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Abstract

The direct detection of gravitational waves by the Laser Interferometer
Gravitational-Wave Observatory (LIGO) [1] marks the start of the era of gravi-
tational wave astronomy, with important consequences for astrophysics and, poten-
tially, for cosmology and theoretical physics. In the detection above, the source of
gravitational waves was a binary system consisting of two black holes with tens of
solar masses.

The main interest of this project focuses on a different regime, that of ex-
treme mass-ratio inspirals (EMRIs). An example of such binary systems is a stellar-
mass compact object (e.g. a neutron star or a black hole) orbiting around a mas-
sive black hole. In fact, there is a planned mission by the European Space Agency
called the Laser Interferometer Space Antenna (LISA) [2], which aims at detecting
gravitational waves emitted by EMRIs. EMRIs can be modelled within Einstein’s
theory of General Relativity by expanding the field equations in the mass-ratio
𝜇 = 𝑚/𝑀 ≪ 1, where 𝑀 is the mass of the massive black hole and 𝑚 is the mass
of the small object. In order to provide accurate description of the motion of these
binary systems, it is necessary to not treat the smaller compact object as a test
mass (zeroth order in 𝜇) but rather to take into account its own gravitational field
to at least 𝒪(𝜇). That is, the so-called gravitational self-force [3, 4, 5]. The self-force
must then be incorporated into the equation of motion for the smaller body in order
to find its evolution.

There exists a method for calculating the self-force which offers a particu-
larly interesting physical insight. This method is via the Green function of the field
equations. In this thesis, we will develop methods for calculating the Green function
for scalar, electromagnetic, and gravitational perturbation fields of Schwarzschild
spacetime. We will also use the Plebański-Hacyan spacetime as a toy model to
explore additional techniques we could apply to Schwarzschild spacetime.

The Green function is a powerful tool and its applications go beyond the
calculation of the self-force. For instance, we also explore the quantum communica-
tion between two observers near a Schwarzschild black hole. It turns out that The
manifestation of spacetime curvature in quantum communication occurs through
the retarded Green function of the Klein-Gordon equation.

Key-words: General Relativity. Black holes, Gravitational Waves, Quantum Com-
munication.



Resumo

A detecção direta de ondas gravitacionais pelo Laser Interferometer Gravitational-
Wave Observatory (LIGO) [1] marca o inicio da era da astronomia de ondas gravi-
tacionais, com importantes consequências na astrofísica, e potencialmente, para a
cosmologia e a física teórica. Na detecção do LIGO, a fonte das ondas gravitacionais
foi um sistema binário de dois buracos negros de dezenas de massas solares.

O principal interesse deste projeto é focado em um regime diferente, o dos
Extreme Mass-Ratio Inspirals (EMRIs). Um exemplo de tais sistemas é um objeto
compacto de massa estelar 𝑚 (uma estrela de nêutrons ou um buraco negro) orbi-
tando ao redor de um buraco negro massivo de massa 𝑀 . De fato, há uma missão
planejada pela Agência Espacial Europeia (ESA) [2], que pretende detectar ondas
gravitacionais emitidas pelos EMRIs. Os EMRIs podem ser modelados expandindo
as equações de campo do Einstein na relação de massas 𝜇 = 𝑚/𝑀 ≪ 1, sendo 𝑀 a
massa do buraco negro massivo e 𝑚 a massa do objeto menor. Para fornecer uma
descrição precisa do movimento desses sistemas binários, o objeto menor não pode
ser tratado como uma partícula teste (ordem zero em 𝜇), o campo gravitacional
criado por ele deve ser levado em conta. Ou seja, o chamado self-force gravitacional
[3, 4, 5]. Asim, a self-force deve ser considerada para encontrar a evolução do objeto
menor.

Existe um método para calcular a auto-força que oferece uma visão física
particularmente interessante. Esse método é baseado na função de Green. Nesta tese,
desenvolveremos métodos para calcular a função de Green para campos de perturba-
ção escalar e gravitacional de espaços-tempos de Schwarzschild. Também usaremos
o espaço-tempo Plebański-Hacyan como um modelo de brinquedo para explorar
técnicas adicionais que podemos estender e aplicar ao espaço-tempo Schwarzschild.

A função Green é uma ferramenta poderosa e suas aplicações vão além do
cálculo da self-force. Por exemplo, também exploramos a comunicação quântica
entre dois observadores perto de um buraco negro de Schwarzschild. Acontece que
a curvatura do espaço-tempo se manifesta na comunicação quântica por meio da
função de Green retardada da equação de Klein-Gordon.

Palavras-chaves: Relatividade Geral, Buracos negros, Ondas Gravitacionais, Co-
municação quântica.
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Figure 31 –Contribution to the leading order signal strength from a PV
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1
𝜎

)︁
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𝜈
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(︁

1
𝜎

)︁
-distribution
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at his location. The graphs are symmetric about the point𝐵′
1 = 𝐴−2−𝐴1

𝜈
.
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frequencies (ΩA = ΩB) here reproduces the features due to secondary

null geodesics seen there. . . . . . . . . . . . . . . . . . . . . . . . . . 190

Figure 32 –Contribution to the leading order signal strength from PV
(︁

1
𝜎

)︁
-distribution,

as resulting from Eq. (F.7), with 𝜈 =
√︁

(1 − 2/6)/(1 − 2/3.01) ≈ 1.40954,

𝐴1 = 0 and 𝑠2 = 5𝑀 . (For this cumulative signal strength we always

have 𝐵1 = 𝐴1/𝜈 = 0.) Alice’s first light ray, emanating at 𝐴1 = 0, is

connected by the PV
(︁

1
𝜎

)︁
-singularity to the point on Bob’s worldline

with proper time 𝜏B = (𝑤2 +𝐴1)/𝜈 ≈ 3.55𝑀 . Alice’s last light ray, em-

anating at her proper time 𝐴2, is connected to Bob’s worldline at his

proper time 𝜏B = (𝑤2 +𝐴2)/𝜈 which is different for the two figures. The

curve in Fig. 32a with ΩB = ΩA/2 reproduces the features discussed in

Figs. 18 and 17. In all three figures the oscillations in all curves decay

as 𝐵2 → ∞ and asymptote to constant values. (Note for non-colour

print: The curve in Figs. 32b and 32c asymptote in the same order as

they appear in the legend.) . . . . . . . . . . . . . . . . . . . . . . . . . 194
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Outline

Since Einstein published his theory of General Relativity in 1915, the understand-

ing of gravity changed drastically. One of the predictions of General Relativity are gravi-

tational waves: “ripples” in spacetime. The existence of gravitational waves was confirmed

in 2015 by LIGO’s detection [1]. In that case, the gravitational waves were emitted by a

binary black hole inspiral. The evolution of such binary systems is mathematically difficult

because of the non-linearity of the Einstein field equations. The source for LIGO’s detec-

tion was a binary system of two stellar-mass black holes, the model to describe this system

was obtained with a mix of numerical and analytic methods. A different regime of inter-

est is the extreme mass-ratio inspiral (EMRI), where one of the objects is a supermassive

black hole and the other a small compact object.

In the case of EMRIs, linearizing the Einstein field equations provides a good

description to leading-order in the extreme mass-ratio 𝑚/𝑀 , where 𝑚 is the mass of the

smaller object and 𝑀 that of the larger object (in astrophysical settings, EMRIs typically

have mass ratios of the order 10−5 to 10−7). Away from the worldline of the smaller object,

we can then write the metric of this binary system as g𝜇𝜈 = 𝑔𝜇𝜈 + ℎ𝜇𝜈 where 𝑔𝜇𝜈 is the

metric of the massive black hole and ℎ𝜇𝜈 = 𝒪(𝑚) of the smaller black hole. Because 𝑚/𝑀

is very small, at leading order the massive black hole can be considered at rest, and so we

focus our attention on the evolution of the smaller black hole.

The perturbation ℎ𝜇𝜈 describes (far away from the source) gravitational waves

(GW) emitted by the system. One can take the viewpoint that such emission backreacts

on the smaller object , thus deviating it from a geodesic of g𝜇𝜈 . However, ℎ𝜇𝜈 formally

diverges on the worldline of 𝑚 and so it must be appropriately regularized there. The

regularized metric perturbation, when differentiated, gives rise to the gravitational self-

force 𝐹𝜇 [3].

The evolution of the orbit of a smaller object when including the self-force (SF) has
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been accomplished in some specific cases. For instance, in [8] the evolution of a small mass

inspiralling into a massive, spherically-symmetric (Schwarzschild) black hole was obtained

by using the approximation of the so-called ‘geodesic self-force’. In its turn, [9] obtained

a self-consistent (i.e., exact, not approximated) orbital evolution for a scalar charge near

a Schwarzschild black hole. In Refs. [10, 4, 5, 11] one can find different reviews about the

fundamental theory and current progress made for calculating the self-force.

We note that the scalar self-force is often used as a simple model for the gravita-

tional self-force [12, 13, 14, 15, 16, 17]. On a different scenario, it has been shown that

spacetime’s curvature plays an important role in quantum signaling [18, 19]. Specifically,

the scalar retarded Green function is intricately connected to the signal strength of a

communication channel. We thus also examine this setting and investigate the physical

implications of quantum communication in curved spacetime.

This thesis is organised in the following way. In Chapter 1 we first review fun-

damental concepts about Green functions in curved spacetime. Next, we give a short

introduction about the motion of a scalar charge and point particle in curved spacetime

and its relation with the retarded Green function. In the last sections, we introduce the

Schwarzschild and Kerr spacetimes and provide the framework we use to describe field

perturbations of Schwarzschild spacetime.

In Chapter 2 we calculate the retarded Green function of the Regge-Wheeler equa-

tion for spins 0 and 2. This was accomplished by splitting the spacetime in two regions:

quasi-local and distant-past. In the quasi-local region we calculated the main Hadamard

biscalars to construct the direct and non-direct part of the retarded Green function. In the

distant past region we provided two methods for calculating the retarded Green function,

both were based on a mode decomposition approach. We then calculated the modes in

the time domain (using characteristic initial data) and in the frequency domain (via fac-

torized Green function method). In Appendix A we provide the coefficients of the large-𝜔

(the Fourier frequency) asymptotics for solutions to the Regge-Wheeler equation detailed

in Chapter 2.
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In Chapter 3 we provide a numerical scheme for computing the Hadamard tail

𝑉 (𝑥, 𝑥′) in Plebański-Hacyan spacetime from initial data on the light cone. This toy model

for black hole spacetimes allowed us to understand how to set up a characteristic initial

value problem in four dimensions. Although the symmetries of the spacetime simplified

the field equation for 𝑉 (𝑥, 𝑥′), we found a coordinate singularity connected to the angular

separation between 𝑥 and 𝑥′. We found out that this coordinate singularity has an impact

on the order of the global truncation error of the numerical scheme. After handling this

coordinate singularity, we obtained a scheme (with third and fourth orders in the local

truncation error) to compute 𝑉 (𝑥, 𝑥′) (for any pair of points where it is defined) for the

coupling constant 𝜉 = 0, 1/8, 1/4, 1/2. Since Schwarzschild and Plebański-Hacyan space-

times share the same spherical symmetry, the Hadamard tail in Schwarzschild spacetime

should have the same coordinate singularity we found in the field equation for 𝑉 (𝑥, 𝑥′).

In Appendix. B we provide a brief prescription for how one can expand the scheme we

developed for calculating 𝑉 (𝑥, 𝑥′). We expect that the calculations in Plebański-Hacyan

spacetime to be useful for calculating the Hadamard tail in Schwarzschild spacetime. With

my supervisor Marc Casals, we submitted a paper with these new results and recently

was accepted for publication [20].

In Chapter 4 we move to a different setting and explore quantum communication

in curved spacetime. In this setting two observers attempt to communicate via a quantum

scalar field near a black hole. It turned out that the leading order in the signal strength

(a measure for the probability of successfully transmit information through the quantum

channel) is mainly determined by the scalar retarded Green function. The effects of the

spacetime curvature is then manifested on the quantum communication via the scalar

retarded Green function. We then obtained the leading order signal strength in two main

scenarios: In the first one, the sender is fixed at a spatial point and we move the spatial

position of the receiver to different static positions near the black hole; in the second

scenario, the receiver is fixed at a spatial position while the sender follows a radial infall

geodesic. In Appendices C–E–F, we include additional calculations that helped to un-

derstand and simplify our calculations of the leading order signal strength. These results
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were published on a paper with my supervisor Marc Casals in collaboration with Robert

Jonsson, Achim Kempf and Eduardo Martín-Martínez [19].

In Chapter 5 we calculate the retarded Teukolsky Green function for spin −2.

These results rely on previous calculations already presented in Chapter 2. Once again,

calculating the retarded Teukolsky Green function is not sufficient for self-force calcula-

tions, we should provide a regularisation procedure as well. We made partial progress on

this by calculating the direct part of the Teukolsky Green function. Although this result

was not fully completed, we hope that this can be a good starting point for future work

in which the problems we found during our calculations can be addressed.

I also published a work unrelated to this thesis in collaboration with Ricardo

Mosna and Paulo Pitelli [21]. In this paper, we explored an analogue model for the two-

dimensional anti de-Sitter spacetime (AdS2) based on a radial fluid flow with a point

source/sink at the origin. The wave propagation is then uniquely defined only when one

imposes an extra boundary condition at the source/sink (which corresponds to the spatial

infinity of AdS2). Once we smooth out the velocity profile at the source/sink, the extra

boundary condition is no longer necessary. In its turn, this process led to a deformation

of the AdS2 spacetime near its spatial infinity.

Throughout this Thesis, we use natural units 𝐺 = 𝑐 = ~ = 1 and follow the sign

convention (−,+,+,+) for the metric. Tensorial inices are denoted by Greek letters and

the spatial component of a vector, say 𝑢𝜇, is represented by the same symbol but with

an arrow on top of it, e.g., 𝑢𝜇 = (𝑢0, �⃗�). Tetrad indices are denoted by a Latin index in

brackets, e.g., 𝜂(𝑎)(𝑏).
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1 Field perturbations of curved spacetime

In this Chapter we first start with a brief introduction to general relativity. Next,

we review the fundamental concepts behind the motion and self-consistent evolution of

a scalar charge in curved spacetime. We then move to the gravitational case and review

the motion of a point particle in curved spacetime. In this thesis the preferred method

for calculating the self-field is via Green function methods, we also give an introduction

to Green functions and how to regularise them. In the last sections, we focus on a specific

type of spacetime, the Schwarzschild spacetime. To conclude, we give a brief review of

gravitational perturbations of Schwarzschild spacetime.

1.1 General relativity

It 1915, Albert Einstein came up with a new perspective for describing gravity.

His idea is now embodied in the so-called Einstein’s field equations [22, 23, 24]

𝑅𝜇𝜈 − 1
2𝑅𝑔𝜇𝜈 = 8𝜋𝑇𝜇𝜈 , (1.1)

where 𝑔𝜇𝜈 is the metric tensor, 𝑅𝜇𝜈 = 𝑅𝛼
𝜇𝛼𝜈 is the Ricci tensor (where 𝑅𝜇

𝜈𝛼𝛽 is the

Riemann tensor), 𝑅 = 𝑅𝜇
𝜇 is the Ricci scalar and 𝑇𝜇𝜈 is the stress-energy tensor of the

matter distribution.

In the absence of matter (𝑇𝜇𝜈 = 0), Eq. (1.1) reduces to

𝑅𝜇𝜈 = 0, (1.2)

and from this, the Weyl tensor 𝐶𝜇𝜈𝛼𝛽 agrees with the Riemann tensor, i.e.,

𝐶𝜇𝜈𝛼𝛽 =𝑅𝜇𝜈𝛼𝛽 + 1
𝑛− 2 (𝑅𝜇𝛽𝑔𝜈𝛼 −𝑅𝜇𝛼𝑔𝜈𝛽 +𝑅𝜈𝛼𝑔𝜇𝛽 −𝑅𝜈𝛽𝑔𝜇𝛼)

+ 𝑅

(𝑛− 1)(𝑛− 2) (𝑔𝜇𝛼𝑔𝜈𝛽 − 𝑔𝜇𝛽𝑔𝜈𝛼) = 𝑅𝜇𝜈𝛼𝛽, (1.3)

where 𝑛 is the spacetime dimension.
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Some known vacuum solutions are the Minkowski spacetime

𝑔𝜇𝜈 = 𝜂𝜇𝜈 = diag(−1, 1, 1, 1)

(in Cartesian coordinates) or the Schwarzschild spacetime (which we show later).

The motion of test particles and light are now given by the geodesic equation

d𝑢𝜇

d𝜆 + Γ𝜇
𝛼𝛽𝑢

𝛼𝑢𝛽 = 0, (1.4)

where 𝑢𝜇 = d𝑥𝜇

d𝜆
is the 4-velocity, 𝜆 is an affine parameter and Γ𝜇

𝛼𝛽 are the Christoffel

symbols. For non-test particles, their motion deviates from a geodesic motion due to the

interaction of the particle with its self-field. We thus need to incorporate this interaction

in the equations of motion.

1.2 Particles In Curved Spacetime

Since classical mechanics describing a physical system often reduces to solving a

set of equations of motion, this idea is also maintained in general relativity. In the case

of classical electromagnetism previous works from Lorentz, Abraham, Poincaré and Dirac

attempted to describe the motion of a point electric charge. A generalization of Dirac’s

results to curved spacetimes was made by DeWitt and Brehme [25]. Later on, Gralla,

Harte and Wald provided a rigorous derivation of the equation of motion [26, 27] without

requiring any postulate or renormalization procedures. Back in 1997 Mino, Sasaki and

Tanaka came up with one of the first attempts at describing the motion of a point mass

in curved spacetime [28]. In the same year Quinn and Wald were able to obtain the same

equations but with a different approach [29]. Later on Quinn generalised this axiomatic

approach to use it for the calculation of the SF acting on a point scalar charge [30]. Since

in this project we are interested in the method of Green function, we first provide key

concepts about the scalar Green function in curved spacetime, these ideas are not limited

to the scalar case, in fact, some key properties of the Green function are present in both,

electromagnetic and gravitational fields.
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1.3 Scalar Green function in curved spacetime

The field equation for a massless scalar field Φ(𝑥) in a background spacetime ℳ

with metric 𝑔𝜇𝜈 satisfies the wave equation

(�− 𝜉𝑅)Φ(𝑥) = −4𝜋𝜇(𝑥), (1.5)

where � = 𝑔𝜇𝜈∇𝜇∇𝜈 , 𝜉 is a coupling constant and 𝜇(𝑥) is a prescribed source. We define

a Green function 𝐺(𝑥, 𝑥′) to be a distribution such that Φ(𝑥) can be calculated via

Φ(𝑥) =
∫︁

ℳ
𝐺(𝑥, 𝑥′)𝜇(𝑥′)

√︁
−𝑔′ d4𝑥′, (1.6)

where the integral is evaluated over the entire ℳ. From this expression it is straightfor-

ward to show that the Green function 𝐺(𝑥, 𝑥′) also satisfies a wave equation with a Dirac

delta distribution as a source, i.e.,

(�− 𝜉𝑅)𝐺(𝑥, 𝑥′) = −4𝜋𝛿4(𝑥, 𝑥′), (1.7)

where 𝛿4(𝑥, 𝑥′) is the invariant Dirac delta distribution and is defined by

𝛿4(𝑥, 𝑥′) ≡ 𝛿4(𝑥− 𝑥′)√︁
−𝑔(𝑥)

. (1.8)

The boundary conditions imposed on 𝐺(𝑥, 𝑥′) will determine the different types of Green

functions one can obtain from Eq. (1.7). In particular, we are interested in the retarded

Green function, 𝐺ret(𝑥, 𝑥′), which has causal boundary conditions, i.e., it is zero when 𝑥′

does not lie on or inside the past light cone of 𝑥.

1.3.0.1 Singular and regular Green functions

The retarded solution to the scalar wave equation is the one physically relevant be-

cause it delivers the proper outgoing-wave boundary conditions at infinity. Once the field’s

source is provided, the retarded field can be determined by using Eq. (1.6) with 𝐺(𝑥, 𝑥′)

being replaced by the retarded GF 𝐺ret(𝑥, 𝑥′). For point-like sources the retarded field is

singular on the worldline, this divergence has to be properly handled before formulating

the equations of motion. To understand the origin of this divergence, it is convenient to

decompose 𝐺ret(𝑥, 𝑥′) into a singular Green function 𝐺S(𝑥, 𝑥′) and a regular two-point
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function 𝐺R(𝑥, 𝑥′), i.e., 𝐺R(𝑥, 𝑥′) = 𝐺ret(𝑥, 𝑥′) − 𝐺S(𝑥, 𝑥′). This decomposition process

imposes the following properties on the singular Green function [5]:

∙ 𝐺S(𝑥, 𝑥′) satisfies the inhomogeneous wave equation,

(�− 𝜉𝑅)𝐺S(𝑥, 𝑥′) = −4𝜋𝛿4(𝑥, 𝑥′),

∙ 𝐺S(𝑥, 𝑥′) = 𝐺S(𝑥′, 𝑥),

∙ 𝐺S(𝑥, 𝑥′) = 0 when 𝑥 is in the chronological past or future of 𝑥′ (𝐼±(𝑥′)).

As a consequence of these properties, the regular two-point function has the following

properties

∙ 𝐺R(𝑥, 𝑥′) satisfies the homogeneous wave equation, i.e., (�− 𝜉𝑅)𝐺R(𝑥, 𝑥′) = 0,

∙ 𝐺R(𝑥, 𝑥′) = 𝐺ret(𝑥, 𝑥′) when 𝑥 is in the chronological future of 𝑥′ (𝐼+(𝑥′)),

∙ 𝐺R(𝑥, 𝑥′) = 0 when 𝑥 is in the chronological past of 𝑥′ (𝐼−(𝑥′)).

The symmetry in the singular GF manifests its non-causality, any field constructed from

it will contain ingoing and outgoing radiation in equal amounts. Thus, the total radiation

will have no effect on the particle’s motion.

1.4 Motion of a scalar charge in curved spacetime

The equation of motion of a point particle with scalar charge 𝑞 can be derived

using the Lagrangian formalism. The system consists of the point particle which is moving

along a certain worldline Γ in a background spacetime ℳ with metric 𝑔𝜇𝜈 . In its turn, the

scalar charge produces a scalar field Φ(𝑥) that will interact with the particle. Therefore,

the action of the entire system is given by

𝑆 = 𝑆field + 𝑆particle + 𝑆interaction, (1.9)

where 𝑆field is the action of the free scalar field Φ(𝑥), 𝑆particle is the action of the free point

particle, and 𝑆interaction represents the interaction between the particle and the scalar field.
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In general 𝑆 is a functional of the field Φ, the particle’s position 𝑧 and the spacetime metric

𝑔𝜇𝜈 . To obtain the equations of motion for the particle and for the field, we impose the

total action 𝑆 to be stationary with respect to the corresponding variations, 𝛿Φ for the

field equation, and 𝛿𝑧 for the particle’s equation of motion. This leads to the following

equations of motion

(�− 𝜉𝑅)Φ(𝑥) = −4𝜋𝑞
∫︁

Γ
𝛿4(𝑥, 𝑧(𝜏))d𝜏, (1.10)

𝑚(𝜏)D𝑢𝜇

d𝜏 = 𝑞(𝑔𝜇𝜈 + 𝑢𝜇𝑢𝜈)∇𝜈Φ(𝑧(𝜏)), (1.11)

d𝑚(𝜏)
d𝜏 = −𝑞𝑢𝜇∇𝜇Φ(𝑧(𝜏)), (1.12)

where 𝜏 is an affine parameter, 𝑧(𝜏) is the particle’s worldline, 𝑢𝜇 = d𝑧𝜇

d𝜏
, D/d𝜏 = 𝑢𝜇∇𝜇.

It can be seen that the mass of the particle 𝑚(𝜏) is not necessarily constant. This fact

implies that the particle can radiate monopole waves. By using the the regular two-point

function 𝐺R(𝑥, 𝑥′), we construct the regular field ΦR(𝑥), this field reads to the following

gradient

∇𝜇ΦR(𝑥) = − 1
12(1 − 6𝜉)𝑞𝑅𝑢𝜇 + 𝑞(𝑔𝜇𝜈 + 𝑢𝜇𝑢𝜈)

(︂1
3 �̇�

𝜈 + 1
6𝑅

𝜈
𝜆𝑢

𝜆
)︂

+ Φtail
𝜇 (𝑥), (1.13)

Φtail
𝜇 (𝑥) = 𝑞

∫︁ 𝜏−

−∞
∇𝜇𝐺ret(𝑥, 𝑧(𝜏 ′))d𝜏 ′, (1.14)

where 𝑎𝜇 is the covariant four-acceleration, an overdot indicates differentiation with re-

spect to 𝜏 and 𝑅𝜇𝜈 is the Ricci curvature. We denote the integral in Eq. (1.14) by tail

integral. Note that this integral has to be evaluated along the particle’s entire past. The

equations of motion for the particle are then given by [5]

𝑚(𝜏)𝑎𝜇 = 𝑓𝜇
ext + 𝑞2(𝛿𝜇

𝜈 + 𝑢𝜇𝑢𝜈)
[︃

1
3𝑚

D𝑓 𝜈
ext

d𝜏 + 1
6𝑅

𝜈
𝜆𝑢

𝜆 +
∫︁ 𝜏−

−∞
∇𝜈𝐺ret(𝑧(𝜏), 𝑧(𝜏 ′))d𝜏 ′

]︃
,

(1.15)
d𝑚(𝜏)

d𝜏 = − 1
12(1 − 6𝜉)𝑞2𝑅 − 𝑞2𝑢𝜇

∫︁ 𝜏−

−∞
∇𝜇𝐺ret(𝑧(𝜏), 𝑧(𝜏 ′))d𝜏 ′, (1.16)

where 𝑓𝜇
ext is an external force. In order to solve these equations we first need to evaluate

the tail integral and before that, we have to calculate the retarded GF. Therefore, the self-

consistent evolution for the scalar charge can be reduced to the calculation of 𝐺ret(𝑥, 𝑥′),

the scalar retarded GF.
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1.5 Motion of a point mass in curved spacetime

In order to derive the equations of motion for a massive particle in curved space-

time, we now have to calculate the gravitational field produced by this particle. A standard

procedure to simplify the problem constraints the particle’s mass 𝑚 to be small so that its

gravitational field can be treated as a perturbation on a background metric. In this way,

the exact metric of the perturbed spacetime will be the sum of a background (independent

of 𝑚) part 𝑔𝜇𝜈 and a perturbation part ℎ𝜇𝜈 . To perform this decomposition we write the

perturbed spacetime metric in the following way

g𝜇𝜈 = 𝑔𝜇𝜈 + ℎ𝜇𝜈 , (1.17)

where we are establishing a sans-serif font to denote tensors related to the perturbed space-

time and regular symbols for tensors related to the background spacetime. Additionally

we will denote by ;𝜇 the covariant derivative with respect to the background metric 𝑔𝜇𝜈

and ∇𝜇 for the covariant derivative with respect to the perturbed metric g𝜇𝜈 . The exact

Einstein tensor is then given by

G𝜇𝜈 = 𝐺𝜇𝜈 [𝑔] + 𝛿𝐺𝜇𝜈 [𝑔, ℎ] + Δ𝐺𝜇𝜈 [𝑔, ℎ], (1.18)

where 𝐺𝜇𝜈 denotes the Einstein tensor of the background spacetime and we assume that

it vanishes, 𝛿𝐺𝜇𝜈 [𝑔, ℎ] contains the linearized Einstein operator

𝛿𝐺𝜇𝜈 ≡ 1
2
(︁
𝑔𝛼𝛽𝛾𝜇𝜈

;𝛼𝛽 + 2𝑅𝛼
𝜇

𝛽
𝜈𝛾𝛼𝛽

)︁
+ 1

2
(︁
𝛾𝜇𝛼

;𝛼
𝜈 + 𝛾𝜈𝛼

;𝛼
𝜇 − 𝑔𝜇𝜈𝛾𝛼𝛽

;𝛼𝛽

)︁
, (1.19)

where 𝛾𝜇𝜈 is the trace-reversed metric perturbation

𝛾𝜇𝜈 ≡ ℎ𝜇𝜈 − 1
2𝑔

𝜇𝜈𝑔𝛼𝛽ℎ
𝛼𝛽.

The last term in the right hand side of Eq. (1.18) is simply the remaining non-linear

terms. After re-writing G𝜇𝜈 in a more convenient way, the exact Einstein field equations

may be written as

𝛿𝐺𝜇𝜈 = 8𝜋
(︂

T𝜇𝜈 − 1
8𝜋Δ𝐺𝜇𝜈

)︂
≡ 8𝜋𝑇 𝜇𝜈

eff , (1.20)

where T𝜇𝜈 is the energy-momentum tensor of the perturbed spacetime. This equation

provides the exact content of the Einstein field equation and it is written in such a
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way that the left-hand side only contains linear terms in the metric perturbation. Thus,

obtaining the field equation for 𝛾𝜇𝜈 reduces to solving Eq. (1.20) with an effective source

𝑇 𝜇𝜈
eff . However, this equation is neither hyperbolic nor elliptic and that makes it difficult to

properly obtain the retarded solutions for 𝛾𝜇𝜈 . By choosing an appropriate gauge condition

we are able to transform Eq. (1.20) into a hyperbolic equation. This gauge turns out to

be the Lorenz gauge condition, i.e.,

𝛾𝜇𝜈
;𝜈 = 0. (1.21)

With this constraint the field equations reduce to

�𝛾𝜇𝜈 + 2𝑅𝛼
𝜇

𝛽
𝜈𝛾𝛼𝛽 = 16𝜋𝑇 𝜇𝜈

eff , (1.22)

and a retarded solution to this equation may be written in terms of the so-called retarded

Green function

𝛾𝜇𝜈 = 4
∫︁

ℳ
𝐺ret

𝜇𝜈
𝜇′𝜈′(𝑥, 𝑥′)𝑇 𝜇′𝜈′

eff (𝑥′)
√︁

−𝑔′d4𝑥′, (1.23)

where 𝐺ret
𝜇𝜈

𝜇′𝜈′(𝑥, 𝑥′) is the retarded gravitational GF [5] of Eq. (1.22) and the integral

covers the entire spacetime ℳ.

In order to integrate Eq. (1.22) we follow a standard technique based on the

perturbative nature of 𝑚 and ℎ𝜇𝜈 . We consider 𝑚 as an expansion parameter1 and solve

the field equation iteratively. In the first iteration we fix the particle’s worldline Γ and

set ℎ𝜇𝜈
0 (the zero-order of ℎ𝜇𝜈) to zero in 𝑇 𝜇𝜈

eff . The result from this step returns the first-

order approximation ℎ𝜇𝜈
1 [Γ] = 𝒪 (𝑚). During the next iteration ℎ𝜇𝜈

1 is included in 𝑇 𝜇𝜈
eff

so that Eq. (1.22) now returns the second-order approximation ℎ𝜇𝜈
2 [Γ] = 𝒪(𝑚,𝑚2). We

repeat this iterative procedure until we obtain an accurate approximation to ℎ𝜇𝜈 . Now

that a prescription for solving the field equation is established, we formulate the equation

of motion for the point particle. Given the action for a point particle moving along a

worldline Γ with tangent vector �̇�𝜇 = d𝑧𝜇/d𝜆 (where 𝜆 is an arbitrary parameter)

𝑆particle = −𝑚
∫︁

Γ

√︁
−g𝜇𝜈 �̇�

𝜈 �̇�𝜇d𝜆, (1.24)
1This assumption should be taken carefully. By expansion in 𝑚 we are trying to indicate that from a

perturbative point of view, linear terms in 𝑚 are considered first order corrections to ℎ𝜇𝜈 . Consequently,
the background metric 𝑔𝜇𝜈 is kept fixed in the following calculations.
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we are able to derive the equation of motion:

D�̇�𝛼

d𝜆 = 1√︁
−g𝜇𝜈 �̇�

𝜇�̇�𝜈

(︃
d

d𝜆
√︁

−g𝜇𝜈 �̇�
𝜇�̇�𝜈

)︃
�̇�𝛼, (1.25)

where D
d𝜆

= �̇�𝜇∇𝜇. In the background spacetime this equation of motion can be easily

re-written considering Eq. (1.48) and

𝐶𝛼
𝛽𝛾 ≡ Γ𝛼

𝛽𝛾 − Γ𝛼
𝛽𝛾, (1.26)

the exact difference between the perturbed metric connection Γ𝛼
𝛽𝛾, and the background

metric connection Γ𝛼
𝛽𝛾. The equation of motion in the background spacetime is then given

by
D𝑢𝛼

d𝜏 = −𝐶𝛼
𝜇𝜈𝑢

𝜇𝑢𝜈 + 1√︁
1 − ℎ𝜇𝜈𝑢𝜇𝑢𝜈

(︃
d
d𝜏
√︁

1 − ℎ𝜇𝜈𝑢𝜇𝑢𝜈

)︃
𝑢𝛼, (1.27)

where we replaced 𝜆 by the particle’s proper time 𝜏 and 𝑢𝛼 = d𝑧𝛼/d𝜏 is the four-velocity

in the background spacetime.

As detailed above, the approach we are taking to calculate ℎ𝜇𝜈 is an iterative

procedure. For this purpose the equation of motion expressed as in Eq. (1.27) it not

useful and we have to re-write it having in mind the perturbative nature of the particle.

On the first iteration, the equation of motion is given by [5]

D𝑢𝜇

d𝜏 = −1
2 (𝑔𝜇𝜈 + 𝑢𝜇𝑢𝜈) (2ℎ𝜈𝜆;𝜌 − ℎ𝜆𝜌;𝜈)𝑢𝜆𝑢𝜌 + 𝒪

(︁
𝑚2
)︁
. (1.28)

Similar to the scalar case, we regularise the metric perturbation ℎ𝜇𝜈 before solving

the equation of motion. Following the same approach as in the scalar case, the regular

metric perturbation ℎR
𝜇𝜈 leads to the regular ℎ𝜇𝜈;𝜆

ℎR
𝜇𝜈;𝜆 = −4𝑚

(︁
𝑢(𝜇𝑅𝜈)𝜌𝜆𝜉 +𝑅𝜇𝜌𝜈𝜉𝑢𝜆

)︁
𝑢𝜌𝑢𝜉 + ℎtail

𝜇𝜈;𝜆, (1.29)

ℎtail
𝜇𝜈;𝜆 = 4𝑚

∫︁ 𝜏−

−∞
∇𝜆

(︂
𝐺ret

𝜇𝜈𝜇′𝜈′ − 1
2𝑔𝜇𝜈𝑔

𝛼𝛽𝐺ret
𝛼𝛽𝜇′𝜈′

)︂
(𝑧(𝜏), 𝑧(𝜏 ′))𝑢𝜇′

𝑢𝜈′d𝜏 ′, (1.30)

where 𝐺ret
𝜇𝜈𝜇′𝜈′ is the retarded GF of Eq. (1.22). In this gravitational case we denote the

integral in Eq. (1.30) by tail integral.
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Figure 1 – The method of matched expansion for a particle in curved spacetime. The blue section of the
particle’s worldline denotes the QL region of 𝑥, the particle’s current position. A point 𝑥′ is in the distant
past of 𝑥 when it lies on the orange section of the particle’s worldline.

1.6 Method of matched expansions for the tail integral

Anderson and Wiseman [31] proposed the so-called method of matched expansions

for evaluating the tail integral in Eq. (1.14)2. This method essentially consists of splitting

the integral in two regions. The first region corresponds to points 𝑥 and 𝑥′ = 𝑧(𝜏 ′) that

are “close” and it is called the quasi-local (QL) region. The second region corresponds

to points 𝑥 and 𝑥′ = 𝑧(𝜏 ′) that are not “close” and it is called distant past (DP). For

instance, for 𝐺ret the tail integral is
∫︁ 𝜏−

−∞
∇𝜇 𝐺ret(𝑥, 𝑧(𝜏 ′))d𝜏 ′ =

∫︁ 𝜏m

−∞
∇𝜇𝐺ret(𝑥, 𝑧(𝜏 ′))d𝜏 ′

⏟  ⏞  
DP region

+
∫︁ 𝜏−

𝜏m
∇𝜇𝐺ret(𝑥, 𝑧(𝜏 ′))d𝜏 ′

⏟  ⏞  
QL region

, (1.31)

where 𝜏m < 𝜏− is the matching (proper) time such that 𝑧(𝜏m) ∈ DP ∩ QL. Therefore, in

order for this method to work, we need to ensure that there is an overlap between the QL

and the DP regions.

In Fig. 1 we illustrate these two regions. In each region we provide two different

approaches for calculating 𝐺ret(𝑥, 𝑥′). The retarded GF is evaluated using different ex-

pansions in these two regions and one would expect to have a matching region where both

expansions agree to sufficient accuracy.
2This method was originally derived for the spin-0 case but it can also be applied to general spin.
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In order to provide a suitable expansion in each region, in [31] Anderson and

Wiseman used the Hadamard form of 𝐺ret(𝑥, 𝑥′) [32, 33, 5] to calculate the tail integral

in the QL region. In fact, the QL region is a subregion of a more general region called

normal neighbourhood. A normal neighbourhood of 𝑥, 𝒩 (𝑥), is a region containing 𝑥 such

that every 𝑥′ in that region is connected to 𝑥 by a unique geodesic which lies within the

region.

Given a field point 𝑥 and a base point 𝑥′ ∈ 𝒩 (𝑥), the Hadamard form of 𝑠𝐺ret(𝑥, 𝑥′)

is given by

𝐺ret(𝑥, 𝑥′) = 𝒰(𝑥, 𝑥′)𝛿(𝜎)𝜃+(𝑥, 𝑥′) − 𝒱(𝑥, 𝑥′)𝜃(−𝜎)𝜃+(𝑥, 𝑥′), (1.32)

where 𝛿(𝜎) is the Dirac delta distribution, 𝒰(𝑥, 𝑥′) and 𝒱(𝑥, 𝑥′) are two regular biscalars3,

𝜃+(𝑥, 𝑥′) is a Heaviside-like distribution and equals 1 if 𝑥 lies in the future of 𝑥′ and equals

0 elsewhere, the biscalar 𝜎 = 𝜎(𝑥, 𝑥′) is Synge’s world function and is equal to half of the

squared distance along the geodesic4 connecting 𝑥 and 𝑥′, i.e.,

𝜎(𝑥, 𝑥′) = 1
2(𝜏1 − 𝜏0)

∫︁ 𝜏1

𝜏0
𝑔𝜇𝜈(𝑧(𝜏))𝑡𝜇𝑡𝜈d𝜏, (1.33)

where 𝑡𝜇 = 𝑡𝜇(𝜏) = d𝑧𝜇(𝜏)
d𝜏

is a vector tangent to the geodesic 𝑧(𝜏), and 𝜏0 (𝜏1) is the proper

time where 𝑧(𝜏0) = 𝑥′ (𝑧(𝜏1) = 𝑥).

We usually refer to 𝒰(𝑥, 𝑥′)𝛿(𝜎)𝜃+(𝑥, 𝑥′) as the direct-part of𝐺ret(𝑥, 𝑥′) and𝐺ret(𝑥, 𝑥′)−

𝒰(𝑥, 𝑥′)𝛿(𝜎)𝜃+(𝑥, 𝑥′) as the non-direct part. In this way, we can set 𝐺ret(𝑥, 𝑥′) = −𝒱(𝑥, 𝑥′)

in the QL region and rewrite the second integral in the right hand side of Eq. (1.31) as

[31] ∫︁ 𝜏−

𝜏m
∇𝜇𝐺ret(𝑥, 𝑧(𝜏 ′))d𝜏 ′ = −

∫︁ 𝜏

𝜏m
∇𝜇𝒱(𝑥, 𝑧(𝜏 ′))d𝜏 ′. (1.34)

The upper limit in the integral can be changed to 𝜏 since 𝒱(𝑥, 𝑥′) is regular at coincidence.

In the DP region the Hadamard form is no longer valid and we require a different

expansion for 𝐺ret(𝑥, 𝑥′). For instance, in spacetimes with spherical and axial symmetry

we can perform a decomposition in spin-weighted spherical harmonics. We develop further

this decomposition in following chapters.
3A biscalar is a function that depends on two spacetime points, 𝑥 and 𝑥′.
4This geodesic must be unique in order for 𝜎 to be defined.
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1.7 Black hole spacetimes

Astrophysical observations suggest that most astrophysical systems (e.g., binary

systems) might involve compact objects with axial symmetry. In scenarios where the

angular momentum of the compact object is negligible, we can consider the system to

have spherical symmetry. Having this in mind, we focus our attention on two well-known

black hole spacetimes: Schwarzschild and Kerr spacetime.

1.7.1 Schwarzschild spacetime

The Schwarzschild spacetime (a vacuum solution to Einstein’s field equations)

is a black hole spacetime with spherical symmetry. Its line element in the standard

Schwarzschild coordinates (𝑡, 𝑟, 𝜃, 𝜑)5 is given by

d𝑠2 = 𝑔𝜇𝜈d𝑥𝜇d𝑥𝜈 = −𝑓d𝑡2 + 𝑓−1d𝑟2 + 𝑟2
(︁
d𝜃2 + sin2 𝜃d𝜑2

)︁
, (1.35)

where 𝑓 = 𝑓(𝑟) = 1 − 2𝑀/𝑟 and 𝑀 is the mass of the black hole and 𝑔𝜇𝜈 denotes the

Schwarzschild metric. We should emphasize that we will not explore how field pertur-

bations behave inside the event horizon. We are mostly interested in a region outside

the black hole’s event horizon. Therefore, the metric defined via Eq. (1.35) is sufficient

for further calculations. Additionally, for analyses requiring calculations near the event

horizon, it is worth introducing the tortoise coordinate

𝑟* = 𝑟 + 2𝑀 ln
(︂
𝑟

𝑀
− 2

)︂
, (1.36)

which ranges from −∞ to ∞.

From a geometrical point of view, the Schwarzschild metric admits the conformal

transformation

d𝑠2 = 𝑟−2d𝑠2 = − 𝑓

𝑟2 (d𝑡2 − d𝑟2
*) + d𝜃2 + sin2 𝜃d𝜑2, (1.37)

where we used Eq. (1.36) to obtain d𝑟 = 𝑓d𝑟*. The conformal metric defined via the line

element d𝑠 in Eq. (1.37) is a product of the 2-sphere S2 with a spacetime ℳ2. The line
5The range for each coordinate is 𝑡 ∈ (−∞,∞), 𝑟 ∈ (2𝑀,∞), 𝜃 ∈ [0, 𝜋] and 𝜑 ∈ [0, 2𝜋).
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element in ℳ2 (denoted by d𝑠2) in the (𝑡, 𝑟*) coordinates is given by

d𝑠2
2 = − 𝑓

𝑟2 (d𝑡2 − d𝑟2
*). (1.38)

As we shall see in Chapter 2, this conformal transformation becomes useful since the

resulting spacetime (with geometry ℳ2 × S2) allows us to obtain fundamental quantities

in Schwarzschild spacetime from quantities defined in ℳ2 and S2.

In order to calculate the geodesics in Schwarzschild spacetime, there are different

approaches one can follow. The most common one is based on the Lagrangian formalism.

In this formalism geodesics in Schwarzschild spacetime are derived from the Lagrangian

[34]

ℒ = 1
2𝑔𝜇𝜈

d𝑥𝜇

d𝑠
d𝑥𝜈

d𝑠 , (1.39)

where 𝑠 is an affine parameter (usually the geodesic’s proper time), ℒ equals to 0 for

null geodesics and 1 for timelike geodesics. We then take this Lagrangian and insert into

Lagrange’s equations
d
d𝑠

(︃
𝜕ℒ
𝜕�̇�𝜇

)︃
= 𝜕ℒ
𝜕𝑥𝜇

, (1.40)

where the overdot indicates differentiation with respect to 𝑠. From this equations we

immediately find that

d
d𝑠
(︁
𝑓𝑡
)︁

= 0, d
d𝑠
(︁
𝑟2 sin2 𝜃 �̇�

)︁
= 0, (1.41)

which lead to the two constants of motion 𝐸 (particle’s energy) and 𝐿 (Particle’s angular

momentum). Furthermore, the spherical symmetry allows us to set 𝜃 = 𝜋
2 and 𝜃 = 0

without losing generality. Having this in mind the geodesic equations are then given by

𝑡 = 𝐸

𝑓
, (1.42)

�̇�2 =𝐸2 − 𝑓(𝑟)
(︃
𝜅+ 𝐿2

𝑟2

)︃
, (1.43)

�̇� = 𝐿

𝑟2 , (1.44)

where

𝜅 =

⎧⎪⎪⎨⎪⎪⎩
0, for null geodesics,

1, for timelike geodesics
.
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In particular, Eq. (1.43) puts in evidence the existence of circular geodesics. In

this case the equation for 𝑟 reduces to �̇� = 0 and we find the condition

𝐸2 = 𝑓(𝑟circ)
(︃
𝜅+ 𝐿2

𝑟2
circ

)︃
,

where 𝑟circ is the orbit radius.

For null geodesics (𝜅 = 0), we find the unstable circular orbit at 𝑟 = 3𝑀 . On the

other hand, for timelike geodesics, depending on the energy and angular momentum, we

have not only circular but also eccentric geodesics. I can also be shown the the innermost

circular orbit (ISCO) for timelike geodesics is 𝑟 = 𝑟ISCO = 6𝑀 .

1.7.2 Kerr spacetime

The Kerr spacetime describes a rotating black hole which is known for having axial

symmetry. In Boyer-Lindquist coordinates, the Kerr geometry can be described via the

line element

d𝑠2 = −
(︂

1 − 2𝑀𝑟

Σ

)︂
d𝑡2 − 4𝑎𝑀𝑟 sin2 𝜃

Σ d𝑡d𝜃 + Σ
Δ𝐾

d𝑟2 + Σd𝜃2

+
(︃

Δ𝐾 + 2𝑀𝑟(𝑟2 + 𝑎2)
Σ

)︃
sin2 𝜃d𝜑2, (1.45)

where 𝑀 is the mass the black hole, 𝑎 is the angular momentum per unit mass and

Σ = 𝑟2 + 𝑎2 cos2 𝜃, (1.46)

Δ𝐾 = 𝑟(𝑟 − 2𝑀) + 𝑎2. (1.47)

In can be shown that Schwarzschild spacetime is a particular case of Kerr spacetime where

𝑎 = 0. Unlike Schwarzschild spacetime where geodesics can always be constrained to a

plane with fixed 𝜃, in Kerr spacetime this is no longer the case. In fact, in addition to the

two constants of motion (𝐸 and 𝐿), we find a third one usually referred to as the Carter

constant [35].
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1.8 Gravitational perturbations of Schwarzschild spacetime

In the literature we find a handful of formalisms for describing field perturbations.

Regge and Wheeler [36] came up with the first approach for obtaining the equation of

motion for a gravitational perturbation in a background spacetime. Later on, works from

Vishveshwara [37] and Zerilli [38] also brought fundamental results for understanding

gravitational perturbations. In this Section we provide a review about the field equations

governing gravitational perturbations of Schwarzschild spacetime.

In order to derive the field equations for a gravitational perturbation in Schwarschild

spacetime, we follow a standard procedure consisting of decomposing the perturbed metric

g𝜇𝜈 as

g𝜇𝜈 = 𝑔𝜇𝜈 + ℎ𝜇𝜈 , (1.48)

where 𝑔𝜇𝜈 is the (background) Schwarzschild metric and ℎ𝜇𝜈 is the metric perturbation.

Inserting g𝜇𝜈 back into the vacuum Einstein’s field equation yields

𝑅𝜇𝜈 + 𝛿𝑅𝜇𝜈 = 0, (1.49)

where we grouped all the first order terms involving ℎ𝜇𝜈 in 𝛿𝑅𝜇𝜈 and𝑅𝜇𝜈 is the Schwarzschild

Ricci tensor. Since 𝑅𝜇𝜈 = 0 for Schwarzschild spacetime, the field perturbation equations

is simply

𝛿𝑅𝜇𝜈 = 0. (1.50)

More specifically, we follow [39] to obtain (here the selection of a gauge has not been made

yet)

𝛿𝑅𝜇𝜈 = − 𝛿Γ𝜇𝜈
𝛽

;𝛽 + 𝛿Γ𝜇𝛽
𝛽

;𝜈 , (1.51)

𝛿Γ𝜇𝜈
𝜌 = 1

2𝑔
𝜌𝛼 (ℎ𝜇𝛼;𝜈 + ℎ𝜈𝛼;𝜇 − ℎ𝜇𝜈;𝛼) , (1.52)

where the the semicolons denote covariant differentiation with respect to the background

metric. The boundary conditions for ℎ𝜇𝜈 are typically placed at infinity and at the event

horizon. These conditions are chosen such that solutions to Eq. (1.50) are physical. More

specifically, the boundary conditions we impose are outgoing waves at infinity and ingoing

waves at the event horizon.
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1.8.1 Even and odd parity field perturbations

In order to simplify the field equations for the metric perturbation, we propose a

mode decomposition, i.e.,

ℎ𝜇𝜈(𝑡, 𝑟, 𝜃, 𝜑) =
∞∑︁

ℓ=0

ℓ∑︁
𝑚=−ℓ

ℎ(ℓ𝑚)
𝜇𝜈 (𝑡, 𝑟, 𝜃, 𝜑), (1.53)

where ℎ(ℓ𝑚)
𝜇𝜈 (𝑡, 𝑟, 𝜃, 𝜑) are functions characterized by parities (−1)ℓ+1 (odd) and (−1)ℓ

(even), and they take the form [36]

ℎ(ℓ𝑚)
𝜇𝜈 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −ℎ0
1

sin 𝜃
𝜕𝜑 ℎ0 sin 𝜃𝜕𝜃

0 0 −ℎ1
1

sin 𝜃
𝜕𝜑 ℎ1 sin 𝜃𝜕𝜃

sym sym ℎ2
(︁

1
sin 𝜃

𝜕𝜃𝜕𝜑 − cos 𝜃
sin2 𝜃

𝜕𝜑

)︁
1
2ℎ2

(︁
1

sin 𝜃
𝜕2

𝜑 + cos 𝜃𝜕𝜃 − sin 𝜃𝜕2
𝜃

)︁
sym sym sym −ℎ2 (sin 𝜃𝜕𝜃𝜕𝜑 − cos 𝜃𝜕𝜑)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑌ℓ𝑚,

(1.54)

(where 𝑌ℓ𝑚 are the spherical harmonics) for odd-parity and

ℎ(ℓ𝑚)
𝜇𝜈 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑓𝐻0 𝐻1 ℎ0𝜕𝜃 ℎ0𝜕𝜑

sym 𝐻2
𝑓

ℎ1𝜕𝜃 ℎ1𝜕𝜑

sym sym 𝑟2 (𝐾 +𝐺𝜕2
𝜃 ) 𝑟2𝐺

(︁
𝜕𝜃𝜕𝜑 − cos 𝜃

sin 𝜃
𝜕𝜑

)︁
sym sym sym 𝑟2

(︁
𝐾 sin2 𝜃 +𝐺(𝜕2

𝜑 + sin 𝜃 cos 𝜃𝜕𝜃)
)︁

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑌ℓ𝑚, (1.55)

for even-parity. Here the “sym” text refers to a component of ℎ(ℓ𝑚)
𝜇𝜈 that is calculated

using the symmetry ℎ(ℓ𝑚)
𝜇𝜈 = ℎ(ℓ𝑚)

𝜈𝜇 and the functions ℎ0, ℎ1, ℎ2, 𝐻0, 𝐻1, 𝐻2, 𝐾 and 𝐺 are

functions of 𝑡 and 𝑟 to be determined.

1.8.2 Gauge transformation for ℎ(ℓ𝑚)
𝜇𝜈

Although the modes of the metric perturbation given in Eqs. (1.55)–(1.54) simplify

the field equations to some extent, there are still six functions to calculate. We reduce

these functions by introducing a gauge transformation

ℎ(ℓ𝑚)
𝜇𝜈 → ℎ(ℓ𝑚)

𝜇𝜈 + 𝜉𝜇;𝜈 + 𝜉𝜈;𝜇, (1.56)

where 𝜉𝜇 is a gauge vector. By choosing appropriate values for 𝜉𝜇, we are able to cancel

some of the components in ℎ(ℓ𝑚)
𝜇𝜈 .
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1.8.3 Odd-parity perturbations in the Regge-Wheeler gauge

For odd-parity perturbations, the gauge vector takes the form [36]

𝜉𝜇 = Λ(𝑡, 𝑟)
(︁
0, 0, 𝜖𝜃𝐴𝜕𝐴𝑌ℓ𝑚, 𝜖

𝜑𝐴𝜕𝐴𝑌ℓ𝑚

)︁
, (1.57)

where 𝐴 = 𝜃, 𝜑, 𝜖𝜇𝜈 is the Levi-Civita symbol, and Λ(𝑡, 𝑟) is an arbitrary function chosen

such that it annuls the ℎ2 factor in Eq. (1.54)6.

By applying a gauge transformation on ℎ(ℓ𝑚)
𝜇𝜈 with the gauge vector given in

Eq. (1.57), the modes for odd-parity perturbations reduce to

ℎ(ℓ𝑚)
𝜇𝜈 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −ℎ0
1

sin 𝜃
𝜕𝜑 ℎ0 sin 𝜃𝜕𝜃

0 0 −ℎ1
1

sin 𝜃
𝜕𝜑 ℎ1 sin 𝜃𝜕𝜃

sym sym 0 0

sym sym 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑌ℓ𝑚. (1.58)

This gauge transformation is often referred to as the Regge-Wheeler gauge which was first

introduced in [36].

Without loss of generality we can perform a rotation on ℎ(ℓ𝑚)
𝜇𝜈 due to the spherical

symmetry of the spacetime. Particularly, so that ℎ𝜇𝜈 has no 𝜑-dependence and there is

no contribution from 𝑚 ̸= 0 modes:

ℎ𝜇𝜈 =
∞∑︁

𝑙=0
ℎ(ℓ)

𝜇𝜈 , (1.59)

where (redefining ℎ0 and ℎ1 so as to absorb an ℓ-dependent constant factor coming from

𝑌ℓ𝑚)

ℎ(ℓ)
𝜇𝜈 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 ℎ0(𝑡, 𝑟)

0 0 0 ℎ1(𝑡, 𝑟)

0 0 0 0

ℎ0(𝑡, 𝑟) ℎ1(𝑡, 𝑟) 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
× sin 𝜃 𝜕𝜃𝑃ℓ(cos 𝜃). (1.60)

An important consequence arises when we work with ℎ(ℓ)
𝜇𝜈 instead of ℎ(ℓ𝑚)

𝜇𝜈 . After performing

the rotation, we immediately note that ℎ(0)
𝜇𝜈 = 0. Therefore, this mode (responsible for

producing changes in the mass 𝑀 of the black hole) cannot be computed from ℎ(ℓ)
𝜇𝜈 .

6For even-parity perturbations, we could also provide another gauge vector to annul some components
in Eq. (1.55).
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We should also treat the ℓ = 1 case separately. When inserting Eq. (1.60) back

into Eq. (1.50), we find only two non-vanishing Ricci tensor components, 𝛿𝑅𝑟𝜑 and 𝛿𝑅𝑡𝜑.

These two components yield

𝛿𝑅𝑟𝜑 = 𝜕𝑡

[︃
𝜕𝑡ℎ1 − 𝑟2𝜕𝑟

(︃
ℎ0

𝑟2

)︃]︃
, (1.61)

𝛿𝑅𝑡𝜑 = 𝑟2𝜕2
𝑟ℎ0 − 2ℎ0 − 𝜕𝑟

(︁
𝑟2𝜕𝑡ℎ1

)︁
. (1.62)

When imposing 𝛿𝑅𝑟𝜑 = 0 and 𝛿𝑅𝑡𝜑 = 0 in the above equations, substituting Eq. (1.61)

in Eq. (1.62) shows that 𝛿𝑅𝑡𝜑 vanishes identically. Thus, we end up with a single partial

differential equation for two unknown variables, ℎ0 and ℎ1. Consequently, similar to the

ℓ = 0 mode, the ℓ = 1 mode cannot be calculated in the Regge-Wheeler gauge.

For ℓ ≥ 2, we find the differential equations

𝜕𝑡ℎ0 = 𝑓𝜕𝑟 (𝑓ℎ1) , from: 𝛿𝑅𝜃𝜑, (1.63)

−𝜕2
𝑡 ℎ1 + 𝜕𝑟𝜕𝑡ℎ0 − 2

𝑟
𝜕𝑡ℎ0 = ℓ(ℓ+ 1) − 2

𝑟2 𝑓ℎ1, from: 𝛿𝑅𝑟𝜑, (1.64)

−𝜕2
𝑟ℎ0 + 𝜕𝑟𝜕𝑡ℎ1 + 2

𝑟
𝜕𝑡ℎ1 = −𝑟ℓ(ℓ+ 1) − 4𝑀

𝑟3𝑓
ℎ0, from: 𝛿𝑅𝑡𝜑, (1.65)

where the last equation is a direct consequence from the first two. By combining Eqs. (1.63)–

(1.64) and defining

𝑄(𝑡, 𝑟) ≡ 𝑟

𝑓
ℎ1(𝑡, 𝑟), (1.66)

we obtain the so-called Regge-Wheeler equation in (1+1)-dimensions[︃
−𝜕2

𝑡 + 𝑓𝜕𝑟𝑓𝜕𝑟 − 𝑓

(︃
ℓ(ℓ+ 1)
𝑟2 − 6𝑀

𝑟3

)︃]︃
𝑄(𝑡, 𝑟) = 0. (1.67)

By decomposing 𝑄(𝑡, 𝑟) in its Fourier modes �̃�(𝑟):

𝑄(𝑡, 𝑟) = 1
2𝜋

∫︁ ∞

−∞
�̃�(𝑟)𝑒−𝑖𝜔𝑡d𝜔, (1.68)

we obtain the radial Regge-Wheeler equation for gravitational perturbations [36][︃
𝑓

d
d𝑟𝑓

d
d𝑟 + 𝜔2 − 𝑓

(︃
ℓ(ℓ+ 1)
𝑟2 − 6𝑀

𝑟3

)︃]︃
�̃�(𝑟) = 0, (1.69)

which was first derived by Regge and Wheeler back in 1957.
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Once𝑄 is determined, calculating ℎ1 is immediate from Eq. (1.66). For ℎ0, however,

we require to solve an additional differential equation which involves ℎ1 (see Eqs. (1.63) or

(1.65)). A more convenient approach for calculating ℎ0 from ℎ1 is through their relation

in the frequency domain. Specifically, given the Fourier modes ℎ̃0 and ℎ̃1 of ℎ0 and ℎ1,

respectively, the counterpart of Eq. (1.63) in the frequency domain is [36]

ℎ̃0 = 𝑖
𝑓

𝜔
𝜕𝑟

(︁
𝑓ℎ̃1

)︁
, (1.70)

where 𝜔 is the frequency and

ℎ̃𝑎 =
∫︁ ∞

−∞
ℎ𝑎(𝑡, 𝑟)𝑒𝑖𝜔𝑡d𝑡, for 𝑎 = {0, 1}. (1.71)

In this way, once ℎ0 and ℎ1 are known, reconstructing the metric perturbation, excluding

the ℓ = 0, 1 modes, is direct. On the other hand, the first modes ℎ(0,0)
𝜇𝜈 and ℎ(1,𝑚)

𝜇𝜈 need to

be calculated separately.

Although this approach for calculating ℎ𝜇𝜈 was first introduced by Regge-Wheeler

in [36], in subsequent works, it has been shown that the radial Regge-Wheeler equation can

also describe scalar and electromagnetic perturbations. Let 𝑠𝜒 be a spin-𝑠 field describing

scalar (𝑠 = 0), electromagnetic (𝑠 = 1), and gravitational (𝑠 = 2) perturbations produced

by a source 𝑠𝑆. This field satisfies the partial differential equation [40]

(︂
�+ 𝑠2 2𝑀

𝑟3

)︂
𝑠𝜒(𝑡, 𝑟, 𝜃, 𝜑) = 𝑠𝑆(𝑡, 𝑟, 𝜃, 𝜑). (1.72)

It can be shown that when writing 𝑠𝜒 and 𝑠𝑆 as a mode decomposition

𝑠𝜒(𝑡, 𝑟, 𝜃, 𝜑) =
∞∑︁

ℓ=0

ℓ∑︁
𝑚=−ℓ

𝑠𝑋ℓ𝑚(𝑡, 𝑟)
𝑟

𝑌ℓ𝑚(𝜃, 𝜑),

𝑠𝑆(𝑡, 𝑟, 𝜃, 𝜑) =
∞∑︁

ℓ=0

ℓ∑︁
𝑚=−ℓ

𝑠𝑆ℓ𝑚(𝑡, 𝑟)
𝑟

𝑌ℓ𝑚(𝜃, 𝜑), (1.73)

the modes 𝑠𝑋ℓ𝑚(𝑡, 𝑟) satisfy the differential equation[︃
𝜕2

𝜕𝑟2
*

− 𝜕2

𝜕𝑡2
− 𝑓

(︃
ℓ(ℓ+ 1)
𝑟2 + 2𝑀(1 − 𝑠2)

𝑟3

)︃]︃
𝑠𝑋ℓ𝑚(𝑡, 𝑟) = 𝑠𝑆ℓ𝑚(𝑡, 𝑟). (1.74)

where d
d𝑟*

= 𝑓 d
d𝑟

(which is derived from Eq. (1.36)). In this way, we find that the above

equation reduces to Eq. (1.67) for 𝑠 = 2 implying that 2𝑋ℓ𝑚 = 𝑄 and 𝑠𝑆ℓ𝑚 = 0.
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In a similar manner, Eq. (1.69) is generalised to[︃
d2

d𝑟2
*

+ 𝜔2 − 𝑓

(︃
ℓ(ℓ+ 1)
𝑟2 + 2𝑀(1 − 𝑠2)

𝑟3

)︃]︃
𝑠�̃�𝜔ℓ(𝑟) = 𝑠𝑆𝜔ℓ, (1.75)

where 𝑠�̃�𝜔ℓ(𝑟) and 𝑠𝑆𝜔ℓ are the Fourier modes of the ℓ-modes of 𝑠𝜒 and 𝑠𝑆, respectively.

In this way, perturbations of Schwarzschild spacetime can be described by a spin-𝑠

field 𝑠𝜒. The source 𝑠𝑆 is constructed from the actual physical perturbation source. For

instance, for scalar perturbations (𝑠 = 0) produced by a scalar charge, the source 0𝑆 is

given by (see Eqs. (1.10))

0𝑆(𝑥) = −4𝜋𝑞
∫︁

Γ
𝛿4(𝑥, 𝑧(𝜏))d𝜏.

1.8.4 Even-parity perturbations

The gauge vector 𝜉𝜇 for even parity perturbations is [36]

𝜉𝜇 =
(︂
𝑀0(𝑡, 𝑟)𝑌ℓ𝑚,𝑀1(𝑡, 𝑟)𝑌ℓ𝑚,𝑀2(𝑡, 𝑟)𝜕𝜃𝑌ℓ𝑚,𝑀2(𝑡, 𝑟)

1
sin2 𝜃

𝜕𝜃𝑌ℓ𝑚

)︂
, (1.76)

where 𝑀0, 𝑀1, and 𝑀2 are chosen such that we annul the ℎ0, ℎ1 and 𝐺 functions in

Eq. (1.55), i.e.,

ℎ(ℓ𝑚)
𝜇𝜈 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑓𝐻0 𝐻1 0 0

𝐻1
𝐻2
𝑓

0 0

0 0 𝑟2𝐾 0

0 0 0 𝑟2𝐾 sin2 𝜃

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
× 𝑌ℓ𝑚. (1.77)

Once again, we perform a similar rotation as we did for odd-parity perturbations and

obtain

ℎ(ℓ)
𝜇𝜈 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑓𝐻0 𝐻1 0 0

𝐻1
𝐻2
𝑓

0 0

0 0 𝑟2𝐾 0

0 0 0 𝑟2𝐾 sin2 𝜃

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
× 𝑃ℓ(cos 𝜃). (1.78)

We then insert this expression into Eq. (1.50) to obtain the corresponding equations

for 𝐻0, 𝐻1, 𝐻2 and 𝐾. Zerilli in [38] provided a detailed procedure for deriving another
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master function 𝑍(𝑡, 𝑟)7 (similar to 𝑄(𝑡, 𝑟)) from which one can reconstruct even-parity

perturbations. This equation is commonly known as the (homogeneous) Zerilli equation

[38] in (1+1)-dimensions[︃
−𝜕2

𝑡 + 𝑓𝜕𝑟𝑓𝜕𝑟 − 𝑓
2𝜆2(𝜆+ 1)𝑟3 + 6𝜆2𝑀𝑟2 + 18𝜆𝑀2𝑟 + 18𝑀3

𝑟3(𝜆𝑟 + 3𝑀)2

]︃
𝑍 = 0, (1.79)

where 𝜆 = 1
2(ℓ − 1)(ℓ + 2). We will not develop further even-parity perturbations in this

thesis. Calculating the even-perturbations are necessary if one requires to calculate the

metric perturbation in the Regge-Wheeler-Zerilli gauge. However, As we detail in the

next section, solutions to the spin-2 Regge-Wheeler equation can be used to obtain the

full radiative part of the metric perturbation.

1.8.5 Teukolsky formalism and the Teukolsky equation

After Regge and Wheeler introduced their prescription for describing gravitational

perturbations [36], years later Teukolsky came up with another formalism for describing

scalar, gravitational, electromagnetic, and neutrino-field perturbations of a rotating black

hole[41].

The Teukolsky formalism (named after Saul A. Teukolsky) is based on the Newman-

Penrose formalism [42]. In this formalism we start defining a null tetrad

𝑒(𝑎)
𝜇 = {𝑙𝜇, 𝑛𝜇,𝑚𝜇,𝑚𝜇*}.

We then project all tensors onto these tetrad. As a result, we end up with a full set of

equations relating 𝑒(𝑎)
𝜇, the spin coefficients 𝛾(𝑎)(𝑏)(𝑐)

8, the Weyl tensor 𝐶𝜇𝜈𝛼𝛽, the Ricci

tensor, and the scalar curvature.

In particular, for gravitational perturbations, we look at the so-called Weyl-Newman-

Penrose scalars (or Weyl-NP scalars). More specifically, these scalars are the projected
7The original derivation was done in the frequency domain. However, its generalization in the time

domain is direct.
8These coefficients are defined via 𝛾(𝑐)(𝑎)(𝑏) = 𝑒(𝑐)

𝜇 𝑒(𝑏)
𝜈∇𝜈𝑒(𝑎)𝜇.
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component of the Weyl tensor. They are given by [43]

𝜓0 =𝐶𝜇𝜈𝛼𝛽𝑙
𝜇𝑚𝜈𝑙𝛼𝑚𝛽, (1.80)

𝜓1 =𝐶𝜇𝜈𝛼𝛽𝑙
𝜇𝑛𝜈𝑙𝛼𝑚𝛽, (1.81)

𝜓2 =𝐶𝜇𝜈𝛼𝛽𝑙
𝜇𝑚𝜈𝑚𝛼*𝑛𝛽, (1.82)

𝜓3 =𝐶𝜇𝜈𝛼𝛽𝑙
𝜇𝑛𝜈𝑚𝛼*𝑛𝛽, (1.83)

𝜓4 =𝐶𝜇𝜈𝛼𝛽𝑛
𝜇𝑚𝜈*𝑛𝛼𝑚𝛽*

, (1.84)

These five complex-valued scalars encode the 10 out of the 20 components of the Rie-

mann tensor9. In the Teukolsky formalism, 𝑒(𝑎)
𝜇 are the so-called Kinnersley tetrad. For

Schwarzschild spacetime, they are given by

𝑒(1)
𝜇 = 𝑙𝜇 =

(︁
𝑓−1, 1, 0, 0

)︁
, (1.85)

𝑒(2)
𝜇 =𝑛𝜇 =

(︂1
2 ,−

1
2𝑓, 0, 0

)︂
, (1.86)

𝑒(3)
𝜇 =𝑚𝜇 =

(︃
0, 0, 1√

2𝑟
,
𝑖 csc 𝜃√

2𝑟

)︃
, (1.87)

𝑒(4)
𝜇 =𝑚𝜇* =

(︃
0, 0, 1√

2𝑟
,−𝑖 csc 𝜃√

2𝑟

)︃
. (1.88)

With this tetrad choice, the only non-vanishing Weyl-NP scalar is 𝜓2 = −𝑀/𝑟3.

For gravitational perturbations, the scalars of interest are 𝜓0 and 𝜓4 since a per-

turbation of these scalars returns the radiative components of the metric perturbation.

More specifically, we decompose the sccalars 𝜓0 and 𝜓4 into a background part (identified

by an 𝐴 superscript) and a perturbation part (identified by a 𝐵 superscript), i.e.,

𝜓0 = 𝜓𝐴
0 + 𝜓𝐵

0 , 𝜓4 = 𝜓𝐴
4 + 𝜓𝐵

4 . (1.89)

Since 𝜓𝐴
0 = 𝜓𝐴

4 = 0 for Schwarzschild spacetime, we can drop the labels in 𝜓𝐵
0 and 𝜓𝐵

4 and

use 𝜓0 and 𝜓4 as the actual (gravitational) field perturbations of the black hole. Teukolsky

found out that the equations satisfied by 𝜓0 and 𝜓4 can be decoupled and derived from a

single master function. This master function turned out to be a spin-𝑠 field which, unlike
9The remaining 10 components (contained in the Ricci tensor) do not play a significant role in the

following calculations. Moreover, we pay more attention to 𝜓0 and 𝜓4 since they are the ones containing
information about the radiative part of the metric perturbation.
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the spin of 𝑠𝜒 in Eq. (1.72), it can take negative and fractional values as well [41], i.e.,

𝑠 = 0,±1
2 ,±1,±2. Let 𝑠Ψ be this master function. In particular, we have [41]

0Ψ = 0𝜒, (1.90)

2Ψ =𝜓0, (1.91)

−2Ψ = 𝑟4𝜓4, (1.92)

and for the remaining cases 𝑠 = ±1 and 𝑠 = ±1
2 , 𝑠Ψ describes electromagnetic and

neutrino perturbations, respectively. In the following and onward we keep 𝑠 unfixed despite

our expressions not being mainly focused on these last two types of perturbation. We will

give the corresponding values to 𝑠 when explicit values are required.

The derivation of the field equation for 𝑠Ψ is not trivial. It requires to calculate

the spin coefficients and also use the Ricci and Bianchi identities. After putting all these

quantities together, the field equation for 𝑠Ψ is given by [44][︃
�+ 2𝑠

𝑟2

(︃
3𝑀 − 𝑟

𝑓
𝜕𝑡 + (𝑟 −𝑀)𝜕𝑟 + 𝑖

cos 𝜃
sin2 𝜃

𝜕𝜑 + 1 − 𝑠 cot2 𝜃

2

)︃]︃
𝑠Ψ(𝑥, 𝑥′) = −4𝜋𝑠𝒯 (𝑥, 𝑥′),

(1.93)

where 𝑠𝒯 (𝑥, 𝑥′) is the perturbation source10.

Despite field perturbations being reduced to one single partial differential equation,

the non-trivial angular dependence of 𝑠Ψ in Eq. (1.93) brings an additional difficulty.

However, Chandrasekhar found that for 𝑠 ≤ 0, solutions to Eq. (1.93) are related with

homogeneous solutions to Eq. (1.72) via [34]

𝑠Ψ = ð|𝑠|
𝑠𝒞(𝑡, 𝑟)𝑠𝜒, (1.94)

where 𝑠𝜒 is a homogeneous solution to Eq. (1.72), 𝑠𝒞(𝑡, 𝑟) is given by

𝑠𝒞(𝑡, 𝑟) = (𝑟𝑓)|𝑠|
(︃
𝜕

𝜕𝑟
− 𝑓−1 𝜕

𝜕𝑡

)︃|𝑠|

𝑟|𝑠|−1, (1.95)

and

ð = −
(︂
𝜕𝜃 + 𝑖

sin 𝜃𝜕𝜑 − 𝑠 cot 𝜃
)︂

(1.96)
10An explicit calculation of 𝑠𝒯 (𝑥, 𝑥′) from the stress-energy tensor can be found in [41].
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is the spin raising operator. Similarly, the spin lowering operator is

ð̄ = −
(︂
𝜕𝜃 − 𝑖

sin 𝜃𝜕𝜑 + 𝑠 cot 𝜃
)︂
, (1.97)

and when applied on spin-weighted spherical harmonics 𝑠𝑌ℓ𝑚(𝜃, 𝜑), they yield

ð (𝑠𝑌ℓ𝑚) = +
√︁
ℓ(ℓ+ 1) − 𝑠(𝑠+ 1) 𝑠+1𝑌ℓ𝑚, (1.98)

ð̄ (𝑠𝑌ℓ𝑚) = −
√︁
ℓ(ℓ+ 1) − 𝑠(𝑠− 1) 𝑠−1𝑌ℓ𝑚. (1.99)

Once again, the symmetries of Schwarzschild spacetime (manifested in Eq. (1.93))

allow us to decompose 𝑠Ψ as

𝑠Ψ =
∞∑︁

ℓ=|𝑠|

ℓ∑︁
𝑚=−ℓ

∞∫︁
−∞

𝑠�̃�𝜔ℓ(𝑟)𝑠𝑌ℓ𝑚(𝜃, 𝜑)𝑒−𝑖𝜔𝑡d𝜔, (1.100)

where the radial function 𝑠�̃�𝜔ℓ(𝑟) satisfies the radial Teukolsky equation [41]11, i.e.,[︃
𝑟2𝑓(𝑟) d2

d𝑟2 + 2(𝑟 −𝑀)(𝑠+ 1) d
d𝑟 + 4𝑖𝜔𝑠𝑟 + 𝑠(𝑠+ 1) − ℓ(ℓ+ 1)

+𝑟
2𝜔2 − 2𝑖𝜔𝑠(𝑟 −𝑀)

𝑓(𝑟)

]︃
𝑠�̃�𝜔ℓ(𝑟) = 𝑟2

𝑠𝑇𝜔ℓ(𝑟), (1.101)

where the source Fourier modes 𝑠𝑇𝜔ℓ can be obtained by decomposing 𝑠𝑇 in the same way

as 𝑠Ψ

𝑠𝑇 =
∞∑︁

ℓ=|𝑠|

ℓ∑︁
𝑚=−ℓ

∞∫︁
−∞

𝑠𝑇𝜔ℓ(𝑟)𝑠𝑌ℓ𝑚(𝜃, 𝜑)𝑒−𝑖𝜔𝑡d𝜔. (1.102)

In case the radial function 𝑠�̃�𝜔ℓ is a homogeneous solution to the radial Teukolsky

equation, we are able to find the counterpart of Eq. (1.94) in the frequency domain. In

particular, for 𝑠 = −2 this transformation takes the form

−2�̃�𝜔ℓ(𝑟) = −2𝒞(𝑟, 𝜔) 2�̃�𝜔ℓ, (1.103)

where −2𝒞(𝑟, 𝜔) is given by [34]

−2𝒞(𝑟, 𝜔) = (𝑟𝑓)2
(︃

d
d𝑟 + 𝑖

𝜔

𝑓

)︃2

𝑟. (1.104)

11This equation was first derived in Kerr spacetime by Teukolsky.
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1.8.6 Metric reconstruction in the radiation gauge

There are two radiation gauges and they are identified according to the condition

they impose on the metric ℎ𝜇𝜈 , i.e.,⎧⎪⎪⎨⎪⎪⎩
ℎ𝜇𝜈𝑙

𝜈 = 0, Ingoing radiation gauge (IRG),

ℎ𝜇𝜈𝑛
𝜈 = 0, Outgoing radiation gauge (ORG).

(1.105)

In both cases the metric is traceless, i.e., ℎ𝜇
𝜇 = 0.

Unlike the calculation of the metric perturbation in the Regge-Wheeler gauge,

obtaining the metric perturbation in the radiation gauge (from the Weyl-NP scalars 𝜓0

and 𝜓4) is not trivial. Based on a previous work from Cohen and Kegeles [45], Chrzanowski

provided the first prescription for reconstructing the metric perturbation in the radiation

gauge [46]. Later on, Wald [47] showed that the prescription in Ref. [46] did not lead

to a real metric perturbation. In a later work, Cohen and Kegeles [48] based on the

results of Chrzanowski and Wald, they established the standard procedure we now have

for reconstructing the metric perturbation in the radiation gauge. This procedure starts

with the following considerations (from now and onward, the spin 𝑠 can only take the

values of ±2)

∙ The metric perturbation ℎ𝜇𝜈 satisfies the field equation

ℰ̂ [ℎ𝜇𝜈 ] = 𝑇𝜇𝜈 ,

where ℰ̂ [ℎ𝜇𝜈 ] is the linearized Einstein tensor (e.g. 𝛿𝑅𝜇𝜈 for vacuum solutions).

∙ There exists an operator 𝒯𝑠 which allows us to transform ℎ𝜇𝜈 into a Weyl-NP scalar

𝒯𝑠 [ℎ𝜇𝜈 ] = 𝜓0/4. (1.106)

∙ In the Teukolsky formalism, 𝑠Ψ describes gravitational perturbations of Schwarzschild

spacetime, this satisfies

�̂�𝑠 [𝑠Ψ] = 𝑠𝒯 = 𝒮𝑠 [𝑇𝜇𝜈 ] , (1.107)
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where 𝒮𝑠 is certain second order differential operator which allows us to construct

the Teukolsky source 𝑠𝒯 from 𝑇𝜇𝜈 [46].

According to Wald [47], given a homogeneous solution Ψ to the Teukolsky equation,

if this satisfies

�̂�†
𝑠 [Ψ] = 0 (1.108)

(where the �̂�†
𝑠 is the adjoint of �̂�𝑠), then a metric reconstructed from this solution (namely

ℎrec
𝜇𝜈 ) is a vacuum solution of the Einstein’s field equation. This reconstructed metric is

then given by

ℎrec
𝜇𝜈 = 4ℜ

(︁
𝒮†

𝑠 [Ψ]𝜇𝜈

)︁
. (1.109)

Furthermore, we should also impose that

𝒯𝑠

[︁
ℎrec

𝜇𝜈

]︁
= 𝒯𝑠 𝒮†

𝑠ΨIRG/ORG = 𝜓0/4, (1.110)

where the IRG (ORG) label on Ψ indicates that the associated metric perturbation ℎrec
𝜇𝜈

is in the ingoing (outgoing) radiation gauge. Therefore, the first step for calculating the

radiative components of the metric perturbation consists of finding Ψ (usually referred

to as Hertz potential) such that it satisfies Eq. (1.108) and Eq. (1.109). Once this field is

known, we reconstruct the metric perturbation following Chrzanowski’s procedure.

Nakano and Sasaki [44] came up with a different approach for reconstructing the

tail integral of the metric perturbation, a key component for obtaining the regular part

of the metric perturbation. This approach consisted of calculating the non-direct part of

the retarded Green function −2𝐺
𝑇
ret(𝑥, 𝑥′) of Eq. (1.93) for 𝑠 = −2. Next, they constructed

the regular part of 𝑟4𝜓4 (a homogeneous solution to Eq. (1.93)) integrating the non-direct

part of −2𝐺
𝑇
ret(𝑥, 𝑥′) against a prescribed source (see [44]). Once the regular part of 𝑟4𝜓4

is determined, Nakano and Sasaki applied Chrzanowski’s procedure to reconstruct the

metric perturbation.

The method for calculating the non-direct part of 𝐺𝑇
ret(𝑥, 𝑥′) in [44] consisted of

applying the Chandrasekhar transformation on the non-direct part of the retarded Regge-

Wheeler Green function (namely 𝑠𝐺
nd
ret). However, as we show in a following chapter, ap-
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plying differential operators on 𝑠𝐺
nd
ret induces undesired distributions. Thus, it is necessary

to modify the original metric reconstruction procedure proposed by Chrzanowski so that

these additional distributions are properly removed.

In principle, Nakano and Sasaki applied this metric reconstruction procedure in the

IRG and obtained the tail integral for the metric perturbation (to first post-Newtonian or-

der) using the regular part of 𝜓4. This last step in [44] is quite unclear since Chrzanowski’s

procedure requires a Hertz potential to reconstruct the metric perturbation. The regular

part of 𝜓4 does not seem to comply with this requirement of being a Hertz potential. In

a following chapter we aim to see in detail the prescription in [44].



48

2 Calculation of the Regge-Wheeler Green

function

In this chapter we cover the main methods and techniques we are using to un-

derstand field perturbations in a background spacetime. In particular, the background

spacetime we are interested in is the Schwarzschild spacetime.

As discussed in Chapter 1, solving the equation of motion in curved spacetime

is not trivial. The field produced by the particle cannot be ignored since it produces

a back reaction effect on the particle itself. This effect is commonly incorporated into

the particle’s equation of motion as a SF and, as a result, the particle does not follow a

geodesic motion in the background spacetime. The first step towards the calculation of the

SF involves calculating the retarded Green function of the Regge-Wheeler equation (see

Eq. (1.72)). However, this is not the only alternative since the SF is a gauge-dependent

quantity. Thus, when solving the Regge-Wheeler equation we are constraining ourselves

to the Regge-Wheeler gauge which, as pointed out in Chapter 1, has some downsides

during the regularisation process [49, 50].

Throughout this chapter and on-wards, we will use the acronym RWE to refer to

the Regge-Wheeler equation given in Eq. (1.72) (i.e., it includes the three types of field

perturbations). If necessary, we may add in front of “RWE” when we require to focus on a

specific field perturbation. Unless the opposite is specified, we will use the term “retarded

GF” to refer to the retarded Green function of the RWE.

For field perturbations in Schwarzschild spacetime, we first calculate the retarded

GF for the RWE. In a following Chapter, we make use of these results to calculate the

Teukolsky Green function.

Let 𝑠𝐺ret(𝑥, 𝑥′) be the retarded GF of the RWE. Hence, 𝑠𝐺ret(𝑥, 𝑥′) satisfies Eq. (1.72)
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with 𝑠𝑆 being a covariant Dirac-delta distribution, i.e.,

(︂
�+ 𝑠2 2𝑀

𝑟3

)︂
𝑠𝐺ret(𝑥, 𝑥′) = −𝛿4(𝑥, 𝑥′) = − 4𝜋

𝑟𝑟′ 𝛿(𝑡− 𝑡′)𝛿(𝑟 − 𝑟′)𝛿(Ω2 − Ω′
2), (2.1)

where Ω2 is the solid angle of the 2-sphere. This GF is characterized for having support

only on and inside the future light cone of 𝑥′.

Our approach for solving Eq. (2.1) is based on the method of matched expansions

detailed in Sec. 1.6, i.e., We calculate 𝑠𝐺ret in the QL and DP regions.

For the QL region, the Hadamard form of 𝑠𝐺ret(𝑥, 𝑥′) is given by

𝑠𝐺ret(𝑥, 𝑥′) = 𝑈(𝑥, 𝑥′)𝛿(𝜎)𝜃(𝑡− 𝑡′) − 𝑉𝑠(𝑥, 𝑥′)𝜃(−𝜎)𝜃(𝑡− 𝑡′), (2.2)

where 𝑈(𝑥, 𝑥′) and 𝑉𝑠(𝑥, 𝑥′) are two regular biscalars to be determined.

From Eq. (2.2) we observe that 𝑠𝐺ret(𝑥, 𝑥′) diverges on the light cone. In fact, it

has been observed [51, 52, 53, 54, 55, 56] that the retarded GF diverges when 𝑥′ and 𝑥

are connected by a null geodesic (even beyond normal neighbourhoods) displaying the

following global fourfold (leading) singularity structure1: 𝛿(𝜎) → PV (1/𝜎) → −𝛿(𝜎) →

−PV (1/𝜎) → 𝛿(𝜎) . . . , where PV denotes the principal value distribution.

2.1 Retarded Green function in the QL region

For simplicity, in Eq. (2.2) we will drop the arguments in 𝑠𝐺ret, 𝑈 , 𝑉𝑠 and in any

other related biscalars. The first term in the right hand side of Eq. (2.2) (which involves

𝑈) is the direct part of 𝑠𝐺ret and the second term (which involves 𝑉𝑠) is the non-direct

part of 𝑠𝐺ret.

By substituting Eq. (2.2) back in Eq. (2.1) and after some algebra2 the biscalars
1Here, 𝜎 refers to a well-defined extension of the world function outside normal neighbourhoods [53,

6]. We also note that this structure does not hold at caustics [53] and that the subleading order (in
Schwarzschild and outside caustics) is given in [53].

2We will see this in more detail in Chapter 5.
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𝑈 and 𝑉𝑠 satisfy the following equations

𝑈 = Δ1/2,(︂
�+ 𝑠2𝑀

𝑟3

)︂
𝑉𝑠 = 0,

𝜎𝛼∇𝛼𝑉𝑠 + 1
2 (𝜎𝛼

𝛼 − 2)𝑉𝑠 = 1
2 �𝑈 |𝜎=0 ,

[𝑉𝑠] ≡ 𝑉𝑠|𝑥=𝑥′ = −𝑀

𝑟3 𝑠
2,

(2.3)

where 𝑥 = (𝑡, 𝑟, 𝜃, 𝜑), 𝑥′ = (𝑡′, 𝑟′, 𝜃′, 𝜑′), Greek indices on 𝜎 indicate covariant differentia-

tion with respect to 𝑥 (or 𝑥′ if the index has an apostrophe), 𝑉𝑠 ≡ 𝑉𝑠|𝜎=0, and Δ is the

van Vleck determinant given by

Δ(𝑥, 𝑥′) = − det [−𝜎𝛼𝛽′ ]√︁
−𝑔(𝑥)

√︁
−𝑔(𝑥′)

,

with 𝑔(𝑥) (𝑔(𝑥′)) being the determinant of the metric evaluated at 𝑥 (𝑥′). Note that in

(2.3) we introduced the bracket notation [𝑉𝑠] to indicate that the quantity in brackets

(𝑉𝑠 in this case) is evaluated at coincidence 𝑥 = 𝑥′. Throughout the thesis, we will use

this square-bracket notation for other quantities to indicate that they are evaluated at

coincidence.

It is worth noting that in (2.3), the transport equation for 𝑉𝑠 together with [𝑉𝑠] =

−𝑀
𝑟3 𝑠

2 determines 𝑉𝑠 on the light cone. We then use 𝑉𝑠 as initial data to solve the wave

equation for 𝑉𝑠. This kind of initial data is usually referred to as Characteristic Initial

Data (CID) and 𝑉𝑠 satisfies a characteristic Initial Value Problem (or characteristic IVP

for short).

By using the Hadamard form for solving Eq. (2.1), for the non-direct part we

no longer have to worry about the distributional source and instead we have to solve a

homogeneous equation for 𝑉𝑠. Therefore, if 𝑥′ lies within a normal neighbourhood of 𝑥,

to obtain the retarded GF it is sufficient to solve Eqs. (2.3) instead of directly solving

Eq. (2.1). Outside 𝒩 (𝑥) the GF equation becomes a homogeneous equation since the

distributional source has support only at coincidence, i.e., 𝑥′ = 𝑥.
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2.1.1 Calculation of Δ1/2(𝑟, 𝑟′)

From Eq. (2.2) it is straightforward to see that the term involving 𝑈 only has

support on the light cone. There exist different approaches to calculate the van Vleck

determinant. Particularly, the method we adopt here is based on solving a set of trans-

port equations along the geodesic joining 𝑥 and 𝑥′. This approach was first explored by

Avramidi [57], later on Ottewill and Wardell used it to derive the corresponding transport

equation for Δ1/2 [58]

dΔ1/2

d𝜏 = − 1
2𝜏 𝑄

𝜇
𝜇Δ1/2, (2.4)

d𝑄𝜇
𝜈

d𝜏 = 𝑢𝛼
(︁
𝑄𝜇

𝛽Γ𝛽
𝛼𝜈 − Γ𝜇

𝛼𝛽𝑄
𝛽

𝜈

)︁
− 1
𝜏

(𝑄𝜇
𝛼𝑄

𝛼
𝜈 +𝑄𝜇

𝜈) − 𝜏𝑅𝜇
𝛼𝜈𝛽𝑢

𝛼𝑢𝛽, (2.5)

where 𝑅𝛼
𝛽𝜇𝜈 is the Riemann tensor, Γ𝛼

𝜇𝜈 are the Christoffel symbols, 𝜏 is an affine pa-

rameter, 𝑢𝜇 = d𝑥𝜇

d𝜏
is a vector tangent to the geodesic joining 𝑥 and 𝑥′ and the quantity

𝑄𝜇
𝜈 is related to Synge’s world function via

𝑄𝜇
𝜈 = 𝛿𝜇

𝜈 − 𝜎𝜇
𝜈 . (2.6)

The initial conditions to solve Eqs. (2.4)–(2.5) are, respectively,

Δ1/2|𝑥=𝑥′ = 1 and 𝑄𝜇
𝜈 |𝑥=𝑥′ = 0.

A second approach we consider for calculating the direct part of Eq. (2.2) is de-

scribed in [6]. This approach uses the conformal transformation given in Eq. (1.37) to

express 𝑈𝛿(𝜎)𝜃(Δ𝑡) in terms of quantities defined in ℳ2 and S2. There is a property

relating the GF’s from two spacetimes with conformally related metrics [33, 59]. For

Schwarzschild and ℳ2 × S2, we have [33, 59]

𝑠𝐺ret(𝑥, 𝑥′) = 1
𝑟 𝑟′ 𝑠�̂�ret(𝑥, 𝑥′), (2.7)

where 𝑠�̂�ret is the corresponding retarded GF in ℳ2 × S2 spacetime.

Eq. (2.7) shows that the direct parts of 𝑠𝐺ret and 𝑠�̂�ret are related via [6]

Δ1/2(𝑟, 𝑟′,Δ𝑡, 𝛾)𝛿(𝜎)𝜃(Δ𝑡) = 1
𝑟 𝑟′ Δ̂

1/2(𝑟, 𝑟′,Δ𝑡, 𝛾)𝛿(�̂�)𝜃(Δ𝑡), (2.8)
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with 𝛾 being the angular separation between 𝑥 and 𝑥′ and is defined via

cos 𝛾 ≡ cos 𝜃 cos 𝜃′ + sin 𝜃 sin 𝜃′ cos(𝜙− 𝜙′), (2.9)

Δ𝑡 = 𝑡− 𝑡′, Δ̂1/2 and �̂� being, respectively, the van Vleck determinant and Synge’s world

function in ℳ2 × S2. In terms of and 𝛾 and 𝜂, the proper time in ℳ2, �̂� is given by [6]

�̂� = −1
2𝜂

2 + 1
2𝛾

2. (2.10)

Since ℳ2 × S2 is a direct product, Δ̂1/2 can be factorized as [55]

Δ̂1/2(𝑟, 𝑟′,Δ𝑡, 𝛾) = Δ1/2
2d (𝑟, 𝑟′,Δ𝑡) · Δ1/2

S2 (𝛾), (2.11)

where Δ2d (ΔS2 = 𝛾
sin 𝛾

) is the van Vleck determinant in ℳ2 (S2).

The direct part of 𝑠𝐺ret can be decomposed as

𝑈(𝑥, 𝑥′)𝛿(𝜎)𝜃+(𝑥, 𝑥′) = Δ1/2(𝑟, 𝑟′; Δ𝑡)𝛿(𝜎)𝜃(Δ𝑡) = 1
𝑟𝑟′

∞∑︁
ℓ=0

(2ℓ+ 1)𝐺dir
ℓ 𝑃ℓ(cos 𝛾), (2.12)

where 𝛾 is the angle between 𝑥 and 𝑥′ and 𝐺dir
ℓ = 𝐺dir

ℓ (𝑟, 𝑟′; Δ𝑡) are the ℓ-modes of the

direct part. By using Eqs. (2.8)–(2.11) we find that 𝐺dir
ℓ is given by [6]

𝐺dir
ℓ = 𝜃(Δ𝑡)

2

∫︁ 1

−1
Δ1/2

2d (𝑟, 𝑟′,Δ𝑡) 𝛾

sin 𝛾 𝛿(�̂�)d(cos 𝛾)

= 𝜃(Δ𝑡)
2 𝜃(𝜋 − 𝜂)Δ1/2

2d 𝑃ℓ(cos 𝜂)
√︃

sin 𝜂
𝜂

.

(2.13)

We consider two methods to calculate 𝐺dir
ℓ . The first method relies on solving

Eq. (2.4) in (1+1)-dimensions to compute Δ1/2
2d in ℳ2. The second method consists of

a (small distance) coordinate expansion for Δ1/2
2d and Synge’s world function 𝜎2d in ℳ2.

In Ref. [6], the authors develop this method and provide accurate values for Δ1/2
2d =

Δ1/2
2d (𝑟, 𝑟′; Δ𝑡) and 𝜂 = 𝜂(𝑟, 𝑟′; Δ𝑡). When putting all these results back in Eq. 2.13, they

found that

𝐺dir
ℓ = 1

2 + (2𝑀 + 𝑟ℓ(ℓ+ 1))
8𝑓𝑟3 Δ𝑟2 − 𝑓 (2𝑀 + 𝑟ℓ(ℓ+ 1))

8𝑟3 Δ𝑡2

+ (12𝑀2 −𝑀𝑟(3ℓ(ℓ+ 1) + 11) + 𝑟2(3ℓ(ℓ+ 1) + 2))
24𝑟5𝑓 2 Δ𝑟3

+ 3𝑀𝑟(3ℓ(ℓ+ 1) + 5) − 𝑟2(3ℓ(ℓ+ 1) + 2) − 24𝑀2

24𝑟5 Δ𝑟Δ𝑡2 + 𝒪
(︁
𝛿𝑥4

)︁
, (2.14)

where Δ𝑥 = 𝑥− 𝑥′ with 𝑥 = (𝑡, 𝑟).
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2.1.2 Van Vleck determinant and 𝜎𝜇𝜈 along radial null geodesics

Although the transport equations for the components of 𝑄𝜇
𝜈 are coupled and

difficult to solve, there is a particular scenario where we are able to calculate them an-

alytically. This case corresponds to radial null geodesics where, in the Penrose limit3

the Schwarzschild spacetime is flat. This limit implies Δ(𝑥, 𝑥′) = 1 and suggests that

Eqs. (2.4)–(2.5) could be simplified in this particular case. In the following we explore

this possibility.

We start with the 4-velocity for a radial null geodesic with energy 𝐸:

𝑢𝜇 = (𝑡, �̇�, 𝜃, �̇�) = 𝐸(𝑓−1, 𝜖, 0, 0) ≡ 𝐸𝑡𝜇, (2.15)

where an overdot indicates differentiation with respect to an affine parameter 𝜆, and 𝜖 is

equal to +1 and −1 for ingoing and outgoing geodesics, respectively. Since for radial null

geodesics �̇� is constant, we can use 𝑟 as an affine parameter.

The transport equations (2.4)–(2.5) are then given by

(𝑟 − 𝑟′)dΔ1/2

d𝑟 = − 1
2𝑄

𝛼
𝛼Δ1/2, (2.16)

(𝑟 − 𝑟′)d𝑄𝜇
𝜈

d𝑟 = 𝜖(𝑟 − 𝑟′)
(︁
𝑄𝜇

𝛼Γ𝛼
𝜈𝛽𝑡

𝛽 −𝑄𝛼
𝜈Γ𝜇

𝛼𝛽𝑡
𝛽
)︁

−

𝑄𝜇
𝛼𝑄

𝛼
𝜈 −𝑄𝜇

𝜈 − (𝑟 − 𝑟′)2𝑅𝜇
𝛼𝜈𝛽𝑡

𝛼𝑡𝛽. (2.17)

The symmetry 𝜎𝛼𝛽 = 𝜎𝛽𝛼 implies

𝑄𝑟
𝑡 = −𝑓 2𝑄𝑡

𝑟, (2.18)

and since we are only interested in radial null geodesics, it follows that

𝑄𝐴
𝐵(𝑥, 𝑥′) = 0, (2.19)

for any 𝐴,𝐵 ∈ {𝜃, 𝜑}.
3The Penrose limit establishes that any spacetime reduces to a plane wave spacetime near a null

geodesic. A plane wave spacetime is characterized by the metric d𝑠2 = ℎ(𝑢, 𝑥, 𝑦)d𝑢2 + 2d𝑢d𝑣+ d𝑥2 + d𝑦2

where (𝑢, 𝑣, 𝑥, 𝑦) are Brinkmann coordinates, and ℎ(𝑢, 𝑥, 𝑦) is a known function.
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When putting Eq. (2.19) back into Eq. (2.17) for the non-zero components 𝑄𝑡
𝑡,

𝑄𝑟
𝑟 and 𝑄𝑡

𝑟 = −𝑓−2𝑄𝑟
𝑡, we obtain

(𝑟 − 𝑟′)d𝑄𝑡
𝑡

d𝑟 = − 2𝑀(𝑟 − 𝑟′)2

𝑟3𝑓
−𝑄𝑡

𝑡 − (𝑄𝑡
𝑡)2 +

(︁
𝑓𝑄𝑡

𝑟

)︁2
+ 𝜖2𝑀(𝑟 − 𝑟′)

𝑟2 𝑄𝑡
𝑟, (2.20)

(𝑟 − 𝑟′)d𝑄𝑟
𝑟

d𝑟 = 2𝑀(𝑟 − 𝑟′)2

𝑟3𝑓
−𝑄𝑟

𝑟 − (𝑄𝑟
𝑟)2 +

(︁
𝑓𝑄𝑡

𝑟

)︁2
− 𝜖2𝑀(𝑟 − 𝑟′)

𝑟2 𝑄𝑡
𝑟, (2.21)

(𝑟 − 𝑟′)d𝑄𝑡
𝑟

d𝑟 = 𝜖2𝑀(𝑟 − 𝑟′)2

𝑟3𝑓 2 −𝑄𝑡
𝑟 −𝑄𝑡

𝑟(𝑄𝑡
𝑡 +𝑄𝑟

𝑟)

− 𝑀(𝑟 − 𝑟′)
𝑟2𝑓 2

(︁
2𝑓𝑄𝑡

𝑟 − 𝜖𝑄𝑡
𝑡 + 𝜖𝑄𝑟

𝑟

)︁
. (2.22)

And, from Δ(𝑥, 𝑥′) = 1 together with Eq. (2.17) and Eq. (2.19) we can conclude that

𝑄𝛼
𝛼 = 𝑄𝑡

𝑡 +𝑄𝑟
𝑟 = 0 =⇒ 𝑄𝑟

𝑟 = −𝑄𝑡
𝑡. (2.23)

Adding Eqs. (2.20)–(2.21) and using 𝑄𝛼
𝛼 = 0 = 𝑐𝑜𝑛𝑠𝑡 together with Eq. (2.18) and

Eq. (2.23), we obtain

(𝑟 − 𝑟′)d𝑄𝛼
𝛼

d𝑟 = −2(𝑄𝑡
𝑡)2 + 2

(︁
𝑓𝑄𝑡

𝑟

)︁2
= 0 =⇒ 𝑄𝑡

𝑡 = ±𝑓𝑄𝑡
𝑟. (2.24)

When inserting Eqs. (2.23)–(2.24) back into the transport equations (2.20) and (2.21) we

note that, in order for these equations to be consistent, the +/− sign in Eq. (2.24) must

be chosen so that it corresponds to ingoing/outgoing geodesics respectively (i.e., so that

it is equal to “−𝜖”). The resulting first-order, linear ordinary differential equation for 𝑄𝑡
𝑡

is:

(𝑟 − 𝑟′)d𝑄𝑡
𝑡

d𝑟 = − 2𝑀(𝑟 − 𝑟′)2

𝑟3𝑓
− 𝑟2 − 2𝑀𝑟′

𝑟2𝑓
𝑄𝑡

𝑡, (2.25)

and in order to integrate it we use Eqs. (2.23)–(2.24) and Eq. (2.18) to obtain

𝑄𝑡
𝑡 = −𝑄𝑟

𝑟 = 𝑀

𝑓

⎛⎝3𝑟 − 𝑟′

𝑟2 −
2 ln

(︁
𝑟
𝑟′

)︁
𝑟 − 𝑟′

⎞⎠ ,
𝑄𝑡

𝑟 = − 𝑄𝑟
𝑡

𝑓 2 = ±𝑄𝑡
𝑡

𝑓
= ±𝑀

𝑓 2

⎛⎝3𝑟 − 𝑟′

𝑟2 −
2 ln

(︁
𝑟
𝑟′

)︁
𝑟 − 𝑟′

⎞⎠ ,
(2.26)

where the +/− sign corresponds to ingoing/outgoing geodesics respectively.

In this way, Eqs. (2.19) and (2.26) provide the analytical expressions we were

looking for. Once 𝑄𝜇
𝜈 is determined, the expressions for 𝜎𝜇

𝜈 are immediate. We have

analytically (and numerically) verified that these expressions for 𝑄𝛼
𝛽 are indeed a solution

of the system (2.5), and thus that Δ(𝑥, 𝑥′) = 1 along radial null geodesics in Schwarzschild.
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2.1.3 Calculation of 𝑉𝑠

The remaining equation in (2.3) involving the biscalar 𝑉𝑠 may also be solved via

transport equations by writing 𝑉𝑠 as an expansion in increasing powers of 𝜎

𝑉𝑠 =
∞∑︁

𝑘=0
𝑠𝜈𝑘𝜎

𝑘, (2.27)

where the coefficients 𝑠𝜈𝑘 satisfy certain transport equations [58]. This approach, however,

is not recommended because the transport equations for 𝑠𝜈𝑘 becomes increasingly difficult

to solve as 𝑘 increases. Instead, the approach we follow is based on an expansion in

powers of the coordinate separation (between 𝑥 and 𝑥) rather than an expansion in 𝜎. By

considering the symmetries of Schwarzschild spacetime, 𝑉𝑠 may be written as [60]

𝑉𝑠 = 𝑉𝑠(𝑥, 𝑥′) =
∞∑︁

𝑖,𝑗,𝑘=0
𝑠𝑣𝑖𝑗𝑘(𝑟)(𝑡− 𝑡′)2𝑖(1 − cos 𝛾)𝑗(𝑟 − 𝑟′)𝑘, (2.28)

where 𝑠𝑣𝑖𝑗𝑘 are some coefficients to be determined. Since the expansion in Eq. (2.28) can

be seen as a power series in the separation of the points, it is not guaranteed to converge

for all points 𝑥 and 𝑥′ even inside a normal neighbourhood [60]. Casals, Dolan, Ottewill

and Wardell [60] adopted the Hadamard-WKB method proposed in [61] and developed

a prescription for calculating 0𝑣𝑖𝑗𝑘
4. In order to calculate 𝑉𝑠, we took the prescription

detailed in [60] and generalised it to any given spin 𝑠. This generalisation consisted of

taking Eq. (2.10) of Ref. [60] and adding the term −𝑠2 𝑀
𝑟3 to the potential. Below we list

some of the 𝑠𝑣𝑖,𝑗,𝑘 coefficients:
4The code for calculating these coefficients can be found in [62].
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𝑠𝑣0,0,0 = −𝑀𝑠2

𝑟3 ,

𝑠𝑣1,0,0 = −𝑀𝑠2𝑓

4𝑟6

[︁
𝑀
(︁
𝑠2 − 4

)︁
+ 𝑟

]︁
,

𝑠𝑣1,1,0 = 𝑀2𝑓

1680𝑟7

[︁
2𝑀

(︁
70𝑠6 − 665𝑠4 + 784𝑠2 + 81

)︁
+ 9𝑟

(︁
35𝑠4 − 56𝑠2 − 9

)︁]︁
,

𝑠𝑣1,1,1 = 𝑀2

1680𝑟9

[︁
−16𝑀2

(︁
70𝑠6 − 665𝑠4 + 784𝑠2 + 81

)︁
+14𝑀𝑟

(︁
7
(︁
5𝑠4 − 70𝑠2 + 92

)︁
𝑠2 + 81

)︁
+ 27𝑟2

(︁
35𝑠4 − 56𝑠2 − 9

)︁]︁
𝑠𝑣2,0,0 = − 𝑀𝑓

1344𝑟10

[︁
4𝑀3

(︁
9 − 14𝑠2

(︁
𝑠4 − 20𝑠2 + 70

)︁)︁
+ 4𝑀2𝑟

(︁
7𝑠2

(︁
𝑠4 − 30𝑠2 + 131

)︁
− 9

)︁
+𝑀𝑟2

(︁
147𝑠4 − 1036𝑠2 + 9

)︁
+ 84𝑟3𝑠2

]︁
𝑠𝑣2,1,0 = − 𝑀2𝑓

4032𝑟11

[︁
6𝑀3

(︁
−2438𝑠2 + 7

(︁
𝑠4 − 34𝑠2 + 272

)︁
𝑠4 − 405

)︁
+𝑀2𝑟

(︁
−21𝑠8 + 1078𝑠6 − 10808𝑠4 + 15088𝑠2 + 2853

)︁
−9𝑀𝑟2

(︁
21𝑠6 − 343𝑠4 + 543𝑠2 + 119

)︁
+ 18𝑟3

(︁
−14𝑠4 + 27𝑠2 + 7

)︁]︁
𝑠𝑣2,2,0 = 𝑀2𝑓

887040𝑟12

[︁
66𝑀4

(︁
14𝑠10 − 735𝑠8 + 10752𝑠6 − 41990𝑠4 + 16974𝑠2 − 13365

)︁
− 22𝑀3𝑟

(︁
21𝑠10 − 1610𝑠8 + 28728𝑠6 − 117690𝑠4 + 21161𝑠2 − 61560

)︁
− 15𝑀2𝑟2

(︁
23276𝑠2 + 77

(︁
5
(︁
𝑠2 − 28

)︁
𝑠2 + 587

)︁
𝑠4 + 51050

)︁
+3𝑀𝑟3

(︁
−3465𝑠6 + 8250𝑠4 + 67551𝑠2 + 62794

)︁
+ 150𝑟4

(︁
33𝑠2

(︁
𝑠2 − 5

)︁
− 113

)︁]︁
.

We note that for 𝑖 = 𝑗 = 𝑘 = 0, 𝑠𝑣0,0,0 = [𝑉𝑠] as expected.

2.2 Retarded Green function in the DP region

In the DP region the retarded GF is simply given by the homogeneous solution to

Eq. (2.1). Once again, the symmetries of Schwarzschild spacetime allows us to perform a

mode sum decomposition to 𝑠𝐺ret(𝑟, 𝑟′,Δ𝑡, 𝛾), i.e.,

𝑠𝐺ret(𝑟, 𝑟′,Δ𝑡, 𝛾) = 1
𝑟 𝑟′

∞∑︁
ℓ=0

(2ℓ+ 1)𝑠𝐺ℓ(𝑟, 𝑟′; Δ𝑡)𝑃ℓ(cos 𝛾), (2.29)

where 𝑠𝐺ℓ are the ℓ-modes of 𝑠𝐺ret.

When substituting Eq. (2.29) back into Eq. (2.1), it can be seen that the ℓ-modes
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𝑠𝐺ℓ satisfy a (1+1)-dimensional partial differential equation 5

[︃
𝜕2

𝜕𝑟2
*

− 𝜕2

𝜕𝑡2
− 𝑓(𝑟)

𝑟2

(︃
ℓ(ℓ+ 1) + 2𝑀(1 − 𝑠2)

𝑟

)︃]︃
𝑠𝐺ℓ = −𝛿(Δ𝑡)𝛿(𝑟* − 𝑟′

*). (2.30)

The boundary conditions for these modes are chosen according to the boundary condition

of the retarded GF 𝑠𝐺ret. In practice the sum in Eq. (2.29) must be truncated at a certain

value of ℓ. One problem with discarding the higher ℓ-modes in Eq. (2.29) produce spurious

oscillations in 𝑠𝐺ret. The authors in [56] smoothed out these oscillations by introducing

a factor exp[−ℓ2/(2ℓcut)2] in the mode sum, where ℓcut is a cutoff value for the ℓ-modes.

A second problem with truncating Eq. (2.29) manifests at coincidence. The mode sum

approaches the singularity in 𝑠𝐺ret at 𝑥 = 𝑥′ as a Gaussian distribution that narrows as

more ℓ-modes are included in the sum. The DP region is the region where the truncated

sum in Eq. (2.29) is accurate enough. The method of matched expansions allows us to solve

this problem near coincidence by matching 𝑉𝑠 with the calculation of 𝑠𝐺ret via Eq. (2.29).

2.2.1 The RWE as a Characteristic Initial Value problem

When solving the equation of motion of a physical system the initial data is com-

monly placed on a surface where the time coordinate is constant. However, the ℓ-modes

𝑠𝐺ℓ in Eq. (2.29) do not have their initial data along a surface with 𝑡 = constant. In fact,

the initial data to solve Eq. (2.30) is placed on the light cone of 𝑥′. Mark, Zimmerman,

Du and Chen in [63] came up with a finite difference method to solve the 𝑠 = 0 case

of Eq. (2.30) to order ℎ2, where 2ℎ is the stepsize6 of the grid. Here we apply a similar

scheme but to order ℎ4 instead of ℎ2. We begin by rewriting Eq. (2.30) in terms of the

null coordinates 𝑢 and 𝑣:

𝑢 = 𝑡− 𝑟*, 𝑣 = 𝑡+ 𝑟*. (2.31)
5In order to obtain this equation we should also consider expressing the 𝛿(Ω − Ω′) distribution (in

the right-hand side of Eq. (2.1)) as a mode sum, i.e.,

𝛿(Ω − Ω′) =
∞∑︁

ℓ=0

2ℓ+ 1
4𝜋 𝑃ℓ (cos 𝛾) .

6This stepsize is kept fixed throughout the calculations so that the grid is uniform.
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From the Hadamard form in (1+1)-dimensions, 𝑠𝐺ℓ can be written as

𝑠𝐺ℓ(𝑣, 𝑢) = 𝑠𝑔ℓ(𝑣, 𝑢)𝜃(𝑢− 𝑢′)𝜃(𝑣 − 𝑣′), (2.32)

where for simplicity we omitted the 𝑢′ and 𝑣′ arguments in 𝑠𝐺ℓ. In (𝑡, 𝑟*) coordinates, the

product distribution 𝜃(𝑢− 𝑢′)𝜃(𝑣− 𝑣′) can be rewritten as 𝜃(Δ𝑡− 𝑟* + 𝑟′
*)𝜃(Δ𝑡+ 𝑟* − 𝑟′

*).

From this product we note that Δ𝑡 = 𝑟* − 𝑟′
* and Δ𝑡 = 𝑟′

* − 𝑟* are the equations for a

light cone centered at (𝑡′, 𝑟′
*) in ℳ2. Therefore, the product 𝜃(Δ𝑡− 𝑟* + 𝑟′

*)𝜃(Δ𝑡+ 𝑟* − 𝑟′
*)

implies that 𝑠𝐺ℓ is zero outside the future light cone of the point (𝑡′, 𝑟′
*). This implies [53]

𝜃(𝑢− 𝑢′)𝜃(𝑣 − 𝑣′) = 𝜃(−𝜎ℳ2)𝜃(Δ𝑡), (2.33)

where 𝜎ℳ2 is Synge’s world function in ℳ2.

It can be shown that the new modes 𝑠𝑔ℓ in Eq. (2.32) satisfy

𝜕2
𝑠𝑔ℓ

𝜕𝑣𝜕𝑢
+ 𝒬(𝑟)𝑠𝑔ℓ = 0, (2.34)

𝑠𝑔ℓ(𝑣 = 𝑣′, 𝑢) = 1
2 ,

𝑠𝑔ℓ(𝑣, 𝑢 = 𝑢′) = 1
2 ,

(2.35)

where

𝒬𝑠(𝑟) ≡ 1
4

(︂
1 − 2𝑀

𝑟

)︂(︃
ℓ(ℓ+ 1)
𝑟2 + 2𝑀(1 − 𝑠2)

𝑟3

)︃
, (2.36)

similarly to 𝑠𝐺ℓ, 𝑠𝑔ℓ also depends on 𝑢′ and 𝑣′ but we will omit them since we are keeping

them fixed. Ref. [63] solved this CID problem by using the scheme proposed in Lousto

and Price [64]. The scheme we develop is based on the same approach taken in [63]. As we

detail below, besides the initial data given in Eq. (2.35) we also use first order derivatives

as additional data to provide a higher order scheme than the one in [63]. This CID problem

can be solved by constructing an equally-spaced grid in the (𝑣, 𝑢)-plane. Let 2ℎ be the

stepsize between the nodes of the grid along either the 𝑢-direction or the 𝑣-direction. In

Fig. 2 we show the grid arrangement in the (𝑣, 𝑢)-plane.

The value of 𝑠𝐺ℓ(𝑣, 𝑢) at each node is then calculated by integrating Eq. (2.34)

over each square formed by four nodes (e.g., 𝑆, 𝐸, 𝑁 and 𝑊 in Fig. (2)) of the grid. For
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Figure 2 – Grid distribution on the (𝑣, 𝑢)-plane.

instance, in Fig. 2 the integration of Eq. (2.34) over the square 𝑆𝐸𝑁𝑊 yields∫︁
𝑆𝐸𝑁𝑊

𝜕2
𝑠𝑔ℓ

𝜕𝑣𝜕𝑢
d𝑣 d𝑢+

∫︁
𝑆𝐸𝑁𝑊

𝒬𝑠(𝑟)𝑠𝑔ℓ d𝑣 d𝑢 = 0. (2.37)

The first integral in the above equation is exact and trivially performed:∫︁
𝑆𝐸𝑁𝑊

𝜕2
𝑠𝑔ℓ

𝜕𝑣𝜕𝑢
d𝑢 d𝑣 = 𝑠𝑔

𝑁
ℓ − 𝑠𝑔

𝐸
ℓ − 𝑠𝑔

𝑊
ℓ + 𝑠𝑔

𝑆
ℓ , (2.38)

where 𝑠𝑔
𝐾
ℓ denotes the value of 𝑠𝑔ℓ at the point 𝐾 = 𝑆, 𝐸, 𝑊 or 𝑁 .

In order to perform the second integral, we make some approximations. Taking

into account that the stepsize between nodes is small (i.e., ℎ ≪ 𝑀), the integrand 𝒬𝑠 · 𝑠𝑔ℓ

of the second term in Eq. (2.37) can be expanded about the point in the middle of the

𝑆𝐸𝑁𝑊 square, 𝑂 ≡ (𝑣0, 𝑢0) (see Fig. 2). Expanding 𝒬𝑠 · 𝑠𝑔ℓ, as well as 𝑠𝑔ℓ, which we

shall need later, as Taylor series and then truncating them at a desired order, we obtain

𝒬𝑠(𝑟)𝑠𝑔ℓ(𝑣, 𝑢) =
∑︁

0≤𝑚,𝑛≤3
𝑚+𝑛≤3

1
𝑚!𝑛!

(︃
𝜕𝑚+𝑛

𝜕𝑣𝑚𝜕𝑢𝑛
(𝒬𝑠 · 𝑠𝑔ℓ)

)︃
𝑂

(𝑣 − 𝑣0)𝑚(𝑢− 𝑢0)𝑛 + 𝒪(ℎ4),

(2.39)

𝑠𝑔ℓ(𝑣, 𝑢) =
∑︁

0≤𝑚,𝑛≤3
𝑚+𝑛≤3

1
𝑚!𝑛!

(︃
𝜕𝑚+𝑛

𝜕𝑣𝑚𝜕𝑢𝑛 𝑠𝑔ℓ

)︃
𝑂

(𝑣 − 𝑣0)𝑚(𝑢− 𝑢0)𝑛 + 𝒪(ℎ4). (2.40)

Thus the second integral in Eq. (2.37) is given to 𝒪(ℎ6) by∫︁
𝑆𝐸𝑁𝑊

𝒬𝑠(𝑟)𝑠𝑔ℓ(𝑣, 𝑢) d𝑣 d𝑢 = 4(𝒬𝑠 · 𝑠𝑔ℓ)𝑂 ℎ
2 + 2

3

[︃
𝜕2

𝜕𝑣2 (𝒬𝑠 · 𝑠𝑔ℓ)

+ 𝜕2

𝜕𝑢2 (𝒬𝑠 · 𝑠𝑔ℓ)
]︃

𝑂

ℎ4 + 𝒪(ℎ6). (2.41)
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However, with the initial data given in Eq. (2.35), it is not possible to reach up to order

𝒪(ℎ6). To achieve this order, additional information should be given along 𝑢 = 𝑢′ as well

as along 𝑣 = 𝑣′. Specifically, Eq. (2.35) readily yields the longitudinal derivatives along

these characteristic lines (which are zero), but we also require the transversal derivatives.

∫︁ 𝜕

𝜕𝑣

(︃
𝜕𝑠𝑔ℓ

𝜕𝑢

)︃
𝑢′

d𝑣 =
(︃
𝜕𝑠𝑔ℓ

𝜕𝑢

)︃
𝑢′

= −
(︂∫︁

𝒬𝑠(𝑟)𝑠𝑔ℓ(𝑣, 𝑢) d𝑣
)︂

𝑢′

= −1
2

(︂∫︁
𝒬𝑠(𝑟) d𝑣

)︂
𝑢′

+ 𝑝(𝑢′),∫︁ 𝜕

𝜕𝑢

(︃
𝜕𝑠𝑔ℓ

𝜕𝑣

)︃
𝑣′

d𝑢 =
(︃
𝜕𝑠𝑔ℓ

𝜕𝑣

)︃
𝑣′

= −
(︂∫︁

𝒬𝑠(𝑟)𝑠𝑔ℓ(𝑣, 𝑢) d𝑢
)︂

𝑣′

= −1
2

(︂∫︁
𝒬𝑠(𝑟) d𝑢

)︂
𝑣′

+ 𝑞(𝑣′),

(2.42)

for some functions 𝑝(𝑢′) and 𝑞(𝑣′), where we have used Eq. (2.35). We use the notation

of 𝑢′ as a subscript in the brackets to indicate evaluation at 𝑢 = 𝑢′; similarly for 𝑣′ to

indicate 𝑣 = 𝑣′ and for 𝑣′, 𝑢′ below to indicate both 𝑣 = 𝑣′ and 𝑢 = 𝑢′.

From the Hadamard series for 𝑠𝑔ℓ(𝑣, 𝑢):

𝑠𝑔ℓ(𝑣, 𝑢) =
∞∑︁

𝑛=0
𝑞𝑛𝜎

𝑛
2 ,

where 𝜎2 is the Synge’s world function in 2-dimensional flat spacetime and 𝑞𝑛 are coef-

ficients to be determined. By using Eq. (2.35), it is trivial to show that, at coincidence,

(︃
𝜕𝑠𝑔ℓ

𝜕𝑣

)︃
𝑣′,𝑢′

=
(︃
𝜕𝑠𝑔ℓ

𝜕𝑢

)︃
𝑣′,𝑢′

= 0, (2.43)

and use it to calculate 𝑝(𝑢′) and 𝑞(𝑣′). Thus the integrals in Eq. (2.42) reduce to(︃
𝜕𝑠𝑔ℓ

𝜕𝑢

)︃
𝑢′

=
(︂1

2

∫︁
𝒬𝑠(𝑟) d𝑣

)︂
𝑣′,𝑢′

− 1
2

(︂∫︁
𝒬𝑠(𝑟) d𝑣

)︂
𝑢′

= −1
4

(︃
ℓ(ℓ+ 1)

𝑟
+ 𝑀(1 − 𝑠2)

𝑟2

)︃
𝑣′,𝑢′

+ 1
4

(︃
ℓ(ℓ+ 1)

𝑟
+ 𝑀(1 − 𝑠2)

𝑟2

)︃
𝑢′
,(︃

𝜕𝑠𝑔ℓ

𝜕𝑣

)︃
𝑣′

=
(︂1

2

∫︁
𝒬𝑠(𝑟) d𝑢

)︂
𝑣′,𝑢′

− 1
2

(︂∫︁
𝒬𝑠(𝑟) d𝑢

)︂
𝑣′

= 1
4

(︃
ℓ(ℓ+ 1)

𝑟
+ 𝑀(1 − 𝑠2)

𝑟2

)︃
𝑣′,𝑢′

− 1
4

(︃
ℓ(ℓ+ 1)

𝑟
+ 𝑀(1 − 𝑠2)

𝑟2

)︃
𝑢′
.

(2.44)

These two equations are used to evaluate the derivatives of 𝑠𝑔ℓ at the points 𝐸, 𝑊 and

𝑆 (later on we apply a similar reasoning to calculate the derivatives at the point 𝑁).
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Now, we construct a system of 12 equations by evaluating the Taylor series for 𝑠𝑔ℓ and

its derivatives at the points 𝐸, 𝑊 , 𝑁 , 𝑆. The 12 unknowns of this system are the 10

coefficients of the Taylor series in Eq. (2.40), which are evaluated at 𝑂, together with the

two first-order derivatives of 𝑠𝑔ℓ evaluated at the point 𝑁 . Once the system is solved, the

coefficients of the Taylor series turn out to be

4𝑠𝑔
𝑂
ℓ = 2𝑠𝑔

𝐸
ℓ + 2𝑠𝑔

𝑊
ℓ + ℎ

(︃
𝜕𝑠𝑔ℓ

𝜕𝑢
− 𝜕𝑠𝑔ℓ

𝜕𝑣

)︃
𝐸

− ℎ

(︃
𝜕𝑠𝑔ℓ

𝜕𝑢
− 𝜕𝑠𝑔ℓ

𝜕𝑣

)︃
𝑊

+ 𝒪(ℎ4), (2.45)

8ℎ
(︃
𝜕𝑠𝑔ℓ

𝜕𝑢

)︃
𝑂

= − 5𝑠𝑔
𝑆
ℓ − 𝑠𝑔

𝐸
ℓ + 5𝑠𝑔

𝑊
ℓ + 𝑠𝑔

𝑁
ℓ

− 2ℎ
(︃
𝜕𝑠𝑔ℓ

𝜕𝑢
+ 𝜕𝑠𝑔ℓ

𝜕𝑣

)︃
𝑆

− 2ℎ
(︃
𝜕𝑠𝑔ℓ

𝜕𝑢
− 𝜕𝑠𝑔ℓ

𝜕𝑣

)︃
𝑊

+ 𝒪(ℎ4), (2.46)

8ℎ
(︃
𝜕𝑠𝑔ℓ

𝜕𝑣

)︃
𝑂

= − 5𝑠𝑔
𝑆
ℓ + 5𝑠𝑔

𝐸
ℓ + 𝑠𝑔

𝑊
ℓ − 𝑠𝑔

𝑁
ℓ − 2ℎ

(︃
𝜕𝑠𝑔ℓ

𝜕𝑢
+ 𝜕𝑠𝑔ℓ

𝜕𝑣

)︃
𝑆

+ 2ℎ
(︃
𝜕𝑠𝑔ℓ

𝜕𝑢
− 𝜕𝑠𝑔ℓ

𝜕𝑣

)︃
𝐸

+ 𝒪(ℎ4), (2.47)

4ℎ2
(︃
𝜕2

𝑠𝑔ℓ

𝜕𝑢2

)︃
𝑂

=𝑠𝑔
𝑆
ℓ − 𝑠𝑔

𝐸
ℓ − 𝑠𝑔

𝑊
ℓ + 𝑠𝑔

𝑁
ℓ + 2ℎ

(︃
𝜕𝑠𝑔ℓ

𝜕𝑢

)︃
𝐸

− 2ℎ
(︃
𝜕𝑠𝑔ℓ

𝜕𝑢

)︃
𝑊

+ 𝒪(ℎ4), (2.48)

4ℎ2
(︃
𝜕2

𝑠𝑔ℓ

𝜕𝑣2

)︃
𝑂

=𝑠𝑔
𝑆
ℓ − 𝑠𝑔

𝐸
ℓ − 𝑠𝑔

𝑊
ℓ + 𝑠𝑔

𝑁
ℓ − 2ℎ

(︃
𝜕𝑠𝑔ℓ

𝜕𝑣

)︃
𝐸

+ 2ℎ
(︃
𝜕𝑠𝑔ℓ

𝜕𝑣

)︃
𝑊

+ 𝒪(ℎ4), (2.49)

4ℎ2
(︃
𝜕2

𝑠𝑔ℓ

𝜕𝑣𝜕𝑢

)︃
𝑂

=𝑠𝑔
𝑁
ℓ + 𝑠𝑔

𝑆
ℓ − 𝑠𝑔

𝐸
ℓ − 𝑠𝑔

𝑊
ℓ + 𝒪(ℎ4), (2.50)

2
3ℎ

3
(︃
𝜕3

𝑠𝑔ℓ

𝜕𝑣3

)︃
𝑂

=𝑠𝑔
𝑆
ℓ − 𝑠𝑔

𝐸
ℓ + ℎ

(︃
𝜕𝑠𝑔ℓ

𝜕𝑣

)︃
𝑆

+ ℎ

(︃
𝜕𝑠𝑔ℓ

𝜕𝑣

)︃
𝐸

+ 𝒪(ℎ4), (2.51)

2
3ℎ

3
(︃
𝜕3

𝑠𝑔ℓ

𝜕𝑢3

)︃
𝑂

=𝑠𝑔
𝑆
ℓ − 𝑠𝑔

𝑊
ℓ + ℎ

(︃
𝜕𝑠𝑔ℓ

𝜕𝑢

)︃
𝑆

+ ℎ

(︃
𝜕𝑠𝑔ℓ

𝜕𝑢

)︃
𝑊

+ 𝒪(ℎ4), (2.52)

4ℎ3
(︃
𝜕3

𝑠𝑔ℓ

𝜕𝑣2𝜕𝑢

)︃
𝑂

=𝑠𝑔
𝑁
ℓ + 𝑠𝑔

𝑆
ℓ − 𝑠𝑔

𝐸
ℓ − 𝑠𝑔

𝑊
ℓ + 2ℎ

(︃
𝜕𝑠𝑔ℓ

𝜕𝑣

)︃
𝑆

− 2ℎ
(︃
𝜕𝑠𝑔ℓ

𝜕𝑣

)︃
𝑊

+ 𝒪(ℎ4), (2.53)

4ℎ3
(︃
𝜕3

𝑠𝑔ℓ

𝜕𝑣𝜕𝑢2

)︃
𝑂

=𝑠𝑔
𝑁
ℓ + 𝑠𝑔

𝑆
ℓ − 𝑠𝑔

𝐸
ℓ − 𝑠𝑔

𝑊
ℓ + 2ℎ

(︃
𝜕𝑠𝑔ℓ

𝜕𝑢

)︃
𝑆

− 2ℎ
(︃
𝜕𝑠𝑔ℓ

𝜕𝑢

)︃
𝐸

+ 𝒪(ℎ4). (2.54)
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Inserting Eqs. (2.38), (2.41) and (2.45)–(2.49) into Eq. (2.37), we obtain

(6 + 2𝒬𝑠ℎ
2)𝑂 𝑠𝑔

𝑁
ℓ =

[︃
6 − 10𝑄ℎ2 − 2

(︃
𝜕2𝒬𝑠

𝜕𝑣2 + 𝜕2𝒬𝑠

𝜕𝑢2

)︃
ℎ4
]︃

𝑂

(𝑠𝑔
𝐸
ℓ + 𝑠𝑔

𝑊
ℓ ) − (6 + 2𝑄ℎ2)𝑂 𝑠𝑔

𝑆
ℓ

+
[︃
4𝒬𝑠 +

(︃
𝜕2𝒬𝑠

𝜕𝑣2 + 𝜕2𝒬𝑠

𝜕𝑢2

)︃
ℎ2
]︃

𝑂

[︃(︃
𝜕𝑠𝑔ℓ

𝜕𝑣
− 𝜕𝑠𝑔ℓ

𝜕𝑢

)︃
𝐸

−
(︃
𝜕𝑠𝑔ℓ

𝜕𝑣
− 𝜕𝑠𝑔ℓ

𝜕𝑢

)︃
𝑊

]︃
ℎ3

+
[︃
𝑓(𝑟)d𝒬𝑠

d𝑟

]︃
𝑂

[︃(︃
𝜕𝑠𝑔ℓ

𝜕𝑣
− 𝜕𝑠𝑔ℓ

𝜕𝑢

)︃
𝐸

+
(︃
𝜕𝑠𝑔ℓ

𝜕𝑣
− 𝜕𝑠𝑔ℓ

𝜕𝑢

)︃
𝑊

]︃
ℎ4

− 3
[︃
𝑓(𝑟)d𝒬𝑠

d𝑟

]︃
𝑂

(𝑠𝑔
𝐸
ℓ − 𝑠𝑔

𝑊
ℓ )ℎ3 + 𝒪(ℎ6).

(2.55)

Since, from Eqs. (2.35) and (2.44), the values at the points 𝐸, 𝑊 and 𝑆 of 𝑠𝑔ℓ and

its derivatives are known, we are able to calculate, via Eq. (2.55), the value of 𝑠𝑔ℓ at the

point 𝑁 . Additionally, we need to calculate the first order derivatives of 𝑠𝑔ℓ at the point

𝑁 . Those derivatives are easily obtained by integrating Eq. (2.34) once along 𝑢 = 𝑢0 + ℎ

and once along 𝑣 = 𝑣0 + ℎ:
(︃
𝜕𝑠𝑔ℓ

𝜕𝑣

)︃
𝑁

=
(︃
𝜕𝑠𝑔ℓ

𝜕𝑣

)︃
𝐸

+

⎛⎜⎝ 𝑢0+ℎ∫︁
𝑢0−ℎ

𝜕2
𝑠𝑔ℓ

𝜕𝑣𝜕𝑢
d𝑢

⎞⎟⎠
𝑣0+ℎ

=
(︃
𝜕𝑠𝑔ℓ

𝜕𝑣

)︃
𝐸

−

⎛⎜⎝ 𝑢0+ℎ∫︁
𝑢0−ℎ

𝒬𝑠(𝑟) 𝑠𝑔ℓ d𝑢

⎞⎟⎠
𝑣0+ℎ

,

(︃
𝜕𝑠𝑔ℓ

𝜕𝑢

)︃
𝑁

=
(︃
𝜕𝑠𝑔ℓ

𝜕𝑢

)︃
𝑊

+

⎛⎜⎝ 𝑣0+ℎ∫︁
𝑣0−ℎ

𝜕2
𝑠𝑔ℓ

𝜕𝑣𝜕𝑢
d𝑣

⎞⎟⎠
𝑢0+ℎ

=
(︃
𝜕𝑠𝑔ℓ

𝜕𝑢

)︃
𝑊

−

⎛⎜⎝ 𝑣0+ℎ∫︁
𝑣0−ℎ

𝒬𝑠(𝑟) 𝑠𝑔ℓ d𝑣

⎞⎟⎠
𝑢0+ℎ

.

(2.56)

We then use Eq. (2.39) and Eqs. (2.45)–(2.54) to calculate the above integrals to 𝒪(ℎ4).

Once these derivatives are known, we can continue to apply this procedure consecutively

throughout the whole grid in order to obtain 𝑠𝑔ℓ(𝑣, 𝑢) at the various nodes. Note that

this scheme is not restricted to the scalar case only, Eq. (2.55) and Eq. (2.56) are given

in terms of 𝒬𝑠(𝑟) and as can be seen in Eq. (2.36) and Eqs. (2.44), this method applies

to 𝑠 = 0,±1,±2. Thus, this CID method, can be used to solve Eq. (2.30) as long as its

initial data is written as in Eq. (2.35).

O’Toole, Ottewill and Wardell in [65] came up with a new approach to implement

a higher order method which consists in calculating the necessary derivatives of 0𝑔ℓ along

the light cone to have a given order in ℎ. While Eq. (2.55) and Eq. (2.56) require three

previously evolved values to compute the next one, the approach in [65] requires more
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than three values in order to have a higher order scheme. From Eq. (19) in [65] (which

is the equivalent expression to Eq. (2.55)), we clearly observe this dependency on points

outside the current square. By comparing these two expressions, the key difference is that

in our case the value of 𝑔𝑁
ℓ only depends on values at points 𝐸, 𝑊 , and 𝑆. However,

instead of requiring data at more neighbouring points as in [65], we require the evaluation

of first order derivatives at 𝐸, 𝑊 , and 𝑆.

2.2.2 The radial Regge-Wheeler equation

Given the ℓ-mode decomposition for 𝑠𝐺ret in Eq. (2.29), we go further and decom-

pose 𝑠𝐺ℓ as

𝑠𝐺ℓ(𝑟, 𝑟′; Δ𝑡) = 1
2𝜋

∫︁ ∞

−∞
𝑠�̃�𝜔ℓ(𝑟, 𝑟′)𝑒−𝑖𝜔Δ𝑡d𝜔, (2.57)

where 𝑠�̃�𝜔ℓ are the Fourier modes of 𝑠𝐺ℓ. Inserting this decomposition into Eq. (2.30)

produces the (sourced) radial Regge-Wheeler equation for arbitrary spin:[︃
d2

d𝑟2
*

+ 𝜔2 − 𝑓

(︃
ℓ(ℓ+ 1)
𝑟2 + 2𝑀(1 − 𝑠2)

𝑟3

)︃]︃
𝑠�̃�𝜔ℓ = −𝛿(𝑟* − 𝑟′

*). (2.58)

Indeed, the above equation indicates that 𝑠�̃�𝜔ℓ is a GF for Eq. (1.75). Instead of solving

Eq. (2.58) directly, we apply the method of factorized Green functions and construct 𝑠�̃�𝜔ℓ

from two homogeneous solutions to Eq. (2.58), namely 𝑠�̃�
in
𝜔ℓ and 𝑠�̃�

up
𝜔ℓ . The asymptotic

boundary conditions for these two solutions are

𝑠�̃�
in
𝜔ℓ ∼

⎧⎪⎪⎨⎪⎪⎩
𝑠�̃�

in,tra
𝜔ℓ 𝑒−𝑖𝜔𝑟* , 𝑟* → −∞,

𝑠�̃�
in,inc
𝜔ℓ 𝑒−𝑖𝜔𝑟* + 𝑠�̃�

in,ref
𝜔ℓ 𝑒𝑖𝜔𝑟* , 𝑟* → ∞

(2.59)

and

𝑠�̃�
up
𝜔ℓ ∼

⎧⎪⎪⎨⎪⎪⎩
𝑠�̃�

up,inc
𝜔ℓ 𝑒𝑖𝜔𝑟* + 𝑠�̃�

up,ref
𝜔ℓ 𝑒−𝑖𝜔𝑟* , 𝑟* → −∞,

𝑠�̃�
up,tra
𝜔ℓ 𝑒𝑖𝜔𝑟* , 𝑟* → ∞

. (2.60)

In this way, 𝑠�̃�𝜔ℓ(𝑟, 𝑟′) is given by

𝑠�̃�𝜔ℓ(𝑟, 𝑟′) = − 𝑠�̃�
in
𝜔ℓ(𝑟<)𝑠�̃�

up
𝜔ℓ (𝑟>)

𝑊 (𝑠�̃� in
𝜔ℓ, 𝑠�̃�

up
𝜔ℓ )

= − 𝑠�̃�
in
𝜔ℓ(𝑟′)𝑠�̃�

up
𝜔ℓ (𝑟)𝜃(𝑟′ − 𝑟) + 𝑠�̃�

in
𝜔ℓ(𝑟)𝑠�̃�

up
𝜔ℓ (𝑟′)𝜃(𝑟 − 𝑟′)

𝑊 (𝑠�̃� in
𝜔ℓ, 𝑠�̃�

up
𝜔ℓ )

(2.61)
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where 𝑟< = min(𝑟, 𝑟′), 𝑟> = max(𝑟, 𝑟′), 𝑊 (𝑠�̃�
in
𝜔ℓ, 𝑠�̃�

up
𝜔ℓ ) is the Wronskian and is given by

𝑊 (𝑠�̃�
in
𝜔ℓ, 𝑠�̃�

up
𝜔ℓ ) = 𝑠�̃�

in
𝜔ℓ

d
d𝑟*

𝑠�̃�
up
𝜔ℓ − 𝑠�̃�

up
𝜔ℓ

d
d𝑟*

𝑠�̃�
in
𝜔ℓ. (2.62)

There are a handful of methods for computing 𝑠�̃�𝜔ℓ. The so-called MST method

(named after Mano, Suzuki, and Takasugi [66, 67, 68]) provides an expansion in terms of

hypergeometric functions to calculate 𝑠�̃�
in
𝜔ℓ and 𝑠�̃�

up
𝜔ℓ . By providing the necessary bound-

ary conditions, one can also implement a numerical method. Depending on the regime we

are interested in, we should select the appropriate method for that specific regime. For

instance, the MST method is very efficient in providing accurate solutions for 𝑀𝜔 small.

When moving to the opposite regime (i.e., large 𝑀𝜔 and (or) large ℓ), a numerical method

might be more practical. The downside of a numerical approach is in finding an accurate

way to calculate the boundary conditions. For 2�̃�
up
𝜔ℓ , the boundary conditions (obtained

via an asymptotic expansion) need to be placed on an appropriate value of 𝑟* since its

accuracy varies with 𝜔 and ℓ. As we detail in the next sections, we adopt an analytical

method (based on a series expansion) to calculate 2�̃�
in
𝜔ℓ and a numerical method for 2�̃�

up
𝜔ℓ .

There is a public software repository called “Black Hole Perturbation Toolkit”7

(BHPT) where one can find very useful tools for self-force (SF) calculations. This reposi-

tory collects many codes and results obtained by different contributors8 and, particularly,

there is a package called Regge-Wheeler where one can find an implementation of the

MST method for 𝑠�̃�
in
𝜔ℓ and 𝑠�̃�

up
𝜔ℓ together with a numerical method.

We found a technical limitation in the MST method implemented in the BHPT. As

ℓ and/or 𝑀𝜔 increases, the method for calculating the renormalised angular momentum

𝜈 loses significant precision (see Fig. 3). To diminish this issue, we could increase the

working precision during the calculations. However, we observed that the accuracy for 𝜈

did not increase linearly with the working precision. That is why we follow a different

approach to compute 𝑠�̃�
in
𝜔ℓ and 𝑠�̃�

up
𝜔ℓ .

7https://bhptoolkit.org.
8https://bhptoolkit.org/users.html.

https://bhptoolkit.org
https://bhptoolkit.org/users.html
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Figure 3 – Numerical precision for the method (implemented in the BHPT) which calculates the renor-
malised angular momentum 𝜈. For this test, we fixed the precision of 𝜔 to 36 and calculated 𝜈 for different
values of 𝜔 and (integer) values of ℓ (blue dots). We observe that the precision in 𝜈 drops as 𝜔 and ℓ
increases. In the area where the precision is zero, the method was not able to calculate 𝜈.

Calculation of 𝑠�̃� in
𝜔ℓ

For 2�̃�
in
𝜔ℓ we follow the prescription previously developed in [69]. We write 2�̃�

in
𝜔ℓ in

terms of a new function 𝑦(𝑟, 𝜔)

𝑠�̃�
in
𝜔ℓ =

(︂
𝑟

2𝑀

)︂1+𝑠 (︂ 𝑟

2𝑀 − 1
)︂−𝑖2𝑀𝜔

𝑦(𝑟, 𝜔). (2.63)

By inserting the above equation in Eq. (1.75), we find that 𝑦(𝑟, 𝜔) satisfies the differential

equation

𝑟2𝑓
d2𝑦(𝑟, 𝜔)

d𝑟2 + (𝐵1 +𝐵2𝑟)
d𝑦(𝑟, 𝜔)

d𝑟 +
(︁
𝜔2𝑟2𝑓 − 2𝜂𝜔𝑟𝑓 +𝐵3

)︁
𝑦(𝑟, 𝜔) = 0, (2.64)

where

𝐵1 = − 2𝑀(2𝑠+ 1), (2.65)

𝐵2 = 2(1 + 𝑠− 𝑖2𝑀𝜔), (2.66)

𝐵3 = 𝑠(𝑠+ 1) − ℓ(ℓ+ 1) − 𝑖2𝑀(2𝑠+ 1)𝜔 + 8𝑀2𝜔2, (2.67)

𝜂 = − 2𝑀𝜔. (2.68)

In [69] Leaver provides a detailed procedure for solving Eq. (2.64). In particular, he refers

to a previous work of Jaffé [70] in which 𝑦(𝑟, 𝜔) is solved by providing the following anzats

𝑦(𝑟, 𝜔) = 𝑒𝑖𝜔𝑟
(︂
𝑟

2𝑀

)︂− 1
2 𝐵2−𝑖𝜂

𝑢(𝑓), (2.69)
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where 𝑢(𝑓) satisfies the differential equation

𝑓 (1 − 𝑓)2𝑢′′(𝑓) + (𝑐1 + 𝑐2𝑓 + 𝑐3𝑓
2)𝑢′(𝑓) + (𝑐4 + 𝑐5𝑓)𝑢(𝑓) = 0, (2.70)

with

𝑐1 =𝐵2 + 𝐵1

2𝑀 ,

𝑐2 = − 2 (𝑐1 + 1 + 𝑖(𝜂 − 2𝑀𝜔)) ,

𝑐3 = 𝑐1 + 2(1 + 𝑖𝜂),

𝑐5 =
(︂1

2𝐵2 + 𝑖𝜂
)︂(︂1

2𝐵2 + 𝑖𝜂 + 1 + 𝐵1

2𝑀

)︂
,

𝑐4 = − 𝑐5 − 1
2𝐵2

(︂1
2𝐵2 − 1

)︂
+ 𝜂(𝑖− 𝜂) + 𝑖2𝑀𝜔𝑐1 +𝐵3.

Lastly, Eq. (2.69) is solved via a series expansion about 𝑓 = 0, i.e.,

𝑢(𝑓) =
∞∑︁

𝑛=0
𝑎𝑛𝑓

𝑛, (2.71)

where 𝑎𝑛 are coefficients to be determined. By inserting the above series in Eq. (2.69),

the coefficients 𝑎𝑛 satisfy the following three-term recurrence relations

𝛼0𝑎1 + 𝛽0𝑎0 = 0, (2.72)

𝛼𝑛𝑎𝑛+1 + 𝛽𝑛𝑎𝑛 + 𝛾𝑛𝑎𝑛−1 = 0, 𝑛 > 0, (2.73)

where

𝛼𝑛 = (𝑛+ 1)
(︂
𝑛+𝐵2 + 𝐵1

2𝑀

)︂
, (2.74)

𝛽𝑛 = − 2𝑛2 − 2
(︂
𝐵2 + 𝑖(𝜂 − 2𝑀𝜔) + 𝐵1

2𝑀

)︂
𝑛 (2.75)

−
(︂1

2𝐵1 + 𝑖𝜂
)︂(︂

𝐵2 + 𝐵2

2𝑀

)︂
+ 𝑖𝜔 (𝐵1 + 2𝑀𝐵2) +𝐵3, (2.76)

𝛾𝑛 =
(︂
𝑛− 1 + 1

2𝐵2 + 𝑖𝜂
)︂(︂

𝑛+ 1
2𝐵2 + 𝑖𝜂 + 𝐵1

2𝑀

)︂
. (2.77)

This approach for calculating 𝑠�̃�
in
𝜔ℓ turns out to be efficient for the different regimes in the

frequency 𝜔. Moreover, the first order derivative for 𝑠�̃�
in
𝜔ℓ is immediate from Eqs. (2.63),

(2.69) and (2.71).
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Calculation of 𝑠�̃�up
𝜔ℓ

The method we choose for calculating 𝑠�̃�
up
𝜔ℓ relies in solving Eq. (1.75) numerically.

By denoting 𝑠�̃�
up
𝜔ℓ

′(𝑟) ≡ d
d𝑟 𝑠�̃�

up
𝜔ℓ (𝑟) = 𝑦2(𝑟), Eq. (1.75) can be rewritten as

𝑠�̃�
up
𝜔ℓ

′(𝑟) = 𝑦2(𝑟), (2.78)

𝑓
d
d𝑟 (𝑓𝑦2(𝑟)) = 𝑓

𝑟2

(︃
ℓ(ℓ+ 1) + 2𝑀(1 − 𝑠2)

𝑟

)︃
𝑠�̃�

up
𝜔ℓ (𝑟). (2.79)

The boundary conditions we use to solve this system are constructed from the purely

outgoing waves at 𝑟* → ∞. From a numerical point of view, we place this limit in a

region known as the wave zone. Within this region, gravitational waves propagate freely,

do not depend on their source composition, and obey the superposition principle. We then

place the boundary conditions on a value 𝑅 of the radial coordinate 𝑟 within the wave

zone9. We establish the boundary conditions as an asymptotic series

𝑠�̃�
up
𝜔ℓ (𝑟) ∼ 𝑒𝑖𝜔𝑟*

𝑁∑︁
𝑛=0

𝑏𝑛

𝑟𝑛
, 𝑟 → ∞ (2.80)

𝑦2(𝑟) = 𝑠�̃�
up
𝜔ℓ

′(𝑟) ∼ 𝑒𝑖𝜔𝑟*
𝑁−1∑︁
𝑛=0

𝑏𝑛

𝑟𝑛

(︃
𝑖𝜔

𝑓(𝑟) − 𝑛

𝑟

)︃
, 𝑟 → ∞ (2.81)

where the coefficients 𝑏𝑛 satisfy a recurrence relation10, and 𝑁 is determined according

to the required precision for the numerical scheme applied for solving Eqs. (2.78)–(2.79).

More specifically, we determine 𝑁 by inserting 𝑠�̃�
up
𝜔ℓ (𝑅), 𝑠�̃�

up
𝜔ℓ

′(𝑅) and 𝑠�̃�
up
𝜔ℓ

′′(𝑅) into

Eq. (1.75) and imposing the left hand side to be 𝒪
(︁
10−𝑘

)︁
where 𝑘 represents the precision

of the numerical method. This indirect way of approximating the precision for 𝑠�̃�
up
𝜔ℓ (𝑅)

is not ideal but we observed it worked well in providing the minimum required precision

for the boundary conditions.

In the BHPT toolkit, there is a working code that implements this procedure for

determining the boundary conditions for 𝑠�̃�
up
𝜔ℓ . Then, the BHPT solves the radial RWE

using the numerical integrator embedded in the Mathematica software package. In the

results we show later on, we made use of this code to obtain 𝑠�̃�
up
𝜔ℓ .

9For a given a value of 𝜔, 𝑅 can be estimated via the condition 𝜔𝑅 ≫ 1.
10This relation can be obtained by putting the asymptotic series back into the radial RWE and

demanding each term in 1/𝑅𝑛 to vanish.
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2.2.3 Convergence of Fourier integral of 𝑠�̃�𝜔ℓ and its radial derivative

Since the Fourier integrals of 𝑠�̃�
in
𝜔ℓ and 𝑠�̃�

up
𝜔ℓ converge, it is not difficult to show

that the Fourier integral of 𝑠�̃�𝜔ℓ converges. When working with 𝑠�̃�𝜔ℓ, in principle, it is not

necessary to verify whether the Fourier integral of its radial derivative converges or not.

However, for self-force calculations, these derivatives are eventually required. We thus go

a step further and explore the radial derivative of 𝑠�̃�𝜔ℓ.

A simple way to investigate the convergence of the Fourier integral of 𝑠�̃�𝜔ℓ can be

done by providing a large-𝜔 asymptotic expansion for 𝑠�̃�
in
𝜔ℓ (and 𝑠�̃�

up
𝜔ℓ ). This expansion

is given by [71]

𝑠�̃�
in
𝜔ℓ(𝑟) = 𝑒−𝑖𝜔𝑟*

(︃
1 +

∞∑︁
𝑛=1

𝑎in
𝑛 (𝑟)
𝜔𝑛

)︃
+ [...], (2.82)

𝑠�̃�
up
𝜔ℓ (𝑟) = 𝑒𝑖𝜔𝑟*

(︃
1 +

∞∑︁
𝑛=1

𝑎up
𝑛 (𝑟)
𝜔𝑛

)︃
+ [...], (2.83)

where [...] denotes terms with exponential decay, the coefficients 𝑎in
𝑛 and 𝑎up

𝑛 can be com-

puted recursively by inserting Eqs. (2.82)–(2.83) back into Eq. (1.75) and starting with

𝑎in
0 = 𝑎up

0 = 1. In principle, in [71] these expansions were proposed for 𝑠 = 0. However,

here we provide a more general expression which is valid for any spin 𝑠. The coefficients

𝑎in and 𝑎up are then given by

𝑎in
𝑛 (𝑟) = − 𝑖

2𝑓(𝑟) d
d𝑟𝑎

in
𝑛−1(𝑟) + 𝑖

2

∫︁ 𝑟

∞

[︃
Λ
𝜌2 + 2𝑀𝑠

𝜌3

]︃
𝑎in

𝑛−1(𝜌)d𝜌, (2.84)

𝑎up
𝑛 (𝑟) = 𝑖

2𝑓(𝑟) d
d𝑟𝑎

up
𝑛−1(𝑟) − 𝑖

2

∫︁ 𝑟

∞

[︃
Λ
𝜌2 + 2𝑀𝑠

𝜌3

]︃
𝑎up

𝑛−1(𝜌)d𝜌, (2.85)

where Λ = ℓ(ℓ + 1) and 𝑠 = 1 − 𝑠2. In Appendix A we wrote down these coefficients for

𝑛 = 1, 2, 3, 4.

A direct substitution of Eqs. (2.82)–(2.85) in Eq. (2.61) and after taking the limit

𝑟 → 𝑟′, we find that

𝑠�̃�𝜔ℓ(𝑟′, 𝑟′) = 𝑖

2𝜔 + 𝑖𝑓(𝑟′) (2𝑀𝑠+ Λ𝑟′)
4𝑟′3𝜔3 +

[︁
Λ𝑟′2(𝑓(𝑟′)(30𝑀 + (3Λ − 5)𝑟′) − 𝑟′)

+4𝑀𝑟′𝑠 (3𝑓(𝑟′) (𝑀𝑠+ 8𝑀 + (Λ − 2)𝑟′) −𝑀)] 𝑖𝑓(𝑟′)
16𝑟′7𝜔5 + 𝒪

(︂ 1
𝑀6𝜔6

)︂
,

(2.86)
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is independent from the direction the limit 𝑟 → 𝑟′ is taken from. We also observe that

the Fourier integral of Eq. (2.86) will converge except for Δ𝑡 = 0. This is expected since

𝑠𝐺ℓ has the 𝜃(−𝜎ℳ2)𝜃(Δ𝑡) distributions in it (see p. 58). When looking at each term in

the right hand side of Eq. (2.86), we notice that they are purely imaginary. This indicates

that for 𝑟 = 𝑟′, ℜ
[︁

𝑠�̃�𝜔ℓ

]︁
decays exponentially and ℑ

[︁
𝑠�̃�𝜔ℓ

]︁
has a power-law decay in 𝜔.

For the first order derivatives of 𝑠�̃�𝜔ℓ, the Heaviside distributions in Eq. (2.61) lead

to a direction-dependent limit. In order to inspect this, once again, we take Eqs. (2.82)–

(2.85) and insert them in Eq. (2.61). Next, we differentiate the result with respect to 𝑟

(similar results arise for 𝑟′) and take the limit 𝑟 → 𝑟′ along both directions. This yields

lim
𝑟→𝑟′+

𝜕

𝜕𝑟
𝑠�̃�𝜔ℓ(𝑟, 𝑟′) = 1

2𝑓(𝑟′) + 𝑖 (Λ𝑟′(3𝑀 − 𝑟′) +𝑀𝑠(8𝑀 − 3𝑟′))
4𝑟′5𝜔3 + 𝒪

(︂ 1
𝑀4𝜔4

)︂
(2.87)

lim
𝑟→𝑟′−

𝜕

𝜕𝑟
𝑠�̃�𝜔ℓ(𝑟, 𝑟′) = − 1

2f (𝑟′) + 𝑖 (Λ𝑟′(3𝑀 − 𝑟′) +𝑀𝑠(8𝑀 − 3𝑟′))
4𝑟′5𝜔3 + 𝒪

(︂ 1
𝑀4𝜔4

)︂
,

(2.88)

where 𝑟 → 𝑟′+ (𝑟 → 𝑟′−) denotes the direction where 𝑟 approaches 𝑟′ from larger (smaller)

values than 𝑟′. From these asymptotic expressions, we observe in more detail the direction-

dependent term in each limit. Furthermore, these terms lead to a ±𝛿(Δ𝑡) divergence in the

time domain. Due to the type of divergence arising from the direction-dependent terms

in lim𝑟→𝑟′
𝜕
𝜕𝑟 𝑠�̃�𝜔ℓ(𝑟, 𝑟′) , the terms ± 1

2𝑓(𝑟′) in the right hand side of Eqs. (2.87)–(2.88) are

referred to as quasi-direct terms [44]. We deal with these quasi-direct terms by subtracting

them from the Fourier integral (and add them separately if needed in further calculations).

A practical way to remove them is by taking the average of Eqs. (2.87)–(2.88) [44], i.e.,

lim
𝑟→𝑟′

𝜕

𝜕𝑟
𝑠�̃�𝜔ℓ(𝑟, 𝑟′) = 1

2 lim
𝑟→𝑟′+

𝜕

𝜕𝑟
𝑠�̃�𝜔ℓ(𝑟, 𝑟′) + 1

2 lim
𝑟→𝑟′−

𝜕

𝜕𝑟
𝑠�̃�𝜔ℓ(𝑟, 𝑟′), (2.89)

and similarly for 𝜕
𝜕𝑟′ 𝑠�̃�𝜔ℓ(𝑟, 𝑟′)

lim
𝑟→𝑟′

𝜕

𝜕𝑟′ 𝑠�̃�𝜔ℓ(𝑟, 𝑟′) = 1
2 lim

𝑟→𝑟′+

𝜕

𝜕𝑟′ 𝑠�̃�𝜔ℓ(𝑟, 𝑟′) + 1
2 lim

𝑟→𝑟′−

𝜕

𝜕𝑟′ 𝑠�̃�𝜔ℓ(𝑟, 𝑟′). (2.90)

For self-force calculations, the above limits are fundamental to calculate the self-

field (e.g., see Eq. (1.14)).
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2.3 Results for the retarded GF of the Regge-Wheeler equation.

The key quantities to calculate the retarded GF of the RWE are: the Hadamard

tail 𝑉𝑠, the van Vleck determinand Δ1/2 = 1
𝑟 𝑟′ Δ1/2

2d · Δ1/2
S2 and the ℓ-modes of 𝑠𝐺ret. We

focused on the scalar (𝑠 = 0) and gravitational (𝑠 = 2) cases.

In the results for the Hadamard tail 𝑉𝑠, we truncated the sum in Eq. (2.28) in the

following way (see [60])
∞∑︁

𝑖,𝑗,𝑘=0
→

𝑗max∑︁
𝑗=0

𝑗max−𝑗∑︁
𝑖=0

𝑗max−𝑗−𝑖∑︁
𝑘=0

,

where we took 𝑗max = 21. This value for 𝑗max was determined by the computational power

we had for calculating 𝑠𝑣𝑖,𝑗,𝑘.

For the van Vleck determinant, as mentioned earlier, we numerically solved the

transport equation for Δ1/2
2d and also used the expansion provided in [6]. In the process of

calculating Δ1/2
2d we also calculated 𝜎ℳ2 and 𝜂 = √

−2𝜎ℳ2 ,

In the DP region, the ℓ-modes of 𝑠𝐺ret are calculated: via CID (described in

Sec. 2.2.1) and via Fourier integral (described in Sec. 2.2.2). Since the result we are

interested in is the non-direct part of 𝑠𝐺ret, we use the method of matched expansions to

obtain this it. We also follow another method previously introduced in [6]. This method

consists of subtracting 𝐺dir
ℓ from 𝑠𝐺ℓ and use the result in the mode sum. Let 𝑠𝐺

nd
ret be

the non-direct part of 𝑠𝐺ret, we can construct it via the following mode sum

𝑠𝐺
nd
ret = 1

𝑟 𝑟′

∞∑︁
ℓ=0

(2ℓ+ 1)(𝑠𝐺ℓ −𝐺dir
ℓ )𝑃ℓ(cos 𝛾). (2.91)

While the purpose of subtracting 𝐺dir
ℓ from 𝑠𝐺ℓ is to remove the Gaussian distribution

located at 𝜎 = 0 (at Δ𝑡 = 0 in the static case), this process ideally works when we include

all the ℓ-modes the mode sum of Eq. (2.91). In practice, the mode sum has to be capped

at a finite value ℓ = ℓmax. A a result, the high ℓ-modes excluded during the truncation

bring back the spurious oscillations (to a lesser extent for 𝜂 < 𝜋 due to the subtraction

of 𝐺dir
ℓ ) that were present in Eq. (2.29). Therefore, once again we require to include the

smoothing factor exp[−ℓ2/(2ℓcut)2] (previously mentioned in Sec. 2.2) in Eq. (2.91) to

smear such oscillations.
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In the frequency domain, when we compute the Fourier modes 𝑠�̃�𝜔ℓ, we make use

of the property 𝑠�̃�−𝜔ℓ
* = 𝑠�̃�𝜔ℓ (which is a direct consequence of 𝑠𝐺ℓ ∈ R) to reduce the

integral in Eq. (2.57) to

𝑠𝐺ℓ(𝑟, 𝑟′,Δ𝑡) = 2
2𝜋

∞∫︁
0

ℜ
[︁

𝑠�̃�𝜔ℓ(𝑟, 𝑟′)
]︁

cos(𝜔Δ𝑡)d𝜔 + 2
2𝜋

∞∫︁
0

ℑ
[︁

𝑠�̃�𝜔ℓ(𝑟, 𝑟′)
]︁

sin(𝜔Δ𝑡)d𝜔.

(2.92)

Moreover, by considering that 𝑠𝐺ret is zero when Δ𝑡 < 0, it is straightforward to conclude

that 𝑠𝐺ℓ = 0 for Δ𝑡 < 0. Thus, for some 𝑇 > 0 we can write

𝑠𝐺ℓ(𝑟, 𝑟′,−𝑇 ) = 1
𝜋

∞∫︁
0

ℜ
[︁

𝑠�̃�𝜔ℓ(𝑟, 𝑟′)
]︁

cos(𝜔𝑇 )d𝜔−

1
𝜋

∞∫︁
0

ℑ
[︁

𝑠�̃�𝜔ℓ(𝑟, 𝑟′)
]︁

sin(𝜔𝑇 )d𝜔 = 0, for 𝑇 > 0, (2.93)

which immediately implies
∞∫︁

0

ℜ [𝑠𝐺ℓ(𝑟, 𝑟′)] cos(𝜔Δ𝑡)d𝜔 =
∞∫︁

0

ℑ [𝑠𝐺ℓ(𝑟, 𝑟′)] sin(𝜔Δ𝑡)d𝜔, for Δ𝑡 > 0. (2.94)

Having this in mind, 𝑠𝐺ℓ(𝑟, 𝑟′,Δ𝑡) could be calculated from either the real or the imaginary

part of 𝑠�̃�𝜔ℓ(𝑟, 𝑟′), i.e.,

𝑠𝐺ℓ(𝑟, 𝑟′,Δ𝑡) = 2
𝜋
𝜃(Δ𝑡)

∞∫︁
0

ℑ
[︁

𝑠�̃�𝜔ℓ(𝑟, 𝑟′)
]︁

sin(𝜔Δ𝑡)d𝜔

= 2
𝜋
𝜃(Δ𝑡)

∞∫︁
0

ℜ
[︁

𝑠�̃�𝜔ℓ(𝑟, 𝑟′)
]︁

cos(𝜔Δ𝑡)d𝜔. (2.95)

From the asymptotic analysis discussed in Sec. 2.2.3, we can conclude that in Eq. (2.95)

the integrand containing ℜ
[︁

𝑠�̃�𝜔ℓ

]︁
decays exponentially when 𝑟 = 𝑟′. Therefore, from a

numerical point of view, it is more convenient to use the second integral in Eq. (2.95) to

calculate 𝑠𝐺ℓ(𝑟 = 𝑟′, 𝑟′; Δ𝑡).

2.3.1 Spin-0 case

For the spin-0 case, in the DP region, we applied the CID scheme to compute the

scalar retarded GF. The stepsize for the scheme was 2ℎ = 2 5
12 × 10−2, we truncated the

mode sum at ℓmax = 100 and included the smoothing factor with ℓcut = ℓmax/5 This result
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Figure 4 – In blue we plot 0𝐺ret (as a function of Δ𝑡) obtained via CID, in red its non-direct part 0𝐺
nd
ret

obtained using (2.91) and in orange we plot −𝑉0. In this scenario 𝑥 and 𝑥′ are static: with zero angular
separation and located at 𝑟 = 𝑟′ = 6𝑀 away from the black hole.

corresponds to the blue curve in Fig. 4. In order to obtain the non-direct part of 0𝐺ret

(which we denoted by 0𝐺
nd
ret), we match the biscalar −𝑉0 with 0𝐺ret (the minus sign in

front of 𝑉0 is a consequence of Eq. (2.2)). For the scenario in Fig. 4, we can see that the

biscalar −𝑉0 (orange curve) and 0𝐺ret from the DP do have a region where both converge

to the same values. Therefore, it is possible to perform a matching procedure between

them to obtain 0𝐺
nd
ret. The second alternative for calculating 0𝐺

nd
ret (i.e., via the mode sum

in Eq. (2.91)) corresponds to the red-dashed curve in Fig. 4 where the ℓ-modes of the

direct part (i.e., 𝐺dir
ℓ ) were calculated by solving numerically the corresponding transport

equations for Δ1/2
2d .

Although the resulting 0𝐺
nd
ret improved significantly when compared with 0𝐺ret,

the values near coincidence were not computed correctly. The reason for this is that the

numerical method for calculating Δ1/2
2d was not accurate enough for Δ𝑡 small. Particularly,

we were not able to obtain sufficiently accurate values for 𝜂 near coincidence. However, one

can still perform a matching between this non-direct part and 𝑉0 to correct the problem

near coincidence.
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(a) (b)

(c) (d)

Figure 5 – ℓ-modes of 2𝐺ret (orange line, according to Eq. (2.29)) and the ℓ-modes of the direct part
(blue line, according to Eq. (2.13)) for 𝑟 = 𝑟′ = 6𝑀 .

2.3.2 Spin-2 case

In Fig. 5 we plot the different ℓ-modes in Eq. (2.91) (with 𝑠 = 2) as functions of

Δ𝑡 and for the same scenario as in Fig. 6. The ℓ-modes of the direct part (blue curve)

were calculated via Eq. (2.13) using a coordinate expansion for Δ1/2
2d and 𝜂 [6] in the

same way as [6]. Besides calculating 2𝐺ℓ (blue curve) via CID, we also obtained them

from their frequency modes 2�̃�𝜔ℓ. We computed 2�̃�𝜔ℓ via Eq. (2.61). For the In solution

2�̃�
in
𝜔ℓ, we apply the prescription detailed in Sec. 2.2.2. On the other hand, the Up solution

𝑠�̃�
up
𝜔ℓ is obtained using the numerical method available in the BHPT (we briefly discussed

this method in Sec. 2.2.2 as well).

Similar to the spin-0 case, we also applied the same methods (and parameters) to

compute 2𝐺ret in both regions, QL and DP. In Fig. 6 we plot 2𝐺ret (and other related

quantities) along a timelike circular geodesic at 𝑟 = 𝑟′ = 6𝑀 . The black curve corresponds



Chapter 2. Calculation of the Regge-Wheeler Green function 74

Figure 6 – Comparison between 2𝐺ret (Black curve) and its non-direct part 2𝐺
nd
ret along a timelike circular

geodesic at 𝑟 = 𝑟′ = 6𝑀 , for two different methods for𝐺dir
ℓ . The first method (Gray-dashed curve) relies in

a numerical method for calculating Δ1/2
2d and the second one (Blue curve) makes use of a small coordinate

expansion described in [6]. The red curve is the biscalar −𝑉2. The subplot shows the continuation of the
main plot where we can see that there is indeed a matching region between 2𝐺ret (black; the lump about
Δ𝑡 ≈ 27.7𝑀 is due to the first secondary null ray) and 𝑉2 (red-dashed).

to 2𝐺ret, the red curve is −𝑉2 calculated using Eq. (2.28) (with the corresponding trunca-

tion in the sum), and the blue and gray-dashed curves correspond to the non-direct part

of 2𝐺ret. The gray-dashed curve was calculated in the same way as the red-dashed curve

in Fig. 4. For this reason, it also presents the same issue at small Δ𝑡 as in the spin-0 case.

On the other hand, the blue curve is 2𝐺
nd
ret calculated using a small coordinate expansion

(prescribed in [6]) for Δ1/2
2d . When we compare these two results for the non-direct part

with 𝑉2, we find a good agreement for Δ𝑡 > 2𝑀 . A key difference between the spin-0

and spin-2 cases is in the value of 𝑉𝑠 at coincidence. While 𝑉0|𝑥=𝑥′ is zero, the value of

𝑉2|𝑥=𝑥′ is −4𝑀/𝑟3. From the Hadamard form, it is straightforward to show that near co-

incidence the non-direct part is not simply 𝑉2 but 𝑉2(𝑥, 𝑥′)𝜃(−𝜎)𝜃(𝑥, 𝑥′). Since the mode

sum was truncated at a finite value of ℓ, this resulted in an imperfect representation of

the 𝜃(−𝜎)𝜃(𝑥, 𝑥′) factor near coincidence. It is likely that this imperfect representation of

the Heaviside factor is responsible for the non-direct part of 2𝐺ret (blue and gray-dashed

curves in Fig. 6) going to zero instead of −4𝑀/𝑟3. Near coincidence, we expect that as

ℓcut → ∞ the non-direct part tends to 𝑉2.

In Fig. 7 we plot 2𝐺ret (and its radial derivative) along a timelike circular geodesic
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(a) (b)

Figure 7 – Left: Absolute value of 2𝐺ret excluding the ℓ = 0, 1 modes, and along a timelike circular geodesic
at 𝑟 = 𝑟′ = 6𝑀 . Right: Absolute value of the radial derivative of the left result. The vertical red-dashed
line in the left plot marks the end of the maximal normal neighbourhood, in this scenario it is near Δ𝑡 ≈
27.7𝑀 . The blue-dashed curves are the absolute values of −𝑉2 − 1

𝑟2

∑︀1
ℓ=0(2ℓ+ 1)2𝐺ℓ𝑃ℓ(cos(

√︀
𝑀/𝑟3Δ𝑡))

(left plot) and its radial derivative (right plot).

at 𝑟 = 𝑟′ = 6𝑀 without including the contributions from the ℓ = 0, 1 modes since

they have no physical meaning11. The dashed-blue curves corresponds to 𝑉2 (left) and its

radial derivative (right), also excluding the corresponding contributions from the first two

ℓ-modes.

When we compared the ℓ-modes computed via CID with the ones constructed via

integration of 2�̃�𝜔ℓ, we found a minimum of nine digits of agreement between both meth-

ods at early times (Δ𝑡 < 10𝑀), and a minimum of seven digits at late times (Δ𝑡 ≈ 100𝑀).

As ℓ increases this minimum agreement drops to six digits at early times and five digits

at late times. Since the frequency domain method is expected to be more accurate at late

times, we presume that the accumulated error in the CID scheme is responsible for this

drop.

2.3.3 Regularisation process in the frequency domain

Although the regularisation process via Eq. (2.91) provided significant improve-

ments in the scalar case, in the spin-2 case the Heaviside distribution present in 𝑠𝐺
nd
ret

made the mode sum to approach 𝑉2 in an inadequate way. As an alternative to the
11As detailed in Sec. 1.8.3, the first two modes ℎ(0)

𝜇𝜈 and ℎ
(1)
𝜇𝜈 cannot be obtained from the RWE. The

ℓ = 0, 1 modes resulting from solving Eq. (2.30) are not associated to ℎ(ℓ)
𝜇𝜈 .
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method of matched expansion for solving this issue, we explored a prescription previously

introduced in [44]. Despite the method was applied on an approximation for 𝑠�̃�𝜔ℓ to 1PN

(post-Newtonian) order, the procedure should not depend on it. The prescription con-

sists of taking the regularisation process to the frequency domain. In order to accomplish

this, we require to calculate the Fourier modes of 𝐺dir
ℓ . This is still an open problem not

completely figured out yet.

In [72] the authors came up with a new procedure to regularise the (spin-0) Feyn-

man Green function12 𝐺𝐹 (𝑥, 𝑥′) in Bertotti-Robinson spacetime. This method consists

of providing an expansion in 𝛿 (a small parameter that measures the geodesic distance

between 𝑥 and 𝑥′) for the singular part of 𝐺𝐹 (𝑥, 𝑥′)

𝐺𝑆(𝑥, 𝑥′) = 𝐺
(−2)
𝑆 (𝑥, 𝑥′)
𝛿2 + 𝐺

(−1)
𝑆 (𝑥, 𝑥′)

𝛿
+𝐺

(0)
𝑆 (𝑥, 𝑥′) + · · · . (2.96)

where 𝐺(𝑛)
𝑆 (𝑥, 𝑥′) are the coefficients of the expansion. Next, they perform an ℓ–mode and

Fourier decomposition of the coefficients 𝐺(𝑛)
𝑆 (𝑥, 𝑥′) (where 𝑛 = −2,−1, 0, ...), i.e.,

𝐺
(𝑛)
𝑆 (𝑥, 𝑥′) = 1

𝑟𝑟′

∞∑︁
ℓ=0

(2ℓ+ 1)
[︂ 1
2𝜋

∫︁ ∞

−∞
𝑔

(𝑛)
𝜔ℓ (𝑟, 𝑟′) 𝑒−𝑖𝜔Δ𝑡d𝜔

]︂
𝑃ℓ(cos 𝛾), (2.97)

where 𝑔(𝑛)
𝜔ℓ (𝑟, 𝑟′) are the Fourier modes of the ℓ-modes of 𝐺(𝑛)

𝑆 (𝑥, 𝑥′). Once the modes 𝑔(𝑛)
𝜔ℓ

are determined, one can reconstruct the first leading order terms in the expansion of

Eq. (2.96) and proceed with the regularisation process.

Although the results in [72] are for Bertotti-Robinson spacetime, later on the au-

thors were able to calculate the first three 𝐺(𝑛)
𝑆 (𝑥, 𝑥′) coefficients in Schwarzschild space-

time [73]. In particular, for 𝑛 = −2, they found out that

𝑔
(−2)
𝜔ℓ (𝑟, 𝑟′) = 𝑟𝑟′

2𝑓 |𝜔|𝑗ℓ(𝛽|𝜔|𝛼−)ℎ(1)
ℓ (𝛽|𝜔|𝛼+), (2.98)

where 𝑗ℓ(·) and ℎ
(1)
ℓ (·) are, respectively, the spherical Bessel and Hankel (of first kind)

functions, 𝛽 = 𝑟√
𝑓
, 𝛼± =

(︁
𝛼±

√
𝛼2 − 1

)︁1/2
and 𝛼 = 1 + (𝑟−𝑟′)2

2𝑟2𝑓
. The Fourier integral of

𝑔
(−2)
𝜔ℓ leads to the following ℓ-mode

𝐺
(−2)
ℓ (𝑟, 𝑟′; Δ𝑡) = 1

2𝜋

∫︁ ∞

∞
𝑔

(−2)
𝜔ℓ 𝑒−𝑖𝜔Δ𝑡d𝜔 (2.99)

= 1
2
𝑟′

𝑟
𝑃ℓ

(︃
𝛼− Δ𝑡2

2𝛽2

)︃
𝜃

(︃
1 − 𝛼 + Δ𝑡2

2𝛽2

)︃
𝜃

(︃
1 + 𝛼− Δ𝑡2

2𝛽2

)︃
, (2.100)

12The Feynman Green function satisfies the wave equation �𝐺𝐹 (𝑥, 𝑥′) = −𝛿4(𝑥, 𝑥′)
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which is connected to the ℓ–modes of the Feynman Green function.

These partial results are the closest expression that could lead to a potential reg-

ularisation process in the frequency domain. Although 𝐺𝑆(𝑥, 𝑥′) is not the direct part of

2𝐺ret, it is well known [25, 59] that 𝑠𝐺ret is proportional to the real part of the Feyn-

man Green function. Thus, it would not be surprising to find a relation between 𝑔(𝑛)
𝜔ℓ and

the actual Fourier modes of 𝐺dir
ℓ . In fact, the authors in [72] recently proved that after

the change |𝜔| → 𝜔 in Eq. (2.98), 𝑔(−2)
𝜔ℓ is indeed the leading order coefficient needed to

construct the Fourier modes of 𝐺dir
ℓ [73]

In Fig. 8 we compare the real (top) and the imaginary (bottom) parts of 2�̃�𝜔ℓ and

𝑔
(−2)
𝜔ℓ for ℓ = 2 and 𝑟 = 𝑟′ = 6𝑀 . For the real part, we observe that ℜ

[︁
2�̃�𝜔ℓ

]︁
and ℜ

[︁
𝑔

(−2)
𝜔ℓ

]︁
do not have the same decay as 𝜔 increases. To understand in detail the difference between

𝑠�̃�𝜔ℓ and 𝑔
(−2)
𝜔ℓ , we examine the large-𝜔 asymptotic for 𝑔(−2)

𝜔ℓ (after taking |𝜔| → 𝜔 and

𝑟 = 𝑟′)

𝑔
(−2)
𝜔ℓ = 𝑟2

4𝑓𝛽2𝜔

(︁
1 − 𝑒𝑖(2𝛽𝜔−ℓ𝜋)

)︁
+ 𝒪

(︂ 1
𝑀2𝜔2

)︂
.

From the leading order in the above asymptotic expansion, we observe that for 𝑟 = 𝑟′, the

frequency in the oscillations seen in Fig. 8 is equal to 2𝛽 for both, real and imaginary parts.

The apparent double frequency in the oscillation of
⃒⃒⃒
ℑ
[︁
𝑔

(−2)
𝜔ℓ

]︁⃒⃒⃒
is merely The oscillation

frequency in Fig. 8b is duplicated (i.e., equal to 4𝛽) due to the absolute value introduced

for the log-plot. The origin of the oscillations appearing in 𝑔
(−2)
𝜔ℓ is connected to the fact

that 𝐺(−2)
ℓ (𝑟, 𝑟′; Δ𝑡) has a compact support. More precisely, by using Eq. (2.99) and the

convolution theorem, we can rewrite 𝑔(−2)
𝜔ℓ as

𝑔
(−2)
𝜔ℓ =ℎ

(−2)
𝜔ℓ *

∫︁ ∞

−∞
𝜃

(︃
1 − 𝛼 + Δ𝑡2

2𝛽2

)︃
𝜃

(︃
1 + 𝛼− Δ𝑡2

2𝛽2

)︃
dΔ𝑡

=ℎ
(−2)
𝜔ℓ *

2 sin
(︁√︁

2(1 + 𝛼)𝛽𝜔
)︁

𝜔
, (2.101)

where the * symbol denotes convolution with respect to 𝜔, and

ℎ
(−2)
𝜔ℓ = 1

2
𝑟′

𝑟

∫︁ ∞

−∞
𝑃ℓ

(︃
𝛼− Δ𝑡2

2𝛽2

)︃
dΔ𝑡.

Eq. (2.101) suggests that for 𝑟 = 𝑟′ (𝛼 = 1) the oscillations in 𝑔(−2)
𝜔ℓ are indirectly linked to

the Heaviside distributions present in 𝐺(−2)
ℓ . Conversely, the absence of the 𝜃(1 +𝛼− Δ𝑡2

2𝛽2 )
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Figure 8 – Comparison between 2�̃�𝜔ℓ and 𝑔
(−2)
𝜔ℓ for ℓ = 2 and 𝑟 = 𝑟′ = 6𝑀 . In the top plot we observe

that the real parts have no similarities in the large-𝜔 regime. For the imaginary parts, despite having
the same decay in the large-𝜔 regime, the additional oscillations in 𝑔

(−2)
𝜔ℓ is a feature that could bring

numerical difficulties in the Fourier integral.
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distribution in 𝑠𝐺ℓ makes the distinction between 𝑔
(−2)
𝜔ℓ and 𝑠�̃�𝜔ℓ more evident in the

large-𝜔 regime. This analysis has not been proven rigorously.

From a numerical point of view, these results will not help regularising 2𝐺ret since

subtracting 𝑔
(−2)
𝜔ℓ from 2�̃�𝜔ℓ does not bring any numerical advantage in the 𝜔-integral,

specially in the real part where the exponential decay of ℜ
[︁

2�̃�𝜔ℓ

]︁
turns into a power law

decay if we subtract ℜ
[︁
𝑔

(−2)
𝜔ℓ

]︁
from it.

Before concluding this chapter, let us summarize the results we obtained so far.

We introduced different tools and methods for computing the retarded GF for the RWE.

As we pointed out in Chapter 1, calculating 𝑠𝐺ret is the first step towards the calculation

of the self-force, the next step is to regularise it. To accomplish this task we proposed a

handful of methods which consisted in calculating the Hadamard tail 𝑉𝑠 and perform a

matching between 𝑠𝐺ret (obtained via Eq. (2.29)) and 𝑉𝑠. We also obtained the non-direct

part of 𝑠𝐺ret by subtracting (mode by mode) the direct part (2.12) from (2.29). For 𝑠 = 2

this subtraction procedure improved significantly the results and only failed in a small

interval near Δ𝑡 = 0.

In situations where there is no overlap between the QL and the DP region, we can

extend one of the regions and try to produce an overlap region. This can be accomplished

by either providing a more accurate expression for 𝑉𝑠 or improving the mode sum for

𝑠𝐺ret. Finding more accurate approaches for calculating 𝑉𝑠 is not an easy task. In the

next chapter we give a prescription for how to obtain the Hadamard tail via CID in a

(toy model) spacetime which shares some symmetries of Schwarzschild spacetime. This

toy model establishes the initial techniques and manifests the difficulties we may have to

deal with when we move to Schwarzschild spacetime to solve a 4-dimensional CID for 𝑉𝑠

(the Hadamard tail of 𝑠𝐺ret).

As a physical application for the results we shown in this chapter, in Chapter 4 we

will discuss how the quantum communication near a Schwarzschild black hole is affected

by spacetime’s curvature via the (scalar) retarded GF.
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3 Hadamard Tail from Initial Data on the

Light Cone in Plebański-Hacyan spacetime

Note: This Chapter is based on [20].

Calculating the Hadamard tail is not an easy task. In Chapter 2 we relied on a

small coordinate expansion to have an approximation for 𝑉𝑠 near the coincidence. For the

method of matched expansions, this approximation for 𝑉𝑠 could be enough for performing

a matching with 𝑠𝐺ret within a region of interest. However, for other applications (see

Chapter 4) we may be interested in regions where a small coordinate expansion is not

accurate enough and a matching process is not numerically possible. We may improve

the accuracy by adding additional terms in the expansion; however, this approach may

rapidly increase computational costs. Therefore, we look for a more accurate and efficient

alternative for calculating 𝑉𝑠 than a small coordinate expansion. In this Chapter we

provide a numerical scheme that allow us to calculate the Hadamard tail in Plebański-

Hacyan spacetime (PH).

The PH spacetime shares the same spherical symmetry we find in Schwarzschild

spacetime. This allows us to use the PH spacetime as a toy model to explore some key

features about the non-direct part of the retarded Green function. The PH spacetime is

a four-dimensional manifold composed by a direct product of a 2-sphere S2 and a two-

dimensional Minkowski spacetime M2. Its line element in (𝑡, 𝑦, 𝜃, 𝜙) coordinates is given

by [74]

d𝑠2 = −d𝑡2 + d𝑦2 + d𝜃2 + sin2 𝜃d𝜙2 = −d𝑡2 + d𝑦2 + dΩ2
2, (3.1)

where we made the units choice that the radius of the 2-sphere is equal to one. The

coordinates (𝑡, 𝑦) ∈ R2 are global inertial coordinates in M2, and (𝜃, 𝜙) are the standard

angular coordinates in S2. From the line element in Eq. (3.1), it is straightforward to find

that the Ricci scalar for PH spacetime is 𝑅 = 2.
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We now focus on spin-zero field perturbations. Scalar perturbations satisfy the

wave equation, i.e., their retarded Green function satisfies

(︁
�PH −𝑚2 − 𝜉𝑅

)︁
𝐺PH

ret (𝑥, 𝑥′) = −4𝜋𝛿4(𝑥, 𝑥′), (3.2)

where �PH is the d’Alembertian operator in M2 × S2 (i.e., PH spacetime), 𝑚 is the mass

of the field, 𝜉 is a coupling constant and 𝑥 and 𝑥′ are the field and base spacetime points,

respectively.

Within a normal neighbourhood, the Hadamard form for the retarded Greed func-

tion is given by

𝐺PH
ret = [𝑈PH(𝑥, 𝑥′)𝛿(𝜎PH) − 𝑉 (𝑥, 𝑥′)𝜃(−𝜎PH)] 𝜃+(𝑥, 𝑥′), (3.3)

where 𝑈PH and 𝑉 are two smooth biscalars, and 𝜎PH is Synge’s world function in PH

spacetime. We prefer not to add a PH label on the Hadamard tail 𝑉 for the sake of the

notation we introduce later on. The Hadamard tail 𝑉 satisfies the homogeneous wave

equation (︁
�PH −𝑚2 − 𝜉𝑅

)︁
𝑉 = 0, (3.4)

and it has the following constraint on the light cone [55]

𝑉𝛼𝜎PH
𝛼 + 1

2 (𝜎PH
𝛼

𝛼 − 2)𝑉 = 1
2
(︁
�PH −𝑚2 − 𝜉𝑅

)︁
𝑈PH|𝜎PH=0 , (3.5)

where 𝑉 ≡ 𝑉 |𝜎PH=0. The initial condition to solve the above transport equation is the

value of 𝑉 at coincidence (i.e., 𝑥′ = 𝑥):

𝑉 (𝑥, 𝑥) = 1
12(1 − 6𝜉)𝑅(𝑥) − 1

2𝑚
2 = 1

6(1 − 6𝜉) − 1
2𝑚

2, (3.6)

which is a direct consequence of 𝑉 being a smooth function at coincidence. Thus, the

constraint in Eq. (3.5) (together with the initial condition (3.6)) show that 𝑉 satisfies a

characteristic initial value problem. Having this in mind, a good starting point towards

the calculation of 𝑉 within a normal neighbourhood is to express 𝑉 in terms of the

asymptotic series:

𝑉 (𝑥, 𝑥′) =
∞∑︁

𝑛=0
𝜈𝑛(𝑥, 𝑥′)𝜎𝑛

PH, (3.7)
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where the coefficients 𝜈𝑛(𝑥, 𝑥′) satisfy certain recurrence relations in the form of transport

equations [25, 75]. In [76] there is a detailed procedure to calculate the 𝜈𝑛 coefficients

from a series of transport equations. As the coefficient order 𝑛 increases, the transport

equation for 𝜈𝑛 becomes difficult to solve analytically. Another issue to consider while using

this approach is related to the convergence of Eq. (3.7). Although this series converges

uniformly in normal neighbourhoods [25, 33], its convergence in the maximal normal

neighbourhood is not actually guaranteed. A more suitable approach for calculating 𝑉 is

to expand it in a small coordinate distance between 𝑥 and 𝑥′. As we detail in the next

sections, the approach we follow for calculating 𝑉 is by providing a CID scheme where

the initial data is obtained from the 𝜈𝑛 coefficients.

3.1 Hadamard biscalars in PH spacetime

Before going further, it is worth reviewing some of PH spacetime symmetries and

see how they are reflected on quantities like the van Vleck determinant ΔPH. Since PH is

a product of two manifolds, the van Vleck determinant can be expressed as a product of

the van Vleck determinants in M2 and S2 [55]:

ΔPH(𝑥, 𝑥′) = ΔM2 · ΔS2 , (3.8)

where ΔPH = 1 is the van Vleck determinant in M2 and ΔS2 = 𝛾
sin 𝛾

is the van Vleck

determinant in S2.

Another key quantity is Synge’s world function. In this case, the world function 𝜎PH

is simply given by the sum of the world functions 𝜎M2 and 𝜎S2 in M2 and S2, respectively.

That is [55]

𝜎PH = 𝜎M2 + 𝜎S2 . (3.9)

Furthermore, these world functions are given by

𝜎M2 = −1
2𝜂

2 ≡ −1
2(𝑡− 𝑡′)2 + 1

2(𝑦 − 𝑦′)2 (3.10)

and

𝜎S2 = 𝛾2

2 , (3.11)



Chapter 3. Hadamard Tail from Initial Data on the Light Cone in Plebański-Hacyan spacetime 83

where 𝛾 is given by (2.9).

Consequently, for 𝜎PH we have

𝜎PH(𝑥, 𝑥′) = −1
2𝜂

2 + 1
2𝛾

2 = −1
2(𝑡− 𝑡′)2 + 1

2(𝑦 − 𝑦′)2 + 1
2𝛾

2, (3.12)

where we identify 𝜂 as the geodesic distance in M2 and 𝛾 ∈ [0, 𝜋] (the angle between 𝑥

and 𝑥′) is the geodesic separation in S2. Within a normal neighbourhood of S2, 𝛾 is also

a geodesic distance. Null geodesics (for which 𝜎PH = 0 in a normal neighbourhood) focus

at the first caustic points: 𝜂 = 𝛾 = 𝜋. After crossing the first caustic, the envelope of null

geodesics emanating from a base point 𝑥′ forms the (future) boundary of the maximal

normal neighbourhood of the base point; this boundary is given by 𝜂 = 2𝜋 − 𝛾 ∈ [𝜋, 2𝜋]

(see the left panel of Fig.1 in [55]). Since 𝑉 (𝑥, 𝑥′) is only defined in normal neighbourhoods,

this will also be part of the boundary of the grid in our numerical scheme. The other part is

given by the null hypersurface corresponding to the envelope of future-directed direct null

geodesics (the characteristic surface where the initial data is placed on and also excludes

the non-causal part of the maximal normal neighbourhood), i.e., by 𝜂 = 𝛾 ∈ [0, 𝜋) (so

that it is 𝜎PH = 0 with 𝜂 ≥ 0). That is, the future boundary 𝜂 = 2𝜋 − 𝛾 ∈ [𝜋, 2𝜋] of the

maximal normal neighbourhood of an arbitrary base point together with the boundary

𝜂 = 𝛾 ∈ [0, 𝜋) of the causal future of the base point form the boundary of our numerical

grid.

In (𝑡, 𝑦, 𝜃, 𝜙) coordinates, the d’Alembertian �PH takes the standard form

�PH =�M2 +�S2 , (3.13)

�M2 = − 𝜕2

𝜕𝑡2
+ 𝜕2

𝜕𝑦2 ,

�S2 = 1
sin 𝜃

𝜕

𝜕𝜃
sin 𝜃 𝜕

𝜕𝜃
+ 1

sin2 𝜃

𝜕2

𝜕𝜙2 .

Furthermore, the symmetries of M2 and S2 manifolds allow us to reduce the �M2

and �S2 operators to ordinary differential operators. Given the geodesic distances 𝜂 and

𝛾, we find that

�M2 = − 𝜕2

𝜕𝜂2 − 1
𝜂

𝜕

𝜕𝜂
(3.14)
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and

�S2 = 𝜕2

𝜕𝛾2 + cot 𝛾 𝜕
𝜕𝛾

= 1
sin 𝛾

𝜕

𝜕𝛾

(︃
sin 𝛾 𝜕

𝜕𝛾

)︃
. (3.15)

With this, the wave equation (3.4) becomes(︃
𝜕2

𝜕𝛾2 + cot 𝛾 𝜕
𝜕𝛾

− 𝜕2

𝜕𝜂2 − 1
𝜂

𝜕

𝜕𝜂
− 𝜁

)︃
𝑉 = 0, (3.16)

where 𝜁 ≡ 𝑚2 + 𝜉𝑅 = 𝑚2 + 2𝜉. As we shall see in the following, this reduction in the

d’Alembert operator simplifies the calculation of 𝑉 .

Despite the PH spacetime being highly symmetric, out of 𝑈PH and 𝑉 , only 𝑈PH =

Δ1/2
PH can be calculated analytically. In this theses we propose a numerical method for

solving 𝑉 . In [55], it was found that 𝑉 = 𝑉 (𝜂, 𝛾) and 𝜈𝑛 = 𝜈𝑛(𝛾), ∀𝑛 ≥ 0. It was also

found that in PH spacetime

𝑉 = 𝜈0(𝛾) = 1
8𝑈PH(𝛾)

(︃
1 − 4𝜁 + 1

𝛾2 − cot 𝛾
𝛾

)︃
. (3.17)

The higher coefficients 𝜈𝑛, 𝑛 > 0, are obtainable from 𝜈𝑛−1 via the recurrence relation [55]

d
d𝛾

(︁
𝛾𝑘+1𝜈𝑘

)︁
= − 1

2𝑘
𝛾𝑘−1/2
√

sin 𝛾

{︃
d

d𝛾

[︃
sin 𝛾 d

d𝛾

(︃√︃
𝛾

sin 𝛾 𝜈𝑘−1

)︃]︃
− 𝜁 sin 𝛾

√︃
𝛾

sin 𝛾 𝜈𝑘−1

}︃
, (3.18)

where 𝜈𝑛 = 𝑈PH𝜈𝑛, and the integration constant is determined by imposing regularity

at coincidence. For instance, setting 𝑛 = 1 and solving Eq. (3.18) for 𝜈1, we find that

𝜈1 = 𝑈PH𝜈1 is given by

𝜈1 = 𝑈PH

128𝛾4

[︁
15 − 𝛾2

(︁
1 + 𝛾2(1 − 4𝜁)2 − 8𝜁

)︁
− 2𝛾

(︁
3 − 𝛾2(1 − 4𝜁)

)︁
cot 𝛾 − 9𝛾2 csc2 𝛾

]︁
,

(3.19)

As mentioned earlier, a more suitable method for obtaining 𝑉 is by solving a

characteristic initial value problem using 𝑉 = 𝜈0 as CID. From the 𝜈0 coefficient, we

note that 𝑉 is regular for 𝛾 ∈ [0, 𝜋) but it diverges as 𝛾 → 𝜋. More precisely, 𝑉 diverges

like (𝜋 − 𝛾)−3/2 at the antipodal points 𝛾 = 𝜋. However, as previously detailed, these

points lie outside of the maximal normal neighbourhood. As we will show in the next

section, the 𝜈𝑛 coefficients in Eq. (3.7) are a key component for establishing the CID

data on the light cone. The symmetries present in PH spacetime will allow us to develop
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a two dimensional CID scheme for computing 𝑉 . More specifically, we are interested in

providing a numerical scheme which will evolve initial data placed on the light cone, i.e.,

on 𝜎PH = −1
2𝜂

2 + 1
2𝛾

2 = 0. In order to establish this CID, we use Eqs. (3.7), (3.17) and

(3.19). Additionally, we note that 𝜂 and 𝛾 are not suitable variables for the CID problem,

we should provide more appropriate ones.

3.2 The wave equation as a characteristic initial value problem

We start by introducing the variables

𝑢 ≡ 𝜂 − 𝛾, 𝑣 ≡ 𝜂 + 𝛾, (3.20)

which are naturally more suitable for establishing a characteristic initial value problem,

since 𝜎PH = −1
2𝑢𝑣. The d’Alembertian operator in PH spacetime is then given by

�PH = −4 𝜕2

𝜕𝑢𝜕𝑣
−𝑄

𝜕

𝜕𝑣
− 𝑆

𝜕

𝜕𝑢
, (3.21)

where

𝑄 ≡ 2
𝑣 + 𝑢

− cot 𝑣 − 𝑢

2 ,

𝑆 ≡ 2
𝑣 + 𝑢

+ cot 𝑣 − 𝑢

2 .

We now rewrite the wave equation in terms of 𝑢 and 𝑣(︃
4 𝜕2

𝜕𝑢𝜕𝑣
+𝑄

𝜕

𝜕𝑣
+ 𝑆

𝜕

𝜕𝑢
+ 𝜁

)︃
𝑉 (𝑥, 𝑥′) = 0. (3.22)

We note the appearance of first-order derivatives with respect to 𝑢 and 𝑣, arising from the

first-order derivatives with respect to 𝜂 and 𝛾 in Eq. (3.16). We also see that the domains

for 𝑢 and 𝑣 are constrained by the range of 𝛾 ∈ [0, 𝜋] and the region where 𝑉 is defined.

Later on, we detail the implication of these constraints.

After we rewrote the wave equation in terms of 𝑢 and 𝑣, we also need to rewrite

the initial data on the light cone in terms of 𝑢 and 𝑣. On the 𝑢–𝑣 plane in Fig. 9, the light

cone of 𝑥′ starts at 𝑢 = 𝑣 = 0 (which corresponds to the coincidence 𝑥 = 𝑥′) and extends
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Figure 9 – Grid distribution for a finite difference scheme for solving a two-dimensional PDE where 𝑢
and 𝑣 denote the independent variables and 2ℎ is the stepsize.

along the 𝑢 = 0 and 𝑣 = 0 lines. Therefore, the initial data 𝑉 expressed in terms of 𝑢 and

𝑣 is given by
𝑉 |𝑢=0 = 𝜈0

(︂
𝑣

2

)︂
,

𝑉 |𝑣=0 = 𝜈0

(︂
−𝑢

2

)︂
,

(3.23)

where 𝜈0 = 𝜈0(𝛾) is given in Eq. (3.17).

In this way, the wave equation (3.22) together with the CID (3.23) establish our

characteristic initial value problem. In the following, we detail the numerical method to

solve it.

3.2.1 Numerical scheme

CID schemes in 1 + 1-dimensions are widely known in the literature. In previous

works, however, the PDE did not contain first order derivatives as Eq. (3.22) does. More

precisely, these CID schemes focus on calculating the ℓ-modes of the retarded Green func-

tions in Schwarzschild spacetime (see Eq. (C2) in [19] for instance). In Refs. [63, 65] we

find two approaches for solving a CID problem. In [65], the authors provide an order ℎ6

scheme which, in principle, can be generalised to arbitrary order. Despite our numerical

scheme sharing the same principles as Refs. [63, 65], the first order derivative with respect

to 𝛾 in Eq. (3.22) introduces a coordinate singularity at 𝛾 = 0 that requires an addi-
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tional analysis. Since 𝑉 = 𝑉 (𝜂, 𝛾) in PH spacetime, the PDE we are solving is also two

dimensional as in Refs. [63, 65] but its domain now becomes the maximal normal neigh-

bourhood. On its turn, this domain constrains the independent variables to the intervals

𝑢 ∈ [0, 2𝜋) and 𝑣 ∈ [0, 𝑢] (directly related to the range 𝛾 ∈ [0, 𝜋) inside the maximal

normal neighbourhood).

In order for us to compare our CID problem with Refs. [63, 65] and the CID

problem in Schwarzschild spacetime in general, without losing generality, we will place

the two PH spacetime points 𝑥 and 𝑥′ on the equator, i.e., 𝑥 and 𝑥′ have 𝜃 = 𝜃′ = 𝜋
2

and 𝜙′ = 0, and, as a consequence, we have that 𝛾 ≡ 𝜙 ∈ (−𝜋, 𝜋) denotes the azimuthal

angle of 𝑥 (instead of the angular separation). With this change in the range of 𝛾, the

variables 𝑢 and 𝑣 continue to be defined as in (3.20) but now with 𝛾 ∈ (−𝜋,+𝜋) being

an azimuthal angle. The region of interest for calculating 𝑉 (𝑥, 𝑥′) (i.e., the causal part of

the maximal normal neighbourhood) is now bounded by 𝜂 = 2𝜋 − 𝛾 together with 𝜂 = 𝛾

if 𝛾 ∈ [0, 𝜋], and by 𝜂 = 2𝜋 + 𝛾 together with 𝜂 = −𝛾 if 𝛾 ∈ [−𝜋, 0] after extending the

range of 𝛾. In their turn, the new range for the CID variables changed from 𝑣 ∈ [0, 2𝜋]

and 𝑢 ∈ [0, 𝑣] to 𝑣, 𝑢 ∈ [0, 2𝜋).

Now we describe our CID scheme. In the following, we adopt the convention that,

unless otherwise explicitly specified, the “order” of a scheme will refer to the local trun-

cation error (LTE); thus, in particular, a “third (fourth) order scheme” will refer to a

numerical scheme with LTE of order three (four). We first start with a third order CID

scheme. As an introduction to the prescription and for analysing its key distinctions from

the previous CID schemes given in Refs. [63, 65], the third order scheme is the simplest

scheme we can start with. We then extend the scheme to the next order, a fourth order

scheme. In Appendix B we provide the basics for extending the method to a fifth (and

even sixth) order scheme.

3.2.2 CID scheme setup

The setup for solving the wave equation (3.22) (with (3.23) as CID) requires to

construct a uniform grid of points on the 𝑢 − 𝑣 plane (see Fig. 9). The spacing between
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points is 2ℎ. Once we establish the grid, we proceed to integrate Eq. (3.22) over each

square on the grid. Let 𝑆𝐸𝑁𝑊 be an arbitrary square in the grid in Fig. 9. Assuming

that 𝑉 is given at the 𝐸, 𝑊 and 𝑆 points, 𝑉 at 𝑁 is the value we seek for. We have

4
∫︁

𝑆𝐸𝑁𝑊

𝜕2𝑉

𝜕𝑣𝜕𝑢
d𝑣 d𝑢+

∫︁
𝑆𝐸𝑁𝑊

𝑄
𝜕𝑉

𝜕𝑣
d𝑣 d𝑢+

∫︁
𝑆𝐸𝑁𝑊

𝑆
𝜕𝑉

𝜕𝑢
d𝑣 d𝑢+𝜁

∫︁
𝑆𝐸𝑁𝑊

𝑉 d𝑣 d𝑢 = 0. (3.24)

In order to simplify our notation, from now on a subindex 𝑁 , 𝐸, 𝑊 , 𝑆 or 𝑂 in a

quantity indicates that the quantity is evaluated at the corresponding point on the grid.

The first integral in the left hand side of Eq. (3.24) is immediate, i.e.,

∫︁
𝑆𝐸𝑁𝑊

𝜕2𝑉

𝜕𝑣𝜕𝑢
d𝑣 d𝑢 = 𝑉𝑁 − 𝑉𝐸 − 𝑉𝑊 + 𝑉𝑆. (3.25)

For the remaining three integrals, we Taylor expand the integrands about the central point

𝑂 = (𝑣𝑂, 𝑢𝑂) in the square. Given a function 𝐹 (𝑢, 𝑣) analytic on 𝑂, its Taylor expansion

is given by

𝐹 (𝑣, 𝑢) =
∑︁

0≤𝑚,𝑛≤𝐾
𝑚+𝑛≤𝐾

1
𝑚!𝑛!

(︃
𝜕𝑚+𝑛𝐹

𝜕𝑣𝑚𝜕𝑢𝑛

)︃
𝑂

(𝑣 − 𝑣0)𝑚(𝑢− 𝑢0)𝑛 + 𝒪(ℎ𝐾+1), (3.26)

where 𝐾 determines the order in the expansion. We then use the above expansion (re-

placing 𝐹 with the corresponding integrands) to calculate the last three integrands in

Eq. (3.24) to the desired order. This order will determine the order in the scheme.

3.2.2.1 Third order CID scheme

Using Eq. (3.26) to order ℎ2, the last three integrals in the left hand side of

Eq. (3.24) are given by

∫︁
𝑆𝐸𝑁𝑊

𝑄
𝜕𝑉

𝜕𝑣
d𝑣 d𝑢 = 4ℎ2𝑄𝑂

(︃
𝜕𝑉

𝜕𝑣

)︃
𝑂

+ 𝒪(ℎ4), (3.27)

∫︁
𝑆𝐸𝑁𝑊

𝑆
𝜕𝑉

𝜕𝑢
d𝑣 d𝑢 = 4ℎ2𝑆𝑂

(︃
𝜕𝑉

𝜕𝑢

)︃
𝑂

+ 𝒪(ℎ4), (3.28)

∫︁
𝑆𝐸𝑁𝑊

𝑉 d𝑣 d𝑢 = 4ℎ2𝑉𝑂 + 𝒪(ℎ4), (3.29)

where, once again, the 𝑂 subindex indicates that the corresponding quantity is evaluated

at the point 𝑂. Considering the first two leading orders in the Taylor expansion should
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(in principle) return the integrals to order ℎ3. However, it is straightforward to show that

the contribution to the integrals from the next-to-leading order in the Taylor expansion

vanishes.

The Taylor coefficients in the right hand side of Eqs. (3.27)–(3.29) are obtained in

the following way. We evaluate the Taylor expansion for 𝑉 and its first order derivatives

at the points 𝐸, 𝑊 and 𝑆 to order ℎ. We thus have a system of three equations to solve

for 𝑉𝑂,
(︁

𝜕𝑉
𝜕𝑢

)︁
𝑂

and
(︁

𝜕𝑉
𝜕𝑣

)︁
𝑂

. We thus find that

𝑉𝑂 = 𝑉𝐸 + 𝑉𝑊

2 + 𝒪(ℎ2), (3.30)(︃
𝜕𝑉

𝜕𝑢

)︃
𝑂

= 𝑉𝑊 − 𝑉𝑆

2ℎ + 𝒪(ℎ), (3.31)(︃
𝜕𝑉

𝜕𝑣

)︃
𝑂

= 𝑉𝐸 − 𝑉𝑆

2ℎ + 𝒪(ℎ). (3.32)

Therefore, we put the integrals (3.25) and (3.27)–(3.29) together with Eqs. (3.30)–(3.32)

back into Eq. (3.24) and solve for 𝑉𝑁 . This yields

𝑉𝑁 = −𝑉𝑆−
(︂
𝑉𝐸 + 𝑉𝑊 − 2𝑉𝑆

𝑢𝑂 + 𝑣𝑂

− 1
2(𝑉𝐸 − 𝑉𝑊 ) cot 𝑣𝑂 − 𝑢𝑂

2

)︂
ℎ+

(︃
1 − 𝜁

2ℎ
2
)︃

(𝑉𝐸+𝑉𝑊 )+𝒪
(︁
ℎ3
)︁
,

(3.33)

for 𝑢𝑂 ̸= 𝑣𝑂. When comparing the above expression for 𝑉𝑁 with its counterpart (the

multipolar modes of the RGF in Schwarzschild spacetime) in Refs. [63, 65], we immediately

note the additional term of order ℎ in Eq. (3.33). This is directly connected to the two

first order derivatives in Eq. (3.16), a term absent in [63, 65]. In fact, the order in the

right hand side of Eqs. (3.31)–(3.32) is the reason for Eq. (3.33) being third order, instead

of being fourth order as in [63, 65].

Another crucial difference arises from the coordinate singularity in Eq. (3.16), i.e.,

along 𝛾 = 0 (or 𝑢𝑂 = 𝑣𝑂). As can be seen in Eq. (3.33), the cot function is not well-

defined for 𝑢𝑂 = 𝑣𝑂. We should look at that term in more detail before calculating 𝑉𝑁

for this particular case. By applying the spherical symmetry of M2 × S2, it follows that

𝑉 (𝜂, 𝛾) = 𝑉 (𝜂,−𝛾), and this yields the symmetry 𝑉𝐸 = 𝑉𝑊 for all squares centered at 𝑂

with 𝑢𝑂 = 𝑣𝑂. Thus, the proper way to evaluate the term involving the cot function in
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Eq. (3.33) is by taking the limit 𝛾𝑂 ≡ 𝑣𝑂−𝑢𝑂

2 → 0

[(𝑉𝐸 − 𝑉𝑊 ) cot 𝛾0]𝛾0=0 = lim
𝛾0→0

𝑉𝐸 − 𝑉𝑊

tan(𝛾0)
= 𝒪 (ℎ) , (3.34)

where, in order to take the limit, we applied L’Hôpital’s rule and expressed 𝑉𝐸 and 𝑉𝑊

as small 𝛾-expansions. Consequently, for squares with 𝑢𝑂 = 𝑣𝑂, 𝑉𝑁 is given by

𝑉𝑁 = −𝑉𝑆 − ℎ
(︂
𝑉𝐸 − 𝑉𝑆

𝑣𝑂

)︂
+
(︁
2 − 𝜁ℎ2

)︁
𝑉𝐸 + 𝒪

(︁
ℎ3
)︁
, for 𝛾𝑂 = 0, (3.35)

where, once again, we applied the 𝑉𝐸 = 𝑉𝑊 symmetry.

We can now establish the scheme as follows We start by splitting the grid in Fig. (9)

into two triangles, we use the 𝑢 = 𝑣 diagonal (i.e., 𝛾 = 0) to do so. With no particular

preference, we apply the scheme to points along the diagonal and bottom triangle, and

as can be seen in Eq. (3.35), along the diagonal (i.e., 𝑢𝑂 = 𝑣𝑂) 𝑉𝑁 only depends on 𝑉𝐸

and 𝑉𝑆. This suggests that, for the choice of bottom triangle, and after applying the the

symmetries along 𝛾 = 0, the initial data is simply given by 𝑉 |𝑢=0. Points located on the

top triangle are easily obtained using the 𝑉 (𝜂, 𝛾) = 𝑉 (𝜂,−𝛾) symmetry. In case we apply

the scheme to points along the diagonal and top triangle, the initial data would be given

by 𝑉 |𝑣=0. Therefore, the spherical symmetry reduces the amount of data to calculate by

almost half regardless of which triangle we decide to evolve.

To conclude, our third order CID scheme consists of calculating 𝑉𝑁 at each point

along 𝛾 = 0 using Eq. (3.35), and for points in the bottom triangle, we use Eq. (3.33). We

then evolve the field 𝑉 for increasing values of 𝑢 by using (3.33) until we reach 𝛾𝑂 = 0;

finally, at 𝛾𝑂 = 0, we switch to using (3.35). In the next subsection we develop a scheme

of one higher order.

3.2.2.2 Fourth order CID scheme

The starting point for establishing a fourth order CID scheme is to have the in-

tegrals in Eq. (3.24) to order ℎ4. In fact, this is already the case in Eqs. (3.27)–(3.29).

However, we note that the order in the Taylor coefficients given in Eqs. (3.31)–(3.32) low-

ered the order in the integrals and, consequently, led to a third order scheme. Therefore,
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in order to obtain a fourth order CID scheme, the next higher order in Eqs. (3.31)–(3.32)

has to be calculated. Including these next higher order terms is connected with higher

(than in the third order scheme) Taylor coefficients in Eq. (3.26), i.e., we require to cal-

culate additional Taylor coefficients in Eq. (3.26) (with 𝐹 = 𝑉 ). Furthermore, as we

show later on, the expression for 𝑉𝑁 to 𝒪 (ℎ4) along 𝛾 = 0 does depend on second order

derivatives of 𝑉 at the point 𝑂. More precisely, the fourth order CID scheme requires the

calculation of seven additional Taylor coefficients in addition to higher order versions of

Eqs. (3.31)–(3.32). In order to calculate these Taylor coefficients, we construct a system

of 12 equations in the following way. We take Eq. (3.26) (with 𝐹 = 𝑉 ) up to order ℎ3

(inclusive) and its first order derivatives at the points 𝑁 , 𝐸, 𝑊 and 𝑆. Ten of these

equations, when solved, give the required Taylor coefficients, i,e., the values of 𝑉 and its

first, second and third order derivatives at the point 𝑂. As we see later on, these Taylor

coefficients are expressed in terms of 𝑉 and its first order derivatives at the points 𝐸, 𝑊 ,

𝑁 and 𝑆. Despite calculating ten Taylor coefficients, for the fourth order CID scheme,

only five of them are required. Specifically, the expressions

8ℎ
(︃
𝜕𝑉

𝜕𝑢

)︃
𝑂

= −5𝑉𝑆 − 𝑉𝐸 + 5𝑉𝑊 + 𝑉𝑁 − 2ℎ
(︃
𝜕𝑉

𝜕𝑢
+ 𝜕𝑉

𝜕𝑣

)︃
𝑆

− 2ℎ
(︃
𝜕𝑉

𝜕𝑢
− 𝜕𝑉

𝜕𝑣

)︃
𝑊

+ 𝒪
(︁
ℎ4
)︁
, (3.36)

8ℎ
(︃
𝜕𝑉

𝜕𝑣

)︃
𝑂

= −5𝑉𝑆 + 5𝑉𝐸 + 𝑉𝑊 − 𝑉𝑁 − 2ℎ
(︃
𝜕𝑉

𝜕𝑢
+ 𝜕𝑉

𝜕𝑣

)︃
𝑆

+ 2ℎ
(︃
𝜕𝑉

𝜕𝑢
− 𝜕𝑉

𝜕𝑣

)︃
𝐸

+ 𝒪
(︁
ℎ4
)︁
, (3.37)

4ℎ2
(︃
𝜕2𝑉

𝜕𝑢2

)︃
𝑂

= 𝑉𝑆 − 𝑉𝐸 − 𝑉𝑊 + 𝑉𝑁 + 2ℎ
(︃
𝜕𝑉

𝜕𝑢

)︃
𝐸

− 2ℎ
(︃
𝜕𝑉

𝜕𝑢

)︃
𝑊

+ 𝒪
(︁
ℎ4
)︁
, (3.38)

4ℎ2
(︃
𝜕2𝑉

𝜕𝑣2

)︃
𝑂

= 𝑉𝑆 − 𝑉𝐸 − 𝑉𝑊 + 𝑉𝑁 − 2ℎ
(︃
𝜕𝑉

𝜕𝑣

)︃
𝐸

+ 2ℎ
(︃
𝜕𝑉

𝜕𝑣

)︃
𝑊

+ 𝒪
(︁
ℎ4
)︁
, (3.39)

4ℎ2
(︃
𝜕2𝑉

𝜕𝑣𝜕𝑢

)︃
𝑂

= 𝑉𝑁 + 𝑉𝑆 − 𝑉𝐸 − 𝑉𝑊 + 𝒪
(︁
ℎ4
)︁
, (3.40)
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are directly used in the fourth order scheme. The expressions for the five remaining Taylor

coefficients are

4𝑉𝑂 = 2𝑉𝐸 + 2𝑉𝑊 + ℎ

(︃
𝜕𝑉

𝜕𝑢
− 𝜕𝑉

𝜕𝑣

)︃
𝐸

− ℎ

(︃
𝜕𝑉

𝜕𝑢
− 𝜕𝑉

𝜕𝑣

)︃
𝑊

+ 𝒪
(︁
ℎ4
)︁
, (3.41)

2
3ℎ

3
(︃
𝜕3𝑉

𝜕𝑣3

)︃
𝑂

= 𝑉𝑆 − 𝑉𝐸 + ℎ

(︃
𝜕𝑉

𝜕𝑣

)︃
𝑆

+ ℎ

(︃
𝜕𝑉

𝜕𝑣

)︃
𝐸

+ 𝒪
(︁
ℎ4
)︁
, (3.42)

2
3ℎ

3
(︃
𝜕3𝑉

𝜕𝑢3

)︃
𝑂

= 𝑉𝑆 − 𝑉𝑊 + ℎ

(︃
𝜕𝑉

𝜕𝑢

)︃
𝑆

+ ℎ

(︃
𝜕𝑉

𝜕𝑢

)︃
𝑊

+ 𝒪
(︁
ℎ4
)︁
, (3.43)

4ℎ3
(︃
𝜕3𝑉

𝜕𝑣2𝜕𝑢

)︃
𝑂

= 𝑉𝑁 + 𝑉𝑆 − 𝑉𝐸 − 𝑉𝑊 + 2ℎ
(︃
𝜕𝑉

𝜕𝑣

)︃
𝑆

− 2ℎ
(︃
𝜕𝑉

𝜕𝑣

)︃
𝑊

+ 𝒪
(︁
ℎ4
)︁
, (3.44)

4ℎ3
(︃
𝜕3𝑉

𝜕𝑣𝜕𝑢2

)︃
𝑂

= 𝑉𝑁 + 𝑉𝑆 − 𝑉𝐸 − 𝑉𝑊 + 2ℎ
(︃
𝜕𝑉

𝜕𝑢

)︃
𝑆

− 2ℎ
(︃
𝜕𝑉

𝜕𝑢

)︃
𝐸

+ 𝒪
(︁
ℎ4
)︁
. (3.45)

The remaining two equations out of the total twelve mentioned previously are used for

calculating the first order derivatives of 𝑉 at the point 𝑁 , i.e.,(︃
𝜕𝑉

𝜕𝑢

)︃
𝑁

= 𝑉𝑆 − 𝑉𝐸 − 𝑉𝑊 + 𝑉𝑁

ℎ
−
(︃
𝜕𝑉

𝜕𝑢

)︃
𝐸

+
(︃
𝜕𝑉

𝜕𝑢

)︃
𝑊

+
(︃
𝜕𝑉

𝜕𝑢

)︃
𝑆

+ 𝒪
(︁
ℎ3
)︁
,(︃

𝜕𝑉

𝜕𝑣

)︃
𝑁

= 𝑉𝑆 − 𝑉𝐸 − 𝑉𝑊 + 𝑉𝑁

ℎ
+
(︃
𝜕𝑉

𝜕𝑣

)︃
𝐸

−
(︃
𝜕𝑉

𝜕𝑣

)︃
𝑊

+
(︃
𝜕𝑉

𝜕𝑣

)︃
𝑆

+ 𝒪
(︁
ℎ3
)︁
.

(3.46)

These derivatives have no immediate usage when calculating 𝑉𝑁 . However, they will be

required at the next step when we move rightwards in the 𝑢− 𝑣 plane. In this next step,

the previous point labeled with 𝑁 now becomes the point 𝑊 . Ideally, with the expressions

for the additional Taylor coefficients and the first order derivatives of 𝑉 at the point 𝑁 ,

we have the necessary expressions to establish a fourth order CID scheme. However, we

note the following. While 𝑉𝑂 in Eq. (3.30) is order ℎ2, the new expressions in Eqs. (3.36)–

(3.37) for for the first order derivatives are to order ℎ3. From a numerical point of view, we

found that the numerical results are more accurate when we use the following expressions1

(which are the same order as Eq. (3.30)) instead of Eqs. (3.36)–(3.37)

4ℎ
(︃
𝜕𝑉

𝜕𝑢

)︃
𝑂

=𝑉𝑊 − 𝑉𝐸 − 𝑉𝑆 + 𝑉𝑁 + 𝒪
(︁
ℎ3
)︁
, (3.47)

4ℎ
(︃
𝜕𝑉

𝜕𝑣

)︃
𝑂

=𝑉𝐸 − 𝑉𝑊 − 𝑉𝑆 + 𝑉𝑁 + 𝒪
(︁
ℎ3
)︁
. (3.48)

1For obtaining Eqs. (3.47)–(3.48) we constructed a system of 4 equations –other than the system of
12 equations mentioned above– by using Eq. (3.26) evaluated at the 𝐸, 𝑊 , 𝑁 and 𝑆 points. We then
solved this system for 𝑉𝑂,

(︁
𝜕2𝑉
𝜕𝑢𝜕𝑣

)︁
𝑂

,
(︀

𝜕𝑉
𝜕𝑢

)︀
𝑂

, and
(︀

𝜕𝑉
𝜕𝑣

)︀
𝑂

, and Eqs. (3.47)–(3.48) are the expressions for
the two latter quantities.
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With this, we have all the necessary expressions to obtain 𝑉𝑁 to order ℎ4, but only for

squares with 𝑢𝑂 ̸= 𝑣𝑂 (i.e., 𝛾𝑂 ̸= 0, we treat the 𝑢𝑂 = 𝑣𝑂 case separately below). Thus,

we put Eqs. (3.25), (3.30), (3.47)–(3.48) and (3.27)–(3.29) back into Eq. (3.24) and solve

for 𝑉𝑁 to obtain

𝑉𝑁 = 𝑉𝐸 + 𝑉𝑊 − 𝑉𝑆 −
(︂
𝑉𝐸 + 𝑉𝑊 − 2𝑉𝑆

𝑢𝑂 + 𝑣𝑂

− 1
2(𝑉𝐸 − 𝑉𝑊 ) cot 𝑣𝑂 − 𝑢𝑂

2

)︂
ℎ

+
(︃

(2 − (𝑢𝑂 + 𝑣𝑂)2𝜁)(𝑉𝐸 + 𝑉𝑊 ) − 4𝑉𝑆

2(𝑢𝑂 + 𝑣𝑂)2 − 𝑉𝐸 − 𝑉𝑊

2(𝑢𝑂 + 𝑣𝑂) cot 𝑣𝑂 − 𝑢𝑂

2

)︃(︃
ℎ2 − ℎ3

𝑢𝑂 + 𝑣𝑂

)︃

+ 𝒪
(︁
ℎ4
)︁
, 𝛾𝑂 ̸= 0. (3.49)

Now, similar to the third order scheme, the terms involving the cot function in

Eq. (3.49) should be evaluated separately for 𝑢𝑂 = 𝑣𝑂 (i.e., 𝛾𝑂 = 0). Taking the limit

𝛾𝑂 → 0 is no longer an option since the leading term in Eq. (3.34) cannot be ignored

in a fourth order scheme. Instead, we go one step back and rewrite the second and third

integrals in Eq. (3.24) as∫︁
𝑆𝐸𝑁𝑊

(︃
𝑄
𝜕𝑉

𝜕𝑣
+ 𝑆

𝜕𝑉

𝜕𝑢

)︃
d𝑢 d𝑣 = 8ℎ2

𝑢𝑂 + 𝑣𝑂

(︃
𝜕𝑉

𝜕𝑣
+ 𝜕𝑉

𝜕𝑢

)︃
𝑂

− 4ℎ2 cot 𝑣𝑂 − 𝑢𝑂

2

(︃
𝜕𝑉

𝜕𝑣
− 𝜕𝑉

𝜕𝑢

)︃
𝑂

+ 𝒪
(︁
ℎ4
)︁

= 8ℎ2

𝑢𝑂 + 𝑣𝑂

(︃
𝜕𝑉

𝜕𝑣
+ 𝜕𝑉

𝜕𝑢

)︃
𝑂

− 4ℎ2 cot 𝛾𝑂

(︃
𝜕𝑉

𝜕𝛾

)︃
𝑂

+ 𝒪
(︁
ℎ4
)︁
,

(3.50)

where, in order to take the desired limit 𝛾𝑂 → 0, we have expressed the second term in

the right hand side of Eq. (3.50) in terms of 𝛾 instead of 𝑢 and 𝑣. For the first term, the

limit 𝛾𝑂 → 0 simply reduces to setting 𝑢𝑂 = 𝑣𝑂 and
(︁

𝜕𝑉
𝜕𝑢

)︁
𝑂

=
(︁

𝜕𝑉
𝜕𝑣

)︁
𝑂

, as a consequence of

the symmetries of M2 × S2. For the second terms, we apply L’Hôpital’s rule2 to calculate

the limit 𝛾𝑂 → 0. This reads

lim
𝛾𝑂→0

∫︁
𝑆𝐸𝑁𝑊

(︃
𝑄
𝜕𝑉

𝜕𝑣
+ 𝑆

𝜕𝑉

𝜕𝑢

)︃
d𝑣 d𝑢 = 8ℎ2

𝑣𝑂

(︃
𝜕𝑉

𝜕𝑣

)︃
𝑂

− 4ℎ2
(︃
𝜕2𝑉

𝜕𝛾2

)︃
𝑂

+ 𝒪
(︁
ℎ4
)︁
, (3.51)

for 𝛾𝑂 = 0. Once we performed the limit, we write the above expression back in terms of

𝑢 and 𝑣. The second order derivative with respect to 𝛾 can be written as(︃
𝜕2𝑉

𝜕𝛾2

)︃
𝑂

=
(︃
𝜕2𝑉

𝜕𝑢2

)︃
𝑂

− 2
(︃
𝜕2𝑉

𝜕𝑢𝜕𝑣

)︃
𝑂

+
(︃
𝜕2𝑉

𝜕𝑣2

)︃
𝑂

. (3.52)

2The 𝑉 (𝜂, 𝛾) = 𝑉 (𝜂,−𝛾) symmetry implies
(︁

𝜕𝑉
𝜕𝛾

)︁
𝛾=0

= 0, which prompts us to use L’Hôpital’s rule.
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Despite these second order derivatives are only required along 𝛾 = 0, we have to propagate

them from the CID, i.e., we eventually need them away from 𝛾 = 0 as well. The limit

given in Eq. (3.51) is the last expression needed for the 𝑢𝑂 = 𝑣𝑂 case.

The first and fourth integrals in Eq. (3.24) are the same as in the third order

scheme, i.e., they are given by Eqs. (3.25) and (3.29), respectively. The second and third

integrals are now calculated using Eq. (3.51) together with the Taylor coefficients calcu-

lated via Eqs. (3.38)–(3.40) and (3.48). Putting all the integrals together in Eq. (3.24)

and isolating 𝑉𝑁 yields

𝑉𝑁 = 2𝑉𝐸 − 𝑉𝑆 +
[︃(︃
𝜕𝑉

𝜕𝑣
− 𝜕𝑉

𝜕𝑢

)︃
𝐸

+ 𝑉𝑆 − 𝑉𝐸

𝑣𝑂

]︃
ℎ

+ 1
2𝑣𝑂

[︃
𝑉𝑆 − (1 − 2𝜁𝑣𝑂

2)𝑉𝐸

𝑣𝑂

+
(︃
𝜕𝑉

𝜕𝑣
− 𝜕𝑉

𝜕𝑢

)︃
𝐸

]︃
·
(︃
ℎ2 + ℎ3

2𝑣𝑂

)︃
+ 𝒪

(︁
ℎ4
)︁
, 𝛾𝑂 = 0.

(3.53)

We used the symmetry 𝑉𝐸 = 𝑉𝑊 together with
(︁

𝜕𝑉
𝜕𝑢

)︁
𝑊

=
(︁

𝜕𝑉
𝜕𝑣

)︁
𝐸

and
(︁

𝜕𝑉
𝜕𝑣

)︁
𝑊

=
(︁

𝜕𝑉
𝜕𝑢

)︁
𝐸

to

express the above expression in terms of data on the 𝐸 and 𝑆 points. These additional

symmetries are easily derived from 𝑉 (𝜂, 𝛾) = 𝑉 (𝜂,−𝛾) and, consequently, we can still

reduce the amount of data we calculate as in the third order scheme.

As can be seen in Eqs. (3.49) and (3.53), our fourth order CID scheme requires

calculating data on the light cone other than the data for 𝑉 . Specifically, we now require

the first order derivatives of 𝑉 on the light cone. In order to provide these data, we simply

differentiate Eq. (3.7) once with respect to 𝑢 and once with respect to 𝑣. We then evaluate

these derivatives at 𝜎PH = 1
2𝑢𝑣 = 0. In this way, these derivatives are expressed in terms

of the Hadamard coefficients 𝜈0 and 𝜈1, i.e.,

𝜕𝑉

𝜕𝑢

⃒⃒⃒⃒
⃒
𝑢=0

= − 1
2𝜈0

′
(︂
𝑣

2

)︂
− 𝑣

2𝜈1

(︂
𝑣

2

)︂
, (3.54)

𝜕𝑉

𝜕𝑢

⃒⃒⃒⃒
⃒
𝑣=0

= − 1
2𝜈0

′
(︂

−𝑢

2

)︂
, (3.55)

𝜕𝑉

𝜕𝑣

⃒⃒⃒⃒
⃒
𝑢=0

= 1
2𝜈0

′
(︂
𝑣

2

)︂
, (3.56)

𝜕𝑉

𝜕𝑣

⃒⃒⃒⃒
⃒
𝑣=0

= 1
2𝜈0

′
(︂

−𝑢

2

)︂
− 𝑢

2𝜈1

(︂
−𝑢

2

)︂
, (3.57)
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where the primes indicate differentiation with respect to 𝛾. Since we are solving a char-

acteristic initial value problem for 𝑉 , the derivatives in Eqs. (3.54)–(3.57) should be

obtainable from the value of 𝑉 on the light cone (i.e., 𝑉 ). In fact, in PH spacetime, we

find that 𝑉 = 𝜈0 and 𝜈1 are uniquely obtainable from 𝜈0 together with the regularity

condition for 𝜈1 at coincidence (see Eq. (24) in [53]; moreover, the Hadamard coefficients

𝜈𝑛 with 𝑛 > 0 can be calculated from previous coefficients 𝜈𝑛−1 in an arbitrary spacetime

[64, 63, 65]).

Therefore, we can illustrate the fourth order CID scheme in the following way. We

start with the same grid we constructed in the third order scheme (see Fig 9) and place

the initial data (now including the first order derivatives of 𝑉 ) along 𝑢 = 0 if we want

to evolve points on and below the 𝛾 = 0 line3. Next, we apply Eq. (3.49) to calculate 𝑉𝑁

for squares not centered along 𝛾 = 0, and Eq. (3.53) for squares centered along 𝛾 = 0.

Unlike the third order scheme, we now need to calculate both first order derivatives at

the point 𝑁 using Eq. (3.46) and for all 𝛾. The additional analysis required along 𝛾 = 0

does not appear in [64, 63, 65] again, as pointed out in the previous scheme, the PDE in

those cases does not have a singular point like 𝛾 = 0 in M2 × S2.

Given two working prescriptions for calculating 𝑉 to different orders (namely, third

and fourth order schemes), we used the Mathematica software package to implement these

two schemes. We present and analyse these results in the following section.

3.2.3 Results for 𝑉

We start by comparing 𝑉 (𝑥, 𝑥′) with𝐺PH
ret (𝑥, 𝑥′). In the top plot of Fig 10 we explore

a static scenario where 𝑦 = 𝑦′ and 𝛾 = 𝜋/2 for 𝜁 = 1
4 . In the plot we have: 𝑉 calculated

using the fourth order CID scheme with ℎ = 0.00261799 (red-dashed curve); The retarded

Green function 𝐺PH
ret calculated via an ℓ-mode decomposition (with the sum capped at

ℓ = 800) given in Eq. (134) in4 [55] (blue curve); The basic approximation 𝜈0 + 𝜈1𝜎PH

to 𝑉 (gray-dashed curve); 𝑉 calculated using a small coordinate distance expansion (see
3For the opposite choice of evolving points on and above the 𝛾 = 0 line, the initial data is instead

placed along 𝑣 = 0.
4We note that in [55] the last expression in Eq. (134) there is a missing factor 𝜃(−𝜎M2).
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Figure 10 – Quantities as functions of 𝜂 = Δ𝑡 in M2 × S2 with 𝜁 = 1/4, Δ𝑦 = 𝑦 − 𝑦′ = 0 and 𝛾 = 𝜋/2.
Top plot: Retarded Green function as an ℓ-mode sum (blue) and 𝑉 using the fourth order CID scheme
(dashed red), a small coordinate-separation expansion (green) and approximated by 𝜈0 + 𝜈1𝜎PH (dashed
gray). Bottom plot: Relative error between the third order and fourth order schemes for calculating 𝑉
with ℎ = 0.00261799.
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Ref. [60]) (green curve). As anticipated by the Hadamard form for 𝐺PH
ret , there is a 𝛿(𝜎PH)

divergence (at 𝜂 = 𝜋/2) related to the direct null geodesics. This divergence also signals

the start of causal separation between 𝑥 and 𝑥′. After this divergence, we observe the

expected agreement between 𝑉 and 𝐺PH
ret all the way until 𝜂 = 3𝜋

2 where we encounter the

next divergence. This time, this is of type [55] which agrees with 𝐺PH
ret in the plot.

In the bottom plot of Fig. 10, we show the relative error between the two CID

schemes, third order and fourth order, for the same stepsize 2ℎ = 2×0.00261799. The local

truncation errors are 𝒪 (ℎ3) and 𝒪 (ℎ4) and we observe that the relative error between

the two schemes is at least order 10−4, which is consistent with the local truncation error.

Let us see in detail this value for the relative error. Let 𝑒3 and 𝑒4 be the global truncation

errors (GTEs) for the schemes with local truncation errors 𝒪(ℎ3) and 𝒪(ℎ4), respectively.

These errors for the 𝑛–th evolved point in the grid are given by 𝑒3 = 𝒪 (𝑛(2ℎ)3) and

𝑒4 = 𝒪 (𝑛(2ℎ)4). For a fixed point close to the end of the normal we have 𝑛 = 𝒪 ((2ℎ)−2)

evaluations5 carried out, this gives GTEs 𝑒3 = 𝒪 (2ℎ) and 𝑒4 = 𝒪 ((2ℎ)2). Therefore, for

the case in Fig. 10, we have 𝑒3 = 𝒪 (10−3) and 𝑒4 = 𝒪 (10−5), which could be considered

as relative errors due to 𝑉 being 𝒪 (1) near the end of the normal neighbourhood6. In this

way, the GTE 𝑒3 = 𝒪 (10−3) does agree nicely with the relative error between the two

schemes shown in the bottom plot of Fig. 10. On its own, this relative error provides a

basic idea about the improvement the fourth order scheme brings over the third order one.

Preferably, we should look at the GTE. If we provide three expressions for 𝑉 calculated

using the same CID scheme but with different stepsizes (2ℎ, 4ℎ and 8ℎ in our case, with

corresponding solutions denoted by 𝑉(2ℎ), 𝑉(4ℎ) and 𝑉(8ℎ)), we can show that [77]

𝑉(2ℎ) − 𝑉(4ℎ)

𝑉(4ℎ) − 𝑉(8ℎ)
= (2ℎ)𝑘 − (4ℎ)𝑘

(4ℎ)𝑘 − (8ℎ)𝑘
+ 𝒪 (ℎ) = 1

2𝑘
+ 𝒪 (ℎ) , (3.58)

where 𝑘 denotes the order of the GTE associated to the CID scheme. As justified above,

we expect 𝑘 = 1 for a third order CID scheme and 𝑘 = 2 for a fourth order one.
5More accurately, it should be 𝑛 = 𝒪

(︀
(2ℎ)−2/2

)︀
, where the extra factor 1/2 arises due to the fact

that the grid, which in principle would be a square as per Fig. 9, really becomes a triangle because of
application of the symmetries mentioned around Eq. (3.35). But 𝑛 = 𝒪

(︀
(2ℎ)−2)︀ is fine as an order of

magnitude.
6𝑉 is 𝒪 (1) only up to 𝜂 . 4.5. For 𝜂 & 4.5, 𝑉 is no longer 𝒪 (1) and absolute errors cannot be

considered as relative errors.
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Figure 11 – GTE order 𝑘 for the third and fourth order CID schemes for 𝛾 = 1.56 (top) and 𝛾 = 0
(bottom). The expected values for the order 𝑘 are close to the theoretical values (namely, 𝑘 = 1 for the
third order scheme and 𝑘 = 2 for the fourth order one, drawn as horizontal black continuous lines).
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In Fig. 11 we plot the GTE order 𝑘 (calculated using Eq. (3.58)) as a function of 𝜂

for two different angular separations: 𝛾 = 1.56 in the top plot and 𝛾 = 0 in the bottom one.

In these plots, we observe a good consistency between the numerically-calculated value

of 𝑘 and the theoretically-given value of 𝑘 (i.e., 𝑘 = 1 and 𝑘 = 2 for the third and fourth

order schemes, respectively). We find some oscillations in both plots about the expected

value of 𝑘. This is merely due to the fact that Eq. (3.58) is an approximated expression for

calculating 𝑘. Furthermore, in the bottom plot of Fig. 11 there are additional oscillations

near the end of the normal neighbourhood. This is unsurprising since the plot is for 𝛾 = 0

and its end is at 𝜂 = 2𝜋 − 𝛾 = 2𝜋, i.e., a caustic point7, and it is expected to have an

enhancement in the singularity of 𝐺PH
ret at caustics [55] (similar to Schwarzschild spacetime

[53]).

Although 𝑉 for the scenario in Fig. 10 has been calculated before [55], in the

following we present new results for which a CID scheme is more efficient than other

known methods in the literature (e.g. a small coordinate expansion or Hadamard series).

In Fig. 12, we plot 𝑉 obtained with the fourth order CID scheme for 𝜁 = 1
4 for

any 𝑥′ and 𝑥 (with 𝑥 lying inside the causal part of the maximal normal neighbourhood

of 𝑥′). The red line corresponds to the case previously discussed in Fig. 10, i.e., 𝑦 =

𝑦′ and 𝛾 = 𝜋
2 . Reproducing the result in Fig. 12 without using a CID scheme might

require supplementary calculations. For instance, we could follow the method of matched

expansions and calculate 𝑉 in a quasi-local region via a small distance expansion. Next

we apply the method of matched expansions (for this we require to calculate 𝐺PH
ret in the

DP region).

Besides calculating 𝑉 for a single value of 𝜁 = 1
4 , we also examine some other values

for 𝜁 to observe the influence of 𝜉 on 𝑉 . In the top plot of Fig. 13 we show 𝑉 calculated

using the third order scheme, for 𝜁 = 0, 1
4 ,

1
3 ,

1
2 , 1 for the same scenario as in Fig. 10. We

should emphasise that since the stress-energy tensor imposes additional constraints on

the coupling constant 𝜉, the results for 𝑉 where 𝜁 > 1
3 correspond to a field with non-zero

mass [78]. As can be seen in the plot, the magnitude of 𝑉 decreases as 𝜁 increases. In the
7Caustics are at 𝜂 = 𝛾 = 𝑚𝜋, for 𝑚 ∈ Z.
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Figure 12 – Plot of 𝑉 for all pairs of points in normal neighbourhoods with 𝜁 = 1/4. The 𝑢 = 2𝜋 and
𝑣 = 2𝜋 lines correspond to the end of the normal neighbourhood where the (leading) singularity of 𝐺PH

ret ,
and so of 𝑉 , is of type PV (1/𝜎PH) (when away from caustics). The red line is along the static worldline
considered in Fig. 10.

bottom plot, we plot 𝑉 for all pairs of spacetime points (as long as they lie in normal

neighbourhoods, so that 𝑉 is defined), but now for 𝜁 = 1. Different from the 𝜁 = 1
4 case,

there is a more marked change in the form of 𝑉 near 𝛾 = ±𝜋. We also calculated 𝑉

for the other values of 𝜁 we show in the top plot of Fig. 13 but the differences were not

significant compared to the 𝜁 = 1
4 case.

To conclude, we presented and implemented a new method for calculating the

Hadamard tail biscalar 𝑉 for wave propagation in PH spacetime. This method is based

on integrating the homogeneous wave equation using Characteristic Initial Data placed

along the light cone. The CID scheme provided and efficient way to obtain 𝑉 at all

spacetime points where it is defined, for different values of 𝜁 = 𝑚2 + 2𝜉. Being able to

calculate 𝑉 (and the retarded Green function) at all pair of points is practical, specially,

for a potential application to the self-consistent evolution of a particle via self-force.
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Figure 13 – Top: Plot of 𝑉 as a function of 𝜂 for different values of 𝜁 and for the same scenario (and
stepsize) as in Fig. 10. Bottom: 3D plot of 𝑉 as a function of 𝑢 and 𝑣 for 𝜁 = 1.



Chapter 3. Hadamard Tail from Initial Data on the Light Cone in Plebański-Hacyan spacetime 102

All these results were included and presented in a paper already published in [20].

3.3 Going beyond PH spacetime

Calculating the Hadamard tail 𝑉 in M2 × S2 is particularly easier than in black

hole spacetimes: First, although setting up the Characteristic Initial Data 𝑉 has some

difficulties, it can be calculated analytically and, second, the wave equation turns into a

two-dimensional PDE. In Schwarzschild spacetime, for the Hadamard tail 𝑉𝑠 defined via

Eq. (2.2), one can numerically solve the transport equation for 𝑉𝑠 = 𝑉𝑠|𝜎=0 (as it is done in

[76]) and establish the required CID on the light cone. The wave equation in Schwarzschild

spacetime is only reduced to a three-dimensional PDE instead of a two-dimensional one

as in PH spacetime. In fact, for scalar perturbations, the Hadamard tail 𝑉0(𝑥, 𝑥′) satisfies

the wave equation(︃
− 𝜕2

𝜕𝑡2
+ 𝜕2

𝜕𝑟2
*

+ 2𝑓
𝑟

𝜕

𝜕𝑟*
+ 𝑓

𝑟2�S2

)︃
𝑉0(𝑡− 𝑡′, 𝑟, 𝑟′, 𝛾) = 0, (3.59)

where 𝑟* is the usual tortoise coordinate (see Eq. (1.36)). By providing the corresponding

CID calculated in [76], we could formulate a three-dimensional CID scheme for Eq. (3.59).

However, as can be seen in Fig. 4 in [76] the light cone (i.e., the characteristic initial

surface) is not a trivial surface to start the propagation from, i.e., establishing an equally

spaced grid in the same way as in Fig. 9 might be difficult to figure out. We attempted

to implement this CID scheme, but these additional difficulties did not allow us to go

further.
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4 Quantum communication near a black hole

Note: This Chapter (and the related Appendixes) consists of adapted parts of [19].

As discussed in previous chapters, the applications of the retarded GF (0𝐺ret in

particular) is not limited to self-force calculations. The Klein-Gordon equation (i.e., the

wave equation for a scalar field) plays an important role in quantum field theory. As we

detail in this chapter, the retarded GF of the Klein-Gordon equation in curved spacetime

determines key aspects in the quantum communication between two observers near a

Schwarzschild black hole.

For two observers to share information between them, they require a communi-

cation device for each one and a channel to transmit the information. We use particle

detectors as communication devices and a massless quantum scalar field plays the role of

the communication channel. We denote as Alice the observer who wants to transmit some

information to the receiver that we call Bob.

Generally speaking, in curved spacetimes particle detectors allow one to better

understand the notion of measurement in quantum field theory [79, 80] and have proven

a powerful tool to define the elusive notion of particle in quantum field theory [81]. For

example, particle detectors have been used in a number of curved spacetimes scenarios to

characterize the particle content of different vacuum states. The applications of particle

detectors range from cosmology [82] to black hole scenarios such as Schwarzschild and

Schwarzschild-AdS spacetimes (e.g., see [83, 84]). They have also been used to study the

entanglement structure of quantum field theory vacua both in flat spacetimes [85, 86, 87],

cosmological backgrounds [88, 89] as well as in other simple curved scenarios such as the

Anti-deSitter spacetimes [90, 91] or in the presence of BTZ black holes [92].
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4.1 Signaling with Unruh-DeWitt detectors

To model the communication devices of Alice and Bob, we use the Unruh-DeWitt

particle detector model [93, 94]. This model allows us to understand key features of

light-matter interaction when angular momentum exchange plays a negligible role in the

detector’s dynamics [95]. Each particle detector can be viewed as modeling an atom

moving along a given worldline. In particular, we choose a two-level (quantum) particle

detector with Hamiltonian

�̂�𝜏d
D = ΩD

2 (|𝑒D⟩ ⟨𝑒D| − |𝑔D⟩ ⟨𝑔D|) , (4.1)

where D = A,B labels, respectively, Alice’s and Bob’s detector, the (orthogonal) states

|𝑒D⟩ and |𝑔D⟩ represent, respectively, the excited and ground states of an atom, ΩD ≥ 0 is

simply the energy gap between the two states. We use the superindex 𝜏D in 𝐻𝜏D
D to remark

that this Hamiltonian generates translations with respect to the detector’s proper time 𝜏D.

The quantum field chosen as the communication channel is a massless Klein-Gordon field

which we denote with 𝜑(𝑥). Therefore, transmitting information from Alice to Bob turns

the interaction between both detectors with the scalar field. In the interaction picture,

this interaction between the scalar field and one detector is given by the Hamiltonian

�̂�𝜏D
int,D(𝜏D) = 𝜆D𝜂D(𝜏D)𝜑(𝑥D(𝜏D)) ⊗

(︁
|𝑒D⟩ ⟨𝑔D| 𝑒𝑖ΩD𝜏D + |𝑔D⟩ ⟨𝑒D| 𝑒−𝑖ΩD𝜏D

)︁
, (4.2)

where 𝑥D(𝜏D) denotes the detector’s worldline, 𝜆D is a coupling constant that measures

the strength coupling between the detector D and the field. The function 𝜂(𝜏D) is a

switching function that determines when the detector couples to the field. We assume a

weak interaction between detector and field so that perturbation theory applies.

4.1.1 Quantum channel between detectors

When Alice, the sender, wants to send a message to Bob, the receiver, she first

prepares her detector and encodes the message in the initial state (for instance, she could

use two different states for encoding bit values ‘0’ and ‘1’). With the switching function,

she controls the coupling time of her detector to the field. On the other hand, Bob prepares
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his detector at some fixed state, say the ground state |𝑔D⟩ (the same results can be achieved

for any other initial state [96]). By coupling his detector to the field, this interacts with

Alice’s signal that has propagated through the field. After some time, both Alice and Bob

switch off their detectors. It turns out that the final state of Bob’s detector depends on

Alice’s signal. This means that Bob might be able to decode Alice’s message by measuring

the final state of his detector.

In this scenario composed by two detectors interacting via a scalar field, the total

Hilbert space of the system ℋ = ℋ𝐴 ⊗ℋ𝐹 ⊗ℋ𝐵 is the tensor product of Alice’s and Bob’s

detector Hilbert spaces, ℋ𝐴 and ℋ𝐵 respectively, and the Hilbert space of the field, ℋ𝐹 .

Therefore, the total interaction Hamiltonian for the system is given by

�̂� 𝑡
int(𝑡) = �̂� 𝑡

int,A(𝑡) ⊗ ÎB + ÎA ⊗ �̂� 𝑡
int,B(𝑡). (4.3)

Notice that the Hamiltonians �̂� 𝑡
int,A and �̂� 𝑡

int,B generate translations with respect to a

global time parameter 𝑡. While the Hamiltonian in Eq. (4.1) generates translations with

respect to the proper time of detector D, in Eq. (4.3) we are adding up two Hamiltoni-

ans corresponding to detectors with different proper times. Thus we require to perform a

proper transformation. As shown in [95], the relationship between a detector-field Hamil-

tonian generating translations with respect to proper time 𝜏D and one generating trans-

lations with respect to a different time parameter is, in general, complicated. However,

as shown in [95], for pointlike detectors the relationship simplifies: In the pointlike case,

given the Hamiltonian 𝐻𝜏D
int,D(𝜏D) generating translations with respect to a time parameter

𝜏D (e.g., detector’s proper time), the Hamiltonian 𝐻 𝑡
int,D(𝑡) generating translations with

respect to a different time parameter 𝑡 is given by

�̂� 𝑡
int,D(𝑡) = d𝜏D

d𝑡 �̂�
𝜏D
int,D[𝜏D(𝑡)]. (4.4)

The initial state of the total system denoted by 𝜌0 can be constructed from the states of

the detectors (denoted by 𝜌A for Alice and 𝜌B for Bob) and the scalar field state 𝜌𝜑, i.e.,

𝜌0 = 𝜌A ⊗ 𝜌𝜑 ⊗ 𝜌B = 𝜌A ⊗ 𝜌𝜑 ⊗ |𝑔B⟩ ⟨𝑔B| , (4.5)

where, without losing generality, we fixed the initial state of Bob’s detector to the ground

state |𝑔B⟩. In the interaction picture, 𝜌0 evolves once Alice’s and Bob’s detectors couple
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to the field. Particularly, Bob’s detector final state is given by

𝜌 = �̂�𝜌0�̂�
†, (4.6)

where �̂� is the unitary operator that governs the evolution of the system. The final state

of Bob’s detector is obtained by taking the partial trace over the field and Alice’s detector

of the total final state of detectors

𝜌B = Tr𝐴,𝜑(𝜌). (4.7)

As mentioned earlier, we treat the time evolution of the detectors perturbatively. For this

approach to work we need field states for which the Wightman function1 is regular enough

for a perturbative approach to time evolution to work. In particular, we assume that the

field starts out in a state which we assume to be Hadamard2, at least in the region of

spacetime where Alice and Bob’s worldlines are within the support of their switching

functions. This assumption ensures that the detector transition probabilities we calculate

below are well defined. Note that the assumption on the field state is still very general.

We then use a Dyson series to obtain a perturbative expansion for �̂�

�̂� = I − 𝑖
∫︁ ∞

−∞
d𝑡1�̂� 𝑡1

int(𝑡1) −
∫︁ ∞

−∞
d𝑡1

∫︁ 𝑡1
d𝑡2�̂� 𝑡1

int(𝑡1)�̂� 𝑡2
int(𝑡2) + .... (4.8)

Notice that each Hamiltonian generates translation with respect to different time pa-

rameters. Thus, one needs to perform the proper transformations before evaluating the

integrals in the above equation.

The dependence of Bob’s final state 𝜌𝐵 on Alice’s initial state 𝜌𝐴 is captured by

the quantum channel map

Ξ : 𝜌A ↦→ 𝜌B, (4.9)

that is, the completely positive and trace-preserving map which maps the density op-

erator of Alice’s initial state to the density operator of Bob’s final state. The quantum

channel between detectors was first studied in [98]. It has since been studied both in the

perturbative regime [99, 96] as well as non-perturbatively [100, 101].
1The Wightman function is the correlation function 𝐺+(𝑥, 𝑥′) =

⟨
𝜑(𝑥)𝜑(𝑥′)

⟩
.

2A Hadamard state is a state for which the singular part of its two-point function has the form
Δ1/2

𝜎 + 𝑉0 ln 𝜎 [97].
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4.1.2 Leading order signal strength

Treating the interaction between field and detectors perturbatively and assuming,

as above, that Bob’s detector starts out in the state |𝑔b⟩, and that the field’s initial state is

Hadamard and has vanishing one-point function (in the region where the detectors couple

to the field), the perturbative expansion of Bob’s final state is

𝜌𝐵 =
(︁
1 − 𝜆2

B𝑃2
)︁

|𝑔B⟩ ⟨𝑔B| + 𝜆2
B𝑃2 |𝑒B⟩ ⟨𝑒B| + 𝜆A𝜆B (𝜁𝐶2 + 𝜁*𝐷*

2) |𝑒B⟩ ⟨𝑔B|

+ 𝜆A𝜆B (𝜁*𝐶*
2 + 𝜁𝐷2) |𝑔B⟩ ⟨𝑒B| + 𝒪(𝜆4

D), (4.10)

where 𝜁, 𝜃 and 𝛽 are the (complex) coefficients of Alice’s initial state

𝜌A = 𝜃 |𝑒A⟩ ⟨𝑒A| + 𝛽 |𝑔A⟩ ⟨𝑔A| + 𝜁 |𝑒A⟩ ⟨𝑔A| + 𝜁* |𝑔A⟩ ⟨𝑒A| , (4.11)

the coefficients 𝑃2, 𝐶2 and 𝐷2 come from the Dyson series and partial trace [99], they are

given by

𝑃2 =
∫︁ ∞

−∞
d𝑡1

d𝜏B(𝑡1)
d𝑡1

∫︁ ∞

−∞
d𝑡2

d𝜏B(𝑡2)
d𝑡2

𝜂B(𝑡1)𝜂B(𝑡2)𝑒𝑖ΩB(𝜏B(𝑡1)−𝜏B(𝑡2))
⟨
𝜑 (𝑥𝐵(𝑡2))𝜑 (𝑥𝐵(𝑡1))

⟩
,

(4.12)

𝐶2 =
∫︁ ∞

−∞
d𝑡1

d𝜏B(𝑡1)
d𝑡1

∫︁ 𝑡1

−∞
d𝑡2

d𝜏A(𝑡2)
d𝑡2

𝜂B (𝑡1) 𝜂A (𝑡2) ×

𝑒𝑖(ΩB𝜏B(𝑡1)−ΩA𝜏A(𝑡2))
[︁
𝜑 (𝑥𝐴(𝑡2)), 𝜑 (𝑥𝐵(𝑡1))

]︁
, (4.13)

𝐷2 = −
∫︁ ∞

−∞
d𝑡1

d𝜏B(𝑡1)
d𝑡1

∫︁ 𝑡1

−∞
d𝑡2

d𝜏A(𝑡2)
d𝑡2

𝜂B (𝑡1) 𝜂A (𝑡2) ×

𝑒−𝑖(ΩB𝜏B(𝑡1)+ΩA𝜏A(𝑡2))
[︁
𝜑 (𝑥𝐴(𝑡2)), 𝜑 (𝑥𝐵(𝑡1))

]︁
, (4.14)

where
⟨
𝜑 (𝑥)𝜑 (𝑥′)

⟩
is the Wightman function and

[︁
𝜑 (𝑥), 𝜑 (𝑥′)

]︁
is the commutator of

the field. Here we assume, that for the coordinate time used as integration variable,

𝑡1 > 𝑡2 implies that (𝑡1, �⃗�) cannot lie in the past light-cone of (𝑡2, �⃗�) for arbitrary spatial

coordinates �⃗�, �⃗�. The switching functions as functions of coordinate time are given by

𝜂D(𝑡) = 𝜂D(𝜏D(𝑡)).

For communication purposes we can ignore 𝑃2 because it is related to the proba-

bility of Bob’s detector to become excited (i.e., it is independent of Alice’s detector initial

state). The remaining two coefficients 𝐶2 and 𝐷2 are directly connected to the impact of

Alice’s initial state on Bob’s final state.
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To understand the role of 𝐶2 and 𝐷2 in the quantum communication, consider the

scenario where Alice wants to transmit (in a single attempt) a bit of information (‘0’ or

‘1’) to Bob. Alice prepares her detector for an optimal communication and encodes the

bit in the initial state. On the other end, Bob uses an optimal choice of measurement.

The probability 𝑝 for transmitting the bit correctly is then given by

𝑝 = 1
2 + 𝜆A𝜆B (|𝐶2| + |𝐷2|) + 𝒪 (𝜆D) . (4.15)

Thus, the leading order signal strength (the term in brackets) is only determined by the

absolute values of 𝐶2 and 𝐷2.

To simplify the calculation of the signal strength it is helpful to note that one

obtains 𝐷2 from 𝐶2 by changing the overall sign of the term, and the sign of ΩB, i.e.,

𝐷2(ΩA,ΩB) = −𝐶2(ΩA,−ΩB). (4.16)

For the switching functions 𝜂A and 𝜂B we us a smooth switching function, this

ensures that the integrals in Eq. (4.12), (4.13) and (4.14) for 𝑃2, 𝐶2 converge. In particular,

for non-smoothing functions 𝑃2 exhibits ultraviolet divergences (see, e.g., [102, 103, 104]).

The signal terms 𝐶2 and 𝐷2 are less sensitive to this issue. For instance, in Minkowski

spacetime, the integrals converge even for sharp switching functions of the form

𝜂d(𝜏d) = 𝜂[𝐴1,𝐴2](𝜏d) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, 𝐴1 ≤ 𝜏d ≤ 𝐴2

0, otherwise
, (4.17)

for some 𝐴1, 𝐴2 ∈ R [96].

As can be seen in Eqs. (4.13)–(4.14), the commutator is the only term that involves

the quantum field and, in fact, this can be expressed in terms of the (scalar) advanced

and retarded GF [19]

[︁
𝜑(𝑥1), 𝜑(𝑥2)

]︁
= − 𝑖

4𝜋 (0𝐺adv(𝑥1, 𝑥2) − 0𝐺ret(𝑥1, 𝑥2)) Î, (4.18)

where 𝑥1 and 𝑥2 are two spacetime points. Inserting this into Eq. (4.13) reads

𝐶2 = −𝑖
4𝜋

∫︁ ∞

−∞
d𝜏B𝜂B(𝜏B)

∫︁ 𝜏A(𝑡(𝜏B))

−∞
d𝜏A𝜂A(𝜏A)𝑒𝑖ΩB𝜏B𝑒−𝑖ΩA𝜏A 0𝐺ret(𝑥B(𝜏B), 𝑥A(𝜏A)), (4.19)
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and from Eq. (4.16) we find a similar expression for 𝐷2.

Therefore, Eq. (4.19) puts in evidence that quantum communication is affected by

the spacetime structure. Furthermore, the leading order signal strength is related to the

classical part of the field only and thus is independent of the state of the quantum field.

4.1.3 In what sense are the leading order signals classical or quantum?

Note that while the signalling between Alice and Bob is mediated through the

field’s retarded (i.e., classical) GF, this communication scenario would not be strictly

possible in a classical scenario. The reason is that, in order to have a contribution to

signalling that is of quadratic order in the coupling constants, i.e., 𝒪(𝜆A𝜆B), in this

protocol, we need the emitter antenna to have non-zero non-diagonal elements in the

energy eigenbasis (see Eqs. (4.10)–(4.11)): the ability to prepare quantum superposition

of observable states of the antenna (i.e., 𝜁 ̸= 0) is crucial for this communication scenario

to occur. If we did not consider quantum superpositions of antenna states, the leading

order contribution to communication would happen at order 𝒪(𝜆4
D) and would consist of

the emission of a real quantum by Alice’s detector and the absorption of this real photon

by Bob’s, and this would be subleading to the protocol studied here.

However, this is a quirk derived from the fact that we are limiting ourselves to

two-level antennas. We can prove that the protocol has indeed very little of quantum

nature if we consider higher-dimensional detectors, for example, harmonic oscillators. We

shall see that, in this case, even when there is no quantum superposition at the start,

communication happens at order 𝒪 (𝜆2
D).

In order to see this, let us consider two Unruh-DeWitt detectors modelled as

harmonic oscillators rather than two-level quantum systems (see, among many others,

[105, 106, 107, 108, 109, 110, 111, 112]). The interaction Hamiltonian describing the

detectors-field coupling in 𝑛+ 1 dimensions in flat spacetime for two detectors comoving

with the field quantization frame (𝑡, �⃗�) is

𝐻 𝑡
int =

∑︁
D∈{A,B}

𝜆D𝜂D(𝑡)𝑄D(𝑡)
∫︁
R𝑛

d𝑛�⃗� 𝐹 (�⃗�− �⃗�D)𝜑(𝑡, �⃗�), (4.20)
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which is analogous to the Hamiltonian (4.2) substituting the monopole moment by the

𝑄D position quadrature of the harmonic oscillator. We recall that the index D ∈ {A,B}

labels the detectors. We have generalized to spatially extended detectors with a smearing

function 𝐹 (�⃗�) (the special case of a pointlike detector is recovered when 𝐹 (�⃗�) = 𝛿(�⃗�)).

The interaction picture position operators of the oscillators, 𝑄D(𝑡), are given in

terms of ladder operators by

𝑄D(𝑡) = 𝑎†
D𝑒

𝑖ΩD𝑡 + 𝑎D𝑒
−𝑖ΩD𝑡 (4.21)

where ΩD is the energy gap between the energy levels of the D-th oscillator.

Let us assume that the two harmonic oscillator detectors and the field start at

an arbitrary uncorrelated state: 𝜌0 = 𝜌A ⊗ 𝜌B ⊗ 𝜌𝜑. After time evolution, the detectors-

field system evolves to a state 𝜌𝑇 = 𝑈𝜌0𝑈
†, where 𝑈 = 𝒯 exp[−𝑖

∫︀
d𝑡𝐻𝐼 ] where 𝒯 is

the time ordering operator. The state of detector B after time evolution is obtained after

tracing out detector A and the field from 𝜌𝑇 . Expanding in Dyson series, we can write

the post-interaction state of B as

𝜌B,𝑇 = 𝜌B + 𝜆B𝜌
(1)
B,noise + 𝜆2

B𝜌
(2)
B,noise + 𝜆A𝜆B𝜌

(2)
B,sig + 𝒪(𝜆3

D). (4.22)

The two first corrections in Eq. (4.22) are local terms, independent of the initial state of

the detector A, and even of whether the detector A couples to the field at all (and therefore

constitute noise from the point of view of communication). The correction proportional

to 𝜆A𝜆B constitutes the leading order signalling term, and tells us about the impact that

the initial state of detector A has on the final state of detector B.

Let us consider that the detectors’ switching functions are compactly supported

and that their supports do not overlap in time. Without loss of generality, let us also

assume that the detector A is switched on before B. This means that

supp[𝜂A(𝑡)] = [𝑇 on
A , 𝑇 off

A ], supp[𝜂B(𝑡)] = [𝑇 on
B , 𝑇 off

B ], 𝑇 on
B > 𝑇 off

A . (4.23)

Under this assumption [113], the leading order contribution to the time evolved state of

detector B from the presence of detector A is equal to

𝜌
(2)
b,sig=

∫︁∫︁
R2
d𝑡 d𝑡′𝜂A(𝑡)𝜂B(𝑡′)Tr

(︁
𝑄A(𝑡)𝜌a

)︁
𝒞(𝑡, 𝑡′)

[︁
𝑄B(𝑡′), 𝜌b

]︁
, (4.24)
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which is the analogue of Eq. (4.13) above, and where

𝒞(𝑡, 𝑡′) :=
∫︁
R𝑛
d𝑛�⃗�

∫︁
R𝑛
d𝑛�⃗�′𝐹 (�⃗�−�⃗�A)𝐹 (�⃗�′−�⃗�B)

⟨[︁
𝜑
(︁
𝑡, �⃗�

)︁
, 𝜑
(︁
𝑡′, �⃗�′

)︁]︁⟩
𝜌

𝜑

(4.25)

is a purely imaginary function that corresponds to the pull-back of the commutator expec-

tation value (The Pauli-Jordan functional) to the smeared trajectories of the detectors.

Notice that this is independent of the field state since the commutator is a c-number. A

full derivation of Eq. (4.24) can be found following step by step the analogous two-level

system calculation that yields equation (15) in [113], with the substitution of the detectors’

monopole moments 𝑚D by the harmonic detectors’ 𝑄D position operator: 𝑚D → 𝑄D.

We will now show that if A is initially in a coherent state (that can be produced

and described classically) there will be a signal transmitted to B at leading order that

can be read out just from the expectation value of its position operator 𝑄B (which is

also classically accessible). Let us assume that A starts in a state 𝜌A = |𝛼⟩⟨𝛼| where

𝑎A |𝛼⟩ = 𝛼 |𝛼⟩, and that B starts in the ground state, 𝜌B = |0⟩⟨0|. Then, since

Tr[𝑄A |𝛼⟩⟨𝛼|] = 2ℜ(𝛼𝑒−𝑖ΩA𝑡), (4.26)

and [︁
𝑄B(𝑡′), 𝜌b

]︁
= 𝑒𝑖ΩB𝑡′ |1⟩⟨0| − 𝑒−𝑖ΩB𝑡′ |0⟩⟨1| , (4.27)

the leading order signalling contribution becomes

𝜌
(2)
b,sig = 2

∫︁ ∞

−∞
d𝑡
∫︁ ∞

−∞
d𝑡′ 𝜂A(𝑡)𝜂B(𝑡′)ℜ(𝛼𝑒−𝑖ΩA𝑡)𝒞(𝑡, 𝑡′)

[︁
𝑒𝑖ΩB𝑡′ |1⟩⟨0| − 𝑒−𝑖ΩB𝑡′ |0⟩⟨1|

]︁
. (4.28)

We can now compute the signalling contribution from the presence of Alice to the

expectation value of a quadrature 𝑄′
B = 𝑎B+𝑎†

B of B. First, we decompose this expectation

value into a noise (local) contribution and a signalling contribution as

⟨𝑄′
B⟩𝜌b,𝑇

=𝜆B Tr[𝑄′
B𝜌

(1)
b,noise]⏟  ⏞  

⟨𝑄′
B⟩(1)

noise

+𝜆2
B Tr[𝑄′

B𝜌
(2)
b,noise]⏟  ⏞  

⟨𝑄′
B⟩(2)

noise

+𝜆A𝜆B Tr[𝑄′
B𝜌

(2)
b,sig]⏟  ⏞  

⟨𝑄′
B⟩(2)

sig

+𝒪(𝜆3
D). (4.29)

We now see that the expectation value of the 𝑄′
B quadrature has a non-zero contribution

from the presence of A that encodes information of: (a) whether A coupled to the field
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or not, (b) the coherent amplitude of A and (c) A’s spatial and temporal localization.

Indeed, using the fact that Tr[𝑄′
B |0⟩⟨1|] = 1, we obtain that

⟨𝑄′
B⟩(2)

sig =4𝑖𝜆A𝜆B

∫︁ ∞

−∞
d𝑡
∫︁ ∞

−∞
d𝑡′ 𝜂A(𝑡)𝜂B(𝑡′)𝒞(𝑡, 𝑡′) sin(ΩB𝑡

′)ℜ(𝛼𝑒−𝑖ΩA𝑡), (4.30)

which is, in general, non-vanishing. Therefore, we conclude that there is a leading order

signal from a classical state of A (a coherent state), to a classical observable of B that is

mediated through the (classical) radiation GF. In summary, we showed in this section that

even in a scenario where no genuinely quantum features of the field or the antennas play

a role we have that the leading order signalling is 𝒪(𝜆A𝜆B), as described in the previous

Sec. 4.1.2, and identified in [18].

4.1.4 Symmetry of signaling terms between time-mirrored scenarios

In curved spacetimes it is interesting to compare the signal strength from one region

in spacetime to another to the signal strength in the reverse direction. For example, is it

easier or harder to signal from a sender close to the black hole horizon to a more distant

receiver than in a scenario where the sender is distant but the receiver is close to the

horizon?

As we show in the following, the leading order signal strength in these two scenarios

is identical if all other parameters except for the detector position are kept constant. This

is because the leading order signal strength |𝐶2| + |𝐷2| is identical for pairs of signaling

scenarios in static spacetimes which can be viewed as time-mirrored versions of each other.

By time-mirroring we mean the following procedure: Given one particular signaling

scenario with worldlines 𝑥D(𝑡) and switching functions 𝜂D(𝑡), the worldlines and switching

functions of the time-mirrored scenario are obtained by inverting the sign of the argument,

i.e., the worldlines become

𝑥′
D(𝑡) = 𝑥D(−𝑡). (4.31)

for D = A,B, and the switching functions

𝜂′
D(𝑡) = 𝜂D(−𝑡). (4.32)
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The wordlines and switching functions can always be assumed to be defined on an interval

𝑡 ∈ [−𝑇, 𝑇 ].

In the time-mirrored scenario, the roles of Alice and Bob are exchanged: We still

assume the initial state of detectors and field to be a product state. However, now Bob

acts as sender because he couples to the field first. Thus, Bob gets to encode a message

for Alice into the initial state of his detector, and Alice will try to read out the message

from the final partial state of her detector.

Note that the detector frequencies are not changed in the mirrored scenario. For

example, Bob uses the same detector frequency ΩB in the mirrored scenario where he is

the sender, as in the original scenario where he is the receiver.

As shown in Appendix C, the signal terms that result in the mirrored scenario

relate to the original ones as

𝐶 ′
2 = 𝐶2, 𝐷′

2 = −𝐷*
2. (4.33)

In this way, the leading order signal strength |𝐶 ′
2| + |𝐷′

2| = |𝐶2| + |𝐷2| is the same for

both scenarios. This property of the leading order signal strength was shown to hold in

Minkowski spacetime before [96, 114]. However, because it only relies on the retarded

Green function to fulfill

0𝐺ret(𝑡, �⃗�, 𝑡′, �⃗�′) = 0𝐺ret(−𝑡′, �⃗�′,−𝑡, �⃗�), (4.34)

it generalizes to all spacetimes with this property. This includes all static spacetimes and

thus, in particular, also Schwarzschild spacetime.

4.2 Signaling in Schwarzschild spacetime

The spin-0 retarded GF due to its relation with the background metric, gives an

insight into some of the main features of the spacetime. Particularly, there is a singularity

structure present in 0𝐺ret that gives rise to some unique features in the leading order signal

strength. As detailed in [53], this singularity structure is associated with field null wave-

fronts passing through a caustic point. More precisely, the number of times a null geodesic
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joining 𝑥 and 𝑥′ has passed through a caustic point determines the singularity in 0𝐺ret.

When a null geodesic passed through zero, one, and two caustic points, the singularities in

0𝐺ret are, respectively, 𝛿(𝜎), PV
(︁

1
𝜎

)︁
, and −𝛿(𝜎). Similarly, we refer to direct, secondary,

and tertiary null rays to null geodesics that have passed through a caustic point, zero,

one, and two times, respectively.

In order to perform the integrals in Eq. (4.19) (including the corresponding coun-

terpart for 𝐷2) we require to find the relation between Alice and Bob proper times. We

thus introduce a shift when defining Alice’s proper time:

𝜏A(𝑡) = 𝑣(𝑟A) (𝑡+ Δ𝑡A→B), (4.35)

where 𝑣(𝑟) =
√︁
𝑓(𝑟) and Δ𝑡A→B is the interval of coordinate time that it takes for a direct

null geodesic to propagate from Alice at �⃗�A to Bob at �⃗�B. With this, we have that the

direct null geodesic which reaches Bob at his proper time 𝜏B emanates from Alice at her

proper time

𝜏A(𝜏B) = 𝜈𝜏B, with 𝜈 ≡ 𝑣(𝑟A)
𝑣(𝑟B) . (4.36)

Similarly, 𝜏B(𝜏A) = 𝜏A/𝜈 is Bob’s proper time at which the direct null geodesic which

emanates from Alice at her proper time 𝜏A reaches Bob. These two results are also a

direct consequence of Schwarzschild spacetime being a static spacetime.

4.2.1 Direct and non-direct contributions to the signal strength

Due to 0𝐺ret having support not only on the future light cone but also inside the

light cone, 𝐶2 (and 𝐷2) could be seen as a quantity composed of two main contributions:

A direct contribution term (coming from null rays on the light cone) and a non-direct

contribution term (coming from rays inside the light cone). The direct contribution is

easy to evaluate since it arises from the direct part of 0𝐺ret in Eq. (2.2). Let 𝐶d
2 denote

the direct contribution, this is given by

𝐶d
2 ≡ −𝑖

4𝜋

∫︁ ∞

−∞
d𝜏B

∫︁ 𝜏A(𝑡(𝜏B))

−∞
d𝜏A 𝜂B (𝜏B) 𝜂A (𝜏A) 𝑒𝑖(ΩB𝜏B−ΩA𝜏A)𝑈(𝑥𝐵(𝜏B), 𝑥𝐴(𝜏A))𝛿(𝜎)

= −𝑖
4𝜋

∫︁ ∞

−∞
d𝜏B 𝜂B(𝜏B)𝜂A (𝜏A(𝜏B)) 𝑒𝑖(ΩB𝜏B−ΩA𝜏A(𝜏B))𝑈(𝑥𝐵(𝜏B), 𝑥𝐴(𝜏A))

|Δ𝜆 𝑡𝛼(𝜆0)𝑢𝛼
A(𝜏A)| . (4.37)



Chapter 4. Quantum communication near a black hole 115

In the above we used d𝑥A
d𝜏A

(𝜏A) = 𝑢𝜇
A(𝜏A), and

𝜎𝛼′ = 𝜕

𝜕𝑥𝛼′ 𝜎(𝑥, 𝑥′) = −Δ𝜆(𝑥, 𝑥′) 𝑔𝛼′𝛽′𝑡𝛽
′ (4.38)

where Δ𝜆(𝑥, 𝑥′) = 𝜆1 − 𝜆0 > 0 is the difference in the affine parameter 𝜆 ∈ [𝜆0, 𝜆1] along

the unique null geodesic 𝑧(𝜆) such that 𝑥′ = 𝑧 (𝜆0) and 𝑥 = 𝑧 (𝜆1), and 𝑡𝜇 = d𝑧𝜇

d𝜆
is a

tangent vector. These additional quantities allowed us to perform the integral over 𝜏A by

changing the argument in the Dirac-delta distribution from 𝜎 to 𝜏A. The integral over 𝜏B

is performed numerically, we calculate 𝑈 by solving (numerically) the transport equations

detailed in Sec. 2.1.

We can derive some general properties of the direct contribution 𝐶d
2 from Eq. (4.37).

For instance, we see directly that due to the factor 𝜂B(𝜏B)𝜂A (𝜏A(𝜏B)) in the integrand, the

direct contribution vanishes unless Alice and Bob interact with the field at points that

are connected by a direct null geodesic.

Furthermore, we see that |𝐶d
2 | is maximal if ΩB𝜏B − ΩA𝜏A(𝜏B) = 0, i.e., if Alice’s

and Bob’s detector frequencies are tuned such that they cancel the frequency shift aris-

ing between their wordlines due to motion and gravitation. To see this, first note that

all factors in the integrand, apart from the complex exponential, are non-negative: The

switching functions take values in 𝜂D ∈ [0, 1], the denominator is a non-negative real num-

ber, and 𝑈 = Δ1/2 > 0. Hence, in order to maximize |𝐶d
2 |, Alice and Bob need to choose

their detector frequencies in such a way that the exponential term oscillates as little as

possible.

However, while this choice is optimal for |𝐶d
2 |, it may not always be the optimal

choice with respect to |𝐶d
2 | + |𝐷d

2 |. From Eq. (4.16), we see that the exponential factor in

the integrand of 𝐷2 is always oscillatory, except for detectors with a vanishing energy gap.

Generally, this means that a non-resonant choice of detector frequencies, while leading to

a smaller value of |𝐶d
2 |, may achieve a larger value of |𝐶d

2 |+ |𝐷d
2 |. This applies in particular

to scenarios where the length of the detector-field coupling is comparable to the detector’s

period.

For example, we can see this effect in the case of stationary detectors in a static
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spacetime. Here, 𝜏A(𝜏B) = 𝜈𝜏B + 𝜏0 is a linear function, so that equation Eq. (4.37)

simplifies to

𝐶d
2 = −𝑖 𝑈(�⃗�B, �⃗�A)

4𝜋 |Δ𝜆 𝑡𝛼(𝜆0)𝑢𝛼
A(𝜏A)|

∫︁ ∞

−∞
d𝜏B 𝜂B(𝜏B)𝜂A (𝜏A(𝜏B)) 𝑒𝑖(ΩB−𝜈ΩA)𝜏B . (4.39)

Here we used that due to the time-translational invariance we can rewrite

𝑈(𝑥𝐵(𝜏B), 𝑥𝐴(𝜏A)) = 𝑈(�⃗�B, �⃗�A),

and also 𝑡𝛼(𝜆0)𝑢𝛼
A(𝜏A) is constant and does not depend on 𝜏A. If we assume that the

switching functions are sharp switching functions 𝜂A(𝜏A) = 𝜂[𝐴1,𝐴2](𝜏A) and 𝜂B(𝜏B) =

𝜂[𝐵1,𝐵2](𝜏B), as defined in Eq. (4.17), with switching times such that Bob receives all the

direct null geodesics from Alice, i.e., 𝐵1 ≤ 𝐴1/𝜈 and 𝐵2 ≥ 𝐴2/𝜈, then

𝐶d
2 = −𝑖

4𝜋
𝑈(�⃗�B, �⃗�A)

|Δ𝜆 𝑡𝛼(𝜆0)𝑢𝛼
A(𝜏A)|𝑒

𝑖
(ΩB−𝜈ΩA)(𝐴1+𝐴2)

2𝜈
𝐴2 − 𝐴1

𝜈
sinc

[︃
(ΩB − 𝜈ΩA)(𝐴2 − 𝐴1)

2𝜈

]︃
.

(4.40)

For fixed switching times 𝐴1 and 𝐴2, the sinc function explains why |𝐶d
2 | + |𝐷d

2 | is dom-

inated by |𝐶d
2 | in the regime of large detector frequencies and thus maximized when

ΩB = 𝜈ΩA, where

lim
ΩB→𝜈ΩA

𝐶d
2 = −𝑖 𝑈(�⃗�B, �⃗�A)(𝐴2 − 𝐴1)

4𝜋 |Δ𝜆 𝑡𝛼(𝜆0)𝑢𝛼
A(𝜏A)| 𝜈 . (4.41)

Whereas for low detector frequencies choosing one or both of the frequencies to vanish,

can lead to a larger |𝐶d
2 | + |𝐷d

2 | because the gain in |𝐷d
2 | overcomes the loss in |𝐶d

2 |.

In general it is not possible to avoid oscillations of the exponential term in all

signaling scenarios. In fact it is possible that the oscillations limit the magnitude of 𝐶d
2

even if the detectors are allowed to interact with the field for arbitrary long times. This

effect has been previously studied between accelerated detectors in Minkowski spacetime

in [96, 114].

In addition to the direct contribution 𝐶d
2 , which often dominates the signal, the

timelike support of 0𝐺ret gives rise to further contributions to the signal, which we call

the non-direct contribution

𝐶nd
2 = 𝐶2 − 𝐶d

2 . (4.42)
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Thus, the leading order signal strength is given by

|𝐶2| + |𝐷2| =
⃒⃒⃒
𝐶nd

2 + 𝐶d
2

⃒⃒⃒
+
⃒⃒⃒
𝐷nd

2 +𝐷d
2

⃒⃒⃒
(4.43)

Since the specific properties of the non-direct part of 0𝐺ret depend decisively on the

spacetime geometry, it is difficult to derive general properties for the non-direct signaling

contributions.

Another challenge of the non-direct contribution is that it typically is more diffi-

cult to evaluate. However, in static spacetimes for detectors at rest at least the integral

expression can be simplified: By a change of integration variables one can typically per-

form one of the two integrations analytically. In that way, only one numerical integration

is left. For this, see Appendix E. Another method, which is particularly helpful when 0𝐺ret

is expressed as a series, is developed in the following section.

4.2.2 Signaling between two static observers

In flat spacetime, the receiver typically switches on the detector when the unique

(direct) null ray emanating from the sender’s position arrives at the receiver’s position.

However, in curved spacetime the situation is different. There are timelike rays and non-

direct null rays the receiver may be able to collect if the detector interacts with the field for

long enough. The switching function for both Alice and Bob are sharp switching functions

as given in Eq. (4.17).

The first setting we explore is when both the sender (Alice) and the receiver (Bob)

are fixed in space, i.e., �⃗�A and �⃗�B are constant. Let 𝐴1 be the proper time when Alice

switches on her detector and 𝐴2 the switch-off proper time. Likewise, Bob switches on his

detector at a proper time 𝐵1 immediately after the first signal emitted by Alice reaches

his position. The total proper time interval Bob keeps his detector switched on is 𝐵2 −𝐵1.

For this scenario, 𝐶2 is given by (see Appendix E for a detailed derivation)

𝐶2 =
∫︁ 𝜈𝐵2−𝐴1

max[𝜈𝐵1−𝐴2,0]
d𝑤 𝑒𝑖 ΩA𝑤 · 0𝐺ret(𝑤/𝑣(𝑟A) + Δ𝑡A→B, �⃗�B, �⃗�𝐴)

4𝜋(ΩB − 𝜈ΩA) ×
(︁
𝑒𝑖 (ΩB−𝜈ΩA)max[𝐵1,(𝑤+𝐴1)/𝜈] − 𝑒𝑖 (ΩB−𝜈ΩA)min[𝐵2,(𝑤+𝐴2)/𝜈]

)︁
. (4.44)
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We can use the above expression together with Eq. (4.16) and obtain the corresponding

expression for 𝐷2.

In order to evaluate the integral in Eq. (4.44), we do it in two steps. The first step

simply consists of calculating 𝐶d
2 using Eq. (4.37). In the second step we replace 0𝐺ret by

its non-direct part and perform the integral. Thus, 𝐶2 is given by 𝐶2 = 𝐶d
2 + 𝐶nd

2 where

𝐶nd
2 =

∫︁ 𝜈𝐵2−𝐴1

max[𝜈𝐵1−𝐴2,0]
d𝑤 𝑒𝑖 ΩA𝑤 · 0𝐺

nd
ret(𝑤/𝑣(𝑟A) + Δ𝑡A→B, �⃗�B, �⃗�𝐴)

4𝜋(ΩB − 𝜈ΩA) ×
(︁
𝑒𝑖 (ΩB−𝜈ΩA)max[𝐵1,(𝑤+𝐴1)/𝜈] − 𝑒𝑖 (ΩB−𝜈ΩA)min[𝐵2,(𝑤+𝐴2)/𝜈]

)︁
. (4.45)

Once again, a similar expression is derived for 𝐷2 = 𝐷d
2 +𝐷nd

2 by using Eq. (4.16).

In Fig. 14 we plot the leading order signal strength |𝐶2| + |𝐷2| for different static

scenarios. Particularly, we maintain Alices’s position fixed (at 𝑟A = 6𝑀) and switched

on for a fixed interval 𝐴1 = 0 ≤ 𝜏A ≤ 𝑀 = 𝐴2
3. Bob is then located at different spatial

positions so that we are able to map the leading order signal strength throughout a

particular spatial region close to Alice’s position. Similar to flat spacetime case, as Bob

approaches Alice, the signal strength increases as expected. In fact, by looking at the

expression for 𝐶d
2 in Eq. (4.37) (and the corresponding one for 𝐷d

2), it is straightforward

to show that the signal strength diverges as the distance between Alice and Bob decreases.

As Bob moves away from Alice, the average signal strength diminishes (in Appendix. D

we provide an additional analysis regarding 𝐶d
2 and 𝐷d

2). Once the direct null rays were

collected, Bob continues to receive signals from Alice. These remaining signals are part

of the non-direct contribution. We found out that most of the features in Fig. 14 like the

ripples (more significant in Fig. 14a) are connected to the non-direct contribution.

The leading order signal strength shown in Fig. 14 when split into the direct and

non-direct contributions is largely dominated by the direct term. To evidence this fact,

we simply compare the magnitudes of |𝐶d
2 | + |𝐷d

2 | and |𝐶nd
2 | + |𝐷nd

2 |. In Fig. 15 we plot

the direct contribution |𝐶d
2 | + |𝐷d

2 | which puts in evidence not only that its magnitude

is the same order as |𝐶2| + |𝐷2| but also shows that the ripples are connected to the

non-direct contribution. These features are located around the region where Bob starts
3𝜂A(𝜏A) in this case is a sharp switching function.
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Figure 14 – Leading order signal strength between Alice, spatially fixed at radius 𝑟A = 6𝑀 and Bob,
spatially fixed at varying radii 𝑟B and angular separation 𝛾 from Alice. The frequency of Alice’s detector
is ΩA = 1/𝑀 . The plot labels Bob’s position by 𝑥B = 𝑟B cos 𝛾 and 𝑦B = 𝑟B sin 𝛾. The detectors couple
to the field through sharp switching functions for 0 ≤ 𝜏A ≤ 𝑀 and 0 ≤ 𝜏B ≤ 15𝑀 , respectively. The top
of the plots is capped close to Alice’s position because the direct contribution diverges at exactly that
point. The plot covers the radial coordinate position of Bob down to 𝑟B = 2.26𝑀 . The plot only covers
positions up to a certain angular separation between Alice and Bob because the numerical evaluation of
the signal strength is infeasible beyond this region.
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(a) Direct contribution to the signal strength of Fig. 14b.

(b) Contour plot version of Fig. 15a, also showing the direct
null geodesic between the marked locations.

Figure 15 – Direct contributions |𝐶d
2 | + |𝐷d

2 | to the signal strength in the scenario of Fig. 14b: The
detectors are static: Alice is placed at a fixed radial coordinate 𝑟A = 6𝑀 , whereas Bob’s radial coordinate
𝑟B and angular separation 𝛾 vary, as labelled by 𝑥B = 𝑟B cos 𝛾 and 𝑦B = 𝑟B sin 𝛾. The detector gaps are
ΩA = 1/𝑀 and ΩB = 1/(2𝑀), and Alice couples to the field for her proper time interval 0 ≤ 𝜏A ≤ 𝑀 .
A red dot in Fig. 15b indicates Alice’s position, and the plot shows the direct null geodesic emanating
from there to the green dot, as one example for Bob’s location. Note that the direct contribution is not
defined at the exact angular separation 𝛾 = 𝜋; the plot shows a numerical interpolation.
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receiving contributions to the signal strength from null rays that go around the black

hole, i.e., secondary null rays. As we shall see in the following, there will be additional

features indicating the region where null rays that orbit the black hole once (tertiary

null rays) start contributing to the signal strength. As seen in the leading order signal

strength, collecting more null rays does not necessarily improve the signal strength. In

the following subsections we discus in more detail the contribution from these non-direct

null rays.

4.2.3 Shifting Bob’s coupling

As pointed out earlier, the non-direct contribution is smaller compared to the direct

contribution in terms of magnitude. To investigate this in more detail, we study a signaling

scenario where Bob couples to the field for a time interval whose length is synchronized to

the duration of Alice’s signal but the time when Bob switches on his detector is delayed

more and more. In this way, as the switching time of Bob’s detector becomes later, Bob’s

detector soon no more interacts with any of the direct null geodesics emanating from

Alice’s detector. Instead, e.g., for some late switching times, it interacts with the part of

the signal that propagates along secondary and higher-orbiting null geodesics from Alice

to him.

The resulting non-direct contribution is plotted in Fig. 16. Specifically, the plot

shows the scenario where Alice is located at radial coordinate 𝑟A = 6𝑀 and Bob at

radial coordinate 𝑟B ≈ 3.01𝑀 with a total angular separation of 𝛾 = 𝜋/4. Both detectors

have identical energy gaps ΩA = ΩB = 1/𝑀 . Alice switches on her detector over a

proper time interval from 𝐴1 = 0 to 𝐴2 = 𝑀 . Since Bob is closer to the horizon than

Alice is, the length of the signal is shorter in terms of his proper time, and is given

by 𝜏B(𝐴2) − 𝜏B(𝐴1) = 𝜏B(𝐴2) ≈ 0.71𝑀 . While in Fig. 16 Bob always couples to the

field for an interval of this duration, 𝐵2 − 𝐵1 = 𝜏B(𝐴2), we vary the point in time at

which Bob switches on his detector, i.e., for a given switch-on proper time 𝐵1 we have

𝐵2 = 𝐵1 + 𝜏𝐵(𝐴2).

This means that, for 𝐵1 = 0, Bob switches on his detector when the first direct
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Figure 16 – The non-direct contribution
⃒⃒
𝐶nd

2
⃒⃒

and
⃒⃒
𝐷nd

2
⃒⃒

as a function of 𝐵1 for static detectors at
𝑟A = 6𝑀 and 𝑟B ≈ 3.01𝑀 and 𝛾 = 𝜋/4, with Ω𝐴 = Ω𝐵 = 1/𝑀 . The switching on/off proper times
are 𝐴1 = 0, 𝐴2 = 𝑀 and 𝐵2 = 𝐵1 + 𝜏B(𝐴2), with 𝜏B(𝐴2) ≈ 0.71𝑀 . Note that the corresponding direct
contribution at 𝐵1 = 0 would be |𝐶d

2 | ≈ 0.0121551 and |𝐷d
2 | ≈ 0.0107647 which then drops down to zero

as soon as 𝐵1 > 𝜏B(𝐴2).

light signal from Alice (i.e., the one emanating at her proper time equal to 𝐴1) arrives at

his location, and switches it off when the last direct light signal from Alice (i.e., the one

emanating at her proper time equal to 𝐴2) arrives. In this case and for the given parame-

ters, we have a direct contribution of magnitude |𝐶d
2 | ≈ 0.0121551 and |𝐷d

2 | ≈ 0.0107647.

For 𝐵1 > 0, Bob switches on his detector after the first direct null geodesic has passed

through his spatial location, hence the direct contribution decreases. Once 𝐵1 > 𝜏B(𝐴2),

Bob’s detector does not interact with any direct null geodesics, and the direct contri-

bution 𝐶d
2 = 0 vanishes. However, we see that for later switching times, in the interval

12𝑀 ≤ 𝐵1 ≤ 20𝑀 , several spikes arise in the non-direct contribution which reach up to

one fifth of the magnitude of the maximal direct contribution. These peaks are due to

the part of the signal which propagates along secondary and tertiary null geodesics from

Alice to Bob, and they arise due to the singular behaviour of the GF along null geodesics.

For example, a −𝛿(𝜎)-singularity appears in the GF between points which are

connected by a tertiary null geodesic, in similarity to points connected by direct primary

geodesics [53]. Accordingly, we find a peak in the non-direct contribution when Bob’s

coupling interval is such that it exactly covers the arrival of all the tertiary null geodesics

emanating from Alice. This is the case when Bob switches on exactly when the first of
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the tertiary null geodesics arrives at his location at 𝐵1 = 𝐵𝑡𝑒𝑟 ≈ 18𝑀 .

Particularly interesting is the contribution from the secondary null geodesics: They

cause the double peak structure in Fig. 16 centered around 𝐵1 = 𝐵𝑠𝑒𝑐 ≈ 14𝑀 , which is

the proper time of Bob at which the first (i.e., emitted from Alice at 𝜏𝐴 = 𝐴1) secondary

null geodesic arrives at Bob’s location. As discussed in Sec. 4.2.2, the GF diverges like

a PV
(︁

1
𝜎

)︁
-distribution in the neighbourhood of points 𝑥 which are connected to 𝑥′ by

secondary null geodesics. We can therefore qualitatively understand the properties of the

part of the signal propagating along secondary null geodesics from the analytic solutions

of Appendix F. There, we approximate the behaviour of the GF near the secondary

null geodesic as PV
(︁

1
𝜎

)︁
, thus ignoring its regular coefficient: As discussed in Sec. 4.2.2,

the GF diverges like a PV
(︁

1
𝜎

)︁
-distribution in the neighbourhood of points 𝑥 which are

connected to 𝑥′ by secondary null geodesics. We can therefore qualitatively understand

the properties of the part of the signal propagating along secondary null geodesics from

the analytic solutions of Appendix F. There, we approximate the behaviour of the GF

near the secondary null geodesic as PV
(︁

1
𝜎

)︁
, thus ignoring its regular coefficient: The most

significant difference in comparison to the direct contribution (from 𝛿(𝜎)-distribution) is

that the contributions from the secondary null geodesics have tails which extend beyond

points that are connected by secondary null geodesics. That is, even if Bob switches off

his detector (close to, but still) before the first secondary null geodesic arives, or after

the last one has passed by, there is still a contribution to the signal strength from the

PV
(︁

1
𝜎

)︁
-distribution.

The results of Appendix F show that the signal features arising from secondary

null geodesics are always roughly symmetric about Bob’s switch-on time of 𝐵1 = 𝐵𝑠𝑒𝑐,

i.e., when Bob’s switching is aligned so that he exactly interacts with all secondary null

geodesics emanating from Alice. For the parameters of Fig. 16 this point happens to

be local minimum of the signal strength. For other parameters, in particular for longer

interaction duration, richer features than the double-peak structure can arise, as seen in

Fig. 31 of Appendix F. In particular, if the detectors are also resonant (ΩB = 𝜈ΩA) then

the signal strength exhibits a peak (with overlaid oscillatory features) around 𝐵1 = 𝐵𝑠𝑒𝑐.
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(a) 𝐵2 = 15𝑀 and Ω𝐵 = 1/𝑀

SecondaryTertiary

(b) 𝐵2 = 15𝑀 and Ω𝐵 = 1/(2𝑀)

(c) 𝐵2 = 25𝑀 and Ω𝐵 = 1/𝑀

Quaternary

(d) 𝐵2 = 25𝑀 and Ω𝐵 = 1/(2𝑀)

Figure 17 – Non-direct contributions
⃒⃒
𝐶nd

2
⃒⃒

+
⃒⃒
𝐷nd

2
⃒⃒

for static detectors as a function of Bob’s location
for 𝐴1 = 𝐵1 = 0, 𝐴2 = 𝑀 , Ω𝐴 = 1/𝑀 and with further parameters as specified, comparing two different
values of 𝐵2 and ΩA. A red dot indicates Alice’s location at 𝑟A = 6𝑀 . Figs. 17a and 17b show the
non-direct contribution to the total signal strength of Fig. 14.

4.2.4 Long time-like coupling of Bob

The signaling scenario of Fig. 14 is slightly different from the scenario that we

just considered in Fig. 16. Whereas in Fig. 16 the proper time window during which Bob

couples to the field varies, while Bob remains at the same position, Fig. 14 compares

the signal strength for different (static) positions of Bob, while his proper time window is

fixed. At all the different positions, Bob switches on his detector at his proper time 𝜏B = 0

which is when the first primary null geodesic from Alice reaches him, which emanated from

Alice at her proper time 𝜏A = 0. Thus, depending on Bob’s spatial position, his switch-on

happens at different coordinate times. At all positions, Bob is switched off after a fixed

amount of his proper time has passed. Hence, Bob’s position determines to what extent

his detector gets to interact with non-direct contributions to the signal. Thus, while the

2D plot of Fig. 16 plotted the signal strength as a function of the coupling times, Fig. 14

and Fig. 17 are functions of the detector position.

Fig. 17 shows non-direct contributions for different detector and switching pa-
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rameters, in particular, including the scenarios of Fig. 14. Some features which are due

to secondary, tertiary and quarternary non-direct null geodesics are highlighted by la-

bels. Their characteristics are somewhat different from the characteristics observed in

Fig. 16, because now all contributions are integrated up over a long interaction time of

Bob whereas previously, in Fig. 16, a short interaction time window of Bob was shifted

over various switch-on times. In particular, we find that the secondary null geodesics now

create a single ripple in the 3D plots of Fig. 17 rather than a double-peak as observed

above. Also, the tertiary null geodesics create a step-like feature rather than a peak as

above.

Let us first focus on the “outermost” distinct feature (i.e., the distinct feature at

the largest radius for a fixed angle), which is a ripple, in the plots in Fig. 17. This ripple

is a consequence of secondary null geodesics. The plots in Figs. 17c and 17d show how

the ripple moves to smaller angular separation 𝛾 than in Figs. 17a and 17b. That is,

this outermost ripple moves closer to Alice for larger switch-off times 𝐵2 of Bob. This is

expected since increasing 𝐵2 means that the secondary null geodesics have more time to

propagate around the black hole to reach Bob before he switches off his detector. Whereas

the position of the ripple only depends on 𝐵2, thus is identical for Figs. 17a and 17b, and

Figs. 17c and 17d, the shape of the ripple also depends on the energy gaps of the detectors.

This becomes clear by comparing Fig. 17a to Fig. 17b, and Fig. 17c to Fig. 17d, which only

differ in Bob’s detector energy changing from being identical to Alice’s, ΩA = ΩA = 1/𝑀 ,

to being half of Alice’s, ΩA = 1/(2𝑀).

The ripple has the form we expect it to have based on Fig. 32a of Appendix F,

which shows the signal contribution from a PV
(︁

1
𝜎

)︁
-distribution for the detector frequen-

cies and sender switching times corresponding to the 3D plots of Fig. 17. Again in Fig. 32a,

the PV
(︁

1
𝜎

)︁
-distribution is used to approximate the GF along secondary null geodesics up

to an overall prefactor. Thus, it yields the qualitative behaviour of the contribution from

secondary null geodesics to the non-direct contribution of Fig. 17.

In fact, Fig. 18, which is a contourplot of Fig. 17b, shows that a (local) peak appears
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Figure 18 – Non-direct contribution
⃒⃒
𝐶nd

2
⃒⃒
+
⃒⃒
𝐷nd

2
⃒⃒

for 𝐴1 = 𝐵1 = 0, 𝐴2 = 𝑀 , Ω𝐴 = 1/𝑀 , 𝐵2 = 15𝑀 and
Ω𝐵 = 1/(2𝑀). A red dot indicates Alice’s location. This is a contourplot version of Fig. 17b. The dashed
lines indicate how far the secondary null rays emitted by Alice have propagated at the time when Bob
switches off his detector: the green line, with smaller angular separation 𝛾, shows the earliest secondary
null rays from Alice, and the white line, with larger 𝛾, shows the last secondary null rays from Alice.

between the arrival of the first and of the last secondary null geodesic. This matches the

behaviour of the PV
(︁

1
𝜎

)︁
-signal observed for ΩA = 2ΩB = 1/𝑀 in Fig. 32a. In Fig. 18, the

dashed green line (i.e., the dashed line corresponding to the smaller separation angles 𝛾 for

a given radius) corresponds to points where the first secondary null geodesics from Alice

(i.e., emitted at 𝜏A = 𝐴1 = 0) arrive at Bob’s position exactly when Bob switches off the

detector. The dashed white line (i.e., the dashed line corresponding to the larger angles

𝛾 for a given radius) corresponds to points where the last secondary null geodesic (i.e.,

emitted at 𝜏A = 𝐴2 = 𝑀) arrives at Bob’s location when Bob switches off the detector.

Therefore, for the points with a value of 𝛾 larger than that of a point on the larger-angle

(white) dashed line at the same radius, i.e., further away from Alice, all secondary null

geodesics arrive while Bob’s detector is switched on. Whereas for points with a value

of 𝛾 smaller than that of a point on the smaller-angle (green) dashed line at the same

radius, i.e., closer to Alice, none of the secondary null rays arrive before Bob’s switch-off.

In-between the two dashed lines, i.e., where Bob switches the detector off roughly when

Alice’s “middle” secondary null geodesic reaches him, lies the crest of the ripple and the

magnitude of the non-direct contribution achieves a local maximum.

The appearance of the distinct ripple at the position that we just discussed, is a
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consequence of the coupling parameters that we have chosen for the numerical evaluation

of the full non-direct contribution in Fig. 17. The analytical solutions of Appendix F,

which approximate the GF near divergences, show that when Alice emits longer signals,

the signal strength from secondary null geodesics depends on Bob’s total coupling duration

in an oscillatory fashion up to about the time when Alice’s last secondary null geodesic

arrives at Bob, as seen in Fig. 32c. In particular, the maximal magnitude of signal strength

does not increase just because the duration of Alice’s signal is increased. However, if

Bob tunes his detector resonant, i.e., ΩB = 𝜈ΩA, then the signal contribution from the

secondary null geodesics increases roughly linearly with the duration of the signal.

In Figs. 17b and 17d we can also see the effect of tertiary light rays on the non-

direct contribution. These rays are the main cause of the second outermost distinct feature

in the plots, which is labelled “tertiary” in Fig. 17b. This feature is not quite a ripple,

like the outermost feature was, but it is more steplike, at least for certain angles away

from 𝛾 = 0. The tertiary feature is also more localized than the secondary one, because

the GF has a −𝛿(𝜎)-singularity for tertiary null geodesics. Hence, this singularity does

not contribute to the integral in 𝐶nd
2 if Bob is located on one side of the steplike feature

in Fig. 17b, but it does contribute to 𝐶nd
2 if Bob is located on the other side. Perhaps

less intuitive is the fact that the contribution from the tertiary lightrays can decrease

the magnitude of the non-direct contribution. This occurs when the sign of the tertiary

contribution to the signal is opposite to the earlier contributions, as illustrated in Fig. 19.

Fig. 19 compares the integrand of expression (4.45) for 𝐶nd
2 , as well as the GF in

that integrand, for two different locations of Bob: Fig. 19a corresponds to a location of Bob

where all tertiary null geodesics arrive only after Bob has switched off the detector, i.e., a

location above the step-like feature in Fig. 17b. On the other hand, Fig. 19b corresponds

to a location where all tertiary null geodesics arrive while Bob is still coupled to the field.

The main features of the integrand are due to the PV( 1
𝜎
)-singularity of the GF

around secondary null geodesics, which appears in both figures. In addition to that, the

peak at the right end of Fig. 19b is due to the −𝛿(𝜎)-singularity from tertiary null
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(a) 𝑟A ≈ 2.583𝑀

(b) 𝑟A ≈ 2.479𝑀

Figure 19 – Comparison of the integrand in 𝐶nd
2 in Eq. (4.44) for two different positions of Bob in the

scenario of Fig. 17b: The top/bottom plots correspond to positions of Bob located at the top/bottom of the
steplike feature due to tertiary light rays in Fig. 17b. Both positions have angular separation 𝛾 = 69𝜋/100
from Alice, but with different radial coordinates. The orange and green curves correspond to, respectively,
the real and imaginary parts of the integrand (times 𝑀) in Eq. (4.44). The solid blue and dashed red
curves correspond to the GF 𝑀2

0𝐺ret/4𝜋 (which is a factor in that integrand) in, respectively, the DP
and QL regions (extended to slightly negative values of 𝑤/𝑀 for ease of visualization). The horizontal
axes contain the integration variable 𝑤 in Eq. (4.44) divided by 𝑀 . (Recall that the switching parameters
are 𝐴1 = 𝐵1 = 0, 𝐴2 = 𝑀 , 𝐵2 = 15𝑀 , Ω𝐴 = 1/𝑀 and Ω𝐵 = 1/(2𝑀).)

geodesics. Whereas the exact expression for the integrand is singular at these places,

the figure only plots the numerical approximation to the GF of Sec. 4.2.2. This is why

the singularities in the exact integrand appear smeared in these plots.

The full integration of the integrand plotted in Fig. 19a results in a real (imaginary)

part of 𝐶nd
2 which is negative (positive). However, the extra contribution due to the

tertiary light rays in Fig. 19b is negative (positive) for the real (imaginary) part. Thus,

the contribution from the tertiary rays reduces the real and imaginary parts of 𝐶nd
2 and

so also its absolute value. Hence, for the parameters at hand, the effect of the signal
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Figure 20 – Scenario where Alice follows a radially-infalling timelike geodesic starting from rest at 𝑟 = 6𝑀 ,
and Bob is static at 𝑟 = 6𝑀 (which corresponds to 𝑟* = 6𝑀 + 2𝑀 ln 4). Alice’s worldline 𝑡 = 𝑡(𝑟*(𝑟𝐴))
is given by the red line, Bob’s 𝑡 = 𝑡(𝑟*(𝑟𝐵)) by the blue vertical line. The shaded regions indicate various
coupling intervals during which Alice couples her detector to the field. The black-dashed lines represent
the first radially-outgoing null geodesics emanating from Alice for each interval, the grey-dashed lines
represent the last ones. All intervals last for the same amount of Alice’s proper time Δ𝜏A = 𝑀/4. Time
windows starting later on Alice’s worldline, i.e., closer to the horizon, extend over larger intervals of
coordinate time (as well as of tortoise radial coordinate 𝑟*).

propagating along the tertiary null geodesics is to reduce the non-direct contribution to

the signal strength.

Additionally, Fig. 17d even displays a feature due to quaternary lightrays, which

is labelled “quaternary”. This feature is, similarly to the secondary effect, like a ripple,

as one would expect from the fact that the singularity of the GF is of similar type (i.e.,

PV
(︁

1
𝜎

)︁
) at secondary and quaternary light-crossings. We have checked that this feature

is indeed due to quaternary rays by an analysis of the integrand similar to that described

above for the feature due to tertiary rays.

4.2.5 Signaling between static and radial-infalling observers

In this scenario, the sender, Alice, follows a radial-infalling geodesic towards the

black hole whereas the receiver, Bob, continues to be static.

In particular, as Alice starts falling from rest at 𝑟A = 6𝑀 , she switches on her
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detector at different positions, but with the same duration of her proper time: Δ𝜏𝐴 = 𝑀/4.

Accordingly, Bob whose position remains fixed at 𝑟B = 6𝑀 , switches on (off) his detector

immediately after the first (last) null ray emitted by Alice reaches his position (see Fig. 20).

This setting allows us to inspect how the signal strength changes as Alice falls into the

black hole. We then use Eq. (4.37) (with its equivalent expression for 𝐷d
2) to calculate

the direct contribution 𝐶d
2 and 𝐷d

2 . The integral in Eq. (4.37) reduces significantly since

𝑈 = Δ1/2 = 1 along radial null geodesics as discussed in Sec. 2.1.2. For the non-direct

contribution we use Eq. (4.19) where we exclude the direct term from 0𝐺ret(𝑥, 𝑥′), i.e., we

use 0𝐺
nd
ret(𝑥, 𝑥′) instead of 0𝐺ret(𝑥, 𝑥′).

In Fig. 21 we plot the total signal strength |𝐶2|+|𝐷2| for a scenario where Alice and

Bob have identical detectors, i.e., ΩA = ΩB = Ω with Ω ∈ [0, 10/𝑀 ] in the top 3D plot and

Ω = 1/𝑀, 5/𝑀, 10/𝑀 in the bottom 2D plot. Due to numeric limitations, for large Ω we

were not able to calculate properly the signal strength when Alice falls beyond 𝑟 ≈ 2.5𝑀 .

To be precise, as Alice approaches the horizon, the integrand we have to evaluate to

obtain 𝐶2 and 𝐷2 became highly oscillatory due to the time dilation, this resulted in an

inaccurate signal strength when Alice’s position goes below 𝑟 ≈ 2.5𝑀 . Different from the

previous scenario where the non-direct contribution is always subdominant compared to

the direct contribution, in this case, the non-direct term increases as Alice approaches

the event horizon. When she falls below 𝑟A ≈ 2.3𝑀 , the non-direct contribution now

becomes the dominant term in the signal strength. To understand this change in the

behavior, we compare the magnitudes of the direct and non-direct contributions. For 𝐶2

this comparison is shown in Fig. 224. In the figure we can see that the direct part is

dominant over the non-direct up until a certain point (around 𝑟A ≈ 2.3𝑀 in this case)

where the non-direct overcomes the direct part. The decrease in the direct contribution

is not particularly unexpected since it is still inverse-proportional to the distance (see

Appendix D for further analysis) between Alice and Bob. On the other hand, even though

the increase in the non-direct contribution is not new (see Fig. 17), the increment in the

magnitude eventually becomes larger than the direct contribution. This behaviour seems
4The contributions to 𝐷2 behave similarly.
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Figure 21 – Plots of |𝐶2|+ |𝐷2| in the radial-infall scenario as a function of the radial coordinate 𝑟A (when
Alice switches on her detector) and detectors’ frequency Ω = ΩA = ΩB. Independently of the value of
𝑟𝐴, Alice switches off her detector after a fixed amount Δ𝜏A = 𝑀/4 of her proper time. Top: 3D plot
(the red line corresponds to the case where Ω = 1/𝑀). Bottom: 2D plot as a function of 𝑟A for a sample
of values of Ω (so these curves are just cross-sections of the 3D plot at the top).

to be related with the four-fold singularity structure of 0𝐺ret [53]. While Alice approaches

the black hole and switches on her detector for a constant interval of time Δ𝜏A = 𝑀/4,

from Bob’s perspective, she switches on her detector for longer time intervals due to the

time dilation. This effect causes the contribution from 0𝐺
nd
ret to 𝐶nd

2 (and 𝐷nd
2 ) in Eq. (4.45)

to be more significant. In its turn, the singularity structure of 0𝐺ret around secondary null

rays (of type PV
(︁

1
𝜎

)︁
) shows a monotonic increase in 0𝐺

nd
ret prior arrival of secondary null

rays. Thus this increase also leads to an increase in 𝐶nd
2 (and 𝐷nd

2 ) as seen in Fig. 21.
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Figure 22 – Plots of direct |𝐶d
2 | and non-direct |𝐶nd

2 | contributions to 𝐶2 in the radial-infall scenario as
functions of 𝑟𝐴 (when Alice switches on her detector) and detectors’ frequency Ω. Top: 3D plot where
the blue and orange surfaces respectively correspond to |𝐶d

2 | and |𝐶nd
2 |. Bottom: 2D plot as a function of

𝑟A for a sample of values of Ω (so these curves are just cross-sections of the 3D plot at the top).

All these results were widely discussed and included in [19]. In the Appendix C of

Ref. [19] we included a prescription for the CID scheme we introduced in Sec. 2.2.1.
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5 The Teukolsky Green function

In Chapter 2 we illustrated how the RWE describes field perturbations of Schwarzschild

spacetime. After calculating the spin-2 retarded GF of the RWE, we could reconstruct the

metric perturbation using 2𝐺ret together with the source of the perturbation. As discussed

in Sec. 1.8.3, the RWE describes the odd-parity sector of gravitational perturbations. For

the even-parity sector, we should also solve the Zerilli equation (see Sec. 1.8.4). As high-

lighted in Chapter 1, in contrast to the Regge-Wheeler formalism, the Teukolsky formalism

extends beyond perturbations of Schwarzschild black holes to include Kerr black holes.

The computation of the Teukolsky Green function in Schwarzschild spacetime serves as

a foundational step towards establishing a more comprehensive framework for describing

field perturbations of Kerr spacetime via the Teukolsky formalism.

For self-force calculations, the gauge choice is a key step we should have in mind.

Regularising the metric perturbation in the Lorenz gauge is easy to perform but solving

the field equation for the metric perturbation becomes difficult. In contrast, the Regge-

Wheeler and radiation gauges have easily solvable field equations, but regularising the

metric perturbation is challenging (as noted in Chapter 2), the regularisation process is

not straightforward. In this chapter we mainly focus on solving the Teukolsky equation

(TE), a key component for reconstructing the metric perturbation in the radiation gauge.

We also explore a regularisation process similarly to the one shown in Chapter 2 for 𝑠𝐺ret.

In Schwarzschild spacetime, a perturbation of spin 𝑠 can be described via a field

𝑠Ψ = 𝑠Ψ(𝑡, 𝑟, 𝜃, 𝜑) (see Sec. 1.8.5). This field satisfies the well-known Teukolsky equation

given in Eq. (1.93). Particularly, we are interested in solving Eq. (1.93) via a Green

function method, i.e., we aim to solve[︃
�+ 2𝑠

𝑟2

(︃
3𝑀 − 𝑟

𝑓

𝜕

𝜕𝑡
+ (𝑟 −𝑀) 𝜕

𝜕𝑟
+ 𝑖

cos 𝜃
sin2 𝜃

𝜕

𝜕𝜑
+ 1 − 𝑠 cot2 𝜃

2

)︃]︃
𝑠𝐺

𝑇
ret(𝑥, 𝑥′) = −4𝜋𝛿4(𝑥, 𝑥′),

(5.1)

where 𝑠𝐺
𝑇
ret is the retarded Green function of the TE. Calculating the self-force through
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𝑠𝐺
𝑇
ret (except 𝑠 = 0) is an approach that has not been explored yet. Determining 𝑠𝐺

𝑇
ret could

provide an alternative approach for studying perturbations of Schwarzschild spacetime.

We thus start by exploring the Hadamard form of 𝑠𝐺
𝑇
ret, this allows us to easily identify

its direct and non-direct parts.

5.1 Hadamard construction of 𝑠𝐺𝑇
ret

Within a normal neighbourhood of 𝑥′, the Hadamard form for 𝑠𝐺
𝑇
ret(𝑥, 𝑥′) can be

written as [33]

𝑠𝐺
𝑇
ret = 𝑈𝑇 (𝑥, 𝑥′)𝛿+(𝜎) − 𝑉 𝑇

𝑠 (𝑥, 𝑥′)𝜃+(−𝜎), (5.2)

where 𝑈𝑇 (𝑥, 𝑥′) and 𝑉 𝑇
𝑠 (𝑥, 𝑥′) are two smooth biscalars, 𝛿+(𝜎) = 𝜃+(𝑥, 𝑥′)𝛿(𝜎) and 𝜃+(−𝜎) =

𝜃+(𝑥, 𝑥′)𝜃(−𝜎). Before applying any differential operator on Eq. (5.2), we define an asymp-

totic expression for 𝑠𝐺
𝑇
ret (as suggested in [5] for the scalar case)

𝑠𝐺
𝑇,𝜖
ret ≡ 𝑈𝑇 𝛿+(𝜎 + 𝜖) − 𝑉 𝑇

𝑠 𝜃+(−𝜎 − 𝜖). (5.3)

This approach to Eq. (5.2) does allow us to put it back into Eq. (5.1) to obtain the

differential equations 𝑈𝑇 and 𝑉 𝑇
𝑠 satisfy. Before going further, for simplicity we introduce

the quantities

𝐴𝜇 ≡ 2𝑠
𝑟2

[︃(︃
−𝑟 + 𝑀

𝑓

)︃
𝛿𝜇

𝑡 + (𝑟 −𝑀)𝛿𝜇
𝑟 + 𝑖

cos 𝜃
sin2 𝜃

𝛿𝜇
𝜑

]︃
, (5.4)

𝐵 ≡ 𝑠

𝑟2 (1 − 𝑠 cot2 𝜃), (5.5)

so that the TE can be written as

(�+ 𝐴𝜇𝜕𝜇 +𝐵) 𝑠𝐺
𝑇
ret = −4𝜋𝛿4(𝑥, 𝑥′). (5.6)

We now insert 𝑠𝐺
𝑇,𝜖
ret in the above equation. By considering the identities (see [5])

𝜎𝛿+(𝜎 + 𝜖) = −𝜖𝛿+(𝜎 + 𝜖), (5.7)

and

𝜎
d𝑛

d𝜎𝑛
𝛿+(𝜎 + 𝜖) = −𝑛 d𝑛−1

d𝜎𝑛−1 𝛿+(𝜎 + 𝜖) − 𝜖
d𝑛

d𝜎𝑛
𝛿+(𝜎 + 𝜖), (5.8)
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for 𝑛 > 0, we find that

(�+ 𝐴𝜇𝜕𝜇 +𝐵)𝑠𝐺
𝑇,𝜖
ret = −2𝑈𝑇 𝜖𝛿′′

+(𝜎 + 𝜖)

+ 𝛿+(𝜎 + 𝜖)
{︁
(�+ 𝐴𝜇𝜕𝜇 +𝐵)𝑈𝑇 + (2𝜎𝜇𝜕𝜇 + 𝜎𝜇

𝜇 + 𝜎𝜇𝐴
𝜇 − 2)𝑉 𝑇

𝑠

}︁
+ 𝛿′

+(𝜎 + 𝜖)
(︁
2𝜎𝜇𝜕𝜇𝑈

𝑇 − 4𝑈𝑇 + 𝜎𝜇
𝜇𝑈

𝑇 + 𝜎𝜇𝐴
𝜇𝑈𝑇 − 𝜖𝑉 𝑇

𝑠

)︁
+ 𝜃+(−𝜎 − 𝜖)

(︁
�𝑉 𝑇

𝑠 + 𝐴𝜇𝜕𝜇𝑉
𝑇

𝑠 +𝐵𝑉 𝑇
𝑠

)︁
, (5.9)

where the primes indicates differentiation with respect to 𝜎. The limit 𝜖 → 0+ yields

(�+ 𝐴𝜇𝜕𝜇 +𝐵)𝑠𝐺
𝑇
ret = −4𝜋𝑈𝑇 𝛿4(𝑥, 𝑥′)+

+ 𝛿+(𝜎)
{︁
(�+ 𝐴𝜇𝜕𝜇 +𝐵)𝑈𝑇 + (2𝜎𝜇𝜕𝜇 + 𝜎𝜇

𝜇 + 𝜎𝜇𝐴
𝜇 − 2)𝑉 𝑇

𝑠

}︁
+ 𝛿′

+(𝜎)
(︁
2𝜎𝜇𝜕𝜇𝑈

𝑇 − 4𝑈𝑇 + 𝜎𝜇
𝜇𝑈

𝑇 + 𝜎𝜇𝐴
𝜇𝑈𝑇

)︁
+ 𝜃+(−𝜎)

(︁
�𝑉 𝑇

𝑠 + 𝐴𝜇𝜕𝜇𝑉
𝑇

𝑠 +𝐵𝑉 𝑇
𝑠

)︁
, (5.10)

where we have used lim𝜖→0+ 𝜖𝛿′′
+(𝜎 + 𝜖) = 2𝜋𝛿4(𝑥, 𝑥′) [5]. When comparing Eq. (5.10) to

Eq. (5.6), we immediately find that 𝑈𝑇 has to satisfy the coincidence limit

[︁
𝑈𝑇 (𝑥, 𝑥′)

]︁
= 𝑈𝑇 (𝑥, 𝑥′)

⃒⃒⃒
𝑥=𝑥′

= 1. (5.11)

From the term involving 𝛿+(𝜎), we obtain the constraint for 𝑉 𝑇
𝑠 on the light cone, i.e, for

𝑉 𝑇
𝑠

⃒⃒⃒
𝜎=0

= 𝑉 𝑇
𝑠 we have that

𝜎𝜇𝜕𝜇𝑉
𝑇

𝑠 + 1
2(𝜎𝜇

𝜇 + 𝜎𝜇𝐴
𝜇 − 2)𝑉 𝑇

𝑠 = 1
2
(︁
�𝑈𝑇 + 𝐴𝜇𝜕𝜇𝑈

𝑇 +𝐵𝑈𝑇
)︁⃒⃒⃒

𝜎=0
. (5.12)

The initial condition for the above transport equation is obtained by evaluating it at

coincidence and imposing regularity. This reads

[︁
𝑉 𝑇

𝑠

]︁
= 1

2
[︁
�𝑈𝑇

]︁
+ 1

2𝐴
𝜇
[︁
𝜕𝜇𝑈

𝑇
]︁

+ 1
2𝐵. (5.13)

From the terms involving 𝛿(𝜎) and 𝜃(−𝜎), we obtain two independent differential

equations for 𝑈𝑇 and 𝑉 𝑇
𝑠 ,

(2𝜎𝜇𝜕𝜇 + 𝜎𝜇
𝜇 − 4 + 𝜎𝜇𝐴

𝜇)𝑈𝑇 = 0, (5.14)

(�+ 𝐴𝜇𝜕𝜇 +𝐵)𝑉 𝑇
𝑠 = 0, (5.15)
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where, as expected, when 𝑠 = 0 (i.e., 𝐴𝜇 = 0 and 𝐵 = 0), we recover the equations for

𝑈 and 𝑉0 for the Regge-Wheeler 0𝐺ret. In fact, with this relation between 𝑈𝑇 and 𝑈 we

may go a step further to simplify Eq. (5.14). Let

𝑈𝑇 = 𝑒𝛼𝑈, (5.16)

where 𝛼 = 𝛼(𝑥, 𝑥′) is a smooth biscalar. When substituting this expression for 𝑈𝑇 , we

find that 𝛼 satisfies the transport equation

2𝜎𝜇𝜕𝜇𝛼 + 𝜎𝜇𝐴
𝜇 = 0, (5.17)

with the initial condition [𝛼] = 0, which results from [𝑈𝑇 ] = [𝑒𝛼][𝑈 ] = 1. Given an affine

parameter 𝜆, a direct integration of Eq. (5.17) reads

𝛼(𝑥1, 𝑥2) = −1
2

∫︁ 𝜆2

𝜆1
𝑢𝜇𝐴

𝜇 d𝜆, (5.18)

where 𝜎𝜇(𝑥1, 𝑥2) = (𝜆2 − 𝜆1)𝑢𝜇, 𝑥1 = 𝑥(𝜆1) and 𝑥2 = 𝑥(𝜆2). Unfortunately, this expres-

sion for 𝛼(𝑥1, 𝑥2) cannot be integrated for arbitrary geodesics to obtain a closed form.

Instead, we can integrate Eq. (5.18) along specific geodesics (or integrate it numerically).

In particular, for a timelike circular geodesic with 𝑟 = 𝑟′ (i.e., 𝑢𝜇 =
√︁

𝑟
𝑟−3𝑀

(︁
1, 0, 0,

√︁
𝑀
𝑟3

)︁
),

we find that 𝛼(𝑥, 𝑥′) = 𝑠
√︁

𝑟−3𝑀
𝑟3𝑓(𝑟)(𝑡 − 𝑡′) and for radial null geodesics (with 𝑢𝜇 given in

Eq. (2.15)), 𝛼(𝑥, 𝑥′) = 𝑠(𝜖+3)
4 ln

(︁
𝑟′

𝑟

)︁
+ 𝑠(𝜖−1)

4 ln
(︁

𝑟′−2𝑀
𝑟−2𝑀

)︁
.

For 𝑉 𝑇
𝑠 , when we compare Eqs. (5.12)–(5.13) and (5.15) with the equations for 𝑉𝑠

in (2.3), it becomes apparent that 𝑉 𝑇
𝑠 satisfies a characteristic initial value problem as well.

Thus, the methods we detailed in Chapter 2 for calculating 𝑉𝑠 could be adapted for 𝑉 𝑇
𝑠 .

Unfortunately, this adaptation is not straightforward. For instance, the Hadamard-WKB

method introduced in [60] (and generalised to arbitrary spin 𝑠 in Sec. 2.1.3) for obtain-

ing a small-coordinate expansion for 𝑉𝑠 does not apply since Eq. (5.15) lacks spherical

symmetry. A numerical approach could be more suitable. Given the Hadamard expansion

𝑉 𝑇
𝑠 (𝑥, 𝑥′) =

∑︁
𝑘

𝑠𝜈
𝑇
𝑘 (𝑥, 𝑥′)𝜎𝑘(𝑥, 𝑥′), (5.19)
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we can solve numerically the transport equations satisfied by the 𝑠𝜈
𝑇
𝑘 coefficients. How-

ever, in order for this numerical approach to work, the first coefficient 𝑠𝜈
𝑇
0 requires

[︁
𝑉 𝑇

𝑠

]︁
(a

solution to Eq. (5.13)) as initial condition to solve its transport equation. The expansion

of bitensors near coincidence [5] could be a good starting point for obtaining
[︁
�𝑈𝑇

]︁
and[︁

𝜕𝜇𝑈
𝑇
]︁

and providing the required initial condition for 𝑠𝜈
𝑇
0 . Nonetheless, the expansion

in Eq. (5.19) converges very slowly, e.g., see Fig. 10 for PH spacetime. Thus, instead of

calculating 𝑉 𝑇
𝑠 , we will focus on calculating 𝑠𝐺

𝑇
ret.

5.2 Mode decomposition for 𝑠𝐺
𝑇
ret

In order to calculate 𝑠𝐺
𝑇
ret, once again, we perform a mode decomposition for 𝑠𝐺

𝑇
ret

[40], i.e.,

𝑠𝐺
𝑇
ret = (𝑟′2𝑓(𝑟′))𝑠

∞∑︁
ℓ=|𝑠|

ℓ∑︁
𝑚=−ℓ

𝑠𝐺
𝑇
ℓ (𝑟, 𝑟′,Δ𝑡)𝑠𝑌ℓ𝑚(𝜃, 𝜑)𝑠𝑌

*
ℓ𝑚(𝜃′, 𝜑′), (5.20)

where

𝑠𝐺
𝑇
ℓ (𝑟, 𝑟′) = 1

2𝜋

∫︁ ∞

−∞
𝑠�̃�

𝑇
𝜔ℓ(𝑟, 𝑟′)𝑒−𝑖𝜔Δ𝑡d𝜔, (5.21)

and the Fourier modes 𝑠�̃�
𝑇
𝜔ℓ are a solution to Eq. (1.101) with source

−4𝜋
(︁
𝑟′2𝑓(𝑟′)

)︁−𝑠
𝑟−2𝛿(𝑟 − 𝑟′),

i.e., it is a Green function of Eq. (1.101). The approach we follow to calculate 𝑠�̃�
𝑇
𝜔ℓ is

via factorized Green functions (as in the Regge-Wheeler case). Let 𝑠�̃�
in
𝜔ℓ and 𝑠�̃�

up
𝜔ℓ be

homogeneous solutions to Eq. (1.101) with asymptotic conditions

𝑠�̃�
in
𝜔ℓ ∼

⎧⎪⎪⎨⎪⎪⎩
𝑠�̃�

in,tra
𝜔ℓ (𝑟2𝑓)−𝑠𝑒−𝑖𝜔𝑟* , 𝑟* → −∞,

𝑠�̃�
in,inc
𝜔ℓ 𝑟−1𝑒−𝑖𝜔𝑟* + 𝑠�̃�

in,ref
𝜔ℓ 𝑟−1−2𝑠𝑒𝑖𝜔𝑟* , 𝑟* → ∞

(5.22)

and

𝑠�̃�
up
𝜔ℓ ∼

⎧⎪⎪⎨⎪⎪⎩
𝑠�̃�

up,inc
𝜔ℓ 𝑒𝑖𝜔𝑟* + 𝑠�̃�

up,ref
𝜔ℓ (𝑟2𝑓)−𝑠𝑒−𝑖𝜔𝑟* , 𝑟* → −∞,

𝑠�̃�
up,tra
𝜔ℓ 𝑟−1−2𝑠𝑒𝑖𝜔𝑟* , 𝑟* → ∞

, (5.23)

where 𝑠�̃�
in,inc/ref/tra
𝜔ℓ and 𝑠�̃�

up,inc/ref/tra
𝜔ℓ are, respectively, the incidence, reflection and trans-

mission coefficients. We choose these boundary conditions in a way that 𝑠�̃�
𝑇
𝜔ℓ are the
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Fourier modes of 𝑠𝐺
𝑇
ret. Additionally, we normalize these solutions in a way that their

transmission coefficients 𝑠�̃�
in,tra
𝜔ℓ and 𝑠�̃�

up,tra
𝜔ℓ are equal to one.

In this way, given the solutions 𝑠�̃�
in
𝜔ℓ and 𝑠�̃�

up
𝜔ℓ , we construct the Green function

𝑠�̃�
𝑇
𝜔ℓ(𝑟, 𝑟′) = − 𝑠�̃�

in
𝜔ℓ(𝑟<)𝑠�̃�

up
𝜔ℓ(𝑟>)

𝑊 𝑇 (𝑠�̃�in
𝜔ℓ, 𝑠�̃�

up
𝜔ℓ)

, (5.24)

where 𝑟> = max(𝑟, 𝑟′), 𝑟< = min(𝑟, 𝑟′) and

𝑊 𝑇 (𝑠�̃�
in
𝜔ℓ, 𝑠�̃�

up
𝜔ℓ) =

(︁
𝑟2𝑓

)︁𝑠+1
(︃

𝑠�̃�
in
𝜔ℓ

d
d𝑟 𝑠�̃�

up
𝜔ℓ − 𝑠�̃�

up
𝜔ℓ

d
d𝑟 𝑠�̃�

in
𝜔ℓ

)︃
= 2𝑖𝜔 𝑠�̃�

in,inc
𝜔ℓ . (5.25)

In order to calculate 𝑠�̃�
in
𝜔ℓ and 𝑠�̃�

up
𝜔ℓ , we follow two methods. The first method is

based on a numerical scheme implemented in the BHPT. The second method relies on

the Chandrasekhar transformation detailed in Sec. 1.8.5. By comparing the asymptotic

conditions for 𝑠�̃�
in
𝜔ℓ and 𝑠�̃�

up
𝜔ℓ with (5.22) and (5.23), it is natural to apply (1.104) on 𝑠�̃�

in
𝜔ℓ

and 𝑠�̃�
up
𝜔ℓ and obtain two Teukolsky solutions with similar asymptotic conditions given in

Eqs. (5.22)–(5.23). Moreover, it is possible to reduce higher order derivatives in −2𝒞(𝑟, 𝜔)

by using the fact that 2�̃�
in
𝜔ℓ and 2�̃�

up
𝜔ℓ satisfy the homogeneous radial RWE, this reads

−2𝒞R(𝑟, 𝜔)2�̃�
in
𝜔ℓ = − 2𝑟𝑓(3𝑀 − 𝑟(1 + 𝑖𝜔𝑟)) d

d𝑟 2�̃�
in
𝜔ℓ+[︃

𝑙(𝑙 + 1)𝑟𝑓 + 12𝑀2

𝑟
− 6𝑀(1 + 𝑖𝜔𝑟) + 2𝑖𝑟2𝜔(1 + 𝑖𝜔𝑟)

]︃
2�̃�

in
𝜔ℓ, (5.26)

and

−2𝒞R(𝑟, 𝜔)2�̃�
up
𝜔ℓ = − 2𝑟𝑓(3𝑀 − 𝑟(1 + 𝑖𝜔𝑟)) d

d𝑟 2�̃�
up
𝜔ℓ +[︃

𝑙(𝑙 + 1)𝑟𝑓 + 12𝑀2

𝑟
− 6𝑀(1 + 𝑖𝜔𝑟) + 2𝑖𝑟2𝜔(1 + 𝑖𝜔𝑟)

]︃
2�̃�

up
𝜔ℓ , (5.27)

where the ‘R’ subindex indicates that high order derivatives in the operator have been

reduced using Eq. (1.69). From the above expressions, we note that solutions to the radial

TE with 𝑠 = −2 are constructed from solutions to the radial RWE with 𝑠 = +2.

As Nakano and Sasaki showed in [44], this operation of reducing high order deriva-

tives of 2�̃�
in
𝜔ℓ and 2�̃�

up
𝜔ℓ has a more fundamental implication than simplifying the calcu-

lation of high order radial derivatives. The non-direct part of 𝑠𝐺
𝑇
ret contains a Heaviside
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distribution 𝜃(−𝜎) which induces quasi-direct terms (see Sec. 2.2.3) when applying differ-

ential operators on it1. When one reduces the second order derivative in −2𝒞 (using the

homogeneous radial RWE), the quasi-direct terms are partially removed2 [44]. However,

the first-order derivative in −2𝒞R may still lead to additional quasi-direct terms. As ex-

plained in Sec. 2.2.3, we address these additional quasi-direct terms by using an averaging

procedure to remove direction-dependent terms from −2𝒞R(𝑟, 𝜔)2�̃�
in
𝜔ℓ and −2𝒞R(𝑟, 𝜔)2�̃�

up
𝜔ℓ .

In this way, we introduce the following homogeneous solutions to the radial Teukol-

sky equation

−2ℛ̃in
𝜔ℓ = −2𝒞R(𝑟, 𝜔)2�̃�

in
𝜔ℓ,

−2ℛ̃up
𝜔ℓ = −2𝒞R(𝑟, 𝜔)2�̃�

up
𝜔ℓ .

(5.28)

Now we can rewrite Eq. (5.24) in the following way [40]

−2�̃�
𝑇
𝜔ℓ(𝑟, 𝑟′) = − −2ℛ̃in

𝜔ℓ(𝑟<)−2ℛ̃up
𝜔ℓ(𝑟>)

−2ℛ̃in,tra
𝜔ℓ −2ℛ̃up,tra

𝜔ℓ 𝑊 𝑇

= − 𝑊

−2ℛ̃in,tra
𝜔ℓ −2ℛ̃up,tra

𝜔ℓ 𝑊 𝑇 −2𝒞R(𝑟<, 𝜔)−2𝒞R(𝑟>, 𝜔)2�̃�
in
𝜔ℓ(𝑟<)2�̃�

up
𝜔ℓ (𝑟>)

𝑊

= − 𝑊

−2ℛ̃in,tra
𝜔ℓ −2ℛ̃up,tra

𝜔ℓ 𝑊 𝑇 −2𝒞R(𝑟<, 𝜔)−2𝒞R(𝑟>, 𝜔)2�̃�𝜔ℓ, (5.29)

where 𝑊 is the Wronskian given in Eq. (2.62), −2ℛ̃in,tra
𝜔ℓ and −2ℛ̃up,tra

𝜔ℓ are, respectively,

the transmission coefficients3 of −2ℛ̃in
𝜔ℓ and −2ℛ̃up

𝜔ℓ. We follow [40] to calculate these coef-

ficients and the Wronskian ratio 𝑊/𝑊 𝑇 . More specifically, we first take the asymptotics

in Eq. (2.59) and add the next leading orders, i.e.,

2�̃�
in
𝜔ℓ ∼

⎧⎪⎪⎨⎪⎪⎩
(1 + 𝛼+Δ𝑆 + 𝛽+Δ2

𝑆) 𝑒−𝑖𝜔𝑟* , 𝑟* → −∞,

2�̃�
in,inc
𝜔ℓ

(︁
1 + 𝛼∞

𝑟
+ 𝛽∞

𝑟2

)︁
𝑒−𝑖𝜔𝑟* + 2�̃�

in,ref
𝜔ℓ 𝑒𝑖𝜔𝑟* , 𝑟* → ∞,

(5.30)

where the solution 2�̃�
in
𝜔ℓ was normalised with 2�̃�

in,tra
𝜔ℓ = 1 (see Sec. 2.2.2), Δ𝑆 = 𝑟(𝑟−2𝑀),

and the coefficients 𝛼+, 𝛽+, 𝛼∞ and 𝛽∞ are determined by demanding that (5.30) satisfies
1Differentiating the Heaviside distribution 𝜃(−𝜎) once leads to 𝛿(𝜎), a distribution that shares the

same behaviour we find in the direct part of 𝑠𝐺
𝑇
ret.

2This was shown (to 1PN (post-Newtonian) approximation ) in Appendix C of [44]. The authors in
[44] claim this to be true to any NP order.

3The inclusion of these coefficients is related to the fact that the operator −2𝒞R does not necessarily
return a Teukolsky solution normalized with a transmission coefficient equal to one.
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Figure 23 – Absolute values of the real (left) and imaginary (right) parts of −2�̃�
T
𝜔,2. In this case 𝑟 =

𝑟′ = 6𝑀 . The black solid line is obtained by applying the Chandrasekhar transformation on 2�̃�𝜔,2 (see
Eq. (5.29)) whereas the red dots are obtained using the numerical method available in the BHPT.

the radial RWE. This reads [40]

𝛼+ = 𝑖 (ℓ(ℓ+ 1) − 3)
4𝑀2(4𝑀𝜔 + 𝑖) ,

𝛽+ = −12 − ℓ2(ℓ+ 1)2 + ℓ(ℓ+ 1)(2 − 16𝑖𝑀𝜔) + 4(2ℓ(ℓ+ 1) + 20𝑖𝑀𝜔 − 3) − 20𝑖𝑀𝜔

64𝑀4(2𝑀𝜔 + 𝑖)(4𝑀𝜔 + 𝑖) ,

𝛼∞ = − 𝑖ℓ(ℓ+ 1)
2𝜔 ,

𝛽∞ = ℓ(ℓ+ 1)(2 − ℓ(ℓ+ 1)) + 12𝑖𝑀𝜔

8𝜔2 ,

and

−2ℛ̃in,tra
𝜔ℓ = 2(𝛼+ + 2𝑀2𝛽+)

𝑀
, (5.31)

−2ℛ̃up,tra
𝜔ℓ = − 4𝜔2, (5.32)
𝑊

𝑊 𝑇
= 𝑀𝛽∞

𝛼+ + 2𝑀2𝛽+
. (5.33)

Before going further, we should remark the following. Once we integrate −2�̃�
𝑇
𝜔ℓ(𝑟, 𝑟′)

over 𝜔 and perform the sum over ℓ and 𝑚, we eventually require to take the coincidence

limit 𝑥 → 𝑥′. When calculating −2�̃�
𝑇
𝜔ℓ(𝑟, 𝑟′) via Eq. (5.29), this limit may depend on

whether it is taken from 𝑟 smaller or larger than 𝑟′. However, similar to 2�̃�𝜔ℓ(𝑟′, 𝑟′), the

Fourier modes −2�̃�
𝑇
𝜔ℓ(𝑟′, 𝑟′) should not depend on the direction. As we shall see in the

next section, this is indeed the case.
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In Fig. 23 the black curve is −2�̃�
𝑇
𝜔,2 obtained via Eq. (5.29). As detailed in Sec. 2.2.2,

we apply the Jaffé series to calculate 2�̃�
in
𝜔ℓ and numerically integrate the radial RWE to

calculate 2�̃�
up
𝜔ℓ , we then insert these results (together with their radial derivatives) in

Eq. (5.29). The red dots in Fig. 23 correspond to values of −2�̃�
𝑇
𝜔,2 obtained directly via

Eq. (5.24) using the numerical method implemented in the BHPT4. As can be seen in the

figure, as 𝑀𝜔 increases, the relative difference increases. We found out that computing

𝑠�̃�
in
𝜔ℓ and 𝑠�̃�

up
𝜔ℓ using the BHPT is much slower compared to the approach we follow, i.e.,

applying the Chandrasekhar operator on 2�̃�
in
𝜔ℓ and 2�̃�

up
𝜔ℓ in order to construct −2�̃�

T
𝜔ℓ.

The reason for this is related to the method used to calculate the boundary conditions for

−2�̃�
in
𝜔ℓ and −2�̃�

up
𝜔ℓ . In the Regge-Wheeler case, the boundary condition for 2�̃�

up
𝜔ℓ (or 2�̃�

in
𝜔ℓ) is

not as time expensive as for 𝑠�̃�
in
𝜔ℓ and 𝑠�̃�

up
𝜔ℓ . Internally, the BHPT calculates the boundary

conditions for −2�̃�
up
𝜔ℓ and −2�̃�

in
𝜔ℓ using the embedded MST method. In the 𝑀𝜔 & 5 region,

the MST method implemented in the BHPT becomes less accurate and requires a higher

level of working precision to maintain consistent accuracy across all values of 𝜔. This is

the main reason why calculating −2�̃�
in
𝜔ℓ and −2�̃�

up
𝜔ℓ takes more time than 2�̃�

up
𝜔ℓ .

5.2.1 Convergence of the Fourier integral of −2�̃�
𝑇
𝜔ℓ

Similarly to 2𝐺ℓ, we can show that the ℓ-modes of −2𝐺
𝑇
ℓ

−2𝐺
𝑇
ℓ (𝑟, 𝑟′; Δ𝑡) = 1

2𝜋

∫︁ ∞

−∞
−2�̃�

𝑇
𝜔ℓ(𝑟, 𝑟′) 𝑒−𝑖𝜔Δ𝑡d𝜔 (5.34)

vanish for Δ𝑡 < 0. From the Hadamard form for −2𝐺
𝑇
ret, we ignore the case Δ𝑡 = 0 since

the 𝜃+(𝑥, 𝑥′) distribution already indicates that the Fourier integral of −2�̃�
𝑇
𝜔ℓ will not

converge for this particular value.

When applying −2𝒞R(𝑟, 𝜔) on 2�̃�
in
𝜔ℓ or 2�̃�

up
𝜔ℓ , the form of these solutions and the

terms involving 𝜔 in −2𝒞R(𝑟, 𝜔) may cause the Fourier integral of (5.29) to diverge. The

exponential term involving Δ𝑡 in the Fourier integral does not affect the decay in the

large-𝜔 regime. In fact, its oscillatory nature does help the integral to converge. From
4The BHPT provides the code to calculate the corresponding In and Up solutions for the TE. From

those solutions, the calculation of 𝑠�̃�
𝑇
𝜔ℓ = 𝑠�̃�

𝑇
𝜔ℓ(𝑟, 𝑟′) is straightforward.
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(a) (b)

Figure 24 – Fourier modes −2�̃�
𝑇
𝜔ℓ, for ℓ = 2 (left) and ℓ = 20 (right), alongside their corresponding

large-𝜔 asymptotic expansions (dashed curves) from (5.36).

Eqs. (5.31)–(5.33) we find that the factor

𝑊

−2ℛ̃in,tra
𝜔ℓ −2ℛ̃up,tra

𝜔ℓ 𝑊 𝑇
= 1

(ℓ− 1)ℓ(ℓ+ 1)(ℓ+ 2) − 12𝑖𝑀𝜔
(5.35)

is order 𝜔−1 in the large-𝜔 regime. Thus, we should check that

−2𝒞R(𝑟, 𝜔)−2𝒞R(𝑟′, 𝜔)2�̃�
in
𝜔ℓ(𝑟<)2�̃�

up
𝜔ℓ (𝑟>)

𝑊

is, at least, order 𝜔0 in this regime. In order to verify this, we make use of the asymptotic

expansion for 2�̃�
in
𝜔ℓ and 2�̃�

up
𝜔ℓ given in Sec. 2.2.3. Inserting Eqs. (2.82)–(2.83) back into

Eq. (5.29), the leading order for −2�̃�
𝑇
𝜔ℓ(𝑟, 𝑟′), after taking the limit 𝑟 → 𝑟′, takes the form

−2�̃�
𝑇
𝜔ℓ(𝑟′, 𝑟′) = 𝑖𝑓(𝑟′)2𝑟′2

2𝜔 + 𝑓(𝑟′)2𝑟′2(ℓ− 1)ℓ(ℓ+ 1)(ℓ+ 2)
24𝑀𝜔2 + 𝒪

[︃(︂ 1
𝑀𝜔

)︂3]︃
. (5.36)

This result does indeed prove the convergence of the Fourier integral of −2�̃�
𝑇
𝜔ℓ(𝑟, 𝑟′).

In Fig. 24 we plot the first two leading orders in Eq. (5.36) together with −2�̃�
𝑇
𝜔ℓ

(obtained using (5.29)) for ℓ = 2 (left plot) and for ℓ = 20 (right plot). As expected, the

leading order agrees with ℑ(−2�̃�
𝑇
𝜔ℓ) and the next-to-leading order with ℜ(−2�̃�

𝑇
𝜔ℓ) in the

large-𝜔 regime. From the ℓ = 20 case, we are able to differentiate three regimes (more

distinguishable as ℓ increases): A non-oscillatory region that grows as ℓ increases; A region

oscillatory in the frequency; And the asymptotic region. In particular, the square root of

the coefficient in front of 𝑠�̃�𝜔ℓ in Eq. (1.101) (after multiplying the equation by a factor
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Figure 25 – Teukolsky ℓ-mode −2𝐺
𝑇
ℓ (for 𝑟 = 𝑟′ = 6𝑀 and ℓ = 2) calculated using the two integrals

appearing in Eq. (5.38). Due to the different numerical tweaks we introduced during the Fourier integral,
we observe a discrepancy in the results depending on which integral we use in Eq. (5.38).

of 𝑓(𝑟)
𝑟2 ) allows us to estimate the value of the frequency 𝜔osc. This yields

𝜔osc ≈
[︃
𝑓(𝑟)
𝑟2 (ℓ− 𝑠)(ℓ+ 𝑠+ 1)

]︃1/2

. (5.37)

This oscillatory feature inherits from the similar behaviour found in 𝑠�̃�𝜔ℓ but in this case

it begins at 𝜔𝑅𝑊
osc ≈

√
4𝒬𝑠 where 𝒬𝑠 is given in Eq. (2.36).

Now that we know the Fourier integral of the Fourier modes in Eq. (5.29) converges

for Δ𝑡 > 0, we calculate −2𝐺
𝑇
ℓ (𝑟, 𝑟′,Δ𝑡) according to

−2𝐺
𝑇
ℓ (𝑟, 𝑟′,Δ𝑡) = 2

𝜋
𝜃(Δ𝑡)

∞∫︁
0

ℜ
[︁

−2�̃�
𝑇
𝜔ℓ(𝑟, 𝑟′)

]︁
cos(𝜔Δ𝑡)d𝜔

= 2
𝜋
𝜃(Δ𝑡)

∞∫︁
0

ℑ
[︁

−2�̃�
𝑇
𝜔ℓ(𝑟, 𝑟′)

]︁
sin(𝜔Δ𝑡)d𝜔, (5.38)

where, similarly to 𝑠𝐺ℓ, we have used the properties

−2𝐺
𝑇
ℓ (𝑟, 𝑟′; −Δ𝑡) = 0, ∀Δ𝑡 > 0, (5.39)

−2�̃�
𝑇
−𝜔ℓ

*(𝑟, 𝑟′) = −2�̃�
𝑇
𝜔ℓ(𝑟, 𝑟′). (5.40)

In practice, the upper limit in the integrals of Eq. (5.38) has to be capped to certain

value 𝜔max, in our case we took 𝜔max = 10/𝑀 . Since the large-𝜔 region is responsible for

the behaviour of −2𝐺
𝑇
ℓ (𝑟, 𝑟′,Δ𝑡) at early times, this cap will result in a less accurate value
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Figure 26 – Comparison of −2𝐺
𝑇
2 (𝑟, 𝑟, 𝑡 − 𝑡′) (with 𝑟 = 6𝑀) calculated according to (5.34) (blue), the

quasi-normal mode ℓ = 2, 𝑛 = 0 estimated using [7] (black-dashed) and the late time decay Δ𝑡−(2ℓ+3)

(orange-dashed).

of −2𝐺
𝑇
ℓ (𝑟, 𝑟′,Δ𝑡) for Δ𝑡 small. On top of that, as suggested in [115], we introduce the

smoothing factor 1
2(1 − Erf[2(𝜔 − 8

10𝜔max)]) in the integrand, this makes the numerical

integration converge faster without significantly influencing the values of −2𝐺
𝑇
ℓ away from

Δ𝑡 = 0. In Fig. 25 we plot the two integrals in Eq. (5.38) after capping the upper limit

and including the smoothing factor. We observe that the effect of introducing the cap and

the smoothing factor has a more significant impact in the bottom integral than in the top

integral. We then prefer to use the top integral in Eq. (5.38) for further calculations.

We next investigate the late time behaviour for −2𝐺
𝑇
ℓ . In Refs. [40, 116] we find an

analysis for field perturbations in the frequency domain for small 𝜔. In fact, the analysis

in the frequency domain provided in [40] found the expected power-law decay (for the

radiative multipoles) previously obtained by Price [117, 118]. More specifically, the leading

order term turns out to be ∝ Δ𝑡−(2ℓ+3). On the other hand, the quasi-normal modes5 of

𝑠𝐺
𝑇
ret also give an insight into its exponential decay ∝ 𝑒−𝑖𝜔ℓ𝑛Δ𝑡 (where 𝜔ℓ𝑛 ∈ C is the

quasi-normal frequency with angular momentum ℓ and overtone 𝑛) prior to the power-

law decay.

In Fig. 26 we plot −2𝐺
𝑇
ℓ (𝑟, 𝑟′,Δ𝑡) for ℓ = 2, 𝑟 = 𝑟′ = 6𝑀 and Δ𝑡 ∈ [200𝑀, 500𝑀 ].

Within this region, we are able to observe the two expected decays in −2𝐺
𝑇
ℓ . In the

5In this context we refer to quasi-normal modes to the set of frequencies containing all the poles of
the radial Green function (𝑠�̃�

𝑇
𝜔ℓ or 𝑠�̃�𝜔ℓ).
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exponential decay region, the black-dashed curve corresponds to ℜ
(︁
ℬ2𝑒

−𝑖𝜔2,0Δ𝑡
)︁

where

𝜔2,0 = (0.3736716844−𝑖0.8896231569×10−1)𝑀−1 is the quasi-normal frequency [7] for ℓ =

2 and overtone 𝑛 = 06. We estimated ℬ2 by imposing ℜ
(︁
ℬ2𝑒

−𝑖𝜔2,0Δ𝑡
)︁

= −2𝐺
𝑇
ℓ (𝑟′, 𝑟′,Δ𝑡) for

two different values of Δ𝑡 ∈ [200𝑀, 280𝑀 ] and 𝑟 = 𝑟′ = 6𝑀 . When moving away from the

exponential decay, i.e., for Δ𝑡 & 400𝑀 in Fig. 26, we observe the expected 𝒜ℓΔ𝑡−7 power-

law decay [40]. The factor 𝒜ℓ is estimated in a way that 𝒜ℓ(500𝑀)−7 = −2𝐺
𝑇
ℓ (𝑟′, 𝑟′, 500𝑀).

This late time analysis provides an easy and simple way to verify the main behaviour of

−2𝐺
𝑇
ℓ in this regime. We do not go further to develop a more rigorous approach for

obtaining 𝒜ℓ and ℬℓ, our main objective in this Chapter is to calculate −2𝐺
𝑇
ret within the

range Δ𝑡 ∈ [0, 100𝑀 ].

5.2.2 Full Teukolsky Green function

Once the ℓ-modes −2𝐺
𝑇
ℓ are calculated, the retarded Green function (𝑠𝐺

𝑇
ret) of

Eq. (5.1) may be calculated via Eq. (5.20) for the 𝑠 = −2 case. Similarly to the Regge-

Wheeler case, we truncate the sum over ℓ in Eq. (5.20). Once again, truncating the mode

sum leads to high-ℓ oscillations in −2𝐺
𝑇
ret which are smoothed out when we introduce the

smoothing factor exp [−ℓ2/(2ℓ2
cut)] with ℓcut being a cutoff value for ℓ [56].

In Fig. 27 we show −2𝐺
𝑇
ret for two different scenarios. In the first scenario (Fig. 27a)

𝑥 and 𝑥′ are evaluated on a static worldline with 𝑟 = 𝑟′ = 6𝑀 and zero angular separation.

In the second scenario (Fig. 27b) we have 𝑥 and 𝑥′ on a circular geodesic with 𝑟 = 𝑟′ = 6𝑀 .

The mode sum was capped at ℓ = 100 for both scenarios and the smoothing factor in the

ℓ-sum had ℓcut = 8 and ℓcut = 12 for the static and circular case, respectively. Unlike the

ℓ-sum for 𝑠𝐺ret, for −2𝐺
𝑇
ret we chose a much lower value for ℓcut because the oscillations

coming from the high-ℓ modes are more marked than in the Regge-Wheeler case.

When comparing the results for −2𝐺
𝑇
ret in Fig. 27 with 0𝐺ret and 2𝐺ret, we observe

that the singularity structure [53] is the same as in Fig. 4 for the static case and Fig. 7 for

the circular case, respectively. This structure is more marked in the static case compared
6The authors in [7] provided supplementary data which can be found at

https://pages.jh.edu/eberti2/ringdown/.

https://pages.jh.edu/eberti2/ringdown/
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(a) −2𝐺
𝑇
ret for 𝑥 and 𝑥′ on a static worldline with 𝑟 = 𝑟′ = 6𝑀 .
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(b) −2𝐺
𝑇
ret for 𝑥 and 𝑥′ on a circular geodesic with 𝑟 = 𝑟′ = 6𝑀 .

Figure 27 – Full retarded Teukolsky Green function (−2𝐺
𝑇
ret) for two different scenarios, the ℓ-sum was

capped at ℓ = 100 and we used ℓcut = 8 for the static case and ℓcut = 12 for the circular case.

to the circular case. In particular, we observe that for the circular case in Fig. 27b, there

are still spurious oscillations around Δ𝑡 ≈ 45𝑀 . We were not able to reduce further these

oscillations without affecting the (already smoothed out) singularities in −2𝐺
𝑇
ret. We thus

require to examine other parameters like the cap in the mode sum or the Fourier integral

for additional improvement. For instance, including more ℓ-modes in the mode sum should

increase the value of ℓcut in the smoothing factor, reducing the high-ℓ oscillations. The

alternative we are currently working on is increasing the precision in the data of 𝑠�̃�
in
𝜔ℓ

and 𝑠�̃�
up
𝜔ℓ , this should increase the accuracy of the Fourier integral and, consequently,

provide more accurate ℓ-modes. Additionally, we could also improve the smoothing factor

we introduced in the Fourier integral. However, the impact of the smoothing factor is only

significant near coincidence.
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5.2.3 Chandrasekhar operator in the time domain and regularisation

In the time domain, constructing −2𝐺
𝑇
ℓ from −2𝐺ℓ is not a straightforward proce-

dure. Although we can construct the equivalent operator to (1.104) in the time domain

(which we denote by −2𝒞(𝑟,Δ𝑡)) by simply changing 𝜔 → 𝑖 𝜕
𝜕𝑡

in it, we cannot follow

this technique for the prefactor in Eq. (5.29). The appropriate procedure to handle this

prefactor and obtain its time domain counterpart is through the convolution operator,

i.e., in the time domain, we can write

−2𝐺
𝑇
ℓ = −

[︃
1

2𝜋

∫︁ ∞

−∞

𝑊𝑒−𝑖𝜔Δ𝑡

−2�̃�
in,tra
ℓ −2�̃�

up,tra
𝜔ℓ 𝑊 𝑇

d𝜔
]︃

* −2𝒞(𝑟,Δ𝑡)−2𝒞(𝑟′,Δ𝑡) 2𝐺ℓ(𝑟, 𝑟′,Δ𝑡)

=
(︂
𝜋

6𝑀𝑒− (ℓ−1)ℓ(ℓ+1)(ℓ+2)Δ𝑡
12𝑀 𝜃(Δ𝑡)

)︂
* −2𝒞(𝑟,Δ𝑡)−2𝒞(𝑟′,Δ𝑡) 2𝐺ℓ(𝑟, 𝑟′,Δ𝑡), (5.41)

where the * represents the convolution operation (with respect to Δ𝑡), 2𝐺ℓ(𝑟, 𝑟′,Δ𝑡) are

the ℓ-modes of 2𝐺ret, and −2𝒞(𝑟, 𝑡) is the radial part of the Chandrasekhar operator in the

time domain [40]

−2𝒞(𝑟,Δ𝑡) = (𝑟𝑓)2
(︃
𝜕

𝜕𝑟
− 1
𝑓

𝜕

𝜕Δ𝑡

)︃2

𝑟. (5.42)

Moreover, instead of using (1.104), we may go a step further and use (5.26) (or Eq. (5.27))

and write

−2�̃�
𝑇
𝜔ℓ =

(︂
𝜋

6𝑀𝑒− (ℓ−1)ℓ(ℓ+1)(ℓ+2)Δ𝑡
12𝑀 𝜃(Δ𝑡)

)︂
* −2𝒞R(𝑟,Δ𝑡)−2𝒞R(𝑟′,Δ𝑡) 2𝐺ℓ(𝑟, 𝑟′,Δ𝑡), (5.43)

where −2𝒞R is obtained by changing 𝜔 → 𝑖 𝜕
𝜕𝑡

in −2𝒞R, i.e.,

−2𝒞R(𝑟, 𝑡) = 𝑓(𝑟) (𝑟ℓ(ℓ+ 1) − 6𝑀) + 2𝑟 (𝑟 − 3𝑀)
(︃
𝑓(𝑟) 𝜕

𝜕𝑟
− 𝜕

𝜕𝑡

)︃

− 2𝑟3
(︃
𝑓(𝑟) 𝜕2

𝜕𝑡𝜕𝑟
− 𝜕2

𝜕𝑡2

)︃
. (5.44)

In order to compare −2𝐺
𝑇
ℓ calculated via Fourier integral of Eq. (5.29) and more

directly via Eq. (5.43), we need to calculate 2𝐺ℓ and its corresponding radial and time

derivatives directly in the time domain. In order to obtain these derivatives, we require

another approach for computing 2𝐺ℓ directly in the time domain. The Hadamard-WKB

method provided in [60] for calculating 𝑉0 as a small coordinate expansion (which we

adapted to work with general spin in Sec. 2.1) can be used to obtain the ℓ-modes of 𝑠𝐺ret
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instead of 𝑉𝑠. In fact, the procedure for obtaining 𝑉0 in [60] relies on first calculating 0𝐺ℓ

and then regularising it during the mode sum. More specifically, using the expressions

given in Eqs. (2.7)–(2.14) of Ref. [60], we find that for 𝑟 > 𝑟′, the ℓ-modes 0𝐺
𝐸
ℓ of the

Euclidean Green function are given by7

0𝐺
𝐸
ℓ (𝑟, 𝑟′; −𝑖𝜏) = 𝑟2

∫︁ ∞

0
𝐵(𝑟, 𝑟′) cos(�̂�𝜏)d�̂�, 𝑟 > 𝑟′, (5.45)

where 𝜏 = 𝑖𝑡 is the Euclidean time, �̂� = −𝑖𝜔, and 𝐵(𝑟, 𝑟′) is the Euclidean Fourier mode

of 0𝐺
𝐸
ℓ . The function 𝐵(𝑟, 𝑟′) is calculated by expanding it in powers of 𝑟 − 𝑟′

𝐵(𝑟, 𝑟′) = 𝛽(𝑟) + 𝛼(𝑟)(𝑟′ − 𝑟) + · · · , (5.46)

and using a Hadamard-WKB method to obtain the 𝛽(𝑟) and 𝛼(𝑟) coefficients (see [60]).

As proposed in Sec. 2.1.3, Eq. (5.45) can be generalised to 𝑠𝐺ℓ(𝑟, 𝑟′; Δ𝑡) by adding

the −𝑠2𝑀/𝑟3 term in Eq. (2.10) of Ref. [60]. In the 𝑟 < 𝑟′ case, we can perform the same

procedure used for calculating 𝐵(𝑟, 𝑟′). However, the symmetries of 2𝐺ret shows that for

𝑟 < 𝑟′ this calculation leads to the same function 𝐵(𝑟, 𝑟′) but with its arguments swapped.

In this way, for spin-2 we can write

2𝐺
𝐸
ℓ (𝑟, 𝑟′; −𝑖𝜏) =

∫︁ ∞

0

[︁
𝑟2𝐵2(𝑟, 𝑟′)𝜃(𝑟 − 𝑟′) + 𝑟′2𝐵2(𝑟′, 𝑟)𝜃(𝑟′ − 𝑟)

]︁
cos(�̂�𝜏)d�̂�, (5.47)

where

𝐵2(𝑟, 𝑟′) = 𝛽2(𝑟) + 𝛼2(𝑟)(𝑟′ − 𝑟) + · · · ,

with 𝛽2(𝑟) and 𝛼2(𝑟) coefficients to be determined similarly to 𝛽(𝑟) and 𝛼(𝑟). In this

way, 𝐵2(𝑟, 𝑟′) is the counterpart of 𝐵(𝑟, 𝑟′) for spin-2. The result of the integral in the

right hand side of Eq. (5.47) is then expressed as a small coordinate expansion similar

to Eq. (2.28). In our region of interest, which is within a normal neighborhood, a small

coordinate expansion yields sufficient accuracy for comparison purposes.

The ℓ-modes 𝑠𝐺ℓ of the retarded Green function can be obtained from the ℓ-modes

𝑠𝐺
𝐸
ℓ of the Euclidean Green function by setting 𝜏 = 𝑖𝑡. By modifying the supplementary
7Note that we already transformed the Euclidean time 𝜏 to Schwarzschild time 𝑡 and introduced a

𝑟2 factor to match the mode decomposition in Eq. (2.7) of Ref. [60] with Eq. (2.29).
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code provided in [60], originally intended for calculating 𝑉0, we successfully derived 𝑠𝐺ℓ

as a small coordinate expansion. This involved incorporating the term −𝑀
𝑟3 𝑠

2 (note that

this term generalises the code to arbitrary 𝑠) into the potential outlined in Eq. (10) of

[60]. Prior to conducting the mode-sum, we found that the first leading terms of 2𝐺ℓ are

2𝐺ℓ = 𝒢𝐿(𝑟, 𝑟′; Δ𝑡) 𝜃(𝑟 − 𝑟′) + 𝒢𝐿(𝑟′, 𝑟; Δ𝑡) 𝜃(𝑟′ − 𝑟), (5.48)

𝒢𝐿(𝑟, 𝑟′; Δ𝑡) = 1
2 − 𝑟 − 𝑟′

2𝑟 + (4𝐿2 + 15) 𝑟 − 56𝑀
32𝑟3𝑓(𝑟) (𝑟 − 𝑟′)2 + 𝑓(𝑟) (𝑟 − 4𝐿2𝑟 + 24𝑀)

32𝑟3 Δ𝑡2

+ 144𝑀2 − (12𝐿2 + 55)𝑀𝑟 + 4𝐿2𝑟2𝑓(𝑟) + 2 (2𝐿2 − 1) 𝑟2

32𝑟5 (𝑟 − 𝑟′)Δ𝑡2

+ 𝒪
(︁
Δ𝑥4

)︁
, (5.49)

where 𝐿 = ℓ+ 1
2 and Δ𝑥 = 𝑥− 𝑥′ with 𝑥 = (𝑡, 𝑟).

The small coordinate expansion in Eq. (5.48) for 2𝐺ℓ is the expression we insert into

Eq. (5.41). As discussed in Sec. 2.2.3, taking radial derivatives of 2�̃�𝜔ℓ induces undesired

quasi-direct terms. It turns out that, when calculating radial derivatives of 2𝐺ℓ using

Eq. (5.48), we encounter a similar situation. More precisely, if we differentiate Eq. (5.48)

with respect to 𝑟 (similar results arise for 𝑟′) and take the limit 𝑟 → 𝑟′, we find that the

result depends on how the limit 𝑟 → 𝑟′ is taken, i.e.,

lim
𝑟→𝑟′+

𝜕

𝜕𝑟
2𝐺ℓ = − 1

2𝑟′ + 336𝑀2 − 11(4𝐿2 + 11)𝑀𝑟′ + 4(4𝐿2 − 1)𝑟′2

32𝑟′5 Δ𝑡2 + 𝒪
(︁
Δ𝑡3

)︁
,

(5.50)

lim
𝑟→𝑟′−

𝜕

𝜕𝑟
2𝐺ℓ = 1

2𝑟′ − 144𝑀2 − 5(4𝐿2 + 11)𝑀𝑟′ + 2(4𝐿2 − 1)𝑟′2

32𝑟′5 Δ𝑡2 + 𝒪
(︁
Δ𝑡3

)︁
. (5.51)

Although the radial derivative of 2𝐺ℓ is expected to have a discontinuity, when construct-

ing −2𝐺
𝑇
ℓ from 2𝐺ℓ and evaluating it at 𝑟 = 𝑟′, we should remove any discontinuity coming

from the radial derivatives of 𝑠𝐺ℓ. This is because −2𝐺
𝑇
ℓ (𝑟, 𝑟′; Δ𝑡) must be continuous at

𝑟 = 𝑟′, i.e.,

lim
𝑟→𝑟′+ −2𝐺

𝑇
ℓ (𝑟, 𝑟′; Δ𝑡) = lim

𝑟→𝑟′− −2𝐺
𝑇
ℓ (𝑟, 𝑟′; Δ𝑡).

In order to achieve this continuity for −2𝐺
𝑇
ℓ , we take the average of the two limits given

in Eqs. (5.50)–(5.51).
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We now go a step further and propose

−2𝐺
𝑇,nd
ℓ ≡

(︂
𝜋

6𝑀𝑒− (ℓ−1)ℓ(ℓ+1)(ℓ+2)Δ𝑡
12𝑀 𝜃(Δ𝑡)

)︂
* −2𝒞R(𝑟,Δ𝑡)−2𝒞R(𝑟′,Δ𝑡) 2𝐺

nd
ℓ

=
(︂
𝜋

6𝑀𝑒− (ℓ−1)ℓ(ℓ+1)(ℓ+2)Δ𝑡
12𝑀 𝜃(Δ𝑡)

)︂
* −2𝒞R(𝑟,Δ𝑡)−2𝒞R(𝑟′,Δ𝑡)(2𝐺ℓ −𝐺dir

ℓ ), (5.52)

to be the ℓ-modes of the non-direct part of −2𝐺
𝑇
ret, i.e., we identify

−2𝐺
𝑇,nd
ret ≡ (𝑟′2𝑓(𝑟′))−2

∞∑︁
ℓ=2

ℓ∑︁
𝑚=−ℓ

−2𝐺
𝑇,nd
ℓ −2𝑌ℓ𝑚(𝜃, 𝜑)−2𝑌

*
ℓ𝑚(𝜃′, 𝜑′) (5.53)

as the non-direct part of −2𝐺
𝑇
ret. This approach for obtaining the non-direct part of −2𝐺

𝑇
ret

from 2𝐺
nd
ℓ = 2𝐺ℓ −𝐺dir

ℓ was first proposed by Nakano and Sasaki in the frequency domain

[44]. While the initial concept presented in [44] was developed only to one post-Newtonian

order, we would expect Eq. (5.52) to be the time domain counterpart of Eq. (4.1) in [44] .

If this is not the case, any additional term that is not part of −2𝐺
𝑇,nd
ℓ should be properly

addressed. For instance, a similar discontinuity appearing in (5.50)–(5.51) arises in the

frequency domain and it is handled with an averaging procedure as well (see Sec. 2.2.3).

The next observation is connected to the Heaviside distribution embedded in the

non-direct part of 2𝐺ret. This distribution leads to a Dirac-delta distribution that should

not be part of 𝑠𝐺
𝑇,nd
ret . In the frequency domain, Nakano and Sasaki addressed this problem

by substituting the Chandrasekhar operator −2𝒞, a second order differential operator, with

the first order differential operator −2𝒞R (see Appendix C of Ref. [44]). In the time domain,

this does not seem to be the case since the operator −2𝒞R (the time domain counterpart of

−2𝒞R) in Eq. (5.52) involves up to fourth order derivatives with respect to Δ𝑡. Despite the

possibility for these high-order derivatives to introduce Dirac-delta distributions, these

terms become finite after the convolution operation in Eq. (5.52).

In Fig. 28 we plot the result of applying −2𝒞R(𝑟,Δ𝑡)−2𝒞R(𝑟′,Δ𝑡) on the small

coordinate expansion of 𝐺dir
ℓ (see [6]) and 2𝐺ℓ, for ℓ = 2 (top) and ℓ = 25 (bottom). In

both cases we set 𝑟 = 𝑟′ = 6𝑀 . For the −2𝒞R(𝑟,Δ𝑡)−2𝒞R(𝑟′,Δ𝑡)𝐺dir
ℓ case (blue curve), we

observe a divergence at Δ𝑡 = 𝑡𝒩 ≈ 20.726713𝑀 (or 𝜂 = 𝜂(𝑟′, 𝑟′,Δ𝑡) = 𝜋) coming from

differentiating the
√︁

sin 𝜂
𝜂

factor in Eq. (2.13). Considering that, in order to obtain −2𝐺
𝑇,nd
ℓ

we require to perform the convolution in Eq. (5.52), the divergence at Δ𝑡 = 𝑡𝒩 will not

let the convolution integral converge.
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Figure 28 – Comparison between −2𝒞R(𝑟,Δ𝑡)−2𝒞R(𝑟′,Δ𝑡)2𝐺ℓ, −2𝒞R(𝑟,Δ𝑡)−2𝒞R(𝑟′,Δ𝑡)𝐺dir
ℓ and

𝑆(Δ𝑡)−2𝒞R(𝑟,Δ𝑡)−2𝒞R(𝑟′,Δ𝑡)𝐺dir
ℓ for ℓ = 2 (top) and ℓ = 25 (bottom).

From (5.44) and Eq. (5.52), the factor
√︁

sin 𝜂
𝜂

has to be differentiated four times

and it leads to a divergence of type (𝜋 − 𝜂)−7/2 in the right hand side of Eq. (5.52). In

order to remove this divergence and be able to perform the convolution in Eq. (5.52), we

could introduce a smoothing factor which goes to zero at 𝜂 = 𝜋 faster than (𝜋 − 𝜂)7/2.

For instance, the smoothing function

𝑆(Δ𝑡) =

⎧⎪⎪⎨⎪⎪⎩
tanh4(𝑡𝒩 − Δ𝑡) tanh4(Δ𝑡− 𝑡𝒩 ), |𝜂| ≤ 𝜋,

0, |𝜂| > 𝜋,
(5.54)

has the required properties at 𝜂 = 𝜋. The green-dashed curve in Fig. 28 corresponds to

−2𝒞R(𝑟,Δ𝑡)−2𝒞R(𝑟′,Δ𝑡)𝐺dir
ℓ smoothed out by this function. We observe that for ℓ = 2 and

at early times, there is a notable difference between the results from 𝐺dir
ℓ (blue curve)

and 2𝐺ℓ (orange curve). On the other hand, we found out that this difference reduces as
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ℓ increases (see the ℓ = 25 case in Fig. 28). In order to understand the implications of

including a smoothing function in −2𝒞R(𝑟,Δ𝑡)−2𝒞R(𝑟′,Δ𝑡)𝐺dir
ℓ , let us substitute −2𝐺

𝑇,nd
ℓ

in Eq. (5.53) with

(︂
𝜋

6𝑀𝑒− (ℓ−1)ℓ(ℓ+1)(ℓ+2)Δ𝑡
12𝑀 𝜃(Δ𝑡)

)︂
*
(︁
𝑆(Δ𝑡) −2𝒞R(𝑟,Δ𝑡)−2𝒞R(𝑟′,Δ𝑡)𝐺dir

ℓ

)︁
(5.55)

and perform the corresponding ℓ-sum. In the ideal scenario where we are able to conduct

this ℓ-sum exactly, there is no need to introduce the smoothing factor 𝑆(Δ𝑡). As illustrated

in Eq. (2.12), the ℓ-modes of the direct part of 𝑠𝐺ret extend beyond Δ𝑡 = 0, yet these

contributions ultimately cancel out. We anticipate a similar cancellation phenomenon

during the ℓ-sum of (5.55), subsequently mitigating the impact of 𝑆(Δ𝑡) in the final

result.

We encountered difficulty in obtaining a complete calculation for −2𝐺
𝑇,nd
ℓ due to the

inadequacy of the small coordinate expansion for 𝐺dir
ℓ and 𝑠𝐺ℓ to facilitate the convolution

operation in Eq. (5.52). We made additional analyses (e.g., asymptotic expansions for large

ℓ) on the left hand side of Eq. (5.52) in order to determine whether the ℓ-sum of −2𝐺
𝑇,nd
ℓ

resulted in any divergences at coincidence. Unfortunately, these analyses did not yield

conclusive results.

We intend to continue analysing this approach for the Chandrasekhar opera-

tor in the time domain. Our ongoing results are incomplete and require further de-

velopment. For instance, we could analytically carry out the convolution operation in

Eq. (5.52) given a sufficient accurate expansion for −2𝒞R(𝑟,Δ𝑡)−2𝒞R(𝑟′,Δ𝑡)2𝐺ℓ (and

−2𝒞R(𝑟,Δ𝑡)−2𝒞R(𝑟′,Δ𝑡)𝐺dir
ℓ ). Additionally, we could improve 𝑠𝐺ℓ by providing a large-𝜔

asymptotic expansion for 𝑠�̃�𝜔ℓ instead of introducing a smoothing function in the Fourier

integral.
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6 Conclusions

Understanding gravitational waves became crucial after LIGO’s first detection of

gravitational waves [1] since it marked the birth of gravitational wave astronomy. De-

scribing the motion of two massive compact objects is not an easy task. It requires a

combination of numerical and analytical techniques to solve the equation of motion for

such binary systems. In the case of EMRI’s, we model the system as a small compact

object moving on a background spacetime generated by the supermassive black hole.

Therefore, our problem reduces to solving the equations of motion for a compact object.

The particle’s own field acts as a self-force deviating its motion from a geodesic one. In

this work, as we have detailed, applications of the Green function extend beyond EM-

RIs alone. We demonstrated that the scalar retarded Green function plays a crucial role

in quantum communication. Calculating Green functions in curved spacetime poses a

considerable challenge, to yield the results presented in this work, we developed various

techniques and methods to calculate both the Regge-Wheeler Green function and the

Teukolsky Green function.

In Chapter 1 we started by introducing the theory of general relativity and the non-

geodesic motion of a scalar charge and a point particle in curved spacetime. We provided

a brief review of how to construct the self-force and perform a self-consistent evolution in

these two cases. We also discussed the fundamentals of Green functions in curved space-

time and showed how to regularise them. Later on, we focused on describing gravitational

perturbations of Schwarzschild spacetime using two different formalisms. Firstly, we used

the Regge-Wheeler formalism to derive the spin-2 Regge-Wheeler equation (which can be

generalised to also describe scalar and electromagnetic perturbations). Solutions to the

spin-2 Regge-Wheeler equation allow us to calculate the odd-parity sector of the metric

perturbation, while the even-parity sector is described by the Zerilli equation. Secondly,

we explored the Teukolsky formalism, where field perturbations are described by a spin-𝑠

field. Teukolsky showed that scalar, electromagnetic, and gravitational perturbations of
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Kerr spacetime can be obtained by solving a master equation (the Teukolsky equation)

for a spin-𝑠 master field. Since Kerr spacetime reduces to Schwarzschild when the angular

momentum is zero, we can also describe field perturbations of Schwarzschild spacetime

with the Teukolsky formalism. Once we calculate the master field, we are able to partially

reconstruct the physical field perturbation.

In Chapter 2 we calculated the retarded Green function 𝑠𝐺ret for the Regge-

Wheeler equation in the scalar (𝑠 = 0) and gravitational (𝑠 = 2) cases. The methods

we developed rely on mixed (numerical and analytic) methods for calculating 𝑠𝐺ret. In

the time domain, the ℓ-modes of 𝑠𝐺ret satisfy a characteristic initial value problem. By

establishing characteristic initial data (CID) on the light cone, we developed a higher

order CID scheme than the ones found in [64, 63] that works for arbitrary spin 𝑠. We

truncated the mode sum in Eq. (2.29) and introduced a smoothing factor to smear the

high-ℓ oscillations. Consequently, a Gaussian distribution centered at coincidence arises

and it narrows approaching to 𝛿(𝜎) as more modes are included in the sum. The method of

matched expansions [31] is an effective procedure for removing this Gaussian distribution

near coincidence. We calculated the Hadamard tail 𝑉𝑠 (in the QL region, using a small

distance expansion) and matched it with 𝑠𝐺ret (previously calculated via CID). The result

of this matching process returns the non-direct part of 𝑠𝐺ret (denoted by 𝑠𝐺
nd
ret) for any

pair of points 𝑥 and 𝑥′ within the region limited by the domain of the CID scheme. Later

on, we followed a relatively new prescription (introduced in [6]) for calculating 𝑠𝐺
nd
ret. This

method consists of subtracting 𝐺dir
ℓ (the ℓ-modes of the direct part of 𝑠𝐺ret) from 𝑠𝐺ℓ.

While this procedure successfully eliminated the Gaussian distribution in 𝑠𝐺ret, it pro-

duced inaccurate results for small values of Δ𝑡. This inaccuracy was directly connected to

the numerical approach we used to compute Δ1/2
2d , a fundamental piece in 𝐺dir

ℓ . In [6] the

authors provided a non-numerical prescription for calculating Δ1/2
2d which returned better

results near Δ𝑡 = 0. We then moved to this approach to compute Δ1/2
2d and improved our

previous results. As seen in [6], in the scalar case (𝑠 = 0), his approach yields the same

result as that obtained through matched expansions. However, in the gravitational case

(𝑠 = 2), the value of [𝑉𝑠] = −4𝑀𝑠2/𝑟3 ̸= 0 and 𝑠𝐺
nd
ret = −𝑉𝑠𝜃(−𝜎)𝜃(Δ𝑡) lead to a discrep-
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ancy near Δ𝑡 = 0 since the non-direct part is obtained via a truncated mode sum. More

precisely, the Heaviside distributions in 𝑠𝐺
nd
ret are smoothed out due to the truncation of

the mode sum. Nonetheless, as more modes are included in the sum, the result for 𝑠𝐺
nd
ret

tends to 𝑉𝑠 as expected.

In the frequency domain, we obtained 𝑠�̃�𝜔ℓ via Eq. (2.61). For 𝑠�̃�
in
𝜔ℓ we used the

Jaffé series [70] and for 𝑠�̃�
in
𝜔ℓ we numerically integrated the Regge-Wheeler equation.

Additionally, we also calculated their radial derivatives. To accelerate the convergence

of the Fourier integral of 𝑠�̃�𝜔ℓ, we incorporated a smoothing factor into the numerical

integration. However, this method comes at a cost: the resulting 𝑠𝐺ℓ is less accurate

for small values of Δ𝑡. Fortunately, this is not a significant concern, as we have also

truncated the mode sum1. Therefore, the loss of accuracy in 𝑠𝐺ℓ for small Δ𝑡 values does

not represent a problem.

In the last part of Chapter 2, we explored an alternative for calculating 𝐺dir
ℓ via

a Fourier integral. For Schwarzschild spacetime, the authors in [72] were able to obtain

Fourier modes of 𝐺dir
ℓ from the Fourier modes of the singular part of the Feynman Green

function [73]. We compared the partial results in [73] with 𝑠�̃�𝜔ℓ but we required further

analysis to establish a regularisation procedure (in the Frequency domain) as prescribed

in [44].

In Chapter 3 we moved away from 𝑠𝐺ret and focus on the Hadamard tail. Our

objective was to look for a new alternative to calculate 𝑉𝑠. The small distance expansion

for 𝑉𝑠 used in Chapter 2 only allowed us to calculate 𝑉𝑠 in a quasi-local region which, in

some cases, may not even overlap with the results from the distant past region. Thus, in

Chapter 3 we calculated the Hadamard tail (denoted by 𝑉 ) in Plebański-Hacyan (PH)

spacetime using initial data on the light cone. As a toy model for black holes, this space-

time is a good starting point before moving to Schwarzschild spacetime. The Hadamard

expansion for 𝑉 (previously given in [55]) allowed us to establish the characteristic initial

data required to solve the wave equation in PH spacetime. Therefore, we came up with a
1This truncation has the effect of transforming the 𝛿(𝜎) singularity at coincidence into a Gaussian

distribution.
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more general CID scheme than the one previously described in Chapter 2 for 𝑠𝑔ℓ. The sym-

metries of PH spacetime reduced the four-dimensional PDE for 𝑉 into a two-dimensional

one where the independent variables are 𝜂 and 𝛾, the proper time in M2 and the angular

separation between 𝑥 and 𝑥′ (which is also a geodesic distance in S2), respectively.

In contrast to the PDE for 𝑠𝑔ℓ, the wave equation for 𝑉 contains first order deriva-

tives and, additionally, at 𝛾 = 0 there is a coordinate singularity. As a result, we encounter

two issues; the fist order derivatives led to a reduction in the order of the CID scheme from

an expected fourth order to a third order; for the fourth order CID scheme, the coordinate

singularity required an additional analysis (along 𝛾 = 0) that resulted in providing extra

data on the light cone. The Hadamard expansion for 𝑉 was used in order to obtain this

extra data. We then obtained a third and fourth order CID schemes for 𝑉 instead of the

fourth and sixth order scheme we had for 𝑠𝑔ℓ. We presented results for 𝑉 using both third

and fourth order CID schemes for any pair of spacetime points where 𝑉 is defined and

for different values of the coupling constant 𝜉. Once 𝑉 is determined, one may go further

and calculate the scalar self-force in PH spacetime.

Next, we moved to Schwarzschild spacetime and attempted to develop a scheme

for 𝑉𝑠 using the CID scheme for 𝑉 as a starting point. In [76] the authors provide a

(numerical) method to calculate 𝑉𝑠 on the light cone, i.e., this is the CID we require to

formulate the characteristic initial value problem for 𝑉𝑠. Unfortunately, some additional

difficulties appeared. More specifically, the four-dimensional wave equation was only re-

duced to a three-dimensional one and the two-dimensional grid we had for 𝑉 became a

three-dimensional mesh for 𝑉𝑠. The symmetry of this mesh makes it difficult to establish a

standard grid of equally spaced points. Therefore, we could not fully provide a consistent

CID scheme for 𝑉𝑠 due to these difficulties. Unfortunately, evolving differential equations

from such non-standard mesh is a relatively unexplored area. Due to this, we could not

fully provide a consistent CID scheme for 𝑉𝑠 due to these technical difficulties.

In Chapter 4 we explored an application for 0𝐺ret in quantum quantum com-

munication in curved spacetime. After successfully calculating 𝑠𝐺ret (together with its
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Hadamard biscalars 𝑈 and 𝑉𝑠), in Chapter 4 we used 0𝐺ret and produced new results in

quantum communication near a Schwarzschild black hole. More specifically, we explored

the implications of spacetime curvature on the quantum communication via a quantum

scalar field. Given two observers (modeled by a Unruh-DeWitt particle detector) Alice

and Bob and quantum scalar field 𝜑, it turned out that the leading order signal strength

|𝐶2| + |𝐷2| (the capacity for the channel to successfully transmit a bit of information)

is solely determined by the scalar retarded Green function 0𝐺ret. For the case of static

observers, we calculated |𝐶2| + |𝐷2| for Alice’s position fixed at 𝑟A = 6𝑀 and Bob’s

position spatially fixed at varying radii 𝑟B ∈ [2.26𝑀, 6𝑀 ] and angular separation (with

respect to Alice) 𝛾 ∈ [0, 3
4𝜋]. The CID results together with 𝑉0 were used to construct

𝑠𝐺
nd
ret(𝑟A, 𝑟B; 𝑡B − 𝑡A) and be able to cover Bob’s positions. As Bob couples to the field

and collect null rays to receive Alice’s message, besides direct null rays, he could be able

to collect secondary or tertiary null rays depending on the time he keeps his detector

coupled to the field. We observed that collecting non-direct null rays interferes with the

signal strength. Depending on Bob’s position this interference may enhance or diminish

the signal strength. Another scenario of interest consisted of Alice falling into the black

hole following a radial infalling geodesic. In this scenario the time dilation played an im-

portant role since Bob now coupled to the field for longer periods of time. The closer Alice

was to the black hole, the more significant was the contribution to the signal strength

from the non-direct part of 0𝐺
nd
ret. When comparing the signal strength results to their

counterparts in flat spacetime, we observed that the influence of non-direct null rays could

either amplify or attenuate the ability of observers to communicate effectively. In certain

scenarios, there exists a possibility for two observers to face communication challenges,

as non-direct null rays may interfere destructively, preventing successful communication.

In Chapter 5 we focus on solving the Teukolsky equation via Green function meth-

ods. A brief discussion about the Hadamard form of the retarded Teukolsky Green function

(namely −2𝐺
𝑇
ret) showed that calculating the biscalars 𝑈𝑇 and 𝑉 𝑇

𝑠 in Eq. (5.2) are more

challenging than in the Regge-Wheeler case. For instance, calculating 𝑉 𝑇
𝑠 using a small

distance expansion is not trivial due to the lack of spherical symmetry of the Teukolsky
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equation. On the other hand, the biscalar 𝑈𝑇 may be obtainable from 𝑈 via 𝑈𝑇 = 𝑒𝛼𝑈

but, unfortunately, the transport equation for 𝛼 cannot be solved analytically for arbi-

trary geodesics. We thus focused on calculating the retarded Green function −2𝐺
𝑇
ret of the

Teukolsky equation via mode decomposition and for the 𝑠 = −2 case. We calculated the

ℓ-modes of 𝑠𝐺
𝑇
ret via Fourier integral. Instead of solving the radial Teukolsky equation,

the Chandrasekhar transformation allowed us to obtain the Fourier modes of the ℓ-modes

of 𝑠𝐺
𝑇
ret directly from homogeneous solutions to the radial Regge-Wheeler equation (i.e.,

2�̃�
in
𝜔ℓ and 2�̃�

up
𝜔ℓ ). Using the same techniques described in Chapter 2 for performing the

Fourier integral and mode sum, we were able to successfully construct the full Teukolsky

Green function (see Fig. 27) with a couple considerations. For −2𝐺
𝑇
ret, the value of ℓcut in

the mode sum was lower than in the mode sum of 𝑠𝐺ret. Although this low value removed

the high-ℓ oscillations in the mode sum, it significantly smoothed out the singularities in

−2𝐺
𝑇
ret connected to the non-direct null rays. Increasing ℓcut could enhance the singular-

ities in −2𝐺
𝑇
ret but, it is necessary to also include more ℓ-modes to maintain the high-ℓ

oscillations low. Since we did not considered any regularisation process yet, in Fig. 27 we

observe a Gaussian distribution near coincidence (similarly to 𝑠𝐺ret). In order to remove

this distribution, we proposed a regularisation procedure in the time domain. This pro-

cedure consists of applying the Chandrasekhar transformation (in the time domain) on

𝑠𝐺ℓ −𝐺dir
ℓ . As we developed this procedure we encountered several issues arising from the

fact that 𝑠𝐺ℓ−𝐺dir
ℓ contains Heaviside distributions. We followed the suggestions provided

by Nakano and Sasaki [44] to partially address these issues. Unfortunately, we were not

able to fully complete this procedure since the approximations used for 𝑠𝐺ℓ and 𝐺dir
ℓ were

very limited for understanding the distributions arising from applying the Chandrasekhar

transformation in the time domain. The partial results shown in Fig. 28 seem promising

and we are looking forward to address the questions related to Eq. (5.52).

Once we are able to calculate the non-direct part of −2𝐺
𝑇
ret, the next objective would

be to establish a scheme for constructing the metric perturbation in a radiation gauge.

This will eventually require calculating the Weyl-NP scalars and the Hertz potentials. We

expect that having access to the non-direct part of −2𝐺
𝑇
ret would simplify these steps.
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APPENDIX A – Asymptotic coefficients 𝑎in
𝑛

and 𝑎in
𝑛 for 𝑠�̃� in

𝜔ℓ and 𝑠�̃�
up
𝜔ℓ

In this appendix we calculate the asymptotic coefficients 𝑎in
𝑛 and 𝑎up

𝑛 in Eqs. (2.82)–

(2.83) for 𝑛 = 1, 2, 3, 4. Integrating Eqs. (2.84)–(2.85) yield

𝑎in
1 = − 𝑖 (𝑀𝑠+ Λ𝑟)

2𝑟2 , (A.1)

𝑎in
2 = − Λ𝑟(4𝑀 + (Λ − 2)𝑟) +𝑀𝑠 (𝑀𝑠+ 8𝑀 + 2(Λ − 2)𝑟)

8𝑟4 , (A.2)

𝑎in
3 = 𝑖

240𝑟6

[︁
5Λ𝑟

(︁
72𝑀2 + 15(Λ − 4)𝑀𝑟 + (Λ − 6)(Λ − 2)𝑟2

)︁
+𝑀𝑠

(︁
960𝑀2 + 12(19Λ − 70)𝑀𝑟 +𝑀𝑠 (5𝑀𝑠+ 160𝑀 + 3(5Λ − 28)𝑟)

+15(Λ − 6)(Λ − 2)𝑟2
)︁]︁
, (A.3)

𝑎in
4 = 1

1920𝑟8

{︁
5Λ𝑟

[︁
2880𝑀3 + 48(11Λ − 70)𝑀2𝑟 + 12(Λ(3Λ − 40) + 104)𝑀𝑟2

+(Λ − 12)(Λ − 6)(Λ − 2)𝑟3
]︁

+𝑀𝑠
[︁
46080𝑀3 +𝑀𝑠

(︁
8640𝑀2 + 136(7Λ − 60)𝑀𝑟

+𝑀𝑠 (5𝑀𝑠+ 400𝑀 + 4(5Λ − 54)𝑟) + 6(Λ(5Λ − 86) + 320)𝑟2
)︁

+ 480(21Λ − 118)𝑀2𝑟 + 12(Λ(61Λ − 780) + 1880)𝑀𝑟2

+20(Λ − 12)(Λ − 6)(Λ − 2)𝑟3
]︁}︁
, (A.4)
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and

𝑎up
1 = − 𝑖𝑓 (𝑠(2𝑀 + 𝑟) + 2Λ𝑟)

8𝑀𝑟
, (A.5)

𝑎up
2 = 𝑓

128𝑀2𝑟3

[︁
𝑠
(︁
64𝑀3 + 16Λ𝑀2𝑟 − 𝑟𝑠(2𝑀 + 𝑟)2𝑓 − 4Λ𝑟3

)︁
− 4Λ𝑟

(︁
Λ𝑟2𝑓 − 8𝑀2

)︁]︁
,

(A.6)

𝑎up
3 = 𝑖𝑓

15360𝑀3𝑟5

{︂
3840Λ𝑀3𝑟(3𝑀 − 𝑟) + 30𝑠

(︂
128𝑀4(8𝑀 − 3𝑟) + Λ𝑟𝑠

(︁
𝑟2 − 4𝑀2

)︁2
)︂

− 4𝑟𝑓
[︁
5Λ2𝑟2

(︁
60𝑀2 + 4𝑀𝑟 + 𝑟2

)︁
+ 6Λ𝑟𝑠

(︁
152𝑀3 + 32𝑀2𝑟 + 4𝑀𝑟2 + 𝑟3

)︁
+2𝑠2

(︁
320𝑀4 + 152𝑀3𝑟 + 12𝑀2𝑟2 + 4𝑀𝑟3 + 𝑟4

)︁]︁
+5𝑟2𝑓 2

[︁
12Λ2𝑟2𝑠(2𝑀 + 𝑟) + 𝑠3(2𝑀 + 𝑟)3 + 8Λ3𝑟3

]︁}︁
, (A.7)

𝑎up
4 = 𝑓

491520𝑀4𝑟7

{︁
𝑠
[︁
16
(︁
960𝑀3

(︁
−Λ𝑟2

(︁
−42𝑀2 + 5𝑀𝑟 + 𝑟2

)︁
𝑓

−8𝑀2
(︁
48𝑀2 − 35𝑀𝑟 + 6𝑟2

)︁)︁
+Λ2𝑟4𝑓 2

(︁
−1464𝑀3 − 484𝑀2𝑟 + 10Λ𝑟2(2𝑀 + 𝑟)𝑓 − 78𝑀𝑟2 − 17𝑟3

)︁)︁
+ 𝑟𝑠𝑓

{︂
120

(︂
Λ2𝑟2

(︁
𝑟2 − 4𝑀2

)︁2
+ 128𝑀4

(︁
36𝑀2 + 2𝑀𝑟 − 3𝑟2

)︁)︂
+ 𝑟𝑓

(︁
−32Λ𝑟

(︁
952𝑀4 + 592𝑀3𝑟 + 114𝑀2𝑟2 + 26𝑀𝑟3 + 5𝑟4

)︁
− 32𝑠

(︁
200𝑀4 + 92𝑀3𝑟 + 12𝑀2𝑟2 + 4𝑀𝑟3 + 𝑟4

)︁
(2𝑀 + 𝑟)

+5𝑟𝑠(2𝑀 + 𝑟)3 (2𝑀𝑠+ 𝑟𝑠+ 8Λ𝑟) 𝑓
)︁}︁]︁

+ 80Λ𝑟
[︁
−23040𝑀6 + 384(40 − 11Λ)𝑀5𝑟 − 288((Λ − 10)Λ + 8)𝑀4𝑟2

−8Λ((Λ − 32)Λ + 48)𝑀3𝑟3 + 12(Λ − 4)Λ2𝑀2𝑟4 − 6Λ3𝑀𝑟5 + (Λ − 2)Λ2𝑟6
]︁}︁
.

(A.8)
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APPENDIX B – Going beyond a fourth order

CID scheme for calculating

𝑉 in PH spacetime

In this appendix we lay out the ground work for deriving a fifth –and potentially,

sixth– order scheme, by following a similar prescription to that described in Secs. 3.2.2.1

and 3.2.2.2. For a fifth or sixth order CID scheme, it is necessary to include the next

nontrivial order in Eqs. (3.27)–(3.29). The corresponding equations are given by:
∫︁

𝑆𝐸𝑁𝑊

𝑄
𝜕𝑉

𝜕𝑣
d𝑣 d𝑢 = 4ℎ2𝑄𝑂

(︃
𝜕𝑉

𝜕𝑣

)︃
𝑂

+ 2
3

[︃
2
(︃
𝜕𝑄

𝜕𝑢

𝜕2𝑉

𝜕𝑢𝜕𝑣

)︃
𝑂

+
(︃
𝜕𝑉

𝜕𝑣

)︃
𝑂

(︃
𝜕2𝑄

𝜕𝑢2 + 𝜕2𝑄

𝜕𝑣2

)︃
𝑂

+

2
(︃
𝜕𝑄

𝜕𝑣

𝜕2𝑄

𝜕𝑣2

)︃
𝑂

+𝑄𝑂

(︃
𝜕3𝑉

𝜕𝑢2𝜕𝑣
+ 𝜕3𝑉

𝜕𝑣3

)︃
𝑂

]︃
ℎ4 + 𝒪(ℎ6), (B.1)

∫︁
𝑆𝐸𝑁𝑊

𝑆
𝜕𝑉

𝜕𝑢
d𝑣 d𝑢 = 4ℎ2𝑆𝑂

(︃
𝜕𝑉

𝜕𝑢

)︃
𝑂

+ 2
3

[︃
2
(︃
𝜕𝑆

𝜕𝑣

𝜕2𝑉

𝜕𝑢𝜕𝑣

)︃
𝑂

+
(︃
𝜕𝑉

𝜕𝑢

)︃
𝑂

(︃
𝜕2𝑆

𝜕𝑢2 + 𝜕2𝑆

𝜕𝑣2

)︃
𝑂

+

2
(︃
𝜕𝑆

𝜕𝑢

𝜕2𝑉

𝜕𝑢2

)︃
𝑂

+ 𝑆𝑂

(︃
𝜕3𝑉

𝜕𝑢3 + 𝜕3𝑉

𝜕𝑢𝜕𝑣2

)︃
𝑂

]︃
ℎ4 + 𝒪(ℎ6), (B.2)

∫︁
𝑆𝐸𝑁𝑊

𝑉 d𝑣 d𝑢 = 4ℎ2𝑉𝑂 + 2
3

(︃
𝜕2𝑉

𝜕𝑢2 + 𝜕2𝑉

𝜕𝑣2

)︃
𝑂

ℎ4 + 𝒪(ℎ6), (B.3)

where, as usual, the subscript 𝑂 on a quantity in brackets indicates that it is evaluated

at the point 𝑂.

When replacing the expressions in Eq. (3.25) and Eqs. (B.1)–(B.3) back into

Eq. (3.24) and isolate for 𝑉𝑁 , we find

𝑉𝑁 =𝑉𝐸 + 𝑉𝑊 − 𝑉𝑆 −
[︃
𝑄𝑂

(︃
𝜕𝑉

𝜕𝑣

)︃
𝑂

+ 𝑆𝑂

(︃
𝜕𝑉

𝜕𝑢

)︃
𝑂

+ 𝜁 𝑉𝑂

]︃
ℎ2−

1
6

[︃
𝜁

(︃
𝜕2𝑉

𝜕𝑢2 + 𝜕2𝑉

𝜕𝑣2

)︃
𝑂

+ 2
(︃
𝜕𝑄

𝜕𝑣

)︃
𝑂

(︃
𝜕2𝑉

𝜕𝑣2

)︃
𝑂

+ 2
(︃
𝜕𝑆

𝜕𝑢

)︃
𝑂

(︃
𝜕2𝑉

𝜕𝑢2

)︃
𝑂

+(︃
𝜕𝑉

𝜕𝑣

)︃
𝑂

(︃
𝜕2𝑄

𝜕𝑢2 + 𝜕2𝑄

𝜕𝑣2

)︃
𝑂

+ 2
(︃
𝜕2𝑉

𝜕𝑢𝜕𝑣

)︃
𝑂

(︃
𝜕𝑄

𝜕𝑢
+ 𝜕𝑆

𝜕𝑣

)︃
𝑂

+
(︃
𝜕𝑉

𝜕𝑢

)︃
𝑂

(︃
𝜕2𝑆

𝜕𝑢2 + 𝜕2𝑆

𝜕𝑣2

)︃
𝑂

+

𝑆𝑂

(︃
𝜕3𝑉

𝜕𝑢𝜕𝑣2 + 𝜕3𝑉

𝜕𝑢3

)︃
𝑂

+𝑄𝑂

(︃
𝜕3𝑉

𝜕𝑢2𝜕𝑣
+ 𝜕3𝑉

𝜕𝑣3

)︃
𝑂

]︃
ℎ4 + 𝒪

(︁
ℎ6
)︁
. (B.4)
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The next step is to replace into Eq. (B.4) the expressions for the Taylor coefficients given

in Eqs. (3.36)–(3.45) and then isolate for 𝑉𝑁 . We do not display the resulting expression

for 𝑉𝑁 since it is very long and trivial to obtain. We note that, despite Eq. (B.4) being

𝒪 (ℎ6), the expressions for the Taylor coefficients given in Eqs. (3.36)–(3.45) reduce the

order of the resulting expression of 𝑉𝑁 by one (i.e., to 𝒪 (ℎ5)). Thus, we end up with a

fifth order CID scheme. One could of course use Eq. (B.4) for a sixth order scheme merely

by obtaining expansions for the Taylor coefficients appearing in it to one order higher

than in Eqs. (3.36)–(3.45).

Finally, and similarly to the third and fourth order CID schemes in Secs. 3.2.2.1

and 3.2.2.2, the 𝑢𝑂 = 𝑣𝑂 (i.e., 𝛾𝑂 = 0) case should be handled separately. The coefficient

of ℎ4 in Eq. (B.4) involves derivatives of the functions 𝑄 and 𝑆 evaluated at the point 𝑂.

As a consequence, terms involving derivatives of cot 𝑣−𝑢
2 = cot 𝛾 should be evaluated ap-

propriately as 𝛾𝑂 → 0. This would eventually require calculating fourth order derivatives

of 𝑉 and, consequently, require additional explicit data (additional with respect to the

lower schemes, e.g., second order derivatives of 𝑉 ) on the light cone. In this paper we do

not pursue this higher order scheme further and leave it here with the indication of how

it could be completed.
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APPENDIX C – Derivation of time-mirror

symmetry

This appendix gives the derivation of the time-mirror symmetry introduced and

discussed in Sec. 4.1.4. Given a signaling scenario (with worldlines 𝑥D(𝑡), switching func-

tions 𝜂D(𝑡) for D = A,B, and signal terms 𝐶2 and 𝐷2), the time-mirrored scenario has

worldlines 𝑥′
D(𝑡) = 𝑥D(−𝑡) and switching functions 𝜂′

D(𝑡) = 𝜂D(−𝑡). We assume, without

loss of generality, that the proper times of the detectors are given by 𝜏 ′
D(𝑡) = −𝜏D(−𝑡)

for both detectors in the inverted scenario. The detector frequencies are the same in the

original and the mirrored scenario. However, since A acts as the receiver in the mirrored

scenario, their frequency ΩA enters with a positive sign in the imaginary exponent of

the coefficient 𝐶 ′
2 for the mirrored scenario, whereas it enters with a negative sign in the

original coefficient 𝐶2. Then, if the Green function of the spacetime obeys Eq. (4.34), we

have that the coefficient for the mirrored scenario

𝐶 ′
2 =−𝑖

4𝜋

∫︁
d𝑡1

∫︁ 𝑡1
d𝑡2

d𝜆′
A

d𝑡1
𝜂′

A(𝑡1)
d𝜏 ′

B
d𝑡2

𝜂′
B(𝑡2)𝑒𝑖(ΩA𝜏 ′

𝐴(𝑡1)−ΩB𝜏 ′
𝐵(𝑡2))

0𝐺ret(𝑡1, �⃗�′
𝐴(𝑡1), 𝑡2, �⃗�′

𝐵(𝑡2))

=−𝑖
4𝜋

∫︁
d𝑠2

∫︁ 𝑠2
d𝑠1

d𝜏 ′
A(−𝑠1)
d𝑠1

𝜂′
A(−𝑠1)

d𝜏 ′
B(−𝑠2)
d𝑠2

𝜂′
B(−𝑠2)×

𝑒𝑖(ΩA𝜏 ′
𝐴(−𝑠1)−ΩB𝜏 ′

𝐵(−𝑠2))
0𝐺ret(−𝑠1, �⃗�

′
𝐴(−𝑠1),−𝑠2, �⃗�

′
𝐵(−𝑠2))

=−𝑖
4𝜋

∫︁
d𝑠2

∫︁ 𝑠2
d𝑠1

d𝜏A(𝑠1)
d𝑠1

𝜂A(𝑠1)
d𝜏B(𝑠2)

d𝑠2
𝜂B(𝑠2)

𝑒−𝑖(ΩA𝜏A(𝑠1)−ΩB𝜏B(𝑠2))
0𝐺ret(−𝑠1, �⃗�𝐴(𝑠1),−𝑠2, �⃗�𝐵(𝑠2))

=−𝑖
4𝜋

∫︁
d𝑠2

∫︁ 𝑠2
d𝑠1

d𝜏A(𝑠1)
d𝑠1

𝜂A(𝑠1)
d𝜏B(𝑠2)

d𝑠2
𝜂B(𝑠2)

𝑒−𝑖(ΩA𝜏A(𝑠1)−ΩB𝜏B(𝑠2))
0𝐺ret(𝑠2, �⃗�𝐵(𝑠2), 𝑠1, �⃗�𝐴(𝑠1)) = 𝐶2 (C.1)

is identical to the coefficient 𝐶2 for the original scenario. (And we introduced integration

variables 𝑠1 = −𝑡1, 𝑠2 = −𝑡2.) For the signal term 𝐷2, we analogously find 𝐷′
2 = −𝐷*

2.

This we can also deduce, from the general relation 𝐶2(ΩA,ΩB) = −𝐷2(ΩA,−ΩB), which
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implies

𝐷′
2(ΩB,ΩA) = −𝐶 ′

2(ΩB,−ΩA) = −𝐶2(−ΩA,ΩB)

= 𝐷2(−ΩA,−ΩB) (C.2)

and, indeed, in Eq. (4.14) we see that 𝐷2(−ΩA,−ΩB) = −𝐷2(ΩA,ΩB)*.



181

APPENDIX D – Contribution to the leading

order signal strength from

𝐶d
2 and 𝐷d

2

In order to further analyze the characteristics of the direct contribution, in the

following we focus on a special case where the direct contribution can be solved analyti-

cally. This is the case where sender and receiver have identical angular variables, i.e., zero

angular separation 𝛾 = 0, which we refer to as radially separated detectors. The radial

null geodesic connecting Alice at radial coordinate 𝑟A to Bob at 𝑟B is of the form

𝑡(𝜆) = 𝜆∓ 2𝑀 ln 𝑟A ∓ 𝜆− 2𝑀
𝑟A − 2𝑀 , 𝑟(𝜆) = 𝑟A ∓ 𝜆, (D.1)

where the negative sign applies if 𝑟B < 𝑟A and the positive sign applies if 𝑟A < 𝑟B. We

choose the affine parameter so that 𝑟(𝜆 = 0) = 𝑟A and so that the geodesic reaches

Bob at affine parameter value 𝜆 = |𝑟A − 𝑟B|. Furthermore, the van Vleck determinant

appearing in Eq. (4.40) is equal to 1 for radially separated detectors, because it is equal

to 1 between points connected by a radial null geodesic (see Sec. 2.1.2). Altogether, for

radially separated, static detectors, the direct contribution to 𝐶2 in Eq. (4.40) thus reads

𝐶d
2 = −𝑖

2𝜋𝑒
𝑖

(ΩB−𝜈ΩA)(𝐴1+𝐴2)
2𝜈

√︁
𝑓(𝑟A)

𝑟𝐴 − 𝑟𝐵

× 1
ΩB − 𝜈ΩA

sin
(︃

(ΩB − 𝜈ΩA)(𝐴2 − 𝐴1)
2𝜈

)︃
, (D.2)

where 𝜈 =
√︁
𝑓(𝑟A)/𝑓(𝑟B) is the red-shift factor between Alice and Bob, as defined in

Eq. (4.36). Fig. 29 shows the direct contribution |𝐶d
2 | + |𝐷d

2 | to the signal strength for

identical detectors (ΩB = ΩA) and for resonant detectors (ΩB = ΩA𝜈) with different radial

separations.

The gravitational red-shift caused by the spacetime curvature, impacts on the

value of 𝐶d
2 in two different ways. The first effect is that the red-shift impacts on the
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resonance between the detectors. The second effect is that the proper time during which

the receiver gets to interact with the direct contribution is affected by the red-shift.

If the detectors are off-resonant, i.e., ΩA𝜈 ̸= ΩB, there is a bound on the magnitude

of 𝐶d
2 which is independent of the duration 𝐴2 − 𝐴1 of Alice’s signal. This is because of

the last sine-factor in 𝐶d
2 above, which yields

|𝐶d
2 | ≤

√︁
𝑓(𝑟A)

2𝜋|𝑟A − 𝑟B| |Ω𝐵 − 𝜈Ω𝐴|
. (D.3)

Analogously, |𝐷d
2 | is then bounded by

|𝐷d
2 | ≤

√︁
𝑓(𝑟A)

2𝜋|𝑟A − 𝑟B| |Ω𝐵 + 𝜈Ω𝐴|
. (D.4)

A linear growth of signal strength with the duration of the signal requires reso-

nance, i.e., Bob needs to account for the red-shift and tune his detector to the frequency

Ω𝐵 = 𝜈Ω𝐴. In this case, the direct contribution to 𝐶2 simplifies to

𝐶d
2 =

−𝑖
√︁
𝑓(𝑟A)

4𝜋(𝑟𝐴 − 𝑟𝐵)
𝐴2 − 𝐴1

𝜈
(D.5)

Hence, for resonant detectors the direct contribution grows linearly with the duration of

the signal. It is interesting to note that the specific value of ΩA and ΩB has no impact on

𝐶d
2 as long as the detectors are resonant. Instead, we see that the determining factor for

the magnitude of the direct contribution between resonant detectors is the duration of

the signal as measured in terms of Bob’s proper time, which is (𝐴2 −𝐴1)/𝜈. Thus, a linear

bound of the form |𝐶2| + |𝐷2| ≤ 𝐶B (𝐴2 −𝐴1)/𝜈 (where 𝐶B < ∞ is a constant) applies to

this direct contribution here in the case of sharp switching functions. In particular, as Bob

approaches the horizon (i.e., 𝑟B → 2𝑀), the red-shift factor diverges (i.e., 𝜈 → ∞), and

so the duration of the signal with respect to Bob’s proper time goes to zero and 𝐶d
2 → 0:

Bob becomes increasingly transparent for incoming signals as Bob is placed increasing

closer to the horizon.

An interesting question is how the signal strength between static observers in

curved Schwarzschild spacetime compares to flat Minkowski spacetime as a function of

the distance between sender and receiver. However, a priori, it is not clear which notion
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Figure 29 – Logarithmic plot comparing the direct signal strength |𝐶d
2 | + |𝐷d

2 | for radially separated
static detectors in Schwarzschild and in Minkowski spacetime. In Schwarzschild spacetime Alice is located
at 𝑟A = 6𝑀 , her detector gap is ΩA = 10/𝑀 and she couples to the field for a proper time duration of
𝐴2 −𝐴1 = 3𝑀 . Bob’s radial coordinate is 𝑟B. He couples to the field in such a way that he receives all of
Alice’s direct null geodesics. The resulting signal strengths in Schwarzschild spacetime are shown for Bob
using an identical detector with ΩB = 10/𝑀 (green), and a resonant detector with ΩB = 𝜈ΩA (yellow). In
Minkowski spacetime (blue), Alice and Bob use identical detectors (ΩA = ΩB = 10/𝑀) which are placed
so that their their static distance in Minkowski spacetime 𝑑(𝑟A, 𝑟B) is the same as in the Schwarzschild
scenario (see Eq. (D.6)).

of distance between the observers is appropriate for this comparison. Various notions

could be thought of that coincide in Minkowski spacetime, but give different results in

Schwarzschild spacetime, as we illustrate in the following.

A distance measure between static observers which we find to result in similar

signal strengths in Schwarzschild and Minkowski distance, we will refer to as static distance

(for the purpose of this subsection). It is most easily obtained by picking a slice of constant

coordinate time, using Schwarzschild coordinates in Schwarzschild spacetime and standard

coordinates in Minkowski spacetime. (The spatial coordinates of sender and receiver are

independent of the choice of time slice, because sender and receiver are static.) The

static distance is then given by the proper distance along the shortest (spacelike) geodesic

connecting the sender to the receiver on the slice of constant time. For radially separated

detectors in Schwarzschild spacetime, located at radial coordinates 𝑟A and 𝑟B, this static

distance is

𝑑(𝑟A, 𝑟B) =
⃒⃒⃒⃒
𝑟A

√︁
𝑓(𝑟A) − 𝑟B

√︁
𝑓(𝑟B)

+𝑀 log
⎛⎝𝑟A

√︁
𝑓(𝑟A) −𝑀 + 𝑟A

𝑟B

√︁
𝑓(𝑟B) −𝑀 + 𝑟B

⎞⎠⃒⃒⃒⃒⃒⃒ , (D.6)

while in flat Minkowski spacetime it just corresponds to 𝑑(�⃗�A, �⃗�B) = |�⃗�A − �⃗�B|. In a
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coordinate-independent fashion, the static distance can be defined as the proper distance

along the shortest spacelike geodesic connecting the static sender and static receiver,

orthogonal to the timelike Killing vector field of the static spacetime. Note that, as Bob

approaches the horizon in Schwarzschild, the static distance approaches a finite limit

lim
𝑟B→2𝑀

𝑑(𝑟A, 𝑟B) =
⃒⃒⃒⃒
𝑟A

√︁
𝑓(𝑟A)

+𝑀 log
⎛⎝𝑟A

√︁
𝑓(𝑟A) −𝑀 + 𝑟A

𝑀

⎞⎠⃒⃒⃒⃒⃒⃒ . (D.7)

As seen in Fig. 29, resonant detectors in Schwarzschild spacetime achieve a direct

signal strength which resembles the signal strength between detectors at equal static

distance in Minkowski spacetime. (Where in Minkowski spacetime identical and thus

resonant detectors are chosen, which generally maximizes the signal strength for long

enough coupling times.) In fact, if 𝑟B > 𝑟A the signal strength in Schwarzschild spacetime

is slightly larger than the signal strength in Minkowski spacetime. In the other direction,

where Bob is closer to the horizon and 𝑟B < 𝑟A, we find the opposite: The signal strength in

Schwarzschild spacetime is smaller; in particular, it drops down to zero as Bob approaches

the horizon. The behaviour in both directions arises because, in Schwarzschild spacetime,

Bob has, respectively, more or less proper time at hand to interact with Alice’s signal, as

explained above.

The use of the static distance for the comparison of signal strength between

Schwarzschild and Minkowski spacetimes above may appear rather ad hoc. One could

think of other ways to measure the distance between two given static detectors which,

arguably, could even be more physical or operational.

For example, a very operational approach would be for Alice and Bob to measure

the distance in terms of the proper time that they observe it takes for a signal to propagate

along direct null geodesics from the sender to the receiver, and back again to the sender.

From this perspective, we would compare a given scenario in Schwarzschild spacetime with

scenarios in Minkowsi spacetime that have the same signal return time. One caveat with

this approach is that it is asymmetric. In curved spacetime Alice and Bob will measure the
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Figure 30 – The figure compares various measures of distance between two radially separated static
observers, Alice (sender) at 𝑟A = 6𝑀 and Bob at varying 𝑟B, in Schwarzschild spacetime. The plot shows
half of the signal return time for Alice (blue, dashed) and Bob (yellow, dashed), i.e., the time it takes for
a signal to propagate from Alice to Bob measured in terms of the respective proper times of Alice and
Bob, and the static distance (green, solid) in Eq. (D.6). The plot also shows the “mimicking distance”
(red, solid), i.e., the distance in Minkowski spacetime at which two identical detectors (ΩB = ΩA) achieve
the same direct signal strength as the two detectors in Schwarzschild spacetime at 𝑟A and 𝑟B when they
are resonantly-tuned (ΩB = 𝜈ΩA). (The return times and the mimicking distance diverge, as 𝑟B → 2𝑀 ,
whereas the static distance remains finite, see (D.7).)

signal-return time in terms of their respective proper times and thus assess the distance

between them differently.

In flat Minkowski spacetime all these notions coincide: Alice and Bob both measure

the same signal return time, and the signal return time coincides with two times the static

distance (due to 𝑐 = 1). Of course, all of these notions just correspond to the one natural

notion of distance between two static observers in flat spacetime.

In curved spacetime, all of these notions of distance differ, as Fig. 30 illustrates

for Schwarzschild spacetime. There, two static, radially separated observers are placed

at radial coordinates 𝑟A = 6𝑀 and 𝑟B. The plot shows the static distance between them

(green) as well as half of the signal-return time as measured in Alice’s proper time (dashed

blue) and in Bob’s proper time (dashed yellow).

In addition, Fig. 30 plots a “mimicking distance” (red) which is the distance in

Minkowski spacetime for which the direct signal strength between two identical detectors

(ΩB = ΩA) in Minkowski spacetime is the same as between the two radially separated

detectors in Schwarzschild spacetime at 𝑟A and 𝑟B which are tuned into resonance (ΩB =

𝜈ΩA). (Note that this distance is independent of Alice’s detector frequency ΩA.)
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Fig. 30 motivates our previous use of the static distance to compare Schwarzschild

and Minkowski spacetime because for small distances it resembles the mimicking distance

more closely than the signal-return times. The differences between the different distance

measures actually may open up for an interesting way of measuring spacetime curva-

ture. Because, as noted above, in regions without spacetime curvature all four notions

of distance would coincide, Alice and Bob may be able to detect and quantify spacetime

curvature by measuring and comparing signal strength and signal-return times.
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APPENDIX E – Change of integration vari-

able in tail contribution for

static detectors

This appendix discusses how, for static detectors in a static spacetime, a change

of integration variables in the double integrals of 𝐶2 and 𝐷2 makes it possible to separate

the expression into a product of one integral containing the Green function and another

integral involving the switching functions. The latter can often be performed analytically

thus leaving only the first integral to be performed numerically.

Since the spatial coordinates of detectors at rest do not change, the value of the

Green function in the integrand of 𝐶2 only depends on the coordinate time difference

between Alice and Bob. Following the definitions at the beginning of Section 4.2.2, the

coordinate time difference is

𝑡(𝜏B) − 𝑡(𝜏A) = 1
𝑣(𝑟A) (𝜈𝜏B − 𝜏A) + Δ𝑡A→B. (E.1)

In a static spacetime, the retarded Green function only depends on the time coordinate

difference between its arguments. We use this and define

𝑤 = 𝜈𝜏B − 𝜏A (E.2)

such that

0𝐺ret(𝑥B(𝜏B), 𝑥𝐴(𝜏A)) = 0𝐺ret(𝑡(𝜏B) − 𝑡(𝜏A), �⃗�B, 𝑥𝐴) (E.3)

= 0𝐺ret(𝑤/𝑣(𝑟A) + Δ𝑡A→B, �⃗�B, 𝑥A). (E.4)

Next, we can change the integration variables in 𝐶2 in Eq. (4.19) from (𝜏A, 𝜏B) to

(𝑠, 𝜏B). To this end, denote the support of the switching functions in terms of detector

proper times as supp 𝜂A(𝜏A) = [𝐴1, 𝐴2] and supp 𝜂B(𝜏B) = [𝐵1, 𝐵2]. The integrand of the
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double-integral in 𝐶2 then has support only in the region 𝐵1 ≤ 𝜏B ≤ 𝐵2, 𝐴1 ≤ 𝜏A ≤

min[𝐴2, 𝜈𝜏B].

One can visualize the role of 𝑠 in a 2D-plot of the integration region. We put 𝜏A on

the y-axis and 𝜏B on the left axis. Then 𝑠 is constant along straight lines cutting through

the first quadrant of the coordinate system. Their angle depends on 𝜈, i.e., the redshift

between Alice and Bob. 𝑠 increases as one moves to the bottom right in the plot, i.e., for

increasing 𝜏B. Points in the integration region which lie on a line of constant 𝑠 correspond

to point pairs on the worldline of Alice and Bob which are separated by the same amount

of coordinate time. This means they are mapped into each other by translations along

the Killing field of coordinate time. E.g., there is the line of 𝑤 = 0 which has all points

connected by a direct null geodesic on it. And there is the line of constant 𝑠 which has

all the points connected by a secondary null geodesic on it, and so on.

Under the change of integration variables from (𝜏B, 𝜏A) to (𝜏B, 𝑤), the integral thus

transforms to∫︁ 𝐵2

𝐵1
d𝜏B

∫︁ min[𝐴2,𝜈𝜏B]

𝐴1
d𝜏A =

∫︁ 𝜈𝐵2−𝐴1

max[𝜈𝐵1−𝐴2,0]
d𝑤

∫︁ min[𝐵2,(𝑤+𝐴2)/𝜈]

max[𝐵1,(𝑤+𝐴1)/𝜈]
d𝜏B , (E.5)

such that

𝐶2 = −𝑖
4𝜋

∫︁ 𝜈𝐵2−𝐴1

max[𝜈𝐵1−𝐴2,0]
d𝑤 𝑒𝑖 ΩA𝑤

0𝐺ret(𝑤/𝑣(𝑟A) + Δ𝑡A→B, �⃗�B, �⃗�A)×∫︁ min[𝐵2,(𝑤+𝐴2)/𝜈]

max[𝐵1,(𝑤+𝐴1)/𝜈]
d𝜏B 𝜂B (𝜏B) 𝜂A (𝜈𝜏B − 𝑤) 𝑒𝑖 (ΩB−𝜈ΩA)𝜏B (E.6)

The inner integral over 𝜏B is typically easy to solve analytically. In particular, sharp switch-

ing functions 𝜂A(𝜏A) = 𝜂[𝐴1,𝐴2](𝜏A) and 𝜂B(𝜏B) = 𝜂[𝐵1,𝐵2](𝜏B), as defined in Eq. (4.17)),

yield

𝐶2 = −𝑖
4𝜋

∫︁ 𝜈𝐵2−𝐴1

max[𝜈𝐵1−𝐴2,0]
d𝑤 𝑒𝑖 ΩA𝑤

0𝐺ret(𝑤/𝑣(𝑟A) + Δ𝑡A→B, �⃗�B, 𝑥𝐴)×∫︁ min[𝐵2,(𝑤+𝐴2)/𝜈]

max[𝐵1,(𝑤+𝐴1)/𝜈]
d𝜏B 𝑒

𝑖 (ΩB−𝜈ΩA)𝜏B (E.7)

=
∫︁ 𝜈𝐵2−𝐴1

max[𝜈𝐵1−𝐴2,0]
d𝑤 𝑒𝑖 ΩA𝑤

0𝐺ret(𝑤/𝑣(𝑟A) + Δ𝑡A→B, �⃗�B, 𝑥𝐴)
4𝜋(ΩB − 𝜈ΩA) ×

(︁
𝑒𝑖 (ΩB−𝜈ΩA)max[𝐵1,(𝑤+𝐴1)/𝜈] − 𝑒𝑖 (ΩB−𝜈ΩA)min[𝐵2,(𝑤+𝐴2)/𝜈]

)︁
. (E.8)
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APPENDIX F – Signal contribution from

principal value distribution

This appendix discusses what qualitative features of the signal strength are ex-

pected to arise from secondary light rays. Due to the singularity structure of the Green

function in Schwarzschild spacetime, discussed in Sec. 4.2.2, the leading order behaviour

of the Green function between points that are connected by secondary null geodesics cor-

responds to the product of a principal value PV
(︁

1
𝜎

)︁
distribution and a regular function.

In order to understand the qualitative behaviour of the signal contribution from secondary

null geodesics between stationary detectors, we essentially ignore that pre-factor function

and thus replace the Green function in Eq. (E.6) by

0𝐺ret (𝑤/𝑣(�⃗�A) + Δ𝑡A→B, �⃗�B, 𝑥𝐴) → 1
𝐿

PV
(︂ 1
𝑤 − 𝑤2

)︂
, (F.1)

where 𝐿 is some length scale. The value of 𝑤2 corresponds to the time it takes secondary

null geodesics to propagate from Alice to Bob, in terms of the integration variable 𝑤 in

Eq. (E.6). Concretely, it mimicks the scenario where a secondary null geodesic emanating

from Alice at her proper time 𝜏 ′
A arrives at Bob’s location at his proper time

𝜏 ′
B = 𝑤2 + 𝜏 ′

A
𝜈

. (F.2)

(See Eq. (E.2) and discussion on p. 188 for the definition of 𝑤.)

Assuming sharp switching functions, just as in Appendix. E, we find that the

expression for the contribution from the principal value distribution, which we obtain by

inserting Eq. (F.1) into Eq. (E.7), is

𝐶2 = −𝑖
4𝜋𝐿

∫︁ 𝜈𝐵2−𝐴1

max[𝜈𝐵1−𝐴2,0]
d𝑤 𝑒𝑖 ΩA𝑤 PV

(︂ 1
𝑤 − 𝑤2

)︂ ∫︁ min[𝐵2,(𝑤+𝐴2)/𝜈]

max[𝐵1,(𝑤+𝐴1)/𝜈]
d𝜏B 𝑒

𝑖 (ΩB−𝜈ΩA)𝜏B

⏟  ⏞  
=:𝑓(𝑤)

. (F.3)

(Remember Eq. (4.16), i.e. 𝐷2(ΩA,ΩB) = −𝐶2(ΩA,−ΩB).) The inner integral, which we

denoted by 𝑓(𝑤) is straightforward to evaluate, with the resonant case ΩB = 𝜈ΩA requiring

a separate treatment.
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Figure 31 – Contribution to the leading order signal strength from a PV
(︀ 1

𝜎

)︀
-distribution, as resulting

from Eq. (F.4), with 𝜈 =
√︀

(1 − 2/6)/(1 − 2/3.01) ≈ 1.40954, 𝐴1 = 0 and 𝐴2 = 𝑀 . The horizontal axes
show 𝐵′

1 := 𝐵1 − 𝑤2−𝐴2+2𝐴1
𝜈 which is the switch-on time 𝐵1 of Bob shifted so that, for 𝐵′

1 < 0, Alice
and Bob are not connected by the singularity of the PV

(︀ 1
𝜎

)︀
-distribution while coupling to the field. This

corresponds to Bob switching off his detector before any secondary null geodesics emanating from Alice
arrive at his location. The graphs are symmetric about the point 𝐵′

1 = 𝐴−2−𝐴1
𝜈 . This corresponds to the

switching-on and switching-off of sender and receiver being exactly connected by secondary null geodesics.
The parameters in Fig. 31a match those in Fig. 16, thus the curve with equal frequencies (ΩA = ΩB)
here reproduces the features due to secondary null geodesics seen there.

The appearance of the PV
(︁

1
𝑤−𝑤2

)︁
-distribution in Eq. (F.3) raises the question of

whether 𝐶2 is well-defined and finite when 𝑤2 coincides with one of the boundaries of

the 𝑤-integral. It turns out that the expression is well-defined. The reason being that,

in this specific case that 𝑠2 coincides with either of the boundaries of the outer integral,

the absolute value of the inner integral |𝑓(𝑤)| = 𝒪(|𝑤 − 𝑤2|) goes to zero linearly, thus

rendering the value of 𝐶2 finite. Hence, even for sharp switching functions, the leading

order signal contributions from secondary null geodesics are finite, just as they are for the

primary direct null geodesics. (Note, that this also holds true when taking into account

the regular pre-factor in the Green function which we are not taking into account in this

appendix.)

We can reproduce the features of Fig. 16 which are due to secondary null geodesics.

To this end, we let Alice couple to the field during the fixed proper time interval𝐴1 ≤ 𝜏A ≤ 𝐴2.

Bob begins to couple at varying proper times 𝜏B = 𝐵1. However, he always switches off

after a time corresponding to the red-shifted duration of Alice’s signal, i.e., 𝐵2 − 𝐵1 =

(𝐴2 −𝐴1)/𝜈. In particular, if 𝐵1 = (𝐴1 +𝑤2)/𝜈, both the switching-on and switching-off

of both detectors are connected by secondary null geodesics. For non-resonant detectors
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in this scenario, Eq. (F.3) has the solution

𝐶2 = −𝑖
4𝜋𝐿

∫︁ 𝜈𝐵1+𝐴2−2𝐴1

max[𝜈𝐵1−𝐴2,0]
d𝑤 𝑒𝑖 ΩA𝑤PV

(︂ 1
𝑤 − 𝑤2

)︂ ∫︁ min[𝐵1+(𝐴2−𝐴1)/𝜈,(𝑤+𝐴2)/𝜈]

max[𝐵1,(𝑤+𝐴1)/𝜈]
d𝜏B 𝑒

𝑖 (ΩB−𝜈ΩA)𝜏B

= −1
4𝜋𝐿(ΩB − 𝜈ΩA)

[︁
𝑅(ΩB/𝜈, 𝜈𝐵1 − 𝐴2, 𝑤𝑚, 𝑤2)𝑒𝑖(ΩB−𝜈ΩA)𝐴2/𝜈

−𝑅(ΩA, 𝜈𝐵1 − 𝐴2, 𝑤𝑚, 𝑤2)𝑒𝑖(ΩB−𝜈ΩA)𝐵1

+𝑅(ΩA, 𝑤𝑚, 𝜈𝐵2 − 𝐴1, 𝑤2)𝑒𝑖(ΩB−𝜈ΩA)𝐵2

−𝑅(ΩB/𝜈, 𝑤𝑚, 𝜈𝐵2 − 𝐴1, 𝑤2)𝑒𝑖(ΩB−𝜈ΩA)𝐴1/𝜈
]︁
, (F.4)

with 𝑤𝑚 := 𝜈𝐵1 −𝐴1(= 𝜈𝐵2 −𝐴2) and, for resonant detectors, i.e., ΩB = 𝜈ΩA, it has the

solution

𝐶2 = − 𝑖

2𝜋𝐿
(𝐵2 −𝐵1)(𝑤2 − 𝜈𝐵1 + 𝐴2)
𝜈(𝐵2 −𝐵1) + 𝐴2 − 𝐴1

𝑅(ΩA, 𝜈𝐵1 − 𝐴2, 𝑤𝑚, 𝑤2)

− 𝑖

4𝜋𝐿

(︃
(𝐵2 −𝐵1) − 2(𝐵2 −𝐵1)(𝑤2 − 𝜈𝐵1 + 𝐴1)

𝜈(𝐵2 −𝐵1) + 𝐴2 − 𝐴1

)︃
𝑅(ΩA, 𝑤𝑚, 𝜈𝐵2 − 𝐴1, 𝑤2)

+ (𝐵2 −𝐵1)
2𝐿ΩA (𝜈(𝐵2 −𝐵1) + 𝐴2 − 𝐴1)

(︁
𝑒𝑖ΩA(𝜈𝐵2−𝐴1) − 2𝑒𝑖ΩA𝑤𝑚 + 𝑒𝑖ΩA(𝜈𝐵1−𝐴2)

)︁
. (F.5)

Here we defined, using Ci(𝑤) = −
∫︀∞

𝑤 d𝑢 cos(𝑢)/𝑢 and Si(𝑤) =
∫︀ 𝑤

0 d𝑢 sin(𝑢)/𝑢,

𝑅(𝜔,𝑋, 𝑌, 𝑤2) := PV
(︃∫︁ 𝑌

𝑋
d𝑤 𝑒𝑖𝜔𝑤

𝑤 − 𝑤2

)︃

= 𝑒𝑖𝜔𝑤2 (Ci (|𝜔(𝑌 − 𝑤2)|) − Ci (|𝜔(𝑋 − 𝑤2)|) + 𝑖 Si(𝜔(𝑌 − 𝑤2)) − 𝑖 Si(𝜔(𝑋 − 𝑤2))) .

(F.6)

While this function is singular as 𝑤2 → 𝑋 or 𝑤2 → 𝑌 , all expressions for 𝐶2 are finite

and well-defined. This is because they contain a combination of terms with 𝑅-functions of

different arguments, such that the singularities between the different terms exactly cancel

out.

Some contributions to the signal strength, resulting from different coupling dura-

tions and detector frequencies, are plotted in Fig. 31. As seen there, the signal strength is

symmetric about the point where Alice’s and Bob’s switchings are exactly connected by

secondary null geodesics. I.e., it is the point for which Bob switches on his detector when

the secondary null geodesic emanating from Alice’s switch-on arrives and he switches off

when the secondary null geodesic from Alice’s switch-off arrives. At this point the signal



APPENDIX F. Signal contribution from principal value distribution 192

strength has a local minimum. Overall, if the detectors are resonant or close to resonance,

the resulting signal strength rises to its highest levels around this symmetry point. For

resonant detectors this maximum scales roughly linearly with the duration of the sig-

nal. For non-resonant detectors the signal strength exhibits a mostly periodic behaviour

without a distinct maximum in the region where the detectors are connected by some sec-

ondary null geodesics. Outside of this region, i.e., when Bob couples to the field strictly

before or after any of Alice’s secondary null geodesics arrive, the signal strength exhibits

a decaying tail which results from the PV
(︁

1
𝜎

)︁
behaviour of the Green function. The tail

appears independently of whether the detectors are resonant or not.

Similarly, we can also isolate the contribution from secondary null geodesics in the

plots in Figs. 14 and 17. In these plots we have 𝐵1 = 𝐴1/𝜈, i.e., Bob always switches on his

detector when the first signal from Alice arrives. (Note that this signal is predominantly

carried by the 𝛿(𝜎)-contribution from primary null geodesics, which we discard here.)

Then we ask how the signal strength depends on 𝐵2, i.e., the point in time at which Bob

switches his detector off again. For reasons of simplicity, let us assume that Bob couples

at least for a time such that 𝐵2 ≥ 𝐴2/𝜈. Then the contribution to the signal strength

from the PV
(︁

1
𝜎

)︁
-distribution is, for general detector frequencies,

𝐶2 = −𝑖
4𝜋𝐿

∫︁ 𝜈𝐵2−𝐴1

max[𝜈𝐵1−𝐴2,0]
d𝑤 𝑒𝑖 ΩA𝑤PV

(︂ 1
𝑤 − 𝑤2

)︂ ∫︁ min[𝐵2,(𝑤+𝐴2)/𝜈]

(𝑤+𝐴1)/𝜈
d𝜏B 𝑒

𝑖 (ΩB−𝜈ΩA)𝜏B

= −1
4𝜋𝐿(ΩB − 𝜈ΩA)

[︁
𝑒𝑖(ΩB/𝜈−ΩA)𝐴2𝑅(ΩB/𝜈, 0, 𝑤𝑛, 𝑤2) − 𝑒𝑖(ΩB/𝜈−ΩA)𝐴1𝑅(ΩB/𝜈, 0, 𝑤𝑛, 𝑤2)

+𝑒𝑖(ΩB−𝜈ΩA)𝐵2𝑅(ΩA, 𝑤𝑛, 𝜈𝐵2 − 𝐴1, 𝑤2) − 𝑒𝑖(ΩB/𝜈−ΩA)𝐴1𝑅(ΩB/𝜈, 𝑤𝑛, 𝜈𝐵2 − 𝐴1, 𝑤2)
]︁
,

(F.7)

where 𝑤𝑛 := 𝜈𝐵2 − 𝐴2, and for resonant detectors, i.e., ΩB = 𝜈ΩA, it is

𝐶2 = −𝑖
4𝜋𝐿𝜈 [(𝐴2 − 𝐴1)𝑅(ΩA, 0, 𝑤𝑛, 𝑤2) + (𝐵2 − 𝐴1 − 𝑤2)𝑅(ΩA, 𝑤𝑛, 𝜈𝐵2 − 𝐴1, 𝑤2)

+𝑖
(︁
𝑒𝑖ΩA(𝜈𝐵2−𝐴1) − 𝑒𝑖ΩA𝑤𝑛

)︁]︁
. (F.8)

Fig. 32 plots the resulting signal strength in various scenarios. In particular, Fig. 32a

reproduces the features discussed in Figs. 18 and 17. The plots show that the resulting

signal strength changes significanlty as a function of the switch-off time, if the switch-off
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happens while secondary null geodesics arrive at Bob’s position that emanated from Alice

while she was coupled to the field. For non-resonant detectors the signal strength exhibits

an oscillatory and periodic behaviour within this time interval. For resonant detectors,

however, the signal strength grows roughly linearly in this region. After this region, where

the switch-off time is such that all secondary null geodesics that emanate from Alice

arrive at Bob while he is coupled to the field, the signal strength only shows an oscillatory

behaviour for later switch-off times. The oscillations decay and asymptote to a final value

as 𝐵2 → ∞. The limit value appears to be determined by the duration of the original

signal emitted by Alice.
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(a) ΩA = 1/𝑀,𝐴2 = 𝑀 , (𝑤2 +𝐴2)/𝜈 ≈ 4.26𝑀 .
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(b) ΩA = 10/𝑀,𝐴2 = 𝑀 , (𝑤2 +𝐴2)/𝜈 ≈ 4.26𝑀 .
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(c) ΩA = 10/𝑀,𝐴2 = 3.5𝑀 , (𝑤2 +𝐴2)/𝜈 ≈ 6.03𝑀 .

Figure 32 – Contribution to the leading order signal strength from PV
(︀ 1

𝜎

)︀
-distribution, as resulting from

Eq. (F.7), with 𝜈 =
√︀

(1 − 2/6)/(1 − 2/3.01) ≈ 1.40954, 𝐴1 = 0 and 𝑠2 = 5𝑀 . (For this cumulative
signal strength we always have 𝐵1 = 𝐴1/𝜈 = 0.) Alice’s first light ray, emanating at 𝐴1 = 0, is connected
by the PV

(︀ 1
𝜎

)︀
-singularity to the point on Bob’s worldline with proper time 𝜏B = (𝑤2 +𝐴1)/𝜈 ≈ 3.55𝑀 .

Alice’s last light ray, emanating at her proper time 𝐴2, is connected to Bob’s worldline at his proper
time 𝜏B = (𝑤2 + 𝐴2)/𝜈 which is different for the two figures. The curve in Fig. 32a with ΩB = ΩA/2
reproduces the features discussed in Figs. 18 and 17. In all three figures the oscillations in all curves
decay as 𝐵2 → ∞ and asymptote to constant values. (Note for non-colour print: The curve in Figs. 32b
and 32c asymptote in the same order as they appear in the legend.)
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