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Resumo

Esta tese investiga o acoplamento entre ondas elásticas e ondas de spin em filmes fi-

nos ferromagnéticos e suas potenciais aplicações em spintrônica e magnônica. Nos últimos

anos, tem havido um crescente interesse em utilizar ondas de spin para desenvolver dis-

positivos de processamento de informação de baixo gasto energético e alta velocidade. A

interação magnetoelástica, que acopla a magnetização às vibrações elásticas de um mate-

rial magnético, tem sido extensivamente estudada nesse campo devido ao seu potencial uso

para a manipulação de ondas de spin com eficiência energética.

Três simulações numéricas foram conduzidas nesta tese para investigar a interação

magnetoelástica. A primeira simulação focou na propagação de uma onda acústica externa

através de uma fita de Ni magnetoelástica sob diferentes ńıveis de acoplamento entre as

ondas. Quando as ondas acústicas são altamente atenuadas, as ondas de spin são livres para

propagar, mas desaparecem após um comprimento de decaimento. Por outro lado, quando

a atenuação das ondas acústicas é muito menor do que a das ondas magnéticas, ambas

as ondas propagam-se juntas, mantendo a amplitude constante. Essa simulação também

calcula os componentes AC e DC da voltagem do efeito Hall de spin inverso (ISHE) que

podem ser medidos em uma linha de Pt adjacente.

Na segunda simulação, investigamos a conversão de magnons em fônons em um campo

magnético variável no espaço. Para isso, resolvemos simultaneamente as equações de

dinâmica de magnetização e elastodinâmica, que são acopladas através da interação mag-

netoelástica. Essa abordagem aproveita o fato de que as curvas de dispersão magnética e

elástica formam um gap entre si devido ao acoplamento magnetoelástico, separando-se em

dois ramos. Iniciamos um pacote de onda na região quasi-magnética da curva de dispersão

acoplada. Conforme esse pacote de onda se propaga através do campo estático variável no

espaço, ele gradualmente varia seu comprimento de onda, mantendo sua frequência con-

stante, transitando da região quasi-magnética para a região magnetoelástica, seguida pela

região quasi-elástica. Isso resulta na conversão de uma excitação magnética em uma ex-

citação elástica, o que pode ser verificado pela conversão da energia magnética em elástica.

Na última simulação, investigamos os modos magnéticos e elásticos, bem como a relação

de dispersão, de guias de onda que contêm uma parede de domı́nio de Néel. As paredes de

domı́nio são canais naturais para a propagação de ondas de spin, pois o campo desmagneti-

zante devido à rotação da magnetização cria um poço de potencial que confina as ondas em
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sua largura, formando modos magnéticos protegidos topologicamente. Nessa simulação, in-

vestigamos como os modos elásticos, na presença da interação magnetoelástica, influenciam

a dinâmica da magnetização na presença da parede de Néel. Nossas descobertas indicam

que nos pontos de cruzamento na relação de dispersão, dois comportamentos diferentes

podem ser observados: a formação de um gap quando existe um acoplamento forte, ou

um ponto sem gap quando o feedback magnetoelástico não é completamente satisfeito.

Analisamos que para a formação do gap, os modos elástico e magnético precisam ter uma

sobreposição significativa, o que não acontece no modo confinado à parede de Néel, além

de possuir a mesma simetria espacial.

Além das simulações numéricas, esta tese também inclui trabalho experimental que não

foi totalmente conclúıdo, e decidimos não inclúı-lo no texto principal, mas é apresentado

como um apêndice, como um guia para pesquisas futuras. Os experimentos envolvem a

deposição de filmes finos piezoelétricos de ZnO por magnetron sputtering, a caracterização

dos filmes usando microscopia eletrônica e experimentos de raios-X, e a fabricação de trans-

dutores interdigitais sobre um substrato magnético de YIG usando litografia de feixe de

elétrons e litografia a laser. Além disso, realizamos medidas de transporte elétrico nos

transdutores interdigitais e experimentos de espalhamento de luz de Brillouin. O obje-

tivo dos experimentos era obter experimentos de conversão magnon-fônon excitando ondas

acústicas de superf́ıcie com os transdutores interdigitais, o que impulsionaria a dinâmica

de magnetização de YIG.

Em conclusão, esta tese investiga a dinâmica de ondas de spin e ondas elásticas em

materiais magnetoelásticos por meio de simulações numéricas. Esperamos que os resultados

contribuam para a compreensão do papel dessa interação na dinâmica das ondas de spin

e possam ser aplicados no desenvolvimento de novos dispositivos de processamento de

informações.

Palavras-chave: Dinâmica de magnetização, ressonância ferromagnética, ondas de

spin, ondas elásticas, ondas acústicas, magnon, fônon, interação magnetoelástica, bombea-

mento de spins, efeito Hall de spin inverso, parede de domı́nio de Néel, spintrônica,

magnônica.
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Abstract

This thesis investigates the coupling between elastic and magnetic waves in ferromag-

netic thin films and their potential applications in spintronics and magnonics. In recent

years, there has been increasing interest in utilizing spin waves for developing low-power,

high-speed information processing devices. The magnetoelastic interaction, which allows

coupling between the magnetization and elastic vibrations of a magnetic material, has been

studied extensively in this field due to its potential for energy-efficient manipulation of spin

waves.

Three simulations were conducted in this thesis to investigate the magnetoelastic in-

teraction in different structures. The first simulation focused on the propagation of an

external acoustic wave through a magnetoelastic Ni stripe under different levels of cou-

pling between the waves. When acoustic waves are highly attenuated, the spin waves are

free to propagate but vanish after the decay length. On the other hand, when the acoustic

wave attenuation is much lower than the magnetic waves, both spin and acoustic waves

propagate together with the spin-wave maintaining the amplitude constant. This simu-

lation also calculates the AC and DC components of the inverse spin Hall effect (ISHE)

voltage that could be measured in an adjacent Pt stripe.

In the second simulation, we investigated the conversion of magnons into phonons in

a spatially varying magnetic field, simultaneously solving the equations of magnetization

dynamics and elastodynamics, which are coupled via the magnetoelastic interaction. This

approach utilizes the fact that the magnetic and elastic dispersion curves form a gap

between them due to the magnetoelastic coupling, separating into two branches. We

initiated a wavepacket in the quasi-magnetic region of the coupled dispersion curve. As it

propagates through the spatially varying static field, it gradually changes its wavelength

while maintaining its frequency, thus transitioning to the magnetoelastic region, followed

by the quasi-elastic region. This results in the conversion of a magnetic excitation into an

elastic excitation, which can be verified by the conversion of magnetic energy into elastic

energy.

In the final simulation, we investigated the magnetic and elastic modes, as well as the

dispersion relation, of waveguides containing a Néel-type domain wall. Domain walls are

natural channels for the propagation of spin waves, as the demagnetizing field due to the

rotation of magnetization creates a potential well that confines the waves in their width,
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forming topologically protected magnetic modes with increased propagation distances. In

this simulation, we investigated how elastic modes, in the presence of magnetoelastic inter-

action, influence the magnetization dynamics in the presence of the Néel wall. Our findings

indicate that at the crossing points in the dispersion relation, two different behaviors can

be observed: the formation of an anticrossing gap when there is strong coupling, or a gap-

less point when the magnetoelastic feedback cycle is not completely satisfied. Our analysis

showed that the formation of an anticrossing gap in the dispersion relation occurs when

there is a significant overlap between the elastic and magnetic modes, which is not the case

for the Néel wall-confined mode, and that matching symmetries are necessary for the other

modes to exhibit gapless crossings.

In addition to the numerical simulations, this thesis includes experimental work that has

not been fully concluded. While this work was not included in the main text, it is presented

as an appendix to serve as a guide for future research. The aim of the experiments was

to obtain magnon-phonon interactions by exciting surface acoustic waves with interdigital

transducers on a piezoelectric ZnO film, which would drive the magnetization dynamics

of a magnetoelastic YIG substrate. The experimental work involved the deposition of

ZnO using magnetron sputtering, its characterization using electron microscopy and X-ray

experiments, and the fabrication of interdigital transducers using electron beam and laser

lithography. In addition, we performed electric transport measurements and Brillouin light

scattering experiments.

In conclusion, this thesis investigates spin wave and elastic wave dynamics in mag-

netoelastic materials through numerical simulations. The results of the simulations will

hopefully contribute to the understanding of the role of the magnetoelastic interaction in

spin wave behavior and have potential applications in developing novel information pro-

cessing devices.

Keywords: Magnetization dynamics, ferromagnetic resonance, spin waves, elastic

waves, acoustic waves, magnon, phonon, magnetoelastic interaction, spin pumping, inverse

spin Hall effect, Néel domain wall, spintronics, magnonics.
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Chapter 1

Introduction

The present thesis aims to investigate the physics of spin wave propagation in ferromagnetic

materials and the magnetoelastic interaction, through numerical simulations, which can be

useful for both fundamental physics research and information technology applications. In

this chapter, we will provide a comprehensive review of the state of the art related to the

research topic. Finally, an overview of the structure of the subsequent chapters will be

provided.

1.1 State of the art

Spin waves, and their quanta magnons, are collective excitations of electron spins in mag-

netic materials. Introduced by Bloch in 1932 [1], they possess a range of characteristics

that are influenced by various parameters, including the direction and intensity of the

applied magnetic field, the geometry of the sample, and the choice of magnetic material

[2].

The fundamental properties of spin waves, such as their linear and nonlinear wave

properties, have attracted considerable interest, particularly with regard to parametric

instabilities [3], wavefront reversal [4, 5], soliton formation [6, 7] , and Bose-Einstein con-

densation [8–10]. In addition to their fundamental properties, spin waves in the GHz

and THz frequency ranges have garnered particular interest for potential applications in

telecommunications and novel computing devices [11].
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The potential applications of spin waves in telecommunications and novel computing

devices have sparked a growing interest in the so-called field of magnonics or magnon

spintronics [2, 11, 12]. The objective of this research area is to utilize spin waves as a

means for the transport and processing of information in logic devices due to their high-

speed, efficiency, and low-power consuming properties. This research field has a significant

advantage that it shares fabrication techniques with typical CMOS (complementary metal-

oxide-semiconductor) technology, which makes it highly compatible and integrable with

existing technology. Furthermore, the shorter wavelength of spin waves compared to light

in the same frequency range offers the possibility of obtaining wave-like computing devices

even in micro and nano-scale, which is highly desirable for the development of future

computing technologies.

Moreover, the unique properties of magnons make them an attractive option for the

development of novel logic devices. The non-reciprocity property, which describes the

different behaviors of magnons in opposite directions of propagation, has been explored

in various studies [13–15], and they can also exhibit negative group velocities [16, 17].

Magnons are also anisotropic, meaning that they behave differently in different directions

[18, 19], and they can be tuned by external stimuli such as an electric field [20–23], magnetic

field [11, 24], and elastic strain [25–27].

In recent years, numerous magnonic devices have been proposed that take advantage

of these unique properties. Spin-wave memories, which use magnons to store and retrieve

information, have been proposed [28, 29]. Magnon transistors, which can be used to am-

plify and switch magnonic signals, have also been developed [30–32]. Magnonic diodes

have also been proposed, which allow the passage of magnonic signals in one direction

while blocking them in the opposite direction [33, 34]. Logic gates that use magnons have

been proposed, including AND, OR, and XOR gates [35–37]. Magnonic transducers, which

convert magnonic signals into electrical signals, and vice versa, have also been developed

[38, 39]. Finally, magnons have been used to develop other radio frequency (RF) compo-

nents, such as filters [40–42] and circulators [43].

Magnonics encompasses all stages required for the design and operation of logic devices

[12]: the excitation of spin waves, their transmission along a waveguide, controlling their

properties for performing logic operations, and detecting the output. The control of spin

waves can be achieved using patterned magnetic properties [44–47], spin textures [48–

50], or through external electric or magnetic fields [28, 51, 52]. However, the two main
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challenges in magnonics are efficiently exciting and detecting magnons and overcoming

their limited propagation distances, which are typically less than 1 µm due to intrinsic

magnetic damping.

The most common method of excitation of spin waves is using an AC electric cur-

rent passing through a strip-line antenna [51]. This method generates a non-uniform AC

magnetic field, inducing a torque in the magnetic moments, resulting in the generation of

spin excitations. However, this inductive method is power-consuming due to ohmic losses.

In addition, the discrepancy in wavelength between the excitation electromagnetic wave

and the generated spin wave highly affects the amplitude of magnetization oscillation over

longer distances. Furthermore, the intrinsic magnetic losses limit their propagation, and

even in low-damping materials, such as Y3Fe5O12 (YIG), the propagation length of spin

waves is in the micrometer range [53], thereby limiting their potential applications.

To overcome these challenges, a promising approach is to couple spin waves with prop-

agating surface acoustic waves (SAWs) via the magnetoelastic effect [54]. SAWs are elastic

waves, which are quantized as phonons, that propagate on the surface of piezoelectric ma-

terials and can be excited using interdigital transducers (IDTs) [55]. SAW devices have

become a standard technology in telecommunication systems, owing to their slow propaga-

tion velocity, which is five orders of magnitude less than electromagnetic waves, and their

propagation lengths up to the millimeter range.

Therefore, the magnon-phonon interaction has been increasingly attracting interest

since the last decade, from fundamental aspects of their hybridization [56–58], the transfer

of spin angular momentum between the quasiparticles [59], for switching the magnetization

state for memory device applications [60–63], up to the prospective of applying propagating

SAWs to magnetoelastic films to excite spin dynamics [26, 64, 65] in a less power-consuming

manner, as the voltage-driven IDT excitation avoids ohmic dissipations, more efficiently

and with less attenuation.

The possibility of exciting spin dynamics in a magnetoelastic film from SAW propa-

gation has been observed from IDT experiments, where the absorption in the transmit-

ted signal can be linked to the acoustically-driven ferromagnetic resonance, mostly in Ni

devices [25, 66–71], but also in other magnetoelastic metals [72] and in semiconductors

[73, 74]. SAW-driven magnetization oscillations have also been imaged using magnetic-

contrast techniques [75–77], which sheds light on the promising application of elastic waves

in magnonic devices.
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By exploiting the magnetoelastic coupling between the magnetic moments and the

acoustic strain field, the SAWs can efficiently generate and detect spin waves in magnetic

films [64, 77]. The magnetoelastic coupling is a two-way street: the spin waves, in turn, can

couple with the SAWs, thus creating an efficient and tunable magnetoelastic interaction.

This approach not only allows the possibility of the efficient excitation and detection of

spin waves, but also provides a means of propagating them over longer distances with low

losses.

Magnonics is a field that has gained significant attention in recent years, both for its

fundamental aspects and potential technological applications. The interaction between

magnons and phonons has emerged as a promising possibility for magnonics to become

competitive with current information technology. In particular, the magnetoelastic inter-

action shows great potential for exciting spin dynamics in a less power-consuming manner,

making it an attractive approach for memory devices and other applications. Therefore,

further research is necessary to fully understand the fundamental aspects of the magnon-

phonon interaction and its potential applications. Overall, the study of magnon-phonon

interactions provides a promising avenue for advancing the field of magnonics and devel-

oping new technologies that could have significant impact in various fields.

1.2 Objectives

The objectives of this thesis are to perform finite-differences numerical simulations using

the open-source software MuMax3 [78] to investigate the magnetization dynamics of fer-

romagnetic materials by solving the Landau-Lifshitz-Gilbert (LLG) equation. The main

focus is to simulate the propagation of spin waves in materials that contain magnetoelastic

interaction. First, we aim to study the effective magnetic field on nanostructures due to

the excitation of elastic waves via the magnetoelastic effect. Another objective is to an-

alyze the dispersion characteristics of the elastic and magnetic waves and their coupling

and interconversion by solving the coupled LLG and elastodynamics equations, taking into

account the magnetoelastic feedback. These simulations will be carried out under vari-

ous geometries and external magnetic field configurations to study the effect of different

parameters on the magnetic and magnetoelastic properties of the system.

Specifically, the main results of this thesis consist of three finite-difference numerical

simulations. Firstly, an external elastic wave will propagate in the magnetoelastic material,
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driving its spin dynamics, and we will calculate the spin modes that are elastically excited.

The possibility of electrically measuring this effect will be evaluated by using the spin

pumping phenomena associated with the inverse spin hall effect (ISHE). Secondly, we will

solve the coupled LLG and elastodynamics in a stripe under a spatially varying magnetic

field. The aim is to convert the excitation from the quasi-magnetic region to the quasi-

elastic, utilizing the changes in the dispersion relation of the magnetoelastic interaction due

to the magnetic field intensity, and obtaining a magnon-phonon conversion. Finally, we

will study the propagation of magnetoelastic waves in a complex magnetic domain pattern,

the Néel-type domain wall, in a thin film stripe. This simulation will calculate the elastic

and magnetic eigenmodes and discuss the hybridization between these two modes based

on their symmetry.

1.3 Overview of the thesis

This thesis is structured into five chapters. Chapter 1 is the introduction, providing a

brief overview of the motivation and objectives of the research. Chapter 2 is dedicated

to providing the theoretical background necessary to understand the simulations carried

out in the subsequent chapters. This includes an overview of the micromagnetic model,

magnetization dynamics, and a detailed discussion of resonant phenomena such as ferro-

magnetic resonance (FMR) and spin waves. Additionally, elastic waves, magnetoelastic

interactions, and coupled magnetoelastic waves are described.

In Chapter 3, the numerical simulation methods used in the thesis are presented, along

with an explanation of how the data were processed to obtain the results. This sets the

stage for Chapter 4, which presents the results of the three main simulations in the thesis.

The first simulation, section 4.1, involves the excitation of spin dynamics in a stripe through

an external elastic excitation, simulating the excitation of a magnetoelastic field from a

IDT on a piezoelectric substrate. Here, we have also calculated the ISHE voltage that could

be measured in an adjacent metallic stripe. The second simulation, section 4.2, focuses on

the conversion of magnons into phonons by using a spatially-varying magnetic field, taking

advantage of the characteristics of the hybrid magnetoelastic dispersion relation. The third

simulation, section 4.3, examines the elastic and magnetic wave modes that propagate in a

Néel domain wall structure, with a discussion of the coupling between those modes based

on their symmetry.
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Finally, Chapter 5 presents the conclusions and perspectives of the thesis, summarizing

the main findings and highlighting their significance. This chapter also identifies possible

directions for future research in the field.

This thesis also included experimental work that was not fully completed, but the results

are included in appendix A as a guide for future experiments. The experiments involved the

deposition and characterization of piezoelectric thin film ZnO using electron microscopy

and X-ray experiments, as well as the fabrication of interdigital transducers (IdTs) on a

magnetic substrate YIG using electron beam lithography and laser lithography. The aim

was to use the IdTs to excite surface acoustic waves (SAWs) to drive YIG magnetization

dynamics and perform magnon-phonon experiments. Electric transport measurements in

the IdTs and Brillouin light scattering experiments were also carried out.
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Chapter 2

Theoretical Background

2.1 Magnetization dynamics

The physical properties of magnetic materials can be understood as the interaction between

its microscopic magnetic moments and both external magnetic fields and each other. This

interaction determines the magnetic behavior of the material, which includes its magnetic

susceptibility, magnetic anisotropy, and magnetic hysteresis, among others. In this section,

we will discuss the dynamics of the magnetization vector and the magnetic energy terms

that determine its equilibrium position.

2.1.1 Landau-Lifshitz-Gilbert (LLG) equation

The magnetic moment of an atom or an ion µ⃗ can be written as

µ⃗ = −gµBJ⃗ , (2.1)

where g is the spectroscopic splitting factor, µB is the Bohr magneton and J⃗ is its total

angular momentum, including its orbital and spin components.

A magnetic moment µ⃗ under a magnetic field induction B⃗ has energy U = −µ⃗·B⃗, which

is minimum when they are parallel to each other. When deflected from B⃗ the magnetic

moment becomes subject to a torque τ⃗ = µ⃗ × B⃗. Considering its angular momentum ℏJ⃗
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and Newton’s second law, we obtain the equation of motion [79]

dµ⃗

dt
= −γµ⃗× B⃗, (2.2)

with γ = gµB/ℏ known as the gyromagnetic ratio.

In the macroscopic scale it is worth defining the magnetization vector M⃗ as the total

magnetic moment of the sample per unit volume,

M⃗ =
1

V

∑
i

µ⃗i. (2.3)

This way, using the equation B⃗ = µ0(M⃗ + H⃗), where µ0 is the vacuum permeability and

H⃗ the magnetic field intensity, we can obtain the Landau-Lifshitz equation,

dM⃗

dt
= −γµ0M⃗ × H⃗, (2.4)

that describes the dynamics of the magnetization when subject to a magnetic field in the

absence of damping.

When the magnetization is parallel to the magnetic field, the cross product is null

and the derivative is zero, hence the magnetization is in the equilibrium position. If the

magnetization is deflected from the magnetic field, the derivative becomes non-zero and

an effective torque acts on the M⃗ .

Let us consider that the magnetic field is in the z-direction, that is H⃗ = Hẑ, and

the magnetization is slightly deflected from that direction, M⃗ = mxx̂ + myŷ + Mz ẑ with

Mz ≫ mx,my. From equation 2.4 we obtain

dmx

dt
= −γµ0myH and

dmy

dt
= γµ0mxH. (2.5)

One solution for that system is

mx(t) = m0 cos (ω0t) and my(t) = m0 sin (ω0t), (2.6)

where ω0 = γµ0H. The magnetization components transverse to the magnetic field, mx

and my, present a circular motion with constant amplitude, see Figure 2.1a. From that,

we can see that the magnetization starts a precession motion around H⃗ with frequency ω0,

which is the magnetic resonance frequency.
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(a) (b)

Figure 2.1: Schematic representation of the magnetization dynamics, as described by the

Landau-Lifshitz-Gilbert equation. In (a), the magnetization undergoes a precession motion

around the effective field direction in the absence of damping. In (b), the dynamics with

damping is shown, resulting in a gradual reduction of the amplitude over time.

The magnetization, however, relaxes towards the equilibrium direction and the relax-

ation is driven by several atomic spin interactions. Regardless of the details of its underlying

mechanisms, the phenomenon of relaxation can be incorporated into the dynamics through

a phenomenological approach. This can be achieved by ad hoc inclusion of a damping term

to the Landau-Lifshitz equation, the Gilbert damping, representing a torque that drives the

magnetization towards its equilibrium direction. Then the Landau-Lifshitz-Gilbert (LLG)

equation is
dM⃗

dt
= −γµ0M⃗ × H⃗ − α

M
M⃗ × dM⃗

dt
, (2.7)

where α is a phenomenological dimensionless quantity known as Gilbert damping param-

eter, see Figure 2.1b.
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2.1.2 Magnetic energy terms

The equilibrium direction of the magnetization can be defined by an effective field H⃗eff ,

which is obtained from the sum of all magnetic interaction energies, as δE = −µ0δM⃗ ·H⃗eff ,

thus,

H⃗eff = − 1

µ0

∇M⃗E, (2.8)

where ∇M⃗ is the gradient operator relative to the magnetization components, and E is the

total magnetic energy per volume. In ferro- and ferrimagnetic materials the effective field

includes several terms, as the exchange interaction, the dipolar field, the Zeeman energy

and the magnetocrystalline anisotropy.

The Zeeman energy is the interaction between the spins with an external magnetic

field H0, with energy density

EZ = −µ0M⃗ · H⃗0, (2.9)

which is minimum when the magnetization is aligned with the external field.

The dipolar or magnetostatic field H⃗d is the magnetic field created by the magne-

tization itself. Inside the magnetic material it opposes the magnetization, and is known as

demagnetizing field, and outside the material it is called the stray field.

We can evaluate the dipolar field from Maxwell’s equation that

∇ · B⃗ = µ0∇ · (H⃗d + M⃗) = 0, (2.10)

and, if we consider the magnetostatic limit (∇ × H⃗d = 0), it allows the definition of a

magnetic scalar potential,

H⃗d = −∇ϕ. (2.11)

Combining these equations we obtain a magnetic Poisson equation,

∇2ϕ = ∇ · M⃗. (2.12)

where it can be seen that the dipolar field arises from the divergence of the magnetization,

known as magnetic charges.

A general expression for the demagnetizing field can be obtained from the magnetic

Poisson equation as [80].

H⃗d =
1

4π

∫ ′

V

D̃(r⃗ − r⃗′)M⃗(r⃗′)dV ′, (2.13)
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where V’ is the sample volume and D̃, given by the equation,

D̃(r⃗ − r⃗′) = ∇r⃗∇r⃗′
1

|r⃗ − r⃗′|
, (2.14)

is the tensorial magnetostatic Green’s function.

By choosing the Cartesian coordinates as the symmetry axes of the sample, the tensor

becomes diagonal, and it satisfies Nx +Ny +Nz = 1. In this case, we can readily obtain the

demagnetizing factor for simple geometries. For a spherical sample, the symmetry implies

that Nx = Ny = Nz = 1/3. For a thin film in the xy-plane, the poles in x and y are widely

separated, resulting in no surface charges in those directions, hence Nx = Ny = 0, and

consequently, Nz = 1 perpendicular to the plane. Similarly to an infinite cylinder placed

along the y-direction, it has no surface changes along its length, Ny = 0, and is symmetric

in x and z thus Nx = Nz = 1/2. These results are summarized in Figure 2.2.

In the case of a sample with uniform magnetization, the demagnetizing field is solely

produced by surface charges and the demagnetizing field can be simplified to [79]

H⃗d = −Ñ · M⃗ (2.15)

where Ñ is the demagnetizing tensor, which only depends on the shape of the sample,

hence the dipolar interaction is also known as shape anisotropy.

The exchange energy arises from the interaction between neighbouring spins due to

the overlap of their orbital wave functions. From the Pauli exclusion principle, the total

wave function with both orbital and spin components must be antisymmetric. If the spins

are parallel, the orbital wave function, which represents the charge distribution, must

be antisymmetric in space, while if the spins are antiparallel, the orbital wave function

becomes symmetric. The exchange energy reflects the difference in energy between the

two relative orientation of the spins [79].

The exchange energy between the two spins S⃗i and S⃗j, below the Curie temperature

TC , can be described by the Heisenberg energy,

Eex = −2JS⃗i · S⃗j, (2.16)

where J is the exchange constant. For J > 0, the state with the lowest energy is achieved

when neighboring spins are parallel, which is a characteristic of ferromagnetic materials

11



Figure 2.2: Demagnetizing tensor components for simple geometries, respectively, a sphere,

an infinite film and an infinitely long cylinder.

and for J < 0, the minimum energy state is obtained when the spins are antiparallel, a

property seen in both ferri- and antiferromagnets, see Figure 2.3.

For distances much larger than the atomic dimensions, we can introduce a continuous

approximation for M⃗ and derive the total exchange energy density of a sample as

Eex =
Aex

M2
s

(∇M⃗)2, (2.17)

where Aex is the exchange stiffness of the sample and the corresponding exchange field is

H⃗ex =
2Aex

µ0M2
s

∇2M⃗ = l2ex∇2M⃗, (2.18)

where lex is called the exchange length, typically in the order of nm.
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(a) (b) (c)

Figure 2.3: Spins equilibrium position due to the exchange interaction in different magnetic

materials. In panel (a), a ferromagnetic material is presented where the spins are parallel to

each other. Panel (b) shows an antiferromagnetic material where the spins are antiparallel.

Similarly, panel (c) shows a ferrimagnetic material, but unlike the antiferromagnetic case,

the opposite spins do not cancel each other, leading to a net magnetic moment in the

ferrimagnetic material.

In ferromagnetic materials, the exchange interaction tries to keep the magnetic mo-

ments parallel. The exchange length defines the competition between the dipolar and

exchange interactions. On length scales smaller than the exchange length, the exchange

interaction dominates and the magnetization is uniform. On length scales larger than

lex, the dipolar interaction becomes increasingly important, allowing for the formation of

magnetic domains.

The magnetocrystalline anisotropy energy arises from the interaction between the

magnetic momenta and the crystal structure of the material from the spin-orbit coupling.

Therefore, the minimum energy state is obtained when the magnetization is parallel to a

preferred orientation of the crystal structure. A phenomenological representation of the

anisotropy energy can be used to study its effect on the magnetization dynamics.

In a crystal with uniaxial symmetry, the magnetocrystalline anisotropy energy can be

expressed as the power series

Eu = −Ku1cos
2θ −Ku2cos

4θ, (2.19)

where Ku1 and Ku2 are the first and second order uniaxial anisotropy constants and θ
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is the angle between the symmetry axis and the magnetization. Only even powers of

the cosine are present as the anisotropy energy does not change with the inversion of

the magnetization. When Ku1 and Ku2 are both positive, the minimum energy is achieved

when the magnetization is aligned with the symmetry axis, called the easy axis. Yet, if they

are both negative, the minimum energy is achieved with the magnetization perpendicular

to the symmetry axis, defining an easy plane for the magnetization.

Now, for a crystal with cubic symmetry, multiple equivalent directions exist, requiring

the use of several angles. The orientation of the magnetization with respect to the crystal

axes can be expressed using the direction cosines α1, α2, and α3. Again the inversion

symmetry results in only even powers being present and, due to the cubic symmetry, the

energy must be invariant under interchange of αi values. The cubic energy density can be

written as

Ec = Kc1(α
2
1α

2
2 + α2

2α
2
3 + α2

3α
2
1) +Kc2α

2
1α

2
2α

2
3, (2.20)

where Kc1 and Kc2 are the first and second order cubic anisotropy constants. It can be

shown that for energy minimization, the easy and hard axes of the magnetization are along

the principal symmetry axes of the crystal [79].

In conclusion, the magnetization dynamics of magnetic materials can be understood

by considering the interplay of several key magnetic free energy terms. The Zeemann

energy accounts for the interaction of the magnetic moment with an external magnetic

field. In a ferromagnetic material, the exchange interaction drives the alignment of indi-

vidual magnetic moments parallel, while the magnetostatic interaction takes into account

the interaction between magnetic moments due to their spatial arrangement. Finally, the

magnetocrystalline anisotropy represents the energy associated with the preferred orienta-

tion of magnetic moments with respect to the crystal symmetry.

2.2 Ferromagnetic Resonance (FMR)

In this section, we will discuss the ferromagnetic resonance (FMR), which is a phenomenon

that occurs in ferromagnetic materials when subjected to an alternating magnetic field. It

involves the uniform resonant excitation of magnetic moments within the whole material.

The frequency of the magnetic field at which this resonance occurs is known as the ferro-

magnetic resonance frequency, and is dependent on various material parameters such as

the shape of the sample, the magnetic anisotropy, and the strength of the magnetic field.
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2.2.1 Magnetic resonance driven by alternating field

We now want to explore the dynamic behaviour of the magnetization. Let us start with a

material with negligible interaction between spins, e.g. a paramagnet. For this, consider a

magnetic material that is subject to both a static magnetic field in the z-direction and a

dynamic alternating field in the xy-plane with frequency ω,

H⃗ = (hxx̂+ hyŷ)e−iωt +H0ẑ, (2.21)

with H0 ≫ hx, hy. Again, the magnetization is in the form of

M⃗ = mxx̂+myŷ +Mz ẑ (2.22)

with Mz ≫ mx,my. In the absence of damping, using equation 2.4, we obtain

dmx

dt
= −γµ0myH0 + γµ0Mzhye

−iωt, (2.23)

dmy

dt
= γµ0mxH0 − γµ0Mzhxe

−iωt. (2.24)

Those equations can be linearized when looking at steady-state solutions, that is mx(t) =

mxe
−iωt and my(t) = mye

−iωt. Considering ω0 = γµ0H0 we obtain

−iωmx = −ω0my + γµ0Mzhy, (2.25)

−iωmy = ω0mx − γµ0Mzhx. (2.26)

Now, solving for mx and my, considering Mz ≈M and ωM = γµ0M , we obtain

mx =
ωMω0

ω2
0 − ω2

hx − i
ωMω

ω2
0 − ω2

hy, (2.27)

my = i
ωMω

ω2
0 − ω2

hx +
ωMω0

ω2
0 − ω2

hy. (2.28)

Note that when the rf-field is applied in any direction, the magnetization components in

both the x and y directions are produced due to the precession around the z-axis with

frequency ω. The precession reaches its resonance frequency at ω = ω0 and its amplitude

diverges in that frequency in the absence of damping.
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2.2.2 Magnetic resonance in ferromagnets

Now, to expand the analysis to a ferro- or ferrimagnetic material we shall include the

exchange and dipolar interactions. In the uniform precession mode, the magnetization

does not vary across the space and all spins can be considered as being parallel. So, as

the exchange effective field is dependent on the divergence of M⃗ , see equation 2.18, it is

null for this uniform mode and does not affect its resonance frequency. It is important to

highlight that the exchange interaction strongly affects the non-uniform (k ̸= 0) precession

modes, the spin waves, which will be treated in the next section.

The dipolar interaction, however, strongly alters the resonance frequencies. Let us

consider a sample with simple geometry, an ellipsoidal shape, which has an uniform de-

magnetizing field, equation 2.15, under an static external field H⃗0. The total internal field

is

H⃗int = H⃗0 − Ñ · M⃗. (2.29)

Considering that the x, y and z directions are along the symmetry axes of the tensor, and

the external field is in the z-direction, the internal field can be written as

H⃗int = Nxmxx̂−Nymyŷ + (H0 −NzMz)ẑ, (2.30)

where mx,my ≪ Mz ≈ M . Using the Landau-Lifshitz equation, equation 2.4, the magne-

tization equations become

dmx

dt
= −γµ0my[H0 + (Ny −Nz)M ], (2.31)

dmy

dt
= γµ0mx[H0 + (Nx −Nz)M ]. (2.32)

These equations have the same solution as equations 2.6 but with resonant frequency

ω0 = γµ0

√
[H0 + (Nx −Nz)M ][H0 + (Ny −Nz)M ], (2.33)

which is known as Kittel formula for the ferromagnetic resonance (FMR), and it determines

the frequency of uniform precession mode for a ferromagnetic material as a function of the

external field intensity H0. For simple geometries the demagnetizing factors can be easily

obtained, and the FMR equation, for example, for a sphere (Nx = Ny = Nz = 1/3)

becomes

ω0 = γµ0H0, (2.34)
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and for a thin film (Nx = Ny = 0 and Nz = 1) is

ω0 = γµ0

√
H0(H0 +M). (2.35)

Finally, let us now consider the effect of the damping in the equations. Assuming, for the

sake of simplicity, an uniform magnetization in an infinite sample, where the magnetostatic

field is negligible, that is subjected to an external field H0ẑ.

Using M⃗ = mxx̂+myŷ+Mẑ, now in the LLG equation, equation 2.7, we obtain, after

considering mx(t) = mxe
−iωt and my(t) = mye

−iωt the equations

−iωmx = (−ω0 + iαω)my, (2.36)

−iωmy = (ω0 − iαω)mx, (2.37)

with ω0 = γµ0H0. A solution for this system is mx = imy and ω = ω0 − iαω, thus the

magnetization also precesses around the equilibrium position, but the amplitude of the

transverse components decay exponentially in time with the factor e−αωt.

We can write these solutions in the tensorial form

m⃗ = χ̃h⃗, (2.38)

where the vectors m⃗ and h⃗ are the dynamic components of the magnetization and of the

external field,

m⃗ =

[
mx

my

]
and h⃗ =

[
hy
hy

]
, (2.39)

and χ̃ is the magnetic susceptibility tensor,

χ̃ =

[
χxx χxy

χyx χyy

]
. (2.40)

Considering a small damping, αω ≪ ω0, the susceptibility tensor components become

χxx(ω) = χyy(ω) =
ωMω0

ω2
0 − ω2 − 2iω0αω

, (2.41)

χyx = −χxy = i
ωMω

ω2
0 − ω2 − 2iω0αω

. (2.42)
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Observe that now, when ω = ω0, the amplitude of m⃗ does not diverge with time. Near

the resonance ω ≈ ω0, we can obtain separate the diagonal components in its real and

imaginary parts as

Re[χxx] =
ωM(ω0 − ω)/2

(ω0 − ω)2 + α2ω2
, (2.43)

Im[χxx] =
(ωMαω)/2

(ω0 − ω)2 + α2ω2
, (2.44)

see Figure 2.4. From these equations, as the imaginary part takes the form of a Lorentzian

function, it can be used experimentally to determine the damping characteristics of the

sample from its full width at half maximum (FWHM), 2∆H, using the relation

∆H = αω0/γ. (2.45)

Determining the FWHM in experiments provides important information about the

damping of the magnetic resonance, thus it is a critical parameter for understanding the

energy dissipation mechanisms in magnetic materials. Additionally, the FWHM can pro-

vide insights into the magnetic properties of the material, such as the magnetic anisotropy,

the magnetic domain size, and the magnetocrystalline anisotropy.

2.2.3 Spin pumping and inverse spin Hall effect (ISHE)

The conversion of spin current to electrical charge current is an interesting phenomenon

for spintronics devices, and in this section, we will discuss the detection of FMR via the

spin pumping phenomenon coupled to the inverse spin Hall effect (ISHE).

Specifically, the magnetization dynamics of a ferromagnet can generate a spin current in

an adjacent non-magnetic material through the spin pumping phenomenon, and this spin

current can be converted to a charge current, and thus, to an electric voltage difference,

through the ISHE [81], see Figure 2.5.

The detection of magnetic excitations such as FMR or spin waves through voltage

measurements can be a more accessible option for experimentalists compared to other

techniques such as Brillouin light scattering, time-dependent magneto-optical or X-ray

absorption measurements. With this in mind, we will now explore the generation of spin

currents and their subsequent conversion to charge currents.
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(a) (b)

Figure 2.4: (a) Real and (b) imaginary parts of magnetic susceptibility as a function of

the frequency for different external magnetic field intensities calculated from equations

2.43 and 2.44 for a 14 nm Permalloy thin film (Ms = 800kA/m and Aex = 13pJ/m).The

imaginary part exhibits a Lorentzian curve with a peak at the FMR frequency, and the

damping of the material can be calculated from its width at half maximum.

Considering a ferromagnetic/non-magnetic (FM/NM) thin film bilayer, in the xy-plane,

with the interface being at z = 0. The dynamics of the magnetic layer (m⃗) generates a spin

current Js (in units of angular momentum / (area · time)) across the FM/NM interface,

given by [82, 83],

J⃗s(z = 0) =
ℏg↑↓eff

4π

(
m⃗× ∂m⃗

∂t

)
, (2.46)

where g↑↓eff is the real part of the effective spin mixing conductance, which is a parameter

that characterizes the strength of the spin transfer. It is a measure of the efficiency with

which the spin angular momentum of the ferromagnet is transferred to the non-magnetic

material.

It is important to highlight that equation 2.46 does not completely describe the spin

current, which presents a tensorial nature [84]. It requires one index for its transport

direction (ẑ in this case) and a second one for the spin current polarization direction (σ⃗).

Only the last is being represented in the vectorial notation of Equation 2.46 and it is

implicit that J⃗s = Js(σ⃗) ẑ.

We will now consider that the equilibrium magnetization is in the film plane, at an
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arbitrary direction û, where the versors û and v̂ are obtained from a rotation of x̂ and ŷ

by θ about the z axis. Under excitation, the magnetization goes in a simple precessional

motion, m⃗ = muû+m0vcos(ωt)v̂ +m0zsin(ωt)ẑ, with a small amplitude (m0v,m0z≪mu).

(a)

(b)

Figure 2.5: The figure illustrates (a) spin pumping and (b) the inverse spin hall effects

(ISHE). The magnetization dynamics of a ferromagnet can induce a spin current in a

neighboring non-magnetic material through the spin pumping phenomenon, as shown in

(a). On the other hand, in a non-magnetic material with strong spin-orbit coupling, spins

with opposite orientation are deflected to opposite directions, which is known as the ISHE,

as depicted in (b). When the incoming current is spin polarized, the spin accumulation

in the opposite directions will not be equal, and this will result in a potential difference

between them, leading to the ISHE voltage (VISHE).

We can estimate the equilibrium component as approximately constant (mu ≈ m0u),

and one obtains ∂m⃗/∂t = −ωm0vsin(ωt)v̂ + ωm0zcos(ωt)ẑ, and, from Equation 2.46, we
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obtain, 
Jz=0
s (σu) = (ℏωg↑↓eff/4π)m0vm0z,

Jz=0
s (σv) = (ℏωg↑↓eff/4π)m0um0zcos(ωt),

Jz=0
s (σz) = (ℏωg↑↓eff/4π)m0um0vsin(ωt),

(2.47)

where Jz=0
s (σi) is the spin current that flows across the FM/NM interface (uv-plane, z=0)

with spin current polarization in the i-direction.

The spin current undergoes relaxation and diffusion into the non-magnetic material, so

the spin current at a distance z from the interface becomes [81, 85]:

J⃗s(z) = Jz=0
s (σ⃗)

sinh[(z − tN)/λSD]

sinh(tN/λSD)
ẑ, (2.48)

where λSD is the spin diffusion length in the non-magnetic material and tN is its thickness.

The spin current can then be converted to electrical current through the Inverse Spin

Hall Effect (ISHE) [86, 87] or through the Inverse Edelstein Effect (IEE) [88, 89]. So, due

to ISHE, the spin current induces a charge current (J⃗c) into the non-magnetic material,

that is described by [85, 90]

J⃗c = θSH
2e

ℏ
[JS ẑ × σ⃗], (2.49)

J⃗c(z) =

(
θSH

eg↑↓eff
2π

)
sinh[(z − tN)/λSD]

sinh(tN/λSD)

[
−m0um0zcos(ωt)û+m0vmozv̂

]
. (2.50)

The charge current is given as a potential difference ∆VISHE between two contact

pads placed along an arbitrary direction ℓ̂ on the non-magnetic layer surface. The voltage

difference can be calculated as ∆VISHE = Rℓ

∫
J⃗C · dA⃗, where Rℓ is the resistance across

the pads and A is the area of its cross-section. Considering ℓ the distance between pads,

W their width, and tN and σN the non-magnetic material thickness and conductivity,

respectively, then Rℓ = ℓ/(σNW ) and A⃗ = WtN ℓ̂, resulting in

∆VISHE =
ℓ

σN tN

∫ z=tN

z=0

(J⃗C · ℓ̂)dz, (2.51)
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∆VISHE =
λSDℓ

σN tN
tanh

(
tN

2λSD

)
(J⃗z=0

C · ℓ̂). (2.52)

Thus, two components of the charge current are obtained: one in the û direction,

with constant amplitude, called JDC
C , and another in the v̂ direction that oscillates with

frequency ω, called JAC
C [91]. To maximize the strength, the natural choice for the direction

of the contact pads, are either ℓ̂ = û or ℓ̂ = v̂, and from Equation 2.52 one obtains the AC

and a DC component of the potential difference:

∆V AC
ℓ̂=û

= θSH
eℓλSDωg

↑↓
eff

2πσN tN
tanh

(
tN

2λSD

)
m0um0zcos(ωt). (2.53)

∆V DC
ℓ̂=v̂

= θSH
eℓλSDωg

↑↓
eff

2πσN tN
tanh

(
tN

2λSD

)
m0vm0z, (2.54)

It is worth noting that the DC voltage component is maximum when the line between

contact pads is perpendicular to the magnetization direction. On the other hand, the AC

component is maximum when the contact pads are aligned parallel to the magnetization

direction.

2.3 Spin waves

In the previous section, we have considered the uniform motion of magnetization (k=0)

along the entire sample, the ferromagnetic resonance (FMR). Now, we will expand to a

more general situation, in which the magnetization displays a spatially-varying dynamics,

the spin waves.

2.3.1 Linear chain of classical spins

Let us start with the simplest case of spin waves, a linear chain of evenly spaced classical

spins. Consider a chain with N spins S, separated by a distance a, coupled to the near
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neighbours through the exchange interaction. Considering the Heisenberg interaction we

obtain the energy

Uex = −2J
∑
i

S⃗i · S⃗i+1, (2.55)

where S⃗i is the classical spin at the position xi = ia. In the ground state, all spins are

parallel to each other, and the total exchange energy is U0 = −2JNS2.

Figure 2.6: A schematic representation of a spin wave in a linear chain of spins coupled by

the exchange interaction. As the spins precess, they present a phase difference that results

in the formation of a spin wave with a constant wavevector.

The effective field corresponding to the Heisenberg interaction can be written as

H⃗ex = − 2J

gµBµ0

(S⃗i−1 + S⃗i+1). (2.56)

Considering that, besides the exchange field, the spins are also subject to an external field

H0, using the torque equation τ⃗ = ℏdS⃗/dt, we obtain the equation of motion

dS⃗i

dt
= γµ0S⃗i × (H⃗0 + H⃗ex). (2.57)

Considering that the external field is H⃗0 = −H0ẑ, and that Sx
i , S

y
i ≪ Sz

i ≈ S, we obtain

the equations
dSx

i

dt
= γµ0H0S

y
i +

2JS

ℏ
(2Sy

i − Sy
i−1 − Sy

i+1), (2.58)

dSy
i

dt
= −γµ0H0S

x
i − 2JS

ℏ
(2Sx

i − Sx
i−1 − Sx

i+1), (2.59)
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which show that the motion of any spin is coupled to its neighbours motion, and thus

these are collective excitations. Now, looking for wave-like solutions in the form of Sx
i =

Axe
i(kxi−ωt) and Sy

i = Aye
i(kxi−ωt), we are able to linearize the equations in the form

−iωAx = Ay[γµ0H0 +
4JS

ℏ
(1 − cos ka)], (2.60)

−iωAy = −Ax[γµ0H0 +
4JS

ℏ
(1 − cos ka)]. (2.61)

We can find a solution to the system as

ωk = γµ0H0 +
4JS

ℏ
(1 − cos ka), (2.62)

known as the dispersion relation, that is it relates the spin wave frequency to its wave num-

ber. Besides, we can also obtain that Ay = −iAx, and thus, the real parts of the dynamic

components of the spins become Sx
i = Ax cos (kxi − ωkt) and Sy

i = Ax sin (kxi − ωkt). This

corresponds to the spins precessing in a circular motion around the equilibrium position,

but this time there is a phase difference between adjacent spins, ϕi = kxi, generating a

wavelength λ = 2π/k.

From equation 2.62, we can see that for the FMR (k=0), we obtain ω = γµ0H0 as seen

in the last section. And, in the limit of small wave numbers, ka ≪ 1, which is a typical

case in experiments, using binomial expansion we obtain

ωk = γµ0H0 +
2JSa2

ℏ
k2, (2.63)

a quadratic dispersion relation with an energy gap of E = ℏγµ0H0.

2.3.2 Spin waves in a bulk ferromagnet

Now we will consider a 3-dimensional ferromagnetic material, under an external field H⃗0 =

H0ẑ. We will be looking for wave-like solutions described by weak perturbations from the

equilibrium magnetization, M⃗ = M⃗0 + m⃗(r⃗, t) in the form of

M⃗(r⃗, t) = mxe
i(ωt+k⃗·r⃗)x̂+mye

i(ωt+k⃗·r⃗)ŷ +Mz ẑ, (2.64)
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where mx,my ≪ Mz ≈ M0. Let us now include the exchange and dipolar energies in the

effective field. We can readily obtain the exchange field from equation 2.18 as

h⃗ex = −l2exk2m⃗, (2.65)

which depends only on the dynamic components of the magnetization, as expected.

The dipolar field presents two terms, one arising from the sample shape, which is null in

the case of an infinite bulk material, and a dynamic one coming from the spatially-variant

magnetization dynamics. This second can be quite complex to calculate from equation

2.13 in a general nonuniform magnetization. This can be simplified for simple harmonic

travelling spin waves.

Considering the magnetic field is in the form of H⃗ = H0ẑ + h⃗dip(r⃗, t), from Maxwell’s

equations we obtain

∇ · (⃗hdip + m⃗) = 0 and ∇× h⃗dip = 0. (2.66)

Substituting the harmonic travelling magnetization, we get

k⃗ · (⃗hdip + m⃗) = 0 and k⃗ × h⃗dip = 0. (2.67)

This way, after some manipulations using vector identities, we obtain the relation

h⃗dip = − k⃗ · m⃗
k2

k⃗, (2.68)

which is the volume dipolar field created by the travelling harmonic spin wave.

We can now use the axial symmetry of the bulk uniform material around the magne-

tization vector to choose a coordinate system where the wavevector k⃗ is in the xz-plane,

that is k⃗ = k(sinθx̂ + cosθẑ), where θ is the angle between the magnetization and the

propagation direction. This way, the dipolar field becomes

h⃗dip = −k
2
x

k2
mx = −mxsin

2θx̂. (2.69)

By solving the LLG equation, equation 2.7 without the damping term, we obtain

d(M⃗0 + m⃗)

dt
= −γµ0[(M⃗0 + m⃗) × (H⃗0 + h⃗dip + h⃗ex)], (2.70)
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and, after linearization using the steady-state solutions we obtain the two coupled equa-

tions:

[ω0 + ωM(l2exk
2 + sin2θ)]mx − iωmy = 0, (2.71)

iωmx + (ω0 + ωM l
2
exk

2)my = 0, (2.72)

where ω0 = γµ0H0 and ωM = γµ0Ms.

Finally, from the non-trivial eigenvalues of the previous equations, we can obtain the

spin wave dispersion relation for a bulk material, called the Herring-Kittel equation,

ωk =
√

(ω0 + ωM l2exk
2)[ω0 + ωM(l2exk

2 + sin2θ)]. (2.73)

From this equation, we can see that there is a minimum frequency in which the magnetic

resonance can be obtained, below that only evanescent waves are generated. Also, note

that the ratio between the two transverse magnetization components is now

my

mx

= −iω0 + ωM(l2exk
2 + sin2θ)

ωk

, (2.74)

which shows that the magnetization precession is elliptical, and not circular as before.

In the limit of small values of k, l2exk
2 ≪ 1, the relation simplifies to ω =

√
ω0(ω0 + ωMsin2θ),

which is called the dipolar spin waves limit, where the exchange interaction is negligible

and the magnetostatic interaction dominates. On the other hand, for large values of k,

l2exk
2 ≫ 1, the exchange spin waves are obtained, with a quadratic dispersion ω = ωM l

2
exk

2.

Note that the exchange spin wave are isotropic with respect to the propagation direction,

but the same is not true for the dipolar spin waves, which is dependent on θ.

2.3.3 Spin waves in thin films

We shall now consider the magnetization dynamics in ferromagnetic thin films. Consider

a thin film with thickness d, placed in the xz-plane under an in-plane external field in the

z-direction, H⃗0 = H0ẑ. We will consider the dynamic magnetization components and the

fields as uniform along the thickness as kd ≪ 1. Again the dynamic components of the

magnetization are in both the x and y-axes.

Since the exchange field is not affected by the thin film geometry equation 2.65 is still

valid. On the other hand, the film boundaries create magnetic surface charges that strongly
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influence the dipolar field. An approximation for the dynamic dipolar field in a thin film

can be obtained in the form of [92]

h⃗dip = −
[
P
k⃗ · m⃗
k2

k⃗ + (1 − P )(n⃗ · m⃗)n⃗
]
, (2.75)

where n⃗ is the normal vector to the plane, in this case n⃗ = ŷ, and

P = 1 − 1 − e−kd

kd
. (2.76)

Assuming that θ is the angle between M⃗0 and k⃗, and that we are looking for in-plane

travelling waves, that is k⃗ = kxx̂+ kz ẑ, we can obtain for the dipolar field

h⃗dip = −

 P sin2 θ 0 P sin θ cos θ

0 1 − P 0

P sin θ cos θ 0 P cos2 θ

 m⃗ (2.77)

Now, applying in the LLG equation and linearizing by looking for harmonic travelling

solutions we obtain the equations

[ω0 + ωM(l2exk
2 + P sin2 θ)]mx − iωmy = 0, (2.78)

iωmx + [ω0 + ωM(l2exk
2 + 1 − P )]my = 0. (2.79)

And from this, we can obtain the dispersion relation of spin waves in ferromagnetic thin

films as [80, 92]

ω =
√

(ω0 + ωM l2exk
2)(ω0 + ωM l2exk

2 + ωMFM), (2.80)

where

FM = 1 − P cos2 θ +
ωMP (1 − P ) sin2 θ

ω0 + ωM l2exk
2

, (2.81)

see the plot in Figure 2.7.

Here, in the exchange limit, that is for small wavelengths, l2exk
2 ≫ 1, we obtain the

same result as for the bulk sample, ω = ωM l
2
exk

2. On the other hand, in the dipole limit,

l2exk
2 ≪ 1, the results are quite different from the bulk case. Let us check the two limiting

cases from dipole spin waves in thin films, for θ = 0 and θ = π/2.
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Figure 2.7: The dispersion relation for propagating spin waves in a 50 nm-tick Ni film

(Ms = 480kA/m and Aex = 8pJ/m) under a 10 mT external magnetic field, taking into

account both exchange and dipolar interactions from equation 2.80. The two curves plotted

represent the backward volume spin waves, which are generated when the magnetization

is parallel to the wavevector, and the forward surface waves, which occur when the mag-

netization is perpendicular to the wavevector.

First, for θ = 0, that is the wave vector parallel to the static magnetization (k⃗ ∥ M⃗0),

the dispersion relation in the dipolar limit becomes

ωBV SW =

√
ω0

(
ω0 + ωM

1 − e−kd

kd

)
. (2.82)

In this mode, the frequency decreases with increasing wave vector and thus, we have a

negative group velocity vg = ∂ω/∂k with a positive phase velocity vp = ω/k. For this

reason these dipolar waves are known as Backward Volume Spin waves (BVSW).
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Now for θ = π/2, that is, for the wave vector perpendicular to the static magnetization

(k⃗ ⊥ M⃗0), the dispersion relation in the dipolar limit is

ωFSSW =

√
ω0(ω0 + ωM) + ωM

(
1 − 1 − e−kd

kd

)(1 − e−kd

kd

)
. (2.83)

Here, both the phase and group velocities are positive, and the amplitude of the magneti-

zation decays exponentially from the surface, thus this dipolar wave is known as Forward

Surface Spin wave (FSSW).

In conclusion, in this section we have discussed spin waves in ferromagnets, both in

bulk materials and thin films. We obtained the dispersion relations, which provide valuable

insights into the behavior of these waves. In thin films, the spin waves in the exchange

limit are isotropic with respect to the magnetization and have a similar behavior as in the

bulk sample. On the other hand, in the dipole limit, the waves are strongly anisotropic,

and very different behaviors are obtained, such as the group velocity that is positive when

k⃗ ⊥ M⃗0 and negative for k⃗ ∥ M⃗0.

2.4 Elastic waves

Similar to the spin waves, the elastic deformations in a material can also propagate as elastic

waves. In this section we shall briefly introduce the physics of the elasticity in solids, the

elastodynamics equation of motion and discuss its wave-like solutions, the elastic waves.

2.4.1 Elastodynamics

Consider a continuous and isotropic solid material with mass density ρ. The elastic de-

formations in it can be expressed by the displacement vector u⃗ = r⃗ − r⃗′, where r⃗ is the

initial position of the volume element and r⃗′ is its position after deformation. The solid

deformations can also be described by the second-order strain tensor[79, 93, 94]

εij =
1

2

(
∂ui
∂xj

∂uj
∂xi

)
, (2.84)

where i, j = 1, 2, 3 are, respectively, the x, y and z coordinates.
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The deformations in the volume elements are generated by forces acting on it, both

from external agents and from the neighbouring elements, the elastic forces. The elastic

forces per unit volume can be evaluated as

F⃗el =
3∑

i=1

x̂i

3∑
j=1

∂σij
∂xj

or F⃗el = ∇ · σ, (2.85)

where ∇ is the differential vector operator and σ is the second-order stress tensor, where

its components σij represent the forces per unit area acting normal to the direction of x̂i.

For small displacements, we obtain from Hooke’s law that the displacement is propor-

tional to the stress as

σij =
3∑

l=1

3∑
m=1

Cijklεkl or σ = Cε, (2.86)

where C is the fourth-rank stiffness tensor and Cijkl are the elastic constants. It can be

shown that there are 21 independent elastic constants due to the symmetry of the strain

and stress tensors [79]. Also, the higher the symmetry of the crystal structure, the less

nonzero elastic constant values will be present. For example, in a cubic crystal only three

nonzero elastic constants are found, Ciiii = C11, Ciijj = C12 and Cijij = C44. It can be also

shown that if the cubic material is isotropic we obtain the relation C11 −C12 = 2C44, thus

only two independent elastic constants will be present.

The equation of motion for the displacement, obtained from Newton’s second law, is

ρ
d2u⃗

dt2
= ∇ · σ + F⃗ext (2.87)

where Fext are the external forces per unit volume acting on the material and ∇ · σ is the

elastic force per unit volume. In the absence of external forces, the equation of motion can

be written as

ρ
∂2ui
∂t2

=
∂

∂xj

(
Cijkl

∂uk
∂xl

)
. (2.88)

Note that in this equation repeated subscripts imply summation of these values.

Now, considering a cubic crystal, which only has three non-null elastic constants, we

get the equation of motion

ρ
∂2ui
∂t2

= C11
∂2ui
∂x2i

+ C12
∂2ui
∂xixj

+ C44
∂2ui
∂x2j

. (2.89)
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2.4.2 Elastic waves in thin films

Let us now consider the equation of motion for a thin film, placed in the xz-plane, with

free surface boundary conditions. In this case, the displacement along the normal direction

is negligible in relation to the in-plane ones, that is ∂u/∂y ≪ ∂u/∂x, ∂u/∂z. We obtain

from equation 2.89, the relations

ρ
∂2ux
∂t2

= C11
∂2ux
∂x2

+ C44
∂2ux
∂z2

+ (C12 + C44)
∂2uz
∂x∂z

, (2.90)

ρ
∂2uy
∂t2

= C44

(∂2uy
∂x2

+
∂2uy
∂z2

)
, (2.91)

ρ
∂2uz
∂t2

= C11
∂2uz
∂z2

+ C44
∂2uz
∂x2

+ (C12 + C44)
∂2ux
∂x∂z

. (2.92)

Now, let us linearize the equations by looking for the plane wave solutions u⃗(r⃗, t) =

u⃗ei(k⃗·r⃗−ωt). Let us also let us consider that the wave vector points along the in-plane

x-direction, k⃗ = kx̂, resulting in(
ω2 − C11

ρ
k2
)
ux = 0,

(
ω2 − C44

ρ
k2
)
uy = 0, and

(
ω2 − C44

ρ
k2
)
uz = 0. (2.93)

Observe that the solutions for these equations are given by linear dispersion relations

in the form of

ωµ = vµk, (2.94)

where vµ is the sound wave velocity. For the transverse y and z directions, we obtain shear

or transverse elastic waves with velocity vt =
√
C44/ρ, and for the x direction (u⃗ ∥ k⃗) we

obtain longitudinal waves with velocity vl =
√
C11/ρ. From that, we can see that the phase

and group velocities are equal to each other and they are independent of the frequency.

Also, as C11 > C44, the velocity of the longitudinal waves is always larger than the velocity

of the shear waves.

2.4.3 Elastic waves in waveguides

Now, we will consider the effect of lateral boundaries in the equations for the elastic waves.

Consider a plate placed in the xy-plane with infinite length along the x-direction, with

width 2b in the y-direction. For an elastic wave propagating the x-axis, k⃗ = kx̂, the two
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in-plane modes are coupled to each other, but the out-of-plane modes are uncoupled from

the others [93, 95]. We will start with the out-of-plane modes, then we will check the

results for the in-plane modes.

For the out-of-plane modes, we will consider the wave equation of the z-displacement,

∇2uz =
1

v2perp

∂2uz
∂t2

, (2.95)

where is uniform along the thickness of the plate, that is uz = uz(x, y, t). Note that uz
propagates along the x-direction and its amplitude can vary along the width (y-direction).

We will consider solutions in the form of uz = h(y)ei(kx−ωt). From that we obtain

d2h

dy2
+ κ2yh = 0 where κ2y =

ω2

v2⊥
− k2, (2.96)

which accepts h(y) = A1 sin (κyy) + A2 cos (κyy) as a solution.

Considering the boundary conditions, at y = ±b we have σxy = σyy = σzy = 0, which

results in
∂uz
∂y

∣∣∣∣∣
y=±b

= 0. (2.97)

From that we can obtain the equations

A1 cos (κyb) − A2 sin (κyb) = 0, (2.98)

A1 cos (κyb) + A2 sin (κyb) = 0. (2.99)

That results in cos (κyb) sin (κyb) = 0, and that is satisfied by

κy =
nπ

2b
(n = 0, 1, 2, ...). (2.100)

where n is the mode order, which is a consequence of the formation of standing waves

across the y-direction.

Note that, from these conditions, if n is even, then A1 = 0, so the amplitude along

the y-direction is only composed of the sin part, that is uz = A2 cos (κyy)ei(kx−ωt), so the

displacement is symmetric in relation to y=0. Similarly, if n is odd, then A2 = 0 and

uz = A1 sin (κyy)ei(kx−ωt), we have an antisymmetric elastic wave.
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Thus, the dispersion relation for the harmonic out-of-plane elastic waves, also called

P-waves, is

ω = v⊥

√
k2 +

nπ

2b
(n = 0, 1, 2, 3, ...). (2.101)

The infinite number of modes yields an infinite number of branches as solutions in the dis-

persion curve, see Figure 2.8. Also, this elastic wave is either symmetric or antisymmetric

in relation to y = 0 if the mode order n is even or odd, respectively.

Figure 2.8: Dispersion relation of elastic P-waves propagating in a 20 nm thick, 320 nm wide

CoFeB waveguide (ρ = 8000kg/m3, C11 = 283GPa, C12 = 166GPa, and C44 = 58GPa),

obtained from equation 2.101.

Now, let us focus in the in-plane elastic waves. Here, we will also consider the formation

of a standing wave in the y-direction with a propagating wave in the x-direction. To do

this, it is convenient to use Helmholtz’s theorem and decompose the displacement field by

the use of scalar and vector potentials [93, 95],

u⃗ = ∇φ+ ∇× ψ⃗, (2.102)

where ϕ is the scalar potential and ψ is the vector potential.
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In this case, for the motion in the xy-plane we have uz = 0 and any derivative in relation

to z also zero, reducing the equations to

ux =
∂φ

∂x
+
∂ψz

∂y
and uy =

∂φ

∂y
+
∂ψz

∂x
. (2.103)

The potentials φ and ψz must satisfy wave equations, which are two-dimensional in this

case,
∂2φ

∂x2
+
∂2φ

∂y2
=

1

v2∥

∂2φ

∂t2
and

∂2ψz

∂x2
+
∂2ψz

∂y2
=

1

v2⊥

∂2ψz

∂t2
. (2.104)

Let us now consider harmonic plane wave solutions as φ = Φ(y)ei(kx−ωt) and ψz =

Ψ(y)ei(kx−ωt) in the differential equations to obtain

Φ(y) = A1 sin (py) + A2 cos (py), (2.105)

Ψ(y) = B1 sin (qy) +B2 cos (qy), (2.106)

where

p2 =
ω2

v2∥
− k2 and q2 =

ω2

v2⊥
− k2. (2.107)

From those, we can obtain the displacements as

ux = ikΦ +
dΨ

dy
and uy =

dΦ

dy
− ikΨ, (2.108)

or more explicitly,

ux = ik[A1 sin (py) + A2 cos (py)] + q[B1 cos (qy) −B2 sin (qy)], (2.109)

uy = p[A1 cos (py) − A2 sin (py)] − ik[B1 sin (qy) +B2 cos (qy)]. (2.110)

Note that ux is symmetric in relation to y = 0 if it is described only by cosines,

which would require A1 = B2 = 0, and that would imply in uy being described only by

sines. The opposite is also true, an antisymmetric ux must be described by the sines, then

A2 = B1 = 0, which implies that uy is described by cosines. We can then split the in-plane

elastic waves in symmetric, where Φ = A2 cos (py) and Ψ = B1 sin (qy) and antisymmetric

modes, with Φ = A1 sin (py) and Ψ = B2 cos (qy), which we will call, respectively S-waves

and A-waves.
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Now, we can apply the free boundary condition, at y = ±b we have σyx = σyy = 0, to

obtain
tan (qb)

tan (pb)
= − 4k2pq

(q2 − k2)2
(2.111)

for S-waves, and
tan (qb)

tan (pb)
= −(q2 − k2)2

4k2pq
(2.112)

for A-waves. These are known as the Rayleigh-Lamb frequency equations, see Figure 2.9.

(a) (b)

Figure 2.9: Dispersion relation of elastic (a) S-waves and (b) A-waves propagating in a 20

nm thick, 320 nm wide CoFeB waveguide (ρ = 8000kg/m3, C11 = 283GPa, C12 = 166GPa,

and C44 = 58GPa), obtained from equations 2.111 and 2.112.

Finally, there are three modes of elastic waves propagating in a waveguide with finite

width, the out-of-plane P-waves, and the in-plane S-waves and A-waves. The P-wave

modes present alternating uz symmetry, according to the evenness of the mode order. The

S-waves present ux displacements symmetric in relation to y = 0 and antisymmetric uy,

whereas the A-waves present antisymmetric ux with symmetric uy.

2.5 Magnetoelastic waves

In this section, we will present a phenomenological description of the magnetoelastic inter-

action. Specifically, we will examine the free energy term that connects the magnetization
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and strain components of magnetoelastic materials and its impact on the solutions of wave

propagation in both the elastodynamic equation of motion and the Landau-Lifshitz-Gilbert

equation.

2.5.1 Magnetoelastic interaction

The magnetoelastic interaction is a phenomenon that describes the relationship between

magnetic and elastic degrees of freedom in a material. This coupling results from the

exchange interaction dependence on the distance between magnetic moments, which is

affected by deformations, as well as the dipolar interaction dependence on these distances,

but over longer ranges. However, the spin-orbit interaction is the primary cause of the

magnetoelastic interaction. [94].

The magnetoelastic interaction comprises two distinct phenomena: the magnetostric-

tive effect, which refers to the influence of magnetization on a magnetic material internal

strains, and the Villari effect, which describes the impact of strain on the magnetization

state of the material [80].

The magnetoelastic free energy density can be described phenomenologically as

Eme = BijklMiMjεkl, (2.113)

where the summations are implicit, Bijkl are the magnetoelastic constant fourth-rank tensor

components and εkl, the strain components.

For a cubic crystal there are only two non-zero constants, Biiii = B1 and Bijij = B2, so

the magnetoelastic energy density becomes

Eme =
B1

M2
s

[
εxx(M2

x − 1/3) + εyy(M
2
y − 1/3) + εzz(M

2
z − 1/3)

]
+ 2

B2

M2
s

(εxyMxMy + εyzMyMz + εxzMxMz), (2.114)

.

For the magnetostrictive effect, we will now obtain the elastic body force that arises

from the magnetoelastic interaction energy by using the expression

F⃗me = ∇ · σme = ∇ ·
(dEme

dεij

)
, (2.115)
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from which we obtain, for a cubic material,

F⃗me = 2
B1

M2
s

Mx
∂Mx

∂x

My
∂My

∂y

Mz
∂Mz

∂z

+
B2

M2
s

Mx(∂My

∂y
+ ∂Mz

∂z
) +My

∂Mx

∂y
+Mz

∂Mx

∂z

My(
∂Mx

∂x
+ ∂Mz

∂z
) +Mx

∂My

∂x
+Mz

∂My

∂z

Mz(
∂Mx

∂x
+ ∂My

∂y
) +Mx

∂Mz

∂x
+My

∂My

∂y

 . (2.116)

Note that there are three important parameters that influence the strength of the magne-

tostriction, the magnetoelastic constants, the magnetization direction, and its gradient.

Now, for the Villari effect, we can obtain the effective magnetic field from the magne-

toelastic free energy using H⃗me = −∇M⃗Eme/µ0, from which we obtain

H⃗me = − 2

µ0M2
s

B1εxxMx +B2(εxyMy + εxzMz)

B1εyyMy +B2(εxyMx + εyzMz)

B1εzzMz +B2(εxzMx + εyzMy)

 . (2.117)

Now, in order to describe the dynamics of materials with magnetoelastic coupling, we

should include the magnetoelastic energy both in the elastodynamic equation of motion,

equation 2.87, in the form of an effective body force, as equation 2.116 for cubic materials,

and in the LLG equation, equation 2.7, for the magnetization dynamics, in the form of an

effective magnetic field, as in equation 2.117. These two equations become coupled to each

other due to the magnetoelastic energy, and should be solved simultaneously.

2.5.2 Magnetoelastic waves in bullk ferromagnet

Now we want to look for wave-like solutions to solve simultaneously the equations 2.87 and

2.7 for a cubic bulk material including the magnetoelastic energy, equation 2.114.

Consider a bulk material, with a static magnetic field applied in the z-direction, so

that M⃗ = mxx̂ + myŷ + Mz ẑ, where mx,my ≪ Mz ≈ Ms. From this we can simplify the

magnetoelastic energy equation to only include first-order magnetization terms as

Eme = 2
B2

M2
s

(myεyz +mxεzx). (2.118)

The equation of motion can be obtained by the two differential equations as a magne-

toelastic effective magnetic field,

h⃗me = − 2B2

µ0Ms

(εzxx̂+ εyzŷ). (2.119)
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So, we can write the LLG equation, without considering the damping, as

∂m⃗

∂t
= −γµ0M⃗ × (H⃗0 + h⃗ex + h⃗dip + h⃗me). (2.120)

And also, the elastodynamic equation of motion, including the elastic term and the mag-

netoelastic one, becomes

ρ
∂2ui
∂t2

=
∂

∂xj

(
Cijkl

∂uk
∂xl

)
+

∂

∂xj

[
∂Eme

∂εij

]
. (2.121)

From these coupled equations, considering small signal magnetization and elastic com-

ponents, we obtain

∂mx

∂t
= γµ0(−H0 +D∇2)my + γµ0Msh

dip
y − γB2

(∂uy
∂z

+
∂uz
∂y

)
, (2.122)

∂my

∂t
= γµ0(H0 −D∇2)mx − γµ0Msh

dip
x − γB2

(∂uz
∂x

+
∂ux
∂z

)
, (2.123)

ρ
∂2ux
∂t2

= C44∇2ux + C11
∂

∂x
∇ · u⃗+

B2

Ms

∂mx

∂z
, (2.124)

ρ
∂2uy
∂t2

= C44∇2uy + C11
∂

∂y
∇ · u⃗+

B2

Ms

∂my

∂z
, (2.125)

ρ
∂2uz
∂t2

= C44∇2uz + C11
∂

∂z
∇ · u⃗+

B2

Ms

(
∂mx

∂x
+
∂my

∂y

)
, (2.126)

where D is the exchange parameter, D = Aex/Ms.

Now, we will look at wave-like solutions for these coupled equations, which involve all

five variables mx, my, ux, uy and uz. For simplicity, let us consider the case in which

the waves propagate parallel to the magnetization direction, k⃗ = kẑ. First, note that in

that case ∂/∂x = ∂/∂y = 0, and that applied to equation 2.126 for uz eliminates all the

magnetization components. Thus, we have a longitudinal elastic wave uz that does not

couple to the spin waves.

Now, for the other four equations, let us consider harmonic solutions u⃗(r⃗, t) = u⃗ei(kz−ωt)
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and m⃗(r⃗, t) = m⃗ei(kz−ωt). We obtain

− iωmx = −γµ0(H0 +Dk2)my − iγB2kuy, (2.127)

− iωmy = γµ0(H0 +Dk2)my + iγB2kux, (2.128)

− ρω2ux = −C44k
2ux + iB2kmx/Ms, (2.129)

− ρω2uy = −C44k
2uy + iB2kmy/Ms. (2.130)

We can introduce circularly polarized variables m− = mx− imy and u− = ux− iuy and

obtain

(ω − ωk)m− = iγB2ku
−, (2.131)

(ω − ωt)u
− = i

B2

Mρ
B2km

−, (2.132)

where

ωk = γµ0(H0 +Dk2) and ωt =
√
C44/ρk = v⊥k (2.133)

are respectively the dispersion relations to the spin waves in an unbounded media and the

transverse elastic waves, both without considering the magnetoelastic interaction.

Combining these two equations, we obtain the dispersion relation for the magnetoelastic

wave in unbounded media as [79]

(ω − ωk)(ω2 − ω2
t ) − 1

2
Jkωt = 0, (2.134)

where Jk is a parameter that expresses the strength of the magnetoelastic coupling,

Jk =
2γkB2

2

ρv⊥Ms

. (2.135)

This dispersion equation admits three roots, which comes from the interaction between

the spin wave and the two transverse elastic waves. For a null magnetoelastic coupling,

B2 = 0 and Jk = 0, the roots for equation 2.134 are ωk and ±ωt, that is, respectively,

the magnetic and the (+) and (-) circularly polarized elastic waves, uncoupled from each

other.

With non-zero B2, the results are coupled magnetoelastic waves. As the magnetic wave

always presents a (+) circular polarization, the elastic wave with (-) polarization presents a
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negligible coupling, and we can approximate one negative root as ω ≈ −ωt. Thus, equation

2.134 reduces to

(ω − ωk)(ω − ωt) − Jk/4ωt = 0, (2.136)

which has the two solutions

ω =
ωt + ωk

2
± 1

2

√
(ωt − ωk)2 + Jk, (2.137)

that correspond, respectively to the upper and lower branches of the dispersion curves, see

Figure 2.10.

(a) (b)

Figure 2.10: Dispersion curves for elastic waves and spin waves in a bulk CoFeB sample

(MS = 1.2MA/m, Aex = 18pJ/m, ρ = 8000kg/m3, C11 = 283GPa, C12 = 166GPa,

C44 = 58GPa, and B1 = B2 = −8.8MJ/m3), obtained from equation 2.137. Panel

(a) represents the uncoupled waves, while panel (b) includes the coupling between them,

resulting in the hybridization of the curves and the formation of an anticrossing gap between

the transverse elastic and the spin wave. The upper branch of the hybridized curves

transitions from quasi-magnetic to quasi-elastic behavior, while the lower branch transitions

from quasi-elastic to quasi-magnetic.

A distinct characteristic of the magnetoelastic hybridization is the splitting between

the curves at their meeting point, a small frequency gap is present between the branches,

forming an anticrossing region. Far from the crossing point the curves correspond to almost

pure magnetic or pure elastic characters. Hence, the lower branch transits from a almost

pure elastic character for low values of k to an almost pure magnetic character at high
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values of k, and the opposite happens for the upper branch. Near the crossing point, the

normal modes are mixed and they present a coupled magnetoelastic character.

We can also obtain energy and momentum conservation relations for this system. The

total energy (E) of the system can be evaluated as the sum of the magnetic (Em), elastic

(Ee) and magnetoelastic (Eme) components, E = Em + Ee + Eme. By using Poynting’s

theorem and the small signal approximation from equations 2.122, 2.124 and 2.126, that

the conservation can be expressed as [79]

∇ · S⃗ +
∂E

∂t
=

1

2
µ0

|m⃗|2

M

∂Hz

∂t
− pT , (2.138)

where S⃗ is the power flow vector and pT is the power per unit volume that is dissipated.

Also, for the small-signal approximation, the momentum density can be expressed as a

magnetic and elastic components as, respectively, for the i-th component:

gim =
1

2γM

(
m⃗× ∂m⃗

∂xi

)
· ẑ, (2.139)

gie =
1

2
ρ

(
∂2u⃗

∂xi∂t
· u⃗− ∂u⃗

∂t

∂u⃗

∂xi

)
. (2.140)

If the magnetic field and all parameters are spatially invariant, then the total momentum

is conserved
∂

∂t
(g⃗m + g⃗e) = 0. (2.141)

2.5.3 Magnetoelastic waves in thin films

Now, let us consider a thin film placed in the xz-plane, normal to the y-direction, with

thickness d. Consider the external field H⃗0 and the static magnetization in the in-plane z-

direction. We will follow the same procedures as before, considering M⃗ = mxx̂+myŷ+Mz ẑ

with mx,my ≪ Mz ≈ Ms in both the elastodynamics equation of motion and the LLG

equation with only first-order terms, we obtain the coupled differential equations as 2.122-

2.126.
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Then, looking for harmonic wave-like solutions to these equations, and considering the

wave propagates in plane that is k⃗ = kxx̂+ kyŷ, we can obtain the linear equations as [80]

iωmx = −ωm2my − iγB2kzuy, (2.142)

iωmy = −ωm1mx + iγB2(kzux + kyuz), (2.143)

− ρω2ux = −C11kxux − C44kzux − (C12 + C44)kxkzuz + iB2kzmx/Ms, (2.144)

− ρω2uy = −C44(kxuy + kzuy) + iB2kzmy/Ms, (2.145)

− ρω2uz = −C11kzuz − C44kxuz − (C12 + C44)kxkzux + iB2kxmx/Ms, (2.146)

where

ωm1 = ω0 + ωM(l2exk
2 + P sin2 θ), (2.147)

ωm2 = ω0 + ωM(l2exk
2 + 1 − P ), (2.148)

with θ being the angle between M⃗0 and k⃗, ω0 = γµ0H0, ωM = γµ0Ms and

P = 1 − 1 − e−kd

kd
. (2.149)

Now, we will consider an isotropic material, so that C12 = C11 − 2C44. The waves can

propagate in any direction in-plane, but it is convenient to describe the elastic waves as a

function of their longitudinal (ul ∥ k) and transverse (ut ⊥ k) components as

ux = ul sin θ + ut cos θ and uz = ul cos θ + ut sin θ, (2.150)

where θ is the angle between M⃗0 and k⃗. Thus, we obtain

(ω2 − ω2
l ) sin θul + (ω2 − ω2

h) cos θut + i
B2k cos θ

ρMs

mx = 0, (2.151)

(ω2 − ω2
v)uy + i

B2k cos θ

ρMs

my = 0, (2.152)

(ω2 − ω2
l ) cos θul + (ω2 − ω2

h) sin θut + i
B2k sin θ

ρMs

mx = 0, (2.153)

iγB2k cos θuy + iωmx + ωm2my = 0, (2.154)

iγB2 sin (2θ)ul + iγB2k cos (2θ)ut + ωm1mx − iωmy = 0, (2.155)

where ωl = v∥k, which is the dispersion of the longitudinal elastic waves, and ωh = ωv =

v⊥k, respectively the horizontal and vertically-polarized transverse elastic waves.
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Now, we will analyze two special cases of the magnetoelastic waves in thin films, first,

the magnetization perpendicular to the propagation direction, and then the magnetization

parallel to k⃗.

Wave propagation perpendicular to magnetization

First, for the propagation direction perpendicular to the magnetization, k⃗ ⊥ M⃗0, that is

θ = π/2. In this case, the uncoupled waves would give rise to the magnetic Forward Surface

Spin waves (FSSW), with dispersion relation shown in equation 2.83. As M⃗0 = M0ẑ, we

obtain k⃗ = kx̂ and ul = ux and ut = uz for the in-plane components of the magnetization,

and uy, the out-of-plane component.

For this case, the linearized equations become [80]

(ω2 − ω2
l )ul = 0, (2.156)

(ω2 − ω2
v)uy = 0, (2.157)

(ω2 − ω2
h) sin θut + i

B2k

ρMs

mx = 0, (2.158)

iωmx + ωm2my = 0, (2.159)

− iγB2kut + ωm1mx − iωmy = 0. (2.160)

Note that longitudinal (ul) and out-of-plane (uy) components of the elastic wave are not

coupled to the magnetization, so their dispersion relations remain unchanged from the

uncoupled case, that is ω = ωl = v∥k for ul and ω = ωv = v⊥k for uy.

The in-plane transverse elastic component (ut) does couple to the forward surface spin

waves. The set of coupled equations becomes, in matrix notation,−iγB2k ωm1 −iω
0 iω ωm2

ω2 − ω2
h iB2k

ρMs
0


mx

my

ut

 = 0. (2.161)

Now, to obtain the non-trivial solutions, the determinant must be zero, and we obtain

(ω2 − ω2
h)(ω2 − ω2

m) − Jωm2k
2 = 0, (2.162)

where

J =
γB2

2

ρMs

, (2.163)
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ωh = v⊥k, which is the dispersion of the uncoupled in-plane transverse elastic wave, and

ωm =
√
ωm1ωm2 is the dispersion relation for the uncoupled forward surface spin waves.

Note that in the absence of magnetoelastic interaction, J = 0 and equation 2.162

presents the two solutions ω = ωh for the elastic wave and ω = ωm for the spin wave.

Now, considering the magnetoelastic interaction, equation 2.162 presents two physically

meaningful solutions,

ω2
± =

ω2
h + ω2

m

2
±

√√√√(ω2
m − ω2

h

2

)2

+ Jωm2k2. (2.164)

These two solutions refer to the two branches that are formed in the dispersion relation. If

there was no coupling, the curves of the transverse elastic waves and the spin waves would

cross each other. This does not happen when the magnetoelastic interaction is present, a

gap is formed between the two curves generating an anticrossing behaviour. The frequency

gap is proportional to the strength of the magnetoelastic interaction and can be evaluated

as ∆ω = 2Jωm2k
2
cross, where kcross is the value where ωh(kcross) = ωm(kcross).

From these equations, we obtain two eigenstates as [80]mx

my

ut

 = N

 iρMs(ω
2
± − ω2

h)/(kB2)

ρMsωpm(ω2
± − ω2

h)/(kB2ωm2)

1

 = N

iγB2ωm2k/(ω
2
± − ω2

m)

γB2ω±k/(ω
2
± − ω2

m)

1

 , (2.165)

where N is a normalization constant.

Finally, we can identify three different behaviours of equation 2.164, away from the

crossing points we have either quasi-elastic or quasi-magnetic regions, and near the crossing

points, a magnetoelastic region. In the quasi-elastic region ω± ≈ ωh, so from equation

2.165, we obtain that mx,my ≈ 0, and the total energy of the system is dominated by

the elastic energy. On the other hand, in the quasi-magnetic region, ut ≈ 0, and the total

energy is basically the magnetic energy. Near the crossing points, the total energy oscillates

between the magnetic and elastic systems.

Wave propagation parallel to magnetization

Now, for the case in which k⃗ ∥ M⃗0. Here, k⃗ = kẑ, θ = 0, ut = ux and ul = uz. In

the absence of magnetoelastic coupling, we would obtain backward volume spin waves
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(BVSW), which have dispersion following equation 2.82. In this geometry, we obtain the

linearized equations

(ω2 − ω2
h)ut + i

B2k

ρMs

mx = 0, (2.166)

(ω2 − ω2
v)uy + i

B2k

ρMs

my = 0, (2.167)

(ω2 − ω2
l )ul = 0, (2.168)

iγB2kuy + iωmx + ωm2my = 0, (2.169)

iγB2kut + ωm1mx − iωmy = 0. (2.170)

Observe that the longitudinal elastic wave (ul) is not coupled to the magnetization com-

ponents, and its dispersion relation is simply ω = ωl = v∥k. Here, both the transverse

in-plane (ul) and out-of-plane (ul) elastic waves are coupled to the magnetic system. The

coupled equations can be written as [80]
iγB2k 0 ωm1 −iω

0 iγB2k iω ωm2

ω2 − ω2
h 0 iB2k/(ρMs)

0 ω2 − ω2
v 0 iB2k/(ρMs)



mx

my

ut
uy

 = 0. (2.171)

Again, the non-trivial solutions are found by obtaining the determinant and equating

it to zero. From that we obtain

(ω2 − ω2
m)(ω2 − ω2

h)(ω2 − ω2
v) − Jk2[ωm1(ω

2 − ω2
h) + ωm2(ω

2 − ω2
v) + Jk2] = 0, (2.172)

see Figure 2.11. From this equation, we can see that for J = 0, we obtain the uncoupled

dispersion relations, ω = ωm, ωh or ωv, where ωm =
√
ωm1ωm2 and ωh = ωv = v⊥k. Now,

for J ̸= 0, we can see three interaction terms. In the first, Jk2ωm1(ω
2 − ω2

h), we can see

an interaction between the in-plane transverse elastic wave with the spin wave, which will

generate an anticrossing gap between these two curves. The second, Jk2ωm2(ω
2 − ω2

v),

shows an interaction between the spin wave and the transverse out-of-plane elastic mode,

also creating an anticrossing gap. And finally, the third interaction term, J2k4, couples

all the three different waves, generating an interaction among the spin wave and the two

transverse components of the elastic wave.
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The corresponding eigenstate can be evaluated as [80]
mx

my

ut
uy

 = N


−ρMs[ωm2(ω

2 − ω2
v) + Jk2]/(B2kω)

iρMs(ω
2 − ω2

v)/(B2k)

−i[ωm2(ω
2 − ω2

v) + Jk2]/(ω(ω2 − ω2
h))

1

 . (2.173)

Here, the dispersion also generates an anticrossing gap between the two branches, ω+ and

ω−, where we can identify the three regions: quasi-elastic, quasi-magnetic and magnetoe-

lastic. However, a third magnetoelastic eigenstate is found, ω∼, with a dispersion that is

almost linear and falls slightly below the uncoupled transverse elastic wave curve.

In conclusion, the total energy of a magnetoelastic system consists of various contri-

butions from the magnetic, elastic, and magnetoelastic interactions. The magnetic energy

contribution is determined by dynamic components and can be affected by various mag-

netic interactions, including Zeeman, dipolar, exchange, and magnetocrystalline interac-

tions. Meanwhile, the elastic wave energy is determined by the displacement components

and their time derivatives. The magnetoelastic interaction also contributes to the total

energy of the wave, and generates an anticrossing gap in the dispersion relation. During

the propagation, the energy oscillates between the different components. Far from the

crossing points, the energy is mainly in either the elastic or in the magnetic system. Near

the crossing points, it resonantly oscillates between the two systems.
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Figure 2.11: The dispersion curves for magnetoelastic waves with magnetization parallel

to the wave vector in a 20 nm thick CoFeB film (MS = 1.2MA/m, Aex = 18pJ/m, ρ =

8000kg/m3, C11 = 283GPa, C12 = 166GPa, C44 = 58GPa, and B1 = B2 = −8.8MJ/m3),

obtained from equation 2.172. The plot reveals that the longitudinal elastic wave (ωx) does

not couple to spin waves (ωm), whereas the transverse elastic waves (ωy and ωz) hybridize

and form an anticrossing gap with two branches (ω− and ω+).
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Chapter 3

Methods

In this section, we will discuss the numerical simulations and the data processing employed

in this thesis.

We will start describing the micromagnetic tool employed to numerically solve the

magnetization dynamics, the LLG equation, MuMax3 [78], with several magnetic energy

terms. This tool supports the inclusion of the magnetoelastic effective magnetic field in

the equation, allowing us to determine the spin wave dynamics generated from external

elastic strains. However, it does not solve the elastodynamic equation of motion for the

material.

To simultaneously compute the coupled elastodynamic and LLG equations we employed

the magnetoelastic extension of MuMax3 [96]. In this package we are able to include

the elastic properties of the material, along with the magnetic, elastic and magnetoelastic

energy terms. This package allows us to calculate the internal elastic modes of the material

and also to calculate the magnetoelastic waves, with all the dispersion relations.

3.1 Micromagnetic simulations

In this thesis, we employed the open-software GPU-accelerated MuMax3 software [78].

This computational tool utilizes finite-difference discretization to calculate the space- and

time-dependent magnetization dynamics in ferromagnets ranging in size from nano- to

micro-scale. It obtains the ground state of the magnetic sample by an energy and torque
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minimization, as shown in equation 2.8. It also calculates the magnetization dynamics by

numerically solving the LLG equation, equation 2.7.

The first step in the simulation is to define the size of the universe to be simulated. To

ensure reliable results, it is important that the size of the cells used in the simulation is not

larger than the exchange length of the material, lex =
√

2Aex/(µ0M2
S), for example, it is

5.7 nm for permalloy and 7.7 nm for nickel. However, it is worth noting that in thin films,

the magnetization can be considered constant along the thickness direction. This allows

for the use of cells that are larger than the exchange length in that direction, without

compromising the accuracy of the simulation results.

The second step of the simulation involves defining the magnetic parameters of the ma-

terial, including the saturation magnetization (MS), exchange stiffness (Aex), and Gilbert

damping constant (α). Following this, initial conditions are specified, such as the initial

magnetization configuration and the applied external magnetic field vector, which might

be time-dependent.

The final step in the simulation code involves specifying the desired output, which

can either be the minimum energy magnetic state or the magnetization dynamics. If the

minimum energy state is the desired output, the code employs the relax() command, which

generates a single magnetization file. On the other hand, if the magnetization dynamics

are of interest, we use the run() command, and the code calculates the dynamics over a

specified time interval and outputs a magnetization file for each time-step of the simulation.

In the energy minimization mode of the simulation, the precession term of the LLG

equation is disabled. The code first minimizes the energy until the total energy cuts into

the numerical noise floor. Then, it begins monitoring the magnitude of the torque instead

of the energy, since close to equilibrium the torque will decrease monotonically and is

less noisy than the energy. In the dynamic simulation, the LLG equation is solved using

Range-Kutta methods with adaptive time steps.

3.2 Magnetoelastic extension

The MuMax3 software has been extended to include the physics of elasticity in addition

to magnetization [96]. This new feature enables the calculation of both the magnetic

and elastic degrees of freedom of the material and the coupling of the two through the
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magnetoelastic interaction. By integrating magnetoelastic effects into the simulations, the

software offers a more comprehensive model for studying the behavior of ferromagnetic

materials under the influence of external fields and mechanical stresses. Moreover, this

extension opens up the possibility of investigating magnetoelastic waves.

In this extension, in addition to the magnetic parameters, the elastic properties of the

material must also be declared. This includes the stiffness constants, such as c11, c12, and

c44, which are relevant for cubic crystal structures, the mass density ρ, and a viscoelastic

damping parameter η.

With the addition of the elasticity module in the MuMax3 software, the initial elas-

tic displacement of the material must also be defined in addition to the magnetization.

Excitations in the system can be introduced by defining a time- and space-variant body

force or strain components. The simulation outputs both the magnetization and elastic

displacement for each step, providing a complete picture of the behavior of the material

under the influence of external fields and mechanical stresses.

If non-zero magnetoelastic constants are included in the simulation, the software will

solve the now coupled equations of motion for both the magnetization dynamics and elas-

todynamics. Any change in the elastic strains will influence the magnetoelastic effective

field, which in turn will affect the magnetization dynamics. Similarly, any change in the

magnetization will influence the magnetoelastic body force, which will affect the elastic

properties, thus generating a magnetoelastic feedback system.

3.3 Processing simulation data

In order to obtain the dynamic properties of either the magnetic or the elastic system, an

external pulse can be used as a perturbation to excite the system. This perturbation can

take the form of a magnetic field or a body force, which takes the magnetization and/or

the elastic displacements out of equilibrium. The dynamics of the system are then saved

until it returns to its equilibrium position.

In order to perform the pulsed excitation, we utilize a sinc function, e.g. Hext =

sinc(ω0t) = sin (ω0t)/(ω0t) with ω0 = 2πf0, which takes on the form of a step function with

cut-off frequency f0 in the frequency domain. This allows for a homogeneous excitation

of all eigenfrequencies of the system below f0 when a Fast Fourier Transform (FFT) is
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performed. By utilizing this method, we can efficiently and effectively excite the system

and analyze the resulting dynamics.

The magnetization dynamics is recorded as m(x, y, z) at each time step. By stacking the

time variations for each cell, we obtain m(t, x0, y0, z0), where (x0, y0, z0) is the position of

the cell in the sample. We then analyze the dynamics of the system by performing the FFT

of the time-domain signal for each cell of the sample, resulting in the frequency-domain

signal m̃(f, x0, y0, z0), where m̃ is the amplitude of the magnetization at the corresponding

frequency. Summing the results from every cell, we obtain the frequency spectrum, m̃(f),

which contains the amplitude of the magnetization for the whole sample as a function

of the frequency. The peaks that appear in the frequency spectrum correspond to the

eigenfrequencies of the system. These peaks are typically Lorentzian in shape and provide

information about the resonant frequencies of the system.

In the study of wave phenomena, such as spin waves, it is useful to analyze the spatial

propagation of waves in addition to their temporal behavior. To achieve this, we stack the

magnetization time variations for each line, rather than each cell, e.g. in the x-direction,

resulting in the expression m(t, x, y0, z0). A 2D FFT is then performed along both the

x and t axes. The resulting graph in the Fourier domain shows both the frequency and

the wavenumber along x, expressed as m̃(f, kx, y0, z0). Summing all signals, we obtain

m̃(f, kx), which displays the amplitude for each (f, kx) point. The amplitude peaks in the

f vs. kx plot correspond to several resonance peaks that form continuous curves. These

curves correspond to the dispersion relations, and they provide crucial information on the

propagation of waves in the material.
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Chapter 4

Results and Discussion

In this chapter, we will present the main results and discussions of our thesis, which is

focused on the dynamics of magnetoelastic coupling. This area of research has gained

considerable interest in recent years due to its potential applications in spintronic and

magnonic devices. Specifically, we explore three different scenarios in which the magne-

toelastic interaction plays a crucial role in determining the dynamics of the system.

Firstly, we present the simulation results of spin wave excitation and spin pumping

that is driven by external elastic waves [97]. The simulation is performed in MuMax3 [78]

by applying an external wave-like strain and solving the Landau-Lifshitz-Gilbert equation,

considering the magnetoelastic effective field that arises from the strain.

Secondly, we aimed to replicate the experimental findings reported by Holanda et. al

2018 [59]. Using the magnetoelastic extension [96] of MuMax3, we simulated the magnon-

phonon interconversion under a spatially varying magnetic field. Specifically, the wave was

excited in the quasi-magnetic region of the dispersion, and as it propagated in the varying

field, it continuously changed its wavenumber until reaching the magnetoelastic regime,

and then eventually entering the quasi-elastic regime. The simulation results reveal a

similar conversion of the quasi-magnetic wave to a quasi-elastic wave, similar to what was

observed in the experimental study.

Finally, we investigate the elastic and magnetic waves that propagate in a complex

magnetic structure, the Néel domain walls, again by solving the coupled LLG equation and

the elastodynamics [98]. We obtain the dispersion relation and compare it with analytical
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equations. We discuss the formation of an anticrossing gap in the dispersion relation based

on the symmetry of the modes.

4.1 Spin waves and spin pumping driven by elastic

waves

This first simulation aims to investigate the spin-wave propagation across long Ni stripes

under the influence of an external elastic wave. To perform this analysis, micromagnetic

simulations using MuMax3 [78] software were carried out. The external elastic waves were

modelled as propagating wave-like strains, which were included in the LLG equation as

effective magnetoelastic fields. In addition, the acoustically-driven spin pumping was also

studied in this simulation by calculating the spin and charge current maps at a Ni/Pt

interface and in the Pt layer, respectively, and the AC and DC voltages on the Pt layer

using the Inverse Spin-Hall effect (ISHE). The simulation results have been previously

published and are available in [97].

In this simulation, the aim is to replicate an experimental setup where surface acoustic

waves are generated by interdigital transducers (IdTs) on a piezoelectric substrate with a

magnetoelastic stripe deposited on top [66–71]. Specifically, the acoustic wave is generated

in the piezoelectric material by applying an alternate tension to the IdTs. The elastic wave

then propagates towards the magnetic strip, driving its magnetization dynamics, which can

be electrically detected in a Pt layer deposited on top of the magnetic material by means

of the inverse spin Hall effect (ISHE) voltage [81, 85, 86, 89].

4.1.1 Introduction

In magnon spintronics, the propagation of magnons over large distances is critical to enable

the processing of spin flux or information. In this study, we investigate the spin-wave

propagation in narrow Ni stripes driven by acoustic excitation, by means of micromagnetic

simulations.

We have considered different cases depending on the extension of the acoustic wave

propagation, which is generated on the left end of the stripe. When acoustic waves are

confined at the origin, the spin waves are free to propagate but vanish after the decay
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length, that is dependent on the dissipation. On the other hand, when the acoustic waves

are present in the whole stripe, spin and acoustic waves propagate together with the spin-

wave maintaining the amplitude constant. Images of the spin-wave propagation modes and

the dispersion relations are discussed for different acoustic wave attenuation lengths.

To investigate the acoustic-driven spin pumping effect, we also consider a Pt line over

and crossing the Ni stripe, as in recent experiments. We calculate the spin and charge

current maps at the Ni/Pt interface and in the Pt layer, respectively, as well as the AC

and DC components of the inverse spin Hall effect voltage.

Although significant efforts have been made to develop experimental procedures for

obtaining high-quality IDTs, micromagnetic simulations provide a reliable tool for a deeper

understanding of the dynamics involved in spin-wave propagation driven by acoustic waves.

Through our simulations, we have gained insight into the magnetization dynamics and

spin-wave propagation on long Ni stripes and the acoustic-driven spin pumping effect.

4.1.2 Simulation setup

We considered stripes as 8192 nm long, 512 nm wide and 10 nm thick. The following

parameters were used to match Ni parameters: saturation magnetization MS = 490 kA/m,

exchange stiffness Aex = 5 pJ/m, and the magnetoelastic coupling constants B1 = 6.2

MJ/m and B2 = 4.3 MJ/m. The cell size is 4 × 4 × 10 nm3. The Gilbert damping α

was set to 0.001. To avoid spin-wave reflection by the edges one considers a narrow area

near the edge as an absorbing boundary condition, α is gradually increased from 0.001 to

1. The magnetocrystalline anisotropy was disregarded for simplicity.

The acoustic and spin-wave propagation on a ferromagnetic Ni stripe were modelled in

three different attenuation scenarios. In the first, the strain excitation is strongly attenu-

ated being produced and restricted at one end of the stripe (on the left). In the second, the

acoustic waves are not attenuated and propagate along the whole stripe. In the last, the

acoustic waves are partially attenuated with an exponentially-decaying amplitude along the

propagation length to simulate a real situation. Figure 4.1 illustrates these three scenarios,

respectively.

The magnetization dynamics and spin waves are induced by applying a propagating

non-uniform longitudinal strain εxx = ε0sin(kx − ωt) where ω = vk, with v being the
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Figure 4.1: The simulation setup. A Ni stripe with a equilibrium magnetization at θ =

450 with the x̂-axis under a magnetic field H⃗0 applied at a θH angle. Below, we show the

elastic excitation applied for three cases: (a) high attenuation, (b) no attenuation, and (c)

intermediate attenuation.

acoustic wave Rayleigh velocity, which we assumed to be v = 4000 m/s in our simulations.

Thus, the magnetoelastic term reduces to the x-component, H⃗ME = −2B1mxεxx/(µ0MS)x̂.

4.1.3 Results: Spin wave propagation modes

First, a static 31.5 mT magnetic field is applied at the angle θH , and the magnetization

relaxes to the minimum energy at the angle θ, both angles are defined relative to the x̂-

axis. An acoustic excitation εxx = ε0sin(kx− ωt), with ε0 = 10−5, f = 2GHz (ω = 2πf),

and k = 6.28µm−1 (λ = 1µm), is applied to the whole stripe during 25 ns, and the

magnetization is saved. A spatial FFT of the magnetization is calculated, and then, the

FFT amplitude as a function of the magnetization angle θ is obtained, as can be seen from

Figure 4.2a.

Note that the spin wave amplitude (δmz) vanishes when the magnetization is either

parallel or perpendicular to the acoustic wave propagation direction (k̂ = x̂), and reaches a

maximum when the magnetization is at 45o, 135, 225o, and 315o. This can be understood
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(a) (b)

Figure 4.2: (a) Polar plot of the spatial-FFT amplitude of the spin waves at the wave vector

of the acoustic wave as a function of the magnetization angle (θ) under a longitudinal strain

excitation (εxx). (b) The AC magnetoelastic field intensity perpendicular to the static

magnetization (µ0HME) under different θ values for the pure longitudinal strain (εxx) and

for the more complete SAW excitation (εxx+εzz+εxz). They both have a maximum at 45o,

with similar amplitudes, and only significantly differ at θ = 0.

by applying the rotated coordinate system (u,v,z) in the magnetoelastic effective field

(Equation 2.117) to the magnetization m⃗0 = muû using the coordinate transformation

mx = mucosθ and x̂ = cosθû−sinθv̂. One obtains, thus, H⃗ME ∝ (mucosθ)(cosθû−sinθv̂),

and the dynamical part of the the magnetoelastic field (⃗hRF ) is,

h⃗RF =
2B1muεxx
µ0MS

sinθcosθ v̂, (4.1)

which is zero at θ = nπ, and is at its maximum amplitude for θ = 45o + 90on (n is an

integer), as obtained in Figure 4.2a. So, in order to maximize the magnetoelastic excitation

of spin waves we have fixed the magnetization angle at θ = 45o in all simulations.

However, a more realistic description of a Rayleigh-type SAW should contain the com-

ponents εxx = ε0sin(kx− ωt), εzz = −ε0sin(kx− ωt) and εxz = (3/8)ε0sin(kx− ωt) [99].

As the strain acts as an AC excitation this provides an out-of-plane component for the RF

magnetic field but keeping almost the same angular dependence to the magnetic oscillation,

see Figure 4.2b. It exhibits a maximum at 45o and at this angle the simulations produce

the same results as taking all components. Thus, for the sake of simplicity, we have used
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only the εxx component of the strain without any loss to the results and discussion, as also

considered in references [64, 67].

Strongly attenuated acoustic wave

Next, we investigate the role played by the elastic excitation in the magnetization dynamics

considering that the acoustic waves are confined to a small region of the Ni stripe (see Figure

4.1a). In experiments it should correspond to strongly attenuated SAWs, propagating along

the stripe long direction (x), that vanish nearby the excitation area.

Keeping the magnetization of the Ni stripe at 45o, pointing to the û direction, the

acoustic waves with a given wave number kx and frequency f = vkx/2π give rise to spin

waves. Figure 4.3a shows a snapshot of the spin-wave at a given instant, the wave front is

tilted and propagates towards the x̂ direction.

The spin-wave propagates with the same frequency but not with the same wave number

as the acoustic excitation. In the excitation area they have the same wave number but

when the spin-wave enters in the Ni stripe it changes to its natural propagation mode,

according to the frequency and the total effective field. For the sake of example, in the

snapshot shown in Figure 4.3a the wave number of the spin-wave obtained from the fast

Fourier transform (FFT) is 23.8 rad µm−1 (λ = 264 nm) while for the acoustic excitation

it is 9.4 rad µm−1 (λ = 667 nm).

To understand this behaviour, we simulated the wave propagation varying the frequency

and maintaining fixed the excitation wave number at k = 2πf/v. As can be seen from

Figure 4.3b, the dashed line represents the excitation k but the generated spin-wave has

a different k according to the field, like a dispersion relation. A minimum threshold value

for the frequency close to 5.5 GHz is observed, below it there is no spin-wave and for high

k-values the dispersion relation exhibits a quadratic behaviour. The presence of several

modes are justified by the lateral wave confinement.

The dispersion relation of free spin waves in magnetic lines [92, 100–103] were calculated

and compared with our simulations. They are shown in Figure 4.3b, see the blue dotted

lines. The calculation that better correspond the simulation data was performed using

weff = 0.7w, µ0H = 55 mT and θM = 35o. The fact that µ0H and θM are not 60 mT and

45o, respectively, is probably due to the complex shape of the demagnetizing field, because

the static magnetization is not at the symmetry axis of the magnetic slab. However, as
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Figure 4.3: Strongly attenuated acoustic wave. (a) The magnetization profile of the spin-

wave generated by a f = 6 GHz and λ = 667 nm acoustic excitation restricted to the

dashed region under a 60 mT field. (b) The dispersion relation under a 60 mT field. The

dashed line is the acoustic excitation wave number k = 2πf/v. The blue dotted lines

represent data calculated from an analytical model. (c) The exponential decay length (xd)

of the spin-wave. The inset shows the z-magnetization along the x-axis with its exponential

decaying amplitude for α = 10−3.

can be seen from Figure 4.3b, dotted lines are in good agreement with simulations for the

small and large kx ranges, and it is still better for the first modes.

Now, taking in mind that dissipation is present on the magnetization dynamics, a

central question is how long can the spin waves propagate. From images like the one in

Figure 4.3a, taking the amplitude along the stripe is possible to probe the amplitude atten-

uation. As shown in the inset of Figure 4.3c, the magnetization decay can be fitted by an

exponential dependence my = m0cos(kx)e−x/xd , where xd is the decay length. Figure 4.3c

shows the decay length as a function of the Gilbert damping, which follows a logarithm

decay [104].

For low α, say, below 0.001, the wave decay length is close to 2 µm which is a length

scale quite big to transport digital information in devices. Low values like this is found
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in yttrium iron garnet (Y3Fe5O12). On the other hand, for more dissipative materials

with alpha reaching 0.01 the decay length becomes close to 1 µm, which still might be

sufficiently large for practical applications.

Non-attenuated acoustic wave

Now, we simulate the case in which the acoustic wave has no attenuation, so the strain εxx
propagates with constant amplitude along the whole stripe (see Figure 4.1b). This should

correspond to the situation where the acoustic wave attenuation length is much larger than

the stripe length [77], thus, acoustic and spin waves propagate together on the stripe.

Figure 4.4a shows a typical image of the spin-wave. As mentioned above, a bias mag-

netic field is applied to keep the magnetization at 45o. Nevertheless, different from the

previous case where the wave front is tilted, here, the wave front is closer to the pattern

of the strain excitation.

The generated spin-wave has the same frequency and wave number as the acoustic

excitation (see Figure 4.4b). As can be seen from this figure, for a large range of frequencies

the main peak for the spin-wave propagation is observed at k = 2πf/v (dashed line).

The dispersion relation modes are also present but in lower intensity. It is interesting

to note that for free spin waves (previous case) an acoustic excitation at 1 GHz is not a

natural mode for spin waves, as shown in the dispersion relation (see Figure 4.3b), however,

here, the non-attenuated excitation drives and then matches the spin-wave propagation to

its frequency, irrespective to the frequency, although, some dependence on frequency is

observed.

Figure 4.4c highlights this behaviour in further details through the dispersion relation

as a function of the external magnetic field (µ0H). Non-zero FFT power modes are seen

on all frequencies and fields, because the non-attenuated acoustic wave excites the corre-

sponding spin-wave with same frequency and wave number. Nevertheless, some curves can

be observed, meaning the existence of resonance propagation modes. This implies that

although spin waves can be excited by SAW in practically any frequency and wavelength,

their amplitude is resonantly enlarged when the acoustic wave matches the frequency and

field of its natural dispersion modes.
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Figure 4.4: Non-attenuated acoustic wave. (a) Magnetization profile of spin waves excited

by propagating acoustic waves with frequency and wavelength as 5 GHz and 800 nm,

respectively. (b) The Fourier amplitude of the spin waves for different frequencies. In

all cases the main peak coincides with the acoustic wave number (dashed line). (c) FFT

power of the excited spin wave as a function of the external magnetic field for waves with

frequency f and wave number k = 2πf/v.

Partially attenuated acoustic wave

Different from the two previous limit cases, we now consider acoustic waves with an inter-

mediate attenuation. It means that the acoustic waves propagate the whole sample but

their amplitude exponentially decay along the stripe, εxx = ε0sin(kx − ωt)e−x/xd , where

xd is the acoustic wave decay length.

Let us see what happens to the spin-wave propagation varying xd, remembering that

the stripe is 8.19 µm long, see Figure 4.5b. We use the frequency and elastic wave number

as f = 4 GHz and k = 6.28 µm−1 (λ = 1 µm), respectively, under a 20 mT magnetic

field. For xd = 2 µm the FFT of the spin-wave exhibits a peak at 6.28 µm, the same of

the acoustic excitation, meaning that the acoustic excitation acts as dominant over the

spin-wave propagation.

The same behaviour is observed for any xd larger than 2 µm. Decreasing xd to 1 µm a
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Figure 4.5: Partially attenuated acoustic wave. (a) The spatial magnetization profile for an

exponentially attenuated acoustic excitation with decay length xd = 1 µm, f = 4 GHz and

λ = 1 µm under a 20 mT magnetic field. The spin-wave transits between the excitation

wavelength of 1 µm (left) to its natural wavelength value of 256 nm at that field (right).

(b) The spin-wave FFT amplitude for different attenuation decay length values xd. The

vertical dashed line corresponds to the excitation wave number (k = 6.28 µm−1).

second peak is observed (24.5 µm−1), suggesting the coexistence of two waves. It is shown

in Figure 4.5a, where two waves can be seen, one closer to the excitation origin and the

other at the end of the stripe, but each one with a different wave number. Decreasing xd
still further, say to 0.5 µm, only one peak is observed (Figure 4.5b). It turns out that a

regime of spin waves propagation free of the acoustic excitation becomes dominant.

4.1.4 Results: Spin pumping and inverse spin Hall effect (ISHE)

So far we simulated the spin-wave propagation modes in Ni stripes induced by elastic

excitation under different conditions. It is not a friendly task to measure spin waves in real

experiments, so taking it in mind we simulate what should be easier for experimentalists,

the measurement of voltage in narrow Pt lines crossing the Ni stripe through the ISHE,

see section 2.2.3. To do that, we simulate the spin current map at Ni/Pt interface and
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the charge current map in the Pt layer, and then the AC and DC ISHE voltages. We deal

with the non-attenuated case only, but the results are qualitatively equivalent irrespective

of the acoustic attenuation level.

Figure 4.6: FM/NM (Ni/Pt) bilayer. The strain waves (εxx) excite the magnetization

dynamics of the FM film which, in turn, leads to the generation of a spin current (J⃗S)

across the film plane. This acoustically driven spin current injected in the NM layer is

converted into a charge current, J⃗C , by the ISHE and can be detected as electric voltage

(∆V) at the top of the NM line.

We simulate the time evolution of the reduced magnetization components (mx, my, and

mz) for an elastic excitation with f = 4 GHz and λ = 1 µm under resonance condition. The

applied field is µ0H0 = 31.5 mT, and the Gilbert damping was set to α = 0.004, according

to experimental values for the Ni/Pt bilayer [105].

Considering the magnetization is pointing to 45o relative to x̂-axis, to maximize the

magnetoelastic effects, it is useful to use a θ = 45o rotated coordinate system (û, v̂, ẑ) around

the ẑ-axis, see Figure 4.6. As can be seen from Figure 4.7a, in this new coordinate system

the mv and mz components exhibit sinusoidal behaviour, with a 90o delay between them,

following the dependence mu = m0vcos(ωt) and mz = m0zsin(ωt). This is highlighted in
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the inset of Figure 4.7a showing the Lissajous curve with an elliptic motion with a factor

p = m0z/m0v = 0.256. This curve is not circular because Ni layer is thin, 10 nm thick,

forcing the in-plane magnetization.
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Figure 4.7: Spin-current in point P0. (a) Time evolution of the rotated magnetization

components. The inset shows the ellipsoidal motion of mv and mz around the equilibrium

position. (b) The spin-current across the Ni/Pt interface generated by the spin-wave

propagation. The components with v- and z-polarization are AC, with null average value,

whereas the u-polarized component exhibit a constant value.

Next step is the spin current Js calculation at the Ni/Pt interface. It was evaluated

from Equation 2.46 using the values extracted from Ref. [105]: θSH = 0.0067, g↑↓eff =

3×1018m−2, σN = 2.42×106(Ωm)−1 and λSD = 10nm. Figure 4.7b shows the spin-current

with v and z polarization oscillates whereas the u-polarized component exhibits a small

but constant value.

We calculated the spatial profile of the spin-current Js along the stripe for a fixed instant

of time by using Equation 2.46 in each point at the Ni/Pt interface (see Figure 4.8). Again,

the u-polarized spin current strength exhibits a uniform level, whereas in v polarization it

oscillates with the same wavelength and frequency as the spin-wave. Using the Js map we

calculate the Jc map. Still in this Figure 4.8, it is shown in the black frame the charge

current Jc in the Pt line calculated by means of Equation 2.50. It illustrates the map of

Jc on the u and v components, which are AC and DC components, respectively.

With Jc, the voltage (∆VISHE) between the opposite ends of the Pt line is calculated,

see Figure 4.6 by means of Equation 2.52. We have considered a Pt stripe with thickness
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Figure 4.8: Spin and charge current maps. Spin-current (Js) colormap across the ferro-

magnet for, respectively, the û and v̂ spin-polarization directions at a given instant of time

(for details see text). The charge current (Jc) components in the Pt line are shown as

vectors inside the dashed frame.

tN = 10 nm and length covering the Ni stripe as ℓ = 724 nm, in the two different cases:

when the Pt line is aligned to the magnetization direction (ℓ̂ = û), and perpendicular to it

(ℓ̂ = v̂).

In Figure 4.9a it can be seen that when the Pt stripe is aligned perpendicular to the

magnetization (v-direction) a DC component is observed, whereas an AC component is

found when the stripe is parallel to it (u-direction), as expected from Equations 2.53

and 2.54. The DC voltage component value is 2.9 nV and the amplitude of the AC

voltage component is 37.3 nV (see Figure 4.9a). From those equations we calculate the

ratio between them as V AC/∆V DC = m0v/m0u = 37.3/2.9 = 13, where m0v and m0u

are the amplitude of the AC voltage and the DC value, respectively. These AC and DC

ISHE-voltage values including the ratio between them are in quite good agreement with

experimental data recently reported [91]. Wei et al. have measured NiFe/Pt stripes 5 x

400 µm2 large, and found 12 to the AC to DC ISHE-voltage ratio that is very close to

our findings [91]. However, as we will see below this ratio actually depends on the εxx
strength.

Under the same acoustic excitation (f = 4 GHz and λ = 1 µm), the resonance on the

spin-wave propagation mode also manifests itself by varying with the applied magnetic

field (see Figure 4.9b). These resonance peaks can in experiments be measured in both AC
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Figure 4.9: ISHE voltage in NM layer. (a) The AC and DC components of the ISHE

voltage for a 4 GHz, 1 µm acoustic excitation. (b) The DC value and AC amplitude as a

function of the external field, presenting a resonance peak around the natural dispersion

eigenmode. (c) ∆VISHE as a function of the square of the strain amplitude (ε2xx), which is

proportional to the acoustic wave excitation power (P), showing a linear behaviour for the

DC component and a
√
P behaviour for the AC amplitude (see text for details).

and DC geometries by tuning the applied field in ISHE-voltage measurements.

An interesting outcome from our simulations is the dependence of the ISHE-voltage

with the amplitude of acoustic excitation εxx. As can be seen from Figure 4.9c, the AC

and DC ISHE-voltages follow different behaviours, the DC component is proportional to

the excitation power (ε2xx), i.e., ∆V DC ∝ P , while the AC component is proportional to

its square root, ∆V AC ∝
√
P . It can be explained by means of the relation between

the magnetization amplitude components under precession and the dynamic effective field
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(hRF ), that acts on it using the Polder susceptibility tensor m⃗ = χ̂h⃗. Thus, one obtains

m0v,m0z ∝ εxx and m0u ≈ cte, that when inserted into Equations 2.53 and 2.54, we

obtain ∆V DC ∝ εxx and ∆V AC ∝ ε2xx. Indeed, the AC and DC ISHE-voltage ratio is

then proportional to εxx, meaning that besides the fact that AC component is larger than

the DC component, it becomes still more intense increasing the excitation amplitude.

Such dependence of ∆V AC and ∆V AC with the input power is in full agreement with

experimental data reported by Wei et al. (see Fig.3b of Ref. [91]).

4.1.5 Discussion

Experiments performed through synchrotron techniques in Ni films deposited on a piezo-

electric substrate (LiNbO3) were recently reported, where the elastic waves were probed by

time and spatially resolved photoemission electron microscopy (PEEM), and the magnetic

contrast by X-ray magnetic circular dichroism (XMCD) [77]. Two interdigital transducers

distant 6 mm were employed to generate propagating and standing waves, when one or the

two IDTs are used, respectively. According to the authors, firstly, as can be seen from Fig-

ure 2b of this reference, the acoustic and spin waves move together. Second, from Figure

2c, also from this reference, one sees that the spin-wave maintain its amplitude constant in

a window 45 µm wide, placed around 2.5 mm far from the one IDT. Taking it into account

and the fact that stand waves can be formed, which is resulted from waves travelling from

both IDTs, it is quite reasonable to suppose that the acoustic waves propagate over the

whole 6 mm of the Ni film. Thus, one can state that their experiments correspond to

the non-attenuated acoustic wave approximation in our simulations (see Figures 4.4a and

4.4b).

Concerning the angle dependence of acoustic spin pumping, Puebla et al. [89] have

reported data showing that the voltage generated by the spin pumping follows a sinusoidal

function with a maximum at 45o + 90on, where n is an integer. This angle is defined by

the magnetization and εxx directions. Besides to verify it we showed that when the pad

contacts are aligned at 135o or 45o one measures the DC or AC ISHE-voltages, respectively.

The contacts are placed at a narrow Pt line crossing the Ni stripe. On the other hand,

Puebla2020 placed the contacts along the x̂ direction at the ends of the stripe. It provides

directly (VAC + VDC)cos(45o), mixing the AC and DC components. However, it has the

advantage to increase a lot the signal level because the interception area between Ni and

Pt (or other materials) is much larger than using a crossing narrow line. If we are dealing
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with other shapes instead of stripes like big squares in millimeter scale, for example, we

can always play with the contact pad orientation to obtain the best result.

4.1.6 Conclusions

In this study, we examined the spin-wave propagation in narrow Ni stripes driven by acous-

tic waves. Our simulations considered three different scenarios based on the propagation

of the acoustic wave and its effect on the spin-wave decay length. We found that when

the acoustic wave is concentrated at one end of the Ni stripe, the spin-wave is able to

propagate freely, but not beyond a distance of 2 µm, even with a small α damping of

5 × 10−4. Conversely, when the acoustic wave propagates over the whole Ni stripe, which

can be several millimeters in real systems, the spin waves are carried by the acoustic waves

with the same wavelength, also propagating over millimeter scales.

We also investigated the possibility of probing the spin-wave propagation through volt-

age measurements, specifically by the ISHE voltage. Our simulations provided insight

into the optimal placement of contact pads to measure the AC and/or DC components in

stripes and films. Additionally, we obtained spin and charge current maps at the Ni/Pt

interface and on the Pt line, respectively, which help to further understand the AC and DC

acoustic-driven spin pumping effect. Overall, our findings contribute to the understanding

of the dynamics involved in the acoustic-driven spin pumping effect, and highlight the

utility of micromagnetic simulations in this area.
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4.2 Magnon-phonon interconversion in a spatially non-

uniform field

This section aims to investigate the interconversion between spin waves and elastic waves

in materials with magnetoelastic interaction, inspired by the experimental setup performed

by Holanda et al. [59].

In materials exhibiting strong magnetoelastic coupling, a dispersion relation of spin

waves and elastic waves forms an anticrossing gap, resulting in two branches, see Section

2.5. These branches contain distinct regions where either the spin wave (quasi-magnetic)

or elastic wave (quasi-elastic) dominates, and an intermediate region, near the anticrossing

gap, where both excitations are of the same magnitude (magnetoelastic).

If a spin wave is excited in the quasi-magnetic regime and the external magnetic field

varies spatially during propagation, the wave number of the excitation gradually changes

due to energy conservation. By choosing appropriate magnetic field values, it is possible

to make the excitation passes through the magnetoelastic region and ends up in the quasi-

elastic regime, effectively converting a spin wave (quantized as magnons) into elastic waves

(phonons).

The results obtained from these simulations are not novel and are not intended for

publication. However, this was our first time working with this extension, and we used

it as a way of confirming that it agrees with the theoretical predictions and experimental

results.

4.2.1 Introduction

The interaction between magnetic and elastic properties of materials has become an area of

great interest in the field of magnon spintronics or magnonics [2, 11]. One area of particular

interest is the coupling between spin waves and elastic waves, which has been explored from

fundamental aspects of their hybridization [57, 58] to the development of memory devices

[62, 63] and the potential use of propagating surface acoustic waves (SAWs) to excite spin

dynamics in magnetoelastic films in a less power-consuming manner [26, 64, 65]. One of

the most fascinating aspects of this coupling is the transfer of spin angular momentum

between quasiparticles, which has been investigated in numerous studies, such as the work

done in Holanda et al. [59].
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We employ the magnetoelastic extension [96] of Mumax3 to study the interaction be-

tween elastic and magnetic waves in a CoFeB thin film. We calculate the magnetic and

elastic dispersion curves and observe the variation of the wave number as a function of

the external magnetic field. Using this information, we create a scenario where an excita-

tion is generated in the quasi-magnetic regime and propagates to the quasi-elastic regime,

gradually changing its wave number as the field decreases.

4.2.2 Simulation setup

A CoFeB stripe with dimensions 20.48 µm x 320 nm x 20 nm was discretized in 5 nm x 5 nm

x 20 nm cells, with periodic boundary conditions applied in the x and y axes to simulate

an infinite film, see figure 4.10. The following properties were defined for Co20Fe60B20

[106, 107]: saturation magnetization 1.2 × 106 A/m, exchange stiffness 18 × 10−12 J/m,

stiffness constants C11 = 283×109 N/m2, C12 = 166×109 N/m2 and C44 = 58×109 N/m2,

mass density ρ = 8×103 kg/m3 and magnetoelastic constants B1 = B2 = −8.8×106 J/m3.

The magnetic damping parameter is set to α = 10−3 and the elastic damping η is set to

zero.

Figure 4.10: The simulation setup. A CoFeB stripe with periodic boundary conditions to

simulate an infinite film with a static magnetic field (BDC) applied in the y-direction. An

alternate magnetic field (BAC) is applied in the x-axis in yellow region in order to drive the

spin dynamics. Plane spin waves are excited and propagate along the x-axis, perpendicular

to the magnetization direction.

A static magnetic induction field is applied in the y-direction, B⃗DC = B0ŷ and a 100

nm wide line, the yellow region in figure 4.10, is defined as an antenna in order to probe the

spin dynamics. By applying either an alternate sinusoidal or a sinc-pulse external magnetic

field perpendicular to the magnetization direction, B⃗AC = BAC x̂ at the antenna, plane spin
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waves are excited and propagate both in +x̂ and −x̂ directions. Absorbing boundaries were

applied at the borders in order to avoid wave reflection. In these boundaries, in the last

5 µm of each side, the Gilbert damping (α) is increased from 10−3 to 0.5 and the elastic

damping (η) from zero to 5 × 1013.

4.2.3 Results

In this section, we will begin by presenting the results of magnetoelastic waves under a

constant magnetic field, in thin films with the wave vector geometry perpendicular to the

static magnetization. We will examine how the elastic and magnetic eigenmodes, and the

position of the anticrossing gap are modified by varying the external field intensity. Using

this information, we will then determine the desired values for the spatially-varying field

that would allow the excitation to start in a quasi-magnetic regime and end in a quasi-

elastic one. Finally, we will present the results of pulse propagation using the spatially

varying magnetic field.

Magnetoelastic waves under a uniform field

First, a uniform magnetization and zero displacement are set as initial conditions, and the

system is allowed to relax to a minimium energy state under B⃗DC = 100 mT ŷ. Then

a sinc-pulse magnetic field, B⃗AC = [BAC sin(2πf0t)/(2πfot)]x̂, with BAC = 20 mT and

f0 = 50 GHz was applied in the antenna region and both the magnetization m⃗ and the

displacement u⃗ vector maps are saved as a function of time. These vector maps were fast-

Fourier transformed in order to obtain the dispersion relation of the sample, see Figure

4.11.

Distinct behaviors can be observed in the FFT of different components of magnetization

and elastic displacement. For example, the longitudinal displacement ux and out-of-plane

transverse displacement uz (shown in Figures 4.11b and 4.11d) displayed only a single linear

curve without any gap formed from magnetoelastic interaction. In this geometry, where

the wave vector is perpendicular to the static magnetization (k⃗ ⊥ M⃗0), the theoretical

prediction in Section 2.5.3 suggests that only the in-plane transverse component (uy) of

the elastic waves couples to the magnetization, which is in agreement with the simulation

results.
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Figure 4.11: The dispersion relation for magnetoelastic waves propagating along the x-

direction, k⃗ = kxx̂, under a static field of B⃗DC = (100 mT)ŷ. This was obtained by

applying a fast-Fourier transform (FFT) of (a) mx, (b) ux, (c) uy and (d) uz along the

x-axis. Similar results are found for the FFT of mx and mz. The magnetoelastic crossover

is only present at mx, mz and uy. For the other displacement directions only the elastic

component is present with a longitudinal velocity of 5938 m/s and a transverse velocity of

2683 m/s.

The two uncoupled curves exhibit a linear dispersion, and their group velocity is equal

to the phase velocity. The expected velocities for transverse (vt =
√
c44/ρ) and longitu-

dinal (vl =
√
c11/ρ) elastic waves, using the material properties values employed in the

simulations, are vt = 2693 m/s and vl = 5948 m/s, respectively. The calculated phase
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velocities for uz and ux are 2682 m/s and 5938 m/s, respectively, in agreement with the

theoretical values for uncoupled elastic wave components in thin films presented in Section

2.4.2.

On the other hand, the components mx, mz, and uy (as seen in Fig 4.11a and 4.11c)

presented similar behaviours, where two hybrid curves are formed in the dispersion relation,

and they displayed an anticrossing gap at k = 64µm−1 and f = 26GHz under a 100 mT DC

magnetic field. This is a strong indication of magnetoelastic coupling. From the theoretical

prediction these three components are coupled via Equation 2.161.

Away from the anticrossing gap, the dispersion relations for mx, mz, and uy are similar

to the uncoupled case. However, near the gap, the velocity is significantly altered, re-

sulting in each curve being divided into three domains: quasi-elastic, quasi-magnetic, and

magnetoelastic. In the quasi-elastic and quasi-magnetic domains, the dispersion coincides

with the uncoupled mode, while in the magnetoelastic domain, the dispersion is signifi-

cantly altered. For the lower curve, the quasi-elastic regime occurs at low-k values, and

the quasi-magnetic regime occurs at high-k values. The upper curve exhibits the opposite

behavior.

The magnetic dispersion curve can be shifted towards higher frequencies by increasing

the static magnetic field intensity, as seen in Figure 4.12 for B0 = 40 mT and 200 mT.

Although the external field does not affect the elastic dispersion curve, the position of

the magnetoelastic crossover gap changes significantly. For example, at 40 mT, the gap is

located at k = 55µm−1 and f = 23.5GHz, while at 200 mT, it shifts to k = 71µm−1 and

f = 30GHz.

The dispersion curves can be analyzed at a fixed frequency, indicated by the horizontal

dashed lines in figure 4.12. For instance, at f = 25 GHz, two peaks are observed along the

wavenumber for different magnetic field intensities. At 40 mT, the low-k peak corresponds

to the elastic eigenmode at 58 µm−1, followed by the magnetic mode at 67 µm−1. In

contrast, at 200 mT, the lower peak corresponds to the magnetic mode at 34 µm−1, and

the higher peak corresponds to the elastic mode at 59 µm−1.

At a fixed frequency, the selection of appropriate external magnetic field values can

excite a wave in the quasi-elastic, quasi-magnetic or magnetoelastic regimes. Our aim

is to create a magnetic field with a continuously spatially-varying profile, such that the

excitation is initially in the quasi-magnetic regime, but eventually transits through the

magnetoelastic regime, ending in the quasi-elastic regime.
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Figure 4.12: The magnetoelastic dispersion relation obtained from the FFT of uy at an

external magnetic field of (a) 40 mT and (b) 200 mT, perpendicular to the static magne-

tization direction. The horizontal dashed line corresponds to the frequency f = 25 GHz.

To obtain the desired spatially varying field, we begin by performing a simulation where

a constant frequency excitation at 25 GHz is introduced and allowed to propagate under

a constant magnetic field. We then use a spatial FFT to measure the wave number of the

components mx and uy as a function of the external field. This measurement is carried

out for two situations: (a) when the magnetic and elastic modes are uncoupled, i.e. when

the magnetoelastic constants are set to zero (B1 = B2 = 0) and (b) when they are coupled

(B1 = B2 ̸= 0), the results are shown in figure 4.13.

In the uncoupled system, figure 4.13a, the magnetic curve is obtained by the AC mag-

netic field excitation followed by the FFT of mx, and the elastic one by the AC excitation

of the force density, with the FFT of uy. In the magnetic curve, the wavenumber (k) of the

spin wave is smaller, that is a larger wavelength (λ), the higher is the magnetic field for a

fixed frequency. This is in agreement with the theoretically evaluated dispersion relation

for a thin film, equation 2.80. Also, as expected, the purely elastic wave is not affected by

the external magnetic field.

On the other hand, in the coupled system, figure 4.13b, two branches are visible, a

lower and an upper one. Both branches present magnetic and elastic proprieties. The

lower branch has a dominant elastic behaviour for BDC < 60mT and a dominant magnetic

behaviour for BDC > 100mT . The opposite happens in the upper branch, quasi-magnetic
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a) b)

Figure 4.13: The resulting wavenumber (kx) for a 25 GHz excitation for (a) the uncoupled

system, with magnetoelastic constants (B1 and B2) set to zero, and for (b) the magnetoe-

lastic coupled system.

for low BDC , and quasi-elastic for high BDC values. In the 60 mT < BDC < 100 mT

range, both branches transit from one propriety to the other, and therefore both elastic

and magnetic proprieties are present simultaneously, and thus those are magnetoelastic

waves.

Magnetoelastic waves under a spatially-varying field

When a spin wavepacket propagates through a non-uniform spatial field, its frequency

remains constant while the wavenumber changes according to the local value of the field

intensity. On the other hand, if the propagation occurs in a uniform field that varies in

time, the wavenumber remains constant while the frequency varies according to the field

[59, 108].

This way, we aimed to probe the interconversion of magnetic to an elastic excitation, a

magnon-phonon conversion, by means of micromagnetic simulations using the momentum

conservation. The idea here is to excite a magnetic wavepacket that propagates through a

spatially non-uniform external magnetic field, which starts in the quasi-magnetic region of

the dispersion and arrives in the quasi-elastic region.

The simulations is set as Figure 4.14, a quadratically-varying magnetic field from a 300

mT intensity until the excitation region (x = -5 µm), to 30 mT for x ≥ 5 µm. For 25 GHz,
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these values correspond to wave numbers, respectively, in the quasi-magnetic and in the

quasi-elastic regions, as shown in the upper branch of figure 4.13.
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Figure 4.14: The spatially-varying external magnetic field, H(x). It decreases quadratically

from a 300 mT to a 30 mT intensity. A magnetic pulse is excited at the x = 5 µm position

and propagates in the +x direction.

For a non-uniform field, if the spatial field gradient is smaller than a critical value, the

excitation does not change branch in the dispersion relation, as shown in Figure 4.13. In

this scenario, the pulse can be converted from a quasi-magnetic nature to a quasi-elastic

one, without branch hopping. The critical value can be evaluated as [109]

dHcrit

dx
=

πB2ω

Msρv3t
. (4.2)

For our setup, this value corresponds to 153 mT/µm, which is much larger than the value

used in this simulation (in the order of 40 mT/µm).

The pulse is generated by applying a sinusoidal external magnetic field, H⃗ac = (10

mT) sin[2π(25GHz)t]x̂, at a 100 nm wide region centered in x = -5 µm for 0.5 ns and

then changing it to zero until the end of the simulation at time t = 10 ns. The pulse

propagation is shown in figure 4.15. Two wavefronts are formed, one going in the +x

and the other in the −x directions. The −x one is rapidly attenuated by the absorbing
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boundaries, whereas the +x one propagates along the stripe, under the varying external

field, until being absorbed at the right edge of the slab.

Figure 4.15: Pulse propagation under a spatially-varying magnetic field. The images show

mx as a function of the time. The pulse is excited at the x = -5 µm position. The

red and blue colors correspond to, respectively, positive and negative variations of the

magnetization x-component.

Along the pulse propagation its frequency remains constant at 25 GHz whereas its

wavenumber is continuously changed due to the external magnetic field gradient. Figure

4.16a shows the wavenumber kx measured as a function of time and the corresponding

spatial FFT amplitude at that wave number in Figure 4.16b.

The wave number during the excitation period starts at 18 µm−1 under the initial 300

mT external field where the amplitude of mx linearly grows until reaching a maximum.

Then, along the propagation the wave number varies up to 57 µm−1, with its amplitude

decaying exponentially due to the intrinsic magnetic damping (α) until reaching the ab-

sorbing boundary at the right edge of the slab at 8 ns.

The uy absolute amplitude is much smaller than the mx one at all times of the simu-

lation, however at the instant t = 5 ns, along with the wave number sudden change to 60

µm−1, its amplitude is strongly enhanced, see the peak at Figure 4.16b. This enhancement

of the elastic uy component is attributed to the magnetoelastic interconversion.

Finally, to highlight the transition from magnetic oscillations to lattice vibrations we

have run the simulation again, changing the Gilbert damping α to zero in the middle of

the stripe, so both elastic and magnetic components do not suffer any losses until reaching
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Figure 4.16: (a) The wavenumber kx of the pulse measured from the spatial FFT as a

function of the time as the pulse propagates in the +x direction. (b) The FFT amplitude

for the corresponding wavenumber along the pulse propagation. The vertical dashed line

shows the instant in which the excitation field is turned off.

the absorbing edges. We evaluated the magnetic energy as the sum of the exchange,

magnetostatic and Zeeman components, subtracted from their values at equilibrium (t =

0), and the elastic component as the sum of the Hooke’s component,
∫

1
2
σ̂dV , where σ̂ is
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Figure 4.17: The energy components of the system as a function of time. The magnetic

energy is evaluated as the sum of the magnetostatic, exchange and Zeeman energies, and

the elastic one as the sum of the Hooke’s with the kinetic components. The vertical dashed

line shows the instant in which the excitation field is turned off.

the stress tensor calculated from Hooke’s law, and the kinetic component,
∫

1
2
ρ ˙⃗udV .

Figure 4.17 shows the energy components of the system as a function of the time in that

setup. The magnetic energy is linearly increased during the AC excitation (until t = 0.5

ns), when it presents a loss due to the readily −x wave front absorption. The remaining

+x wave front stays with a constant energy, due to the absence of intrinsic magnetic

damping until 4 ns where its energy is gradually transferred to the elastic system, which

continuously grow until reaching a maximum at 8 ns and after that the pulse is absorbed

at the boundary.

Therefore, the pulse is excited in the quasi-magnetic region of the dispersion and is

gradually converted to the quasi-elastic region, by varying the wavenumber and keeping

the frequency constant. This way, the spatially inhomogeneous magnetic field was em-

ployed to probe the interconversion between magnetic and elastic excitations due to the

magnetoelastic interaction.

78



4.2.4 Conclusions

In this section, we presented a simulation of spin wave conversion to an elastic wave in a

thin film using the magnetoelastic extension of MuMax3 [96]. Our simulation involved the

study of magnetoelastic wave dispersion in thin films. As expected for this geometry, only

the in-plane transverse elastic component (uy) is coupled to the magnetization dynamics,

and the anticrossing gap is formed in uy, mx, and mz. We observed that by changing

the external magnetic field, the position of the magnetic curves and the anticrossing gap

also changed. By fixing the frequency of the excitation, we could obtain quasi-elastic,

quasi-magnetic, and magnetoelastic behaviors for certain magnetic field intensities.

Furthermore, we designed a setup with a varying static magnetic field, with a gradient

below the critical value for branch hopping. We excited a wavepacket in the quasi-magnetic

region, and as it propagated, its frequency remained constant while its wavenumber gradu-

ally changed, eventually reaching the quasi-elastic region. We observed that the spin wave

was converted to an elastic wave, which was evident from the amplitudes and energies of

the system, consistent with theoretical predictions and experiments.

In conclusion, our simulation reveals how spin waves can be converted to elastic waves

in thin films, highlighting the usefulness of magnetoelastic simulations for predicting the

behaviour of magnetoelastic excitations. This insight may have implications for the devel-

opment of new magnonic devices.
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4.3 Magnetoelastic waves in Néel-type domain walls

In this section, we focused on using the magnetoelastic extension of MuMax3 [96] to study

the magnetic and elastic eigenmodes of a magnetoelastic strip containing a Néel-type do-

main wall.

While analytical solutions for the wave equations in infinite films are available, these

solutions become impractical when complex patterns of magnetization are present. Thus,

we turned to simulations to obtain a better understanding of the system and to compare

the results with theoretical predictions.

Interestingly, even with the presence of magnetoelastic interaction, some of the curves

do not form anticrossing gaps. We will discuss this further and show that this can be

explained based on the symmetry of the elastic and magnetic modes. The simulation

results have been previously published and are available in [98].

4.3.1 Introduction

Transmitting and processing data with spin waves (SW) is a promising field known as

magnonics, that has the potential to increase the energy efficiency and reduce the size of the

current information technology [2, 11, 103]. However, the low efficiency in SW excitation

and detection [51] and the small propagation length [53] remain drawbacks in the field.

The coupling between SW and elastic waves, through the magnetoelastic interaction, has

emerged as a promising strategy to overcome these challenges [54, 64].

Recently, magnetic domain walls have been proposed as propagation channels for spin

waves [110, 111]. The domain walls can be found in closure-domain remanent states,

which are stable even without an external magnetic field. Also, the domain walls are

topologically protected regions that act as potential wells for propagating SW, creating

laterally-confined magnetic modes with high group velocities [23, 112, 113]. This way,

these propagating waves are promising candidates for data carriers in magnonic systems.

However, a study of the effect of magnetoelastic interaction taking into account the domain

wall-confined magnetic eigenmodes is still lacking.

In this work, we have calculated the dynamics of magnetoelastic waves in a thin CoFeB

slab containing a Néel wall using coupled micromagnetic and elastodynamics simulations.
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We have obtained the dispersion relation for the magnetic and elastic modes and compared

them to the analytical equations for the uncoupled waves. Then we show three examples of

crossing points between elastic and magnetic eigenmodes and discuss the formation of an

anticrossing gap due to a strong coupling, or gapless crossing, for independent resonators.

4.3.2 Simulation setup

Figure 4.18: Sketch of the thin magnetic stripe of two oppositely magnetized domains

with the Néel wall between them. The arrows show the direction of the magnetization at

equilibrium, and the yellow stripe indicates the region where the external pulse is applied

to generate spin and elastic waves.

We have numerically calculated the magnetic and elastic dynamics of thin magne-

toelastic stripes with a high aspect ratio containing two oppositely magnetized domains,

separated by a Néel-type domain wall, see Figure 4.18. The film is in the xy-plane, with the

bottom and top magnetic domains oriented, respectively, in the +x̂ and −x̂ directions. The

Néel domain wall is the transition between these two domains, in which the magnetization

curls anticlockwise in-plane, being aligned in the +ŷ direction precisely at its center.

The magnetic eigenmodes are excited by an external magnetic field pulse applied in

the yellow stripe of Figure 4.18, generating plane waves that propagate in the x-direction.

The elastic modes are also excited via the magnetoelastic interaction in this process. In

the opposite sense, a lattice elastic perturbation applied at the yellow stripe position can

generate magnetic modes.

We have numerically simulated the coupled magnetization and elastodynamic dynam-

ics, using Mumax3 [78] software including the magnetoelastic module extension [114]. We
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Figure 4.19: The magnetoelastic feedback. Scheme of the magnetoelastic interaction, the

magnetization dynamics creates a force density, through the magnetostrictive effect, that

drives the elastic displacement dynamics that, for instance, creates an effective magnetoe-

lastic field from the inverse magnetostriction that drives the magnetization. This system

can feedback itself generating two coupled oscillators.

have simulated magnetic materials with large magnetoelasticity constants like CoFeB, Ni,

and Yttrium Iron Garnet (YIG) and qualitatively similar results were found. However, all

the results presented here are for CoFeB [106, 107] due to the feasibility of experimentally

obtaining Néel domain walls in a reproducible manner [115–119]. We consider the satura-

tion magnetization (MS) 1.6 MA/m, exchange stiffness (Aex) 18 pJ/m, Gilbert damping

(α) 0.007, and elastic stiffness constants C11 = 283 GPa, C12 = 166 GPa and C44 = 58

GPa, mass density (ρ) 8000 km/m3 and magnetoelastic coupling constants B1 = B2 =

−8.8 MJ/m3.

To generate a Néel wall, stripes with a large aspect ratio were used, 32 nm wide, 20 nm

thick, and 20.48 µm long. The cell size is given by dx = dy = 5 nm, and dz = 20 nm, and

the number of cells are Nx = 4096, Ny = 64, and Nz = 1. The simulations start already

with the Néel wall placed in the middle, crossing the stripe long direction (see Figure 4.18).

The wall remains stable even when it exhibits stationary or propagating modes in u and

m. No external static magnetic field is applied.
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Figure 4.20: Dispersion relation of the coupled magnetoelastic system. (a) The curves were

obtained from the magnetization and elastic displacement FFT in the numerical simulation.

Due to the magnetoelastic interaction, several crossing points are separated by a gap into

two branches, e.g., point “2”, but also with several gapless crossing, as points “1” and “3”.

(b) Identification of the modes, obtained by calculation of analytical dispersion curves from

theory.
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In order to obtain the u and m modes, their dispersion relations, and the crossing of u

and m branches, a small-amplitude sinc-shaped magnetic field applied on ẑ direction with

50 GHz cut-off frequency applied in a 100 nm wide stripe placed at the middle of the stripe

(see Figure 4.18). This produces m waves and then u waves due to the magnetoelastic

coupling and run for a total of 20 ns allowing the excitation to extend over the whole

sample.

Spatial-temporal Fast Fourier Transforms (FFT) are performed in the u or m compo-

nents along the x-direction, allowing to build the entire dispersion relation of the coupled

system, i.e., resonance frequency (fres) as a function of the kx wave vector. To calcu-

late the u and m modes the inverse Fast Fourier Transform (iFFT) is performed for the

corresponding fres and kx point in the dispersion curve.

4.3.3 Results and discussion: Uncoupled elastic and magnetic

modes

The magnetoelastic modes from the pulsed excitation in the micromagnetic simulations

generate the dispersion relation, as shown in Figure 4.20a. It corresponds to a complex

combination of coupled magnetic and elastic eigenmodes, some of which present an anti-

crossing gap as point “2”, and some with a gapless crossing like “1” and “3”.

However, in order to identify the eigenmodes that correspond to each curve (elastic or

magnetic), we have calculated the theoretical dispersion relation equations for the expected

elastic and magnetic modes as if they were uncoupled from each other, that is, if the

magnetoelastic constants were null, B1 = B2 = 0.
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Figure 4.21: Uncoupled magnetic and elastic eigenmodes obtained from micromagnetic

simulations with null coupling constants, B1 = B2 = 0. The finite width of the waveguide

creates modes with quantized wave vector values in the y-direction. (a) The out-of-plane

elastic waves, P-waves with null ∆ux and ∆uy. (b) The two types of in-plane elastic

waves, A-waves and S-waves, which have, respectively antisymmetric and symmetric ∆ux,

the opposite for ∆uy, and null ∆uz values. (c) The magnetic modes for the Néel wall, first

the domain-wall confined mode, SWNeel, then the modes of the uniform domains, n1 and

n2. The red and blue colors represent, respectively, positive and negative values.

Elastic modes

Still considering uncoupled modes, consider a long waveguide, parallel to x̂, with thickness

d, where kd ≪ 1, and width w. First, the out-of-plane modes, also known as P-waves,
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follow the relation [93],

ωn = v⊥

√
k2x +

(n− 1)π

w
, (n = 1, 2, 3, · · · ), (4.3)

where v⊥ =
√
C44/ρ and n is the mode order. The solutions for this equation are plotted as

green lines in Figure 4.20b with the label Pn, with n ranging from 1 to 5. Snapshots of the

out-of-plane displacement (∆uz) of the P-wave modes are shown in Figure 4.21a. The first

mode P1 is uniform along the width, ky = 0, and, as the finite width generate quantized

wavelength values in that direction, in P2 there is a node in the center, and ky = π/w, in

P3, ky = 2π/w, and so on. Finally, we highlight that, in relation to the wave propagation

axis x̂, the P-waves alternate between symmetric (P1 and P3) and antisymmetric modes

(P2). For the P-waves, the ∆ux and ∆uy components are negligible.

Differently from what we would get in an infinite film, in a waveguide with finite width,

the in-plane elastic waves, the longitudinal (∆ux) and transverse (∆uy) components are

coupled to each other [93]. For the displacement along x̂, the elastic modes can be split

into two systems, the S-waves and A-waves, where, in a waveguide with width w, their

eigenfrequencies can be described by the solutions for the Rayleigh-Lamb equations [93],

tan(qw/2)

tan(pw/2)
= −

[
4k2xpq

(q2 − k2x)2

]±1

, (4.4)

with p2 = (ω/v∥)
2 − k2x, q2 = (ω/v⊥)2 − k2x and the exponent +1 referring to S-waves and

−1 to A-waves. The solutions for this transcendental equation were obtained numerically,

and the results are plotted in Figure 4.20b as the cyan (S-waves) and red (A-waves) curves.

The corresponding elastic eigenmodes are shown in figure 4.21b for the A- and S-waves,

respectively. It can be seen that, in the A-waves, ∆ux is antisymmetric with regard to y=0

and ∆uy is symmetric. The exact opposite happens for the S-waves, that is, the longitudinal

displacement ∆ux is symmetric and the transverse ∆uy, antisymmetric. The out-of-plane

displacement ∆uz is null in both wave types.

Magnetic modes

Now, the magnetic modes propagating in the waveguide are not easily described by an

analytical solution due to the complex shape of the magnetization of the two domains
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separated by the Néel wall, see Figure 4.18. Disregarding the effects of the curling of

the magnetization, we roughly describe the two uniform domains as waveguides with the

magnetization parallel or antiparallel to the wave vector, with half of the total width of

the stripe.

For a waveguide uniformly magnetized in x̂, with M ∥ k we obtain Backward-volume

spin wave eigenmodes, that can be described by the relation [120, 121],

ωn =
√
ωaωb, (4.5)

where

ωa = ωH + ωM

(
Dk2tot + P

k2y
k2tot

)
, (4.6)

ωb = ωH + ωM(Dk2tot + 1 − P ), (4.7)

P = 1 − 1 − ektotd

kd
, (4.8)

where ωM = µ0γMS, ωH = µ0γHext, k
2
tot = k2x + k2y, and, due to the finite width of the

waveguide, ky = nπ/weff , where weff is the effective width [102, 122, 123] and n = 1, 2, 3,

· · · . In Figure 4.20b, we plot the first two magnetic modes of this equation in purple, n1

and n2, using weff = 178 nm and µ0Hext = 22 mT. The theoretical values present a good

fit with the curves from the simulation, which shows that the approximation of the spin

waves propagating along the uniform domains are reasonable for this range of f and k.

Besides those, an extra magnetic mode is found below n1 and n2 spin waves dispersion

curves, which is linked to the Néel wall eigenmode, signed as SWNeel in Figure 4.20b. The

curling of the magnetization due to the wall creates a strong demagnetizing field in the

opposite direction of the magnetization in the center of the wall that decreases the total

effective field in that region, generating a potential well [112]. This way, this potential

creates a spin wave eigenmode that is laterally confined inside the domain-wall width,

creating a channeling effect [110, 111]. We could not find an analytic equation to fit the

curve of the Néel wall-confined mode.

The spatial distribution of the magnetization in the magnetic eigenmode is shown in

Figure 4.21c. First, as expected for the confined mode, SWNeel, the excitation is mainly

concentrated within the Néel wall, and only a minor part reaches the domains. For the n1

and n2 modes, the excitation is mainly in the domains with curved wavefronts, and, for the

latter, with one node in each domain center. In all magnetic modes, in relation to y=0,

the ∆mx and ∆mz components are symmetric, while ∆my is antisymmetric.
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4.3.4 Results and discussion: Coupled magnetoelastic modes

After showing the uncoupled elastic and magnetic modes, let us discuss the effect of the

magnetoelastic coupling. The dispersion relation shown in Figure 4.20a was obtained

by an excitation generated by an external magnetic field pulse, followed by FFT of the

response from both magnetic and elastic components. Even though the excitation was

purely magnetic, the elastic modes are also excited through the magnetoelastic interaction.

Away from the crossing points, in Figure 4.20b it can be seen that the uncoupled

equations match the curves of the coupled system, which indicates that the eigenfrequencies

are rather unperturbed by the interaction. The eigenmodes are mainly the same of the

uncoupled system but with some minor changes in their spatial distribution such as a

minor ∆uz component in S- and A-waves, and small ∆ux and ∆uy in P-waves, as the

magnetoelastic interaction couples all elastic components [121].

On the other hand, near the crossing points the curves can significantly differ from

the uncoupled equations, some of those points present magnetoelastic anticrossing gaps,

as the one pointed as “2” in Figure 4.20a. In these regions, the elastic and magnetic

modes are strongly coupled to each other, we can say it is a magnetoelastic wave, and the

curve is separated in two branches, one ranging from a pure-magnetic behavior towards a

pure-elastic, and the vice-versa for the other branch [79, 94].

Nevertheless, some of the crossing points between curves do not present an anticrossing

gap, and their curves are simply the sum of the elastic and the magnetic modes; see points

“1” and “3” in Figure 4.20a. At these points, the magnetic and the elastic systems are

both in resonance but independently. That happens when the magnetoelastic feedback

does not fulfil their resonance, and the reasons for those will be discussed in this section.

Next, we will show these three interaction points in the dispersion curve and discuss the

presence or absence of the anticrossing gap in each of them.

Crossing of SWNeel and A0 modes

First, let us discuss the gapless crossing between the Néel wall-confined magnetic eigenmode

(SWNeel) and the elastic A0 mode at 2.9 GHz and 9 µm−1, pointed as “1” in Fig. 4.20a.

The spatial distribution of the elastic displacement ∆u and magnetization ∆m amplitudes,

together with the magnetoelastic body force Fmel and the magnetic field Hmel at that point
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are shown in Figure 4.22. In this point, the ∆m and ∆u distributions are identical to the

uncoupled modes, see Figure 4.21. The magnetic modes are mainly confined to the domain-

wall width, while ∆ux is restricted to the edges and ∆uy is uniform along the ŷ direction.

Figure 4.22: Point “1” in the dispersion relation: the gapless crossing between SWNeel and

A0. Starting from the top left image, we show for the results of the numerical simulation of

the magnetoelastic coupled system, in clockwise direction, the magnetization ∆m, the body

force Fmel [N/m3], the elastic displacement ∆u [m], and the magnetoelastic magnetic field

Hmel [A/m]. This is a gapless crossing point in the dispersion relation as Fmel generated by

∆m, confined to the wall-width, is not located in the same region as the displacement ∆u

of elastic eigenmode, which is spread in the domains. Thus, the elastic and the magnetic

systems are uncoupled at that point.

To understand why this is a gapless mode, we have to look again at the magnetoelastic

feedback, summarized in Figure 4.19. The external magnetic field drives the magnetization

resonance at that point, which is limited to the Néel wall width. The magnetization

dynamics, for instance, due to the magnetostriction creates a magnetoelastic body force

density Fmel) which drives the elastic displacement resonance of the system. Finally, the

displacement, through the inverse magnetostriction, generates an effective magnetoelastic

field Hmel that drives the magnetization closing the feedback gap.
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If now, let us check how the magnetoelastic feedback is working for this case. The

external magnetic field drives the wall-confined magnetization dynamics shown in the top

left of Figure 4.22, which, for instance, generates an effective body force, shown on the top

right of the figure. If we look at the relation between Fmel and ∆u components, we can

see that the overlap between them is minimal. In the x-direction Fmel,x is enclosed in the

center, whereas ∆ux is at the edges of the stripe. In y-direction Fmel,y is also confined to

a narrow channel, and ∆uy is spread all over the width. Therefore, it is not possible for

this spatial distribution of Fmel to create a mode as the ∆u for A0.

In summary, the low overlap between the magnetoelastic body force Fmel created by

the magnetization dynamics, and the corresponding elastic displacement eigenmode do not

allow the magnetoelastic feedback cycle to effectively close in that point. Consequently,

the two modes oscillate as independent resonators, marking a gapless crossing point in the

dispersion relation.

Crossing of n1 and A0 modes

Let us check the anticrossing gap at 11.5 GHz and 30 µm−1 between the magnetic n1 and

the elastic A0 modes, see point “2” in Figure 4.20a. Unlike the previous point “1”, here

we can see that interaction between the modes creates a gap, ∆f = 0.6 GHz, separating

them into two branches.

We show in Figure 4.23, in clockwise order, the magnetization ∆m, the body force

Fmel, the displacement ∆u and the effective magnetic field Hmel for the point “2”, Which

is in the lower branch of the n1-A0 crossing. For the n1 magnetic mode ∆m is minimally

affected by the magnetoelastic interaction, compared to the uncoupled n1 mode in Figure

4.21c, i.e., the coupled mode also has an excitation within the Néel wall along the plane

waves in the uniform domains. They are symmetric in ∆mx and ∆mz, and antisymmetric

in ∆my.
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Figure 4.23: Point “2” in the dispersion relation: The coupled crossing of n1 and A0

modes. The numeric simulations at this point show a strong coupling between the magnetic

and elastic systems as the Fmel generated from the magnetization dynamics ∆m not only

presents a high overlap to the displacement ∆u of the A0 elastic mode, but also they both

carry the same symmetry, antisymmetric for the x̂ and ẑ components, and symmetric in ŷ.

The same happens between the effective magnetic field Hmel and the magnetization ∆m,

effectively closing the magnetoelastic feedback cycle, creating an anticrossing gap in the

dispersion curve.

On the other hand, the ∆u modes are affected by magnetoelastic interaction, compared

to the A0 mode in Figure 4.21b. One exception is ∆uy, which is composed of plane

waves with constant amplitude along the width, just like in the uncoupled mode. In ∆ux,

besides the edge excitation, an extra antisymmetric displacement occurs in the region of

the domains and has a null ∆ux displacement in the domain wall region. This extra

antisymmetric excitation in the domains, null in the Néel wall, is also present in ∆uz,

which is null in the uncoupled case.

These extra amplitudes in the elastic eigenmode and the anticrossing gap can be under-

stood using the dynamics of the magnetoelastic body force Fmel and the effective magnetic

field Hmel. In Figure 4.23, the magnetic ∆m mode is excited by the external magnetic
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field pulse, which for instance, generates the corresponding Fmel shown in the top right

corner. Comparing Fmel to the displacement ∆u in this point, in Fmel,x one sees that both

the antisymmetric amplitudes at the edges and the extra amplitude inside the domains are

similar to what we find in ∆ux. Also, besides the Néel wall region, Fmel,y is symmetric and

overlaps with ∆uy, so in this case, the body force can indeed be excite the elastic mode.

Also, the elastic displacement generates an effective magnetoelastic field Hmel, see Eq.

2.117, which is shown in the bottom left of Figure 4.23. Similarly, Hmel overlaps to the

∆m modes, Hmel,x and Hmel,z are symmetric and Hmel,y antisymmetric, just like the cor-

responding magnetic modes. This way, the magnetoelastic feedback cycle closes, and the

magnetic dynamics drive the elastic resonance and vice-versa. Therefore, the two modes

oscillate as coupled resonators, and a gap is formed in the crossing point of the dispersion

relation.

Crossing of n1 and S1 modes

Another interesting crossing in the relation dispersion occurs at point “3”, which corre-

sponds to the crossing of the magnetic n1 and the elastic symmetric S1 modes (12.8 GHz

and 16 µm−1). It is worth noting that here there is a net overlap of the body force and

displacement and between the effective field and the magnetization, but it is still a gapless

mode. Let us discuss why it happens by examining the spatial distribution of the coupled

elastic and magnetic modes, as shown in Figure 4.24.
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Figure 4.24: Point “3” in the dispersion relation: the gapless crossing of n1 and S1 modes.

In this crossing point, the simulations show that Fmel does overlap with ∆u and Hmel

overlaps ∆m, but the elastic eigenmode generated by Fmel is not equivalent to S1, which

the resonant elastic mode at that point. For instance, the ∆u mode has opposite symmetry

from what we would expect for the S1 eigenmode, which would be symmetric in ∆ux
and antisymmetric in ∆uy. This way, the elastic and the magnetic systems behave as

independent oscillators, and no magnetoelastic gap is formed in the dispersion.

As in the previous cases, the ∆m mode does not change compared to the uncoupled

case; compare the top left image in Figure 4.24 to the n1 mode in Figure 4.21c. However,

the picture is different in the elastic displacement; the ∆u mode obtained here is distinct

from the uncoupled S1 mode, see Figure 4.21b. The ∆ux component of S1 is symmetric

while ∆uy is antisymmetric, and the opposite is seen in the crossing point of the coupled

system, ∆ux is antisymmetric and ∆uy is symmetric. Thus, the coupled elastic mode

generated by the magnetoelastic interaction is not related to a pure elastic resonance at

that point, which is the S1 eigenmode.

The reason for such a different elastic mode arises from the shape of the magnetoelastic

body force, as seen from the top right part of Figure 4.24. This body force is a consequence

of the magnetization pattern, which has the Néel wall and generates a Fmel that has an

93



antisymmetric pattern in x̂ and ẑ, and symmetric in ŷ. This structure of the body force

does not allow it to excite any mode that is symmetric in x̂ direction. Therefore the S-

waves cannot get coupled to this magnetic mode, and there is no gap as can be seen from

the dispersion relation, see Figure 4.20.

Thus, the magnetoelastic feedback cycle cannot be closed here as the magnetoelastic

body force, created by the magnetization pattern, has a different symmetry from the

resonant elastic mode. This way, the body force excites an elastic mode that is not resonant,

and the two systems cannot feedback themselves through the magnetoelastic interaction

generating a gapless crossing.

Finally, the symmetry analysis can also be extended for the behaviour of the P-waves.

The even-numbered P-modes (P2 is shown in Figure 4.21a) present an antisymmetric uz

pattern, which allows them to successfully interact with the magnetoelastic body force

created by the magnetization dynamics, closing the feedback cycle, thus an anticrossing

gap can be seen in Figure 4.20. On the other hand, the odd-numbered P-modes (P1 and P3

in Figure 4.21a) are symmetric in uz, which would not allow an effective overlap with the

antisymmetric body force, as can be seen in P1 and P5 modes, with gapless crossing points

in Figure 4.20. The exception is the P3 mode that presents an anticrossing gap in the

dispersion curve, but at that point the A1 curve is simultaneously crossing the magnetic

one. So, even though the P3 out-of-plane displacement is symmetric in uz and does not

effectively overlap with the body force, the A1 in-plane displacement is antisymmetric in

ux and symmetric in uy, just like the body force, and thus the magnetoelastic feedback

cycle is effectively closed there.

4.3.5 Conclusions

In summary, we have simulated the magnetoelastic modes of a CoFeB waveguide containing

a Néel wall. We have calculated the eigenfrequencies and mode profiles of the pure elastic

modes, the out-of-plane P-waves, and the in-plane S- and A-waves. It was also done for

the pure magnetic modes present in the Néel wall, that is one lower branch corresponding

to the wall-confined mode with strictly-positive group velocity.

The dispersion relation for the coupled magnetoelastic showed a good agreement with

the uncoupled analytical equations, showing that, far from the crossing points the eigen-

modes only slightly affected by the magnetoelastic interaction. On the other hand, near
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the crossing points, the magnetic and elastic modes can either generate coupled oscillators

marked by a gap in the dispersion relation separating the curves into two branches or

oscillate independently, forming a gapless crossing point.

We showed that the wall-confined spin wave could not be strongly coupled to the

elastic modes, as the body force generated by the magnetization dynamics is also strongly

confined to the domain wall width. Thus the overlap with the resonant elastic displacement

is minimum, and the magnetoelastic feedback cycle cannot be effectively closed. Also, the

other eigenmodes of the domain structure, due to its geometry, generate a body force that

is antisymmetric in x̂ and ẑ, and symmetric in ŷ, and it has the opposite symmetry of the

S-waves displacement; thus they cannot effectively couple to each other, generating gapless

crossing points.

Finally, concerning the possibility of employing elastic properties in developing novel

spintronic devices, we have shown the conditions to obtain a strong magnetoelastic cou-

pling. Not only the magnetoelastic body force and effective magnetic field should be non-

zero for all components, but also a large overlap between Fmel and ∆u and between Hmel

and ∆m should be present, with the same symmetry, to generate a strong magnetoelastic

feedback cycle that can keep the two systems in a coupled oscillation.
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Chapter 5

Summary and Perspectives

Throughout this thesis, we have explored the influence of the magnetoelastic interaction on

the propagation of spin waves in thin films. Our investigations have included the effects of

external strain on magnetization dynamics, the conversion of magnetic to elastic excitations

and vice versa, and the hybrid modes formed by the coupling of elastic and magnetic waves.

By utilizing MuMax3 simulation software and its magnetoelastic extension, we have

been able to gain valuable insights into the behavior of magnetoelastic excitations in thin

films, with potential applications in the development of novel magnonic devices. In this final

chapter, we will summarize the key findings of our research and discuss their implications

for the field of magnonics.

5.1 Summary

The first simulation investigated the generation and propagation of spin waves in long Ni

stripes in response to an external propagating strain wave. Through our simulations, we

found that the most efficient excitation of spin waves occurs when the static magnetization

is at 45 degrees in relation to the wave vector. We also observed that the propagation

of the level of attenuation of the acoustic wave has a significant impact on the spin-wave

propagation. When the acoustic wave rapidly decays, the spin wave is able to propagate

freely but only over a short distance, whereas when the acoustic wave propagates over the
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whole Ni stripe, the spin waves are carried by the acoustic waves and propagate over longer

distances.

Our simulations also explored the potential use of voltage measurements, specifically

through the ISHE voltage, to probe the spin-wave propagation. We determined the optimal

placement of contact pads to measure both the AC and DC components in films, and

obtained spin and charge current maps at the Ni/Pt interface and on the Pt line. These

findings help to further understand the AC and DC acoustic-driven spin pumping effect.

The second simulation aimed to investigate the conversion of a spin wave to an elas-

tic wave in an unbounded thin film using the magnetoelastic extension of MuMax3. The

results obtained were in agreement with the theoretical predictions, demonstrating that

only the in-plane transverse elastic component (uy) is coupled to the magnetization dy-

namics, leading to the formation of an anticrossing gap in the dispersion relation. The

intensity of the external magnetic field strongly affected the position of the gap, and by

fixing the excitation frequency, quasi-elastic, quasi-magnetic, and magnetoelastic behaviors

were observed for certain magnetic field intensities.

To obtain the conversion of a spin wave to an elastic wave, a setup with a spatially

varying static magnetic field was designed. A wavepacket was excited in the quasi-magnetic

region, and as it propagated, due to energy conservation, its frequency remained constant

while its wavenumber gradually changed, eventually reaching the quasi-elastic region. The

results showed that the spin wave is effectively converted to an elastic wave, as evidenced by

the amplitudes and energies of the system. These findings have important implications for

the development of novel magnonic devices, where the conversion of magnetic excitations

to elastic waves can be utilized for signal processing and transmission.

In the third simulation, the focus was on the magnetoelastic modes of a CoFeB waveg-

uide containing a Néel wall. The eigenfrequencies and mode profiles of the pure elastic

modes, P-waves, S-waves, and A-waves, were calculated, as well as the pure magnetic

modes, which include the Néel wall-confined mode and the backward volume modes in the

uniform domains. Far from the crossing points, the dispersion relation for the coupled

magnetoelastic modes showed good agreement with the uncoupled analytical equations.

However, near the crossing points, the magnetic and elastic modes can either generate

coupled oscillators marked by an anticrossing gap in the dispersion relation or oscillate

independently, forming a gapless crossing point.

It was shown that the wall-confined spin wave could not be strongly coupled to the
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elastic modes, as the body force generated by the magnetization is also strongly confined

to the domain wall width. Thus the overlap to the elastic displacement is minimum, and the

magnetoelastic feedback cycle cannot be effectively closed. Also, the magnetic eigenmodes

that generate a body force that is antisymmetric in x̂ and ẑ, and symmetric in ŷ, and thus

have the opposite symmetry of the S-waves displacement; cannot effectively couple to each

other, generating gapless crossing points.

Finally, it was shown that to obtain a strong magnetoelastic coupling and form an

anticrossing gap, not only should the magnetoelastic body force and effective magnetic

field be non-zero, but also a large overlap between Fmel and ∆u and between Hmel and ∆m

should be present, with the same symmetry, to generate a strong magnetoelastic feedback

cycle that can keep the two systems in a coupled oscillation. Overall, the simulation

provided insights into the conditions required for a strong magnetoelastic coupling in a

CoFeB waveguide containing a Néel wall.

In conclusion, the micromagnetic simulations presented in this section explored the

effect of the magnetoelastic interaction in the propagation of spin waves, shedding light

on the physics of hybrid interactions between magnons and phonons. These findings are

important for the development of novel magnonic devices that rely on the magnetoelastic

coupling, which can provide new functionalities and improved performance.

5.2 Perspectives

The simulations presented in this chapter have provided valuable insights into the magne-

toelastic interaction and its effect on the propagation of spin waves. These findings open

up exciting possibilities for future work, including experimental studies of the excitation

of spin waves with interdigital transducers on piezoelectric substrates under constant or

spatially varying magnetic fields. Such experiments would enable the exploration of the

magnetoelastic coupling in more complex geometries and magnetic structures, and help to

further refine our understanding of the underlying physics.

In addition to the experimental possibilities mentioned earlier, the results of this the-

sis also open up new avenues for micromagnetic simulations. One of these is the study of

non-reciprocity in magnetoelastic waves, which can be achieved through the Dzyaloshinskii-

Moriya interaction (DMI), among other mechanisms. This can be useful for the develop-
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ment of spin wave circulators and couplers, which are essential components in magnonic

devices for information processing and storage.

Another promising area of research is the interaction between magnetoelastic waves

and magnetic textures, such as magnetic vortices or skyrmions. These structures have

received significant attention due to their potential for application in race-track memories.

The interaction between magnetoelastic waves and these magnetic textures can potentially

lead to novel device concepts and improved performance.

These ideas for future work are summarized below:

• Interdigital transducers for efficient excitation and detection of magnonic signals:

Interdigital transducers can provide an efficient means of exciting and detecting

magnonic signals. This can involve exploring the design and optimization of in-

terdigital transducers for different materials and structures, and studying the effects

of various parameters such as transducer spacing, electrode width, and material prop-

erties.

• Magnetoelastic interaction to add non-reciprocity: The magnetoelastic interaction

can be used to add non-reciprocity to create magnonic circulators or couplers, which

are essential components in magnonic devices for information processing and storage.

This can involve studying the design and optimization of magnonic circulators or

couplers for different materials and structures, and exploring potential applications.

• Magnetoelastic waves and domain walls for race-track memory devices: The use

of magnetoelastic waves and domain walls for creating race-track memory devices

can provide a promising avenue for the development of next-generation data storage

technologies. This can involve studying the interaction between magnetoelastic waves

and domain walls, and exploring potential applications of this interaction in areas

such as spintronic memory devices.

• Magnon-phonon interaction in quasi-particle quantum mechanics: Investigating the

magnon-phonon interaction from the perspective of quasi-particle quantum mechan-

ics can reveal deeper insights into the underlying physics. This can involve exploring

the interaction between magnons and phonons in different materials and structures

and studying the effects of various parameters such as temperature, magnetic field,

and pressure.
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• Chirality of phonons generated from magnons in spatially-varying magnetic fields:

Studying the chirality of phonons generated from magnons in spatially-varying mag-

netic fields can lead to a better understanding of the magnetoelastic interaction. This

can involve investigating the relationship between the chirality of phonons and the

magnetic structure and properties of the material, and exploring potential applica-

tions.

• Effect of magnetoelastic wave propagation in complex magnetic structures: The effect

of magnetoelastic wave propagation in complex magnetic structures, such as domain

walls or films coupled by exchange bias, can have important implications for the

development of novel devices. This can involve studying the interaction between

magnetoelastic waves and magnetic textures, and exploring potential applications of

this interaction.

Overall, the simulations presented in this thesis demonstrate the potential of magne-

toelastic waves for a wide range of applications in information technology. The coupling

between magnetic and elastic degrees of freedom provides a rich physics that can be ex-

ploited for the design of new devices and the exploration of fundamental physical phenom-

ena. As such, future work in this area has the potential to significantly impact the field of

magnonics and spintronics.
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[35] S. Klingler, P. Pirro, T. Brächer, B. Leven, B. Hillebrands, and A. V. Chumak.

Design of a spin-wave majority gate employing mode selection. Applied Physics

Letters, 105(15):152410, October 2014. doi:10.1063/1.4898042.

[36] Andrey A. Nikitin, Alexey B. Ustinov, Alexander A. Semenov, Andrii V. Chumak,

Alexander A. Serga, Vitaliy I. Vasyuchka, Erkki Lähderanta, Boris A. Kalinikos, and

Burkard Hillebrands. A spin-wave logic gate based on a width-modulated dynamic

magnonic crystal. Applied Physics Letters, 106(10):102405, March 2015. doi:10.

1063/1.4914506.

[37] Weichao Yu, Jin Lan, and Jiang Xiao. Magnetic logic gate based on polar-

ized spin waves. Physical Review Applied, 13(2), February 2020. doi:10.1103/

physrevapplied.13.024055.

[38] Y. Au, E. Ahmad, O. Dmytriiev, M. Dvornik, T. Davison, and V. V. Kruglyak. Res-

onant microwave-to-spin-wave transducer. Applied Physics Letters, 100(18):182404,

April 2012. doi:10.1063/1.4711039.

105

https://doi.org/10.1038/ncomms5700
https://doi.org/10.1038/ncomms5700
https://doi.org/10.1103/physrevlett.120.097702
https://doi.org/10.1103/physrevlett.120.097702
https://doi.org/10.1103/physrevb.101.054436
https://doi.org/10.1103/physrevlett.112.047203
https://doi.org/10.1103/physrevlett.112.047203
https://doi.org/10.1103/physrevx.5.041049
https://doi.org/10.1063/1.4898042
https://doi.org/10.1063/1.4914506
https://doi.org/10.1063/1.4914506
https://doi.org/10.1103/physrevapplied.13.024055
https://doi.org/10.1103/physrevapplied.13.024055
https://doi.org/10.1063/1.4711039


[39] Giacomo Talmelli, Thibaut Devolder, Nick Träger, Johannes Förster, Sebastian
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Riedo, and Riccardo Bertacco. Nanoscale spin-wave circuits based on engineered

reconfigurable spin-textures. Communications Physics, 1(1), September 2018. doi:

10.1038/s42005-018-0056-x.

[51] T. Schneider, A. A. Serga, T. Neumann, B. Hillebrands, and M. P. Kostylev. Phase

reciprocity of spin-wave excitation by a microstrip antenna. Phys. Rev. B, 77:214411,

Jun 2008. URL: https://link.aps.org/doi/10.1103/PhysRevB.77.214411, doi:

10.1103/PhysRevB.77.214411.

[52] O. Rousseau, B. Rana, R. Anami, M. Yamada, K. Miura, S. Ogawa, and Y. Otani.

Realization of a micrometre-scale spin-wave interferometer. Scientific Reports, 5(1),

May 2015. doi:10.1038/srep09873.

[53] M. Collet, O. Gladii, M. Evelt, V. Bessonov, L. Soumah, P. Bortolotti, S. O. Demokri-

tov, Y. Henry, V. Cros, M. Bailleul, V. E. Demidov, and A. Anane. Spin-wave prop-

agation in ultra-thin YIG based waveguides. Applied Physics Letters, 110(9):092408,

February 2017. doi:10.1063/1.4976708.

[54] D. A. Bozhko, V. I. Vasyuchka, A. V. Chumak, and A. A. Serga. Magnon-phonon

interactions in magnon spintronics (review article). Low Temperature Physics,

46(4):383–399, April 2020. doi:10.1063/10.0000872.

107

https://doi.org/10.1088/1361-6463/aa6a65
https://doi.org/10.1088/1361-6463/aa6a65
https://doi.org/10.1103/physrevapplied.6.064027
https://doi.org/10.1038/s42005-018-0052-1
https://doi.org/10.1038/s42005-018-0056-x
https://doi.org/10.1038/s42005-018-0056-x
https://link.aps.org/doi/10.1103/PhysRevB.77.214411
https://doi.org/10.1103/PhysRevB.77.214411
https://doi.org/10.1103/PhysRevB.77.214411
https://doi.org/10.1038/srep09873
https://doi.org/10.1063/1.4976708
https://doi.org/10.1063/10.0000872


[55] R. M. White and F. W. Voltmer. Direct piezoelectric coupling to surface elastic waves.

Applied Physics Letters, 7(12):314–316, December 1965. doi:10.1063/1.1754276.

[56] Y. Yahagi, B. Harteneck, S. Cabrini, and H. Schmidt. Controlling nanomagnet

magnetization dynamics via magnetoelastic coupling. Physical Review B, 90(14),

October 2014. URL: https://doi.org/10.1103/physrevb.90.140405.

[57] C. Berk, Y. Yahagi, S. Dhuey, S. Cabrini, and H. Schmidt. Controlling the influence

of elastic eigenmodes on nanomagnet dynamics through pattern geometry. Journal

of Magnetism and Magnetic Materials, 426:239–244, March 2017. doi:10.1016/j.

jmmm.2016.11.057.

[58] Cassidy Berk, Mike Jaris, Weigang Yang, Scott Dhuey, Stefano Cabrini, and Hol-

ger Schmidt. Strongly coupled magnon–phonon dynamics in a single nanomag-

net. Nature Communications, 10(1), jun 2019. URL: https://doi.org/10.1038/

s41467-019-10545-x.

[59] J. Holanda, D. S. Maior, A. Azevedo, and S. M. Rezende. Detecting the phonon spin

in magnon–phonon conversion experiments. Nature Physics, 14(5):500–506, April

2018. doi:10.1038/s41567-018-0079-y.

[60] S. Davis, A. Baruth, and S. Adenwalla. Magnetization dynamics triggered by surface

acoustic waves. Applied Physics Letters, 97(23):232507, dec 2010. URL: https:

//doi.org/10.1063%2F1.3521289, doi:10.1063/1.3521289.

[61] Ayan K. Biswas, Supriyo Bandyopadhyay, and Jayasimha Atulasimha. Acoustically

assisted spin-transfer-torque switching of nanomagnets: An energy-efficient hybrid

writing scheme for non-volatile memory. Applied Physics Letters, 103(23):232401, dec

2013. URL: https://doi.org/10.1063%2F1.4838661, doi:10.1063/1.4838661.

[62] L. Thevenard, I. S. Camara, S. Majrab, M. Bernard, P. Rovillain, A. Lemâıtre,
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tos. Large nonreciprocal propagation of surface acoustic waves in epitaxial fer-

romagnetic/semiconductor hybrid structures. Phys. Rev. Applied, 13:044018, Apr

2020. URL: https://link.aps.org/doi/10.1103/PhysRevApplied.13.044018,

doi:10.1103/PhysRevApplied.13.044018.
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Appendix A

Experimental work

The following appendix provides information on the experimental results obtained during

the course of this study, the fabrication and characterization of the samples. Although

these results were not conclusive and were not included in the main text due to the ongoing

nature of the work, they are presented here as a reference for future investigations in the

field.

The samples were fabricated using thin film growth and nanolithography techniques,

and characterized using a range of techniques, including X-ray diffraction, electron mi-

croscopy, and Brillouin light scattering. This appendix provides descriptions of the exper-

imental procedures and techniques used, as well as the obtained results and their interpre-

tation.

A.1 Introduction

The present work aims to experimentally study the elastic excitation of spin waves due

to the magnetoelastic interaction for magnonic applications. The use of surface acoustic

waves (SAWs) to excite spin dynamics has attracting interest for the fundamental aspects

of the interaction between the magnon and phonon quasi-particles but also for the techno-

logical prospective of Joule effect-free computing devices. In this project we employed an

experimental approach to elastically excite the magnetization of magnetoelastic samples.

118



In the preliminary results we have fabricated crystalline piezoelectric thin films with

the sputtering technique, and characterized by X-ray diffraction and scanning electron mi-

croscopy. Electron-beam lithography was employed to fabricate interdigital transducers on

the piezoelectric/magnetostrictive (ZnO/YIG) film. Electrical transmission measurements

and Brillouin light scattering measurements have shown that the ferromagnetic resonance

of the YIG was excited but no elastic signal was found, showing that the SAWs presented

a strong attenuation either due to the cristallinity of the piezoelectric film and/or due to

the electrical measurement system.

A.2 Objectives

This study aims to investigate the elastic excitation of spin-waves and the magnetoelastic

interaction in coupled piezoelectric-magnetostrictive thin films through a combination of

electrical transmission and light scattering experiments. The objective is to fabricate sur-

face acoustic wave devices that are coupled to magnetostrictive materials. To achieve this

goal, several steps must be undertaken.

Initially, high-quality piezoelectric ZnO films will be obtained via magnetron sputter-

ing by depositing ZnO under different conditions and performing thermal treatment of

the samples under varying annealing temperatures. Subsequently, scanning electron mi-

croscopy (SEM) and X-ray diffraction (XRD) will be used to verify the orientation of grains

and crystallinity, and the optimal parameters for deposition and annealing will be selected.

Interdigital transducers (IDTs) will be fabricated on the ZnO piezoelectric films using

electron-beam lithography. This will involve performing electron-beam lithography steps

under different exposition parameters to obtain the desired pattern on the ZnO film, de-

positing metal, and performing lift-off. SEM images will be obtained to verify the quality

of the structures, and the optimal fabrication parameters will be determined.

Finally, the final sample will consist of a bulk YIG magnetic film that is deposited

via liquid phase epitaxy on a GGG substrate. The ZnO deposition and IDT patterning

will be performed on this sample using the aforementioned optimal parameters. Electrical

transmission experiments will be conducted between IDTs, with and without the presence

of an external magnetic field. Additionally, Brillouin light scattering experiments will be

performed to probe the coupling of spin-waves to the surface acoustic waves that are excited

by the IDTs.
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A.3 Methods

A.3.1 Sample fabrication

Magnetron sputtering

The deposition of films was achieved by the magnetron sputtering technique in high vacuum

chamber, with base pressure in the order of 10−8 Torr. A 6-targets AJA International mag-

netron sputtering was used at the multi-user laboratory LABSURF/LABNANO/CBPF,

controled by the Phase II AJA software. The targets are connected to either DC or RF

power sources, and several parameters can be controlled for the deposition, such as the

source power (or current), deposition time, working gas (argon and oxygen were employed

in this work), deposition pressure and temperature.

Before the sample deposition, a deposition rate calibration step is performed by deposit-

ing the target material on a silicon substrate for a fixed amount of time under the exact

deposition conditions. The film thickness, and thus the deposition rate, is obtained by

an X-ray reflectivity measurement in a PANanalytical X’Pert PRO (Philips, Panalytical)

diffractometer, with a Cu-Kα1 source (0.154056 nm wavelength).

Nanolithography

Optical and electron-beam lithography techniques were employed for the fabrication of the

interdigital transducers (IdTs) at the LABNANO/CBPF facilities.

The optical lithography was used for obtaining samples with dimensions higher than

10 µm, using a Heidelberg µPG 101 Laser Writer machine. For the samples used in this

work a positive AZ1505 Clariant resist, with spectral photosensitivity between 310 and 440

nm were deposited in a class 1000 cleanroom with a spin coating technique. The resist 0.5

µm thickness was achieved by a 4000 rpm rotation for 40 seconds, followed be a thermal

treatment at 100oC at a hot plate for 60 seconds. The resist is then exposed to the laser

in the areas determined by a LibreCad software file, with a optimum power and exposure

time, which have to be calibrated before the exposition. After the laser exposition, a

Clariant AZ300 MIF Photoresist developer is applied for 60 seconds at the sample in order

to solubilize only the laser-exposed areas. The metal deposition step is then performed,
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and a lift-off step is done by submerging the sample in acetone, in a ultrasonic bath, until

the resist is fully dissolved and the geometry is imprinted on the substrate.

The electron-beam lithography with a Raith e-LiNE lithographic system was used for

obtaining structure up to 500 nm in size. A working distance of 5.4 mm, 30 µm aperture

size and a writefield of 100 µm were emṕloyed in this work. A positive AR-P 672.045 resist

from ALLRESIST was spin-coated to the substrate at 2000 rpm for 60 seconds, then places

in a hot place at 150o C for 3 minutes. The sample is then places in the Raith e-LiNE, where

image calibration steps are performed, i.e. focus, astigmatism and writefield alignments,

until obtaining a spot size around 15 nm. Then an e-beam exposure is performed with a

pre-calibated dose, typically between 80-110 µC/cm2. The sample is then developed at a

70% isopropyl alcohol 30% water mixture for 60 seconds. The desired material is sputtered

on the substrate, and a lift-off with acetone is performed. For insulating substrate, such

as ZnO, before the e-beam exposure, a 3 nm gold conducting layer is deposited on top of

the resist to avoid charging effects.

A.3.2 Sample characterization

X-ray diffraction

X-ray diffraction was used to obtain the crystal structure of the samples. A PANanalytical

X’Pert PRO (Philips, Panalytical) diffractometer with a Cu-Kα1 source, with a 0.154056

nm wavelength was employed.

Scanning Electron Microscope

A Jeol 7100FT Field Emission Gun (FEG) scanning electron microscope (SEM) with 1.2

nm resolution (30 kV) was used for obtaining images of the surface and cross section of

the samples.

Brillouin Light Scattering

We employed wave-vector-resolved Brilouin light scattering (BLS) spectroscopy in order

to measure the magnetic and elastic waves signal in the device under RF excitation. The

experimental set-up is depicted in figure A.1.
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Figure A.1: Wave-vector-resolved Brillouin light scattering (BLS) spectroscopy experimen-

tal setup. The inset shows the conservation of wave-vector under the inelastic scattering

of the incident laser light. Extracted from [59] (modified).

A silver film was attached behind the YIG/GGG device in order to scatter the incident

laser ray inside the sample. The scattered light is collimated by an objective lens and is

guided to a Fabry-Perot interferometer for frequency analysis.

In this configuration, from the conservation of angular momentum we obtain that the

measured signal wave-vector is

k = 2kLn sinα, (A.1)

where kL is the laser wave-vector, n is the index of refraction and α is the incidence angle.

Thus, the wave-vector-resolution is obtained by varying the incidence angle α. As we

employed a 532 nm wavelength laser and considering the YIG index of refraction as n =

2.2, we obtain the relation k = (5.197 × 107) sinα m−1 for our analysis.
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A.4 Preliminary results

The experimental work aimed to achieve surface acoustic wave devices in order to excite

the dynamics of adjacent magnetic thin films. In order to do so, we started by obtaining

high quality piezoelectric films, ZnO was the choice, from magnetron sputtering deposition.

Then, producing metallic interdigital transducers (IdTs) from electron-beam lithography

and lift-off onto the insulating piezoelectric surfaces. And finally, by doing electrical con-

tacts in the transducers and performing transport and light scattering experiments.

A.4.1 Device fabrication

Figure A.2: XRD spectra of ZnO films deposited at room temperature (RT) without

annealing at 100 W power for different Ar/O2 proportion atmospheres. The film deposited

without oxygen (50/0) was the only one not to show the c-axis (002) orientation.

We employed the magnetron sputtering technique in order to deposit high quality

piezoelectric ZnO films on either Si or YIG/GGG substrates. The deposition conditions

and thermal treatment were varied in order to optimize the c-axis orientation of the film,

seen at the (002) crystalline direction in the XRD spectrum. The film deposition rate was

first calibrated for each deposition condition, and then a 1 µm ZnO film was deposited and

its XRD spectrum was obtained.
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(a) (b)

Figure A.3: XRD spectra of ZnO films deposited at room temperature after thermal treat-

ment at (a) 400C and (b) at 600C for one hour at 100 W power for different Ar/O2

proportion atmospheres.

We started by depositing at room temperature (RT) the ZnO films over Si by RF-

magnetron sputtering at 100 W power, under a 5 mTorr base pressure with different Ar/O2

flux (sccm) proportions: (a) pure Ar (50/0), (b) 50/10 and (c) 50/20 ratio atmosphere,

without thermal treatment. The corresponding XRD spectra of these samples are shown

in figure A.2. Different from the the pure Ar (50/0) atmosphere sample, which did not

present the c-axis orientation, the mixed Ar+O2 were indeed oriented in that direction.

Figure A.4: These FWHM of the (002) peak as a function of the 02 fraction and the

annealing temperature are summarized.
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We then checked the effect of a post-deposition thermal treatment for one hour at

two different temperatures, either (a) 400C or (c) 600C, see figure A.3. The 50/0 Ar/O2

samples did not become oriented after the annealing, but the other samples crystallinity

was increased, and the 600C temperature was more effective than the 400C treatment,

especially in the 50/10 sample.

In order to check the grain orientation in these samples, we obtained scanning electron

microscopy (SEM) images of their cross section, by cleaving after freezing with liquid

nitrogen. The images of the cleaved regions is shown in figure A.5. As expected, in the

pure argon (50/0) samples, a and b, no grain orientation can be seen. Differently, the other

samples a c-axis orientation is present at different levels. The most distinct sample is, just

like from the XRD results, the 50/10 Ar/O2 with annealing at 600C, figure A.5d.
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(f)

SiO2

ZnO

ZnO, TT: 600C, Ar/O2: 50/20

Figure A.5: SEM images of the cross section of the ZnO/SiO2 film at different deposition

conditions.
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(a) (b)

Figure A.6: (a) XRD spectra of the ZnO deposited on SiO2 substrates with a 50/10 Ar/O2

atmosphere ratio and thermal treatment for one hour at 600C under different RF power

and deposition temperature. (b) XRD spectra of the final ZnO films. The FWHM were,

respectively, 0.44 and 0.42 for SiO2 and YIG/GGG substrates.

The film quality was further enhanced by having the deposition at a 200C temperature

and lowering the RF power to 50 W, which reduced the deposition rate, see figure A.6a,

where the FWHM could be reduced from 0.54 to 0.44. These were defined as the final

optimum deposition conditions in our samples, see table A.1, and these conditions were

tested in both the SiO2 and the YIG/GGG subtrates, where the FWHM were respectively

0.44 and 0.42, as shown in figure A.6b.

RF power 50 W

Base pressure 6 mTorr

Ar/O2 ratio 50/10 (sccm/sccm)

Deposition temperature 200C

Annealing temperature 600C

Film thickness 1 µm

Table A.1: Final ZnO magnetron sputtering deposition conditions to optimize the (002)

grain orientation.

Interdigital transducers were then fabricated on top of the ZnO films from electron-

beam lithography. As the films are insulating, in order to perform the e-beam exposition,
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a 3 nm gold conductive layer had to be deposited on top of the resist. After exposition

and development, a 60 nm gold layer was deposited and a lift-off step was performed. The

final structures are shown in figure A.7, where 550 nm fingers with periodicity p = 4 µm,

which corresponds a wavelength of λ = 2p = 8 µm.

(a) (b)

Figure A.7: Au interdigital transducers fabricated by electron-beam lithography and lift-

off. The fingers were designed to have 500 nm width, with 4 µm separation.

The final sample model is shown in figure A.8. The process of fabrication can be

summarized as:

1. YIG samples deposited on GGG substrates either via liquid phase epitaxy (LPE),

crystalline bulk with 7 µm thickness, or by magnetron sputtering, 500 nm thick thin

film, were used.

2. 1 µm of ZnO film was deposited via magnetron sputtering, keeping the middle of the

sample protected by using a kapton tape.

3. Electron-bean lithography was performed on top of the ZnO islands in order to create

the IdTs and contact pads geometries.

4. Magnetron sputtering of gold followed by a lift-off process were done to create the

transducers.
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Figure A.8: Final sample model. Interdigital transducers (IdTs) on top of two ZnO islands

deposited on a YIG/GGG substrate.

A.4.2 Device characterization

The electrical transmission characterization was done by connecting the contact pads to

SMA connectors using silver conductive ink, see figure A.9. Then the input IdT, was then

connected to a RF source and the output IdT was connected to a rectifying diode and the

output signal was measured by a DC voltmeter. A resistance measurement was done in

order to assure that there was no electrical contact between the two IdTs.

Figure A.9: The experimental IdTs electrical transmission setup. The input IdT is con-

nected to a RF signal generator, and the output IdT, to a rectifying diode and a DC

voltmeter.
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a)

b)

Figure A.10: The rectified DC electrical voltage measured at the output IdT without a

bias magnetic field for several input amplitudes for (a) the thick YIG-LPE sample and (b)

for the thin YIG-sputtering sample.

The potential difference amplitude measured at the output IdT as a function of the

frequency of the input IdT is shown in figure A.10 for several input amplitudes, without

a bias magnetic field. For the crystalline thick YIG-LPE sample the output signal, figure

A.10a, presents a minor peak at 1.2 GHz and a series of peaks at 2.8, 5.6, 6.9 and 8.3 GHz.

The thin YIG-sputtering, figure A.10b, only two major peaks are present, at 2.8 and 7.5

GHz.

In order to verify the transmission of surface acoustic waves from the IdTs a pulsed

experiment was performed. Instead of a continuous sinusoidal RF excitation, we excited the

input IdT with 100 ns wave packets with a fixed frequency f and the output was connected
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to an oscilloscope. This signal was obtained by doing an external modulation with 100

ns wide rectangular function with 2 µs separation at the sinusoidal signal. We expected

the wave packet to be detected in the output with a delay time of 885 ns, as the IdTs

separation is 3.4 mm and the YIG sound velocity 3.84 km/s. This output signal, however,

was not detected. We attribute this to either the acoustic wave is strongly attenuated

along the propagation or it is not even excited in our system. We intend to address this

problem by enhancing the ZnO film crystallinity and improving our electric measurement

setup.

a) b)

c)

Figure A.11: The rectified DC electrical voltage measured at the output IdT with an

applied bias magnetic field for the thin YIG-sputtering sample for several frequencies.

Nevertheless, in order to investigate the physical origin of the output signal shown in

figure A.10, we repeated the experiment, an input RF signal with an output connected

to a rectifying diode and voltmeter, under a non-null external magnetic field in the YIG-
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Figure A.12: The external magnetic field with maximum absorption measured at the

output IdT for the YIG-sputtering sample plotted as a function of the input frequency in

the regions with significant transmission. The data is compared to Kittel’s equation for

ferromagnetic resonance.

sputtering sample, see figure A.11. For each frequency, a clear absorption can be seen at

an specific magnetic field.

As the output signal only presents a strong signal at specific frequency ranges, see

figure A.10b, we can only obtain the absorption magnetic field within those ranges. We

then plotted the positive magnetic field where the absorption takes place as a function

of the frequency, see figure A.12. The result is compared to the ferromagnetic resonance

frequency of the YIG sample, obtained from Kittel’s formula, 2πf =
√
ωH(ωH + ωMωH),

with ωM = γ4πMs, ωH = γ(H0 +HA +Dk2), where γ is the gyromagnetic ratio, 4πMs is

the saturation magnetization, HA is the anisotropy field and D is the exchange parameter,

using the parameters for YIG [59]: γ = 17.59 MHz/Oe, 4πMs = 1.76 kG, HA = 7.8 Oe

and D = 5.4 × 10−9 Oe cm2.

This way we attribute the signal measured at the output IdT under an RF excitation

in the input IdT to be of electromagnetic nature and not of elastic nature. The alternate

signal in the input IdT creates a magnetic field that excites the ferromagnetic resonance
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modes of the YIG-sputtering sample, which for instance, inductively create the output

electrical signal.

Besides, a Brillouin light scattering (BLS) study of the YIG-LPE sample was performed

in order to verify the above-mentioned results. The sample was placed in the BLS setup

at a fixed angle of 22o, in order to keep the detected wave vector at a fixed value of k

= 19.5 µm−1. One of the IDTs was connected to a RF frequency generator, and the

other to a rectifying diode and a voltmeter. We then fixed the frequency and varied the

external magnetic field on the sample until obtaining a maximum voltage value in the

output IDT. The BLS spectrum was then obtained and repeated after a fine variation of

the field intensity.
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Figure A.13: Brillouin light scattering (BLS) spectrum of the sample for a microwave input

of 3.4 GHz under three different external magnetic field values. The sample was measured

with an incidence angle of α = 22 degrees (k = 19.5 µm−1).

Examples of the resulting spectrum are shown in figure A.13 for a 3.4 GHz frequency for

magnetic field values around 600 Oe. In each spectrum two peaks at ±8.55 GHz correspond

to thermal phonons, which do not change with the input frequency, and two peaks at the

133



596 598 600 602 604 606
Magnetic Field (Oe)

20

40

60

80

100

120

140

160

C
ou

nt
s

f = 3.4 GHz
Anti-Stokes
Stokes

675.0 677.5 680.0 682.5 685.0 687.5 690.0 692.5
Magnetic Field (Oe)

5

10

15

20

25

C
ou

nt
s

f = 3.7 GHz
Anti-Stokes
Stokes

788 790 792 794 796
Magnetic Field (Oe)

20

40

60

80

100

C
ou

nt
s

f = 4.0 GHz
Anti-Stokes
Stokes

882 884 886 888 890 892
Magnetic Field (Oe)

0

100

200

300

400

500

600

C
ou

nt
s

f = 4.3 GHz
Anti-Stokes
Stokes

972 974 976 978 980
Magnetic Field (Oe)

0

50

100

150

200

250

300

350

400

C
ou

nt
s

f = 4.6 GHz
Anti-Stokes
Stokes

1096 1098 1100 1102 1104 1106 1108
Magnetic Field (Oe)

0

100

200

300

400

500

C
ou

nt
s

f = 5.0 GHz
Anti-Stokes
Stokes

1192 1194 1196 1198 1200 1202
Magnetic Field (Oe)

0

50

100

150

200

250

C
ou

nt
s

f = 5.3 GHz
Anti-Stokes
Stokes

1318 1320 1322 1324 1326 1328
Magnetic Field (Oe)

0

100

200

300

400

500

600

700

C
ou

nt
s

f = 5.7 GHz
Anti-Stokes
Stokes

Figure A.14: BLS amplitude, Stokes and Anti-Stokes, at the corresponding microwave

frequency for a fixed angle of α = 22 degrees (k = 19.5 µm−1) under different magnetic

bias field intensities.

same frequency as the RF excitation frequency, 3.4 GHz in this example. By varying the

magnetic field intensity, as expected, the thermal phonons counts is practically unchanged,

but the RF excitation is significantly altered, which is an indication that we are actually

measuring magnons.

The BLS intensity at the frequency coincident with the RF excitation was obtained for
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several magnetic field values, as mentioned above. The frequency was then varied and the

same procedure was repeated. The results are shown in Figure A.14, where each point was

obtained from the amplitude of the RF frequency at the corresponding BLS spectrum.
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Figure A.15: The BLS peak positions as a function of the external magnetic field for a

fixed incidence angle of α = 22o. The dashed lines correspond to the analytical model for

magnetostatic surface spin waves for k = 19.5µm−1, and the dotted lines for k = 0 (FMR).

In most of the graphs of Figure A.14 two peaks can be seen, a major and a minor one.

The magnetic field in which there is a maximum count as a function of the RF frequency

is shown in the dispersion relation shown in Figure A.15. We can compare the results with

the theoretical equation for magnetostatic surface spin waves in a thin film where k⃗ ⊥ m⃗

[79],

2πf =

√
ω2
H + ωMωH +

ω2
M

4
(1 − e−2kt), (A.2)

with ωM = γ4πMs, ωH = γ(H0 + HA + Dk2), where γ is the gyromagnetic ratio, 4πMs

is the saturation magnetization, HA is the anisotropy field, D is the exchange parameter

and t, the film thickness. Using the parameters for YIG [59]: γ = 17.59 MHz/Oe, 4πMs
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= 1.76 kG, HA = 7.8 Oe, D = 5.4 × 10−9 Oe cm2 and t = 7 µm, we obtain the analytical

equations of Figure A.15.

The experimental and the analytical equation for k = 19.5 µm−1, however, do not fit

each other. The data is, however, well-fitted with the ferromagnetic resonance (FMR), k

= 0, which indicates that the magnetic field excited by the transducers is of long-range

compared to the BLS laser spot size, generating a infinite wavelength (k = 0) magnetic

excitation. This result is in tune with the IdT electrical transmission experiment performed

in the YIG-sputtering sample that the transducers are acting as electromagnetic emitters

and not exciting acoustic waves.

A.5 Conclusion and future work

In this project we aimed to study the magnetoelastic interaction by means of the ex-

perimental fabrication of piezoelectric/magnetostrictive samples and magnetic and elastic

characterization of the coupled excitation, mainly by means of electric transport and Bril-

louin light scattering experiments.

The experimental work focused in obtaining good quality piezoelectric ZnO films via

the magnetron sputtering technique by varying the deposition and annealing parameters.

The best parameters were chosen and interdigital transducers (IDTs) were patterned on

their surface, through electron-beam lithography. Electron transmission measurements of

between the two pairs of IDTs were performed, and a series of resonant peaks were found

in the frequency domain.

These peaks, however, were not associated with the propagation of surface acoustic

waves in the sample, as pulse propagation experiments did not show the expected sound

wave velocity. We believe that the acoustic wave signal is highly attenuated in the sample,

which cannot be detected in our setup, and the electromagnetic induction creates a cross-

talk between IDTs which overshadows the SAW signal. The main excitation presented in

the sample is, then, of electromagnetic origin and no elastic waves were detected.

A sample of bulk YIG over a GGG substrate underwent the above-mentioned procedure,

ZnO deposition and IDT patterning via e-beam lithography, and the same resonant peaks

were found in the electric transmission experiment, here also associated to electromag-

netic cross-talk between IDTs. By varying the external magnetic field, under a constant
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frequency, an absorption was seen in the output voltage at a resonant field. These absorp-

tions are associated to the ferromagnetic resonance eigenmodes of the YIG sample. This

sample was studied by Brillouin light scattering experiments, where no phonon signal was

detected, but the magnon signal was present. This is in consonance with the interpreta-

tion of the electromagnetic excitation of the uniform magnon mode (k = 0) from the IDT

cross-talk.

As next steps, we intend to obtain better surface acoustic wave devices, by improving

the quality of the piezoelectric film, enhancing the quality of our electric contacts and

finding better a detection set-up for the desired experiment.
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