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quer que se mostre até a existência dos átomos com a qual se escreve."
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Abstract

We investigated Relations Among Green Functions de�ned in the context of an al-

ternative strategy for coping with the divergences, also called the Implicit Regularization

Method (IREG). This procedure does not use speci�c rules for the context being in-

vestigated: the mathematical content (divergent and �nite) will remain intact until the

calculations end. The divergent part will be organized through standardized objects free

of physical quantities. In contrast, the �nite part is projected in a class of well-behaved

functions that carry all the amplitudes�physical content. That relations arise in fermi-

onic amplitudes in even space-time dimensions, where anomalous tensors connect to �nite

amplitudes as in the bubbles and triangles in two and four dimensions. Those tensors de-

pend on surface terms, whose non-zero values arise from �nite amplitudes as requirements

of consistency with the linearity of integration and uniqueness. Maintaining these terms

implies breaking momentum-space homogeneity and, in a later step, the Ward identit-

ies. Meanwhile, eliminating them allows more than one mathematical expression for the

same amplitude. That is a consequence of choices related to the involved Dirac traces.

Independently of divergences, it is impossible to satisfy all symmetry implications by sim-

ultaneously requiring vanishing surface terms and linearity. Then we approach the 1-loop

level fermionic correction for the propagation of the graviton in a space-time D = 1 + 1

through the action of a Weyl fermion in curved space-time. In this context, gravitational

anomalies arise, and the amplitudes investigated have the highest degree of divergence

quadratic. That imposes a substantial algebraic e¤ort; however, the conclusions are in

agreement with the non-gravitational amplitudes. At the end of the calculations, we show

how it is possible to �x the value of the divergent part through the relations imposed for

amplitudes.

Keywords: Anomalies, Gravitational Anomalies, Divergences, Implicit Regularization.



Resumo

Investigamos Relações entre Funções de Green de�nidas no contexto de uma estratégia

alternativa para lidar com as divergências, também conhecida como Método de Regular-

ização Implícita (IREG). Este procedimento não utiliza regras especí�cas para o contexto

que está sendo investigado: o conteúdo matemático (divergente e �nito) permanecerá

intacto até o �nal dos cálculos. A parte divergente será organizada através de objetos

padronizados livres de grandezas físicas. Em contraste, a parte �nita é projetada em uma

classe de funções bem comportadas que carregam todo o conteúdo físico das amplitudes.

Essas relações surgem em amplitudes fermiônicas em dimensões espaço-temporais pares,

onde tensores anômalos se conectam a amplitudes �nitas como nas bolhas e triângulos em

duas e quatro dimensões. Esses tensores dependem de termos de superfície, cujos valores

diferentes de zero surgem de amplitudes �nitas como requisitos de consistência com a lin-

earidade de integração e unicidade. Manter esses termos implica quebrar a homogeneidade

do espaço-momento e, em uma etapa posterior, as Identidades de Ward. Entretanto,

eliminá-los permite mais de uma expressão matemática para a mesma amplitude. Isso é

consequência de escolhas relacionadas aos traços de Dirac envolvidos. Independentemente

das divergências, é impossível satisfazer todas as implicações de simetria exigindo simul-

taneamente termos de superfície nulos e linearidade. Em seguida, abordamos a correção

fermiônica ao nível 1-loop para a propagação do gráviton em um espaço-tempo D = 1+1

através da ação de um férmion de Weyl em um espaço-tempo curvo. Nesse contexto,

surgem as anomalias gravitacionais, sendo que as amplitudes investigadas apresentam o

maior grau de divergência quadrática. Isso impõe um esforço algébrico substancial; no

entanto, as conclusões estão de acordo com as amplitudes sem acoplamento derivativo.

Ao �nal dos cálculos, mostramos como é possível �xar o valor da parte divergente através

das relações impostas para as amplitudes.

Palavras-chave: Anomalias, Anomalias Gravitacionais, Divergências, Regularização

Implícita.
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Chapter 1

Introduction

Since their inception, anomalies have played an important role in Quantum Field

Theories (QFTs). The authors [1, 2, 3, 4] �rst met the subject in the forties and �fties.

Then, it was rediscovered in two dimensions (2D) by Johnson [5]; through the non-

conservation of the axial current in the two-point functions. And in four dimensions (4D)

in the context of the ABJ anomaly of the triangle�s graph [6, 7, 8]. In this case, it manifests

when two vector currents couple to an axial current via a fermionic propagator loop. The

anomalous term (i.e., not expected from the canonical equations) in the divergence of the

axial current that violates the PCAC (partial conservation of the axial current) would

be responsible for the decay rate of some mesons, including the electromagnetic decay

of the neutral pion, �0 ! 

, observed experimentally. Later, many studies considered

perturbative and non-perturbative approaches to investigate these phenomena. Among

them, the Fujikawa interpretation of the path-integral measure [9], heat kernel [10], and

cohomological methods [11].

It is well-known that anomalies prevent the quantum counterparts of Noether cur-

rents from satisfying their classical conservation laws, which break Ward Identities (WI).

Meanwhile, these constraints are necessary to ensure the perturbative renormalizability

of gauge models. That also applies to theories with spontaneous symmetry breaking as

the Standard Model [12, 13]. The anomaly cancellation mechanism corroborates with the

number of quark generations that ultimately implies the prediction of the top quark, for

example, see the book [11], and the maintenance of the renormalizability of the standard

model ensures internal consistency of the theory.

Similarly, there are anomalies present when fermionic �elds couple to gravitational

�elds. Delbourgo and Salam in [14] and Kimura in [15] established that in the physical

dimension, D = 1+ 3, two gravitons contribute to the axial anomaly from a triangle dia-

gram. Two energy-momentum tensors couple to an axial current via a fermionic propag-

ator loop. This anomaly would indicate [16] the impossibility of obtaining a gauge theory

in a gravitational context unless there is an anomaly cancellation mechanism.

Alvarez-Gaumé and Witten also show in [16] that the violation of the di¤eomorphism
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invariance (Einstein anomalies) at D = 4k+2 occurs in "purely gravitational" anomalies,

without gauge coupling, in curved spacetime for Weyl fermions with spin 1=2 or 3=2

coupled to the gravitational �eld via energy-momentum tensor. When there is a violation

of the conformal symmetry as we have the Weyl anomaly (or trace anomaly). Capper

and Du¤ in [17, 18] studied such anomalies in the graviton propagation by interaction

with photons and Weyl fermions at the 1-loop level, and more recently, the contribution

of the Pontryagin density to the Weyl anomalies has been revisited by Bonara et al., [19],

[20], and [21]. Furthermore, for gravitation, we have Lorentz anomalies: They signify

an antisymmetric part in the energy-momentum tensor, in even dimensions, in particular

2D, they can be traded by the Einstein anomalies [11] using the local Bardeen-Zummino

polynomial [22]. The same polynomial transforms the consistency into the covariant form

for anomalies.

Among the places where anomalies manifest, we have the perturbative scenario for

correlators of axial and vector currents that are divergent odd tensors. Some of them

AV n amplitudes in d = 2n dimensions, which cannot satisfy all WIs, (see [23]). These are

(n+ 1)th-rank tensors of odd-parity and functions of n momenta variables. Consequently,

they have a set of low-energy theorems obtained through momenta contractions. In one

loop, they contain Dirac traces having two more gamma matrices than the number of

dimensions. These traces are linear combinations of monomials in Levi-Civita tensor and

metric, displaying equivalent expressions that di¤er regarding index arrangement, signs,

and the number of monomials. In addition, the power counting of the integrals indicates

the presence of surface terms, making these structures depend on the graph�s momenta

routing (outside the amplitude AV in d = 2). Since perturbative solutions admit arbitrary

choices for routings and Dirac traces, the �nal results show many possibilities.

This last proposition is inseparable from the fact that divergences are the rule to

get model predictions of QFT in perturbation theory. Regularization methods are ad-

opted to obtain information about the amplitudes�kinematic dependence and symmetry

consequences. Some examples of these techniques are Cut-o¤, Pauli-Villars, Analytic

Regularization, Dimensional Regularization (DR) [24, 25], High Covariant Regularization

[26, 27], Di¤erential Renormalization ([28]). However, these regularization methods can

compromise the theory�s predictive power by modifying amplitudes and making the di-

vergent structures �nite. Beyond its limits of applicability in theories involving the chiral

matrix, manipulations not guaranteed to the original expressions take e¤ect as shifts in

the integration variable1. Furthermore, new methods to deal with multi-loop calculations

aiming for algorithmic implementation of precision numerical predictions [29], [30]. The

prescription also may prescribe rules, not inherent to Feynman�s ones, for which properties

of the algebras are valid or not [31, 32, 33, 34, 35, 36].

1Take the DR as an example; it eliminates surface terms as a condition to achieve symmetry preser-
vation.
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On the other hand, tensor Feynman integrals exhibiting diverging power counting have

surface terms. For the linearly diverging ones, a shift in the integration variable requires

compensation through non-zero surface terms [37], [38], and [11]. They cannot be free-

shifted and need arbitrary labels for internal momenta. Energy-momentum conservation

sets di¤erences in the routings as functions of the physical momenta; however, internal

momenta are arbitrary (by themselves and their sums) and may assume non-covariant ex-

pressions [39]. Since non-zero surface terms imply the breaking of translational symmetry

in the momentum space and this operation is needed to prove WIs, other symmetries vi-

olations also occur. By exploring tensor properties, we investigate symmetry maintenance

and its relation with the mathematical content of the diagrams. That materializes into a

discussion about the linearity of integration and choices for perturbative solutions related

to their uniqueness2.

For one of our purposes, we use a general model coupling spin-1=2 fermions (through

their bilinear and without derivatives, eventually with fermions of distinct masses) with

boson �elds of even and odd parity (spins 0 and 1). The n-vertex polygon graphs of

spin-1=2 internal propagators are one part of the analysis, speci�cally the 2D-AV and

V A bubbles, 4D-AV V , V AV , V V A, and AAA. In the e-print [40], the extension to

the 6D-AV V V box is also explored with the same conclusions. In two dimensions, the

AV -V A amplitudes worked with arbitrary masses; the author has the publication [41].

The amplitudes are obtained within a procedure to handle divergent and �nite integrals

introduced in the Ph.D. thesis of O.A. Battistel [42]. Several investigations applied this

strategy in 2D, 4D, 6D, and 5D: This method has no limit of applicability; without

speci�c rules to the context being investigated. We can use it for theories in even and odd

dimensions simultaneously, in addition to careful investigation into chiral theories [43, 44]

[45, 46] [47] [48] [49]. Other investigations use the name Implicit Regularization (IREG),

having a similar approach [50, 51, 52, 53].

This procedure uses a general identity to isolate divergences that do not interfere

with Feynman�s rules. Since we do not evaluate divergent integrals explicitly, amplitudes

are not modi�ed at any stage of calculations. Also, we use arbitrary routings for the

momenta of internal lines. In this strategy, we devise a notational scheme to systematize

�nite integrals and their divergent parts based on previous works on the subject [54], [55],

and [56]. Three relevant ingredients to our discussion are irreducible divergent objects,

tensor surface terms, and �nite functions. The only assumption is linearity applies to the

Feynman integrals, which manifests through Relations Among Green Functions (RAGFs).

This aspect is one of the main points of this investigation.

In this way, having studied, in the last instance, chiral anomalies in two and four

dimensions, we proceed to see how the conclusions extend for the two-dimensional grav-

2To uniqueness, which needs a particular de�nition to work its consequences, we provide it along the
thesis.
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itational anomalies [16, 57, 58, 59, 60]. To that end, we explore couplings with currents

involving derivatives in the fermion �eld. The physical scenario is described by a model

from a Weyl fermion coupled to a background gravitational �eld using the same model

as the references [61, 62]. In an expansion around the Minkowski metric, the matter �eld

induces corrections through the two-point function of its (linearized) stress tensor. Taking

advantage of the strategy, we write all the expressions similar to the case without deriv-

ative coupling, which point to many similarities for the elements in the root of symmetry

violations.

By carrying intact the divergent content, until the end of all computations, our stance

on the perturbative amplitudes enables a detailed view of the elements that yield di¤er-

ent results. It also clari�es the connection among the surface terms in amplitudes with

ambiguities of routings, traces, and symmetry violations. Any interpretation of diver-

gences that sets surface terms as zero for even amplitudes makes their results symmetric

concerning the symmetries related to momenta contractions but not metric contractions.

Nevertheless, these prescriptions break integration linearity for odd amplitudes since equal

integrands give rise to di¤erent integrals. Hence, an uncountable number of tensors follows

from the same expression.

On the other hand, by adopting the value of the surface term that preserves linearity,

all manipulation on the traces provides one and only one tensor of the routing variables.

Therefore the physical interpretation requires arbitrary parameters to �x the symmetries.

The freedom allows us to improve the known and desired content of the results (for non-

derivative couplings). However, the consequence is that even amplitudes will more often

violate their WIs if they ask universality to play a role.

We organized the work as follows. In Chapter (2), we have the general model, de�n-

itions, and a preliminary discussion. Chapter (3) discusses the strategy to handle the

amplitudes, where we de�ne irreducible objects, tensor surface terms, and �nite parts.

The compilation of the e¤ects of traces and surface terms in 2D appears in the Chapters

(4; 5) through complete and independent computation of all the quantities related to

RAGFs. The consequences of the results preserving linearity or saving translational sym-

metry are presented and interpreted in light of low-energy theorems. Chapter (6) deals

with all odd triangles in 4D, their RAGFs, and the concept of uniqueness. The Sections

(6.2) and (6.3) deal with general properties of low-energy theorems and o¤er a proposi-

tion that connects linearity, low-energy behavior of �nite amplitudes and surface terms.

Chapter (7 and 8) extend the propositions to a gravitational scenario. In the last Chapter

(9), we discuss some points implied by the investigation for other scenarios.



Chapter 2

Notation, De�nitions, Model and
Preliminaries

Feynman rules, vertices, and propagators employed in this investigation come from a

model where fermionic currents couple to bosonic �elds of even and odd parity f� (x) ; V� (x)
;�(x) ; A� (x)g through the general interacting action

SI =
Z
d2nx [eSS (x) � (x) + e�P (x)� (x) + eV J

� (x)V� (x) + eAJ
�
� (x)A� (x)] : (2.1)

The currents fS; P; J�; J��g are bilinears in the fermionic �elds Ji;ab (x) =
�
� a�i b

�
(x).

They deliver the vertices proportional1 to

�i 2 (S; P; V;A) = (1; 
�; 
�; 
�
�); (2.2)

where 
� are the generators of the Cli¤ord algebra of Dirac matrices satisfying f
�1 ; 
�2g =
2g�1�2. The chiral matrix, which is the algebra�s highest-weight element, satis�es f
�; 
�kg =
0 and assumes the explicit form


� = in�1
0
1 � � � 
2n�1 =
in�1

(2n)!
"�1����2n


�1����2n : (2.3)

We often adopt a merging notation to products of matrices 
�1����2n = 
�1
�2 � � � 
�2n,
adapting to Lorentz indexes �1�2 � � ��s = �12���s when convenient. The behavior under the

permutation of the indexes is determined by the objects: g�1�2 = g�12 = g�21 or "�1�2����2n =

"�12���2n = �"�21����2n. For the 2n-dimensional, follow the normalization "0123���2n�1 = 1.
The algebra elements are the antisymmetrized products of gamma matrices


[�1����r] =
1

r!

X
�2Sr

sign (�) 
��(1)�����(r) : (2.4)

They satisfy general identities as seen in the appendix of the reference [63]:


�
[�1����r] =
in�1+r(r+1)

(2n� r)! "
�r+1����2n

�1����r 
[�r+1����2n]: (2.5)

1The proportionality comes from the coupling constants feS ; e�; e; eAg ; taken as the unit for our
purposes.
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These identities are needed when taking traces with the chiral matrix. For products of

tensors, we adopted the antisymmetrization notation

A[�1����rB�r+1����s] =
1

s!

X
�2Ss

sign(�)A��(1)�����(r)B��(r+1)�����(s) ; (2.6)

where the normalization factor does not interfere with the used identities.

The spinorial Feynman propagators come from the standard kinetic term of Dirac

fermions

SF (Ki) =
1

( /Ki �mi + i0+)
=
( /Ki +mi)

Di

; (2.7)

where Di = K2
i �m2

i with Ki = k + ki and mi corresponding the mass of the i-particle.

The momentum k is the unrestricted loop momentum while ki are routings that keep track

of the �ux of external momenta through the graph, see [39]2. They cannot be written as

a function of the kinematical data in divergent integrals. In our approach, they codify

conditions of the satisfaction of symmetries or lack thereof. Nonetheless, their di¤erences

relate to external momenta through the de�nition

pij = ki � kj; (2.8)

using momenta conservation in the vertices of the diagram in �gure (2.1).

T �1�2����n1 =

Γ2

Γ3
Γn

Γ1

K1

K2
Kn

· · ·

q2 = p21

q3 = p32
qn = pn,n−1

q1 = pn1

Figure 2.1: General diagram for the one-loop amplitudes of this work.

The integrand of these amplitudes follows from Feynman rules

t�1�2����n1 (k1; � � � ; kn1) = tr[�1SF (K1)�2SF (K2) � � ��n1SF (Kn1)]: (2.9)

That is a well-de�ned function of the external momenta and sums undetermined by mo-

mentum conservation

Pij = ki + kj: (2.10)

2Consult section (4.1) for a comment on the arbitrariness of these routings.
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Often we adopt the simpli�cation S (i) � SF (Ki), where the numerical index i represents

all parameters of the corresponding line. The total amplitude comes from integration in

the loop momenta

T �1�2����s (1; � � � ; s) =
Z

d2nk

(2�)2n
t�1�2����s (1; � � � ; s) : (2.11)

When replacing the speci�c vertex operators �i from (2.2), the notation accompanies the

Lorentz indexes in order with the operators. In addition, we set aside the minus signs for

closed loops.

2.1 Relation Among Green Functions (RAGF)

As a part of the investigation, we establish identities among Green functions that

display Lorentz indices of vector and axial currents. These are commonly called Relations

Among Green Functions (RAGFs) and have been used in investigations in the IREG

scenario [43][45][49]. They can be considered conditions on the linearity of integration

even before WIs are asked to play some role in perturbation amplitudes.

Let us take the amplitude AV r�1 to introduce these relations since they are part of

our analysis,

tAV ���V�1�2����r = tr[
�
�1S (1) 
�2S (2) � � � 
�rS (r)]: (2.12)

When contracted with p
�2
21 in the vector vertex 
�2 , we remove one propagator using

Ki = k + ki and S�1 (i) = /Ki �m through the standard manipulation

/pab = /Ka � /Kb = S�1 (a)� S�1 (b) + (ma �mb) (2.13)

This result leads to the vector RAGF, a di¤erence between two amplitudes built out of

the same rules

p
�2
21 t

AV ���V
�1�2����r = [t

AV ���V
�1�̂2����r(1; 2̂; � � � ; r)� t

AV ���V
�1�̂2����r(1̂; 2; � � � ; r)] + (m2 �m1) t

ASV ���V
�1�̂2����r : (2.14)

The "hats" mean the omission of the propagator corresponding to that routing and the

vertices corresponding to the Lorentz indexes. In other words, the RHS contains lower-

point functions that are in general more singular under integration (but not always). Now,

observe the contraction of the axial vertex with p�1r1

p
�1
r1 t

AV ���V
�12����r = tr[S (r) 
�S

�1 (r)S (1) 
�2S (2) � � � 
�r�1S (r � 1) 
�r ] (2.15)

�tr[
�
�2S (2) � � � 
�rS (r)]:

Using the commutation of the chiral and Dirac matrices that implies in the identity

S (r) 
�S
�1 (r) = (�
� � 2mS (r) 
�) ; (2.16)
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leading to the axial RAGF

p
�1
r1 t

AV ���V
�12����r = [tAV ���V�r�̂1�2����r�1(1; 2; � � � ; r̂)� t

AV ���V
�̂1�2����r(1̂; 2; � � � ; r)] (2.17)

� (mr +m1) t
PV ���V
�2����r :

After integration, the relations achieved above become

p
�1
r1T

AV ���V
�12����r = [TAV ���V�r�̂1����r�1(1; 2; � � � ; r̂)� T

AV ���V
�̂1����r (1̂; 2; � � � ; r)] (2.18)

� (mr +m1)T
PV ���V
�2����r

p
�2
21T

AV ���V
�12����r = [TAV ���V�1�̂2����r(1; 2̂; � � � ; r)� T

AV ���V
�1�̂2����r(1̂; 2; � � � ; r)] (2.19)

+(m2 �m1)T
ASV ���V
�1�̂2����r :

These equations embody assumptions of linearity of integration in perturbative computa-

tions; however, this characteristic is not guaranteed for divergent amplitudes. We expose

this scenario through complete calculations of amplitudes and their relations. Although

these equations are a structural property of the operations, they are not a priori linked

to the particularities of the model and its symmetries. However, after summing up all

contributions from the crossed diagrams (if applicable), the properties for the total sum

of lower-point Green functions coming from the momenta contraction should make the

expression correspond to the WIs.

The WIs are equations satis�ed by Green functions as a consequence of continuous

symmetries of the action. They are valid in perturbative approximations built on Feynman

rules unless they are inevitably anomalous. They arise from the joint application of the

algebra of quantized currents and equations of motion to these currents: @�J� = 0 and

@�J
�
� = �2miP . Their expressions in the position space for axial and vector WIs are

@x1�1


J�1� (x1) J�2 (x2) � � � J�r (xr)

�
= �2mi



P (x1) J�2 (x2) � � � J�r (xr)

�
; (2.20)

@x2�2


J��1 (x1) J

�2 (x2) � � � J�r (xr)
�
= 0; (2.21)

where h� � � i = h0 jT [� � � ]j 0i is an abbreviation for the time ordering of the currents. In
our notation for perturbative amplitudes, we would have analogous equations

q
�1
1 T

A!V ���V
�12����r = �2mT P!V ���V�2����r ; q

�2
2 T

A!V ���V
�12����r = 0; � � � q�rr T

A!V ���V
�12����r = 0: (2.22)

The arrow means the mentioned sum of contributions. The connection involving RAGFs

and WIs is straightforward, so that violations of RAGFs imply violations of WIs. This

way, maintaining all WIs depends on satisfying all RAGFs while having translational

invariance in the momentum space. We show how this requirement is impossible for a

class of amplitudes as those introduced in the sequence. These objects share similar tensor

structures, contain diverging surface terms, and produce the same consequences regards

anomalies in their speci�c dimensions. All of them are divergent odd tensors: they have

logarithmic power counting in 2D and linear power counting in 4D.
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� The 2D Bubbles: TAV�12 ; T
V A
�12
;

� The 4D Triangles: TAV V�123
; T V AV�123

; T V V A�123
; TAAA�123

;

In the second part starting in the Chapter (7), we explore the consequences in a

gravitational scenario, we will also consider the perturbative amplitudes with derivative

coupling in 2D (de�ned in the same chapter). They have linear and quadratic power

counting and appear in associated with the study of Einstein and Weyl anomalies.

� The Gravitational Amplitudes Even: T V V�12;�1 ; T
V V
�12;�12

;TAA�12;�1 ; T
AA
�12;�12

;

� The Gravitational Amplitudes Odd: TAV�12;�1 ; T
AV
�12;�12

;

To compute these amplitudes, we have to take the Dirac traces. After that, any

amplitude is expressed as linear combinations of bare Feynman integrals following the

de�nition3,4

�J
(2n)�1�2����n1
n2 (1; 2; � � � ; n2) =

Z
d2nk

(2�)2n
K
�1
i � � �K

�n1
i

D1D2 � � �Dn2

: (2.23)

These integrals have power counting ! = 2n + n1 � 2n2, where n1 is the tensor rank
and n2 is the number of denominators. A set of �ve types of integrals arise within each

amplitude, which is the subject of subsection (3.2). But �rst, we develop a procedure to

deal with divergent quantities in the sequence.

3We simplify the dependence of the functions on their arguments f (k1; k2; � � � ) = f (1; 2; � � � ), omitting
them if it is clear.

4Changing from a reference routing kj to another ki is a matter of recognizing the de�nition of pij in
(2.8) and writing Ki = Kj + pij .



Chapter 3

Procedure to Handle the
Divergences and the Finite Integrals

Before presenting the strategy to solve the divergent amplitudes, let us digress into the

divergent-integrals issue in QFT. It is well-known that the products of propagators that

are not regular distribution are ill-de�ned in general. A good example is the equationZ
d4k

(2�)4
tr[SF (k)SF (k � p)] =

Z
d4xtr[ŜF (x) ŜF (�x)]eip�x: (3.1)

The LHS displays a divergent convolution of two Feynman propagators in momentum

space. The RHS is the Fourier transform of a product of propagators in position space. So

both sides do not de�ne distributions because when the point-wise product of distributions

does not exist, the convolution product of their Fourier transform does not also.

These short-distance UV singularities manifest in divergences of loop momentum in-

tegrals. Their origins trace back to multiplications of distributions by discontinuous step

function in the chronological ordering of operators in the interaction picture. That leads,

through the Wick theorem, to the Feynman rules; see [64, 65], originally in Epstein and

Glaser [66]. Although the unde�ned Feynman diagrams can be circumvented by carefully

studying the splitting of distributions with causal support in the setting of causal per-

turbation theory [67, 68, 69] (where no divergent integral appears at all), we work with

Feynman rules in the context of regularizations.

We use the systematic procedure known as Implicit Regularization (IREG) to handle

the divergences. Its development dates back to the late 1990s in the Ph.D. thesis of O.A.

Battistel [42], having its �rst investigations in the references [70, 71]. Its objective is to

keep the connection at all times with the expression of the "bare" Feynman rules while

removing physical parameters (i.e., routings and masses) from divergent integrals and

putting them in strictly �nite integrals. The divergent ones do not su¤er any modi�cation

besides an organization through surface terms and irreducible scalar integrals.

This objective is realized by noticing that all Feynman integrals depend on the propagators-

like structures Di = [(k + ki)
2 � m2] de�ned in equation (2.7). Thus, by introducing a
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parameter �2, it is possible to construct an identity to separate quantities depending on

physical parameters
1

Di

=
1

D� + Ai
=

1

D�

1

[1� (�Ai=D�)]
; (3.2)

where D� = (k2 � �2) and Ai = 2k � ki + (k2i + �2 � m2). Now, we use the sum of the

geometric progression of order N and ratio (�Ai=D�) to write

1

[1� (�Ai=D�)]
=

NX
r=0

(�Ai=D�)
r + (�Ai=D�)

N+1 1

[1� (�Ai=D�)]
: (3.3)

Immediately it is possible to determine the asymptotic behavior at in�nity of the powers

(�Ai=D�)
r as kkk�r. Observe that those terms in the summation sign depend on the

routings only in the numerator through a polynomial.

With the help of equations (3.3) and (3.2), we get

1

Di

=
NX
r=0

(�1)r Ari
Dr+1
�

+ (�1)N+1 AN+1i

DN+1
� Di

: (3.4)

As this identity is valid for arbitrary N , choosing N as equal to or greater than the power

counting is possible. The integration of the last term is �nite under these circumstances,

exhibiting dependence on the external momenta pij = ki � kj when treating a product
of propagators. The parameters �2 generate a connection between divergent and �nite

parts of integrals. That implies speci�c behavior to the divergent scalar integrals that is

straightforwardly satis�ed. We adopt the mass of the propagator �2 = m2 as the scale1.

To modularize the analysis, we organize divergences without modi�cations in the �rst

subsection. After that, we introduce the �nite functions necessary to express the amp-

litudes. Lastly, we introduce integrals pertinent to this work, discussing some examples.

3.1 Divergent Terms

After applying the identity (3.4), we express the Feynman integrals through surface

terms, irreducible divergent objects, and �nite functions. Divergent terms follow the

structure of the summation part of the identity and appear as a set of pure integration-

momentum integralsZ
d2nk

(2�)2n
1

Da
�

;

Z
d2nk

(2�)2n
k�1k�2
Da+1
�

; � � �
Z

d2nk

(2�)2n
k�1k�2 � � � k�2b�1k�2b

Da+b
�

; (3.5)

with n � a. Since they have the same power counting, combining them into surface terms

is always possible

� @

@k�1

k�2 � � � k�2n
Da
�

= 2a
k�1k�2 � � � k�2n

Da+1
�

� g�1�2
k�3 � � � k�2n

Da
�

� permutations. (3.6)

1The identity is independent of the parameter �2, which is clear when taking the derivative with this
parameter.
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Observing the equation above, note that a surface term combines into lower-order

surface terms. That produces a chain of associations, leading to scalar integrals that

encode the divergent content of the original expression. They preserve the possibility or

not of shifting the integration variable, which means we are trading the freedom of the

operation of translation in the momentum space for the arbitrary choice of the routings

in these perturbative corrections. These surface terms are always present for linear and

higher divergent or logarithmic-divergent tensor integrals. Although their coe¢ cients

depend on ambiguous momenta (2.10) in the �rst case, only external momenta (2.8)

appear in the second.

We de�ne combinations that arise for this investigation for the abelian chiral anomalies

as follows

�
(2n)
(n+1);�1�2

(�2) =

Z
d2nk

(2�)2n

�
2nk�1k�2
Dn+1
�

� g�1�2
1

Dn
�

�
= �

Z
d2nk

(2�)2n
@

@k�1

k�2
Dn
�

; (3.7)

where the superscript n = 1; 2 indicates respectively two and four dimensions. The

corresponding irreducible scalar comes from the de�nition

I
(2n)
log

�
�2
�
=

Z
d2nk

(2�)2n
1

Dn
�

: (3.8)

The separation highlights diverging structures and organizes them without perform-

ing any analytic operation. Moreover, it makes evident that the divergent content is a

local polynomial in the ambiguous and physical momenta obtained without expansions

or limits.

For the gravitational case, the integrals show superior power counting; the iterative

use of this systematization from the �rst tensor term allows to recombine of all the tensor

integrals in terms of surface plus scalar integrals, whose coe¢ cients are symmetrical com-

binations of the metric tensor,

�
(2)
2�12

=

Z
d2k

(2�)2

�
2k�12
D2
�

� g�12
1

D�

�
= �

Z
d2k

(2�)2
@

@k�1

k�2
D�

: (3.9)

The 4th-rank surface term

�(2)3�1234 =
Z

d2k

(2�)2

�
8k�1234
D3
�

�
g(�12k�12)
D2
�

�
= �1

2

4X
i=1

Z
d2k

(2�)2
@

@k�i

k�1����̂i����4
D2
�

(3.10)

and the longest one, the 6th-rank surface term

�
(2)
4�123456

=

Z
d2k

(2�)2

�
48k�123456

D4
�

� 8
3

g(�12k�1234)
D3
�

�
= �4

3

6X
i=1

Z
d2k

(2�)2
@

@k�i

k�1����̂i����6
D3
�

:

(3.11)

For the symmetrization of indices, we use

A(�1����rB�r+1����s) =
X

�2Snons

A��(1)�����(r)B��(r+1)�����(s) : (3.12)
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In our notation, Snons � Ss is a subgroup of the permutation group of s elements that does

not count terms that are already symmetric. It means the total sum has all terms that

make the tensor completely antisymmetric without repetition of terms with a coe¢ cient

equal to the unit. We are using the convention of condensing the indices k�1 � � � k�n =
k�1���n and the same for vector k. These surface terms, therefore, have the character of

being explicitly completely symmetric, a handy property in computations. Beyond the

logarithmic objects de�ned above also appear quadratically divergent integrals organized

in the objects:

�
(2)
1�12

=

Z
d2k

(2�)2

�
2k�12
D�

� g�1�2 log
(k2 �m2)

k2

�
(3.13)

�(2)2�1234 =

Z
d2k

(2�)2

�
4k�1234
D2
�

�
g(�12k�34)
D�

�
: (3.14)

And the quadratic scalar

I
(2)
quad =

Z
d2k

(2�)2
log

(k2 �m2)

k2
: (3.15)

Important note: the complete symmetrization of the indices that appear as the
product of the metrics can cause the expressions for the surface terms to have dozens of

terms. For the sake of clarity, let us de�ne the combinations,

W4�123456 = �
(2)
4�123456

+
1

3
g(�12�

(2)
3�3456)

+
1

3
g(�12g�34�

(2)
2�56)

(3.16)

W3�1234 = �(2)3�1234 +
1

2
g(�12�

(2)
2�34)

(3.17)

W2�1234 = �(2)2�1234 +
1

2
g(�12�

(2)
1�34)

: (3.18)

The �rst row has sixty-one terms, while the second and third rows have seven terms.

They allow us to write the integrals often present in the separation of divergent terms asZ
d2k

(2�)2
48k�123456

D4
�

= W4�123456 + g(�12g�34g�56)I
(2)
log (3.19)Z

d2k

(2�)2
8k�1234
D3
�

= W3�1234 + g(�12g�34)I
(2)
logZ

d2k

(2�)2
4k�1234
D2
�

= W2�1234 + g(�12g�34)I
(2)
quadZ

d2k

(2�)2
2k�12
D2
�

= �
(2)
2�12

+ g�12I
(2)
logZ

d2k

(2�)2
2k�12
D�

= �
(2)
1�12

+ g�12I
(2)
quad:

For the trace of W4�123456 and W3�1234 , we begin with

W �
4��1234

= ��4��1234 +
10

3
�3�1234 +

1

3
g(�12�

�
3�34)�

+
8

3
g(�12�2�34) +

1

3
g(�12g�34)�

�
2� (3.20)
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W �
3��12

= ��3��12 + 3�2�12 +
1

2
g�12�

�
2�: (3.21)

They arise from a simple combinatorial analysis: For g(�12�3�3456) there are �fteen terms
where only in one of the indices �56 appears in the metric and six terms where both

indices appear in �3�3456 , the remaining ones have the indices �5 or �6 in the metric and
the other in the surface term. In the �rst and last set of permutations, we get a factor of

ten for �3�1234 ; and the other six generate a complete symmetric combination of the trace
and metric, namely

g�56g(�12�3�3456) = 10�3�1234 + g(�12�
�
3�34)�

: (3.22)

As for the term g(�12g�34�2�56), they are forty-�ve terms, in eighteen of them the �56 indices

are in the metric and twenty-four the metric and the surface term share them. These terms

generate a factor of eight multiplied by the symmetric combinations of g(�12�2�34), the

remaining three yield the total result

g�56g(�12g�34�2�56) = 8g(�12�2�34) + g(�12g�34)�
�
2�; (3.23)

where ��
2� is the trace of the divergent object.

As a last observation, two essential combinations appear in the veri�cation process of

RAGF, resulting from traces with the metric. It is possible to immediately express the

features of W -tensors de�ned above in the following ways

2W �
3��12

� 8�(2)
2�12

= [2(�(2)�3��12
��(2)

2�12
)� g�12�

(2)�
2� ] + 2g�12�

(2)�
2� (3.24)

3W �
4��1234

� 18W3�1234 = [3�
(2)�
4��1234

� 8�(2)3�1234 � g(�12g�34)�
(2)�
2� ] (3.25)

+g(�12 [�
(2)�
3��34)

��(2)
2�34)
� 1
2
g�34)�

(2)�
2� ] + 3g(�12g�34)�

(2)�
2� :

Its determination follows from the combinatorial analysis of the terms symmetrized in

their de�nitions. The term g(�2�2g�12)�
�
2� inside the parentheses is equal to 2g(�2�2g�12)�

�
2�

due to metric degeneracy. The term

g(�12 [�
(2)�
3��34)

��(2)
2�34)
� 1
2
g�34)�

(2)�
2� ] (3.26)

represents the six permutations for it to be completely symmetric. When one splits it into

three terms, the last one is symmetric with just three terms of the type g�12g�34. Hence

we get a factor of one instead of a half, which is identical to the combination we have

begun. This arrangement makes the expression similar to the one shown for the trace of

W3.

These relations were exposed here because the expansion on the basic surface terms

becomes excessively long and unnecessary. The surface terms in the leading integrals

(highest rank-tensor) do not need expansion. The RAGF conditions of satisfaction only

require these terms to be ranked by their indices and the number of contractions, as we

will see in the Chapter on gravitational two-point functions.
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3.2 Finite Functions

3.2.1 Two Dimensions

After separating the �nite part, we solve the integrals through techniques of perturb-

ative calculations and project their results into a family of functions. Two-point basic

functions assume the form

Z(�1)n1
=

Z 1

0

dx
xn1

Q
; (3.27)

Z(0)n1 =

Z 1

0

dxxn1 log
Q

��2
; (3.28)

with ni 2 N, and the Q is a polynomial given by

Q
�
q2;m2;m1

�
= q2x (1� x) +

�
m2
1 �m2

2

�
x�m2

1: (3.29)

An important point that will be explored is q2 = 0 for equal masses m1 = m2, where

Z(�1)n1
(0) = � 1

m2 (n1 + 1)
; Z(0)n1 (0) = 0: (3.30)

And the combination between Z(�1)1 and Z(�1)0 given byh�
m2
1 �m2

2

�
Z
(�1)
1 �m2

1Z
(�1)
0

i
q2=0

=

Z 1

0

dx
(m2

1 �m2
2)x�m2

1

Q (0;m2;m1)
= 1; (3.31)

It has a nice limit that will appear in investigating the AV of di¤erent masses.

Reductions: Z(k)n1 in both parameters and the ones required for this work are

Z
(0)
0 = log

m2
2

�2
+ 2q2Z

(�1)
2 �

�
q2 +m2

1 �m2
2

�
Z
(�1)
1 (3.32)

2q2Z
(�1)
1 =

�
q2 +m2

1 �m2
2

�
Z
(�1)
0 + log

m2
1

m2
2

(3.33)

q2Z
(�1)
n1+2

=
�
q2 +m2

1 �m2
2

�
Z
(�1)
n1+1
�m2

1Z
(�1)
n1
� 1

(n1 + 1)
; (3.34)

with n1 � 0. In the gravitational setting (where only equal masses integrals will are

explored), we have the function

Z
(1)
0 =

Z 1

0

dxQ log
Q

��2
: (3.35)

Adopting m1 = m2 = �, the reductions needed for that scenario are

Z
(1)
0 �m2 = 2q2Z

(0)
2 � q2Z

(0)
1 (3.36)

2Z
(0)
1 = Z

(0)
0 (3.37)

(n1 + 3)q
2Z

(0)
n1+2

= (n1 + 2)q
2Z

(0)
n1+1
� (n1 + 1)m2Z(0)n1 �

(n1 + 1)

(n1 + 2)(n1 + 3)
q2; (3.38)

with n1 � 0.
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3.2.2 Four Dimensions

For the three-point amplitudes2, we have the polynomial

Q (p; q;m2;m3;m1) = p2x1 (1� x1) + q2x2 (1� x2)� 2 (p � q)x1x2 (3.39)

+
�
m2
1 �m2

2

�
x1 +

�
m2
1 �m2

3

�
x2 �m2

1:

And the corresponding basic functions,

Z(�1)n1n2
=

Z 1

0

dx1

Z 1�x1

0

dx2
xn11 x

n2
2

Q
(3.40)

Z(0)n1n2 =

Z 1

0

dx1

Z 1�x1

0

dx2x
n1
1 x

n2
2 log

Q

��2
: (3.41)

At the point where all bilinears are zero, and for equal massesm1 = m2 = m3, they satisfy

Z(�1)n1n2
(0) = � n1!n2!

m2 [(n1 + n2 + 2)!]
; Z(0)n1n2 (0) = 0: (3.42)

Writing the parameters in terms of derivatives of the polynomials and using partial

integration follows relations among these functions. More precisely, they are reductions

of involved parameter powers n1 + n2 for equation (3.40) (see Appendices ??). They
were approached in the papers [54][55][56]. This resource is necessary for the operations

performed throughout this investigation.

Let us start by making the derivative of the Q polynomial for equal masses concerning

the parameter xi and multiplying by 1=Q; we construct the result

xn11 x
n2
2

@

@x1
logQ = �2

�
p2xn1+11 xn22 + (p � q)xn11 xn2+12

� 1
Q
+ p2

xn11 x
n2
2

Q
(3.43)

xn11 x
n2
2

@

@x2
logQ = �2

�
q2xn11 x

n2+1
2 + (p � q)xn1+11 xn22

� 1
Q
+ q2

xn11 x
n2
2

Q
: (3.44)

When integrating
R 1�x1
0

dx2, in some cases, we need to commute the integral and a deriv-

ative. The upper limit of the integral is not a constant; in that situation, we applied it

to the Leibnitz formulaZ b(x)

a(x)

dz
@

@x
F (x; z) =

@

@x

Z b(x)

a(x)

dzF (x; z)�
�
F (x; b (x))

@b (x)

@x
� F (x; a (x)) @a (x)

@x

�
:

(3.45)

For our purposes b0 (x) = �1 and a0 (x) = 0, henceZ b(x)

0

dz
@

@x
F (x; z) =

@

@x

Z b(x)

0

dzF (x; z) + F (x; b (x)) : (3.46)

The limits of integration will bring a binomial expansion as well

(1� x1)n2 =
n2X
s=0

(�1)s
�
n2
s

�
xs1: (3.47)

2These polynomials can be written in terms of Symanzik polynomials constructed using the spanning
trees and two-forests of the graph.
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Through the application of these elements, it is derived the formulae

2[p2Z
(�1)
n1+1;n2

+ (p � q)Z(�1)n1;n2+1
] = p2Z(�1)n1;n2

+ (1� �n10)n1Z
(0)
n1�1;n2 (3.48)

+�n10Z
(0)
n2
(q)�

n2X
s=0

(�1)s
�
n2
s

�
Z
(0)
n1+s (q � p)

2[q2Z
(�1)
n1;n2+1

+ (p � q)Z(�1)n1+1;n2
] = q2Z(�1)n1;n2

+ (1� �n20)n2Z
(0)
n1;n2�1 (3.49)

+�n20Z
(0)
n1
(p)�

n2X
s=0

(�1)s
�
n2
s

�
Z
(0)
n1+s (q � p) :

They represent a reduction in ni from a situation of n1 + n2 + 1! n1 + n2 appearing in

the RAGFs and WI veri�cations. It is also necessary to use another reduction

2Z
(0)
00 =

h
p2Z

(�1)
10 + q2Z

(�1)
01

i
� 2m2Z

(�1)
00 � 1 + 2Z(0)1 (q � p) : (3.50)

That comes from the previous ones and the use of

1

2
= �p2Z(�1)20 � q2Z(�1)02 � p2Z(�1)10 � q2Z(�1)01 � 2 (p � q)Z(�1)11 �m2Z

(�1)
00 (3.51)

from integrating the identity Q
Q
= 1. This set of mathematical results is enough to develop

any computation concerning the �nite parts in this thesis.

3.3 Basis of Feynman Integrals

At the end of Section (2), we introduced a set of (n+ 1)-point amplitudes in 2n di-

mensions. In the same context, equation (2.23) presented a general de�nition for integrals

that appear after taking Dirac traces. We describe in a nutshell those that arise within

the amplitudes. At two dimensions, the needed integrals are de�ned byh
�J
(2)
1 (ki) ; �J

(2)�1
1 (ki) ; �J

(2)�12
1 (ki) ; �J

(2)�123
1 (ki)

i
=

Z
d2k

(2�)2
(1; K

�1
i ; K

�12
iii ; K

�123
iii )

Di

(3.52)

h
�J
(2)
2 ; �J

(2)�1
2 ; �J

(2)�12
2 ; �J

(2)�123
2 ; �J

(2)�1234
2

i
=

Z
d2k

(2�)2
(1; K

�1
1 ; K

�12
111 ; K

�123
111 ; K

�1234
1111 )

D12

: (3.53)

And at four dimensions, we de�ne the functions with two and three propagatorsh
�J
(4)
2 ; �J

(4)�1
2

i
=

Z
d4k

(2�)4
(1; K

�1
i )

Dij

; (3.54)h
�J
(4)
3 ; �J

(4)�1
3 ; �J

(4)�12
3

i
=

Z
d4k

(2�)4
(1; K

�1
1 ; K

�1
1 K

�2
1 )

D123

: (3.55)

We use the conventionsD12���i = D1D2 � � �Di; andKi = k+ki withK
�a1 ����an
a1���an = K

�a1
a1 � � �K

�an
an ,

where ai 2 f1; � � � ; ng. For the case of integrals with fewer propagators of each dimension,
it is necessary to specify the momenta.
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3.3.1 Two Dimensions

The power counting of n-point integrals associated with the chiral anomaly from odd

amplitudes in two dimensions are8><>:
!(J

(2)
2 ) = �2

!(J
(2)�1
2 ) = �1

!(J
(2)�12
2 ) = 0

;

(
!(J

(2)
1 ) = 0

!(J
(2)�1
1 ) = 1

; (3.56)

The power counting for integrals associated with derivative coupling for n-point integrals(
!(J

(2)�123
2 ) = 1

!(J
(2)�1234
2 ) = 2

;

(
!(J

(2)�12
1 ) = 2

!(J
(2)�123
1 ) = 3

; (3.57)

Some integrals contain �nite and divergent parts, so we adopt the overbar to indicate

such a feature. For instance, in 2n dimensions, the integral �J (2n)n contains a diverging

object and �nite contributions labeled as J (2n)n . The presence of the overbar distinguishes

the complete integral from its �nite content. That also means they coincide for strictly

�nite integrals, namely �J (2n)�1n+1 = J
(2n)�1
n+1 and �J (2n)n+1 = J

(2n)
n+1 .

The one-point integrals in (3.56), are obtained using the identity (3.4) with N = 1

1

Di

=
1

D�

� Ai
D2
�

+
A2i
D2
�Di

: (3.58)

When Integrating the �nite parts and identifying the divergent objects as (3.8) and (3.9)

�J
(2)
1 (ki) = I

(2)
log

�
�2
�
� i

4�
log

m2
i

�2
(3.59)

�J
(2)
1�1
(ki) = �k�1i �

(2)
2�1�1

�
�2
�
: (3.60)

The two integrals show logarithmic divergence. The last one corresponds to a pure surface

term. The argument of Ilog
�
�2
�
object may be transformed by

1�
k2 � �2

� = 1

(k2 �m2
i )
�

�
m2
i � �2

��
k2 � �2

�
(k2 �m2

i )
: (3.61)

This identi�cation implies a scale relation between the divergent and �nite part

I
(2)
log

�
�2
�
= I

(2)
log

�
m2
i

�
+

i

(4�)
log

m2
i

�2
: (3.62)

The scalar one be written as �J (2)1 (ki) = I
(2)
log (m

2
i ). For more details, see Appendix (C).

For the two-point integrals with the power counting given by (3.56), we have

J
(2)
2 =

i

4�
[Z

(�1)
0 (q;m2;m1)] (3.63)

J
(2)�1
2 =

i

4�
[�q�1Z(�1)1 ] (3.64)

J
(2)�1�2
2 =

i

4�

�
�1
2
g�1�2Z

(0)
0 + q�1q�2Z

(�1)
2

�
(3.65)

�J
(2)�1�2
2 = J

(2)�1�2
2 +

1

2

h
�
(2)�1�2
2 + g�1�2I

(2)
log

i
: (3.66)
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Arguments were omitted since they are the same for all integrals. The two-point divergent

integral is obtained by applying the identity (3.4) with N = 0; its complete calculation is

performed in the Appendix (B.2).

Reductions 2D: For Chapters (4) and (5), we will need the reductions listed above

2q�1J
(2)�12
2 = �

�
q2 +m2

1 �m2
2

�
J
(2)�2
2 � i

4�
q�2 log

�
m2
2=�

2
�

(3.67)

g�12J
(2)�12
2 =

�
i

4�
+m2

1J
(2)
2

�
� i

4�
log
�
m2
2=�

2
�

(3.68)

2q�1J
(2)�1
2 = �

�
q2 +m2

1 �m2
2

�
J
(2)
2 +

i

4�
log
�
m2
2=m

2
1

�
(3.69)

q2(2J
(2)
2�2
+ q�2J

(2)
2 ) = �q�2

�
m2
1 �m2

2

�
J
(2)
2 �

i

4�
q�2 log

�
m2
1=m

2
2

�
: (3.70)

In Chapter (7), in addition to the functions introduced above, it is necessary to the

single mass of 3rd-rank integral, obtained by applying the identity with N = 1:

�J
(2)
2�123

= J
(2)
2�123

� 1
4
P �1W3�123�1 +

1

4
(P � q)(�1 �2�23) �

1

4
q(�1g�23)Ilog (3.71)

J
(2)
2�123

= � i

4�

�
�1
2
q(�1g�23)Z

(0)
1 + q�123Z

(�1)
3

�
: (3.72)

And 4th-rank integral, using N = 2 in (3.4):

�J
(2)
2�12�12

= J
(2)
2�12�12

+
1

4
W2�12�12 +

1

4
g(�12�12)Iquad (3.73)

� 1
24

�
q2g(�12�12) � 4q(�12g�12)

�
Ilog

+
1

48
(3P �12 + q�12)W4�12�12�12

� 1
16

�
P 2 + q2

�
W3�12�12 �

1

8
P �1 (P � q)(�1W3�2�12)�1

+
1

8

h
(P � q)�1 (P � q)(�1 �2�2)�2 + (P � q)�2 (P � q)(�1 �2�2)�1

i
+
1

8
(P � q)�1 (P � q)�2 �2�12 +

1

8
(P � q)�1 (P � q)�2 �2�12

J
(2)
2�12�12

=
i

4�

�
1

4
g(�12g�12)

h
Z
(1)
0 �m2

i
� 1
2
g(�12q�12)Z

(0)
2 + q�12q�12Z

(�1)
4

�
: (3.74)

We use index condensation notation for momentum, q�1 :::q�n = q�1:::�n ; as well as for

metric g�1�2 = g�12 : Remembering that q(�12g�12) is the symmetric combination.

Using the reduction of the last section, we derive the identities

2q�1J
(2)
2�123

= �q2J (2)2�2�3 (3.75)

2q�1J
(2)
2�1234

= �q2J (2)2�234 : (3.76)

And the contraction with the metric tensor given by

2g�12J
(2)�123
2 = 2m2J

(2)�3
2 � i

4�
q�3 (3.77)

2g�12J
(2)�1234
2 = 2m2J

(2)�34
2 +

i

4�

1

6
[3q�34 � ��34 (q)] : (3.78)
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3.3.2 Four Dimensions

As to the four-dimensional integral, we have the following power counting8><>:
!(J

(4)
3 ) = �2

!(J
(4)�1
3 ) = �1

!(J
(4)�12
3 ) = 0

;

(
!(J

(4)
2 ) = 0

!(J
(4)�1
2 ) = 1

; (3.79)

The scalar and vector three-point functions are �nite: �J
(4)
3 = J

(4)
3 and �J

(4)�1
3 = J

(4)�1
3 .

We compute the case with the highest power counting to illustrate some features of our

treatment. The four-dimensional vector two-point integral,

�J
(4)�1
2 =

Z
d4k

(2�)4
K
�1
i

Dij

(3.80)

has linear power counting, which requires using the identity (3.4) with N = 1; as (3.58).

Its replacement allows rewriting the integrand

K
�1
i

Dij

=
K
�1
i

D2
�

� (Ai + Aj)K
�1
i

D3
�

(3.81)

+

�
AiAj
D4
�

+
A2i
D3
�Di

+
A2j

D3
�Dj

�
AiA

2
j

D4
�Dj

� AjA
2
i

D4
�Di

+
A2iA

2
j

D4
�Dij

�
K
�1
i :

After applying the integration sign, we gather the purely divergent integrals and integrate

the remaining �nite integrals.

This result exhibits all elements presented before. We organize the local divergences

through surface terms and irreducible scalars,

�J
(4)�1
2 = J

(4)�1
2 (pji)�

1

2
[P �1ji �

(4)�1
3�1

+ p
�1
ji I

(4)
log ]; (3.82)

while integrating the �nite part without restrictions,

J
(4)�1
2 (pji) =

i

(4�)2
p
�1
ji Z

(0)
1 (p

2
ij;m

2); (3.83)

where pij = ki � kj and Pij = ki + kj (2.8-2.10). For completeness, the scalar integral,

�J
(4)
2 = I

(4)
log + J

(4)
2 (pji) : (3.84)

Following our organization, its �nite part is given by

J
(4)
2 (pij) = �

i

(4�)2
Z
(0)
0 (p

2
ij;m

2):

Three-Point: We need scalar, vector, and tensor integrals.

J
(4)
3 = i (4�)�2 [Z

(�1)
00 (p; q)] (3.85)

J
(4)
3�1

= i (4�)�2 [�p�1Z
(�1)
10 � q�1Z

(�1)
01 ] (3.86)

J
(4)
3�1�2

= i (4�)�2
�
p�12Z

(�1)
20 + q�12Z

(�1)
02 + p(�1q�2)Z

(�1)
11 � 1

2
g�12Z

(0)
00

�
(3.87)
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�J
(4)
3�1�2

= J
(4)
3�1�2

+
1

4
(�

(4)
3�12

+ g�12I
(4)
log ): (3.88)

Of these, only the tensor integral is divergent, where we used N = 0, in (3.4). It is worth

mentioning that the arguments p and q are only general variables that tag the entries of

the functions; they must be carefully substituted for the ones that appear in a particular

part of the investigation. In four dimensions, we will adopt p = p21 and q = p31.

Reductions 4D: The three points obey the reductions of the previous section as the
two-point functions. Therefore it is possible to show that the tensors J satisfy

2p�1J
(4)
3�1

= �p2J (4)3 + [J
(4)
2 (q)� J (4)2 (q � p)] (3.89)

2q�1J
(4)
3�1

= �q2J (4)3 + [J
(4)
2 (p)� J (4)2 (q � p)]: (3.90)

And for the tensor integrals

2p�1J
(4)
3�1�2

= �p2J (4)3�2 + [J
(4)
2�2
(q) + J

(4)
2�2
(q � p) + q�2J

(4)
2 (q � p)] (3.91)

2q�1J
(4)
3�1�2

= �q2J (4)3�2 + [J
(4)
2�2
(p) + J

(4)
2�2
(q � p) + q�2J

(4)
2 (q � p)]: (3.92)

In addition to the trace contraction

g�1�2J
(4)
3�1�2

= m2J
(4)
3 +

i

2 (4�)2
+ J

(4)
2 (q � p) : (3.93)

In sections where a speci�c dimension is handled, we drop the super-index in J (d) integrals.

We will also need the reductions of the Z-functions for the case of di¤erent masses

Z
(1)
0 =

�
�m2

2

� �
log

m2
2

�2
� 1
�
+ 2p2Z

(0)
2 �

�
p2 +m2

1 �m2
2

�
Z
(0)
1 (3.94)

2q2Z
(0)
1 =

�
q2 +m2

1 �m2
2

�
Z
(0)
0 +m2

2 log
m2
2

�2
�m2

1 log
m2
1

�2
+
�
m2
1 �m2

2

�
(3.95)

q2Z
(0)
n+2 =

(n+ 2)

(n+ 3)

�
q2 +m2

1 �m2
2

�
Z
(0)
n+1 �

(n+ 1)

(n+ 3)
m2
1Z

(0)
n (3.96)

+
1

(n+ 3)
m2
2 log

m2
2

�2
� 1

(n+ 3) (n+ 2)

�
(n+ 1)

(n+ 3)
q2 +

�
m2
2 �m2

1

��
:(3.97)

All the results of this Session also will be used to determine under what conditions

the Einstein and Weyl anomalies manifest themselves in the gravitational amplitudes.

However, in the following two Chapters, we will verify the explicit form of the odd two-

dimensional and four-dimensional abelian chiral amplitudes. After doing this, we will

extend the results to the two-dimensional gravitational case.



Chapter 4

Two-Dimensional AV -V A Functions

In this section, we compute amplitudes of two Lorentz indices to establish the con-

nection between linearity, symmetries, and low-energy implications, which materialize

through Relations Among Green Functions (RAGFs) andWard Identities (WIs). It is also

de�ned what we mean by uniqueness, exploring examples that evoke this concept. Since

the involved amplitudes exhibit logarithmic power counting, they depend only on the dif-

ference between routings and not on the arbitrary sums; then, we adopt q = p21 = k2�k1.
Our �rst step, therefore, is to clarify the mentioned connection. After introducing

the model 2, we showed how to establish identities among the amplitudes integrands

(2.14)-(2.17). The integration should produce RAGFs for the vector and axial vertexes

q�2TAV�12 = TA�1 (1)� T
A
�1
(2) (4.1)

q�1T V A�12 = TA�2 (1)� T
A
�2
(2) : (4.2)

q�1TAV�12 = TA�2 (1)� T
A
�2
(2)� 2mT PV�2 (4.3)

q�2T V A�12 = TA�1 (1)� T
A
�1
(2) + 2mT V P�1 : (4.4)

These contractions are direct implications of the integral linearity, and conditions to their

validity are the subject of the �rst subsection. Meanwhile, WIs require vanishing the

axial one-point functions above. That occurs because the formal current-conservation

equations require it (2.21 and 2.20).

Moreover, if these symmetry constraints are valid, the general structure of these amp-

litudes as odd tensors implies kinematic properties to the scalar invariants Fi as,

TAV�12 = "�1�2F1 + "�1�q
�q�2F2 + "�2�q

�q�1F3: (4.5)

Contracting with the external momenta in the respective indexes yields

q�2TAV�12 = "�1�q
�(q2F2 + F1); (4.6)

q�1TAV�12 = "�2�q
�(q2F3 � F1): (4.7)
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The vector conservation in the �rst equation implies F1 = �q2F2; whose replacement
in the second equation produces

q�1TAV�12 = "�2�q
�q2(F3 + F2): (4.8)

Hence, if invariants do not have poles in q2 = 0, we have a low-energy implication for

axial contraction. If axial WI is satis�ed, this implication falls on the PV amplitude

q�1TAV�12

���
q2=0

= 0 = �2mT PV�2
���
q2=0

=: "�2�q
�
PV (q2 = 0); (4.9)

being 
PV is the form factor associated with PV . The deduction of this last behavior

requires the validity of both WIs, so it has the same status as a symmetry property. The

reciprocal form of this statement appears by exchanging the order of the arguments. If

the axial WI is selected �rst, it implies F1 = q2F3 � 
PV in (4.7). Its replacement in
the vector contraction (4.6) gives the low-energy implication for the contraction with the

index of the vector current

q�2TAV�12

���
q2=0

= �"�1�q
�
PV (q2 = 0): (4.10)

With this scenario in hand, our objective is their analysis in the light of explicit

integration (2.11). From de�nition (2.9), the general integrand of two-point amplitudes is

t�1�2 = K�12
12 tr[�1
�1�2
�2 ]

1

D12

+m2tr[�1�2]
1

D12

;

+mK�1
1 tr[�1
�1�2]

1

D12

+mK�1
2 tr[�1�2
�1 ]

1

D12

: (4.11)

Speci�c versions emerge after choosing the vertices and keeping the non-zero traces:

tAV�12 = K�12
12 tr(
�
�1�1�2�2)

1

D12

+m2tr(
�
�1�2)
1

D12

; (4.12)

tV A�12 = K�12
12 tr(
�
�1�1�2�2)

1

D12

�m2tr(
�
�1�2)
1

D12

: (4.13)

As the trace of four gamma matrices is a linear combination of the metric and the Levi-

Civita tensor, various expressions emerge through substitutions involving the following

versions of the identity (2.5):

2
� = "�12

�12 ; (4.14)


�
�1 = �"�1�1

�1 ; (4.15)


�
[�1�2] = �"�1�2 : (4.16)

They lead to expressions that are not automatically equal after integration. To unfold

this rationale, let us apply the chiral matrix de�nition in form 2
� = "ef
ef to write

tr(
�
abcd) =
1

2
"ef tr(
efabcd) (4.17)

= 2[�gab"cd + gac"bd � gad"bc � gbc"ad + gbd"ac � gcd"ab]: (4.18)
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We explore two equivalent sorting of indices (a; b; c; d) = (�1; �1; �2; �2) and (a; b; c; d) =

(�2; �2; �1; �1), corresponding to the substitution of the chiral matrix de�nition around

the �rst and second vertices. The traces di¤er by signs of terms but are equivalent. To

study them, we perform the contractions with K�12
12 = K�1

1 K
�2
2 and write the equations

K�12
12 tr(
�
�1
�1
�2
�2) = �2"�1�1

�
K1�2K

�1
2 +K2�2K

�1
1

�
� 2"�2�1

�
K1�1K

�1
2 �K2�1K

�1
1

�
+2"�1�2 (K1 �K2) + 2g�1�2"�1�2K

�12
12 ; (4.19)

K�12
12 tr(
�
�2
�2
�1
�1) = +2"�1�1

�
K1�2K

�1
2 �K2�2K

�1
1

�
� 2"�2�1

�
K1�1K

�1
2 +K2�1K

�1
1

�
�2"�1�2 (K1 �K2)� 2g�1�2"�1�2K

�12
12 : (4.20)

The general form (4.11) shows that combining the bilinears with mass terms associated

with tr(
�
�12) = �2"�12 leads to scalar two-point amplitudes identi�ed as

tPP = q2
1

D12

� 1

D1

� 1

D2

; (4.21)

tSS = (4m2 � q2) 1
D12

+
1

D1

+
1

D2

: (4.22)

The following reduction was used for these integrands

Sij = Ki �Kj �m2 =
1

2
(Di +Dj � p2ij): (4.23)

It is possible to express all other contributions in terms of the same object, a standard

tensor present similarly in all explored dimensions

t(s1)�1�2
=
�
K1�2K

�1
2 + s1K2�2K

�1
1

� 1

D12

: (4.24)

where the s1 = �. The tensors that arise from the expression above are given by

t(+)�12
= 2

K1�1K1�2

D12

+ q(�1K1�2)
1

D12

(4.25)

t(�)�12
= q[�2K1�1]

1

D12

: (4.26)

Nevertheless, anticipating a connection with higher dimensions, we opt to write the last

term as a pseudo-scalar function

tSP = �tPS = "�1�2t
(�)�1�2 = 2

"�1�2K
�1
1 K

�2
2

D12

using "�1�2K
�1
1 K

�2
2 = "�1�2p

�2
21K

�1
1 and then the de�nition of the vector integral for equal

masses, proportional to p�121Z1; results in

T SP = 2"�1�2q
�2J�12 = 0:

Therefore, given both versions for the four-matrix trace, we have the corresponding

versions for the AV amplitude

(tAV�12)1 = �2"�1�1t
(+)�1
�2

� "�1�2t
PP � 2"�2�1t

(�)�1
�1

+ 2g�1�2t
SP ; (4.27)

(tAV�12)2 = �2"�2�1t
(+)�1
�1

� "�1�2t
SS + 2"�1�1t

(�)�1
�2

� 2g�1�2t
SP : (4.28)
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The same happens to the V A amplitude

(tV A�12)1 = �2"�1�1t
(+)�1
�2

+ "�1�2t
SS � 2"�2�1t

(�)�1
�1

+ g�1�2t
SP (4.29)

(tV A�12)2 = �2"�2�1t
(+)�1
�1

+ "�1�2t
PP + 2"�1�1t

(�)�1
�2

� g�1�2t
SP : (4.30)

As mentioned at the beginning of the section, integrated amplitudes depend exclusively

on the external momentum q. That precludes the construction of some 2nd-order tensors,

which cancels out terms like t(�) and SP . Further examination of the general form (4.11)

allows the identi�cation of even amplitudes

tV V�1�2 = (2t(+)�1�2
+ g�1�2t

PP ) (4.31)

tAA�1�2 = (2t(+)�1�2
� g�1�2t

SS): (4.32)

Hence, the integration provides the relations among odd and even amplitudes

(TAV�12 )1 = �" �1
�1

(T V V�1�2); (TAV�12 )2 = �"
�1

�2
(TAA�1�1); (4.33)

(T V A�12 )1 = �" �1
�1

(TAA�1�2); (T V A�12 )2 = �"
�1

�2
(T V V�1�1): (4.34)

Although we did not detail, following the same steps produced both V A versions. These

associations are directly achieved at the integrand level using (4.15), the identity 
�
�i =

�" �1
�i


�1 in the adequate position. We need a clear distinction among versions since their

comparison is not automatic for integrated amplitudes due to their diverging character.

We also use the last identity 
�
[�1�2] = �"�1�2 to introduce the third version for
the discussed amplitudes. Replacing the form 
�
�1
�1 = �"�1�1 + g�1�1
� in the traces

produces the results

(tAV�12)3 = �1
2
[" �1
�1
(tV V�1�2) + " �1

�2
(tAA�1�1)]� "�2�1t

(�)�1
�1

+ "�1�1t
(�)�1
�2

; (4.35)

(tV A�12)3 = �1
2
[" �1
�1
(tAA�1�2) + " �1

�2
(tV V�1�1)]� "�2�1t

(�)�1
�1

+ "�1�1t
(�)�1
�2

: (4.36)

Since t(�)�� tensors vanish after integration, di¤erent versions with each other as follows

(TAV�12 )3 =
1

2
[(TAV�12 )1 + (T

AV
�12
)2]; (T V A�12 )3 =

1

2
[(T V A�12 )1 + (T

V A
�12
)2]: (4.37)

This particular aspect receives further attention in the section (6). The investigation

developed by the article [72] uses this version in equation (85). It illustrates how any

possible expression follows from versions one and two.

Before proceeding, we need integrated expressions. Their obtainment occurs by repla-

cing the results of appendix (C) in the integrated versions of structures (4.21),(4.22), and

(4.24). The scalar two-point functions assume the forms

T PP = q2J2 � 2Ilog; (4.38)

T SS =
�
4m2 � p2

�
J2 + 2Ilog: (4.39)
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And the symmetric sign tensor is

T (+)�12
= 2( �J2�12 + q�1J2�2) (4.40)

= 2��12 (q)

�
m2J2 +

i

4�

�
� 1
2
g�12q

2J2 + (�2�12 + g�12Ilog); (4.41)

where ��� (q) = (g��q
2 � q�q�) =q2 is the transversal projector. We put these pieces to-

gether to compound 2nd-order even tensors

T V V�1�2 = 2�2�1�2 + 4��1�2

�
m2J2 +

i

4�

�
; (4.42)

TAA�1�2 = 2�2�1�2 + 4��1�2

�
m2J2 +

i

4�

�
� g�1�2

�
4m2J2

�
; (4.43)

which lead to the versions for the AV amplitude

(TAV�12 )1 = �2" �
�1
�2�2� � 4"�1��

�
�2

�
m2J2 +

i

4�

�
; (4.44)

(TAV�12 )2 = �2" �
�2
�2�1� � 4"�2��

�
�1

�
m2J2 +

i

4�

�
� "�1�2

�
4m2J2

�
: (4.45)

Two-point functions within axial RAGFs are �nite and related through the expressions

T PV� = �T V P� = "��q
� [�2mJ2 (q)] ; (4.46)

T PA� = �TAP� = �"��(T PV )� : (4.47)

Whereas one-point functions are pure surface terms proportional to the routing ki ,

TA� (i) = �" �1
� T V�1 (i) = 2"

�1
� k�2i �2�1�2 : (4.48)

Even though the integrands are equivalent, the same does not apply to integrated

functions. In the case of even amplitudes (V V and AA), expressions depend on the

prescription adopted for evaluating divergences. That also occurs for odd amplitudes (AV

and V A), but they rely on the version for the trace. Using the chiral matrix de�nition

around the �rst or the second vertexes brings implications for the index arrangement in

�nite and divergent parts. This perspective produced identities originally, but now the

connection is not automatic. That becomes clear when we subtract the AV expressions

(TAV�12 )1 � (T
AV
�12
)2 = �2("�1��

�
2�2
� "�2��

�
2�1
) (4.49)

�4("�1�1�
�
�2
� "�2�1�

�
�1
)

�
m2J2 +

i

4�

�
+ 4"�1�2m

2J2:

We use Schouten identities in 2D to rearrange indexes in the �nite part and in surface

terms. Through the antisymmetry of the Levi-Civita tensor, we have explicitly

"�1��
�
2�2
+ "�2�1�

�
2� + "��2�

�
2�1

= 0 = "[�1��
�
2�2]

; (4.50)

"�1��
�
�2
+ "�2�1�

�
� + "��2�

�
�1

= 0 = "[�1��
�
�2]
: (4.51)
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So, the di¤erence reduces to

(TAV�12 )1 � (T
AV
�12
)2 = �"�1�2

�
2��

2� +
i

�

�
: (4.52)

The integration linearity requires this di¤erence to vanish identically, constraining the

value of ��
2�. That represents a link between linearity and the uniqueness of perturbative

solutions. Now, we analyze the role the surface terms play regarding the RAGFs.

4.1 Veri�cation and Consequences of the RAGFs

We perform contractions with momentum for the integrated amplitudes to analyze

the RAGFs, starting with even functions because they relate to the odd ones. These

operations produce the di¤erence between vector one-point functions (2.14), and that

occurs identically. After contracting the integrated V V , �nite parts cancel out due to

q�2���2 = 0, and only a surface term remains. The comparison with the V function (4.48)

leads directly to the expected relation

q�1T V V�12 = 2q�1�2�2�1 = [T
V
�2
(1)� T V�2 (2)] (4.53)

q�1TAA�12 + 2mT
PA
�2

= 2q�1�2�2�1 = [T
V
�2
(1)� T V�2 (2)]: (4.54)

The same occurs with the AA. In this case, �nite function PA and surface term appear.

Now, we turn our attention to relations for odd amplitudes (4.1)-(4.4). Taking �rst

version of AV (4.44), the contraction with vector vertex yields

q�2(TAV�12 )1 = �2"�1�1q
�2��1

2�2
= [TA�1 (1)� T

A
�1
(2)]: (4.55)

Again, identifying the axial amplitude (4.48) is straightforward and does not require

conditions. That di¤ers from the axial contraction, which needs the rearranging of indexes,

q�1(TAV�12 )1 = �2q
�1"�1��

�
2�2
� 4q�1"�1��

�
�2

�
m2J2 +

i

4�

�
: (4.56)

After employing (4.50)-(4.51), reminding that ��� = 1, we have

q�1(TAV�12 )1 = [T
A
�2
(k1)� TA�2 (k2)]� 2mT

PV
�2

+ "�2�1q
�1

�
2��

2� +
i

�

�
; (4.57)

where PV has the form (4.46). The last term prevents automatic satisfaction of this

relation, conditioning the value assumed by the surface term. This situation also occurs

for the second version (4.45); however, the additional term is on the vector contraction

q�2(TAV�12 )2 = [TA�1 (k1)� T
A
�1
(k2)] + "�1�q

�

�
2��

2� +
i

�

�
(4.58)

q�1(TAV�12 )2 = [TA�2 (k1)� T
A
�2
(k2)]� 2mT PV�2 : (4.59)
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This pattern repeats for the V A amplitude: additional terms arise in the same contractions

q�1(T V A�12 )1 = "�2�1q
�1

�
2��

2� +
i

�

�
+ TA�2 (1)� T

A
�2
(2) (4.60)

q�2(T V A�12 )2 = "�1�1q
�1

�
2��

2� +
i

�

�
+ TA�1 (1)� T

A
�1
(2) + 2mT V P�1 : (4.61)

RAGFs, deduced as identities for integrands, represent integration linearity within this

context. Even amplitudes automatically satisfy the relations since they do not depend on

the surface term value. On the other hand, odd amplitudes require the condition1

��
2� = �i (2�)

�1 : (4.62)

This term emerges for the contraction with the vertex that de�nes the amplitude version

(the position of use of the chiral matrix de�nition). Besides, choosing this �nite value

for surface terms ensures that the AV �s are equal (4.52), clarifying the relation between

linearity and uniqueness. Any formula to the Dirac traces leads to one unique answer that

respects the linearity of integration. Nevertheless, this condition sets non-zero values for

one-point functions (4.48), a¤ecting symmetry implications through WIs. That occurs for

all relations in this subsection since amplitudes depend on the surface term. This subject

receives attention in the sequence.

4.2 Ward Identities

In the model, we discussed the divergence of axial and vector currents (2.20)-(2.21),

indicating implications through WIs for perturbative amplitudes. The adopted strategy

translates these implications as restrictions over RAGFs, which link linearity and symmet-

ries. This subsection analyses such connection with particular attention to the anomalous

amplitudes, known for the impossibility of satisfying all WIs simultaneously.

Adopting a prescription that eliminates surface terms reduces all RAGFs for even

amplitudes to the corresponding WIs. For odd amplitudes, this condition satis�es those

WIs corresponding to automatic RAGFs while violating the others. Observe the �rst

version of AV to clarify this statement. Identifying the relations was automatic to the

vector RAGF; however, the axial RAGF gets an additional term. Hence, the zero value

for the surface term satis�es the vector WI while violating the axial WI. We see the

opposite for the second version, which breaks vector WI. Both identities are disregarded

for the third version since it is a composition of the �rst two. See all the results in the

Table 4.1. The same arguments are applied to the V A. Under this perspective, selecting

an amplitude version would choose the vertex for symmetry violation. Furthermore, this

value for surface terms breaks the integration linearity (in anomalous case).

1Since the third version is a combination, see (4.37), all vertices have potentially violated terms.
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Table 4.1: Violations for vanishing surface term in each version.
q�1(TAV�12 )1 = �2mT

PV
�2

+ (i=�) "�2�1q
�1 q�2(TAV�12 )1 = 0

q�1(TAV�12 )2 = �2mT
PV
�2

q�2(TAV�12 )2 = (i=�) "�1�1q
�1

q�1(TAV�12 )3 = �2mT
PV
�2

+ (i=2�) "�2�1q
�1 q�2(TAV�12 )3 = (i=2�) "�1�1q

�1

q�1T V V�12 = 0 q�2T V V�12 = 0

q�1TAA�12 = �2mT
PA
�2

q�2TAA�12 = 2mT
AP
�2

In contrast, by choosing the value that preserves linearity (4.62), di¤erent amplitude

versions collapse into one unique form2 (4.52). However, that violates all WIs for odd and

even amplitudes since they depend on the value of the surface term; see Table 4.2.

Table 4.2: Violations for unique amplitudes
q�1TAV�12 = �2mT

PV
�2

+ (i=2�) "�2�q
� q�2TAV�12 = (i=2�) "�1�q

�

q�1T V V�12 = � (i=2�) q�2 q�2T V V�12 = � (i=2�) q�2
q�1TAA�12 = �2mT

PA
�2
� (i=2�) q�2 q�2TAA�12 = 2mT

AP
�2
� (i=2�) q�2

Low-energy properties of �nite functions are fundamental to this analysis. Under the

hypothesis that both WIs for the AV amplitude apply, we established the kinematical

behavior in zero of 
PV as being zero (4.9). Nevertheless, employing the PV expression

(4.46) and the limit (3.30), we have


PV (0) = 4m2J2
��
0
=
i

�
m2Z

(�1)
0 (0) = � i

�
: (4.63)

That means the hypothesis is false. Hence, when satisfying the vector WI, the axial WI

violation is the value corresponding to the negative of 
PV (0). The other expectation

(4.10) leads to the reciprocal: satisfying the axial WI implies violating the vector WI.

The scenario can be understood by noting a general 2nd-order odd tensor

F�1�2 = "�1�2F1 + "�1�q
�q�2F2 + "�2�q

�q�1F3; (4.64)

exhibits a feature when contracted with the momentum: we get two equations that are

strict consequences of its tensor properties

q�1F�1�2 = "�2�q
�V1
�
q2
�
= "�2�q

�
�
q2F3 � F1

�
(4.65)

q�2F�1�2 = "�1�q
�V2
�
q2
�
= "�1�q

�
�
q2F2 + F1

�
: (4.66)

If form factors are free of kinematic singularities observed in the explicit forms of the

amplitudes, we have the implication at zero

V1 (0) + V2 (0) = 0: (4.67)

2The version (AV )3 happens to be independent of value of the surface term. Parametrizing �2�� =
ag�� in its equation, we get an expression independent of coe¢ cient a and equal to the unique form.
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If one of the terms vanishes, the other must do so. Otherwise, if one of the Vi (q2) relates to

a �nite function (PV or V P ), an additional constant must appear as compensation within

the last equation. Nevertheless, these statements are inconsistent with the satisfaction

of both WIs, which only occurs if linearity of integration holds with null surface terms.

Thus, the low-energy behavior of these �nite functions is the source of anomalous terms

in amplitudes (AV -V A) and not their perturbative ambiguity.

But ambiguities relate to the low-energy implications. Under the condition of linearity

and considering surface terms in the general tensor, this limit implies the constraint

2��
2� = 
PV (0). Such an aspect will be fully explored in the section considering odd

triangles in the physical dimension. Conclusions similar to those drawn here anticipate

the presence of anomalies and linearity breaking in this new circumstances. However, now

we will explore the same two-dimensional scenario but consider a model where di¤erent

species of massive fermions interact and what generalities we can obtain from this context.



Chapter 5

The AV of Two Distinct Masses

To show that the behavior of amplitudes is independent of masses, let us explore the

universe where di¤erent species of massive fermions interact. At the end of this Chapter,

we answer the question: Can amplitudes be obtained as consistent with their expected

symmetry properties? The generalization of this work is published in the paper [41].

The n-point fermionic functions with di¤erent masses follow (2.9), where the mass

indexes follow the momentum; In this scenario, the argument of the propagator i accounts

for the routing and the mass running in the internal lines, viz., S (i) � S (Ki;mi) =

( /Ki �mi)
�1. The expansion in terms of traces is given by

t�1�2 = K�12
12 tr[�1
�1�2
�2 ]

1

D12

+m1m2tr[�1�2]
1

D12

(5.1)

+m2K
�1
1 tr[�1
�1�2]

1

D12

+m1K
�1
2 tr[�1�2
�1 ]

1

D12

:

The �rst relevant point concerns versions one and two as independent equations for

odd amplitudes, just as for equal masses. The expressions established in (4.33) also apply,

(TAV�1�2)1 = �"
�1

�1
T V V�1�2 (TAV�1�2)2 = �"

�1
�2

TAA�1�1 : (5.2)

That happens to two masses since the T SP function and tensor T (�)�2�2 are identically zero.

They are proportional to the vector integral J�12 = �i (4�)�1 q�1Z1 (q;m1;m2). Explicitly,

T (�)�12
= q[�2J2�1] (q;m1;m2) = 0 (5.3)

T SP = 2"�1�2q
�2J�12 (q;m1;m2) = 0: (5.4)

E¤ectively amounts to the validity for di¤erent masses regarding the general expression

obtainable through 
� de�nition, as (4.27) and (4.28).

Expressions to 2nd-order tensors are written through scalar sub-amplitudes �1�2 = SS

and �1�2 = PP . To obtain these structures, we use the identity for the distinct fermions,

2K2 �K1 = D1 +D2 +
�
m2
1 +m2

2 � q2
�
: (5.5)
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Employing (3.59) to one-point integrals1, we have

T PP = [+q2 � (m1 �m2)
2]J2 �

�
2Ilog(�

2)
�
+

i

4�

�
log
�
m2
1=�

2
�
+ log

�
m2
2=�

2
��
(5.6)

T SS = [�q2 + (m1 +m2)
2]J2 +

�
2Ilog(�

2)
�
� i

4�

�
log
�
m2
1=�

2
�
+ log

�
m2
2=�

2
��
:(5.7)

From the equations above, a relation that connects the sub-amplitudes is

T PP + T SS = 4m1m2J2:

While the tensorial part is compiled in the sign tensor (4.25),

T (+)�12
= 2 �J2�1�2 + q(�1J2�2) = 2

�J2�1�2 + 2q�1J2�2 ; (5.8)

Evoking (3.66), we get the functional structure to equal masses,

2T (+)�12
= 4(J2�1�2 + q�1J2�2) + 2�2�12(�

2) + 2g�12Ilog(�
2): (5.9)

However, di¤erences emerge in reducing the basic functions of two masses.

With these tools in hand, it is straightforward to express 2nd-order tensor amplitudes:

The �rst one is the Double-Vector (V V ), given by

T V V�1�2 = 2T (+)�1�2
+ g�12T

PP (5.10)

= 2
�
�2�12

�
�2
��
+ 4(J2�1�2 + q�2J2�1) + g�12 [q

2 � (m1 �m2)
2]J2

+
i

4�
g�12

�
log
�
m2
1=�

2
�
+ log

�
m2
2=�

2
��
:

To show the elegance of the method, we also can write the amplitude in terms of Z(�1)n ,

T V V�1�2 = 2[�2�12

�
�2
�
] +

i

�
��12 [1 +m

2
1Z

(�1)
0 �

�
m2
1 �m2

2

�
Z
(�1)
1 ]

+
i

2�
g�12 (m1 �m2) [(m1 +m2)Z

(�1)
1 �m1Z

(�1)
0 ]:

It used reductions for Z(n)k that are complementary to using J-integrals. They occur

when we perform contractions to investigate symmetry relations. The expression for the

Double-Axial Green Function (AA) is

TAA�1�2 = T V V�1�2 � g�1�2
�
T SS + T PP

�
(5.11)

= +2�2�12 + 4(J2�1�2 + q�2J2�1) + g�12 [q
2 � (m1 +m2)

2]J2

+
i

4�
g�12

�
log
�
m2
1=�

2
�
+ log

�
m2
2=�

2
��
:

From even amplitudes can be to express the odd ones: the �rst version and the second

version for distinct masses are

(TAV�1�2)1 = �2"�1�1�
�1
2�2
� 4"�1�1(J

�1
2�2
+ q�2J

�1
2 )� "�1�2 [q

2 � (m1 �m2)
2]J2

� i

4�
"�1�2

�
log
�
m2
1=�

2
�
+ log

�
m2
2=�

2
��

(5.12)

1See D1 and D2 in the expression (5.5); when we substitute this identity, these terms always cancel
one of the propagators, reducing the function from two to one-point.
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(TAV�1�2)2 = �2"�2�1�
�1
2�1
� 4"�2�1(J

�1
2�1
+ q�1J

�1
2 ) + "�1�2 [q

2 � (m1 +m2)
2]J2

+
i

4�
"�1�2

�
log
�
m2
1=�

2
�
+ log

�
m2
2=�

2
��
: (5.13)

One-index two-point amplitudes coming from RAGFs for odd amplitudes: Performing

the traces and writing K2 = K1 + q to get the integrand for �1�2 = AS and �1�2 = PV:

Thus, by our de�ntions, we get the �nite amplitudes

T PV�2 = 2"�2� [(m2 �m1) J
�
2 �m1q

�J2] = �T V P�2 (5.14)

TAS�1 = �2"�1� [(m1 +m2) J
�
2 +m1q

�J2] = T SA�1 : (5.15)

The same procedure applies to the two amplitudes coming from RAGFs for even ones

T SV�2 = 2
�
(m1 +m2) J2�2 +m1q�2J2

�
= T V S�2 (5.16)

T PA�2 = �2
�
(m2 �m1) J2�2 �m1q�2J2

�
= �TAP�2 : (5.17)

A last point is the ubiquitous presence of the one-point di¤erences; to them, we adopt

one more notation to simplify the expressions. They are the same as the equal mass case

because they are proportional to �J1� (k1) that remain a pure surface-term

TA(�)�i = TA�i (k1)� T
A
�i
(k2) = �2"�i�1q

�2��1
2�2

(5.18)

T V(�)�i = T V�i (k1)� T
V
�i
(k2) = 2q

�1�2��i : (5.19)

Where we �rst time de�ne the di¤erence between axial one-point functions as TA(�)�i =

TA�i (k1)� T
A
�i
(k2). The other one-point function that appears is the scalar one

T S (ki) = 2mi
�J1 (ki) = 2miIlog

�
m2
i

�
= 2mi

�
Ilog
�
�2
�
� (i=4�) log

�
m2
i =�

2
��
: (5.20)

Following this, we will study RAGFs to odd and even amplitudes and the e¤ects over

these relations due to two species of massive fermions in the currents; since the divergent

of the vector current is connected to the scalar density, it is not strictly conserved now.

Later, an expansion of the discussion of the low-energy theorem to the AV amplitude and

its relation to WI and integration linearity is exposed.

5.1 Relations Among Green Functions

RAFGs will be used as fundamental mathematical tools to provide essential insights

into the behavior of the amplitudes in question and how their properties relate.

Odd amplitudes: To explore the mechanism, take the de�nition

tAV�12 = tr[
�
�1S (1) 
�2S (2)] (5.21)

and contract with q�2 : Next, is it possible to apply the identity

/q = ( /K2 �m2)� ( /K1 �m1) + (m2 �m1) : (5.22)
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We yield a relation between one- and two-point amplitudes

q�2tAV�12 = tr[
�
�1S (1)]� tr[
�
�1S (2)] + (m2 �m1) tr[
�
�1S (1)S (2)] (5.23)

= tA(�)�1 + (m2 �m1) t
AS
�1
: (5.24)

The procedure to obtain the vector contraction is similar, namely

q�1tAV�12 = tA(�)�2 � (m1 +m2) t
PV
�2
: (5.25)

With further exploration, let us introduce the second contractions for amplitudes,

q�2q�1tAV�12 = q�2tA(�)�2 � (m1 +m2) t
PP (5.26)

q�1q�2tAV�12 = q�1tA(�)�1 + (m2 �m1) t
SS: (5.27)

In parallel to the equal mass scenario, we have RAGFs for even tensors. Regarding

these RAGFs, we have two-point functions that are not present for equal masses since

they are proportional to the mass di¤erence,

q�1tV V�1�2 = tV(�)�2 + (m2 �m1) t
SV
�2

(5.28)

q�2tV V�1�2 = tV(�)�1 + (m2 �m1) t
V S
�1
: (5.29)

We have an additional term proportional to the contraction with SV for two contractions

q�2q�1tV V�1�2 = q�2tV(�)�2 + (m2 �m1) q
�2tSV�2 : (5.30)

For the double-axial one, the simple and double contraction with the momentum obeys

q�1tAA�1�2 = tV(�)�2 � (m1 +m2) t
PA
�2

(5.31)

q�2tAA�1�2 = tV(�)�1 + (m2 +m1) t
AP
�1
: (5.32)

q�2q�1tAA�1�2 = q�2tV(�)�2 � (m1 +m2) q
�2tPA�2 : (5.33)

RAGF Veri�cation: The axial amplitudes exhibit a nontrivial behavior, as is ex-
pected, since equal masses are a particular case. Here, the vector and the axial currents

are not conserved and are proportional to a di¤erence and the sum of the masses,

@�J
� = i (ma �mb) � a b (5.34)

@�J
�
� = �i (ma +mb) � a b: (5.35)

So, in these amplitudes, we will focus our attention now.

Version one: Contracting the expression (5.12), terms proportional to the vector
integral vanishes by the symmetry of indices "�1�2q

�2J�12 = 0; so we have

q�1(TAV�1�2)1 = 2q�2"�1�2�
�1
2�2
+ 4"�1�2q

�2J�12�2 + "�2�q
� [q2 � (m1 �m2)

2]J2 (5.36)

+(i=4�) "�2�q
� [log

�
m2
1=�

2
�
+ log

�
m2
2=�

2
�
]:
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We need to exchange the indices in J�12�2 (in the �rst line) employing Schouten identity as

"�1�2q
�2J�12�2 + "�2�1q

�2J�12�2 + "�2�2q
�2J�12�1 = 0: (5.37)

Two types of contractions arise from equations (3.67)-(3.68) introduced in Section (3.3),

2q�2J�12�2 = �
�
q2 +m2

1 �m2
2

�
J�12 � (i=4�) q�1 log

�
m2
2=�

2
�

(5.38)

g�12J
�12
2 = i=4� +m2

1J2 � (i=4�) log
�
m2
2=�

2
�
:

Using the results above, we lead to the expression:

q�1(TAV�1�2)1 = 2q�2"�1�2�
�1
2�2
+
i

�
"�2�1q

�1 (5.39)

+"�2�1q
2(2J�12 + q�1J2) + (i=4�) "�2�q

� log
�
m2
1=m

2
2

�
+"�2�1f2(m

2
1 �m2

2)J
�1
2 + q�1 [4m2

1 � (m1 �m2)
2]J2g:

The identity "[�1�2�
�1
2�2]

= 0 allows adjusting indices and recognizing one-point func-

tions together with relation for �nite vectors and scalar two-point integrals of two masses

q2 (2J�2 + q�J2) = �q�
�
m2
1 �m2

2

�
J2 � (i=4�) q� log

�
m2
1=m

2
2

�
: (5.40)

Doing it some more algebraic operations, we produce the result for this contraction,

q�1(TAV�1�2)1 = �2"�1�1q
�2��1

2�2
+ "�1�2q

�2(2��1
2�1
+ i=�) (5.41)

+2 (m1 +m2) "�2�1 [(m1 �m2)J
�1
2 + q�1m1J2]:

Recalling the PV functions of two masses and one-point di¤erences means

q�1(TAV�1�2)1 = TA(�)�2 � (m1 +m2)T
PV
�2

+ "�2�2q
�2(2��1

2�1
+ i=�): (5.42)

The contraction with the second vertex in the same version starts with

q�2(TAV�1�2)1 = �2"�1�1q
�2��1

2�2
� 2"�1�1(2q

�2J�12�2 + 2q
2J�12 ) (5.43)

�"�1�1q
� [q2 � (m1 �m2)

2]J2

� (i=4�) "�1�2q
�2
�
log
�
m2
1=�

2
�
+ log

�
m2
2=�

2
��
;

here, the reductions occur directly, see q�2J�12�2 : Using (3.67), we get

q�2(TAV�1�2)1 = �2"�1�1q
�2��1

2�2
� 2"�1�1 (m2 �m1) [(m1 +m2) J

�1
2 +m1q

�1J2] ; (5.44)

where all the elements of the RAGF can be identi�ed in the �nal result,

q�2(TAV�1�2)1 = TA(�)�1 + (m2 �m1)T
AS
�1
: (5.45)

Note that RAGF is automatically satis�ed and does not have an additional term as (5.42).
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Version two: To the second one apply the same considerations: Starting with q�1 ;

q�1(TAV�1�2)2 = �2"�2�1q
�1��1

2�1
� (i=4�) "�2�q

�
�
log
�
m2
1=�

2
�
+ log

�
m2
2=�

2
��

�4"�2�1(q
�1J�12�1 + q2J�12 )� "�2�q

� [q2 � (m1 +m2)
2]J2: (5.46)

Reducing the integrals in a direct way as q�1J�12�1 and recognizing the terms follows

q�1(TAV�1�2)1 = TA(�)�2 � (m1 +m2)T
PV
�2

: (5.47)

The relation in the second vertex (vectorial) appears to have the same behavior as the

equation (5.36). The terms can not be identi�ed directly; see the equation below

q�2(TAV�1�2)2 = �2q�2"�1�2��1
2�1
+ 4"�1�2(J

�1
2�1
+ q�1J

�1
2 ) + "�1�q

� [q2 � (m1 +m2)
2]J2

+(i=4�) "�1�q
�
�
log
�
m2
1=�

2
�
+ log

�
m2
2=�

2
��

(5.48)

Again, we have to switch the indices of place what will amount to the apperance of a

conditioning factor in its RAGFs, namely,

q�2(TAV�1�2)2 = TA(�)�1 + (m2 �m1)T
AS
�1
+ "�1�1q

�1(2��2
2�2
+ i=�): (5.49)

Equivalence: To be complete, we must evaluate the di¤erence between the versions
(5.12) and (5.13). Taking their full expression and subtracting one from another

(TAV�1�2)1 � (T
AV
�1�2

)2 = 2["�2�1�
�1
2�1
� "�1�1�

�1
2�2
]� 2"�1�2 [q

2 �
�
m2
1 +m2

2

�
]J2

+4["�2�1(J
�1
2�1
+ q�1J

�1
2 )� "�1�1(J

�1
2�2
+ q�2J

�1
2 )]

�(i=2�)"�1�2 [log(m
2
1=�

2) + log(m2
2=�

2)]; (5.50)

thereby employing the Schouten identity in the second line above, we have

4"�2�1(J
�1
2�1
+ q�1J

�1
2 )� 4"�1�1(J

�1
2�2
+ q�2J

�1
2 ) = 4"�2�1(J

�1
2�1
+ q�1J

�1
2 ):

With the help of reductions, it is relatively easy to show exactly

(TAV�1�2)1 � (T
AV
�1�2

)2 = 2["�2�1�
�1
2�1
� "�1�1�

�1
2�2
] + (i=�) "�2�1 : (5.51)

Apllying "[�2�1�
�1
2�1]

= 0, this result naturally also may be expressed as

(TAV�1�2)1 � (T
AV
�1�2

)2 = "�2�1(2�
�1
2�1
+ i=�): (5.52)

Another way to systematize the RAGFs that will be used in Chapter (7) is to notice

that every time the index is contracted with the one remaining in the even amplitude,

the relation is satis�ed. Therefore we can use the above relation to exchange the versions

when contracting with the index in the vertex used to de�ne the version

q�1(TAV�1�2)1 = q�1(TAV�1�2)2 + "�2�1q
�1 (2��

2� + i=�)

= TA(�)�2 � 2 (m1 +m2)T
PV
�2

+ "�2�q
� (2��

2� + i=�) (5.53)
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q�2(TAV�1�2)2 = q�2(TAV�1�2)1 � "�2�1q
�2(2��

2� + i=�)

= TA(�)�2 � 2(m1 �m2)T
AS
�2
+ "�1�q

�(2��
2� + i=�): (5.54)

These features are notable in two dimensions. In four dimensions, we also establish

relations among versions (three of them). However, in that scenario, the odd amplitudes

do not collapse in a direct connection to even ones. We have to check the RAGFs explicitly.

Even Amplitudes: The relations to the even amplitudes are easy to check,

q�1T V V�1�2 = 2q�1�2�12 + (i=4�) q�2
�
log
�
m2
1=�

2
�
+ log

�
m2
2=�

2
��

(5.55)

+4
�
q�1J2�1�1 + q�2q

�1J2�1
�
+ q�2 [q

2 � (m1 �m2)
2]J2:

Using the same operations in J2-integrals as applied to the odd amplitudes follows

q�1T V V�1�2 = T V(�)�2 � 2 (m1 �m2)
�
(m1 +m2) J2�2 +m1q�2J2

�
(5.56)

= T V(�)�2 + (m2 �m1)T
SV
�2

q�2T V V�1�2 = T V(�)�1 + (m2 �m1)T
V S
�1
: (5.57)

For the AA-amplitude (5.11), the two relations follows by

q�1TAA�1�2 = T V(�)�2 � (m1 +m2)T
PA
�2

q�2TAA�1�2 = T V(�)�2 + (m2 +m1)T
AP
�1
: (5.58)

See PA in (5.17); we could have expressed only in term of one since they di¤er by a sign.

The double-contraction for the even amplitudes (5.30) and (5.33) is associated with

�nite one-rank amplitudes. By themselves their relations are

q�1tV S�1 = +(m2 �m1) t
SS + [tS (1)� tS (2)] (5.59)

q�1tAP�1 = � (m2 +m1) t
PP � [tS (1) + tS (2)]: (5.60)

The LHS is �nite, but the RHS shows a log-divergent object Ilog. Nonetheless, in our

strategy, it is an exact and straightforward algebraic step to verify them. Using as an

example the following equation

q�1T V S�1 = 2 (m1 +m2) q
�1J2�1 + 2m1q

2J2: (5.61)

Applying Eq. (3.69) in order to reduce the two-masses vector integral, we have

q�1T V S�1 = � (m2 �m1) [q
2 � (m1 +m2)

2]J2 + (i=4�) (m1 +m2) log
�
m2
2=m

2
1

�
: (5.62)

The last term can be manipulated by the scale relation (3.62), viz.,

(i=4�) log
�
m2
2=m

2
1

�
= Ilog

�
m2
1

�
� Ilog

�
m2
2

�
; (5.63)
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which through an organization of the terms produces the following expression

q�1T V S�1 = (m2 �m1) f[�q2 + (m1 +m2)
2]J2 +

�
Ilog(m

2
1) + Ilog(m

2
2)
�
g (5.64)

+2m1Ilog(m
2
1)� 2m2Ilog

�
m2
2

�
:

We can rewrite the �rst term as the SS amplitude (5.7) and organize the result

q�1T V S�1 = (m2 �m1)T
SS (5.65)

+2m1[Ilog(�
2)� (i=4�) log

�
m2
1=�

2
�
]

�2m2[Ilog(�
2)� (i=4�) log

�
m2
2=�

2
�
]:

The scalar one-point function is given in (5.20). Hence we verify that the two last lines

correspond to the di¤erence between them, representing the satisfaction of its RAGF,

q�1T V S�1 = (m2 �m1)T
SS + T S (1)� T S (2) : (5.66)

Note that in these case, the di¤erence between scalar one-point functions does not cancel

and depends on the individual masses.

The q�TAP� works under the same manipulations used in V S, starting with

q�1TAP�1 = 2 (m2 �m1) q
�1J2�1 � 2m1q

2J2: (5.67)

Through of the relation estabilish in (3.69), the equation above results in

q�1TAP�1 = (m1 +m2) [(m1 �m2)
2 � q2]J2 + (i=4�) (m2 �m1) log

�
m2
2=m

2
1

�
: (5.68)

Rewriten the �rst term by (5.6) and organize the result

q�1TAP�1 = � (m1 +m2)T
PP (5.69)

�2m1[Ilog(�
2)� (i=4�) log

�
m2
1=�

2
�
] (5.70)

�2m2[Ilog(�
2)� (i=4�) log

�
m2
2=�

2
�
]:

The two last lines now appear as the sum of scalar one-point functions, namely

q�1TAP�1 = � (m1 +m2)T
PP � [T S (1) + T S (2)]: (5.71)

For equal masses, the term to one-point functions is proportional to the masses�sum.

As explored in the chapter for equal masses, it is possible to obtain properties for the

amplitudes by combining their general tensor structures with their symmetry relations or

Ward�s identities. These results are not restricted to perturbative solutions and should

remain valid even for exact solutions. The V S function is constructed from a vector with

an external vector, T V S� = q�F1(q
2); where F1(q2) is an invariant function. This form

allows us to state a low-energy limit for this amplitude contracting the equation, viz,

q�T V S� = q2F1(q
2): Then, q�T V S�

��
q2=0

= 0, since F1(q2) does not poles at q2 = 0:
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In this way, to obtain an interpretation relation from RHS of relations (5.66) and

(5.71), let us analyze the SV and AP -amplitudes in the limit in kinematical point. We

have that limq2!0(q
�1T V S�1 ) = 0 is satis�ed, since the J2 = i=4�Z

(�1)
0 where the function

Z
(�1)
0 in this point is given by

Z
(�1)
0 (0;m2;m1) =

1

(m2
1 �m2

2)
log

m2
2

m2
1

: (5.72)

From Eq (5.66) and the explicit result (5.7), follows

(m2 �m1)T
SS
��
q2=0

= 2(m2 �m1)Ilog(�
2) + (i=2�) [m1 log(m

2
1=�

2)�m2 log(m
2
2=�

2)](5.73)

= �
�
T S (1)� T S (2)

�
; (5.74)

therefore q�1T V S�1

���
q2=0

= 0: The low-energy theorem for TAP�1 is also ful�lled because the

same operations leads us to

(m1 +m2)T
PP
��
q2=0

= �
�
T S (1) + T S (2)

�
: (5.75)

We saw that the one-point functions were indispensable for satisfying the deduced kin-

ematical implication based on the tensor structure for amplitude with one Lorentz index.

That is the opposite of the situation for amplitudes with two indices. The reason for the

need for scalar one-point functions can be understood by analyzing the canonical structure

of WIs for multiple masses. There, the meaning of these terms �nds a justi�cation.

5.2 Ward Identities: Two Masses

Here we will argue why the scalar one-point functions are part of WIs from one-index

two-point functions. We take free �elds that generate our amplitudes, of particular interest

to our purposes, obeying the equal-time anticommutation relation

f �i (y) ;  
y�
j (x)g = �ij�

��� (x� y) ; (5.76)

where i and j refer to di¤erent species of fermions ( 1 and  2), all other anticommutators

are null. Fermionic densities, de�ned as a set of bilinear in the fermions, are

J�i = � 2�i 1; and J�iy = � 1(
0�
y
i
0) 2; (5.77)

where �i belong to set of the vertices given by (2.2). Explicitly we have

V � =
�
� 2


� 1
�
; A�� =

�
� 2
�


� 1
�
; S =

�
� 2 1

�
; P =

�
� 2
� 1

�
:

The adjoints yield the same matrices 
0�
y
i
0 = �i with the exception of pseudo-scalar one


0
�
0 = �
�. We adopted a di¤erent notation here to avoid confusion with J-integrals.
Two-point functions can be seen in position space as

T �1�2 (x� y) = tr [�1SF (x� y;m1) �2SF (y � x;m2)] = �


J�1 (x) J�2y (y)

�
: (5.78)
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The minus sign occurs because Wick contraction yields i times our propagator de�nition,

and h�i = h0 jT f�gj 0i is an abbreviation for a time-ordered product. We recovered the
letter for the Feynman propagator to not mistake it for scalar density.

To clarify the WIs for two-point functions with one-index, we use Dirac equations,


�@� 1 = �im1 1;
�
@�� 2

�

� = im2

� 2: (5.79)

Through them, we obtain that the vector and axial currents satisfy

@�V
� = +i (m2 �m1)S (x) = i (m2 �m1) � 2 1 (5.80)

@�A
� = �i (m2 +m1)P (x) = �i (m2 +m1) � 2
� : (5.81)

The next step is to notice that when we perform space-time derivatives in the time ordering

for densities carrying Lorentz indices, equal-time commutators will appear; to them, we

will use the identity

[AB;CD] = �AC fB;Dg+ A fB;CgD � C fD;AgB + fC;AgDB: (5.82)

Necessary formal commutators arise to time components, but in general, we will have�
J�1 (x) ; J�2y (y)

�
x0=y0

=
�
� 2 (x) �

1 1 (x) ;
� 1 (y) �

2 2 (y)
�

(5.83)

=
�
� 2 (x) �

1
0�2 2 (y)� � 1 (y) �2
0�1 1 (x)
�
�2 (x� y) :

The commutators necessary to point out the di¤erences between symmetry relations

of two and one indices two-point functions (satis�ed for V S and AP amplitudes) are�
V0 (x) ; V

�y (y)
�
=

�
� 2 (x) 


� 2 (y)� � 1 (y) 
� 1 (x)
�
�2 (x� y) (5.84)�

A0 (x) ; V
�y (y)

�
=

�
� 2 (x) 
�


� 2 (y)� � 1 (y) 
�
� 1 (x)
�
�2 (x� y) (5.85)�

V0 (x) ; S
y (y)

�
=

�
� 2 (x) 2 (y)� � 1 (y) 1 (x)

�
�2 (x� y) (5.86)�

A0 (x) ; P
y (y)

�
=

�
�� 2 (x) 2 (y)� � 1 (y) 1 (x)

�
�2 (x� y) ; (5.87)

all evaluated in x0 = y0. Observe that densities in LHS carry two distinct masses, and the

RHS bilinears appear with only one mass, though the two terms carry a distinct mass.

Taking the derivative of V V , using the motion�s equation to the currents, and ob-

serving the commutator at equal times (5.84), we get the formal result

@�x


V� (x)V

y
� (y)

�
= i (m2 �m1)



S (x)V y

� (y)
�

(5.88)

+
�

� 2 (x) 
� 2 (y)

�
�


� 1 (y) 
� 1 (x)

��
�2 (x� y) ;

where @�x = @=@x�. The Ward identity for equal masses came from cancellation in the

last line since the terms become equal, and we are ignoring Schwinger�s terms. As for

two masses, it arises from Lorentz symmetry that implies the vanishing of one-point
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vector function individually, e.g.,


0
��� 1 (x) 
� 1 (y)�� 0� = 0. It is understood by using

the generator of translations in a vector operator O� (x),

h0 jO� (x)j 0i =


0
��e�iP �xO� (0) eiP �x�� 0� = h0 jO� (0)j 0i = 0: (5.89)

Furthermore, because o Lorentz symmetry, such a constant vector must vanish. Note that

this constraint may not be valid perturbatively. Putting aside that, the proposed WI is

@�x


V� (x)V

y
� (y)

�
= i (m2 �m1)



S (x)V y

� (y)
�
: (5.90)

In it, only the contribution of motion�s equations plays a part; additionally, if the correl-

ator involves one axial and one vector current, the argument for vanishing the one-point

amplitudes in (5.85) is the same.

The situation is quite di¤erent for V S and AP functions; symmetry constraints pass

@x�


V � (x)Sy (y)

�
= i (m2 �m1)



S (x)Sy (y)

�
(5.91)

+


� 2 (x) 2 (y)� � 1 (y) 1 (x)

�
�2 (x� y) ;

where the commutator
�
V0 (x) ; S

y (y)
�
= (5.86) generates one-point scalar functions that

formally cancel each other for equal masses, but in that case, the V S-amplitude is null.

Nonetheless, in AP (or PA), they appear in a non-canceling way

@x�


A� (x)P y (y)

�
= �i (m1 +m2)



P (x)P y (y)

�
(5.92)

�


� 2 (x) 2 (y) +

� 1 (y) 1 (x)
�
�2 (x� y) :

The commutator yields a sum, not a cancellation, for equal masses. So the canonical

commutator terms appear and may not be zero due to other symmetry arguments.

As in the two masses scenario, the scalar one-point functions are not removed from ex-

pression to Ward identities and are an integral part of them. For one species of fermions,

the commutator of vector (and axial) densities being zero is a particular phenomenon; this

term comes from canonical algebra. Their eliminations are to be accounted for by addi-

tional arguments, e.g., Lorentz invariance. Such statements are not present against scalar

densities that, in turn, guarantee a low-energy theorem to the V S and AP amplitudes.

To visualize consequences of this reasoning line and connect it with calculated expres-

sion, let us remind that Wick contractions yield i times our de�nition of the propagator,

0
��T � (x) � � (y)�� 0� = iS��F (x� y;mi) : (5.93)

Therefore, Fourier transforming the two-point functions (5.78),

T �1�2 (q) =

Z
d2ze�iq�z

�
T �1�2 (z)

�
= �

Z
d2ze�iq�z



J�1 (x) J�2y (y)

�
(5.94)

=

Z
d2k

(2�)2
tr [�1SF (k + k1;m1) �2SF (k + k2;m2)] ; (5.95)
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where z = x�y and k2�k1 = q. In the case of double-vector V V (5.10) and V S, we may

write the motion�s equation, and the commutation relations furnish the formal equations

@�z T
V V
�� (z) = i (m2 �m1)T

SV
� (z) (5.96)

+itr [
�SF (z;m1)] �
2 (z)� itr [
�SF (�z;m2)] �

2 (z) ;

@�z T
V S
� (z) = i (m2 �m1)T

SS (z) (5.97)

+itr [SF (z;m1)] �
2 (z)� itr [SF (�z;m2)] �

2 (z) ;

whose Fourier transform returns an expression where we do not neglect any term,

q�T V V�� (k1; k2) = (m2 �m1)T
SV
� (5.98)

+

Z
d2k

(2�)2
ftr [
�SF (K1;m1)]� tr [
�SF (K2;m2)]g

q�T V S� (k1; k2) = (m2 �m1)T
SS (5.99)

+

Z
d2k

(2�)2
ftr [SF (K1;m1)]� tr [SF (K2;m2)]g :

Recapitulating the facts, the parts from the time component of the commutator of

currents with vector and axial currents formally cancel for one species of massive fermions.

We got a WI whose contribution comes only from motion equations. On the other hand,

for two masses, formal Lorentz invariance requires the vector and axial one-point functions

to vanish as well, and thus they are not part of the WI. Indeed using our strategy, we

saw in momentum space that they become pure surface-term that can be made zero.

Additionally, the anomalies of the odd amplitudes are related to the impossibility of the

formal/canonical WI being realized, which we establish as a consequence of a Low energy

implication from a �nite function; see the next section where that point is discussed and

the relation with the linearity of integration.

In contrast, the commutator of the time component of the currents with scalar dens-

ities, or pseudo-scalar ones, giving rise to scalar one-point functions, besides the term

coming from the motion�s equations, is not necessarily zero. The point is that when the

masses are equal, that di¤erence of amplitudes vanishes in pairs for SV and sum for AP .

They do not cancel in any situation for distinct masses and can not be zero because they

are not a constant function of their mass parameters.

One way to see the di¤erence between the two situations is to take into account that

for even dimension, there is a matrix such that C
�C
�1 = �
T� , the charge conjugation

matrix. This matrix implies a behavior to the vertexes, viz.,

C
�
1; 
�; 
�; 
�
�

�
C�1 = [1;�
T� ;�
T� ;�

�

�
�

�T
]: (5.100)

It is direct to see that the propagator obeys CSF (Ki;mi)C
�1 = STF (�Ki;mi). Applying

it to the de�nition of one-point function, we have

t�1 = tr[�1SF (Ki;mi)] = tr[C�1C
�1CSF (Ki;mi)C

�1]: (5.101)
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Using the trace properties and as well the relation for matrices

tr
�
BT
1 � � �BT

n

�
= tr (Bn � � �B1)T = tr (Bn � � �B1) ; (5.102)

we may write from general considerations established above

t�1 = tr[
�
C�1C

�1�T SF (�Ki;mi)]:

At this point, note that there is a sign change to the pseudo-scalar, vector, and axial

vertices. Then integrating the result above, we have

T �1 = �
Z

d2k

(2�)2
tr[�1SF (�k � ki;mi)]: (5.103)

Re�ecting on the integration variable and shifting, as the hypothesis, we get

T �1 (ki) = �
Z

d2k

(2�)2
tr[�1SF (Ki;mi)] = �T �1 (ki) : (5.104)

That implies that axial and vector one-point functions must vanish identically, as T P = 0

already in the trace level. As trivial as it may appear, this is not a direct consequence of

Feynman�s rules; the possibility of shifting is coded in the intrinsic surface term present

in the amplitudes, which is why the T V ; TA are only surface terms. Nevertheless, it does

not mean these parts in the amplitudes could not be non-zero and violate WIs.

For instance, the scalar function may have surface terms in 4D, but it is not obliged

to be identically zero by translational invariance. In that case, the above equation picks

up a positive sign. Those T S (ki;mi) amplitudes show a masse dependence through a

logarithm. Since they are proportional to the basic divergent object, taking its derivative,

@Ilog (m
2
i )

@m2
i

= � i

4�

1

m2
i

: (5.105)

The integration picks up an arbitrary constant Ilog (m2
i ) = (i4�)

�1 log
�
m2
i =�

2
0

�
that could

help with cancellations; however, in combinations, this is not possible, see

Ilog(m
2
i )� Ilog(m2

j) = �
i

4�
log

m2
i

m2
j

: (5.106)

However, the scalar-one cancels each other for equal masses when they arise from a com-

mutator of vector currents. When the masses are unequal, there is no reason for them to

disappear in the perturbative expression. They are integral parts of WI and necessary for

their consistency. The low-energy theorem derived for them requires that part to occur

q�T V S� = q2F
�
q2
�
= 0: (5.107)

Next, in addition to the paper [41], we will have to present the construction of a low-

energy theorem, ultimately responsible for violations associated with the chiral anomaly

in the odd amplitude where the vector current as the axial are not classically conserved.



5.3 Low-Energy Theorem and RAGFs 44

5.3 Low-Energy Theorem and RAGFs

As observed, WIs to AV -versions can not both simultaneously hold. Firstly, vanishing

the surface term eliminates the one-point functions; however, it implies linearity breaking,

and an additional constant can not get rid of by any other choice. On the other hand,

if the non-zero value corresponding to the maintenance of RAGFs (linearity) is chosen,

axial one-point functions violate WIs in any case. In the scenario where the surface term

could be arbitrary through some device or interpretation, the violation does not give

up. To understand this state of a¤airs, we have resorted to an explanation only utilizing

properties that are immune to choices and do not privilege one symmetry over another:

the kinematical behavior of PV function.

We return to the last claims of the Chapter (4), assuming the general tensor for odd

amplitudes (4.5). In 2D, the amplitude has Feynman integrals of power counting zero,

one of which is a tensor integral. These types of integrals, in any dimension, indeed own

surface terms, notwithstanding the coe¢ cient of them only depending on the di¤erence

of routings; they are intrinsic to Feynman diagrams, not only when the power counting is

linear. These features must be considered when stating general theorems about kinemat-

ical properties and their relations to the symmetry content of amplitudes coming from

Feynman�s rules. In 4D, we will have a more complex scenario: the surface terms appear

with ambiguous combinations of routing sums, see Sections (6.2) and (6.3).

Only external momenta imply that preserving divergent content intact follows an

expression to general tensor structure that accounts for the presence of surface terms

because, in the last instance, they contribute a coe¢ cient proportional to the metric,

F�1�2 = "�1�2F1 + "�1�q
�q�2F2 + "�2�q

�q�1F3: (5.108)

The path often trailed to study symmetry violations is to perform contractions and use

some symmetry constraints to derive implications over others. Nonetheless, we shall derive

a device that prescinds from the choice of some, a priori, selected symmetry. Performing

contractions and identifying two invariant functions constructed with form factors Fi, viz.,

q�1F�1�2 = : "�2�q
�V1
�
q2
�

(5.109)

q�2F�1�2 = : "�1�q
�V2
�
q2
�
: (5.110)

We got two equations that are strict and intrinsic consequences of tensor properties. If

we sum them, F1 drops, and an independent equation emerges

V1
�
q2
�
+ V2

�
q2
�
= q2 (F3 + F2) : (5.111)

For F2 and F3 su¢ ciently regular in the point q2 = 0 this equation becomes

V1 (0) + V2 (0) = 0: (5.112)
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From it, being aware of its generality, we establish some computational-free conclusions.

First, suppose the general tensor is chosen to correspond with the axial-vector amplitude

and function of two masses, i.e., F�� = TAV�� . In that case, we may inquire about expected

amplitudes related to the hypothesis of WIs.

The systematization of 2pt, 1st-rank amplitude arising from contraction q�i starts with

(q�iT �12�12
)2pt = "�k�q

�

(2pt)
i ; fi; kg = f1; 3g ; k 6= i: (5.113)

That is a form to compare standard identi�cations with consequences of tensor structure

in the LHS. It denotes the 2pt functions (�nite) coming from the i-th contraction. They

can be zero to some contractions, e.g., vector contraction for equal masses. Particularly,

"�i�q
�
PV = � (m1 +m2)T

PV
�i

(5.114)

"�i�q
�
AS = +(m2 �m1)T

AS
�i
; (5.115)

given by (5.14), (5.15). The vector and scalar integrals (3.63)-(3.64) enable to write


AS =
i

2�
[
�
m2
2 �m2

1

�
Z
(�1)
1 � (m2 �m1)m1Z

(�1)
0 ] (5.116)


PV =
i

2�
[
�
m2
2 �m2

1

�
Z
(�1)
1 + (m1 +m2)m1Z

(�1)
0 ]: (5.117)

Summing them, we have from combination (3.31), a result independent of masses,�

AS + 
PV

�
(0) = � i

�
[
�
m2
1 �m2

2

�
Z
(�1)
1 �m2

1Z
(�1)
0 ]

���
q2=0

= � i
�
: (5.118)

A moment of re�ection shows that anomalous amplitudes share this combination. As it

is incompatible with the low-energy theorem, we derived a general parity-odd second-rank

tensor of mass dimension zero. That is an inviolable property if it is free of kinematical

singularities. We have anomalies in the vertices, which themselves can be arbitrary,

V1 (0) + V2 (0) = 0 6= �
i

�
=
�

AS + 
PV

�
(0) : (5.119)

Hence, we at least can write Vi (q2) = 
i (q2) + Ai, where the additional parameter will
be constrained by the equation above

A1 +A2 =
i

�
: (5.120)

That represents the restriction of arbitrary anomalies in the axial and vector vertices.

This kinematical implication has an important consequence over the RAGFs as well.

5.3.1 RAGFs: Linearity and Low-Energy Implications

The surface terms appear in explicit computations and are the only type of non-�nite

structures for the 2nd-rank amplitudes. Also, we have observed that they conditioned the
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RAGFs. Nonetheless, we needed to establish in the absolute how they do it. Besides the

exciting fact that versions one and two are the only independent possibilities, the answer

to how this appears to be so must be constructed. Therefore, we explicit this intrinsic

part of perturbative amplitudes; �rst, we split the general representation in

F�1�2 = F��1�2 + F̂�1�2 ; (5.121)

where F̂�1�2 encodes the �nite parts. The term F��1�2 stands for the most general combin-

ation of surface terms, given by the equation

F��1�2 = a"�1��
�
2�2
+ b"�2��

�
2�1
+ c"�1�2�

�
2� :

Since there is a linear relation in such tensor due to the vanishing of 3rd-rank complete

antisymmetric tensor in 2D, "[�1�2�
�
2�] = 0, we have a rede�nition a1 = (a+ c) and

a2 = (b� c) of the coe¢ cients. Henceforth, the general structure assumes the form

F�1�2 = a1"�1��
�
2�2
+ a2"�2��

�
2�1

(5.122)

+"�1�2F̂1 + "�1�q
�q�2F̂2 + "�2�q

�q�1F̂3:

The equation that represents the satisfaction of RAGFs can be systematized through

q�iT �12�12
= TA(�)�k + "�k�
i: (5.123)

Remember the notation for the one-point di¤erences (5.18). The condition of linearity of

integration is embodied in the following equations when performing the contractions,

q�1F�1�2 = a1q
�1"�1��

�
2�2
+ a2"�2�q

�1��
2�1
+ "�2�q

�(q2F̂3 � F̂1) (5.124)

q�2F�1�2 = a1"�1�q
�2��

2�2
+ a2q

�2"�2��
�
2�1
+ "�1�q

�(q2F̂2 + F̂1): (5.125)

We rearrange their indices and recognize the one-point functions

q�1F�1�2 = �1
2
(a1 + a2)T

A
(�)�2 + "�2�q

�(q2F̂3 � F̂1 � a1��
2�) (5.126)

q�2F�1�2 = �1
2
(a1 + a2)T

A
(�)�1 + "�1�q

�(q2F̂2 + F̂1 � a2��
2�): (5.127)

The RAGFs require for the �rst terms a1 + a2 = �2; and the other part must comply
with the 2pt functions, 
PV and 
AS, which means


PV = q2F̂3 � F̂1 � a1��
2� (5.128)


AS = q2F̂2 + F̂1 � a2��
2�: (5.129)

Eliminating F̂1 and considering the �rst condition a1 + a2 = �2, we obtain

2��
2� = 


PV + 
AS � q2F̂2 � q2F̂3: (5.130)
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In the point q2 = 0 follows the low-energy implication of the �nite amplitudes over the

integration linearity (RAGFs)

2��
2� = 


PV (0) + 
AS (0) = � i
�
: (5.131)

Consequences: The coe¢ cients a1 and a2 may be arbitrary, but once one is selected
to satisfy one RAGF in automatic form, the other must be zero. This unique solution

signi�es that most RAGFs found without conditions are achieved by the basic versions

we have de�ned. This fact is independent of explicit computations through the traces of

four Dirac matrices and continues to happen in four dimensions. Another consequence is

that the satisfaction of all RAGFs is conditioned through kinematical features of �nite

functions that require a non-zero and speci�c amount value to the surface terms, implying

that shifts in the integration variable and linearity of integration are incompatible. The

TA� functions depend on the routings, and their subtraction is zero if shifts are possible;

only their di¤erence is a function of the external momentum. This aspect is peculiar to

this dimension; nonetheless, the restrictions from low-energy implications are precisely

mirrored in four dimensions. Simultaneously satisfaction of RAGFs and translational

invariance in momentum space is prohibited by the low-energy behavior of �nite functions.



Chapter 6

Four-Dimensional Three-Point
Functions

The analysis developed in the physical dimension focuses on odd amplitudes that are

rank-3 tensors, namely AV V , V AV , V V A, and AAA. Their mathematical structures

follow the same features seen in two dimensions. They depend on the trace involving

six Dirac matrices plus the chiral one, whose computation yields products between the

Levi-Civita symbol and metric tensor. After the integration, that generates expressions

that di¤er in their dependence on surface terms and �nite parts. We want to verify these

prospects by evaluating the triangles�basic versions1. Once these resources are clear, we

study how symmetries, linearity of integration, and uniqueness manifest.

From Eqs. (2.9) and (2.11), integrated three-point amplitudes are denoted through

capital letters T �1�2�3 and exhibit the integrand

t�1�2�3 = tr [�1S (1) �2S (2) �3S (3)] : (6.1)

Thus, after replacing vertex operators and disregarding vanishing traces, 3rd-order amp-

litudes assume the forms

tAV V�123
= [K�123

123 tr(
��1�1�2�2�3�3) +m2tr(
��1�2�3�1)(K
�1
1 �K�1

2 +K�1
3 )]

1

D123

(6.2)

tV AV�123
= [K�123

123 tr(
��1�1�2�2�3�3) +m2tr(
��1�2�3�1)(K
�1
1 +K�1

2 �K�1
3 )]

1

D123

(6.3)

tV V A�123
= [K�123

123 tr(
��1�1�2�2�3�3)�m
2tr(
��1�2�3�1)(K

�1
1 �K�1

2 �K�1
3 )]

1

D123

(6.4)

tAAA�123
= [K�123

123 tr(
��1�1�2�2�3�3)�m
2tr(
��1�2�3�1)(K

�1
1 +K�1

2 +K�1
3 )]

1

D123

; (6.5)

where we recall the conventions K�123
123 = K�1

1 K
�2
2 K

�3
3 and D123 = D1D2D3.

Although the trace involving four Dirac matrices plus the chiral one is univocal, dif-

ferent expressions are attributed to the leading trace when considering identities (2.5).

1To this aim, we compute twenty-four triangles of rank-one. Twelve parity-even triangles: V PP , ASP ,
V SS, and their permutations. Twelve parity-odd tensors: ASS, APP , V PS, and their permutations.
Besides, we identify three standard tensors in a similar fashion for two dimensions.
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Since Appendix (A.1) shows that forms achieved through de�nition 
� = i"�1234

�1234=4!

are enough to compound any other, our starting point is on their structure

(4i)�1 tr(
�abcdef ) = +gab"cdef + gad"bcef + gaf"bcde (6.6)

+gbc"adef + gcd"abef + gcf"abde

+gbe"acdf + gde"abcf + gef"abcd

�gbd"acef � gdf"abce � gbf"acde
�gac"bdef � gce"abdf � gae"bcdf :

There are three basic versions, each corresponding to replacing the chiral matrix near a

speci�c vertex operator. We introduce a numeric label to distinguish them:

[tr(
��1�1�2�2�3�3)]1 = [tr(
��2�2�3�3�1�1)]2 = [tr(
��3�3�1�1�2�2)]3: (6.7)

They arise when setting the index con�guration in the trace above (6.6), di¤ering in the

signs of terms. We cast their contraction with K�123
123 in the sequence. Their integration

leads to three not (automatically) equivalent expressions for each triangle.

[K�123
123 tr(
��1�1�2�2�3�3)]1 = �4i"�23�12 [K1�1K

�12
23 �K2�1K

�12
13 +K3�1K

�12
12 ] (6.8)

�4i"�13�12 [K1�2K
�12
23 +K2�2K

�12
13 �K3�2K

�12
12 ]

+4i"�12�12 [K1�3K
�12
23 �K2�3K

�12
13 �K3�3K

�12
12 ]

�4i"�123�1 [K
�1
1 (K2 �K3)�K�1

2 (K1 �K3) +K�1
3 (K1 �K2)]

+4i[�g�12"�3�123 � g�23"�1�123 + g�13"�2�123 ]K
�123
123

[K�123
123 tr(
��2�2�3�3�1�1)]2 = +4i"�13�12 [K1�2K

�12
23 �K2�2K

�12
13 +K3�2K

�12
12 ] (6.9)

�4i"�12�12 [K1�3K
�23
23 +K2�3K

�13
13 +K3�3K

�12
12 ]

�4i"�23�12 [K1�1K
�23
23 +K2�1K

�13
13 �K3�1K

�12
12 ]

�4i"�123�1 [K
�1
1 (K2 �K3) +K�1

2 (K1 �K3)�K�1
3 (K1 �K2)]

+4i[g�12"�3�123 � g�13"�2�123 � g�23"�1�123 ]K
�123
123

[K�123
123 tr(
��3�3�1�1�2�2)]3 = �4i"�12�12 [K1�3K

�12
23 �K2�3K

�12
13 +K3�3K

�12
12 ] (6.10)

�4i"�23�12 [K1�1K
�12
23 �K2�1K

�12
13 �K3�1K

�12
12 ]

�4i"�13�12 [K1�2K
�12
23 +K2�2K

�12
13 +K3�2K

�12
12 ]

+4i"�123�1 [K
�1
1 (K2 �K3)�K�1

2 (K1 �K3)�K�1
3 (K1 �K2)]

+4i[�g�12"�3�123 � g�13"�2�123 + g�23"�1�123 ]K
�123
123

Analogously to two-dimensional calculations, our next task consists of organizing and

integrating the complete expressions. As the three �rst rows of the above equations are

similar to the object (4.24), we de�ne the tensors

"�ab�12t
�12(s1s2)
�c

= "�ab�12
�
K1�cK

�12
23 + s1K2�cK

�12
13 + s2K3�cK

�12
12

� 1

D123

(6.11)
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where si = �1. We rewrite this equation using Ki = Kj + pij and "�ab�12K
�12
ij =

"�ab�12p
�2
jiK

�1
i to achieve the structures introduced in Section (3.3):

"�ab�12t
�12(s1s2)
�c

= "�ab�12 [(1 + s1)p
�2
31 � (1� s2)p�221]K�1

1 K1�c

1

D123

(6.12)

+"�ab�12 [p
�1
21p

�2
32K1�c + (s1p21�cp

�2
31 + s2p31�cp

�2
21)K

�1
1 ]

1

D123

:

Hence, �nal expressions arise directly by replacing vector and tensor Feynman integrals

from Subsection (3.3.2). Although four sign con�gurations are available, the expression

taking s1 = �1 and s2 = 1 cancels out. That is straightforward for the �rst row, but a
closer look at the composition of the following integral is necessary to analyze the second:

J
�

3 = J�3 = i (4�)�2 [�p�21Z
(�1)
10 (p21; p31)� p�31Z

(�1)
01 (p21; p31)]: (6.13)

Since it is proportional to external momenta, it leads to symmetric tensors that vanish

when contracted with Levi-Civita symbol. We cast all sign con�gurations in the sequence:

2"�ab�12T
�12(�+)
�c

= 2"�ab�12 [p
�1
21p

�2
32J3�c + (�p21�cp

�2
31 + p31�cp

�2
21)J

�1
3 ] � 0; (6.14)

2"�ab�12T
�12(+�)
�c

= 4"�ab�12 [p
�2
31(J

�1
3�c
+ p21�cJ

�1
3 )� p�221(J�13�c + p31�cJ

�1
3 )] (6.15)

+("�ab�12p
�2
32�

�1
3�c
+ "�abc�1p

�1
32Ilog);

2"�ab�12T
�12(��)
�c

= �4"�ab�12p
�2
21(J

�1
3�c
+ p31�cJ

�1
3 ) (6.16)

�("�ab�12p
�2
21�

�1
3�c
+ "�abc�1p

�1
21Ilog);

2"�ab�12T
�12(++)
�c

= +4"�ab�12p
�2
31(J

�1
3�c
+ p21�cJ

�1
3 ) (6.17)

+("�ab�12p
�2
31�

�1
3�c
+ "�abc�1p

�1
31Ilog):

Di¤erent tensor contributions appear for each trace version from (6.8)-(6.10). Thus,

after disregarding the vanishing contribution, we identify the corresponding combinations

C1�123 = �"�13�12T
�12(+�)
�2

+ "�12�12T
�12(��)
�3

(6.18)

C2�123 = �"�12�12T
�12(++)
�3

� "�23�12T
�12(+�)
�1

(6.19)

C3�123 = �"�23�12T
�12(��)
�1

� "�13�12T
�12(++)
�2

: (6.20)

The sampling of indexes re�ects the absence of the index �i of the vertex �i in the sign

tensors of the Ci�123 , enabling the anticipation of violations of either WIs or RAGFs. That

occurs because this speci�c index appears in the tensor "�ab�12T
�12(�;+)
�i , which is �nite and

identically zero, present in each of the above expressions before integration.

Let us return to the last row of Eqs. (6.8)-(6.10), which corresponds to 1st-order odd

triangles. The precise identi�cations among the possibilities occur when replacing the

vertex con�gurations in the general integrand (6.1); however, all of them are proportional

to ASS amplitude:

tASS�i
= 4i"�i�123K

�123
123

1

D123

= 4i"�i�123p
�2
21p

�3
31K

�1
1

1

D123

: (6.21)
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We already performed some simpli�cations through the same resources from the tensor

discussion (beginning of the previous paragraph). After integration, this function depends

on the Feynman integral J�13 . Since this object is a �nite tensor proportional to external

momenta pij, the contraction with the Levi-Civita symbol necessarily vanishes

TASS�i
= 4i"�i�123p

�2
21p

�3
31J

�1
3 = 0: (6.22)

For this reason, we omit this class of amplitudes from the �nal triangles.

We left the fourth line of (6.8)-(6.10) for last since bilinears get summed with mass

terms from the remaining trace. Each investigated case leads to a subamplitude identi�ed

after comparing vertex arrangements in (6.1). This result is general: besides Ci�123 tensors,

di¤erent rank-1 even subamplitudes appear inside each version of rank-3 odd amplitudes.

Table 6.1 accounts for all of these possibilities, while Appendix (E) presents explicit

expressions for subamplitudes. Let us consider the �rst version of AV V to illustrate.

After combining mass terms from Eq. (6.2) with bilinears from Eq. (6.8), we �nd the

V PP subamplitude

sub(tAV V�123
)1 = i"�123�1(t

V PP )�1 : (6.23)

The integrand of this correlator has the structure

(tV PP )�1 = tr[
�1S (1) 
�S (2) 
�S (3)] = 4(�K�1
1 S23 +K�1

2 S13 �K�1
3 S12)

1

D123

; (6.24)

where the combination Sij = Ki �Kj �m2 comes from de�nition (4.23). After reducing

the denominator, we perform the integration

(T V PP )�1 = 2[P �231�
�1
3�2
+ (p�121 � p�132)Ilog]� 4 (p21 � p32) J�13 (6.25)

+2[(p�131p
2
21 � p�121p231)J3 + p�121J2 (p21)� p�132J2 (p32)]:

Table 6.1: Even sub-amplitudes related to each version of 3rd-order odd amplitudes.
Version/Type AV V V AV V V A AAA

1 +V PP +ASP �APS �V SS
2 �SAP +PV P +PAS �SV S
3 +SPA �PSA +PPV �SSV

Since all pieces are known, compounding triangle amplitudes is possible. For instance,

the i-th version of the AV V arises as a combination involving the Ci-tensor and the

corresponding vector subamplitude. Thus, consulting Table 6.1 leads to the following

associations

(TAV V�123
)1 = 4iC1�123 + i"�123�1(T

V PP )�1 ; (6.26)

(TAV V�123
)2 = 4iC2�123 � i"�123�1(T

SAP )�1 ; (6.27)

(TAV V�123
)3 = 4iC3�123 + i"�123�1(T

SPA)�1 : (6.28)
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The generalization for V AV , V V A, and AAA is straightforward:

(T �1�2�3�123
)i = 4iCi;�123 � i"�123�1 (Corresponding sub-amplitude)

�1 : (6.29)

We still want to detail some important points about these amplitudes. To illustrate

this subject, we use tools developed in this section to build up the �rst version of AV V;

(TAV V�123
)1 = S1�123 � 8i"�12�12p

�2
21(J

�1
3�3
+ p31�3J

�1
3 ) (6.30)

�8i"�13�12 [p
�2
31(J

�1
3�2
+ p21�2J

�1
3 )� p�221(J�13�2 + p31�2J

�1
3 )]

�4i"�123�1(p21 � p32)J
�1
3 + 2i"�123�1 [(p

�1
31p

2
21 � p�121p231)]J3

+2i"�123�1 [p
�1
21J2 (p21)� p�132J2 (p32)]:

The divergent part of the tensor (6.18) comes from Eqs. (6.15) and (6.16) as

4iC1�123 = �2i["�13�12p
�2
32�

�1
3�2
+ "�12�12p

�2
21�

�1
3�3
+ "�123�1(p

�1
21 � p�132)Ilog]:

When combined with the V PP subamplitude, we acknowledge the exact cancellation of

the object Ilog as it occurs for all investigated versions. Thus, surface terms compound

the whole structure of divergences

S1�123 = �2i("�13�12p
�2
32�

�1
3�2
+ "�12�12p

�2
21�

�1
3�3
) + 2i"�123�1P

�2
31�

�1
3�2
: (6.31)

Moreover, contributions from vector subamplitudes exhibit arbitrary momenta Pij = ki+

kj as coe¢ cients. We stress that the divergent content is shared; the �rst version of

amplitudes AV V , V AV , V V A, and AAA contains the same structure (6.31). That is a

feature of the speci�c version and not on the vertex content of the diagram. For later use,

we de�ne the other sets of surface terms

S2�123 = �2i("�12�12p
�2
31�

�1
3�3
+ "�23�12p

�2
32�

�1
3�1
) + 2i"�123�1P

�2
21�

�1
3�2
; (6.32)

S3�123 = �2i("�13�12p
�2
31�

�1
3�2
� "�23�12p

�2
21�

�1
3�1
) + 2i"�123�1P

�2
32�

�1
3�2
: (6.33)

That concludes the preliminary discussion on rank-3 triangles, so investigating RAGFs is

possible. That is the subject of the following sections.

6.1 Relations Among Green Functions and Unique-
ness

The next step is to perform momenta contractions that lead to RAGFs following the

recipes in (2.14) and (2.17). Although they are algebraic identities at the integrand level,

their satisfaction is not automatic after integration. In parallel to what we saw in the two-

dimensional case, possibilities for Dirac traces and values of surface terms have important
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implications for this analysis.

p
�1
31 t

AV V
�123

= tAV�32 (1; 2)� t
AV
�23
(2; 3)� 2mtPV V�23

(6.34)

p
�2
21 t

AV V
�123

= tAV�13 (1; 3)� t
AV
�13
(2; 3)

p
�3
32 t

AV V
�123

= tAV�12 (1; 2)� t
AV
�12
(1; 3)

p
�1
31 t

V AV
�123

= tAV�23 (2; 1)� t
AV
�23
(2; 3) (6.35)

p
�2
21 t

V AV
�123

= tAV�31 (3; 1)� t
AV
�13
(2; 3) + 2mtV PV�13

p
�3
32 t

V AV
�123

= tAV�21 (2; 1)� t
AV
�21
(3; 1)

p
�1
31 t

V V A
�123

= tAV�32 (1; 2)� t
AV
�32
(3; 2) (6.36)

p
�2
21 t

V V A
�123

= tAV�31 (3; 1)� t
AV
�31
(3; 2)

p
�3
32 t

V V A
�123

= tAV�12 (1; 2)� t
AV
�21
(3; 1) + 2mtV V P�12

p
�1
31 t

AAA
�123

= tAV�23 (2; 1)� t
AV
�32
(3; 2)� 2mtPAA�23

(6.37)

p
�2
21 t

AAA
�123

= tAV�13 (1; 3)� t
AV
�31
(3; 2) + 2mtAPA�13

p
�3
32 t

AAA
�123

= tAV�21 (2; 1)� t
AV
�12
(1; 3) + 2mtAAP�12

Let us introduce the structures that emerged within the relations above. First, the

RHS�s three-point functions are �nite tensors external momenta dependent. That is

transparent due to their connection with �nite Feynman integrals introduced in Subsection

(3.2.2), so we only remove the overbar notation from corresponding tensors �J�13 = J�13 and
�J3 = J3. We have for single axial triangles

� 2mT PV V�23
= "�23�12p

�1
21p

�2
32(8im

2J3); (6.38)

2mT V PV�13
= "�13�12p

�1
21p

�2
32(8im

2J3); (6.39)

2mT V V P�12
= "�12�12p

�1
21p

�2
32(�8im2J3); (6.40)

while momenta contractions for the triple axial triangle lead to

� 2mT PAA�23
= "�23�12p

�2
31[8im

2(2J�13 + p�121J3)]; (6.41)

2mTAPA�13
= "�13�12p

�2
21[�8im2(2J�13 + p�131J3)]; (6.42)

2mTAAP�12
= "�12�12p

�2
32[8im

2(2J�13 + p�121J3)]: (6.43)

These amplitudes have a low-energy behavior that we aim to explore in connection with

RAGFs in Sections (6.2) and (6.3). Since they depend on functions Z(�1)n1n2 (3.40) through

the scalar three-point integral J3 = i(4�)�2Z
(�1)
00 and the vector one (6.13). We use (3.42)

to determine the behavior of these tensors when all bilinears in their momenta are zero:

�2mT PV V�23

���
0
=

1

(2�)2
; 2mT V PV�13

���
0
=

1

(2�)2
; 2mT V V P�12

���
0
= � 1

(2�)2
; (6.44)

�2mT PAA�23

���
0
=

1

3(2�)2
; 2mTAPA�13

���
0
=

1

3(2�)2
; 2mTAAP�12

���
0
= � 1

3(2�)2
: (6.45)
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Each term above is multiplied by the corresponding tensor "�kl�12p
�1
21p

�2
32 with k < l.

Second, the other structures that appeared in the RAGFs are AV functions, which

are proportional to two-point vector integrals. Using the result (3.82), we achieve

TAV�ij (a; b) = �4i"�i�j�1�2p
�2
ba
�J�12 (a; b) = 2i"�i�j�1�2p

�2
baP

�3
ab�

�1
3�3
: (6.46)

As contributions (exclusively) on the external momentum cancel out in the contraction,

they are pure surface terms proportional to arbitrary label combinations. After replacing

the adequate labels (ka and kb), combinations seen in the RAGFs above arise:

TAV�32 (1; 2)� T
AV
�23
(2; 3) = �2i"�23�12 (p

�2
21P

�3
12 + p�232P

�3
32 )�

�1
3�3

(6.47)

TAV�13 (1; 3)� T
AV
�13
(2; 3) = �2i"�13�12 (p

�2
32P

�3
32 � p�231P �331 )��1

3�3
(6.48)

TAV�12 (1; 2)� T
AV
�12
(1; 3) = �2i"�12�12 (p

�2
31P

�3
31 � p�221P �321 )��1

3�3
: (6.49)

We stress that these forms depend only on the vertex contraction and not speci�c amp-

litude (AV V , V AV , V V A, and AAA). That occurs because there is a sign change in the

AV when permuting the position of free indexes (see "�i�j�1�2) or changing the role of

routings (see p�2baP
�3
ab ).

γµ2

pµ1
31 K2

K1

K3

γµ3

= −γµ2

K1

K2

γ∗γµ3 γµ3

K2

K3

γ∗γµ2

γµ2

−2m γ∗ K2

K1

K3
γµ3

γ∗γµ1

Figure 6.1: The RAGF established for the contraction with momenta q�131T
AV V
�123

:

To verify RAGFs, we must contract external momenta with the explicit forms of amp-

litudes. Observe the �nite contributions displayed in the example (6.30) to clarify opera-

tions involving �nite contributions. These results use well-de�ned relations involving �nite

quantities. After contracting with momenta, some terms vanish due to the Levi-Civita

symbol. Then, we manipulate the remaining terms using tools developed in Subsection

(3.3.2). The procedure involves reducing J-tensors to identify �nite 2nd-order amplitudes

or achieve some cancellations. The referred reductions are for tensor integrals

2p�221J
�1
3�2

= �p221J�13 + J�12 (p31) + J�12 (p32) + p�131J2 (p32) ; (6.50)

2p�231J
�1
3�2

= �p231J�13 + J�12 (p21) + J�12 (p32) + p�131J2 (p32) ; (6.51)

2J�13�1 = 2m2J3 + 2J2 (p32) + i (4�)�2 ; (6.52)
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and vector integrals

2p21�1J
�1
3 = �p221J3 + J2 (p31)� J2 (p32) ; (6.53)

2p31�1J
�1
3 = �p231J3 + J2 (p21)� J2 (p32) : (6.54)

Although some reductions arise directly, other occurrences require further algebraic

manipulations. This circumstance manifests in cases where a J-tensor couples to the Levi-

Civita symbol so that rearranging indexes is necessary to �nd momenta contractions. For

vector integrals, we consider the identity "[�a�b�1�2p�3]J
�1
3 = 0 to achieve the formula2

2"�ab�12 [p
�2
21 (pij � p31)� p�231 (pij � p21)] J�13 = �"�ab�23p

�2
21p

�3
31 [2pij�1J

�1
3 ] : (6.55)

Similarly, we use "[�a�1�2�3J
�1
3�c]

= 0 to reorganize terms involving the tensor integral

2"�b�123p
�2
21p

�3
31J

�1
3�a
� 2"�a�123p

�2
21p

�3
31J

�1
3�b

= "�ab�13p
�3
31

�
2p�221J

�1
3�2

�
� "�ab�12p

�2
21

�
2p�331J

�1
3�3

�
� "�ab�23p

�2
21p

�3
31

�
2J�13�1

�
: (6.56)

In the amplitudes, we have two structures: standard tensors Ci�123 (6.18)-(6.20) and

subamplitudes. The tensors are common to the amplitudes versions and are comprised of

the sign tensors (6.14)-(6.17). To illustrate the operations necessary for the RAGFs, let

us take the case

C�nite1�123
= �2"�13�12 [p

�2
31(J

�1
3�2
+ p21�2J

�1
3 )� p�221(J�13�2 + p31�2J

�1
3 )] (6.57)

�2"�12�12p
�2
21(J

�1
3�3
+ p31�3J

�1
3 ): (6.58)

The �rst term in parenthesis cancels when contracting with p�131 , the remaining terms are

p
�1
31C

�nite
1�123

= �2["�3�123p
�2
21p

�3
31J

�1
3�2
� "�2�123p

�2
21p

�3
31J

�1
3�3
]: (6.59)

Then, we employ the identity (6.56) to permute indexes and perform reductions. That

accomplishes our objective; furthermore, this rearrangement implies the presence of Eq.

(6.52), and that brings two additional contributions: one proportional to squared mass

and a numeric factor. That di¤ers from contractions p�221 and p
�3
32 , where reductions of

tensor integrals are immediate, and it is only necessary to use (6.55). The behavior of

di¤erent contractions is not associated with vertex content but with amplitude version.

p
�1
31C

�nite
1�123

= "�23�1�2f(p
�2
31p

2
21 � p�221p231)J�13 (6.60)

+p�121p
�2
31[2m

2J3 + i(4�)�2 + J2(p32)]g

p
�2
21C

�nite
1�123

=
1

2
"�13�12p

�2
32

�
2p221 (J

�1
3 + p�121J3)� p�121J2 (p31)

�
(6.61)

p
�3
32C

�nite
1�123

=
1

2
"�12�1�2p

�2
21[�2p232J�13 � p�131J2 (p31)] (6.62)

2Two terms like pa"b�123p
�2
21p

�3
31J

�1
3 cancel due to triple contraction.
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p
�1
31C

�nite
2�123

=
1

2
"�23�12p

�2
32[2p

2
31 (J

�1
3 + p�121J3)� p�121J2 (p21)] (6.63)

p
�2
21C

�nite
2�123

= "�13�12f(p
�2
31p

2
21 � p�221p231)J�13 (6.64)

+p�121p
�2
31[2m

2J3 + i(4�)�2 + J2(p32)]g

p
�3
32C

�nite
2�123

=
1

2
"�12�12 [2p

�2
31p

2
32J

�1
3 + p�121p

�2
31J2 (p21)] (6.65)

p
�1
31C

�nite
3�123

=
1

2
"�23�12p

�2
21[2p

2
31J

�1
3 + p�131J2(p32)] (6.66)

p
�2
21C

�nite
3�123

=
1

2
"�13�12p

�2
31[�2p221J�13 � p�121J2(p32)] (6.67)

p
�3
32C

�nite
3�123

= "�12�12f
�
p�221p

2
31 � p�231p221

�
J�13 (6.68)

�p�121p�231[2m2J3 + i(4�)�2 + J2(p32)]g:

We have to sum contributions from the subamplitudes to complete �nite-parts results.

That requires the same resources discussed above, but only vector integrals remain, and

again we use Eq. (6.55) to reduce these integrals to scalar ones. Terms proportional to

the squared mass arise from a part of the common tensors and subamplitudes. They

cancel in all vector-vertex contractions and combine into the expected �nite functions for

all axial-vertex contractions (6.38)-(6.43). Lastly, regardless of the speci�c amplitude, the

additional term i (4�)�2 arises when the contracted index �i matches the i-th version.

To complete the RAGFs analysis, we recall Eqs. (6.31)-(6.33). In the set of surface

terms Si�123 , the index �i appears only in the Levi-Civita tensor and not in �3�� . Hence,

contracting other indexes leads to the expected di¤erences (6.47)-(6.49). Regardless of the

particular triangle amplitude, identi�cations are automatic whenever contractions with

Si�123 consider the index �j with i 6= j. On the other hand, when the contracted index

corresponds to the vertex that de�nes the version (i = j), the contraction between p�131 and

S1�123 does not produce the required index con�guration since we do not �nd momenta

contractions with surface terms required to identify AV functions. Thus, in parallel to

the procedure for 2nd-order J-tensors, indexes are reorganized through the identity

"�1�3�1�2�
�1
3�2
� "�1�2�1�2�

�1
3�3
= "�2�3�1�2�

�1
3�1
+ "�1�2�3�1�

�1
3�2
� "�1�2�3�2�

�1
3�1
: (6.69)

After organizing the momenta by pij = Pir � Pjr, these operations yield (6.70). Besides
the expected contributions, note the presence of an additional term on the trace ��

3�

resembling what occurred for the �nite part.

p
�1
31S1�123 = �2i"�23�12 (p

�2
21P

�3
12 + p�232P

�3
32 )�

�1
3�3
+ 2i"�2�3�2�3p

�2
21p

�3
31�

�1
3�1

(6.70)

p
�2
21S1�123 = �2i"�13�12(p

�2
32P

�3
32 � p�231P �331 )��1

3�3
(6.71)

p
�3
32S1�123 = �2i"�12�12 (p

�2
31P

�3
31 � p�221P �321 )��1

3�3
(6.72)

p
�1
31S2�123 = �2i"�23�12 (p

�2
21P

�3
12 + p�232P

�3
32 )�

�1
3�3

(6.73)

p
�2
21S2�123 = �2i"�13�12 (p

�2
32P

�3
32 � p�231P �331 )��1

3�3
+ 2i"�1�3�2�3p

�2
21p

�3
31�

�1
3�1

(6.74)

p
�3
32S2�123 = �2i"�12�12 (p

�2
31P

�3
31 � p�221P �321 )��1

3�3
(6.75)
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p
�1
31S3�123 = �2i"�23�12 (p

�2
21P

�3
12 + p�232P

�3
32 )�

�1
3�3

(6.76)

p
�2
21S3�123 = �2i"�13�12 (p

�2
32P

�3
32 � p�231P �331 )��1

3�3
(6.77)

p
�3
32S3�123 = �2i"�12�12 (p

�2
31P

�3
31 � p�221P �321 )��1

3�3
� 2i"�1�2�2�3p

�2
21p

�3
31�

�1
3�1

(6.78)

With these properties in hands, we establish RAGFs for the explicit (TAV V�123
)1; see (6.26)

to illustrate how to proceed in any case. The axial contraction comes from reducing the

common tensor in Eq. (6.60) plus the nonzero terms from subamplitude (6.25)

i"�123�1p
�1
31(T

V PP )�1 = 2i"�23�12p
�2
31

�
2(p21 � p32)J�13 + p�121[p

2
31J3 � J2(p21)� J2(p32)]

	
:

At this stage, we have when summing both contributions

p
�1
31(T

AV V
�123

)1 = p
�1
31S1�123 + 4i"�23�12p

�1
21p

�2
31[2m

2J3 + i (4�)�2] (6.79)

+4i"�23�12
�
p�231 (p21 � p31)� p�221p231

�
J�13

+2i"�23�12p
�1
21p

�2
31[p

2
31J3 + J2 (p32)� J2 (p21)]:

To �nd reductions in terms like the second row, we use (6.55) to identify the needed

contraction and obtain a cancellation

p
�1
31(T

AV V
�123

)1 = p
�1
31S1�123 + 4i"�23�12p

�1
21p

�2
31[2m

2J3 + i (4�)�2]: (6.80)

After contracting surface terms using (6.70) and identifying the PV V (6.38), we write

p
�1
31(T

AV V
�123

)1 = TAV�32 (1; 2)�T
AV
�23
(2; 3)�2mT PV V�23

+2i"�23�12p
�1
21p

�2
31[�

�
3� + 2i (4�)

�2]: (6.81)

Similarly, RAGFs coming from vector vertices use (6.61)-(6.62) for the common tensor

and identity (6.55). They imply the vanishing of �nite parts, while the remaining parts

correspond to AV di¤erences:

p
�2
21(T

AV V
�123

)1 = p
�2
21S1�123 = TAV�13 (1; 3)� T

AV
�13
(2; 3) (6.82)

p
�3
32(T

AV V
�123

)1 = p
�3
32S1�123 = TAV�12 (1; 2)� T

AV
�12
(1; 3) : (6.83)

This pattern repeats for the �rst version of the other amplitudes (V AV , V V A, and

AAA). Whereas the contraction with �rst vertex exhibits the additional term, the other

RAGFs are satis�ed without conditions. The pattern changes to the second and third

versions, for they show the violating term in the second and third vertex independent of

its nature: axial or vector vertex.

Following the developed steps, equations below subsume all potentially o¤ending

terms, which emerge in momentum contractions where the version is de�ned. We ad-

opt the notation to the routing di¤erences q1 = p31, q2 = p21, and q3 = p32 to mark a

convention for �rst, second, and third vertices. The notation has already appeared in Fig-

ure 2.1 for the general diagram. In addition, the symbol �123 � �1�2�3 is an abbreviation
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for all combinations of vertices �i 2 fA; V g we are investigating.

q
�1
1 (T

�123
�123

)viol1 = +2i"�23�12q
�1
2 q

�2
3 [�

�
3� + 2i (4�)

�2] (6.84)

q
�2
2 (T

�123
�123

)viol2 = +2i"�13�12q
�1
2 q

�2
3 [�

�
3� + 2i (4�)

�2]

q
�3
3 (T

�123
�123

)viol3 = �2i"�12�12q
�1
2 q

�2
3 [�

�
3� + 2i (4�)

�2]:

The other vertices (to each version) have their RAGFs identically satis�ed. To visualize

this violation pattern, we o¤er the schematic graph in Figure 6.2.

Γ2µ2

Γ1µ1
2

1

3 Γ3µ3

qµi

i
= 2iδijεµaµbν1ν2p

ν1
21p

ν2
31

[
∆α

3α + 2i (4π)−2
]

j

viol

Figure 6.2: The violation factor of the RAGF established for the contraction with mo-
menta q�1i :

RAGFs are not automatic as they require further explorations regarding values ac-

cessible to surface terms, meaning they only apply under the constraint

��
3� = �

2i

(4�)2
: (6.85)

From another perspective, if these relations apply identically, we could satisfy all Ward

identities by nullifying surface terms (this works channel by channel). That is not the case

because it requires con�icting interpretations of surface terms: zero for the momentum-

space translational invariance and nonzero for the linearity of integration. Thence, these

properties do not hold simultaneously. General tensor properties and the low-energy be-

havior of PV V -PAA and permutations show these conclusions are inescapable in Section

(6.3). That is independent of any possible trace.

Once the RAGFs are clear, we would like to deepen the discussion about di¤erent

versions of amplitudes. The investigated integrands are well-de�ned tensors and obey

(t�123�123
)i = (t

�123
�123
)j. Even if we separate expressions in �nite and divergent sectors without

commitment to the divergences, after integration, the sampling of indexes makes the

results of �nite parts and tensor surface terms di¤erent. We highlight di¤erences among

the three main versions to elucidate this point:

(T �123�123
)1 � (T �123�123

)2 = +2i"�123�1p
�1
32[�

�
3� + 2i (4�)

�2]; (6.86)

(T �123�123
)1 � (T �123�123

)3 = �2i"�123�1p
�1
21[�

�
3� + 2i (4�)

�2]; (6.87)

(T �123�123
)2 � (T �123�123

)3 = �2i"�123�1p
�1
31[�

�
3� + 2i (4�)

�2]: (6.88)

After subtracting two versions, we reorganized indexes to identify reductions of �nite

functions and recognize the same potentially violating term acknowledged in (6.84). At



6.1 Relations Among Green Functions and Uniqueness 59

this point, we de�ne the meaning of uniqueness adopted within this investigation: any

possible form to compute the same expression returns the same result. Canceling the RHS

of these equations would be required to achieve this property. That only happens when

adopting the same prescription seen above ��
3� = �2i (4�)

�2. This notion of uniqueness

implies that an amplitude does not depend on Dirac traces. Nevertheless, unlike in

the two-dimensional context, the nonzero surface terms required by this notion allow

dependence on ambiguous combinations of arbitrary internal momenta. In this sense,

there is no unique expression in the external momenta.

The trace of six matrices is the unique place where the amplitude versions di¤er.

Achieving traces di¤erent from those starting this argumentation is possible through other

identities involving the chiral matrix, Eq. (2.5). Nonetheless, as detailed in Appendix

(A.1), versions that are linear combinations of them arise. Observe the form

[T �123�123
]i;j = [(T

�123
�123

)i + (T
�123
�123

)j]=2; (6.89)

which manifests potentially violating terms in RAGFs for both vertices �i and �j. The

three independent combinations (setting i and j) are enough to reproduce any expressions

achieved through the referred identities. That justi�es taking (T �123�123
)i as the basic versions;

moreover, they have the maximum number of RAGFs identically satis�ed, see Section

(6.3). For instance, the expression associated with the substitution


�
�i�i�i+1 = i"�i�i�i+1�

� + 
�(g�i�i+1
�i � g�i�i+1
�i + g�i�i
�i+1) (6.90)

has an integrand di¤ering from [T �123�123
]i;i+1

3 in terms that have �nite and identically van-

ishing integrals (6.14) and (6.22). Using this identity or combining traces of basic versions

before integration makes expressions exhibit the same terms when integrated, divergent

and �nite parts. As another example, employing the identity 
�
�i = "�i�123

�123=3!

expresses the trace through ten monomials. Even without some index con�gurations,

the integrated expression coincides with the i-th version. That means the chiral matrix

de�nition has no special role compared to other identities.

With these facts in mind, we de�ne linear combinations that reproduce any possible

expression with the building-block versions

[T �123�123
]fr1r2r3g =

1

r1 + r2 + r3

3X
i=1

ri(T
�123
�123

)i; (6.91)

where r1 + r2 + r3 6= 0. They have equivalent integrands as it occurs for combinations

(6.89). This general form compiles all involved arbitrariness, accounting for any choices

regarding routings or Dirac traces. From this formula, assuming zero surface terms after

the integration, we identify an in�nity set of amplitudes that violate RAGFs by arbitrary

amounts. That is useful for obtaining di¤erent violation values in the literature, e.g., [73].

3Note that when i = 3 the notation means [T�123�123
]3;1, or 
�
�2�2�1 in the identity used.
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We have shown how traces and surface terms interfere with the investigated tensors�

linearity of integration and uniqueness. In the subsequent subsections, we demonstrate

that these properties are unavoidable since conditions for RAGFs arise without explicit

computations of the primary amplitudes.

6.2 A Low-Energy Theorem and its Relation with
Ward Identities

This section proposes a structure depending only on external momenta to formulate

a low-energy implication for a tensor representing three-point amplitudes. That does not

mean we ignore the possible presence of ambiguous routing combinations because these

terms can be transformed into linear covariant combinations of physical momenta. The

structure is a general 3rd-order tensor having odd parity:

F�123 = "�123�(q
�
2F1 + q�3F2) + "�12�12q

�1
2 q

�2
3 (q2�3G1 + q3�3G2) (6.92)

+"�13�12q
�1
2 q

�2
3

�
q2�2G3 + q3�2G4

�
+ "�23�12q

�1
2 q

�2
3 (q2�1G5 + q3�1G6):

That is a function of two variables: the incoming external momenta q2 and q3 associated

with vertices �2 and �3. Conservation sets the relation q1 = q2 + q3 with the outcoming

momentum of the vertex �1.

After performing the momenta contractions, one identi�es the arrangements q�ii F�123 =

"�kl�12q
�1
2 q

�2
3 Vi with k < l 6= i. These operations lead to three functions written regarding

form factors of the general tensor

V1 = �F1 + F2 + (q1 � q2)G5 + (q1 � q3)G6; (6.93)

V2 = �F2 + q22G3 + (q2 � q3)G4; (6.94)

V3 = �F1 + q23G2 + (q2 � q3)G1: (6.95)

At the kinematical point where all bilinears are zero qi � qj = 0, if Gi are regular or at

most discontinuous, we have the relations

V1 (0) = F2 � F1; V2 (0) = �F2; V3 (0) = �F1:

From the steps above, we derive the following equation among invariants

V1 (0) + V2 (0)� V3 (0) = 0: (6.96)

This relation contains information about symmetries or their violations at the zero limit,

even if no particular symmetry is needed for its deduction. That occurs because it rep-

resents a constraint over three-point structures arising in the RHS of proposed WIs.

To illustrate this resource, suppose that the axial contraction with the AV V connects

to the amplitude coming from the pseudo-scalar density

"�23�12q
�1
2 q

�2
3 V1 (0) = �2mT PV V�23

(0) =: "�23�12q
�1
2 q

�2
3 


PV V
1 (0) ; (6.97)
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with the behavior (6.44) leading to the value for the �rst invariant V1 (0) = 1=(2�)2.

Since the constraint above prevents the simultaneous vanishing of both other invariants

V2 (0) = V3 (0) = 0, at least one vector WI is violated. On the other hand, supposing that

both vector WIs apply implies violating the axial one. That occurs because parameters

de�ning the considered tensor and regularity require the existence of an additional term

V1 (0) = 1=(2�)
2+A, the anomaly. Thus, A = �
PV V1 (0), relating a property of the �nite

amplitude and the symmetry content of a rank-3 amplitude. Satisfying the symmetry at

this point does not guarantee invariance for all points; however, its violation at zero

implies symmetry violation.

That is the starting point of the violation pattern in anomalous amplitudes. Numerical

values presented above for invariants Vi at zero represent the preservation of correspond-

ing WIs. Nevertheless, their co-occurrence implies a violation of the linear-algebra type

solution (6.96). No tensor, independent of its origin, can connect to the PVV and sim-

ultaneously have vanishing contractions with momenta q�22 and q�33 . Whenever an axial-

vertex contraction is connected to an amplitude coming from the pseudo-scalar density

(anomalously or not), there will be an anomaly in at least one of the vertices; the same

conclusion stands for other diagrams. These facts are known; however, the form we raise

is general. The low-energy theorem invoking vector WIs is only one of the solutions, as

in Section (4.2) of [37]. The built equation is an exclusive and inviolable consequence

of properties assumed to the 3rd-order tensor, and symmetry violations occur when the
RHS terms of WIs do not behave accordingly.

The explicit computation of perturbative expressions corroborates these assertions.

Moreover, the RAGFs furnish an exact connection among ultraviolet and infrared features

of amplitudes, namely 
PV V1 (0) = 2i��
3�. That is the requirement for linearity seen after

evaluating the RAGFs, and it will be derived in the next subsection. There, we assume
the form Vi = 
i +Ai and demonstrate the implication


1 (0) + 
2 (0)� 
3 (0) = (2�)�2; (6.98)

where we suppress superindexes in 
i coming from �nite functions (e.g., PV V -PAA), see

(6.100). The equation above holds even to classically non-conserved vector currents or

amplitudes with three arbitrary masses running in the loop. Albeit rank-2 amplitudes of

multiple masses are complicated functions of these masses, the relation at the point zero

is ever the �nite constant above.

Independently of divergent aspects, the last equation is incompatible with (6.96);

therefore, characterizing violations for rank-3 triangles under the form (6.92). Hence,

anomalous terms coming from di¤erent vertices Ai obey the general constraint

A1 +A2 �A3 = �(2�)�2; (6.99)

This equation shows that the value of axial anomaly is unique by preserving two vector
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WIs. Likewise, any explicit tensor4 having WIs violated by any quantity obeys this

equation if Ai relates to �nite amplitudes from Feynman�s rules. The crossed channel of

�nite amplitudes brings a multiplicative factor 2 in the last couple of equations.

It is possible to anticipate restrictions over surface terms based on the general de-

pendence that 3rd-order tensors have on such terms and preserving the independence and

arbitrariness of internal momenta sums. That is achieved through the connection with

AV functions via integration linearity. In the next section, this reasoning leads to the
proposition 
PV V1 (0) = 2i��

3� and Eq. (6.98).

6.3 RAGFs and Kinematical Behavior of Amplitudes

In Section (6.1), we performed explicit calculations related to di¤erent amplitude ver-

sions. When satisfying all RAGFs, a condition connecting the surface term with a �nite

contribution emerged in at least one of the relations (6.85). This condition appeared

without explicitly calculating surface terms, inferring it from potentially violating terms.

Furthermore, these additional terms arise in RAGFs associated with the vertex that

de�nes the version (6.84). Here, we will show generality how the constraints based on

linearity are obtained by carefully analyzing the most general tensor structure of 3pt-

amplitudes without using any speci�c traces. The meaning of the basic version emerges

as the one that automatically satis�es the most possible RAGFs but not all. Also, we will

consider that when the contractions are done, a set of results is generated that can only be

restricted by linearity for arbitrary and independent internal momenta. Such a condition

shows how the �nite amplitudes in the RHS of the RAGFs determine the surface terms.

From the explicit calculation, we can write the general equation for linearity as

q
�i
i T

�123
�123

= TAVi(�)�kl + "�kl�12q
�1
2 q

�2
3 
i; (6.100)

the ordering of indexes is always by k < l 6= i. The �rst term of the RHS is the di¤erences

(6.47)-(6.49). The second one has the invariants corresponding to the rank-2 amplitudes

in RAGFs. Note that some are zero to vertices of speci�c diagrams. Expressing the three

independent di¤erences of AV functions in terms of Pij, we have

TAV1(�)�23 = �2i"�23�12 [�P
�2
21 P

�3
32 + P �231 (P

�3
32 � P �321 ) + P �232 P

�3
21 ] �

�1
3�3

(6.101)

TAV2(�)�13 = �2i"�13�12 [+P
�2
21 (P

�3
31 � P �332 ) + P �231 P

�3
32 � P �232 P �331 ] ��1

3�3
(6.102)

TAV3(�)�12 = �2i"�12�12 [�P
�2
21 P

�3
31 + P �231 P

�3
21 + P �232 (P

�3
31 � P �321 )]��1

3�3
: (6.103)

4This tensor can be obtained via regularization or not. See the approach of G. Scharf ([65]) in Section
5.1, using causal perturbation theory. The analogous to PV V is not computed until the very end. Instead,
the authors study analogous di¤erences between the contraction of AV V and the PV V without Feynman
diagrams.
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The notation TAVi(�) is used to remember it came from the RAGF where we contracted with

q�i in the integrand. These equations preserve the arbitrary label for the internal lines

and the value of the surface term and do not depend on the traces used because there is

no ambiguity in expressing the trace of four Dirac matrices and a chiral one.

Due to the tensor integral of power counting zero e vector with power counting one,

it must be expected from the expression to depend on surface term with physical as well

ambiguous momenta. On the other hand, the routings present are not obliged to be

written as external momenta, as we assumed in the previous section. The general tensor

must consider that the perturbative amplitudes are a function of the six variables: the

sums and di¤erences of routings; the last ones are restricted by momentum conservation,

notwithstanding the sums are arbitrary, reducing for �ve variables. In turn, with the

sums, we generate the di¤erences; thereby, the number of variables is three. Nevertheless,

the summation of routings appears multiplied necessarily and only by surface terms.

Since central amplitudes are linear-diverging tensors, they have mass one and depend

on the arbitrary momenta and surface terms, as qi vectors are di¤erences of the routings ki
(but not the opposite), we replace the former with the latter. Then using the combinations

Pij = ki + kj, the most general tensor of these variables under the stated conditions is

F��123 = +"�23�12 (a11P21 + a12P31 + a13P32)
�2 ��1

3�1
(6.104)

+"�13�12 (a21P21 + a22P31 + a23P32)
�2 ��1

3�2

+"�12�12 (a31P21 + a32P31 + a33P32)
�2 ��1

3�3

+"�123�1 (b1P21 + b2P31 + b3P32)
�2 ��1

3�2
:

Finite parts are handled separately. The aij and bj are twelve arbitrary constants that

summarize all the freedom of such tensor: Function of three variables of the diagram

routings, rank, parity, and power counting. The j captures the P momenta in the order

(P21; P31; P32), and the index i links to the index �i associated with the vertex in the

amplitudes T �123�123
. Contracting (6.104) with the routing di¤erences, for this tensor to be

related to the AV tensors, we used the identity5 "[�1�2�3�1�
�2
3�2]

= 0 to cast the tensor.

That reduces, without losing information, the number of arbitrary parameters.

Now the question is: Performing the three contractions with the vertices momenta,

is it possible to identify all of them with the two-point functions without additional

conditions? That means they must be simultaneously valid for any value of the surface

term. The answer is no, as we show that requiring two RAGF satis�ed without conditions

over surface term determines all coe¢ cients aij and bi. The other relation belongs to an

incompatible solution for these coe¢ cients. We will see as the �nite amplitudes condition

the satisfaction of all RAGFs.
5These structures have indices of surface terms contracted with the coe¢ cient and the epsilon tensor

and no trace of the surface term, by example, q�22 T
AV V
�123

= TAV�13 (1; 3)� T
AV
�13

(2; 3).
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Beginning by contracting F��123 with q
�1
1 = p

�1
31 ; we have the expression

p
�1
31F

�
�123

= +"�3�123 [�(a21 + a23)P
�2
21 P

�3
32 + a22P

�2
31 (P

�3
21 � P �332 )]��1

3�2
(6.105)

+"�2�123 [�(a31 + a33)P
�2
21 P

�3
32 + a32P

�2
31 (P

�3
21 � P �332 )]��1

3�3

+"�23�12 [�(a11 � b1)P
�2
21 P

�3
21 + (a13 � b3)P �232 P �332 ]��1

3�3

+"�23�12 [+(a11 + b3)P
�2
21 P

�3
32 � a12P �231 (P �321 � P �332 )]��1

3�3

+"�23�12 [�(a13 + b1)P
�2
32 P

�3
21 + b2(P

�2
21 � P �232 )P �331 ]��1

3�3
:

From the �rst two rows, a2 = (�a23; 0; a23) and a3 = (�a33; 0; a33), the remaining com-
pared with TAV1(�)�23 ; we have a11 + b3 = 2i; a12 = �2i; a13 + b1 = 2i; b2 = 0; and

b3 = 2i� b1. In vector notation, the full solution is0BB@
b
a1
a2
a3

1CCA
1

=

0BB@
b1 0 2i� b1
b1 �2i 2i� b1
�a23 0 a23
�a33 0 a33

1CCA : (6.106)

Note the reduction from twelve parameters to just three fa23; a33; b1g by requiring just
one of the relations to be satis�ed. Repeating the analysis to q�2F��123 with q

�2
2 = p

�2
21 and

forming the system of linear equation by comparing with (6.48), follows the solution0BB@
b
a1
a2
a3

1CCA
2

=

0BB@
0 b2 2i� b2
0 �a13 a13
2i �b2 b2 � 2i
0 �a33 a33

1CCA ; (6.107)

for the RAGF in the second vertex. The conditions for q�33 F
�
�123

= TAV3(�)�12 with q
�3
3 = p

�3
32 ,

follows that the solution to the automatic satisfaction of the RAGF is0BB@
b
a1
a2
a3

1CCA
3

=

0BB@
b1 2i� b1 0
a11 �a11 0
a21 �a21 0
b1 2i� b1 �2i

1CCA : (6.108)

The intersection of (6.106) and (6.107), the ones that automatically satisfy the RAGFs

coming from the contraction with q�11 and q�22 , leads to a unique solution with b1 = 0,

b2 = 0, b3 = 2i, and all the other coe¢ cients are also determined. Replacing in the tensor,

(F��123)12 = �2i["�23�12(P
�2
32 �P �231 )��1

3�1
+"�13�12(P

�2
21 �P �232 )��1

3�2
+"�123�1P

�2
32�

�1
3�2
]; (6.109)

where pij = Pil � Pjl. Sub-index ij in (F��123)ij stands for the vertices where the RAGFs
are satis�ed without further assumptions. As the relations above depend on three para-

meters and are compatible in pairs, the coe¢ cients solution is unique once one pair of two

RAGFs is determined. Complementary contraction is always an incompatible solution;

coe¢ cients are di¤erent for each solution (F��123)ij. The pair solutions for at most two
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RAGFs identically satis�ed correspond to the amplitudes versions computed explicitly.

See (6.31)-(6.33), namely

(F��123)23 = S1�123 ; (F��123)13 = S2�123 ; (F��123)12 = S3�123 ;

the trace of the surface term separates from the di¤erence of AV in one of the contractions.

Consequences: With this derivation in hand, we draw a similar conclusion to the
one stated in the Subsection (6.2). The value at zero of PV V had consequences over

symmetries. Here this amplitude will establish a connection between linearity in the

RAGFs and the low-energy behavior of the same PV V .

For this, we have to read this result in light of form factors in (6.92), taken as the

�nite parts. Choosing the solution satisfying the RAGFs in vertices two and three

T �123�123
= F�123 + (F

�
�123
)23 = F�123 + S1�123 ; (6.110)

to any vertices combination. Let 
i represent the �nite scalar invariants of 2nd-order

tensors from RAGFs; writing the equations of the hypothesis of satisfaction, (6.100),

q
�1
1 T

�123
�123
� TAV1(�)�23 = "�23�12q

�1
2 q

�2
3 
1 = "�23�12q

�1
2 q

�2
3 (V1 + 2i�

�
3�) (6.111)

q
�2
2 T

�123
�123
� TAV2(�)�13 = "�13�12q

�1
2 q

�2
3 
2 = "�13�12q

�1
2 q

�2
3 V2 (6.112)

q
�3
3 T

�123
�123
� TAV3(�)�12 = "�12�12q

�1
2 q

�2
3 
3 = "�12�12q

�1
2 q

�2
3 V3: (6.113)

Using the previous results, we see that the trace of the surface term must be put

together with the �nite part of the �rst contraction due to the Eq. (6.70),

q
�1
1 S1�123 = TAV1(�)�23 + "�23�23q

�2
2 q

�3
3 (2i�

�1
3�1
): (6.114)

We wrote the AV structures on LHS to focus on the non-trivial part of the relations. We

get the �nal condition: V1 + 2i��
3� = 
1; V2 = 
2; and V3 = 
3: Observing the formulas

V1 = �F1 + F2 + q22G5 + q23G6 + (q2 � q3) (G5 +G6) (6.115)

V2 = �F2 + q22G3 + (q2 � q3)G4 (6.116)

V3 = �F1 + q23G2 + (q2 � q3)G1: (6.117)

It is possible to eliminate the Fi form factors to reach at

2i��
3� + 
3 � 
2 � 
1 = �q22 (G3 +G5) + q23 (G2 �G6) (6.118)

+(q2 � q3) (G1 �G4 �G5 �G6) :

Under the condition that Gi functions are regular at zero6, follows

2i��
3� = 
1 (0) + 
2 (0)� 
3 (0) : (6.119)

6The functions Z(0)nm, Z
(�1)
nm , Z(0)n that comprise the �nite part of any of these amplitudes do not have

kinematical singularities at the point qi � qj = 0.



6.3 RAGFs and Kinematical Behavior of Amplitudes 66

The equation is true irrespective of the choice of which relation is satis�ed without

restriction. Suppose one starts with a version with S2�123 that satis�es the RAGFs in the

�rst and third vertex. To this tensor, the term��
3� will appear in q

�2
2 S2�123 , see Eq. (6.74).

From V1 = 
1 and V3 = 
3; and trading the F1 and F2 by Gi plus �nite functions, again

in zero, we retrieve the previous result. That is a proper relation between a low-energy

property and surface terms stated in the former section in (6.2). The hypotheses were

a tensor with two RAGFs satis�ed without restriction, connected to AV di¤erences and

PV V /PAA-like amplitudes. From that, the zero value of rank-2 amplitudes bound the

third RAGF. It is always possible to achieve these hypotheses in explicit computations.

When assessing 
i(0), see (6.44), 
PV V = 
V PV = �
V V P = (2�)�2, we �nd out


1 (0) + 
2 (0)� 
3 (0) = (2�)�2; (6.120)

Notice that for the AV V , V AV , and V V A; two of the 
i are zero to each amplitude,

which means the result above represents three situations. The same happens to the AAA

triangle. In this case, the three contractions of the same amplitude relate to PAA, APA,

and AAP . Combining the constants cast in Eq. (6.45), we have


PAA1 (0) + 
APA2 (0)� 
AAP3 (0) = (2�)�2: (6.121)

Since the AV di¤erences depend only on the contractions with the momenta, but the

correlators with the P density are distinct, it could be that distinct diagrams would

require di¤erent numerical values to the surface term, despite that one always �nd

RAGF, 2��
3� = �i(2�)�2: (6.122)

Constraint remains for amplitudes where three distinct masses run in the internal lines.

Let us consider an example of this scenario for the AV V . The propagator�s indexes

now account for the masses too, S (a) = ( =Ka � ma)
�1. Using the standard identity

[=pij = S�1 (i) � S�1 (j) + (mi �mj)] to derive the RAGFs expressed in Eqs. (6.34), the

terms associated with the three-point functions are now

�(m1 +m3)T
PV V
�23

; (m2 �m1)T
ASV
�13

; and (m3 �m2)T
AV S
�12

;

coming from verteces �1; �2; and �3 respectively. In this scenario, vector currents are not

classically conserved. However, ASV , AV S, and PV V will not comply the Eq. (6.96),

and their relations are identical to the ones (6.98). For the three-point rank-2 amplitudes,

T PV V�23
= "�23�12p

�1
21p

�2
32[(m1 �m2)Z

(�1)
10 + (m1 �m3)Z

(�1)
01 �m1Z

(�1)
00 ]

TASV�13
= "�13�12p

�1
21p

�2
32[(m1 +m2)Z

(�1)
10 + (m1 +m3)Z

(�1)
01 �m1Z

(�1)
00 ]

TAV S�12
= "�12�12p

�1
21p

�2
32[(m2 �m1)Z

(�1)
10 � (m3 +m1)Z

(�1)
01 +m1Z

(�1)
00 ];
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it is possible to identify the form factor through the relation

"�23�12p
�1
21p

�2
32


PV V
1 = �(m1 +m3)T

PV V
�23

"�13�12p
�1
21p

�2
32


ASV
2 = +(m2 �m1)T

ASV
�13

"�12�12p
�1
21p

�2
32


AV S
3 = +(m3 �m2)T

AV S
�12

:

By combining them as done in the other cases, we have


PV V1 + 
ASV2 � 
AV S3 = 2(2�)�2[(m2
1 �m2

2)Z
(�1)
10 + (m2

1 �m2
3)Z

(�1)
01 �m2

1Z
(�1)
00 ]:

Since in the de�nition, the Q polynomial for distinct masses7, hence the relation ish
(m2

1 �m2
2)Z

(�1)
10 + (m2

1 �m2
3)Z

(�1)
01 �m2

1Z
(�1)
00

i
qi�qj=0

= 1=2: (6.123)

Finally, in the limit studied follows (
PV V1 + 
ASV2 � 
AV S3 )j0 = (2�)�2. The integrals

with various masses are laborious, but integrating all these functions explicitly in the limit

under consideration follows the result.

The kinematical limits of all rank-2 amplitudes are incompatible with the satisfaction

of all Ward identities since they ask for additional constants to be compatible with the

tensor structure of rank-3 amplitudes, as already established in the 2D. Although these

claims are implicit in the discussion of these tensors, often, the focus is the regularization

properties. In this way, when we write the internal momenta as covariant combinations

(non-covariant combinations amount to Lorentz violations), we must have�
V AV V
1 (m1;m2;m3)� V AV V

2 (m1;m2;m3)� V AV V
3 (m1;m2;m3)

�
(0)

= (
PV V1 + 
ASV2 � 
AV S3 )j0 +
�
AAV V1 �AAV V2 �AAV V3

�
= 0:

That means we can not simultaneously make all Ai = 0 by reasons unrelated to di-

vergences. Utilizing this equation to study the symmetries, we have the scenario. If

eventually is not found symmetry violation in that point, it does not mean they could not

be in other points. However, �nding a problem in zero implies a violation.

6.4 General Parameters to the Violations8

Summarizing the last sections: (i) Integration linearity holds if and only if the surface

terms are nonzero (6.122). Simultaneously the results are independent of Dirac traces

7To arbitrary masses, the Feynman polynomial for the function involved in this derivation reads

Q = q21x1 (1� x1) + q22x2 (1� x2)� 2q1 � q2x1x2 +
�
m2
1 �m2

2

�
x1 +

�
m2
1 �m2

3

�
x2 �m2

1:

And the function is given by

Z(�1)rs =

Z 1

0

dx1

Z 1�x1

0

dx2
xr1x

s
2

Q (q2i ;m
2
1;m

2
2;m

2
3)
:

In the kinematical point the the polynomial assumes the form Q (0) =
�
m2
1 �m2

2

�
x1+

�
m2
1 �m2

3

�
x2�m2

1:
8Throughout this section, we factored out three-point rank-two �nite amplitudes from the discussion.
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for the same value, which saves linearity. (ii) Since some surface-terms coe¢ cients are

ambiguous combinations of the routings, we must make choices for them. iii) From (ii), if

a procedure nulli�es that terms, the linearity is violated by � �(2�)�2; see these results
in (6.84). There is an equilibrium between routing and trace ambiguities organized by

the surface term�s value. Let us see the parameter space for this competition.

Combining versions that save the most RAGFs with no condition on the surface term10,

[t�123�123
]fr1r2r3g =

1

R
[r1(t

�123
�123
)1 + r2(t

�123
�123
)2 + r3(t

�123
�123
)3]; (6.124)

where R = r1 + r2 + r3 6= 0. As discussed at the end of Section (6.1), they are identical
before integration. However, when �3�� = 0, they become an in�nity set of di¤erent

tensors. In particular, they reproduce any tensor through our strategy using any identity

for the chiral matrix. For zero surface terms, their symmetry violations are in the i-th

vertex and get a factor of ri=R, satisfying the equation determined to its anomalies (6.99)

due to kinematic properties of �nite amplitudes.

If we have considered the surface term as an arbitrary parameter given by a constant c1,

equal to one for the satisfaction of RAGFs or zero for the momentum-space translational

invariance. Parametrizing internal lines by choosing any of the sums Pij = ki + kj, we

have P31 = c2q2 + c3q3 ! P21 = c2q2 + (c3 � 1) q3, and P32 = (c2 + 1) q2 + c3q3; with

2�3�12 = �ic1(4�)
�2g�12 ; (6.125)

the AV functions, see Section (6.1), Eqs. (6.47)-(6.49), are written as function of c1, c2,and

c3, and also violations of RAGFs, Eqs. (6.84).Those parameters express any possible

values to the contractions of basic versions. With the caveat that only in the contraction

of i-th version with q
�i
i , both the two-point functions and the linearity-breaking term

contributes. For this version, the contraction with qj, j 6= i, only AV �s contribute.

Modulus �nite amplitudes, the combination de�ned in Eq. (6.124) has the properties

q
�1
1 [T

�123
�123

]fr1r2r3g = "�23�12q
�1
2 q

�2
3 f[4R (2�)

2]�1[4r1 (c1 � 1) +Rc1 (c3 � c2 � 2)]g
= "�23�12q

�1
2 q

�2
3 A1 (6.126)

q
�2
2 [T

�123
�123

]fr1r2r3g = "�13�12q
�1
2 q

�2
3 f[4R (2�)

2]�1[4r2 (c1 � 1)�Rc1 (c3 + 1)]g
= "�13�12q

�1
2 q

�2
3 A2 (6.127)

q
�3
3 [T

�123
�123

]fr1r2r3g = "�12�12q
�1
2 q

�2
3 f[4R (2�)

2]�1[4r3 (1� c1)�Rc1 (c2 � 1)]g
= "�12�12q

�1
2 q

�2
3 A3: (6.128)

Parameters combination implies A1 = A3 � A2 � (2�)�2; decreasing the number of in-
dependent variables for two. So when we have numerical amounts of two violations, no

matter the path leading them, the third arises without ambiguity. Derived in the previ-

ous sections based only on �nite functions and when the internal momenta as covariant

functions of external ones.
10This claim is independent of explicit computations performed in the previous section.
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If c1 = 1, there is no dependence in ri, we have the unique solution that satis�es

linearity but is not a function of the external momenta. If c1 = 0, there will be no

dependence in c2 and c3, and the tensors are functions of the external momenta but

not unique. These parameters are the full range of possibilities. The crossed diagrams

add more parameters to the discussion but have the same behavior: linearity break,

ambiguities, and symmetries violation. The crucial factor is the kinematic behavior of

�nite functions that code amplitudes for pseudo-scalar density. In the massless limit, this

aspect falls in the values to the residue of poles of form factors, which are regular in the

massive case. Breaking linearity has a function in divergent amplitudes that corroborates

with the low-energy value of �nite amplitude PV n in dimension d = 2n. If it does not

occur, shifts in the integration variable are allowed by removing surface terms. Hence the

AV functions through (6.96) relate the Vi, and the �nite amplitudes would have to be

zero at the point where the bilinears vanish.

The situation happens when integrating an identically zero tensor; it is obtained a

nonzero result. Take the identity for the integrand of the Feynman integral �J3�� ,

[K
�5
1 ("�5123K1�4 + "�4512K1�3 + "�3451K1�2 + "�2345K1�1) + "�1234m

2]
1

D123

= �"�1234
1

D23

the equation comes from "[�1234K1�5] = 0, multiplying by K�5
1 =D123, and using K2

1 =

D1+m
2. When integrated, the identity is only valid for just one surface-term value. The

critical step arises when we separate the �nite and divergent parts, explicitly

�J2 (2; 3) = J2 (p32) + Ilog

�J3 (1; 2; 3) = J3 (p21; p31)

�J3�� (1; 2; 3) = J3�� (p21; p31) + (�3�� + g��Ilog) =4;

J�3� (p21; p31) = m2J3 (p21; p31) + J2 (p32) + i[2 (4�)2]�1:

This step is performed using "[�1235�
�5
3�5]

= 0 and "[�1235J
�5
3�5]

= 0. Then, the initial identity

gets transformed in a condition to the linearity breaking "�1234 [�
�5
3�5
+ 2i= (4�)2] = 0:

Now, the identity for the surface term is consistent to any value, constrained only by

�3�� = [g
���3��]=4, however the same is not true to the bare integral �J3�� . The identity

is respected if and only if ��
3� = �2i=(4�)2, derived without explicitly manipulating

divergent integrals. As a part of the Feynman integrals, the satisfaction of the Schouten

identity to any surface-term value is not enough to make it valid for the entire integrals.

We used the results of Section (3.3.2).

We must mention that the violation by an evanescent term that occurs in dimensional

methods12 does not a¤ect linearity breaking. The �nite value we demonstrate to be

necessary is not a function of the dimension, and it corresponds to the low-energy limit

of the integral J3. No limiting process can change that value and, if not adopted, violates

the linearity and uniqueness of these perturbative amplitudes.
12See [74][75] for this type of view.



Chapter 7

Gravitational Perturbative
Amplitudes

The quantization of fermionic �elds is according to the canonical rules of Quantum

Field Theory. To introduce these �elds in a curved space, we associate to space-time a

Lorentz manifold, in which each point has a plane space tangent to it. The connection

between the two spaces is through vielbein �elds de�ned by

g�� (x) = �abe
a
� (x) e

b
� (x) (7.1)

�ab = diag (1;�1� 1� 1) (7.2)

e�ae
b
� = �ba; e�ae

a
� = ��� : (7.3)

These �elds work in such a way as to transform the coordinate basis into an orthonormal

basis. Through that basis, it is possible to introduce locally the Cli¤ord algebra whose

representations the spinor �eld can be de�ned. The algebra acquires a local character,


� (x) : = e�a (x) 

a (7.4)�


� (x) ; 
� (x)
	
= 2g�� (x) (7.5)�


a; 
b
	
= 2�ab (7.6)


[ab] =
1

2
[
a; 
b] ; (7.7)

the last term 
[ab]=2 corresponds to the spinor generator to the Lorentz group.

In this way, we will introduce a covariant generalization of the equations formulated

in �at spacetime to introduce fermions coupled to a spacetime with arbitrary metrics.

The action S must be invariant by Lorentz transformations and general transformations

of coordinates. We start by considering the �at-space real Lagrangian

L = 1

2
[i� 
�@� � i

�
@�� 

�

� ] =

1

2
[i� 
�@� +

�
i� 
�@� 

�y
]; (7.8)

and replace the covariant for the �at-spacetime metric in coordinate and orthonormal

frame @� (cartesian one) by the spinor covariant derivative in an arbitrary coordinate
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frame (but still �at geometry), we have

r� := @� +
1

4
! ab
� 
[ab] ; and r�� := @�� �

1

4
� ! ab

� 
[ab]: (7.9)

We used 
0

y
[ab]
0 = �
[ab] in de�ning last equation; ! ab

� are components of metric-

compatible spin connection

!ab � = !a c��
cb (7.10)

!a c� = ea �@�e
�

c + e �
c ea ��

�
�� ; (7.11)

being ���� the components of the connection in the coordinate basis. Then, we allow

the metric to correspond to a curved background geometry, and thereby, the fermion

propagation will be classically given by

S =

Z
M
d2xe (x)

i

2

�
� 
�r� �

�
r�� 

�

� 

�
; (7.12)

where we introduced the scalar density e (x) =
p
jg (x)j in the volume 2-form dV =p

jg (x)jdx1dx2, g (x) = det g�� , and modulus is due to the Lorentz signature.
The extremization of action yields the motion�s equations: r� = 0 and r�� = 0:

Additionally, in 2D, the term coupling to the spin-connection drops out from the action

1

4
! ab
� e�c

� f
c; 
[ab]g = 0; (7.13)

due to the in this dimension 
[ab] = �i
�"ab and f
c; 
�g = 0. Therefore, we adopt Weyl
fermions henceforth, and the action simpli�es to

S =
i

2

Z
M
d2xe (x) e�a [

� 
a
 !
@ �P� ]; (7.14)

where the chiral projectors are given by P� = (1� 
�) =2; being that the chiral matrix
(2.3) is 
� = "ab


a
b and the ��at�Levi-Cevita symbol is normalized by "01 = 1 (it is a

tensor density with world indices).

The gravitational �eld appears only as a background �eld, without being necessar-

ily quantized and without associated dynamics. Then, we consider the approximation

expanding in powers of h�� around the Minkowski metric

g�� = ��� + �h�� (7.15)

g�� = ��� � �h�� +O
�
�2
�
: (7.16)

ea� = �a� +
1

2
�ha�; e�a = ��a �

1

2
�h�a ; e = 1 +

1

2
�h��: (7.17)

We may expand in e (x) and inverse vielbein e�a independently; in this way, we would get

i

2
e (x) e�a [

� 
a
 !
@ � ] =

i

2
� 
�
 !
@ � �

1

2
h��

�
i

4
� 
(�
 !
@ �) �

i

2
��� � 

 !
/@  
�
+O

�
h2
�
; (7.18)
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where
 !
/@ = 
�

 !
@ �: The energy-momentum tensor, in this linearized approximation, reads

T 0�� =
i

4
(� 
�

 !
@ � + � 
�

 !
@ � )�

i

2
���
� 
 !
/@  : (7.19)

Alternatively, we can absorb the e =
p
jgj into a rede�nition of e1=2 = 	 see Bonara et

al. ([76]) in Appendix B of that reference. Therefore, we have

S =
i

2

Z
d2xe�a( �	


a !@ �	) =
i

2

Z
d2x[ �	
�

 !
@ �	+ Lint (h;	) +O

�
h2
�
]: (7.20)

In this way, the interaction Lagrangian Lint is still de�ned as

Lint (h;	) = �
1

2
h��

�
i

4
(�	ea�


a !@ �P�	+ �	eav

a !@ �P�	)

�
= �1

2
h��T�� : (7.21)

Then the linearized approximation of the energy-momentum tensor de�nition follows as

T�� =
i

4
�	
(�
 !
@ �)P�	: (7.22)

From interaction Lagrangian follows the Feynman rules that will be used in this work.

The two-point gravitational amplitude is

TG���� (q) = i

Z
d2xeiq�x h0jT [T�� (x) ; T�� (0)] j0i : (7.23)

Moreover, the vertices of the perturbative amplitudes relative to the interaction between

the graviton and a fermion-antifermion pair are

�G�� = �
i

4
[
� (K1 +K2)� + 
� (K1 +K2)�]P�: (7.24)

At the trace level, the gravitational amplitude of our interest is, see the �gure 7.1,

tG���� = tr[�
G
��S (1) �

G
��S (2)]: (7.25)

After integration, we will call TG����. The total amplitude with massive propagators is

(i64)TG���� (q) =

Z
d2k

(2�)2
tr[(1� 
�)
(�(K1 +K2)�)S (1) (7.26)

�(1� 
�)
(�(K1 +K2)�)S (2)]:

We recall that the fermionic propagator is given by (2.7).

We will o¤er some layers of notations to devise an organizational scheme to deal with

this amplitude, as our approach presents multiple characteristics and complexities. For

the �rst one, let us break it down into four basic permutations, given by

tG���� = �
i

64

�
t̂G���� + t̂G���� + t̂G���� + t̂G����

�
: (7.27)

The structures presented above can be identi�ed as

t̂G���� = (K1� +K2�)(K1� +K2�)tr[(1� 
�)
�S (1) (1� 
�)
�S (2)]: (7.28)
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Γαβ

K1

K2

Γµν

Γµν = − i
4
γ(µ(K1 +K2)ν)

Figure 7.1: The diagram for two-point function of the the linearized energy momentum
tensor.

The other three tensors come from the permutation �$ �; followed by � $ �.

Any computational element developed to this permutation can be mirrored in the

others. Second step: expanding the products like (1� 
�)
�, we identify the integrand of
typical fermionic amplitudes as the one explored in the previous chapters. Explicitly

t̂G���� = (K1� +K2�)(K1� +K2�)
�
tV V�� + tAA�� � tAV�� � tV A��

�
: (7.29)

When integrated, we recognize another element in this decomposition layer, allowing us

to write the basic permutation for the structure below

T �1�2���� =

Z
d2k

(2�)2
(K1 +K2)� (K1 +K2)� [t

�1�2
�� (k1; k2)]; (7.30)

where the vertices are �i 2 f1; 
�; 
�; 
�
�g, see (2.2). This last equation will be construc-
ted explicitly in the next chapter since it comprises even more fundamental components.

To cast these components, we observe that K2 �K1 = q ! K1 +K2 = 2K1 + q:

Furthermore, expanding the Eq. (7.30) we write this combination

T �12���� = 4T
�12
��;�� + 2q�T

�12
��;� + 2q�T

�12
��;� + q�q�T

�12
�� : (7.31)

We must de�ne what we mean by T �12��;��, T
�12
��;�, and T

�12
��;� , which we call derivative amp-

litudes for the sake of simplicity. As an example, we have

T V V��;�� =

Z
d2k

(2�)2
tV V��;�� =

Z
d2k

(2�)2
K1�K1�

�
tV V��
�
: (7.32)

Derivative two-point amplitudes are de�ned even to �i that do not carry Lorentz indexes,

T �1�2_;�1 =

Z
d2k

(2�)2
t�1�2_;�1 =

Z
d2k

(2�)2
K1�1tr[�1S (1) �2S (2)] (7.33)

T �1�2_;�1�2 =

Z
d2k

(2�)2
t�1�2_;�1�2 =

Z
d2k

(2�)2
K1�1K1�2tr[�1S (1) �2S (2)]: (7.34)
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When vertices to the matrix �i have Lorentz indices, the notation will carry such indices

in the position we left a blank space. Indexes �i attached to factor K1 are derivative

indexes. The T �12���� contain only a subset of general amplitudes we have de�ned in our

last layer. Typical amplitudes associated with T �1�2 are the ones investigated in Chapter

(4). On the other hand, amplitudes as (7.33)-(7.34) carrying derivative indices are the

new ingredients to comprise two-point functions of the energy-momentum tensor.

To illustrate the notation, let us take a derivative amplitude that is not part of the

permutations T �12����, by example selecting �1 = S and �2 = V , we have

tSV�;� = K1�t
SV
� = K1�tr[S (1) 
� (1)]: (7.35)

Note that the index � appearing after the semicolon is a derivative index. It may happen

that integration, through our technique, returns an expression symmetric in the indices,

being this amplitude an example T SV�;� = T SV�;� as we will see. Besides these comments, in-

troducing these general de�nitions is crucial because they are all related through RAGFs.

Relations relevant to this chapter arise from two types of momentum contraction and

traces, e.g., g��tV V��;�� = mtSV�;� + tV�;� (k2). The one-point functions are part of the set:

t�1 = tr [�1S (ki)] ; (7.36)

t�1_;�1 = K1�1tr [�1S (ki)] ; (7.37)

t�1_;�1�2 = K1�1K1�2tr [�1S (ki)] : (7.38)

Amplitudes t�1 and their integrals are the ones used for RAGF investigations, fully de-

veloped in Chapter (4). When integrated, they get a capital letter also.

To systematically analyze t̂G����, we split it in even and odd tensors: amplitudes with

two vector vertices, called V V , and two axial vertices, called AA, are even, and amplitudes

with composite vertices, AV and V A, are odd. For this permutation of indices, we get

T̂G���� = T̂ V���� + T̂A����; (7.39)

where each of the sectors above has the following combination of amplitudes,

T̂ V���� = T V V���� + T AA���� (7.40)

T̂A���� = �
�
T AV���� + T V A����

�
: (7.41)

The disposition of indices can be a trick to avoid confusion. Observe the indexes in T̂ V����,

we chose the sequence ���� since they come from TG, however in T V V��;�� the disposition

emphasizes that the last two indices correspond to derivative type, what is quite helpful

in the calculations. The basic permutations above (T �1�2���� ) are shown here to make clear
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the expansion in terms of derivatives structures

T V V���� = 2
�
2T V V��;�� + q�T

V V
��;�

�
+ q�

�
2T V V��;� + q�T

V V
��

�
(7.42)

T AA���� = 2
�
2TAA��;�� + q�T

AA
��;�

�
+ q�

�
2TAA��;� + q�T

AA
��

�
(7.43)

T AV���� = 2
�
2TAV��;�� + q�T

AV
��;�

�
+ q�

�
2TAV��;� + q�T

AV
��

�
(7.44)

T V A���� = 2
�
2T V A��;�� + q�T

V A
��;�

�
+ q�

�
2T V A��;� + q�T

V A
��

�
: (7.45)

Summing the four permutations, we get

T V���� = T̂ V���� + T̂ V���� + T̂ V���� + T̂ V���� (7.46)

T A���� = T̂A���� + T̂A���� + T̂A���� + T̂A���� : (7.47)

Finally inserting in the de�nition it was given above (7.27), we have

TG�1�2�1�2 = �
i

64
f[T V�12�12 ] + [T

A
�12�12

]g: (7.48)

From these elaborations, we can identify that we have already exposed the amplitudes

with two Lorentz indices T �1�2�� in the Chapter (4). So our task boils down to calculating

only typical fermionic amplitudes with three and four indices as the following sequence.

Ward Identities: The symmetries role is crucial for understanding a QFT because
we have an anomaly in quantum theory when there is a symmetry violation of the action

or the classical conservation law. However, in some cases, we can avoid these anomalies

by imposing severe restrictions on the physical content of the approach. In this section,

we will establish symmetries and general restrictions that will guide the consistency of

the method and the interpretation of the presence of anomalies.

Classically, the energy-momentum tensor de�ned in (7.21) has symmetry properties,

T�� = T��; current conservation, r�T�� = 0, and null trace, T �� = 0; see [61]. These

would lead us to the identities for the green function de�ned in (7.23)

TG���� (q) = TG���� (q) ; (7.49)

q�TG���� (q) = 0; (7.50)

g��TG���� (q) = 0: (7.51)

However, the literature shows gravitation as a gauge theory. Therefore these canonical

identities are not necessarily satis�ed. We will have an Einstein anomaly in the violation of

general coordinate transformations (di¤eomorphisms) and Lorentz anomalies that imply

an antisymmetric part in the �rst equation above. In the case of conformal transformations

(Weyl transformations) violations, we will have a Weyl anomaly.

In the context of Einstein and Weyl invariances, we obtain consistency tests before the

symmetry analysis. They arise when we perform q�TG���� and g
��TG���� to their integrands

and obtain relations (based on integration linearity) among the set of structures de�ned
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above, i.e., through RAGFs. Since decomposition (7.39) can be done, writing a basic

permutation of gravitational amplitude, in terms of amplitudes with vertices analogous to

those of vector and axial currents, these can be studied individually, as they will present

well-de�ned relations among them. Their complete introduction and detailed veri�cation

occur in the Section to even amplitudes (7.3) and (7.4).

7.1 V V -AA: Even Amplitudes

We aim to determine all components that integrate gravitational amplitudes while

assuming no choice in intermediate steps. In this way, it is possible to systematize all odd

amplitudes in terms of even amplitudes V V �s: their divergent properties are functions

of divergent parts from V V -amplitudes, and their �nite parts gain an additional term

proportional to the mass squared. So, we will focus on this amplitude, �nding a set of

de�nitions that makes their discussion viable. Otherwise, it would be too long due to

the number of surface terms within the IReg strategy. From here on, all the time, metric

symbol g�� means �at metric g�� = ��� .

As we saw in (4.42), the expression for the amplitude V V is given by

T V V�1�2 = 2�2�1�2 + ��1�2
�
4m2J2 + i=�

�
:

That also can be written in closed form by Feynman integrals basis, see Section (3.3),

T V V�1�2 = D
V V
�1�2

+ 4J2�1�2 + 2q(�1J2�2) + g�1�2q
2J2: (7.52)

Finite parts come from de�nitions J2; J2�i; and J2�1�2 as combinations of Z
(n)
k . As for the

divergent part, we collect all divergent terms and combine them in the de�nition

DV V�1�2 = 2�2�1�2 : (7.53)

Amplitudes with additional factors K1�i follow the operations of those without de-

rivative indices. The e¤ect of this factor is to produce an algebraic structure similar to

J-integrals but with higher tensor degrees. From previous de�nitions,

tV V�1�2;�1 = K1�1t
V V
�1�2

(7.54)

tV V�1�2;�1�2 = K1�1K1�2t
V V
�1�2

: (7.55)

Therefore, amplitudes will have a greater degree of divergence, implying that �nite and

divergent parts are more complex and lengthier. These are expressed in Section (3.3).

Expressions appear as a standard tensor plus a PP amplitude; see (4.31), thus

tV V�12;�1 = 2t(+)�1�2;�1
+ g�1�2t

PP
�1

(7.56)

tV V�12;�1�2 = 2t(+)�1�2;�1�2
+ g�1�2t

PP
�1�2

: (7.57)
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Tensors t(+)�1�2;�1 and t
(+)
�1�2;�1�2 appearing above are particular cases of general tensors:

t(s1)�12;�1
= K1�1

�
K1�1K2�2 + s1K1�2K2�1

� 1

D12

(7.58)

t(s1)�12;�12
= K1�1t

(s1)
�12;�1

; (7.59)

where s1 = �, see (4.24). For example, in the tensor of 3rd-order, two cases assume are

t(+)�12;�1
= 2

K1�1K1�1K1�2

D12

+
q(�1K1�2)K1�1

D12

(7.60)

t(�)�12;�1
=

q[�2K1�1]K1�1

D12

: (7.61)

Moreover, 4th-rank ones naturally get one more K1�2 factor. To PP amplitude (4.21),

we add a K1�1 according to our de�nitions

tPP�1 = K1�1

�
q2

1

D12

� 1

D1

� 1

D2

�
= K1�1t

PP ; (7.62)

and with two indices tPP�1�2 = K1�2t
PP
�1
.

Integrating (7.56) using (7.60) and (7.62), derivative V V with three indices become

T V V�12;�1 = 4 �J2�12�1 + 2q(�1
�J2�2)�1 + g�1�2q

2J2�1 (7.63)

�g�12 [ �J1�1 (k2) + �J1�1 (k1)] + g�12q�1
�J1 (k2) :

For V V with four indices (7.57), we have when integrating the tensor (7.59) and K1�2t
PP
�1
,

T V V�12;�12 = 4 �J2�12�12 + 2q(�1
�J2�2)�12 + g�12q

2 �J2�12 (7.64)

+g�12
�
�J1�12 (k2)� �J1�12 (k1)

�
� g�12

�
q(�1

�J1�2) (k2)� q�12 �J1 (k2)
�
:

Additional terms in the k2 that appear in the J�s (with only one propagator) come from

the translations K1 = K2 � q used to de�ne functions in Section (3.1). Remember that
barred J�s have �nite and divergent parts.

To simplify the exposition of �nite and divergent parts from equations (3.64), (3.66),

(3.71), and (3.73), it is possible to write the results as

T V V�12;�1 = 4J2�12�1 + 2q(�1J2�2)�1 + g�12q
2J2�1 +DV V�12;�1 (7.65)

T V V�12;�12 = 4J2�12�12 + 2q(�1J2�2)�12 + g�12q
2J2�12 +DV V�12;�12 : (7.66)

In these cases, all divergent terms of integrals and de�ne the 3rd-order tensor

DV V�12;�1 = �P
�1W3�12�1�1 + P(�1�2�2�1) + g�12P

�1�2�1�1 � q�1�2�12 ; (7.67)



7.1 V V -AA: Even Amplitudes 78

and the 4th-order tensor

DV V�12;�12 = +(W2�12�12 � g�12�1�12) + g�1(�1g�2)�2Iquad +

�12�12
6q2

Ilog (7.68)

+
1

12
(3P �12 + q�12)W4�12�12�12 �

1

4
(P �12 + q�12)g�12W3�12�12

�1
2
P �1

�
P�1W3�2�12�1 + P�2W3�1�12�1

�
+
1

2
P �1g�12 (P � q)(�1 �2�2)�1

�1
4
(P 2 + q2)W3�12�12 �

1

2
P �1 (P � q)(�1W3�2)�12�1

+
1

4
[2(��12 + P�12) + g�12(P

2 + q2)]�2�12 +
1

2
(P � q)�1(P � q)�2�2�12

+
1

2
P�2 (P � q)(�1 �2�2)�1 +

1

2
P�1(P � q)(�1�2�2)�2 :

We use de�nition of projectors ��12 and 
�12�12 as

��12 = g�1�2q
2 � q�1q�2 (7.69)


�12�12 (q) = 2��12��12 �
�
��1�1��2�2 + ��1�2��2�1

�
; (7.70)

both are transverse; additionally, 
 is traceless in all its indices. Note that here the

projector ��� is not dimensionless as in Chapter (4); it has mass dimension two.

The �nite part also can be expressed from explicit functions plus D-tensor

T V V�12;�1 =
i

2�
q�1��12(Z

(�1)
2 � Z(�1)1 ) +DV V�12;�1 : (7.71)

The four-index amplitude is more complicated but can be written in the projectors

T V V�12;�12 =
i

4�

1

q2

h
�
�12�12(2Z

(0)
2 � Z

(0)
1 ) + 2��12��12(3Z

(0)
2 � 2Z

(0)
1 )
i

(7.72)

� i

4�
q�12��12(Z

(�1)
2 � Z(�1)1 ) +DV V�12;�12 :

It is possible to maintain closed form in J�s, as we will see in RAGF, through reductions

as in Section (3.2). In this way, we �nd leading amplitudes as a substructure of T V V�12 ;

T V V�12;�1 = �
1

2
q�1T

V V
�12

+DV V�12;�1 +
1

2
q�1DV V�12 : (7.73)

Moreover, the same is true for the 4th-order amplitude

T V V�12;�12 =
1

4
q�12T

V V
�12

+DV V�12;�12 �
1

4
q�12DV V�12 (7.74)

+
i

4�

1

q2

h
�
�12�12(2Z

(0)
2 � Z

(0)
1 ) + 2��12��12(3Z

(0)
2 � 2Z

(0)
1 )
i
:

The next amplitude to be calculated is the AA. Like V V , this amplitude will contrib-

ute to the even sector of the gravitational amplitude in (7.40). From the chapter on equal

masses, after traces, we have expressed it exactly as (4.32). However, writing this result

in terms of amplitude tV V�12 plus a scalar function proportional to the metric, is feasible

tAA�12 = tV V�12 � 4m
2g�12

1

D12

: (7.75)
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This form allows us to write equations directly from de�nitions for derivative amplitudes

tAA�12;�1 = tV V�12;�1 � 4m
2g�12

K1�1

D12

(7.76)

tAA�12;�12 = tV V�12;�12 � 4m
2g�12

K1�1K1�2

D12

; (7.77)

and their integrals

TAA�12 = T V V�12 � 4m
2g�12J2 (7.78)

TAA�12;�1 = T V V�12;�1 � 4m
2g�12J2�1 (7.79)

TAA�12;�12 = T V V�12;�12 � 4m
2g�12

�J2�12 : (7.80)

Additional contributions of massive terms present in this amplitude are worth noting. For

the divergent part, only the amplitude with four indices has a non-zero term in �J2�12 , see

(3.66). Integrals appearing in the amplitudes of fewer indices contribute only to the �nite

part. However, the 4th-rank amplitude has an additional contribution as a surface term

and Ilog. The �nal result is identical to that obtained from the �rst form presented.

7.2 AV -V A: Odd amplitudes

We will calculate all odd parts of gravitational amplitude. As seen in (4.33), we wrote

two-index functions in terms of even ones using general identity for 2D, 
�
�1 = �"�1�1

�1,

present in (4.15). For higher-rank amplitudes, traces operate in the same way but add

indices to the integrals:

(TAV�12;�1)1 = �"
�1

�1
T V V�1�2;�1 ; (TAV�12;�1)2 = �"

�1
�2

TAA�1�1;�1 (7.81)

(TAV�12;�12)1 = �"
�1

�1
T V V�1�2;�12 ; (TAV�12;�12)2 = �"

�1
�2

TAA�1�1;�12 : (7.82)

To complete odd amplitudes, we cast the analogous VA equations:

(T V A�12;�1)1 = �" �1
�1

TAA�1�2;�1 (T V A�12;�1)2 = �"
�1

�2
T V V�1�1;�1 ; (7.83)

(T V A�12;�12)1 = �" �1
�1

TAA�1�2;�12 (T V A�12;�12)2 = �"
�1

�2
T V V�1�1;�12 : (7.84)

The same considerations can be made when using the chiral matrix de�nition (4.14)

directly in the Dirac traces. By considering expressions for amplitudes with additional

terms, as in (4.27) and (4.28), for amplitudes with derivative vertices, we have

(tAV�12;�1)1 = �" �1
�1

tV V�1�2;�1 + 2"
�1

�2
t(�)�1�1;�1

+ g�12t
SP
�1

(7.85)

(tAV�12;�1)2 = �" �1
�2

tAA�1�1;�1 + 2"
�1

�1
t(�)�1�2;�1

� g�12t
SP
�1

(7.86)

(tAV�12;�12)1 = �" �1
�1

tV V�1�2;�12 + 2"
�1

�2
t(�)�1�1;�12

+ g�12t
SP
�12

(7.87)

(tAV�12;�12)2 = �" �1
�2

tAA�1�1;�12 + 2"
�1

�1
t(�)�1�2;�12

� g�12t
SP
�12
: (7.88)
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Additional terms combine and cancel out when integrated, so the equations above

reduce to those given in (7.81)-(7.82). Let us demonstrate this fact, using the de�nition

(7.58) to t(�) at the beginning of the last section. Thus we have

2" �1
�2

T (�)�1�1;�1
+ g�12T

SP
�1
= 2"�2�1q�1

�J�12�1 � 2"�2�1q
�1 �J2�1�1 + 2g�1�2"�1�2q

�2 �J�12�1 : (7.89)

We applied our de�nitions of J2 integrals, and employed the identity below in the las term

"�1�2g�2�1 + "�2�1g�2�1 + "�2�2g�1�1 = 0: (7.90)

It is direct to observe the exact cancellation of the �rst two terms

2" �1
�2

T (�)�1�1;�1
+ g�12T

SP
�1
= 0: (7.91)

That occurs independently of divergent content of �J2�� . It is easy to see that the same

happens to the analogous terms in the 4th-rank amplitude�s version,

2" �1
�2

T (�)�1�1;�12
+ g�12T

SP
�1�2

= 0: (7.92)

De�nitions for the V A computed with the de�nition of the chiral matrix were not

present because the logic and result are the same. As for the relation between V V and

AA amplitudes, we write from the integrand level

(T V A�12;�1)1 = �" �1
�1

TAA�1�2;�1 = �"
�1

�1
(T V V�1�2;�1 � 4m

2g�1�2J2�1)

= (TAV�1�2;�1)1 + 4m
2"�1�2J2�1 :

This relation is satis�ed without any conditions. In general, we have

(T V A�12 )i = (TAV�12 )i + 4m
2"�1�2J2 (7.93)

(T V A�12;�1)i = (TAV�12;�1)i + 4m
2"�1�2J2�1 (7.94)

(T V A�12;�12)i = (TAV�12;�12)i + 4m
2"�1�2

�J2�12 ; (7.95)

where the index i = 1; 2 is associated with versions, and the Eqs (7.93)-(7.95) will often

be used to reduce manipulations required for the gravitational anomaly.

On the other hand, basic and independent versions one and two are only strictly

equivalent with conditions. This fact was worked in Chapters (4) and (5), where a single

mass and two masses in odd amplitudes were handled. Let us retrieve the explicitly

computed result to establish general results to be used in the sequel

(TAV�12 )1 � (T
AV
�12
)2 = �2("�1��

�
2�2
� "�2��

�
2�1
) (7.96)

�("�1�1�
�
�2
� "�2�1�

�
�1
)
1

q2
�
4m2J2 + i=�

�
+ 4"�1�2m

2J2:

We rearrange the �nite part using "[�1��
�
�2]
= 0 and surface terms "[�1��

�
2�2]

= 0,

"�1��
�
2�2
+ "�2�1�

�
2� + "��2�

�
2�1

= 0 = "[�1��
�
2�2]

; (7.97)

"�1��
�
�2
+ "�2�1�

�
� + "��2�

�
�1

= 0 = "[�1��
�
�2]
; (7.98)
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hence, the di¤erence between the two versions reduces to

(TAV�12 )1 � (T
AV
�12
)2 = �"�1�2 (2�

�
2� + i=�) : (7.99)

Here we clarify how this result can be written systematically. It boils down to using

the de�nitions and caveat that each term present represents complete amplitudes,

T V V�1�2 = 2�2�1�2 +
��1�2
q2

�
4m2J2 + i=�

�
; (7.100)

TAA�1�2 = 2�2�1�2 +
��1�2
q2

�
4m2J2 + i=�

�
� g�1�2

�
4m2J2

�
: (7.101)

Using (4.33), the versions for AV -amplitudes arise

(TAV�12 )1 = �2" �
�1
�2�2� �

"�1��
�
�2

q2
�
4m2J2 + i=�

�
; (7.102)

(TAV�12 )2 = �2" �
�2
�2�1� �

"�2��
�
�1

q2
�
4m2J2 + i=�

�
� "�1�2

�
4m2J2

�
: (7.103)

After writing the di¤erence between them

(TAV�12 )1 � (T
AV
�12
)2 = �" �1

�1
T V V�1�2 + " �1

�2
TAA�1�1 ; (7.104)

we take into account identity among AA and V V (7.78):

(TAV�12 )1 � (T
AV
�12
)2 = �" �1

�1
T V V�1�2 + " �1

�2
T V V�1�1 � 4m

2"�2�1J2: (7.105)

Lastly, employ

"[�1�1
�
T V V

��1
�2]
= 0, �" �1

�1
T V V�1�2 + " �1

�2
T V V�1�1 = "�2�1

�
g�12T V V�1�2

�
;

to reach an expression equivalent to work term by term on the amplitude,

(TAV�12 )1 � (T
AV
�12
)2 = "�2�1

�
g�12T V V�1�2 � 4m

2J2
�
=: �: (7.106)

With the help of explicit expression, follows

� = 2��
2� +

�
4m2J2 + i=�

�
� 4m2J2 = 2�

�
2� + i=�: (7.107)

As it must be, this condition is equal to that deduced to the equivalence of basic (4.52).

For these amplitudes, the equality among independent expressions is obtained through

any possible way to employ the trace of four gamma matrices and a chiral one.

It is a direct task to identify this condition to higher-rank amplitudes, namely,

(TAV�12 )1 � (T
AV
�12
)2 = "�2�1� (7.108)

(TAV�12;�1)1 � (T
AV
�12;�1

)2 = "�2�1��1 (7.109)

(TAV�12;�12)1 � (T
AV
�12;�12

)2 = "�2�1��12 : (7.110)
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Due to the relevance of these terms, we present the following de�nition

� =
�
g�12T V V�1�2 � 4m

2J2
�

(7.111)

��1 =
�
g�12T V V�1�2;�1 � 4m

2J2�1
�

(7.112)

��12 =
�
g�12T V V�1�2;�12 � 4m

2J2�12
�
: (7.113)

At the end of calculations, identities of this type must be used in surface terms and

�nite parts of amplitudes. This approach simpli�es the conclusions that can be given by

exposing hundreds of terms that build up some of these amplitudes, making that path

prohibitively long to be exposed. The identities only express the vanishing of a complete

antisymmetric tensor of degree three in two dimensions.

The last section exposed detailed results for �nite and divergent parts of core compon-

ent V V amplitudes that appear in RHS of (7.112) and (7.113). Thus, we take expressions

(7.65) and (7.66) into account to write

g�12T V V�12;�1 = 4g�12J2�12�1 + 2(2q
�1J2�1�1 + q2J2�1) + g�12DV V�12;�1 (7.114)

g�12T V V�12;�12 = 4g�12J2�12�12 + 2(2q
�1J2�1�12 + q2J2�12) + g�12DV V�12;�12 : (7.115)

Observe that J-functions comprise the entire �nite part while DV V -tensor accounts for
divergent terms. Therefore, these calculations require the traces

4g�12J2�12�1 = 4m2J2�1 �
i

2�
q�1 (7.116)

4g�12J2�12�12 = 4m2J2�12 �
i

12�
[��1�2 (q)� 3q�1q�2 ]; (7.117)

and relations coming from momentum contractions

2q�1J2�1�1 + q2J2�1 = 0 (7.118)

2q�1J2�1�1�2 + q2J2�1�2 = 0; (7.119)

results derived in Sections (3.2) and (3.3). Substituting in (7.114) and (7.115) yields

g�12T V V�12;�1 = 4m2J2�1 �
i

2�
q�1 + g�12DV V�12;�1 (7.120)

g�12T V V�12;�12 = 4m2J2�12 �
i

12�
(��1�2 � 3q�1q�2) + g�12DV V�12;�12 : (7.121)

The trace of DV V -tensor, their explicit forms from (7.67) and (7.68). For the one

derivative index, the divergent terms have only logarithmic divergent surface terms

g�12DV V�12;�1 = �
1

2
P �1(2W �

3��1�1
� 8�2�1�1) + P�1�

�
2� � q�1�

�
2�: (7.122)

As for the trace of the two-derivative indices tensor, its divergent part is more complex.

It presents a relation involving the trace of quadratically divergent objects, as seen in the
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�rst line of the following equation

g�12DV V�12;�12 = (W �
2��12

� 2�1�12) + 2g�1�2Iquad +
1

6p2
g�12
�12�12Ilog (7.123)

+
1

36
(3P �12 + q�12)(3W �

4��12�12
� 18W3�12�12)

�1
4
P �1(P�2 � q�2)(2W

�
3��1�1

� 8�2�1�1)

�1
4
P �1(P�1 � q�1)(2W

�
3��2�1

� 8�2�2�1)

�1
8
(P 2 + q2)(2W �

3��12
� 8�2�12)

+
1

2
(P�1 � q�1)(P�2 � q�2)�

�
2�:

Identities involving W �
4��12�12

, W �
3��2�1

and ��
2� are a valuable way to write the results.

They arise from taking the trace of W�s and applying combinatorial analysis in their

de�nition as linear expansions of surface terms, which was performed in Section (3.1),

Eqs (3.24)-(3.25). They are

2W �
3��12

� 8�2�12 = [2(�
�
3��12

��2�12)� g�12�
�
2�] + 2g�12�

�
2�; (7.124)

3W �
4��1234

� 18W3�1234 = [3��4��1234 � 8�3�1234 � g(�12g�34)�
�
2�] (7.125)

+g(�12 [�
�
3��34)

��2�34) �
1

2
g�34)�

�
2�] + 3g(�12g�34)�

�
2�:

The use of these relations will become apparent in the course of the investigation.

To get an explicit expression for terms that make versions of amplitudes distinct,

see (7.112) and (7.113), we join the results g�12DV V�12;�1 and g�12DV V�12;�12 with �nite part
previously calculated, which allow us to write:

��1 =
�
g�12T V V�12;�1 � 4m

2J2�1
�

(7.126)

= �1
2
P �1 [2(��3��1�1 ��2�1�1)� g�1�1�

�
2�]� q�1(�

�
2� + i=2�)

��1�2 =
�
g�12T V V�12;�12 � 4m

2 �J2�12
�

(7.127)

= �1
6
(��1�2 � 3q�1q�2) (�

�
2� + i=2�)

+
1

36
(3P �12 + q�12)[3��4��12�12 � 8�3�12�12 � g(�12g�12)�

�
2�]

+
1

72
(3P �12 + q�12)g(�12 [2��3�12)� � 2�2�12) � g�12)�

�
2�]

�1
4
P �1 (P�2 � q�2) [2(��3��1�1 ��2�1�1)� g�1�1�

�
2�]

�1
4
P �1 (P�1 � q�1) [2(��3��2�1 ��2�2�1)� g�2�1�

�
2�]

�1
8
(P 2 + q2)[2(��3��12 ��2�12)� g�12�

�
2�]

+(W �
2��12

� 2�1�12) + 2g�1�2Iquad � 2m2 (�2�12 + g�12Ilog) :
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For the last relation, we de�ned the complete two-point tensor integral

�J2�12 =
1

2
(�2�12 + g�12Ilog) + J2:

We already have all expressions that make up gravitational amplitude. However, we

also need to know how they manifest in RAGFs, a subject we will address next. In a second

step, we will analyze its consequences for symmetries of keeping these relations preserved

and whether it is possible to determine them independently of amplitudes context.

7.3 Even Amplitudes: RAGFs

Now, we will explore RAGFs for even amplitudes. In Chapters (4) and (5), relations

served as a bridge to establish how they operate in odd amplitudes since contractions

related to vertex indices (called internal indices) are trivially satis�ed. Beyond the relation

q�1tV V�12 = tV�2 (k1)� t
V
�2
(k2) = tV(�)�2 ; (7.128)

already veri�ed in (4.53), we need relations for amplitudes derivative:

q�1tV V�12;�1 = tV�2;�1 (k1)� t
V
�2;�1

(k2) = tV(�)�2;�1 (7.129)

q�1tV V�12;�12 = tV�2;�12 (k1)� t
V
�2;�12

(k2) = tV(�)�2;�12 ; (7.130)

where tV(�)�2;�1 and t
V
�2;�12

(k1) denotes the di¤erence of vectorial one-point functions.

In addition to relations for internal indices, the contractions with derivative indices mo-

mentum (called external indices) also produce relations for the gravitational amplitudes.

They are obtained using the following identity inside the Dirac trace

2q�1K1�1 = [S
�1 (K2) /q + /qS�1 (K1) + 2m /q � q2]; (7.131)

in two distinct positions: around the �rst or second vertex. For example, we apply it in

front of the �rst vertex and split terms in the sum as

q�1tV V�12;�1 = �1
2
q2tV V�12 +mtr

�
/q
�1S (K1) 
�2S (K2)

�
(7.132)

+
1

2
tr
�
/qS�1 (K1) 
�1S (K1) 
�2S (K2)

�
+
1

2
tr
�
S�1 (K2) /q
�1S (K1) 
�2S (K2)

�
:

Substituting in the second line of the relation above

S�1 (K1) 
�1S (K1) = 2K1�1S (K1)� 
�1 � 2m
�1S (K1) ;

the mass term was canceled. Applying /q = [S�1 (K2)�S�1 (K1)] leads to the di¤erence of

the one-point functions with derivative indices, tV(�)�2;�1. We use the (anti)-commutations
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among 
�i and /q matrices,

2
�1
�2 = f
�1 ; 
�2g+ [
�1 ; 
�2 ] (7.133)

[
�1 ; 
�2 ] = �2"�1�2
� (7.134)

2g�12 /q = /q
�2
�1 + 
�2
�1 /q: (7.135)

The systematic procedure gives back the identity given by

tr
�

�2 /q
�1S (K1)

�
� tr

�
/q
�1
�2S (K2)

�
= q�1t

V
(�)�2 + q�2t

V
(+)�1

� g�12q
�tV(+)� (7.136)

where the notation tV(+)�2;�1 ; is associated with the sum of vectorial one-point functions

tV(+)�2;�1 = tV�2;�1 (k1) + tV�2;�1 (k2) ; (7.137)

similarly to tV(+)�1. The operations described above leads the relation for q
� contraction,

q�1tV V�12;�1 = �
1

2
q2tV V�12 + tV(�)�2;�1 +

1

2
q�1t

V
(�)�2 +

1

2
q�2t

V
(+)�1

� 1
2
g�12q

�1tV(+)�1 : (7.138)

Starting with the initial identity (7.131) close to the right of vertex 
�2 ; the relation

obtained is equal to the previous one after interchanging �1 $ �2 on the RHS. The relation

is the same for four indices amplitude, just adding a derived index on the amplitudes.

Amplitudes with derivative indices also account for trace identities, which will later

be necessary to characterize Weyl anomalies. The result emerges directly by using /K1 =

S�1 (k1) +m, so relations for the two amplitudes are given by

g�1�1tV V�12;�1 = tV�2 (k2) +mtSV�2 (7.139)

g�1�1tV V�12;�12 = tV�2;�2 (k2) +mtSV�2;�2 : (7.140)

These relations are symmetric for �1 $ �2 exchanges.

To �nalize the exposure of RAGFs for even amplitudes, we extend the procedure

adopted for the V V s to AA. For the momentum contraction q�i (internal contractions):

q�1tAA�12;�1 = tV�2;�1 (k1)� t
V
�2;�1

(k2)� 2mtPA�2;�1 = tV(�)�2;�1 � 2mt
PA
�2;�1

(7.141)

q�1tAA�12;�12 = tV�2;�12 (k1)� t
V
�2;�12

(k2)� 2mtPA�2;�12 = tV(�)�2;�12 � 2mt
PA
�2;�12

: (7.142)

For the momentum contraction q�i (external contractions):

q�1tAA�12;�1 = �1
2
q2tAA�12 + tV(�)�2;�1 +

1

2
q�1t

V
(�)�2 +

1

2
q�2t

V
(+)�1

� 1
2
g�12q

�1tV(+)�1(7.143)

+mg�12 [t
S (k2)� tS (k1)] +m"�12 [t

P (k2) + tP (k1)]:

The last line has two additional terms compared to (7.138). These terms do not contribute

for three-index amplitudes; however, those with four indices have [tS�2 (k2)� tS�2 (k1)] 6= 0
when integrated. And for the trace Contractions:

g�1�1tAA�12;�1 = tV�2 (k2) +mtPA�2 (7.144)

g�1�1tAA�12;�12 = tV�2;�2 (k2) +mtPA�2;�2 : (7.145)
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The following subsections pursue links between the �nite and divergent parts that will

guide us in studying even and odd parts of Einstein and Weyl anomalies. Some passages

are detailed to explain that all mathematical operations carried out follow rigorously.

7.3.1 Internal contractions: q�T V V��;� and q�T V V��;��

From detailed results for amplitudes, we can proceed to the veri�cation of RAGFs,

starting with those involving vertex-index contractions (7.129) and (7.130). We expect

them to remain valid to ensure the linearity of integration operation:

q�1T V V�12;�1 = T V�2;�1 (k1)� T
V
�2;�1

(k2) = T V(�)�2;�1 (7.146)

q�1T V V�12;�12 = T V�2;�12 (k1)� T
V
�2;�12

(k2) = T V(�)�2;�12 : (7.147)

As they involve di¤erences of vector one-point functions from (7.37) and (7.38), we need to

calculate these values fT V�1;�1 (ki) ; T V�1;�12 (ki)g: These amplitudes are expressed in terms
of one-point integrals �J1�1 (ki),

�J1�12 (ki) and
�J1�123 (ki) in Eq�s (C.2)-(C.7) in Appendix

(C). For the amplitudes with the label k1 as the reference momentum, expressions follow

directly from de�nitions used in the J-integrals, namely,

T V�1;�1 (k1) = 2 �J1�1�1 (k1) (7.148)

T V�2;�12 (k1) = 2 �J1�1�12 (k1) : (7.149)

The amplitudes with the label k2 momentum require the translation K1 ! k + k2 � q,
just for convenience because J�s functions were de�ned using this convention, so

T V�1;�1 (k2) = 2 �J1�1�1 (k2)� 2q�1 �J1�1 (k2) (7.150)

T V�2;�12 (k2) = 2 �J1�2�12 (k2)� 2q(�1 �J1�2)�2 (k2) + 2q�12 �J1�2 (k2) : (7.151)

Di¤erences of one-point vectorial functions with one and two derivative indices are

T V(�)�2;�1 = �q�2P �1W3�1�2�12 + (P�2q
�1 + P �1q�2)�3�1�1 (7.152)

+(P � q)�3�2�1 + (P�1 � q�1) q
�1�2�2�1 ;

T V(�)�2;�12 = q�1W2�2�12�1 � q�2�1�12 + q(�1g�2)�2Iquad (7.153)

+
1

12
[P (�12q�3) + q�123 ]W4�2�12�123

�1
4
[2q�1P �2P�2 + (P

�12 + q�12)q�2 ]W3�12�12

�1
4

�
2 (P � q)P �1 + q�1(P 2 + q2)

�
W3�2�12�1

�1
2
q�2P �1(P � q)(�1W3�2)�2�12 ]

+
1

4

�
2(P � q)P�2 + (P

2 + q2)q�2
�
�2�12 +

1

2
(P � q)(P � q)(�1�2 �2)�2

+
1

2
(P�q

�1 + q�P
�1)(P � q)(�1�2 �2)�1 +

1

2
(P � q)�1(P � q)�2q�1�2�2�1 :
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We will begin verifying relations obtained for even amplitudes. From the relation for

2nd-order VV amplitude in (4.53), the veri�cation for derivative amplitudes follows the

same procedure. We have for the 3rd and 4th-order V V amplitude

q�1T V V�12;�1 = 2(2q
�1J2�12�1 + q2J2�2�1) + q�2(2q

�1J2�1�1 + q2J2�1) + q�1DV V�12;�1 (7.154)

q�1T V V�12;�12 = 2(2q
�1J2�12�12 + q

2J2�2�12)+ q�2(2q
�1J2�1�12 + q

2J2�12)+ q
�1DV V�12;�12 : (7.155)

from Section (3.3), which are of the same type used in establishing constraints over odd

amplitudes (by example 2q�1J2�12�1 = �q2J2�2�1), we have that �nite part vanishes and
divergent factors q�1DV V�12;�1 and q

�1DV V�12;�12 satisfy identically

q�1DV V�12;�1 = T V(�)�2;�1 (7.156)

q�1DV V�12;�12 = T V(�)�2;�12 : (7.157)

Due to the de�nitions of tensors W4�123456 and W3�1234, see Section (3.1) there are

hundreds of surface terms in the last relation. Although it seems complicated to verify

such equality, its satisfaction follows from the observation that each of the lines that

we arrange for tensor DV V�12;�12 in (7.68) will correspond to one of the lines expressed by
di¤erence T V(�)�2;�12 in (7.153), when contracting with momentum. We facilitate these

identi�cations by classifying surface terms, following criteria regarding the divergence

degree, tensor rank, and contraction type. For example, it is necessary to note that index

�1 becomes a contracted index, 3q
�1P �12W4�12�12�12 = P (�12q�3)W4�2�12�123 : As the tensor

W4�123456 is fully symmetric, terms are identical, and so on for all others. Expanding

W combinations in primary surface terms is not necessary. In this way, relations for

amplitudes at the trace level incorporate integration linearity established in (7.147) and

are satis�ed without restriction on the divergent parts of expressions.

7.3.2 External Contractions: q�T V V��;� and q�T V V��;��

We have one more momentum contraction to check regarding amplitudes T V V�12;�1 and

T V V�12;�12: they are q
�1T V V�12;�1 and q

�1T V V�12;�12 from (7.138). It can be made by contracting the

amplitude and identifying the function of the RHS. Nevertheless, we proceed through an

alternative route, using manipulations to reorganize integrands of amplitudes. E¤ectively

these indices exchange from Dirac matrices �i with indices from derivative factors �i. In

this way, if previously veri�ed relations (7.147) are satis�ed, they will also be satis�ed

since they come from Dirac traces. We will detail calculations for relations involving

amplitude with a derivative index. At the end of the operations, we expect to obtain

(7.138) integrated. We will extend this result to amplitude with two derivatives, drawing

attention to their di¤erences. These two amplitudes with exchange indexes will be the

basis for calculating the relations for the other even and odd amplitudes.
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From de�nition for the amplitude tV V�12 and t
V V
�12;�1

; see Eqs (4.24) and (7.56), we obtain

2t(+)�12
= tV V�12 � g�12t

PP (7.158)

2t(+)�12;�1
= tV V�12;�1 � g�12t

PP
�1
: (7.159)

It can be noted that the role of indexes position in the second tensor is

2t(+)�12;�1
= 2K1�1(K1�1K2�2 +K2�1K1�2)

1

D12

(7.160)

2t(+)�1�2;�1
= 2K1�1

�
K1�1K2�2 +K2�1K1�2

� 1

D12

; (7.161)

where the outside term in parentheses comes from derivative contribution. Manipulating

the expression for t(+)�12;�1 using K2 = K1 + q relate both tensors, changing the role of

indices �1 $ �1. We use the notation to represent the antisymmetry of indices [ ]:

t(+)�12;�1
= t(+)�1�2;�1

� q[�1K1�1]K1�2

1

D12

: (7.162)

The tensors t(+)�12;�1 and t
(+)
�1�2;�1 di¤er by an additional tensor from translation of K1 mo-

mentum. Expressing t(+) parts in terms of V V and PP amplitudes leads to

tV V�12;�1 = tV V�1�2;�1 + g�12t
PP
�1
� g�1�2t

PP
�1
� 2q[�1K1�1]K1�2

1

D12

: (7.163)

Furthermore, the last term with this equation also has a form in terms of V V -amplitude

2q[�1K1�1]K1�2

1

D12

=
1

2
(q�1t

V V
�12
� q�1t

V V
�1�2

)� 1
2
q[�1g�1]�2t

PP � q�2q[�1K1�1]
1

D12

: (7.164)

Starting from the de�nition of amplitude T PP�1 (7.62) and using K1 = K2 � q, the sum of

one-point vector functions appears straightforwardly

tPP�1 = q2
K1�1

D12

+ q�1
1

D2

� 1
2
[tV�1 (k1) + tV�1 (k2)]: (7.165)

These observations, we obtain an identity representing the exchanging of indices that

facilitate the study of this relation coming from contractions involving derivatives indices

tV V�12;�1 = �
1

2
q�1t

V V
�12
+ tV V�1�2;�1 +

1

2
q�1t

V V
�1�2
� 1
2
g�12t

V
(+)�1

+
1

2
g�1�2t

V
(+)�1

+ r�12;�1 : (7.166)

Here, r�12;�1 is a residual term anissymetric in �1 and �1

r�12;�1 =
1

2
q[�1g�1]�2

�
q2

1

D12

+
1

D2

� 1

D1

�
� ��2[�1K1�1]

1

D12

; (7.167)

whose integration yields

R�12;�1 =
1

2
q[�1g�1]�2q

2J2 � q2g�2[�1J2�1] + q�2q[�1J2�1] (7.168)

+
1

2
q[�1g�1]�2q

2[ �J1(k2)� �J1(k1)]:
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After substitutions of J2�; J2 and �J1 (ki) ; this term is null, R�12;�1 = 0: It is essential

to mention that we carry out passive operations. Rearranging amplitude terms does not

represent any operations performed on the original amplitude. The full expression is

T V V�12;�1 = �
1

2
q�1T

V V
�12

+ T V V�1�2;�1 +
1

2
q�1T

V V
�1�2
� 1
2
g�12T

V
(+)�1

+
1

2
g�1�2T

V
(+)�1

: (7.169)

Let us analyze q�1 contractions. We have already veri�ed that RAGF is satis�ed with

matrix indices. Thus, we have automatic satisfaction of contractions with �1 index

q�1T V V�12;�1 = �
1

2
q2T V V�12 + T V(�)�2;�1 +

1

2
q�1T

V
(�)�2 +

1

2
q�2T

V
(+)�1

� 1
2
g�12q

�1T V(+)�1 : (7.170)

Adding one more factor K1�2 in (7.166), the structure is the same as the previous one,

tV V�12;�12 = �1
2
q�1t

V V
�12;�2

+ tV V�1�2;�1�2 +
1

2
q�1t

V V
�1�2;�2

(7.171)

�1
2
g�12t

V
(+)�1;�2

+
1

2
g�1�2t

V
(+)�1;�2

+ r�12;�12 :

However, we need to analyze the e¤ect on the term r�12;�12 = K1�2r�12;�1 from (7.167),

r�12;�12 =
1

2
q[�1g�1]�2K1�2

�
q2

1

D12

+
1

D2

� 1

D1

�
� ��2[�1K1�1]

K1�2

D12

: (7.172)

After being integrated, the residual terms can be organized as

R�12;�12 =
1

2
q[�1g�1]�2

�
q2J2�2 � J1�2 (k1) + J1�2 (k2)� q�2J1 (k2)

�
� ��2[�1 �J2�1]�2

=
1

2
q[�1g�1]�2(q

2J2�2 � q�1�2�2�1 � q�2Ilog)� ��2[�1 �J2�1]�2 : (7.173)

This term does not cancel itself when integrated; nonetheless, its contractions do not

contribute to the relations

2q�1R�12;�12 = ��12
�
2q�1 �J2�12 + q2J2�2 � q�1�2�2�1 � q�2Ilog

�
= 0: (7.174)

Furthermore, we �nd the same outcome for the trace

g�1�1R�12;�12 = ��1�2
�J2�1�2 � ��1�2 �J2�1�2 = 0: (7.175)

Thus, it will not contribute to any of the contractions that remain to be veri�ed.

q�1R�12;�12 = 0 q�2R�12;�12 = 0 q�1R�12;�12 = 0 (7.176)

g�2�2R�12;�12 = 0 g�1�1R�12;�12 = 0 g�1�2R�12;�12 = 0: (7.177)

The complete expression is given by

T V V�12;�12 = �1
2
q�1T

V V
�12;�2

+ T V V�1�2;�1�2 +
1

2
q�1T

V V
�1�2;�2

(7.178)

�1
2
g�12T

V
(+)�1;�2

+
1

2
g�1�2T

V
(+)�1;�2

+R�12;�12 :

Divergent parts are not restricted to any values. Contracting the equation and using

(7.174), we have the relation (7.138) satis�ed for this amplitude.
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7.3.3 Metric Contractions: g��T V V��;� and g��T V V��;��

Relations from metric contraction (7.139) and (7.140) can be rewritten as

g�1�1tV V�1�2;�1 � t
V
�2
(k2) = mtSV�2 (7.179)

g�1�1tV V�1�2;�12 � t
V
�2;�2

(k2) = mtSV�2;�2 : (7.180)

They can be reformulated based on what was discussed for contractions involving deriv-

ative indices� in this case, exchanging �1 $ �1 to get the relation. That is also valid for

the permutation �2 $ �1 since two matrix indices ��s are symmetric, and for the second

expression, the same is valid for indexes ��s. We have to the integrated (7.170)

2g�1�1T V V�12;�1 = g�12 [2T V V�12;�2 + q�2T
V V
�12
] + [T V(+)�2 � q

�1T V V�12 ]: (7.181)

The argument follows the previous case: if the relation (4.53) is valid, then

2[g�1�1T V V�12;�1 � T
V
�2
(k2)] = g�12 [2T V V�12;�2 + q�2T

V V
�12
]: (7.182)

Moreover, the contraction of (7.178) is condionated by satisfaction of (7.146), therefore

2[g�1�1T V V�12;�12 � T
V
�2;�2

(k2)] = g�12 [2T V V�12;�2�2 + q�2T
V V
�12;�2

]: (7.183)

If we compare these expressions with the integrated ones (7.179) and (7.180), showing

their equivalence is doable. In this way, the RHS can be written as

g�12 [2T V V�12;�2 + q�2T
V V
�12
] = 2mT SV�2 (7.184)

g�12 [2T V V�12;�2�2 + q�2T
V V
�12;�2

] = 2mT SV�2;�2 : (7.185)

We need traces of the V V to verify if these relations are satis�ed since divergent terms

will be contained in traces of DV V -parts. Nonetheless, there is a path using exclusively
��2 and ��2�2 that emerged in constraint of equivalence among odd amplitudes. Explicit

forms of SV -amplitudes regard J2�s integrals; therefore, let us write the results

T SV�2 = 2m(2J2�2 + q�2J2) = 0: (7.186)

Even if it is identically zero due to relations among �nite integrals of equal masses, we

will use its terms separately in the sequel. The other

T SV�2;�2 = 2m(2
�J2�2�2+q�2J2�2) = 2m(�2�2�2+g�2�2Ilog)+2m(2J2�2�2+q�2J2�2): (7.187)

Beginning with Eq. (7.184), we write

2(g�12T V V�12;�2 � 4m
2J2�2) + q�2(g

�12T V V�12 � 4m
2J2) = 0: (7.188)

It is a matter of recognizing �-factors; consult their explicit expressions in Eqs. (7.107)

and (7.126) to write 2��2 + q�2� = 0: That is a condition for compliance with RAGF

derived through the metric contraction. Extending this construction to Eq. (7.185),

2(g�12T V V�12;�2�2 � 4m
2 �J2�2�2) + q�2(g

�12T V V�12;�2 � 4m
2J2�2) = 0: (7.189)
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That means 2��2�2 + q�2��2 = 0 due to the de�nition already given, see (7.127) for the

explicit expression of ��2�2. Hence, metric RAGFs are not automatically satis�ed also

for even amplitudes. Owing derivations until this point, we can lay down the equations:

g�12 [2T V V�12;�2 + q�2T
V V
�12
] = 2mT SV�2 + 2��2 + q�2� (7.190)

g�12 [2T V V�12;�2�2 + q�2T
V V
�12;�2

] = 2mT SV�2;�2 + 2��2�2 + q�2��2 : (7.191)

Alternatively, we can express them in the way it was derived

2g�1�1T V V�12;�1 = 2T V�2 (k2) + 2mT
SV
�2
+
�
2��2 + q�2�

�
: (7.192)

2g�1�1T V V�12;�12 = 2T V�2;�2 (k2) + 2mT
SV
�2;�2

+ (2��2�2 + q�2��2): (7.193)

The vanishing of individual violating terms � is enough to satisfy these relations. This

constraint preserves all RAGFs in all amplitudes; however, in (7.192), combinations of

violating terms can be made zero without canceling each term. That is the only place

this happens; they always arise individually in other relations. Two-index combination

requires that terms cancel independently. Calling for the full results (7.107) and (7.126),

it is clear that violating terms in three-indices relation

2��2 + q�2� = �P
�1 [2(��3��2�1 ��2�2�1)� g�2�1�

�
2�]: (7.194)

It can be restricted to zero without each component being zero independently. As a last

comment, violating factors come from suitably complex functions of momenta, physical

q, or ambiguous P . Nonetheless, they are local polynomials in these variables, which can

be asserted from their expressions. The remaining appears in (7.127).

Discussing if violating terms are null and the consequences of this property is a crucial

point of this investigation and what perspective we can establish from conditions for

RAGF satisfaction in odd amplitudes context.

7.3.4 Internal Contractions: q�TAA��;� and q�TAA��;��

We must analyze RAGF for two-point amplitudes with two axial vertexes to complete

relations for even amplitudes; see (7.141) and (7.142). These relations di¤er from those

associated with vector amplitudes by an additional term given by PA-amplitudes,

T PA�2 = 2mq�2J2 (7.195)

T PA�2;�1 = 2mq�2J2�1 (7.196)

T PA�2;�12 = 2mq�2
�J2�12 : (7.197)

As they exactly match the additional terms through connection with the V V -amplitudes,

we have when contracting the expressions (7.78)

q�1TAA�12 = q�1T V V�12 � 2mT
PA
�2

= T V(�)�2 � 2mT
PA
�2

(7.198)

q�1TAA�12;�1 = q�1T V V�12;�1 � 2mT
PA
�2;�1

= T V(�)�2;�1 � 2mT
PA
�2;�1

(7.199)

q�1TAA�12;�12 = q�1T V V�12;�12 � 2mT
PA
�2;�1�2

= T V(�)�2;�12 � 2mT
PA
�2;�1�2

: (7.200)
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We have unconditional RAGF, the satisfaction established for V V -amplitudes, followed

by the satisfaction of these for AA-amplitudes.

7.3.5 External Contractions: q�TAA��;� and q�TAA��;��

To extend the results obtained in (7.166) and (7.171) for AA-amplitudes, use the

relation connecting even amplitudes (7.78), (7.79), and (7.80),

TAA�12;�1 = �1
2
q�1T

AA
�12
+ TAA�1�1;�2 +

1

2
q�2T

AA
�1�1

+
1

2
g�1�1T

V
(+)�2

� 1
2
g�12T

V
(+)�1

(7.201)

+2m2
�
g�1�1

�
2J2�2 + q�2J2

�
� g�12 (2J2�1 + q�1J2)

�
:

The combination 2J2�2 + q�2J2 = 0 cancels out the last two terms. Using (7.198) and

(7.199) allows us to show that the relation with indices �i are also automatically satis�ed:

q�1TAA�12;�1 = �1
2
q2TAA�12 + T V(�)�2;�1 +

1

2
q�1T

V
(�)�2 +

1

2
q�2T

V
(+)�1

(7.202)

�1
2
g�12q

�1T V(+)�1 +mg�12 [T
S (k2)� T S (k1)]:

We have two additional terms corresponding to PA-amplitudes from RAGF with q�1

contraction. Using (7.195) and (7.196) is easy to see which combination

2T PA�1;�2 + q�2T
PA
�1

= 2mq�2
�
2J2�1 + q�1J2

�
= 0:

We have the cancelation T P (ki) = 0, and the di¤erence between one-point functions also

vanishes T S (k2)� T S (k1) = 0; satisfying relation (7.143).
For the expression with four indices, we have

TAA�12;�12 = �1
2
q�1T

AA
�12;�2

+ TAA�1�2;�1�2 +
1

2
q�1T

AA
�1�2;�2

(7.203)

+
1

2
g�1�2T

V
(+)�1;�2

� 1
2
g�12T

V
(+)�1;�2

+R�21;�21

+2m2
�
g�2�1

�
2 �J2�1�2 + q�1J2�2

�
� g�12

�
2 �J2�12 + q�1J2�2

��
;

where R�21;�21 is de�ned in (7.173). Eq. (7.174) shows that contracting the form above

with q produces a null result. Considering the relations (7.199)-(7.200),

q�1TAA�12;�12 = �1
2
q2TAA�12;�2 + T V(�)�2;�1�2 +

1

2
q�1T

V
(�)�2;�1 +

1

2
q�2T

V
(+)�1;�2

� 1
2
g�12q

�1T V(+)�1;�2

�m
h
(2T PA�2;�1�2 + q�1T

PA
�2;�1

)� 2mq�2
�
2 �J2�1�2 + q�1J2�2

�i
�2m2g�12 (�2�2�1 + g�2�1Ilog)� 2m2g�12

�
2q�1J2�12 + q2J2�2

�
: (7.204)

Using 2q�1J2�12 = �q2J2�2 , last term is null. Still, identifying other null combinations

(2T PA�2;�1�2 + q�1T
PA
�2;�2

) = 2mq�2
�
2 �J2�1�2 + q�1J2�2

�
: (7.205)
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The di¤erence between one-point scalar functions, using (C.1), (C.2), and (C.3),

T S� (k2)�T S� (k1) = 2m[ �J1� (k2)� �J1� (k1)� q� �J1 (k2)] = �2mq�(�2�� + g��Ilog): (7.206)

The relation is satis�ed directly, such that

q�1TAA�12;�12 = �1
2
q2TAA�12;�2 + T V(�)�2;�1�2 +

1

2
q�1T

V
(�)�2;�1 +

1

2
q�2T

V
(+)�1;�2

(7.207)

�1
2
g�12q

�1T V(+)�1;�2 +mg�12 [T
S
�2
(k2)� T S�2 (k1)]:

7.3.6 Metric Contractions: g��TAA��;� and g��TAA��;��

The same conditions as V V -amplitudes will constrain relations involving traces,

g�1�1TAA�12;�1 = T V�2 (k2) +mT PA�2 +
1

2

�
2��2 + q�2�

�
(7.208)

g�1�1TAA�12;�12 = T V�2;�2 (k2) +mT PA�2;�2 +
1

2

�
2��2�2 + q�2��2

�
: (7.209)

Requiring that tensors calculated on (7.107), (7.126), and (7.127) being zero leads to its

satisfaction. All relations deduced for even amplitudes are symmetric by exchanges �1 $
�2 and �1 $ �2. To make this part complete must be noticed that if we contract with

the second index �2 and one derivative index, we get a super�cially di¤erent expression;

however, two-point amplitudes in the RHS obey TAP = �T PA.
For instance, to obtain (7.208) one may use (7.79),

2g�1�1TAA�12;�1 = 2T
V
�2
(k2) + 2m(T

SV
�2
� 4mJ2�2) +

�
2��2 + q�2�

�
: (7.210)

Furthermore, notice that the identity (T SV�2 � 4mJ2�2) = 2mq�2J2 = T PA�2 returns the �rst

equation we showed. The deduction steps for two derivative indices are unchanged. One

could also invoke Eq. (7.201) for trading between one derivative and one matrix index;

thus, taking the trace, there will appear a RAGF to inner contractions (with matrix

indices), which in turn are identically satis�ed as demonstrated previously. Therefore, we

employ that derivation in the equation below

2g�1�1TAA�12;�1 = g�1�1(2TAA�1�1;�2+q�2T
AA
�1�1

)�q�1TAA�12 +T
V
(+)�2

+4m2(2J2�2+q�2J2): (7.211)

Reminding that T SV�2 = 2m
�
2J2�2 + q�2J2

�
, �nal expression assumes the form

2g�1�1TAA�12;�1 = g�12(2TAA�12;�2 + q�2T
AA
�12
) + 2T V�2 (k2) + 2mT

PA
�2
+ 2mT SV�2 : (7.212)

After that, we transform AA into V V on the LHS following (7.208).

We �nished calculating all the amplitudes and RAGF of even amplitudes. The re-

lations involving momentum with matrix indices and derivatives are all automatically

satis�ed. However, in the case of traces, we saw that two groups of amplitudes presented

violations by the same terms.



7.4 Odd Amplitudes: RAGFs 94

7.4 Odd Amplitudes: RAGFs

For odd amplitudes AV -V A, internal contractions are di¤erent by the vertex character;

specifying the contraction with the axial vertex is necessary. As we saw, these relations

are not satis�ed without restriction, and the presence of an anomalous term is due to the

existence of a chiral anomaly at this vertex,

q�1tAV�12;�1 = [tA�2;�1 (k1)� t
A
�2;�1

(k2)]� 2mtPV�2;�1 = tA(�)�2;�1 � 2mt
PV
�2;�1

(7.213)

q�1tAV�12;�12 = [tA�2;�12 (k1)� t
A
�2;�12

(k2)]� 2mtPV�2;�12 = tA(�)�2;�12 � 2mt
PV
�2;�12

;(7.214)

where tA(�)�2;�1 and t
A
(�)�2;�12 are associated with di¤erence of axial one-point function,

tA(�)�2;�1 = tA�2;�1 (k1)� t
A
�2;�1

(k2) (7.215)

tA(�)�2;�12 = tA�2;�12 (k1)� t
A
�2;�12

(k2) : (7.216)

Relations for vectorial vertexes are given by

q�2tAV�12;�1 = tA�1;�1 (k1)� t
A
�1;�1

(k2) = tA(�)�1;�1 (7.217)

q�2tAV�12;�12 = tA�1;�12 (k1)� t
A
�1;�12

(k2) = tA(�)�1;�12 : (7.218)

Two identities can be constructed in external contractions, as explored in the even

ones. If we insert the factor (7.131) next to the �rst vertex we will obtain

q�1tAV�12;�1 = �1
2
q2tAV�12 + tA(�)�2;�1 +

1

2
q�1t

A
(�)�2 +

1

2
q�2t

A
(+)�1

� 1
2
g�12q

�1tA(+)�1(7.219)

+m"�12 [t
S (k2)� tS (k1)] +mg�12 [t

P (k2) + tP (k1)]:

The notation tA(+)�1 is associated with the sum of the axial one-point function, namely

tA(+)�1 = tA�1 (k1) + tA�1 (k2) : (7.220)

But if we use the same identity around the second vertex, the relations are

q�1tAV�12;�1 = �
1

2
q2tAV�12 + tA(�)�1;�2 +

1

2
q�2t

A
(�)�1 +

1

2
q�1t

A
(+)�2

� 1
2
g�12q

�tA(+)�: (7.221)

The same to the four-indexes amplitudes, adding one index more. In addition to the

relations (7.219) having additional terms when compared to (7.221). The roles of indices

�1 and �2 are di¤erent. We will see its consequences in the course of this investigation.

In contractions with the metric, the indices �1 and �2 give us di¤erent relations:

g�1�1tAV�12;�1 = tA�2 (k2) +mtPV�2 (7.222)

g�1�1tAV�12;�12 = tA�2;�2 (k2) +mtPV�2;�2 : (7.223)

g�2�1tAV�12;�1 = tA�1 (k2) +mtAS�1 (7.224)

g�2�2tAV�12;�12 = tA�1;�1 (k2) +mtAS�1;�1 : (7.225)
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The relations for V A amplitudes are analogous and complementary.

These relations, it is possible to establish all relations that come from the contractions

for the complete expression of Gravitational Amplitude, see (7.48). Their violations or

satisfactions are closely related to the symmetries to be determined. From the view of

our strategy, these relations establish a minimum consistency test of amplitudes after

integration. In other words, if they are satis�ed, the linearity of the integration operation

is maintained. Since we expect that when we explicitly calculate an amplitude, whatever

calculation procedure is used, the contraction of the �nal result with the external mo-

mentum for each amplitude vertex should reproduce the expected RAGF. Otherwise, we

can establish some relations of amplitude violations.

As we have seen in sections for even amplitudes, relations with momenta contractions

are unconditionally satis�ed. It was not necessary to impose any condition regarding

divergent content. However, the case is somewhat di¤erent for odd amplitudes. This

relation type is not trivially satis�ed. Furthermore, we will show that presence of terms

(7.107), (7.126), and (7.127) violate di¤erent contractions depending on AV -versions.

7.4.1 Internal Contractions: q�TAV��;� and q�TAV��;�� and V $ A

Derived in Chapter (4), we have that contraction with the axial vertex for the �rst

version of AV -amplitudes in (4.57) is violated. The mechanism develops similarly for q�2

contraction; the index meets the index inside V V -amplitude and, through its identities,

implies automatic preservation of RAGF,

q�1(TAV�12 )1 = TA(�)�2 � 2mT
PV
�2

+ "�2�1q
�1� (7.226)

q�2(TAV�12 )1 = TA(�)�1 : (7.227)

The second version works oppositely and satis�es relations established for q�1 : Just be-

cause the AA automatically satis�es its RAGF, the relation for index �2 follows with an

additional term, as expected. To see this, we use the link connecting versions and obtain

q�1(TAV�12 )2 = TA(�)�2 � 2mT
PV
�2

(7.228)

q�2(TAV�12 )2 = TA(�)�1 + "�1�q
��: (7.229)

Hence, to this relation type and for amplitudes with derivative indices also, the RAGF

coming from q�i contraction is directly veri�ed if a version is j = i and needs manipulation

in its indices given by relations among versions (7.108) if i = j. In the second case arises

factors f�;��;��1�2g that we developed as speci�c tensors connecting two basic versions.
Elements that we have elaborated on are enough to establish relations for both con-

tractions q�i and both versions f(AV )i ; (V A)ig and any number of derivative indices. To
do this, �rst, we call attention to speci�c results T PA� = �TAP� and T PV� = �T V P� . This

result is valid irrespective of their �nite character since they do not depend on the traces
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employed in their calculation. Therefore, they are also helpful for structures with more

indices. The required results are listed below

� " �1
�2

T PA�1 = T PV�2 = �" �1
�2
(2mq�1J2) (7.230)

�" �1
�2

T PA�1;�1 = T PV�2;�1 = �"
�1

�2
(2mq�1J2�1) (7.231)

�" �1
�2

T PA�1;�12 = T PV�2;�12 = �"
�1

�2
(2mq�1 �J2�12): (7.232)

General structures of RAGFs are obtained by explicitly calculating all amplitudes

q�i(TAV�12 )j = TA(�)�k � �1;i(2mT
PV
�2
) + �i;j

�
"�k�q

��
�

(7.233)

q�i(TAV�12;�1)j = TA(�)�k;�1 � �1;i(2mT
PV
�2;�1

) + �i;j
�
"�k�q

���1
�

(7.234)

q�i(TAV�12;�12)j = TA(�)�k;�12 � �1;i(2mT
PV
�2;�12

) + �i;j
�
"�k�q

���12
�
; (7.235)

i; j; k = f1; 2g with k 6= i, and �ij is Kronecker delta equal to one if i = j and zero

otherwise. The formulae encode when one contracts with q�i the version j = i, i.e.,

with vertex index where the version was de�ned, there is a �-factor, not if there is

no match i 6= j, �ij encodes these behaviors; it also captures if contraction has a PV

function (see �1;i). Note that when i 6= j; there is no constraint over surface terms; in

complementary cases, constraints are to be studied. They happen over the same �-factors

as even amplitude traces; however, not in combination as in Subsection (7.3.3).

To complete, we ought to remind condition-less relations among V A and AV -tensors:

T V A�12 = TAV�12 + 4m
2"�1�2J2 (7.236)

T V A�12;�1 = TAV�12;�1 + 4m
2"�1�2J2�1

T V A�12;�12 = TAV�12;�12 + 4m
2"�1�2

�J2�12 :

As they are valid for any version, we did not use indices. Despite this, we could also study

the unicity relations (T V A�12 )2 � (T
V A
�12
)1 = �"�21�; and so on for higher rank. In parallel

to previous deductions, we can cast the pattern of contractions related to the RAGFs

explicitly and in a systematic form as AV versions:

q�i(T V A�12 )j = TA(�)�k + �2;i(2mT
V P
�2
) + �i;j

�
"�k�q

��
�

(7.237)

q�i(T V A�12;�1)j = TA(�)�k;�1 + �2;i(2mT
V P
�2;�1

) + �i;j
�
"�k�q

���1
�

(7.238)

q�i(T V A�12;�12)j = TA(�)�k;�12 + �2;i(2mT
V P
�2;�12

) + �i;j
�
"�k�q

���12
�
: (7.239)

It is worth noticing that �2;i makes precise VP functions appear in q�2-relations. Once

more, this is a summary of the results; an important point is the appearance of condi-

tioning factors in relations corresponding to the vertices around those we used the chiral

matrix de�nition. As demonstrated in sections, that is equivalent to substituting (4.15).
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7.4.2 External Contractions: q�TAV��;� and q�TAV��;�� and V $ A

Treating relations involving derivative indices as we did for the even case is possible.

The V V amplitudes can be manipulated and written through the identities (7.166) and

(7.171); when we exchange any derivative index for a matrix index,

tV V�12;�1 = �
1

2
q�1t

V V
�12
+ tV V�1�2;�1 +

1

2
q�1t

V V
�1�2

+
1

2
g�1�2t

V
(+)�1

� 1
2
g�12t

V
(+)�1

+ r�12;�1 :

The exchange e¤ect is equally valid for �1 $ �2, resulting �1 $ �2 in the equation above.

We can get relations for odd amplitudes obtained of V V -amplitudes. Appropriately

exchanging indices and multiplying by tensor �" �1
�i

leads us to unconditional identities

(TAV�12;�1)1 = �1
2
q�1(T

AV
�12
)1 + (T

AV
�1�1;�2

)1 +
1

2
q�2(T

AV
�1�1

)1 (7.240)

+
1

2
"�1�2T

V
(+)�1

� 1
2
"�1�1T

V
(+)�2

(T V A�12;�1)2 = �1
2
q�1(T

V A
�12
)2 + (T

V A
�1�2;�1

)2 +
1

2
q�1(T

V A
�1�2

)2 (7.241)

�1
2
"�1�2T

V
(+)�1

� 1
2
"�2�1T

V
(+)�1

:

It is necessary to remember the versions of amplitudes in terms of AA (7.201) and (7.203).

Follow the other identities satis�ed by odd amplitudes,

(TAV�12;�1)2 = �1
2
q�1(T

AV
�12
)2 + (T

AV
�1�2;�1

)2 +
1

2
q�1(T

AV
�1�2

)2 (7.242)

�1
2
"�1�2T

V
(+)�1

� 1
2
"�2�1T

V
(+)�1

(T V A�12;�1)1 = �1
2
q�1(T

V A
�12
)1 + (T

V A
�1�1;�2

)1 +
1

2
q�2(T

V A
�1�1

)1 (7.243)

+
1

2
"�1�2T

V
(+)�1

� 1
2
"�1�1T

V
(+)�2

:

By construction, we will see that these identities will always be satis�ed. Starting to

analyze this trajectory by the �rst version. From expression (7.240), we have

q�1(TAV�12;�1)1 = �1
2
q2(TAV�12 )1 + q�1(TAV�1�1;�2)1 +

1

2
q�2 [q

�1(TAV�1�1)1] (7.244)

+
1

2
"�1�2q

�1T V(+)�1 �
1

2
"�1�1q

�1T V(+)�2 :

Identifying relations with internal indices that are satis�ed for version one yields

q�1(TAV�12;�1)1 = �1
2
q2(TAV�12 )1 + TA(�)�1;�2 +

1

2
q�2T

A
(�)�1 (7.245)

+
1

2
"�1�2q

�1T V(+)�1 �
1

2
"�1�1q

�1T V(+)�2 :
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As in the last line, there is no direct identi�cation of one-point vectorial functions with

axial ones. We need to use the Schouten identity just like

["�12q
�2 � q�1"�1�1�

�2
�2
]T V(+)�2 = q�1T

A
(+)�2

� g�12q
�1TA(+)�1 : (7.246)

Thus, replacing in equation above, we obtain

q�1(TAV�12;�1)1 = �1
2
q2(TAV�12 )1 + TA(�)�1;�2 +

1

2
q�2T

A
(�)�1 (7.247)

�1
2
g�12q

�1TA(+)�1 +
1

2
q�1T

A
(+)�2

:

That is the relation obtained around the second vertex (7.221). The reason for sat-

isfaction is that index replaced by �i always appears as the one amplitude version, and

q�i is always complimentary. In the case of q�1(TAV�1�1;�2)1 and q
�1(TAV�1�1)1, the RAGF for

vectorial indices are automatically satis�ed. The same happens contraction for (T V A�12;�1)1:

contractions with axial indices are satis�ed, and the additional �nite part cancels out

�m(2T PV�2;�1 + q�1T
PV
�2
) = 2m2"�2�1q

�1(2J2�1 + q�1J2) = 0: (7.248)

So, we have the RAGF satis�ed around the second vertex.

Violations occur precisely in relations established around the vertex associated with

version: �rst vertex, thus �rst version, second vertex, second version. For example, the

same manipulations lead to

q�1(TAV�12;�1)2 = �1
2
q2(TAV�12 )2 + TA(�)�2;�1 +

1

2
q�1T

A
(�)�2 (7.249)

+
1

2
["�21q

�2 � "�2�1�
�2
�1
q�1 ]T V(+)�2 +m(2T PV�2;�1 + q�1T

PV
�2
):

Applying Schouten identity in the last line and canceling out additional �nite parts,

q�1(TAV�12;�1)2 = �1
2
q2(TAV�12 )2 + TA(�)�2;�1 +

1

2
q�1T

A
(�)�2 (7.250)

+
1

2
q�2T

A
(+)�1

� 1
2
g�12q

�1TA(+)�1 :

It satis�es the relation deduced around the �rst vertex (7.219) but does not satisfy the

relation deduced around the second (7.221). Remembering that massive terms do not

contribute because they are null for these amplitudes.

Taking advantage of equations (7.108) and (7.109) incorporate uniqueness conditions

and invariably connect them, we will have the possible violating term:

q�1(TAV�12;�1)1

���viol = �1
2
"�12q

�1 (2��1 + q�1�) :

However, let us consider that the expression obtained around the second vertex is valid

(7.221). The same type of violation will be present in the second version, and the �rst

will be automatically satis�ed.
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For amplitude with two derivative factors, the calculation follows equation (7.203),

(TAV�12;�12)2 = �1
2
q�1(T

AV
�12;�2

)2 + (T
AV
�1�2;�1�2

)2 +
1

2
q�1(T

AV
�1�2;�2

)2

�1
2
"�2�1T

V
(+)�1;�2

� 1
2
"�1�2T

V
(+)�1;�2

� " �1
�2

R�1�1;�12

�2m2"�2�1(2
�J2�1�2 + q�1J2�2)� 2m

2"�12(2
�J2�1�2 + q�1J2�2);(7.251)

where R�1�1;�12 is de�ned in (7.173) and null by contraction. It is simple to show that

version one, using (7.110), the possible violating term is given by

q�1(TAV�12;�12)1

���viol = �1
2
"�12q

� (2��2� + q���2) : (7.252)

The same analysis leads to similar conclusions for the second version of amplitudes if the

relation around the second vertex is the reference.

7.4.3 Metric Contractions: g��TAV��;� and g��TAV��;��

Finally, the last relation we need to calculate. Once again, we will make use of relations

through a reorganization of terms that can be seen from

(TAV�12;�1)1 = �1
2
q�1(T

AV
�12
)1 + (T

AV
�1�1;�2

)1 +
1

2
q�2(T

AV
�1�1

)1 (7.253)

+
1

2
"�1�2T

V
(+)�1

� 1
2
"�1�1T

V
(+)�2

:

Starting by contracting the expression above with g�1�1,

g�1�1(TAV�12;�1)1 =
1

2
[�q�1(TAV�12 )1 + TA(+)�2 ] +

1

2
g�1�1 [2(TAV�1�1;�2)1 + q�2(T

AV
�1�1

)1]: (7.254)

At this point, it is straightforward to note that the AV amplitude can be written as

g�1�1 [2(TAV�1�1;�2)1 + q�2(T
AV
�1�1

)1] = �"�1�1 [2T V V�1�1;�2 + q�2T
V V
�1�1

] = 0: (7.255)

It is canceled because complete V V -amplitudes are symmetric in its �rst indices, �nite

and non-�nite parts. Using (7.226) for q�1(TAV�12 )1, where appear � = (2�
�
2�+i=�), follows

g�1�1(TAV�12;�1)1 = mT PV�2 + TA�2 (k2)�
1

2
"�2�q

��: (7.256)

For g�1�1(TAV�12;�1)2 we also �nd this relation conditioned. Using the equation that

connects two versions (7.108) and (7.109), we obtain the desired relation

g�1�1(TAV�12;�1)2 = mT PV�2 + TA�2 (k2)�
1

2
"�2� (2�

� + q��) : (7.257)

An alternative way to extract this information, valid whenever the index of inner vertices

is not the one used to de�ne the version, is to invoke the equation derived from V V or
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AA functions and multiply them by an adequate tensor. Explicitly, we multiplied the

equation below by �" �
�2

;

2g�1�1TAA�1�;�1 � 2T
V
� (k2) = 2mT

PA
� + (2�� + q��) : (7.258)

By de�nition, it follows

2g�1�1(TAV�1�2;�1)2 = 2mT
PV
�2

+ 2TA�2 (k2)� "�2� (2�
� + q��) : (7.259)

Contracting with g�2�1, the application of equation (7.242) leads to

2g�2�1(TAV�12;�1)2 = �q
�2(TAV�12 )2 + TA(+)�1 + g�2�1 [2(TAV�12;�1)2 + q�1(T

AV
�12
)2]:

The last line drops out by index symmetry in the AA-amplitudes. Then using (??) and
�nite piece TAS�1 = 0, follows

g�2�1(TAV�12;�1)2 = mTAS�1 + TA�1 (k2)�
1

2
"�1�q

�� (7.260)

For version one, we also �nd this relation violated

g�2�1(TAV�12;�1)1 = mTAS�1 + TA�1 (k2)�
1

2
"�1� (2�

� + q��) : (7.261)

The 4th-rank amplitudes with two external indices are easily obtained following the

same steps. Thus, we have the list of equations below,

g�i�1(TAV�12;�1)j = TA�k (k2) +m(�i;1T
PV
�k

+ �i;2T
AS
�k
) (7.262)

�1
2
"�k� [q

��+ 2 (1� �i;j)�� ]

g�i�1(TAV�12;�12)j = TA�k;�2 (k2) +m(�i;1T
PV
�k;�2

+ �i;2T
AS
�k;�2

) (7.263)

�1
2
"�k�

�
q���2 + 2 (1� �i;j)���2

�
;

where fi; j; kg = f1; 2g, k 6= i: The Kronecker delta guarantees that only correct terms

appear in each equation; note that they reproduce all the previous equations. Additionally,

for the V A amplitude, we have

g�i�1(T V A�12;�1)j = TA�k (k2) +m(�i;1T
AS
�2
� �i;2T V P�1 ) (7.264)

�1
2
"�k� [q

��+ 2 (1� �i;j)�� ]

g�i�1(T V A�12;�12)j = TA�k;�2 (k2) +m(�i;1T
AS
�2;�2

� �i;2T V P�1;�1) (7.265)

�1
2
"�k�

�
q���2 + 2 (1� �i;j)���2

�
;

where TAS�1;�1 = �2m"
�1

�1
(2 �J2�1�1 + q�1J2�1) = T SA�1;�1 :

We have seen in this chapter that terms that may violate the RAGFs are local poly-

nomials in P and q momenta. These violating terms have values determined from the set

(7.107), (7.126), and (7.127). We will see that choosing to save the linearity of integra-

tion operation, manifested in the satisfaction of RAGF, will force us to establish �nite

values for surface terms present in amplitudes. From now on, we will analyze the results�

consequences and their implications for Einstein and Weyl anomalies.



Chapter 8

Gravitational Anomalies

This chapter will list the formulas and general results developed in the previous chapter

as a form of organization. They are used in the sequence to track the possible violating

terms of the RAGFs that appear when we combine the core elements in the permutations

contributing to the full two-point functions of the energy-momentum tensor. As we will

adopt the following set of indices


T�1�2 (x)T�1�2 (0)

�
to the energy-momentum tensors

in the correlator, see Eq. (7.48), we will have

TG�1�2�1�2 = �
i

64
f[T V�12�12 ] + [T

A
�12�12

]g: (8.1)

Hence, the formulas from the previous deductions have indices for even and odd amp-

litudes arranged according to the sequence below

T̂ V�1�2�1�2 = T V V�1�1�2�2
+ T AA�1�1�2�2

T̂A�1�2�1�2 = T AV�1�1�2�2
+ T V A�1�1�2�2

:

The sum of permutations �1 $ �2 and from the result �1 $ �2 deliver the vector and

axial part of the gravitational amplitude.

[T V�12�12 ] = [T̂ V�1�2�1�2 ] + [T̂
V
�2�1�1�2

] + [T̂ V�1�2�2�1 ] + [T̂
V
�2�1�2�1

] (8.2)

[T A�12�12 ] = [T̂A�1�2�1�2 ] + [T̂
A
�2�1�1�2

] + [T̂A�1�2�2�1 ] + [T̂
A
�2�1�2�1

]: (8.3)

Basic Permutations T �12����: As elaborated at the beginning of the previous chapter,

the next task after computing all the equations satis�ed to the amplitudes is to explore the

basic permutations. Through their de�nition, we expanded our de�nitions for derivative

amplitudes accordingly. We have

T �1�2�1�1�2�2
= 4T �1�2�1�1;�2�2

+ 2q�2T
�1�2
�1�1;�2

+ q�2(2T
�1�2
�1�1;�2

+ q�2T
�1�2
�1�1

): (8.4)

We must call attention to two features of the notation: The placement of indices in

T̂ V�1�2�1�2 is chosen to mirror the ones from TG�1�2�1�2, however in T
V V
�1�1�2�2

the disposition

emphasizes that the last two indices correspond to derivative type. This attitude is
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helpful in the calculations to distinguish their origin, either as the matrix or derivative

indices. Another point in the calligraphic letter T �12���� is to contrast the 4th-rank derivative

amplitude that comes with a semi-colon and the basic permutation involves four terms.

The basic permutations regarding derivatives structures were listed in (7.42)-(7.45).

We resume them with the indexes:

T V V�1�1�2�2
= 2(2T V V�1�1;�2�2 + q�2T

V V
�1�1;�2

) + q�2(2T
V V
�1�1;�2

+ q�2T
V V
�1�1

) (8.5)

T AA�1�1�2�2
= 2(2TAA�1�1;�2�2 + q�2T

AA
�1�1;�2

) + q�2(2T
AA
�1�1;�2

+ q�2T
AA
�1�1

) (8.6)

T AV�1�1�2�2
= 2(2TAV�1�1;�2�2 + q�2T

AV
�1�1;�2

) + q�2(2T
AV
�1�1;�2

+ q�2T
AV
�1�1

) (8.7)

T V A�1�1�2�2
= 2(2T V A�1�1;�2�2 + q�2T

V A
�1�1;�2

) + q�2(2T
V A
�1�1;�2

+ q�2T
V A
�1�1

): (8.8)

In the RAGFs, combinations of the basic derivative amplitudes from momenta and

metric contractions often arise:

B�1;�2 =

Z
d2k

(2�)2
(K1 +K2)�2

�
tV�1 (k1) + tV�1 (k2)

�
(8.9)

S�1(�)�1;�2�2 =

Z
d2k

(2�)2
(K1 +K2)�2 (K1 +K2)�2 [t

�1
�1
(k1)� t�1�1 (k2)]; (8.10)

where �1 = fV;Ag. By projecting K2 = K1 + q; we may decompose them in

B�1;�2 = 2T V(+)�1;�2 + q�2T
V
(+)�1

(8.11)

S�1(�)�;�� = 4T �1(�)�;�� + 2q�T
�1
(�)�;� + 2q�T

�1
(�)�;� + q�q�T

�1
(�)�; (8.12)

being careful to remind that T �1(�) stands for the di¤erence or sum of one-point functions

T �1(�) = T �1 (k1)� T �1 (k2) :

For contractions with metric, only B�1;�2 arises; for momentum contraction in matrix

indices, only S�1(�)�1;�2�2 is present. In contrast, for derivatives indexes, there arises both.
In the course of the previous chapter, we dealt with a set of �nite functions that are

identically zero due to relations among the scalar and vector J2-integrals of for equal

masses (3.70) coming from the reduction for Z(�1)1 (3.33). Here we list them to make it

easier to follow the next stages of derivations.

T SV� = +2m (2J2� + q�J2) � 0 (8.13)

T SA� = �2m"�� (2J�2 + q�J2) � 0 (8.14)

2T PV�;� + q�T
PV
� = �2m"��q� (2J2� + q�J2) � 0 (8.15)

2T PA�;� + q�T
PA
� = +2mq� (2J2� + q�J2) � 0 (8.16)

Amplitudes with non-negative power counting that we meet by studying the RHS of

RAGFs are combinations of the set fSV; SA; PV; PAg and contain one or two derivative
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indices. Among those amplitudes is a set of relevant identities fully used to systematize

the �nal results.

T SV�2;�2 = T V S�2;�2 = 2m(2
�J2�2�2 + q�2J2�2) (8.17)

T SV�1;�2 = 2m(�2�1�2 + g�1�2Ilog)�
im

2�
��1�2 [2Z

(�1)
2 � Z(�1)1 ] (8.18)

TAS�1;�2 = T SA�1;�2 = �2m"�1�(2 �J
�
2�2
+ q�J2�2) (8.19)

TAS�2;�2 = �" �
�2

T V S�;�2 (8.20)

2T PA�1;�2�2 + q�2T
PA
�1;�2

= q�1T
SV
�2;�2

(8.21)

2T PV�1;�2�2 + q�2T
PV
�1;�2

= �"�1�q�T SV�2;�2 (8.22)

All the 4th-order tensors corresponding to a V V -AA and AV -V A can be expressed as

T V V�1�1�2�2
= +

4
�1�1�2�2
q2

�
� i

(4�)
[2Z

(0)
2 � Z

(0)
1 ] +

1

6
Ilog

�
(8.23)

+
i

(4�)

8��1�1��2�2
q2

[3Z
(0)
2 � 2Z

(0)
1 ] +DV V�1�1�2�2 ;

with attention to their �nite parts.

To express the relations due to contractions with derivative indices we list the identities

needed for the exchange indices and reduce the veri�cation to the contractions with the

matrix indices (coming from �i):

2T V V�1�1;�2 + q�2T
V V
�1�1

= 2T V V�2�1;�1 + q�1T
V V
�2�1

+ g�2�1T
V
(+)�1

� g�1�1T
V
(+)�2

2T V V�1�1;�2�2 + q�2T
V V
�1�1;�2

= 2T V V�2�1;�1�2 + q�1T
V V
�2�1;�2

+ 2R�1�1;�2�2

+g�2�1T
V
(+)�1;�2

� g�1�1T
V
(+)�2;�2

:

Multiplying by two the second identity and summing both, we have an expression of basic

permutation given by

T V V�1�1�2�2
= T V V�2�1;�1�2

+ g�2�1B�1;�2 � g�1�1B�2;�2 + 4R�1�1;�2�2 :

Double axial amplitudes follows (7.78)-(7.80).

Odd amplitudes: The AV -amplitudes:

2(TAV�1�1;�2)1 + q�2(T
AV
�1�1

)1 = 2(TAV�1�2;�1)1 + q�1(T
AV
�1�2

)1 + "�1�1T
V
(+)�2

� "�1�2T
V
(+)�1

2(TAV�1�1;�2)2 + q�2(T
AV
�1�1

)2 = 2(TAV�2�1;�1)2 + q�1(T
AV
�2�1

)2 � "�1�2T
V
(+)�1

+ "�1�1T
V
(+)�2

2(TAV�1�1;�2�2)1 + q�2(T
AV
�1�1;�2

)1 = 2(TAV�1�2;�1�2)1 + q�1(T
AV
�1�2;�2

)1 � 2" �
�1

R�1�;�2�2

+"�1�1T
V
(+)�2;�2

� "�1�2T
V
(+)�1;�2

2(TAV�1�1;�2�2)2 + q�2(T
AV
�1�1;�2

)2 = 2(TAV�2�1;�1�2)2 + q�1(T
AV
�2�1;�2

)2 � 2" �1
�1

R�1�1;�2�2

�"�1�2T
V
(+)�1;�2

+ "�1�1T
V
(+)�2;�2

�2m["�1�2T
SV
�1;�2

� "�1�1T
SV
�2;�2

]

We have omitted the V A formulas because, as was seen in the previous chapter, they are

perfectly retrievable from AV ones.
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8.1 Table of RAGFs

Even Amplitudes:

q�1T V V�1�1 = T V(+)�1 (8.24)

2q�1T V V�1�1;�2 = 2T V(+)�1;�2 (8.25)

4q�1T V V�1�1;�2�2 = 4T V(+)�1;�2�2 (8.26)

2g�12T V V�1�1;�2 = 2
�
mT SV�1 + T V�1 (k2)

�
+ (2��1 + q�1�) (8.27)

2g�12T V V�1�1;�2�2 = 2
�
mT SV�1;�2 + T V�1;�2 (k2)

�
+ (2��1�2 + q�1��2) (8.28)

The contractions with g�12 have the same results.

Odd amplitudes:

q�1(TAV�1�1)1 = TA(�)�1 � 2mT
PV
�1

+ "�1�1q
�1� (8.29)

2q�1(TAV�1�1;�2)1 = 2TA(�)�1;�2 � 4mT
PV
�1;�2

+ 2"�1�1q
�1��2 (8.30)

4q�1(TAV�1�1;�2�2)1 = 4TA(�)�1;�2�2 � 8mT
PV
�1;�2�2

+ 4"�1�1q
�1��2�2 ; (8.31)

remmember that TA(�)�1 = [T
A
�1
(k1)� TA�1 (k2)]. The other relations for q�1-contraction,

q�1(TAV�1�1)1 = TA(�)�1 (8.32)

2q�1(TAV�1�1;�2)1 = 2TA(�)�1;�2 (8.33)

4q�1(TAV�1�1;�2�2)1 = 4TA(�)�1;�2�2 : (8.34)

Organizing the trace relations in the form they appear in this part:

2g�1�2(TAV�1�1;�2)1 = 2mT PV�1 + 2TA�1 (k2)� "�1�q
�� (8.35)

2g�1�2(TAV�1�1;�2�2)1 = 2mT PV�1;�2 + 2T
A
�1;�2

(k2)� "�1�q���2 (8.36)

2g�1�2(TAV�1�1;�2)2 = 2mT PV�1 + 2TA�1 (k2)� "�1� (2�
� + q��) (8.37)

2g�1�2(TAV�1�1;�2�2)2 = 2mT PV�1;�2 + 2T
A
�1;�2

(k2)� "�1�
�
2���2 + q���2

�
(8.38)

2g�1�2(TAV�1�1;�2)1 = �"�1� (2�
� + q��) + 2mTAS�1 + 2T

A
�1
(k2) (8.39)

2g�1�2(TAV�1�1;�2�2)1 = �"�1�(2�
�
�2
+ q���2) + 2mT

AS
�1;�2

+ 2TA�1;�2 (k2) (8.40)

2g�1�2(TAV�1�1;�2)2 = �"�1�q
��+ 2mTAS�1 + 2T

A
�1
(k2) (8.41)

2g�1�2(TAV�1�1;�2�2)2 = �"�1�q
���2 + 2mT

AS
�1;�2

+ 2TA�1;�2 (k2) (8.42)

8.1.1 Even amplitudes: (T V V����) and (T AA����)

From now on, we will systematically explore all the results from the amplitude com-

binations that e¤ectively appear in the relations for the gravitational amplitude. Starting

by (7.78)-(7.80) follows

T AA�1�1�2�2
= T V V�1�1�2�2

� 2mg�1�1(4 �J2�2�2 + 2q�2J2�2); (8.43)
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The terms corresponding to the J-vector and J-scalar functions do not appear because

their combination is null. The relation is given by

T AA�1�1�2�2
= T V V�1�1�2�2

� 4mg�1�1T
SV
�2;�2

: (8.44)

That amounts to replacing double axial structures for the double vector diminishing the

number of operations necessary to express the relevant results.

Internal Contractions

The contractions with internal indices for these amplitudes follow from the de�nition

q�1T V V�1�1�2�2
= 2q�1(2T V V�1�1;�2�2 + q�2T

V V
�1�1;�2

) + q�1(2q�2T
V V
�1�1;�2

+ q�2q�2T
V V
�1�1

): (8.45)

The index of q�1 hits only the matrix vertex of the amplitude, and the consequence is

that only the di¤erence of one-point functions appears, see (7.129), (7.146) and (7.147).

Hence, employing our de�nition

SV(�)�1;�2�2 = 2[2T
V
(�)�1;�2�2 + q�2T

V
(�)�1;�2 ] + q�2 [2T

V
(�)�1;�2 + q�2T

V
(�)�1 ]; (8.46)

the equation obtained reads

q�1T V V�1�1�2�2
= SV(�)�1;�2�2 = S

V
�1;�2�2

(k1)� SV�1;�2�2 (k2) : (8.47)

Note the symmetry in the indices corresponding to derivatives, S�1�1;�2�2 = S
�1
�1;�2�2

.

For the T AA, we could either use for its contraction the PA�s as in (7.198)-(7.200),

q�1T AA�1�1�2�2
= �2m[4T PA�1;�2�2 + 2q�2T

PA
�1;�2

+ q�2(2T
PA
�1;�2

+ q�2T
PA
�1
)] + SV(�)�1;�2�2 (8.48)

which is their composition of RAGFs. Using the connection with T V V (8.44), we have

q�1T AA�1�1�2�2
= SV(�)�1;�2�2 � 4mq�1T

SV
�2;�2

: (8.49)

The PA amplitudes did not appear since they are related to derivative SV through

(8.16) and (8.21). In this amplitude, if the operation is done in �1; the RHS shows AP -

structures, however, with the opposite sign. As TAP� = �T PA� and so on for more indices,

hence the results written in terms of T SV�2;�2 amplitude have the same functional form.

External Contractions

Terms from relations involving the derivative indices organize in the tensor B�;� besides
SV�1;�2�1 ; see Eqs. (8.11) and (8.12). To see this, we combine the identities used to trade

a derivative for a matrix index, as in (7.166) and (7.171). We have,

T V V�1�1;�2�2
= T V V�2�1;�1�2

+ g�2�1B�1;�2 � g�1�1B�2;�2 + 2R�1�1;�2�2 :
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Note the presence of B�;� and the residual term, which always vanishes under contraction.

Contracting with q�2 , the �rst term in the RHS, we have �2 index in the position of a

matrix index, whose result we developed previously. Follows the compact result

q�2T V V�1�1;�2�2
= SV(�)�1;�1�2 + q�1B�1;�2 � g�1�1q

�B�;�2 : (8.50)

For the T AA, we substitute the equation (8.44) into the last one, what implies in

q�2T AA�1�1�2�2
= SV(�)�1;�1�2 + q�1B�1;�2 � g�1�1q

�B�;�2 � 4mg�1�1T
S
(�)�2 : (8.51)

remember that q�T SV�;�2 = T S�2 (k1)� T S�2 (k2) = T S(�)�2 : There does not exist any condition

for the momentum RAGFs. A di¤erent scenario occurs to the metric RAGFs.

Metric Contractions

These relations combine the metric relations of the basic derivative amplitudes and

the momentum relations for the matrix indices. Make explicit this property by

g�12T V V�1�1�2�2
= 2g�12(2T V V�1�1;�2�2 + q�2T

V V
�1�1;�2

) + q�1(2T V V�1�1;�2 + q�2T
V V
�1�1

): (8.52)

The next stage is observing that momentum RAGFs in even amplitudes are automatically

satis�ed. Replacing them and e summing with the equations for metric contractions

(7.192) and (7.193), we arrive at

g�12T V V�1�1�2�2
= +4mT SV�1;�2 + [2T

V
(+)�1;�2

+ q�2T
V
(+)�1

] (8.53)

+4��1�2 + 2q�1��2 + 2q�2��1 + q�2q�1�;

where we used the pattern that appears in one-point functions, T V(�)�1+2T
V
�1
(k2) = T V(+)�1.

We dropped the T SV�1 = 0 term.

The conditioning factors f�;��1 ;��1�2g were combined in a fundamental tensor called
uniqueness factor; it will encompass the conditions for satisfaction of all RAGFs as well

the equivalence of the odd-amplitude versions. Because of its importance, we de�ne it as

U�1�2 = 4��1�2 + 2q�1��2 + 2q�2��1 + q�2q�1�: (8.54)

The investigation of values assumed to this tensor and its connection to the �nite part

and surface terms will be developed soon. Thus, we have the compact expression

g�12T V V�1�1�2�2
= 4mT SV�1;�2 + B�1;�2 + U�1�2 : (8.55)

The relations for g�12-contraction are identical, changing the indices �12 $ �12:

Calculating directly or using the relation (8.44) between T AA and T V V , follows

g�12T AA�1�1�2�2
= B�1;�2 + U�1�2 ; (8.56)

g�12T AA�1�1�2�2
= B�1;�2 + U�1�2 : (8.57)
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Uniqueness factor: The de�nitions follow in (7.107), (7.126) and (7.127), thus

U�1�2 = �1
3
��1�2� (8.58)

+
1

9
(3P �12 + q�12)

�
3��4��12�12 � 8�3�12�12 � g(�12g�12)�

�
2�

�
+
1

18
(3P �12 + q�12)g(�12 [2��3�12)� � 2�2�12) � g�12)�

�
2�]

�P�2P � [2(��3��1� ��2�1�)� g�1��
�
2�]

�P�1P � [2(��3��2� ��2�2�)� g�2��
�
2�]

�1
2
(P 2 + q2)[2(��3��12 ��2�12)� g�12�

�
2�]

+4[(W �
2��12

� 2�1�12) + 2g�1�2Iquad � 2m2 (�2�12 + g�12Ilog)]:

8.1.2 Odd Amplitudes: (T AV����) and (T V A����)

In this part, a series of considerations are in order. The decomposition in derivatives

was taken to the most basic level; a set of possibilities from Dirac traces is fully exploited.

We came out with two independent forms, version one and two, as we called them. Now,

for any term of the basic permutation, an arbitrary version choice must be made because

the choice of traces employed is arbitrary. Nonetheless, even if the analysis can be per-

formed in the most general scenario, we will adopt the position of considering the uniform

version, where T �12���� is an odd tensor. Then we will have the notation

(T AV�1�1�2�2
)i = 2[2(TAV�1�1;�2�2)i + 2q�2(T

AV
�1�1;�2

)i] + (8.59)

+q�2 [2(T
AV
�1�1;�2

)i + q�2(T
AV
�1�1

)i]

(T V A�1�1�2�2
)i = 2[2(T V A�1�1;�2�2)i + q�2(T

V A
�1�1;�2

)i] + (8.60)

+q�2 [2(T
V A
�1�1;�2

)i + q�2(T
V A
�1�1

)i];

with i = 1; 2. In this moment we may use the transition equations (7.108)-(7.110) to

derive the relations among what we call basic permutations

(T AV�1�1�2�2
)2 = (T AV�1�1�2�2

)1 � "�1�1
�
4��2�2 + 2q�2��2 + 2q�2��2 + q�2q�2�

�
: (8.61)

In the RHS appear, the U -factor, making it simpler to express the uniqueness relation as

(T AV�1�1�2�2
)2 = (T AV�1�1�2�2

)1 � "�1�1U�2�2 : (8.62)

Analogously the transition between AA-V V , the amplitude T V A�1�1�2�2
can be written

in term of T AV�1�1�2�2
, in a way independent of traces employed. See Eqs. (7.93)-(7.95) to

derive the relation

(T V A�1�1�2�2
)i = (T AV�1�1�2�2

)i + 4m
2"�1�1

�
4 �J2�2�2 + 2q�2J2�2 + q�2 (2J2�2 + q�2J2)

�
; (8.63)

using (8.13)-(8.17) to identify the integrals as amplitudes, we obtain V A-AV connection

(T V A�1�1�2�2
)i = (T AV�1�1�2�2

)i + 4m"�1�1T
SV
�2;�2

: (8.64)

This enables us to study only the versions (T AV )1.
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8.1.3 Permutation�s versions: (T AV����)1 and (T AV����)2
Momentum: Internal Contractions

To make apparent the notation�s use, let us explore the internal contraction with

q�(T AV����)i. We begin with the de�nition (8.59) and the formulas generalized in (7.233)-

(7.235). Notice that those relations turn up with � factors; summing the contributions,

q�1(T AV�1�1�2�2
)1 = �2m[4T PV�1;�2�2 + 2q�2T

PV
�1;�2

+ 2q�2T
PV
�1;�2

+ q�2q�2T
PV
�1
] (8.65)

+SA�1;�2�2 (k1)� S
A
�1;�2�2

(k2) + "�1�1q
�1U�2�2 :

We gathered the one-point functions in our de�nition of SA�1;�2�2. The identities (8.22)
and (8.15) involving the PV enables one to write the result

q�1(T AV�1�1�2�2
)1 = 4m"�1�q

�T SV�2;�2 + S
A
(�)�1;�2�2 + "�1�1q

�1U�2�2 : (8.66)

For the contraction with q�1 ; the relations to the component amplitudes are identically

satis�ed. Hence there are no � factors, namely

q�1(T AV�1�1�2�2
)1 = SA(�)�1;�2�2 = S

A
�1;�2�2

(k1)� SA�1;�2�2 (k2) : (8.67)

The other form of the basic permutation will readily comply with the equations

q�1(T AV�1�1�2�2
)2 = SA(�)�1;�2�2 + 4m"�1�q

�T SV�2;�2 (8.68)

q�1(T AV�1�1�2�2
)2 = SA(�)�1;�2�2 + "�1�q

�U�2�2 : (8.69)

Momentum: External contractions

We have one identity automatically satis�ed and one with U -factor. Beginning by

q�2(T AV�1�1�2�2
)1 = 4q�2(TAV�1�1;�2�2)1 + 2q

2(TAV�1�1;�2)1 (8.70)

+2q�2q
�2(TAV�1�1;�2)1 + q�2q

2(TAV�1�1)1:

The equation below can be written in compact form through the use of formulae developed

before that do not require any new ingredient but careful application,

q�2(T AV�1�1�2�2
)1 = SA(�)�1;�1�2 + "�1�1q

�B�;�2 � "�1�q
�B�1;�2 : (8.71)

Making one more manipulation by using "[�1�1B�];�2 = 0, follows the �nal form

q�2(T AV�1�1�2�2
)1 = SA(�)�1;�1�2 � "�1�q

�B�1;�2 : (8.72)

The version (T AV�1�1�2�2
)2 also have a relation which is satis�ed by construction, namely,

q�2(T AV�1�1�2�2
)2 = SA(�)�1;�2�1 � "�1�q

�B�1;�2 � 4m"�1�1
�
T S�2 (k1)� T

S
�2
(k2)

�
: (8.73)

For this, we have observed the combination of two-point functions (8.15) and (8.22).
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Now, the relations where arises the � factors came from the use of the equation that

exists between the versions (8.62). They furnish

q�2(T AV�1�1�2�2
)1 = SA(�)�1;�2�1 � "�1�q

�B�1;�2 + "�1�1q
�U��2 � 4m"�1�1T

S
(�)�2 (8.74)

q�2(T AV�1�1�2�2
)2 = SA(�)�1;�1�2 � "�1�q

�B�1;�2 � "�1�1q
�U��2 : (8.75)

Two forms obtained for these relations are equivalent. As we saw, we always kept intact

all terms where the results could deviate. Therefore is straightforward to see that they

ought to be equal. Moreover, the ones with violating terms are obtained by employing

those free of U -term, using an identity again. Even so, if one desires to check such a

statement explicitly, the path is reasonably long but feasible. Here we give the directions;

start by using SA�;�� = �"��SV�;��, then subtract the identities without U and with U ,

q�2 [(T AV�1�1�2�2
)1 � (T AV�1�1�2�2

)1] = " �
�1
SV(�)�;�2�1 � "

�
�1
SV(�)�;�12 � "�1�1q

�U��2 (8.76)

�"�1�q�B�1;�2 + "�1�q
�B�1;�2 � 4m"�1�1T

S
(�)�2 ;

employing the identities g��SV�;�[�"��] = 0 and "[�1�B�1];�2 = 0; we obtain an expression

where everything is known and whose summation cancels without any conditions,

"�1�1fg
��SV(�)�;��2 � q

�B�;�2 � 4mT S(�)�2 � q
�U��2g � 0: (8.77)

Metric Contractions

We use the form (T AV )i and perform the analysis for g�12 and g�12 . First, we have

g�12(T AV�1�1�2�2
)1 = 4g�12(TAV�1�1;�2�2)1 + 2q

�1(TAV�1�1;�2)1 (8.78)

+q�2 [2g
�12(TAV�1�1;�2)1 + q�1(TAV�1�1)1];

then, recollecting the formulas for traces and gathering the contributions for momentum

contractions, the PV functions from both sectors cancel each other and the conditioning

� factors. The remaining TA amplitudes arrange themselves as

g�12(T AV�1�1�2�2
)1 = 2T

A
(+)�1;�2

+ q�2T
A
(+)�1

= �" �
�1
B�;�2 :

These amplitudes are precisely related to T V ones.

The equation satis�ed by g�12(T AV�1�1�2�2
)1 starts with

g�12(T AV�1�1�2�2
)1 = 4g�12(TAV�1�1;�2�2)1 + 2q�2g

�12(TAV�1�1;�2)1 (8.79)

+2q�1(TAV�1�1;�2)1 + q�2q
�1(TAV�1�1)1:

The �rst line is the only one with conditioning factors; the momentum contraction is

identically satis�ed because the relation appears for the second vertex (speci�cally a

vector one) and in the �rst version. Lumping together all these considerations, we get

g�12(T AV�1�1�2�2
)1 = 4mT

AS
�1;�2

� " �
�1
B�;�2 � "�1�U

�
�2
; (8.80)
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U ��2 is a term common to all relations with a constraint. For version two,

g�12(T AV�1�1�2�2
)2 = �" �

�1
B�;�2 � " �1

�1
U�1�2 (8.81)

g�12(T AV�1�1�2�2
)2 = 4mTAS�1;�2 � "

�
�1
B�;�2 : (8.82)

Concerning V A as it can be expressed in AV terms without conditions from (8.64),

g�12(T V A�1�1�2�2
)1 = 4mTAS�1;�2 � "

�
�1

B�;�2 (8.83)

g�12(T V A�1�1�2�2
)2 = 4mTAS�1;�2 � "

�
�1
B�;�2 � " �1

�1
U�1�2 (8.84)

g�12(T V A�1�1�2�2
)1 = �" �

�1
B�;�2 � "�1�U

�
�2

(8.85)

g�12(T V A�1�1�2�2
)2 = �" �

�1
B�;�2 : (8.86)

Di¤erent frommomentum relations, when an index is the one that de�nes the version, then

U -factor appears in the complementary contraction, g�12(T AV�1�1�2�2
)1 = �"��1g

�12(T V V��1�2�2
)

shows a possible violation, as opposed to q�1(T AV�1�1�2�2
)1 which is identically satis�ed.

8.2 Summing all permutations: [T̂ V ] and [T̂A]ij

In preparation for summing all contributions, that will constitute the two-point func-

tion of the stress tensor, it is necessary to establish a point of view about the odd part.

In the preceding expressions, we adopted a uniform version to f(T AV�1�1�2�2
)i; (T V A�1�1�2�2

)ig,
signifying the same version of derivatives amplitudes were chosen. For the permutation

�1 $ �2 and subsequently �1 $ �2, it is entirely free which combinations to use in this

step. In this work, we will explore a subset of possibilities,

[T̂A�1�2�1�2 ]ij = (T
AV
�1�1�2�2

)i + (T V A�1�1�2�2
)j; (8.87)

with i; j = f1; 2g, amounting to four combinations in principle. Permutations do not
change this choice as it could be done.

The even sector works as [T̂ V�1�2�1�2 ] = T
V V
�1�1�2�2

+ T AA�1�1�2�2
: To get the total contri-

bution, it is necessary to sum the permutation �1 $ �2 and then �1 $ �2 of that result.

In the even sector, we use (8.44) and to have the systematic formula

[T V�12�12 ] = 2[T V V�1�2�1�2
+ T V V�2�1�1�2

+ T V V�1�2�2�1
+ T V V�2�1�2�1

] (8.88)

�4m[g�1�1T
SV
�2;�2

+ g�2�1T
SV
�1;�2

+ g�1�2T
SV
�2;�1

+ g�2�2T
SV
�1;�1

]:

For the odd sector, we go in search of a simpli�cation in the operations; for that,

(T V A�1�1�2�2
)j = (T AV�1�1�2�2

)j + 4m"�1�1T
SV
�2;�2

(8.89)

(T AV�1�1�2�2
)i = (T AV�1�1�2�2

)1 � �i;2"�1�1U�2�2 ; (8.90)

where �i;2. Its function is to capture only version two, given that the second term is zero

if it already has version one. The above equations allow us to write the result

[T̂A�1�2�1�2 ]ij = 2(T
AV
�1�1�2�2

)1 + 4m"�1�1T
SV
�2;�2

� (�i;2 + �j;2) "�1�1U�2�2 : (8.91)
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These arguments have the consequence that it is also possible to write

[T A�12�12 ]ij = 2(T AV�1�1�2�2
)1 + 2(T AV�2�1�1�2

)1 + 2(T AV�1�2�2�1
)1 + 2(T AV�2�2�1�1

)1 (8.92)

+4m["�1�1T
SV
�2;�2

+ "�2�1T
SV
�1;�2

+ "�1�2T
SV
�2;�1

+ "�2�2T
SV
�1;�1

]

�(�i;2 + �j;2)["�1�1U�2�2 + "�1�2U�1�2 + "�2�1U�2�1 + "�2�2U�1�1 ]:

In this way, we can sum the Eqs. (8.88) and (8.92) corresponding to the odd and the

even part to obtain the two-point correlator of the stress tensor reads

TG�1�2�1�2 = �
i

64
f[T V�12�12 ] + [T

A
�12�12

]ijg: (8.93)

Now it is easy to organize all the contractions obtained by sector from this tensor.

8.2.1 Even Part

We must observe from the permutations sum �1 $ �2; that the index �1 occupies

the positions in such a way that contraction with q�1 corresponds to the two types of

momentum relations (in the matrix and derivative index positions). Hence we get

q�1 [T̂ V�1�2�1�2 ] = q�1T V V�1�1�2�2
+ q�1T AA�1�1�2�2

= 2SV(�)�1;�2�2 � 4mq�1T
SV
�2;�2

q�1 [T̂ V�2�1�1�2 ] = 2SV(�)�1;�2�2 + 2q�1B�2;�2 � 2g�2�1q
�B�;�2 � 4mg�2�1T

S
(�)�2 : (8.94)

Summing the permutation �1 $ �2 of these contributions symmetrize1 the �nal expression

in these last indices. The complete result of the vector part of gravitational amplitude is

q�1 [T V�12�12 ] = �4m[q�1T SV�2;�2 + q�2T
SV
�2;�1

]� 4m[g�2�1T
S
(�)�2 + g�2�2T

S
(�)�1 ] (8.95)

+4SV(�)(�1;�2)�2 + 2[q�1B�2;�2 + q�2B�2;�1 � g�2�1q
�B�;�2 � g�2�2q

�B�;�1 ]:

Notably, the distinction of derivative or matrix indices gets dissolved in the complete

expression. Due to this equation�s symmetries and unique form, we do not show the other

contractions, as they may be extracted simply by substituting the convenient indices.

The compilation of the identities involving the traces is given by

g�12 [T̂ V�1�2�1�2 ] = g�12T V V�1�1�2�2
+ g�12T AA�1�1�2�2

= 4mT SV�1;�2 + 2B�1;�2 + 2U�1�2 : (8.96)

Noticing that the trace g�12T̂ V�2�1�1�2 is equal. The symmetrization brought about by

�1 $ �2 furnishes the complete result

g�12 [T V�12�12 ] = 8mT SV(�1;�2) + 4B(�1;�2) + 8U�1�2 (8.97)

g�12 [T V�12�12 ] = 8mT SV(�1;�2) + 4B(�1;�2) + 8U�1�2 ; (8.98)

where identical arguments implies to the second equation.

1Our de�nition of symmetrization and unit coe¢ ent: SV(�)(�1;�2)�2 = S
V
(�)�1;�2�2

+ SV(�)�2;�1�2
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8.2.2 Odd Part

To discuss the more intricate odd part in combinations seen in equation (8.92), we

only need results for the basic permutation of version one. Nonetheless, di¤erent from the

even sector, the odd part allows for an extensive set of possibilities whose contractions

with q�1 , q�2 , q�1 ; and q�2 may be, in principle, all unrelated. However, to our adopted

representatives, only independent contractions with momentum are with q�1 and q�1.

To express the �rst relation, we recall that version one has a U -term when index �1
is in the �rst position (T AV�1�1�2�2

)1, but in permutation (T AV�2�1�1�2
)1 it corresponds to an

external contraction that has two forms. Selecting a convenient expression follows

q�1 [(T AV�1�1�2�2
)1 + (T AV�2�1�1�2

)1] = 4m["�1�q
�T SV�2;�2 � "�2�1T

S
(�)�2 ] (8.99)

+2SA(�)�1;�2�2 � "�2�q
�B�1;�2

+"�1�2q
�U��2 + "�1�q

�U�2�2 :

Finally, summing with the above equation the permutations in �i, we arrive at

2q�1 [(T AV�1�1�2�2
)1 + 3-perm] = 8m["�1�q

�T SV�2;�2 + "�2�q
�T SV�2;�1 ] (8.100)

�8m["�2�1T
S
(�)�2 + "�2�2T

S
(�)�1 ]

+4SA(�)(�1;�2)�2 � 2"�2�q
�B(�1;�2)

+2q�
�
"�1�2U��2 + "�2�2U��1

�
+2q�

�
"�1�U�2�2 + "�2�U�2�1

�
:

Remaining contributions are easy to be dealt with

q�1 [4m"�1�1T
SV
�2;�2

� (�i;2 + �j;2) "�1�1U�2�2 + 3-perm]:

When added to the previous equation, it follows one of the important results of this section

q�1 [T A�12�12 ]ij = 4m["�1�q
�T SV�2;�2 + "�2�q

�T SV�2;�1 ] (8.101)

�4m["�2�1T
S
(�)�2 + "�2�2T

S
(�)�1 ]

+4SA(�)(�1;�2)�2 � 2"�2�q
�B(�1;�2)

� (2� �i;2 � �j;2) q�("�2�1U��2 + "�2�2U��1)

+ (2� �i;2 � �j;2) q�("�1�U�2�2 + "�2�U�2�1):

The results to q�2 come from permuting �2 by �1 because, among other things, they hit

the contracted indices that become dummy ones in an equivalent position.

As concerning q�1 [T A�12�12 ]ij contraction, we exploit the permutation

q�1 [(T AV�1�1�2�2
)1 + (T AV�1�2�2�1

)1] = 2SA(�)�1;�2�2 � "�2�q
�B�1;�2 :

We are choosing formulas for the external contraction without U -term. The contraction in

the second vertex of version one has an automatically satis�ed RAGF using an appropriate
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form of relation with the derivative index is suitable. Adding the permutation in �i, we

have a symmetrization of these indices. The last part of this derivation needs

q�1 [4m"�1�1T
SV
�2;�2

� (�i;2 + �j;2) "�1�1U�2�2 + 3-perm]:

They organize the �nal expression as

q�1 [T A�12�12 ]ij = +4m["�1�q
�T SV�2;�2 + "�2�q

�T SV�2;�1 ] (8.102)

�4m["�2�1T
S
(�)�2 + "�2�2T

S
(�)�1 ]

+4SA(�)(�1;�2)�2 � 2"�2�q
�B(�1;�2)

� (�i;2 + �j;2) q
� ["�2�1U��2 + "�2�2U��1 ]

+ (�i;2 + �j;2) q
� ["�2�U�1�2 + "�1�U�2�2 ]:

The trace equation has interesting properties compared with momentum contraction:

through analysis of basic permutation, conditioning factors appear in a complementary

set of indexes. First, we have for the trace of the combination

2g�12 [(T AV�1�1�2�2
)1 + (T AV�2�1�1�2

)1] = 4g
�12(T AV�1�1�2�2

)1 = �4" �
�1
B�;�2 :

Summing up all terms with the exchange of indices �1 $ �2 with the remaining compon-

ents leaves us with a �nal expression given by

g�12 [T A�12�12 ]ij = 8mT SA(�1;�2) � 4"
�

�1
B�;�2 � 4" �

�2
B�;�1 (8.103)

�2 (�i;2 + �j;2) ("�1�U
�
�2
+ "�2�U

�
�1
):

We utilized the relation �" �
�1

T SV�;�2 = T SA�1;�2. So remember, version one is automatically

satis�ed. However, U -contribution came from the equation between versions one and two.

Another trace independent is with g�12; the conditioning factors coming from

2g�12 [(T AV�1�1�2�2
)1 + (T AV�1�2�2�1

)1] = 4g�12(T AV�1�1�2�2
)1 (8.104)

= 16mTAS�1;�2 � 4"
�

�1
B�;�2 � 4"�1�U

�
�2
: (8.105)

Thus, symmetrizing in �i and adding the remaining contributions, we arrive at

g�12 [T A�12�12 ]ij = 8mTAS(�1;�2) � 4"
�

�1
B�;�2 � 4"

�
�2
B�;�1 (8.106)

�2[2� (�i;2 + �j;2)]("�1�U
�
�2
+ "�2�U

�
�1
):

The only di¤erence is for the coe¢ cients of violating terms. One immediate consequence

is the existence of operations with the Dirac traces and surface terms where such terms

do not arise. That is thoroughly argued in the next part, where the surface terms in these

expressions are investigated. After that, the Weyl and Einstein anomalies are discussed.
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To illustrate how they look like when everything is put together, see a trace relation

associated do the Weyl anomaly:

(64i) g�12 [TG�12�12 ]ij = 8mT SV(�1;�2) + 8mT
AS
(�1;�2)

+ 4B(�1;�2) � 4"
�

�1
B�;�2 � 4"

�
�2
B�;�1

�2[2� (�i;2 + �j;2)]("�1�U
�
�2
+ "�2�U

�
�1
) + 8U�1�2 (8.107)

(64i) g�12 [TG�12�12 ]ij = 8mT SV(�1;�2) + 8mT
SA
(�1;�2)

+ 4B(�1;�2) � 4" �
�1
B�;�2 � 4" �

�2
B�;�1

�2 (�i;2 + �j;2) ("�1�U
�
�2
+ "�2�U

�
�1
) + 8U�1�2 :

And a momentum equation related to the Einstein anomaly:

(64i) q�1 [TG�12�12 ]ij = 4m["�1�q
�T SV�2;�2 + "�2�q

�T SV�2;�1 � q�1T
SV
�2;�2

� q�2T SV�2;�1 ]
�4m["�2�1T

S
(�)�2 + "�2�2T

S
(�)�1 + g�2�1T

S
(�)�2 + g�2�2T

S
(�)�1 ]

+4SA(�)(�1;�2)�2 + 4S
V
(�)(�1;�2)�2 � 2"�2�q

�B(�1;�2) (8.108)

+2[q�1B�2;�2 + q�2B�2;�1 � g�2�1q
�B�;�2 � g�2�2q

�B�;�1 ]
� (2� �i;2 � �j;2) q�("�2�1U��2 + "�2�2U��1)

+ (2� �i;2 � �j;2) q�("�1�U�2�2 + "�2�U�2�1):

8.3 Constraints: The Matter of RAGFs Satisfaction

RAGFs for derivative amplitudes as a whole require that f�;��1 ;��1�2g = 0 holds

independently. We already composed them into U�1�2, which arises in the �nal form

of gravitational amplitude. We will recover their explicit expression by simplifying the

investigation but with some notation to relevant structures. Combinations of surface

terms, which we carefully introduced and managed since the �rst chapter, are given by

�(a)�1�2 = [2(��3��1�2 ��2�1�2)� g�1�2�
�
2�] = ag�1�2 (8.109)

�(b)�1�2�3�4 =
h
3��4��1234 � 8�3�1234 � g(�1�2g�3�4)�

�
2�

i
= bg(�1�2g�3�4) (8.110)

��quad�a1�2
= (W �

2��12
� 2�1�12) + 2g�1�2Iquad � 2m2 (�2�12 + g�12Ilog) (8.111)

The importance of this attitude is two-fold: one, it reduces the size of expressions, and

two, if bilinears are reduced in the integrand, these tensors become convergent surface

terms that identically vanish; see Appendix (F.1). Moreover, their integrands are typical

of 4D integrals. On the other hand, all the following analyses do not use such an operation.

Evoking Eqs. (7.107), (7.126) and (7.127), we have the set

� = 2��
2� + i=� (8.112)

��1 = �1
2
P �1�(a)�1� �

1

2
q�1�

��1�2 = � 1
12
(��12 � 3q�12)��

1

4
P � [(P�2 � q�2) �(a)�1� + (P�1 � q�1) �

(a)
�2�
] + �quada12

+
1

72
(3P �12 + q�12)g(�12�

(a)
�12)
� 1
8
(P 2 + q2)�(a)�12 +

1

36
(3P �12 + q�12)�(b)�12�12 :
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Now, as the variables fP ; qg or the routings fk1; k2g are linearly independent, only solution
for their vanishing is � = 0; �(a)�1�2 = 0; and �

(b)
�1�2�3�4 = 0. For quadratic terms, we have

�quada12
= (W �

2��12
� 2�1�12) + 2g�1�2Iquad � 2m2 (�2�12 + g�12Ilog) = 0:

This happens because if � = 0 and ��1 = 0) �
(a)
�1� = 0, that substituted in ��1�2 oblige

other terms to vanish. If one takes ��1�2 alone, it has crossed terms q�iP
� that requires

its coe¢ cient �(a)�1� to be zero and the term P �12�
(b)
�12�12 in the only remnant of arbitrary

P -variable, hence this tensor will have to be zero and subsequently � = 0 as well. In any

case, we have conditions stated. Additionally, the condition ��2 = 0 alone would be the

same since for arbitrary P and q, both terms, �(a)�1� and �, must vanish.

In the last statement, we have the exception of the places whose violating terms sum

into 2��1 + q�1�, that occur exactly for combinations [2T
�12
�12;�1

+ q�1T
�12
�12
]. However, if

�nite, this combination ought to vanish. Why? Because in 2D for vértices �i = f
�; 
�
�g
the charge conjugation C matrix implies C�iC�1 = ��Ti and for the propagator

CS (Ki)C
�1 = (C /KiC

�1 +m)=Di = ST (�Ki) : (8.113)

Expliciting the structure [2T �12�12;�1
+ q�1T

�12
�12
] can be written as

[2T �12�12;�1
+ q�1T

�12
�12
] =

Z
d2k

(2�)2
(K1 +K2)�1 tr[�1S (K1) �2S (K2)] (8.114)

=

Z
d2k

(2�)2
(K1 +K2)�1 t

�1�2 ; (8.115)

where integrand t�1�2 s the function without derivative index. It readily obeys

t�1�2 = trf[C�1C�1][CS (K1)C
�1][C�2C

�1][CS (K2)C
�1]g (8.116)

= (�1)2 tr[S (�K2) �2S (�K1) �1]
T (8.117)

= tr[�1S (�k � k2) �2S (�k � k1)]: (8.118)

Under integration, re�ecting the integration variable k ! �k after shifting it by k !
k + k1 + k2, the arguments of t�1�2 return to their starting con�guration. However, the

factor (K1+K2) picks up a minus sign �(K1+K2), and the derivative vertex behaves like

it had negative parity. These steps are valid as hypotheses; observe that at the beginning

that we mentioned, if �nite, we can do the operations listed. Therefore, we would get

2T �12�12;�1
+ q�1T

�12
�12

= (�1) [T �12�12;�1
+ q�1T

�12
�12
]: (8.119)

If shifts can be done, the result must vanish. As the surface terms violate this hypo-

thesis, the non-polynomial sector of the �nite part disappears, which depends on external

momentum q = k2 � k1. The leftover part, in general, is a local polynomial in q and P
momenta and surface terms, with a degree up to power counting of amplitude.
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That fact naturally can be checked in their explicit forms, where no shift of the loop

momentum was performed. For instance, see the combination above between V V �s,

2T V V�12;�1 + q�1T
V V
�12

= DV V�12;�1 + q�1DV V�12
= �2P �1W3�12�1�1 + 2P(�1�2�2�1) + 2g�12P

�1�2�1�1 : (8.120)

That happens to odd amplitudes and also in its two basic modalities. Without derivatives,

the �nite functions T SV� = 0 and TAS� = 0 have a vertex that picks a minus sign (V e

A, respectively). We always expressed one part in the basic permutation the way we did

because the most complex part, �nite ones, drops from calculations. For this subset of

amplitudes, the violating terms either are not present, as in

g�1�1 [2(TAV�12;�1)1 + q�1(T
AV
�12
)1] = TA�1 (k1) + TA�1 (k2) : (8.121)

Alternatively, they are present and appear in the form

g�1�1 [2T V V�12;�1 + q�1T
V V
�12
] = T V�2 (k1) + T V�2 (k2) + 2mT

SV
�2
+ (2��2 + q�2�); (8.122)

where 2��2 + q�2� = �P �1�
(a)
�2� happens to vanish either for surface terms corresponding

to RAGFs satis�ed or with zero value.

Therefore, back to the analysis, the constraints (�;��1 ;��1�2) = 0; in addition to

satisfying all RAGFs imply in de�ned values for the tensors (7.107), (8.109) and (8.110)

� = 2��
2� + i=� (8.123)

�(a)�1� = 2��3��1� � 2g�1��
�
2� = 0 (8.124)

�(a)�12�12 = 3��4��12�12 � 3g(�1�2g�12)�
�
2� = 0: (8.125)

That choice, in turn, allows us to organize a ladder of restrictions on surface terms:

��3��1�1 = g�1�1�
�
2� (8.126)

��3��1�1 = cg�23g(�1�1g�23) = 4cg�1�1 (8.127)

�3�12�12 =
1

4
g(�12g�12)�

�
2�: (8.128)

Notice that we adopted an utterly symmetric de�nition of surface terms. As they are

dimensionless, we got to determine their coe¢ cients. The fourth order will be given by

��4��12�12 = g(�1�2g�12)�
�
2� (8.129)

��4��12�12 = dg�23g(�1�2g�12g�23) = 6dg(�1�2g�12) (8.130)

�4�12�12�34 =
1

6
g(�1�2g�12g�34)�

�
2�; (8.131)
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As the trace is 2��
2� = �i=�, see (8.123), there arise the values to the surface terms.

Only the concepts of the RAGFs and unicity are enough to determine the other values,

�2�� = �ig��
4�

(8.132)

�3�12�12 = �
ig(�12g�12)
8�

(8.133)

�4�12�12�34 = � i

12�
g(�1�2g�12g�34): (8.134)

However, if the attitude towards the undetermined parts were to preserve translational

invariance in momentum space. The interpretation given to this tensor should be

�3�12�12 = �2�� = �4�12�12�34 = 0;

In this way, we have the complementary consequence in the tensors,

� =
i

�
; ��1 = �

1

2
q�1�; ��1 = �

1

12
(��1�2 � 3q�1q�2)�: (8.135)

And, about the U-tensor, if the vanishing surface terms, we break integration linearity by

U�1�2 = �
1

3

�
i

�

�
��1�2 : (8.136)

In parallel, if RAGFs hold or the odd amplitudes are unique or independent of intermedi-

ary steps of the calculation, e.g., Dirac traces used. Using the results to � in this scenario,

we have U�1�2 = 0: To clarify that conditions are exactly equal for the U-factor since the

crossed term qP drops out, it may be possible that other linear combinations of ��s could

cancel the RAGF�s violator.

Once more, the explicit expression for U , in terms of (8.109) and (8.110), is

U�1�2 = �1
3
��1�2�+

1

18
q�12 [2�2�12�12 + g(�12�1�1�2)]�

1

2
q2�1�1�2 + 4�

quad
a1�2

(8.137)

+
1

6
P �12 [2�

(b)
2�12�12

+ g(�12�
(a)
1�1�2)

]� 1
2
P 2�1�1�2 � P�2P �1�1�1�1 � P�1P �1�1�2�1 :

Expanding in its coe¢ cients and using the arbitrary internal momenta, we get

U�1�2 = +
1

9
(4b� 5a� 3�) g�1�2

�
k21 + k22

�
(8.138)

+
1

9
(4b+ 4a+ 6�) g�1�2 (k1 � k2)

+
1

9
(8b� 10a+ 3�) (k1�1k1�2 + k2�1k2�2)

+
1

9
(4b� 14a� 3�) (k1�1k2�2 + k2�1k1�2) = 0: (8.139)

As each row corresponds to linearly independent tensors, the only solution to the system

is a = b = � = 0. That is the unique solution we have discussed so far.
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To deep down into the reasons, as demonstrated in the Appendix (F.1), if one accepts

a natural reduction in the integrand, it leads to, by example,

�(b)�1�2�3�4 =
h
3��4��1�2�3�4 � 8�3�1�2�3�4 � g(�1�2g�3�4)�

�
2�

i
(8.140)

= m2

Z
d2k

(2�)2

(
4X
i=1

@

@k�i

�6k�1����̂i����4
D3
�

� g(�3�4
@

@k�5

k�6)
D2
�

)
= 0: (8.141)

Hence, this corresponds to a convergent integral that vanishes. Nevertheless, we estab-

lished this result based on the RAGFs without this manipulation.

It is worthwhile to call attention to that � = i=�-factor emerged in the description of

the chiral anomaly (from TAV�12 ). It uses methods that allow variable integration shifts,

q�1(TAV�1�2)1 = �2mT
PV
�2

+ "�2�q
�� and q�2(TAV�1�2)2 = "�1�q

��; (8.142)

while the other Ward Identities are ful�lled in and equal to zero.

The combination of the quadratic surface terms �quad�1�2
may be organized in the form

�quad�1�2
= (W �

2��12
� 2�1�12) + 2g�1�2Iquad � 2m2 (�2�12 + g�12Ilog) (8.143)

=

Z
d2k

(2�)2

�
4 (k2 �m2) k�12

D2
�

� 4k�12
D�

�
= 0: (8.144)

We chose the mass parameter such that D� = k2 � m2. There are three arguments,

reducing bilinear in the integrand of the last line yields an exact cancellation, or in the

massless limit since it is proportional to the mass that goes to zero. Thirdly, some

prescriptions make this term zero in various analytic regularization methods.

8.4 Einstein and Weyl Anomalies

We now turn to anomalies; we must take the massless limit. First, looking into the

results of contractions, for instance, q�1-contraction of the vector part (8.95), axial part

(8.101), or with the metric (8.97) or (8.103). There are terms proportional to the mass:

the two and one-point functions with mass as coe¢ cient go to zero in this limit:

4mT SV�1;�2 = 8m2
�
�2�1�2 + g�1�2Ilog

�
� i

�
2m2��1�2 [2Z

(�1)
2 � Z(�1)1 ] (8.145)

4mT S(�)�2 = 8m2q�
�
�2��2 + g��2Ilog

�
: (8.146)

The last line can also be seen through q�T SV�;�2 = T S(�)�2. Thereby limm2!0 4mT
SV
�1;�2

= 0

and limm2!0 4mT
S
(+)�2

= 0: Furthermore, in this way, we have only the vector and axial

one-point functions and the RAGFs violating factor U��.

For these terms that remain, we consider two scenarios: One that derives from the

preservation of WI for T V V�� and TAA�� ; which requires vanishing of surface terms and
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preserves momentum-space translational invariance. The other scenario exploited is when

surface terms are �nite and determined by the constraint of RAGFs.

(64i) q�1 [TG�12�12 ]ij = 4SA(�)(�1;�2)�2 + 4S
V
(�)(�1;�2)�2 � 2"�2�q

�B(�1;�2) (8.147)

+2[q�1B�2;�2 + q�2B�2;�1 � g�2�1q
�B�;�2 � g�2�2q

�B�;�1 ]
� (�i;2 + �j;2) q

� ["�2�1U��2 + "�2�2U��1 ]

+ (�i;2 + �j;2) q
� ["�2�U�1�2 + "�1�U�2�2 ]

(64i) q�1 [TG�12�12 ]ij = 4SA(�)(�1;�2)�2 + 4S
V
(�)(�1;�2)�2 � 2"�2�q

�B(�1;�2) (8.148)

+2[q�1B�2;�2 + q�2B�2;�1 � g�2�1q
�B�;�2 � g�2�2q

�B�;�1 ]
� (2� �i;2 � �j;2) q�("�2�1U��2 + "�2�2U��1)

+ (2� �i;2 � �j;2) q�("�1�U�2�2 + "�2�U�2�1):

(64i) g�12 [TG�12�12 ]ij = 4B(�1;�2) � 4"
�

�1
B�;�2 � 4"

�
�2
B�;�1 (8.149)

�2[2� (�i;2 + �j;2)]("�1�U
�
�2
+ "�2�U

�
�1
) + 8U�1�2

(64i) g�12 [TG�12�12 ]ij = 4B(�1;�2) � 4" �
�1
B�;�2 � 4" �

�2
B�;�1 (8.150)

�2 (�i;2 + �j;2) ("�1�U
�
�2
+ "�2�U

�
�1
) + 8U�1�2

8.4.1 Vanishing Surface Terms: Violating RAGFs

In the �rst scenario investigated, we adopt the interpretation of the surfaces as

�2�� = 0;�3�12�12 = 0;�4�12�12�34 = 0:

In the massless limit, dropping out the quadratic structures as they are proportional to

the mass is possible. The condition impliesW4 = W3 = 0 as well because these tensors are

de�ned as a linear combination of the previous ones (3.17-3.16). In tandem, this restriction

sets the result to the sum and di¤erences of one-point functions SV(�) = SA(�) = B = 0: The
present interpretation for surface terms violates RAGFs, the amount which the U -factor

gives shown in the previous section, see (8.136). We recover its value

U�� = �
1

3
���� = �

1

3

�
i

�

�
���: (8.151)

Einstein Anomaly: They could appear in the vector and axial sectors; however, in
the current setting, the vector part vanishes. For this symmetry, we only need to evaluate

the results for one index, namely,

q�1 [T V�12�12 ] = 4S
V
(�)(�1;�2)�2 + 2[q�1B�2;�2 + q�2B�2;�1 � g�2�1q

�B�;�2 � g�2�2q
�B�;�1 ] = 0:
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That is an interesting consequence of this perspective; however, it breaks integration

linearity if even and odd amplitudes should have a uniform mathematical treatment. The

other equations to be discussed get contributions from the axial part and are

q�1 [TG�12�12 ]ij = � 1
96

�
1

�

�
(�i;2 + �j;2) "�1�q

���2�2 (8.152)

q�1 [TG�12�12 ]ij = � 1
96

�
1

�

�
(2� �i;2 � �j;2) "�1�q���2�2 ; (8.153)

where was used the identity "�2�q
���2�1 = "�1�q

���2�2.

It exhibits a richer structure because, for null surface terms, the axial sector reveals

a dependence on the version of trace with the chiral and four Dirac matrices that are

employed. After integration, the identities valid for the integrand are transformed by the

present interpretation in di¤erent tensors. It implies that intermediary operations lead

to many possibilities, some of which are present above. The breaking of linearity makes

the versions unequal as the simpler TAV�� . The version ij = f11; 22g only has anomalies
in one set of indexes, �i or �i. A table of results can clarify these statements:8<:

q�1 [TG�12�12 ]11 = 0 q�1 [TG�12�12 ]22 = �
1
48

�
1
�

�
"�1�q

���2�2

q�1 [TG�12�12 ]11 = �
1
48

�
1
�

�
"�1�q

���2�2 q�1 [TG�12�12 ]22 = 0

9=;
In the case of ij = f12; 21g ; the mixed versions of the anomaly appear equally distributed
and are half of the other versions:8<:

q�1 [TG�12�12 ]12 = �
1
96

�
1
�

�
"�1�q

���2�2 q�1 [TG�12�12 ]21 = �
1
96

�
1
�

�
"�1�q

���2�2

q�1 [TG�12�12 ]12 = �
1
96

�
1
�

�
"�1�q

���2�2 q�1 [TG�12�12 ]21 = �
1
96

�
1
�

�
"�1�q

���2�2

9=;
The results above are the common �nding in the literature. In other words, we have

options for expressing the AV /V A functions in terms of the even V V /AA amplitudes.

Weyl Anomaly: In the scenario of RAGFs violations, we get

g�12 [TG�12�12 ]ij = � 1

96�

h
4��1�2 � [2� (�i;2 + �j;2)]("�1��

�
�2
+ "�2��

�
�1
)
i
(8.154)

g�12 [TG�12�12 ]ij = � 1

96�

�
4��1�2 � (�i;2 + �j;2) ("�1��

�
�2
+ "�2��

�
�1
)
�
: (8.155)

As the equations are not unique, the odd part of Weyl anomaly is absent in some versions,

g�12 [TG�12�12 ]11 = � 1

48�
[2��1�2 � ("�1��

�
�2
+ "�2��

�
�1
)] (8.156)

g�12 [TG�12�12 ]11 = � 1

24�
��1�2 (8.157)

g�12 [TG�12�12 ]22 = � 1

24�
��1�2 (8.158)

g�12 [TG�12�12 ]22 = � 1

48�
[2��1�2 � ("�1����2 + "�2��

�
�1
)]: (8.159)
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Note that the above equation expresses the possibility of not having anomalies in one

energy-momentum tensor occurring when that version has an Einstein anomaly. The

mixed versions show the same amount of violation in all contractions

g�12 [TG�12�12 ]12 = � 1

96�

h
4��1�2 � ("�1��

�
�2
+ "�2��

�
�1
)
i

(8.160)

g�12 [TG�12�12 ]12 = � 1

96�

�
4��1�2 � ("�1����2 + "�2��

�
�1
)
�

(8.161)

g�12 [TG�12�12 ]21 = � 1

96�

�
4��1�2 � ("�1����2 + "�2��

�
�1
)
�

(8.162)

g�12 [TG�12�12 ]21 = � 1

96�

h
4��1�2 � ("�1��

�
�2
+ "�2��

�
�1
)
i
: (8.163)

They show Einstein anomalies in all contractions as well.

For the sake of commentary, we rederived the �nite part of the U -factor. The �nite

part of the basic permutation may be written as

T V V�1�1�2�2
=

�
i

�

�
1

q2

n
2��1�1��2�2 [3Z

(0)
2 � 2Z

(0)
1 ]� 
�1�1�2�2 [2Z

(0)
2 � Z

(0)
1 ]
o
: (8.164)

The �nite part of the U -factor comes from the equation below

U�2�2 = (g�1�1T V V�1�1�2�2
� 4mT SV�2;�2) (8.165)

=
2i

�
��2�2f[3Z

(0)
2 � 2Z

(0)
1 ] +m2[2Z

(�1)
2 � Z(�1)1 ]g = �(i=3�)��2�2 : (8.166)

For the last equation, we have used the reductions above

3Z
(0)
2 � 2Z

(0)
1 = �m

2

q2
Z
(0)
0 �

1

6
; Z

(0)
0 = q2[2Z

(�1)
2 � Z(�1)1 ]:

8.4.2 Finite Surface Terms: RAGFs satis�ed

Summarizing: In this scenario to be investigated, we adopt the interpretation of sur-

faces as �nite and their values determined by RAGFs, (8.132)-(8.134). Thus, all relations

are satis�ed, and odd amplitudes become unique and independent of the trace prescrip-

tion. However, now the one-point functions take �nite values while U = 0.

The �nite violating terms in the momentum contractions: to derive this term in gen-

eral, we remind that qaT V Vabcd = SV(�)b;cd, where SV(�)b;cd is the di¤erence of combining the
vectorial one-point functions de�ned in (8.12). In the massless limit, the explicit contri-

bution of the surface term can be arranged as

SV(�)b;cd = +P �12q�3W4bcd�123 (8.167)

�2P �1q�2(PbW3cd�12 + PdW3bc�12 + PcW3bd�12)� qbP �12W3cd�12

+2P �1 [� (P � q)W3bcd�1 + qb (Pd�2c�1 + Pc�2d�1)]

+q�1
�
�P 2W3bcd�1 + 2 (PbPc�2d�1 + PbPd�2c�1 + PcPd�2b�1)

�
+2 (P � q) (Pb�2cd + Pc�2bd + Pd�2bc) + qbP

2�2cd

+
1

3
q�12q�3W4bcd�123 � qbq�12W3cd�12 � q2q�1W3bcd�1 + qbq

2�2cd:
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Here we are using Latin letters in order to make index replacement operational. The

combination of surface terms de�ned in (3.9), (3.16) and 3.17 assuming the values

W4abcd�12 = �
i

4�

11

6
g(abgcdg�12); W3abcd = �

i

4�

3

2
g(abgcd); W2ab = �2ab = �

i

4�
gab:

And for the basic permutation as well, it is reasonable to get

� i (4�) T V Vabcd = �1
3
g(abgcd)P

2 +
1

2
gabgcdP

2 +
1

3
P(aPbgcd) � PdPcgab (8.168)

+
8

9
g(abgcd)q

2 � 11
9
q(aqbgcd) + 3gabqcqd �

3

2
gabgcdq

2 + 2gcdqaqb:

where the symmetrization of the notation follows (the same for q(aqbgcd)),

P(aPbgcd) = PaPbgcd + PaPcgbd + PaPdgbc + PbPcgad + PbPdgac + PcPdgab: (8.169)

Now, we admit a covariant parameterization of the ambiguous momentum concerning

the external one. As an example, we have

P� = (k1� + k2�) = �q�: (8.170)

Therefore one of the terms in the RAGFs can be expressed as

SV(�)b;cd =
i

(4�)

�2

2
qb (�cd + qcqd) +

i

2 (4�)
qb�cd (8.171)

+
i

6 (4�)
[�2 [qd�bc + qc�bd + qb�cd]� 7qbqcqd] ;

inside the full contractions we get symmetrizations SV(b;c)d.
The factor that appears in the trace relations, de�ned (8.11), is developed in the form

B�1;�2 = 2T V(+)�1;�2 + q�2T
V
(+)�1

(8.172)

= 4 (�1�1�2 + g�1�2Iquad) + 2q�2q
�1�2�1�1 (8.173)

+P �12W3�1�2�12 � P 2�2�1�2 � 2P �1 (P�1�2�2�1 + P�2�2�1�1)

+q�12W3�1�2�12 � q2�2�1�2 � 2q�1 (q�1�2�2�1 + q�2�2�1�1) :

In the symmetric limit (massless limit) and using the parametrization (8.170), we have

� i (4�)B(�1;�2) = ��2 (��1�2 � q�2q�1)� (��1�2 + 3q�2q�1) (8.174)

�i (4�) q�1B�1;�2 =
(�2 � 3)
2

q�2q
2: (8.175)

Axial combinations SAa;bc = �" �
a SVa;bc , symmetrizing these terms as in the �nal result

SA(�)(a;b)c = ��
2

2
"a� [2q

��bc � qc��b + qbqcq
� ] (8.176)

+
1

6
"a� [�5qc��b + 4qb��c � 2q��bc + 5qbqcq� ]:
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Einstein Anomaly: The total contribution for the odd sector where we can isolate
one term that corresponds to the version [T A�12�12 ]12,

q�1 [T A�12�12 ] = �
i"�1�
12�
f8q���2�2+(6�

2�10)[q���2�2�q�2�
�
�2
�q�2���2+q�2q�2q

� ]g; (8.177)

therefore the choice �2 = 5=3 can recover that value. Despite that, there is a choice of

routings that can reproduce the values for a speci�c version when surface terms are made

null; the even part does not show such a possibility, as can be seen in

q�1 [T V�12�12 ] =
i

6�
f(6�2 � 10)q�1q�2q�2 + 2(q�1��2�2 + q�2��1�2 � 2q�2��1�2 � 2q�1q�2q�2)g:

(8.178)

This presents us with two features: it is impossible to use any choice of routings to

eliminate the anomaly, and the choice that makes the axial part with a standard value

implies in the equation above,

q�1 [T V�12�12 ] =
i

3�
(q�1��2�2 + q�2��1�2 � 2q�2��1�2 � 2q�1q�2q�2): (8.179)

Summing the Eqs. (8.177) and (8.179), the gravitational amplitude independent of the

Dirac trace becomes

q�1TG�1�2�1�2 = � 1

96�
"�1�q

���2�2 +
1

192�
(q�1��2�2 + q�2��1�2 � 2q�2��1�2 � 2q�1q�2q�2)

+
(3�2 � 5)
384�

f2q�1q�2q�2 + " �
�1

�
q�2���2 + q�2���2 � q���2�2 � q�2q�2q�

�
g:

The vector part is irremovable through choices that are intrinsic elements of Feynman�s

diagrammatic computation of this correlator.

Weyl Anomaly: The odd part of this symmetry violation arises from tensor B�;�,

g�12 [T A�12�12 ] = �4" �
�1
B�;�2 � 4" �

�2
B�;�1 (8.180)

g�12 [T A�12�12 ] = �4" �
�1
B�;�2 � 4"

�
�2
B�;�1 : (8.181)

Simple manipulation of indices yields the expressions

g�12 [T A�12�12 ] = �
i

�

�
�2 � 1

�
q� ("�1�q�2 + "�2�q�1) ; (8.182)

and analogously for the other trace. The odd part of the Weyl anomaly can be removed,

but this does not happen to the even part. If the parameter � is chosen to make the

Einstein anomaly with the standard form, we obtain an equivalent result as

g�12 [T A�12�12 ] = �
2i

3�
q�("�1�q�2 + "�2�q�1)�

i

3�
(3�2 � 5)q�("�1�q�2 + "�2�q�1): (8.183)

Since that constraint is given by �2 = 5=3.

Through the same line of reasoning, we obtain the even part

g�12 [T V�12�12 ] = 4B(�1;�2) = �
i

�
�2 (��1�2 � q�2q�1)�

i

�
(��1�2 + 3q�2q�1) ; (8.184)
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similar to the other set of indices. However, now the constraint which reproduced the

standard result to the odd part furnishes a di¤erent expression to the Weyl anomaly of

the even part, namely,

g�12 [T V�12�12 ] = �
4i

3�
(2��1�2 + q�2q�1)�

i

6�

�
6�2 � 10

�
(��1�2 � q�2q�1) : (8.185)

Therefore, the total routing-dependent trace anomaly is given by

g�12 [TG�12�12 ] = � 1

96�
q� ("�1�q�2 + "�2�q�1)�

1

48�
(2��1�2 + q�2q�1) (8.186)

� 1

192�

�
3�2 � 5

�
[q� ("�1�q�2 + "�2�q�1) + (��1�2 � q�2q�1)] :

In this context, where the integration linearity is maintained, and intermediary opera-

tions on the Dirac traces have no e¤ect, we have the �niteness of the relevant surface terms

as the constraint. However, this also implies violations of the energy-momentum tensor

symmetries and the break of translational invariance (in momentum space, at least). To

keep Ward identities, which crucially depend on translational invariance, the attitude

often adopted is, by some regularization, to remove the surface terms. The algebraic con-

sequence is to spoil the RAGFs to odd-tensor amplitudes, deduced without making any

shifts whose unique hypothesis is the linearity of integration. Equivalently, the uniqueness

of these amplitudes is lost as they come from the Feynman rules, thus opening the room

for multiple expressions that violate the symmetries under study anyway. Only a subset

of these possibilities is visualized in the literature.



Chapter 9

Final Remarks and Perspectives

We performed a detailed probe of a signi�cant number of pseudo-tensor diagrams that

correspond to anomalous amplitudes in two and four dimensions, following a strategy

to cope with the divergences introduced in the thesis of O.A. Battistel. We apply this

procedure to the bubbles (the gravitational case is discussed in the sequel) and triangles

with power counting logarithmic and linear, respectively. The �nite ones get integrated

after splitting o¤ and organizing the divergent parts without further action. In this point,

the scalar objects I(2n)log exactly cancel, letting the �nal result as a sum of �nite tensors and

surface terms, �(2n)
n+1;�12

. This recipe relies on the principle of the linearity of integration.

The role of that aspect emerges in the odd amplitudes in even dimensions; see the

e-print ([40]). Contracting with the external momenta follows RAGFs that, after in-

tegration, incorporate the linearity of integration. For the relevant two and three-point

functions in the respective dimensions, we wrote the equations (because they are not

automatically valid) representing that property as

q�iT (2D)�1�2�12
= T

(2D)A
i(�)�a

+ "�a�

(2pt)
i ; i; a = f1; 2g ; i 6= a

q
�i
i T

(4D)�1�2�3
�123

= T
(4D)AV
i(�)�ab

+ "�ab�12q
�1
2 q

�2
3 


(3pt)
i ; i; a; b = f1; 2; 3g ; i 6= a < b (9.1)

where the vertices �i 2 (V ;A) = (
�; 
�
�) and the notation T
(2D)A
(�) , T (4D)AVi(�) means the

actual di¤erences that appear in (5.18) and (6.47-6.49). The explicit surface terms read

T (2D)A� (ki) = 2"��k
�
i�

(2)�
2� (9.2)

T (4D)AV�� (ki; kj) = 2i"���� (kj � ki)� (ki + kj)

 �

(4)�
3
 : (9.3)

Let us start with four dimensions and then back to two. There, if the three equations

for the RAGFs (9.1) hold at the same time and the vanishing of T (4D)AV�� functions, or their

di¤erence, were possible, then that would allow the vector and partial axial symmetry to

hold simultaneously. That signi�es we can make shifts and thus have momentum-space

translational invariance since the only hypothesis necessary to prove T (4)AV�� = �T (4)AV�� =

0 is this symmetry. However, such structures depend on the unphysical and arbitrary sum

of routings and are proportional to surface terms that can violate translational symmetry.
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If we were only searching to cancel that terms, it would be seen that choosing routings is

not possible since we should have P31 = P21 = P32 = 0! qi = 0. A partial solution is to

make the surface term zero, then recover that symmetry.

Nevertheless, low-energy theorems demonstrated in Section (6.2) showed that a tensor

with the characteristics of AV V , for example, a function of the external momenta related

to PV V tensor, must satisfy, in this case, p�131T
AV V
�123
j0 = 0 6= �2mT PV V�23

j0. That is im-
possible since the �nite PV V does not behave like that. In general, we demonstrated

that assuming the most general tensor (when written in terms of the physical momenta),

without resorting to a speci�c symmetry, we got to have

q
�i
i T

(4D)�123
�123

= "�ab�12q
�1
2 q

�2
3 Vi ! (V1 + V2 � V3)j0 = 0: (9.4)

On the other hand, computing the three-point form factors 
i from the amplitudes PV V ,

PAA, and for amplitudes AV S and ASV with three di¤erent masses, we �nd


1 (0) + 
2 (0)� 
3 (0) = 1= (2�)2 : (9.5)

Thus, if the linearity of integration and translational symmetry were simultaneously valid,

we should have Vi = 
i. Therefore, the two last and independent equations above would

be in contradiction. We can say that the low-energy behavior of �nite functions precludes

these two properties from living together. Writing Vi = 
i+Ai, we have a constraint over
the anomalies Ai by �nite functions, stating that once two of them are �xed, the third

is unambiguously determined. At this point, we have that integration linearity can not

hold for any value of the surface term, in particular, not for the vanishing one.

All the tensors we investigated show independent combinations of routings, surface

terms, and the "-tensor. We took these elements as hypotheses and general as allowed,

not writing the internal through external momenta since the former can also be non-

covariant. Thus, by knowing the RHS of the relations, we lay down: it is impossible

without additional conditions to satisfy all the RAGF. In other words, they are not valid

for any value of the surface term, see Section (6.3). The satisfaction of all the RAGFs

makes the low-energy limit above (9.5) the value and the reason why the surface term can

not vanish; see the derivation of the equation in (6.119), as integration linearity requires

2i�
(4)�
3� = 1= (2�)2 = 
1 (0) + 
2 (0)� 
3 (0) : (9.6)

For this reason, we demonstrated that translational symmetry and linearity of integration

are incompatible properties for these perturbative amplitudes. Furthermore, the same

derivations clarify the nomenclature and choice of the versions; they are the expressions

that automatically satisfy as many RAGFs as possible.

Returning to two dimensions: In this scenario, the 2pt functions do not show linearly

divergent integrals that are the assumed source of the symmetry violations. However,

they show power-counting zero and tensor integrals with intrinsic surface terms, though
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the coe¢ cients are the physical momenta. In reality, in context with the one-point axial

amplitudes TA� (ki), we have linear power counting integrals, and their shift invariance

takes place in the discussion when establishing WIs. The constraints on the di¤erences

TA(�)� = �" �
� T V(�)� = 2"�� (k

�
1 � k�2)�

(2)�
2� are formally necessary for the WIs for even and

odd amplitudes (V V -AA and AV -V A), but we cannot choose the arbitrary momenta as

k1 = k2 = 0 since this implies the physical one is q = 0 = k2�k1, we must have �(2)
2�� = 0.

Nonetheless, this is a premature conclusion once we know that we must have both RAGFs

and vanishing of surface terms. The non-concomitant presence of these properties is due to

the kinematical implications below that we also showed without resorting to a particular

symmetry, and for two masses,

q�iT (2D)AV�12
= "�a�q

�Vi ! (V1 + V2)j0 = 0: (9.7)

The kinematical theorem is incompatible with the low-energy limit of �nite functions


PV1 (0) + 
AS1 (0) = �i=�: (9.8)

Hence, the V1 and V2 functions are inevitably of the form Vi = 
i+Ai, withA1+A2 = i=�.

Moreover, considering the surface terms for the expression to the general tensor, an

analogous condition is derived through the constraint of algebraic property encoded by

the RAGFs, viz.,

2�
(2)�
2� = �i=� = 
PV (0) + 
AS (0) : (9.9)

This constraint also makes the amplitudes unique concerning the Dirac traces used. To

four dimensions, this turns the amplitudes quantities subject to routing choices. In con-

trast, to two dimensions, satisfying RAGFs leads to Dirac-trace independent expressions

that only depend on the physical momentum.

The feature of Dirac traces appearing in all the treated amplitudes and the analogous

ones for 2n dimensions arises for the trace of 2n+2 Dirac matrices and an odd number of

the chiral matrices. An assortment of expressions is available when one writes the tensor

representing that trace, di¤ering by the number of monomials and their signs, plus what

subset of its Lorentz indexes appear. Those expressions are equivalent under the condition

that surface terms have a value corresponding to the low-energy limit of �nite-functions

combination (9.5) in 4D or (9.8) in 2D.

Adopting the zero value follows a set of expressions to each amplitude that may keep at

most two RAGFs in 4D or one in 2D. These expressions can be obtained either applying

the de�nition of 
�, in some position along the trace or using the identity below in the

adjacent position of matrix 
�i ;

(2n) : 
�
�i =
in+1

(2n� 1)!"�i�2����2n

�2����2n (9.10)

(2D) : 
�
�i = �"�i�1

�1 and (4D) : 
�
�i = "�i�123


�123=6: (9.11)
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Thus, the tensors calculated for the amplitudes will correspond to the versions de�ned

as the main ingredients of the investigation. They violate the RAGF for the vertex

corresponding to 
�i, and the WI gets violated in the same vertex. Two aspects must

be noticed: (i) To have all the indices present, or to use the de�nition of the chiral

matrix, is not exceptional since identities (above ones) yield fewer terms and deliver the

same integrated expressions. (ii) The specialty of these identities is that they furnish the

maximum number of RAGF automatically satis�ed; hence the last RAGF can not be met

because we would be violating a low-energy implication (9.6) in 4D and (9.9) in 2D.

To sum up, adopting null surface terms makes the amplitudes depend on the traces

used. The Schouten identity inside the integral that connects the integrands ceases to

make it in the �nal integrated results. Ultimately, this breaks the linearity of integration

and violates the RAGFs. Di¤erent formulae for the traces do not deliver identical tensors.

The main elements involved in the versions were that they correspond to the same integ-

rand; for instance, in 2D (tAV�12)1 = (t
AV
�12
)2. However, after being integrated separately, we

�nd their subtraction as

(T (2D)AV�12
)1 � (T (2D)AV�12

)2 = 2"�2�1(2�
(2)�
2� + i=�): (9.12)

Following the same argument, we build up the combination

(t(2D)AV�12
)1 = (t

(2D)AV
�12

)2 =
1

r1 + r2
[r1(t

(2D)AV
�12

)1 + r2(t
(2D)AV
�12

)2]; (9.13)

with r1 + r2 6= 0 and otherwise arbitrary numbers; thus, after integration and adoption
of �(2)

2�� = 0 we may write any other expression, in particular, the version (T (2D)AV�12 )3

discussed in Chapter (4) which is the linear combination above with r1 = r2 = 1. In

that chapter, it was used one of the identities satis�ed by the antisymmetric products of

Dirac matrices, viz., 
�
[�1�2] = �"�1�2. In general, not only 2D, all expressions obtainable
utilizing those identities are a linear combination of the basic versions. Once more because

they satisfy the most RAGFs as possible. With this algorithm in mind, we can build, if

desired, the content one needs, by example,

(TAAA�123
)f1;1;1g =

1

3
[(TAAA�123

)1 + (T
AAA
�123

)2 + (T
AAA
�123

)3] (9.14)

has one-third of the anomaly in (TAV V�123
)1, for each vertex.

About uniqueness, some de�nition is necessary. A criterion that makes the amp-

litudes unique in a universal sense is impossible since they are divergent quantities. After

renormalization, they become dependent on an arbitrary mass scale. We employed the

de�nition: One expression coming from the Feynman rules is unique if, for all intrinsic

arbitrariness in intermediary algebraic manipulations, as Dirac traces and arbitrary rout-

ings, the �nal result is the same. This concept de�nition is well de�ned in the odd and

non-derivative amplitudes studied in 2D because we got an expression depending on the



129

external momentum and independent from Dirac traces. To the amplitudes investigated

in 4D, the �unique�answer is a function of the routings taken as independent variables.

Meaning one does not have a unique amplitude of the external momenta.

As for rules, it makes the surface terms zero as done in even amplitudes and by an

intelligent choice of Dirac trace to obtain the symmetry content. Notwithstanding, if

RAGFs are respected, turning amplitudes unique functions of their routings, this enables

one to recover the symmetry content by choice of the remaining ambiguities for the mo-

menta labels ki, except 2D; this can be done in all even dimensions to the tensors like

T
(2n)A2r+1V n�2r
�1����n+1 ; r � [n=2] :
Gravitation: The situation changes drastically when the power counting is higher

than linear. For quadratic divergent gravitational amplitude, by preserving the RAGFs,

we have the �niteness of the relevant surface terms as the constraint; see (8.132,8.133 and

8.134). Thus, it follows a unique form independent of manipulations in the Dirac algebra

but ambiguous in what refers to the routing of the diagram. The results, in this scenario,

for the Weyl anomaly is

W�1�2 : = g�12TG�12�12 = �
1

96�
q� ("�1�q�2 + "�2�q�1)�

1

24�
��1�2 �

1

48�
q�2q�1(9.15)

� 1

192�

�
3�2 � 5

�
[q� ("�1�q�2 + "�2�q�1) + (��1�2 � q�2q�1)] :

Furthermore, for the Einstein anomaly, we have the expression above

E�2�1�2 : = q�1TG�1�2�1�2 = �
1

96�
"�1�q

���2�2 + (9.16)

+
1

192�
(q�1��2�2 + q�2��1�2 � 2q�2��1�2 � 2q�1q�2q�2)

+
(3�2 � 5)
384�

f2q�1q�2q�2 + " �
�1

�
q�2���2 + q�2���2 � q���2�2 � q�2q�2q�

�
g:

The �rst terms of each expression correspond to the ones in Bertlmann and Kohlprath

[61, 62]. The result shows that apart from the question of the origin of the additional terms

as trivial anomalies and which actions generate them. They are the product of preserving

algebraic operations determined without resorting to a speci�c evaluation of divergent

integrals, even though the representation of surface terms appears in this fashion.

Distinctly from the chiral anomalies, and in a certain sense similar to the vacuum

polarization tensor of 4D quantum electrodynamics, the symmetry content (or violation

thereof) can not be recovered by choice of the arbitrary internal momenta k1 + k2 = �q,

at least for the even part (we restrict ourselves to covariant choices). The odd part allows

this for the parameter �2 = 5=3, namely

W�12j�2=5=3 = � 1

96�
[q� ("�1�q�2 + "�2�q�1) + 4��12 + 2q�12)] (9.17)

E�2�12
��
�2=5=3

= � 1

192�
[2"�1�q

���2�2 � q(�1��2)�2 + 2q�2��12 + 2q�2q�12)]: (9.18)
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There is no choice of � which eliminates the vector part of the Einstein anomaly for �nite

surface terms, nor the vector part of the Weyl one. The only possibility to eliminate the

even part of Einstein�s anomaly is to spoil the linearity of integration and turn o¤ the

surface terms. This attitude brings a complex set of possibilities in the axial sector to be

discussed in the sequel. The axial part of the Weyl anomaly can be eliminated by adopting

�2 = 1. However, we did not explore the aspect, which is interesting since adding the

Bardeen-Zumino polynomial in the stress tensor to change the consistent anomaly in the

covariant one, the odd part disappears; see the book of Bertlmann [11], pg. 541 or the

paper cited previously.

Turning to the scenario where surface terms vanish and thus freeing the even part of

the Einstein anomaly, the odd part, constituted of multiple terms, allows the exploration

of the traces in each component. It is a choice available once the algebraic properties

of the amplitudes are broken. In this thesis, we restricted to simpli�cations where the

expressions to each of the four permutations (�1 $ �2)$(�1 $ �2) in the expansion that

follows have the same version for each term.

T AV�1�1�2�2
= 4TAV�1�1;�2�2 + 2q�2T

AV
�1�1;�2

+ 2q�2T
AV
�1�1;�2

+ q�2q�2T
AV
�1�1

: (9.19)

We allowed other trace choices only for the partner T V A, uniformly in its terms. We do
not impose a priori symmetries in the indices, exploiting just the freedom of the versions.

Those symmetries are preserved once the RAGFs are so, e.g., TG�1�2�1�2 = TG�1�2�1�2. In

making the selections stated, we arrive at a phenomenon already observed in the chiral

counterparts: the anomalies can migrate from contraction to contraction. The compact

formula for the Einstein anomalies becomes

E ij�1�2�r = � 1

96�
(�i;2 + �j;2) "�1�q

���2�r (9.20)

E ij�r�1�2 = � 1

96�
(2� �i;2 � �j;2) "�1�q���2�r : (9.21)

They come from the contraction with q�1;�2 and q�1;�2, being that upper-indices in E ij

assumes 1 or 2 values. The Weyl ones are

W ij
�1�2

= � 1

24�
��1�2 �

1

96�
(2� �i;2 � �j;2)q�("�1�q�2 + "�2�q�1) (9.22)

W ij
�1�2

= � 1

24�
��1�2 �

1

96�
(�i;2 + �j;2) q

�("�1�q�2 + "�2�q�1): (9.23)

Notice that when the Einstein anomaly (odd part) drops out in one group of indices,

the Weyl anomaly does so in the complementary set, occurring when i = j. In the

combinations ij = 12 or ij = 21, none are zero and equal to half of the results for the

non-vanishing parts of ij = 11 or ij = 22. The mixed versions have coe¢ cients equal to

the ones in Bertlmann [61], which is one particular result of our analysis.

Ultimately, the expression (9.19) above admits independent choices for each term. As

a consequence, the factor �;��;��� (7.107-7.126,7.127) do not combine into the U��-

factor, and the other projector aside ��� (!�� = q�q�) would arise with a proliferation of
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coe¢ cients. This scenario is allowed for once the surface terms are interpreted as quant-

ities that vanish. This element leads to expressions that exhibit Lorentz anomaly. We

deviated from this anomaly once the same version was used when summing the basic per-

mutations. Another interesting point is to study a low-energy theorem in the gravitational

setting, as done for the chiral anomalies. Research along these lines is underway.

As a �nal comment, the possibility of �nal and compact expressions that preserve all

the features of the computation is mainly due to the use of a de�nition of the surface

terms of rank four �3����, and six �4������, which are explicitly total symmetric in the
Lorentz indices. In addition, their compilation into terms that may break the algebraic

RAGFs, the objects f�;��;���g. In particular, we call attention to the scalar one,
� = 2��

2� + i=�, which in the last instance, determines the satisfaction or not of all

RAGFs for the energy-momentum two-point function. It is precisely the same one that

appears in the 2D chiral anomaly. The extension of these protocols to four dimensions

facilitates the investigations underway associated with trace anomalies closely related to

the recent publications in Bonora [20] and [77]. The RAGFs will become exceedingly

complicated; as an example, we have

2p�31T
AV V
�123;�

+ p231T
AV V
�123

= �2m[T ~TV
�31�2

(1; 2) + T
~TV
�12�3

(2; 3)]

+i[" �12
�12

p31�2T
V V
�1�3

(2; 3)]� i[" �12
�13

p31�2T
V V
�1�2

(1; 2)]

+2[TAV�32;�1 (1; 2)� T
AV
�23;�1

(2; 3)]

�p�131[g�1�2T
AV
�1�3

(2; 3) + g�1�3T
AV
�1�2

(1; 2)]

+[p31�1T
AV
�32
(1; 2) + p31�3T

AV
�12
(1; 2)� p31�1T

AV
�23
(2; 3) + p31�2T

AV
�13
(2; 3)];

where even arises a pseudo-tensor vertex ~T = 
�
[��]. Nonetheless, by the systematization

developed in this thesis such task becomes feasible as well.



Appendix A

Dirac Matrices and Traces

Lets us introduce the Cli¤ord algebra representation in terms of matrices
�

�1 ; 
�2

	
=

2g�121; the dimension of irreducible representations are dim (
) = 2
[d=2] � 2[d=2], and the

basic traces are

tr (
�) = 0 (A.1)

tr
�

�; 
�

	
= 2g��tr (12n�2n) : (A.2)

For the two dimensional representation, we have:


0 = �2; 
1 = i�1; 
3 = �3 (A.3)


0 = �1; 
1 = i�2; 
3 = ��3:

For even dimensions, d = 2n, there is a matrix given by


� := in�1
0
1 � � � 
2n�1 =
in�1

(2n)!
"�1����2n


�1����2n (A.4)

that obeys
�

�; 
�

	
= 0; with "012���d�1 = �1. For four matrices, we have the trace

tr (
�1����4) = tr (12n�2n) (g
�1�2g�3�4 � g�1�3g�2�4 + g�1�4g�2�3) ; (A.5)

the general formula is

tr
�

�1����2n

�
=

2nX
i=2

(�1)i g�1�itr
�

�1����̂i����2n

�
: (A.6)

The �rst non-zero trace with the chiral matrix in any even dimension is given by

tr
�

�
�1
�2 � � � 
�2n

�
= 2nin�1 (�1)n "�12����2n ; (A.7)

for d = 2n to the string of 2n+ 2 gamma matrices plus 
� using its de�nition follows the

formula

tr(
�
a1a2���a2n+1a2n+2) = 2
ni3n�1

2n+1X
k=1

2n+2X
j=k+1

(�1)j+k+1 gakaj"a1���âk���âj ���(2n+2); (A.8)

where we have used the abbreviation 
a1a2���a2n+1a2n+2 =
Q2b+2
j=1 
aj : The Latin index ought

to be substituted to whatever con�guration of Lorentz indices is scrutinized.
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A.1 Traces of a String of Six Gamma and the Chiral
Matrix

One uses the following identities to insert the Levi-Civita tensor in traces with the

chiral matrix


�
[�1����r] =
in�1+r(r+1)

(2n� r)! "�1����r�r+1����2n

[�r+1����2n];

where the notation 
[�1����r] indicates antisymmetrized products of gammas and the in-

vestigated dimension is 2n = 4. This appendix uses this resource to achieve di¤erent trace

expressions and explore their relations.

Trace using the de�nition 
� = i"�1�2�3�4

�1�2�3�4=4! - The three leading positions

to substitute the de�nition are around vertices �1, �2, and �3. Even if that brings six

options, the same integrated expressions arise regardless of replacing at the left or right.

Thus, we cast the possibilities in the sequence

t1 = tr(
�
�1�1�2�2�3�3) = i"�1�2�3�4tr(
�1�2�3�4
�1�1�2�2�3�3)=4!

= +g�1�1"�2�2�3�3 � g�1�2"�1�2�3�3 + g�1�2"�1�2�3�3 � g�1�3"�1�2�2�3 + g�1�3"�1�2�2�3

+g�1�2"�1�2�3�3 � g�1�2"�1�2�3�3 + g�1�3"�1�2�2�3 � g�1�3"�1�2�2�3 + g�2�2"�1�1�3�3

�g�2�3"�1�1�2�3 + g�2�3"�1�1�2�3 + g�2�3"�1�1�2�3 � g�2�3"�1�1�2�3 + g�3�3"�1�1�2�2 ;

t2 = tr(
�1�1
�
�2�2�3�3) = i"�1�2�3�4tr(
�1�1
�1�2�3�4
�2�2�3�3)=4!

= +g�1�1"�2�2�3�3 + g�1�2"�1�2�3�3 � g�1�2"�2�2�3�3 + g�1�3"�1�2�2�3 � g�1�3"�1�2�2�3
�g�1�2"�1�2�3�3 + g�1�2"�1�2�3�3 � g�1�3"�1�2�2�3 + g�1�3"�1�2�2�3 + g�2�2"�1�1�3�3

�g�2�3"�1�1�2�3 + g�2�3"�1�1�2�3 + g�2�3"�1�1�2�3 � g�2�3"�1�1�2�3 + g�3�3"�1�1�2�2 ;

t3 = tr(
�1�1�2�2
�
�3�3) = i"�1�2�3�4tr(
�1�1�2�2
�1�2�3�4
�3�3)=4!

= +g�1�1"�2�2�3�3 � g�1�2"�1�2�3�3 + g�1�2"�2�2�3�3 + g�1�3"�1�2�2�3 � g�1�3"�1�2�2�3
+g�1�2"�1�2�3�3 � g�1�2"�1�2�3�3 � g�1�3"�1�2�2�3 + g�1�3"�1�2�2�3 + g�2�2"�1�1�3�3

+g�2�3"�1�1�2�3 � g�2�3"�1�1�2�3 � g�2�3"�1�1�2�3 + g�2�3"�1�1�2�3 + g�3�3"�1�1�2�2 ;

where we omit the global factor 4i. Since each expression contains �fteen monomials fea-

turing all index con�gurations, di¤erent signs are the unique distinguishing factor among

them. That is also the reason why references often name them symmetric or democratic

[28, 73, 50].

These (main) versions play fundamental roles in this investigation as they are enough

to obtain any other result. If we use any other identity constructed with the equations

involving the antisymmetric products the trace expressions relate directly to them or their

combinations tij = (ti + tj) =2 only using sums and no other operation. Consequently, any

expression attributed to the investigated triangles is a linear combination of those detailed
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in the main body of this work. All of them produce the mentioned relations, so we cast

some at the end of this appendix.

t12 = �g�1�1"�2�3�2�3 � g�2�2"�1�3�1�3 + g�2�3"�1�3�1�2

�g�2�3"�1�2�1�3 � g�3�3"�1�2�1�2 � g�2�3"�1�1�2�3 � g�2�3"�1�2�3�1 ;

t13 = �g�3�3"�1�2�1�2 � g�1�1"�2�3�2�3 + g�1�2"�2�3�1�3

�g�1�2"�1�3�2�3 � g�2�2"�1�3�1�3 � g�1�2"�3�1�2�3 � g�1�2"�1�2�3�3 ;

t23 = �g�2�2"�1�3�1�3 � g�1�1"�2�3�2�3 + g�1�3"�2�3�1�2

�g�1�3"�1�2�2�3 � g�3�3"�1�2�1�2 � g�1�3"�2�1�2�3 � g�1�3"�1�2�3�2 ;

Trace using 
�
a = �i"a�1�2�3
�1�2�3=3! - After using this identity for the chiral
matrix and the �rst gamma, we write this trace through ten monomials.

�1 (a) = tr
�

�
abcdef

�
= �i" �1�2�3

a tr
�

�1�2�3
bcdef

�
=6

�1 (a) = gbc"adef � gbd"acef + gbe"acdf � gbf"acde + gcd"abef

�gce"abdf + gcf"abde + gde"abcf + gef"abcd � gdf"abce

Trace using 
�
[ab] = �i"ab�1�2
�1�2=2! - This case requires expressing the ordinary
product in terms of the antisymmetrized one. We �nd seven monomials after taking the

traces.


�
ab = �
1

2
i"ab�1�2


�1�1 + gab
�

�2 (ab) = tr
�

�
abcdef

�
= gab"cdef + gcd"abef � gce"abdf + gcf"abde

+gde"abcf � gdf"abce + gef"abcd

Trace using 
�
[abc] = i"abc�

� - Following a similar procedure we �nd six monomials.


�
abc = i"abc�

� + 
� (gbc
a � gac
b + gab
c)

�3 (abc) = tr
�

�
abcdef

�
= gab"cdef � gac"bdef + gbc"adef + gde"abcf � gdf"abce + gef"abcd

Trace using 
�
[abcd] = i"abcd - This case also generates seven monomials.


�
abcd = i"abcd1+ gab
�
[cd] � gac
�
[bd] + gad
�
[bc]

+gbc
�
[ad] � gbd
�
[ac] + gcd
�
[ab] + (gabgcd � gacgbd + gadgbc) 
�

�4 (abcd) = tr
�

�
abcdef

�
= gab"cdef � gac"bdef + gad"bcef + gbc"adef

�gbd"acef + gcd"abef + gef"abcd



A.1 Traces of a String of Six Gamma and the Chiral Matrix 135

Interconnection among formulas: When computing the di¤erence between two
integrated versions of the same amplitude, we acknowledge two situations. First, it cancels

out identically as their integrands are precisely equal, for example:

[t12 � �2 (�1�1)] = 0; [t23 � �4 (�3�3�1�1)] = 0:

Second, it vanishes in the integration because the explicit computation corresponds to

�nite null integrals embodied into the t(�+) tensor (6.14) and the ASS amplitude (6.22).

Some examples are:

[t1 � �1 (�1)]
K�123
123

D123

= "�2�3�1�2t
(�+)�12
�1

� g�1�3t
ASS
�2

+ g�1�2t
ASS
�3

;

[t12 + �2 (�1�2)]
K�123
123

D123

= �"�2�3�1�2t
(�+)�12
�1

+ "�1�3�1�2t
(�+)�12
�2

� g�2�3t
ASS
�1

+ g�1�3t
ASS
�2

;

[t13 + �4 (�1�2�2�3)]
K�123
123

D123

= �"�2�3�1�2t
(�+)�12
�1

� "�1�2�1�2t
(�+)�12
�3

+ g�2�3t
ASS
�1
� g�1�2t

ASS
�3

:

[t12 � �3 (�1�1�2)]
K�123
123

D123

= �g�2�3t
ASS
�1

+ "�13�12t
(�+)�12
�2

+ g�1�2t
ASS
�3

;

[t23 � �3 (�2�2�3)]
K�123
123

D123

= �g�3�1t
ASS
�2
� "�12�12t

(�+)�12
�3

+ g�2�3t
ASS
�1

[t31 � �3 (�3�3�1)]
K�123
123

D123

= �g�1�2t
ASS
�3
� "�23�12t

(�+)�12
�1

+ g�3�1t
ASS
�2

We showed the forms that identically correspond here, not that all di¤erences are �nite

and vanishing. For example, the form obtained from t12 is not identical without conditions

to any ti.



Appendix B

Feynman Integrals

B.1 Feynman�s parametrization

Any integral that is explicitly evaluated in this work is well de�ned. To operate, we

combine the denominators that appear using Feynman parametrization. The functions

that occur after they have been split through the formula (3.4) share the form

1

DN
� D1:::Dn

: (B.1)

They can be combined as

1

DN
� D1:::Dn

= (N)n

Z 1

0

dx1 � � �
Z 1�x1�:::�xn�1

0

dxn
(1� x1 � � � �xN)N�1

[
Pn

i=1 (Di �D�)xi +D�]
n+N

; (B.2)

where (N)n is the Pochhammer symbol (N)n = � (N + n) =� (N) : It is a direct task by

induction to show that

nX
i=1

(Di �D�)xi +D� = k2 � �2 +
nX
i=1

�
2k � ki + k2i

�
xi +

nX
i=1

�
�2 �m2

i

�
xi (B.3)

=

 
k +

nX
i=1

kixi

!2
+Q

��
ki;m

2
i

	
;�2
�
;

where we de�ne the Q polynomial

Q
��
ki;m

2
i

	
;�2
�
=

nX
i=1

k2i xi (1� xi)� 2
nX
j>i

(ki � kj)xixj +
nX
i=1

�
�2 �m2

i

�
xi � �2: (B.4)

After integrating into the momentum k, we have a function of Q whose integral over

adequate parameter delivers the integrals used in work. As of the �nite functions, they

appear as

1

D1:::Dn

= � (n)

Z 1

0

dx1 � � �
Z 1�x1�:::�xn�2

0

dxn�1
1�Pn�1

i=1 (Di �D1)xi +D1

�n : (B.5)
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An example to illustrate this is the �nite integral

I2 =

Z
d2k

(2�)2
1

D12

(B.6)

the explicit Di are

D1 = (k + k1)
2 �m2

1 (B.7)

D2 = (k + k2)
2 �m2

2 (B.8)

thus we identify

(D2 �D1)x+D1 = k2 + 2k � [(k2 � k1)x+ k1] +
�
k22 � k21

�
x+ k21 +

�
m2
1 �m2

2

�
x�m2

1(B.9)

= [k + (k2 � k1)x+ k1]
2 + (k2 � k1)2 x (1� x) +

�
m2
1 �m2

2

�
x�m2

1(B.10)

and with q = k2 � k1 the Q polynomial

Q = q2x (1� x) +
�
m2
1 �m2

2

�
x�m2

1: (B.11)

When integrating the translation in the k variable

k ! k � [(k2 � k1)x+ k1] (B.12)

allows us to write the integral as

J2 =

Z 1

0

dz

Z
d2k

(2�)2
1

(k2 +Q)2
: (B.13)

The next step is integration in the momentum, where the next section derives the necessary

formulae.

B.2 The J (2)2�� Integral

For non-negative power counting integrals, we must split them using the identity

(3.4). Let us illustrate the type of operations needed to integrate such integrals using as

an example the fundamental tensor integral with arbitrary masses in two dimensions

�J
(2)��
2 =

Z
d2k

(2�)2
K�
1K

�
1

D12

: (B.14)

Its integrand is decomposed in the form

K�
1K

�
1

D12

=
K�
1K

�
1

D2
�

� K�
1K

�
1A2

D2
�D2

� K�
1K

�
1A1

D�D12

: (B.15)

Then, the following integrals are required to perform

�J
(2)��
2 =

Z
d2k

(2�)2
K�
1K

�
1

D12

=

Z
d2k

(2�)2

�
K�
1K

�
1

D2
�

� K�
1K

�
1A2

D2
�D2

� K�
1K

�
1A1

D�D12

�
(B.16)

=

Z
d2k

(2�)2
K�
1K

�
1

D2
�

� F ��b � F ��a : (B.17)
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The �nal answer will be expressed as functional in Q = q2x (1� x) + (m2
1 �m2

2)x�m2
1:

To start with, we combine the denominators with Feynman parametrization for F ��a

K�
1K

�
1A1

D�D12

= 2

Z 1

0

dx1

Z 1�x1

0

dx2
1

[(D2 �D�)x1 + (D1 �D�)x2 +D�]
3 : (B.18)

Integrating into the loop momentum and making the shift k ! k � (k2x1 + k1x2), we

reach to

F ��a =

Z
d2k

(2�)2
K�
1K

�
1A1

D�D12

= 2

Z 1

0

dx1

Z 1�x1

0

dx2

Z
d2k

(2�)2
[K�

1K
�
1A1]k�(k2x1+k1x2)

(k2 +Q)3
; (B.19)

where the Q polynomial is given by

Q (k2; k1; x1; x2) = k22x1 (1� x1) + k21x2 (1� x2)� 2 (k2 � k1)x1x2 (B.20)

+
�
�2 �m2

2

�
x1 +

�
�2 �m2

1

�
x2 � �2:

The integration limits satis�es

Q (x1; 1� x2) = q2x1 (1� x1) +
�
m2
1 �m2

2

�
x1 �m2

1 (B.21)

Q (x1; 0) = k22x1 (1� x1) +
�
�2 �m2

2

�
x1 � �2: (B.22)

Recovering de�nition of Ai = 2k � ki + k2i + �2 �m2
i : After shifting, it assumes the

form

(A1)k�(k2x1+k1x2) = (2k � k1) +
@Q

@x2
: (B.23)

This feature will always happen to some Ai, which means one factor becomes a sum of a

bilinear and a derivative about the last integration parameter. The next stage is to make

partial integrations until all derivatives are consumed.

For the vector K1 that we used as reference (although any other could be chosen) in

de�nitions of the integral, under shifting, it turns into (K1)k�(k2x1+k1x2) = k�(k2x1 + k1x2 � k1) :
Moreover, in order to simplify and organize, we de�ne

L = (k2x1 + k1x2 � k1) (B.24)

L (x1; 1� x1) = (k2 � k1)x1 = qx (B.25)

L (x1; 0) = L0 = (k2x1 � k1) (B.26)

Gathering all the elements, we are left with this expression to integrate

F ��a = 2

Z 1

0

dx1

Z 1�x1

0

dx2

Z
d2k

(2�)2

��
2k � k1 +

@Q

@x2

�
(k � L)� (k � L)�

(k2 +Q)3

�
: (B.27)

At this point, we use the results that are elaborated in the sequel, namelyZ
d2k

(2�)2
1

(k2 +Q)3
=

i

4�

1

2Q2
(B.28)Z

d2k

(2�)2
k�k�

(k2 +Q)3
=

i

4�

1

2
g��

1

2Q
; (B.29)
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odd integrals drop from the expression, and we get

F ��a =
i

4�

Z 1

0

dx1

Z 1�x1

0

dx2

�
� (k�1L� + k�1L

�)
1

Q
+
1

2
g��

@Q

@x2

1

Q
+ L�L�

@Q

@x2

1

Q2

�
:

(B.30)

Integrating by parts, we �nd a total derivative

F ��a =
i

4�

Z 1

0

dx1

Z 1�x1

0

dx2
@

@x2

�
1

2
g�� log

Q

��2
� L�L� 1

Q

�
(B.31)

that gives us

F ��a =
i

4�

Z 1

0

dx1

�
1

2
g�� log

Q (x1; 1� x1)
��2

� q�q� x2

Q (x1; 1� x1)

�
(B.32)

� i

4�

Z 1

0

dx1

�
1

2
g�� log

Q (x1; 0)

��2
� L�0L�0

1

Q (x1; 0)

�
recalling that

Q (x1; 1� x2) = q2x1 (1� x1) +
�
m2
1 �m2

2

�
x1 �m2

1 (B.33)

Q (x1; 0) = k22x1 (1� x1) +
�
�2 �m2

2

�
x1 � �2: (B.34)

The other integral is easily expressed in the form

F ��b =
i

4�

Z 1

0

dx1 (1� x1)
�
� (k�2L�0 + k�2L

�
0)
1

Q
+
1

2
g��

1

Q

@Q

@x1
+ L�0L

�
0

1

Q2
@Q

@x1

�
: (B.35)

Here the argument of polynomial is Q (x1; 0). Thus, partial integration follows

F ��b =
i

4�

Z 1

0

dx1

�
1

2
g�� log

Q (x1; 0)

��2
� L�0L

�
0

Q (x1; 0)

�
+

i

4�

k�1k
�
1�

��2
� ; (B.36)

again taking into account that L (x1; 0) = L0 = (k2x1 � k1).
Finally, summing both contributions F ��a and F ��b , plus a external-momentum inde-

pendent �nite piece Z
d2k

(2�)2
k�1k

�
1

D2
�

=
i

4�

k�1k
�
1�

��2
� ; (B.37)

follows the complete integration of �nite parts. The organization of tensor integral for

general masses give us the result

�J��2 =
1

2

�
���
2 + g��Ilog

�
�2
��
+

i

4�

�
�1
2
g��Z

(0)
0 + q�q�Z

(�1)
2

�
: (B.38)

Any other integral in this thesis can be obtained with the computational elements illus-

trated here.
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B.3 Integration in the loop momentum

After Feynman parametrization, all integrals assume the form of the rational functionsZ
dnk

(2�)n
(1; k�; k�� ; k���; :::)

(k2 +Q)�
: (B.39)

To solve the integral, we start with the form

I (k;M; n) =

Z
dnk

(2�)n
1

(k2 �M2)�
=

Z
dnk

(2�)n
1

(k2 � 2k � q +Q)�
; (B.40)

where 2� > n and M2 = q2 � Q: The auxiliary variable q helps to develop the tensor

integrals. The integration measure dnk = dn�1kdk0. The square the momentum loop

k2 = k20 � k2; and k2 =
Pn�1

i=1 k
2
i : The integral (B.40) only

I (Q;n) =

Z
dnk

(2�)n
1

(k2 �M2)�
=

Z
dn�1k

(2�)n

�Z +1

�1
dk0f (k0)

�
(B.41)

f (k0) =
h
k20 � (

p
k2 +M2 � i")2

i��
; (B.42)

f (k0) �
1

k2�0
; as k20 !1: (B.43)

The poles and prescription coming from Feynman propagators

k20 =
p
k2 +M2 � i" (B.44)

k20 = �
p
k2 +M2 + i": (B.45)

To compute the integral, we extend the integration for k0 2 C and consider the

following contour C = C1 +C2 +C3 +C4 in the �gure below Then take the integral over

Im(k0)

Re(k0)C1

C2

C4

C3

R

Figure B.1: Contour of integration

that contour

FC(k
2;M2) =

Z
C

dk0f (k0) =

�Z
C1

+

Z
C2

+

Z
C3

+

Z
C4

�
dk0f (k0) = 0 (B.46)
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since there are no poles inside the closed path of integration. We write the integral as FC =

F1+F2+F3+F4; the semi-circle contributions vanish in the limit limR!1 (FC3 + FC4) = 0:

The reminder contribution gives the desired relation

lim
R!1

FC1 = � lim
R!1

FC2 !
Z 1

�1
dk0f (k0) = �

Z �i1

+i1
dk0f (k0) : (B.47)

Changing the integration variable in the last integral over the imaginary axis by ad-

opting k0 = ik00; we may write

I (Q; n) =

Z
dn�1k

(2�)n�1

Z 1

�1
dk0

1

(k20 � k2 �M2)
� =

Z
dn�1k

(2�)n�1

Z 1

�1
dk00

i

(�k020 � k2 �M2)
�

(B.48)

and e¤ectively we have an euclidean signature (k02 := k020 +
Pn�1

i=1 k
2
i ) to perform the

integral

I (Q;n) = i (�1)�
Z

dnk0

(2�)n
1

(k02 +M2)�
: (B.49)

Now we introduce spherical coordinates to these variables and split the radius and solid

angle integrations

I (Q;n) =
i (�1)�

(2�)n

Z
Sn�1

d


Z 1

0

drrn�1
1

(r2 +M2)�
: (B.50)

The solid angle furnish
1

(2�)n

Z
Sn�1

d
 =
2

(4�)n=2 �
�
n
2

� (B.51)

and simple manipulations bring the form

I (Q;n) =
2i (�1)�

(4�)n=2 �
�
n
2

� 1

2M2(��n=2)

Z 1

0

d
�
r02
� �
r02
�(n�2)=2 �

r02 + 1
���

: (B.52)

Another variables change r02 = (1� y) =y ! d (r02) = �dy1=y2; the Beta function is

B
�
�� n

2
;
n

2

�
=

Z 1

0

dyy(��n=2)�1 (1� y)n=2�1 :

We have

I (Q;n) =
i (�1)�

(4�)n=2 �
�
n
2

�
M2(��n=2)

Z 1

0

dyy(��n=2)�1 (1� y)n=2�1 (B.53)

=
i (�1)�

(4�)n=2
�
�
�� n

2

�
� (�)M2(��n=2) ; (B.54)

thus, from M2 = q2 �Q follows

I (Q;n) =
i (�1)�

(4�)n=2
�
�
�� n

2

�
� (�) (q2 �Q)��n=2

: (B.55)
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Now taking derivatives concerning the variable q on both sides and shifting the para-

meters �! �� 1 in the form

I (Q;n) =
i

(�4�)n=2
� (�� n=2)

� (�) (Q� q2)(��n=2)
; (B.56)

the explicit derivative is

@I

@q�1
=

i

(�4�)n=2
2q�1� (�� n=2 + 1)
� (�) (Q� q2)�+1�n=2

=

Z
dnk

(2�)n
2�k�1

(k2 � 2k � q +Q)�+1
; (B.57)

follows the relationZ
dnk

(2�)n
k�1

(k2 � 2k � q +Q)�
=

i

(�4�)n=2
q�1

� (�� n=2)
� (�) (Q� q2)��n=2

: (B.58)

Recursively Z
dnk

(2�)n
k�2k�1

(k2 +Q)�
=

i

(�4�)n=2
1

2
g�12

� (�� n=2� 1)
� (�)Q��n=2�1

: (B.59)

From the formulae presented, it is possible to obtain a general result, adopting n = 2!,

which reads Z
d2!k

(2�)2!
k�1 � � � k�2l+1
(k2 +Q)�

= 0 (B.60)Z
d2!k

(2�)2!
k�1 � � � k�2l
(k2 +Q)�

=
i

(4�)!
1

2l
g(�1�2 � � � g�2l�1;�2l)

� (�� ! � l)
� (�)Q��!�l

(B.61)

It is interesting to note that these results imply in the properties:Z
d2!k

(2�)2!
f
�
k2
�
k� = 0 (B.62)Z

d2!k

(2�)2!
k�k�f

�
k2
�
=

g��
2!

Z
d2!k

(2�)2!
k2f

�
k2
�

(B.63)Z
d2!k

(2�)2!
k����f

�
k2
�
=

(g���� + g���� + g����)

4 (! + 1)

Z
d2!k

(2�)2!
k4f

�
k2
�
: (B.64)



Appendix C

The One point Integrals in Two
Dimensions

After performing the Dirac traces present in the de�nitions we established for the per-

turbative amplitudes in (7.33) and (7.34), their integrals naturally decompose in Feynman

integrals that we de�ne in the equations (3.52) and (3.53). The calculations follow the

IReg method by applying the separation identity (3.4) on the divergent integrals. The

�nite part is integrated and projected in de�nitions (3.27) and (3.28). The residual di-

vergent part is projected onto divergent objects of the set, expressed in (3.5) and their

relations in the session (3.1).

We start with integrals that have only one propagator. These have only divergent

structures. The �nite parts after separating the labels, cancel out when they are integ-

rated.

Integral J1 : by power-counting this integral has a super�cial degree of divergence is
logarithmic

�J1 (ki) = Ilog (C.1)

From the next integral, it is necessary to specify the k1 and k2 labels of the integral.

Integral J1�1 : super�cial degree of divergence is linear

2 �J1�1 (k1) = � (P � q)�1 �2�1�1 (C.2)

2 �J1�1 (k2) = � (P + q)�1 �2�1�1 (C.3)

Integral J1�12 : super�cial degree of divergence is quadratic

�J1�12 (k1) =
1

2

�
�1�12 + g�12Iquad

�
� 1
8
(P � q)2�2�12 (C.4)

+
1

8
(P � q)�1

h
(P � q)�2W3�12�12 � 2 (P � q)(�1 �2�2)�1

i
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�J1�12 (k2) =
1

2

�
�1�12 + g�12Iquad

�
� 1
8
(P + q)2�2�12 (C.5)

+
1

8
(P + q)�1

h
(P + q)�2W3�12�12 � 2 (P + q)(�1 �2�2)�1

i
Integral J1�123 : super�cial degree of divergence is cubic and are the integrals with

the highest power-counting

J1�123 (k1) = �1
4
(P � q)�1W2�123�1 +

1

4
(P � q)(�1 �1�23) (C.6)

� 1
48
(P � q)�1 (P � q)�2 (P � q)�3W4�123�123

+
1

16
(P � q)�1 (P � q)�2 (P � q)(�1W3�23)�12

+
1

16
(P � q)2

h
(P + p)�1W3�123�1 � (P � q)(�1 �2�23)

i
�1
8
(P � q)�1 (P � q)(�1 (P � q)�2 �2�3)�1

J1�123 (k2) = �1
4
(P + q)�1W2�123�1 +

1

4
(P + q)(�1 �1�23) (C.7)

� 1
48
(P + q)�1 (P + q)�2 (P + q)�3W4�123�123

+
1

16
(P + q)�1 (P + q)�2 (P + q)(�1W3�23)�12

+
1

16
(P + q)2

h
(P + q)�1W3�123�1 � (P + q)(�1 �2�23)

i
�1
8
(P + q)�1 (P + q)(�1 (P + q)�2 �2�3)�1 :

For instance, we calculated the J�1�21 (ki). The complete expression:

J
�1�2
1 (ki) =

Z
d2k

(2�)2
k�1k�2

Di

(C.8)

+

Z
d2k

(2�)2
(k
�1
i k

�2 + k
�2
i k

�1)
1

Di

+k
�1
i k

�2
i

Z
d2k

(2�)2
1

Di

:

Using the expansions for two �rst integral above, we have�
k�1k�2

Di

�
even

=
k�1k�2

D�

� k2i
k�1k�2

D2
�

+ 4ki�12
k�1k�2k�1k�2

D3
�

(C.9)�
k�1

Di

�
even

= �2ki�1
k�1k�1

D2
�

: (C.10)
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So the expanded integral is given by

J
�1�2
1 (ki) =

Z
d2k

(2�)2

�
k�1k�2

D�

� k2i
k�1k�2

D2
�

+ 4ki�1ki�2
k�1k�2k�1k�2

D3
�

�
(C.11)

�2ki�1
Z

d2k

(2�)2

�
k
�1
i

k�2k�1

D2
�

+ k
�2
i

k�1k�1

D2
�

�
+k

�1
i k

�2
i

Z
d2k

(2�)2
1

Di

:

Identifying the divergent objects in Section (3.1)Z
d2k

(2�)2
8k�1�2�1�2

D3
�

= W
�1�2�1�2
3 + g�1�2�1�2Ilog

W
�1�2�1�2
3 = ��1�2�1�23 +

1

2
g(�1�1�

�2�2)
2Z

d2k

(2�)2
2k�1�2

D2
�

= �
�1�2
2 + g�1�2IlogZ

d2k

(2�)2
2k�1�2

D�

= �
�1�2
1 + g�1�2Iquad:

Substituting in (C.11), we can see the scalars Ilog cancel and remains the �nal expression

J
�1�2
1 (ki) =

1

2
[�

�1�2
1 + g�1�2Iquad] +

1

2
ki�12W

�1�2�1�2
3 (C.12)

�k�1i ki�1�
�2�1
2 � k�2i ki�1�

�1�1
2 � 1

2
k2i�

�1�2
2 :

The expression above can be written as (C.4) and C.5 replacing the routing ki by 2k1 =

(P � q) or 2k2 = (P + q) :
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Function Z
(�1)
k

�
q2;m21;m

2
2

�
As we saw throughout the text, it is sometimes interesting to consider explicit forms

of these functions due to their importance in discussing some important aspects of amp-

litudes. So we consider the following function

Z
(�1)
k

�
q2;m2

1;m
2
2

�
�
Z 1

0

dz
zk

Q (q2;m2
1;m

2
2)
;

where Q = q2z (1� z) + (m2
1 �m2

2) z �m2
1 is the polynomial form of denominator. Since

all the functions Z(�1)k can be put in terms of the functions Z(�1)0 ; we will consider in this

appendix the calculation explicitly only of the function, de�ned by

Z
(�1)
0

�
q2;m2

1;m
2
2

�
=

Z 1

0

1

Q
: (D.1)

One way to integrate is to write the polynomial present in the denominator through

its roots. We do

Q = �q2
�
z2 � 1

q2
�
q2 +m2

1 �m2
2

�
z +

m2
1

q2

�
= �q2 (z � �) (z � �) : (D.2)

Where the roots of the polynomial are � and � given by

� =
(q2 +m2

1 �m2
2) +

q
(q2 +m2

1 �m2
2)
2 � 4m2

1q
2

2q2
; (D.3)

� =
q2 +m2

1 �m2
2 �

q
(q2 +m2

1 �m2
2)
2 � 4m2

1q
2

2q2
; (D.4)

where � and � satisfy the following relations:

�+ � =
(q2 +m2

1 �m2
2)

q2
; �� =

m2
1

q2
(D.5)

�� � =

q
(q2 +m2

1 �m2
2)
2 � 4m2

1q
2

q2
: (D.6)

Rewriting Eq. (D.1) as
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Z
(�1)
0 = � 1

q2

Z 1

0

1

(z � �) (z � �) = �
1

q2
1

�� �

Z 1

0

dz

�
1

(z � �) �
1

(z � �)

�
: (D.7)

Using the passage Z 1

0

dz
1

(z � �) = ln (1� �)� ln (��) = ln
�
�� 1
�

�
; (D.8)

we will have

Z
(�1)
0 = � 1

q2
1

�� �

�
ln

�
�� 1
�

�
� ln

�
� � 1
�

��
=
1

q2
1

�� �

�
ln

�
�� 1
�

��
�

� � 1

��
:

(D.9)

From that, we can write the explicit form for the function Z(�1)0 ;

Z
(�1)
0 =

1q
(q2 +m2

1 �m2
2)
2 � 4m2

1q
2

ln

24(m2
1 +m2

2 � q2) +
q
(q2 +m2

1 �m2
2)
2 � 4m2

1q
2

(m2
1 +m2

2 � q2)�
q
(q2 +m2

1 �m2
2)
2 � 4m2

1q
2

35
(D.10)

In the kinematical limit, where q2 � 1; we have the result

Z
(�1)
0 =

1

(m2
1 �m2

2)
ln

�
(m2

1 �m2
2) + (m

2
1 �m2

2)

(m2
1 �m2

2)� (m2
1 �m2

2)

�
: (D.11)



Appendix E

Subamplitudes

We cast vector subamplitudes in this appendix. They are ordered following the amp-

litudes that originate them (AV V , V AV , V V A, and AAA) and then grouped according

to the version. That emphasizes patterns attributed to each version and additional terms

depending on the squared mass.

First version:

�
tV PP

��1
= [�K�1

1 S23 +K�1
2 S13 �K�1

3 S12]
1

D123

(E.1)�
tASP

��1
=

�
�K�1S23 +K�1

2

�
S13 + 2m

2
�
�K�1

3

�
S12 + 2m

2
�� 1

D123

(E.2)�
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��1
=

�
K�1
1

�
S23 + 2m

2
�
�K�1

2

�
S13 + 2m

2
�
+K�1

3 S12
� 1

D123

(E.3)�
tV SS

��1
=

�
K�1
1

�
S23 + 2m

2
�
�K�1

2 S13 +K�1
3

�
S12 + 2m

2
�� 1

D123

(E.4)

(T V PP )�1 = 2
�
P �231�

�1
3�2
+ (p�121 � p�132)Ilog

�
� 4 (p21 � p32) J�13 (E.5)

+2
�
(p�131p

2
21 � p�121p231)J3 + p�121J2 (p21)� p�132J2 (p32)

��
TASP

��1
= 2

�
P �231�

�1
3�2
+ (p�121 � p�132) Ilog

�
� 4 (p21 � p32) J�13 (E.6)

+2
��
p�131p

2
21 � p�121p231 � 4m2p�132
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�
�
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��1
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�
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�1
3�2
+ (p�121 � p�132)Ilog

�
� 4 (p21 � p32) J�13 (E.7)

+2
��
p�131p

2
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�
�
�
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��1
= 2

�
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3�2
+ (p�121 � p�132)Ilog

�
� 4

�
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+2
��
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2
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�
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Second version:�
tSAP

��1
=

�
K�1
1 S23 +K�1

2

�
S13 + 2m

2
�
�K�1

3

�
S12 + 2m

2
�� 1

D123

(E.9)�
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3

�
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2
�� 1

D123
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tSV S

��1
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�
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1

�
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2
�
+K�1

2

�
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2
�
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3 S12
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�
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��1
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�1
3�2
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�
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2
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��1
= 2

�
P �221�

�1
3�2
+ (p�132 + p�131) Ilog

�
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2
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��1
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�
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�
tSPA

��1
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1

�
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2
�
�K�1

2
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2
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Appendix F

Surface Terms

The surface terms used in this work appear in a totally symmetrical way in the indices,

for the �rst time treated from the point of view of the IReg strategy. The meaning of the

notation used is

g(�12g�34) = g�12g�34 + g�13g�24 + g�14g�23 : (F.1)

For instance, in the case of permutations involving six indices as the product of the metrics

by the logarithmically divergent object �2�� ; we have forty-�ve terms given by,

g(�12g�34

= �2�12g(�34g�56) +�2�13g(�24g�56) +�2�14g(�23g�56) +�2�15g(�23g�46) +�2�16g(�23g�45)

+�2�23g(�14g�56) +�2�24g(�13g�56) +�2�25g(�13g�46) +�2�26g(�13g�45)

+�2�34g(�12g�56) +�2�35g(�12g�46) +�2�36g(�12g�45)

+�2�45g(�12g�36) +�2�46g(�12g�35)

+�2�56g(�12g�34): (F.2)

This can be written succinctly as

g(�12g�34�2�56) =
5X

i2>i1=1

�2i1i2g(i3i4gi5i6) with in 6= im (F.3)

where in denotes �in. For the box terms we may also write

g(�1�2�3�3456) =
5X

i2>i1=1

g�i1�i2�3�i3�i4�i5�i6 : (F.4)

F.1 Uniqueness Factor: Combination of the violating
terms

As we saw, surface terms violate several symmetry relations. However, if the relations

are satis�ed, relations between surface terms emerge for their traces and the �nite part.
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Through the strategy (3), we saw that all the divergent objects were organized into

standardized objects as to their tensor degree and power counting. We have

�(a)�23 =
�
2��3��23 � 2�2�23 � g�23�

�
2�

�
(F.5)

�(b)�12�23 =
�
3��4��12�23 � 8�3�12�23 � g�12�23�

�
2�

�
(F.6)

�quad�1�2
=

�
W �
2��1�2

� 2�1�12 + 2g�12Iquad � 2m2 (�2�12 + g�12Ilog)
�
: (F.7)

In this way, this organization allows us to write the U -factor as

U�1�2 = �1
3
��1�2

�
2��

2� + i=�
�
+
1

9
(3P �2P �3 + q�23) �b�1�2�23 (F.8)

+
1

18
(3P �2P �3 + q�23) g(�1�2�

a
�2�3)

�1
2

�
P 2 + q2

�
�a�12 � P

�1P(�2�
a
�1)�1

+ 4�quad

The uniqueness factor that arises in the basic permutations

U�2�1 = (4��1�2 + 2q�1��2 + 2q�2��1 + q�2q�1�) ; (F.9)

its explicit expression reads

U�2�1 = �1
3
��1�2

�
2��

2� + i=�
�

(F.10)

+
1

9
(3P �2P �3 + q�23)

�
3��4��1�2�23 � 8�3�1�2�23 � g�1�2�23�

�
2�

�
+
1

18
(3P �2P �3 + q�23)

h
g(�1�2

�
2��3��23) � 2�2�23) � g�23)�

�
2�

�i
�1
2

�
P 2 + q2

� �
2
�
��3��1�2 ��2�1�2

�
� g�1�2�

�
2�

�
�P�2P �2

�
2
�
��3��1�2 ��2�1�2

�
� g�1�2�

�
2�

�
�P�1P �2

�
2
�
��3��2�2 ��2�2�2

�
� g�2�2�

�
2�

�
+4
�
W �
2��1�2

� 2�1�1�2 + 2g�1�2Iquad � 2m2 (�2�1�2 + g�1�2Ilog)
�
:

In the massless limit and independent of unique or vanishing surface terms

U�2�1 = �
1

3
��1�2

�
2��

2� +
i

�

�
= �1

3
��1�2� (F.11)

U�1�2 = �1
3
��1�2�+

1

9
(3P �12 + q�12) �(b)�1�2�12 � P

�1P(�2�
(a)
�1)�1

(F.12)

+
1

18
(3P �12 + q�12) g(�1�2�

(a)
1�12)
� 1
2

�
P 2 + q2

�
�(a)�12 + 4�

quad;

where the de�nitions

�quad�12
= ��2��12 +

1

2
g�12�

�
1� +�1�12 + 2g�1�2Iquad � 2m2 (�2�12 + g�12Ilog) (F.13)

= ��2��12 +
Z

d2k

(2�)2

�
g�12k

2

D�

+
2k�12
D�

�
� 2m2 (�2�12 + g�12Ilog) (F.14)
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Z
d2k

(2�)2
2k�12
D2
�

= �2�12 + g�12Ilog (F.15)Z
d2k

(2�)2
2k�12
D�

= �1�12 + g�1�2Iquad (F.16)

1

2
g�12�

�
1� +�1�12 + 2g�1�2Iquad =

Z
d2k

(2�)2
�
g�12k

2 + 2k�12
� 1
D�

(F.17)

��2��12 =
Z

d2k

(2�)2
�
4k2k�12 � 6k�12D� � g�12k2D�

� 1
D2
�

: (F.18)

Where the quadratic form can be made null as

�quad�12
=

Z
d2k

(2�)2
�
4
�
k2 �m2

�
� 4D�

� k�12
D2
�

= 0: (F.19)

F.2 Bilinears reductions and the accessible values to
the uniqueness factor

Observing the expressions

�(a)�23 = 2

Z
d2k

(2�)2

��
8k2k�23
D3
�

� g�23k
2 + 6k�23
D2
�

�
(F.20)

�
�
2k�23
D2
�

� g�23
D�

�
� g�23

�
k2

D2
�

� 1

D�

��
:

If it is linear and bilinears are reduced, follow the solid resu

�(a)�23 = 4m
2

Z
d2k

(2�)2

�
4k�23
D3
�

� g�23
1

D2
�

�
= �4m2

Z
d2k

(2�)2
@

@k�3
k�2
D2
�

� 0: (F.21)

The last passage involves de�ning a surface term that appears in 4D. Here it is �nite and

indisputably zero.

As the higher rank term, they appear in the violations of RAGFs and unicity of odd

amplitudes

�(b)�1234 =
h
3��4��1234 � 8�3�1234 � g�1234�

�
2�

i
; (F.22)

we will have for the �rst term

3g�12�4�123456 =

Z
d2k

(2�)2

"
144k2k�3456

D4
�

�
8
�
10k�3456 + k2g(�34k�56)

�
D3
�

#
; (F.23)

using the formula g�12g(�12k�3456) = 10k�3456 + k2g(�34k�56) and the de�nitions

8�3�3456 =

Z
d2k

(2�)2

�
64k�3456
D3
�

�
8g(�34k�56)

D2
�

�
(F.24)

g(�12g�34)�
�
2� = g(�12g�34)

Z
d2k

(2�)2

�
2k2

D2
�

� 2

D�

�
; (F.25)
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it is obtained the result�
3g�12�4�123456 � 8�3�3456 � g(�12g�34)�
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2�

�
(F.26)
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d2k
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144k�3456
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�
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�
144k�3456
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�

�
8g(�34k�56)

D2
�

�
2g(�12g�34)

D�

��
:

Reducing bilinears by adding and subtracting the mass makes obtaining the identity

k2

k2 �m2
= 1 +

m2

k2 �m2
: (F.27)

We reach at �
3g�12�4�123456 � 8�3�3456 � g(�12g�34)�

�
2�

�
(F.28)

= m2

Z
d2k

(2�)2

�
144k�3456
D4
�

�
8g(�34k�56)

D3
�

�
2g(�12g�34)

D2
�

�
:

Mass terms do not vanish identically; what remains are precisely convergent surface terms�
3g�12�4�123456 � 8�3�3456 � g(�12g�34)�

�
2�

�
(F.29)

= m2

Z
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12

�
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�
+ 4

g(�34k�56)
D3
�

�
g(�12g�34)
D2
�

�
g(�12g�34)
D2
�

�
;

these terms own integrands that are typical of four dimensions. Integrating in 2D they

are precisely zero

�3;�ij = �
Z

d2k

(2�)2
@

@k�i

k�j
D2
�

=

Z
d2k

(2�)2

�
4k�ij
D3
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�
g�ij
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� 0 (F.30)

�4;�3456 = �
1
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4X
i=1

Z
d2k

(2�)2
@

@k�i

k�1����̂i����4
D3
�

=

Z
d2k

(2�)2

�
12k�3456
D4
�
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g(�34k�56)
D3
�

�
� 0 (F.31)

thereby�
3g�12�4�123456 � 8�3�3456 � g(�12g�34)�

�
2�

�
= m2

�
12�4�3456 + g(�34�3�56)

�
= 0 (F.32)

if the total derivative character of the expression is desired, we can also write in the form�
3g�12�4�123456 � 8�3�3456 � g(�12g�34)�

�
2�

�
(F.33)

= m2

Z
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@
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k�1����̂i����4
D3
�

� g(�3�4
@
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k�6)
D2
�

)
:

Quadratic term in the Uniqueness factor: We assume bilinear reduction this
term cancels identically independent from the de�nition of the quadratic scalar

Uquad�12
=

Z
d2k

(2�)2

�
16k2k�12
D2
�

� 16k�12
D�

�
1�m2 1

D�

��
(F.34)

in other words Uquad�12
= 0.
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