well-established entropic uncertainty relations already exist, among which we
highlight the following [40, 43, 44].

H(A|ψ) +H(B|ψ) ≥ −2 log max
j,k

|⟨aj |bk⟩ |. (1.10)

The proof of this inequality is presented in appendix A. Mathematically, this expression states that the
sum of these entropies is bounded from below by a quantity that depends on the maximal overlap of
eigenvectors of A and B.

Much like HURs, the inequality above sets a lower bound to the uncertainty the properties associated
to observables A and B, and physically imposes a restriction to the preparation of a state with both
these properties simultaneously well-defined. It also has an analogous interpretation of the quantum-to-
classical transition: we expect that the lower bound on the r.h.s. should approach zero as we get closer
to a classical regime, meaning there would be no restriction on the preparation of states.

This uncertainty relation is, however, more suited to our task than the one presented in eq. (1.3).
The r.h.s. will only be zero if A and B share a common eigenstate, recovering Robertson’s prediction
that commuting observables should yield an inequality with trivial lower bound. Nevertheless, this EUR
strictly outperforms Robertson’s uncertainty relation because is does not fall into the pits that HUR
does, namely it is not state dependent and does not rely on eigenvalues. A point worth emphasizing is
that, as a result, the lower bound in EURs has physical meaning beyond being zero or not.

We can now revisit the naive solution given to the preparation of XN and ZN , where one simply
takes the macroscopic limit and expects to witness a smooth transition from quantum to classical regime.
As discussed, the fact that the lower bound in HUR approaches zero (but never actually reaches it) is
not enough to argue that a state can be prepared in such a way that XN and ZN are simultaneously
well-defined. We can now analyze the same scenario with eq. (1.10). Since the maximal overlap between
its eigenvectors is 2−N/2, it is straight-forward to show that

H(XN |ψ) +H(ZN |ψ) ≥ N. (1.11)

1Notice that evaluating their product would not be very useful if, for instance, the Shannon entropy of A tends to zero
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We see that, contrary to what HURs suggest, the uncertainty around the total magnetization in two
orthogonal direction actually increases with the size of the state. Blindly taking the limit of N → ∞
does not explain how one can prepare a classical system with XN and ZN simultaneously well-defined.

Now that we have a reliable tool to measure uncertainty, we can proceed to exploit it in different sce-
narios trying to understand how classical behavior emerges from fundamentally quantum systems. In the
following sections, we will provide physically motivated adjustments to our descriptions of macroscopic
preparations and measurements, constructing a model that successfully reproduces a smooth quantum-
to-classical transition. For simplicity, we will restrict our analysis to the paradigmatic case of total mag-
netization in the x− and z−directions, exhibiting notorious non-classical behavior in quantum regimes.

1.2 Preparing macroscopic states

When looking for a description of the quantum-to-classical transition, there is more than one ingredient
that one must have in mind. In our particular task, two elements play a relevant role: the measurements
we perform and the physical states we prepare. Classicality emerges not only from one or the other,
and thus we must construct models for both preparation and measurements that faithfully represent our
macroscopic experience. In this section we cover the former, and in what follows we will cover the latter.

A first step is to determine to which states we should restrain ourselves when studying classical,
macroscopic systems. In the bosonic case [45], coherent states have the spotlight, since Schrödinger
showed how a quantum harmonic oscillator resembles a classical one [7], a pioneering example of a
situation where the expected behavior is recovered when taking the classical limit. A reasonable choice
for us, then, is to consider generalized spin-coherent states [46], the fermionic analogous to the bosonic
case, defined as

|ΨN ⟩ = |Ψ1⟩⊗N , (1.12)

where |Ψ1⟩ =
√
p |0⟩+eiϕ

√
1 − p |1⟩ is the state of a single spin, parameterized by p ∈ [0, 1] and ϕ ∈ [0, 2π[.

The power ⊗N indicates the tensor product of N copies of |Ψ1⟩ and {|0⟩ , |1⟩} are the eigenvectors of σz,
corresponding to a spin-up and a spin-down particle respectively. Let the eigenvectors of σx be {|+⟩ , |−⟩},

with |±⟩ = (|0⟩ ± |1⟩)/
√

2, and notice that the states in the set {|0⟩⊗N , |1⟩⊗N , |+⟩⊗N , |−⟩⊗N} saturate
the bound in eq. (1.11).

We can further sustain the promotion of product states by invoking its relevance in the emergence
of classicality, namely in quantum Darwinism. In this approach, it is argued that different observables
agree on the values of properties of macroscopic systems because information is redundantly encoded in
physical states, which are selected by nature to have the form in eq. (1.12).

With this restriction in mind, we can once again evaluate the uncertainty around XN and ZN , now
setting the physical state to be in a product form. We can calculate the Shannon entropy associated to
a measurement in the z−direction

H(ZN |ΨN ) = −
N∑
k=1

(
N

k

)
pk(1 − p)N−k log pk(1 − p)N−k. (1.13)

An analogous calculation for the x−direction yields

H(XN |ΨN ) = −
N∑
k=1

(
N

k

)
qk(1 − q)N−k log qk(1 − q)N−k, (1.14)

where q = (
√
p+ eiϕ

√
1 − p)/

√
2. The derivation of these expressions can be found in appendix B.

Finally, the expression capturing the overall uncertainty of XN and ZN considering a state in product
form is

H(XN |ΨN ) +H(ZN |ΨN ) = N (h(p) + h(q)) , (1.15)

where h(p) = −p log p− (1 − p) log(1 − p) is Shannon’s binary entropy for p, and similarly for h(q).
The result in eq. (1.15) shows us that making adjustments only on the side of macroscopic preparations

is not enough to witness a transition from quantum to classical regimes, because the sum of these entropies
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grows with N when it should in fact decrease when approaching the classical limit. It is in accordance
with other results, as in [47] where it is shown that considering coherent states is not enough to explain
classical behavior (in this case, the non-violation of Leggett-Garg inequalities).

Since exploring macroscopic preparations is not enough, we move on to provide modifications to
macroscopic measurements, so that these two sides combined can help explain the quantum-to-classical
transition.

1.3 Macroscopic measurements

Throughout our preliminary analyses, we have assumed that we have access to perfect macroscopic
measurements of total magnetization. In this section we provide a realistic versions of XN , YN and ZN ,
considering the nature of these observables and experimental limitations.

1.3.1 Measurement degeneracy

Up to this point, we have represented the measurement of total magnetization in a given direction
through eq. (1.5). What it basically describes is a process where one measures every single spin in a
system and then adds them all up. This presumes an unbelievable control of the quantum state and an
unreal level of access to its properties. To say the very least, performing this measurement on a state
with N spins would require a POVM with 2N outcomes, making it not only impractical but downright
impossible for macroscopic systems.

Apart from being absolutely non-functional, such measurement would be unnecessary. Since we
are only concerned with the total magnetization of a system, the individual value of each spin on a
state is not relevant, only the sum thereof. This gives us a hint that a realistic description of these
measurements should be highly degenerate, after all many different spin configurations will yield the
same total magnetization. We can make this degeneracy explicit in these measurements, so we define the
observables for total magnetization in the x−, y− and z−directions as

X̃N =
1

N

N/2∑
jx=−N/2

jxΠx(jx), ỸN =
1

N

N/2∑
jy=−N/2

jyΠy(jy), Z̃N =
1

N

N/2∑
jz=−N/2

jzΠz(jz). (1.16)

Here, Πk(jk) with k ∈ {x, y, z} is the projector onto the subspace of total spin jk, in the direction k.
This description is greatly inspired by the method of types, an approach to statistics where one

dismisses the complete knowledge about a system in favor of a particular characterization of it. It can
be found in works of probability theory [48] and statistical physics [49], and was systematic developed in
the lingo of information theory in [50].

Notice that what these observables are describing is an entirely different process than the one in
eq. (1.5). Unlike, say, ZN , Z̃N has no access to the unnecessary information about the complete spin
configuration of the state, only to its total sum. It is a vastly less invasive model of measurement, while
the traditional one shows itself to be an overkill. As a consequence, one goes from having to deal with
an exponential number of outcomes in ZN to the more tractable amount of N + 1 in Z̃N .

We can now evaluate the behavior of entropic uncertainty relations combining our new model for these
macroscopic measurements and the assumption of states in form eq. (1.12), hoping that the uncertainty
around X̃N and Z̃N decreases as a function of N , indicating that one can prepare a quantum state in
product form with total magnetization in both x− and z−direction well-defined in the macroscopic limit.
In appendix B, we show that the probability of obtaining outcome jz/N when measuring Z̃N is given by

Pr(jz|ΨN ) =

(
N

N
2 + jz

)
p

N
2 +jz (1 − p)

N
2 −jz . (1.17)

This is a binomial function, with mean ⟨Z̃N ⟩ΨN
= p − 1/2 and standard deviation ∆2(Z̃N |ΨN ) =

p(1 − p)/N . As a result, the distribution of eigenvalues of Z̃N concentrates around the mean value with
1/

√
N , such that for bigger and bigger systems it will increasingly tend to a delta function.

Let us now use this probability distribution to evaluate the Shannon entropy of the measurement of
Z̃N . It reads
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H(Z̃N |ΨN ) = −
N/2∑

jz=−N/2

Pr(jz|ΨN ) logPr(jz|ΨN )

=

(
N

N
2 + jz

)
p

N
2 +jz (1 − p)

N
2 −jz log

(
N

N
2 + jz

)
p

N
2 +jz (1 − p)

N
2 −jz .

(1.18)

Since we are mostly interested in the behavior of this function in the classical limit, we can take N → ∞
and use the de Moive-Laplace theorem to approximate the binomial distributions with a Gaussian one.
By calling µ = ⟨Z̃N ⟩ΨN

and σ2 = ∆2(Z̃N |ΨN ), we reach the expression

H(Z̃N |ΨN ) ≊ −
∫ ∞

−∞
djz

1√
2πσ2

exp

[
− (jz − µ)2

2σ2

]
log

(
1√

2πσ2
exp

[
− (jz − µ)2

2σ2

])
=

∫ ∞

−∞
djz

1√
2πσ2

exp

[
− (jz − µ)2

2σ2

](
log

√
2πσ2 +

(jz − µ)2

2σ2
log e

)
= log

√
2πσ2 +

log e

2
=

1

2
log 2πeNp(1 − p).

(1.19)

A completely analogous calculation can be followed for X̃N such that at the end of the day we get

H(X̃N |ΨN ) +H(Z̃N |ΨN ) ≊
1

2
log 4π2e2N2pq(1 − p)(1 − q)

= logN +
1

2
log 4π2e2pq(1 − p)(1 − q).

(1.20)

This result shows that, even when considering these modifications to the model of macroscopic mea-
surements and restricting ourselves to product states, the uncertainty around orthogonal measurements
of total magnetization still increases with the system size N (though at a lower rate when compared to
eqs. (1.11) and (1.15)).

Considering that the probability distributions in eq. (1.17) gather around the mean value as N grows,
one might be surprised that the resulting entropy does not tend to zero, after all more concentrated
distributions describe less uncertain scenarios. However, we must point out that the number of outcomes
is not fixed, in fact it grows linearly with N , while the distribution concentrates with 1/

√
N . Such

realization points the direction of the additional modifications that are still necessary to make these
measurements more realistic.

1.3.2 Measurement imprecision

Despite the adjustment of considering the natural degeneracy of total magnetization measurements,
further adjustments must be taken into consideration. The fact that the observables X̃N and Z̃N have
N + 1 outcomes is still not at par with the reality in the lab.

First of all, this is still a ridiculously high number when considering the macroscopic limit. Measuring
the total magnetization in a single direction of a system of roughly 1023 spins would require absurd
precision. On top of that, even if this number was reasonable, it has the drawback of being a function
of N . A usual measurement apparatus will function the same way regardless of the system size, and will
typically have fixed precision in any case.

It is not reasonable to expect a measuring device to be able to tell apart states with very close values
of total magnetization. As a result, there should be a gap within which the device is inexact, and the
notion of imprecision should be considered when modeling macroscopic measurements.

To that end, a binned measurement can be introduced, where we group neighboring values of total
magnetization under the same bin of width δ, incorporating both our inability of distinguishing similar
outcomes and the fact that devices have fixed number of outcomes and precision. Instead of evaluating,
for instance, the probability of a state having total magnetization jz/N in the z−direction, one evaluates
its probability of having total magnetization falling on an interval [jz/N − δ/2, jz/N − δ/2[. In this case,
the number of outcomes is simply given by the number of bins Nb, tied to the bin width as Nb = N/δ.

In terms of the number of outcomes (number of bins), the n-th bin will cover total magnetizations in the

interval [−1

2
+
n− 1

Nb
,−1

2
+

n

Nb
[, with n ∈ {1, . . . , Nb}. The resulting observables for total magnetization

in the x- and z-directions are
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X ′
N =

1

N

Nb∑
nx=1

jnx

 ∑
jx
N ∈[− 1

2+
nx−1
Nb

,− 1
2+

nx
Nb

[

Πx(jx)

 ,

Z ′
N =

1

N

Nb∑
nz=1

jnz

 ∑
jz
N ∈[− 1

2+
nz−1
Nb

,− 1
2+

nz
Nb

[

Πz(jz)

 .

(1.21)

Here, jnk
/N is the eigenvalue associated to bin nk, given direction k, a value we do not have to trouble

ourselves with specifying since they play no role in entropic uncertainty relations. These observables are
simply grouping together neighboring values of total magnetization under a single outcome, ensuring that
Nb and the device precision are fixed.

With X ′
N and Z ′

N at hand, we can finally analyze the sum of their associated entropies when dealing
with macroscopic systems, and compare that to what is expected from classical behavior. The results are
presented in the next section.

1.4 Results and discussion

We start by obtaining the probability distributions associated to the outcomes of eq. (1.21), as always
restricting ourselves to the case of spin-coherent states. These observables represent a measurement where
one evaluates if the system has total magnetization within an interval by grouping neighboring outcomes,
their associated probability distributions will follow the same organization. This way, the probability
of obtaining the outcome associated to the n-th bin (or yet, the probability of the system having total
magnetization within a certain interval) is the sum of the probabilities associated to the values of total
magnetization that fall within that bin. Put mathematically, the probability of getting a click on the
nz-th bin when evaluating the total magnetization along the z-axis is

Pr(nz|ΨN ) =
∑

jz
N ∈[− 1

2+
nz−1
Nb

,− 1
2+

nz
Nb

[

Pr(jz|ΨN )

=
∑

jz
N ∈[− 1

2+
nz−1
Nb

,− 1
2+

nz
Nb

[

(
N

N
2 + jz

)
p

N
2 +jz (1 − p)

N
2 −jz

(1.22)

Similarly, for the x-direction we have

Pr(nx|ΨN ) =
∑

jx
N ∈[− 1

2+
nx−1
Nb

,− 1
2+

nx
Nb

[

(
N

N
2 + jx

)
p

N
2 +jx(1 − p)

N
2 −jx . (1.23)

To investigate the behavior of these probabilities in the macroscopic limit, where we can evaluate
whether or not it complies with the expected classical results, one can make N → ∞ and once again
use the continuous approximation of a Gaussian. If once again µ = ⟨Z̃N ⟩ΨN

and σ2 = ∆2(Z̃N |ΨN ), the
resulting probability distribution reads

Pr(nz|ΨN ) ≊
∫ − 1

2+
nz
Nb

− 1
2+

nz−1
Nb

d(
jz
N

)
1√

2πσ2
exp

[
−

( jzN − µ)2

2σ2

]
. (1.24)

In words, when measuring total magnetization along the z-direction the probability of obtaining the
outcome associated to the nz-th bin is evaluated by computing the integral of the curve given by the
continuous limit of eq. (1.17) withing the corresponding boundaries of the bin.

If we recall that the integrand of the expression above concentrates around the mean value of 1/2− p
with 1/

√
N , it is clear that as the size of the system grows the probability Pr(nz|ΨN ) will also concentrate

around the same value. For large enough N , this integrand will be a Gaussian distribution so concentrated
that it will be mostly restricted to the bin that contains the mean value, given by n̄z = ⌊Nbp⌋ + 1 if
0 ≤ p < 1 and n̄z = Nb if p = 1. Consequently, as N approaches the macroscopic limit the probability
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Pr(n̄z|ΨN ) associated to the bin containing the mean value will tend to the maximal value of 1, while
the remaining bins will have probabilities decreasing exponentially with N . Put simply, in the limit of
N → ∞ Pr(nz|ΨN ) will tend to a delta function fully contained in a single bin.

As already discussed, the fact that probability distributions concentrate around a single value is not
enough to ensure that the their associated entropies will vanish, as evidenced by eq. (1.20). There, the
caveat was that the number of outcomes was increasing with N , surpassing the rate of 1/

√
N at which

the distribution concentrated. Fortunately, we are now faced with a different scenario, as our endeavor of
modeling realistic macroscopic measurements has resulted in observables that in fact have a fixed number
of outcomes Nb (as evidenced here by the fact that the limits of integration in eq. (1.24) do not depend
on N). Therefore, one can make a direct connection between the probability distribution in eq. (1.24)
concentrating around the mean value and the uncertainty around this measurement decreasing.

Following this argument, one can see that the entropy H(Z ′
N |ΨN ) associated to the measurement of

Z ′
N on a product state will vanish, and that a similar line of thought can be followed for H(X ′

N |ΨN ). As
a result, we at last observe a classical behavior in the macroscopic limit, as

lim
N→∞

H(X ′
N |ΨN ) +H(Z ′

N |ΨN ) = 0. (1.25)

As a matter of fact, such an effect would still be observed even if the number of outcomes did increase,
provided it does not grow faster than the rate of

√
N , so that it balances out with the concentration of

the probability distribution in eq. (1.24). The fact that this classical signature is recovered is numerically
evidenced in figs. 1.2a and 1.2b.

We point out that the sum of entropies never actually reaching exactly zero is not an issue, as for
macroscopic dimensions this value will be so low that it cannot be detected. We also recall that the value
of this sum being very low has absolute meaning, as its decrease cannot, unlike in HURs, be attributed
to a change of scale.

The only pathological cases where this sum does not vanish is when the state is prepared in such
a way that the mean value ⟨Z̃N ⟩ lies precisely at a border between bins, in which case the probability

distribution does not concentrate in a single bin. This happens if one prepares ΨN with p = −1

2
+
m− 1

Nb
,

with m ∈ {1, . . . , Nb}. These cases, however, represent a volume zero subset of all states that can be
prepared, and thus will never occur in the lab.

Our result is portraying a very clear transition from a quantum to a classical rule. As the size of the
system increases, the uncertainty associated to the observables X ′

N and Z ′
N (once significant, for small

N) asymptotically tends to zero. This means that for large enough N one can prepare a spin-coherent
state with total magnetization in the x- and z-directions simultaneously well defined, a feat not possible
in the quantum regime.

When trying to understand the quantum-to-classical transition, it is clear that one must look beyond
commutation relations between observables. By employing entropic uncertainty relations, one is assured
to make reliable assessment, without having to dismiss everything that Heisenberg has already established
at the dawn of quantum mechanics. We could then propose a model for macroscopic measurements that,
combined with a well-motivated restriction of macroscopic state preparations, was enough to describe the
emergence of classical features on a quantum system.

We showed that imprecision plays a decisive role on what kind of attributes a macroscopic system
will display: quantum features fade away if apparatuses are imprecise; conversely, one needs to be able to
perform highly precise measurements if one wishes to still observe such features on a macroscopic system.
More than a qualitative analysis, we provided a clear frontier between these two scenarios, the turning
point being that where the number of outcomes (directly connected to the imprecision of the measurement
device) Nb grows faster than 1/

√
N . This is a particularly relevant result if the scientific community hopes

to construct quantum computer in the near future that can outperform classical computations, since it
should have macroscopic dimensions while keeping quantum attributes.
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(a) Sum of entropies for increasing system size

(b) Sum of entropies for increasing number of bins

Figure 1.2: Sum of entropies as the system grows for different choices of preparation. Numer-
ically, one can see the behavior of the sum of entropies (and by proxy, of the uncertainty) of measuring
total magnetization in two perpendicular directions, for different preparations of a spin-coherent state. In
(a), we also evaluate different choices of Nb (assigning varied precisions to the measurement device) and
see that the sum approaches zero as the size of the system increases. The inset highlights its exponential
behavior. In (b), we show that increasing the number of bins (and consequently the number of outcomes)
makes the sum of these entropies increase. If Nb ≥ N it is possible to observe quantum features even in
larger systems. The sum of entropies stagnates for Nb > N because the maximal uncertainty for a given
N is already reached, since each possible outcome will be assigned to a different bin and the remaining
bins will contain no possible outcome.
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Chapter 2

Characterization of effective
reversibility criteria

In the last chapter, we have dedicated ourselves to investigating the different behaviors displayed by
quantum systems, as opposed to classical ones. Focusing our efforts specifically on the preparation of
quantum states, we analyzed the uncertainty relations that govern this process and ended up with an
enhanced understanding of the transition that must occur from one regime to the other, from systems of
microscopic dimensions to those of macroscopic size.

According to our results, what enables this particular aspect of the quantum-to-classical transition
to take place is the use of an effective description of the macroscopic measurements that are performed.
This characterization has the final goal of providing a realistic model of what actually happens in a lab,
and eventually boils down to describing what kind of information we can access. The research present
in the last chapter suggest that it is our ignorance that, at the end of the day, makes our essentially
quantum world seem classical.

Adopting effective descriptions of both systems and measurements, often an unavoidable necessity,
has further consequences on our perception of the world. Of particular interest to this work, we can
mention how our access to information affects the reversibility of physical processes.

Consider, for instance, a closed quantum system, described initially by a state ψ. All one needs to
know in order to predict the whole future (or past, for that matter) of such system is the Hamiltonian H
that governs its dynamics. If that is known, then one can, at least in principle, determine the new state
of the system after some time has passed using Schrödinger’s equation.

As a consequence, one can also move backwards in time and find out the past state of the physical
system, all under the assumption that it undergoes some unitary evolution Ut: if ψ(t) = Ut[]ψ(0)], it is
also the case that ψ(0) = U−t[ψ(t)]. Because of this feature, reversibility is a built-in feature of closed
quantum dynamics, meaning the initial state can be recovered from the final state without any loss.

However, as we will see, when resorting to effective descriptions this feature fades away, in general.
Even though one still assumes that the system is isolated from its environment and ruled by closed,
unitary dynamics, if one’s knowledge of it is not perfect and coarse-graining methods are applied, then
the resulting effective dynamics may not be reversible, ultimately meaning one cannot recover the initial
state from the final state.

This direct relation between information and reversibility is neatly captured by the second law of
thermodynamics. It states that the entropy of closed systems cannot decrease, usually expressed mathe-
matically as

∆S ≥ 0, (2.1)

meaning that if one evaluates the entropy S of the system and then again after some time has passed,
it must be that S has increased, or at the very least not changed. Common reading of the second law
states that the “disorder” of a system tends to increase, that the information it encodes can only change
through losses, or yet that the arrow of time always points towards the future.

The second law of thermodynamics is regarded by many as one of the most fundamental laws of
physics [51]. It regulates what processes are viable, regardless of the microscopic details of the system
in question, or the nuances of the dynamics that they undergo. It is regarded as universally valid, being
applied to scenarios in varied scales, ranging from subatomic collisions to cosmology [52], not shying
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away from venturing even into the analysis of living organisms [53]. Consequently, the second law has an
almost sacred aura around it. As Eddington put it,

The law that entropy always increases holds, I think, the supreme position among the laws of
Nature. If someone points out to you that your pet theory of the universe is in disagreement
with Maxwell’s equations – then so much the worse for Maxwell’s equations. If it is found
to be contradicted by observation – well, these experimentalists do bungle things sometimes.
But if your theory is found to be against the second law of thermodynamics I can give you
no hope; there is nothing for it but to collapse in deepest humiliation [54].

Even though this statement makes it clear that everyone agrees that the second law is paramount, it is
nevertheless unclear exactly to what we are all agreeing. On its original formulation, derived heavily from
the empirical findings of the 19th century, the second law states simply that heat cannot spontaneously
be transferred from a colder to a hotter body [55, 56, 57], but since then we have strayed further from a
clear interpretation of it, mainly because of the elusiveness of the concept of entropy.

Traditionally, entropy is presented in introductory statistical mechanics and thermodynamics courses
as a state function, defined in terms of macroscopic quantities as

dS =
δQ

T
, (2.2)

where δQ is the heat transferred to the system and T is its temperature. However, the so-called thermo-
dynamical entropy is but one possible definition of this quantity, among many others suited for different
applications.

To be called an entropy, an object must obey a few requirements, namely being an additive function of
extensive variables (that is, variables that scale proportionally to the system’s size), be positive, and reach
maximum value for a given internal energy when the system is at equilibrium [51]. While the definition in
eq. (2.2) considers only macroscopic properties, one can, alternatively, consider an equivalent formulation
of entropy, where one takes into account the different microscopic states available to the system, at a
given internal energy. It is the so-called Gibbs entropy, given by

S = −kB
∑
i

pi ln pi, (2.3)

kB being Boltzmann’s constant and pi the probability associated to the i-th microstate, obeying
∑
i pi = 1

and pi ≥ 0 for all i.
This other construction encourages a direct connection between entropy and information, encoded

in the probability distribution p. The Gibbs entropy is known for being constant over time for closed
systems [58], that is, when the system is subjected to Hamiltonian dynamics. This fact is consistent with
the second law of thermodynamics while also tapping into our physical intuition that closed systems do
not lose nor gain information.

While intuitive, this notion of entropy fails to recover other familiar behaviors of physical systems. It
does not outright contradict the second law of thermodynamics, as the entropy does not decrease, but it
also does not tend to increase. One would expect that even isolated systems undergoing closed dynamics
should, with time, tend to more ‘disordered’ states, a process which would result in a spontaneous increase
in entropy.

Another disadvantage of this approach is that it does not take into account our limited access to p
and its corresponding microstates 1. As we have discussed in more depth in the last chapter, complete
knowledge of a state is generally neither possible not desirable, since the only tools we have to explore a
physical system are the measurements we can perform. Thus, the unavoidable experimental limitations
shaping these measurement further constrain the information one can obtain.

To realistically characterize the partial access one has to a physical state, it is useful to employ
coarse-grained descriptions of measurements. As a result, instead of a heavy detail-oriented portrayal of
a system, one deals with an effective description of a state and its dynamics. If one wants to travel down
this road, a suitable option is to employ the Boltzmann entropy, defined for a macroscopic system as

S = kB ln Ω. (2.4)

The Boltzmann entropy emerges from scenarios where one performs coarse-grained measurements on a
state, thus obtaining only partial information about it. As a consequence, one does not really know to

1In fact, there is a rich discussion on what p actually means [58]
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what microscopic state their system should be assigned, only that there is a whole set of such states that
are consistent with the effective description yielded by the coarse-grained measurements. Here, Ω is the
number of microstates in the set of states that are compatible with observations, or yet the volume of
this set.

This formulation of entropy also provides an intuitive interpretation for the role of information in
measurements. Notice that the lower Ω is, the lower S itself becomes, and the other around for high Ω.
This means that when there are many microstates compatible with the observed macroscopic state, a
situation achieved when the coarse-graining of the measurements is very rough, there is little information
about the underlying physical system. Compare it with a situation where the measurements are fine-
grained, such that the effective description of the macroscopic system could only have emerged from a
smaller set of microstates, and notice that the corresponding Boltzmann entropy would be lower than in
the previous case. This relation between S and Ω depicts our ignorance of the underlying, microscopic
state, as the more possibilities we have, the less sure we can be.

An additional feature of the Boltzmann entropy of a state is that, unlike the Gibbs entropy, it is not
fixed throughout its evolution, not even if the system it describes is closed. It allows evolving macroscopic
states to be compatible with sets of microscopic states whose volume varies with time, being associated
to larger and larger Ω. Consequently, our ignorance about the microstate also increases, culminating on
an increase of entropy.

We now take a step back from entropies and look at the broader picture painted by the second law of
thermodynamics, only to see that a conflict is set. Micro- and macroscopic descriptions of states are not
independent, and are closely connected under the assumption that one should emerge from the other, so
it seems contradictory that the Gibbs entropy is constant but the Boltzmann entropy can vary in the
same scenario. Furthermore, the universality of the second law dictates that it should govern both the
micro- and the macroscopic realm, but when comparing the predictions yielded by the usage of these two
different entropies we see a divergence, particularly when it comes to the reversibility of processes.

If it is the case that the entropy of a closed system undergoing any process cannot decrease, then
the increase of S has direct consequences on the reversibility of dynamics. Indeed, a process can only
be reverted if it does not alter the entropy of the state, otherwise reversing it would produce dynamics
that decrease the entropy, a feat forbidden by the second law of thermodynamics. Thus, two different
analyses derive from evaluating the second law from the Gibbs or from the Boltzmann perspective: one
may impose no constraint on the reversibility of the microscopic process while the other dictates that the
effective dynamics should be irreversible.

The unease caused by this inconsistency (after all, the effective dynamics is supposed to emerge from
the microscopic process) can be placated by realizing that effective measurements are, in their nature,
connected to irreversibility. Indeed, it is clear from the construction of coarse-grained measurements that
not all information about the state is harvested, and one only has access to a fraction of its degrees
of freedom. Consequently, upon performing an effective macroscopic measurement, some information is
inevitably lost, which means that even a closed system have increasing entropy. Though the evolution
to which the underlying physical system is subject is reversible, the construction of the effective state is
not, a fact reflected on the uncertainty one has around what the microstate actually is.

Throughout this whole discussion on the second law and the concept of entropy, notice that quantum
mechanics has not even been mentioned. Though talking about uncertainty triggers lengthy arguments
for quantum physicists, it has been the case, so far in this passage, that uncertainty simply means
ignorance, in its most classical meaning: there is an underlying microscopic state, I just cannot access
it. However, the universality of the second law imposes that the entropy of closed quantum systems also
cannot increase, and consequently the reversibility of quantum dynamics is equally defined by it: only
evolutions that do not increase the entropy can be reversed.

If one wants to study the behavior of quantum dynamics through a similar analysis, then, it is necessary
to investigate the interplay between microscopic reversibility and its effective counterpart. Fortunately,
some parallels can be traced between quantum and classical microscopic entropy, made evident with
the advent of quantum information. Given a density matrix ρ describing some quantum state, the von
Neumann entropy reads [59]

S = −Tr[ρ ln ρ]. (2.5)

Notice how this object also quantifies one’s ignorance about a quantum system: pure states (around
which there is no classical ignorance) yield null entropy, and the less pure ρ is, the higher S is in turn.
In fact, if ρ is a mixture of perfectly distinguishable states then the von Neumann entropy reduces to
the Shannon entropy [42], whose interpretation in terms of uncertainty has been discussed in chapter 1.
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Just like Gibbs entropy, von Neumann’s remains constant for states under closed dynamics, analogously
signifying the conservation of information.

The natural next step in this argument would be to introduce a quantum entropy that, like Boltz-
mann’s, can increase even when describing closed systems. The frustrating fact is that there is no
consensus to which object should take this place, though many candidates do exist [58, 60, 61, 62, 63].

In this work, we have drawn inspiration from the classical Boltzmann entropy and quantified the
uncertainty arising in effective descriptions of quantum systems. Under the light of coarse-grained mea-
surements, we analyze the emergent macroscopic dynamics and investigate how their reversibility connects
with the information one can actually access from the underlying quantum state. We highlight the inter-
play between micro- and macroscopic reversibility, and build a general framework for this type of analysis.
We finally carry out two pedagogical examples, and trace parallels with well-known scenarios. We start
by laying the necessary background to support our work.

2.1 Preliminary concepts

2.1.1 Coarse-graining maps and the average assignment map

Measurements are the main tool we can use to interact with the physical world. Upon each realization
of an experiment we have an opportunity to learn something about the system we have in hands, and with
some patience one might gather enough statistics in order to safely assign a state to that system. There
are, however, many limitations to how much we can actually learn with measurement, as discussed in the
previous chapter. Because of experimental and technological constraints, restricted access to resources,
or simply limited interest, one does not typically exhaust all the knowledge about a system. The process
of gaining information is then more similar to that of assembling a puzzle, with pieces provided by
measurements, while having to accept the final picture will have missing pieces and some areas of sheer
uncertainty2. Optimistically, one can still make sense of the finished image but the details will be lost.

This effective description of the system is the only one to which we have access. It is only natural
to wonder how to relate the underlying physical system and our incomplete characterization of it, a task
that can be carried out by employing coarse-grained measurements.

A coarse-graining map is a quantum channel connecting microscopic states to its effective description.
It captures the degrees of freedom to which one has access, and models the measurement performed on
the physical system. To formally define it, consider the Hilbert spaces HD and Hd, of dimensions D, d
with D > d, and its respective linear operators L(HD),L(HD). A coarse-graining map Λ is then

Λ : L(HD) → L(Hd), (2.6)

such that the effective description ρ ∈ L(Hd) of a microscopic state ψ ∈ L(HD) is given by

Λ[ψ] = ρ. (2.7)

The most iconic example of a coarse-graining map is the partial trace operation. It is commonly
applied in situations where an agent has access to only a share of the total physical system, in which case
their part is described by a reduced state. If we rephrase it in terms of a system in L(HS) of dimension
dS , under one’s control, subjected to an environment in L(HE) of dimension dE , about which one cannot
assume much, the partial trace is a coarse-graining map ΛPT : L(HS ⊗ HE) → L(HS). Through its
action, the agent is able to describe their system of interest on an effective level, but must permanently
loose the information encoded in the environment.

Another example of a coarse-graining map, of particular interest to us, is the one describing the
measurements performed on an imperfect detector. Consider the usual setup of a lattice of cold atoms,
trapped in an optical cavity [64]. Consider the individual atoms as 3-level systems, which can be in states
|0⟩, |1⟩ or |2⟩. In a very simplified model, the apparatus that performs the corresponding measurements
may not be able to resolve, for instance, the levels |1⟩ and |2⟩, being only able to ascertain whether
the atom is in the ground state or not. This inherent imprecision in the measurements will result in a
coarse-grained description of the system in terms of only two effective levels |0⟩, to which atoms in the
ground state are assigned, and |1⟩, to which the two remaining states are assigned.

To describe the action of this imperfect device, one can follow an analogous procedure as the one
outlined in [33, 25], where the authors analyze a detector that cannot differentiate neighboring atoms

2Even harder to accept is the realization that perhaps there is no fundamental picture to which this puzzle would
correspond, as the nature of underlying physical systems is a source of great debate.
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and has extremely poor resolution of energy levels above a given limit, thus being dubbed a blurred
and saturated detector. Following their steps, it is not hard to construct the Kraus operators [42]
characterizing the coarse-graining map ΛD that describes our imperfect detector. We recall that in the
Kraus formulation the action of a completely positive map Φ on any quantum state ρ can be characterized
in terms of operators {Ki}i satisfying

∑
i = K†

iKi = 1 such that

Φ[ρ] =
∑
i

KiρK
†
i . (2.8)

Thus, the Kraus operators that describe ΛD are

K1 =

[
1 0 0

0 1/
√

2 1/
√

2

]
, K2 =

[
0 0 0

0 1/
√

2 −1/
√

2

]
. (2.9)

The action of this coarse-graining map is, alternatively, given by

ΛD[|0⟩⟨0|] = |0⟩⟨0|
ΛD[|0⟩⟨1|] = 1√

2
|0⟩⟨1|

ΛD[|0⟩⟨2|] = 1√
2
|0⟩⟨1|

ΛD[|1⟩⟨0|] = 1√
2
|1⟩⟨0|

ΛD[|1⟩⟨1|] = |1⟩⟨1|
ΛD[|1⟩⟨2|] = 0
ΛD[|2⟩⟨0|] = 1√

2
|1⟩⟨0|

ΛD[|2⟩⟨1|] = 0
ΛD[|2⟩⟨2|] = |1⟩⟨1|

Notice that the map reflects the fact that coherence terms within the excited subspace (that is, the
space spanned by {|1⟩ , |2⟩}) must vanish, since they cannot be discriminated after the coarse-grained
mapped has been applied.

Coarse-graining maps are a powerful tool to characterize the effective states emerging from measure-
ments that do not allow us to get complete information about the quantum system. It is a “bottom-to-up”
assignment, where we obtain the effective description after stating what is the microscopic state. But
what about the other direction, that is, given this effective description, to which state should we assign
the underlying physical system? Let us not forget that, at the end of the day, the effective descriptions
are all that one can actually access, and thus any approach that sets out to explain a phenomenon in
terms of observations should not take the microscopic state as a given.

The immediate problem that one has to face is the ambiguity concerning the underlying state. If
we emphasize the coarse-graining nature of measurements, or if we recall the examples thereof that we
provided, it is clear that different microscopic states yield the same effective description. This is only
intuitive, since in the measurement process one has discarded information that cannot be retrieved, thus
it is, in general, not possible to determine the precise state that one is measuring, only some aspects of
it.

Let us be more precise. Given a coarse-graining map Λ and an effective description ρ ∈ L(Hd), one
can define the set of all microscopic pure states that are consistent with ρ as

ΩΛ(ρ) = {ψ ∈ L(HD)|Λ[ψ] = ρ, ψ = |ψ⟩⟨ψ|}. (2.10)

In words, this is the set of all pure microstates that could have generated the effective state that one
observes. It can also be formulated explicitly in terms of the set O = {oi}i of observed quantities,
resulting from measuring observables {Oi}i, such that

ΩΛ(O) = {ψ ∈ L(HD)|Tr[OiΛ[ψ]] = oi}, (2.11)

and the two approaches are equivalent if O is tomographically complete.
Once ΩΛ defines the set of possible microscopic pure states, all that is left is to determine to which

state one should assign the underlying physical system. Following [65], one can argue for picking the
average state of this set, representing our best guess. Given the observed quantities O, one can then
define the average assigned state as

AΛ(O) =

∫
dµψPrΛ(ψ|O)ψ, (2.12)
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where dµψ is a Haar measure, and PrΛ(ψ|O) is the probability of having the microscopic state ψ given
that O was observed. The microscopic state ψ̄ obtained from this procedure is the average state one gets
after many preparations of the effective state.

In [65], the authors find a closed form for the average assigned state in the case of the partial trace
over the degrees of freedom of the environment. Given the effective state ρ, it reads

AΛPT
(ρ) = ρS ⊗ 1E

dE
. (2.13)

Intuitively, the best guess one can produce is given by assuming the system to be in state ρ and the
environment, from which we know nothing, to be maximally mixed.

Following a similar procedure to the one used in [65] to obtain a closed form for the average assigned
state on their other example, one can also write out the corresponding expression for the case when the
coarse-graining map is given by ΛD, the imperfect detector we discussed earlier in the text. In terms of
the effective state ρ, with density matrix elements given by

ρ =

[
ρ00 ρ01
ρ∗01 ρ11

]
, (2.14)

we have

AΛD
(ρ) =

 ρ00 ρ01/
√

2 ρ01/
√

2

ρ∗01/
√

2 ρ11/2
|ρ01|2
ρ00

− ρ11
2

ρ∗01/
√

2 |ρ01|2
ρ00

− ρ11
2 ρ11/2

 . (2.15)

The detail of the calculation can be found in appendix C.

2.1.2 Effective dynamics

With the map AΛ, one now has an assignment that is complementary to a coarse-graining map: while
the latter is a “bottom-to-up” assignment, yielding an effective description if one knows the microscopic
state, the former goes in the other direction and allows one to pick the best guess for the state of the
underlying physical system, given that some quantities were observed. This allows us to transit between
the microscopic the and effective levels of quantum states, and an advantage of this new mobility is that
one can derive the dynamics of effective states using only the information available from coarse-grained
measurements, without having to assume access to the microscopic states.

Let us set the scenario we will explore. In a lab, one can measure the effective state of a quantum
system at any moment, given by ρ(t) ∈ L(Hd). One also knows how to characterize the coarse-graining
map Λ : L(HD) → L(Hd). Finally, one can control the evolution Ut : L(HD) → L(HD) that will
govern the unknown microscopic state, which we assume to be unitary. Then, following [65], the effective
evolution channel Γt : L(Hd) → L(Hd) is given by a composition of these maps

Γt = Λ ◦ Ut ◦ AΛ, (2.16)

as shown in fig. 2.1. Let us take moment to understand this construction.
Consider a simple experiment, where on each run one prepares the effective state ρ(0). On the

underlying level, what one is doing is a sampling process, randomly picking a state from ΩΛ(ρ(0)), the
set of all possible microstates compatible with ρ(0). For the i-th run, let the sampled microstate be ψi(0)
with probability PrΛ(ψi(0)|ρ(0)). Then, one lets the unknown ψi(0) evolve according to Ut, yielding
Ut[ψi(0)] = ψi(t). Finally, upon applying the coarse-graining map Λ on the evolved microscopic state
one can obtain the effective evolved state of the i-th run, as

ρi(t) = (Λ ◦ Ut)[ψi(t)]. (2.17)

After many runs, as shown in fig. 2.2, one will have performed enough measurements, and the induced
averaging process defines the final effective state
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Figure 2.1: Γt as a composition of maps. On average, the effective evolution that a state ρ(0) undergoes
is given by the successive application of the average assignment map, the underlying unitary evolution
and the coarse-graining map. No knowledge of the physical system, represented by the microscopic state
ψ(0), is necessary to construct Γt.

ρ(t) =

∫
dµψ(0)PrΛ(ψ(0)|ρ(0))ψ(t) (2.18)

=

∫
dµψ(0)PrΛ(ψ(0)|ρ(0))(Λ ◦ Ut)[ψ(0)] (2.19)

=(Λ ◦ Ut)


∫
dµψ(0)PrΛ(ψ(0)|ρ(0))ψ(0)︸ ︷︷ ︸

AΛ[ρ(0)]

 (2.20)

=(Λ ◦ Ut ◦ AΛ)[ρ(0)]. (2.21)

Figure 2.2: A series of runs of a simple experiment. By preparing an effective state ρ(0), one is in
fact sampling microscopic states from ΩΛ(ρ(0)). Upon letting them evolve according to Ut and applying
the coarse-graining map Λ, one obtains potentially distinct effective evolved states, which can then be
averaged to yield ρ(t).

A simple example can be provided by evaluating the effective dynamics that emerge from a partial
trace coarse-graining, from which we already know the closed form of average assigned states, yielding
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ρ(t) = (TrE ◦Ut)
[
ρ(0) ⊗ 1E

dE

]
. (2.22)

2.2 Effective reversibility

Notice that even though the effective dynamics in eq. (2.22) are linear and completely positive, there is
no guarantee that it should always be so. Given the construction of Γt, it is not surprising that qualitative
differences between the effective and the underlying dynamics may appear, all despite one’s assumption
that the unknown microscopic state is evolving unitarily. Furthermore, it is generally the case that the
effective dynamics are not reversible.

On the microscopic level, the evolution that the system undergoes is, by assumption, unitary. Conse-
quently, one can promptly revert the action of any dynamics: the microscopic state at time t is given in
terms of the initial state as ψ(t) = Ut[ψ(0)], and we recover the initial state in terms of the final state by
simply applying the evolution map in the other direction as ψ(0) = U−t[ψ(t)]. Going backwards in time
is, conceptually, no different from going forwards, and the concept of reversibility seems plain enough: if
one always recovers the initial state when advancing and then regressing in time, then the evolution is
reversible. For more complex scenarios, however, defining reversibility requires more caution.

Just like in the uncomplicated microscopic case, we want to characterize effective reversibility by
comparing a forward and a backward process. The challenge lies, though, in two aspects of this quest,
namely the statistical nature of effective descriptions (which, unlike evolutions given by the Schrödinger
equation, are not deterministic) and the conceptual looseness of what is the appropriate reverse process.

Many approaches to this problem have been proposed, of which we must mention the works of Jarzyn-
ski [66] and Crooks [67], where fluctuation relations are constructed comparing a forward, physical process
and a corresponding backward process, whose definition has been a source of debate (in particular in the
quantum case) [68]. Particularly, in [69], the authors advocate for investigating reversibility not in terms
of a backward evolution but rather a retrodiction process, where one tries to guess the initial state
rather than physically recover it. We also point out recent advances towards making fluctuation relations
suitable for quantum analyses [70, 52, 71].

None of these approaches, however, make the connection to the coarse-grained essence of realistic
measurements clear, neither do they make the duality between microscopic and effective evolution central,
highlighting their contrasting nature in terms of reversibility. In this direction, we invite the reader to
once again consider the plain experiment we analyzed in the last section, were we have described an
effective (forward) evolution while comparing what is happening on the effective and the microscopic
level.

Let us now define the reverse process, after having let the initial state ρ(0) effectively evolve to ρ(t).
If we take the final state ρ(t) as our new starting point, just like in the forward process, we are in fact
sampling a microscopic state from ΩΛ(ρ(t)). To revert the process, we let this state evolve according to
U−t, and then obtain the effective reversed state ρ′(0) by applying the coarse-graining map, see fig. 2.3 for
clarity. Given the conceptual similarities between the forward and the backward process, it is straight-
forward to see that the effective reverse evolution is obtained by

Γ−t = Λ ◦ U−t ◦ AΛ. (2.23)

After letting the initial effective state ρ(0) evolve forward in time, measuring the final state ρ(t), and
then evolving backward to ρ′(0), one can compare the initial and reversed states. In general, there is no
guarantee that ρ(0) = ρ′(0), but it might just be so. When considering several runs of this experiment,
one might verify that upon preparing any initial effective state, letting it evolve according to Γt and then
backwards with Γt, the initial state is always recovered. If that is the case, then we say the effective
dynamics is reversible.

It is worth stressing that, as illustrated in fig. 2.3, it is generally not the case that Γt is reversible, that
is, the initial effective state ρ(t) is not typically recovered after being let evolve forward and backward in
time. Situations where Γt is reversible are rather the exception than the rule, and in the next section we
will explore what are the conditions that determine which is the case.
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Figure 2.3: Experimental scenario. Upon preparing an effective state ρ(0) in the lab (which corresponds
to sampling a microstate ψ(0) from ΩΛ(ρ(0))), one applies the unitary evolution Ut on the microscopic
system, and obtain the final effective state ρ(t) after a coarse-grained measurement. To revert the
evolution, one can see the measurement of ρ(t) as a sampling process from ΩΛ(ρ(t)), where the microstate
ψ′(t) is picked, then let evolve backwards in time with U−t. Finally, the reversed effective state ρ′(0) is
obtained by applying the coarse-graining map.

2.3 Reversibility conditions

As pointed out, Γt emerges as a result of both the coarse-graining map and the microscopic unitary
evolution. It is only natural, then, that whether or not the effective dynamics is reversible should be a
consequence of an interplay between Λ and Ut. One can set conditions for Λ and Ut that, when satisfied,
ensure that the emerging effective dynamics is reversible.

Let us analyze the scenario we laid out with more care. To say that Γt is reversible is, according to
the definition we adopted, the same as stating that any initial effective preparation ρ(0) can be recovered
from ρ(t).3 Mathematically, it is required that ρ(0) = (Γ−t ◦ Γt)[ρ(0)], or yet

ρ(0) = (Λ ◦ U−t ◦ AΛ ◦ Λ ◦ Ut ◦ AΛ)[ρ(0)]. (2.24)

In words, one is requiring that the action of Γt followed by Γ−t is trivial on any initial effective state
ρ(0). Whenever this requirement is met, then the effective dynamics is reversible.

At a first glance, one might be tempted to conclude that eq. (2.24) is always satisfied, for any choice
of coarse-graining map Λ and microscopic evolution Ut. Given the complementary essence of Λ and AΛ,
one being a bottom-to-up assignment and the other its “reversed” operation, one might get the feeling
that the action of (AΛ ◦ Λ) is trivial. If that was the case, the channel in eq. (2.24) would indeed reduce
to the identity, with U−t and Ut canceling out and likewise for (Λ ◦ AΛ). This is however not true in
general.

Let us first take a closer look at the action of (Λ◦AΛ). It is true that the result of applying the average
assignment map on any effective state followed by the corresponding coarse-graining map is trivial. The
microscopic state AΛ[ρ(0)] clearly obeys Λ[AΛ[ρ(0)]] = ρ(0), it is simply the average state of the set
ΩΛ(ρ(0)). Consequently, applying the coarse-graining map Λ will recover ρ(0), and one concludes that,
indeed, the following statement holds for any ρ(0)

ρ(0) = (Λ ◦ AΛ)[ρ(0)]. (2.25)

3Here, we stress that, just like in the forward process, the recovered state can only be determined after many runs of
the experiment where many measurements are performed at the end
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It is important to stress at this point that the set ΩΛ(ρ) is constituted solely of pure states that yield
the same effective description ρ. The average assigned state ψ̄ = AΛ[ρ] does not, in general, belong to
this set, as it is not a pure state, but it does belong to the set ΩMΛ (ρ), which we define as

ΩMΛ (ρ) = {ψ ∈ L(HD)|Λ[ψ] = ρ}, (2.26)

that is, ΩMΛ (ρ) is the set of all microscopic states compatible with the effective description ρ, regardless
of being pure or mixed.

Interestingly enough, even though mixed states are constructed through the convex mixture of pure
states, the convex hull of ΩΛ(ρ) (which we denote ΩCHΛ (ρ)) is not equivalent to ΩMΛ (ρ) (corresponding
to simply allowing both pure and mixed states in the original definition of ΩΛ(ρ)). To see an example
illustrating this difference, consider the partial trace and let ρ be the maximally mixed state. Then,
ΩΛ(1) is the set of maximally entangled states, and ΩCHΛ (ρ) is the set of states spanned by the Bell basis.
Consider now the microscopic state

ψ =
1

2
1⊗ |0⟩⟨0| . (2.27)

It is easy to see that ΛPT [ψ] = 1, so ψ belongs to the set ΩMΛ (ρ) of mixed states that yield the maximally
mixed state as its effective description, and yet it does not belong to the convex hull of maximally
entangled states, that is, it is not in ΩCHΛ (1).

After this short digression, one can re-visit eq. (2.25) and justify its validity in this new lingo: the
average assigned state AΛ[ρ(0)] clearly belongs to ΩMΛ (ρ), so applying the coarse-graining map naturally
recovers ρ(0).

One must be more careful, however, when evaluating the result of applying (AΛ ◦Λ) on a microscopic
state. Consider the action of Λ on a general microscopic state ψ, resulting on some effective state ρ.
Clearly, ψ ∈ ΩMΛ (ρ). The subsequent application of AΛ, however, will not take ρ back to ψ, but rather to
the average state of the set ΩΛ(ρ), which will generally be another completely different state, see fig. 2.4
for clarity. Thus, (AΛ ◦Λ) only acts trivially on a microscopic state ψ if it was an average assigned state
to begin with.

(a) (Λ ◦ AΛ)[ρ] = ρ for any prepared effective state,
since AΛ[ρ] is the average assigned state, which obvi-
ously belongs to ΩM

Λ (ρ).

(b) The action of AΛ on ρ will always yield the average
assigned state. Thus, ψ′ will only coincide with ψ if ψ
was the average assigned state to begin with.

Figure 2.4: (Λ ◦AΛ) is simply the trivial channel, but (AΛ ◦Λ) will only act trivially on average assigned
states.

Looking back at eq. (2.24), one can then see that the condition for effective reversibility is not, in fact,
automatically satisfied. Moreover, we conclude that, in order for (AΛ ◦ Λ) to be trivial and the whole
channel (Γ−t ◦ Γt) to be the identity, one needs (Ut ◦ AΛ)[ρ(0)] to be an average assigned state. Once
that is true, it follows that
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ρ(0) = (Λ ◦ U−t ◦ AΛ ◦ Λ ◦ Ut ◦ AΛ)[ρ(0)]︸ ︷︷ ︸
average assigned state

(2.28)

= (Λ ◦ U−t ◦ Ut ◦ AΛ)ρ(0) (2.29)

= (Λ ◦ AΛ)ρ(0) (2.30)

= ρ(0). (2.31)

Put another way, the condition for the effective dynamics to be reversible, stated in eq. (2.24), is
equivalently to demanding that (Ut ◦ AΛ)[ρ(0)] be an average assigned state. Now, notice that AΛ[ρ(0)]
is, by construction, an average assigned state itself. This means that, ultimately, the microscopic evolution
Ut must be such that it maps average assigned states into average assigned states.

We can finally express the condition for an effective dynamics Γt to be reversible: if ψ is an average
assigned state, then the evolved state Ut[ψ] is also an average assigned state. Or yet,

Ut[ψ] = (AΛ ◦ Λ ◦ Ut)[ψ] (2.32)

whenever ψ = (AΛ ◦ Λ)[ψ].

The requirement above reflects the fact that reversibility is not a feature automatically present in
effective dynamics, being rather the result of a consonance between the coarse-graining map and the
microscopic evolution. Only if these two maps are somehow fine-tuned to each other can Γt be reversible,
and any initial state ρ(0) can be recovered from ρ(t) = Γt[ρ(0)] by applying the reverse effective evolution
Γ−t.

Let us take a moment to understand, from the physical perspective, why such dynamics are reversible.
Consider an initial preparation of some state ρ(0), where one is sampling an unknown microscopic state
that, on average, is given by the average assignment map as ψ̄(0) = AΛ[ρ(0)]. We let it evolve according to
Γt, meaning that ψ̄(0) will evolve into ψ̄(t) = Ut[ψ̄(0)], which in the lab will correspond to ρ(t) = Λ[ψ̄(t)],
on the effective level. Now, let us assume that the condition in eq. (2.32) is indeed satisfied, i.e., the
microscopic evolution is such that it yields an average assigned state whenever it is applied on an average
assigned state. Applying the reverse map Γ−t = (Λ ◦ Ut ◦ AΛ) on the final effective state starts with
applying AΛ on ρ(t) to find some microscopic state ψ′(t), which is in general not the same as ψ̄(t).
However, since ψ̄(0) is, by construction, an average assigned state, then so is ψ′(t), as we have just
assumed that Ut displays the desired property of taking average assigned states into average assigned
states. If ψ̄(t) is an average assigned state, then, it satisfies condition that ψ̄(t) = (AΛ ◦ Λ)[ψ̄(t)], which
means ψ′(t) = ψ̄(t). Consequently, evolving ψ̄(t) backwards with U−t yields ψ̄(0), which corresponds to
ρ(0) after the coarse-graining map. See fig. 2.5 for clarity.

Thus, one can ascertain that the dynamics of effective states will be reversible if the microscopic
evolution Ut and the coarse-graining map Λ satisfy eq. (2.24), which can only be achieved if the condition
in eq. (2.32) is satisfied. Ut and Λ must be such that Ut takes average assigned states into average assigned
states to ensure that, after gathering statistics from many runs of an experiment, one will conclude that
the initial effective state ρ(0) is always recovered, for any ρ(0). This does not mean, however, that the
initial state is always recovered, since the effective evolution channel Γt yields the average ρ(t), obtained
after analyzing the outcomes of many runs of the experiment.

If one wants to impose stronger conditions and require that the initial effective states be recovered on
each run of the experiment, another analysis must be conducted, as demanding that eq. (2.24) is satisfied
is too loose a condition. To derive that proper constraint, we must look at what is happening on the
microscopic level of the experiment at each realization.

Following [25], we can explore a particular scenario where specially interesting reversibility is achieved,
namely where the initial effective state is recovered not only on average but on every realization of the
experiment. This situation is set when a stricter condition on Ut and Λ is satisfied, namely

(Λ ◦ Ut)[ψ(0)] = (Λ ◦ Ut)[ϕ(0)] (2.33)

whenever Λ[ψ(0)] = Λ[ϕ(0)].

What this condition is imposing is that whenever two microscopic states ψ(0), ϕ(0) are assigned to the
same effective state, then the microscopic evolution Ut is such that the evolved states ψ(t), ϕ(t) will still be
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Figure 2.5: Schematics of reversible effective dynamics. Reversibility is assured whenever Ut takes the
average state of some set ΩΛ(ρ(0)) into the average state of some other set ΩΛ(ρ(t)). Put another way,
(Ut ◦ AΛ)[ρ(0)] = AΛ[ρ(t)]. Since the underlying unitary evolution is such that it takes average assigned
states into average assigned states, it is guaranteed that, just as ψ̄(0), ψ̄(t) is an average assigned state.
As a consequence, ψ̄(t) = (AΛ ◦Λ)[ψ̄(t)] and the same path is followed by the forward and the backward
evolution, assuring that the effective dynamics is reversible.

assigned to a single effective state. Put another way, Ut does not “split” the microscopic states compatible
with the same effective description, even after the evolution they will still yield a single effective state: if
ψ(0), ϕ(0) are both mapped to ρ(0), then ψ(t), ϕ(t) are both mapped to ρ(t). Mathematically, one could
also state it as the requirement that the microscopic evolution take ΩMΛ (ρ(0)) into ΩMΛ (ρ(t)).

Let us now argue that the condition expressed above is indeed a particular case of the general condition
for reversibility. Intuitively, this implication is a consequence of the linearity of Ut: if the particular
condition in eq. (2.33) imposes that ΩΛ(ρ(0)) evolves into ΩΛ(ρ(t)), the broader condition in eq. (2.32)
is satisfied because the average state ψ̄(0) of ΩΛ(ρ(0)) evolves into the average state ψ̄(t) of ΩΛ(ρ(t)).

If this stricter condition on the microscopic evolution Ut and the coarse-graining map Λ is satisfied,
then reversibility is assured, meaning that after many runs of the experiment one verifies that any initial
effective preparation is recovered. Notice that one can only conclude that the dynamics is reversible after
preparing ρ(0) many times, and subsequently performing the forward and backward evolution protocols
to infer ρ(0) for instance with state tomography. In other words, the statistical nature of the measurement
process only allows one to ascertain that the initial state is recovered on average. However, condition
eq. (2.33) yields a particular scenario where reversibility is in fact achieved on every run of the experiment,
and the initial effective state is recovered on every realization, not only on average (though one would
still have to perform state tomography to determine the effective state).

To see why this is the case, we must take a moment to expand on the physics behind a scenario of
what we dub “single-shot” reversibility, drawing from similar results in [25]. Suppose that, indeed, the
condition in eq. (2.33) is satisfied and Ut takes all microscopic states associated with the same effective
description into evolved microscopic states that are still compatible with a single effective description.
Upon preparing a state ρ(0) in the lab, one is in fact sampling some microscopic state ψ(0) ∈ ΩΛ(ρ(0)),
which is then evolved into ψ(t) = Ut[ψ(0)]. The effective evolved state is given by the coarse-graining
map as ρ(t) = Λ[ψ(t)]. The reverse process is then performed, where this preparation of ρ(t) corresponds
to sampling ψ′(t) ∈ ΩΛ(ρ(t)), which is then evolved into ψ′(0) = U−t[ψ

′(t)]. Notice now that both ψ(t)
and ψ′(t) belong to ΩMΛ (ρ(t)). If condition in eq. (2.33) is satisfied, as we assumed, this must mean both
ψ(0) and ψ′(0) belong to ΩMΛ (ρ(0)). Consequently, applying the coarse-graining map on ψ′(0) yields the
initial effective state ρ(0), see fig. 2.6. In summary, ρ(0) is recovered on every single run of the experiment
if condition eq. (2.33) is satisfied.

The simplest instance of reversible dynamics can be seen as a special case of the scenario we described
for single-shot reversibility. Consider that the condition in eq. (2.33) is satisfied, but in particular it holds
that
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Figure 2.6: Schematics of single-shot reversible dynamics In a stricter scenario, single-shot reversibility
is assured whenever Ut takes any state in ΩMΛ (ρ(0)) into some state in ΩMΛ (ρ(t)). When this condition is
met, it is clear that ψ(0) and ψ′(0) will both belong to ΩMΛ (ρ(0)), since clearly ψ(t), ψ′(t) ∈ ΩMΛ (ρ(0)).
This ensures that the initial state is recovered on every run of the experiment.

(Λ ◦ Ut)[ψ(0)] = ρ (2.34)

whenever Λ[ψ(0)] = ρ.

In words, this even stricter conditions dictates that the microscopic evolution Ut takes all the microscopic
states ψ(0) compatible with an effective description ρ into evolved states ψ(t) that are still compatible
with the same initial effective state ρ. Put another way, Ut plays into the symmetries of the coarse-graining
map and acts in such a way that states in ΩMΛ (ρ) remain in ΩMΛ (ρ) after being evolved.

Indeed, if the condition of eq. (2.34) is met the scenario is as follows. A preparation ρ corresponds
to sampling some ψ(0) ∈ ΩΛ(ρ), which evolves into ψ(t) = Ut[ψ(0)]. However, it is imposed that
Λ[ψ(0)] = Λ[ψ(t)], meaning that the action of the coarse-graining map on the evolved microscopic state
will yield ρ once again. As a result, only trivial dynamics are observed in the lab, and even though the
microscopic state changes, no change is perceived on the effective level. Thus, the effective dynamics is
trivially reversible, see fig. 2.7 for details.

Now that we have established the conditions on the microscopic evolution and the coarse-graining
map that yield emerging dynamics that are reversible, we can move on to analyze a couple of examples.

2.3.1 Examples: ΛPT and ΛD

For Γt to be reversible, it is necessary that the condition expressed in eq. (2.24) is verified. Additionally,
eqs. (2.33) and (2.34) impose even stricter constraints on Ut and Λ, which result in less general reversible
dynamics on the effective level. Let us explicitly find the microscopic evolutions that satisfy each of these
conditions for a couple of examples of coarse-graining maps: ΛPT describing the partial trace, and ΛD
describing the imperfect detector.

Consider the partial trace map, acting on microscopic states ψ ∈ L(HS ⊗HE), composed of a system
of interest interacting with an environment. We want to find which microscopic evolutions meet the
reversibility condition eq. (2.24), that is, which Ut take average assigned states into average assigned
states. Mathematically, this means that Ut must be such that there exist effective preparations ρ, ϕ
satisfying

Ut[AΛPT
(ρ)] = AΛPT

(ϕ). (2.35)

Recall the expression one already has for the average assigned state of a general effective state, given
in eq. (2.22), and the equation above can be re-written as
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Figure 2.7: Schematics of trivial effective dynamics. Suppose an effective state ρ was prepared in the
lab. Regardless to which underlying state ψ(0) ∈ ΩΛ(ρ) it corresponds, single-run reversibility is assured
whenever Ut is such that it takes states in ΩΛ(ρ) into states in ΩMΛ (ρ), for any ρ. Even though the
underlying physical state may change with the action of the unitary evolution, only trivial effective
dynamics will be observed in the lab.

Ut
[
ρ⊗ 1E

dE

]
= ϕ⊗ 1E

dE
. (2.36)

One can then conclude that the microscopic evolution must act locally on the system and the environment.
There must exist unitary operators UE ∈ HE and US ∈ HS , such that the action of Ut on any state ψ
can be expressed as

Ut[ψ] = (US ⊗ UE)ψ(U†
S ⊗ U†

E). (2.37)

Therefore, whenever Ut acts locally, then the effective dynamics induced by the partial trace satisfies
eq. (2.24) and is thus reversible.

An interesting aspect to the partial trace is that the class of Ut that satisfy the most general condition
for reversibility in eq. (2.24), requiring the initially prepared effective state to be recovered on average,
also satisfy the more restricted condition in eq. (2.33), which implies that the initial state is recovered
on every realization of the experiment. This means that if one’s access to information about a physical
system is described by the partial trace, reversible dynamics are always single-shot reversible.

Indeed, translating the condition expressed in eq. (2.33) in terms of the partial trace yields

TrE [Ut[ψ(0)]] = TrE [Ut[ϕ(0)]] (2.38)

whenever TrE [ψ(0)] = TrE [ϕ(0)],

which is clearly satisfied for microscopic evolutions that only act locally, that is, the set of Ut that satisfy
the condition for general reversibility. Moreover, the simplest reversibility scenario, where the effective
dynamics is trivial, is recovered when US = 1S , and no change is perceived in the lab.

This is a peculiarity of this specific coarse-graining map and not a rule, as in general there will be
microscopic evolutions that yield dynamics that are reversible (so, satisfying eq. (2.24)) but do not recover
the initial effective state on every run of the experiment, only on average (meaning they do not satisfy
the requirement in eq. (2.33)).

To show an example, let us now consider the coarse-graining described in section 2.1.1, modeling
measurements performed by an imperfect detector. One can once again characterize the set of unitary
microscopic evolutions that satisfy the conditions for reversibility in eq. (2.24), for single-shot reversibility
in eq. (2.33), and trivial effective dynamics in eq. (2.34).

We can start with the simplest case. Let S1 be the set of unitary operators that describe the action of
microscopic evolutions that satisfy eq. (2.34), that is, if U ∈ S1 then the evolution given by Ut[ψ] = UψU†
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yields trivial dynamics. It can be shown that, if one adopts ΛD as the coarse-graining map, then the
elements of S1 can be parameterized by α ∈ [0, 2π] as

U1(α) =
1

2

2e−iα 0 0
0 (1 + eiα) (1 − eiα)
0 (1 − eiα) (1 + eiα)

 . (2.39)

Similarly, let S2 be the set of unitary operators that describe the action of microscopic evolutions that
satisfy eq. (2.33) and yield single-shot reversible dynamics. The elements of S2 can be parameterized by
α, β ∈ [0, 2π] as

U2(α, β) =
1

2

2e−i(α+β) 0 0
0 (eiα + eiβ) −(eiα − eiβ)
0 −(eiα − eiβ) (eiα + eiβ)

 . (2.40)

Notice that, as expected, the unitary operators described in eq. (2.39) are a subset of those described in
eq. (2.40), reflecting the observation that trivial dynamics are a particular case of single-shot reversible
dynamics, and S1 can be obtained from S2 by setting β = 0.

Finally, let S3 be the set of unitary operators that describe the action of microscopic evolutions that
satisfy the general reversibility condition in eq. (2.24). Its elements are expressed in terms of parameters
θ1, θ2, θ3 ∈ [0, π/2] and ϕ1, ϕ2, ϕ3, ϕ4, ϕ5 ∈ [0, 2π] as

U3(θ1, θ2, θ3, ϕ1, ϕ2, ϕ3, ϕ4, ϕ5) =
1

2

cos θ1 cos θ2e
iϕ1 sin θ1e

iϕ3 cos θ1 sin θ2e
iϕ4

χ21 cos θ1 cos θ3e
iϕ2 χ23

χ31 cos θ1 sin θ3e
−iϕ5 χ33

 , (2.41)

with

χ21 = sin θ2 sin θ3e
−iϕ4−iϕ5 − sin θ1 cos θ2 cos θ3e

iϕ1+iϕ2−iϕ3 , (2.42)

χ23 = − cos θ2 sin θ3e
−iϕ1−iϕ5 − sin θ1 sin θ2 cos θ3e

iϕ2−iϕ3+iϕ4 , (2.43)

χ31 = − sin θ1 cos θ2 sin θ3e
iϕ1−iϕ3+iϕ5 − sin θ2 cos θ3e

−iϕ2−iϕ4 , (2.44)

χ33 = cos θ2 cos θ3e
−iϕ1−iϕ2 − sin θ1 sin θ2 sin θ3e

−iϕ3+iϕ4+iϕ5 . (2.45)

The parameters that define the elements of S3 have to obey the restrictions set by

0 ≥ sinϕ5 − ϕ2
sinϕ1 + ϕ2 + ϕ5

≥ 1 (2.46)

sinϕ1 + 2ϕ2
sinϕ1 + ϕ2 + ϕ5

≤ 0 (2.47)

ϕ4 = ϕ3 (2.48)

θ1
cos 2θ1

= cos2 2θ1

(
sinϕ5 − ϕ2

sinϕ1 + ϕ2 + ϕ5

)
(2.49)

θ2 = arcsin tan θ1, 0 ≤ θ1 ≤ π/4 (2.50)

tan θ3 = − cot2 θ1 cscϕ1 + ϕ2 + ϕ5 sinϕ1 + 2ϕ2 (2.51)

The calculations leading to eqs. (2.39), (2.40) and (2.41) are presented in appendix D. There, we also
show that a particular choice of parameters for U3(θ1, θ2, θ3, ϕ1, ϕ2, ϕ3, ϕ4, ϕ5) recovers the elements of
S2, as expected. We point out that, unlike the scenario where one takes the partial trace as the coarse-
graining map, the inclusion the set S2 in S3 is strict, meaning there are microscopic evolutions that will,
indeed, yield reversible effective dynamics that are not single-shot reversible.

In this section, we have characterized the microscopic evolutions that, in composition with the coarse-
graining maps ΛPT or ΛD, yield emerging effective dynamics that are reversible. We have also specified
which subset of these microscopic evolutions additionally satisfy stricter restrictions, resulting in effective
reversible dynamics that always recover the initial state (on every realization of the experiment, not only
on average) or that describe a trivial effective evolution (where no change is perceived in the lab). We
know move on to the next section, where we discuss how to characterize effective reversibility in terms
of our ignorance about the physical system.
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2.4 Uncertainty and reversibility

So far, what we have made clear is that, while not the norm, effective reversibility is achieved when
some matching between the microscopic evolution Ut and the coarse-graining map Λ takes place. With
this analysis, one can understand reversibility exclusively in terms of quantities and objects available
during an experiment, and it is not necessary to assume any access to information that is not available
(such as the actual microscopic state that is being prepared).

This is, however, a very descriptive analysis. It attests that reversibility is possible under certain
conditions, but it does not touch the matter of why these specific dynamics are reversible. In this section,
we want to address this aspect of the problem, and provide a physical meaning to reversibility on the
effective level. To do that, we must revisit the discussion around the second law of thermodynamics
(which ultimately should dictate which dynamics are reversible), and the difficulty around defining an
adequate entropy.

As we have established, the object of interest for the second law is entropy, but it is very unclear which
entropy should be at its core. In [39, 72], von Neumann argues for the central role that coarse-graining
should have when analyzing thermodynamics systems, even in detriment of his eponymous entropy in
eq. (2.5), which he deemed to be valid only in certain circumstances. Similarly, in [73], Einstein already
argued that the entropy of a macroscopic state should be proportional to the log of the number of
underlying quantum states compatible with the macroscopic description.

While the effort of defining the ultimate entropy to figure in the second law is beyond the scope of our
work, we can surely take notes from the investigations of these researchers, as well as Boltzmann himself,
and recognize the essential role that uncertainty must play. In all these approaches, what is established
is that the entropy of an effective state is closely connected to the uncertainty around it. Although, upon
preparing an effective state ρ, the actual microscopic state that is sampled is unknown, different degrees
of uncertainty are associated to each effective state: the more microstates compatible with ρ there are,
the more uncertainty one has, and the higher the entropy of ρ should be.

The physical implication that this realization has on the second law of the thermodynamics is that
only dynamics where the uncertainty of an effective state decreases (or at least remains unchanged) are
possible, since the entropy is constrained not to increase. In turn, an evolution is only be reversible if the
entropy stays constant throughout the process, which means if the uncertainty associated to an effective
state increases then reversibility can no longer be achieved.

The physical interpretation of this statement is that information that is lost should not be recovered.
Starting with some effective state ρ(0), with few compatible microscopic states and thus associated with
low uncertainty, one lets it evolve to ρ(t), with many compatible microscopic states. The result is an
increase in uncertainty, which one should not expect to be reversible.

Motivated by this reasoning, we suggest that the relevant object that restricts the reversibility of
effective dynamics is the volume of the set of microscopic states compatible with the effective descrip-
tion. This quantity assesses the uncertainty associated to a preparation, and its behavior throughout an
effective evolution can rule out reversibility completely: if this volume increases, the process cannot be
reversible.

Let ρ be an effective state in Hd. Instead of constructing the set ΩΛ(ρ) of pure microscopic states
compatible with ρ, one can consider the set of pure microscopic states whose effective description is close
enough to ρ. Let this set be defined as

ΩϵΛ(ρ) = {ψ ∈ LD| ||Λ[ψ] − ρ|| ≤ ϵ, ψ = |ψ⟩⟨ψ|}. (2.52)

Here, one is simply including an imprecision parameter ϵ, determining how far the effective description
of a microstate can be from the target effective state ρ. Of course, by taking the limit ϵ→ 0 we promptly
recover ΩΛ(ρ).

We can, then, gauge the uncertainty of ρ by evaluating the volume of ΩϵΛ(ρ), given by the following
expression

VϵΛ(ρ) =

∫
dµψ

1

ϵ
rect

(
||Λ[ψ] − ρ||

ϵ

)
, (2.53)

where dµψ is the Haar measure over pure states in HD, and rect is the rectangular function, defined as

rect
t

a
=


0, if |t|> a

2

1, if |t|< a
2

1
2 , if |t|= a

2

(2.54)
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We are naturally interested in the situation where ϵ is very small, in which case the expression above
is reduced to

VΛ(ρ) =

∫
dµψδ(Λ[ψ] − ρ). (2.55)

Notice that, strictly speaking, evaluating eq. (2.55) yields zero. This result will be show in more detail
further in the text, but it an expected and intuitive result: microscopic states that correspond exactly
to ρ after a coarse-graining map is applied are in a hyperspace of volume zero. However, just as in
standard statistical physics, one can evaluate VϵΛ(ρ) in the limit of ϵ ≪ 1. Then, taking the first order
approximation would confer a “thickness” ϵ to the set ΩΛ(ρ), and VΛ(ρ) is proportional to ϵ and no longer
null.

For a generic Λ, the expression for the volume of the set of pure microscopic states compatible with ρ
in eq. (2.55) can be quite tough to evaluate. Nevertheless, it is possible to find the uncertainty associated
to an effective state in both our working examples, either analytically or at least numerically.

2.4.1 Examples: ΛPT and ΛD

Let us evaluate the uncertainty associated to an effective description ρ ∈ HS , emerging from choosing
the partial trace over HE as the coarse-graining map. We want to compute

VΛPT
(ρ) =

∫
dµψδ(ΛPT[ψ] − ρ), (2.56)

where dµψ is the Haar measure in HS ⊗ HE . Recall the trick used in appendices C and D, where one
uses the symmetries of the coarse-graining map to simplify the integral. Start by making the change of
variable |ψ⟩ → US ⊗ 1E |ψ⟩, where US is an arbitrary unitary acting on HS . Since the Haar measure is
invariant under unitary transformations, it follows that

VΛPT
(ρ) =

∫
dµψδ(USΛPT[ψ]U†

S − ρ) (2.57)

=

∫
dµψδ(ΛPT[ψ] − U†

SρUS). (2.58)

The choice of US is arbitrary, so let us choose it such that it diagonalizes ρ

VΛPT
(ρ) =

∫
dµψδ(ΛPT[ψ] − diag[λ1, . . . , λdS ]), (2.59)

and we assume that all λi ̸= 0.4

Now, let us parameterize ψ as

|ψ⟩ =
∑
i,j

cij |ϕi⟩S |γj⟩E , (2.60)

with i = 1, . . . , dS , j = 1, . . . , dE , and ⟨ϕi|ϕj⟩ = ⟨γi|γj⟩ = δij such that the reduced state of the system
is given by

ρS = TrE [|ψ⟩⟨ψ|] =
∑
ijk

cikc
∗
jk |ϕi⟩⟨ϕj | , (2.61)

and the element of the reduced density matrix are

ρSij =
∑
k

cikc
∗
jk (2.62)

= c⃗i · c⃗†j . (2.63)

Consequently, the expression for the volume is now

4This assumption is aligned with the framework we are setting throughout this chapter. We are trying to deal with
realistic scenarios, and quantum states with a null eigenvalue (that is, that are not full-rank) are never going to be exactly
prepared in the lab
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VΛPT
(ρ) =

∫
dc⃗

dS∏
i=1

δ(c⃗ic⃗
†
i − λi)

dS∏
i̸=j

δ(c⃗ic⃗
†
j), (2.64)

where

dc⃗ =

dS∏
i=1

dc⃗i (2.65)

dc⃗i =

dE∏
k=1

dcik. (2.66)

Let us once again make a change of variable c⃗i =
√
λiz⃗i, such that

dc⃗i =λdEi dz⃗i (2.67)

dc⃗ =(det[ρ])dEdz⃗ (2.68)∏
i

δ(c⃗ic⃗
†
i − λi) =

∏
i

1

λi
δ(z⃗iz⃗

†
i − 1) (2.69)

∏
i̸=j

δ(c⃗ic⃗
†
j) =

∏
i̸=j

1√
λiλj

δ(z⃗iz⃗
†
j ). (2.70)

The resulting expression for the volume is

VΛPT(ρ) = det[ρ]dE
∏
i

1

λi

∏
i<j

1

λiλj

∫
dz⃗

dS∏
i=1

δ(z⃗iz⃗
†
i − λi)

dS∏
i̸=j

δ(z⃗iz⃗
†
j ). (2.71)

Moreover, one can see that

∏
i

1

λi
= det[ρ], (2.72)

∏
i<j

q

λiλj
=

1

(det[ρ])dS−1
. (2.73)

Finally, one reaches the final expression

VΛPT
(ρ) = det[ρ]dE−dS

∫
dz⃗

dS∏
i=1

δ(z⃗iz⃗
†
i − 1)

dS∏
i ̸=j

δ(z⃗iz⃗
†
j )︸ ︷︷ ︸

K(dS)

.
(2.74)

where the integral is a constant that does not depend on ρ, only on dS , and K(dS) is simply the volume
associated to identity matrix in dS .

As expected, this expression reflects the uncertainty of ρ. One can see for instance that this volume
is maximal for the maximally mixed state, which corresponds, intuitively, to the effective preparation
where one knows the least about the possible microscopic state. On the other hand, effective states with
very high purity, i.e., one eigenvalue very close to 1 and the remaining eigenvalues very close to 0, have
a small corresponding uncertainty volume.

A few things must be noted about this result. First, it is expected that pure states should have the
corresponding volume of uncertainty be zero. In fact, this holds for any state that is not full-rank, since
its determinant would be zero. We point out, however, that such states would never be realistically
prepared in the lab, since it would require infinite precision.

Second, eq. (2.74) predicts that all (full-rank) states would have the same volume of uncertainty if
dE = dS . We argue that, once again, in a realistic scenario that would never be the case. First of all
because the environment typically has more degrees of freedom than the system of interest, so dE > dS
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usually holds. Furthermore, this whole calculation was carried out considering pure microscopic states.
It can be easily generalized for mixed states by purifying them with the aid of some auxiliary system of
dimension dB > 1. As a result, the corresponding expression for the volume would be

VdBΛPT
(ρ) ∝ det[ρ]dEdB−dS . (2.75)

This expression would only yield constant volume if dS > dE , which would be very atypical. If we
stress again that pure states cannot be realistically prepared in the lab, considering the expression above
combined with the usual scenario of dE > dS is enough to argue that one will not face a situation
where eq. (2.74) yields the not-so-useful result of constant volume for all states. In fig. 2.8, we provide a
numerical analysis further supporting the use of VΛPT(ρ) as defined above.

Figure 2.8: Numerical analysis of the volume of uncertainty of effective states. In this graph, we evaluate
how well simulations fit with the prediction given by eq. (2.55). For a given effective qutrit states ρ, we
sampled 10000 microscopic states ψ ∈ L(H3⊗HE) and checked how many of those satisfied the condition
||ΛPT[ψ] − ρ||< ϵ, for ϵ = 0.3, that is, how many of those were approximately compatible with ρ. Put
another way, the count of microscopic states obeying this condition is a estimate of the volume VΛPT

(ρ).
By plotting the results against det(ρ) and superposing the fitted curves, we can confirm the expected
behavior: for dE = 3 (in blue), we see that the volume of uncertainty is constant, as dE = dS , for dE = 4
it grows linearly with det(ρ); and for dE = 5 it grows quadratically.

Once the calculation for the case of the partial trace have been done, one can similarly evaluate the
uncertainty associated to an effective description ρ when the coarse-graining map is ΛD, which yields

VdBΛD
(ρ) =

24−3dBπ1+4dB (1 + z)−dB (1 − x2 − y2 − z2)2(dB−1)

Γ[dB ]Γ[2dB − 1]
, (2.76)

where x, y, z are the Bloch vectors of ρ. Moreover, here we also consider mixed states, which are purified
with an auxiliary system of dimension dB . This calculation is significantly more complicated, and the
details are presented in appendix E, where we have adapted a calculation lead in [74].

Now that we have these two expressions, we can move on to probe the relation between reversibility
of effective dynamics and their consequences on the volume of uncertainty of the effective preparations.

2.5 Results and discussion

Let us once again consider the simple experiment we have described in earlier sections. An effective
state ρ(0) is prepared and let evolve according to the effective evolution Γt, given by the composition
of the coarse-graining map Λ, the microscopic evolution Ut and the average assignment map AΛ. The
resulting effective state is ρ(t) = Γt[ρ]. The same process is followed backwards, and the effective state
ρ′(0) = Γ−t[ρ(t)] is obtained.
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In this scenario, we can compare the initially prepared state ρ(0) and the state that is obtained
after the backwards evolution ρ′(0) to assess the reversibility of Γt. If they always coincide, then Γt is,
according to our definition, reversible.

Consider the example of the partial trace, applied on microscopic states composed of a 2-qubits system
of interest and a 2-qubit environment. We already know that only microscopic evolutions that can be
decomposed as local unitaries will yield reversible effective dynamics, any other construction of Ut will
fail to recover the initial state. This can be visualized numerically in figs. 2.10 and 2.9, where we let
random ρ(0) evolve according to a given Γt for different time intervals, and then reversed back to ρ′(0).
We evaluate whether or not the initial state was recovered and how the volume of uncertainty of the
effective state changed.

Figure 2.9: We sampled a random effective 2-qubits state ρ(0), which we let evolve for different time
intervals while keeping track of the uncertainty volume associated to it, here plotted in red. At any
time t, the effective state is given by ρ(t) = Γt[ρ(0)], and in this example Γt emerges from a microscopic
evolution that does not act locally on the system of interest and the environment. In blue, we plot
the trace distance between the initially prepared state ρ(0) and the state that was recovered through
ρ′(0) = Γ−t[ρ(t)]. Given this choice for Ut, the resulting effective dynamics is not reversible, which can
be attested by the fact that the trace distance between ρ(0) and ρ′(0) is not zero (except for the points
where the cyclic nature of Ut makes it the trivial evolution), meaning that the initial prepared state is
not recovered after the backwards process. Consequently, we also see that the volume of uncertainty of
the prepared state indeed changes with time, prohibiting these dynamics to be reversible. Qualitatively
equivalent behaviors are observed when other initial states are sampled, or when other microscopic
evolutions that do not satisfy the reversibility criterion are chosen. Here, the unitary evolution is given
by the operator Ut = e−iHt with H = σz ⊗ σz ⊗ σx ⊗ σx.

From these simple numerical examples we see instances of situations that corroborate the use of
the volume of uncertainty to analyze the reversibility of effective dynamics. As expected, only when
VΛPT

(ρ(t)) remains unaltered through the evolution do we observe that the initial state is recovered. The
interpretation behind it is also clear, if we recall that reversible effective dynamics are only achievable
if Ut acts locally on the system of interest and the environment, as stated in eq. (2.37). Γt acts on an
effective state ρ(0) as in eq. (2.22), and in the reversible case it reduces to

ρ(t) = USρ(0)U†
S . (2.77)

It comes at no surprise, then, that under these conditions VΛPT
(ρ(t)) does not change with time, since it

depends only on the determinant of ρ(t), which does not change under unitary transformations.
On the other hand, if the microscopic evolution does not act locally on the system and the environment,

then the emerging dynamics is not reversible. This is compatible with the numerical results showing that
VΛPT

(ρ(t)) increases, prohibiting Γt to be reversible. Indeed, it is always the case that microscopic
evolutions that do not decompose into local unitaries should make VΛPT

(ρ(t)) increase, resulting in
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Figure 2.10: As before, we sampled a random effective 2-qubits state ρ(0), which we let evolve for different
time intervals while keeping track of the uncertainty volume associated to it. In blue, we plot the trace
distance between ρ(0) and ρ′(0). However, here we picked Ut such that eq. (2.37) is satisfied, i.e., the
resulting dynamics is reversible. Consequently, we see that the trace distance between ρ(0) and ρ′(0) is
always zero (meaning the initial state is recovered) and that the volume of uncertainty of ρ(t) remains
unaltered. Qualitatively equivalent behaviors are observed when other initial states are sampled, or when
other microscopic evolutions satisfying the reversibility criterion are chosen. Here, the unitary evolution
is given by the operator Ut = e−iHt with H = σz ⊗ σz ⊗ 1⊗ 1 + 1⊗ 1⊗ σx ⊗ σx.

irreversible effective dynamics. To see why it is so, first consider the following result from [75], stating
that, for any two states σ1, σ2 of same dimension, it holds

T [σ1] = σ2 ⇐⇒ λ⃗(σ1) ≻ λ⃗(σ2), (2.78)

where T is some unital transformation, and λ⃗(σ1) ≻ λ⃗(σ2) means that σ1 majorizes σ2, that is,

k∑
i=1

λ↓i (σ1) ≥
k∑
j=1

λ↓j (σ2) ∀ k ≥ 1 (2.79)

where λ↓i (σ1) are the eigenvalues of σ1 organized in non-increasing order, and similarly for λ↓i (σ2). More-
over, from [76] we know that

λ⃗(σ1) ≻ λ⃗(σ2) =⇒ G(σ1) ≥ G(σ2), (2.80)

where G is defined as

G(x) =
∑
i

g(xi), (2.81)

and g is any convex function. Putting these two results together, we see that, since Γt is unital,

ρ(t) = Γt[ρ(0)] ⇐⇒ ρ(0) ≻ ρ(t). (2.82)

Then, by choosing g(x) = − log(x), as it is a convex function we have that

ρ(0) ≻ ρ(t) =⇒ − log(det(ρ(0))) ≥ − log(det(ρ(t))) (2.83)

which in turn means that

det(ρ(t)) ≥ det(ρ(0)). (2.84)
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Thus, the volume of uncertainty of an evolved effective state does not decrease. If Ut is appropriately
chosen, VΛPT

(ρ(t)) does not change and Γt is reversible, otherwise VΛPT
(ρ(t)) will increase.

We can now follow the same analysis and compare the behavior of the volume of uncertainty of effective
states when the coarse-graining map is ΛD, numerical examples are provided in figs. 2.11 and 2.12. Once
again, the observed behaviors strengthen our proposal of using VdBΛD

(ρ(t)) to analyze effective reversibility:
whenever the dynamics is reversible (that is, whenever ρ(0) = ρ′(0) for any given time interval), it follows
that the volume of uncertainty of ρ(t) is constant.

We must point out, however, that this does not seem to be a two-way implication: reversible effective
dynamics only take place when the volume of uncertainty of the effective state ρ(t) is constant throughout
time, but the fact that VdBΛD

(ρ(t)) does not vary does not imply that the dynamics is reversible. In fig. 2.13,
we provide a numerical analysis of a situation where the dynamics is not reversible (that is, it does not
fit the requirements for reversibility set in eq. (2.41), and consequently ρ(0) ̸= ρ′(0)) and yet the volume
of uncertainty of ρ(t) is constant.

The existence of such examples of irreversible effective dynamics with constant volume of uncertainty
does not undermine our claim that VdBΛD

(ρ)(t) can be used to analyze effective reversibility. Having only
one way of the implication hold is in fact aligned with the common analysis of the behavior of entropy in
the context of the second law of thermodynamics. Let us recall that some scenarios yield constant entropy
for closed systems regardless of the reversibility of the effective dynamics, such as when we choose to
evaluate the von Neumann entropy of the system. As we have argued then for the von Neumann entropy,
this result is not at all in contradiction with the second law, but it is rather useless as it does not directly
link entropy and reversibility.

In our case there is also no direct link between VdBΛD
(ρ(t)) and the reversibility of effective dynamics,

but our result is still more useful than using the von Neumann entropy. First of all, the von Neumann
entropy does not rule out any (closed) dynamics as irreversible, while our analysis prohibits dynamics
that change VdBΛD

(ρ(t)) to be reversible. Choosing to investigate volumes of uncertainty instead of the
von Neumann entropy may, thus, be more conclusive in many instances, though it does not mean that
the constancy of VdBΛD

(ρ(t)) guarantees reversibility.
The second reason why evaluating the volume of uncertainty of the effective state throughout time is

useful is because, as far as our numerical analyses go, a direct link between VdBΛD
(ρ(t)) and the reversibility

of the effective dynamics can be re-established if one considers dB > 1, see fig. 2.14 for details. There, we
have first shown that a given effective dynamics is irreversible and yet V1

ΛD
(ρ(t)) is constant, where stress

that dB = 1. Then, we show that by choosing dB > 1 the expected behavior is obtained: the dynamics
is irreversible but now VdBΛD

(ρ(t)) is not constant anymore.

In other words, there is numerical evidence suggesting a direct link connecting VdBΛD
(ρ(t)) and effective

reversibility if dB > 1. Consequently, a two-way implication between the volume of uncertainty of an
effective state being constant throughout a given evolution and the initial state being effectively recovered
can be envisioned. The restriction that one must, then, only consider dB > 1 is neither nonphysical nor
unmotivated: once again it comes to accepting that perfectly pure states cannot be prepared in real life,
any realistic theoretic approach to this matter must take into account that the infinite precision required
for such a feat is not achievable. This means that one should employ an auxiliary system to purify the
(mixed) microscopic states that are compatible with a given effective preparation, that is, dB > 1.

2.6 Concluding remarks

The second law of thermodynamics is taken as a tool whose comprehensive use universally dictates
which dynamics are allowed in a physical scenario: do what you will as longs as you do not decrease
the entropy of closed systems. Determining what exactly this entropy is constitutes a challenge for the
field of quantum thermodynamics in particular, and different choices for the entropy can yield distinct
predictions arising from the second law, specially when it comes to reversibility.

In this work, we have taken on the matter of effective reversibility, a subject that has both foundational
and applied relevance. By trying to conciliate microscopic and effective descriptions of systems, we provide
a framework that highlights the connections between these two approaches. We show how coarse-grained
access to a physical systems results in irreversible effective dynamics, even though we have assumed that
the underlying physical system is subject to a closed unitary evolution.

Once it was clear that reversible effective dynamics are the exception rather than the norm, we have
established that reversibility is only achieved on the effective level if there is a certain consonance between
the coarse-graining map Λ that describes one’s access to the system and the microscopic evolution Ut
to which the physical state is subjected. We then determined the constraints that Λ and Ut must
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Figure 2.11: Similarly, we sampled a random effective state ρ(0), which we let evolve for different time
intervals while keeping track of the uncertainty volume associated to it, here plotted in red. At any
time t, the effective state is given by ρ(t) = Γt[ρ(0)], and in this example Γt emerges from a microscopic
evolution that does not fit eq. (2.41) and eqs. (2.46) to (2.51). In blue, we plot the trace distance between
ρ(0) and ρ′(0) = Γ−t[ρ(t)]. Given this choice for Ut, the resulting effective dynamics is not reversible,
which can be attested by the fact that the trace distance between ρ(0) and ρ′(0) is not zero, meaning that
the initial prepared state is not recovered after the backwards process. Consequently, we also see that
the volume of uncertainty of the prepared state indeed changes with time, prohibiting these dynamics
to be reversible. Qualitatively equivalent behaviors are observed when other initial states are sampled,
or when other microscopic evolutions that do not satisfy the reversibility criterion are chosen. Here, the
unitary evolution is given by the operator Ut = e−iHt with H = λ5, where {λi}8i=1 are the Gell-Mann
matrices.

satisfy in order for the emerging effective dynamics Γt to be reversible. We also explicitly obtained the
corresponding microscopic evolutions that obey such constraints for two examples of Λ: the partial trace
and an imperfect detector.

We then argued for the use of the volume of uncertainty of a given effective state ρ(t) throughout its
evolution to determine whether the dynamics is reversible or not. Taking inspiration from the Boltzmann
entropy, we use our ignorance about an effective preparation (to whose degrees of freedom one only has
partial access, modeled through the coarse-graining map) to re-phrase one of the main interpretations of
the second law of thermodynamics: the information one has about a closed system cannot increase. In
our framework, VΛ(ρ(t)) quantifies our ignorance about what is microscopic state was actually sampled
when we prepare an effective state ρ(t), and the more microscopic states compatible with observing ρ(t)
there are, the larger VΛ(ρ(t)) is.

The relation between reversibility and uncertainty can be encapsulated in the statement that reversible
dynamics cannot alter our ignorance about a system. One cannot gain any information on a closed system
in any case, thus if one actually loses information about it through time, then this evolution cannot be
reversed as it would mean one would gain information in the backwards process, which is not allowed.
In terms of the framework we constructed, if Γt is reversible then VΛ(ρ(t)) cannot vary with t.

We have put our construction to test with two examples, and showed that if Λ is the partial trace then
we have a perfect correspondence between reversibility and the constancy of the volume of uncertainty
of the effective states. When Λ describes the imperfect detector, we have provided robust numerical
evidence that a similar correspondence exists.

Many paths are still open to continue this line of research. We can still go beyond numerical evidence
and analytically show that the reversible effective evolution that emerge from ΛD and the appropriate Ut
do not change VdBΛD

(ρ(t)), for dB > 1. It would be even better to show that this implication holds for any
coarse-graining map, though this feat might a considerably larger effort. On the other hand, it would
also be very interesting to provide numerical methods to evaluate VΛ(ρ(t)), since finding an analytical

44



Figure 2.12: As before, we sampled a random effective state ρ(0), which we let evolve for different time
intervals while keeping track of the uncertainty volume associated to it. In blue, we plot the trace distance
between ρ(0) and ρ′(0). However, here we picked Ut such that eq. (2.41) and eqs. (2.46) to (2.51) are
satisfied, i.e., the resulting dynamics is reversible. Consequently, we see that the trace distance between
ρ(0) and ρ′(0) is always zero (meaning the initial state is recovered) and that the volume of uncertainty
of ρ(t) remains unaltered. Qualitatively equivalent behaviors are observed when other initial states are
sampled, or when other microscopic evolutions satisfying the reversibility criterion are chosen. Here, the
unitary evolution is given by the operator Ut = e−iHt with H = λ6, where {λi}8i=1 are the Gell-Mann
matrices.

expression for it can prove itself challenging. One could also construct a measure of reversibility, a
quantity that could reflect, for instance, how far from the initially prepared state ρ(0) the recovered state
ρ′(0) is.

Though still under construction, we hope our work can foster a discussion over what effective re-
versibility means when one understands that effective dynamics must emerge from microscopic quantum
dynamics. If nothing else, our contribution to the debate is that the scenarios with which we work must
be physically motivated by realistic settings, and consequently one should evaluate effective phenomena
without assuming knowledge about inaccessible objects, such as the microscopic states. With our work,
what we confirm at the end of the day is that even when no unanimously accepted formulation of the
second law of thermodynamics is available (such as it is in the scenario we have adopted), its aura is still
to be felt, assuring that, indeed and quite poetically, uncertainty cannot decrease.
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Figure 2.13: Numerical analysis of V1
ΛD

(ρ(t)) for a randomly sampled ρ(0) in red, and the trace distance
between ρ(0) and the effective state ρ′(0) that is recovered after letting ρ(0) evolve effectively for a given
time interval t and then evolve backwards for the same interval, in blue. Here, the specific choice of the
underlying microscopic evolution yields irreversible dynamics (as evidenced by the fact that ρ(0) ̸= ρ′(0),
as the trace distance is not zero) but the volume of uncertainty of ρ(0) is nevertheless constant. Here,
the unitary evolution is given by the operator Ut = e−iHt with H = λ3, where {λi}8i=1 are the Gell-Mann
matrices. We stress out that dB = 1.

Figure 2.14: A similar numerical analysis, conducted for the same randomly sampled ρ(0) as before,
evolving according to the effective evolution given by the same underlying dynamics. Here, however, we
have chosen dB = 3 to evaluate VdBΛD

(ρ(t)), that is, we are not considering only pure microscopic states
anymore. As a result, the irreversibility of the effective dynamics is now matched by a change in the
volume of uncertainty associated to ρ(t).
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Part II

Additional projects: Witnessing
non-classicality
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Chapter 3

Semidefinite programming

In this section we will provide a brief overview of semidefinite programming (SDP), a class of math-
ematical problems framed as optimization tasks. It is by no means a new concept, with an early paper
discussing its theoretical properties dating back from 1963 [77], and the field has since been established
as a domain of significant interest, with major contributions (both theoretical and applied) spanning the
decades ever since.

The interest in the area is of course justified through the importance of optimization tasks themselves,
which are central in physics, chemistry, engineering, economics, among others. Such tasks are in general
exceedingly hard to perform, but semidefinite programs in particular display the wonderful characteristic
of being solved with reasonable efficiency and precision.

Being defined as an optimization of a linear objective function over some variable constrained by
a set of linear matrix inequalities, SDPs are much more general than linear programs (LP) while not
being much harder to solve. On the other hand, as a particular class withing the widely studied field
of conic programming (itself a sub-field of convex programming), SDPs also benefit from the many
theoretical results and methods that have already been established. Additionally, actually applying
semidefinite programming to a problem is fairly easy since many coding packages are available, from
which we highlight CVX [78] and YALMIP [79] for MATLAB [80], and CVXPY [81] for Python [82],
running numerical solvers (often offered for free) such as SCS [83] or MOSEK [84].

If its sound foundations helped establish semidefinite programming as an area on its own in com-
puter science, at least part of its crescent popularity is due to a symbiotic relationship with quantum
information. SDPs deal, at its core, with positive semidefinite matrices, used canonically to represent
quantum states and measurements, and thus dwelling basically in the backyard of quantum information.
Connections between one another are promptly made in any problem where one wants to find states,
observables or even channels featuring some specific property, as often is the case in the fields of Bell
non-locality [85], quantum steering [86], quantum contextuality [87] or measurement incompatibility [88]
(often grouped under the umbrella term “quantum correlations”).

The results that will be presented in later chapters do not stray far from the quantum correlations
field and benefited immensely from their usage of semidefinite programming. For that reason, before
we can move on and discuss our remaining projects we must establish a base knowledge of what SDPs
are. In what follows we will present a couple of original results, but most of the content will be a
simple adaptation from previous works. For in depth discussions on semidefinite programming we refer
to [89, 90, 91, 92, 93], from which we adapted different passages to produce the next section, a brief
introduction to SDPs.

3.1 Basic notions and usage

Semidefinite programming concerns itself with tasks where one optimizes a linear function of interest
over a matrix variable within a spectrahedron (i.e., the intersection of the cone of positive semidefinite
matrices with the affine space delimited by a set of matrix inequalities). It is a special instance of convex
optimization, which have the generic formulation

maximize g(X)

subject to X ∈ C .
(3.1)
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While X is the variable, g is called the objective function of the problem, assumed to be concave and g(X)
is assumed to be real. The set C, a subset of the domain of g, is the feasibility region of the problem. This
program represents the task of maximizing the function g over all values of X that obey the restrictions
that define the set C, and the value the objective function assumes in this case is called the optimal
solution of the problem.

An inviting aspect of convex optimization tasks is that local maxima of the objective function are
also global maxima, an appealing feature when formulating a problem. A not so inviting side of convex
optimization is that it is, in general, not efficiently solved [94]. If one can re-formulate a convex optimiza-
tion problem such that the variable X is further restricted to the positive semidefinite cone, however, one
enters the realm of SDPs and many efficient algorithms can be used to solve it.

Semidefinite programs fit the general form

maximize Tr[AX]

subject to Λi(X) = Bi, i = 1, . . . ,m

Γj(X) ≤ Cj , j = 1, . . . , n

X ≥ 0 .

(3.2)

The variable X is a Hermitian matrix (since X ≥ 0), and so are A,{Bi}mi=1 and {Cj}nj=1, given by the
problem one wants to solve. {Λi}mi=1 and {Γj}nj=1 are hermiticity-preserving linear maps, such that we
have a set of m + n affine constraints on X, which together with the positivity constraint define the
feasibility region Fp and synthesize the essence of an SDP. We point out that equally valid formulations
can be constructed for minimization problems or even feasibility problems (where one simply wants to
find any point in the feasibility region). Furthermore, one could take the inequality constraints in eq. (3.2)
to be the other way around and nothing would substantially change.

A simpler subset of SDPs are linear programs (LP), which can be stated as

maximize #»a · #»x

subject to
#»

λ i · #»x = bi, i = 1, . . . ,m
#»γ j · #»x ≤ cj , j = 1, . . . ,m
#»x ≥ 0 ,

(3.3)

where the variable #»x , as well as #»a , { #»

λ i}mi=1 and { #»γ j}nj=1, are now real vectors. Linear programs can
be obtained from SDPs if A,B1, . . . , Bm, C1, . . . , Cn are diagonal matrices. Notice that LPs pose linear
constraints on the elements of #»x , while SDPs generally pose non-linear constraints on the elements of X,
making them substantially more versatile.

The way the optimization programs were laid out in eqs. (3.1), (3.2) and (3.3) are referred to as the
primal formulation of the problem. It has a closely related form, namely its dual formulation, connected
to the primal through the Lagrangian of the problem. Let us take the prototype of an SDP eq. (3.2) and
associate a dual variable to each of its constraints: each equality will be associated to Yi, i = 1, . . . ,m,
each inequality will be associated to Zj , j = 1, . . . , n, and the positivity constraint will be associated
to W . Let us also require these variables to obey the restrictions

Yi = Y †
i , i = 1, . . . ,m

Zj = Z†
j ≥ 0, j = 1, . . . , n

W = W † ≥ 0 .

(3.4)

The Lagrangian of the problem is defined as

L = Tr[AX] +
∑
i

Tr[Yi(Bi − Λi(X))] +
∑
j

Tr[Zj(Cj − Γj(X))] + Tr[WX]. (3.5)

This object depends on both the primal variable X and the dual variables Y1, . . . , Ym, Z1, . . . , Zm,W .
Notice that the original objective function is a lower bound for the Lagrangian whenever X is in the
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feasibility region of the primal problem1. This is easily verified, since the conditions we imposed on the
dual variables ensure that each term on the r.h.s. of eq. (3.5) is non-negative. Mathematically, this means

L ≥ Tr[AX]. (3.6)

What we want at the end of the day is to construct a function that will be independent of X. To do
that, let us first rearrange some terms in eq. (3.5) and make the dependence on X more explicit.

L = Tr[X (A−
∑
i

Λ′
i(Yi) −

∑
j

Γ′
j(Zj) +W )] +

∑
i

Tr[YiBi] +
∑
j

Tr[ZjCj ]. (3.7)

Here, the objects {Λ′
i}mi=1 and {Γ′

j}nj=1 are the dual maps of {Λi}mi=1 and {Γj}nj=1, obeying by definition
the duality relation

Tr[Λi(X)Y ] = Tr[XΛ′
i(Y )], ∀X,Y (3.8)

for all i = 1, . . . ,m, and similarly for {Γj}nj=1. Let us additionally impose

W =
∑
i

Λ′
i(Yi) +

∑
j

Γ′
j(Zj) −A ≥ 0 (3.9)

and get rid of X, such that the Lagrangian now reads

L =
∑
i

Tr[YiBi] +
∑
j

Tr[ZjCj ]. (3.10)

To achieve the tight bound in eq. (3.6), one must minimize L over the dual variables. By doing that
and taking into consideration the restrictions we made in eqs. (3.4) and (3.9), we finally get the dual
formulation of the problem in eq. (3.2)

minimize
∑
i

Tr[YiBi] +
∑
j

Tr[ZjCj ]

subject to
∑
i

Λ′
i(Yi) +

∑
j

Γ′
j(Zj) −A ≥ 0

Yi = Y †
i , i = 1, . . . ,m

Zj = Z†
j ≥ 0, j = 1, . . . , n .

(3.11)

Notice that any point in the feasibility region Fp of the primal SDP provides a lower bound to the
optimal value of its objective function, since the task is a maximization. Similarly, any point in the
feasibility region Fd of the dual SDP provides an upper bound to the optimal value of the dual objective
function. We also know that, because of eq. (3.6), the dual objective function of the problem is lower
bounded by the primal objective function, implying that the optimal solution of the dual SDP is an upper
bound to the optimal solution of the primal SDP. This last statement is known as weak duality, and it
further implies that any point in the dual feasible region provides an upper bound to the optimal primal
solution (since it is an upper bound to the dual optimal solution). The difference between these two
optimal solutions is often called the duality gap.

Because of these properties, both the primal and the dual formulation of a problem can be used to
find upper and lower bounds to the optimal solution of a task. In fact this strategy is at the core of how
numerical solvers tackle the problem, using the so-called interior-point methods such as [95], that have
worst-case polynomial complexity [90]. Furthermore, it is often the case where the primal and the dual
optimal values coincide (a feature present in all SDPs we constructed in this thesis). This happens, as
proven in Slater’s theorem [96], whenever the primal and the dual SDPs are said to be strictly feasible,
meaning that there exists at least one point in their respective feasibility regions that is not at its border,
i.e., obeying

Γj(X) < Cj , j = 1, . . . , n

X > 0
(3.12)

1Notice that, unlike Zj or W , Yi does not need to be positive semidefinite for the Lagrangian to be lower bounded by
the objective function. Since Yi is associated to an equality constraint, it’s corresponding term in L is always equal to zero
when X is a feasible point
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for the primal variable X and

∑
i

Λ′
i(Yi) +

∑
j

Γ′
j(Zj) −A > 0

Zj > 0, j = 1, . . . , n

(3.13)

for the dual variables {Yi} and {Zj}.
An interesting geometric interpretation, which has a close connection to quantum information, can

be given to the primal and the dual formulations of a problem, as shown in fig. 3.1. If one considers the
space of matrices, the primal feasible region is delimited by a set of constraints and the primal objective
function defines a direction. The primal program will search the point as far as possible in the direction
set by the objective function while staying in the feasibility region. The dual program, in turn, will play
around with the dual variable W , which can be seen as a hyperplane separating the space in two: one
part containing the whole convex set of feasible points, and another with no feasible points. The optimal
instance of W is a hyperplane tangent to the optimal primal points. Any similarity with the concept of
witnesses is not a coincidence. In fact, such analogy is often exploited to look for optimal entanglement
and steering witnesses in different scenarios [97, 98, 99].

Figure 3.1: A geometrical visualization of the primal and dual formulations of an SDP, adapted from [90].
The feasibility region F is set by the constraints given by the primal SDP. The objective function, in
turn, defines a direction o, and the primal task is to find the optimal point x furthest along this direction
while still inside F . The dual program optimizes over all hyperplanes, and the optimal instance W is a
hyperplane tangent to x.
.

Given the general approach we adopted in this brief introduction to semidefinite programming, it is
clear how broad its applications can be. It would be wonderful if one could say the only limitation to
its usage is the researcher’s imagination, but we already know that SDP simply cannot be employed in
problems with constraints that do not fit into the model in eq. (3.2). Fortunately, motivated mainly by
how practical semidefinite programming can be, many different approaches to such problems have been
developed. In the next sections we will present the ones that are most relevant to this thesis.

3.2 Overcoming limitations of SDPs and alternative strategies

As we have seen, only a subset of optimization problems can be framed as an SDP. Whenever we end up
with a non-linear objective function or constraints that cannot be expressed as linear matrix inequalities,
there is no guarantee that an SDP can be established. This is utterly disappointing, because, even
though many problems in quantum information can be cast as an SDP, many others end up requiring
some non-convex (or not linear) condition.
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Many strategies can be employed to re-frame an optimization problem as an SDP, though there must
always be a cost to it. For instance, one can instead compute not just one but a series of SDPs organized
in hierarchical order. Examples of such strategy are the Naváscues-Pironio-Aćın (NPA) hierarchy [100]
to approximate the quantum set or [101] to tackle the quantum marginal problem. Alternatively, one can
employ see-saw algorithms, where one iteratively computes two distinct SDPs to find a lower (or upper)
bound to the optimal solution, as in [102] to find dimension witnesses. Other approaches include bluntly
dropping the non-convex restriction and solve a relaxed version of the original problem [103], or even
imposing such conditions after finding a generic solution [104].

In this chapter, we explain in detail how three of these alternative strategies work, laying out the
previous knowledge the reader must have to understand our results in the next chapters. In section 3.2.1,
we present an SDP hierarchy to tackle the separability problem, and in section 3.2.2 another hierarchy
to overcome rank constraints in optimization problems. In section 3.2.3 we present a heuristic procedure
commonly known as “see-saw method”. After these approaches have been dissected, we move on to the
next chapter, where we employ them to efficiently solve physical problems that are otherwise intractable.

3.2.1 The DPS separability hierarchy

In this section we expose the optimization hierarchy brought forward by Doherty, Parrilo and Spedalieri
(or shortly, DPS) in [105], that will be particularly useful to us in chapter 5. This method allows one
to tackle the problem of deciding whether a state is separable or entangled by framing it as a family of
SDPs, though the price one has to pay is that the analysis may be inconclusive.

This sort of inquiry plays a central role in many problems in quantum information, since entanglement
itself is a main quantum feature and a resource to numerous protocols: without entanglement one cannot
violate any Bell inequalities [106] or observe steering [107], to name a few. For such tasks, preserving,
transforming and manipulating entanglement is crucial, but in any case it all starts with detecting it.

The definition of entanglement is, actually, constructed from its absence. A bipartite state is said to
be separable (or rather, not entangled) if it can be expressed as a convex sum of pure, product states.
For a state ρ acting on HA ⊗HB , this means

ρ =
∑

pi |ψi⟩⟨ψi| ⊗ |ϕi⟩⟨ϕi| , (3.14)

where p is a probability distribution with elements obeying pi ≥ 0,
∑
i p1 = 1, while |ψi⟩ is a state in HA

and |ϕi⟩ in HB . If a state can be written in the form above, it is separable. If these is no choice of p,
{|ψi⟩} and {|ϕi⟩} that satisfies this relation, then the state is entangled.

Despite the simple setting, answering this question is remarkably hard. In fact, it’s NP-hard [108],
which means there is no hope of ever finding an efficient algorithm to decide whether a given mixed state
admits the decomposition in eq. (3.14). In particular, it means there is no way to pose the separability
problem as a convex optimization task in the form of an SDP.

This does not mean, however, that the task cannot be tackled at all. Alternative methods based on
separability criteria exist and are extensively used [109, 110, 111, 112], from which we highlight the PPT
criterion [113]. Like any criterion, it is based on finding a property that all separable states must hold;
consequently, if one can certify that a given state lacks this feature it must mean the state is entangled.
Nothing can be said of the state if the property is indeed verified, since it may be present in both separable
and entangled states. This way, a test based on separability criteria can only yield two answers: either
the state is entangled or the test is inconclusive.

In particular, the characteristic that the PPT criterion exploits is the fact that every separable state
must remain positive semi-definite (i.e., have only non-negative eigenvalues) under partial transposition
of one of its subsystems. Given a general bipartite state Ψ in HA ⊗HB , expressed as

Ψ =
∑
ijkl

γijkl |i⟩⟨j| ⊗ |k⟩⟨l| , (3.15)

the partial transposition of subsystem A is given by

ΨTA =
∑
ijkl

γijkl(|i⟩⟨j|)T ⊗ |k⟩⟨l| =
∑
ijkl

γijkl |j⟩⟨i| ⊗ |k⟩⟨l| . (3.16)

To check whether the criterion applies, one must evaluate the eigenvalues of the resulting matrix and
verify that they are non-negative. Looking at definition of separable states in eq. (3.14), it is easy to
see that any state ρ admitting such a decomposition will obey ρTA ≥ 0, since the (total) transposition
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of a matrix does not alter its eigenvalues. The same cannot be assured for entangled states, thus the
separability criterion. Notice that the choice of subspace to be transposed is irrelevant, as ΨTA = (ΨTB )T .
However, even though a state ρ being PPT does not assure its separability, this implication holds in the
special cases where the state is composed of two qubits or a qubit and a qutrit.

Separability criteria can also be formulated in terms of the so-called entanglement witnesses. An
observable W is said to be a witness if Tr[Wρsep] ≥ 0 for any separable state ρsep and Tr[Wρent] < 0
for at least one entangled state ρent. A separability criterion is established where measuring Tr[Wρ] < 0
assures that ρ is entangled, but nothing is learned otherwise. These witnesses have a geometrical meaning,
representing hyperplanes in the set of all states that split the space in two parts: one contains only
entangled states, and the other contains all separable states (and possibly some entangled states). See
fig. 3.2 for more details.

Figure 3.2: A geometrical visualization of entanglement witnesses, taken from [114]. Both hyperplanes
W and W ′ are valid entanglement witnesses, W ′ however can detect more entangled states than W .

Concerning entanglement witnesses, it is important to notice that even though a specific witness may
not be able to single-out a certain state as entangled (since measuring Tr[Wρ] ≥ 0 is inconclusive), there
is always a witness capable of detecting any entangled state, since the set of separable states is convex.
In this sense, some witnesses are better for some tasks than others, as they identify different sets of
entangled states. This “completeness of witnesses” was proven in [115], and justifies a whole branch of
quantum information that is finding good entanglement witnesses for different situations.

The method we will expose in this section heavily relies both in the PPT criterion and in the concept
of entanglement witnesses in general. The core idea is to build a generalization of PPT, considering
extensions of a quantum state to many copies of its subsystems, where the more copies one considers the
better the witness constructed is. Let ρ acting on HA ⊗HB be a bipartite separable state, thus obeying
eq. (3.14). From ρ one can construct the following state ρ̃ in HA ⊗HB ⊗HC , with HC = HA

ρ̃ =
∑

pi |ψi⟩⟨ψi| ⊗ |ϕi⟩⟨ϕi| ⊗ |ψi⟩⟨ψi| . (3.17)

This state is said to be a PPT symmetric extension of ρ to two copies of HA, because it obeys a set of
three requirements.

First, it is an extension of ρ to three parties, meaning

TrC [ρ̃] = ρ, (3.18)

where TrC is the partial trace over the third party. Second, it is symmetric under swapping of HA and
HC . If PAC is the swap operator acting on the first and third parties, it means

PAC ρ̃ PAC = ρ̃. (3.19)

Finally, it obeys the PPT criterion and remains positive under partial transpositions, or yet

ρ̃TA , ρ̃TB , ρ̃TC ≥ 0. (3.20)

Since ρ̃ was constructed from ρ, a separable state, one can use the existence of a state satisfying
eqs. (3.18), (3.19) and (3.20) as a separability criterion. Given some state Ψ, can one find a PPT
symmetric extension of Ψ to two copies? If so, nothing can be said about Ψ, but if the answer is negative
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then Ψ must be entangled. Notice that this inquiry is only non-trivial if the state Ψ in question is PPT,
otherwise one would already know it is entangled.

A completely analogous line of thought can be followed to establish similar separability criteria where
one in fact considers more than just two copies of a subsystem. Consider a state ρ̃ in HA⊗HB ⊗H⊗n−1

A ,
an n-copy symmetric extension of ρ, such that

ρ̃ =
∑

pi |ψi⟩⟨ψi| ⊗ |ϕi⟩⟨ϕi| ⊗ |ψi⟩⟨ψi|⊗n−1
. (3.21)

ρ̃ satisfies similar properties to eqs. (3.18), (3.19) and (3.20): when tracing out any n − 1 copies of
subsystem A we recover ρ; it is preserved under swapping of any two copies of subsystem A; and it
remains positive under any partial transposition of a subsystem. Just as before, the existence of such a
state ρ̃ is a criterion for the separability of ρ.

This way, for each number of copies n a test is established. A good thing about them is that they
are not independent: it is easy to see that if a state has a n-copy PPT symmetric extension it must
also have a (n − 1)-copy PPT symmetric extension. These criteria form a family of tests organized in
a hierarchical order, where each level is as least as strong as the previous one. The first level of the
hierarchy corresponds to the original PPT criterion (which can be seen as a “single-copy” analysis), while
the second corresponds to finding a two-copy PPT symmetric state, and so on 2. On top of that, as
proven in [105], such hierarchy is complete, in the sense that every entangled state will be singled out by
tests above some value of n.

At the end of the day, these separability tests boil down to trying to find the n-copy PPT symmetric
extension, and this is where SDPs are crucial. This task can be put in the form of a convex optimization
problem and be efficiently solved by an SDP. Given a state ρ, one wants to find a state ρ̃ such that the
requirements in eqs. (3.18), (3.19) and (3.20) are met. Put mathematically, the optimization task for the
second level of the DPS hierarchy is

given ρ

find ρ̃

subject to TrC [ρ̃] = ρ

PAC ρ̃ PAC = ρ̃

ρ̃TA ≥ 0, ρ̃TB ≥ 0, ρ̃TC ≥ 0, ρ̃ ≥ 0 .

(3.22)

This task can be directly implemented the way it is, but some simple modifications can be made to
improve computation. First, one can realize that performing the partial trace on subspace A or on its
copy C should be equivalent. Moreover, we already know that ρ̃TA ≥ 0 implies ρ̃TB ≥ 0, which we can
use to simplify the last condition.

Additionally, because of the difficulty of dealing with imprecision and numerical error, solvers do
not tend to cope well with the task of finding a solution, but rather prefer performing minimizations or
maximizations. For instance, a feasible point with eigenvalue zero might be overlooked because it was
identified as having very small but negative eigenvalues. To avoid that, one can translate eq. (3.22) into
a maximization problem by introducing an auxiliary parameter t as follows

given ρ

maximize t

subject to TrC [ρ̃] = ρ

PAC ρ̃ PAC = ρ̃

ρ̃TA ≥ t1, ρ̃ ≥ 0 .

(3.23)

This way, if t ≥ 0 we know we have found a solution to eq. (3.22), where not much can be said about ρ,
but if t < 0 the task is infeasible and ρ must be entangled.

Of course completely analogous formulations can be written out for tests corresponding to higher levels
of this hierarchy, i.e., considering PPT symmetric extensions to more than two copies of a subsystem of
ρ. This concept can also be generalized to the multipartite case to comprise states with more than two
subsystems.

2Let there be no confusion: when we say a state ρ̃ is a n-copy extension of ρ we mean it has n− 1 additional parties
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The DPS hierarchy method allows one to circumvent the issue of efficiently deciding whether a state
is separable, by instead implementing some separability criteria a finite amount of times. We stress,
however, that even though each level of the hierarchy can be efficiently solved by an SDP, the dimension
of the problem grows exponentially with the hierarchy level. As a result, the computational cost of going
beyond the first few levels of the hierarchy is prohibitively high. Nevertheless, at the price of giving up
on establishing a decision protocol (where one would always a have a definite answer), one can often find
a good enough answer by running a couple of SDPs. This method will be central in chapter 5, where we
will use it to certify the number of incompatible measurements to which a party has access in a steering
scenario.

3.2.2 A complete SDP hierarchy for rank constrained problems

Among the types of constraints that render an optimization problem unfit for an SDP formulation,
a kind of special relevance are rank constraints. Frequently, an optimization is performed over the set
of all quantum states, but one would like to restrain the search only to, say, pure states. Consider, for
instance, the scenario laid out in [116], where one performs a set of {Mi}i=1,...,n measurements on an
unknown (but pure) state in the lab, with outcomes {mi}i=1,...,n. Suppose one wants to find a quantum
state compatible with these outcomes that also maximizes some physical property encoded in observable
X. This task can be framed as an optimization problem, as in

given {Mi}, {mi}
maximize Tr[Xρ]

subject to Tr[Miρ] = mi

Tr[ρ] = 1

ρ ≥ 0

rank(ρ) = 1 .

(3.24)

Because of the last constraint, this optimization is not an SDP. In the remaining of this section, we
will report the results of Yu et al [117], where they re-frame rank constraints in terms of the separability
problem, which can, then, be tackled by an adapted DPS method.

Consider the following task, a generic optimization problem

maximize Tr[Xρ]

subject to Tr[ρ] = 1

ρ ≥ 0

Λ(ρ) = Υ

rank(ρ) ≤ k ,

(3.25)

where ρ and X are n × n Hermitian matrices, Υ is a complex matrix in m ×m and Λ is a map taking
matrices in Cn×n to matrices in Cm×m. k is some number in {1, . . . , n}.

The set of all n× n Hermitian matrices compatible with the constraints in eq. (3.25), denoted by F ,
is

F = {ρ|Λ(ρ) = Υ,Tr[ρ] = 1, ρ ≥ 0, rank(ρ) ≤ k}. (3.26)

We can re-define this feasibility region in terms of purifications of ρ. Consider the Hilbert spaces H1 = Cn

and H2 = Ck, and notice that rank(ρ) ≤ k means ρ must have a purification in H1 ⊗H2, i.e., there must
be a pure state |ϕ⟩ ∈ Cn+k such that Tr2[|ϕ⟩⟨ϕ|] = ρ, and vice versa [42].

The optimization in eq. (3.25) is performed over the feasibility region described in eq. (3.26). Alter-
natively, one can consider P, the set of purifications of states in F

P = {|ϕ⟩⟨ϕ| |Λ̃(|ϕ⟩⟨ϕ|) = Υ, ⟨ϕ|ϕ⟩ = 1}, (3.27)

where |ϕ⟩ ∈ Cn+k and Λ̃(·) = Λ(Tr2[·]). Notice how F is simply Tr2[P]. This way, performing a
maximization of Tr[Xρ] over F is equivalent to performing a maximization of Tr[X̃ |ϕ⟩⟨ϕ|] over P, where
X̃ = X ⊗ 1k, i.e., applying the original observable X on subsystem H1 and the identity operator 1k on
subsystem H2, which will be traced out.
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However equivalent, this new formulation does not correspond directly to an SDP, since P only
considers pure states, meaning it is not convex. This can be easily solved by realizing that the extreme
values of a linear objective function will be achieved by extreme points of the feasibility region, so we can
consider the convex hull of P without any losses. As a consequence, the original optimization problem
eq. (3.25) can be translated as

max
ρ∈F

Tr[Xρ] = max
Φ∈conv(P)

Tr[X̃Φ]. (3.28)

It might seem we have simply made it six and two threes, since we had to fully characterize F and
now have to likewise fully characterize conv(P). However, while we did not know how to cope with the
rank restriction in eq. (3.25) we do now how to characterize conv(P), namely in terms of the set of its
symmetric extensions to two parties. Consider the following set

S2 = conv({|ϕ⟩⟨ϕ|A ⊗ |ϕ⟩⟨ϕ|B ||ϕ⟩⟨ϕ| ∈ P}), (3.29)

where we recall that |ϕ⟩ belongs to H1⊗H2 = Cn⊗Ck. The elements of S2, in turn, belong to HA⊗HB ,
where HA = HB = H1 ⊗H2.

Notice, first of all, how TrB [S2] = conv(P). This means that if one can fully characterize S2 the
problem is solved. Then, as maybe this whole endeavor makes a bell ring in the reader’s mind, we call
attention to the many similarities this approach has to the DPS method, introduced in section 3.2.1.

If we recall that there is no direct SDP formulation to rank-constrained optimization problems, it is
only natural to expect there should be no SDP formulation to any problem that is perfectly equivalent to
eq. (3.25), as we have done so far. Thus, inspired by the DPS method, the authors in [117] establish an
SDP hierarchy whose N−th level corresponds to an optimization over SN , the set of N -copy symmetric
extensions of conv(P), the convex hull of the purifications of ρ. Let the variable ΦAB...Z belong to
HA⊗HB⊗ . . .⊗HZ , composed of N subsystems, each obeying HA = HB = · · · = HZ = H1⊗H2. Then,
since TrB...Z [SN ] = conv(P), the optimization problem reads

maximize Tr[(X̃A ⊗ 1B...Z)ΦAB...Z ]

subject to Tr[ΦAB...Z ] = 1

ΦAB...Z ≥ 0

PNΦAB...ZPN = ΦAB...Z

(Λ̃A ⊗ idB...Z)ΦAB...Z = Υ ⊗ TrA[ΦAB...Z ] ,

(3.30)

Let us dissect this SDP step by step.
X̃A is the observable X̃ = X⊗1k acting on subsystem A, and maximizing the above objective function

over SN is manifestly equivalent to maximizing Tr[X̃Φ] over conv(P) or, as we originally set out, Tr[Xρ]
over F .

The first two constraints in the SDP are simply demanding that ΦAB...Z be a state. They are
equivalent to the first two constraints in the original prototype SDP eq. (3.25).

Next, we scrutinize the remaining constraint, assuring that the solution will be invariant under ex-
changes of subsystems. For that, we define the projector PN onto the symmetric subspace of HA⊗HB ⊗
. . . ⊗ HN =: H⊗N , to which the variable ΦAB...Z must belong. This object is basically the sum of the
operators performing all possible permutations of subsystems of H⊗N ,

PN =
1

N !

∑
σ

Vσ, (3.31)

where Vσ are the aforementioned operators performing the permutation σ.
Finally, let us look into the last constraint. Λ̃A is the channel Λ̃(·) = Λ(Tr[·]) applied on subsystem

A and idB...Z is the identity channel on the remaining subsystems. This constraint recovers Λ(ρ) = Υ in
the original.

Together, these constraints establish the N -th instance of the SDP hierarchy, and by considering
symmetric extensions to different numbers N of copies of subsystem A we can formulate different op-
timization tasks. As proved on the original work [117], these different instances correspond indeed to
separate levels of a complete SDP hierarchy: if ξ is the optimal value of the original rank-constrained
problem eq. (3.25) and ξN is the optimal value of the N -th level SDP in eq. (3.30), then
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ξN+1 ≤ ξN , lim
N→∞

ξN = ξ. (3.32)

This means that by considering higher and higher levels of the hierarchy one obtains tighter upper bounds
to the optimal solution, and in the limit of N → ∞ one actually reaches the exact solution to eq. (3.25).

As a simple application of this method, we can revisit the optimization task eq. (3.24) posed in the
beginning of this section, where the rank constraint comes from performing the maximization exclusively
over pure states. The SDP corresponding to the second level of this hierarchy is

given {Mi}, {mi}
maximize Tr[(X̃A ⊗ 1B)ΦAB ]

subject to ΦAB ≥ 0

Tr[ΦAB ] = 1

P2ΦABP2 = ΦAB

TrA[(Mi ⊗ idB)ΦAB ] = mi TrA[ΦAB ] .

(3.33)

In summary, by mapping rank-constrained optimization problems into a search for symmetric exten-
sions of quantum states, the authors manage to circumvent the non-convexity of a class of computation
tasks. This method will be particularly useful to us in chapter 4, where we will use it do deal with
restrictions to the dimension of quantum states.

3.2.3 See-saw methods

Another sub-class of optimization problems of interest, closely related to rank-constrained problems
as we will see, is that of bi-linear objective functions. This type of task cannot be put in SDP form, but
since they figure in many relevant problems in quantum information it is interesting to find alternative
approaches.

One of such approaches is to employ a so-called see-saw method. Apart from bi-linear problems, it
can be used to solve so-called min-max problems (where one minimizes over one variable and maximizes
over another) [91]. It can also be applied to problems with constraints formulated in terms of a product
of two variables as in [118], where the authors want to find the most incompatible measurements over a
set, a task that requires optimizing over all measurements and all quantum states; or in [119, 120] where
one finds multiple counter-examples to the Peres conjecture [121], stating that bound entangled states
always admit a local hidden variable model.

In general, see-saw methods are a class of algorithms where one iteratively solves two sub-tasks and
feeds one with the optimal answer found from the other, repeating a cycle until some convergence criteria
is met. The point achieved by such a method is a local extreme of the objective function and provides an
upper (lower) bound to the original minimization (maximization) problem. In particular, we will focus on
solving rank-constrained optimization problems, following a method that will incur in computation tasks
with bi-linear objective function. Take the following feasibility task, optimized over all (n+ 1) × (n+ 1)
Hermitian matrices

find X

subject to Xij = µij , i, j ∈ {0, . . . , n}
X ≥ 0

rank(X) ≤ d .

(3.34)

Here, one is basically looking for any matrix X with specific matrix elements that obeys some extra
restrictions. Some elements may be tied such that some values of {µij} are specified, but others are free
parameters that one can optimize over. For instance, maybe the diagonal elements and the first column
and row are fixed ({µii}, {µ0i} and {µi0} are known) but the other elements are not, and one can vary
the free elements to find an instance of X that is positive semidefinite and has lower or equal to d. This
kind of problem will be particularly useful in chapter 4.

Even though rank-constrained problems cannot, in general, be solved efficiently by SDPs, there are
some particular instances of it that do admit a closed form for the optimal solution. The goal of the
method we will illustrate, generally outlined in [89] and applied to this problem by us in [2], is to convert
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the rank-constrained problem in eq. (3.34) into one of such problems with known solution, bypassing
the need of framing the rank constraint in an SDP altogether. First, one can translate eq. (3.34), a
feasibility problem, into a minimization problem. The optimization in eq. (3.34) is feasible if and only if
the following optimization task has solution zero

minimize{X,P} Tr[XP ]

subject to X ≥ 0, Xij = µij

P ≥ 0, P 2 = P

rank(P ) = n− d+ 1 ,

(3.35)

where now one has a minimization over two variables, X and P being (n+1)×(n+1) Hermitian matrices.
The equivalence between eq. (3.34) and eq. (3.35) is not hard to conceive if one recalls the rank-nullity
theorem, stating that for a matrix M it holds that

dim(M) = rank(M) + null(M), (3.36)

where null(M) is the dimension of its kernel space. If the optimal value of eq. (3.35) is zero, then
null(X) ≥ rank(P ) or null(P ) ≥ rank(X). Either way, since rank(P ) = n − d + 1, the rank-nullity
theorem imposes that rank(X) ≤ d, and we recover the original optimization eq. (3.34). Likewise, the
other direction of the correspondence follows directly.

Now, one is left with the minimization of a bi-linear objective function over variables X and P . One
can then establish two optimization tasks and perform them alternatingly, using a see-saw algorithm.
Start by choosing a random rank-(n− d+ 1) projector P∗ as a starting point and perform the following
SDP

minimize{X} Tr[XP∗]

subject to X ≥ 0, Xij = µij .
(3.37)

It will yield some optimal X∗. One then feeds this solution to a second optimization problem

minimize{P} Tr[X∗P ]

subject to P ≥ 0, P 2 = P

rank(P ) = n− d+ 1 .

(3.38)

This is not an SDP, namely because of the rank constraint. However, it can be efficiently solved because
it has known solution [89]. Let X∗ be decomposed in its eigenbasis as

X∗ =

n∑
i=0

λi |ϕi⟩⟨ϕi| , (3.39)

with its eigenvalues ordered non-increasingly as λ0 ≥ λ1 ≥ . . . ≥ λn. Then, a solution to eq. (3.38) is
given by

P∗ =

n∑
i=d

|ϕi⟩⟨ϕi| , (3.40)

namely the sum of the eigenvectors of X∗ associated to its (n − d + 1) smallest eigenvalues. One can
immediately see that P∗ is in the feasibility region of eq. (3.38) since it clearly obeys its restrictions.
Furthermore, it minimizes the objective function because it basically selects the (n − d + 1) smallest
eigenvalues of X∗, which is the best a rank-(n− d+ 1) orthogonal projection matrix can do.

After finding P∗, one can re-feed it into eq. (3.37) to find yet another X∗, which is re-fed to eq. (3.38)
and so on. After each round of iterations, one can take the pair X∗, P∗ and evaluate τ = Tr[X∗P∗]. If one
keeps track of this result, it can be used as a halting condition to this loop of alternating optimizations: if
there is no significant change between rounds and τ converges to some value one ends the algorithm. We
point out that this should always happen sooner or later and τ will indeed converge to some value, since
successive iterations cannot increase its value, and Tr[X∗P∗] is lower bounded by zero because X∗, P∗ ≥ 0.
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After halting the algorithm all that is left is to interpret the final result. If τ = 0, as discussed, one
has found a solution to eq. (3.35) and consequently solved the original feasibility problem in eq. (3.34).
If τ converges to some other value then nothing can be concluded, as an optimal solution may exist while
this heuristic method was simply not capable of finding it. Notice that the possibility of such inconclusive
answer is to be expected from this strategy. The original problem eq. (3.34) is not an SDP and cannot
be efficiently solved, so neither should any of its equivalent formulations.

After introducing this final strategy to overcome particular difficulties when dealing with optimization
problems, we can finally conclude this chapter. A basic understanding of how semidefinite programming
works, plus familiarity with some specific methods, is the background knowledge one needs in order to be
able to thoroughly follow what will be presented in the following chapters, where SDPs are extensively
used to investigate different aspects of quantum information.
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Chapter 4

Complete characterization of finite
contextuality

In the field of quantum foundations, there is no denying that the differences displayed by quantum
and classical systems are a main source of query. These phenomena challenge our intuition that has been
trained since birth in a classical world, and we can firmly say that there is no shortage of such phenomena,
some of which are approached in this thesis.

Among them figures the field of quantum contextuality. In few words, it shows us that one cannot
think of a measurement as simply revealing a property of a quantum state independently of the set of
measurements one chooses to perform (the context of an experiment). This is of course at clash with
what we would expect from our classically conditioned intuition, where systems are well-defined before
any (typically non-disturbing) measurement, and efforts to conciliate the contextual claim with a classical
reasoning have proven to be futile, as we will see.

It is clear that quantum contextuality must be deeply understood if one hopes to ever bridge the
fundamental gap between classical and quantum regimes, but the importance of the field to science
does not restrict itself to that. More than foundational relevance, contextuality has major practical
applications in quantum information processing, such as quantum cryptography [122], random number
generation [123, 124], as well as being a key ingredient to achieve quantum advantage in a range of tasks
[125, 126, 127].

How to certify that such a peculiar feature is indeed manifesting itself in the lab? The path has
already been set by the study of Bell non-locality: one must establish a theory independent test. Given
the probabilistic nature of quantum mechanics, our classical intuition would tell us to explain the weird
statistics one gets in a contextual scenario with classical ignorance, claiming there is simply a “hidden
variable”, unknown to us, that would set everything right.

To completely kill this hopeful vision, the theory is abundant with so-called “non-contextuality in-
equalities”, expressions setting an upper bound to expectations values of a set of measurements. To
achieve these inequalities, one accepts the non-contextual hypothesis (stating that the outcomes of a
given measurement are independent of whatever other measurements are performed jointly), and thus
the violation of these bounds means one is dealing with a contextual scenario. This is known as the
Kochen-Specker theorem [128], and, put simply, it takes a set of probabilities obtained from joint mea-
surements and tells us whether these correlations can be reproduced by a hidden variable model.

Given its multifaceted relevance, certifying contextuality is an important task in quantum information.
The good news is that non-contextuality inequalities are often formulated in such a way that their violation
can be investigated with semidefinite programming. The bad news is that some of its most noteworthy
instances cannot, namely when one adds dimension restrictions.

Knowing the dimension of the physical system one is dealing with is central in many tasks, such as
characterizing a device or ensuring the security of protocols in quantum key distribution [129, 130]. To
discover this attribute, one can employ dimension witnesses [131], an approach where one set a lower
bound on the dimension a system must have given the statistics one obtains from experiments. The idea
behind it is that some behaviors can only be reproduced by systems with dimension at least d (though
one does not necessarily find out the exact dimension of the system).

This type of query can be formulated in terms of an optimization problem that unfortunately contains
a rank restriction, and thus is not an SDP. Given the importance of characterizing quantum contextuality,
the fact that these problems cannot be efficiently tackled poses a huge drawback to the field of quantum
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information. Many advances have been made in this sense [132, 102, 133], but a reliable and efficient
approach is still lacking.

In this section we will present our work [2], where we provide systematic methods to answer the two
main questions one asks when characterizing dimension-restricted contextuality. First, do the statistics
obtained in the lab belong to the set of d-dimension quantum behaviors, or put another way, can these
probabilities be reproduced by a d-dimensional system in a contextual scenario? Second, what is the
maximum violation a d-dimension system can achieve at a general non-contextuality inequality? With
these answers one can assure a probability distribution admits no hidden variable model and certify
contextuality in a theory independent way, as well as construct a dimension witness.

4.1 Preliminary concepts

In what follows we will present the concept of quantum contextuality as well as lay out relevant
notions in graph theory, so that we can then present our results. These will be brief introductions to
complex and prolific themes, for in-depth discussions we redirect the reader to the work that served as
main reference when writing this section, namely [87, 132, 102, 134, 135, 136, 137].

4.1.1 Contextuality

Classical mechanics is built upon the ubiquitous and silent assumption that physical systems display
intrinsic properties with well-defined values. Measurements are thought of as simply revealing these
properties, and whatever discrepancy observed in the outcome statistics is merely the result of the fact
that one cannot completely control an experiment. If within an acceptable range, these fluctuations are
then overlooked and not much thought must be dispensed on it. The same cannot be said of quantum
mechanics, where state preparation and measurement has to be dealt with much more care. Quantum
contextuality is one of the many instances where this classical reasoning just does not apply.

Let us consider a set of 9 measurements, labeled {A, a, α,B, b, β, C, c, γ}. For simplicity, let them be
dichotomic measurements with possible outcomes labeled by +1,−1. These measurements are related to
each other in a way that some of their subsets are compatible, i.e., it is possible to jointly measure them.
To pictorially visualize such relation, we can arrange them in a squareA B C

a b c
α β γ

 . (4.1)

This is knows as the Peres-Mermin square [138, 139, 140, 141], and it provides an example of a situation
where contextuality manifests itself. Let us assume that all measurements on the same row or the same
column are jointly measurable. This means, for instance, that {A, a, α} can be measured in a way that
one does not disturb the other, and the same goes for {A,B,C}. Such sets of compatible measurements
are called a context. The non-contextual hypothesis consists in assuming that each of these measurements
reveals a well-defined property of the system, regardless of their context.

Let ⟨Aaα⟩ denote the expectation value of a joint measurement of A, a, α, and similarly for other sets
of measurements. It is then easy to see that the following inequality must hold

⟨ABC⟩ + ⟨abc⟩ + ⟨αβγ⟩ + ⟨Aaα⟩ + ⟨Bbβ⟩ − ⟨Ccγ⟩ ≤ 4. (4.2)

If one can find measurements fitting the Peres-Mermin square that violate the bound above, it must
then mean the non-contextual assumption does not hold and one cannot think of measurements the same
way as when dealing with classical mechanics. As in [142], let us consider measurements performed on a
two spin-1/2 particles, obtained by locally applying the Pauli operators {σx, σy, σz}. Let the correspond-
ing Peres-Mermin square be  σz ⊗ 1 1⊗ σz σz ⊗ σz

1⊗ σx σx ⊗ 1 σx ⊗ σx
σz ⊗ σx σx ⊗ σz σy ⊗ σy

 . (4.3)

Notice how every row and column forms a context. Moreover, the product of the elements in each
context is ABC = 1, and similarly for all other contexts, except for Ccγ = −1. This means that the
expectation values of measurements in these contexts are state independent, and plugging them back in
eq. (4.2) we obtain a clear violation of the upper bound. Since the inequality in eq. (4.2) was obtained
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under the assumption of the non-contextual hypothesis, the fact that it can be violated (incidentally, by
any quantum state) implies that one cannot consistently assign a value to these measurements regardless
of their context.

The Peres-Mermin square provides a simple example of contextual behavior. In the lingo of quantum
information, eq. (4.2) provides a contextuality witness, certifying that a set of measurements displays
quantum features. A broader approach to proving that contextuality cannot be understood in classical
terms is the Kochen-Spekker theorem [128]. It considers specific context arrangements and shows that
one cannot assign values to the outcomes of measurements without incurring in contradictions. It is
a rather long proof, using a contextuality scenario to construct a 120-vertex graph and showing that
it cannot be colored in accordance to a specific set of rules. Later, simpler proofs following a similar
reasoning have been found, until an 18-vertex proof was developed in [143], which was then proven to be
minimal in [144], meaning no proof of the Kochen-Specker theorem can be found that uses graphs with
less than 18 vertices.

Now that we have established the core idea behind contextuality, namely that there is more to quan-
tum measurements than one can grasp solely with classical theory, we can move on to describe how
contextuality can be explored and studied.

4.1.2 Graph theory applied to contextuality

Kochen-Specker proofs give us an interesting hint of how to analyze contextuality, and the fact that
contextuality scenarios can be translated into graphs is a meaningful addition to the field. More than pure
mathematical worth, graphs can be applied to a vast range of problems, including quantum information,
which means one can take advantage of the many already established results and developments in graph
theory. Particularly in quantum contextuality, one can use graphs to describe events and measurements
in a way that the contextual nature of a scenario can be assessed with properties of the graph. We start
by introducing some relevant definitions.

A graph is a way to represent the relationship between entities in terms of vertices (or nodes) and
edges. The graph G = (V,E) is composed of a set V of vertices and a set E of edges, which in turn are
unordered pairs of vertices (i, j), with i, j ∈ V . Whenever two vertices are connected by an edge, they
are said to be adjacent. A set of mutually adjacent vertices is a clique, while a set of vertices is called
independent if none of its vertices are connected.

Now, consider a measurement M with possible outcomes {ai}, so and event is a pair ei = (ai|M).
We say two events are exclusive if they correspond to different outcomes of the same measurement. For
multiple measurements, an event is a set of n compatible measurements and its corresponding outcomes,
then two events ei = (ai1 , . . . , ain |Mi1 , . . . ,Min) and ej = (aj1 , . . . , ajn |Mj1 , . . . ,Mjn) are exclusive if
there exists i, j, k such that Mik = Mjk but aik ̸= ajk . This situation corresponds to two events with at
least one common measurements but different outcomes of this specific measurement.

In an exclusivity graph Gex the vertices are associated to events and exclusive events are connected
by an edge, as shown in fig. 4.1. To each event ei one can associate a probability pi ∈ [0, 1]. The
condition that must be respected is that for two exclusive events ei, ej we must have pi + pj ≤ 1, since
they correspond to different outcomes of a same measurement. For an exclusivity graph of n events, the
set of probabilities p = {p1, . . . , pn} is called a behavior.

Exclusivity graph can hence describe scenarios where one performs a series of measurements in a lab
and obtains some outcome statistics. As such, some properties of this graph will reflect characteristics
of the experimental setting itself, and one can use concepts in graph theory to analyze phenomena like
quantum contextuality. To introduce this approach, we must dig deeper in the fields of both contextuality
and graph studies.

We start by defining deterministic non-contextual behavior, a sub-class of behaviors where events are
associated either to probability 1 or 0. If the probability distribution p obeys pi ∈ {0, 1} for all i while
not contradicting the exclusivity condition that adjacent vertices ei, ej have probabilities pi + pj ≤ 1, the
behavior is deterministic non-contextual. If we think of p as a vector, we can define the non-contextual
polytope PNC(Gex) as the convex hull of all deterministic non-contextual behaviors that can be assigned
to the exclusivity graph Gex. All behaviors that do not belong to PNC(Gex) are called contextual.

Thus, non-contextual behaviors are consistent probability distributions that follow the classical rea-
soning, where one can simply assign outcomes to measurements regardless of their context (and convex
combination thereof). Contextual behaviors, in contrast, are those distributions where this is not possi-
ble. When an exclusivity graph admits no non-contextual behavior it must mean we are dealing with a
contextuality scenario, and for this reason, characterizing PNC(Gex) is such a relevant task.
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Figure 4.1: The exclusivity graph of the events in a bipartite Bell scenario, adapted from [145]. Each
event (aibj |AiBj) corresponds to performing dichotomic measurements Ai on Alice’s side and Bj on Bob’s
side with i, j ∈ {0, 1}, and obtaining the respective outcomes ai, bj . For more details, see appendix F
.

Let behaviors be vectors in Rn+. For deterministic behaviors, the exclusivity condition dictates that
for every pair of exclusive events at the most one event can have probability 1. This way, one can
mathematically express the set of non-contextual behaviors as

PNC(Gex) = conv{p ∈ {0, 1}n| pipj = 0 if (i, j) ∈ E}. (4.4)

This is precisely the definition of STAB(Gex), the stable set polytope of a graph, the convex hull of the
set of probability vectors that assign 1 to all vertices of an independent set and 0 to all other vertices.
The vectors p are said to be orthogonal representations of the graph.

Moreover, p is said to be a quantum behavior if it admits a quantum realization, i.e. there exist a
quantum state |ψ⟩ and projectors Π1, . . . ,Πn that obey

pi = ⟨ψ|Πi|ψ⟩ , i = 1, . . . , n and Tr[ΠiΠj ] = 0 if (i, j) ∈ E. (4.5)

This means that the statistics of the events can be reproduced by measurements on quantum states1. The
set of quantum behaviors of a given exclusivity graph is denoted PQ(Gex). As shown in [132], PQ(Gex) is
precisely the theta body of the graph, defined as

TH(Gex) = {p ∈ Rn+|∃Y ∈ S1+n
+ : Y00 = 1, Yii = Y0i = pi ∀i ∈ {1, . . . , n}, and Yij = 0 if (i, j) ∈ E},

(4.6)
where S1+n

+ is the set of positive semidefinite (n+ 1) × (n+ 1) matrices.
The fact that PNC(Gex) corresponds to STAB(Gex) means we can characterize the set of non-

contextual behaviors with techniques already established in graph theory. Since STAB(Gex) is a polytope,
the maximum value of the sum

∑
i pi over non-contextual behaviors (a linear function) is achieved by one

of its extreme points. If one recalls the definition of PNC(Gex), it is clear that the maximum is achieved
by a deterministic behavior. For these behaviors, the exclusivity conditions implies that the sum

∑
i pi

equals the number of vertices in the independent set they define, and the maximum value of the sum is
then the number of vertices of the largest independent set of Gex. This is precisely the definition of the
independence number of the graph, α(Gex). Thus, we come to the following inequality

n∑
i=1

pi ≤ α(Gex), ∀ p ∈ PNC(Gex). (4.7)

This is a non-contextuality inequality, and whenever it is violated by some behavior p it means there is no
non-contextual model that can explain these correlations. It serves as a contextuality witness, delimiting
the facet of the non-contextual polytope.

1One may go further and also consider mixed states and non-projective measurements, but this would go beyond the
scope of our work. For more details, see [146]
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Indeed, quantum behaviors are capable of violating this inequality. If one wants to find the maximum
violation of eq. (4.7), one must perform an search over all possible behaviors, not only the deterministic
ones. This problem can be stated as an optimization task as

maximize

n∑
i=1

pi

subject to p ∈ PQ(Gex) .

(4.8)

If we recall that PQ(Gex) is TH(Gex) defined in eq. (4.6), we have

maximize

n∑
i=1

pi

subject to pi = Xii = X0i, ∀ i
Xij = 0, if (i, j) ∈ E

X00 = 1

X ∈ S1+n
+ .

(4.9)

This optimization happens to be precisely one of the many formulations of the famous Lovász number
ϑ(Gex), so we achieve an inequality that holds for all quantum behaviors, contextual or not

n∑
i=1

pi ≤ ϑ(Gex), ∀ p ∈ PQ(Gex). (4.10)

4.1.3 The Lovász number

The Lovász number was first formulated in [147] as an upper bound to the Shannon capacity of a
channel, measuring how efficiently messages can be transmitted. Consider the following typical example
scenario: one has access to a channel, across which one can choose to send 5 different signals, labeled by
the code words ‘0’, ‘1’, ‘2’, ‘3’ and ‘4’. Now, suppose this channel is noisy, and when one sends a signal
m the person at the other end gets m+ ξ mod 5, where ξ ∈] − 1, 1[ is random, so if one party sends the
signal ‘2’ the receiving party might actually get ‘1.8’, or perhaps ‘2.3’. This means that if the receiver
reads a signal 3.6 there is no way to know whether the original content was 3 or 4.

In such sub-optimal conditions, the fact is that one can only rely on two of the five total possible
code words. It is only safe to send, for instance, the code words ‘1’ and ‘3’, so the receiver knows that
any signal in the interval ]0, 2[ corresponds to ‘1’ and anything in the interval ]2,−4[ corresponds to ‘3’.
Sending anything else might lead to confusion, so the parties should agree to only use ‘1’ and ‘3’ in their
messages. Over n steps, one has the possibility of sending 2n different messages, or 1 out of 2 code words
per step. To express this situation one can construct a confusion graph, where nodes are code words and
edges connect signals that cannot be distinguished as in fig. 4.2. It suffices to find a set of non-connected
vertices to establish which code words to pick, as they represent signals that cannot be confused.

A clever strategy is to perhaps use bigger code words composed of more than one signal. Consider
the code words ‘11’, ‘23’, ‘35’, ‘54’, ‘42’. It would take two steps to send a single code word, but the
advantage is that they are all distinguishable now: if there is any confusion over the true value of the first
signal, the second signal necessarily clarifies it. This means that over n steps one can send 5n/2 different
messages, or

√
5 per step, a huge improvement from the previous approach.

The Shannon capacity is the concept that measures the efficiency of the channel that it describes,
i.e., the best ratio between the number of possible different messages and the number of steps needed.
It is easy to see that the independence number of the confusion graph is a lower bound to the Shannon
capacity, as it describes precisely the largest subset of non-adjacent vertices, i.e., largest subset of vertices
that cannot be confused with each other. This quantity corresponds to the naive strategy of using single
signals as code words, but, as we have seen, more efficient strategies can be employed. Given a graph G,
to compute the independence number α(G) one can resort to an optimization task, namely
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Figure 4.2: The confusion graph associated to the scenario where one can send 5 code words over a noisy
channel that makes some of them indistinguishable to the receiver. Vertices 1 and 3 are not connected,
so we can use them for communication.

maximize

n∑
i=1

xi

subject to x2i = xi, i = 1, . . . , n

xixj = 0, if (i, j) ∈ E

xi ≥ 0.

(4.11)

The constraints dictate that xi must be either 0 or 1, and that for every pair of adjacent nodes at
most one vertex can be designated as 1. This problem is formulated in a way that the variable x is
defining independent sets, by assigning 1 to mutually non-connected vertices and 0 to all other nodes.
The objective function is simply the cardinality of these independent sets, so the solution of this task is
the number of elements in the largest independent set, i.e., the independence number of the graph.

This problem is not a semidefinite program, but Lovász proposed in [147] a relaxed version of it that
is and SDP. Given a graph G, one optimizes over variables x ∈ Rn and X ∈ Sn+ the following problem

maximize

n∑
i=1

xi

subject to Xii = xi, i = 1, . . . , n

Xij = 0, if (i, j) ∈ E[
1 xT

x X

]
≥ 0.

(4.12)

This is yet another formulation of ϑ(G), equivalent to eq. (4.10) (one is the dual formulation of the
other). It is easy to check that α(G) ≤ ϑ(G), because any solution x to eq. (4.11) produces a feasible point
in eq. (4.12), namely the pair (x,X = xxT ). Moreover, it is proven in [147] that, in fact, the Shannon
capacity of a graph is also upper bounded by ϑ(G).

With all these considerations, we can turn back to contextuality analyses. Given an exclusivity graph
Gex and a contextual behavior p /∈ PNC , we have that

α(Gex) ≤
∑
i

pi ≤ ϑ(Gex). (4.13)

This relation is at the core of contextuality studies. All behaviors have the sum of its probabilities upper
bounded by the Lovász number, but only contextual behaviors can violate the classical bound given by
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the independence number. Given a behavior p one can test whether it admits a non-contextual hidden
variable model or not by comparing it to α(Gex). Whenever there is a gap between this classical bound
and the quantum bound (given by the Lovász number) it is possible to construct a non-contextuality
inequality, or yet a contextuality witness.

As important as the relation in eq. (4.13) is, notice that the dimension of the states is completely
left out. It reveals the contextual properties of a setting but nothing is said about this characteristic of
the system, which we already argued to be of utmost relevance. If we want to include a discussion of
dimensionality in our studies, we have to start by defining the set of d-quantum behaviors

PdQ(Gex) = {p ∈ Rn+ | ∃ |ψ⟩ ∈ Cd : pi = ⟨ψ|Πi|ψ⟩ ,Tr[ΠiΠj ] = 0 if (i, j) ∈ E}, (4.14)

where {Πi}ni=1 are projectors. In words, PdQ(Gex) is the set of behaviors that admit a quantum realization
with dimension d. Given the statistics of an experiment, one can put a lower bound d′ on the dimension
of the quantum system that was measured by checking whether it belongs to Pd′Q (Gex) (notice that if a

behavior belongs to Pd′Q (Gex), it trivially also belongs to Pd
′+1
Q (Gex)).

The main obstacle to the task of lower bounding the dimension of a system is the fact that even
though PQ(Gex) is a convex set, PdQ(Gex) is not. This means one cannot simply write a semidefinite
program that will check if a behavior p belongs to the set of d-quantum behaviors, and all the firepower
provided by convex optimization cannot be directly employed.

A common strategy that we will explore in depth in section 4.3 is to compute the finite-dimensional
Lovász number ϑd(Gex) of the graph. It is similar to eq. (4.10), but the maximization of

∑
i pi is now

performed over the d-quantum behaviors. Then, one can use ϑd(Gex) to witness the dimension of the
physical system that was measured. The problems with this approach are, as we will see in more detail,
twofold: first, ϑd(Gex) does not admit an SDP formulation, precisely because this dimension restriction
results in a rank constraint; second, as PdQ(Gex) is not convex, ϑd(Gex) is in fact a witness to the convex

hull of d-dimension quantum behaviors, not to PdQ(Gex) itself.
In the next sections, we will present our approach to this problem. In section 4.2, we show an efficient

and reliable way to lower bound the dimension of a system by determining whether a behavior p belongs
to PdQ(Gex). Additionally, in section 4.3 we enhance the dimension witness method by providing an

improved strategy to compute ϑd(Gex).

4.2 Characterizing finite contextuality

In this section, we want to analyze a situation where one conducts a series of compatible measurements
on an unknown pure quantum state |ψ⟩. From the statistics obtained, one can describe the associated
behavior p and from the data try to draw some information about |ψ⟩, such as its dimension. This
question can be mathematically translated as deciding whether p ∈ PdQ, or equivalently whether this
behavior could result from measurements on some quantum state of dimension d. If so, then d is a lower
bound to the dimension of |ψ⟩, and otherwise one knows it must have dimension at least d+ 1.

As easy as stating this problem might be, actually answering it is more laborious and inefficient than
one would hope, since PdQ is not a convex set. In our work, we tackle this problem by performing two

distinct tests: the first one checks if p ∈ PdQ; the second one checks is p /∈ PdQ. In this approach, these

two tasks are not equivalent! If one checks if p ∈ PdQ, for instance, there are two possibilities: indeed,

p ∈ PdQ; or an inconclusive answer (and vice versa for checking if p /∈ PdQ). This happens because we use

computational methods that rely on necessary, but not sufficient, conditions for p /∈ PdQ or p ∈ PdQ to be
true, respectively. What we do is check whether this necessary condition is satisfied, but an affirmative
answer is not enough to assert anything.

Let us be more explicit. We claim that, given an exclusivity graph Gex = (V,E) with n nodes, the
corresponding behavior p = (p1, . . . , pn) is a d-dimension quantum behavior, i.e., p ∈ PdQ if and only if
there exists an (n+ 1) × (n+ 1) Hermitian matrix X that satisfies

X0i =
√
pi, i = 1, . . . , n (4.15a)

Xii = 1, i = 0, . . . , n (4.15b)

Xij = 0, if (i, j) ∈ E (4.15c)

X ≥ 0, rank(X) ≤ d. (4.15d)
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Let us prove one way of the implication. Suppose p ∈ PdQ, then the definition in eq. (4.14) implies

there exists a state |ψ⟩ and states {|ϕi⟩}ni=1 in Cd such that

⟨ϕi|ϕj⟩ = 0 if (i, j) ∈ E and |⟨ψ|ϕi⟩ |2= pi, (4.16)

by expressing the projectors in eq. (4.14) as Πi = |ϕi⟩⟨ϕi|. Then, if we make

|ϕ̃i⟩ = e−γi |ϕi⟩ , γi = arg ⟨ψ|ϕi⟩ , (4.17)

and let

|ϕ̃0⟩ = |ψ⟩ , (4.18)

we can define X as

Xij = ⟨ϕ̃i|ϕ̃j⟩ , i, j = 0, 1, . . . , n. (4.19)

X is known as the Gram matrix of {|ϕ̃i⟩}ni=0 and clearly satisfies the conditions expressed in eqs. (4.15a
– 4.15c). To show that conditions (4.15d) are also satisfies, we note that X can be expressed as

X =

n∑
i,j=0

Xij |i⟩⟨j| =
∑
i,j

|i⟩⟨ϕ̃i|ϕ̃j⟩⟨j| = L†L, (4.20)

where L is a d× (n+ 1) matrix. It follows, then, that X must be positive and rank(X) ≤ rank(L) ≤ d,
so the final condition is satisfied.

To prove the other direction, we assume there exists a Hermitian X satisfying conditions (4.15a –
4.15d). One can write the unitary decomposition of X as

X = U diag(λ0, . . . , λd−1, 0, . . . , 0)U† (4.21)

where U is some unitary matrix and diag(λ0, . . . , λd−1, 0, . . . , 0) is the diagonal matrix with elements
(λ0, . . . , λd−1, 0, . . . , 0), for λi ≥ 0, i = 0, . . . , d− 1. Now, let

|ϕi⟩ =

d−1∑
k=0

√
λk ⟨k|U†|i⟩ |k⟩ , i = 1, . . . , n and |ϕ0⟩ = |ψ⟩ . (4.22)

One can directly verify that the conditions in eq. (4.14), or equivalently in eq. (4.16), are met. Indeed, if
one lets the summation in eq. (4.22) range from k = 0 to k = n, with λk = 0 for k > d− 1, one can write

⟨ϕi|ϕj⟩ =

(
n∑
k=0

√
λk ⟨i|U |k⟩⟨k|

)(
n∑
l=0

√
λl ⟨l|U†|j⟩|l⟩

)
=

(
n∑
k=0

λk ⟨i|U |k⟩ ⟨k|U†|j⟩

)
= Xij , (4.23)

such that |ψ⟩ and |ϕi⟩ obey eq. (4.16) and are thus a quantum realization of the behavior p.
Now we know that determining whether p ∈ PdQ is equivalent to finding X obeying the conditions

stated in eqs. (4.15a – 4.15d). If there exists such Hermitian matrix, then the answer is affirmative, oth-
erwise p /∈ PdQ. The complication resides in computing this feasibility problem, since the rank constraint
makes it not suitable for SDPs. To undertake this task, we will face it on two fronts, namely an outer
and an inner approximation of PdQ.

4.2.1 Outer approximation

There is no way of directly formulating the conditions in eqs. (4.15a – 4.15d) as a semidefinite program,
that would compute the feasibility of the task of finding X obeying the relevant restrictions. Fortunately,
though, we do have a way of certifying that at least a necessary condition for the existence of such X,
namely the SDP hierarchy method described in section 3.2.2.

What renders this problem not suitable for an SDP formulation is the rank constraint, as it makes the
feasibility region of the problem not convex anymore. The complete SDP hierarchy from section 3.2.2 is
then perfect to face the task: applying this method one can establish a series of programs that will check
whether a necessary condition for p ∈ PdQ is present. These SDPs are ranked in a hierarchy, and one can
compute its successive levels to certify stricter and stricter necessary conditions. If at any point the given
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behavior p fails the test, we now for sure that p /∈ PdQ, since the necessary condition is not obeyed. If p
passes the test one has to advance to the following level and perform yet another SDP.

Two things can happen in this process. In the first scenario, after implementing a few SDPs, p fails
the test and one concludes that it is not a d-dimensional quantum behavior, so p must have dimension
at least d + 1. In the second scenario, one implements a few SDPs but p passes all the tests. One runs
out of computational power, as the SDPs become more costly up in the hierarchy, and is forced to stop.
In this case, nothing can be said about the dimension of the system that generated the behavior p, since
one might simply not have been able to go deep enough in the hierarchy to find a test at which p fails.
We recall, however, that the SDP hierarchy in section 3.2.2 is complete, which in this specific scenario
means that if p /∈ PdQ then p will necessarily fail the test at some level, though one may not be able to
compute it because of technical limitations.

Thus, this method can be seen as an outer approximation of the set PdQ. After translating the task
into a separability problem, each level of the hierarchy provides a set of witnesses that approximate the
feasibility region. Much like when dealing with other witnesses, one can only draw any conclusion from
it if the necessary condition is not fulfilled.

Let us now obtain the explicit formulation of the SDP hierarchy corresponding to the conditions in
eqs. (4.15a – 4.15d). The original feasibility task is

given {pi}ni=1,Gex = (V,E)

find X Hermitian

subject to Xij = µij

Tr[X] = n+ 1

X ≥ 0

rank(X) ≤ d .

(4.24)

The conditions (4.15a – 4.15c) are condensed in the first constraint of the problem, with µ0j =
√
pj ,

µii = 1 and µij = 0 if (i, j) ∈ E. The trace condition on X is redundant, but it we make it explicit for
clarity since it will be relevant later on.

Implementing the method in section 3.2.2 yields an SDP hierarchy whose N -th level reads

given {pi},Gex
find ΦA...Z Hermitian

subject to Tr[ΦA...Z ] = (n+ 1)N (4.25a)

ΦA...Z ≥ 0 (4.25b)

PNΦA...ZPN = ΦA...Z (4.25c)

TrA[(|i⟩⟨j| ⊗ 1d ⊗ 1B...Z)ΦA...Z ] =
µij
n+ 1

TrA[ΦA...Z ] . (4.25d)

Let us dissect this SDP. We are looking for a Hermitian dN (n+ 1)N × dN (n+ 1)N matrix ΦA...Z , an
N -copy symmetric extension of a purification of X with an auxiliary system of dimension d. The trace
condition in eq. (4.25a) reflects the fact that X itself is not normalized, so any purification of X has
trace (n+ 1) and its N -copy extension must have trace (n+ 1)N . The remaining conditions result from
the direct application of the necessary constraints, as discussed in section 3.2.2. Conditions (4.25c) and
(4.25c) reflect positivity and symmetry requirements. Condition (4.25d) expresses the original constraint
that Xij = µij , but now translated as a function of ΦA...Z instead of X.

By performing this computation for different levels of the hierarchy, i.e., increasing values of N ,
one checks for the validity of necessary conditions for a behavior p to admit a d-dimensional quantum
realization. If at some point this condition is not satisfied, then p /∈ PdQ. If the violation of this condition is
not verified one cannot conclude anything, but not all is lost: one can still perform an inner approximation
of the feasibility region of the original problem.

4.2.2 Inner approximation

Let us recall the original feasibility task we want to perform, stated in eqs. (4.15a – 4.15d), the
necessary and sufficient condition for a behavior p to admit a d-dimension quantum realization. We state
it once again below for clarity, but now explicitly as an optimization problem:
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given {pi}ni=1,Gex = (V,E)

find X Hermitian

subject to X0i =
√
pi, i = 1, . . . , n

Xii = 1, i = 0, . . . , n

Xij = 0, if (i, j) ∈ E

X ≥ 0, rank(X) ≤ d .

(4.26)

Recalling the discussions in section 3.2.3, rank-constrained optimization problems such as the above
can be processed with a see-saw algorithm. Since the problem we want to solve is not originally an SDP,
any alternative method to solving it will have to feature some downsides and one must pay a price for
computing it. However, when using either an SDP hierarchy, as explained in the last section, or a see-saw
method the disadvantages are luckily complementary.

The outer approximation method supplies necessary conditions for p ∈ PdQ, so all it can do is attest

that p /∈ PdQ whenever it fails. Likewise, see-saw methods check a necessary condition for p /∈ PdQ, so the

only conclusion one can draw from it is that p ∈ PdQ. For this reason, the method we will expose can be

seen as an inner approximation of PdQ, since it can attest that a behavior indeed admits a d-dimensional
quantum realization but remains inconclusive otherwise.

Since the particular see-saw method we will use here has already been laid out in section 3.2.3, we can
simply apply it to eq. (4.26) by realizing that it has basically the same form as the prototype we introduced
in eq. (3.34). As a consequence, the the behavior p admits a d-dimensional quantum realization if and
only if the solution to the problem stated in eq. (3.35) equals zero, which we re-state here

minimize{X,P} Tr[XP ]

subject to X ≥ 0, Xij = µij

P ≥ 0, P 2 = P

rank(P ) = n− d+ 1 ,

(4.27)

A subset of the solutions to this equivalent optimization problem can be achieved with a see-saw
method that iteratively solves the SDPs in eqs. (3.37) and (3.38). If at some point the iterations make
the objective function of the problem converge to zero, we have found a solution to the task above, and
by construction have found a d-dimensional quantum realization for p. If there is no convergence or if
the objective function converges to a value other than zero, nothing can be said. Put another way, the
solution not converging to zero is a necessary (but not sufficient) condition for p /∈ PdQ, and if indeed one

finds X,P obeying the relevant restrictions such that Tr[XP ] = 0 it means that p ∈ PdQ.
With both the outer and the inner approximation methods, we have a reliable strategy to determine

whether a behavior could be the result of measurements on a d-dimension quantum system. It is built
upon equivalent optimization tasks that can be put into SDP form, and thus profit from all the advantages
of this well-established field. Let us provide an example where the method we illustrated can be applied.

4.2.3 Our method in action

Consider the so-called GKK graph, shown in fig. 4.3. It is an exclusivity graph introduced in [148]
to describe a scenario with nine projective measurements yielding a non-contextuality inequality that is
violated by almost all qutrit quantum states (the only exception is the maximally mixed state). It has
independence number α(GKK) = 3 and the resulting non-contextuality inequality

9∑
i=1

pi ≤ α(GKK) (4.28)

is saturated, for instance, if p1 = p6 = p7 = 1. This upper bound can be violated by contextual behaviors
up to the Lovász number of this graph, ϑ(GKK) = 4.4704. This gap between α(GKK) and ϑ(GKK)
makes it possible to determine whether a given behavior p can result from a non-contextual scenario, i.e.,
p ∈ PNC(GKK), or not. If there was no such gap and α(GKK) = ϑ(GKK), one could not attest that p
is a contextual behavior, since the bound above would never be violated.

Consider, now, the following behaviors
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Figure 4.3: The GKK exclusivity graph, where each node is associated to an event ei, represented by a
projective measurement Πi. Vertices associated to exclusive events ei, ej (or equivalently, if ΠiΠj = 0)
share an edge.
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One can easily verify that pγ = (pα+pβ)/2. With the inner approximation method one can show that both
pα and pβ admit a 3-dimensional quantum realization, i.e., that pα, pβ ∈ P3

Q(GKK). Nevertheless, even

though pγ is a convex combination of two behaviors in P3
Q(GKK), one can use the outer approximation

method to show that pγ /∈ P3
Q(GKK), since pγ already fails the first level of the SDP hierarchy.

These easily obtained results, more than just illustrate the power of our method, also emphasize a
crucial difference between quantum behaviors with and without dimension restrictions: for any exclusivity
graph PQ(Gex) is convex, but its dimension restricted counterpart PdQ(Gex) may not be. Here, we have

shown that P3
Q(GKK) is not convex, but when expanding our investigation to d = 4 we found no indication

that P4
Q(GKK) is not convex: applying the inner approximation method, we observed that pc ∈ P4

Q(GKK)

(pa and pb naturally also belong to P4
Q(GKK), since they belong to P3

Q(GKK)).
Motivated by how easy it is to check whether a behavior admits a d-dimension quantum realization,

one can start wondering what singles out peculiar behaviors such as pγ . Another curious feature we can
attest in GKK with the outer approximation method is that, even though the quantum bound ϑ(GKK)
can be achieved by states with dimension at least 4, there are still many behaviors that do not admit a
4-dimension quantum realization, such as pδ

pδ =

(
1

3
,

1

3
,

1

3
, 0,

2

3
,

1

3
, 0, 0,

1

3

)
. (4.30)

We see that unique quantum aspects can arise from the non-convexity of PdQ, but one can only study
them if contextuality is properly characterized, a task that until now lacked proper methodology precisely
because of the non-convexity of the set of d-dimension quantum behaviors.

As already discussed, this analysis could not have been conducted by simply investigating contextuality
witnesses and violations of non-contextuality inequalities. This does not mean that evaluating these
inequalities is useless. Indeed, in the following section we will discuss how to calculate the maximum
violation of a non-contextuality inequality given a dimension restriction.

4.3 Dimension witnesses

When dealing with scenarios where one is not interested in the dimension of a system, the standard
method of characterizing the sets of non-contextual and contextual quantum behaviors is evaluating linear
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inequalities such as the ones in eqs. (4.10) and (4.13), where the sum
∑
i pi is bounded from above or

below by the independence number or the Lovász number.
If one wants to consider a more general scenario, where for instance the sum of probabilities attributes

different weights to different pi, one can resort to the weighted Lovász number ϑ(w,Gex), defined for an
exclusivity graph Gex as the solution of the following semidefinite problem

given {wi}ni=1,Gex = (V,E)

maximize

n∑
i=1

wi|X0i|2

subject to Xii = 1, i = 0, . . . , n

Xij = 0, if (i, j) ∈ E

X ≥ 0 ,

(4.31)

where the variable X is a (n+ 1) × (n+ 1) Hermitian matrix. Notice how similar this task is to the one
of defining whether a behavior p is in PQ, but also mind the differences. There, p is given and one wants
to find a quantum realization that explains the statistics associated to an exclusivity structure. Here, we
are not interested in any specific behavior, we simply want to know what is the maximum value that any
p can achieve in some function of {pi}, given by

∑
i wipi. To reflect the goal of this task, {pi} are now

variables expressed as |X0i|2. The weights {wi} are chosen to reflect, for instance, the expectation value
of some observable. See appendix appendix F for a detailed description of this approach (implemented
in an example to evaluate the maximum violation of the CHSH inequality).

Because it can be formulated as an SDP, the evaluation of ϑ(w,Gex) is quite straightforward and
efficient. However, this is not true anymore when one additionally considers dimension restrictions.
One may want to compute the maximum value that

∑
i wipi can achieve with d-dimensional quantum

behaviors, so that this value can be used to witness the dimension of the quantum system that generated
some given behavior. To do that, one typically resorts to the so-called d-dimension weighted Lovász
number ϑd(w,Gex), defined as

given {wi}ni=1,Gex = (V,E)

maximize

n∑
i=1

wi|X0i|2

subject to Xii = 1, i = 0, . . . , n

Xij = 0, if (i, j) ∈ E

X ≥ 0, rank(X) ≤ d ,

(4.32)

which is of course simply the weighted Lovász number with the familiar rank restriction.
Recall the example we briefly exposed in the last section, where the graph GKK was analyzed. We

showed that even though the quantum bound ϑ(GKK) is already achieved by states of dimension 4, some
behaviors do not admit a 4-dimension quantum realization. In the lingo of Lovász numbers, we can
re-state our findings in a way that makes the disadvantages of the inequality method clear: even though
ϑ(GKK) = ϑ4(GKK), PQ ̸= P4

Q. This goes to show how sub-optimal it is to characterize dimension-
restricted sets of quantum behaviors with linear inequalities, ϑ(GKK) is enough to delimit set PQ, but
ϑd(GKK) is not efficient in witnessing PdQ as there are behaviors, such as pd, that cannot be detected by
it.

To summarize, there are two main problems with using ϑd(Gex) to witness the dimension of a quan-
tum system. First, because the set of d-dimension quantum behaviors is not convex, linear inequalities
cannot provide necessary and sufficient conditions to determine whether p ∈ PdQ, and ϑd(Gex) is in fact

characterizing the convex hull of the behaviors in PdQ.
Even though our approach can more thoroughly determine whether a behavior admits a d-dimension

quantum realization, there are reasons to nevertheless adopt an inequality-based method. In particular,
they are useful in lab, where one can experimentally determine expectation values and observe violations
of quantum bounds. If that is the case, we bring up the second problem with employing ϑd(Gex), namely
that it cannot be formulated as an SDP.

To face this issue and evaluate the d-dimension weighted Lovász number, it was proposed in [102] to
compute the following optimization, whose solution we denote by ϑ̃d(Gex, w)
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given {wi}ni=1,Gex = (V,E)

maximize

n∑
i=1

wiXii

subject to Xii = X0i, i = 0, . . . , n

Xij = 0, if (i, j) ∈ E

X00 = 1, X ≥ 0, rank(X) ≤ d .

(4.33)

One can check that ϑ̃d(Gex, w) is an upper bound for ϑd(Gex, w) by verifying that any feasible point of the
task defining ϑd(Gex, w) is also in the feasibility region of ϑ̃d(Gex, w), though it might not be the optimal
solution. From there, the authors obtain a see-saw algorithm that, similar to the ones we have employed,
that provides a lower bound for ϑ̃d(Gex, w). Moreover, it is conjectured in the text in [102] that in fact
ϑ̃d(Gex, w) = ϑd(Gex, w) whenever PdQ is not an empty set. If that is indeed the case, then applying a

see-saw algorithm to evaluate the problem in eq. (4.33) actually provides a lower bound to ϑd(Gex, w)
and can be used to attest that a given behavior indeed admits a d-dimension quantum realization.

Alternatively, one can use the same approach we explored before to tackle the task of evaluating
ϑd(Gex, w). The outer approximation method provides an upper bound to ϑd(Gex, w), where each level
of the hierarchy makes the gap between what is found and the actual solution smaller. The inner
approximation method provides a lower bound to ϑd(Gex, w), since its solution corresponds to a point
in the feasibility region of the maximization problem in eq. (4.32) which may still not be optimal. If
the results obtained by these two complementary approaches coincide it means one has in fact found the
actual value of ϑd(Gex, w), since it must be both an upper and a lower bound to the d-dimension weighted
Lovász number.

One can in fact use this strategy to disprove the claim that ϑ̃d(Gex, w) = ϑd(Gex, w), by finding a
counter example to it. Consider once again the GKK graph and the specific scenario of d = 3. With
our approach, one can assert that ϑ3(GKK) = 3.333 by computing an upper and a lower bound and
verifying that they coincide, up to numerical precision 2. Now, when considering the task of determining
ϑ̃3(GKK), notice that any feasible point X obeys∑

i

Xii ≤ ϑ3(GKK), (4.34)

since ϑd(GKK) is the optimal value of a task of maximizing
∑
iXii.

If, on top of that, X is such that
∑
iXii is strictly greater than ϑ3(GKK), it implies that

ϑ3(GKK) <
∑
i

Xii ≤ ϑ̃3(GKK). (4.35)

We have found an example of X in the feasibility region of problem eq. (4.33) such that
∑
iXii =

3.3380 > ϑ3(GKK). With that, we conclude that, whatever the value of ϑ̃3(GKK), it is strictly larger
than ϑ3(GKK) and ϑ̃3(GKK) ̸= ϑ3(GKK).

4.4 Concluding remarks

We have formulated a strategy that allows us to check whether a behavior admits a d-dimension
quantum realization, by translating a task that is not a convex optimization problem into a series of
SDPs. With the outer approximation method one can certify that p /∈ PdQ, while the inner approximation

method certifies that p ∈ PdQ, two tasks that are not equivalent.
With these tools one can characterize the set of quantum behaviors, an enterprise of both foundational

and practical relevance. On one hand, if one hopes to further investigate the differences between quantum
and classical regimes, improving our understanding of contextuality is crucial, a task that can only benefit
from better tools to probe the structure of quantum behaviors. On the other hand, characterizing such
sets allows us to obtain a lower bound to the dimension of quantum states in the lab, another goal of
central importance in information processing since many quantum protocols rely on it.

Furthermore, one can employ our methods to evaluate dimension-restricted contextuality inequalities,
which can in turn be used to construct dimension witnesses. With more reliable methods of evaluating

2We point out that ϑd(Gex) is simply a particular case of ϑd(Gex, w), with w = (1, . . . , 1).
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the dimension restricted weighted Lovász number, one can additionally profit from the close connection
between ϑ(G) and communication scenarios, as explored in [149], which may lead to improved efficiency
and new applications in quantum information.
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Chapter 5

Certifying the number of
incompatible measurements in a
steering scenario

Since its very dawn, quantum mechanics has built the tradition of challenging our physical intuition,
this particular set of notions we have been developing since the day we are born. From quantizing energy
[4] to questioning causality itself [150] (with an assortment of other major breakthroughs in-between),
quantum theory puts in check the assumptions we hold most dear and fundamental about our world. It
is, thus, no surprise that advances in the field of foundations are customarily met with great resistance.
Unfortunately for those who keep a more conservative approach to physics, there is no denying that such
odd features are genuine and ubiquitous throughout quantum mechanics. Or is there?

Indeed, many outstanding physicists have struggled to disprove what they believed to be sheer non-
sense about quantum mechanics. Most prominently, Einstein, Podolsky and Rosen proposed a simple
thought experiment that, according to them, implied that the theory could not be considered complete
[151], an analysis that would be known as the EPR-paradox. In summary, they argued that the prob-
abilistic nature of quantum mechanics cannot be any different from that of a classical scenario, and all
uncertainty arising from it should be explained by hidden variables to which we have no access.

How could one be sure which was the case? Whether quantum mechanics was just like classical
physics with some extra uncertainty thrown in the mix was a question that remained unanswered for the
following decades, until Bell struck the final blow in [152]. By showing that some correlations simply
cannot be reproduced by classical physics, the violation of so-called Bell inequalities forces physicists to
let go of at least one core classical assumption: locality, reality or free-will.

What sets Bell approach apart from quantum theory as it was developed so far is that one does
not need to “trust” anything in the process, not the devices, not the parties involved, only perhaps
mathematics itself. This asset is crucial in the task of convincing skeptics of the genuinely odd features
of quantum mechanics. In other words, the strength of Bell’s theorem lies of the fact that it is theory-
independent, meaning it does not take quantum mechanics (or any physical theory) as a starting point.
By making no assumptions about how probabilities are obtained, Bell scenarios can be seen as black-
box experiments, device-independent approaches where one does not need to trust the equipment or the
parties involved1.

A neat consequence of this formulation is that Bell’s theorem can be put to test in a lab. This is
no frivolous asset, first of all because testability is a cornerstone of physics as a science, and second
because Bell non-locality is closely related to the notion of entanglement [85], which plays a central role
in foundations of quantum mechanics. The experimental violation of a Bell inequality can be used to
certify entanglement [154], a crucial resource in many informational tasks [155].

Notice that entanglement can alternatively be detected with straight-forward techniques such as state
tomography [154], but from a foundational point of view there is a trade-off to be observed. Full tomog-
raphy can theoretically be used to characterize entanglement in any state (though it is not easily applied
to large systems [156]), but it is a device-dependent approach. The violation of a given Bell inequality
does not detect every entangled state [157], but it results in a robust, theory-independent claim.

1This is of course easier said than done and there is a deep debate around it, but experimentalists have been making
steady progress towards loop-hole free implementations [153].
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Whether or not one is required to trust an apparatus, a colleague or even a theory is often a matter
of central relevance in an enterprise. Take, for instance, the task of distributing a cryptography key
while keeping it a secret from eavesdroppers: the less trust required, the safer the procedure. For these
situations, protocols such as the E91 protocol [130] are ideal: one does not have to trust the other
parties, since the secrecy of the key relies on observing the violation of a bipartite Bell inequality. The
very security of the protocol lies on a fundamental distrust of the process.

But what about situations where perhaps partial distrust can be lifted? If one party (traditionally
named Alice) corresponds to a bank user with an everyday computer while the another is the bank itself
(here representing Bob), it may be reasonable to distrust only Alice’s device while making reasonable
assumptions about Bob’s. Such scenarios are described by one-way-device-independent approaches and
can be exploited with quantum steering.

Steering is a quantum phenomenon whose first description by Schrödinger dates from 1935 as a
formalization of the EPR argument [158, 159], but has seen a modern revival after being reformulated in
the lingo of quantum information [107] by Wiseman, Jones and Doherty. The trio originally described
a scenario where Alice prepares a bipartite state and sends one part to Bob. Alice’s goal is to convince
Bob that she can “steer” his system by simply performing measurements on her side and communicating
her results to him. Bob, in turn, does not trust Alice and will try to come up with classical models that
explain the statistics he observes after performing measurements on his side of the shared state. In few
words, whenever his results cannot be explained by plain classical ignorance, Bob must admit Alice’s
influence on his system. Much like Bell non-locality, steering can be certified through the violation of
so-called steering inequalities [86].

As we will see in the following sections, steering manifests itself in asymmetric scenarios where Alice
and Bob cannot be inter-exchanged. Bob’s role is intrinsically different from that of Alice, since she is
the one trying to convince her colleague, and thus cannot be trusted. Because of the way this scenario
is designed, steering can be formulated in one-way-device-independent approaches. As a result, it can
also be exploited for many practical applications, such as quantum key distribution [160], randomness
certification [161] or secret sharing [162], where such asymmetry is an advantage.

Beyond its applications, steering has a considerable role in foundations of quantum mechanics. Though
a completely distinct and independent phenomenon, it is closely related to Bell non-locality, entanglement
and compatibility of measurements [86]. In fact, steering can only be observed if the shared state is
entangled and the measurements performed by Alice are incompatible [163]. Such requirement makes
the detection of steering a strategy to certify that these measurements are incompatible in a one-way-
device-independent approach, a feat that is relevant on its own since incompatibility is central in many
protocols [85].

In this work, we go beyond witnessing incompatibility of measurements through the violation of
a steering inequality. Indeed, we provide a strategy to actually certify the number of incompatible
measurements to which Alice has access. In a bipartite steering scenario, we develop a series of tests
that Bob can perform with the information he has on his side of the experiment and conclude that his
colleague must have performed at least k incompatible measurements on her part of the shared quantum
state. Our method also displays the main advantage of admitting and SDP formulation.

This chapter is outlined as follows. In section section 5.1 we lay some relevant preliminary concepts,
such as measurement compatibility, measurement simulability and steering itself, while also setting the
notation we will use throughout the chapter. Then, in section 5.2 we introduce our method for certifying
the number of incompatible measurements Alice can perform. Finally, in section 5.3 we apply our method
to a paradigmatic example and discuss its qualities and limitations, as well as prospects for future research.

5.1 Preliminary concepts

5.1.1 Joint measurability and compatibility

The fact that some measurements are incompatible is yet another feature that sets quantum and
classical physics apart. Two tasks are understood to be incompatible if they are mutually exclusive, i.e.,
they cannot be performed simultaneously on a single device. This does not seem to be a particularly
relevant discussion in classical scenarios, as all classical measurements are compatible [164], but it is an
unalienable part of quantum measurements. An instance of this phenomenon is given by the emblematic
example of spin measurements in two perpendicular directions, represented for instance by the Pauli
matrices σx and σz, notoriously incompatible. For projective measurements, compatibility is reduced to
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the commutativity of observables, but it is known that for POVMs in general this equivalence does not
hold, as there are non-commuting measurements that are nevertheless jointly measurable [165, 166].

Though it was mostly seen as an obstacle and a limitation, incompatibility of quantum measurements
was recast as an advantage and a resource in quantum informational tasks [85, 167, 168, 169], being
crucial to different protocols. It is known, for instance, that there is neither non-locality nor steering
without incompatible measurements [85, 163], and that it is closely related to contextuality [87]. There
is no denying, thus, that incompatibility of measurement plays a major role in both foundation and
applications of quantum mechanics.

Let us formally define joint measurability2. Let the measurement assemblage M = {Ma|x}a,x be a
collection of POVM elements, with x = 1, . . . , N labeling the measurements and a = 1, . . . , l labeling
their outcomes. This set of measurements is said to be compatible if it admits a joint measurement, i.e.,
there exist a POVM {Gλ}λ and probability distribution p such that

Ma|x =
∑
λ

p(a|x, λ)Gλ, (5.1)

where
∑
λGλ = 1, Gλ ≥ 0 ∀λ and

∑
a p(a|x, λ) = 1, p(a|x, λ) ≥ 0 ∀a, x, λ. Physically, it means

one can measure Gλ and obtain the same statistics of Ma|x after some post-processing. Equivalently,
joint measurability can be defined in terms of the existence of a N output measurement with effects
{Ha1,...,aN }a1,...,aN obeying

Ma|x = H [x]
a :=

∑
ai, i ̸=x

Ha1,...,ax−1,a,ax+1,...,aN . (5.2)

In this formulation, measurements can be recovered by the marginalization over all but one output of

H (in this case, the x-th output, to which we assign the outcome a). H
[x]
a is often referred to as the

x-th marginal of H. For instance, considering two observables A and B with l possible outcomes each,
compatibility imposes the condition that

Aa =
∑
i

Hia, a = 1, . . . , l (5.3)

Bb =
∑
j

Hbj , b = 1, . . . , l. (5.4)

A way to define compatibility is by considering measurements as black boxes with one input and one
output [164], on an operational level. The input of such box is a physical system and the classical output
is a label that designates different outcomes. Two observables A and B can thus be represented by two
single-input, single-output boxes, and they are said to be jointly measurable if they can be equivalently
described by a joint device C, defined as a black box with a single input and two outputs that reproduce
the probability distributions yielded by the outcomes of A and B.

Figure 5.1: A black-box can describe a physical one-input-one-output device. Taking states as inputs
and producing classical labels as outcomes, these black-boxes can be associated to measurements. If two
devices A and B implement compatible measurements, then there exists a device C with a single input
and two outputs that reproduces the statistics yielded by A and B. Figure adapted from [164].

This black-box formulation presents some interesting insight into the problem. With it one can, for
instance, re-interpret impossibility statements such as no-cloning and no-information-without-disturbance

2In this text we use the terms compatibility and joint measurability interexchangely, though some subtleties might differ
them [118]
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as statements about incompatibility of devices [164, 170, 171]. It also provides an interpretation to what
can be a good measure of incompatibility, as follows.

Consider, now, a black-box that yields the same probability distributions regardless of the state input.
Physically, this could correspond, for instance, to a coin toss, and this trivial device would not actually
need any input to correctly describe the corresponding observable: this box would have no input and a
single outcome. It is easy to see, then, that a trivial box is compatible with any other box A: there is
always a joint device, with one input (namely, that of box A) and two outputs (one from A and another
from the trivial box), that reproduces their statistics. The fact that such a pair of observables is always
compatible suggests that one can measure how incompatible two arbitrary measurements A and B are
by evaluating their distance to a trivial box: if A and B are not compatible, how much more similar to
a trivial box should they be in order for a joint measurement to be possible?

This measure is captured by the notion of robustness. Consider the depolarizing map Λη acting on
some d-dimensional operator A as

Λη(A) = ηA+ (1 − η) Tr[A]
1

d
, (5.5)

where η ∈ [0, 1]. Physically, this map models white noise in a measurement in terms of η. If η = 1 the
measurement of A is noise-free, but the lower the value of η the closer the resulting measurement is to a
trivial one, all the way up to η = 0 when one gets uniformly random outcomes. η captures how far A is
from a trivial measurement and thus from being compatible with any other measurement. This suggests
the usual definition of incompatibility robustness of an ensemble of measurements M = {Ma|x}a,x [118]

η∗ = max{η|{Λη(Ma|x)} ∈ COMP}, (5.6)

where COMP is the set of ensembles that admit a joint measurement. In words, η∗ is the minimum
amount of noise one must allow in the measurements in order for them to be compatible. Any value of η
below this threshold already yields measurements that are noisy enough to be compatible, and the lower
η∗ the more incompatible the original ensemble.

Notice that the convex mixture of compatible measurements also yields compatible measurements,
as this would correspond to a simple post-processing. This means the set COMP is convex and SDP
formulations of the task of determining whether an assemblage is compatible can be established. Indeed,
the corresponding program that assesses the compatibility of two measurements A and B with l possible
outcomes, for instance, reads

given {Aa}a=1,...,l, {Bb}b=1,...,l

maximize η

subject to Λη(Aa) =
∑
i

Hia, a = 1, . . . , l

Λη(Bb) =
∑
j

Hbj , b = 1, . . . , l

Hij ≥ 0,
∑
ij

Hij = 1, η ≤ 1 .

(5.7)

Here, H is a two-output joint observable for Λη(A) and Λη(B), and one can recover the original observables
by taking the marginals of H over each output. Intuitively, one is asking how much noise must be added
to A and B for a joint measurement H to exist.

k-compatibility of a set of measurements

We can now move on to define the more general concept of k-compatibility of an assemblage. If we
were to try to implement a joint measurement of two incompatible observables A and B on a quantum
state ρ the task would be futile, as no single device can, on a single run, implement both measurements
at once. However, if we had access to two copies of ρ, then such device could promptly be idealized: it
would simply perform measurement A on one copy and B on the other. What about a scenario with
three incompatible measurements, A, B and C? Clearly, three copies of ρ would suffice to implement all
of them at once even if such a task is impossible with a single copy, but what can one do with two copies
of ρ?
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This is the question that was explored in [172], where the authors introduce the concept of k-
compatibility. Formally, a set of POVMs M = {Ma|x}a,x is said to be k-compatible if it admits a
k-copy joint measurement, that is, if there exists an observable H acting on k copies of the system such
that the statistics of each Ma|x can be recovered by marginalizing over H. Mathematically, it means
there exists a POVM H such that

Tr[ρMa|x] = Tr[ρ⊗kH [x]
a ], ∀ρ, a, x. (5.8)

Notice that when a single copy of ρ is considered and k = 1, the usual concept of joint measurability is
recovered. This way, a weaker notion of compatibility is established: perhaps one cannot devise a joint
measurement for an assemblage, but if one has access to more copies, then other possibilities arise.

By looking at eq. (5.8) one might be lead to conclude that there is no SDP formulation for the task
of determining whether an assemblage is k-compatible. Unlike for usual compatibility, this definition
would imply on non-linear constraints, as both ρ and H would be variables. Luckily for us, the authors
in [172] have already tackled this issue and concluded that eq. (5.8) can be equivalently stated in a more
convenient way.

Let us first define the symmetrizer channel Sk acting on an operator A in L(H⊗k) as

Sk(A) =
1

k!

∑
p

σ(p)Aσ(p)∗, (5.9)

where σ(p) are the possible permutation operators. Basically, this channel permutes the subspaces of A
in every possible way and adds them all up. Now, the symmetric product of two operators A1 in L(H⊗k1)
and A2 in L(H⊗k2) is

A1 ⊙A2 = Sk1+k2(A1 ⊗A2). (5.10)

Let us now introduce the main result of [172]: an assemblage of observables {Ma|x}a,x is k-compatible
if and only if there exists an observable G such that

G[x]
a = 1

⊗(k−1) ⊙Ma|x, ∀a, x. (5.11)

This result allows one to think of k-compatibility of an assemblage in terms of the regular compatibility
of another, closely related assemblage. If one wants to know whether {Ma|x} is k-compatible if suffices to
take the symmetric product of each POVM effect with the identity operator acting on (k − 1) subspaces
and check whether this new set of measurements admits a joint observable.

For instance, consider the spin-1/2 noisy observables in directions x, y and z, whose effects are defined
in terms of the Pauli matrices as

Xη
± =

1± ησx
2

, Y η± =
1± ησy

2
, Zη± =

1± ησz
2

, (5.12)

where η ∈ [0, 1] is a noise parameter: high values of η result in sharper spin measurements, eventually
recovering the original POVM elements for η = 1; low values of η result in noisy spin measurements,
resulting in a trivial measurement for η = 0. For η = 1 this set of observables is not compatible. As a
consequence, there is no joint observable acting on a single copy of an arbitrary qubit state ρ that can
reproduce their results, but for η ≤ 1/

√
3 these noisy spin observables are jointly measurable [173].

One might now wonder whether there is a 2-copy joint observable, acting on ρ⊗ ρ that might, after a
post-processing, recover the statistics of the noisy spin measurements. In other words, one want to check
whether this set of measurements is 2-compatible. To answer this question, one must compute the regular
compatibility of the following observables, resulting from the symmetric product of the corresponding
POVM effects with the identity operator. By taking k = 2 in eq. (5.11),

X̄η
± = 1⊙Xη

± =
1

2
(1⊗Xη

± +Xη
± ⊗ 1), (5.13)

Ȳ η± = 1⊙ Y η± =
1

2
(1⊗ Y η± + Y η± ⊗ 1), (5.14)

Z̄η± = 1⊙ Zη± =
1

2
(1⊗ Zη± + Zη± ⊗ 1). (5.15)

Now, all that is left is to check for what values of η the assemblage {X̄η
±, Ȳ

η
± , Z̄

η
±} admits a joint observable.

As shown in [172], this happens whenever η ≤
√

3/2, in which case the set is 2-compatible.
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Notice how this example makes it explicit that (k + 1)-compatibility is a “weaker” property than
k-compatibility. One needs to add more noise into a measurement in order to make it compatible than
what is necessary to make it 2-compatible.

It is also worth mentioning that the possibility of translating the problem of determining whether an
assemblage is k-compatible into a regular compatibility problem offers a great computational advantage.
By looking at eq. (5.8), one can see that using this expression directly to impose constraints on a program
would not result in an SDP. Indeed, such program would consist on looking for all possible observables
G such that it is a k-copy joint observable for an assemblage {Ma|x}a,x. Explicitly,

given {Ma|x}, k
maximize η

subject to Tr[Λη(Ma|x)ρ] = Tr[ρ⊗k
∑
ai,i̸=x

Ga1,...,ax−1,a,ax+1,...,aN︸ ︷︷ ︸
G

[x]
a

]

Ga1,...,aN ≥ 0,
∑

a1,...,aN

Ga1,...,aN = 1, η ≤ 1.

(5.16)

This program is evaluating the minimum amount of noise one must add to the assemblage such that it
admits a k-copy joint measurement. Whenever the solution is η = 1 one can conclude that {Ma|x} is
k-compatible, because it would mean no noise is necessary at all. Lower optimal values for η indicate
that the set is not k-compatible.

Since the k-copy joint observable must recover the statistics of {Ma|x} when the measurements are
performed on any state ρ, both {Ga1,...,aN } and ρ are variables in this program, and thus it is not an
SDP. However, if one re-formulates this task using to their advantage what we already know about
k-compatibility translating into regular compatibility, an equivalent task can be written:

given {Ma|x}, k
maximize η

subject to Λη(Ma|x) ⊙ 1
⊗(k−1) =

∑
ai,i̸=x

G̃a1,...,ax−1,a,ax+1,...,aN︸ ︷︷ ︸
G̃

[x]
a

G̃a1,...,aN ≥ 0,
∑

a1,...,aN

G̃a1,...,aN = 1, η ≤ 1.

(5.17)

Here, one is checking whether the symmetrized versions of {Ma|x} admit a joint observable, and {G̃a1,...,aN }
are the only variables of the problem.

After this brief exposition of basic notions in joint measurability, we can move on to introduce the
closely related concept of measurement simulability.

5.1.2 Measurement simulability

Compatibility is the property that defines whether the general statistics yielded by a set of measure-
ments can be reproduced by the post-processing of the results from the measurement of a single POVM.
One decides if an assemblage is compatible by determining whether there is a joint observable that can
fulfill this task.

A closely related, yet complementary inquiry can be framed the other way around. In compatibility
analyses, one wants to know if a given set of measurements can be reproduced. Alternatively, one can
now wonder what measurements can be reproduced given the measurements to which one actually has
access. To face such interrogations, one can dive into the field of measurement simulability [174, 175].

A set of measurements M = {Ma|x} is said to be simulated by another set of measurements N =
{Na|x} if there exists a protocol relying only on classical manipulations of N that can reproduce the statis-
tics of M for any state ρ. Such classical manipulations are completely encompassed in two categories:
pre-processing and post-processing [176]. Simulation protocols consist on classically mixing the measure-
ments one has available in the lab (a pre-processing phase), followed by performing these measurements,
and finally relabeling or coarse-graining the outcomes (the post-processing phase). Mathematically, this
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means a set of measurements M can be simulated by N if there exist probability distributions p and q
such that

Ma|x =
∑
x′

p(x′|x)
∑
a′

q(a|x, a′, x′)Na′|x′ , (5.18)

with p(x′|x) ≥ 0 ∀x′,
∑
x′ p(x′|x) = 1 and q(a|x, a′, x′) ≥ 0 ∀a,

∑
a q(a|x, a′, x′) = 1. This way, the

pre-processing phase is controlled by p while the post-processing is given by q. If the measurements in
the set N (said to be simulators of M) consist of k POVMs, that is, if x′ = 1, . . . , k, then M said to be
k-simulable.

Notice that simulability and compatibility are closely related concepts. In fact, compatibility can
be seen as the particular case of k-simulability where k = 1, i.e., a set of measurements is compatible
when it can be simulated by a single POVM. Indeed, it is easy to see that if x′ can assume only one
value then the expression in eq. (5.18) reproduces the usual definition of compatibility. By wondering
if a set of measurements can be simulated by more than one POVM, one is relaxing the notion of joint
measurability.

Unfortunately, the problem of deciding whether a set of measurements is k-simulable does not seem
to admit an SDP formulation [174]. Indeed, the constraint expressed by eq. (5.18) is non-linear, since p,
q and {Na′|x′} would all be variables in the program, and no trick to overcome this issue is known. Even
though this is a major draw-back from the computational perspective, we will show in section 5.2.2 that
there is a close connection between the concepts of k-simulability and k-compatibility, and a necessary
condition for k-simulability can be cast as an SDP.

5.1.3 Steering

Steering and entanglement are terms that were first introduced by Schrödinger in his 1935 work
[158], following Einstein, Podolski and Rosen’s famous EPR paper [151] criticizing quantum mechanics
as a physical theory. The trio considered a thought experiment analyzing position and momentum of
a bipartite system, and the argument was later reformulated by Bohm [177], which we can re-interpret
in terms of qubits. Consider a scenario where Alice and Bob each hold half of a two-particle system in
laboratories far away from each other. They share a singlet state, defined as

|ψAB⟩ =
(|01⟩ − |10⟩)√

2
, (5.19)

where |0⟩ and |1⟩ are the eigenstates of spin along the z-direction, with eigenvalues {+1,−1} respectively.
Notice that |ψAB⟩ still preserves its anti-correlation if one were to instead use the basis {|+⟩ , |−⟩}, where
|±⟩ = (|0⟩ ± |1⟩)/

√
2 are the eigenvectors of spin along the x-direction, with eigenvectors {+1,−1}. As

a consequence, Alice can predict Bob’s outcomes of a spin measurement on either the x- or z-direction
depending on her own choice of measurements: if she measures the spin of her particle in the z-direction
and obtains the result +1 (or −1) she knows Bob’s state must be |1⟩ (or |0⟩); similarly, if she measures
the spin of her particle in the x-direction and obtains the result +1 (or −1) she knows Bob’s state must
be |+⟩ (or |−⟩).

Since the outcomes of these two spin measurements on Bob’s side could, in principle, be predicted with
certainty by Alice without disturbing his system (as the subsystems no longer interact), it was argued
in the EPR paper that these observables corresponded to “elements of reality”. Quantum mechanics
dictates that one cannot assign simultaneously well-defined values for these observables, which leads to
the conclusion that the theory is incomplete (or so it was claimed). To solve this apparent paradox, one
could trivially consider local hidden variables and all was well again.

Schrödinger, in turn, believed quantum theory to provide a complete description of the whole physical
system, rejecting the need of a local hidden variable to make sense of it. He pointed out that, even though
Alice could not send any information to Bob by performing different measurements on her side (since his
reduced state would not depend on her choice), she could indeed “steer” his share of the bipartite state
into eigenvectors of spin along either direction, an effect he described as “magic”.

However, even Schrödinger could not accept the possibility of steering actually happening on a lab,
and thus deemed quantum mechanics to be incorrect in its description of delocalized entangled states.
In his opinion, the parties where dealing with well-defined states even before measurements, and a local
hidden state model should describe the bipartite system [107].

Following the formalism put forward in [107], one can frame a steering scenario as a quantum informa-
tion task. Consider two parties, Alice and Bob, each having access to half of a bipartite physical system
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previously prepared by Alice. On each run of the protocol, both parties can perform measurements on
their share of the state in their respective far-away laboratories and communicate classically. Alice’s task
is to convince Bob that she can, by correctly choosing her measurements, collapse his system into different
states, that is, she can steer his system. Bob is a particularly skeptical scientist, and will only yield if
the correlations that he observes between his and Alice’s results cannot be explained by sheer classical
ignorance, otherwise Alice could simply be exploiting her knowledge about their shared physical system
to tweak her results and fool him. In other words, Bob will only be convinced if the scenario admits no
local hidden state explanation.

Let us introduce the mathematical notation we will use to explore such scenarios. Consider a quantum
state ρ, such that Tr[ρ] = 1 and ρ ≥ 0. An ensemble for ρ is a set E = {ρa}a whose elements obey ρa ≥ 0
and

∑
a ρa = ρ. In a classical scenario, it can be seen as a collection of states non-normalized , which

physically correspond to a local hidden state (LHS) model for ρ. The same state admits different LHS
models, and a collection of such ensembles is called a state assemblage, denoted A = {Ex}x. The elements
of this collection are now indexed by two labels, and

∑
a ρa|x = ρ, ρa|x ≥ 0. A measurement assemblage

M = {Ma|x}a,x is a collection of POVMs, with Ma|x ≥ 0 and
∑
aMa|x = 1 for all x.

We denote the bipartite state shared by Alice and Bob ρAB . On her side, Alice has access to the
measurement assemblage {Ma|x}a,x, and can perform different measurements by choosing settings labeled
by x yielding outcomes labeled by a. On his side, Bob is left with a state assemblage {ρa|x}a,x whose
elements are given by

ρa|x = TrA[(Ma|x ⊗ 1)ρAB ], (5.20)

where TrA is the partial trace operation over Alice’s subsystem. Notice that whatever Bob’s conditional
states are, they must correspond to an assemblage for the reduce state ρB = TrA[ρAB ]. Put mathemati-
cally,

ρB =
∑
a

ρa|x (5.21)

for any setting x Alice may choose. This is of course a physical consequence of the pair only being allowed
to communicate classically, and Bob’s reduced state being independent of Alice’s choice of measurement.

Finally, we say Bob’s state assemblage admits a LHS model if there exist p(a|x, λ) ≥ 0 and a set of
positive operators {σλ} obeying Tr[

∑
λ σλ] = 1 such that

ρa|x =
∑
λ

p(a|x, λ)σλ, ∀a, x. (5.22)

Whenever it is the case, we say Bob’s state assemblage is unsteerable. This would mean Bob’s assemblage
could in fact corresponds to an unknown classical mixture of well-defined states, and all that changes
with Alice’s measurements is his knowledge about the probability distribution of the hidden states. On
the other hand, if no such model exists then Bob must admit Alice can steer his share of the physical
system.

Now that we have specified the kind of scenario with which we will be dealing throughout this work, we
can discuss steering equivalent observables, a mathematical construction that will allows us to introduce
out method to certify the number of incompatible measurements to which Alice has access.

Steering equivalent observables

After establishing what steering actually is, one is led to wonder how this phenomenon can be verified
and what are necessary or sufficient conditions to ascertain that steering can manifest itself on a given
scenario.

Indeed, one may detect steering from different fragments of information about a setup, but we will
focus our analysis on a specific instance of special interest to our goals. For completeness, however, we
mention some additional strategies. First, in close analogy to Bell inequalities certifying non-locality,
steering inequalities can be employed to verify that certain correlations cannot be obtained from LHS
models, a method that features the advantage of being experimentally applicable [178, 179, 180, 181].
Second, one can start from already having full knowledge of the shared state ρAB and examine whether
there are measurements that Alice can perform that will reveal that the state is steerable. This question
is harder than it may seem at first, particularly if one considers scenarios beyond two-qubit states and
non-projective measurements [182, 183, 184]. Finally, one can analyze what Bob can conclude from the
information to which he has access. When his state assemblage is known, it suffices to show that it admits
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a LHS model to conclude that steering cannot take place, and fortunately this question can be decided
with the aid of of an SDP [91, 185].

Still following this last line of research, one can apply the results in [186] to formulate yet another
SDP that takes Bob’s state assemblage as input and verifies whether or not it is steerable. Instead of
looking for a LHS model for {ρa|x}a,x, one constructs the set of steering equivalent observables (SEO)
and checks whether it admits a joint measurement. This result is particularly relevant to understand our
method when we present it in section 5.2.

Let us first define ΠB , the projector on the subspace KρB = range(ρB), that is, the subspace spanned
by the columns of ρB . One can evaluate Bob’s state assemblage and reduced state when restricted to the
subspace KρB , given by3

ρ̃a|x = ΠBρa|xΠ†
B , ρ̃B = ΠBρBΠ†

B . (5.23)

Since ρa|x and ρB are positive, ρ̃a|x and ρ̃B are also positive and we can define Bob’s steering equivalent
observables as

Ba|x = (ρ̃B)−1/2ρ̃a|x(ρ̃B)−1/2. (5.24)

Since Ba|x ≥ 0 for all a, x, and one can easily verify that
∑
aBa|x = 1KρB

, and each set {Ba|x}a for a
fixed x forms a POVM.

We now state the main result in [186]: Bob’s state assemblage {ρa|x}a,x is unsteerable if and only
if its steering equivalent observables {Ba|x}a,x are jointly measurable. The proof of this statement is
simple enough. The first implication is established by assuming the existence of a LHS model {σ̃λ}λ for
{ρ̃a|x}a,x and explicitly constructing a joint measurement for {Ba|x}a,x, namely

Gλ = (ρ̃B)−1/2σ̃λ(ρ̃B)−1/2. (5.25)

The other direction follows trivially if one realizes that a joint measurability problem is simply a
steerability problem with ρB being the maximally mixed state. Indeed, if one assumes {Ba|x}a,x to be
jointly measurable, that is,

Ba|x =
∑
λ

p(a|x, λ)Gλ, ∀a, x (5.26)

for some p, G, then simply setting ρB = 1 in eq. (5.24) yields

ρa|x =
∑
λ

p(a|x, λ)Gλ, ∀a, x (5.27)

so p and G form a LHS model for {ρa|x}a,x, and consequently Bob’s assemblage is not steerable.
This result makes the connection between steering and measurement compatibility even clearer [163],

and in fact Bob’s steering equivalent observables can be interpreted as the very measurements that must
be performed by Alice to prepare {ρa|x}a,x [86] on Bob’s side.

Now that all the pieces are available, we can start assembling the puzzle whose final picture is our
strategy to determine the number of incompatible measurements on Alice’s assemblage, using only the
information to which Bob has access.

5.2 A method to certify how many incompatible measurements
Alice performs

Following the tradition of cultivating distrust when performing quantum-informational tasks, we de-
velop a straight-forward method to certify the number of incompatible measurements to which Alice has
access in a steering scenario. As mentioned before, the very verification of steering is already enough to
ensure that Alice has performed incompatible measurements, but nothing, so far, has been said about
how many of these measurements there are.

By exploiting a chain of implications, we are able to construct a test that checks whether a necessary
condition for Alice to perform k incompatible measurements is satisfied. Whenever this condition is

3If the reader is wondering what’s the difference between ρB and ρ̃B , we recall that ρB may not be full-rank, in which
case ρ̃B and ρB will have different dimensions.
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not met, we conclude with certainty that Alice, then, must have performed at least k + 1 incompatible
measurements; if the condition is met, however, nothing can be ascertained.

As we will discuss, this necessary (but not sufficient) condition is that Bob’s steering equivalent ob-
servables are k-compatible, with the additional restriction that the corresponding k-copy joint observable
is in a product form. This criterion displays two central features, with both foundational and applied rel-
evance: first, it depends only on the information that Bob can harvest, namely his state assemblage, and
thus no trust has to be deposited in Alice; second, this test can be formulated in terms of a semidefinite
program, and one can consequently profit from all the computational advantages that come with it.

In sections sections 5.2.1 and 5.2.2, we will introduce fragments of this chain of implications, and in
section 5.2.3 we will tie them all together and construct the full criterion. We will, afterwards, frame this
test as a hierarchy of SDPs, and finally put it to test in the last section of this chapter.

5.2.1 k-simulability of Alice’s assemblage implies k-simulability of Bob’s steer-
ing equivalent observables

In this section we are going to prove that if Alice’s measurement assemblage is k-simulable, then Bob’s
steering equivalent observables are also k-simulable. This is the very first step in constructing a test that
Bob can use to certify the number of incompatible measurements that Alice can perform, as we must
create a link between the information to which Bob has access and the object we want to investigate,
namely Alice’s measurement assemblage.

We start by assuming that Alice’s measurement assemblage M = {Ma|x}a,x is k-simulable, that is,

there exist probability distributions p, q and a set of k simulators {Nb|y}y=1,...,k
b,y satisfying eq. (5.18), the

condition for k-simulability. Bob’s steering equivalent observables are given by eq. (5.24), and one can
expand this equation using the definition of Bob’s state assemblage in eq. (5.20). Then, the expression
for Bob’s SEOs B = {Ba|x}a,x reads

Ba|x = (ρ̃B)−1/2ΠB TrA[(Ma|x ⊗ 1)ρAB ]Π†
B(ρ̃B)−1/2. (5.28)

Since M is k-simulable, one can substitute Ma|x so that we have an expression for Bob’s SEO in
terms of the simulators of Alice’s measurement assemblage. The corresponding equation is

Ba|x =

k∑
y=1

∑
b

p(y|x)q(a|b, x, y)(ρ̃B)−1/2ΠB TrA[(Nb|y ⊗ 1)ρAB ]Π†
B(ρ̃B)−1/2. (5.29)

To show that {Ba|x}a,x is k-simulable it suffices to explicitly construct its simulators. Indeed, it is
straight-forward to identify them in the equation above. We define

Ñb|y = (ρ̃B)−1/2ΠB TrA[(Nb|y ⊗ 1)ρAB ]Π†
B(ρ̃B)−1/2, (5.30)

and the set {Ñb|y}y=1,...,k
b,y , along with probability distributions p, q, fit into the definition of k-simulability

given in eq. (5.18). All that is left is to show that {Ñb|y}b,y are indeed observables. Since {Nb|y} are

themselves positive, it follows directly that Ñb|y ≥ 0, ∀b, y. One can also easily check that
∑
b Ñb|y = 1.

As
∑
bNb|y = 1, we have

∑
b

Ñb|y = (ρ̃B)−1/2ΠB TrA[ρAB ]Π†
B(ρ̃B)−1/2 (5.31)

= (ρ̃B)−1/2ΠBρBΠ†
B(ρ̃B)−1/2 (5.32)

= (ρ̃B)−1/2ρ̃B(ρ̃B)−1/2 (5.33)

= 1. (5.34)

Thus, we can conclude that if Alice’s measurement assemblage is k-simulable, then so are the steering
equivalent observables of Bob’s state assemblage. Notice that the other way around does not hold: if
Bob’s SEOs are k-simulable there is no guarantee that Alice’s measurements are k-simulable. Indeed,
a counter-example can be constructed, for instance, if the state that the two parties share is separable.
Whenever that is the case, it is easy to see that Bob’s SEOs correspond to a trivial measurement and
are, thus, k-simulable.

In this section, we have devised a way to check if Alice’s measurement assemblage M is k-simulable
using only the information to which Bob has access. After evaluating the k-simulability of his steering
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equivalent observables, Bob can interpret the meaning of a negative answer. If his SEOs are not k-
simulable, he can be sure that Alice’s measurement assemblage is not k-simulable. Of course, as we have
already discussed, if his SEOs are indeed k-simulable, then nothing can be stated.

We point out that the k-simulability of M is a telling feature: if this set of measurements is composed
of k compatible observables then it must necessarily be k-simulable. This means that if this characteristic
is not present, then M must consist of at least k + 1 incompatible measurements.

Let us assert a couple of facts about k-simulability, proven in [172], that can nevertheless be easily
verified.

• All assemblages of k measurements are k-simulable, since one could simply take each measurement
as a simulator.

• If an assemblage is k-simulable, then it must also be (k+ 1)-simulable, as one can trivially add any
measurement to the set of simulators and never actually use it.

Consequently, there is no alternative conclusion that can be drawn from the impossibility of constructing
a set of k simulators for M, other than that the assemblage must have at least k + 1 incompatible
measurements. If M was composed of more than k compatible measurements, or composed of k or less
incompatible measurements, the set would still be k-simulable.

Thus, if one wants to ensure that Alice’s measurement assemblage consists of at least k+1 incompatible
measurements, it suffices to show that it is not k-simulable. What we have achieved in this section was
to find a way to check that M is not k-simulable while only assuming knowledge that Bob can obtain. In
summary, by checking that his steering equivalent observables (obtained from his state assemblage) are not
k-simulable, Bob can conclude that Alice must have access to at least k+ 1 incompatible measurements.

5.2.2 k-simulability implies k-compatibility

In this section we will show that if a measurement assemblage is k-simulable, then it must also be
k-compatible. Furthermore, the assemblage must admit a k-copy joint observable that is separable.

Let B = {Ba|x}a,x be a set of POVM elements. Assume that is it k-simulable, that is, there exist an

assemblage of k POVMs N = {Nb|y}y=1,...,k
b,y and probability distributions p, q that satisfy eq. (5.18). To

show that B must also be k-compatible we will explicitly construct a k-copy joint observable.
Let us define the set {Hb|y}y=1,...,k

b,y , with POVM elements

Hb|y = 1⊗ . . .⊗
y-th term︷︸︸︷
Nb|y ⊗ . . .1︸ ︷︷ ︸

k terms

. (5.35)

That is, this measurement is performed on states in L(H⊗k), such as ρ⊗k. On the y-th copy one measures
the y-th simulator of B obtaining outcome b, while a trivial measurement is performed on the other copies.
It is easy to see that {Hb|y}b indeed form a POVM for each fixed y, since we assume {Nb|y}b are POVMs
themselves.

Because of this block-structure of Hb|y, it naturally follow that

Tr[ρBa|x] =

k∑
y=1

∑
b

p(y|x)q(a|b, x, y) Tr[ρ⊗kHb|y]. (5.36)

We are already halfway to showing that eq. (5.8) is satisfied and B is k-compatible. In order to do
that, we must clearly identify the k-copy joint observable. Let us first rearrange the expression above,

Tr[ρBa|x] = Tr[ρ⊗k

(
k∑
y=1

∑
b

p(y|x)q(a|b, x, y)Hb|y

)
]. (5.37)

It suffices to show that the onject in parenthesis indeed corresponds to a marginalization over all but one
entry of some observable. To that end, notice that Hb|y is the y-th marginal of {H̃b1,...,bk}b1,...,bk , with
effects defined as

H̃b1,...,bk = Nb1|1 ⊗ . . .⊗Nbk|k. (5.38)

Indeed, one can easily verify that
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Hb|y = H̃
[y]
b =

∑
bi,i̸=y

Nb1|1 ⊗ . . .⊗Nb|y ⊗ . . .⊗Nbk|k. (5.39)

If we plug this result back into eq. (5.37), we get

Tr[ρBa|x] = Tr[ρ⊗k

 k∑
y=1

∑
b

p(y|x)q(a|b, x, y)
∑
bi,i̸=y

Nb1|1 ⊗ . . .⊗Nb|y ⊗ . . .⊗Nbk|k

] (5.40)

= Tr[ρ⊗k

 k∑
y=1

∑
b1,...,by,...,bk

p(y|x)q(a|by, x, y) Nb1|1 ⊗ . . .⊗Nby|y ⊗ . . .⊗Nbk|k

] (5.41)

= Tr[ρ⊗k

 k∑
y=1

∑
b1,...,bk

p(y|x)q(a|by, x, y) H̃b1,...,bk

]. (5.42)

All we did in between these equations was relabel the dummy index b as by, which made the expression

somewhat simpler, and then explicitly including the k-copy joint measurement H̃. It is easy to verify
that H̃ is indeed a POVM, i.e., H̃b1,...,bk ≥ 0 ∀b1, . . . , bk and

∑
b1,...,bk

H̃b1,...,bk = 1, since {Nb|y}b,y are
POVM elements themselves.

With that, we have explicitly constructed a k-copy joint measurement for B. If one assumes the
existence of a k-simulability protocol, then a k-copy joint observable can always be constructed through
another closely related procedure, see fig. 5.2 for clarity. More than that, looking at eq. (5.38) we see
that the joint POVM must be in a product form, separable with respect to a partition of k subspaces,
one for each copy of a generic state ρ on which it will act.

Notice, however, that k-copy joint observables are not unique: more than one POVM can satisfy the
definition in eq. (5.8). Yet, by showing that a k-copy joint measurement always exists in the form of
eq. (5.38), we assure that at least one of all possible joint measurements is separable across this specific
partition.

A result of the discussion we conducted in this section is that we have constructed a criteria for the
k-simulability of a measurement assemblage. Given B, one can simply determine whether the assemblage
admits a separable k-copy joint measurement to conclude, if the answer is negative, that B is not k-
simulable. This is once again an instance where a positive answer renders the test inconclusive: if no
separable k-copy joint measurement exists, one knows for sure that B is not k-simulable; if there is such
a measurement, however, nothing can be said.

The advantage of using this alternative approach is that, unlike k-simulability, the k-compatibility of
a set of POVMs can be evaluated as an SDP, a valuable asset since SDP formulations benefit from solid
computational support. The results we obtained in the last two sections can finally be linked together to
build a test from which one can infer to how many incompatible measurements Alice has access.

5.2.3 Witnessing the number of incompatible measurements in Alice’s as-
semblage

We recall the motivation behind investigating whether a set of POVMs is k-simulable: if Alice’s mea-
surement assemblage is not k-simulable, then it must consist of at least k+1 incompatible measurements.
We want a strategy to check this property while only assuming access to the information that Bob can
extract from his side of the experiment, and such method would preferably be cast as an SDP.

Let us go over what we already have achieved. If one want to check whether Alice’s measurement
assemblage is k-simulable, one can instead check if Bob’s steering equivalent observables are k-simulable.
If the answer is negative, then one knows Alice’s assemblage is not k-simulable; a positive answer is
inconclusive. By applying the result from the previous section to Bob’s SEOs, we also know that to
check whether Bob’s steering equivalent observables are k-simulable it suffices to evaluate if they are
k-compatible and admit a separable k-copy joint measurement.

Our combined results state that Bob can evaluate the k-compatibility of his SEOs to reach a conclusion
about Alice’s measurements: if Bob’s steering equivalent observables do not admit a separable k-copy
joint observable, then they cannot be k-simulable, which in turn imply Alice’s measurement assemblage
cannot be k-simulable, ultimately meaning it must consist of at least k + 1 incompatible measurements.
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(a) Representation of a protocol where the measurement of {Ba|x}a,x could be simulated by {Nb|y}b,y and p, q.
A pre-processing, given by p, selects which measurement will be performed on each run. Then, a post-processing,
given by q, produces the final outcome.

(b) Representation of a protocol where the one constructs a k-copy joint measurement of {Ba|x}a,x, given that it
admits a set of simulators with k elements. Each measurement {Nb|y} will be performed on a single copy of ρ,
out of k copies in total. The resulting outcomes are mixed according to p and post-processed according to q, to
finally yield a single outcome.

Figure 5.2: Construction of a k-copy joint measurement from the set of k simulators If one
assumes that a measurement assemblage B = {Ba|x}a,x is k-simulable, then it is always possible to
construct a k-copy joint observable for B. Furthermore, this observable has a product structure, acting
locally on each copy of ρ.

Thus, we now have a simple way to certify that Alice has access to, at least, k + 1 incompatible
measurements on her side of the experiment. Given Bob’s state assemblage {ρa|x}a,x, he can construct
his steering equivalent observables B = {Ba|x}a,x. A simple SDP can be written to check the existence of
a k-copy joint observable G that is, furthermore, in a product form. If G exists nothing can be inferred,
but if a program searching for it is infeasible then one can conclude that Alice must have access to at
least k + 1 incompatible measurements.

As neat and straight-forward as it is, this test comes with a caveat. We note that separability cannot
be directly translated as a SDP constraint, which means we must resort to alternative approaches, such
as the DPS hierarchy introduced in section 3.2.1. In practice, our criterion is implemented as a hierarchy
of SDPs, i.e., instead of imposing that the k-copy joint observable is separable, we demand it to admit
a symmetric extension to N copies that is positive under partial transpose of its subsystems. Different
levels of this hierarchy are constructed by testing extensions to higher and higher numbers of copies. If
at any level such SDP is infeasible, either because there is no k-copy joint measurement or because such
observable has no PPT symmetric extension to N copies (thus, it is not separable), one concludes that
Alice’s measurement assemblage consists of at least k + 1 incompatible measurements.

An explicit construction of the level N = 2 of this hierarchy of SDP tests can be implemented as
follows. Let {B̃ka|x}a,x be the symmetrized versions of the POVM elements in B, obtained by evaluating

the symmetric product of Bob’s SEOs and the identity. According to eq. (5.11), we can evaluate the
compatibility of

B̃ka|x = 1
⊗(k−1) ⊙Ba|x (5.43)
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to infer the k-compatibility of B. The resulting SDP will look for a corresponding joint observable G,
acting on HA ⊗ HB . Additionally, we impose that such observable admits a symmetric extension to
N = 2 copies of subspace HB , which we call G̃, acting on HA ⊗HB1

⊗HB2
. The final program is

given {B̃ka|x}a,x
find {G̃λ}λ
s.t.

k-compatibility


B̃ka|x =

∑
λ p(a|x, λ)Gλ,∀a, x∑

λGλ = 1

Gλ ≥ 0,∀λ

second level of DPS


TrB2

[G̃λ] = Gλ

G̃TX

λ ≥ 0, X = {A,B1, B2}
G̃λ ≥ 0.

(5.44)

In summary, Bob can perform this hierarchy of tasks using only the information he has available. He
can start with low levels of the separability hierarchy and keep testing whether his steering equivalent
observables admit a k-copy joint observable that has a product form. If the test fails for given k and N ,
he concludes that Alice’s measurement assemblage consists of at least k+ 1 incompatible measurements.
If the SDP is feasible, a similar program can be written for higher levels of the separability hierarchy and
he can perform yet another test, perhaps now with k and N + 1. Bob can keep increasing the number of
copies to which he extends G, until he either meets a breaking point where the SDP is infeasible, or the
computational power required exceeds his resources.

5.3 Results and discussion

We can finally put our method to proof and test its efficiency in certifying a lower bound for the
number of incompatible measurements in Alice’s measurement assemblage. To do that, we will analyze
the typical example of measurements in mutually unbiased bases (MUBs, for short). Two bases {|ψi⟩}di=1

and {|ϕi⟩}di=1 for a d-dimensional Hilbert space are said to be mutually unbiased if they satisfy

|⟨ψi|ϕj⟩ |2=
1

d
. (5.45)

Measurements performed on these bases are maximally incompatible, and play an important role in
many quantum information tasks [187]. For dimension d = 2, for instance MUBs correspond for instance
to the eigenstates of Pauli operators. In general, finding MUBs for a given dimension is a difficult task,
and even though it is known that there can be at most d + 1 of such bases [188], it is not clear when
this bound is tight. For our purposes, it suffices to know that the complete set of MUBs is known for
dimensions which are powers of prime numbers, i.e., if d = pr for p prime and r positive and integer [189].

Let Alice’s measurement assemblage M = {Ma|x}a,x, with x = 1, . . . ,m, be composed of m measure-
ments in mutually unbiased bases. We can define the noisy versions of these measurements in terms of a
noise parameter t as in

M t
a|x = tMa|x + (1 − t)

1

d
. (5.46)

We can then evaluate what is the lowest value of t for which the noisy assemblage Mt does not fail
our test. In other words, we will look for critical values tc such that whenever t ≥ tc we can assure that
Alice has access to at least k+ 1 incompatible measurements. Notice that tc is, of course, only an upper
bound for the true critical value of noise in Alice’s measurements. This correspondence cannot be perfect
since we can only consider the first few levels of the separability hierarchy because of computational
limitations.

Ideally, the values we find for tc for each case (that is, considering different dimensions and different
numbers of measurements) should reproduce the incompatibility robustness η∗ of MUBs, as defined in
eq. (5.6). If that is case, it means that our test is able to perfectly detect that Alice’s measurements
are incompatible, never yielding an inconclusive answer if Alice indeed has access to k + 1 incompatible
measurements. The closer the two numbers tc and η∗ are, the more efficient our method is. A gap
between these two values indicates a window where our test cannot act.
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We considered dimensions d = 2 and d = 3 (that is, qubits and qutrits), with Alice’s assemblage
ranging from 2 to d + 1 MUBs. Out of this set of POVMs, we constructed Bob’s steering equivalent
observables and submitted them to the SDP defined in eq. (5.44).

We then evaluated the values of tc for each case, looking for a k-copy joint observable for Bob’s
SEOs that admit a PPT symmetric extension to N copies, while considering that Alice and Bob share
a maximally entangled state. Different values of N correspond to different levels of the hierarchy, with
N = 1 corresponding simply to the PPT criterion. We also considered the case where no separability
criterion is used, and only k-compatibility of Bob’s SEOs is considered. Our findings are presented in
tables 5.1, 5.2 and 5.3, along with known values of the incompatibility robustness η∗ of MUBs in table 5.4.

n k d = 2 d = 3

2 1 1/
√

2 (1 +
√

3)/4

3 1 1/
√

3 cos(π/18)/
√

3

2
√

3/2 0.8553

4 1 (1 + 3
√

5)/16
2 0.7681
3 0.9310

Table 5.1: Resulting tc when one only demands that Bob’s SEO are k-compatible. This is a first upper
bound for the critical noise, which can be made tighter by considering different levels of a separability
hierarchy. Notice that there is no set of 4 MUBs for qubits.

n k d = 2 d = 3

2 1 1/
√

2 (1 +
√

3)/4

3 1 1/
√

3 cos(π/18)/
√

3

2
√

2/3 0.7975

4 1 (1 + 3
√

5)/16
2 0.6959
3 0.8959

Table 5.2: Resulting tc when one demands that Bob’s SEO are k-compatible and satisfy the first level of
the separability hierarchy, corresponding to the PPT criterion. This is a stronger constraint than the one
imposed for the values in table 5.1, so the values obtained there cannot be lower than the ones presented
here.

n k d = 2 d = 3

2 1 1/
√

2 (1 +
√

3)/4

3 1 1/
√

3 cos(π/18)/
√

3

2
√

2/3 0.7393

4 1 (1 + 3
√

5)/16
2 0.6933
3 0.859

Table 5.3: Resulting tc when one demands that Bob’s SEO are k-compatible and satisfy the second level
of the separability hierarchy. This is a stronger constraint than the one imposed for the values in table 5.2,
so the values obtained there cannot be lower than the ones presented here.

By comparing these results with the actual values of η∗, we can conclude a few things. Our upper
bounds for the critical visibility are tight in trivial cases: tc and η∗ coincide for k = 1, because we are
simply checking that Bob’s SEO are compatible. If one remembers the construction of these objects,
the incompatibility of SEO implies steering, and we already know that steering only happens if the
measurement performed are incompatible. Thus, our results for these cases were to be expected, and
whenever Bob’s SEOs do not admit a joint measurement (i.e., it fails the test for k = 1) we conclude that
Alice has access to at least 2 incompatible measurements.

We can now analyze more interesting results. We see immediately that our upper bounds are not
tight, as even when considering the highest level of the separability hierarchy we were able to implement,
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n d = 2 d = 3

2 1/
√

2 (1 +
√

3)/4

3 1/
√

3 cos(π/18)/
√

3

4 - (1 + 3
√

5)/16

Table 5.4: Known values for the incompatibility robustness η∗ of MUBs [190]

in table 5.3, there is still a gap between tc and η∗. However, there is already a significant amount of noise
one can add to Alice’s measurements before our test starts performing poorly, i.e., before it does not
detect the incompatibility of Alice’s measurements. This gap can be made even smaller by considering
higher values of N , but we do not believe this would be enough to make the upper bound tight. This is
mainly because the improvement achieved by considering extensions to more copies in the DPS method
decreases at each step. As one can see, there is good improvement between results from tables 5.1 and 5.2,
and still significant improvement between those in tables 5.2 and 5.3, but taking it further would likely
only produce only a modest decrease in tc.

This means our research can still lead to prospective projects. Our method can be improved, for
instance, by investigating further the contents of section 5.2.2, where we have explicitly constructed
a (separable) k-copy joint observable for k-simulable measurement assemblages. One can investigate
whether it is possible to construct more general joint observables, such that k-compatibility of a set of
measurements, combined perhaps with another requirement, can be a stronger criterion for k-separability
than the one we provided. Ultimately, this would result in a test that can detect the k-simulability of
Alice’s measurements more effectively.

Additionally, we conjecture that the implication proven in section 5.2.2 is actually valid in both ways,
that is, if a measurement assemblage admits a separable k-copy joint observable, then it is k-simulable.
We were however unable to prove this claim. If it is indeed the case, such a result will have a big impact on
k-simulability investigations. As already discussed, there is no known SDP formulation for k-simulability
tasks, but a class of measurements could be investigated probing their k-compatibility instead.

Finally, it would be interesting to use this method to construct an inequality similar to so many others
used in quantum information, imposing an upper bound to the expected value of some operator, whose
violation would indicate, in this case, that Alice has access to at least a certain amount of incompatible
measurements.

In this chapter, we have constructed a method that can, through a series of criteria that can be
implemented with semidefinite programming, determine a lower bound to the number of incompatible
measurements that Alice can perform. To do that, Bob only needs the information he can access in his
laboratory, from which he constructs a hierarchy of SDPs that indirectly checks a necessary condition for
Alice to have at least k+ 1 incompatible measurements in her assemblage. This test can be inconclusive,
i.e., the necessary condition is satisfied and nothing can be concluded from it, but we have shown with
our analysis of MUBs that our method can achieve promising results.

89



Chapter 6

Geometry of process matrices

One of the main goals of information processing is to enhance the quality of communication between
parties, by way of increasing the amount of information that can be exchanged, reducing loss due to
noise, or perhaps cutting down on the resources employed. The efficiency one can achieve at any of these
fronts is subjected, of course, to physical limitations, but it is still unclear what is the ultimate barrier
to communication, the final limit to efficiency that one simply cannot transpose.

Protocols such as teleporting [191] or superdense coding [192] have largely contributed to the hope that
quantum information will drastically boost our communication power, and yet one might wonder if even
better protocols could be constructed. The question that lies behind such an inquiry is of foundational
relevance, as we are, in fact, questioning where the limits of a physical theory lie, and how close to this
frontier one can actually get.

To push the boundaries of quantum mechanics to its limit, it is necessary to question the foundations
upon which the theory is built. To strip it down to only the essentials, one must scrutinize the elusive
and silent assumptions that permeate the theory and investigate their necessity. This is what is done in
works such as [193], where the authors determine sets of fundamental axioms and derive corresponding
inequalities whose violation signal the incompatibility of the assumptions. It is, of course, also the
procedure behind fields such as Bell non-locality [85] or contextuality [87], from which one learns that
many “innocent” assumptions can be questioned.

In this same direction, one identifies a pre-supposed definite causal order permeating quantum me-
chanics, that is, the sneaky assumption that one can always arrange a set of events such that it it clear
which events precede the others. In [150], the authors spot this assumption and diagnose its consequences.
They introduce the formalism of process matrices, objects that describe the most general physical sce-
nario where one is not building upon a well-defined causal structure, and more general scenarios can be
constructed. The result is a construction where one can go beyond the formulation of usual quantum
mechanics, while still in the realm of a physical theory.

Of particular interest to our project, the notion of signaling is deeply connected to the type of causal
order that a scenario admits. Roughly speaking, the ability to signal is the possibility of sending infor-
mation through some channel, and scenarios that admit less orthodox causal structures also allow for
broader possibilities when it comes to signaling.

In this on-going project, we explore the limits that are imposed on information exchange in this
broader framework. With the aid of the newly-developed resource theory of causal connection [194],
we explore the validity of processes in this extended scenario and their relation to physical constraints
imposed on signaling. Though new possibilities for signaling are accessible in scenarios without a definite
causal order, it is to be expected that even in such situation there must be limits to how much signaling
is allowed. We show a preliminary numerical analysis of how one can “tweak” the amount of signaling
permitted before rendering the process invalid, and try to sketch a picture of the geometry of the space
of process matrices.

In the following section we introduce some already established concepts, namely the process matrix
formalism itself and a selection of notions drawn from the resource theory of causality. Then, we present
some preliminary results that point in the direction of a fundamental relation between signaling and the
validity of a physical process. Finally, we outline the future of our research, the goals we want to achieve
and the expected relevance of this project.
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6.1 Preliminary concepts

6.1.1 Process matrices

We will briefly present the main results from [150], where the authors derive causal inequalities and
provide examples of processes that violate them. Using the framework of process matrices, one can
investigate situations where all that is assumed is the validity of quantum mechanics on a local level, but
no further restriction is imposed when it comes to the scenario as a whole.

Consider the following task, dubbed the “OCB game”, after Oreshkov, Costa and Brukner. Alice and
Bob share a physical system, with which they can interact on their respective laboratories, separated from
each other. Each of them receives a classical binary input, such as the result of a coin toss, a for Alice
and b for Bob. Additionally, Bob receives an extra input b′ = {0, 1} that defines the task of the duo: if
b′ = 0 Alice must guess Bob’s input b, and if b′ = 1 Bob must guess Alice’s input a. Upon receiving their
share of the physical system, Alice and Bob can perform operations on it, and their closed laboratories
will be opened just once, either to send the system out or to receive the system sent by the colleague.

Notice how there is a restriction to the signaling between the parties. Indeed, if Alice manages to
send her system to Bob (and signal to him), then Bob cannot signal to Alice since the labs only open
once. Consequently, effects on the probability of correctly guessing each other’s inputs will appear. Let us
denote x, y the guesses produced by Alice and Bob, respectively, and assume that these guesses are made
regardless of which of the two tasks is being performed. Then, by also assuming a, b, b′ are uniformly
distributed, the probability of successfully completing the task is expressed as follows

POCB =
1

2
[p(x = b|b′ = 0) + p(y = a|b′ = 1)], (6.1)

where p(x = b|b′ = 0) is the probability of Alice guessing Bob’s input correctly (that is, producing a guess
x that matches his input b), given that this is the task that was randomly picked (b′ = 0), and similarly
for p(y = a|b′ = 1).

The goal of the duo is to think of a strategy that maximizes this probability, and it is easy to see that

POCB ≤ 3

4
, (6.2)

Indeed, either Alice or Bob will not be able to signal to the other, so let us assume that Alice can signal
her input to Bob. Then, p(y = a|b′ = 1) = 1 because Bob will always guess her input correctly, but Alice
must blindly guess his input and p(x = b|b′ = 0) = 1/2. As a result, the probability of success of the
whole scenario is 3/4.

In the original paper a lengthy proof of this upper bound is formally obtained, where three assumptions
are openly made. First, it is assumed that a causal structure governs the scenario. In words, a causal
structure is a set of events equipped with a partial order determining which events precede others events,
resulting in only some directions of signaling being possible. By writing A ≺ B one denotes that event
A is preceded by event B, or that A is in the causal past of B. Second, it is assumed that the variables
a, b, b′ are random and can only be correlated to events in their causal future, a assumption often referred
to as “free will”. Finally, it is assumed that the laboratories are closed at all times, except for the single
moment they open to send or receive a system, implying that Alice’s guess x can only be correlated to
Bob’s input b if x was generated in the causal past of Bob’s system entering Alice’s lab (and vice-versa
for y and a).

In the main text, the authors however show that the upper bound for eq. (6.2) can be theoretically
violated if one describes the operation performed (locally) in the laboratories with quantum mechanics
but makes no assumptions regarding a global causal structure. Since nothing leads one to suspect the
validity of the assumptions of free will and closed laboratories, it is suggested that one cannot assume
the existence of an underlying causal structure.

To describe the most general possible scenarios that abide by local validity of quantum mechanics,
one can use the process matrix formalism. In this framework, probabilities are obtained from the Born
rule in terms of the operation that each party can perform on their physical system in the lab, as

p(a, b|x, y) = Tr[(MAIAO

a|x ⊗MBIBO

b|y )W ], (6.3)

where MAIAO

a|x ∈ HAI ⊗HAO represent Alice’s instruments, with input space HAI and output space HAO ,

and similarly for Bob and MBIBO

b|y ∈ HBI ⊗HBO , with input space HBI and output space HBO .

As showed in [195], process matrices can be defined through the following linear restrictions
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W ≥ 0, (6.4a)

Tr[W ] = dAO
dBO

, (6.4b)

BIBO
W = AOBIBO

W (6.4c)

AIAO
W = AIAOBO

W (6.4d)

W = BO
W + AO

W − AOBO
W, (6.4e)

where

AI
W =

1AI

dAI

⊗ TrAI
[W ] (6.5)

denotes the trace-and-replace operation of Alice’s input space, and similarly for the remaining spaces.
The first two constraints arise naturally from demanding the process matrix to yield a valid probability

distribution according to eq. (6.3), that is, p(a, b|x, y) are non-negative and normalized. Equation (6.4c)
ensure that the events in Alice’s lab are causally ordered and there can be no signaling from her output
space to her input space. Similarly, eq. (6.4d) has an analogous interpretation for the events in Bob’s lab.

Equation (6.4e) sets the relation between the types of signaling in process. Notice how BO
W cannot

encode any signaling from Bob to Alice, as Bob’s output space is trivial. Similarly, AO
W cannot encode

any signaling from Alice to Bob. If one wants, then, to decompose a generic process W in terms of
processes that only contain one-way signaling, one must account for the double counting of processes
where not signaling at all in encoded, since they fit both BO

W and AO
W . Thus, one must subtract the

term AOBO
W , as both Alice’s and Bob’s output spaces are trivial and no signaling takes place.

Moreover, the three last constraints can be combined into a single one as

Lv[W ] = W, (6.6)

where Lv is the projection operator

Lv[W ] = BO
W + AO

W − AOBO
W − BIBO

W + AOBIBO
W − AIAO

W + AIAOBO
W. (6.7)

Though not being an a priori assumption, a process may admit a well-defined causal order, in which
case bi-directional signaling is not allowed. Denote by WA≺B a process where Alice can signal to Bob,
and by WB≺A a process in where signaling can take place in the opposite direction. A process W is said
to be causally separable if there are t ∈ [0, 1] and WA≺B ,WB≺A such that

W = tWA≺B + (1 − t)WB≺A, (6.8)

that is, W is a convex combination of processes where only only party can signal to the other. If no
decomposition as in eq. (6.8) is admitted, then the process is non-separable, and cannot be understood
in a scenario where global causality prohibits bi-directional signaling. Such processes are the only ones
that can violate causal inequalities, such as eq. (6.2) [196].

6.1.2 Signaling robustness

Let us now present some of the concepts used in [194] to construct a resource theory of causal
connection. Following the usual steps in resource theory approaches [197, 198], the authors define free
objects and transformations, as well as a measure for their resource, and incidentally construct objects
that are useful to our research.

Let the set of valid process, that is, the set of matrices that satisfy eq. (6.4), be denoted by Wproc. A
subset of Wproc is Wsep, the set of processes that admit a decomposition in the form of eq. (6.8), while
Wcns denotes the processes that are causally non-separable.

Moreover, let WA≺B denote the processes where Alice precedes Bob, and WB≺A similarly for when
Bob precedes Alice. The restrictions imposed on these sets is that Bob cannot signal to Alice if the
process is in WA≺B , and Alice cannot signal to Bob if the process is in WB≺A. From this, two things can
be concluded. First, from the definition of a separable process in eq. (6.8), we see that Wsep is the convex
hull of the union of WA≺B and WB≺A, that is, all possible convex combinations of processes where only
one party can signal to the other. Second, one sees that the intersection of WA≺B and WB≺A defines the
processes where no signaling is allowed, neither in one direction or the other, and one denotes the set of
such processes by Wpar (for parallel processes), see figure fig. 6.1 for clarity.
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Figure 6.1: Graphical representation of the relation between the sets of causally ordered process matrices.
From eq. (6.8), we know that the convex hull of WA≺B and WB≺A is Wsep, and their intersection is Wpar.
Every process represented in this figure belongs to the set Wsep of causally separable processes. Processes
that do not admit a decomposition as in eq. (6.8) belong instead to Wcns, not represented in the figure
above. Graphic adapted from [194]

The authors of [194], then, propose using the robustness against worst-case noise as a measure of
causal connection, that is, of how much signaling there is in a given process. We have already used
similar concepts of robustness in this thesis, namely in chapter 5 for evaluating the incompatibility of a
set of measurements, and in a similar way the signaling robustness of a process W is defined as

Rs(W ) = min
T∈Wproc

{
s ≥ 0

∣∣∣∣W + sT

s+ 1
∈ Wpar

}
. (6.9)

What the definition above is measuring is the distance between W and the set of processes where no
signaling take place, by checking how much one has to convexly mix W with some other process T to
make the resulting object non-signaling. If Rs(W ) = 0, then W is itself a non-signaling process, and any
positive value for Rs(W ) is a measure of how much signaling there is in W .

Notice how this procedure is similar to adding noise into W until is becomes non-signaling, except
one also allows the optimization to consider different kinds of noise other than white (which here would
correspond to a process matrix proportional to the identity operator). Putting this task in the form of
an optimization problem yields

given W

minimize s

subject to
W + sT

s+ 1
= ρAIBI

⊗ 1AOBO

Lv[T ] = T

Tr[T ] = dAO
dBO

Tr[ρAIBI
] = 1

T ≥ 0, ρAIBI
≥ 0, s ≥ 0.

(6.10)

Let us clarify some of the constraints in this task. As shown in [194], any process WA≺B in WA≺B
should have the form WA≺B = WAIAOBI

⊗ 1BO
. Intuitively, since these are the processes where Bob

cannot signal to Alice, Bob’s action on his output space should be trivial. A similar argument follows to
show that processes where Alice cannot signal to Bob must have the form WB≺A = WAIBIBO

⊗ 1AO
.

Then, since non-signaling processes are both in WA≺B and WB≺A, one concludes that any process W par

in Wpar must have the form W par = WAIBI
⊗ 1AOBO

. It also follows from the normalization and
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positivity constraints imposed on any process that WAIBI
is a quantum state, that is, WAIBI

≥ 0 and
Tr[WAIBI

] = 1.
In summary, the optimization in eq. (6.10) charges itself with two tasks. The first is demanding the

process resulting from the mixing of W and T to be non-signaling, and the second is ensuring that T is
itself a process matrix.

It is important to notice that the problem above is not in SDP form, since one optimizes over both s and
T . However, a simple trick can be employed to circumvent this issue. Make T̃ = sT , ρ̃AIBI

= (1+s)ρAIBI
,

and substitute T̃ = ρ̃AIBI
⊗ 1AOBO

−W , and some quick algebra yields

given W

minimize Tr[ρ̃AIBI
] − 1

subject to ρ̃AIBI
⊗ 1AOBO

−W ≥ 0

ρ̃AIBI
≥ 0.

(6.11)

The authors in [194] also find the dual formulation of this SDP

given W

minimize Tr[WS] − 1

subject to 1AIBI
− TrAOBO

[S] ≥ 0

S ≥ 0.

(6.12)

In fact, it is further argued that the first constraint of the dual SDP can be substituted by an equality
constraint without loss of generality. Indeed, for any optimal S (that is, S maximizes the objective
function and satisfies the constraints), one can define

S′ = S +D ⊗ 1AOBO

dAO
dBO

, (6.13)

where

D = 1AIBI
− TrAOBO

[S] ≥ 0. (6.14)

S′ clearly is also a feasible point, and one can see that Tr[WS′] ≥ Tr[WS], so it is also optimal.
The final result in [194] that is relevant to our work is the upper bound on Rs(W ) that the authors

find, that is, the maximum amount of signaling that a process can have. In the text of the paper, it is
shown that

Rs(W ) ≤ d2O − 1, dO := max(dAO
dBO

). (6.15)

This bound is saturated by processes such as

Wsat =
1

dAI

ρAI
⊗ Φ+

AOBI
⊗ 1BO

, (6.16)

where Φ+ =
∑
ij |ii⟩⟨jj| is the Choi matrix of the identity channel. Such causally ordered processes can

be interpreted as Alice preparing an initial state in her lab, sending it to Bob through a perfect channel,
and Bob discarding his output.

We can finally move on to the findings we have achieved in our research.

6.2 Geometry of process matrices

In the following section we will present our unfinished work where we investigate what kind of physical
restrictions are imposed on the amount of signaling a process allows. We come up with models that
describe specific classes of process matrices, given in terms of parameter that can be associated to the
amount of signaling that the process encodes. The goal is to explore the possibilities that employing the
broader framework of process matrices brings, and we show that scenarios governed by standard causality
structures yield an upper bound for the amount of signaling that can be overcome with processes that do
not admit a global causal order. Employing other signaling measures inspired by Rs, we draw relations
between the distance of any process to the subsets WA≺B ,WB≺A,Wpar, contributing to a geometrical
interpretation of the whole set Wproc

To explore our results, let us first dive a bit deeper into the process matrix formalism.
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6.2.1 Decompositions of process matrices

In order to say anything about generic processes, it would be interesting to find a universal model of
these objects, capable of parameterizing all possible processes, upon which one could impose restrictions
and study its effects. If approached at this level of generality, this task is quite overwhelming, as too
many parameters and non-linear constraints arise. Instead, one can investigate a subset of all possible
processes, employing models that simplify the problem and render them somewhat more tractable.

This choice for a model may be well-motivated but it is in general far from simple, and studying good
models can improve our understanding of what a valid process is, as well as its relation to signaling. Take
for instance the decomposition induced by the restrictions that define what a process matrix is, which
we re-write here for clarity. From eq. (6.4), we have

W = BO
W + AO

W − AOBO
W. (6.17)

These individual terms can be shown to be process matrices themselves, that is, if W is a valid process
then so are BO

W,AO
W,AOBO

W . One can, then, analyze the physical properties of each of these terms
and extrapolate them to W . In BO

W , Bob’s output space is trivial, meaning there is no signaling from
Bob to Alice, and vice-versa for AO

W , while AOBO
W , in turn, is a non-signaling process.

Given a matrix W , one can easily determine whether or not it corresponds to a valid process, it
suffices to check for positivity and the correct normalization, as well as ensuring that Lv[W ] = W . Then,
one can apply the suitable trace-and-replace operations to obtain the terms in eq. (6.17), which contain
information about the signaling in the process.

However, building a valid process matrix starting from a given decomposition is a much harder task.
Take valid BO

W,AO
W,AOBO

W , and combining them according to eq. (6.17) does not necessarily yield a
W that obeys all the restrictions in eq. (6.4). This shows that a process matrix is a complex object, and
not any scenario is physically possible.

To explore the restrictions that are imposed on valid processes, we investigate some specific models.
Take dAI

= dAO
= dBI

= dBO
= 2 and let BO

W,AO
W,AOBO

W assume the form

BO
Wp =

1AIBO

2
⊗
[
pΦ+

AOBI
+ (1 − p)

1AOBI

2

]
,

AO
Wq =

1AOBI

2
⊗
[
qΦ+

AIBO
+ (1 − q)

1AIBO

2

]
,

AOBO
W =

1AIAOBIBO

4
.

(6.18)

These are not the most general form that these terms can assume, but they are enough to model a
great range of processes by tweaking the parameters p, q ∈ [0, 1].

Recall that BO
W is interpreted as an object that encodes the signaling from Alice to Bob. In the

model above, this term describes a process where Alice has a one-way imperfect channel to Bob, subject
to noise parameterized by p. For p = 1 she can perfectly signal to Bob using an identity channel, while
for p = 0 the resulting channel is trivial. Thus, p is a quantifier for the signaling that happens from Alice
to Bob. A similar reasoning can be followed to conclude that q quantifies the signaling from Bob to Alice.

One may now wonder what values of p, q will yield BO
Wp and AO

Wq that, when combined according
to eq. (6.17), result in a matrix that satisfies the necessary restrictions in eq. (6.4), that is, that result is
a valid process. In a sense, what is being asked is how much signaling can one allow in either direction
before the resulting process is no longer physical.

This kind of question can, fortunately, be answered with SDPs. One constructs W resulting from this
modeling of BO

Wp,AO
Wq,AOBO

W in terms of p, q and looks for the maximum values that the parameters
can assume while W still satisfy eq. (6.4). The result is not surprising, as we get that valid processes are
generated whenever

p+ q ≤ 1. (6.19)

Notice how any process described by this model is inevitably causally separable, as it is simply a
combination of two one-way noisy channels. This result, then, reinforces the intuition that these mundane
processes do not showcase any extraordinary relation between the signaling from Alice to Bob and from
Bob to Alice. Both p and q are upper bounded by 1, which is interpreted as an upper bound for one-way
signaling, and this same upper bound is shared by their sum, such that there is a trade-off to how much
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signaling each party is allowed: Alice and Bob cannot surpass the upper bound of 1 to the total amount
of signaling in the whole process.

But what about processes that do not admit a decomposition such as eq. (6.8), that is, processes that
are causally non-separable? These processes may violate causal inequalities and correspond to protocols
where advantages in communication can be achieved, so it would be reasonable to expect that somehow
signaling can be enhanced is such scenarios.

Looking back at the protocol explored in section 6.1.1, where two parties try to guess each other’s
input, it is known from [150] that the following process matrix surpasses the success probability of
Psuc = 3/4 and violates a causal inequality

WOCB =
1

4

[
1AIAOBIBO

+
1√
2

(1AI
⊗ ZAO

⊗ ZBI
⊗ 1BO

+ ZAI
⊗ 1AO

⊗XBI
⊗ ZBO

)

]
, (6.20)

where X,Z are the Pauli operators in the x and z-directions, respectively. One can take inspiration
from this process to construct yet another model for a class of process matrices, now defined in terms of
parameters p, q and a decomposition given by

BO
Wp =

1

4
1AIAOBIBO

+
p

4
1AI

⊗ ZAO
⊗ ZBI

⊗ 1BO
,

AO
Wq =

1

4
1AIAOBIBO

+
q

4
ZAI

⊗ 1AO
⊗XBI

⊗ ZBO
,

AOBO
W =

1AIAOBIBO

4
.

(6.21)

The model above, just like the previous one, is quantifying the signaling from Alice to Bob through p
and the signaling from Bob to Alice through q. In BO

Wp, the lower p is the closer this term corresponds
to the trivial channel, and similarly for AO

Wq and q. It is easy to realize how this model describes
processes that are completely different from the previous one. Furthermore, one can easily see that
setting p = q = 1/

√
2 recovers WOCB .

If one takes BO
Wp,AO

Wq,AOBO
W in the form above and construct a matrix using eq. (6.17), one can

once again use an SDP to check which values of p and q will yield valid processes. Surprisingly enough,
the restriction that the parameter must abide is now

p2 + q2 ≤ 1. (6.22)

It is important to highlight how qualitatively different this restriction is from the one imposed on
eq. (6.19), since here Alice and Bob can, together, overcome the boundary of total signaling, coded by
the sum p + q, amounting to 1. Indeed, just like before, the maximum value for signaling achieved by
employing only one-way signaling is still p = 1 or q = 1, meaning either Alice or Bob having access to a
perfect channel with which one of them can signal to the other. However, unlike in eq. (6.19), there is
still room for more signaling in the other direction. In other words, it is suggested that, for processes that
can be modeled as in eq. (6.21), it is possible to have more overall signaling than in processes described
by eq. (6.18), a feat mathematically expressed by the possibility of p+ q > 1.

Quite intuitively, this difference on the nature of the restriction that is imposed on signaling in
eqs. (6.18) and (6.21) is not the only thing that set these two models apart. In fact, while eq. (6.18)
described a class of causally separable processes (that is, processes that belong to Wsep), the processes
modeled by eq. (6.21) do not admit the decomposition into a convex mixture of causally ordered processes
in eq. (6.8), and are thus causally non-separable (and belong to Wcns). It is reasonable to expect processes
in Wcsn to be able to encode more signaling than those in Wsep, as these processes can violate causal
inequalities which often correspond to advantages in communication tasks.

6.2.2 Different measures of signaling

Inspired by these numerical preliminary results suggesting a strong connection between the amount
of signaling a process can encode and the nature of the causality structure that it requires, we have
conducted more careful analyses, now using a proper measure for different classes of signaling.

In the same spirit of Rs, a measure for signaling obtained by evaluating the distance of a given process
to the set Wpar of non-signaling processes, one can define different measures for other kinds of signaling.
Following the steps laid out in in [194], one can analogously construct a measure for one-way signaling,
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for instance, from Alice to Bob. This can be done by evaluating the distance of a process to the set
WA≺B of processes where Alice’s operations precede Bob’s, and thus Bob cannot signal to Alice.

The quantity that results from this analysis measures how much signaling in only a given direction is
encoded in a process. Like Rs, this new object is a robustness measure against worst-case scenario noise,
defined analogously as

RA≺B(W ) = min
T∈Wproc

{
s ≥ 0

∣∣∣∣W + sT

s+ 1
∈ WA≺B

}
. (6.23)

Recall that, as argued in [194], any process in WA≺B must have a trivial output space for Bob, since he
cannot signal to Alice by definition. Consequently, RA≺B can also be cast as an optimization task

given W

minimize s

subject to
W + sT

s+ 1
= ΩA≺B

AIAOBI
⊗ 1BO

Lv[T ] = T

Tr[T ] = dAO
dBO

Tr[ΩA≺B
AIAOBI

] = dAO

T ≥ 0, ΩAIAOBI
≥ 0, s ≥ 0.

(6.24)

To make this optimization suitable to an SDP formulation, we make the substitutions

Ω̃A≺B
AIAOBI

= (1 + s)ΩA≺B
AIAOBI

T̃ = Ts

T̃ = Ω̃A≺B
AIAOBI

⊗ 1BO
−W

(6.25)

which finally yield the SDP

given W

minimize
Tr[Ω̃A≺B

AIAOBI
]

2
− 1

subject to Ω̃A≺B
AIAOBI

⊗ 1BO
−W ≥ 0

Ω̃A≺B
AIAOBI

≥ 0.

(6.26)

A lengthy but straightforward evaluation of the Lagrangian of the problem above yields its dual
formulation

given W

minimize
Tr[WS]

dAO

− 1

subject to 1AIAOBI
− TrBO

[S] ≥ 0

S ≥ 0.

(6.27)

What have done so far was to construct a measure for a specific kind of signaling encoded in a process:
the signaling that can occur from Alice to Bob. By evaluating the distance between a process matrix W
and WA≺B , RA≺B(W ) imposes restrictions on the geometry of the set of process matrices. As shown
in [194], we know that Rs(W ) is limited by the upper bound in eq. (6.15), and we now follow the same
steps to show that a similar upper bound is imposed on RA≺B(W )

RA≺B(W ) ≤ d2O − 1, dO := max(dAO
dBO

). (6.28)

The details of the calculation can be found in appendix G
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Given the intrinsic symmetry between the sets WA≺B and WB≺A, as one is constituted by the pro-
cesses where Bob cannot signal to Alice while the other consists of processes where Alice cannot signal to
Bob, whatever results we have reached for RA≺B can be easily carried over to RB≺A by simply swapping
Alice’s spaces with those of Bob, so we can also conclude that

RB≺A(W ) ≤ d2O − 1. (6.29)

These bounds are tight, and are saturated by processes that encode a perfect one-way channel, as the
example provided in appendix G.

We can now analyze how these three measures for different kinds of signaling are interconnected.

6.2.3 Relation between the different robustness measures

It is fruitful to notice how the upper bounds for Rs, RA≺B and RB≺A are consistent with each other.
Indeed, the fact that the upper bound for Rs is not higher than those of RA≺B and RB≺A was to be
expected, since Rs measures the distance to Wpar, which is, in turn, a subset of WA≺B and WA≺B .

Though distinct concepts, one can clearly see, then, that these robustness measures are not completely
independent, and whatever relationship there is between them helps constructing a geometrical structure
of the set of process matrices. Though each of these measures is upper-bounded by the same limit, there
must surely be a trade-off when all three of them are considered, and a single process cannot saturate all
of these bounds.

If one want to go further and investigate the nature of the signaling encoded in a process, it is necessary
to come up with a quantifier that combines the notions provided by Rs, RA≺B and RB≺A, that would,
in turn, reflect a physical restriction of overall signaling that every process should obey.

In the next section, we introduce numerical results that have to be taken in consideration when looking
for a physical restriction on the amount of signaling a process can encode.

6.3 Results and discussion

Let us start by defining some models that describe different classes of process matrices, with distinct
physical properties. After that is done, we can evaluate the different values of signaling robustness that
associated to these processes, and evaluate their joint behavior to try to comprehend what is the relation
that they are obeying.

We already have two models available. The first one, in eq. (6.18), describes a class of separable
process matrices, in terms of parameters p, q, constructed with a convex mixture of two perfect one-way
signaling channels. We will dub the processes yielded by this model WΦ+(p, q). Similarly, the second
model we already have at hand is the one in eq. (6.21), obtained as a generalization of WOCB . We dub
the processes described by it in terms of p, q as WOCB(p, q).

Some other models can be introduced. Let

WGYNI(p, q) =
1

4

(
1
⊗4 + pZZZ1 + q Z1XX

)
, (6.30)

once again with p, q ∈ [0, 1]. For the sake of keeping the expression above clean, we have dropped the
tensor product ⊗ between the operators, so ZZZ1 should be understood as ZAI

⊗ ZAO
⊗ ZBI

⊗ 1BO
,

and so on.
This model is inspired by a process defined in [196], which violates a causal inequality derived from

a communication task called “guess you neighbor’s input”, and the original process is recovered for
p = q = 1/

√
2.

Finally, we introduce a particular process

Wmax =
1

4
(1 + a0Z1Z1− a1(Z111 + 11Z1) − a2(Z11Z + 1ZZ1)

+a3(Z1ZZ + ZZZ1) + a4(Z1XX − Z1Y Y +XXZ1− Y Y Z1)) ,
(6.31)

with a0 = 0.2744, a1 = 0.2178, a2 = 0.3628, a3 = 0.3114 and a4 = 0.2097. Here, we have also dropped the
tensor product between operators.

98



This process was introduced in [196], where it was found to be the one that maximally violates
the causal inequality obtained from the OCB game, described in section 6.1.1, a causally non-separable
process.

We have also analyzed the robustness measures for signaling in a batch of 10.000 process matrices
that we sampled1. We restricted ourselves to processes that, like WΦ+ , WOCB and WGYNI , have AOBO

W
being the identity.

The following table summarizes our results, obtained numerically by running several SDPs to evaluate
the different signaling robustness measures.

W Rs RA≺B RB≺A

WΦ+(p, q) 3 3q 3p
WOCB(p, q),WGYNI(p, q) 1 q p

Wmax 1.1588 0.5794 0.5794
W1

random < 1.2 < 0.8 < 0.8

Table 6.1: Table showing the robustness of different classes of process matrices.

Some things can be noted from this table, not all of them being intuitive. First of all, even though non-
separable processes like WOCB(p, q),WGYNI(p, q) were expected to encode more signaling than separable
processes such as WΦ+(p, q), the robustness of these processes was lower for all three kinds of signaling.
Second, Wmax produces a larger violation of the OCB inequality than WOCB(p, q) for any value of p, q,
and yet it is less robust according to RA≺B or RA≺B for a range of values for p, q. More surprising still,
the robustness of Wmax is surpassed even by random process matrices.

One can, however, see from the models of WΦ+(p, q), WOCB(p, q) and WGYNI(p, q) that, indeed,
there is an interplay between the different types of robustness, and a trade-off must be obeyed (here
made explicit by the fact that p and q in all of these models are not independent of each other).

These counter-intuitive behavior of robustness in these processes makes it hard to devise what is the
rule determining how much signaling a process can encode, which would in turn reveal more about the
geometry of the set of processes. A lengthy discussion is still needed in order to define what would even
be a good measure for overall signaling.

The future of this project is still open, but we have many fronts to tackle. Our main goal is to find a
relation between Rs, RA≺B and RB≺A that is being obeyed, from which we could learn much about the
nature of signaling in any process. To do that, some preliminary steps can be traced.

It would be great to obtain analytical results to extrapolate our numerical results. As Rs, RA≺B and
RB≺A are obtained from an SDP, this task goes through finding good guesses for optimal solutions and
comparing them to the dual formulation of these problems. This is not an easy task, specially for the
general case that we want to build.

It would also be interesting to find what is the process that encodes the most signaling. One could
then compare it to the process that produces the maximal violation of causal inequalities, which is also
unknown. This process would be the most resourceful process in terms of signaling, and could be explored
in communication tasks with maximum advantage, perhaps.

Finally, it is known from [194] that the bound for Rs is saturated by processes of the form Wsat, but
it is not known if this is the only process to achieve the bound. Given that Wsat is a causally separable,
we wonder if no process that is not causally ordered can also saturate it.

So far, a main lesson we have learned from these analysis is that the interplay between different kinds
of signaling is a complex one, and a good candidate for a measure of overall signaling must take these
subtleties into account. Once this quantity has been established, it will be easier to identify what is the
physical restriction on signaling that is being obeyed by all processes.

1This sampling process was not random, as there is no random measure for the set of process matrices, but we followed
a procedure of randomly sampling unitary matrices and projecting them onto the space of processes with Lv . We then still
had to check that the resulting matrix was still positive.
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Concluding remarks

A famous quote, widely attributed to Richard Feynman, states that “if you think you understand
quantum mechanics, you don’t understand quantum mechanics” (similar quotes are attributed to Niels
Bohr, John Wheeler, and surely many others outside my knowledge). Perhaps I can add to this piece of
wisdom that, in fact, the more you learn about quantum mechanics the less you understand it, as this
has been my own personal experience.

I say this in the most favorable way possible. The role of science in society is to provide an objective
and reliable method to investigate phenomena, but, just like art, I believe science is a precious matter
on its own. Beyond its usefulness, science has the power (and I dare say, duty) to instigate our minds
and push the boundaries of human knowledge. What better medium to cultivate curiosity than a field
populated by counter-intuitive phenomena, inaccessible regions and overall utter beauty?

Through the last four years, I have let myself be guided by this spark and actively sought “not
understanding”. “Not undertanding” is not a bad thing, in fact “not understanding” is a great place
to be. It means the possibilities are endless, and once one embraces the uncomfortable realization that
maybe some things simply cannot be known, one can focus on the next step: determining what can be
understood and what must remain a mystery.

I believe the quantum-to-classical transition can, indeed, be understood. The disparities between the
behavior of systems on quantum and classical regimes are undeniable, but I do not see why they could
not be bridged by a neat theory. Though there are many different aspects of the transition that need to
be explained, I believe our works in part I are modest, yet valuable, contributions to this goal. In both
chapters 1 and 2, the main point we make is that, in order to overcome the gap between microscopic
and effective descriptions of a system, one must adopt realistic, physically motivated characterization of
the scenario. We do so by employing coarse-graining maps, including imprecision into the measurements
that model our limited access to information in the lab.

However, other areas of foundations of quantum mechanics will remain an enigma, and trying to
“solve” non-locality, contextuality or steering by making it somehow fit our classical intuition is, in my
opinion, a petty goal. Yet in part II, we are pushing the boundaries of what can be known in such
counter-intuitive scenarios. In chapter 4, we address the issue of characterizing the set of d-quantum
behaviors, by providing criteria for a behavior to admit a d-dimensional quantum realization. There,
we also show how to evaluate contextuality inequalities when, similarly, we impose restrictions on the
dimension of the physical system, proposing SDP implementations of the optimizations tasks that arise
from both these queries. In chapter 5, we also devised criteria to ascertain that, in a one-side-device-
independent approach to a bipartite steering scenario, Alice must have access to at least a given amount
of incompatible measurements. In chapter 6, we explore how signaling determines what processes (in
particular, those without causal order) are physical and how this resource shapes the geometry of the set
of process matrices.

If you made it this far, I hope my work can be of some use to you. I would also be very satisfied if
my work is completely useless for any practical reason but inspires a good conversation among colleagues
with a moderate amount of alcohol nearby. I am always available to discussions.

I am happy that for every question I answered in this thesis, a couple new questions emerged. Most
of these will certainly be answered in the future, either by me or by colleague scientists, but I wonder
which will remain unanswered. As Tim Hickson put in an essay not at all related to quantum mechanics,
“when we wonder about these questions, there’s something left in that gap - wonder”.
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[147] László Lovász. On the shannon capacity of a graph. IEEE Transactions on Information theory,
25(1):1–7, 1979.
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Appendix A

Proof of the entropic uncertainty
relation in eq. (1.10)

In this appendix, we provide a proof for the entropic uncertainty relation we are going go use through-
out our work, namely

H(A|ψ) +H(B|ψ) ≥ −2 log max
j,k

|⟨aj |bk⟩ |, (A.1)

where H(A|ψ) is the Shannon entropy of measuring an observable A with eigenvectors {aj} on a state ψ.
Let us start by simply writing out the explicit expression for the l.h.s. of this inequality. For a system

of dimension N , it reads

H(A|ψ) +H(B|ψ) = −
N∑
j=1

|⟨ψ|aj⟩ |2 log|⟨ψ|aj⟩ |2−
N∑
k=1

|⟨ψ|bk⟩ |2 log|⟨ψ|bk⟩ |2

=
∑
j,k

|⟨ψ|aj⟩ |2|⟨ψ|bk⟩ |2 (− log|⟨ψ|aj⟩ |2− log|⟨ψ|bk⟩ |2).

(A.2)

Here, we have used the fact that
∑
j |⟨ψ|aj⟩ |2= 1, and similarly for |bk⟩. Since we want to achieve a

state independent relation, we will minimize the r.h.s. of the expression above. As argued in [35], the
symmetries in this expression between the eigenvectors of A and B ensure that the maximum value that
the term in parenthesis can achieve will be given for a state state lying midway between |aj⟩ and |bk⟩,
which we will call |ϕjk⟩. Following their calculations, to find the explicit form of this state one must
evaluate the expression

δ

δ |ϕjk⟩
(
− log|⟨ϕij |aj⟩ |2− log|⟨ϕij |bk⟩ |2+κ ⟨ϕjk|ϕjk⟩

)
= 0, (A.3)

where κ is a Lagrange multiplier. This means |ϕjk⟩ must obey

|ϕjk⟩ =
1

κ

(
|aj⟩

⟨ϕjk|aj⟩
+

|bk⟩
⟨ϕjk|bj⟩

)
=

1

2

(
|aj⟩

⟨ϕjk|aj⟩
+

|bk⟩
⟨ϕjk|bj⟩

)
, (A.4)

and we set κ = 2 such that the state is normalized. To solve this equation, we multiply it by ⟨aj |. For
simplicity, we identify a = ⟨ϕjk|aj⟩ and b = ⟨ϕjk|bk⟩, such that

⟨aj |ϕjk⟩ =
1

2

(
1

⟨ϕjk|aj⟩
+

⟨aj |bk⟩
⟨ϕjk|bk⟩

)
,

a∗ =
1

2

(
1

a
+

⟨aj |bk⟩
b

)
.

(A.5)

Following a similar calculation for |bk⟩, we arrive at
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|a|2=
1

2

(
1 +

a ⟨aj |bk⟩
b

)
, |b|2=

1

2

(
1 +

b ⟨bk|aj⟩
a

)
. (A.6)

Notice that
a ⟨aj |bk⟩

b
must be real, since |a|2 is also real, and the same goes for

b ⟨bk|aj⟩
a

. Because of

that, combining these two equations we get

|a|2

|b|2
− 1 =

a

b
⟨aj |bk⟩ −

a∗

b∗
⟨aj |bk⟩∗ = 0, (A.7)

meaning |a|= |b|. Using this result in eq. (A.6), one gets

|a|2= |⟨ϕjk|aj⟩ |2=
1

2
(1 + ⟨aj |bk⟩), (A.8)

which means |ϕjk⟩ must be

|ϕjk⟩ =
1√

2(1 + |⟨aj |bk⟩ |)

(
|aj⟩ + e−i arg⟨aj |bk⟩ |bk⟩

)
. (A.9)

Now that we have an expression for the state that maximizes the term in parenthesis in eq. (A.2), we
can simply plug it back to find the inequality

H(A|ψ) +H(B|ψ) ≥ −
∑
j,k

|⟨ψ|aj⟩ |2|⟨ψ|bk⟩ |2 (log|⟨ϕjk|aj⟩ |2log|⟨ϕjk|bk⟩ |2)

= −2
∑
j,k

|⟨ψ|aj⟩ |2|⟨ψ|bk⟩ |2 log
1

2
(1 + |⟨aj |bk⟩ |)

= 2
∑
j,k

|⟨ψ|aj⟩ |2|⟨ψ|bk⟩ |2 log
2

(1 + |⟨aj |bk⟩ |)
.

(A.10)

The r.h.s. of this inequality sets a lower bound to the l.h.s. Thus, the inequality will still be valid if we
take the highest possible value for |⟨aj |bk⟩ |, by substituting it for maxjk{|⟨aj |bk⟩ |}. Then, by summing
over j, k one arrives at the inequality obtained in [40],

H(A|ψ) +H(B|ψ) ≥ 2 log
2

1 + maxjk{|⟨aj |bk⟩ |}
. (A.11)

It was then conjectured in [43] and finally proven in [44] that this inequality could be further improved
to the final form of eq. (A.1), in a direct application of Riesz theorem [199]:

Theorem (Riesz Theorem). Let x = {x1, . . . , xN} be a string of complex numbers and T a matrix with
elements Tjk, so that (Tx)j =

∑
k Tjkxk and

∑
j |(Tx)j |2=

∑
k|xk|2 ∀x, then

c1/a
′

∑
j

|(Tx)j |a
′

1/a′

≤ c1/a

(∑
k

|xk|a
)1/a

, (A.12)

where c = maxjk|Tjk|, for 1 ≤ a ≤ 2 and 1/a+ 1/a′ = 1.

To apply this theorem, we start by associating xk = ⟨ak|ψ⟩ and Tjk = ⟨bj |ak⟩. Consequently,

(Tx)j =
∑
k

⟨bj |ak⟩ ⟨ak|ψ⟩ = ⟨bj |ψ⟩ . (A.13)

We then make a change of variables a = 2(1 + r) and a′ = 2(1 + s). With this, we can rearrange the
inequality above to read∑

j

|⟨bj |ψ⟩ |2(1+s)
1/2(1+s)(∑

k

|⟨ak|ψ⟩ |2(1+r)
)−1/2(1+r)

≤ c
s−r

2(1+r)(1+s) . (A.14)

To simplify the process, we can identify Pj = |⟨bj |ψ⟩ |2 and Qk = |⟨ak|ψ⟩ |2 with probability distribu-
tions. Moreover, the relation between a and a′ implies
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r = − s

2s+ 1
, (A.15)

such that the power on the r.h.s. of the inequality (A.14) can be simplified to

s− r

2(1 + r)(1 + s)
=

s

s+ 1
. (A.16)

Now we can update (A.14) to∑
j

P
(1+s)
j

1/2(1+s)(∑
k

Q
(1+r)
k

)−1/2(1+r)

≤ cs/(s+1). (A.17)

Now, we make one final substitution of Πs =
(∑

j P
(1+s)
j

)1/s
and Θr =

(∑
kQ

(1+r)
k

)1/r
, so

Πs/2(s+1)
s Θ−r/2(r+1)

r ≤ cs/(s+1). (A.18)

Recalling that r = − s

2s+ 1
,

Πs/2(s+1)
s Θs/2(s+1)

r ≤ cs/(s+1)

ΠsΘr ≤ c2.
(A.19)

Let us plug the values of Πs and Θr back in, and take the logarithm on both sides.

1

s
log
∑
j

P 1+s
j +

1

r

∑
k

Q1+r
k ≤ 2 log c. (A.20)

Relabel s′ = 1 + s and r′ = 1 + r to get

− 1

1 − s′
log
∑
j

P s
′

j − 1

1 − r′

∑
k

Qr
′

k ≤ 2 log c. (A.21)

The r.h.s. of this inequality is simply the sum of Renyi entropies, and we can recover the Shannon
entropy of probability distributions P and Q by taking the limit s′ → 1 and r′ → 1. Since Pj = |⟨bj |ψ⟩ |2
and Qk = |⟨ak|ψ⟩ |2, we finally arrive at the final form of the entropic uncertainty relation

H(A|ψ) +H(B|ψ) ≥ −2 log c, (A.22)

where we recall that c = maxjk{|⟨aj |bk⟩ |}.
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Appendix B

Calculation leading to eqs. (1.13)
and (1.17)

In this appendix we show the calculations that yield the probability distributions necessary to obtain
the Shannon entropy of measuring ZN and Z̃N on a spin coherent state.

To obtain these probabilities, is is useful to first get the explicit expression for the density matrix of
a spin-coherent state. Recall that for N particles these states are defined as

|ΨN ⟩ = |Ψ1⟩⊗N , (B.1)

where |Ψ1⟩ =
√
p |0⟩ + eiϕ

√
1 − p |1⟩, parameterized by p ∈ [0, 1] and ϕ ∈ [0, 2π[. So,

|ΨN ⟩⟨ΨN | =
(

(
√
p |0⟩ +

√
1 − peiϕ |1⟩) . . . (√p |0⟩ +

√
1 − peiϕ |1⟩)

)
︸ ︷︷ ︸

N times

×(c.c.),
(B.2)

where c.c. denotes the complex conjugate of the first term. Notice that there will be a pattern to the
coefficient multiplying each term of this product.

For instance, the coefficient to the term |0 . . . 0⟩⟨0 . . . 0|, the state with no spin-down particles, is
clearly pN . Now considering the state |0 . . . 01⟩⟨0 . . . 01| (or any state with a single spin-down particle),
one can see that the corresponding coefficient is pN−1(1− p). We can follow the same line of thought for
every possible spin configuration and conclude that

|ΨN ⟩⟨ΨN | = pN (|0 . . . 0⟩⟨0 . . . 0|)︸ ︷︷ ︸
1 state with 0 spin-down particles

+ pN−1(1 − p) (|0 . . . 01⟩⟨0 . . . 01|) + (|0 . . . 10⟩⟨0 . . . 10|) + . . . (|10 . . . 0⟩⟨10 . . . 0|)︸ ︷︷ ︸
N states with 1 spin-down particles

+ . . .

+ p(1 − p)N−1 (|1 . . . 10⟩⟨1 . . . 10|) + (|1 . . . 01⟩⟨1 . . . 01|) + . . . (|01 . . . 1⟩⟨01 . . . 1|)︸ ︷︷ ︸
N states with N-1 spin-down particles

+ (p− 1)N (|1 . . . 1⟩⟨1 . . . 1|)︸ ︷︷ ︸
1 state with N spin-down particles

.

(B.3)

In general, the term corresponding k spin-down particles will have the coefficient pN−k(1−p)k multiplying
its
(
N
k

)
states.

To obtain eq. (1.13), we must also define the POVM elements associated to each possible outcome of
ZN . This measurement in fact has access to the complete spin configuration of a N -particle state, so it
has N2 possible outcomes. We have labeled by sz = 1, . . . , 2N , so the POVM elements ZszN are
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Z1
N = |0 . . . 0⟩⟨0 . . . 0| ,

Z2
N = |0 . . . 1⟩⟨0 . . . 1| ,

Z3
N = |0 . . . 10⟩⟨0 . . . 10| ,
. . .

Z2N−1
N = |1 . . . 10⟩⟨1 . . . 10| ,

Z2N

N = |1 . . . 1⟩⟨1 . . . 1| .

(B.4)

Now, it is easy to see that Pr(sz|ΨN ) will be the same for every outcome with the same total magne-
tization, regardless of the individual spin configuration it refers to. Indeed, in terms of the number k of
spin-down particles, it reads

Pr(k|ΨN ) = pN−k(1 − p)k. (B.5)

As already discussed,
(
N
k

)
outcomes will have this same probability associated to it. Plugging these

results in the definition of the Shannon entropy, one gets eq. (1.13). One can go further and notice that
eq. (1.13) can be expanded as

H(ZN |ΨN ) = −
N∑
k=1

(
N

k

)
pk(1 − p)N−k log pk(1 − p)N−k (B.6)

= −
N∑
k=1

(
N

k

)
pk(1 − p)N−kk︸ ︷︷ ︸
Np

log p

−
N∑
k=1

(
N

k

)
pk(1 − p)N−k

︸ ︷︷ ︸
1

N log(1 − p) (B.7)

+

N∑
k=1

(
N

k

)
pk(1 − p)N−kk︸ ︷︷ ︸
Np

log(1 − p)

=N (−p log p− (1 − p) log(1 − p)) (B.8)

=Nh(p), (B.9)

which is precisely eq. (1.15), where h(p) = −p log p− (1− p) log(1− p) is Shannon’s binary entropy for p.
To obtain eq. (1.17), half of the path has already been traced and we must simply define the POVM

elements of Z̃N . We recall that these observables explore the inherent degeneracy of the measurement,
being simply the projectors onto subspaces of same total magnetization. Thus, its N+1 POVM elements
ZkN can be labeled by the number k = 0, 1, . . . , N of spin-down particles to yield

Z̃0
N = |00 . . . 00⟩⟨00 . . . 00| ,

Z̃1
N = |00 . . . 01⟩⟨00 . . . 01| + |00 . . . 10⟩⟨00 . . . 10| + · · · + |10 . . . 00⟩⟨10 . . . 00| ,
. . .

Z̃N−1
N = |11 . . . 10⟩⟨11 . . . 10| + |11 . . . 01⟩⟨11 . . . 01| + · · · + |01 . . . 1⟩⟨01 . . . 11| ,
Z̃NN = |1 . . . 1⟩⟨1 . . . 1| .

(B.10)

If we want to express, now, the probability of obtaining outcome jz/N when measuring Z̃N , we must

simply notice that k =
N

2
− jz. This way, using the already established of for |ΨN ⟩⟨ΨN |, one can easily

see that

Pr(jz|ΨN ) =

(
N

N
2 + jz

)
p

N
2 +jz (1 − p)

N
2 −jz . (B.11)
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Appendix C

Calculation leading to AΛD(ρ)

In this section we will obtain eq. (2.15), which we re-state here for clarity

AΛD
(ρ) =

 ρ00 ρ01/
√

2 ρ01/
√

2

ρ∗01/
√

2 ρ11/2
|ρ01|2
ρ00

− ρ11
2

ρ∗01/
√

2 |ρ01|2
ρ00

− ρ∗11
2 ρ11/2

 . (C.1)

We want to find the state AΛD
(ρ) resulting from averaging over the pure microscopic states that are

compatible with an effective description ρ. The expression we want to evaluate is

AΛD
(ρ) =

∫
dµψPrΛD

(ψ|ρ)ψ. (C.2)

In order to do that, we will follow the steps laid out in [65], where the authors find the general form of
the average assigned state for two different coarse-graining maps.

We start by calling attention to the fact that PrΛD
(ψ|ρ) must be such that it only assumes non-zero

values for ψ ∈ ΩΛD
(ρ). This is of course because ΩΛD

(ρ) is precisely the set of states that are assigned to ρ
through the coarse-graining map. To states that do not belong to ΩΛD

(ρ) one must assign null probability.
This can be conveyed by demanding that this probability distribution obeys the proportionality

PrΛD
(ψ|ρ) ∝ δ(ΛD[ψ] − ρ). (C.3)

Thus, the probability distribution PrΛD
(ψ|ρ) will be invariant under transformations that respect this

symmetry above. In words, these are the transformations that take states in ΩΛD
(ρ) into other states

also in ΩΛD
(ρ). In appendix D we show that these operators can be parameterized by α ∈ [0, 2π] as

U1(α) =
1

2

2e−iα 0 0
0 (1 + eiα) (1 − eiα)
0 (1 − eiα) (1 + eiα).

 (C.4)

This means that

PrΛD
(ψ|ρ) = PrΛD

(U1(α)ψU†
1 (α)|ρ). (C.5)

If we recall that the Haar measure is invariant under unitary transformations, we can make the change
of variables |ψ⟩ → U1(α) |ψ⟩, such that equation eq. (C.2) reads

AΛD
(ρ) =

∫
dµψ PrΛD

(ψ|ρ) U1(α)ψU†
1 (α). (C.6)

We can choose any U1(α) above, as long as it respects the parametrization in eq. (C.4), so we can in
fact average over all such unitary transformations to yield

AΛD
(ρ) =

∫
dµψ PrΛD

(ψ|ρ) U1(α)ψU†
1 (α), (C.7)

where
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U1(α)ψU†
1 (α) =

1

2π

∫ 2π

0

dα U1(α)ψU†
1 (α). (C.8)

The result of this integration is obtained after some straight-forward calculation. Let ψ be represented
by a density matrix with elements

ψ =

χ1χ
∗
1 χ1χ

∗
2 χ1χ

∗
3

χ2χ
∗
1 χ2χ

∗
2 χ2χ

∗
3

χ3χ
∗
1 χ3χ

∗
2 χ3χ

∗
3,

 (C.9)

such that eq. (C.8) yields

U1(α)ψU†
1 (α) =

1

2

 2|χ1|2 χ1(χ∗
2 + χ∗

3) χ1(χ∗
2 + χ∗

3)
χ∗
1(χ2 + χ3) |χ2|2+|χ3|2 χ2χ

∗
3 + χ∗

2χ3

χ∗
1(χ2 + χ3) χ2χ

∗
3 + χ∗

2χ3 |χ2|2+|χ3|2.

 (C.10)

We want the final expression for AΛD
[ρ] to be expressed in terms of ρ instead of ψ. In that direction,

we have to use the information that ρ = ΛD[ψ]. Using the Kraus operators for ΛD from eq. (2.9), we
have an expression in terms of elements of density matrices(

ρ11 ρ12
ρ21 ρ22

)
=

(
|χ1|2 1√

2
χ1(χ∗

2 + χ∗
3)

1√
2
χ∗
1(χ2 + χ3) |χ2|2+|χ3|2.

)
(C.11)

Some further rearranging of variables yields, finally,

U1(α)ψU†
1 (α) =

1

2

 ρ00 ρ01/
√

2 ρ01/
√

2

ρ∗01/
√

2 ρ11/2
|ρ01|2
ρ00

− ρ11
2

ρ∗01/
√

2 |ρ01|2
ρ00

− ρ∗11
2 ρ11/2

 (C.12)

Notice that this result no longer depends on ψ. Back to the main expression eq. (C.13), we then have

AΛD
(ρ) =

1

2

 ρ00 ρ01/
√

2 ρ01/
√

2

ρ∗01/
√

2 ρ11/2
|ρ01|2
ρ00

− ρ11
2

ρ∗01/
√

2 |ρ01|2
ρ00

− ρ∗11
2 ρ11/2

∫ dµψ PrΛD
(ψ|ρ)︸ ︷︷ ︸

1

, (C.13)

from which we finally obtaineq. (2.15).
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Appendix D

Finding the unitary evolutions in
eqs. (2.39), (2.40) and (2.41)

In this appendix we will show how to obtain the unitary evolutions that yield reversible effective
dynamics. We start by the simplest case, where the observed dynamics is trivial, and the microscopic
evolution must be given by operators that obey eq. (2.34). Denote by U1 the unitaries that yield such
trivial effective dynamics, and we now that

ΛD[ψ] = ΛD[U1ψU
†
1 ] (D.1)

must hold for every microscopic state ψ.
Let us start by parameterizing a general microscopic state ψ as

ψ =

 a e+ if g + ih
e− if b k + im
g − ih k − im 1 − a− b.

 (D.2)

Then, using the Kraus operators for ΛD given in eq. (2.9), we have that

ΛD[ψ] =

(
a e+if+g+ih√

2
e−if+g−ih√

2
1 − a.

)
(D.3)

In order to evaluate eq. (D.1), we must now compute ΛD[U1ψU
†
1 ]. Let us parameterize U1 as

U1 =

u11 u12 u13
u21 u22 u23
u31 u32 u33.

 (D.4)

Then, we have that

ΛD[U1ψU
†
1 ] =

2∑
i=1

KiU1ψU
†
1K

†
i , (D.5)

where Ki are the Kraus operators of ΛD, and U1 and ψ are given by eqs. (D.4) and (D.2) respectively.
We spare the reader from the hideous output of this calculation, which we simply dub

ΛD[U1ψU
†
1 ] =

(
γ11 γ12
γ21 γ22

)
(D.6)

, The actual elements of this matrix are easily found with numerical computational tools such as Math-
ematica [200], expressed in terms of the parameters of U1 and ψ.

Now, we must impose that ΛD[ψ]−ΛD[U1ψU
†
1 ] is zero. This equality must be evaluated element-wise,

i.e., every element of the resulting 2×2 matrix must be zero. Let us consider the first element of the first
row, which we write out explicitly
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a− γ11 = a(u11u
∗
11 − u13u

∗
13 − 1) + b(u12u

∗
12 − u13u

∗
13) + e(u12u

∗
11 + u11u

∗
12) + f(iu11u

∗
12 − iu12u

∗
11)

+g(u13u
∗
11 + u11u

∗
13) + h(iu11u

∗
13 − iu13u

∗
11) + k(u13u

∗
12 + u12u

∗
13) +m(iu12u

∗
13 − iu13u

∗
12) + u13u

∗
13.

(D.7)

Since eq. (D.1) must be valid for any microscopic state, the expression above will only equal zero if
the coefficients of a, b, e, f, g, h, k,m are zero, which imposes the restrictions on the elements of U1

u11u
∗
11 − u13u

∗
13 − 1 = 0 (D.8)

u12u
∗
12 − u13u

∗
13 = 0 (D.9)

u12u
∗
11 + u11u

∗
12 = 0 (D.10)

iu11u
∗
12 − iu12u

∗
11 = 0 (D.11)

u13u
∗
11 + u11u

∗
13 = 0 (D.12)

iu11u
∗
13 − iu13u

∗
11 = 0 (D.13)

u13u
∗
12 + u12u

∗
13 = 0 (D.14)

iu12u
∗
13 − iu13u

∗
12 = 0 (D.15)

u13u
∗
13 = 0 (D.16)

From these restrictions combined, we conclude that u12 = u13 = u21 = u31 = 0. Without loss of
generality we set u11 = 1, and find that

u22 + u31 = u23 + u33 = 1. (D.17)

Finally, all these constraints can be expressed in terms of a parameter α ∈ [0, 2π] such that we reach
eq. (2.39).

U1(α) =
1

2

2e−iα 0 0
0 (1 + eiα) (1 − eiα)
0 (1 − eiα) (1 + eiα).

 (D.18)

This process that was carried out above sets the path that we will follow to obtain eqs. (2.40)
and (2.41): state an equation that imposes the relevant condition on the microscopic evolution and
parameterize U and ψ to impose such condition.

Let us now do the same to obtain U2, the unitary operators that describe microscopic evolutions
yielding single-shot reversible effective dynamics. We want condition in eq. (2.33) to be satisfied, which
we re-state in a similar way

if ΛD[ψ1] = ΛD[ψ1], then

ΛD[U2ψ1U
†
2 ] = ΛD[U2ψ2U

†
2 ].

(D.19)

for any microscopic states ψ1, ψ2. Recall the meaning of this expression: it sets the condition for U2 to
generate effective dynamics that always recover the state that was prepared initially, on every realization
of the experiment, not just on average. These unitary operators must be such that they don’t ”split”
microscopic states assigned to the same effective description. We can re-write this condition as

if ΛD[ψ1 − ψ2︸ ︷︷ ︸
χ

] = 0, then

ΛD[U2(ψ1 − ψ2︸ ︷︷ ︸
χ

)U†
2 ] = 0,

(D.20)

with χ, then, being some Hermitian matrix with null trace. Let it be parameterized as

χ =

k11 k12 k13
k∗12 k22 k23
k∗13 k∗23 k33.

 (D.21)
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Then, the action of the coarse-graining map is given by the Kraus operators of ΛD

ΛD[χ] =

(
k11

k12+k13√
2

k∗12+k
∗
13√

2
k22 + k33.

)
(D.22)

Following the condition in eq. (D.20), for ΛD[χ] = 0 we must impose k11 = k22 + k33 = k12 + k13 = 0.

Now, let U2 be parameterized the same way as U1, so we can compute ΛD[U2χU
†
2 ] and impose it to

be zero. Just like before, we will not explicitly write the result of this calculation because it would be
counter-productive. To impose ΛD[U2χU

†
2 ] = 0, we demand that each of its elements is null, which yield

the following conditions:

k∗12u
∗
11(u12 − u13) + k12(u11u

∗
12 − u11u

∗
13) + k22(u12u

∗
12 − u13u

∗
13) + u13k

∗
23u

∗
12 + k23u12u

∗
13 = 0 (D.23)

k∗12(u∗21(u22 − u23) + u∗31(u32 − u33)) + k12(u21u
∗
22 − u21u

∗
23 + u31u

∗
32 − u31u

∗
33)+ (D.24)

k22(u22u
∗
22 − u23u

∗
23 + u32u

∗
32 − u33u

∗
33) + k23(u22u

∗
23 + u32u

∗
33) + u23k

∗
23u

∗
22 + u33k

∗
23u

∗
32 = 0

k12(u11u
∗
22 − u11u

∗
23 + u11u

∗
32 − u11u

∗
33) + k∗12(u12 − u13)(u∗21 + u∗31) + k22 (D.25)

(u12u
∗
22 + u12u

∗
32 − u13u

∗
23 − u13u

∗
33) + k23(u12u

∗
23 + u12u

∗
33) + u13k

∗
23u

∗
22 + u13k

∗
23u

∗
32 = 0.

From these equations we learn that u12 = u13 = 0 and that u22 + u32 = u23 + u33. Finally, we arrive
at a possible parameterization of U2 in terms of α, β ∈ [0, 2π]

U2(α, β) =
1

2

2e−i(α+β) 0 0
0 (eiα + eiβ) −(eiα − eiβ)
0 −(eiα − eiβ) (eiα + eiβ)

 . (D.26)

Lastly, let us derive eq. (2.41), the unitaries that generate reversible effective evolutions. They arise
from a similar method where we impose the condition expressed in eq. (2.32), so we are looking for
transformations U3 that take average assigned states into average assigned states, or mathematically

if (AΛD
◦ ΛD)[ψ] = ψ, then

(AΛD
◦ ΛD)[U3ψU

†
3 ] = U3ψU

†
3 .

(D.27)

We can follow a perfectly analogous process as the ones before, only now demanding the following:
for any microscopic state ψ in the form of eq. (2.15) (that is, for any average assigned state), U3 must

transform it into another microscopic state U3ψU
†
3 that also has form given by eq. (2.15) (that it, it is

also an average assigned state).
With the aid of mathematical tools, we find that the constraints that the elements of U3 must obey

are

u21 = u31 (D.28)

u12 = u13 (D.29)

u22 = u33 (D.30)

u23 = u32. (D.31)

To find a form for U3 that satisfies these conditions, we start by presenting the parametrization of
SU(3) introduced in [201]

U3(θ1, θ2, θ3, ϕ1, ϕ2, ϕ3, ϕ4, ϕ5) =
1

2

χ11 χ12 χ13

χ21 χ22 χ23

χ31 χ32 χ33

 , (D.32)

with
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χ11 = cos θ1 cos θ2e
iϕ1 , (D.33)

χ12 = sin θ1e
iϕ3 , (D.34)

χ13 = cos θ1 sin θ2e
iϕ4 , (D.35)

χ21 = sin θ2 sin θ3e
−iϕ4−iϕ5 − sin θ1 cos θ2 cos θ3e

iϕ1+iϕ2−iϕ3 , (D.36)

χ22 = cos θ1 cos θ3e
iϕ2 , (D.37)

χ23 = − cos θ2 sin θ3e
−iϕ1−iϕ5 − sin θ1 sin θ2 cos θ3e

iϕ2−iϕ3+iϕ4 , (D.38)

χ31 = − sin θ1 cos θ2 sin θ3e
iϕ1−iϕ3+iϕ5 − sin θ2 cos θ3e

−iϕ2−iϕ4 , (D.39)

χ32 = cos θ1 sin θ3e
−iϕ5 , (D.40)

χ33 = cos θ2 cos θ3e
−iϕ1−iϕ2 − sin θ1 sin θ2 sin θ3e

−iϕ3+iϕ4+iϕ5 . (D.41)

where θ1, θ2, θ3 ∈ [0, π/2] and ϕ1, ϕ2, ϕ3, ϕ4, ϕ5 ∈ [0, 2π].
All that is left is to find the values for which the parameters satisfy conditions in eqs. (D.28), (D.29),

(D.30) and (D.31). With enough brute force, one can obtain the values

0 ≥ sinϕ5 − ϕ2
sinϕ1 + ϕ2 + ϕ5

≥ 1 (D.42)

sinϕ1 + 2ϕ2
sinϕ1 + ϕ2 + ϕ5

≤ 0 (D.43)

ϕ4 = ϕ3 (D.44)

θ1
cos 2θ1

= cos2 2θ1

(
sinϕ5 − ϕ2

sinϕ1 + ϕ2 + ϕ5

)
(D.45)

θ2 = arcsin tan θ1, 0 ≤ θ1 ≤ π/4 (D.46)

tan θ3 = − cot2 θ1 cscϕ1 + ϕ2 + ϕ5 sinϕ1 + 2ϕ2. (D.47)

As a final note, we point out that U2 can be recovered by U3 by setting θ1 = θ2 = 0, which yieldseiϕ1 0 0
0 cos θ3e

−iϕ1/2 sin θ3e
−i(ϕ1−π)/2

0 sin θ3e
−i(ϕ1−π)/2 cos θ3e

−iϕ1/2

 . (D.48)

If we make the change of variables ϕ1 = −(α+ β) and θ3 = (α+ β)/2, we get

1

2

2e−i(α+β) 0 0
0 (eiα + eiβ) −(eiα − eiβ)
0 −(eiα − eiβ) (eiα + eiβ)

 , (D.49)

which is precisely U2.
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Appendix E

Volume of uncertainty for ΛD

To obtain eq. (2.76), we will follow calculations completely analogous to the one found in [74], letting
the software Mathematica do the brute-force evaluations.

Let us start by decomposing a given effective state ρ ∈ L(H2) as

ρ =

(
ρ00 0
0 ρ11

)
+

1

2
(xσx + yσy), (E.1)

where x = Tr[ρσx], y = Tr[ρσy], ρij with i, j ∈ {0, 1} being the matrix coefficients of ρ. Let us parame-
terize the matrix elements of microscopic pure states ψ ∈ L(L3) as ψij = cic

∗
j , i, j ∈ {1, 2, 3}, such that

ψ = cc†. We can write the action of ΛD on a generic state as

ΛD[ψ] =

(
c0c

∗
0 c0(c∗1 + c∗2)/

√
2

c∗0(c1 + c2)/
√

2 c1c
∗
1 + c2c

∗
2

)
, (E.2)

where have simply applied the Kraus operators defined in eq. (2.9). In terms of these parameters, we can
write the volume of ΩΛD

(ρ) as

VΛD
(ρ) =

∫
dµψδ(c0c

∗
0 − ρ00)δ(c1c

∗
1 + c2c

∗
2 − ρ11)δ(Tr[ΛD[ψ]σx] − x)δ(Tr[ΛD[ψ]σy] − y) (E.3)

where simply used eqs. (E.1) and (E.2) to impose the constraint ΛD[ψ] = ρ.
The trick now is to consider the Laplace or Fourier transformations of these objects, perform some

calculations on the results, and subsequently evaluate the corresponding inverse transformation. The
advantage of this method is that, between applying the integral transformation and its inverse, the
expression will be independent of ρ, which will greatly simplify calculations.

We can re-write each term in parenthesis as follows

δ(c0c
∗
0 − ρ00) = L−1{L{δ(c0c∗0 − ρ00)}(s0)}(ρ00)

= L−1{
∫ ∞

0

dρ00e
−s0ρ00δ(c0c

∗
0 − ρ00)}(ρ00)

= L−1{e−s0c0c
∗
0}(ρ00),

(E.4)

and similarly

δ(c1c
∗
1 + c2c

∗
2 − ρ11) = L−1{e−s1c1c

∗
1+c2c

∗
2}(ρ11), (E.5)

where L is the Laplace transform. Furthermore,

δ(Tr[ΛD[ψ]σx] − x) = F−1{F{δ(Tr[ΛD[ψ]σx] − x)}(kx)}(x)

= L−1{
∫ +∞

−∞
dxe−ikxxδ(Tr[ΛD[ψ]σx] − x)}(x)

= F−1{e−ikx Tr[ΛD[ψ]σx]}(x)

= F−1{e−ikxcΛ
′
D[σx]c

†
}(x),

(E.6)

122



where Λ′
D is the dual of the map ΛD, and similarly

δ(Tr[ΛD[ψ]σy] − y) = F−1{e−ikycΛ
′
D[σy ]c

†
}(y), (E.7)

where F is the Fourier transform (which we perform here instead of the Laplace transform because x, y
can assume negative values).

Now, denote this intermediate object that we obtain after applying the integral transform by I, and
we re-write it as

I[s0, s1, kx, ky] =

∫
d(c)e−c

†Ac, (E.8)

with

A = diag(s0, s1, s1) + iΛ′
D[kxσx + kyσy] (E.9)

=

 s0
ikx+ky√

2

ikx+ky√
2

ikx−ky√
2

s1 0
ikx−ky√

2
0 s1

 . (E.10)

Mathematica can evaluate I

I[s0, s1, kx, ky] =
π4

detA
. (E.11)

One can now consider ψ to be mixed, and let it be purified by an auxiliary space of dimension dB .
Then, perfectly similar calculations would yield

IdB [s0, s1, kx, ky] =
π4dB

(detA)dB
. (E.12)

All that is left is to perform the inverse transforms, such that we recover the volume of uncertainty
of ρ. Once again, with the aid of Mathematica, we get the final expression in terms of the Bloch vector
of ρ:

VΛD
(ρ) =

24−3dBπ1+4dB (1 + z)−dB (1 − x2 − y2 − z2)2(dB−1)

Γ[dB ]Γ[2dB − 1]
. (E.13)
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Appendix F

The weighted Lovász number and
maximum violation of inequalities

In this appendix we want to explore the relation between the weighted Lovász number of an exclusivity
graph ϑ(Gex, w) and the maximum value one can achieve when evaluating the expectation value of some
operator. We will follow the approach introduced in [132] and further explored, for instance, in [202, 203].
We suggest seeing [204] for in-depth discussions.

The paradigmatic example of a Bell inequality [152, 205], the CHSH inequality [206] describes a two-
party scenario where Alice and Bob share a common bipartite quantum state, upon which they perform
local measurements. Alice can choose to apply one out of two dichotomic observables {A0, A1}, with
possible outcomes {−1,+1}. Bob, on his side, can perform {B0, B1} with outcomes {−1,+1}. The
CHSH inequality states that, for classical theories,

SCHSH = ⟨A0B0 +A0B1 +A1B0 −A1B1⟩ ≤ 2, (F.1)

where the braket notation ⟨M⟩ denotes the expectation value of the measurement M on some given
quantum state. Notoriously, this upper bound can be violated in quantum theories up to the value of
2
√

2, the famous Tsirelson bound [207].
We will now present the approach to obtaining the maximum violation of eq. (F.1) using graph theory,

a method extensible to any linear inequality.
What one wants to find out is what is the maximum value that a given function (in this case, SCHSH)

can achieve while obeying a set of restrictions. SCHSH is a function of the outcome probabilities of
measurements {AiBj}i,j=0,1, and the restrictions arise from the fact that these probabilities are not
independent. In fact, they must obey exclusivity relations among them, such that they cannot simply
assume any value regardless of their context.

One might already foresee how ϑ(Gex, w) comes into the scene. The task we are trying to perform
is precisely the definition of the weighted Lovász number: what is the maximum value a function of
probabilities {pi} can assume, given that they must arise from a valid quantum realization compatible
with exclusivity relations between the given measurements.

Let us take another look at eq. (F.1). Denote by p(xy|XY ) the probability associated to event
(xy|XY ), where one measures XY and obtains outcomes x, y. We can rewrite the CHSH inequality as

SCHSH = p(00|00) − p(01|00) − p(10|00) + p(11|00)︸ ︷︷ ︸
⟨A0B0⟩

+ p(00|01) − p(01|01) − p(10|01) + p(11|01)︸ ︷︷ ︸
⟨A0B1⟩

+ p(00|10) − p(01|10) − p(10|10) + p(11|10)︸ ︷︷ ︸
⟨A1B0⟩

− p(00|11) − p(01|11) − p(10|11) + p(11|11)︸ ︷︷ ︸
⟨A1B1⟩

.

(F.2)

Notice, additionally, that these probabilities can be further simplified, since
∑
ij p(ij|AiBj) = 1. This

yields
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SCHSH =2(p(00|00) + p(11|00) + p(00|01) + p(11|01)

+ p(00|10) + p(11|10) + p(01|11) + p(10|11)) − 4 ≤ 2.
(F.3)

If we let

S̃CHSH = p(00|00) + p(11|00) + p(00|01) + p(11|01) + p(00|10) + p(11|10) + p(01|11) + p(10|11), (F.4)

then we have a simpler and yet equivalent expression

S̃CHSH ≤ 3. (F.5)

To find the maximum violation of this inequality, we must first establish the exclusivity graph asso-
ciated to these probabilities, which results in GCHSH portrayed in fig. 4.1. Now, we can compute the
weighted Lovász number of this graph, that we re-state here for convenience

given {wi}8i=1, GCHSH

maximize

8∑
i=1

wi|X0i|2

subject to Xii = 1, i = 0, . . . , n

Xij = 0, if (i, j) ∈ E

X ≥ 0 .

(F.6)

By choosing wi = 1, ∀i we make the objective function reflect S̃CHSH and the solution to this
optimization gives us precisely the maximum violation of eq. (F.5). As expected, by computing this SDP
we get ϑ(GCHSH , 1) = 2 +

√
2, which corresponds to the Tsirelson bound for eq. (F.1).

Notice that for this specific case we ended up evaluating the regular Lovász number ϑ(GCHSH). This
happened because the structure of the CHSH inequality attributed equal weights to the probabilities we
must consider, but this is a mere coincidence. When evaluating the maximum violation of other Bell
inequalities one might have to choose more complex sets of weights {wi} to reflect them.
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Appendix G

Calculations leading to the upper
bound on RA≺B

In this section we will show that the robustness of one-way signaling from Alice to Bob, denoted by
RA≺B , must obey the bound

RA≺B(W ) ≤ d2O − 1, dO := max(dAO
dBO

). (G.1)

We will follow the same steps carried out in [194] to find the upper bound for Rs, only applied to a
different set of processes: Rs measures the distance to Wpar (the set of processes where no signaling takes
place), while RA≺B measures the distance to WA≺B (the set of processes where Alice’s actions precede
those of Bob, so there can be no signaling from Bob to Alice).

Let us first show a relevant property of process matrices. Define the channel D acting on a process
W as

D[W ] = dTr[W ]1−W, (G.2)

where d is the dimension of W , that is, d = dAI
dAO

dBI
dBO

, and 1 is the identity in the same space of
W .

Notice that this map is completely positive. Indeed, all processes obey W ≥ 0, and since Tr[W ] =
dAO

dBO
it is clear that its largest eigenvalue can be at most dAO

dBO
, so D[W ] ≥ 0. This means that

applying D to only a part of W still yields a positive result, and

DBO [W ] = dBO
TrBO

[W ] ⊗ 1BO
−W ≥ 0. (G.3)

Recall the definition of the trace-and-replace operation, and realize that exchanging dBO
formax(dAO

, dBO
)

will not affect the positivity of DBO [W ]. One can then conclude that

d2OBO
W −W ≥ 0. (G.4)

Now, we want to evaluate an upper bound for RA≺B , which can be determined from its dual formu-
lation eq. (6.27) as

RA≺B(W ) = max
Tr[WS]

dAO

− 1. (G.5)

Using eq. (G.4), we have

RA≺B(W ) ≤ max
d2O
dAO

Tr[BO
WS] − 1 (G.6)

= max
d2O
dAO

Tr[WBO
S] − 1 (G.7)

= max
d2O

dAO
dBO

Tr[W TrBO
S ⊗ 1BO

] − 1, (G.8)
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where we have used the fact that the trace-and-replace operation is self-dual. Then, from the dual
formulation of RA≺B we also know that TrBO

[S] ≤ 1AIAOBI
, so

RA≺B(W ) ≤ max
d2O

dAO
dBO

Tr[W1AIAOBIBO
] − 1. (G.9)

Finally, since Tr[W ] = dAO
dBO

,

RA≺B(W ) ≤ d2O − 1. (G.10)

This bound is also tight, and can be saturated by any process where Alice can signal perfectly to Bob,
such as the identity channel. An example is

WA→B = 1AI
Φ+
AOBI

1BO
, (G.11)

which is a particular case of the model in eq. (6.18), with p = 1 and q = 0.
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