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Resumo

Esta tese investiga o acoplamento entre ondas eldsticas e ondas de spin em filmes fi-
nos ferromagnéticos e suas potenciais aplicacoes em spintronica e magnonica. Nos tltimos
anos, tem havido um crescente interesse em utilizar ondas de spin para desenvolver dis-
positivos de processamento de informacao de baixo gasto energético e alta velocidade. A
interacao magnetoelédstica, que acopla a magnetizacao as vibracoes elasticas de um mate-
rial magnético, tem sido extensivamente estudada nesse campo devido ao seu potencial uso
para a manipulagao de ondas de spin com eficiéncia energética.

Trés simulagoes numéricas foram conduzidas nesta tese para investigar a interacao
magnetoelastica. A primeira simulacao focou na propagacao de uma onda acustica externa
através de uma fita de Ni magnetoelastica sob diferentes niveis de acoplamento entre as
ondas. Quando as ondas acuisticas sao altamente atenuadas, as ondas de spin sao livres para
propagar, mas desaparecem apés um comprimento de decaimento. Por outro lado, quando
a atenuacao das ondas acusticas é muito menor do que a das ondas magnéticas, ambas
as ondas propagam-se juntas, mantendo a amplitude constante. Essa simulacao também
calcula os componentes AC e DC da voltagem do efeito Hall de spin inverso (ISHE) que
podem ser medidos em uma linha de Pt adjacente.

Na segunda simulacao, investigamos a conversao de magnons em fonons em um campo
magnético variavel no espaco. Para isso, resolvemos simultaneamente as equacoes de
dinamica de magnetizacao e elastodinamica, que sao acopladas através da interacao mag-
netoelastica. Essa abordagem aproveita o fato de que as curvas de dispersao magnética e
elastica formam um gap entre si devido ao acoplamento magnetoelastico, separando-se em
dois ramos. Iniciamos um pacote de onda na regiao quasi-magnética da curva de dispersao
acoplada. Conforme esse pacote de onda se propaga através do campo estatico varidvel no
espaco, ele gradualmente varia seu comprimento de onda, mantendo sua frequéncia con-
stante, transitando da regiao quasi-magnética para a regiao magnetoelastica, seguida pela
regiao quasi-elastica. Isso resulta na conversao de uma excitacao magnética em uma ex-
citacao elastica, o que pode ser verificado pela conversao da energia magnética em elastica.

Na tdltima simulacao, investigamos os modos magnéticos e elasticos, bem como a relagao
de dispersao, de guias de onda que contém uma parede de dominio de Néel. As paredes de
dominio sao canais naturais para a propagacao de ondas de spin, pois o campo desmagneti-
zante devido a rotacao da magnetizacao cria um pocgo de potencial que confina as ondas em
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sua largura, formando modos magnéticos protegidos topologicamente. Nessa simulagao, in-
vestigamos como os modos elasticos, na presenca da interagao magnetoelastica, influenciam
a dinamica da magnetizacao na presenca da parede de Néel. Nossas descobertas indicam
que nos pontos de cruzamento na relacao de dispersao, dois comportamentos diferentes
podem ser observados: a formacao de um gap quando existe um acoplamento forte, ou
um ponto sem gap quando o feedback magnetoelastico nao é completamente satisfeito.
Analisamos que para a formagao do gap, os modos eldstico e magnético precisam ter uma
sobreposicao significativa, o que nao acontece no modo confinado a parede de Néel, além
de possuir a mesma simetria espacial.

Além das simulagoes numéricas, esta tese também inclui trabalho experimental que nao
foi totalmente concluido, e decidimos nao inclui-lo no texto principal, mas é apresentado
como um apéndice, como um guia para pesquisas futuras. Os experimentos envolvem a
deposicao de filmes finos piezoelétricos de ZnO por magnetron sputtering, a caracterizagao
dos filmes usando microscopia eletronica e experimentos de raios-X, e a fabricagao de trans-
dutores interdigitais sobre um substrato magnético de YIG usando litografia de feixe de
elétrons e litografia a laser. Além disso, realizamos medidas de transporte elétrico nos
transdutores interdigitais e experimentos de espalhamento de luz de Brillouin. O obje-
tivo dos experimentos era obter experimentos de conversao magnon-fonon excitando ondas
acusticas de superficie com os transdutores interdigitais, o que impulsionaria a dinamica
de magnetizacao de YIG.

Em conclusao, esta tese investiga a dinamica de ondas de spin e ondas elasticas em
materiais magnetoeldsticos por meio de simulacoes numéricas. Esperamos que os resultados
contribuam para a compreensao do papel dessa interagao na dinamica das ondas de spin
e possam ser aplicados no desenvolvimento de novos dispositivos de processamento de
informagoes.

Palavras-chave: Dinamica de magnetizacao, ressonancia ferromagnética, ondas de
spin, ondas elasticas, ondas acusticas, magnon, fonon, interacao magnetoelastica, bombea-
mento de spins, efeito Hall de spin inverso, parede de dominio de Néel, spintronica,
magnonica.



Abstract

This thesis investigates the coupling between elastic and magnetic waves in ferromag-
netic thin films and their potential applications in spintronics and magnonics. In recent
years, there has been increasing interest in utilizing spin waves for developing low-power,
high-speed information processing devices. The magnetoelastic interaction, which allows
coupling between the magnetization and elastic vibrations of a magnetic material, has been
studied extensively in this field due to its potential for energy-efficient manipulation of spin
waves.

Three simulations were conducted in this thesis to investigate the magnetoelastic in-
teraction in different structures. The first simulation focused on the propagation of an
external acoustic wave through a magnetoelastic Ni stripe under different levels of cou-
pling between the waves. When acoustic waves are highly attenuated, the spin waves are
free to propagate but vanish after the decay length. On the other hand, when the acoustic
wave attenuation is much lower than the magnetic waves, both spin and acoustic waves
propagate together with the spin-wave maintaining the amplitude constant. This simu-
lation also calculates the AC and DC components of the inverse spin Hall effect (ISHE)
voltage that could be measured in an adjacent Pt stripe.

In the second simulation, we investigated the conversion of magnons into phonons in
a spatially varying magnetic field, simultaneously solving the equations of magnetization
dynamics and elastodynamics, which are coupled via the magnetoelastic interaction. This
approach utilizes the fact that the magnetic and elastic dispersion curves form a gap
between them due to the magnetoelastic coupling, separating into two branches. We
initiated a wavepacket in the quasi-magnetic region of the coupled dispersion curve. As it
propagates through the spatially varying static field, it gradually changes its wavelength
while maintaining its frequency, thus transitioning to the magnetoelastic region, followed
by the quasi-elastic region. This results in the conversion of a magnetic excitation into an
elastic excitation, which can be verified by the conversion of magnetic energy into elastic
energy.

In the final simulation, we investigated the magnetic and elastic modes, as well as the
dispersion relation, of waveguides containing a Néel-type domain wall. Domain walls are
natural channels for the propagation of spin waves, as the demagnetizing field due to the
rotation of magnetization creates a potential well that confines the waves in their width,
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forming topologically protected magnetic modes with increased propagation distances. In
this simulation, we investigated how elastic modes, in the presence of magnetoelastic inter-
action, influence the magnetization dynamics in the presence of the Néel wall. Our findings
indicate that at the crossing points in the dispersion relation, two different behaviors can
be observed: the formation of an anticrossing gap when there is strong coupling, or a gap-
less point when the magnetoelastic feedback cycle is not completely satisfied. Our analysis
showed that the formation of an anticrossing gap in the dispersion relation occurs when
there is a significant overlap between the elastic and magnetic modes, which is not the case
for the Néel wall-confined mode, and that matching symmetries are necessary for the other
modes to exhibit gapless crossings.

In addition to the numerical simulations, this thesis includes experimental work that has
not been fully concluded. While this work was not included in the main text, it is presented
as an appendix to serve as a guide for future research. The aim of the experiments was
to obtain magnon-phonon interactions by exciting surface acoustic waves with interdigital
transducers on a piezoelectric ZnO film, which would drive the magnetization dynamics
of a magnetoelastic YIG substrate. The experimental work involved the deposition of
Zn0O using magnetron sputtering, its characterization using electron microscopy and X-ray
experiments, and the fabrication of interdigital transducers using electron beam and laser
lithography. In addition, we performed electric transport measurements and Brillouin light
scattering experiments.

In conclusion, this thesis investigates spin wave and elastic wave dynamics in mag-
netoelastic materials through numerical simulations. The results of the simulations will
hopefully contribute to the understanding of the role of the magnetoelastic interaction in
spin wave behavior and have potential applications in developing novel information pro-
cessing devices.

Keywords: Magnetization dynamics, ferromagnetic resonance, spin waves, elastic
waves, acoustic waves, magnon, phonon, magnetoelastic interaction, spin pumping, inverse
spin Hall effect, Néel domain wall, spintronics, magnonics.
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Chapter 1

Introduction

The present thesis aims to investigate the physics of spin wave propagation in ferromagnetic
materials and the magnetoelastic interaction, through numerical simulations, which can be
useful for both fundamental physics research and information technology applications. In
this chapter, we will provide a comprehensive review of the state of the art related to the
research topic. Finally, an overview of the structure of the subsequent chapters will be
provided.

1.1 State of the art

Spin waves, and their quanta magnons, are collective excitations of electron spins in mag-
netic materials. Introduced by Bloch in 1932 [1], they possess a range of characteristics
that are influenced by various parameters, including the direction and intensity of the
applied magnetic field, the geometry of the sample, and the choice of magnetic material

2]

The fundamental properties of spin waves, such as their linear and nonlinear wave
properties, have attracted considerable interest, particularly with regard to parametric
instabilities [3], wavefront reversal [1, 5], soliton formation [0, 7] , and Bose-Einstein con-
densation [$-10]. In addition to their fundamental properties, spin waves in the GHz
and THz frequency ranges have garnered particular interest for potential applications in
telecommunications and novel computing devices [11].



The potential applications of spin waves in telecommunications and novel computing
devices have sparked a growing interest in the so-called field of magnonics or magnon
spintronics [2, 11, 12]. The objective of this research area is to utilize spin waves as a
means for the transport and processing of information in logic devices due to their high-
speed, efficiency, and low-power consuming properties. This research field has a significant
advantage that it shares fabrication techniques with typical CMOS (complementary metal-
oxide-semiconductor) technology, which makes it highly compatible and integrable with
existing technology. Furthermore, the shorter wavelength of spin waves compared to light
in the same frequency range offers the possibility of obtaining wave-like computing devices
even in micro and nano-scale, which is highly desirable for the development of future
computing technologies.

Moreover, the unique properties of magnons make them an attractive option for the
development of novel logic devices. The non-reciprocity property, which describes the
different behaviors of magnons in opposite directions of propagation, has been explored
in various studies [13-15], and they can also exhibit negative group velocities [16, 17].
Magnons are also anisotropic, meaning that they behave differently in different directions
[18, 19], and they can be tuned by external stimuli such as an electric field [20-23], magnetic
field [11, 24], and elastic strain [25-27].

In recent years, numerous magnonic devices have been proposed that take advantage
of these unique properties. Spin-wave memories, which use magnons to store and retrieve
information, have been proposed [28, 29]. Magnon transistors, which can be used to am-
plify and switch magnonic signals, have also been developed [30-32]. Magnonic diodes
have also been proposed, which allow the passage of magnonic signals in one direction
while blocking them in the opposite direction [33, 34]. Logic gates that use magnons have
been proposed, including AND, OR, and XOR gates [35-37]. Magnonic transducers, which
convert magnonic signals into electrical signals, and vice versa, have also been developed
[38, 39]. Finally, magnons have been used to develop other radio frequency (RF) compo-
nents, such as filters [10—12] and circulators [413].

Magnonics encompasses all stages required for the design and operation of logic devices
[12]: the excitation of spin waves, their transmission along a waveguide, controlling their
properties for performing logic operations, and detecting the output. The control of spin
waves can be achieved using patterned magnetic properties [11—17], spin textures [/8—

|, or through external electric or magnetic fields [28, 51, 52]. However, the two main



challenges in magnonics are efficiently exciting and detecting magnons and overcoming
their limited propagation distances, which are typically less than 1 pgm due to intrinsic
magnetic damping.

The most common method of excitation of spin waves is using an AC electric cur-
rent passing through a strip-line antenna [51]. This method generates a non-uniform AC
magnetic field, inducing a torque in the magnetic moments, resulting in the generation of
spin excitations. However, this inductive method is power-consuming due to ohmic losses.
In addition, the discrepancy in wavelength between the excitation electromagnetic wave
and the generated spin wave highly affects the amplitude of magnetization oscillation over
longer distances. Furthermore, the intrinsic magnetic losses limit their propagation, and
even in low-damping materials, such as Y3Fe;015 (YIG), the propagation length of spin
waves is in the micrometer range [53], thereby limiting their potential applications.

To overcome these challenges, a promising approach is to couple spin waves with prop-
agating surface acoustic waves (SAWs) via the magnetoelastic effect [51]. SAWs are elastic
waves, which are quantized as phonons, that propagate on the surface of piezoelectric ma-
terials and can be excited using interdigital transducers (IDTs) [55]. SAW devices have
become a standard technology in telecommunication systems, owing to their slow propaga-
tion velocity, which is five orders of magnitude less than electromagnetic waves, and their
propagation lengths up to the millimeter range.

Therefore, the magnon-phonon interaction has been increasingly attracting interest
since the last decade, from fundamental aspects of their hybridization [56-58], the transfer
of spin angular momentum between the quasiparticles [59], for switching the magnetization
state for memory device applications [60—-03], up to the prospective of applying propagating
SAWSs to magnetoelastic films to excite spin dynamics [26, 64, (5] in a less power-consuming
manner, as the voltage-driven IDT excitation avoids ohmic dissipations, more efficiently
and with less attenuation.

The possibility of exciting spin dynamics in a magnetoelastic film from SAW propa-
gation has been observed from IDT experiments, where the absorption in the transmit-
ted signal can be linked to the acoustically-driven ferromagnetic resonance, mostly in Ni
devices [25, 66—-71], but also in other magnetoelastic metals [72] and in semiconductors
[73, 71]. SAW-driven magnetization oscillations have also been imaged using magnetic-
contrast techniques [75—77], which sheds light on the promising application of elastic waves
in magnonic devices.



By exploiting the magnetoelastic coupling between the magnetic moments and the
acoustic strain field, the SAWs can efficiently generate and detect spin waves in magnetic
films [64, 77]. The magnetoelastic coupling is a two-way street: the spin waves, in turn, can
couple with the SAWSs, thus creating an efficient and tunable magnetoelastic interaction.
This approach not only allows the possibility of the efficient excitation and detection of
spin waves, but also provides a means of propagating them over longer distances with low
losses.

Magnonics is a field that has gained significant attention in recent years, both for its
fundamental aspects and potential technological applications. The interaction between
magnons and phonons has emerged as a promising possibility for magnonics to become
competitive with current information technology. In particular, the magnetoelastic inter-
action shows great potential for exciting spin dynamics in a less power-consuming manner,
making it an attractive approach for memory devices and other applications. Therefore,
further research is necessary to fully understand the fundamental aspects of the magnon-
phonon interaction and its potential applications. Overall, the study of magnon-phonon
interactions provides a promising avenue for advancing the field of magnonics and devel-
oping new technologies that could have significant impact in various fields.

1.2 Objectives

The objectives of this thesis are to perform finite-differences numerical simulations using
the open-source software MuMax3 [78] to investigate the magnetization dynamics of fer-
romagnetic materials by solving the Landau-Lifshitz-Gilbert (LLG) equation. The main
focus is to simulate the propagation of spin waves in materials that contain magnetoelastic
interaction. First, we aim to study the effective magnetic field on nanostructures due to
the excitation of elastic waves via the magnetoelastic effect. Another objective is to an-
alyze the dispersion characteristics of the elastic and magnetic waves and their coupling
and interconversion by solving the coupled LL.G and elastodynamics equations, taking into
account the magnetoelastic feedback. These simulations will be carried out under vari-
ous geometries and external magnetic field configurations to study the effect of different
parameters on the magnetic and magnetoelastic properties of the system.

Specifically, the main results of this thesis consist of three finite-difference numerical
simulations. Firstly, an external elastic wave will propagate in the magnetoelastic material,

4



driving its spin dynamics, and we will calculate the spin modes that are elastically excited.
The possibility of electrically measuring this effect will be evaluated by using the spin
pumping phenomena associated with the inverse spin hall effect (ISHE). Secondly, we will
solve the coupled LLG and elastodynamics in a stripe under a spatially varying magnetic
field. The aim is to convert the excitation from the quasi-magnetic region to the quasi-
elastic, utilizing the changes in the dispersion relation of the magnetoelastic interaction due
to the magnetic field intensity, and obtaining a magnon-phonon conversion. Finally, we
will study the propagation of magnetoelastic waves in a complex magnetic domain pattern,
the Néel-type domain wall, in a thin film stripe. This simulation will calculate the elastic
and magnetic eigenmodes and discuss the hybridization between these two modes based
on their symmetry.

1.3 Overview of the thesis

This thesis is structured into five chapters. Chapter 1 is the introduction, providing a
brief overview of the motivation and objectives of the research. Chapter 2 is dedicated
to providing the theoretical background necessary to understand the simulations carried
out in the subsequent chapters. This includes an overview of the micromagnetic model,
magnetization dynamics, and a detailed discussion of resonant phenomena such as ferro-
magnetic resonance (FMR) and spin waves. Additionally, elastic waves, magnetoelastic
interactions, and coupled magnetoelastic waves are described.

In Chapter 3, the numerical simulation methods used in the thesis are presented, along
with an explanation of how the data were processed to obtain the results. This sets the
stage for Chapter 4, which presents the results of the three main simulations in the thesis.
The first simulation, section 4.1, involves the excitation of spin dynamics in a stripe through
an external elastic excitation, simulating the excitation of a magnetoelastic field from a
IDT on a piezoelectric substrate. Here, we have also calculated the ISHE voltage that could
be measured in an adjacent metallic stripe. The second simulation, section 4.2, focuses on
the conversion of magnons into phonons by using a spatially-varying magnetic field, taking
advantage of the characteristics of the hybrid magnetoelastic dispersion relation. The third
simulation, section 4.3, examines the elastic and magnetic wave modes that propagate in a
Néel domain wall structure, with a discussion of the coupling between those modes based
on their symmetry.



Finally, Chapter 5 presents the conclusions and perspectives of the thesis, summarizing
the main findings and highlighting their significance. This chapter also identifies possible
directions for future research in the field.

This thesis also included experimental work that was not fully completed, but the results
are included in appendix A as a guide for future experiments. The experiments involved the
deposition and characterization of piezoelectric thin film ZnO using electron microscopy
and X-ray experiments, as well as the fabrication of interdigital transducers (IdTs) on a
magnetic substrate YIG using electron beam lithography and laser lithography. The aim
was to use the IdTs to excite surface acoustic waves (SAWs) to drive YIG magnetization
dynamics and perform magnon-phonon experiments. Electric transport measurements in
the IdTs and Brillouin light scattering experiments were also carried out.



Chapter 2

Theoretical Background

2.1 Magnetization dynamics

The physical properties of magnetic materials can be understood as the interaction between
its microscopic magnetic moments and both external magnetic fields and each other. This
interaction determines the magnetic behavior of the material, which includes its magnetic
susceptibility, magnetic anisotropy, and magnetic hysteresis, among others. In this section,
we will discuss the dynamics of the magnetization vector and the magnetic energy terms
that determine its equilibrium position.

2.1.1 Landau-Lifshitz-Gilbert (LLG) equation
The magnetic moment of an atom or an ion ji can be written as

fi=—gus, (2.1)

where g is the spectroscopic splitting factor, up is the Bohr magneton and J is its total
angular momentum, including its orbital and spin components.

A magnetic moment i under a magnetic field induction B has energy U = —[i B , which
is minimum when they are parallel to each other. When deflected from B the magnetic
moment becomes subject to a torque 7 = i x B. Considering its angular momentum A.J



and Newton’s second law, we obtain the equation of motion [79]

dji S,

— =i X B 2.2
o = X B, (2.2)
with v = gup/h known as the gyromagnetic ratio.

In the macroscopic scale it is worth defining the magnetization vector M as the total
magnetic moment of the sample per unit volume,

M = %Zﬁ (2.3)

This way, using the equation B= ,uo(M +H ), where p is the vacuum permeability and
H the magnetic field intensity, we can obtain the Landau-Lifshitz equation,
dM
dt

that describes the dynamics of the magnetization when subject to a magnetic field in the

= _’}/H’OM X ﬁa (24)

absence of damping.

When the magnetization is parallel to the magnetic field, the cross product is null
and the derivative is zero, hence the magnetization is in the equilibrium position. If the
magnetization is deflected from the magnetic field, the derivative becomes non-zero and
an effective torque acts on the M.

Let us consider that the magnetic field is in the z-direction, that is H=H z, and
the magnetization is slightly deflected from that direction, M = m,& 4+ m,§ + M.Z with
M. > mg, m,. From equation 2.4 we obtain

dm, dm
yr —yuomy, H and dty = ypomg H. (2.5)
One solution for that system is
m(t) = mgcos (wot) and my(t) = mgsin (wot), (2.6)

where wg = yuoH. The magnetization components transverse to the magnetic field, m,
and m,, present a circular motion with constant amplitude, see Figure 2.1a. From that,
we can see that the magnetization starts a precession motion around H with frequency wy,
which is the magnetic resonance frequency.



(a)

Figure 2.1: Schematic representation of the magnetization dynamics, as described by the
Landau-Lifshitz-Gilbert equation. In (a), the magnetization undergoes a precession motion
around the effective field direction in the absence of damping. In (b), the dynamics with
damping is shown, resulting in a gradual reduction of the amplitude over time.

The magnetization, however, relaxes towards the equilibrium direction and the relax-
ation is driven by several atomic spin interactions. Regardless of the details of its underlying
mechanisms, the phenomenon of relaxation can be incorporated into the dynamics through
a phenomenological approach. This can be achieved by ad hoc inclusion of a damping term
to the Landau-Lifshitz equation, the Gilbert damping, representing a torque that drives the
magnetization towards its equilibrium direction. Then the Landau-Lifshitz-Gilbert (LLG)
equation is . .

%4 = ol x H — T x dd_f‘j 2.7)
where « is a phenomenological dimensionless quantity known as Gilbert damping param-

eter, see Figure 2.1b.



2.1.2 Magnetic energy terms

The equilibrium direction of the magnetization can be defined by an effective field ﬁef £

which is obtained from the sum of all magnetic interaction energies, as 0 F = —[LQ(SM ‘H, i
thus,
q 1
Hepp = ——V i E, (2.8)
Ho

where V ; is the gradient operator relative to the magnetization components, and E is the
total magnetic energy per volume. In ferro- and ferrimagnetic materials the effective field
includes several terms, as the exchange interaction, the dipolar field, the Zeeman energy
and the magnetocrystalline anisotropy.

The Zeeman energy is the interaction between the spins with an external magnetic
field Hy, with energy density
Ez = —poM - Ho, (2.9)

which is minimum when the magnetization is aligned with the external field.

The dipolar or magnetostatic field H, is the magnetic field created by the magne-
tization itself. Inside the magnetic material it opposes the magnetization, and is known as
demagnetizing field, and outside the material it is called the stray field.

We can evaluate the dipolar field from Maxwell’s equation that
VB =V - (Hy+M)=0, (2.10)

and, if we consider the magnetostatic limit (V x Hy = 0), it allows the definition of a
magnetic scalar potential,

Hy=—Vo. (2.11)
Combining these equations we obtain a magnetic Poisson equation,
V2=V - M. (2.12)
where it can be seen that the dipolar field arises from the divergence of the magnetization,
known as magnetic charges.

A general expression for the demagnetizing field can be obtained from the magnetic
Poisson equation as [30)].

- = =
/

— 1 ! ~
H, = —/ D(F—r")M(r")dV’, (2.13)
47 %
1
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where V' is the sample volume and 15, given by the equation,

~ - 1
D(’F- T ) = VFVT‘;—_,

—

=

(2.14)

is the tensorial magnetostatic Green’s function.

By choosing the Cartesian coordinates as the symmetry axes of the sample, the tensor
becomes diagonal, and it satisfies N, + N, + N, = 1. In this case, we can readily obtain the
demagnetizing factor for simple geometries. For a spherical sample, the symmetry implies
that N, = N, = N, = 1/3. For a thin film in the xy-plane, the poles in x and y are widely
separated, resulting in no surface charges in those directions, hence N, = N, = 0, and
consequently, N, = 1 perpendicular to the plane. Similarly to an infinite cylinder placed
along the y-direction, it has no surface changes along its length, N, = 0, and is symmetric
in x and z thus N, = N, = 1/2. These results are summarized in Figure 2.2.

In the case of a sample with uniform magnetization, the demagnetizing field is solely
produced by surface charges and the demagnetizing field can be simplified to [79]

Hy=-N-M (2.15)

where N is the demagnetizing tensor, which only depends on the shape of the sample,
hence the dipolar interaction is also known as shape anisotropy.

The exchange energy arises from the interaction between neighbouring spins due to
the overlap of their orbital wave functions. From the Pauli exclusion principle, the total
wave function with both orbital and spin components must be antisymmetric. If the spins
are parallel, the orbital wave function, which represents the charge distribution, must
be antisymmetric in space, while if the spins are antiparallel, the orbital wave function
becomes symmetric. The exchange energy reflects the difference in energy between the
two relative orientation of the spins [79].

The exchange energy between the two spins S; and §j, below the Curie temperature
Tc, can be described by the Heisenberg energy,

Eep = —2J5;- S, (2.16)

where J is the exchange constant. For J > 0, the state with the lowest energy is achieved
when neighboring spins are parallel, which is a characteristic of ferromagnetic materials
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Figure 2.2: Demagnetizing tensor components for simple geometries, respectively, a sphere,
an infinite film and an infinitely long cylinder.

and for J < 0, the minimum energy state is obtained when the spins are antiparallel, a
property seen in both ferri- and antiferromagnets, see Figure 2.3.

For distances much larger than the atomic dimensions, we can introduce a continuous
approximation for M and derive the total exchange energy density of a sample as

Aew v

Eep = 0E (VM) (2.17)

where A., is the exchange stiffness of the sample and the corresponding exchange field is

H,, = VM =12, V*M, (2.18)

where [, is called the exchange length, typically in the order of nm.
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Figure 2.3: Spins equilibrium position due to the exchange interaction in different magnetic
materials. In panel (a), a ferromagnetic material is presented where the spins are parallel to
each other. Panel (b) shows an antiferromagnetic material where the spins are antiparallel.
Similarly, panel (c) shows a ferrimagnetic material, but unlike the antiferromagnetic case,
the opposite spins do not cancel each other, leading to a net magnetic moment in the
ferrimagnetic material.

In ferromagnetic materials, the exchange interaction tries to keep the magnetic mo-
ments parallel. The exchange length defines the competition between the dipolar and
exchange interactions. On length scales smaller than the exchange length, the exchange
interaction dominates and the magnetization is uniform. On length scales larger than
lez, the dipolar interaction becomes increasingly important, allowing for the formation of
magnetic domains.

The magnetocrystalline anisotropy energy arises from the interaction between the
magnetic momenta and the crystal structure of the material from the spin-orbit coupling.
Therefore, the minimum energy state is obtained when the magnetization is parallel to a
preferred orientation of the crystal structure. A phenomenological representation of the
anisotropy energy can be used to study its effect on the magnetization dynamics.

In a crystal with uniaxial symmetry, the magnetocrystalline anisotropy energy can be
expressed as the power series

E, = —K,1c08*0 — K, 5c05"0, (2.19)
where K,; and K, are the first and second order uniaxial anisotropy constants and 6
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is the angle between the symmetry axis and the magnetization. Only even powers of
the cosine are present as the anisotropy energy does not change with the inversion of
the magnetization. When K,; and K- are both positive, the minimum energy is achieved
when the magnetization is aligned with the symmetry axis, called the easy axis. Yet, if they
are both negative, the minimum energy is achieved with the magnetization perpendicular
to the symmetry axis, defining an easy plane for the magnetization.

Now, for a crystal with cubic symmetry, multiple equivalent directions exist, requiring
the use of several angles. The orientation of the magnetization with respect to the crystal
axes can be expressed using the direction cosines ay, g, and 3. Again the inversion
symmetry results in only even powers being present and, due to the cubic symmetry, the
energy must be invariant under interchange of «; values. The cubic energy density can be
written as

E, = Ka(a3a3 + aiai + a2a?) + Kpaiaias, (2.20)
where K. and K. are the first and second order cubic anisotropy constants. It can be
shown that for energy minimization, the easy and hard axes of the magnetization are along

the principal symmetry axes of the crystal [79].

In conclusion, the magnetization dynamics of magnetic materials can be understood
by considering the interplay of several key magnetic free energy terms. The Zeemann
energy accounts for the interaction of the magnetic moment with an external magnetic
field. In a ferromagnetic material, the exchange interaction drives the alignment of indi-
vidual magnetic moments parallel, while the magnetostatic interaction takes into account
the interaction between magnetic moments due to their spatial arrangement. Finally, the
magnetocrystalline anisotropy represents the energy associated with the preferred orienta-
tion of magnetic moments with respect to the crystal symmetry.

2.2 Ferromagnetic Resonance (FMR)

In this section, we will discuss the ferromagnetic resonance (FMR), which is a phenomenon
that occurs in ferromagnetic materials when subjected to an alternating magnetic field. It
involves the uniform resonant excitation of magnetic moments within the whole material.
The frequency of the magnetic field at which this resonance occurs is known as the ferro-
magnetic resonance frequency, and is dependent on various material parameters such as
the shape of the sample, the magnetic anisotropy, and the strength of the magnetic field.
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2.2.1 Magnetic resonance driven by alternating field

We now want to explore the dynamic behaviour of the magnetization. Let us start with a
material with negligible interaction between spins, e.g. a paramagnet. For this, consider a
magnetic material that is subject to both a static magnetic field in the z-direction and a
dynamic alternating field in the xy-plane with frequency w,

H = (hyit + hyj)e ™ + Hy?, (2.21)
with Hy > hg, h,. Again, the magnetization is in the form of

M =m,T +m,y+ M,z (2.22)

with M, > m,, m,. In the absence of damping, using equation 2.4, we obtain

dmr —iw
dt = _f}/,U/OmyHO + ’Y,UOMzhye t, (223)
dmy —iwt

Those equations can be linearized when looking at steady-state solutions, that is m,(t) =
mge~“" and my(t) = mye~™". Considering wy = yuoHo we obtain

—iwmy, = —womy + YoM hy, (2.25)

—lwmy, = womy — YoM h,. (2.26)
Now, solving for m, and m,, considering M, ~ M and wy; = yuoM, we obtain

Wprrwo . Wpyw
my = — hy —i— hy, (2.27)
wE — w? Wi — w?
0 0

Wparw wprrwo
2 2hx + 2 2

my =1 hy. (2.28)
Note that when the rf-field is applied in any direction, the magnetization components in
both the x and y directions are produced due to the precession around the z-axis with
frequency w. The precession reaches its resonance frequency at w = wp and its amplitude
diverges in that frequency in the absence of damping.
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2.2.2 Magnetic resonance in ferromagnets

Now, to expand the analysis to a ferro- or ferrimagnetic material we shall include the
exchange and dipolar interactions. In the uniform precession mode, the magnetization
does not vary across the space and all spins can be considered as being parallel. So, as
the exchange effective field is dependent on the divergence of M , see equation 2.18; it is
null for this uniform mode and does not affect its resonance frequency. It is important to
highlight that the exchange interaction strongly affects the non-uniform (k # 0) precession
modes, the spin waves, which will be treated in the next section.

The dipolar interaction, however, strongly alters the resonance frequencies. Let us
consider a sample with simple geometry, an ellipsoidal shape, which has an uniform de-
magnetizing field, equation 2.15, under an static external field Hy. The total internal field
is

Hiy = Hy— N-M. (2.29)
Considering that the x, y and z directions are along the symmetry axes of the tensor, and
the external field is in the z-direction, the internal field can be written as

—

where m,, m, < M, ~ M. Using the Landau-Lifshitz equation, equation 2.4, the magne-
tization equations become

dmy,

o= oy [Ho + (N, — N2)M], (231)
dm

= ypoma[Ho + (N, = N.)M]. (2.32)

These equations have the same solution as equations 2.6 but with resonant frequency

o = ptoy[Ho + (N = N)M][Ho + (N, = N.)M], (233)

which is known as Kittel formula for the ferromagnetic resonance (FMR), and it determines
the frequency of uniform precession mode for a ferromagnetic material as a function of the
external field intensity Hy. For simple geometries the demagnetizing factors can be easily
obtained, and the FMR equation, for example, for a sphere (N, = N, = N, = 1/3)
becomes

wo = Yo Hoy, (2.34)
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and for a thin film (N, = N, =0and N, =1) is
Wo :"}//Lo\/Ho(Ho—i—M). (235)

Finally, let us now consider the effect of the damping in the equations. Assuming, for the
sake of simplicity, an uniform magnetization in an infinite sample, where the magnetostatic
field is negligible, that is subjected to an external field Hyz.

Using M = m,2+ my,y + Mz, now in the LLG equation, equation 2.7, we obtain, after
considering m,(t) = mze " and m,(t) = m,e“* the equations

—lwm, = (—wo + iaw)my, (2.36)

—iwm,, = (Wy — t0w)my, (2.37)

with wy = yuoHy. A solution for this system is m, = im, and w = wy — ‘aw, thus the
magnetization also precesses around the equilibrium position, but the amplitude of the

transverse components decay exponentially in time with the factor e~

We can write these solutions in the tensorial form
m = xh, (2.38)

where the vectors 17 and h are the dynamic components of the magnetization and of the
external field,

m = [ml} and h = {hy} : (2.39)
my hy

and Y is the magnetic susceptibility tensor,
ny ny

Considering a small damping, aw < wy, the susceptibility tensor components become

WprWo

W) = _ — 2.41
Xerl) = X ) = e (241)

Warw

Xyz = —Xay = l 2 (242)

Wi — w? — 2iwgaw
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Observe that now, when w = wy, the amplitude of m does not diverge with time. Near

the resonance w ~ wyp, we can obtain separate the diagonal components in its real and

imaginary parts as

wy(wo — w)/2

wp — w)? + a?w?’
(wyraw) /2

wo — w)? + a?w?’

(2.43)

Re[X:rw] = (

Im[Xzz] = ( (2.44)

see Figure 2.4. From these equations, as the imaginary part takes the form of a Lorentzian
function, it can be used experimentally to determine the damping characteristics of the
sample from its full width at half maximum (FWHM), 2AH, using the relation

AH = awy/7. (2.45)

Determining the FWHM in experiments provides important information about the
damping of the magnetic resonance, thus it is a critical parameter for understanding the
energy dissipation mechanisms in magnetic materials. Additionally, the FWHM can pro-
vide insights into the magnetic properties of the material, such as the magnetic anisotropy,
the magnetic domain size, and the magnetocrystalline anisotropy.

2.2.3 Spin pumping and inverse spin Hall effect (ISHE)

The conversion of spin current to electrical charge current is an interesting phenomenon
for spintronics devices, and in this section, we will discuss the detection of FMR via the
spin pumping phenomenon coupled to the inverse spin Hall effect (ISHE).

Specifically, the magnetization dynamics of a ferromagnet can generate a spin current in
an adjacent non-magnetic material through the spin pumping phenomenon, and this spin
current can be converted to a charge current, and thus, to an electric voltage difference,

through the ISHE [31], see Figure 2.5.

The detection of magnetic excitations such as FMR or spin waves through voltage
measurements can be a more accessible option for experimentalists compared to other
techniques such as Brillouin light scattering, time-dependent magneto-optical or X-ray
absorption measurements. With this in mind, we will now explore the generation of spin
currents and their subsequent conversion to charge currents.
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Figure 2.4: (a) Real and (b) imaginary parts of magnetic susceptibility as a function of
the frequency for different external magnetic field intensities calculated from equations
2.43 and 2.44 for a 14 nm Permalloy thin film (M, = 800kA/m and A., = 13pJ/m).The
imaginary part exhibits a Lorentzian curve with a peak at the FMR frequency, and the
damping of the material can be calculated from its width at half maximum.

Considering a ferromagnetic/non-magnetic (FM/NM) thin film bilayer, in the xy-plane,
with the interface being at z = 0. The dynamics of the magnetic layer (171) generates a spin
current Jg (in units of angular momentum / (area - time)) across the FM/NM interface,

. B N -
T(z=0) = Jeis <m x (9_m>’ (2.46)

where gl}f is the real part of the effective spin mixing conductance, which is a parameter
that characterizes the strength of the spin transfer. It is a measure of the efficiency with

given by [32, 83],

which the spin angular momentum of the ferromagnet is transferred to the non-magnetic
material.

It is important to highlight that equation 2.46 does not completely describe the spin
current, which presents a tensorial nature [31]. It requires one index for its transport
direction (2 in this case) and a second one for the spin current polarization direction (&).
Only the last is being represented in the vectorial notation of Equation 2.46 and it is
implicit that J, = J, (&) 2.

We will now consider that the equilibrium magnetization is in the film plane, at an
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arbitrary direction u, where the versors 4 and ¢ are obtained from a rotation of £ and y
by 6 about the z axis. Under excitation, the magnetization goes in a simple precessional
motion, 1M = myu + mo,cos(wt) + mo,sin(wt)z, with a small amplitude (mg,,mo,<m.,).

.ttt

Non-magnetic Ferromagnetic

K BRI IR

(W £ - " g
o) ********%**&&

Figure 2.5: The figure illustrates (a) spin pumping and (b) the inverse spin hall effects

(ISHE). The magnetization dynamics of a ferromagnet can induce a spin current in a
neighboring non-magnetic material through the spin pumping phenomenon, as shown in
(a). On the other hand, in a non-magnetic material with strong spin-orbit coupling, spins
with opposite orientation are deflected to opposite directions, which is known as the ISHE,
as depicted in (b). When the incoming current is spin polarized, the spin accumulation
in the opposite directions will not be equal, and this will result in a potential difference
between them, leading to the ISHE voltage (Visyg).

We can estimate the equilibrium component as approximately constant (m, ~ mq,),
and one obtains 0N /0t = —wmyg,sin(wt)d + wmg.cos(wt)z, and, from Equation 2.46, we
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obtain,
J:0u) = (hwgly,/4m)meum.,
J=a,) = (hwgl}f/llﬂ)m(mmgzcos(wt), (2.47)
J=c,) = (hwgl}f/élﬂ)m()umof,}sm(wt),

where J?=°(c;) is the spin current that flows across the FM/NM interface (uv-plane, z=0)

with spin current polarization in the ¢-direction.

The spin current undergoes relaxation and diffusion into the non-magnetic material, so

) ]:

the spin current at a distance z from the interface becomes |

sinh[(z — ty)/Asp] 5
Sinh(tN//\SD) ’

where Agp is the spin diffusion length in the non-magnetic material and ¢ is its thickness.

—

Ji(z) = J77(5)

(2.48)

The spin current can then be converted to electrical current through the Inverse Spin
Hall Effect (ISHE) [¢6, 87] or through the Inverse Edelstein Effect (IEE) [38, 89]. So, due

-

to ISHE, the spin current induces a charge current (.J.) into the non-magnetic material,
that is described by [35, 90]

. 2
J. = QSHEQ[JS,@ x &, (2.49)

T (93}{ eg;%f) sinh[(z — ty)/Asp]

— Mgy Moo (Wh)i 4 MoyMigsd | . 2.50
o Sinh(in/hsn) [ MuMozCOS(WE)U + MoyMes0 (2.50)

The charge current is given as a potential difference AVisgr between two contact
pads placed along an arbitrary direction { on the non-magnetic layer surface. The voltage
difference can be calculated as AVigpr = Ry f fc . dff, where R, is the resistance across
the pads and A is the area of its cross-section. Considering ¢ the distance between pads,
W their width, and ¢y and oy the non-magnetic material thickness and conductivity,
respectively, then Ry = ¢/(oxyW) and A = Wiyl resulting in

g z=tn .

ontN J.—o
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Aspl tn >0 5
AV, = tanh 0. 2.52
ISHE . an (2/\SD><JC ) ( 5 )

Thus, two components of the charge current are obtained: one in the @ direction,
with constant amplitude, called JE¢, and another in the © direction that oscillates with
frequency w, called JA [91]. To maximize the strength, the natural choice for the direction
of the contact pads, are either ¢ =14 or =19, and from Equation 2.52 one obtains the AC
and a DC component of the potential difference:

elAgpwgt t
AVAC = HSHSD—gefftanh N MM, Cos(wt). (2.53)
=i 27TO'NtN 2)\51)
elAspwy s tn
AVPC = g ——"T g, o5 2.54
=0 T et 2hep ) (2:54)

It is worth noting that the DC voltage component is maximum when the line between
contact pads is perpendicular to the magnetization direction. On the other hand, the AC
component is maximum when the contact pads are aligned parallel to the magnetization
direction.

2.3 Spin waves

In the previous section, we have considered the uniform motion of magnetization (k=0)
along the entire sample, the ferromagnetic resonance (FMR). Now, we will expand to a
more general situation, in which the magnetization displays a spatially-varying dynamics,
the spin waves.

2.3.1 Linear chain of classical spins

Let us start with the simplest case of spin waves, a linear chain of evenly spaced classical
spins. Consider a chain with N spins S, separated by a distance a, coupled to the near
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neighbours through the exchange interaction. Considering the Heisenberg interaction we

obtain the energy
Uso = =27 Y S; Si1, (2.55)

where S is the classical spin at the position x; = 7a. In the ground state, all spins are
parallel to each other, and the total exchange energy is Uy = —2JN S2.

OOBOOOOOOREG
VVVVVVVVVVV

Figure 2.6: A schematic representation of a spin wave in a linear chain of spins coupled by
the exchange interaction. As the spins precess, they present a phase difference that results
in the formation of a spin wave with a constant wavevector.

The effective field corresponding to the Heisenberg interaction can be written as

Hep = — (Sic1 + Sit1). (2.56)
guBHo

Considering that, besides the exchange field, the spins are also subject to an external field
Hy, using the torque equation 7 = hdS/dt, we obtain the equation of motion

& .
dt = /YI“’LOS’L X (HO + Hea:)- (257)

Considering that the external field is Hy = —Hyz, and that S7, S} <« S7 ~ S, we obtain
the equations

sy 2JS
i Yo HoS; + 7(253 - S7 =5, (2.58)
— = TVHoHST — ——=(257 — 57y = Si), (2.59)
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which show that the motion of any spin is coupled to its neighbours motion, and thus
these are collective excitations. Now, looking for wave-like solutions in the form of S’ =
Agelhzi=et) and ¥ = A, e!*@i=wD we are able to linearize the equations in the form

—iwA, = AylypoHo + ?(1 — cos ka)l, (2.60)
4
—iwA, = —Az[yroHo + %S(l — cos ka)l. (2.61)

We can find a solution to the system as
4JS
wr = ypoHo + T(l — cos ka), (2.62)

known as the dispersion relation, that is it relates the spin wave frequency to its wave num-
ber. Besides, we can also obtain that A, = —iA,, and thus, the real parts of the dynamic
components of the spins become S¥ = A, cos (kx; — wit) and S} = A, sin (kx; — wyt). This
corresponds to the spins precessing in a circular motion around the equilibrium position,
but this time there is a phase difference between adjacent spins, ¢; = kz;, generating a
wavelength \ = 27 /k.

From equation 2.62, we can see that for the FMR (k=0), we obtain w = yuoH, as seen
in the last section. And, in the limit of small wave numbers, ka < 1, which is a typical
case in experiments, using binomial expansion we obtain

2JSa?
h

wi, = YpoHo + k2, (2.63)

a quadratic dispersion relation with an energy gap of F = hyuoH,.

2.3.2 Spin waves in a bulk ferromagnet

Now we will consider a 3-dimensional ferromagnetic material, under an external field Hy =
Hyz. We will be looking for wave-like solutions described by weak perturbations from the
equilibrium magnetization, M = My + m(7,t) in the form of

—

M(7t) = Mg e @ 3 4 myei(wHE’F)@ + M.z, (2.64)
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where my, m, < M, ~ M. Let us now include the exchange and dipolar energies in the
effective field. We can readily obtain the exchange field from equation 2.18 as

ey = —12 k21, (2.65)

which depends only on the dynamic components of the magnetization, as expected.

The dipolar field presents two terms, one arising from the sample shape, which is null in
the case of an infinite bulk material, and a dynamic one coming from the spatially-variant
magnetization dynamics. This second can be quite complex to calculate from equation
2.13 in a general nonuniform magnetization. This can be simplified for simple harmonic
travelling spin waves.

Considering the magnetic field is in the form of H = HyZ + ﬁdip(F, t), from Maxwell’s

equations we obtain
V- (hdip + M) =0 and V x hdip = 0. (266)

Substituting the harmonic travelling magnetization, we get
k- (hap+m) =0 and k x hgyp = 0. (2.67)

This way, after some manipulations using vector identities, we obtain the relation

—

k-m-

hdip = -

which is the volume dipolar field created by the travelling harmonic spin wave.

We can now use the axial symmetry of the bulk uniform material around the magne-
tization vector to choose a coordinate system where the wavevector k is in the xz-plane,
that is k = k(sinfz + cosfz), where 0 is the angle between the magnetization and the
propagation direction. This way, the dipolar field becomes

2

Hdip = —k—;mx = —m,sin’0%. (2.69)

By solving the LLG equation, equation 2.7 without the damping term, we obtain

d(My + 111)

di = _’YNO[(MO + ﬁi) X (FIO + Edip + ﬁex)L (2'7())
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and, after linearization using the steady-state solutions we obtain the two coupled equa-
tions:

[wo + war(I2,k* + sin6)|m, — iwm,, = 0, (2.71)
iwmy + (wo + w2, k*)m, = 0, (2.72)
where wy = yuoHy and wy; = ypueMs.

Finally, from the non-trivial eigenvalues of the previous equations, we can obtain the
spin wave dispersion relation for a bulk material, called the Herring-Kittel equation,

Wi = \/(wo + w2, k%) [wo + war (12,k2 + sin?0)). (2.73)

From this equation, we can see that there is a minimum frequency in which the magnetic
resonance can be obtained, below that only evanescent waves are generated. Also, note
that the ratio between the two transverse magnetization components is now

my _ ot war (2 k? + sin?0)

, (2.74)

My Wi

which shows that the magnetization precession is elliptical, and not circular as before.

In the limit of small values of k, [2, k* < 1, the relation simplifies to w = \/wo(wo + wassin6),
which is called the dipolar spin waves limit, where the exchange interaction is negligible
and the magnetostatic interaction dominates. On the other hand, for large values of k,
I k? > 1, the exchange spin waves are obtained, with a quadratic dispersion w = w12 k.
Note that the exchange spin wave are isotropic with respect to the propagation direction,

but the same is not true for the dipolar spin waves, which is dependent on 6.

2.3.3 Spin waves in thin films

We shall now consider the magnetization dynamics in ferromagnetic thin films. Consider
a thin film with thickness d, placed in the xz-plane under an in-plane external field in the
z-direction, Hy = Hyz. We will consider the dynamic magnetization components and the
fields as uniform along the thickness as kd < 1. Again the dynamic components of the
magnetization are in both the x and y-axes.

Since the exchange field is not affected by the thin film geometry equation 2.65 is still
valid. On the other hand, the film boundaries create magnetic surface charges that strongly
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influence the dipolar field. An approximation for the dynamic dipolar field in a thin film
can be obtained in the form of [92]

—

k-m
2

haip = = | P=3k + (1= P) (i - ), (2.75)

where 7 is the normal vector to the plane, in this case 77 = ¢, and

1 — e—kd

P=1
kd

(2.76)

Assuming that 6 is the angle between M, and E, and that we are looking for in-plane
travelling waves, that is k = k, & + k,Z, we can obtain for the dipolar field

Psin’6 0 Psinfcosf
hagy = — 0 1—P 0 0 (2.77)
Psin @ cos 6 0 Pcos? 0

Now, applying in the LLG equation and linearizing by looking for harmonic travelling
solutions we obtain the equations

[wo + war(I2,k* + Psin® 0)m, — iwm, = 0, (2.78)
iwmy, + [wo + wyr (I2,k* + 1 — P)jm, = 0. (2.79)
And from this, we can obtain the dispersion relation of spin waves in ferromagnetic thin
films as [30, 92]
w =/ (wo + warl2,k2) (wo + warl2, k2 + wy Fay), (2.80)
where

wy P(1 — P)sin?0
wo + legxk2

Fy=1—Pcos?0 + : (2.81)

see the plot in Figure 2.7.

Here, in the exchange limit, that is for small wavelengths, [ k? > 1, we obtain the
same result as for the bulk sample, w = wyI%,k?. On the other hand, in the dipole limit,
12,k* < 1, the results are quite different from the bulk case. Let us check the two limiting

cases from dipole spin waves in thin films, for § = 0 and 0 = 7/2.
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Figure 2.7: The dispersion relation for propagating spin waves in a 50 nm-tick Ni film
(Mg = 480kA/m and A., = 8pJ/m) under a 10 mT external magnetic field, taking into
account both exchange and dipolar interactions from equation 2.80. The two curves plotted
represent the backward volume spin waves, which are generated when the magnetization
is parallel to the wavevector, and the forward surface waves, which occur when the mag-
netization is perpendicular to the wavevector.

First, for § = 0, that is the wave vector parallel to the static magnetization (k || M),
the dispersion relation in the dipolar limit becomes

1_—(3’%) (2.82)

kd
In this mode, the frequency decreases with increasing wave vector and thus, we have a
negative group velocity v, = Ow/0k with a positive phase velocity v, = w/k. For this
reason these dipolar waves are known as Backward Volume Spin waves (BVSW).

WBVSW = \/ wo (wo + wnm
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Now for § = 7/2, that is, for the wave vector perpendicular to the static magnetization
(k L M), the dispersion relation in the dipolar limit is

WESSW = \/wo(wo +wy) +wy (1 1 _kz_kd> <1 _kz_kd>. (2.83)

Here, both the phase and group velocities are positive, and the amplitude of the magneti-
zation decays exponentially from the surface, thus this dipolar wave is known as Forward
Surface Spin wave (FSSW).

In conclusion, in this section we have discussed spin waves in ferromagnets, both in
bulk materials and thin films. We obtained the dispersion relations, which provide valuable
insights into the behavior of these waves. In thin films, the spin waves in the exchange
limit are isotropic with respect to the magnetization and have a similar behavior as in the
bulk sample. On the other hand, in the dipole limit, the waves are strongly anisotropic,
and very different behaviors are obtained, such as the group velocity that is positive when
k L My and negative for k || M.

2.4 Elastic waves

Similar to the spin waves, the elastic deformations in a material can also propagate as elastic
waves. In this section we shall briefly introduce the physics of the elasticity in solids, the
elastodynamics equation of motion and discuss its wave-like solutions, the elastic waves.

2.4.1 Elastodynamics

Consider a continuous and isotropic solid material with mass density p. The elastic de-
formations in it can be expressed by the displacement vector & = 7 — 7, where 7 is the
initial position of the volume element and s its position after deformation. The solid
deformations can also be described by the second-order strain tensor[79, 93, 9]

1 8uz an
A ((%cj 8@) ’ (284)

where 2,7 = 1, 2, 3 are, respectively, the x, y and z coordinates.
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The deformations in the volume elements are generated by forces acting on it, both
from external agents and from the neighbouring elements, the elastic forces. The elastic
forces per unit volume can be evaluated as

3 3
= 00;; =
Fu=) &Y —2L o Fy=V-7, (2.85)
=1 j=1 ]
where V is the differential vector operator and & is the second-order stress tensor, where
its components o;; represent the forces per unit area acting normal to the direction of ;.

For small displacements, we obtain from Hooke’s law that the displacement is propor-
tional to the stress as

3 3

Oij = Z Z Cijkléfkl or o= 65, (286)

I=1 m=1

where C is the fourth-rank stiffness tensor and Cijw are the elastic constants. It can be
shown that there are 21 independent elastic constants due to the symmetry of the strain
and stress tensors [79]. Also, the higher the symmetry of the crystal structure, the less
nonzero elastic constant values will be present. For example, in a cubic crystal only three
nonzero elastic constants are found, Cy;;; = Chi, Cyi5; = Ch2 and Cjji5 = Cug. It can be also
shown that if the cubic material is isotropic we obtain the relation C1; — C1a = 2C)y, thus
only two independent elastic constants will be present.

The equation of motion for the displacement, obtained from Newton’s second law, is

d*a

,0@ =V-o+ ﬁe:pt (287)

where F,,; are the external forces per unit volume acting on the material and V - 7 is the
elastic force per unit volume. In the absence of external forces, the equation of motion can
be written as

0%, B 8A< Guk) (2.89)

p_at2 = 8_:70] ijkla—xl .
Note that in this equation repeated subscripts imply summation of these values.

Now, considering a cubic crystal, which only has three non-null elastic constants, we
get the equation of motion
0%u; 0%u; 0%u; 0%u;

p 92 Clla_x? + Omm + 044W.

(2.89)
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2.4.2 Elastic waves in thin films

Let us now consider the equation of motion for a thin film, placed in the xz-plane, with
free surface boundary conditions. In this case, the displacement along the normal direction
is negligible in relation to the in-plane ones, that is du/dy < Ou/0x,0u/0z. We obtain
from equation 2.89, the relations

82% 0%u, 0%u, 9%u,

6?152 =Cn O + Cua 022 (012 + 044) 970 (290)
aQUy O*u,  0%u,
Por ~ C44< o2 T g ) (2.91)
0%u, 9%u, 0%u, 0%u,

P 8152 Cll a 2 + 044 8 2 (012 + 044) axaz (292)

Now, let us linearize the equations by looking for the plane wave solutions u(7,t) =

= i(k-F—wt)

ue Let us also let us consider that the wave vector points along the in-plane

x-direction, k= kz, resulting in
C C C
<w2 111{:2) =0, <w2 - —441{:2>uy =0, and <w2 = k‘2> = 0. (2.93)
p

Observe that the solutions for these equations are given by linear dispersion relations
in the form of
wy = vk, (2.94)

where v, is the sound wave velocity. For the transverse y and z directions, we obtain shear
or transverse elastic waves with velocity v, = \/Cu/p, and for the x direction (@ || k) we
obtain longitudinal waves with velocity v; = \/C11/p. From that, we can see that the phase
and group velocities are equal to each other and they are independent of the frequency.
Also, as C1 > Cyy, the velocity of the longitudinal waves is always larger than the velocity
of the shear waves.

2.4.3 Elastic waves in waveguides

Now, we will consider the effect of lateral boundaries in the equations for the elastic waves.
Consider a plate placed in the xy-plane with infinite length along the x-direction, with
width 20 in the y-direction. For an elastic wave propagating the x-axis, k = kz, the two
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in-plane modes are coupled to each other, but the out-of-plane modes are uncoupled from
the others [93, 95]. We will start with the out-of-plane modes, then we will check the
results for the in-plane modes.

For the out-of-plane modes, we will consider the wave equation of the z-displacement,

1 9%
Viu, = z 2.95
" V2., Ot? (2.95)

where is uniform along the thickness of the plate, that is u, = u,(x,y,t). Note that u,
propagates along the x-direction and its amplitude can vary along the width (y-direction).
We will consider solutions in the form of u, = h(y)e!**=“Y. From that we obtain

d*h 9 2

w
—— +k’h=0 where k’=—
dy?2 y y Ui

— k2, (2.96)

which accepts h(y) = A; sin (k,y) + Az cos (kyy) as a solution.

Considering the boundary conditions, at y = £b we have o,, = 0,y = 0., = 0, which

results in
ou,
5 =0. (2.97)
Y y==b
From that we can obtain the equations
A cos (kyb) — Ay sin (k,b) = 0, (2.98)
A cos (kyb) + Ay sin (k,b) = 0. (2.99)

That results in cos (k,b) sin (k,b) = 0, and that is satisfied by

nm

=5 (1=012..). (2.100)

oy
where n is the mode order, which is a consequence of the formation of standing waves
across the y-direction.

Note that, from these conditions, if n is even, then A; = 0, so the amplitude along
the y-direction is only composed of the sin part, that is u, = As cos (/fyy)e"(k‘”*“’t), so the
displacement is symmetric in relation to y=0. Similarly, if n is odd, then A; = 0 and
u, = Ay sin (r,y)e’** =) we have an antisymmetric elastic wave.
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Thus, the dispersion relation for the harmonic out-of-plane elastic waves, also called

w:vM/kQ—l—Z—Z (n=0,1,2,3,...). (2.101)

The infinite number of modes yields an infinite number of branches as solutions in the dis-
persion curve, see Figure 2.8. Also, this elastic wave is either symmetric or antisymmetric

P-waves, is

in relation to y = 0 if the mode order n is even or odd, respectively.
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Figure 2.8: Dispersion relation of elastic P-waves propagating in a 20 nm thick, 320 nm wide
CoFeB waveguide (p = 8000kg/m3, Cy; = 283G Pa, Cyy = 166G Pa, and Cyy = 58G Pa),
obtained from equation 2.101.

Now, let us focus in the in-plane elastic waves. Here, we will also consider the formation
of a standing wave in the y-direction with a propagating wave in the x-direction. To do
this, it is convenient to use Helmholtz’s theorem and decompose the displacement field by
the use of scalar and vector potentials [93, 95],

@=Vo+V X, (2.102)
where ¢ is the scalar potential and 1) is the vector potential.
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In this case, for the motion in the xy-plane we have u, = 0 and any derivative in relation
to z also zero, reducing the equations to

dp 0. dp O,
.= — d = . 2.103
“ or 0Oy Aty Jdy  Ox ( )
The potentials ¢ and 1, must satisfy wave equations, which are two-dimensional in this
case,
Po Pp 1Py Py, . 19,
= — d = — . 2.104
Ox? * dy?  vi Of? ME ez * dy?2 v ot? ( )

Let us now consider harmonic plane wave solutions as ¢ = q)(y)ei(kx_‘”t) and v, =
U (y)ek>=«t) in the differential equations to obtain

®(y) = Ay sin (py) + Az cos (py), (2.105)
U(y) = Bisin (qy) + Ba cos (qy), (2.106)

where , ,
P=2 -k and =" K (2.107)

Y vl

From those, we can obtain the displacements as

Uy = ik® + % and wu, = % — kWU, (2.108)
or more explicitly,
ug = ik[Ay sin (py) + Az cos (py)] + q[Bi cos (qy) — Basin (qy)], (2.109)
u, = p[A; cos (py) — Agsin (py)| — ik[By sin (qy) + B cos (qy)]. (2.110)
Note that w, is symmetric in relation to y = 0 if it is described only by cosines,

which would require A; = By = 0, and that would imply in wu, being described only by
sines. The opposite is also true, an antisymmetric u, must be described by the sines, then
Ay = By = 0, which implies that w, is described by cosines. We can then split the in-plane
elastic waves in symmetric, where ® = A, cos (py) and ¥ = B; sin (qy) and antisymmetric
modes, with & = A; sin (py) and ¥ = By cos (qy), which we will call, respectively S-waves
and A-waves.
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Now, we can apply the free boundary condition, at y = £b we have o,, = 0, = 0, to
obtain

tan (¢b) 4k>pq
= _ 2.111
tan(ph) (@ — k2P 241
for S-waves, and
2 12\2

tan (pb) 4k2pq

for A-waves. These are known as the Rayleigh-Lamb frequency equations, see Figure 2.9.
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Figure 2.9: Dispersion relation of elastic (a) S-waves and (b) A-waves propagating in a 20
nm thick, 320 nm wide CoFeB waveguide (p = 8000kg/m?, C1; = 283G Pa, Cy = 166G Pa,
and Cyy = 58G Pa), obtained from equations 2.111 and 2.112.

Finally, there are three modes of elastic waves propagating in a waveguide with finite
width, the out-of-plane P-waves, and the in-plane S-waves and A-waves. The P-wave
modes present alternating u, symmetry, according to the evenness of the mode order. The
S-waves present u, displacements symmetric in relation to y = 0 and antisymmetric u,,
whereas the A-waves present antisymmetric u, with symmetric u,.

2.5 Magnetoelastic waves

In this section, we will present a phenomenological description of the magnetoelastic inter-
action. Specifically, we will examine the free energy term that connects the magnetization
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and strain components of magnetoelastic materials and its impact on the solutions of wave
propagation in both the elastodynamic equation of motion and the Landau-Lifshitz-Gilbert
equation.

2.5.1 Magnetoelastic interaction

The magnetoelastic interaction is a phenomenon that describes the relationship between
magnetic and elastic degrees of freedom in a material. This coupling results from the
exchange interaction dependence on the distance between magnetic moments, which is
affected by deformations, as well as the dipolar interaction dependence on these distances,
but over longer ranges. However, the spin-orbit interaction is the primary cause of the
magnetoelastic interaction. [94].

The magnetoelastic interaction comprises two distinct phenomena: the magnetostric-
tive effect, which refers to the influence of magnetization on a magnetic material internal
strains, and the Villari effect, which describes the impact of strain on the magnetization
state of the material [30].

The magnetoelastic free energy density can be described phenomenologically as
Eme = BijuM;M;ey, (2.113)

where the summations are implicit, B;;; are the magnetoelastic constant fourth-rank tensor
components and £y, the strain components.

For a cubic crystal there are only two non-zero constants, B;;; = By and B;ji; = Do, so
the magnetoelastic energy density becomes

B,

Emezﬁsz

[aa(M2 — 1/3) + ey (M} —1/3) + e..(M? — 1/3)]

B
2 (Eny Mo M, + €M, M. + £, ML), (2114)

s

For the magnetostrictive effect, we will now obtain the elastic body force that arises
from the magnetoelastic interaction energy by using the expression

dEme), (2.115)

Fre=V Gme =V - ( -
ij
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from which we obtain, for a cubic material,

M, oM, oM, M, OM,
) B, an% B, M (%5 + %52) + Mya?\% + Mza?é
Fre =270 | Myt | + 15 | My (57 +%)+M18—5+MZ§ . (2.116)
s 0 P S 8Mw aMz
Mzgf Mz( oz +a_yy)+Mm oz + M, 8yy

Note that there are three important parameters that influence the strength of the magne-
tostriction, the magnetoelastic constants, the magnetization direction, and its gradient.

Now, for the Villari effect, we can obtain the effective magnetic field from the magne-
toelastic free energy using Hy,e = —V 3 Epe/ 1o, from which we obtain

9 BlgzmMz + BQ(gxyMy + 8mz]w'z)

Hine = e Bieyy My + By(eayMy + £, M) | - (2.117)
s BlezzMz + BZ(Sszz + gszy)

Now, in order to describe the dynamics of materials with magnetoelastic coupling, we
should include the magnetoelastic energy both in the elastodynamic equation of motion,
equation 2.87, in the form of an effective body force, as equation 2.116 for cubic materials,
and in the LLG equation, equation 2.7, for the magnetization dynamics, in the form of an
effective magnetic field, as in equation 2.117. These two equations become coupled to each
other due to the magnetoelastic energy, and should be solved simultaneously.

2.5.2 Magnetoelastic waves in bullk ferromagnet

Now we want to look for wave-like solutions to solve simultaneously the equations 2.87 and
2.7 for a cubic bulk material including the magnetoelastic energy, equation 2.114.

Consider a bulk material, with a static magnetic field applied in the z-direction, so
that M = m,2& + m,y + M2z, where m,, m, < M, ~ M,. From this we can simplify the
magnetoelastic energy equation to only include first-order magnetization terms as

B
Epe = 2V?‘2(mysyz + M) (2.118)

S

The equation of motion can be obtained by the two differential equations as a magne-
toelastic effective magnetic field,

- 2B,
Rpe = — €22l + €427). 2.119
o (e 2e0) (2.119)
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So, we can write the LLG equation, without considering the damping, as

o L
E = —’}/ILL()M X (HQ + heac + hdip + hme)- (2120)

And also, the elastodynamic equation of motion, including the elastic term and the mag-
netoelastic one, becomes

82ui_i . Ouy, N 0
p ot? N al'j gkl 8!@ aZL‘j

From these coupled equations, considering small signal magnetization and elastic com-

aEime
85@‘

. (2.121)

ponents, we obtain

om,

o = VHo(—Ho + DV?)my + v Mhi™® — By (% + 6;;), (2.122)
827;@’ — ypio(Hy — DV?)my — v M,h%? — B, (%1;2 + (?;;), (2.123)
pa;;”” = CuVu, + CH%V L+ ]\Zz agz””, (2.124)
pa;;“;y = CuV?u, + O“a%v ST ]\Bjs 85'?, (2.125)
pa;;Z = OuVu, + Cn%v U+ ]\Bjs (ag;‘” + ag/y)’ (2.126)

where D is the exchange parameter, D = A., /M.

Now, we will look at wave-like solutions for these coupled equations, which involve all
five variables mg, my, u,, u, and wu,. For simplicity, let us consider the case in which
the waves propagate parallel to the magnetization direction, k= k2. First, note that in
that case 0/0x = 9/0y = 0, and that applied to equation 2.126 for u, eliminates all the
magnetization components. Thus, we have a longitudinal elastic wave u, that does not
couple to the spin waves.

Now, for the other four equations, let us consider harmonic solutions (7, ) = we'**=*)
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and (7, t) = me'**=<  We obtain

—dwmy = —ypo(Ho + D/{:Q)my — iyBokuy, ( )
— iwmy, = ypo(Ho + DE*)my, + iy Baku,, ( )
— pwu, = —Cyk*u, + iBykm, /M, (2.129)

(2.130)

— pwzuy = —044k2uy + iBykmy, /M. 2.130

We can introduce circularly polarized variables m™ = m, —tm,, and u~ = u, — tu, and
obtain

(w—wr)m™ = iyBoku™, (2.131)

. B _

(Ww—wyu™ = ZM;Bka : (2.132)
where

wi = ypo(Hy + DE*)  and  w, = \/Cu/pk = v k (2.133)

are respectively the dispersion relations to the spin waves in an unbounded media and the
transverse elastic waves, both without considering the magnetoelastic interaction.

Combining these two equations, we obtain the dispersion relation for the magnetoelastic
wave in unbounded media as [79)]

1
(w— wp)(W? —w?) — §kat =0, (2.134)

where J; is a parameter that expresses the strength of the magnetoelastic coupling,

_ 2vkB3

Ji = .
g PUJ_Ms

(2.135)

This dispersion equation admits three roots, which comes from the interaction between
the spin wave and the two transverse elastic waves. For a null magnetoelastic coupling,
By = 0 and J, = 0, the roots for equation 2.134 are wy and 4wy, that is, respectively,
the magnetic and the (+) and (-) circularly polarized elastic waves, uncoupled from each
other.

With non-zero Bs, the results are coupled magnetoelastic waves. As the magnetic wave
always presents a (+) circular polarization, the elastic wave with (-) polarization presents a
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negligible coupling, and we can approximate one negative root as w ~ —w;. Thus, equation
2.134 reduces to

(W —wg)(w—wy) — Jg /4w = 0, (2.136)
which has the two solutions
1
W= “t;w’“ £ -/l —w)? + i, (2.137)

that correspond, respectively to the upper and lower branches of the dispersion curves, see
Figure 2.10.
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Figure 2.10: Dispersion curves for elastic waves and spin waves in a bulk CoFeB sample
(Mg = 1.2MA/m, A, = 18pJ/m, p = 8000kg/m?3, Ci; = 283G Pa, Cyy = 166G Pa,
Cy = 58GPa, and By = By = —88M.J/m?), obtained from equation 2.137. Panel
(a) represents the uncoupled waves, while panel (b) includes the coupling between them,
resulting in the hybridization of the curves and the formation of an anticrossing gap between
the transverse elastic and the spin wave. The upper branch of the hybridized curves
transitions from quasi-magnetic to quasi-elastic behavior, while the lower branch transitions
from quasi-elastic to quasi-magnetic.

A distinct characteristic of the magnetoelastic hybridization is the splitting between
the curves at their meeting point, a small frequency gap is present between the branches,
forming an anticrossing region. Far from the crossing point the curves correspond to almost
pure magnetic or pure elastic characters. Hence, the lower branch transits from a almost
pure elastic character for low values of k to an almost pure magnetic character at high
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values of k, and the opposite happens for the upper branch. Near the crossing point, the
normal modes are mixed and they present a coupled magnetoelastic character.

We can also obtain energy and momentum conservation relations for this system. The
total energy (E) of the system can be evaluated as the sum of the magnetic (F,,), elastic
(E.) and magnetoelastic (E,,.) components, £ = F,, + E, + E,.. By using Poynting’s
theorem and the small signal approximation from equations 2.122, 2.124 and 2.126, that
the conservation can be expressed as [79]

- OE 1 |m|*0H,

MR T U VR

where & is the power flow vector and pr is the power per unit volume that is dissipated.

Also, for the small-signal approximation, the momentum density can be expressed as a
magnetic and elastic components as, respectively, for the i-th component:

;1 . om
Im = 2y M ox;

, 1 [ ea . oo
Je = 9P\ om0t " 0t oz, |

2, (2.139)

(2.140)

If the magnetic field and all parameters are spatially invariant, then the total momentum
is conserved

9, . .
5 (0 +d:) =0. (2.141)

2.5.3 Magnetoelastic waves in thin films

Now, let us consider a thin film placed in the xz-plane, normal to the y-direction, with
thickness d. Consider the external field H, and the static magnetization in the in-plane z-
direction. We will follow the same procedures as before, considering M = My +my§+ M, 2
with m,, m, < M, =~ M, in both the elastodynamics equation of motion and the LLG
equation with only first-order terms, we obtain the coupled differential equations as 2.122-
2.126.
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Then, looking for harmonic wave-like solutions to these equations, and considering the

wave propagates in plane that is k= k.Z + k,y, we can obtain the linear equations as [3(0)]

WMy = —WmaMy — 1Y Bak u,,

WMy = —Wy1My + 1y By (ko uy + kyus),

- pWQUx - _Cllkxua: - C’44]'{;2“'&: - (012 + 044)kxkzuz + iBZkzmm/Msa
— pw2uy = —Cya(kyuy + kyuy) + iBok,my, /M,

- pw2uz = _Cllkzuz - C44kmuz - (012 + 044)kxkzux + Z-Bkamx/M&

where
W1 = wo + war (12, k% + Psin®0),
Wma = wo +wy (2, +1— P),
with 6 being the angle between J\7[0 and lg, wo = YpoHo, wy = YoM, and

1— e—kd

P=1
kd

(2.149)

Now, we will consider an isotropic material, so that C'5 = C7; — 2Cy. The waves can

propagate in any direction in-plane, but it is convenient to describe the elastic waves as a

function of their longitudinal (v, || k) and transverse (u; L k) components as

Uy = usinf +ugcosf and  u, = u;cos 6 + uysin 6,

where 6 is the angle between My and k. Thus, we obtain

Bsk cos @
(w? — w?) sin Ouy + (w? — w?) cos Ouy + iz—]\cjsmx =0,
PiVLs
Bykcost
(WZ — wﬁ)uy + Zwmy = 0,
Bsk sin 6
(w? — w}) cos Ouy + (w? — w;) sin Ou; + i%mx =0,
pM,

iyBak cos Ou, + twmy + wimamy, = 0,

iy By sin (20)u; + iy Bok cos (20)uy + wimimy — iwmy, = 0,

(2.150)

(2.151)
(2.152)

(2.153)

(2.154)
(2.155)

where w; = vk, which is the dispersion of the longitudinal elastic waves, and w;, = w, =

v k, respectively the horizontal and vertically-polarized transverse elastic waves.
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Now, we will analyze two special cases of the magnetoelastic waves in thin films, first,
the magnetization perpendicular to the propagation direction, and then the magnetization
parallel to k.

Wave propagation perpendicular to magnetization

First, for the propagation direction perpendicular to the magnetization, kL ]\7[0, that is
0 = m/2. In this case, the uncoupled waves would give rise to the magnetic Forward Surface
Spin waves (FSSW), with dispersion relation shown in equation 2.83. As ]\7[0 = Myz, we
obtain k = k& and u; = u, and u; = u, for the in-plane components of the magnetization,
and u,, the out-of-plane component.

For this case, the linearized equations become [30]

(w? —whu =0, (2.156)

(w® — w?)u, =0, (2.157)
Bk

2 — W) sin Oy + i—rmy, = 0 2.158

(w* — wy) sin Quy + szsm ) ( )

WMy + Winamy, = 0, (2.159)

— iy Bokuy + wyymy — twm,, = 0. (2.160)

Note that longitudinal (u;) and out-of-plane (u,) components of the elastic wave are not
coupled to the magnetization, so their dispersion relations remain unchanged from the
uncoupled case, that is w = w; = vk for v; and w = w, = v k for u,.

The in-plane transverse elastic component (u;) does couple to the forward surface spin
waves. The set of coupled equations becomes, in matrix notation,

—iyBok  wp  —iw| [my
0 W Wpa| |my| =0. (2.161)
w? —w? if—]@[’Z 0 uy

Now, to obtain the non-trivial solutions, the determinant must be zero, and we obtain

(W? — wH)(W? — W) — Jwmak? =0, (2.162)
where B2
J = ZM2 (2.163)
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wp = v k, which is the dispersion of the uncoupled in-plane transverse elastic wave, and
W = /Wmi1wWms 18 the dispersion relation for the uncoupled forward surface spin waves.

Note that in the absence of magnetoelastic interaction, J = 0 and equation 2.162
presents the two solutions w = wy, for the elastic wave and w = w,, for the spin wave.
Now, considering the magnetoelastic interaction, equation 2.162 presents two physically
meaningful solutions,

2

2
2 2 2 _
W = WFT‘% (W) + Jwmak?. (2.164)

These two solutions refer to the two branches that are formed in the dispersion relation. If
there was no coupling, the curves of the transverse elastic waves and the spin waves would
cross each other. This does not happen when the magnetoelastic interaction is present, a
gap is formed between the two curves generating an anticrossing behaviour. The frequency
gap is proportional to the strength of the magnetoelastic interaction and can be evaluated
as Aw = 2Jw,,0k? where Kenoss 1 the value where wy (keross) = Win (Keross)-

Ccross’

From these equations, we obtain two eigenstates as [30)]

My ipM(wi — w3)/(kBy) iy Bowmak [ (Wi — wp)
my | =N | pMswpm(wi — w?)/(kBawmz)| = N | vBawsk/(wi —w?2) |, (2.165)
Ut 1 1

where N is a normalization constant.

Finally, we can identify three different behaviours of equation 2.164, away from the
crossing points we have either quasi-elastic or quasi-magnetic regions, and near the crossing
points, a magnetoelastic region. In the quasi-elastic region wi =~ wy, so from equation
2.165, we obtain that m,,m, ~ 0, and the total energy of the system is dominated by
the elastic energy. On the other hand, in the quasi-magnetic region, u; ~ 0, and the total
energy is basically the magnetic energy. Near the crossing points, the total energy oscillates
between the magnetic and elastic systems.

Wave propagation parallel to magnetization

Now, for the case in which k I M,. Here, k = k2,0 = 0, u; = u, and u; = u,. In
the absence of magnetoelastic coupling, we would obtain backward volume spin waves
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(BVSW), which have dispersion following equation 2.82. In this geometry, we obtain the
linearized equations

Byk
(w? — w?)uy + ip—]\zmx =0, (2.166)
Bk
(w? — w?)u, + iﬁmy =0, (2.167)
(w? —whuy =0, (2.168)
iy Bokuy, + iwmy + wpamy, = 0, (2.169)
iy Bokuy + wpamy — iwm,, = 0. (2.170)

Observe that the longitudinal elastic wave (u;) is not coupled to the magnetization com-
ponents, and its dispersion relation is simply w = w; = vjk. Here, both the transverse
in-plane (u;) and out-of-plane (u;) elastic waves are coupled to the magnetic system. The
coupled equations can be written as [30)]

1y Bok 0 Wit —iw My
0 1y Bok w Wm2 My
=0. 2.171
W-w} 0 iBak/(pM,) " (2.171)
0 w? — w? 0 iBok/(pMs) | | uy

Again, the non-trivial solutions are found by obtaining the determinant and equating
it to zero. From that we obtain

(w2 — wi)(wQ — wi)(uﬂ — wg) — Jk‘2[wm1(w2 — w,%) + wmg(wz — wg) + Jk;2] =0, (2.172)

see Figure 2.11. From this equation, we can see that for J = 0, we obtain the uncoupled
dispersion relations, w = wp,, wy or w,, where wy,, = \/W,1wWy2 and wy = w, = v k. Now,
for J # 0, we can see three interaction terms. In the first, Jk*w,,;(w? — w?), we can see
an interaction between the in-plane transverse elastic wave with the spin wave, which will
generate an anticrossing gap between these two curves. The second, Jk?wns(w? — w?),
shows an interaction between the spin wave and the transverse out-of-plane elastic mode,
also creating an anticrossing gap. And finally, the third interaction term, J?k*, couples
all the three different waves, generating an interaction among the spin wave and the two
transverse components of the elastic wave.
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The corresponding eigenstate can be evaluated as [3(0)]

M _pMs[me(UJ2 — wg) + Jk’Q]/(Bijw)

My | Z'p]WS((,u2 - wg)/(BQk)

Uyt =N —i[me(uﬂ _ wg) + JkQ]/<w(w2 . W}%)) (2173)
Uy 1

Here, the dispersion also generates an anticrossing gap between the two branches, w, and
w_, where we can identify the three regions: quasi-elastic, quasi-magnetic and magnetoe-
lastic. However, a third magnetoelastic eigenstate is found, w., with a dispersion that is
almost linear and falls slightly below the uncoupled transverse elastic wave curve.

In conclusion, the total energy of a magnetoelastic system consists of various contri-
butions from the magnetic, elastic, and magnetoelastic interactions. The magnetic energy
contribution is determined by dynamic components and can be affected by various mag-
netic interactions, including Zeeman, dipolar, exchange, and magnetocrystalline interac-
tions. Meanwhile, the elastic wave energy is determined by the displacement components
and their time derivatives. The magnetoelastic interaction also contributes to the total
energy of the wave, and generates an anticrossing gap in the dispersion relation. During
the propagation, the energy oscillates between the different components. Far from the
crossing points, the energy is mainly in either the elastic or in the magnetic system. Near
the crossing points, it resonantly oscillates between the two systems.
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Figure 2.11: The dispersion curves for magnetoelastic waves with magnetization parallel
to the wave vector in a 20 nm thick CoFeB film (Mg = 1.2MA/m, A.. = 18pJ/m, p =
8000kg/m?, Cyy = 283G Pa, C13 = 166G Pa, Cyy = 58GPa, and By = By = —8.8M J/m?),
obtained from equation 2.172. The plot reveals that the longitudinal elastic wave (w,) does
not couple to spin waves (wy,), whereas the transverse elastic waves (w, and w,) hybridize
and form an anticrossing gap with two branches (w_ and w,).
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Chapter 3

Methods

In this section, we will discuss the numerical simulations and the data processing employed
in this thesis.

We will start describing the micromagnetic tool employed to numerically solve the
magnetization dynamics, the LLG equation, MuMax3 [78], with several magnetic energy
terms. This tool supports the inclusion of the magnetoelastic effective magnetic field in
the equation, allowing us to determine the spin wave dynamics generated from external
elastic strains. However, it does not solve the elastodynamic equation of motion for the
material.

To simultaneously compute the coupled elastodynamic and LLG equations we employed
the magnetoelastic extension of MuMax3 [96]. In this package we are able to include
the elastic properties of the material, along with the magnetic, elastic and magnetoelastic
energy terms. This package allows us to calculate the internal elastic modes of the material
and also to calculate the magnetoelastic waves, with all the dispersion relations.

3.1 Micromagnetic simulations

In this thesis, we employed the open-software GPU-accelerated MuMax3 software [73].
This computational tool utilizes finite-difference discretization to calculate the space- and
time-dependent magnetization dynamics in ferromagnets ranging in size from nano- to
micro-scale. It obtains the ground state of the magnetic sample by an energy and torque
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minimization, as shown in equation 2.8. It also calculates the magnetization dynamics by
numerically solving the LLG equation, equation 2.7.

The first step in the simulation is to define the size of the universe to be simulated. To
ensure reliable results, it is important that the size of the cells used in the simulation is not
larger than the exchange length of the material, I, = \/2A../(1oM32), for example, it is
5.7 nm for permalloy and 7.7 nm for nickel. However, it is worth noting that in thin films,
the magnetization can be considered constant along the thickness direction. This allows
for the use of cells that are larger than the exchange length in that direction, without
compromising the accuracy of the simulation results.

The second step of the simulation involves defining the magnetic parameters of the ma-
terial, including the saturation magnetization (Mg), exchange stiffness (A.,), and Gilbert
damping constant («). Following this, initial conditions are specified, such as the initial
magnetization configuration and the applied external magnetic field vector, which might
be time-dependent.

The final step in the simulation code involves specifying the desired output, which
can either be the minimum energy magnetic state or the magnetization dynamics. If the
minimum energy state is the desired output, the code employs the relaz() command, which
generates a single magnetization file. On the other hand, if the magnetization dynamics
are of interest, we use the run() command, and the code calculates the dynamics over a
specified time interval and outputs a magnetization file for each time-step of the simulation.

In the energy minimization mode of the simulation, the precession term of the LLG
equation is disabled. The code first minimizes the energy until the total energy cuts into
the numerical noise floor. Then, it begins monitoring the magnitude of the torque instead
of the energy, since close to equilibrium the torque will decrease monotonically and is
less noisy than the energy. In the dynamic simulation, the LLG equation is solved using
Range-Kutta methods with adaptive time steps.

3.2 Magnetoelastic extension

The MuMax3 software has been extended to include the physics of elasticity in addition
to magnetization [J6]. This new feature enables the calculation of both the magnetic
and elastic degrees of freedom of the material and the coupling of the two through the
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magnetoelastic interaction. By integrating magnetoelastic effects into the simulations, the
software offers a more comprehensive model for studying the behavior of ferromagnetic
materials under the influence of external fields and mechanical stresses. Moreover, this
extension opens up the possibility of investigating magnetoelastic waves.

In this extension, in addition to the magnetic parameters, the elastic properties of the
material must also be declared. This includes the stiffness constants, such as ¢q1, ¢12, and
c44, which are relevant for cubic crystal structures, the mass density p, and a viscoelastic
damping parameter 7.

With the addition of the elasticity module in the MuMax3 software, the initial elas-
tic displacement of the material must also be defined in addition to the magnetization.
Excitations in the system can be introduced by defining a time- and space-variant body
force or strain components. The simulation outputs both the magnetization and elastic
displacement for each step, providing a complete picture of the behavior of the material
under the influence of external fields and mechanical stresses.

If non-zero magnetoelastic constants are included in the simulation, the software will
solve the now coupled equations of motion for both the magnetization dynamics and elas-
todynamics. Any change in the elastic strains will influence the magnetoelastic effective
field, which in turn will affect the magnetization dynamics. Similarly, any change in the
magnetization will influence the magnetoelastic body force, which will affect the elastic
properties, thus generating a magnetoelastic feedback system.

3.3 Processing simulation data

In order to obtain the dynamic properties of either the magnetic or the elastic system, an
external pulse can be used as a perturbation to excite the system. This perturbation can
take the form of a magnetic field or a body force, which takes the magnetization and/or
the elastic displacements out of equilibrium. The dynamics of the system are then saved
until it returns to its equilibrium position.

In order to perform the pulsed excitation, we utilize a sinc function, e.g. H., =
sinc(wot) = sin (wot) /(wot) with wy = 27 fo, which takes on the form of a step function with
cut-off frequency fy in the frequency domain. This allows for a homogeneous excitation
of all eigenfrequencies of the system below f;, when a Fast Fourier Transform (FFT) is
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performed. By utilizing this method, we can efficiently and effectively excite the system
and analyze the resulting dynamics.

The magnetization dynamics is recorded as m(z, y, z) at each time step. By stacking the
time variations for each cell, we obtain m(t, zo, yo, 20), where (o, yo, z0) is the position of
the cell in the sample. We then analyze the dynamics of the system by performing the FFT
of the time-domain signal for each cell of the sample, resulting in the frequency-domain
signal m(f, o, yo, 20), where m is the amplitude of the magnetization at the corresponding
frequency. Summing the results from every cell, we obtain the frequency spectrum, m(f),
which contains the amplitude of the magnetization for the whole sample as a function
of the frequency. The peaks that appear in the frequency spectrum correspond to the
eigenfrequencies of the system. These peaks are typically Lorentzian in shape and provide
information about the resonant frequencies of the system.

In the study of wave phenomena, such as spin waves, it is useful to analyze the spatial
propagation of waves in addition to their temporal behavior. To achieve this, we stack the
magnetization time variations for each line, rather than each cell, e.g. in the x-direction,
resulting in the expression m(t,x,yo,20). A 2D FFT is then performed along both the
x and t axes. The resulting graph in the Fourier domain shows both the frequency and
the wavenumber along x, expressed as m(f, ks, Yo, 20). Summing all signals, we obtain
m(f, k.), which displays the amplitude for each (f, k,) point. The amplitude peaks in the
f vs. k, plot correspond to several resonance peaks that form continuous curves. These
curves correspond to the dispersion relations, and they provide crucial information on the
propagation of waves in the material.
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Chapter 4

Results and Discussion

In this chapter, we will present the main results and discussions of our thesis, which is
focused on the dynamics of magnetoelastic coupling. This area of research has gained
considerable interest in recent years due to its potential applications in spintronic and
magnonic devices. Specifically, we explore three different scenarios in which the magne-
toelastic interaction plays a crucial role in determining the dynamics of the system.

Firstly, we present the simulation results of spin wave excitation and spin pumping
that is driven by external elastic waves [97]. The simulation is performed in MuMax3 [78]
by applying an external wave-like strain and solving the Landau-Lifshitz-Gilbert equation,
considering the magnetoelastic effective field that arises from the strain.

Secondly, we aimed to replicate the experimental findings reported by Holanda et. al
2018 [59]. Using the magnetoelastic extension [96] of MuMax3, we simulated the magnon-
phonon interconversion under a spatially varying magnetic field. Specifically, the wave was
excited in the quasi-magnetic region of the dispersion, and as it propagated in the varying
field, it continuously changed its wavenumber until reaching the magnetoelastic regime,
and then eventually entering the quasi-elastic regime. The simulation results reveal a
similar conversion of the quasi-magnetic wave to a quasi-elastic wave, similar to what was
observed in the experimental study.

Finally, we investigate the elastic and magnetic waves that propagate in a complex
magnetic structure, the Néel domain walls, again by solving the coupled LLG equation and
the elastodynamics [98]. We obtain the dispersion relation and compare it with analytical
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equations. We discuss the formation of an anticrossing gap in the dispersion relation based
on the symmetry of the modes.

4.1 Spin waves and spin pumping driven by elastic

waves

This first simulation aims to investigate the spin-wave propagation across long Ni stripes
under the influence of an external elastic wave. To perform this analysis, micromagnetic
simulations using MuMax3 [78] software were carried out. The external elastic waves were
modelled as propagating wave-like strains, which were included in the LLG equation as
effective magnetoelastic fields. In addition, the acoustically-driven spin pumping was also
studied in this simulation by calculating the spin and charge current maps at a Ni/Pt
interface and in the Pt layer, respectively, and the AC and DC voltages on the Pt layer
using the Inverse Spin-Hall effect (ISHE). The simulation results have been previously
published and are available in [97].

In this simulation, the aim is to replicate an experimental setup where surface acoustic
waves are generated by interdigital transducers (IdTs) on a piezoelectric substrate with a
magnetoelastic stripe deposited on top [066-71]. Specifically, the acoustic wave is generated
in the piezoelectric material by applying an alternate tension to the IdTs. The elastic wave
then propagates towards the magnetic strip, driving its magnetization dynamics, which can
be electrically detected in a Pt layer deposited on top of the magnetic material by means
of the inverse spin Hall effect (ISHE) voltage [31, 85, 86, 89].

4.1.1 Introduction

In magnon spintronics, the propagation of magnons over large distances is critical to enable
the processing of spin flux or information. In this study, we investigate the spin-wave
propagation in narrow Ni stripes driven by acoustic excitation, by means of micromagnetic
simulations.

We have considered different cases depending on the extension of the acoustic wave
propagation, which is generated on the left end of the stripe. When acoustic waves are
confined at the origin, the spin waves are free to propagate but vanish after the decay
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length, that is dependent on the dissipation. On the other hand, when the acoustic waves
are present in the whole stripe, spin and acoustic waves propagate together with the spin-
wave maintaining the amplitude constant. Images of the spin-wave propagation modes and
the dispersion relations are discussed for different acoustic wave attenuation lengths.

To investigate the acoustic-driven spin pumping effect, we also consider a Pt line over
and crossing the Ni stripe, as in recent experiments. We calculate the spin and charge
current maps at the Ni/Pt interface and in the Pt layer, respectively, as well as the AC
and DC components of the inverse spin Hall effect voltage.

Although significant efforts have been made to develop experimental procedures for
obtaining high-quality IDTs, micromagnetic simulations provide a reliable tool for a deeper
understanding of the dynamics involved in spin-wave propagation driven by acoustic waves.
Through our simulations, we have gained insight into the magnetization dynamics and
spin-wave propagation on long Ni stripes and the acoustic-driven spin pumping effect.

4.1.2 Simulation setup

We considered stripes as 8192 nm long, 512 nm wide and 10 nm thick. The following
parameters were used to match Ni parameters: saturation magnetization Mg = 490 kA /m,
exchange stiffness A., = 5 pJ/m, and the magnetoelastic coupling constants B; = 6.2
MJ/m and By = 4.3 MJ/m. The cell size is 4 x 4 x 10 nm?. The Gilbert damping «
was set to 0.001. To avoid spin-wave reflection by the edges one considers a narrow area
near the edge as an absorbing boundary condition, « is gradually increased from 0.001 to
1. The magnetocrystalline anisotropy was disregarded for simplicity.

The acoustic and spin-wave propagation on a ferromagnetic Ni stripe were modelled in
three different attenuation scenarios. In the first, the strain excitation is strongly attenu-
ated being produced and restricted at one end of the stripe (on the left). In the second, the
acoustic waves are not attenuated and propagate along the whole stripe. In the last, the
acoustic waves are partially attenuated with an exponentially-decaying amplitude along the
propagation length to simulate a real situation. Figure 4.1 illustrates these three scenarios,
respectively.

The magnetization dynamics and spin waves are induced by applying a propagating
non-uniform longitudinal strain e,, = gosin(kr — wt) where w = vk, with v being the
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Figure 4.1: The simulation setup. A Ni stripe with a equilibrium magnetization at 6 =
45% with the #-axis under a magnetic field ﬁo applied at a 0y angle. Below, we show the
elastic excitation applied for three cases: (a) high attenuation, (b) no attenuation, and (c)
intermediate attenuation.

acoustic wave Rayleigh velocity, which we assumed to be v = 4000 m/s in our simulations.
Thus, the magnetoelastic term reduces to the z-component, Hy g = —2B1m e, /(o Mg) 2.

4.1.3 Results: Spin wave propagation modes

First, a static 31.5 mT magnetic field is applied at the angle g, and the magnetization
relaxes to the minimum energy at the angle 6, both angles are defined relative to the -
axis. An acoustic excitation e,, = ggsin(kxr — wt), with g = 107, f = 2GHz (w = 27 f),
and k = 6.28um™' (A = 1um), is applied to the whole stripe during 25 ns, and the
magnetization is saved. A spatial FFT of the magnetization is calculated, and then, the
FFT amplitude as a function of the magnetization angle # is obtained, as can be seen from
Figure 4.2a.

Note that the spin wave amplitude (dm,) vanishes when the magnetization is either
parallel or perpendicular to the acoustic wave propagation direction (k = z), and reaches a
maximum when the magnetization is at 45°, 135, 225°, and 315°. This can be understood
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Figure 4.2: (a) Polar plot of the spatial-FFT amplitude of the spin waves at the wave vector
of the acoustic wave as a function of the magnetization angle (6) under a longitudinal strain
excitation (£4;). (b) The AC magnetoelastic field intensity perpendicular to the static
magnetization (ugHyg) under different 6 values for the pure longitudinal strain (e,,) and
for the more complete SAW excitation (£,,+¢,.+¢€,.). They both have a maximum at 45°,
with similar amplitudes, and only significantly differ at 6 = 0.

by applying the rotated coordinate system (u,v,z) in the magnetoelastic effective field
(Equation 2.117) to the magnetization my = m,u using the coordinate transformation
mg = mycosh and T = cosfu— sinfv. One obtains, thus, Hy g o< (mycos0)(cosft — sindv),
and the dynamical part of the the magnetoelastic field (hgrp) is,

- 2B1MyEry .

hrp = —————sinfcosh v, (4.1)

poMs

which is zero at § = nm, and is at its maximum amplitude for § = 45° 4+ 90°n (n is an
integer), as obtained in Figure 4.2a. So, in order to maximize the magnetoelastic excitation
of spin waves we have fixed the magnetization angle at § = 45° in all simulations.

However, a more realistic description of a Rayleigh-type SAW should contain the com-
ponents &,, = gosin(kr — wt), £,, = —egsin(kx — wt) and e,, = (3/8)egsin(kx — wt) [99].
As the strain acts as an AC excitation this provides an out-of-plane component for the RF
magnetic field but keeping almost the same angular dependence to the magnetic oscillation,
see Figure 4.2b. It exhibits a maximum at 45° and at this angle the simulations produce
the same results as taking all components. Thus, for the sake of simplicity, we have used
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only the €,, component of the strain without any loss to the results and discussion, as also
considered in references [0, 67].

Strongly attenuated acoustic wave

Next, we investigate the role played by the elastic excitation in the magnetization dynamics
considering that the acoustic waves are confined to a small region of the Ni stripe (see Figure
4.1a). In experiments it should correspond to strongly attenuated SAWs, propagating along
the stripe long direction (x), that vanish nearby the excitation area.

Keeping the magnetization of the Ni stripe at 45°, pointing to the u direction, the
acoustic waves with a given wave number k, and frequency f = vk, /27 give rise to spin
waves. Figure 4.3a shows a snapshot of the spin-wave at a given instant, the wave front is
tilted and propagates towards the z direction.

The spin-wave propagates with the same frequency but not with the same wave number
as the acoustic excitation. In the excitation area they have the same wave number but
when the spin-wave enters in the Ni stripe it changes to its natural propagation mode,
according to the frequency and the total effective field. For the sake of example, in the
snapshot shown in Figure 4.3a the wave number of the spin-wave obtained from the fast
Fourier transform (FFT) is 23.8 rad pm™" (A = 264 nm) while for the acoustic excitation
it is 9.4 rad pm=" (A = 667 nm).

To understand this behaviour, we simulated the wave propagation varying the frequency
and maintaining fixed the excitation wave number at k = 27 f/v. As can be seen from
Figure 4.3b, the dashed line represents the excitation k but the generated spin-wave has
a different k according to the field, like a dispersion relation. A minimum threshold value
for the frequency close to 5.5 GHz is observed, below it there is no spin-wave and for high
k-values the dispersion relation exhibits a quadratic behaviour. The presence of several
modes are justified by the lateral wave confinement.

The dispersion relation of free spin waves in magnetic lines [92, 100-103] were calculated
and compared with our simulations. They are shown in Figure 4.3b, see the blue dotted
lines. The calculation that better correspond the simulation data was performed using
Wesr = 0.7Tw, poH = 55 mT and 0y = 35°. The fact that pH and 0y, are not 60 mT and
45°, respectively, is probably due to the complex shape of the demagnetizing field, because
the static magnetization is not at the symmetry axis of the magnetic slab. However, as
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Figure 4.3: Strongly attenuated acoustic wave. (a) The magnetization profile of the spin-
wave generated by a f = 6 GHz and A = 667 nm acoustic excitation restricted to the
dashed region under a 60 mT field. (b) The dispersion relation under a 60 mT field. The
dashed line is the acoustic excitation wave number k = 2z f/v. The blue dotted lines
represent data calculated from an analytical model. (c) The exponential decay length (z4)
of the spin-wave. The inset shows the z-magnetization along the x-axis with its exponential
decaying amplitude for a = 1073,

can be seen from Figure 4.3b, dotted lines are in good agreement with simulations for the
small and large k, ranges, and it is still better for the first modes.

Now, taking in mind that dissipation is present on the magnetization dynamics, a
central question is how long can the spin waves propagate. From images like the one in
Figure 4.3a, taking the amplitude along the stripe is possible to probe the amplitude atten-
uation. As shown in the inset of Figure 4.3c, the magnetization decay can be fitted by an
exponential dependence m, = mocos(kx)e™*/%4 where x4 is the decay length. Figure 4.3c
shows the decay length as a function of the Gilbert damping, which follows a logarithm
decay [104].

For low «, say, below 0.001, the wave decay length is close to 2 pm which is a length
scale quite big to transport digital information in devices. Low values like this is found
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in yttrium iron garnet (Y3Fes0i2). On the other hand, for more dissipative materials
with alpha reaching 0.01 the decay length becomes close to 1 um, which still might be
sufficiently large for practical applications.

Non-attenuated acoustic wave

Now, we simulate the case in which the acoustic wave has no attenuation, so the strain e,
propagates with constant amplitude along the whole stripe (see Figure 4.1b). This should
correspond to the situation where the acoustic wave attenuation length is much larger than
the stripe length [77], thus, acoustic and spin waves propagate together on the stripe.

Figure 4.4a shows a typical image of the spin-wave. As mentioned above, a bias mag-
netic field is applied to keep the magnetization at 45°. Nevertheless, different from the
previous case where the wave front is tilted, here, the wave front is closer to the pattern
of the strain excitation.

The generated spin-wave has the same frequency and wave number as the acoustic
excitation (see Figure 4.4b). As can be seen from this figure, for a large range of frequencies
the main peak for the spin-wave propagation is observed at k = 27 f/v (dashed line).
The dispersion relation modes are also present but in lower intensity. It is interesting
to note that for free spin waves (previous case) an acoustic excitation at 1 GHz is not a
natural mode for spin waves, as shown in the dispersion relation (see Figure 4.3b), however,
here, the non-attenuated excitation drives and then matches the spin-wave propagation to
its frequency, irrespective to the frequency, although, some dependence on frequency is
observed.

Figure 4.4c highlights this behaviour in further details through the dispersion relation
as a function of the external magnetic field (ugH). Non-zero FET power modes are seen
on all frequencies and fields, because the non-attenuated acoustic wave excites the corre-
sponding spin-wave with same frequency and wave number. Nevertheless, some curves can
be observed, meaning the existence of resonance propagation modes. This implies that
although spin waves can be excited by SAW in practically any frequency and wavelength,
their amplitude is resonantly enlarged when the acoustic wave matches the frequency and
field of its natural dispersion modes.
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Figure 4.4: Non-attenuated acoustic wave. (a) Magnetization profile of spin waves excited
by propagating acoustic waves with frequency and wavelength as 5 GHz and 800 nm,
respectively. (b) The Fourier amplitude of the spin waves for different frequencies. In
all cases the main peak coincides with the acoustic wave number (dashed line). (c¢) FFT
power of the excited spin wave as a function of the external magnetic field for waves with
frequency f and wave number k = 27 f /v.

Partially attenuated acoustic wave

Different from the two previous limit cases, we now consider acoustic waves with an inter-
mediate attenuation. It means that the acoustic waves propagate the whole sample but
their amplitude exponentially decay along the stripe, €., = osin(kr — wt)e /¢ where
x4 is the acoustic wave decay length.

Let us see what happens to the spin-wave propagation varying x4, remembering that
the stripe is 8.19 um long, see Figure 4.5b. We use the frequency and elastic wave number
as f = 4 GHz and k = 6.28 um™" (A = 1 pm), respectively, under a 20 mT magnetic
field. For x4 = 2 um the FFT of the spin-wave exhibits a peak at 6.28 um, the same of
the acoustic excitation, meaning that the acoustic excitation acts as dominant over the
spin-wave propagation.

The same behaviour is observed for any x4 larger than 2 um. Decreasing x4 to 1 um a
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Figure 4.5: Partially attenuated acoustic wave. (a) The spatial magnetization profile for an
exponentially attenuated acoustic excitation with decay length z; =1 um, f = 4 GHz and
A =1 pm under a 20 mT magnetic field. The spin-wave transits between the excitation
wavelength of 1 um (left) to its natural wavelength value of 256 nm at that field (right).
(b) The spin-wave FFT amplitude for different attenuation decay length values x4. The
vertical dashed line corresponds to the excitation wave number (k = 6.28 um™!).

second peak is observed (24.5 um™'), suggesting the coexistence of two waves. It is shown
in Figure 4.5a, where two waves can be seen, one closer to the excitation origin and the
other at the end of the stripe, but each one with a different wave number. Decreasing x4
still further, say to 0.5 pm, only one peak is observed (Figure 4.5b). It turns out that a
regime of spin waves propagation free of the acoustic excitation becomes dominant.

4.1.4 Results: Spin pumping and inverse spin Hall effect (ISHE)

So far we simulated the spin-wave propagation modes in Ni stripes induced by elastic
excitation under different conditions. It is not a friendly task to measure spin waves in real
experiments, so taking it in mind we simulate what should be easier for experimentalists,
the measurement of voltage in narrow Pt lines crossing the Ni stripe through the ISHE,
see section 2.2.3. To do that, we simulate the spin current map at Ni/Pt interface and
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the charge current map in the Pt layer, and then the AC and DC ISHE voltages. We deal
with the non-attenuated case only, but the results are qualitatively equivalent irrespective
of the acoustic attenuation level.

Top View

Cross section

Z F:3

| 4444”

Figure 4.6: FM/NM (Ni/Pt) bilayer. The strain waves (e,,) excite the magnetization
dynamics of the FM film which, in turn, leads to the generation of a spin current (fg)

across the film plane. This acoustically driven spin current injected in the NM layer is
converted into a charge current, Jo, by the ISHE and can be detected as electric voltage
(AV) at the top of the NM line.

We simulate the time evolution of the reduced magnetization components (m,, m,, and
m) for an elastic excitation with f = 4 GHz and A = 1 gm under resonance condition. The
applied field is poHp = 31.5 mT, and the Gilbert damping was set to a = 0.004, according
to experimental values for the Ni/Pt bilayer [105].

Considering the magnetization is pointing to 45° relative to Z-axis, to maximize the
magnetoelastic effects, it is useful to use a = 45° rotated coordinate system (1, v, 2) around
the Z-axis, see Figure 4.6. As can be seen from Figure 4.7a, in this new coordinate system
the m, and m, components exhibit sinusoidal behaviour, with a 90° delay between them,
following the dependence m,, = mg,cos(wt) and m, = mq,sin(wt). This is highlighted in
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the inset of Figure 4.7a showing the Lissajous curve with an elliptic motion with a factor
p = mg,/mo, = 0.256. This curve is not circular because Ni layer is thin, 10 nm thick,

forcing the in-plane magnetization.
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Figure 4.7: Spin-current in point Py. (a) Time evolution of the rotated magnetization
components. The inset shows the ellipsoidal motion of m, and m. around the equilibrium
position. (b) The spin-current across the Ni/Pt interface generated by the spin-wave
propagation. The components with v- and z-polarization are AC, with null average value,
whereas the u-polarized component exhibit a constant value.

Next step is the spin current J; calculation at the Ni/Pt interface. It was evaluated
from Equation 2.46 using the values extracted from Ref. [105]: Osy = 0.0067, g;{f =
3x108m=2, on = 2.42x105(2m)~! and Agp = 10nm. Figure 4.7b shows the spin-current
with v and z polarization oscillates whereas the u-polarized component exhibits a small

but constant value.

We calculated the spatial profile of the spin-current .J; along the stripe for a fixed instant
of time by using Equation 2.46 in each point at the Ni/Pt interface (see Figure 4.8). Again,
the u-polarized spin current strength exhibits a uniform level, whereas in v polarization it
oscillates with the same wavelength and frequency as the spin-wave. Using the J;, map we
calculate the J. map. Still in this Figure 4.8, it is shown in the black frame the charge
current J. in the Pt line calculated by means of Equation 2.50. It illustrates the map of
J. on the v and v components, which are AC and DC components, respectively.

With J., the voltage (AV;syg) between the opposite ends of the Pt line is calculated,
see Figure 4.6 by means of Equation 2.52. We have considered a Pt stripe with thickness
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Figure 4.8: Spin and charge current maps. Spin-current (Js) colormap across the ferro-
magnet for, respectively, the 4 and v spin-polarization directions at a given instant of time
(for details see text). The charge current (J.) components in the Pt line are shown as
vectors inside the dashed frame.

ty = 10 nm and length covering the Ni stripe as £ = 724 nm, in the two different cases:
when the Pt line is aligned to the magnetization direction (@ = 1), and perpendicular to it
(f=10).

In Figure 4.9a it can be seen that when the Pt stripe is aligned perpendicular to the
magnetization (v-direction) a DC component is observed, whereas an AC component is
found when the stripe is parallel to it (u-direction), as expected from Equations 2.53
and 2.54. The DC voltage component value is 2.9 nV and the amplitude of the AC
voltage component is 37.3 nV (see Figure 4.9a). From those equations we calculate the
ratio between them as VAY/AVPC = myg,/mo, = 37.3/2.9 = 13, where mg, and myq,
are the amplitude of the AC voltage and the DC value, respectively. These AC and DC
[SHE-voltage values including the ratio between them are in quite good agreement with
experimental data recently reported [91]. Wei et al. have measured NiFe/Pt stripes 5 x
400 pm? large, and found 12 to the AC to DC ISHE-voltage ratio that is very close to
our findings [91]. However, as we will see below this ratio actually depends on the e,,
strength.

Under the same acoustic excitation (f = 4 GHz and A = 1 pum), the resonance on the
spin-wave propagation mode also manifests itself by varying with the applied magnetic
field (see Figure 4.9b). These resonance peaks can in experiments be measured in both AC
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Figure 4.9: ISHE voltage in NM layer. (a) The AC and DC components of the ISHE
voltage for a 4 GHz, 1 pm acoustic excitation. (b) The DC value and AC amplitude as a
function of the external field, presenting a resonance peak around the natural dispersion
eigenmode. (¢) AVigyr as a function of the square of the strain amplitude (¢2,), which is
proportional to the acoustic wave excitation power (P), showing a linear behaviour for the
DC component and a v/P behaviour for the AC amplitude (see text for details).

and DC geometries by tuning the applied field in ISHE-voltage measurements.

An interesting outcome from our simulations is the dependence of the ISHE-voltage
with the amplitude of acoustic excitation €,,. As can be seen from Figure 4.9¢, the AC
and DC ISHE-voltages follow different behaviours, the DC component is proportional to
the excitation power (£2,), i.e., AVPY o P, while the AC component is proportional to
its square root, AVAC « v/P. It can be explained by means of the relation between

the magnetization amplitude components under precession and the dynamic effective field
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(hrr), that acts on it using the Polder susceptibility tensor m = )25 Thus, one obtains
Moy, Mo, X Ezp and myg, = cte, that when inserted into Equations 2.53 and 2.54, we
obtain AVPY o g,, and AVAY o €2 . Indeed, the AC and DC ISHE-voltage ratio is
then proportional to ¢,,, meaning that besides the fact that AC component is larger than
the DC component, it becomes still more intense increasing the excitation amplitude.
Such dependence of AVAC and AVAC with the input power is in full agreement with
experimental data reported by Wei et al. (see Fig.3b of Ref. [91]).

4.1.5 Discussion

Experiments performed through synchrotron techniques in Ni films deposited on a piezo-
electric substrate (LiNbO3) were recently reported, where the elastic waves were probed by
time and spatially resolved photoemission electron microscopy (PEEM), and the magnetic
contrast by X-ray magnetic circular dichroism (XMCD) [77]. Two interdigital transducers
distant 6 mm were employed to generate propagating and standing waves, when one or the
two IDT's are used, respectively. According to the authors, firstly, as can be seen from Fig-
ure 2b of this reference, the acoustic and spin waves move together. Second, from Figure
2¢, also from this reference, one sees that the spin-wave maintain its amplitude constant in
a window 45 pum wide, placed around 2.5 mm far from the one IDT. Taking it into account
and the fact that stand waves can be formed, which is resulted from waves travelling from
both IDTs, it is quite reasonable to suppose that the acoustic waves propagate over the
whole 6 mm of the Ni film. Thus, one can state that their experiments correspond to

the non-attenuated acoustic wave approximation in our simulations (see Figures 4.4a and
4.4Db).

Concerning the angle dependence of acoustic spin pumping, Puebla et al. [39] have
reported data showing that the voltage generated by the spin pumping follows a sinusoidal
function with a maximum at 45° 4+ 90°n, where n is an integer. This angle is defined by
the magnetization and ¢,, directions. Besides to verify it we showed that when the pad
contacts are aligned at 135° or 45° one measures the DC or AC ISHE-voltages, respectively.
The contacts are placed at a narrow Pt line crossing the Ni stripe. On the other hand,
Puebla2020 placed the contacts along the & direction at the ends of the stripe. It provides
directly (Vac + Vpe)cos(45°), mixing the AC and DC components. However, it has the
advantage to increase a lot the signal level because the interception area between Ni and
Pt (or other materials) is much larger than using a crossing narrow line. If we are dealing
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with other shapes instead of stripes like big squares in millimeter scale, for example, we
can always play with the contact pad orientation to obtain the best result.

4.1.6 Conclusions

In this study, we examined the spin-wave propagation in narrow Ni stripes driven by acous-
tic waves. Our simulations considered three different scenarios based on the propagation
of the acoustic wave and its effect on the spin-wave decay length. We found that when
the acoustic wave is concentrated at one end of the Ni stripe, the spin-wave is able to
propagate freely, but not beyond a distance of 2 um, even with a small @ damping of
5 x 107*. Conversely, when the acoustic wave propagates over the whole Ni stripe, which
can be several millimeters in real systems, the spin waves are carried by the acoustic waves
with the same wavelength, also propagating over millimeter scales.

We also investigated the possibility of probing the spin-wave propagation through volt-
age measurements, specifically by the ISHE voltage. Our simulations provided insight
into the optimal placement of contact pads to measure the AC and/or DC components in
stripes and films. Additionally, we obtained spin and charge current maps at the Ni/Pt
interface and on the Pt line, respectively, which help to further understand the AC and DC
acoustic-driven spin pumping effect. Overall, our findings contribute to the understanding
of the dynamics involved in the acoustic-driven spin pumping effect, and highlight the
utility of micromagnetic simulations in this area.
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4.2 Magnon-phonon interconversion in a spatially non-
uniform field

This section aims to investigate the interconversion between spin waves and elastic waves

in materials with magnetoelastic interaction, inspired by the experimental setup performed
by Holanda et al. [59].

In materials exhibiting strong magnetoelastic coupling, a dispersion relation of spin
waves and elastic waves forms an anticrossing gap, resulting in two branches, see Section
2.5. These branches contain distinct regions where either the spin wave (quasi-magnetic)
or elastic wave (quasi-elastic) dominates, and an intermediate region, near the anticrossing
gap, where both excitations are of the same magnitude (magnetoelastic).

If a spin wave is excited in the quasi-magnetic regime and the external magnetic field
varies spatially during propagation, the wave number of the excitation gradually changes
due to energy conservation. By choosing appropriate magnetic field values, it is possible
to make the excitation passes through the magnetoelastic region and ends up in the quasi-
elastic regime, effectively converting a spin wave (quantized as magnons) into elastic waves
(phonons).

The results obtained from these simulations are not novel and are not intended for
publication. However, this was our first time working with this extension, and we used
it as a way of confirming that it agrees with the theoretical predictions and experimental
results.

4.2.1 Introduction

The interaction between magnetic and elastic properties of materials has become an area of
great interest in the field of magnon spintronics or magnonics [2, 11]. One area of particular
interest is the coupling between spin waves and elastic waves, which has been explored from
fundamental aspects of their hybridization [57, 58] to the development of memory devices
[62, 63] and the potential use of propagating surface acoustic waves (SAWSs) to excite spin
dynamics in magnetoelastic films in a less power-consuming manner [26, 64, 65]. One of
the most fascinating aspects of this coupling is the transfer of spin angular momentum
between quasiparticles, which has been investigated in numerous studies, such as the work
done in Holanda et al. [59].
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We employ the magnetoelastic extension [96] of Mumax3 to study the interaction be-
tween elastic and magnetic waves in a CoFeB thin film. We calculate the magnetic and
elastic dispersion curves and observe the variation of the wave number as a function of
the external magnetic field. Using this information, we create a scenario where an excita-
tion is generated in the quasi-magnetic regime and propagates to the quasi-elastic regime,
gradually changing its wave number as the field decreases.

4.2.2 Simulation setup

A CoFeB stripe with dimensions 20.48 ym x 320 nm x 20 nm was discretized in 5 nm x 5 nm
x 20 nm cells, with periodic boundary conditions applied in the x and y axes to simulate
an infinite film, see figure 4.10. The following properties were defined for CoggFeggBog
[106, ]: saturation magnetization 1.2 x 10 A/m, exchange stiffness 18 x 107'? J/m,
stiffness constants C1; = 283 x 10? N/m?, C15 = 166 x 10 N/m? and Cyy = 58 x 10 N/m?,
mass density p = 8 x 10® kg/m? and magnetoelastic constants B; = By = —8.8 x 10 J/m3.
The magnetic damping parameter is set to o = 1073 and the elastic damping 7 is set to

Z€ero.
BAC

7 <+—>
LY P

_ +k

/]43 DC
-
X

Figure 4.10: The simulation setup. A CoFeB stripe with periodic boundary conditions to
simulate an infinite film with a static magnetic field (Bp¢) applied in the y-direction. An
alternate magnetic field (B 4¢) is applied in the x-axis in yellow region in order to drive the
spin dynamics. Plane spin waves are excited and propagate along the x-axis, perpendicular
to the magnetization direction.

A static magnetic induction field is applied in the y-direction, éDC = Byy and a 100
nm wide line, the yellow region in figure 4.10, is defined as an antenna in order to probe the
spin dynamics. By applying either an alternate sinusoidal or a sinc-pulse external magnetic
field perpendicular to the magnetization direction, Bac = Bac# at the antenna, plane spin
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waves are excited and propagate both in +2 and —Z directions. Absorbing boundaries were
applied at the borders in order to avoid wave reflection. In these boundaries, in the last
5 pm of each side, the Gilbert damping (o) is increased from 1073 to 0.5 and the elastic
damping (n) from zero to 5 x 10'3.

4.2.3 Results

In this section, we will begin by presenting the results of magnetoelastic waves under a
constant magnetic field, in thin films with the wave vector geometry perpendicular to the
static magnetization. We will examine how the elastic and magnetic eigenmodes, and the
position of the anticrossing gap are modified by varying the external field intensity. Using
this information, we will then determine the desired values for the spatially-varying field
that would allow the excitation to start in a quasi-magnetic regime and end in a quasi-
elastic one. Finally, we will present the results of pulse propagation using the spatially
varying magnetic field.

Magnetoelastic waves under a uniform field

First, a uniform magnetization and zero displacement are set as initial conditions, and the
system is allowed to relax to a minimium energy state under Bpe = 100 mT y. Then
a sinc-pulse magnetic field, Bac = [Bac sin(2nfot)/(2n f,t)]#, with Bac = 20 mT and
fo = 50 GHz was applied in the antenna region and both the magnetization m and the
displacement # vector maps are saved as a function of time. These vector maps were fast-
Fourier transformed in order to obtain the dispersion relation of the sample, see Figure
4.11.

Distinct behaviors can be observed in the FFT of different components of magnetization
and elastic displacement. For example, the longitudinal displacement u, and out-of-plane
transverse displacement u, (shown in Figures 4.11b and 4.11d) displayed only a single linear
curve without any gap formed from magnetoelastic interaction. In this geometry, where
the wave vector is perpendicular to the static magnetization (/Z il ]\7[0), the theoretical
prediction in Section 2.5.3 suggests that only the in-plane transverse component (u,) of
the elastic waves couples to the magnetization, which is in agreement with the simulation
results.
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Figure 4.11: The dispersion relation for magnetoelastic waves propagating along the x-
direction, k = k,#, under a static field of Bpe = (100 mT)j. This was obtained by
applying a fast-Fourier transform (FFT) of (a) m,, (b) u,, (¢) u, and (d) u, along the
x-axis. Similar results are found for the FFT of m, and m.. The magnetoelastic crossover
is only present at m,, m, and u,. For the other displacement directions only the elastic

component is present with a longitudinal velocity of 5938 m/s and a transverse velocity of
2683 m/s.

The two uncoupled curves exhibit a linear dispersion, and their group velocity is equal
to the phase velocity. The expected velocities for transverse (v, = \/c44/p) and longitu-
dinal (v; = y/c11/p) elastic waves, using the material properties values employed in the
simulations, are v; = 2693 m/s and v; = 5948 m/s, respectively. The calculated phase
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velocities for u, and wu, are 2682 m/s and 5938 m/s, respectively, in agreement with the
theoretical values for uncoupled elastic wave components in thin films presented in Section
2.4.2.

On the other hand, the components m,, m,, and u, (as seen in Fig 4.11a and 4.11c)
presented similar behaviours, where two hybrid curves are formed in the dispersion relation,
and they displayed an anticrossing gap at k = 64um ™! and f = 26G Hz under a 100 mT DC
magnetic field. This is a strong indication of magnetoelastic coupling. From the theoretical
prediction these three components are coupled via Equation 2.161.

Away from the anticrossing gap, the dispersion relations for m,, m., and w, are similar
to the uncoupled case. However, near the gap, the velocity is significantly altered, re-
sulting in each curve being divided into three domains: quasi-elastic, quasi-magnetic, and
magnetoelastic. In the quasi-elastic and quasi-magnetic domains, the dispersion coincides
with the uncoupled mode, while in the magnetoelastic domain, the dispersion is signifi-
cantly altered. For the lower curve, the quasi-elastic regime occurs at low-k values, and
the quasi-magnetic regime occurs at high-k values. The upper curve exhibits the opposite
behavior.

The magnetic dispersion curve can be shifted towards higher frequencies by increasing
the static magnetic field intensity, as seen in Figure 4.12 for By = 40 mT and 200 mT.
Although the external field does not affect the elastic dispersion curve, the position of
the magnetoelastic crossover gap changes significantly. For example, at 40 mT, the gap is
located at k = 55um ™! and f = 23.5GH z, while at 200 mT, it shifts to k = 71um~! and
f=30GHz.

The dispersion curves can be analyzed at a fixed frequency, indicated by the horizontal
dashed lines in figure 4.12. For instance, at f = 25 GHz, two peaks are observed along the

wavenumber for different magnetic field intensities. At 40 mT, the low-k peak corresponds

to the elastic eigenmode at 58 pum™!, followed by the magnetic mode at 67 pum™1.

1

In

contrast, at 200 mT, the lower peak corresponds to the magnetic mode at 34 ym™", and

the higher peak corresponds to the elastic mode at 59 pum=1.

At a fixed frequency, the selection of appropriate external magnetic field values can
excite a wave in the quasi-elastic, quasi-magnetic or magnetoelastic regimes. Our aim
is to create a magnetic field with a continuously spatially-varying profile, such that the
excitation is initially in the quasi-magnetic regime, but eventually transits through the
magnetoelastic regime, ending in the quasi-elastic regime.
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Figure 4.12: The magnetoelastic dispersion relation obtained from the FFT of u, at an
external magnetic field of (a) 40 mT and (b) 200 mT, perpendicular to the static magne-
tization direction. The horizontal dashed line corresponds to the frequency f = 25 GHz.

To obtain the desired spatially varying field, we begin by performing a simulation where
a constant frequency excitation at 25 GHz is introduced and allowed to propagate under
a constant magnetic field. We then use a spatial FFT to measure the wave number of the
components m, and u, as a function of the external field. This measurement is carried
out for two situations: (a) when the magnetic and elastic modes are uncoupled, i.e. when
the magnetoelastic constants are set to zero (B; = By = 0) and (b) when they are coupled
(B = By # 0), the results are shown in figure 4.13.

In the uncoupled system, figure 4.13a, the magnetic curve is obtained by the AC mag-
netic field excitation followed by the FFT of m,, and the elastic one by the AC excitation
of the force density, with the FFT of u,. In the magnetic curve, the wavenumber (k) of the
spin wave is smaller, that is a larger wavelength (\), the higher is the magnetic field for a
fixed frequency. This is in agreement with the theoretically evaluated dispersion relation
for a thin film, equation 2.80. Also, as expected, the purely elastic wave is not affected by
the external magnetic field.

On the other hand, in the coupled system, figure 4.13b, two branches are visible, a
lower and an upper one. Both branches present magnetic and elastic proprieties. The
lower branch has a dominant elastic behaviour for Bpes < 60mT and a dominant magnetic
behaviour for Bpe > 100mT'. The opposite happens in the upper branch, quasi-magnetic
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Figure 4.13: The resulting wavenumber (k) for a 25 GHz excitation for (a) the uncoupled
system, with magnetoelastic constants (B; and Bs) set to zero, and for (b) the magnetoe-
lastic coupled system.

for low Bpc, and quasi-elastic for high Bpc values. In the 60 mT < Bpe < 100 mT
range, both branches transit from one propriety to the other, and therefore both elastic
and magnetic proprieties are present simultaneously, and thus those are magnetoelastic

waves.

Magnetoelastic waves under a spatially-varying field

When a spin wavepacket propagates through a non-uniform spatial field, its frequency
remains constant while the wavenumber changes according to the local value of the field
intensity. On the other hand, if the propagation occurs in a uniform field that varies in
time, the wavenumber remains constant while the frequency varies according to the field

[59, 108].

This way, we aimed to probe the interconversion of magnetic to an elastic excitation, a
magnon-phonon conversion, by means of micromagnetic simulations using the momentum
conservation. The idea here is to excite a magnetic wavepacket that propagates through a
spatially non-uniform external magnetic field, which starts in the quasi-magnetic region of
the dispersion and arrives in the quasi-elastic region.

The simulations is set as Figure 4.14, a quadratically-varying magnetic field from a 300
mT intensity until the excitation region (x = -5 um), to 30 mT for x > 5 um. For 25 GHz,
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these values correspond to wave numbers, respectively, in the quasi-magnetic and in the
quasi-elastic regions, as shown in the upper branch of figure 4.13.

400 4

3001

2001

100 1

Magnetic field, ugH (mT)

100 -75 -50 -25 00 25 50 75 100

Figure 4.14: The spatially-varying external magnetic field, H(x). It decreases quadratically
from a 300 mT to a 30 mT intensity. A magnetic pulse is excited at the x = 5 pm position
and propagates in the +z direction.

For a non-uniform field, if the spatial field gradient is smaller than a critical value, the
excitation does not change branch in the dispersion relation, as shown in Figure 4.13. In
this scenario, the pulse can be converted from a quasi-magnetic nature to a quasi-elastic
one, without branch hopping. The critical value can be evaluated as [109]

df};rit o 7T1320J
dr — M,pv}’

(4.2)

For our setup, this value corresponds to 153 mT/um, which is much larger than the value
used in this simulation (in the order of 40 mT/um).

The pulse is generated by applying a sinusoidal external magnetic field, H, = (10
mT) sin[27(25GHz2)t|Z, at a 100 nm wide region centered in x = -5 um for 0.5 ns and
then changing it to zero until the end of the simulation at time t = 10 ns. The pulse
propagation is shown in figure 4.15. Two wavefronts are formed, one going in the +x
and the other in the —x directions. The —z one is rapidly attenuated by the absorbing
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boundaries, whereas the +x one propagates along the stripe, under the varying external
field, until being absorbed at the right edge of the slab.

T TN ST

TR TNIRNITTT

Figure 4.15: Pulse propagation under a spatially-varying magnetic field. The images show
m, as a function of the time. The pulse is excited at the x = -5 pum position. The
red and blue colors correspond to, respectively, positive and negative variations of the
magnetization x-component.

Along the pulse propagation its frequency remains constant at 25 GHz whereas its
wavenumber is continuously changed due to the external magnetic field gradient. Figure
4.16a shows the wavenumber k, measured as a function of time and the corresponding
spatial FF'T amplitude at that wave number in Figure 4.16b.

The wave number during the excitation period starts at 18 um~! under the initial 300
mT external field where the amplitude of m, linearly grows until reaching a maximum.
Then, along the propagation the wave number varies up to 57 pwm™!, with its amplitude
decaying exponentially due to the intrinsic magnetic damping («) until reaching the ab-
sorbing boundary at the right edge of the slab at 8 ns.

The u, absolute amplitude is much smaller than the m, one at all times of the simu-
lation, however at the instant t = 5 ns, along with the wave number sudden change to 60
wm~1, its amplitude is strongly enhanced, see the peak at Figure 4.16b. This enhancement
of the elastic u, component is attributed to the magnetoelastic interconversion.

Finally, to highlight the transition from magnetic oscillations to lattice vibrations we
have run the simulation again, changing the Gilbert damping a to zero in the middle of
the stripe, so both elastic and magnetic components do not suffer any losses until reaching
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Figure 4.16: (a) The wavenumber k, of the pulse measured from the spatial FFT as a
function of the time as the pulse propagates in the +x direction. (b) The FFT amplitude
for the corresponding wavenumber along the pulse propagation. The vertical dashed line
shows the instant in which the excitation field is turned off.

the absorbing edges. We evaluated the magnetic energy as the sum of the exchange,
magnetostatic and Zeeman components, subtracted from their values at equilibrium (t =
0), and the elastic component as the sum of the Hooke’s component, [ %6dV, where ¢ is
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Figure 4.17: The energy components of the system as a function of time. The magnetic
energy is evaluated as the sum of the magnetostatic, exchange and Zeeman energies, and
the elastic one as the sum of the Hooke’s with the kinetic components. The vertical dashed
line shows the instant in which the excitation field is turned off.

the stress tensor calculated from Hooke’s law, and the kinetic component, f % pﬁdV.

Figure 4.17 shows the energy components of the system as a function of the time in that
setup. The magnetic energy is linearly increased during the AC excitation (until t = 0.5
ns), when it presents a loss due to the readily —x wave front absorption. The remaining
+x wave front stays with a constant energy, due to the absence of intrinsic magnetic
damping until 4 ns where its energy is gradually transferred to the elastic system, which
continuously grow until reaching a maximum at 8 ns and after that the pulse is absorbed
at the boundary.

Therefore, the pulse is excited in the quasi-magnetic region of the dispersion and is
gradually converted to the quasi-elastic region, by varying the wavenumber and keeping
the frequency constant. This way, the spatially inhomogeneous magnetic field was em-
ployed to probe the interconversion between magnetic and elastic excitations due to the
magnetoelastic interaction.
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4.2.4 Conclusions

In this section, we presented a simulation of spin wave conversion to an elastic wave in a
thin film using the magnetoelastic extension of MuMax3 [96]. Our simulation involved the
study of magnetoelastic wave dispersion in thin films. As expected for this geometry, only
the in-plane transverse elastic component (u,) is coupled to the magnetization dynamics,
and the anticrossing gap is formed in u,, m,, and m,. We observed that by changing
the external magnetic field, the position of the magnetic curves and the anticrossing gap
also changed. By fixing the frequency of the excitation, we could obtain quasi-elastic,
quasi-magnetic, and magnetoelastic behaviors for certain magnetic field intensities.

Furthermore, we designed a setup with a varying static magnetic field, with a gradient
below the critical value for branch hopping. We excited a wavepacket in the quasi-magnetic
region, and as it propagated, its frequency remained constant while its wavenumber gradu-
ally changed, eventually reaching the quasi-elastic region. We observed that the spin wave
was converted to an elastic wave, which was evident from the amplitudes and energies of
the system, consistent with theoretical predictions and experiments.

In conclusion, our simulation reveals how spin waves can be converted to elastic waves
in thin films, highlighting the usefulness of magnetoelastic simulations for predicting the
behaviour of magnetoelastic excitations. This insight may have implications for the devel-
opment of new magnonic devices.

79



4.3 Magnetoelastic waves in Néel-type domain walls

In this section, we focused on using the magnetoelastic extension of MuMax3 [96] to study
the magnetic and elastic eigenmodes of a magnetoelastic strip containing a Néel-type do-
main wall.

While analytical solutions for the wave equations in infinite films are available, these
solutions become impractical when complex patterns of magnetization are present. Thus,
we turned to simulations to obtain a better understanding of the system and to compare
the results with theoretical predictions.

Interestingly, even with the presence of magnetoelastic interaction, some of the curves
do not form anticrossing gaps. We will discuss this further and show that this can be
explained based on the symmetry of the elastic and magnetic modes. The simulation
results have been previously published and are available in [95].

4.3.1 Introduction

Transmitting and processing data with spin waves (SW) is a promising field known as
magnonics, that has the potential to increase the energy efficiency and reduce the size of the
current information technology [2, 11, 103]. However, the low efficiency in SW excitation
and detection [71] and the small propagation length [53] remain drawbacks in the field.
The coupling between SW and elastic waves, through the magnetoelastic interaction, has
emerged as a promising strategy to overcome these challenges [54, (4].

Recently, magnetic domain walls have been proposed as propagation channels for spin
waves [110, ]. The domain walls can be found in closure-domain remanent states,
which are stable even without an external magnetic field. Also, the domain walls are
topologically protected regions that act as potential wells for propagating SW, creating
laterally-confined magnetic modes with high group velocities [23, , ]. This way,
these propagating waves are promising candidates for data carriers in magnonic systems.
However, a study of the effect of magnetoelastic interaction taking into account the domain
wall-confined magnetic eigenmodes is still lacking.

In this work, we have calculated the dynamics of magnetoelastic waves in a thin CoFeB
slab containing a Néel wall using coupled micromagnetic and elastodynamics simulations.
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We have obtained the dispersion relation for the magnetic and elastic modes and compared
them to the analytical equations for the uncoupled waves. Then we show three examples of
crossing points between elastic and magnetic eigenmodes and discuss the formation of an
anticrossing gap due to a strong coupling, or gapless crossing, for independent resonators.

4.3.2 Simulation setup

z

Figure 4.18: Sketch of the thin magnetic stripe of two oppositely magnetized domains
with the Néel wall between them. The arrows show the direction of the magnetization at
equilibrium, and the yellow stripe indicates the region where the external pulse is applied
to generate spin and elastic waves.

We have numerically calculated the magnetic and elastic dynamics of thin magne-
toelastic stripes with a high aspect ratio containing two oppositely magnetized domains,
separated by a Néel-type domain wall, see Figure 4.18. The film is in the xy-plane, with the
bottom and top magnetic domains oriented, respectively, in the +2 and —2 directions. The
Néel domain wall is the transition between these two domains, in which the magnetization
curls anticlockwise in-plane, being aligned in the +y direction precisely at its center.

The magnetic eigenmodes are excited by an external magnetic field pulse applied in
the yellow stripe of Figure 4.18, generating plane waves that propagate in the x-direction.
The elastic modes are also excited via the magnetoelastic interaction in this process. In
the opposite sense, a lattice elastic perturbation applied at the yellow stripe position can
generate magnetic modes.

We have numerically simulated the coupled magnetization and elastodynamic dynam-
ics, using Mumax3 [78] software including the magnetoelastic module extension [111]. We
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Figure 4.19: The magnetoelastic feedback. Scheme of the magnetoelastic interaction, the
magnetization dynamics creates a force density, through the magnetostrictive effect, that
drives the elastic displacement dynamics that, for instance, creates an effective magnetoe-
lastic field from the inverse magnetostriction that drives the magnetization. This system
can feedback itself generating two coupled oscillators.

have simulated magnetic materials with large magnetoelasticity constants like CoFeB, Ni,
and Yttrium Iron Garnet (YIG) and qualitatively similar results were found. However, all
the results presented here are for CoFeB [106, 107] due to the feasibility of experimentally
obtaining Néel domain walls in a reproducible manner [115-119]. We consider the satura-
tion magnetization (Mg) 1.6 MA/m, exchange stiffness (A.;) 18 pJ/m, Gilbert damping
(o) 0.007, and elastic stiffness constants C1; = 283 GPa, (12 = 166 GPa and Cyy = 58
GPa, mass density (p) 8000 km/m? and magnetoelastic coupling constants B; = By =
—8.8 MJ/m?.

To generate a Néel wall, stripes with a large aspect ratio were used, 32 nm wide, 20 nm
thick, and 20.48 pm long. The cell size is given by dr = dy = 5 nm, and dz = 20 nm, and
the number of cells are N, = 4096, N, = 64, and N, = 1. The simulations start already
with the Néel wall placed in the middle, crossing the stripe long direction (see Figure 4.18).
The wall remains stable even when it exhibits stationary or propagating modes in v and
m. No external static magnetic field is applied.
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Figure 4.20: Dispersion relation of the coupled magnetoelastic system. (a) The curves were
obtained from the magnetization and elastic displacement FFT in the numerical simulation.
Due to the magnetoelastic interaction, several crossing points are separated by a gap into
two branches, e.g., point “2” but also with several gapless crossing, as points “1”7 and “3”.
(b) Identification of the modes, obtained by calculation of analytical dispersion curves from

theory.
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In order to obtain the v and m modes, their dispersion relations, and the crossing of u
and m branches, a small-amplitude sinc-shaped magnetic field applied on z direction with
50 GHz cut-off frequency applied in a 100 nm wide stripe placed at the middle of the stripe
(see Figure 4.18). This produces m waves and then u waves due to the magnetoelastic
coupling and run for a total of 20 ns allowing the excitation to extend over the whole
sample.

Spatial-temporal Fast Fourier Transforms (FFT) are performed in the u or m compo-
nents along the x-direction, allowing to build the entire dispersion relation of the coupled
system, i.e., resonance frequency (f,.s) as a function of the k, wave vector. To calcu-
late the u and m modes the inverse Fast Fourier Transform (iFFT) is performed for the
corresponding f,.s and k, point in the dispersion curve.

4.3.3 Results and discussion: Uncoupled elastic and magnetic
modes

The magnetoelastic modes from the pulsed excitation in the micromagnetic simulations
generate the dispersion relation, as shown in Figure 4.20a. It corresponds to a complex
combination of coupled magnetic and elastic eigenmodes, some of which present an anti-
crossing gap as point “2”, and some with a gapless crossing like “1” and “3”.

However, in order to identify the eigenmodes that correspond to each curve (elastic or
magnetic), we have calculated the theoretical dispersion relation equations for the expected
elastic and magnetic modes as if they were uncoupled from each other, that is, if the
magnetoelastic constants were null, By = By = 0.
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a) Elastic modes P-waves
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(b) Elastic modes: A-waves and S-waves
A1 Az

Ao
LA A AA AA AAALALALALALA LA M
> x x
3 WH. 3 S
< _q q
FE T T TT T T TT T T T T YT YY

3 3
II“]IIIIIIIII]IIIII]<l <1 3

So S1

>

3
LU e

Z
Auy

y
-
-
-
-
.
-
N
-
.
-
.
-
-
.
.
-
-
-
-
Uy

Auy
———
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
| -
Auy

(c) Magnetic modes

SWhel N1 N2
£ (WBSBIBIBIRIBIRIRIRIE passssnsssssssssssss S
h-‘-—---_---.-‘--‘-‘--n-q ““‘ ‘ ““‘ “ g .“““...“““‘..‘q

LLE

\

U

|

I

\

I

J

J

\

\

J

J

J

\

\

J

\

I\

1]
Am,,
Amy,
Am,

Am,

Figure 4.21: Uncoupled magnetic and elastic eigenmodes obtained from micromagnetic
simulations with null coupling constants, By = By = 0. The finite width of the waveguide
creates modes with quantized wave vector values in the y-direction. (a) The out-of-plane
elastic waves, P-waves with null Awu, and Aw,. (b) The two types of in-plane elastic
waves, A-waves and S-waves, which have, respectively antisymmetric and symmetric Au,,
the opposite for Au,, and null Au, values. (c) The magnetic modes for the Néel wall, first
the domain-wall confined mode, SW y.;, then the modes of the uniform domains, n; and
ny. The red and blue colors represent, respectively, positive and negative values.

Elastic modes

Still considering uncoupled modes, consider a long waveguide, parallel to &, with thickness
d, where kd < 1, and width w. First, the out-of-plane modes, also known as P-waves,



follow the relation [93],

wn:vL\/lﬂ%—i—w,(n:1,2,3,---), (4.3)
where v; = /Clyy/p and n is the mode order. The solutions for this equation are plotted as
green lines in Figure 4.20b with the label P,,, with n ranging from 1 to 5. Snapshots of the
out-of-plane displacement (Au,) of the P-wave modes are shown in Figure 4.21a. The first
mode P; is uniform along the width, &, = 0, and, as the finite width generate quantized
wavelength values in that direction, in P, there is a node in the center, and k, = m/w, in
Ps, k, = 27 /w, and so on. Finally, we highlight that, in relation to the wave propagation
axis Z, the P-waves alternate between symmetric (P; and P3) and antisymmetric modes
(P5). For the P-waves, the Au, and Au, components are negligible.

Differently from what we would get in an infinite film, in a waveguide with finite width,
the in-plane elastic waves, the longitudinal (Au,) and transverse (Au,) components are
coupled to each other [93]. For the displacement along z, the elastic modes can be split
into two systems, the S-waves and A-waves, where, in a waveguide with width w, their
eigenfrequencies can be described by the solutions for the Rayleigh-Lamb equations [93],

tan(qw/2) [ dkipg |7
tan(pw/2) [( >2]’ (44)

- P — k2

with p? = (w/v))? — k2, ¢* = (w/v1)? — k2 and the exponent +1 referring to S-waves and
—1 to A-waves. The solutions for this transcendental equation were obtained numerically,
and the results are plotted in Figure 4.20b as the cyan (S-waves) and red (A-waves) curves.

The corresponding elastic eigenmodes are shown in figure 4.21b for the A- and S-waves,
respectively. It can be seen that, in the A-waves, Au, is antisymmetric with regard to y=0
and Au, is symmetric. The exact opposite happens for the S-waves, that is, the longitudinal
displacement Awu, is symmetric and the transverse Au,, antisymmetric. The out-of-plane
displacement Auwu, is null in both wave types.

Magnetic modes

Now, the magnetic modes propagating in the waveguide are not easily described by an
analytical solution due to the complex shape of the magnetization of the two domains
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separated by the Néel wall, see Figure 4.18. Disregarding the effects of the curling of
the magnetization, we roughly describe the two uniform domains as waveguides with the
magnetization parallel or antiparallel to the wave vector, with half of the total width of
the stripe.

For a waveguide uniformly magnetized in Z, with M || k we obtain Backward-volume
spin wave eigenmodes, that can be described by the relation [120, 121],

Wy, = \/WaWh, (4.5)

where 2
Wg = WH + War (Dkgot + PkTy) s (46)

tot
wp = wy +wy(DkL, +1— P), (4.7)

1 — ektotd

P=1——— 4.8
kd Y ( )
where wy = poyMs, wy = poYHeat, ki, = k2 + k7, and, due to the finite width of the
waveguide, k, = nm/w.ss, where wess is the effective width [102, ,123]and n =1, 2, 3,

.-+, In Figure 4.20b, we plot the first two magnetic modes of this equation in purple, n;
and ny, using wesr = 178 nm and poHe,e = 22 mT. The theoretical values present a good
fit with the curves from the simulation, which shows that the approximation of the spin
waves propagating along the uniform domains are reasonable for this range of f and k.

Besides those, an extra magnetic mode is found below n; and n, spin waves dispersion
curves, which is linked to the Néel wall eigenmode, signed as SW ., in Figure 4.20b. The
curling of the magnetization due to the wall creates a strong demagnetizing field in the
opposite direction of the magnetization in the center of the wall that decreases the total
effective field in that region, generating a potential well [112]. This way, this potential
creates a spin wave eigenmode that is laterally confined inside the domain-wall width,
creating a channeling effect [110, |. We could not find an analytic equation to fit the
curve of the Néel wall-confined mode.

The spatial distribution of the magnetization in the magnetic eigenmode is shown in
Figure 4.21c. First, as expected for the confined mode, SW ., the excitation is mainly
concentrated within the Néel wall, and only a minor part reaches the domains. For the n;
and ny modes, the excitation is mainly in the domains with curved wavefronts, and, for the
latter, with one node in each domain center. In all magnetic modes, in relation to y=0,
the Am, and Am, components are symmetric, while Am,, is antisymmetric.
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4.3.4 Results and discussion: Coupled magnetoelastic modes

After showing the uncoupled elastic and magnetic modes, let us discuss the effect of the
magnetoelastic coupling. The dispersion relation shown in Figure 4.20a was obtained
by an excitation generated by an external magnetic field pulse, followed by FFT of the
response from both magnetic and elastic components. Even though the excitation was
purely magnetic, the elastic modes are also excited through the magnetoelastic interaction.

Away from the crossing points, in Figure 4.20b it can be seen that the uncoupled
equations match the curves of the coupled system, which indicates that the eigenfrequencies
are rather unperturbed by the interaction. The eigenmodes are mainly the same of the
uncoupled system but with some minor changes in their spatial distribution such as a
minor Au, component in S- and A-waves, and small Au, and Au, in P-waves, as the
magnetoelastic interaction couples all elastic components [121].

On the other hand, near the crossing points the curves can significantly differ from
the uncoupled equations, some of those points present magnetoelastic anticrossing gaps,
as the one pointed as “2” in Figure 4.20a. In these regions, the elastic and magnetic
modes are strongly coupled to each other, we can say it is a magnetoelastic wave, and the
curve is separated in two branches, one ranging from a pure-magnetic behavior towards a
pure-elastic, and the vice-versa for the other branch [79, 94].

Nevertheless, some of the crossing points between curves do not present an anticrossing
gap, and their curves are simply the sum of the elastic and the magnetic modes; see points
“1” and “3” in Figure 4.20a. At these points, the magnetic and the elastic systems are
both in resonance but independently. That happens when the magnetoelastic feedback
does not fulfil their resonance, and the reasons for those will be discussed in this section.
Next, we will show these three interaction points in the dispersion curve and discuss the
presence or absence of the anticrossing gap in each of them.

Crossing of SW ., and Ay modes

First, let us discuss the gapless crossing between the Néel wall-confined magnetic eigenmode
(SW ) and the elastic Ag mode at 2.9 GHz and 9 yum™!, pointed as “1” in Fig. 4.20a.
The spatial distribution of the elastic displacement Au and magnetization Am amplitudes,
together with the magnetoelastic body force F,,.; and the magnetic field H,,.; at that point
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are shown in Figure 4.22. In this point, the Am and Awu distributions are identical to the
uncoupled modes, see Figure 4.21. The magnetic modes are mainly confined to the domain-
wall width, while Awu, is restricted to the edges and Aw, is uniform along the y direction.

x X
'-------------‘E 1x10-6 1 - - - - - - - - - - - - = E 1x10°
1 w
|
> 1 3
r::::::::::;:;E —»———————_______g
< 1 W
o N
€ -xi0s T e
< w

Hmel, x

B e e e e e e e e e e e

2x1073

x
2 ax10717

=
SRR REREREN: ——i >
AR AR RAARAARAALRLALE: g

-4x10717

Hmel, z

>
Z
o
(@]
<
@
=
Q
©

|
|
-2x1073 1
1
|

Figure 4.22: Point “1” in the dispersion relation: the gapless crossing between SW y..; and
Ag. Starting from the top left image, we show for the results of the numerical simulation of
the magnetoelastic coupled system, in clockwise direction, the magnetization Am, the body
force Fy, [N/m?], the elastic displacement Au [m], and the magnetoelastic magnetic field
Hyner [A/m]. This is a gapless crossing point in the dispersion relation as F,,; generated by
Am, confined to the wall-width, is not located in the same region as the displacement Au
of elastic eigenmode, which is spread in the domains. Thus, the elastic and the magnetic
systems are uncoupled at that point.

To understand why this is a gapless mode, we have to look again at the magnetoelastic
feedback, summarized in Figure 4.19. The external magnetic field drives the magnetization
resonance at that point, which is limited to the Néel wall width. The magnetization
dynamics, for instance, due to the magnetostriction creates a magnetoelastic body force
density F,,.;) which drives the elastic displacement resonance of the system. Finally, the
displacement, through the inverse magnetostriction, generates an effective magnetoelastic
field H,,; that drives the magnetization closing the feedback gap.
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If now, let us check how the magnetoelastic feedback is working for this case. The
external magnetic field drives the wall-confined magnetization dynamics shown in the top
left of Figure 4.22, which, for instance, generates an effective body force, shown on the top
right of the figure. If we look at the relation between F,,; and Au components, we can
see that the overlap between them is minimal. In the x-direction F,, , is enclosed in the
center, whereas Au, is at the edges of the stripe. In y-direction F,,, is also confined to
a narrow channel, and Auw, is spread all over the width. Therefore, it is not possible for
this spatial distribution of F,,.; to create a mode as the Awu for Ay.

In summary, the low overlap between the magnetoelastic body force F,,. created by
the magnetization dynamics, and the corresponding elastic displacement eigenmode do not
allow the magnetoelastic feedback cycle to effectively close in that point. Consequently,
the two modes oscillate as independent resonators, marking a gapless crossing point in the
dispersion relation.

Crossing of n; and A; modes

Let us check the anticrossing gap at 11.5 GHz and 30 um™! between the magnetic n; and
the elastic Ag modes, see point “2” in Figure 4.20a. Unlike the previous point “1”, here
we can see that interaction between the modes creates a gap, Af = 0.6 GHz, separating
them into two branches.

We show in Figure 4.23, in clockwise order, the magnetization Am, the body force
F,e1, the displacement Au and the effective magnetic field H,,.; for the point “2”, Which
is in the lower branch of the n;-Ag crossing. For the n; magnetic mode Am is minimally
affected by the magnetoelastic interaction, compared to the uncoupled n; mode in Figure
4.21c, i.e., the coupled mode also has an excitation within the Néel wall along the plane
waves in the uniform domains. They are symmetric in Am, and Am,, and antisymmetric
in Am,,.
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Figure 4.23: Point “2” in the dispersion relation: The coupled crossing of n; and Ag
modes. The numeric simulations at this point show a strong coupling between the magnetic
and elastic systems as the F,.; generated from the magnetization dynamics Am not only
presents a high overlap to the displacement Au of the Ag elastic mode, but also they both
carry the same symmetry, antisymmetric for the  and Z components, and symmetric in 3.
The same happens between the effective magnetic field H,,, and the magnetization Am,
effectively closing the magnetoelastic feedback cycle, creating an anticrossing gap in the
dispersion curve.

On the other hand, the Au modes are affected by magnetoelastic interaction, compared
to the Ay mode in Figure 4.21b. Omne exception is Awu,, which is composed of plane
waves with constant amplitude along the width, just like in the uncoupled mode. In Awu,,
besides the edge excitation, an extra antisymmetric displacement occurs in the region of
the domains and has a null Awu, displacement in the domain wall region. This extra
antisymmetric excitation in the domains, null in the Néel wall, is also present in Au,,
which is null in the uncoupled case.

These extra amplitudes in the elastic eigenmode and the anticrossing gap can be under-
stood using the dynamics of the magnetoelastic body force F,,.; and the effective magnetic
field H,,,. In Figure 4.23, the magnetic Am mode is excited by the external magnetic
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field pulse, which for instance, generates the corresponding F,,. shown in the top right
corner. Comparing F,,.; to the displacement Aw in this point, in F,,.; , one sees that both
the antisymmetric amplitudes at the edges and the extra amplitude inside the domains are
similar to what we find in Awu,. Also, besides the Néel wall region, F,,;, is symmetric and
overlaps with Auw,, so in this case, the body force can indeed be excite the elastic mode.

Also, the elastic displacement generates an effective magnetoelastic field H,,.;, see Eq.
2.117, which is shown in the bottom left of Figure 4.23. Similarly, H,,.; overlaps to the
Am modes, Hy,e, and H,,¢ . are symmetric and H,,.;, antisymmetric, just like the cor-
responding magnetic modes. This way, the magnetoelastic feedback cycle closes, and the
magnetic dynamics drive the elastic resonance and vice-versa. Therefore, the two modes
oscillate as coupled resonators, and a gap is formed in the crossing point of the dispersion
relation.

Crossing of n; and S; modes

Another interesting crossing in the relation dispersion occurs at point “3”, which corre-
sponds to the crossing of the magnetic n; and the elastic symmetric S; modes (12.8 GHz
and 16 ym~1). Tt is worth noting that here there is a net overlap of the body force and
displacement and between the effective field and the magnetization, but it is still a gapless
mode. Let us discuss why it happens by examining the spatial distribution of the coupled
elastic and magnetic modes, as shown in Figure 4.24.
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Figure 4.24: Point “3” in the dispersion relation: the gapless crossing of n; and S; modes.
In this crossing point, the simulations show that F),, does overlap with Au and H,,
overlaps Am, but the elastic eigenmode generated by F},.; is not equivalent to S;, which
the resonant elastic mode at that point. For instance, the Au mode has opposite symmetry
from what we would expect for the S; eigenmode, which would be symmetric in Au,
and antisymmetric in Awu,. This way, the elastic and the magnetic systems behave as
independent oscillators, and no magnetoelastic gap is formed in the dispersion.

As in the previous cases, the Am mode does not change compared to the uncoupled
case; compare the top left image in Figure 4.24 to the n; mode in Figure 4.21c. However,
the picture is different in the elastic displacement; the Au mode obtained here is distinct
from the uncoupled S; mode, see Figure 4.21b. The Awu, component of S; is symmetric
while Aw, is antisymmetric, and the opposite is seen in the crossing point of the coupled
system, Awu, is antisymmetric and Awu, is symmetric. Thus, the coupled elastic mode
generated by the magnetoelastic interaction is not related to a pure elastic resonance at
that point, which is the S; eigenmode.

The reason for such a different elastic mode arises from the shape of the magnetoelastic
body force, as seen from the top right part of Figure 4.24. This body force is a consequence
of the magnetization pattern, which has the Néel wall and generates a F,,.; that has an
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antisymmetric pattern in £ and 2, and symmetric in g. This structure of the body force
does not allow it to excite any mode that is symmetric in & direction. Therefore the S-
waves cannot get coupled to this magnetic mode, and there is no gap as can be seen from
the dispersion relation, see Figure 4.20.

Thus, the magnetoelastic feedback cycle cannot be closed here as the magnetoelastic
body force, created by the magnetization pattern, has a different symmetry from the
resonant elastic mode. This way, the body force excites an elastic mode that is not resonant,
and the two systems cannot feedback themselves through the magnetoelastic interaction
generating a gapless crossing.

Finally, the symmetry analysis can also be extended for the behaviour of the P-waves.
The even-numbered P-modes (P5 is shown in Figure 4.21a) present an antisymmetric u,
pattern, which allows them to successfully interact with the magnetoelastic body force
created by the magnetization dynamics, closing the feedback cycle, thus an anticrossing
gap can be seen in Figure 4.20. On the other hand, the odd-numbered P-modes (P; and Pj
in Figure 4.21a) are symmetric in u,, which would not allow an effective overlap with the
antisymmetric body force, as can be seen in P; and P5 modes, with gapless crossing points
in Figure 4.20. The exception is the P3 mode that presents an anticrossing gap in the
dispersion curve, but at that point the A; curve is simultaneously crossing the magnetic
one. So, even though the P3 out-of-plane displacement is symmetric in u, and does not
effectively overlap with the body force, the A; in-plane displacement is antisymmetric in
u, and symmetric in u,, just like the body force, and thus the magnetoelastic feedback
cycle is effectively closed there.

4.3.5 Conclusions

In summary, we have simulated the magnetoelastic modes of a CoFeB waveguide containing
a Néel wall. We have calculated the eigenfrequencies and mode profiles of the pure elastic
modes, the out-of-plane P-waves, and the in-plane S- and A-waves. It was also done for
the pure magnetic modes present in the Néel wall, that is one lower branch corresponding
to the wall-confined mode with strictly-positive group velocity.

The dispersion relation for the coupled magnetoelastic showed a good agreement with
the uncoupled analytical equations, showing that, far from the crossing points the eigen-
modes only slightly affected by the magnetoelastic interaction. On the other hand, near
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the crossing points, the magnetic and elastic modes can either generate coupled oscillators
marked by a gap in the dispersion relation separating the curves into two branches or
oscillate independently, forming a gapless crossing point.

We showed that the wall-confined spin wave could not be strongly coupled to the
elastic modes, as the body force generated by the magnetization dynamics is also strongly
confined to the domain wall width. Thus the overlap with the resonant elastic displacement
is minimum, and the magnetoelastic feedback cycle cannot be effectively closed. Also, the
other eigenmodes of the domain structure, due to its geometry, generate a body force that
is antisymmetric in & and 2, and symmetric in ¢, and it has the opposite symmetry of the
S-waves displacement; thus they cannot effectively couple to each other, generating gapless
crossing points.

Finally, concerning the possibility of employing elastic properties in developing novel
spintronic devices, we have shown the conditions to obtain a strong magnetoelastic cou-
pling. Not only the magnetoelastic body force and effective magnetic field should be non-
zero for all components, but also a large overlap between F;,.; and Au and between H,,
and Am should be present, with the same symmetry, to generate a strong magnetoelastic
feedback cycle that can keep the two systems in a coupled oscillation.
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Chapter 5

Summary and Perspectives

Throughout this thesis, we have explored the influence of the magnetoelastic interaction on
the propagation of spin waves in thin films. Our investigations have included the effects of
external strain on magnetization dynamics, the conversion of magnetic to elastic excitations
and vice versa, and the hybrid modes formed by the coupling of elastic and magnetic waves.

By utilizing MuMax3 simulation software and its magnetoelastic extension, we have
been able to gain valuable insights into the behavior of magnetoelastic excitations in thin
films, with potential applications in the development of novel magnonic devices. In this final
chapter, we will summarize the key findings of our research and discuss their implications
for the field of magnonics.

5.1 Summary

The first simulation investigated the generation and propagation of spin waves in long Ni
stripes in response to an external propagating strain wave. Through our simulations, we
found that the most efficient excitation of spin waves occurs when the static magnetization
is at 45 degrees in relation to the wave vector. We also observed that the propagation
of the level of attenuation of the acoustic wave has a significant impact on the spin-wave
propagation. When the acoustic wave rapidly decays, the spin wave is able to propagate
freely but only over a short distance, whereas when the acoustic wave propagates over the
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whole Ni stripe, the spin waves are carried by the acoustic waves and propagate over longer
distances.

Our simulations also explored the potential use of voltage measurements, specifically
through the ISHE voltage, to probe the spin-wave propagation. We determined the optimal
placement of contact pads to measure both the AC and DC components in films, and
obtained spin and charge current maps at the Ni/Pt interface and on the Pt line. These
findings help to further understand the AC and DC acoustic-driven spin pumping effect.

The second simulation aimed to investigate the conversion of a spin wave to an elas-
tic wave in an unbounded thin film using the magnetoelastic extension of MuMax3. The
results obtained were in agreement with the theoretical predictions, demonstrating that
only the in-plane transverse elastic component (u,) is coupled to the magnetization dy-
namics, leading to the formation of an anticrossing gap in the dispersion relation. The
intensity of the external magnetic field strongly affected the position of the gap, and by
fixing the excitation frequency, quasi-elastic, quasi-magnetic, and magnetoelastic behaviors
were observed for certain magnetic field intensities.

To obtain the conversion of a spin wave to an elastic wave, a setup with a spatially
varying static magnetic field was designed. A wavepacket was excited in the quasi-magnetic
region, and as it propagated, due to energy conservation, its frequency remained constant
while its wavenumber gradually changed, eventually reaching the quasi-elastic region. The
results showed that the spin wave is effectively converted to an elastic wave, as evidenced by
the amplitudes and energies of the system. These findings have important implications for
the development of novel magnonic devices, where the conversion of magnetic excitations
to elastic waves can be utilized for signal processing and transmission.

In the third simulation, the focus was on the magnetoelastic modes of a CoFeB waveg-
uide containing a Néel wall. The eigenfrequencies and mode profiles of the pure elastic
modes, P-waves, S-waves, and A-waves, were calculated, as well as the pure magnetic
modes, which include the Néel wall-confined mode and the backward volume modes in the
uniform domains. Far from the crossing points, the dispersion relation for the coupled
magnetoelastic modes showed good agreement with the uncoupled analytical equations.
However, near the crossing points, the magnetic and elastic modes can either generate
coupled oscillators marked by an anticrossing gap in the dispersion relation or oscillate
independently, forming a gapless crossing point.

It was shown that the wall-confined spin wave could not be strongly coupled to the
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elastic modes, as the body force generated by the magnetization is also strongly confined
to the domain wall width. Thus the overlap to the elastic displacement is minimum, and the
magnetoelastic feedback cycle cannot be effectively closed. Also, the magnetic eigenmodes
that generate a body force that is antisymmetric in z and 2, and symmetric in g, and thus
have the opposite symmetry of the S-waves displacement; cannot effectively couple to each
other, generating gapless crossing points.

Finally, it was shown that to obtain a strong magnetoelastic coupling and form an
anticrossing gap, not only should the magnetoelastic body force and effective magnetic
field be non-zero, but also a large overlap between F},.,; and Au and between H,,., and Am
should be present, with the same symmetry, to generate a strong magnetoelastic feedback
cycle that can keep the two systems in a coupled oscillation. Overall, the simulation
provided insights into the conditions required for a strong magnetoelastic coupling in a
CoFeB waveguide containing a Néel wall.

In conclusion, the micromagnetic simulations presented in this section explored the
effect of the magnetoelastic interaction in the propagation of spin waves, shedding light
on the physics of hybrid interactions between magnons and phonons. These findings are
important for the development of novel magnonic devices that rely on the magnetoelastic
coupling, which can provide new functionalities and improved performance.

5.2 Perspectives

The simulations presented in this chapter have provided valuable insights into the magne-
toelastic interaction and its effect on the propagation of spin waves. These findings open
up exciting possibilities for future work, including experimental studies of the excitation
of spin waves with interdigital transducers on piezoelectric substrates under constant or
spatially varying magnetic fields. Such experiments would enable the exploration of the
magnetoelastic coupling in more complex geometries and magnetic structures, and help to
further refine our understanding of the underlying physics.

In addition to the experimental possibilities mentioned earlier, the results of this the-
sis also open up new avenues for micromagnetic simulations. One of these is the study of
non-reciprocity in magnetoelastic waves, which can be achieved through the Dzyaloshinskii-
Moriya interaction (DMI), among other mechanisms. This can be useful for the develop-
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ment of spin wave circulators and couplers, which are essential components in magnonic
devices for information processing and storage.

Another promising area of research is the interaction between magnetoelastic waves
and magnetic textures, such as magnetic vortices or skyrmions. These structures have
received significant attention due to their potential for application in race-track memories.
The interaction between magnetoelastic waves and these magnetic textures can potentially
lead to novel device concepts and improved performance.

These ideas for future work are summarized below:

e Interdigital transducers for efficient excitation and detection of magnonic signals:
Interdigital transducers can provide an efficient means of exciting and detecting
magnonic signals. This can involve exploring the design and optimization of in-
terdigital transducers for different materials and structures, and studying the effects
of various parameters such as transducer spacing, electrode width, and material prop-
erties.

e Magnetoelastic interaction to add non-reciprocity: The magnetoelastic interaction
can be used to add non-reciprocity to create magnonic circulators or couplers, which
are essential components in magnonic devices for information processing and storage.
This can involve studying the design and optimization of magnonic circulators or
couplers for different materials and structures, and exploring potential applications.

o Magnetoelastic waves and domain walls for race-track memory devices: The use
of magnetoelastic waves and domain walls for creating race-track memory devices
can provide a promising avenue for the development of next-generation data storage
technologies. This can involve studying the interaction between magnetoelastic waves
and domain walls, and exploring potential applications of this interaction in areas
such as spintronic memory devices.

e Magnon-phonon interaction in quasi-particle quantum mechanics: Investigating the
magnon-phonon interaction from the perspective of quasi-particle quantum mechan-
ics can reveal deeper insights into the underlying physics. This can involve exploring
the interaction between magnons and phonons in different materials and structures
and studying the effects of various parameters such as temperature, magnetic field,
and pressure.
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e Chirality of phonons generated from magnons in spatially-varying magnetic fields:
Studying the chirality of phonons generated from magnons in spatially-varying mag-
netic fields can lead to a better understanding of the magnetoelastic interaction. This
can involve investigating the relationship between the chirality of phonons and the
magnetic structure and properties of the material, and exploring potential applica-
tions.

e Effect of magnetoelastic wave propagation in complex magnetic structures: The effect
of magnetoelastic wave propagation in complex magnetic structures, such as domain
walls or films coupled by exchange bias, can have important implications for the
development of novel devices. This can involve studying the interaction between
magnetoelastic waves and magnetic textures, and exploring potential applications of
this interaction.

Overall, the simulations presented in this thesis demonstrate the potential of magne-
toelastic waves for a wide range of applications in information technology. The coupling
between magnetic and elastic degrees of freedom provides a rich physics that can be ex-
ploited for the design of new devices and the exploration of fundamental physical phenom-
ena. As such, future work in this area has the potential to significantly impact the field of
magnonics and spintronics.

100



References

1]

Felix Bloch. Zur theorie des austauschproblems und der remanenzerscheinung
der ferromagnetika. In Zur Theorie des Austauschproblems und der Remanenzer-
scheinung der Ferromagnetika, pages 295-335. Springer Berlin Heidelberg, 1932.
doi:10.1007/978-3-662-41138-4_1.

A A Serga, A V Chumak, and B Hillebrands. YIG magnonics. Journal of Physics
D: Applied Physics, 43(26):264002, June 2010. doi:10.1088/0022-3727/43/26/
264002.

Ivan Lisenkov, Albrecht Jander, and Pallavi Dhagat. Magnetoelastic parametric in-
stabilities of localized spin waves induced by traveling elastic waves. Physical Review
B, 99(18), May 2019. doi:10.1103/physrevb.99.184433.

A. A. Serga, B. Hillebrands, S. O. Demokritov, A. N. Slavin, P. Wierzbicki,
V. Vasyuchka, O. Dzyapko, and A. Chumak. Parametric generation of forward
and phase-conjugated spin-wave bullets in magnetic films. Physical Review Letters,
94(16), April 2005. doi:10.1103/physrevlett.94.167202.

T. Sebastian, T. Brécher, P. Pirro, A. A. Serga, B. Hillebrands, T. Kubota, H. Na-
ganuma, M. Oogane, and Y. Ando. Nonlinear emission of spin-wave caustics from an
edge mode of a MicrostructuredCo2mn0.6fe0.4siwaveguide. Physical Review Letters,
110(6), February 2013. doi:10.1103/physrevlett.110.067201.

A. A. Serga, S. O. Demokritov, B. Hillebrands, and A. N. Slavin. Self-generation
of two-dimensional spin-wave bullets. Physical Review Letters, 92(11), March 2004.
doi:10.1103/physrevlett.92.117203.

101


https://doi.org/10.1007/978-3-662-41138-4_1
https://doi.org/10.1088/0022-3727/43/26/264002
https://doi.org/10.1088/0022-3727/43/26/264002
https://doi.org/10.1103/physrevb.99.184433
https://doi.org/10.1103/physrevlett.94.167202
https://doi.org/10.1103/physrevlett.110.067201
https://doi.org/10.1103/physrevlett.92.117203

[7]

[10]

[11]

[12]

[13]

O. R. Sulymenko, O. V. Prokopenko, V. S. Tyberkevych, A. N. Slavin, and
A. A. Serga. Bullets and droplets: Two-dimensional spin-wave solitons in mod-
ern magnonics (review article). Low Temperature Physics, 44(7):602-617, July 2018.
doi:10.1063/1.5041426.

S. O. Demokritov, V. E. Demidov, O. Dzyapko, G. A. Melkov, A. A. Serga, B. Hille-
brands, and A. N. Slavin. Bose—einstein condensation of quasi-equilibrium magnons
at room temperature under pumping. Nature, 443(7110):430-433, September 2006.
doi:10.1038/nature05117.

A. V. Chumak, G. A. Melkov, V. E. Demidov, O. Dzyapko, V. L. Safonov, and
S. O. Demokritov. Bose-einstein condensation of magnons under incoherent pump-
ing. Physical Review Letters, 102(18), May 2009. doi:10.1103/physrevliett.102.
187205.

Dmytro A. Bozhko, Alexander A. Serga, Peter Clausen, Vitaliy I. Vasyuchka, Frank
Heussner, Gennadii A. Melkov, Anna Pomyalov, Victor S. L’vov, and Burkard Hille-
brands. Supercurrent in a room-temperature bose—einstein magnon condensate. Na-
ture Physics, 12(11):1057-1062, August 2016. doi:10.1038/nphys3838.

A. V. Chumak, V. I. Vasyuchka, A. A. Serga, and B. Hillebrands. Magnon spintronics.
Nature Physics, 11(6):453-461, June 2015. doi:10.1038/nphys3347.

Anjan Barman, Gianluca Gubbiotti, S Ladak, A O Adeyeye, M Krawczyk, J Gréfe,
C Adelmann, S Cotofana, A Naeemi, V I Vasyuchka, B Hillebrands, S A Nikitov,
H Yu, D Grundler, A V Sadovnikov, A A Grachev, S E Sheshukova, J-Y Duquesne,
M Marangolo, G Csaba, W Porod, V E Demidov, S Urazhdin, S O Demokritov,
E Albisetti, D Petti, R Bertacco, H Schultheiss, V V Kruglyak, V D Poimanov,
S Sahoo, J Sinha, H Yang, M Miinzenburg, T Moriyama, S Mizukami, P Landeros,
R A Gallardo, G Carlotti, J-V Kim, R L Stamps, R E Camley, B Rana, Y Otani,
W Yu, T Yu, G E W Bauer, C Back, G S Uhrig, O V Dobrovolskiy, B Budinska,
H Qin, S van Dijken, A V Chumak, A Khitun, D E Nikonov, I A Young, B W
Zingsem, and M Winklhofer. The 2021 magnonics roadmap. Journal of Physics:
Condensed Matter, 33(41):413001, August 2021. doi:10.1088/1361-648x%/abecla.

Mahdi Jamali, Jae Hyun Kwon, Soo-Man Seo, Kyung-Jin Lee, and Hyunsoo Yang.

102


https://doi.org/10.1063/1.5041426
https://doi.org/10.1038/nature05117
https://doi.org/10.1103/physrevlett.102.187205
https://doi.org/10.1103/physrevlett.102.187205
https://doi.org/10.1038/nphys3838
https://doi.org/10.1038/nphys3347
https://doi.org/10.1088/1361-648x/abec1a

[14]

[16]

[17]

[19]

[20]

Spin wave nonreciprocity for logic device applications. Scientific Reports, 3(1),
November 2013. doi:10.1038/srep03160.

Vanessa Li Zhang, Kai Di, Hock Siah Lim, Ser Choon Ng, Meng Hau Kuok, Jiawei
Yu, Jungbum Yoon, Xuepeng Qiu, and Hyunsoo Yang. In-plane angular dependence
of the spin-wave nonreciprocity of an ultrathin film with dzyaloshinskii-moriya inter-
action. Applied Physics Letters, 107(2):022402, July 2015. doi:10.1063/1.4926862.

R.A. Gallardo, T. Schneider, A.K. Chaurasiya, A. Oelschlagel, S.S.P.K. Arekapudi,
A. Roldan-Molina, R. Hiibner, K. Lenz, A. Barman, J. Fassbender, J. Lindner,
O. Hellwig, and P. Landeros. Reconfigurable spin-wave nonreciprocity induced by
dipolar interaction in a coupled ferromagnetic bilayer. Physical Review Applied, 12(3),
September 2019. doi:10.1103/physrevapplied.12.034012.

M. P. Kostylev, G. Gubbiotti, J.-G. Hu, G. Carlotti, T. Ono, and R. L. Stamps.
Dipole-exchange propagating spin-wave modes in metallic ferromagnetic stripes.
Physical Review B, 76(5), August 2007. doi:10.1103/physrevb.76.054422.

Philipp Wessels, Andreas Vogel, Jan-Niklas Toédt, Marek Wieland, Guido Meier,
and Markus Drescher. Direct observation of isolated damon-eshbach and backward
volume spin-wave packets in ferromagnetic microstripes. Scientific Reports, 6(1),
February 2016. doi:10.1038/srep22117.

Huajun Qin, Sampo J. Hamalédinen, Kristian Arjas, Jorn Witteveen, and Sebastiaan
van Dijken. Propagating spin waves in nanometer-thick yttrium iron garnet films:
Dependence on wave vector, magnetic field strength, and angle. Physical Review B,
98(22), December 2018. doi:10.1103/physrevb.98.224422.

M. Vogel, P. Pirro, B. Hillebrands, and G. von Freymann. Optical elements for
anisotropic spin-wave propagation. Applied Physics Letters, 116(26):262404, June
2020. doi:10.1063/5.00185109.

Sergiy Cherepov, Pedram Khalili Amiri, Juan G. Alzate, Kin Wong, Mark Lewis,
Pramey Upadhyaya, Jayshankar Nath, Mingqiang Bao, Alexandre Bur, Tao Wu,
Gregory P. Carman, Alexander Khitun, and Kang L. Wang. Electric-field-induced
spin wave generation using multiferroic magnetoelectric cells. Applied Physics Letters,
104(8):082403, February 2014. doi:10.1063/1.4865916.

103


https://doi.org/10.1038/srep03160
https://doi.org/10.1063/1.4926862
https://doi.org/10.1103/physrevapplied.12.034012
https://doi.org/10.1103/physrevb.76.054422
https://doi.org/10.1038/srep22117
https://doi.org/10.1103/physrevb.98.224422
https://doi.org/10.1063/5.0018519
https://doi.org/10.1063/1.4865916

[21]

[22]

[23]

[24]

[25]

A.V. Sadovnikov, A. A. Grachev, E. N. Beginin, S. E. Sheshukova, Yu. P. Sharaevskii,
and S. A. Nikitov. Voltage-controlled spin-wave coupling in adjacent ferromagnetic-
ferroelectric heterostructures. Physical Review Applied, 7(1), January 2017. doi:
10.1103/physrevapplied.7.014013.

V. N. Krivoruchko, A. S. Savchenko, and V. V. Kruglyak. Electric-field control of
spin-wave power flow and caustics in thin magnetic films. Physical Review B, 98(2),
July 2018. doi:10.1103/physrevb.98.024427.

Bivas Rana and YoshiChika Otani. Voltage-controlled reconfigurable spin-wave
nanochannels and logic devices. Physical Review Applied, 9(1), January 2018.
doi:10.1103/physrevapplied.9.014033.

Noel Perez and Luis Lopez-Diaz. Magnetic field induced spin-wave energy focusing.
Physical Review B, 92(1), July 2015. doi:10.1103/physrevb.92.014408.

P. G. Gowtham, T. Moriyama, D. C. Ralph, and R. A. Buhrman. Traveling surface
spin-wave resonance spectroscopy using surface acoustic waves. Journal of Applied
Physics, 118(23):233910, December 2015. doi:10.1063/1.4938390.

Xu Li, Dominic Labanowski, Sayeef Salahuddin, and Christopher S. Lynch. Spin wave
generation by surface acoustic waves. Journal of Applied Physics, 122(4):043904, July
2017. doi:10.1063/1.4996102.

A.V. Sadovnikov, A.A. Grachev, S.E. Sheshukova, Yu.P. Sharaevskii, A. A. Ser-
dobintsev, D.M. Mitin, and S. A. Nikitov. Magnon straintronics: Reconfigurable
spin-wave routing in strain-controlled bilateral magnetic stripes. Physical Review
Letters, 120(25), June 2018. doi:10.1103/physrevlett.120.257203.

Ferran Macia, Andrew D Kent, and Frank C Hoppensteadt. Spin-wave interference
patterns created by spin-torque nano-oscillators for memory and computation. Nan-
otechnology, 22(9):095301, January 2011. doi:10.1088/0957-4484/22/9/095301.

P Jobez, I Usmani, N Timoney, C Laplane, N Gisin, and M Afzelius. Cavity-enhanced
storage in an optical spin-wave memory. New Journal of Physics, 16(8):083005,
August 2014. doi:10.1088/1367-2630/16/8/083005.

104


https://doi.org/10.1103/physrevapplied.7.014013
https://doi.org/10.1103/physrevapplied.7.014013
https://doi.org/10.1103/physrevb.98.024427
https://doi.org/10.1103/physrevapplied.9.014033
https://doi.org/10.1103/physrevb.92.014408
https://doi.org/10.1063/1.4938390
https://doi.org/10.1063/1.4996102
https://doi.org/10.1103/physrevlett.120.257203
https://doi.org/10.1088/0957-4484/22/9/095301
https://doi.org/10.1088/1367-2630/16/8/083005

[30]

[31]

Andrii V. Chumak, Alexander A. Serga, and Burkard Hillebrands. Magnon transistor
for all-magnon data processing. Nature Communications, 5(1), August 2014. doi:
10.1038/ncomms5700.

L.J. Cornelissen, J. Liu, B.J. van Wees, and R. A. Duine. Spin-current-controlled
modulation of the magnon spin conductance in a three-terminal magnon transis-
tor. Physical Review Letters, 120(9), March 2018. doi:10.1103/physrevlett.120.
097702.

K. S. Das, F. Feringa, M. Middelkamp, B. J. van Wees, and I. J. Vera-Marun.
Modulation of magnon spin transport in a magnetic gate transistor. Physical Review
B, 101(5), February 2020. doi:10.1103/physrevb.101.054436.

Simone Borlenghi, Weiwei Wang, Hans Fangohr, Lars Bergqvist, and Anna Delin.
Designing a spin-seebeck diode. Physical Review Letters, 112(4), January 2014. doi:
10.1103/physrevlett.112.047203.

Jin Lan, Weichao Yu, Rugian Wu, and Jiang Xiao. Spin-wave diode. Physical Review
X, 5(4), December 2015. doi:10.1103/physrevx.5.041049.

S. Klingler, P. Pirro, T. Bracher, B. Leven, B. Hillebrands, and A. V. Chumak.
Design of a spin-wave majority gate employing mode selection. Applied Physics
Letters, 105(15):152410, October 2014. doi:10.1063/1.4898042.

Andrey A. Nikitin, Alexey B. Ustinov, Alexander A. Semenov, Andrii V. Chumak,
Alexander A. Serga, Vitaliy I. Vasyuchka, Erkki Lahderanta, Boris A. Kalinikos, and
Burkard Hillebrands. A spin-wave logic gate based on a width-modulated dynamic
magnonic crystal. Applied Physics Letters, 106(10):102405, March 2015. doi:10.
1063/1.4914506.

Weichao Yu, Jin Lan, and Jiang Xiao. Magnetic logic gate based on polar-
ized spin waves. Physical Review Applied, 13(2), February 2020. doi:10.1103/
physrevapplied.13.024055.

Y. Au, E. Ahmad, O. Dmytriiev, M. Dvornik, T. Davison, and V. V. Kruglyak. Res-
onant microwave-to-spin-wave transducer. Applied Physics Letters, 100(18):182404,
April 2012. doi:10.1063/1.47110309.

105


https://doi.org/10.1038/ncomms5700
https://doi.org/10.1038/ncomms5700
https://doi.org/10.1103/physrevlett.120.097702
https://doi.org/10.1103/physrevlett.120.097702
https://doi.org/10.1103/physrevb.101.054436
https://doi.org/10.1103/physrevlett.112.047203
https://doi.org/10.1103/physrevlett.112.047203
https://doi.org/10.1103/physrevx.5.041049
https://doi.org/10.1063/1.4898042
https://doi.org/10.1063/1.4914506
https://doi.org/10.1063/1.4914506
https://doi.org/10.1103/physrevapplied.13.024055
https://doi.org/10.1103/physrevapplied.13.024055
https://doi.org/10.1063/1.4711039

[39]

[40]

[41]

[42]

[43]

[46]

Giacomo Talmelli, Thibaut Devolder, Nick Trager, Johannes Forster, Sebastian
Wintz, Markus Weigand, Hermann Stoll, Marc Heyns, Gisela Schiitz, Iuliana P.
Radu, Joachim Gréfe, Florin Ciubotaru, and Christoph Adelmann. Reconfigurable
submicrometer spin-wave majority gate with electrical transducers. Science Ad-
vances, 6(51):eabb4042, December 2020. doi:10.1126/sciadv.abb4042.

E. K. Semenova and D. V. Berkov. Spin wave propagation through an antidot lattice
and a concept of a tunable magnonic filter. Journal of Applied Physics, 114(1):013905,
July 2013. doi:10.1063/1.4812468.

A. V. Sadovnikov, E. N. Beginin, S. A. Odincov, S. E. Sheshukova, Yu. P. Sharaevskii,
A. T. Stognij, and S. A. Nikitov. Frequency selective tunable spin wave channeling
in the magnonic network. Applied Physics Letters, 108(17):172411, April 2016. doi :
10.1063/1.4948381.

Adam Papp, Wolfgang Porod, Arpad 1. Csurgay, and Gydrgy Csaba. Nanoscale
spectrum analyzer based on spin-wave interference. Scientific Reports, 7(1), August
2017. doi:10.1038/s41598-017-09485-7.

Krzysztof Szule, Piotr Graczyk, Michal Mruczkiewicz, Gianluca Gubbiotti, and Ma-
ciej Krawczyk. Spin-wave diode and circulator based on unidirectional coupling.
Physical Review Applied, 14(3), September 2020. doi:10.1103/physrevapplied.
14.034063.

J. Ding, M. Kostylev, and A. O. Adeyeye. Magnonic crystal as a medium with
tunable disorder on a periodical lattice. Physical Review Letters, 107(4), July 2011.
doi:10.1103/physrevlett.107.047205.

Bjorn Obry, Philipp Pirro, Thomas Bracher, Andrii V. Chumak, Julia Osten,
Florin Ciubotaru, Alexander A. Serga, Jiirgen Fassbender, and Burkard Hille-
brands. A micro-structured ion-implanted magnonic crystal. Applied Physics Letters,
102(20):202403, May 2013. doi:10.1063/1.4807721.

Qi Wang, Andrii V. Chumak, Lichuan Jin, Huaiwu Zhang, Burkard Hillebrands,
and Zhiyong Zhong. Voltage-controlled nanoscale reconfigurable magnonic crystal.
Physical Review B, 95(13), April 2017. doi:10.1103/physrevb.95.134433.

106


https://doi.org/10.1126/sciadv.abb4042
https://doi.org/10.1063/1.4812468
https://doi.org/10.1063/1.4948381
https://doi.org/10.1063/1.4948381
https://doi.org/10.1038/s41598-017-09485-7
https://doi.org/10.1103/physrevapplied.14.034063
https://doi.org/10.1103/physrevapplied.14.034063
https://doi.org/10.1103/physrevlett.107.047205
https://doi.org/10.1063/1.4807721
https://doi.org/10.1103/physrevb.95.134433

[47]

[48]

[51]

[52]

[53]

[54]

A V Chumak, A A Serga, and B Hillebrands. Magnonic crystals for data processing.
Journal of Physics D: Applied Physics, 50(24):244001, May 2017. doi:10.1088/
1361-6463/aa6a65.

Kyoung-Woong Moon, Byong Sun Chun, Wondong Kim, and Chanyong Hwang.
Control of spin-wave refraction using arrays of skyrmions. Physical Review Applied,
6(6), December 2016. doi:10.1103/physrevapplied.6.064027.

Carolin Behncke, Christian F. Adolff, Nicolas Lenzing, Max Héanze, Benedikt
Schulte, Markus Weigand, Gisela Schiitz, and Guido Meier. Spin-wave interfer-
ence in magnetic vortex stacks. Communications Physics, 1(1), September 2018.
doi:10.1038/s42005-018-0052-1.

Edoardo Albisetti, Daniela Petti, Giacomo Sala, Raffaele Silvani, Silvia Tacchi, Si-
mone Finizio, Sebastian Wintz, Annalisa Calo, Xiaorui Zheng, Jorg Raabe, Elisa
Riedo, and Riccardo Bertacco. Nanoscale spin-wave circuits based on engineered
reconfigurable spin-textures. Communications Physics, 1(1), September 2018. doi :
10.1038/s42005-018-0056-x.

T. Schneider, A. A. Serga, T. Neumann, B. Hillebrands, and M. P. Kostylev. Phase
reciprocity of spin-wave excitation by a microstrip antenna. Phys. Rev. B, 77:214411,
Jun 2008. URL: https://1link.aps.org/doi/10.1103/PhysRevB.77.214411, doi:
10.1103/PhysRevB.77.214411.

O. Rousseau, B. Rana, R. Anami, M. Yamada, K. Miura, S. Ogawa, and Y. Otani.
Realization of a micrometre-scale spin-wave interferometer. Scientific Reports, 5(1),
May 2015. doi:10.1038/srep09873.

M. Collet, O. Gladii, M. Evelt, V. Bessonov, L. Soumah, P. Bortolotti, S. O. Demokri-
tov, Y. Henry, V. Cros, M. Bailleul, V. E. Demidov, and A. Anane. Spin-wave prop-
agation in ultra-thin YIG based waveguides. Applied Physics Letters, 110(9):092408,
February 2017. doi:10.1063/1.4976708.

D. A. Bozhko, V. I. Vasyuchka, A. V. Chumak, and A. A. Serga. Magnon-phonon
interactions in magnon spintronics (review article). Low Temperature Physics,
46(4):383-399, April 2020. doi:10.1063/10.0000872.

107


https://doi.org/10.1088/1361-6463/aa6a65
https://doi.org/10.1088/1361-6463/aa6a65
https://doi.org/10.1103/physrevapplied.6.064027
https://doi.org/10.1038/s42005-018-0052-1
https://doi.org/10.1038/s42005-018-0056-x
https://doi.org/10.1038/s42005-018-0056-x
https://link.aps.org/doi/10.1103/PhysRevB.77.214411
https://doi.org/10.1103/PhysRevB.77.214411
https://doi.org/10.1103/PhysRevB.77.214411
https://doi.org/10.1038/srep09873
https://doi.org/10.1063/1.4976708
https://doi.org/10.1063/10.0000872

[55]

[56]

[57]

[63]

R. M. White and F. W. Voltmer. Direct piezoelectric coupling to surface elastic waves.
Applied Physics Letters, 7(12):314-316, December 1965. doi:10.1063/1.1754276.

Y. Yahagi, B. Harteneck, S. Cabrini, and H. Schmidt. Controlling nanomagnet
magnetization dynamics via magnetoelastic coupling. Physical Review B, 90(14),
October 2014. URL: https://doi.org/10.1103/physrevb.90.140405.

C. Berk, Y. Yahagi, S. Dhuey, S. Cabrini, and H. Schmidt. Controlling the influence
of elastic eigenmodes on nanomagnet dynamics through pattern geometry. Journal
of Magnetism and Magnetic Materials, 426:239-244, March 2017. doi:10.1016/7.
jmmm.2016.11.057.

Cassidy Berk, Mike Jaris, Weigang Yang, Scott Dhuey, Stefano Cabrini, and Hol-
ger Schmidt. Strongly coupled magnon-phonon dynamics in a single nanomag-
net. Nature Communications, 10(1), jun 2019. URL: https://doi.org/10.1038/
s41467-019-10545-x.

J. Holanda, D. S. Maior, A. Azevedo, and S. M. Rezende. Detecting the phonon spin
in magnon-phonon conversion experiments. Nature Physics, 14(5):500-506, April
2018. doi:10.1038/s41567-018-0079-y.

S. Davis, A. Baruth, and S. Adenwalla. Magnetization dynamics triggered by surface
acoustic waves. Applied Physics Letters, 97(23):232507, dec 2010. URL: https:
//doi.org/10.1063%2F1.3521289, doi:10.1063/1.3521289.

Ayan K. Biswas, Supriyo Bandyopadhyay, and Jayasimha Atulasimha. Acoustically
assisted spin-transfer-torque switching of nanomagnets: An energy-efficient hybrid
writing scheme for non-volatile memory. Applied Physics Letters, 103(23):232401, dec
2013. URL: https://doi.org/10.1063%2F1.4838661, doi:10.1063/1.4838661.

L. Thevenard, I. S. Camara, S. Majrab, M. Bernard, P. Rovillain, A. Lemaitre,
C. Gourdon, and J.-Y. Duquesne. Precessional magnetization switching by a surface
acoustic wave. Physical Review B, 93(13), apr 2016. URL: https://doi.org/10.
1103/physrevb.93.134430.

P Kuszewski, I S Camara, N Biarrotte, L Becerra, J von Bardeleben, W Savero
Torres, A Lemaitre, C Gourdon, J-Y Duquesne, and L Thevenard. Resonant

108


https://doi.org/10.1063/1.1754276
https://doi.org/10.1103/physrevb.90.140405
https://doi.org/10.1016/j.jmmm.2016.11.057
https://doi.org/10.1016/j.jmmm.2016.11.057
https://doi.org/10.1038/s41467-019-10545-x
https://doi.org/10.1038/s41467-019-10545-x
https://doi.org/10.1038/s41567-018-0079-y
https://doi.org/10.1063%2F1.3521289
https://doi.org/10.1063%2F1.3521289
https://doi.org/10.1063/1.3521289
https://doi.org/10.1063%2F1.4838661
https://doi.org/10.1063/1.4838661
https://doi.org/10.1103/physrevb.93.134430
https://doi.org/10.1103/physrevb.93.134430

[68]

[69]

magneto-acoustic switching: influence of rayleigh wave frequency and wavevector.
Journal of Physics: Condensed Matter, 30(24):244003, may 2018. URL: https:
//doi.org/10.1088%2F1361-648x%2Faac152, doi:10.1088/1361-648x/aac152.

A. Barra, A. Mal, G. Carman, and A. Sepulveda. Voltage induced mechanical/spin
wave propagation over long distances. Applied Physics Letters, 110(7):072401, Febru-
ary 2017. doi:10.1063/1.4975828.

Rutger Duflou, Florin Ciubotaru, Adrien Vaysset, Marc Heyns, Bart Sorée, Iu-
liana P. Radu, and Christoph Adelmann. Micromagnetic simulations of magnetoe-
lastic spin wave excitation in scaled magnetic waveguides. Applied Physics Let-
ters, 111(19):192411, nov 2017. URL: https://doi.org/10.1063%2F1.5001077,
doi:10.1063/1.5001077.

M. Weiler, L. Dreher, C. Heeg, H. Huebl, R. Gross, M. S. Brandt, and S. T. B.
Goennenwein. Elastically driven ferromagnetic resonance in nickel thin films. Physical
Review Letters, 106(11), mar 2011. URL: https://doi.org/10.1103/physrevliett.
106.117601.

L. Dreher, M. Weiler, M. Pernpeintner, H. Huebl, R. Gross, M. S. Brandt, and
S. T. B. Goennenwein. Surface acoustic wave driven ferromagnetic resonance in
nickel thin films: Theory and experiment. Physical Review B, 86(13), October 2012.
URL: https://doi.org/10.1103/physrevb.86.134415.

D. Labanowski, A. Jung, and S. Salahuddin. Power absorption in acoustically driven
ferromagnetic resonance. Applied Physics Letters, 108(2):022905, jan 2016. URL:
https://doi.org/10.1063%2F1.4939914, doi:10.1063/1.4939914.

R. Sasaki, Y. Nii, Y. Iguchi, and Y. Onose. Nonreciprocal propagation of surface
acoustic wave inNi/LiNbO3. Physical Review B, 95(2), January 2017. URL: https:
//doi.org/10.1103/physrevb.95.020407.

D. Labanowski, A. Jung, and S. Salahuddin. Effect of magnetoelastic film thickness
on power absorption in acoustically driven ferromagnetic resonance. Applied Physics
Letters, 111(10):102904, sep 2017. URL: https://doi.org/10.1063},2F1.4994933,
doi:10.1063/1.4994933.

109


https://doi.org/10.1088%2F1361-648x%2Faac152
https://doi.org/10.1088%2F1361-648x%2Faac152
https://doi.org/10.1088/1361-648x/aac152
https://doi.org/10.1063/1.4975828
https://doi.org/10.1063%2F1.5001077
https://doi.org/10.1063/1.5001077
https://doi.org/10.1103/physrevlett.106.117601
https://doi.org/10.1103/physrevlett.106.117601
https://doi.org/10.1103/physrevb.86.134415
https://doi.org/10.1063%2F1.4939914
https://doi.org/10.1063/1.4939914
https://doi.org/10.1103/physrevb.95.020407
https://doi.org/10.1103/physrevb.95.020407
https://doi.org/10.1063%2F1.4994933
https://doi.org/10.1063/1.4994933

[71]

[72]

[73]

[74]

[77]

Derek A. Bas, Piyush J. Shah, Michael E. McConney, and Michael R. Page. Opti-
mization of acoustically-driven ferromagnetic resonance devices. Journal of Applied
Physics, 126(11):114501, September 2019. doi:10.1063/1.5111846.

D. A. Bas, P. J. Shah, A. Matyushov, M. Popov, V. Schell, R. C. Budhani, G. Srini-
vasan, E. Quandt, N. Sun, and M. R. Page. Acoustically driven ferromagnetic res-
onance in diverse ferromagnetic thin films. IEEE Transactions on Magnetics, pages
1-1, 2020. doi:10.1109/TMAG.2020.3019214.

L. Thevenard, C. Gourdon, J. Y. Prieur, H. J. von Bardeleben, S. Vincent, L. Be-
cerra, L. Largeau, and J.-Y. Duquesne. Surface-acoustic-wave-driven ferromag-
netic resonance in (ga,mn)(as,p) epilayers. Phys. Rev. B, 90:094401, Sep 2014.
URL: https://link.aps.org/doi/10.1103/PhysRevB.90.094401, doi:10.1103/
PhysRevB.90.094401.

A. Hernandez-Minguez, F. Macia, J. M. Hernandez, J. Herfort, and P. V. San-
tos. Large nonreciprocal propagation of surface acoustic waves in epitaxial fer-
romagnetic/semiconductor hybrid structures. Phys. Rev. Applied, 13:044018, Apr
2020. URL: https://link.aps.org/doi/10.1103/PhysRevApplied.13.044018,
doi:10.1103/PhysRevApplied.13.044018.

J. Janusonis, C. L. Chang, P. H. M. van Loosdrecht, and R. I. Tobey. Frequency
tunable surface magneto elastic waves. Applied Physics Letters, 106(18):181601, May
2015. doi:10.1063/1.4919882.

P. Kuszewski, J.-Y. Duquesne, L. Becerra, A. Lemaitre, S. Vincent, S. Ma-
jrab, F. Margaillan, C. Gourdon, and L. Thevenard. Optical probing of rayleigh
wave driven magnetoacoustic resonance.  Phys. Rev. Applied, 10:034036, Sep
2018. URL: https://link.aps.org/doi/10.1103/PhysRevApplied.10.034036,
doi:10.1103/PhysRevApplied.10.034036.

Blai Casals, Nahuel Statuto, Michael Foerster, Alberto Hernandez-Minguez, Rafael
Cichelero, Peter Manshausen, Ania Mandziak, Lucia Aballe, Joan Manel Hernandez,
and Ferran Macia. Generation and imaging of magnetoacoustic waves over millimeter

distances. Phys. Rev. Lett., 124:137202, Apr 2020. URL: https://link.aps.org/
doi/10.1103/PhysRevLett.124.137202, doi:10.1103/PhysRevLett.124.137202.

110


https://doi.org/10.1063/1.5111846
https://doi.org/10.1109/TMAG.2020.3019214
https://link.aps.org/doi/10.1103/PhysRevB.90.094401
https://doi.org/10.1103/PhysRevB.90.094401
https://doi.org/10.1103/PhysRevB.90.094401
https://link.aps.org/doi/10.1103/PhysRevApplied.13.044018
https://doi.org/10.1103/PhysRevApplied.13.044018
https://doi.org/10.1063/1.4919882
https://link.aps.org/doi/10.1103/PhysRevApplied.10.034036
https://doi.org/10.1103/PhysRevApplied.10.034036
https://link.aps.org/doi/10.1103/PhysRevLett.124.137202
https://link.aps.org/doi/10.1103/PhysRevLett.124.137202
https://doi.org/10.1103/PhysRevLett.124.137202

(78]

[79]

[80]

[81]

[84]

Arne Vansteenkiste, Jonathan Leliaert, Mykola Dvornik, Mathias Helsen, Felipe
Garcia-Sanchez, and Bartel Van Waeyenberge. The design and verification of Mu-
Max3. AIP Advances, 4(10):107133, October 2014. doi:10.1063/1.4899186.

Sergio Rezende. Fundamentals of magnonics. Springer, Cham, Switzerland, 2020.

Frederic Vanderveken, Florin Ciubotaru, and Christoph Adelmann. Magnetoelastic
waves in thin films. In Topics in Applied Physics, pages 287-322. Springer Interna-
tional Publishing, 2021. doi:10.1007/978-3-030-62844-4_12.

Yaroslav Tserkovnyak, Arne Brataas, and Gerrit E. W. Bauer. Spin pumping and
magnetization dynamics in metallic multilayers. Phys. Rev. B, 66:224403, Dec 2002.
URL: https://link.aps.org/doi/10.1103/PhysRevB.66.224403, doi:10.1103/
PhysRevB.66.224403.

Y. Tserkovnyak, A. Brataas, and G. E. W. Bauer. Enhanced gilbert damping in thin
ferromagnetic films. Phys. Rev. Lett., 88:117601, Feb 2002. URL: https://link.
aps.org/doi/10.1103/PhysRevLlett.88.117601, doi:10.1103/PhysRevLett.88.
117601.

Y. Tserkovnyak, A. Brataas, G. E. W. Bauer, and B. 1. Halperin. Nonlocal mag-
netization dynamics in ferromagnetic heterostructures. Rev. Mod. Phys., 77:1375—
1421, Dec 2005. URL: https://link.aps.org/doi/10.1103/RevModPhys.77.1375,
doi:10.1103/RevModPhys.77.1375.

F. S. M. Guimaraes, A. T. Costa, R. B. Muniz, and D. L. Mills. Spin currents in
metallic nanostructures: Explicit calculations. Phys. Rev. B, 84:054403, Aug 2011.
URL: https://link.aps.org/doi/10.1103/PhysRevB.84.054403, doi:10.1103/
PhysRevB.84.054403.

A. Azevedo, L. H. Vilela-Leao, R. L. Rodriguez-Suarez, A. F. Lacerda Santos,
and S. M. Rezende. Spin pumping and anisotropic magnetoresistance voltages in
magnetic bilayers: Theory and experiment. Phys. Rev. B, 83:144402, Apr 2011.
URL: https://link.aps.org/doi/10.1103/PhysRevB.83.144402, doi:10.1103/
PhysRevB.83.144402.

111


https://doi.org/10.1063/1.4899186
https://doi.org/10.1007/978-3-030-62844-4_12
https://link.aps.org/doi/10.1103/PhysRevB.66.224403
https://doi.org/10.1103/PhysRevB.66.224403
https://doi.org/10.1103/PhysRevB.66.224403
https://link.aps.org/doi/10.1103/PhysRevLett.88.117601
https://link.aps.org/doi/10.1103/PhysRevLett.88.117601
https://doi.org/10.1103/PhysRevLett.88.117601
https://doi.org/10.1103/PhysRevLett.88.117601
https://link.aps.org/doi/10.1103/RevModPhys.77.1375
https://doi.org/10.1103/RevModPhys.77.1375
https://link.aps.org/doi/10.1103/PhysRevB.84.054403
https://doi.org/10.1103/PhysRevB.84.054403
https://doi.org/10.1103/PhysRevB.84.054403
https://link.aps.org/doi/10.1103/PhysRevB.83.144402
https://doi.org/10.1103/PhysRevB.83.144402
https://doi.org/10.1103/PhysRevB.83.144402

[36]

[87]

[90]

[91]

[92]

[93]

D. Kobayashi, T. Yoshikawa, M. Matsuo, R. Iguchi, S. Maekawa, E. Saitoh,
and Y. Nozaki. Spin current generation using a surface acoustic wave gen-
erated via spin-rotation coupling.  Phys. Rev. Lett., 119:077202, Aug 2017.
URL: https://link.aps.org/doi/10.1103/PhysRevLett.119.077202, doi:10.
1103/PhysRevLett.119.077202

Yunyoung Hwang, Jorge Puebla, Mingran Xu, Aurelien Lagarrigue, Kouta Kondou,
and Yoshichika Otani. Enhancement of acoustic spin pumping by acoustic distributed
bragg reflector cavity. Applied Physics Letters, 116(25):252404, June 2020. doi:
10.1063/5.0011799.

Mingran Xu, Jorge Puebla, Florent Auvray, Bivas Rana, Kouta Kondou, and
Yoshichika Otani. Inverse edelstein effect induced by magnon-phonon coupling.
Phys. Rev. B, 97:180301, May 2018. URL: https://link.aps.org/doi/10.1103/
PhysRevB.97.180301, doi:10.1103/PhysRevB.97.180301

Jorge Puebla, Mingran Xu, Bivas Rana, Kei Yamamoto, Sadamichi Maekawa, and
Yoshichika Otani. Acoustic ferromagnetic resonance and spin pumping induced by
surface acoustic waves. Journal of Physics D: Applied Physics, 53(26):264002, May
2020. doi:10.1088/1361-6463/ab7efe.

E. Saitoh, M. Ueda, H. Miyajima, and G. Tatara. Conversion of spin current into
charge current at room temperature: Inverse spin-hall effect. Applied Physics Letters,
88(18):182509, May 2006. doi:10.1063/1.2199473.

Dahai Wei, Martin Obstbaum, Mirko Ribow, Christian H. Back, and Georg Wolters-
dorf. Spin hall voltages from a.c. and d.c. spin currents. Nature Communications,
5(1), April 2014. URL: https://doi.org/10.1038/ncomms4768.

B A Kalinikos and A N Slavin. Theory of dipole-exchange spin wave spectrum for
ferromagnetic films with mixed exchange boundary conditions. Journal of Physics C:
Solid State Physics, 19(35):7013-7033, December 1986. doi:10.1088/0022-3719/
19/35/014.

Jan Achenbach. Wave propagation in elastic solids: Volume 16. North-Holland Series
in Applied Mathematics & Mechanics. North-Holland Publishing, Oxford, England,
January 1984.

112


https://link.aps.org/doi/10.1103/PhysRevLett.119.077202
https://doi.org/10.1103/PhysRevLett.119.077202
https://doi.org/10.1103/PhysRevLett.119.077202
https://doi.org/10.1063/5.0011799
https://doi.org/10.1063/5.0011799
https://link.aps.org/doi/10.1103/PhysRevB.97.180301
https://link.aps.org/doi/10.1103/PhysRevB.97.180301
https://doi.org/10.1103/PhysRevB.97.180301
https://doi.org/10.1088/1361-6463/ab7efe
https://doi.org/10.1063/1.2199473
https://doi.org/10.1038/ncomms4768
https://doi.org/10.1088/0022-3719/19/35/014
https://doi.org/10.1088/0022-3719/19/35/014

[94]

[95]

[96]

[100]

[101]

Alexander G Gurevich and Gennadii A Melkov. Magnetization Oscillations and
Waves. CRC Press, Boca Raton, FL, September 1996.

Karl F Graff. Wave motion in elastic solids. Dover Books on Physics. Dover Publi-
cations, Mineola, NY, June 1991.

Frederic Vanderveken, Jeroen Mulkers, Jonathan Leliaert, Bartel Van Waeyenberge,
Bart Sorée, Odysseas Zografos, Florin Ciubotaru, and Christoph Adelmann. Finite
difference magnetoelastic simulator. Open Research Europe, 1:35, April 2021. doi:
10.12688/openreseurope.13302.1.

D. Froes, M. Arana, L. C. Sampaio, and J. P. Sinnecker. Acoustic wave surfing:
spin waves and spin pumping driven by elastic wave. Journal of Physics D: Applied
Physics, 54(25):255001, April 2021. doi:10.1088/1361-6463/abed71.

D. Froes, M. Arana, J. P. Sinnecker, and L. C. Sampaio. Magnetoelastic modes
in néel domain walls. Journal of Applied Physics, 132(22):223908, December 2022.
doi:10.1063/5.0128775.

David Castilla, Rocio Yanes, Miguel Sinusia, Gonzalo Fuentes, Javier Grandal,
Marco Maicas, Tomas E. G. Alvarez—Arenas, Manuel Munoz, Luis Torres, Luis
Lépez, and José L. Prieto. Magnetization process of a ferromagnetic nanostrip un-
der the influence of a surface acoustic wave. Scientific Reports, 10(1), June 2020.
d0i:10.1038/s41598-020-66144-0.

Pavol Krivosik and Carl E. Patton. Hamiltonian formulation of nonlinear spin-
wave dynamics: Theory and applications. Phys. Rev. B, 82:184428, Nov 2010.
URL: https://link.aps.org/doi/10.1103/PhysRevB.82.184428, doi:10.1103/
PhysRevB.82.184428.

T. Bracher, P. Pirro, and B. Hillebrands. Parallel pumping for magnon
spintronics: Amplification and manipulation of magnon spin currents on the
micron-scale.  Physics Reports, 699:1-34, 2017. Parallel pumping for magnon
spintronics: Amplification and manipulation of magnon spin currents on the
micron-scale. ~ URL: https://www.sciencedirect.com/science/article/pii/
S0370157317302004, doi:https://doi.org/10.1016/j.physrep.2017.07.003.

113


https://doi.org/10.12688/openreseurope.13302.1
https://doi.org/10.12688/openreseurope.13302.1
https://doi.org/10.1088/1361-6463/abed71
https://doi.org/10.1063/5.0128775
https://doi.org/10.1038/s41598-020-66144-0
https://link.aps.org/doi/10.1103/PhysRevB.82.184428
https://doi.org/10.1103/PhysRevB.82.184428
https://doi.org/10.1103/PhysRevB.82.184428
https://www.sciencedirect.com/science/article/pii/S0370157317302004
https://www.sciencedirect.com/science/article/pii/S0370157317302004
https://doi.org/https://doi.org/10.1016/j.physrep.2017.07.003

[102]

[103]

[104]

105

[106]

107]

108

[109]

[110]

Qi Wang, Philipp Pirro, Roman Verba, Andrei Slavin, Burkard Hillebrands, and
Andrii V. Chumak. Reconfigurable nanoscale spin-wave directional coupler. Science
Advances, 4(1):e1701517, January 2018. doi:10.1126/sciadv.1701517.

Abdulgader Mahmoud, Florin Ciubotaru, Frederic Vanderveken, Andrii V. Chumalk,
Said Hamdioui, Christoph Adelmann, and Sorin Cotofana. Introduction to spin
wave computing. Journal of Applied Physics, 128(16):161101, October 2020. doi:
10.1063/5.0019328.

M. Madami, S. Bonetti, G. Consolo, S. Tacchi, G. Carlotti, G. Gubbiotti, F. B.
Mancoff, M. A. Yar, and J. Akerman. Direct observation of a propagating spin
wave induced by spin-transfer torque. Nature Nanotechnology, 6(10):635-638, August
2011. doi:10.1038/nnano.2011.140.

T Yoshino, K Ando, K Harii, H Nakayama, Y Kajiwara, and E Saitoh. Quantifying
spin mixing conductance inF/pt (f=ni, fe, and ni81fel9) bilayer film. Journal of
Physics: Conference Series, 266:012115, January 2011. doi:10.1088/1742-6596/
266/1/012115.

A. Conca, E. Th. Papaioannou, S. Klingler, J. Greser, T. Sebastian, B. Leven,
J. Losch, and B. Hillebrands. Annealing influence on the gilbert damping pa-
rameter and the exchange constant of CoFeB thin films. Applied Physics Letters,
104(18):182407, May 2014. doi:10.1063/1.4875927.

M Gueye, F Zighem, M Belmeguenai, M S Gabor, C Tiusan, and D Faurie.
Spectroscopic investigation of elastic and magnetoelastic properties of CoFeB thin
films. Journal of Physics D: Applied Physics, 49(14):145003, March 2016. doi:
10.1088/0022-3727/49/14/145003.

Sergio C. Guerreiro and Sergio M. Rezende. Magnon-phonon interconversion in a
dynamically reconfigurable magnetic material. Physical Review B, 92(21), December
2015. doi:10.1103/physrevb.92.214437.

Evan O. Kane. Theory of tunneling. Journal of Applied Physics, 32(1):83-91, January
1961. doi:10.1063/1.1735965.

Felipe Garcia-Sanchez, Pablo Borys, Rémy Soucaille, Jean-Paul Adam, Robert L.
Stamps, and Joo-Von Kim. Narrow magnonic waveguides based on domain walls.

114


https://doi.org/10.1126/sciadv.1701517
https://doi.org/10.1063/5.0019328
https://doi.org/10.1063/5.0019328
https://doi.org/10.1038/nnano.2011.140
https://doi.org/10.1088/1742-6596/266/1/012115
https://doi.org/10.1088/1742-6596/266/1/012115
https://doi.org/10.1063/1.4875927
https://doi.org/10.1088/0022-3727/49/14/145003
https://doi.org/10.1088/0022-3727/49/14/145003
https://doi.org/10.1103/physrevb.92.214437
https://doi.org/10.1063/1.1735965

[111]

[112]

113]

[114]

[115]

[116]

[117]

Physical Review Letters, 114(24), June 2015. doi:10.1103/physrevliett.114.
247206.

K. Wagner, A. Kakay, K. Schultheiss, A. Henschke, T. Sebastian, and H. Schultheiss.
Magnetic domain walls as reconfigurable spin-wave nanochannels. Nature Nanotech-
nology, 11(5):432-436, February 2016. doi:10.1038/nnano.2015.339.

J. Jorzick, S. O. Demokritov, B. Hillebrands, M. Bailleul, C. Fermon, K. Y. Gus-
lienko, A. N. Slavin, D. V. Berkov, and N. L.. Gorn. Spin wave wells in nonellipsoidal
micrometer size magnetic elements. Physical Review Letters, 88(4), January 2002.
doi:10.1103/physrevlett.88.047204.

Volker Sluka, Tobias Schneider, Rodolfo A. Gallardo, Attila Kakay, Markus Weigand,
Tobias Warnatz, Roland Mattheis, Alejandro Roldan-Molina, Pedro Landeros, Vasil
Tiberkevich, Andrei Slavin, Gisela Schiitz, Artur Erbe, Alina Deac, Jiirgen Lindner,
Jorg Raabe, Jiirgen Fassbender, and Sebastian Wintz. Emission and propagation of
1d and 2d spin waves with nanoscale wavelengths in anisotropic spin textures. Nature
Nanotechnology, 14(4):328-333, February 2019. doi:10.1038/s41565-019-0383-4.

Frederic Vanderveken, Jeroen Mulkers, Jonathan Leliaert, Bartel Van Waeyenberge,
Bart Soree, Odysseas Zografos, Florin Ciubotaru, and Christoph Adelmann. Finite
difference magnetoelastic simulator. Open Research Europe, 1(1):35, January 2021.
doi:10.12688/openreseurope.13302.1.

R. D. Gomez, J. S. Ma, A. Arkilic, S. H. Chung, and C. Krafft. Vortex-antivortex
creation and annihilation on CoFeB crosstie patterns. Journal of Applied Physics,
109(7):07D310, April 2011. doi:10.1063/1.3536342.

Claudia Hengst, Manfred Wolf, Rudolf Schéfer, Ludwig Schultz, and Jeffrey McCord.
Acoustic-domain resonance mode in magnetic closure-domain structures: A probe for
domain-shape characteristics and domain-wall transformations. Physical Review B,
89(21), June 2014. doi:10.1103/physrevb.89.214412.

Lukas Doring, Claudia Hengst, Felix Otto, and Rudolf Schéfer. Interacting tails
of asymmetric domain walls: Theory and experiments. Physical Review B, 93(2),
January 2016. doi:10.1103/physrevb.93.024414,

115


https://doi.org/10.1103/physrevlett.114.247206
https://doi.org/10.1103/physrevlett.114.247206
https://doi.org/10.1038/nnano.2015.339
https://doi.org/10.1103/physrevlett.88.047204
https://doi.org/10.1038/s41565-019-0383-4
https://doi.org/10.12688/openreseurope.13302.1
https://doi.org/10.1063/1.3536342
https://doi.org/10.1103/physrevb.89.214412
https://doi.org/10.1103/physrevb.93.024414

[118]

[119]

[120]

[121]

[122]

[123]

Sampo J. Haméaldinen, Marco Madami, Huajun Qin, Gianluca Gubbiotti, and Sebas-
tiaan van Dijken. Control of spin-wave transmission by a programmable domain wall.
Nature Communications, 9(1), November 2018. doi:10.1038/s41467-018-07372-x.

Rasmus B. Hollander, Cai Miiller, Julius Schmalz, Martina Gerken, and Jeffrey
McCord. Magnetic domain walls as broadband spin wave and elastic magneti-
sation wave emitters. Scientific Reports, 8(1), September 2018. doi:10.1038/
s41598-018-31689-8.

B A Kalinikos and A N Slavin. Theory of dipole-exchange spin wave spectrum for
ferromagnetic films with mixed exchange boundary conditions. Journal of Physics
C: Solid State Physics, 19(35):7013-7033, dec 1986. URL: https://doi.org/10.
1088%2F0022-3719%2F19%2F35%2F014, doi:10.1088/0022-3719/19/35/014.

Frederic Vanderveken, Jeroen Mulkers, Jonathan Leliaert, Bartel Van Waeyenberge,
Bart Sorée, Odysseas Zografos, Florin Ciubotaru, and Christoph Adelmann. Con-
fined magnetoelastic waves in thin waveguides. Physical Review B, 103:054439, Febru-
ary 2021. doi:10.1103/PhysRevB.103.054439.

K. Yu. Guslienko and A. N. Slavin. Boundary conditions for magnetization in mag-
netic nanoelements. Physical Review B, 72(1), July 2005. doi:10.1103/physrevb.
72.014463.

Q. Wang, B. Heinz, R. Verba, M. Kewenig, P. Pirro, M. Schneider, T. Meyer,
B. Léagel, C. Dubs, T. Bracher, and A. V. Chumak. Spin pinning and spin-wave dis-
persion in nanoscopic ferromagnetic waveguides. Physical Review Letters, 122(24),
June 2019. doi:10.1103/physrevlett.122.247202.

116


https://doi.org/10.1038/s41467-018-07372-x
https://doi.org/10.1038/s41598-018-31689-8
https://doi.org/10.1038/s41598-018-31689-8
https://doi.org/10.1088%2F0022-3719%2F19%2F35%2F014
https://doi.org/10.1088%2F0022-3719%2F19%2F35%2F014
https://doi.org/10.1088/0022-3719/19/35/014
https://doi.org/10.1103/PhysRevB.103.054439
https://doi.org/10.1103/physrevb.72.014463
https://doi.org/10.1103/physrevb.72.014463
https://doi.org/10.1103/physrevlett.122.247202

APPENDICES

117



Appendix A

Experimental work

The following appendix provides information on the experimental results obtained during
the course of this study, the fabrication and characterization of the samples. Although
these results were not conclusive and were not included in the main text due to the ongoing
nature of the work, they are presented here as a reference for future investigations in the
field.

The samples were fabricated using thin film growth and nanolithography techniques,
and characterized using a range of techniques, including X-ray diffraction, electron mi-
croscopy, and Brillouin light scattering. This appendix provides descriptions of the exper-
imental procedures and techniques used, as well as the obtained results and their interpre-
tation.

A.1 Introduction

The present work aims to experimentally study the elastic excitation of spin waves due
to the magnetoelastic interaction for magnonic applications. The use of surface acoustic
waves (SAWSs) to excite spin dynamics has attracting interest for the fundamental aspects
of the interaction between the magnon and phonon quasi-particles but also for the techno-
logical prospective of Joule effect-free computing devices. In this project we employed an
experimental approach to elastically excite the magnetization of magnetoelastic samples.
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In the preliminary results we have fabricated crystalline piezoelectric thin films with
the sputtering technique, and characterized by X-ray diffraction and scanning electron mi-
croscopy. Electron-beam lithography was employed to fabricate interdigital transducers on
the piezoelectric/magnetostrictive (ZnO/YIG) film. Electrical transmission measurements
and Brillouin light scattering measurements have shown that the ferromagnetic resonance
of the YIG was excited but no elastic signal was found, showing that the SAWs presented
a strong attenuation either due to the cristallinity of the piezoelectric film and/or due to
the electrical measurement system.

A.2 Objectives

This study aims to investigate the elastic excitation of spin-waves and the magnetoelastic
interaction in coupled piezoelectric-magnetostrictive thin films through a combination of
electrical transmission and light scattering experiments. The objective is to fabricate sur-
face acoustic wave devices that are coupled to magnetostrictive materials. To achieve this
goal, several steps must be undertaken.

Initially, high-quality piezoelectric ZnO films will be obtained via magnetron sputter-
ing by depositing ZnO under different conditions and performing thermal treatment of
the samples under varying annealing temperatures. Subsequently, scanning electron mi-
croscopy (SEM) and X-ray diffraction (XRD) will be used to verify the orientation of grains
and crystallinity, and the optimal parameters for deposition and annealing will be selected.

Interdigital transducers (IDTs) will be fabricated on the ZnO piezoelectric films using
electron-beam lithography. This will involve performing electron-beam lithography steps
under different exposition parameters to obtain the desired pattern on the ZnO film, de-
positing metal, and performing lift-off. SEM images will be obtained to verify the quality
of the structures, and the optimal fabrication parameters will be determined.

Finally, the final sample will consist of a bulk YIG magnetic film that is deposited
via liquid phase epitaxy on a GGG substrate. The ZnO deposition and IDT patterning
will be performed on this sample using the aforementioned optimal parameters. Electrical
transmission experiments will be conducted between IDTs, with and without the presence
of an external magnetic field. Additionally, Brillouin light scattering experiments will be
performed to probe the coupling of spin-waves to the surface acoustic waves that are excited
by the IDTs.
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A.3 Methods

A.3.1 Sample fabrication
Magnetron sputtering

The deposition of films was achieved by the magnetron sputtering technique in high vacuum
chamber, with base pressure in the order of 108 Torr. A 6-targets AJA International mag-
netron sputtering was used at the multi-user laboratory LABSURF/LABNANO/CBPF,
controled by the Phase IT AJA software. The targets are connected to either DC or RF
power sources, and several parameters can be controlled for the deposition, such as the
source power (or current), deposition time, working gas (argon and oxygen were employed
in this work), deposition pressure and temperature.

Before the sample deposition, a deposition rate calibration step is performed by deposit-
ing the target material on a silicon substrate for a fixed amount of time under the exact
deposition conditions. The film thickness, and thus the deposition rate, is obtained by
an X-ray reflectivity measurement in a PANanalytical X’Pert PRO (Philips, Panalytical)
diffractometer, with a Cu-Ka; source (0.154056 nm wavelength).

Nanolithography

Optical and electron-beam lithography techniques were employed for the fabrication of the
interdigital transducers (IdTs) at the LABNANO/CBPF facilities.

The optical lithography was used for obtaining samples with dimensions higher than
10 pm, using a Heidelberg PG 101 Laser Writer machine. For the samples used in this
work a positive AZ1505 Clariant resist, with spectral photosensitivity between 310 and 440
nm were deposited in a class 1000 cleanroom with a spin coating technique. The resist 0.5
pm thickness was achieved by a 4000 rpm rotation for 40 seconds, followed be a thermal
treatment at 100°C at a hot plate for 60 seconds. The resist is then exposed to the laser
in the areas determined by a LibreCad software file, with a optimum power and exposure
time, which have to be calibrated before the exposition. After the laser exposition, a
Clariant AZ300 MIF Photoresist developer is applied for 60 seconds at the sample in order
to solubilize only the laser-exposed areas. The metal deposition step is then performed,
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and a lift-off step is done by submerging the sample in acetone, in a ultrasonic bath, until
the resist is fully dissolved and the geometry is imprinted on the substrate.

The electron-beam lithography with a Raith e-LiNE lithographic system was used for
obtaining structure up to 500 nm in size. A working distance of 5.4 mm, 30 um aperture
size and a writefield of 100 pym were empfoyed in this work. A positive AR-P 672.045 resist
from ALLRESIST was spin-coated to the substrate at 2000 rpm for 60 seconds, then places
in a hot place at 150° C for 3 minutes. The sample is then places in the Raith e-LiNE, where
image calibration steps are performed, i.e. focus, astigmatism and writefield alignments,
until obtaining a spot size around 15 nm. Then an e-beam exposure is performed with a
pre-calibated dose, typically between 80-110 uC'/cm?. The sample is then developed at a
70% isopropyl alcohol 30% water mixture for 60 seconds. The desired material is sputtered
on the substrate, and a lift-off with acetone is performed. For insulating substrate, such
as ZnQ, before the e-beam exposure, a 3 nm gold conducting layer is deposited on top of
the resist to avoid charging effects.

A.3.2 Sample characterization

X-ray diffraction

X-ray diffraction was used to obtain the crystal structure of the samples. A PANanalytical
X’Pert PRO (Philips, Panalytical) diffractometer with a Cu-Ka; source, with a 0.154056
nm wavelength was employed.

Scanning Electron Microscope

A Jeol 7T100FT Field Emission Gun (FEG) scanning electron microscope (SEM) with 1.2
nm resolution (30 kV) was used for obtaining images of the surface and cross section of
the samples.

Brillouin Light Scattering

We employed wave-vector-resolved Brilouin light scattering (BLS) spectroscopy in order
to measure the magnetic and elastic waves signal in the device under RF excitation. The
experimental set-up is depicted in figure A.1.
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Figure A.1: Wave-vector-resolved Brillouin light scattering (BLS) spectroscopy experimen-
tal setup. The inset shows the conservation of wave-vector under the inelastic scattering
of the incident laser light. Extracted from [59] (modified).

A silver film was attached behind the YIG/GGG device in order to scatter the incident
laser ray inside the sample. The scattered light is collimated by an objective lens and is
guided to a Fabry-Perot interferometer for frequency analysis.

In this configuration, from the conservation of angular momentum we obtain that the
measured signal wave-vector is
k = 2kpnsinq, (A.1)

where £, is the laser wave-vector, n is the index of refraction and « is the incidence angle.
Thus, the wave-vector-resolution is obtained by varying the incidence angle o. As we
employed a 532 nm wavelength laser and considering the YIG index of refraction as n =
2.2, we obtain the relation k = (5.197 x 107) sina m~! for our analysis.
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A.4 Preliminary results

The experimental work aimed to achieve surface acoustic wave devices in order to excite
the dynamics of adjacent magnetic thin films. In order to do so, we started by obtaining
high quality piezoelectric films, ZnO was the choice, from magnetron sputtering deposition.
Then, producing metallic interdigital transducers (IdTs) from electron-beam lithography
and lift-off onto the insulating piezoelectric surfaces. And finally, by doing electrical con-
tacts in the transducers and performing transport and light scattering experiments.

A.4.1 Device fabrication
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Figure A.2: XRD spectra of ZnO films deposited at room temperature (RT) without
annealing at 100 W power for different Ar/O2 proportion atmospheres. The film deposited
without oxygen (50/0) was the only one not to show the c-axis (002) orientation.

We employed the magnetron sputtering technique in order to deposit high quality
piezoelectric ZnO films on either Si or YIG/GGG substrates. The deposition conditions
and thermal treatment were varied in order to optimize the c-axis orientation of the film,
seen at the (002) crystalline direction in the XRD spectrum. The film deposition rate was
first calibrated for each deposition condition, and then a 1 pm ZnO film was deposited and
its XRD spectrum was obtained.
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Figure A.3: XRD spectra of ZnO films deposited at room temperature after thermal treat-
ment at (a) 400C and (b) at 600C for one hour at 100 W power for different Ar/O,

proportion atmospheres.

We started by depositing at room temperature (RT) the ZnO films over Si by RF-
magnetron sputtering at 100 W power, under a 5 mTorr base pressure with different Ar/O,
flux (sccm) proportions: (a) pure Ar (50/0), (b) 50/10 and (c) 50/20 ratio atmosphere,
without thermal treatment. The corresponding XRD spectra of these samples are shown
in figure A.2. Different from the the pure Ar (50/0) atmosphere sample, which did not
present the c-axis orientation, the mixed Ar+O, were indeed oriented in that direction.
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Figure A.4: These FWHM of the (002) peak as a function of the 0y fraction and the
annealing temperature are summarized.
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We then checked the effect of a post-deposition thermal treatment for one hour at
two different temperatures, either (a) 400C or (c¢) 600C, see figure A.3. The 50/0 Ar/O,
samples did not become oriented after the annealing, but the other samples crystallinity
was increased, and the 600C temperature was more effective than the 400C treatment,
especially in the 50/10 sample.

In order to check the grain orientation in these samples, we obtained scanning electron
microscopy (SEM) images of their cross section, by cleaving after freezing with liquid
nitrogen. The images of the cleaved regions is shown in figure A.5. As expected, in the
pure argon (50/0) samples, a and b, no grain orientation can be seen. Differently, the other
samples a c-axis orientation is present at different levels. The most distinct sample is, just
like from the XRD results, the 50/10 Ar/Oy with annealing at 600C, figure A.5d.
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Figure A.5: SEM images of the cross section of the ZnO/SiO, film at different deposition
conditions.
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Figure A.6: (a) XRD spectra of the ZnO deposited on SiO substrates with a 50/10 Ar/O,
atmosphere ratio and thermal treatment for one hour at 600C under different RF power
and deposition temperature. (b) XRD spectra of the final ZnO films. The FWHM were,
respectively, 0.44 and 0.42 for SiO, and YIG/GGG substrates.

The film quality was further enhanced by having the deposition at a 200C temperature
and lowering the RF power to 50 W, which reduced the deposition rate, see figure A.6a,
where the FWHM could be reduced from 0.54 to 0.44. These were defined as the final
optimum deposition conditions in our samples, see table A.1, and these conditions were
tested in both the SiO5 and the YIG/GGG subtrates, where the FWHM were respectively
0.44 and 0.42, as shown in figure A.6b.

RF power 50 W
Base pressure 6 mTorr
Ar/Oy ratio 50/10 (scem/scem)
Deposition temperature 200C
Annealing temperature 600C
Film thickness 1 pm

Table A.1: Final ZnO magnetron sputtering deposition conditions to optimize the (002)

grain orientation.

Interdigital transducers were then fabricated on top of the ZnO films from electron-
beam lithography. As the films are insulating, in order to perform the e-beam exposition,
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a 3 nm gold conductive layer had to be deposited on top of the resist. After exposition
and development, a 60 nm gold layer was deposited and a lift-off step was performed. The
final structures are shown in figure A.7, where 550 nm fingers with periodicity p = 4 um,
which corresponds a wavelength of A = 2p = 8 um.

V1 =549.4 nm H

Mag= 7.32K X WD = 5.4 mm

(a) Raith — SE2 e SO0 (b) Raith Iﬂl SE2 EHT = 5.00 kV

Figure A.7: Au interdigital transducers fabricated by electron-beam lithography and lift-
off. The fingers were designed to have 500 nm width, with 4 ym separation.

The final sample model is shown in figure A.8. The process of fabrication can be
summarized as:

1. YIG samples deposited on GGG substrates either via liquid phase epitaxy (LPE),
crystalline bulk with 7 pgm thickness, or by magnetron sputtering, 500 nm thick thin
film, were used.

2. 1 pm of ZnO film was deposited via magnetron sputtering, keeping the middle of the
sample protected by using a kapton tape.

3. Electron-bean lithography was performed on top of the ZnO islands in order to create
the IdTs and contact pads geometries.

4. Magnetron sputtering of gold followed by a lift-off process were done to create the
transducers.
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IDTs IDTs

Figure A.8: Final sample model. Interdigital transducers (IdTs) on top of two ZnO islands
deposited on a YIG/GGG substrate.

A.4.2 Device characterization

The electrical transmission characterization was done by connecting the contact pads to
SMA connectors using silver conductive ink, see figure A.9. Then the input IdT, was then
connected to a RF source and the output IdT was connected to a rectifying diode and the
output signal was measured by a DC voltmeter. A resistance measurement was done in
order to assure that there was no electrical contact between the two IdTs.

Figure A.9: The experimental IdTs electrical transmission setup. The input IdT is con-
nected to a RF signal generator, and the output IdT, to a rectifying diode and a DC
voltmeter.
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Figure A.10: The rectified DC electrical voltage measured at the output IdT without a
bias magnetic field for several input amplitudes for (a) the thick YIG-LPE sample and (b)
for the thin YIG-sputtering sample.

The potential difference amplitude measured at the output IdT as a function of the
frequency of the input IdT is shown in figure A.10 for several input amplitudes, without
a bias magnetic field. For the crystalline thick YIG-LPE sample the output signal, figure
A.10a, presents a minor peak at 1.2 GHz and a series of peaks at 2.8, 5.6, 6.9 and 8.3 GHz.
The thin YIG-sputtering, figure A.10b, only two major peaks are present, at 2.8 and 7.5
GHz.

In order to verify the transmission of surface acoustic waves from the IdTs a pulsed
experiment was performed. Instead of a continuous sinusoidal RF excitation, we excited the
input IdT with 100 ns wave packets with a fixed frequency f and the output was connected
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to an oscilloscope. This signal was obtained by doing an external modulation with 100
ns wide rectangular function with 2 us separation at the sinusoidal signal. We expected
the wave packet to be detected in the output with a delay time of 885 ns, as the IdTs
separation is 3.4 mm and the YIG sound velocity 3.84 km/s. This output signal, however,
was not detected. We attribute this to either the acoustic wave is strongly attenuated
along the propagation or it is not even excited in our system. We intend to address this
problem by enhancing the ZnO film crystallinity and improving our electric measurement

setup.
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Figure A.11: The rectified DC electrical voltage measured at the output IdT with an
applied bias magnetic field for the thin YIG-sputtering sample for several frequencies.

Nevertheless, in order to investigate the physical origin of the output signal shown in
figure A.10, we repeated the experiment, an input RF signal with an output connected
to a rectifying diode and voltmeter, under a non-null external magnetic field in the YIG-
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Figure A.12: The external magnetic field with maximum absorption measured at the
output IdT for the YIG-sputtering sample plotted as a function of the input frequency in
the regions with significant transmission. The data is compared to Kittel’s equation for
ferromagnetic resonance.

sputtering sample, see figure A.11. For each frequency, a clear absorption can be seen at
an specific magnetic field.

As the output signal only presents a strong signal at specific frequency ranges, see
figure A.10b, we can only obtain the absorption magnetic field within those ranges. We
then plotted the positive magnetic field where the absorption takes place as a function
of the frequency, see figure A.12. The result is compared to the ferromagnetic resonance

frequency of the YIG sample, obtained from Kittel’s formula, 27 f = \/ wy(wy + wywy ),
with wyr = v4w M, wg = v(Hy + Ha + DE?), where v is the gyromagnetic ratio, 47 Mj is
the saturation magnetization, H 4 is the anisotropy field and D is the exchange parameter,
using the parameters for YIG [59]: v = 17.59 MHz/Oe, 47M, = 1.76 kG, Hy = 7.8 Oe
and D = 5.4 x 107 Oe cm?.

This way we attribute the signal measured at the output IdT under an RF excitation
in the input IdT to be of electromagnetic nature and not of elastic nature. The alternate
signal in the input IdT creates a magnetic field that excites the ferromagnetic resonance
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modes of the YIG-sputtering sample, which for instance, inductively create the output
electrical signal.

Besides, a Brillouin light scattering (BLS) study of the YIG-LPE sample was performed
in order to verify the above-mentioned results. The sample was placed in the BLS setup
at a fixed angle of 22°, in order to keep the detected wave vector at a fixed value of k
= 19.5 um~'. One of the IDTs was connected to a RF frequency generator, and the
other to a rectifying diode and a voltmeter. We then fixed the frequency and varied the
external magnetic field on the sample until obtaining a maximum voltage value in the
output IDT. The BLS spectrum was then obtained and repeated after a fine variation of
the field intensity.
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Figure A.13: Brillouin light scattering (BLS) spectrum of the sample for a microwave input
of 3.4 GHz under three different external magnetic field values. The sample was measured
with an incidence angle of o = 22 degrees (k = 19.5 um™).

Examples of the resulting spectrum are shown in figure A.13 for a 3.4 GHz frequency for
magnetic field values around 600 Oe. In each spectrum two peaks at +8.55 GHz correspond
to thermal phonons, which do not change with the input frequency, and two peaks at the
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Figure A.14: BLS amplitude, Stokes and Anti-Stokes, at the corresponding microwave
frequency for a fixed angle of o = 22 degrees (k = 19.5 um™!) under different magnetic

bias field intensities.

same frequency as the RF excitation frequency, 3.4 GHz in this example. By varying the
magnetic field intensity, as expected, the thermal phonons counts is practically unchanged,
but the RF excitation is significantly altered, which is an indication that we are actually

measuring magnons.

The BLS intensity at the frequency coincident with the RF excitation was obtained for
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several magnetic field values, as mentioned above. The frequency was then varied and the
same procedure was repeated. The results are shown in Figure A.14, where each point was
obtained from the amplitude of the RF frequency at the corresponding BLS spectrum.
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Figure A.15: The BLS peak positions as a function of the external magnetic field for a
fixed incidence angle of a = 22°. The dashed lines correspond to the analytical model for
magnetostatic surface spin waves for k = 19.5um ™!, and the dotted lines for k = 0 (FMR).

In most of the graphs of Figure A.14 two peaks can be seen, a major and a minor one.
The magnetic field in which there is a maximum count as a function of the RF frequency
is shown in the dispersion relation shown in Figure A.15. We can compare the results with
the theoretical equation for magnetostatic surface spin waves in a thin film where kELm

[79],

2

2rf =\ w¥ + wywy + <%\4(1 — e 2kt), (A.2)

with wyy = y4rM,, wy = v(Hy + Ha + DK?), where v is the gyromagnetic ratio, 4w M,
is the saturation magnetization, H 4 is the anisotropy field, D is the exchange parameter
and ¢, the film thickness. Using the parameters for YIG [59]: v = 17.59 MHz/Oe, 47 M
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=176 kG, Hy = 7.8 Oe, D = 5.4 x 107 Oe cm? and t = 7 um, we obtain the analytical
equations of Figure A.15.

The experimental and the analytical equation for & = 19.5 um ™!, however, do not fit
each other. The data is, however, well-fitted with the ferromagnetic resonance (FMR), k
= 0, which indicates that the magnetic field excited by the transducers is of long-range
compared to the BLS laser spot size, generating a infinite wavelength (k = 0) magnetic
excitation. This result is in tune with the Id T electrical transmission experiment performed
in the YIG-sputtering sample that the transducers are acting as electromagnetic emitters
and not exciting acoustic waves.

A.5 Conclusion and future work

In this project we aimed to study the magnetoelastic interaction by means of the ex-
perimental fabrication of piezoelectric/magnetostrictive samples and magnetic and elastic
characterization of the coupled excitation, mainly by means of electric transport and Bril-
louin light scattering experiments.

The experimental work focused in obtaining good quality piezoelectric ZnO films via
the magnetron sputtering technique by varying the deposition and annealing parameters.
The best parameters were chosen and interdigital transducers (IDTs) were patterned on
their surface, through electron-beam lithography. Electron transmission measurements of
between the two pairs of IDTs were performed, and a series of resonant peaks were found
in the frequency domain.

These peaks, however, were not associated with the propagation of surface acoustic
waves in the sample, as pulse propagation experiments did not show the expected sound
wave velocity. We believe that the acoustic wave signal is highly attenuated in the sample,
which cannot be detected in our setup, and the electromagnetic induction creates a cross-
talk between IDTs which overshadows the SAW signal. The main excitation presented in
the sample is, then, of electromagnetic origin and no elastic waves were detected.

A sample of bulk YIG over a GGG substrate underwent the above-mentioned procedure,
7Zn0O deposition and IDT patterning via e-beam lithography, and the same resonant peaks
were found in the electric transmission experiment, here also associated to electromag-
netic cross-talk between IDTs. By varying the external magnetic field, under a constant
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frequency, an absorption was seen in the output voltage at a resonant field. These absorp-
tions are associated to the ferromagnetic resonance eigenmodes of the YIG sample. This
sample was studied by Brillouin light scattering experiments, where no phonon signal was
detected, but the magnon signal was present. This is in consonance with the interpreta-
tion of the electromagnetic excitation of the uniform magnon mode (k = 0) from the IDT
cross-talk.

As next steps, we intend to obtain better surface acoustic wave devices, by improving
the quality of the piezoelectric film, enhancing the quality of our electric contacts and
finding better a detection set-up for the desired experiment.
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