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RIO DE JANEIRO

2023





Abstract

In the first part of this thesis, we present a finite-energy electroweak monopole so-

lution obtained by considering non-linear extensions in the electroweak sector. We find

constraints for a class of non-linear extensions and work out an estimate for the monopole

mass. We also derive a lower bound for the monopole energy and discuss the case of a

Dirac monopole. Furthermore, we study the phenomenological consequences of this non-

linear extension through high-energy processes. Using experimental data, we investigate

viable lower bounds on the non-linear parameter. We also discuss gauge-boson scatterings,

contextualizing our findings with recent results on anomalous gauge couplings.

In the second part of this thesis, we propose a parity-invariant Maxwell-Chern-Simons

U(1)×U(1) model coupled with scalar matter. We describe its main properties, and show

that it admits finite-energy topological vortices, exhibiting explicit numerical solutions

and analyzing them. Moreover, we present a self-dual version of our model. We discuss

in detail its main features, and exhibit explicit finite-energy topological vortices and non-

topological solitons. The mixed Chern-Simons term plays an important role here, ensuring

the main properties of the model and suggesting possible applications in condensed matter.

Key Words: Field Theory, Gauge Theories, Solitons in Field Theory, Magnetic

Monopoles, Non-linear Electrodynamics, Abelian Vortices, Chern-Simons theories.



Resumo

Na primeira parte dessa tese, apresentamos uma solução de monopólo eletrofraco com

energia finita, obtida considerando extensões não-lineares do setor eletrofraco. Obte-

mos v́ınculos para uma classe de extensões não-lineares e fazemos uma estimativa para a

massa do monopólo. Derivamos também um limite inferior para a energia do monopólo

e discutimos o caso mais simples de um monopólo de Dirac. Em seguida, estudamos as

consequências fenomenológicas dessa extensão não-linear, através de processos em altas

energias. Usando dados experimentais, investigamos posśıveis limites inferiores para o

parâmetro não-linear. Discutimos também espalhamentos de bósons de gauge, contextu-

alizando nossos resultados com resultados recentes em acoplamentos anômalos de gauge.

Na segunda parte dessa tese, apresentamos um modelo de Maxwell-Chern-Simons

U(1) × U(1) invariante por paridade acoplado com matéria escalar. Descrevemos suas

principais propriedades e mostramos que ele admite vórtices topológicos com energia

finita, exibindo soluções numéricas expĺıcitas e analisando-as. Na sequência, apresenta-

mos uma versão auto-dual do nosso modelo. Discutimos em detalhe suas principais carac-

teŕısticas e exibimos vórtices topológicos e sólitons não-topológicos com energia finita. O

termo de Chern-Simons misto tem um papel fundamental aqui, garantindo as principais

propriedades do modelo e sugerindo posśıveis aplicações em matéria condensada.

Palavras-Chave: Teoria de Campos, Teorias de Calibre, Sólitons em Teoria de Cam-

pos, Monopólos Magnéticos, Eletrodinâmica Não-Linear, Vórtices Abelianos, Teoria de

Chern-Simons.
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Presentation and General Framework

The Standard Model of Particle Physics (SM) is one of the most successful theories

in human history, providing a framework that allows us to describe almost all observed

phenomena in Nature in a remarkably simple and precise form. The fundamental in-

teractions of the SM are described by gauge theories, a beautiful class of quantum field

theories where the symmetry dictates the form of the interactions. Gauge symmetry nat-

urally plays a key role in the description of the building blocks of Nature, allowing us to

perform the drama with the minimum number of actors, while respecting the Poincaré

symmetry of Minkowski spacetime, the stage for quantum field theory. This thesis is about

two interesting subjects in gauge theories: magnetic monopoles and abelian vortices.

Magnetic monopoles, introduced by Dirac in 1931, have so far shied away from ex-

perimental discovery, despite all efforts put into their search in all these years. For a

long time, it was believed that the SM did not admit magnetic monopoles due to the

topological structure of its gauge group. However, Cho and Maison have shown in 1997

that this is not true, describing a way to accommodate a magnetic monopole in the elec-

troweak sector. A possible way to regularize the monopole energy, achieving a finite and

calculable mass that can be reached in particle accelerators, is to perform a non-linear

extension in the gauge sector, a subject that has become popular after the measurement

of light-by-light scattering in heavy-ion collisions. Nowadays, there is a real chance of

detection of magnetic monopoles in experiments like MoEDAL at CERN, after so many

years of fruitless searches. Such a discovery could have immeasurable practical implica-

tions, and theoretical studies that help in its search and understanding of its properties

are an urgent matter. This is the background for the first part of this thesis.

Abelian vortices were first discussed in the context of superconductivity by Abrikosov

in 1957, and in high-energy physics by Nielsen and Olesen in 1972. In the Abelian-Higgs

model, these vortices have finite energy, are electrically neutral and have a quantized

magnetic flux, but in the presence of a Chern-Simons (CS) term, the property of flux

attachment relating the electric charge with the magnetic flux allows for the existence

of electrically charged vortices with finite energy. Interestingly, these objects can play

an important role, for example, in the fractional quantum Hall effect, high-Tc supercon-

ductors, and superfluids. The presence of a CS term usually comes with the violation of

parity symmetry, but this is not always true, as Hagen showed in 1992. Gauge theories

with a CS term have been used in condensed matter physics, and since the role of parity

and time-reversal symmetry has been attracting much interest recently, theoretical stud-

ies of charged vortices in a parity-invariant scenario could be useful for the description of

condensed matter systems. This is the background for the second part of this thesis.



Part I

Magnetic monopoles and non-linear

extensions in the electroweak sector
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Chapter 1

Introduction

In 1931, Dirac showed [1] that the existence of a magnetic monopole is not only

consistent with the laws of Quantum Mechanics, but can provide an explanation for

the quantization of electric charge and also render Maxwell equations more symmetric,

realizing in an elegant way the duality symmetry. Since the groundbreaking work of

Dirac, this fascinating subject has been theoretically explored in different circumstances,

but despite the huge efforts to search for them experimentally, they remain undetected.

In Dirac’s work, it is not possible to predict what the monopole mass would be, since

its classical energy is infinite by virtue of its singularity. Wu and Yang [2] generalized

the concept for non-Abelian gauge theories showing that a pure SU(2) Yang-Mills theory

also allows a point-like magnetic monopole, but also here the energy is infinite. ’t Hooft

and Polyakov [3, 4] made a breakthrough discovery, finding a finite-energy monopole

solution as a topological soliton in a SO(3) gauge theory with a scalar field in the adjoint

representation, the so-called Georgi-Glashow model [5]. Here, for the first time, the

monopole appears as a necessary prediction of the model instead of being only a consistent

possibility and, remarkably, with a finite calculable mass.

Julia and Zee [6] extended the ’t Hooft and Polyakov’s solution by introducing a

Coulombic part in the ansatz, and therefore finding a dyon solution, a particle with both

electric and magnetic charges as introduced by Schwinger [7]. Bogomol’nyi [8] and also

Prasad and Sommerfield [9] found a special limit, nowadays called BPS limit, such that

there is an analytical solution for the monopole (and dyon) and a lower bound for its

energy. The monopole solution was constructed in Grand-Unified Theories by Dokos and

Tomaras [10], and it’s also relevant in the context of Supersymmetry and Dualities [11, 12].

The Electroweak (EW) Theory by Glashow, Salam and Weinberg [13, 14, 15] pro-

vides an extremely successful description for the unification of electromagnetic and weak

interactions, and after the Higgs discovery in 2012 [16], and all the others experimental

tests in which it was successful, we can say that the Standard Model (SM) is in a very

good shape. It’s a very important question, therefore, to investigate if there exists an

electroweak generalization of the ’t Hooft-Polyakov monopole solution.
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It was generally believed that such a solution would not be possible in the EW

theory because the spontaneous symmetry breaking pattern of the EW gauge group

G = SU(2)L xU(1)Y → H = U(1)em does not allow a non-trivial second homotopy

group, that is, we have π2(G/H) = 0. Nevertheless, there is an alternative topological

scenario showing that the Standard Model admits an electroweak monopole solution. In

fact, it was originally shown by Cho and Maison [17] that, if we interpret the normalized

Higgs doublet as a CP 1 field, we find the necessary topology to have a monopole solution

since π2(CP 1) = π2(S
2) = Z. It is sometimes said that this topologically stable EW

monopole is somehow a non-trivial hybrid between the abelian Dirac monopole and the

non-abelian ’t Hooft-Polyakov monopole.

In their original work, Cho and Maison [17] present not only the topological scenario

for the existence of electroweak monopoles, but also provide an explicit numerical solution

for them, by assuming a spherically symmetric ansatz. The authors actually proved the

existence of a more general electroweak dyon solution in the SM, and it is important to

notice that an analytical existence theorem for such a solution can also be established

[18]. Unfortunately, this object suffers from a singularity in the origin, which yields an

infinite energy at the classical level. A priori, there is nothing wrong with this, because the

electron itself has an infinite electrostatic energy in Maxwell’s Electrodynamics, though

its mass is finite. This does not allow us to predict the mass of the monopole and, if we

have a hope to find it experimentally, this becomes a non-trivial issue. Therefore, it is

the purpose of this work to find a way to regularize the energy of the monopole solution

and, then, infer about its mass.

There are already proposals of SM extensions giving regularized monopole solutions.

One of them was proposed by Cho, Kimm, and Yoon [19], basically consisting in modifying

the U(1)Y sector introducing a function depending on the magnitude of Higgs field in the

usual hypercharge field strength −1
4
ϵ (|H|/v)BµνB

µν . It is possible to choose conditions

on this ϵ such that we recover the usual SM in the standard electroweak vacuum and

such that the energy integral is regularized at the origin, giving a finite-energy dyon

solution. Roughly speaking they found a way to give an effective running to the U(1)Y

coupling such that it can compensate the singularity present at the origin an therefore

give a finite-energy dyon solution. The simple solution presented by the authors was latter

shown by Ellis, Mavromatos and You [20] to be incompatible with the LHC Data from

the Higgs decay in two photons, but these authors were able to adjust their solution in a

phenomenological consistent way, giving a family of possible solutions.

Following this line, Blaschke and Beneš [21] were able to find a lower bound for the EW

monopole mass by constructing a family of effective theories that have a BPS limit, in a

way that the monopole mass can be found analytically and determined by the asymptotic

behavior of the fields. Recently, Cho, Zhang and Zou [22] shown that is possible to

regularize the energy by electric charge renormalization, founding a new BPS bound.
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Another interesting solution was proposed by Arunasalam and Kobakhidze [23], where

they considered an extension of the usual U(1)Y kinetic term to a non-linear Born-Infeld

(BI) [24] Lagrangian. With this extension in the same way that the electron energy is

regularized in the original BI Electrodynamics, the monopole energy here gets also reg-

ularized and its mass turns out to be proportional to the BI mass parameter β, that

somehow controls the U(1)Y field non-linearity and can be constrained considering light-

by-light scattering as was shown by Ellis, Mavromatos and You [25]. The authors in [23]

showed that a finite-energy monopole solution exists with this non-linear BI extension,

and considered some consequences for the EW phase transition. Other interesting re-

cent works are [26, 27, 28]. Therefore, the non-linear extension of the hypercharge sector

can lead to a finite-energy electroweak monopole solution. This gives us a good motiva-

tion for considering non-linear models, because nowadays there is hope to finally find a

monopole in dedicated experiments, such as MoEDAL at CERN [29, 30]. Furthermore,

it is imperative to understand the phenomenological implications of such an extension.

The subject of non-linear extensions of Electrodynamics is a very rich research topic.

The idea of non-linear electromagnetic responses of the vacuum was first suggested by

Halpern [31] and one year later by Heisenberg [32], where he proposed that virtual

electron-positron pairs could be at the origin of photon-photon collisions. Soon there-

after, actions with non-linear electrodynamics were introduced by Born and Infeld [24]

and also Euler and Heisenberg [33] in the 1930’s to deal with the classical problem of the

infinite self-energy of a point charge. These extensions, which have been also explored

in areas as diverse as black-hole physics, superconductors, and cosmology [34, 35, 36, 37,

38, 39, 40, 41, 42], can display interesting features, such as vacuum birefringence and

dichroism [43, 44, 45]. For recent developments, see refs. [46, 47, 48].

Perhaps the most striking prediction of these models is the occurrence of light-by-light

scattering already at tree-level. This extremely rare process was recently observed by the

ATLAS and CMS collaborations in heavy-ion collisions at the LHC [49, 50, 51]. The

perspective to test effects of non-linear extensions of the Standard Model (SM) in high-

energy experiments – in lepton and hadron accelerators or potentially in photon colliders

– motivates us to search for possible phenomenological consequences.

The non-linear extension of traditional Maxwell electrodynamics modifies photon-

photon interactions by introducing higher-order terms in the Lagrangian. Here, we are

interested in extending the whole hypercharge sector of the electroweak gauge group, thus

giving rise to other interesting phenomena. In fact, besides reproducing the already known

non-linear effects in standard electrodynamics (corrected by a factor involving the Wein-

berg angle), this extension induces anomalous quartic couplings between the Z-boson and

the photon. This in turn theoretically allows for rare processes to take place already at

tree-level, as for example the creation of a Z-boson pair from the collision of two photons.
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Non-linear effects have not been observed at low energies. This means that the pa-

rameter controlling the non-linearity of the fields is expected to be large in comparison to

other relevant energy scales. The parameters in non-linear theories may be constrained

in different ways, e.g., via hydrogen spectroscopy or interferometry [52, 53]. A more

stringent bound is obtained using LHC data on light-by-light scattering in heavy-ion col-

lisions [25]. The lower bound reported there is ∼ 100GeV, but it could reach ∼ 200GeV

under less restrictive assumptions. The ATLAS data on gg → γγ can enhance this sensi-

tivity by one order of magnitude in a BI extension of SM [54], reaching the TeV scale as

in brane-inspired models.

Part I is organized in 4 Chapters, being the first one given by this Introduction.

Chapter 2 is organized as follows: in Sec. 2.1, we make a short review of the original EW

monopole solution. In Sec. 2.2, we propose a regularization of the monopole solution, by

adopting a non-linear extension of the hypercharge sector. Next, we analyze our results in

some special cases, and estimate the respective masses. This is done in Sec. 2.3. Sec. 2.4

is devoted to finding a lower bound for the energy; finally, in Sec. 2.5, we analyze the

simpler case of a Dirac magnetic charge. Chapter 3 is organized as follows: in Sec. 3.1

we present the theoretical setup of our model. In Sec. 3.2 we discuss options to constrain

the expansion parameter β, in particular through the decay Z → 3 γ in Sec. 3.2.1 and

the scattering e− e+ → 3 γ in Sec. 3.2.2, respectively. In Sec. 3.2.3 we discuss neutral

gauge-boson scattering processes and contextualize our discussion with recent results in

anomalous quartic gauge couplings. Finally, in Chapter 4, we state our concluding remarks

for the first part of this thesis.
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Chapter 2

Electroweak monopoles

In this Chapter we introduce the original electroweak monopole solution [17]. We

discuss the issue of infinite energy and a class of extensions that could regularize it, giving

a finite-energy monopole solution. We analyze some special cases inspired by non-linear

extensions of electrodynamics and obtain the respective masses. After that, we discuss a

lower bound for the monopole energy and an interesting Dirac’s magnetic charge solution

in this non-linear scenario. We suggest the recent reviews [55, 56] for more details.1

2.1 The original electroweak monopole solution

Let us consider the bosonic sector of the Electroweak Lagrangian in the Standard

Model:

L0 = |DµH|2 − λ

2

(
H†H − µ2

λ

)2

− 1

4
F a
µνF

µν
a − 1

4
BµνB

µν , (2.1)

where we are using

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν ,

Bµν = ∂µBν − ∂νBµ. (2.2)

The covariant derivative with respect to the SU(2)L x U(1)Y gauge group is defined by,

DµH =

(
∂µ − i

g

2
Aa

µσ
a − i

g′

2
Bµ

)
H, (2.3)

1This Chapter is based on Eur. Phys. J. C 81, 788 (2021).
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andH is the SM Higgs doublet. Given the above Lagrangian, one can obtain the equations

of motion, given by

DµD
µH = −λ

(
H†H − µ2

λ

)
H,

DµF
µν
a = −i

g

2

(
H†σaD

νH −DνH†σaH
)
,

∂µB
µν = −i

g′

2

(
H†DνH −DνH†H

)
, (2.4)

where we used DµF
µνa = ∂µF

µνa − gfabcAc
µF

µνb.

Let us introduce the following parametrization for the Higgs field, without loss of

generality,

H =
1√
2
ρ ξ, with ξ†ξ = 1. (2.5)

Here the doublet structure is carried by the field ξ as well as the Higgs hypercharge.

Therefore, ξ carries the Higgs field quantum numbers, and we would like to emphasize

that the presence of the hypercharge quantum number in the field ξ is extremely important

to discuss the existence of the monopole solution. In fact, taking into account the U(1)Y ,

we can interpret the unit doublet ξ as a CP (1) field, and therefore find the non-trivial

topology that we need to discuss monopole solutions, since π2 (CP (1)) = π2 (S2) = Z.

Note that there is no loss of generality in the parametrization of the Higgs given above.

The Higgs doublet has 2 complex degrees of freedom (d.o.f.), and in this parametrization

we have in principle 2 complex d.o.f in ξ, but the constraint ξ†ξ = 1 removes 1 real d.o.f.,

that is moved to the real field ρ, that does not have any charge under the gauge group.

Using this parametrization, and defining ρ20 =
2µ2

λ
, we can rewrite,

L0 =
1

2
(∂µρ)

2 +
ρ2

2
|Dµξ|2 −

λ

8

(
ρ2 − ρ20

)2
+

− 1

4
F a
µνF

µν
a − 1

4
BµνB

µν . (2.6)

The equations of motion written in terms of the new parametrization are,

∂2ρ = ρ|Dµξ|2 −
λ

2

(
ρ2 − ρ20

)
ρ, (2.7)

ρD2ξ = −2 ∂µρDµξ, (2.8)

DµF
µνa = −i

g

4
ρ2
(
ξ†σaDνξ −Dνξ†σaξ

)
, (2.9)

∂µB
µν = −i

g′

4
ρ2
(
ξ†Dνξ −Dνξ†ξ

)
. (2.10)

Let us consider the spherically symmetric ansatz, proposed in [17], with spherical coordi-
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nates (t, r, θ, φ):

ρ = ρ(r), ξ = i

(
sin (θ/2) e−iφ

− cos (θ/2)

)
,

A⃗µ =
1

g
A(r) ∂µt r̂ +

1

g
(f(r)− 1) r̂ × ∂µr̂,

Bµ =
1

g′
B(r) ∂µt−

1

g′
(1− cos θ) ∂µφ. (2.11)

For the benefit of the reader, we will write the gauge field A⃗µ in components:

A⃗µ =


1
g
A(r)∂µt sθcφ + 1

g
(f(r)− 1)(−sφ∂µθ − sθcθcφ∂µφ)

1
g
A(r)∂µt sθsφ + 1

g
(f(r)− 1)(cφ∂µθ − sθcθsφ∂µφ)

1
g
A(r)∂µt cθ +

1
g
(f(r)− 1)(s2θ∂µφ)

 . (2.12)

First of all, notice that we have, r̂ = −ξ† σ⃗ ξ, what in an abelian decomposition would

define the abelian direction in the gauge space. Care should be paid to not confuse the

coordinates in the field space with the spacetime coordinates in this spherically symmetric

ansatz, where the interplay between both is important as usually happens in this subject.

We also remark that again the U(1)Y is extremely important for these considerations,

and without it the Higgs doublet would not allow a spherically symmetric ansatz, besides

not having the correct topology to admit a monopole solution. Looking more closely to

this ansatz, we can see that when we take A(r) = B(r) = f(r) = 0, we obtain a term

like a magnetic potential for the field A⃗µ that could describe a non-abelian monopole in

the SU(2)L sector, and the field Bµ would give an abelian monopole in the U(1)Y sector.

There is an apparent string singularity in ξ and Bµ along the negative z-axis, but this is

only a gauge artifact, and can be removed. Therefore this ansatz is in the right direction to

search for monopoles, and it is sometimes said that the Cho-Maison monopole is somehow

an hybrid between the abelian and non-abelian monopoles.

Let us introduce the physical fields to understand better the content of the ansatz. To

define the mass eigenstates in the gauge sector, we will choose the unitary gauge using a

gauge transformation U that puts the doublet in the usual form, that is ξ → (Uξ)a = δa2,

with a = 1, 2,

ξ → Uξ =

(
0

1

)
. (2.13)

The transformation U that does the job is

U = i

(
cos(θ/2) sin(θ/2)e−iφ

− sin(θ/2)eiφ cos(θ/2)

)
. (2.14)
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When we do such a gauge transformation, remembering that we have r̂ = −ξ† σ⃗ ξ, we

transform this abelian direction to r̂a → δa3, with a = 1, 2, 3, that is,

r̂ =

 sin θ cosφ

sin θ sinφ

cos θ

→

 0

0

1

 . (2.15)

Also the gauge fields have to change under this gauge transformation as usual, by

A′
µ = UAµU

−1 − i

g
∂µU U−1. (2.16)

One can open the Lie-algebra valued field as Aµ = Aa
µ
σa

2
, and using this specific form of

gauge transformation U , obtain the expression for the transformation of each component

of the field Aµ given in the ansatz comparing both sides of the above expression,

A1′

µ = A1
µ[1− (1− cθ)c

2
φ]− A2

µ[(1− cθ)sφcφ]− A3
µ[sθcφ]−

1

g
[sθcφ∂µφ+ sφ∂µθ], (2.17)

A2′

µ = −A1
µ[(1− cθ)cφsφ] + A2

µ[1− (1− cθ)s
2
φ]− A3

µ[sθsφ]−
1

g
[sθsφ∂µφ− cφ∂µθ], (2.18)

A3′

µ = A1
µ[sθcφ] + A2

µ[sθsφ] + A3
µ[cθ]−

1

g
[(1− cθ)∂µφ]. (2.19)

Therefore, in the unitary gauge, we have

A⃗µ =
1

g

 −f(r) (sinφ∂µθ + sin θ cosφ∂µφ)

f(r) (cosφ∂µθ − sin θ sinφ∂µφ)

A(r)∂µt− (1− cos θ)∂µφ

 . (2.20)

We define the physical fields Aµ and Zµ through the rotation with the Weinberg angle,

that is, Zµ = cos θWA3
µ − sin θWBµ and Aµ = sin θWA3

µ + cos θWBµ, that is,(
Zµ

Aµ

)
=

(
cos θW − sin θW

sin θW cos θW

)(
A3

µ

Bµ

)
, (2.21)

and we define also the W-bosons through W±
µ = 1√

2

(
A1

µ ∓ iA2
µ

)
. Plugging the ansatz, we

obtain

Aem
µ = e

(
1

g2
A(r) +

1

g′2
B(r)

)
∂µt−

1

e
(1− cos θ)∂µφ;

Zµ =
e

gg′
(A(r)−B(r))∂µt;

W−
µ =

i

g

f(r)√
2
eiφ(∂µθ + i sin θ∂µφ), (2.22)
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where we defined e = g sin θW = g′ cos θW . Therefore, we have our ansatz written in terms

of the physical fields, and we can begin to search for solutions of the equations of motion.

The equations of motion will give us a set of coupled differential equations in the radial

variable for the fields (A(r), B(r), f(r), ρ(r)). We point out that we are considering here

only static and spherically symmetric solutions, therefore, the derivatives are taken with

respect to the variable r. The spherical symmetry of the ansatz simplifies considerably the

equations of motion, and one can show that these equations admit a general dyon solution

if we impose certain boundary conditions [17]. Therefore, the equations of motion in the

spherically symmetric ansatz read:

ρ̈+
2

r
ρ̇− f 2

2r2
ρ = −(A−B)2

4
ρ+

λ

2

(
ρ2 − 2µ2

λ

)
ρ,

f̈ − (f 2 − 1)

r2
f =

(
g2

4
ρ2 − A2

)
f,

Ä+
2

r
Ȧ− 2f 2

r2
A =

g2

4
ρ2(A−B),

B̈ +
2

r
Ḃ = −g′2

4
ρ2(A−B). (2.23)

In the original work [17], the authors showed that these equations admit a general dyon

solution if we impose the following boundary conditions:

ρ(0) = 0, f(0) = 1, A(0) = 0, B(0) = b0,

ρ(∞) = ρ0, f(∞) = 0, A(∞) = B(∞) = A0. (2.24)

More precisely, with these boundary conditions, they showed that the equations of motion

taken in the ansatz configuration admit a family of solutions labeled by the real parameter

A0 lying in the range 0 ≤ A0 < min
(
eρ0,

g
2
ρ0
)
, and represent a dyon in the SM. Here we

are interested in the simpler case of a monopole solution, since it is lighter than the dyon

and more easily accessible in a experimental sense. Therefore we will take in our analysis

the simplifying assumption A(r) = B(r) = 0, that is, we will turn off the Coulombic

part of the ansatz, to investigate the electroweak monopole solutions. We would like to

mention that even if this is not the more complete picture of the topological objects that

we could find in the SM, it is still an absolutely non-trivial solution since we are taking a

non-zero f(r) that will bring the effects of weak bosons and give us a topologically stable

electroweak monopole.

Given the Lagrangian and the equations of motion, one can find the canonical energy-

momentum tensor associated with the translation symmetry of the system, obtained by

10



the Nöether procedure, as:

T̂ µν
0 =− F µρ

a ∂νAa
ρ −Bµρ∂νBρ − ηµνL +

+DµH†∂νH + ∂νH†DµH. (2.25)

The canonical energy-momentum tensor is clearly not gauge-invariant, but we can im-

prove it as usual, summing total derivatives that will not alter the physics of the system.

Therefore, we can sum the quantity δT µν , given by,

δT µν = ∂ρ(F
µρ
a Aν

a) + ∂ρ(B
µρBν), (2.26)

and therefore, summing this quantity and using the equations of motion, we can obtain

an improved gauge-invariant energy-momentum tensor, that is given by:

T µν
0 =F µρ

a F a ν
ρ +BµρB ν

ρ − ηµνL0 +

+DµH†DνH +DνH†DµH. (2.27)

To find the Hamiltonian of this system, we only need to consider the component T 00

integrated in all space, and therefore, we can obtain,

H =

∫
d3x

[
1

2
(F a

0i)
2 +

1

2
(B0i)

2 + |D0H|2
]
+[

1

4

(
F a
ij

)2
+

1

4
(Bij)

2 + |DiH|2 + λ

2

(
H†H − µ2

λ

)2
]
. (2.28)

Therefore, the energy functional for the ansatz 2.11 is

E = 4π

∫ ∞

0

dr r2
[
ρ2

8
(A−B)2 +

ρ̇2

2
+

ρ2f 2

4

1

r2

+
Ȧ2

2g2
+

A2f 2

g2
1

r2
+

ḟ 2

g2
1

r2
+

(f 2 − 1)2

2g2
1

r4

+
λ

8
(ρ2 − 2µ2

λ
)2 +

Ḃ2

2g′2
+

1

2g′2
1

r4

]
. (2.29)

Using the appropriate boundary conditions for the functions ρ(r), f(r), A(r), B(r), one

can show that most of the terms above give a finite result, but the last term in the above

expression will become infinite, and we will call this contribution E∗, that is,

E∗ = 4π

∫ ∞

0

dr
1

2 g′2 r2
. (2.30)

This is exactly the origin of the infinite energy of the monopole solution at the classical
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level, a singularity at the origin. Because of this problem, we cannot predict the monopole

mass, and we will propose in the following a solution to this issue, finding a finite-energy

monopole. It is important to note that these are classical considerations, and one could

consider extensions of the SM that can regularize this divergence, paying special attention

to the U(1)Y sector where it appears.

2.2 A finite-energy monopole solution

Let us consider now the simpler case of a monopole solution, since it is lighter than

the dyon and more easily accessible in an experimental sense. That is, we will consider

the simplified version of the more general ansatz 2.11 where we turn off the Coulombic

part taking A(r) = B(r) = 0. The EW monopole ansatz will therefore be given by

ρ = ρ(r), ξ = i

(
sin (θ/2) e−iφ

− cos (θ/2)

)
A⃗µ =

1

g
(f(r)− 1) r̂ × ∂µr̂;

Bµ = − 1

g′
(1− cos θ) ∂µφ. (2.31)

The equations of motion are simplified in this case to

ρ̈+
2

r
ρ̇− f 2

2r2
ρ =

λ

2

(
ρ2 − 2µ2

λ

)
ρ;

f̈ − (f 2 − 1)

r2
f =

fg2

4
ρ2. (2.32)

The monopole ansatz 2.31 provides a solution to the equations of motion if we adopt the

following boundary conditions [17]:

ρ(0) = 0, ρ(∞) = ρ0, f(0) = 1, f(∞) = 0, (2.33)

where we defined ρ0 =
√

2µ2

λ
. The energy functional for the monopole configuration is

also simplified, giving us

E = 4π

∫ ∞

0

dr r2
[
ρ̇2

2
+

ρ2f 2

4

1

r2
+

λ

8
(ρ2 − ρ20)

2

+
ḟ 2

g2
1

r2
+

(f 2 − 1)2

2g2
1

r4
+

1

2g′2
1

r4

]
, (2.34)
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such that one can write for simplicity in the following,

E = E1 + E∗. (2.35)

We remark that the problematic term E∗ is still here, as one can see in the last term of

the above expression.

Let us propose a general extension of the U(1)Y sector in the EW Lagrangian L0:

L = L0 + f (F ,G) , (2.36)

where we define F = 1
4
BµνB

µν , and G = 1
4
BµνB̃

µν , the U(1)Y Lorentz and gauge-invariant

basic objects, where B̃µν = 1
2
ϵµνρσBρσ. In this case, the equations of motion for the U(1)Y

sector will become

∂µB
µν =

Jν +Bµν∂µ∂Ff + B̃µν∂µ∂Gf + ∂µB̃
µν∂Gf

1− ∂Ff
, (2.37)

where we defined ∂Ff = ∂f
∂F , ∂Gf = ∂f

∂G , and we defined also the hypercharge matter

current Jν = −ig
′

2

(
H†DνH −DνH†H

)
. Now, we can plug the ansatz in this equation of

motion to see which constraints we obtain. Notice that here we have ∂0 = 0, and B0 = 0,

and thus immediately we obtain Bi0 = 0, B̃ij = 0. After some algebraic manipulations,

we can also obtain

(
ξ†Dµξ −Dµξ

†ξ
)
= i
[
gA1

µ sin θ cosφ+ gA2
µ sin θ sinφ

+gA3
µ cos θ − g′Bµ − (1− cos θ)∂µφ

]
= 0, (2.38)

and thus, Jν = 0. We can write Bij ∝ ϵijkBk(r), where B⃗(r) is the radial hypercharge

magnetic field associated with the U(1)Y gauge potential, and thus one can find ∂iB
ij = 0.

The equation of motion, after these considerations, can be written as

Biν∂i∂Ff + B̃iν∂i∂Gf + ∂iB̃
iν∂Gf = 0. (2.39)

Therefore, given our proposal of extending the hypercharge sector adding a generic func-

tion f (F ,G), we conclude that the monopole ansatz will satisfy the modified U(1)Y

equation of motion if the function f(F ,G) satisfies the following conditions:

∂i
(
Bij∂Ff

)
|ansatz = 0,

∂i

(
B̃i0∂Gf

)
|ansatz = 0. (2.40)

Now, let us study the energy of the monopole configuration in this extended model.
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One can obtain the following energy-momentum tensor:

T̃ µν = T µν
0 +Bµρ∂νBρ ∂Ff + B̃µρ∂νBρ ∂Gf − ηµνf+

−

Jµ +Bρµ∂ρ∂Ff + ∂ρ

(
B̃ρµ∂Gf

)
1− ∂Ff

Bν + JµBν , (2.41)

where T µν
0 is the usual energy-momentum tensor. Now we can take the Hamiltonian

and calculate the monopole energy, by simply plugging our ansatz into this expression.

In the monopole ansatz, we remember again that ∂0 = 0 and B0 = 0, giving us a huge

simplification. In fact, since we have B0i = B̃ij = 0, we can immediately obtain BµνB
µν ∝

B⃗(r)2 and also BµνB̃
µν = 0, giving us

F|ansatz =
1

2g′2
1

r4
,

G|ansatz = 0. (2.42)

Thus, the monopole energy in this extended model is

E = E1 +

∫ ∞

0

dr4πr2
[

1

2g′2
1

r4
− f (F|ansatz;G|ansatz)

]
. (2.43)

Notice that we can easily handle the infinite energy coming from E∗ simply taking

f (F ,G) = F + ϕ (F ,G). Therefore, we can use the expressions 2.40 and 2.43 to search

for extensions of the U(1)Y sector of the Electroweak Lagrangian such that the monopole

ansatz is a finite energy solution for the equation of motion.

In fact, let us impose that this function ϕ (F ,G), that will represent our generalized
U(1)Y kinetic term, depends non-trivially on F and only on the square of G = 1

4
BµνB̃

µν ,

that is, ϕ is a generic function of F and G2. The physical reason for this assumption is

to not have a parity violating term in the gauge kinetic sector of the photon after the

EW symmetry breaking. One can show that, only imposing this physical assumption,

the conditions 2.40 will be trivially satisfied for any reasonable function ϕ, that is, the

monopole ansatz will satisfy the equation of motion coming from the extended U(1)Y

sector. We remark here that this is a sufficient condition to solve the constraints 2.40,

but it is not necessary.

Therefore, the most general extension of the hypercharge sector for which the monopole

ansatz 2.31 is a solution of the equations of motion, and consistent with the above physical

assumption is any reasonable function ϕ (F ,G2) such that the energy integral is finite, i.e.,

−
∫ ∞

0

dr4πr2
[
ϕ

(
F =

1

2g′2r4
;G2 = 0

)]
= Finite. (2.44)
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In particular, since we want to reproduce the usual −1
4
BµνB

µν term in first approxi-

mation to recover the SM results at first order, we will study a restricted class of possible

extensions considering that ϕ depends on F and G through the particular combination

X = F
β2 − G2

2β4 , where β is a parameter with dimensions of Mass2. As we already know,

the conditions 2.40 are trivially satisfied, and we need only to care about the finiteness

of the energy integral. What we are doing here is to improve the hypercharge sector to a

non-linear version, and we will consider three physically interesting cases, corresponding

to ϕ1 = −β2 log [1 +X], ϕ2 = β2
[
e−X − 1

]
and finally, ϕ3 = β2

[
1−

√
1 + 2X

]
, that

respectively will give us the U(1)Y version of the Logarithmic [43], Exponential [44], and

Born-Infeld [24] non-linear Electrodynamics.

2.3 Non-linear extensions of U(1)Y

The subject of non-linear Electrodynamics was introduced in the thirties by Euler and

Heisenberg [33] after the Nature’s paper by Born and Infeld [24], to remove the singu-

larities associated with charged point-like particles, and it has ever since attracted the

interest of physicists due to its interesting features. For example, non-linear Electrody-

namics predicts light-by-light scattering in vacuum and such phenomenon is being tested

experimentally nowadays [49, 50, 51]. Interestingly, some non-linear models emerge natu-

rally from the low-energy limit of string theory, and this has been applied in very different

contexts as, for example, black hole physics [34, 35, 36], holographic superconductivity

[37, 38, 39], and cosmology [40, 41, 42]. There are, nowadays, many different proposals of

non-linear Electrodynamics [46, 47, 48], exhibiting not only finite energy for the point-like

charge, but also properties like vacuum birefringence and dichroism.

In this Section, we shall consider three possible non-linear extensions of the hyper-

charge sector, calculate the monopole energy for each of them, and compare the respective

results. We remark that the Born-Infeld case was already studied in [23], and we are con-

sidering these results here only for the sake of comparison. In each of the following cases,

what we will do is to consider different functions ϕ = LY , that extends the hypercharge

sector to a non-linear theory, state its equation of motion, and compute the corresponding

monopole energy for it. The right-hand side of the equation of motion will be given by

the usual matter current Jν = − ig′

2

(
H†DνH −DνH†H

)
. All of them have a factor E1 in

common, since this is the contribution to the energy that comes from all the other terms

except the U(1)Y kinetic term. As we already remarked before, this contribution E1 is

finite, and its value was calculated by [19], giving approximately E1 ≈ 4.1TeV.

Let us consider first the Logarithmic U(1)Y Electrodynamics, introduced few years
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ago [43]. The Lagrangian for the hypercharge sector will be

LY = −β2 log

[
1 +

F
β2

− G2

2β4

]
, (2.45)

where as before, F = 1
4
BµνB

µν and G = 1
4
BµνB̃

µν , and β is a parameter with dimensions

of Mass2. The U(1)Y equation of motion for our extended theory is

∂µ

 Bµν − 1
β2GB̃µν(

1 + F
β2 − G2

2β4

)
 = Jν , (2.46)

The monopole energy here is given by

E = E1 +

∫ ∞

0

dr

[
β2 log

(
1 +

1

2β2g′2r4

)
4πr2

]
. (2.47)

Doing this integral we obtain

E = E1 +
2

3
23/4π2

√
β

(g′)3/2
. (2.48)

To estimate the energy, we will consider here g′ = 0.357, that is approximately the value

of the U(1)Y coupling at the EW scale. Thus, we obtain

E ≈ 4.1TeV + 51.87
√

β. (2.49)

Now, let us consider the Exponential U(1)Y Electrodynamics [44]. Here we have the

following Lagrangian:

LY = β2

[
−1 + exp

(
− F

β2
+ G2

2β4

)]
. (2.50)

The equation of motion follows immediately,

∂µ

[(
Bµν − 1

β2
GB̃µν

)
exp

(
− F

β2
+ G2

2β4

)]
= Jν . (2.51)

Repeating the same steps, we can find the energy integral,

E = E1 +

∫ ∞

0

dr4πr2β2

[
1− exp

(
− F

β2
+ G2

2β4

)]
. (2.52)

Doing this integral, we obtain

E = E1 −
π

23/4
Γ(−3/4)

√
β

(g′)3/2
. (2.53)

16



Using as before g′ = 0.357, we obtain

E ≈ 4.1TeV + 42.33
√
β. (2.54)

Last, but not least, we introduce the well-known Born-Infeld case, that have the

following Lagrangian:

LY = β2

[
1−

√
1 +

2

β2
F − 1

β4
G2

]
. (2.55)

The equation of motion here is

∂µ

 Bµν − 1
β2GB̃µν√

1 + 2
β2F − 1

β4G2

 = Jν , (2.56)

and the energy integral is given by

E = E1 +

∫ ∞

0

dr4πr2(−β2)

[
1−

√
1 +

2

β2
F − 1

β4
G2

]
. (2.57)

Solving this integral, we obtain

E = E1 +
3
√
π Γ(−3/4)2

8 (g′)3/4

√
β (2.58)

Taking g′ = 0.357, we have

E ≈ 4.1TeV + 72.81
√

β. (2.59)

Now that we already have the expressions for the energy, let us briefly discuss these

U(1)Y extensions, leaving a more detailed analysis for the next Chapter. First of all, we

can see that if we perform a Taylor expansion of them in the parameter 1/β2, we obtain

at first non-trivial order,

LY = −F +
1

2β2

[
F2 + G2

]
+O

(
1/β4

)
= −1

4
BµνB

µν+
1

2β2

[(
1

4
BµνB

µν

)2

+

(
1

4
BµνB̃

µν

)2
]

(2.60)

Notice that they reproduce the usual kinetic term at first order, and exactly agree at

order O(1/β2). This
√
β parameter with dimensions of energy controls somehow the non-

linearity of the fields, and can be obtained from experiments, but we notice that it should

be large in comparison to our scales of energy since we do not observe non-linear effects at

low energy. The best known bound for the β parameter nowadays is given by the work [25]
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considering Data from light-by-light scattering measurements in LHC Pb-Pb collisions by

ATLAS, and gives a lower bound for the Born-Infeld parameter in Electrodynamics given

by
√
β ≥ 100GeV. Here, we are doing a non-linear extension in the hypercharge sector

instead of directly in the Electrodynamics, therefore, we should take a factor of cos θW into

account, obtaining the bound
√
β ≥ 90GeV. In principle, one should take for each non-

linear U(1)Y extension a different bound for the corresponding β parameter, but we can

argue that we can consider all of them approximately equal with a good approximation.

In fact, as the bound was obtained considering light-by-light scattering, the relevant term

is the one with 4 photons in it, coming from the terms (FµνF
µν)2 and

(
FµνF̃

µν
)2
. But by

dimensional analysis, they should appear at order O(1/β2) in a Taylor expansion, and as

we already remarked, the three non-linear extensions exactly agree at this order, therefore

we can take the same bound for the β parameter in the three cases considered here with

a good approximation.

Therefore, considering
√
β ≥ 90GeV, we can obtain the estimated mass for the

monopole configuration. Summarizing, considering these three different non-linear ex-

tensions we have:

E ≈ 4, 1 + 51, 87
√
β ≈ 8.7 TeV (Logarithmic) , (2.61a)

E ≈ 4, 1 + 42, 33
√
β ≈ 7.9 TeV (Exponential) , (2.61b)

E ≈ 4, 1 + 72, 81
√
β ≈ 11.6 TeV (Born-Infeld) . (2.61c)

We remark here that our Logarithmic and Exponential non-linear extensions give a lower

mass for the monopole solution than the one obtained with Born-Infeld, but unfortunately

it is still above the threshold energy for pair production of this object at the present

LHC. In the following, we will consider a simplified setup to discuss a lower bound for

the monopole energy in each case of interest.

2.4 Lower bounds for the monopole energy

The energy functional for the EW monopole ansatz is

E =

∫ ∞

0

dr 4πr2
[
ρ̇2

2
+

ρ2f 2

4

1

r2
+

λ

8
(ρ2 − ρ20)

2 +

+
ḟ 2

g2
1

r2
+

(f 2 − 1)2

2g2
1

r4
+

1

2g′2
1

r4

]
. (2.62)

Taking the so-called BPS limit [8, 9], that is, taking the limit λ → 0 but keeping the

asymptotic condition ρ → ρ0, and also doing the improvement of the U(1)Y kinetic term
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for a non-linear version, we can rewrite the above expression as

E =

∫ ∞

0

dr 4πr2

( ρ̇√
2
+

(f 2 − 1)√
2gr2

)2

+

(
ḟ

gr
+

fρ

2r

)2

− ρ̇(f 2 − 1)

gr2
− ḟfρ

gr2
− ϕ (F|ansatz , G|ansatz)

]
. (2.63)

The last term is the contribution of the non-linearly extended hypercharge kinetic term,

it was already computed and is completely independent of ρ and f , therefore we will omit

it in our analysis. The terms in the first line are clearly non-negative, and therefore we

can write a lower bound for the energy functional in this BPS limit,

E ≥ −4π

g

∫ ∞

0

dr
[
ρ̇(f 2 − 1) + ḟfρ

]
. (2.64)

To saturate the bound and obtain the configurations that minimize the energy in this

setup, we need to consider configurations that solve the following equations:

ρ̇(r) +
(f(r)2 − 1)

gr2
= 0,

ḟ(r) +
gf(r)ρ(r)

2
= 0. (2.65)

Interestingly, we would like to point out that if we didn’t have a factor 2 in the denominator

of the second equation, we would be able to find an analytical solution for these equa-

tions, as found by Bogomol’nyi [8], Prasad and Sommerfield [9] for the ’tHooft-Polyakov

monopole. Such analytical solution would be

f(r) =
gρ0r

sinh(gρ0r)
; ρ(r) =

ρ0
tanh(gρ0r)

− 1

gr
. (2.66)

Unfortunately, we were not able to find an analytic solution for our case, but even though,

we can search for a numerical solution to these equations, only to be capable of estimating

a lower bound to the monopole mass. We remark that once again, a factor 2 prevents

us from obtaining a total derivative in the expression 2.64, resulting in an analytical and

elegant result. Considering configurations that solve the above equations and therefore

saturate the energy bound, we can rewrite the lower bound,

E ≥
∫ ∞

0

dr 4π

(
ρ2f 2

2
+

(f 2 − 1)2

g2r2

)
. (2.67)

In the recent work [22], even though the authors used a different setup for the regular-

ization of the monopole energy, when considering the BPS limit they obtained exactly the

same expression for the equations that saturate the energy 2.65, as well as the same inte-
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gral for the energy lower bound 2.67 that comes as consequence, and the result obtained

there for such integral is given by

E ≥ 2.98TeV. (2.68)

We remark for the sake of comparison that another BPS bound was already obtained in

[21], giving a lower bound of 2.37TeV. In our case, the result obtained above is a lower

bound for the EW monopole energy ignoring not only the scalar potential contribution,

but also the hypercharge kinetic term ones. Taking in consideration now the result ob-

tained for the hypercharge sector in each of the non-linear extensions that we did before,

we find an estimate for the more realistic setup of a EW monopole,

E ≥ 7.6 TeV (Logarithmic), (2.69a)

E ≥ 6.8 TeV (Exponential), (2.69b)

E ≥ 10.5 TeV (Born-Infeld). (2.69c)

Therefore, we conclude from our estimate that our non-linear extensions (i.e., Log-

arithmic and Exponential) give us a lower bound for the monopole mass that could be

eventually found at the LHC, since the necessary energy to pair produce the monopole

is nearby the present achievable energies. Therefore, even if our solutions have energy

above the threshold for pair production at LHC, with these lower bounds we can have

hope of some modification of our solution, that can give a monopole mass achievable at

the present colliders.

2.5 A non-linear Dirac monopole

To conclude this Chapter, let us consider the simpler case of pure Electromagnetism

and, following the same procedure as previously shown, let us find what the answer for a

Dirac-like monopole would be. In fact, let us consider here the following Lagrangian:

LEM = −1

4
FµνF

µν + f (F ,G) , (2.70)

where now we will do the non-linear extension directly on the Electromagnetism, and we

are defining here the invariants as F = 1
4
FµνF

µν and G = 1
4
FµνF̃

µν .

Following the same steps as before, we will find

∂µF
µν =

F µν∂µ∂Ff + F̃ µν∂µ∂Gf + ∂µF̃
µν∂Gf

1− ∂Ff
. (2.71)
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Consider now the ansatz for a Dirac-like monopole,

Aµ = − 1

2e
(1− cos θ)∂µφ. (2.72)

In the static regime we have ∂0 ≡ 0, and therefore A0 = 0, giving also F0i = 0, and F̃ıj = 0

immediately. Therefore, we will obtain the following energy functional:

E =

∫ ∞

0

dr4πr2
[

1

8e2r4
− f

(
F =

1

8e2r4
,G = 0

)]
. (2.73)

We already saw that the monopole ansatz gives a solution for the U(1) equations of

motion in the non-linear extensions that we considered here, and the same reasoning used

before works for this case. Considering here the Logarithmic, Exponential and Born-Infeld

Electrodynamics respectively, we obtain for the monopole energy,

ELog =
21/4 π2

2e3/2

√
β,

EExp =
π Γ(1/4)

3 21/4e3/2

√
β,

EBI =
3
√

π/2 Γ(−3/4)2

16e3/2

√
β. (2.74)

Taking e = 0.303 and considering the bound obtained in [25] that gives
√
β ≥ 100GeV

for the nonlinear extension directly in the Electromagnetism, we obtain

ELog ≈ 2.3TeV, (2.75a)

EExp ≈ 1.9TeV, (2.75b)

EBI ≈ 3.3TeV. (2.75c)

Therefore, we can see what is the mass of a Dirac monopole if we consider only the

Electromagnetism with a non-linear extension. This is a simplified scenario, but even

though, it can give us a lower bound for the monopole mass, in a scale achievable at LHC.
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Chapter 3

Phenomenology of the non-linear

extension

In this Chapter, we analyze the non-linear extension of the hypercharge sector used

in Chapter 2. This gives rise to quartic effective interactions between the neutral gauge

bosons absent in the SM at tree-level. These novel operators contribute to decay and scat-

tering processes and we explore existing experimental data to place lower bounds on the

non-linear parameter. We discuss recent results constraining anomalous gauge couplings

and briefly consider possible improvements on these bounds in future experiments.1

3.1 Theoretical setup

The bosonic part of the Electroweak Lagrangian was introduced in the beginning of

the last Chapter. Let us repeat it here for the convenience of the reader:

LEW = LGauge + LHiggs, (3.1)

where

LGauge = −1

4
F a
µνF

µνa − 1

4
BµνB

µν , (3.2)

LHiggs = |DµH|2 − λ

(
H†H − m2

2λ

)2

. (3.3)

Here we defined the covariant derivative as

Dµ = ∂µ − igAa
µT

a − ig′Y Bµ. (3.4)

1This Chapter is based on Phys. Rev. D 105, 016007 (2022).
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In the equations above, Aa
µ and Bµ are the gauge fields associated with the gauge group

SU(2)L × U(1)Y, F a
µν = ∂µA

a
ν − ∂νA

a
µ + gϵabcA

b
µA

c
ν and Bµν = ∂µBν − ∂νBµ are the

respective field strengths, g and g′ are the couplings. Here T a are the generators of

SU(2)L satisfying
[
T a, T b

]
= iϵabcT c and Y is the weak hypercharge. Note that there is

a slight difference in the normalization conventions for the scalar potential in comparison

with the last Chapter.

The Higgs field H is a SU(2)L doublet with hypercharge Y (H) = +1/2. The scalar

potential induces a non-trivial vacuum expectation value given by |⟨H⟩|2 = v2/2 = m2/2λ.

Below this energy scale, the theory is cast into the Higgs phase with three massive vector

bosons W±
µ , Zµ, a massive scalar h and a massless photon Aµ (γ) in the spectrum. The

physical fields can be written using the Weinberg angle θW : the neutral vector bosons

are defined by Zµ = cos θW A3
µ − sin θW Bµ and Aµ = sin θW A3

µ + cos θW Bµ, whereas the

charged vector fields are defined by W±
µ =

(
A1

µ ∓ iA2
µ

)
/
√
2.

The masses of the vector bosons can be precisely measured and are mW = gv/2 =

80.4 GeV and mZ = mW/ cos θW = 91.2 GeV. The Weinberg angle can be experimentally

determined and satisfies sin2 θW = 0.23. After symmetry breaking, the kinetic part of the

gauge Lagrangian (omitting mass terms) reads

LKin
Gauge = −1

4
FµνF

µν − 1

4
ZµνZ

µν − 1

2
W+

µνW
µν− , (3.5)

where the field-strength tensors are defined as usual.

We may now introduce the leptons through the following Lagrangian:

LLeptons = i L̄iγ
µDµLi + i ℓ̄iRγ

µDµℓiR , (3.6)

where Li denotes the lepton doublets Li = (νiL ℓiL)
t with νiL, ℓiL and ℓiR representing

the left-handed neutrinos, the left-handed charged leptons and the right-handed lepton

fields, respectively. Here i is a flavor index to distinguish between the three generations of

leptons. The hypercharge assignment adopted here is: Y (Li) = −1/2 and Y (ℓiR) = −1.

Taking Eq. (3.6) with Eq. (3.4) including the gauge fields after symmetry breaking we

obtain the interactions between matter and gauge fields. In what follows only two such

interaction terms will be relevant, namely,

Leeγ = −eℓ̄iγµℓiA
µ , (3.7)

LeeZ =
g

4 cos θW
ℓ̄iγµ

(
−1 + 4 sin2 θW + γ5

)
ℓiZ

µ . (3.8)

Here we propose a general extension of the weak hypercharge sector of the EW La-
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grangian, in the same spirit that we considered in the last Chapter:

L = −1

4
BµνB

µν −→ LY = f (F ,G) , (3.9)

where we defined the Lorentz and gauge-invariant objects as usual

F =
1

4
BµνB

µν and G =
1

4
BµνB̃

µν (3.10)

with the dual field-strength tensor given by B̃µν = 1
2
ϵµνρσBρσ. This type of non-linear

extension was already discussed in the last Chapter, where it was shown that under certain

conditions, it allows a finite-energy electroweak monopole solution.

The SM predictions are so far in excellent agreement with experiment and, in order to

recover the usual SM results, we demand that our general extension f (F ,G) reproduces
the usual term −1

4
BµνB

µν in some appropriate limit. Since we do not want to have

a parity-violating term in the photon sector after spontaneous symmetry breaking, we

impose the assumption that f (F ,G) depends on G only through G2. These physically

motivated assumptions were also adopted in the last Chapter.

Let us consider, for instance, a Born-Infeld (BI) extension of the hypercharge sector [24]

given by

LBI
Y = β2

[
1−

√
1 + 2

(F
β2

− G2

2β4

)]
, (3.11)

where β is a parameter with dimension of mass squared. This non-linear extension has

been extensively studied in the context of electrodynamics, with applications in a range

of subjects, and has attracted a lot of interest in the recent years after the observation of

light-by-light scattering at the LHC [49, 50, 51]. Interestingly enough, the BI action can

be derived from String Theory [57] and also appears in the dynamics of D-branes [58].

Our goal is to study the phenomenological consequences of the non-linear extension

in high-energy processes. To accomplish this, we need to obtain the induced operators

written in terms of the physical fields after symmetry breaking. The mass scale set by
√
β

is expected to be large in comparison with the typical energies of the processes considered,

motivating us to perform a Taylor expansion of Eq. (3.11) in powers of X = F
β2 − G2

2β4 :

LY = −F +
1

2β2

[
F2 + G2

]
+O

(
1/β4

)
. (3.12)

We will only consider tree-level processes with at most four gauge bosons in each vertex,

so we can safely restrict ourselves to leading non-trivial order. It is important to keep in

mind that this perturbative approach can only be trusted as long as the energy of the

process is lower than the mass scale set by
√
β, as this guarantees that the next terms in
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the expansion provide increasingly negligible corrections to the leading-order terms.

Furthermore, taking into consideration the recent interest in different versions of non-

linear electrodynamics, we could also consider other interesting extensions that would give

rise to the same physical effects in the approximation considered here. In fact, using X

defined above, we could as well have considered here the other extensions that we used in

the last Chapter, given by LLog
Y = −β2 log [1 +X] and LExp

Y = β2
[
e−X − 1

]
giving us the

U(1)Y version of the logarithmic [43] and exponential [44, 45] non-linear electrodynamics.

The three extensions agree up to leading non-trivial order and we will restrict ourselves to

tree-level processes with at most four gauge bosons interactions, so we may safely consider

the β parameters as being equal with a good approximation and use Eq. (3.12) to describe

their common effects.

The Lagrangian above is a function of the U(1)Y gauge field, Bµ, but after symmetry

breaking we can write it in terms of the physical fields, Aµ and Zµ, retrieving the usual

SM kinetic terms at zeroth order. At first order we have (sθ ≡ sin θW , cθ ≡ cos θW )

L(1/β2)
Y =

1

32β2

{
s4θ

[
(ZZ)(ZZ) + (ZZ̃)(ZZ̃)

]
+ c4θ

[
(FF )(FF ) + (FF̃ )(FF̃ )

]
+ 2s2θc

2
θ

[
(FF )(ZZ) + (FF̃ )(ZZ̃)

]
+ 4s2θc

2
θ

[
(ZF )(ZF ) + (ZF̃ )(ZF̃ )

]
− 4s3θcθ

[
(ZZ)(ZF ) + (ZZ̃)(ZF̃ )

]
− 4sθc

3
θ

[
(FF )(FZ) + (FF̃ )(FZ̃)

]}
, (3.13)

where we defined (ZZ) ≡ ZµνZ
µν with an analogous definition for the dual versions. All

non-linearly induced vertices above have the same momentum structure and very similar

Feynman rules; this traces back to the common origin of such interactions.

In conclusion, we see that our non-linear extension in the hypercharge sector generates

a series of dimension-eight effective operators generically suppressed by a factor (E/Λ)4,
where E is a typical energy scale characteristic of the process and Λ is the mass scale

set by
√
β. These effective operators will introduce new vertices, allowing processes that

could only occur in the SM at loop-level to take place already at tree-level. In the next

section we explore this fact and consider different high-energy processes to obtain lower

bounds on β whenever experimental data are available. We also discuss the impact of our

non-linear extension on scattering processes involving neutral gauge bosons.
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3.2 Experimental limits

In the section above we have extracted quartic interaction vertices between the pho-

ton and Z-boson which are completely absent from the SM, thus opening up interesting

possibilities to constrain the parameter β. In the following we explore a few of them.

3.2.1 Z → 3 γ

In the SM there is no tree-level Zγγγ vertex, so the decay process Z → 3 γ pro-

ceeds exclusively via fermion and W-boson loops [59, 60]. The theoretical prediction for

the partial width is Γ (Z → 3 γ)SM = 1.35 eV [61] and, given the experimentally deter-

mined total width of the Z-boson ΓZ
exp = 2.49 GeV [62], the expected branching ratio is

BR (Z → 3 γ)SM = 5.4 × 10−10. The currently best upper bound was obtained by the

ATLAS collaboration using pp collisions at
√
s = 8 TeV and reads [63]

BR (Z → 3 γ)exp < 2.2× 10−6 , (3.14)

representing a five-fold improvement on the previous determination from LEP [64]. This

process is clearly very rare and could not yet be measured directly. It is thus an ideal

testing ground for new physics [65, 66].

The SM prediction is compatible with the best current experimental bound, but there

is a vast gap between them. The non-linear extension can therefore be constrained by

comparing its prediction to the experimental bound, cf. Eq. (3.14). The tree-level ampli-

tude for a Z-boson with 4-momentum p decaying into three photons with 4-momenta qk

(k = 1,2,3) is

− iM = ϵα(p)V
αβγδ
Z3γ (β) ϵ∗β(q1)ϵ

∗
γ(q2)ϵ

∗
δ(q3) , (3.15)

where the vertex factor

V αβγδ
Z3γ (β) = −i

sθc
3
θ

β2
fαβγδ (3.16)

may be read from the last line of Eq. (3.13). The momentum-dependent function fαβγδ
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is given by

−fαβγδ =
[
(q1 · q2)ηβγ − qγ1q

β
2

] [
(p · q3)ηαδ − pδqα3

]
+

[
(q1 · q3)ηβδ − qδ1q

β
3

]
[(p · q2)ηαγ − pγqα2 ]

+
[
(q2 · q3)ηγδ − qδ2q

γ
3

] [
(p · q1)ηαβ − pβqα1

]
+ ϵµβργϵνδκαpκq1µq2ρq3ν

+ ϵµβρδϵνγκαpκq1µq2νq3ρ

+ ϵµγρδϵνβκαpκq1νq2µq3ρ . (3.17)

Here we have assumed that p flows into the vertex, whereas the qk flow out of it. Inciden-

tally, this momentum structure is the same for all vertices in Eq. (3.13).

From this point on, we neglect the loop-level SM amplitude so the tree-level result

from Eq. (3.15) is essentially the only contribution to the decay. The unpolarized squared

amplitude reads

⟨|M|2⟩ = 8s2θc
6
θ

3β4
Φ(p, q1, q2, q3) , (3.18)

with the momentum factor given by

Φ(p, q1, q2, q3) =
1

2
(p · q1)2 (q2 · q3)2 + perm. , (3.19)

where “perm.” indicates all permutations of the qk. In the rest frame of the decaying

Z-boson, pµ = (mZ , 0), and the outgoing photons have Ek = |qk|. By applying the usual

dispersion relations and momentum conservation, we find

p · q3 = mZE3 and q1 · q2 =
m2

Z

2
−mZE3 , (3.20)

with similar results for the other 4-momenta pairs. Therefore, we can rewrite Φ(p, q1, q2, q3)

as

Φ(p, q1, q2, q3) =
m4

Z

4

∑
k=1,2,3

E2
k(mZ − 2Ek)

2 . (3.21)

Notice that this expression is symmetric under the change of final photons, a reasonable

behavior since there is no preferred photon in this decay. As the phase space integral also

enjoys this symmetry, we can simply use one of the terms above to do the integration and

multiply the output by three, since they will necessarily give the same result. The partial

width is defined as

dΓ =
1

3!

1

2mZ

⟨|M|2⟩dΠ3 , (3.22)

where 1/3! is the the symmetry factor due to the identical photons in the final state. The
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three-body phase-space function is

dΠ3 =
d3q1

(2π)3 2E1

d3q2

(2π)3 2E2

d3q3

(2π)3 2E3

× (2π)4δ4 (p− q1 − q2 − q3) . (3.23)

We have then

dΓ = K
E3(mZ − 2E3)

2

E1E2

d3q1d
3q2d

3q3

× δ4 (p− q1 − q2 − q3) , (3.24)

where the constant K, already including the factor of three, is

K =
s2θc

6
θm

3
Z

1536π5β4
. (3.25)

The rest of the calculation follows a path similar to the textbook calculation of muon

decay [67]. The delta function may be split into two factors enforcing energy and 3-

momentum conservation. The latter allows us to write q2 → − (q1 + q3) and E2 →
|q1 + q3|. Let us take the polar axis along q3, which is held fixed, so that

E2(cos θ) = |q1 + q3|
=

√
E2

1 + E2
3 + 2E1E3 cos θ . (3.26)

We may then write d3q1 = 2πE2
1d|q1|d cos θ and we have

dΓ = 2πK
E1E3(mZ − 2E3)

2

|q1 + q3|
d3q3dE1d cos θ

× δ [g(cos θ)] , (3.27)

where g(cos θ) = mZ − E1 − E2(cos θ)− E3.

Now, the delta function cannot be directly integrated, so we need to change variables.

This redefinition leads to

δ [g(cos θ)] =
E2(cos θ)

E1E3

δ (cos θ − cos θ0) , (3.28)

where cos θ0 is such that g(cos θ0) = 0. The delta function now implies that both the

maximum energy of any individual photon and the minimum energy of any pair of photons

are mZ/2. Consequently, we have E1 and E3 limited to the ranges (mZ

2
− E3,

mZ

2
) and

(0, mZ

2
), respectively. Performing the remaining integrations and dividing by the Z-boson

28



width we find that the branching ratio is given by

BR (Z → 3 γ)Y =
s2θc

6
θ

184320π3 ΓZ
exp

m9
Z

β4

= 6.7× 10−7

(
mZ√
β

)8

. (3.29)

We are finally able to place an experimental bound on β. The branching ratio pre-

dicted by the SM is extremely small (∼ 10−10), way below current experimental sensi-

tivities. Allowing the result above to fully saturate the experimental upper limit, i.e.,

BR (Z → 3 γ)Y ≃ BR (Z → 3 γ)exp, cf. Eq. (3.14). This implies that√
β ≳ 80GeV , (3.30)

which is slightly lower than the currently best bound [25]. In Ref. [68] the authors adopted

the result of Eq. (3.30) above on the BI parameter to make estimates on the redshift and

to discuss birefringence and dichroism in connection with a class of p-extended BI-type

actions in the presence of an external uniform magnetic field.

Here we must add an important remark. The energy scale of a decay process is set by

the mass of the decaying particle, here given by mZ = 91.2 GeV. Therefore, the bound

obtained above must be taken with a grain of salt since it represents a mass scale lower

than the energy of the process, challenging the basic assumption behind our effective-

theory approach. Nonetheless, it is worth noticing that this restriction is a matter of

experimental limitation: the best bound on the Z-decay into three photons is still orders

of magnitude away from the SM prediction, so we may confidently expect that future

experiments will yield much more stringent bounds on it, therefore significantly improving

on the result above.

The lower bound in Eq. (3.30) is clearly limited by the experimental sensitivity. If

the current experimental upper bound on the branching ratio (cf. Eq. (3.14)) would be

improved by a factor of ∼ 3 – a smaller improvement than the one from ATLAS [63]

relative to LEP [64] – we would be able to exclude the region
√
β ≲ mZ . Future lepton

colliders, e.g., ILC [69, 70, 71, 72] and FCC-ee [73, 74], whose main goal is precision Higgs

physics, could operate at the Z-pole and produce a vast sample of Z-bosons: the ILC and

the FCC-ee could produce respectively 102 and 105 times more Z-bosons than LEP. It

is therefore possible, with much better statistics and improved detector capabilities, to

improve the upper limit on BR (Z → 3γ) enough to constrain
√
β at or above mZ .

In Fig. 3.1 we plot the lower bound on
√
β as a function of the future improvement

of the experimental sensitivity, BR (Z → 3 γ)exp, relative to the currently best one [63].

The situation discussed in the paragraph above is illustrated by the area shaded in red:

an improvement of at least ∼ 3 would lead to viable bounds. The unfortunately weak
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Figure 3.1: Projection for the lower bound on
√
β as a function of the improvement factor

of the experimental sensitivity relative to the currently best one, cf. Eq. (3.14) [63].
Incidentally, Eq. (3.29) reaches the order of magnitude of the SM prediction with

√
β ∼

220 GeV. The region shaded in red is such that
√
β < mZ , where our predictions are not

accurate.

dependence of the expansion parameter on the experimental sensitivity is made explicit

by the slope of the curve, meaning that only large improvements in sensitivity would lead

to noticeable improvements in the lower bound on our non-linear extension.

As a final remark we note that the discussion above relies on the fact that, so far

(and in the foreseeable future), only upper limits on the process Z → 3 γ could be placed.

The SM prediction is four orders of magnitude below the currently best upper bound,

so we may also speculate about possible limits on the expansion parameter in case the

SM expectation is eventually confirmed. In this scenario there is no tension between the

SM and experiment, so we may assume that the non-standard result is responsible for

a small correction of the SM prediction, being hidden under the (relative) experimental

uncertainty, i.e., BRY(β)/BRSM ≲ δexp. Conservatively assuming δexp ∼ 10% would allow

us to place the strong lower bound
√
β ≳ 295 GeV. For even better precisions of 1% and

0.1% we find
√
β ≳ 395 GeV and

√
β ≳ 530 GeV, respectively.

3.2.2 e− e+ → 3 γ

Hadron colliders have played a central role in the establishment of the SM as our best

theory of elementary particles and their interactions; great examples are the discoveries

of the W- and Z-bosons, as well as of the Higgs scalar. However, lepton colliders, such

as LEP, were crucial in subsequent precision measurements, helping to probe not only
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tree-level predictions, but also radiative corrections [75]. The next development is to

achieve even higher precision in measurements of electroweak parameters, in particular

those related to the Higgs and gauge bosons [76].

Lepton colliders represent optimal tools to this end and next-generation machines have

been proposed, such as ILC [69, 70, 71, 72], FCC-ee [73, 74], CEPC [77] and CLIC [78].

These are designed to study the SM in great detail, but searching for deviations from

the SM that could hint at new physics is an equally important goal. In this context,

the process e− e+ → 3 γ offers an interesting option to test modifications of the gauge

couplings, in particular those involving photons and Z-bosons. From Eq. (3.13) we see

that our non-linear extension induces precisely such anomalous couplings that could give

rise to new contributions for processes with three photons in the final state. We note that

the SM contribution is very well described by QED with negligible electroweak corrections.

The QED contribution to e− e+ → 3 γ at tree-level is given by

− iMQED = ie3v(p2)

[
γρ /p1 − /q1 − /q2

(p1 − q1 − q2)
2γ

ν

× /p1 − /q1
(p1 − q1)

2γ
µ

]
u(p1)ϵ

∗
µ(q1)ϵ

∗
ν(q2)ϵ

∗
ρ(q3) , (3.31)

which must be added to the other five amplitudes obtained from this one by permutation

of the external photons. We are considering high-energy scatterings, so the electron mass

may be safely neglected. The non-linearly induced photon- and Z-mediated amplitudes

are given by

−iMγ =
−e

(p1 + p2)
2v(p2)γµu(p1)

× V µνβρ
4γ (β) ϵ∗ν(q1)ϵ

∗
β(q2)ϵ

∗
ρ(q3) , (3.32)

−iMZ =
gZ

(p1 + p2)
2 −m2

Z + imZΓZ

× v(p2)γµ
(
cv − caγ

5
)
u(p1)

× V µνβρ
Z3γ (β) ϵ∗ν(q1)ϵ

∗
β(q2)ϵ

∗
ρ(q3) , (3.33)

where gZ = e/4sθcθ, cv = −1 + 4s2θ and ca = −1. The Z-width is ΓZ = 2.49 GeV. The

Zγγγ vertex was defined in Eq. (3.16) and the four-photon vertex is analogous:

V αβγδ
4γ (β) = i

c4θ
β2

fαβγδ . (3.34)

The function fαβγδ is given by Eq. (3.17) with the appropriate relabelling of the 4-

momenta.

The total tree-level amplitude for the process, M, is M = MQED + Mγ + MZ and
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the total unpolarized cross section is given by

dσ =
1

3!

1

2E2
cm

⟨|M|2⟩dΠ3 , (3.35)

where 1/3! is the the symmetry factor due to the identical photons in the final state and

the phase-space factor is the same as in Eq. (3.23). The squared amplitude is essentially

the sum of three contributions: a pure QED part, an interference term between QED and

the non-linear amplitudes, and a purely non-linear term.

Let us discuss first the tree-level QED results for e−e+ → γγ(γ). The experimen-

tal results from LEP included cross sections with final states of two and three photons

subjected to detector cuts in energy and scattering angle, namely, Eγ > 5 GeV and

| cos θγ| < 0.96 [79, 80], so it is important to understand the tree-level expectation from

QED to e−e+ → γγ and e−e+ → γγγ under these conditions.

We start with the simplest case, e−e+ → γγ. Since there are two identical particles

in the final state and the reaction takes place at the CM, the two photons carry the

same energy as the colliding electron. Assuming monochromatic beams with energies

O(100GeV), the outgoing photons automatically satisfy the energy cut. The tree-level

differential cross section is given by the well-known result

dσ2γ
QED

d cos θ
=

2πα2

s

(
1 + cos2 θ

1− cos2 θ

)
. (3.36)

For two identical particles, the polar angle is confined to the range 0 ≤ cos θγ ≤ 1− ccut

and, integrating Eq. (3.36) in this range, we find2

σ2γ
QED =

2πα2

s

[
log

(
2− ccut
ccut

)
+ ccut − 1

]
. (3.37)

For LEP at
√
s = 207 GeV with ccut = 0.04 we get 9.6 pb. It is worthwhile pointing out

that the divergence in the forward-backward direction leads to a significant reduction of

the total cross section even for small angular cuts.

Let us now move on to the more involved case of e−e+ → γγγ. The typical amplitude

is given in Eq. (3.31), which must be added to other five similar contributions with

permutations of the photon 4-momenta. If we define pij = pi · qj and qij = qi · qj, the
squared and spin-averaged amplitude can be written as

⟨|M3γ|2⟩ = Q
[
p11

3∑
n=0

(p1 · p2)nQn + perm.

]
(3.38)

where “perm.” indicates that we must add the expression with the photon labels reshuf-

2In order to keep track of the forward-backward enhancement in the ultra-relativistic limit it is usually
imposed that ccut = 2m2

e/s.
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fled. The pre-factor is

Q =
2e6

(p11)(p12)(p13)(p21)(p22)(p23)
(3.39)

and the terms in the sum are

Q0 = p12

[
p13p21p22 + p23

(
p11p22 + p23(p22 − q12) + p21(p22 + q23)

)]
− p11p22p23q23 ,

Q1 = p12

[
p13p21 − p21(p22 − 4p23) + p23(p23 − q23)

]
+ p22

[
p11(−p22 + p23 + q23)− p23q12 + p22q13 + p21p23

]
,

Q2 = −2p12p21 − p22(2p21 − q12 + q13 + q23) ,

Q3 = p21 . (3.40a)

The final averaged squared amplitude can be symbolically recast in the form

⟨|M3γ|2⟩ =
e6

E2
cm

C(pi, qj) , (3.41)

where we have expressed all dimensional parameters in terms of the CM energy – in this

way C(pi, qj) is effectively dimensionless. Taking into account the phase-space volume, cf.

Eq. (3.23), the integral to be solved is

IQED =

∫
C(pi, qj)

d3q1

E1

d3q2

E2

d3q3

E3

δ4 (Σpi − Σqj) , (3.42)

but an analytical treatment is cumbersome, so we resort to numerical methods, which also

facilitate the application of the detector cuts. The results of the Monte Carlo integral

are listed in table 3.1 for a few interesting values of the CM energy. The tree-level cross

section for e−e+ → γγγ is (e2 = 4πα)

σ3γ
QED =

α3

48π2s
IQED ≃ 8× 10−3 · IQED

(
200GeV√

s

)2

fb . (3.43)

Using
√
s = 207 GeV as an example, we have 0.285 pb.

Let us now discuss the interference term, ⟨|M|2QED−Y⟩. The interference amplitude

between pure QED and the non-linear contributions may be written as

⟨|MQED−Y|2⟩ = H
[

3∑
n=0

(p1 · p2)nHn + perm.

]
(3.44)

with

H =
c2θe

4

2β2p1 · p2 (p11p12p13p21p22p23)
Hnum

Hden

(3.45)

33



and

Hnum = 2c2θm
2
Z

(
Γ2
Z +m2

Z

)
−
(
4c2θ + 3

)
m2

Z(p1 · p2) + 6(p1 · p2)2 , (3.46a)

Hden = m4
Z + Γ2

Zm
2
Z − 4m2

Z(p1 · p2) + 4(p1 · p2)2 . (3.46b)

The coefficients in Eq. (3.44) are given by

H0 = 2p22

[
(p11)

2
[
(p13)

3p21p22

+ p12(p23)
2(p21q23 + p22p23)− p12p13p23

(
p12p21

+ p21(q23 − 2p23) + p22(p23 − q13)
)]

− p11p12p13p21p23(p21q23 + p22p23)

− (p12)
2(p13)

2(p21)
2p23

]
, (3.47a)

H1 = −p22

{
2p12p13(p21)

2p22q13

+ (p11)
2p23

[
2(p12)

2(p23 + q13)

+ p12

(
p13(p21 + p22)− 2p21q23

)
+ p13p21p22

]
+ p11p21

[
2(p13)

2p21p22 + p12p13

(
2(p23q12 + q13q23)

+ p21(p23 − 2q23)
)
+ 2p12p23q13q23

]}
, (3.47b)

H2 = p11p21

[
p13p22(2p11q23 + p23q12)

+ p12p23(p13q12 + 2p21q23)
]
. (3.47c)

To simplify matters, we may express all energies and 3-momenta in units of the CM

energy, Ecm, so that we can write it as

⟨|M|2QED−Y⟩ = XQED−Ye
4c2θ

E2
cm

β2
A(pi, qj) , (3.48)

with A(pi, qj) representing a function of the now dimensionless energies and 3-momenta

that the reader may obtain from Eq. (3.44). The pre-factor XQED−Y is given by (x =

m2
Z/E

2
cm and y = Γ2

Z/m
2
z)

XQED−Y =
3− (3 + 4c2θ)x+ 4c2θx

2(1 + y)

(1− x)2 + yx2
. (3.49)

From the phase-space volume we get another factor of E2
cm that cancels the one present
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in the denominator of Eq. (3.35), so that, putting all the numerical factors together, we

finally obtain

σ
(
e−e+ → 3γ

)
QED−Y

= XQED−Y
α2c2θ
384π3

s

β2
IQED−Y (3.50)

with s = E2
cm, e

2 = 4πα and

IQED−Y =

∫
A(pi, qj)

d3q1

E1

d3q2

E2

d3q3

E3

δ4 (Σpi − Σqj) . (3.51)

Note that the quantities in Eq. (3.51) are all expressed in units of
√
s = Ecm, being

therefore dimensionless.

Equation (3.51) cannot be easily evaluated analytically due to the complexity of the

integrand, so we solve it numerically via standard Monte Carlo methods. The Dirac delta

enforcing 4-momentum conservation severely constrains the phase-space volume available

to the outgoing photons. In fact, their individual energies are bound to be at most 0.5

and the sum of any pair of energies must be larger than this value, allowing us to limit

the range of the sampled 3-momentum components to the interval [−0.5, 0.5]. In what

follows we use data from e−e+ collisions at LEP resulting in two or three photons and the

cross sections quoted were obtained under the experimental conditions of the detector.

That means that we have to impose similar cuts to our theoretical cross sections if we

want to compare them to LEP data.

Particularly important are the angular and energy cuts imposed [79, 80]. Since the

forward-backward direction along the beam is inaccessible, the range in polar angles is

limited to 16◦ ≤ θγ ≤ 164◦, i.e., the detectable photons must satisfy | cos θγ| ≤ 0.96 to be

contained in the electromagnetic calorimeter. Furthermore, the individual photons must

have an energy Eγ > 5 GeV. Even though Eq. (3.51) is written in terms of dimensionless

quantities, the aforementioned lower threshold on the detectable energy of the single

photons introduces an energy dependence, as the cut is expressed as Eγ > 5/
√
s. The

values of the integral evaluated at selected energy values are quoted in table 3.1. For the

sake of concreteness, the interference cross section at
√
s = 207 GeV is

σQED−Y

(√
s = 207GeV

)
≃ 0.88

(
250GeV√

β

)4

fb . (3.52)

We now move on to the purely non-linear contribution, ⟨|M|2Y⟩, which is expected to

be sub-dominant relative to the interference term discussed above. The purely non-linear

amplitude is given by

⟨|MY|2⟩ = J
[

3∑
n=0

(p1 · p2)nJn + perm.

]
(3.53)
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where

J =
c4θe

2

2β4(p1 · p2)2
Jnum

Jden

, (3.54)

with

Jnum = 2c4θm
2
Z

(
Γ2
Z +m2

Z

)
− 6c2θm

2
Z(p1 · p2) + 5(p1 · p2)2 , (3.55a)

Jden = m4
Z + Γ2

Zm
2
Z

− 4m2
Z(p1 · p2) + 4(p1 · p2)2 . (3.55b)

The coefficients in Eq. (3.53) are given by

J0 = 3(p11)
2p22p23q23 − 6p11p12p22p23q13

+ 3p12p13(p21)
2q23 , (3.56a)

J1 = 3p11q23(p21q23 − 2p22q13)

+ (p11)
2(q23)

2 + (p21)
2(q23)

2 , (3.56b)

J2 = q12q13q23 . (3.56c)

The unpolarized squared amplitude is stated in Eq. (3.53) and, after expressing the

4-momenta in units of Ecm, we have

⟨|M|2Y⟩ = XYe
2c4θ

E6
cm

β4
B(pi, qj) , (3.57)

with B(pi, qj) represents a dimensionless function in analogy with A(pi, qj). The pre-factor

is

XY =
5− 12c2θx+ 8c4θx

2(1 + y)

(1− x)2 + yx2
. (3.58)

Equation (3.57) may be integrated analytically3, but here we adopted the same Monte

Carlo set-up employed in the calculation of the interference term. The cross section is

then given by

σ
(
e−e+ → 3γ

)
Y
= XY

αc4θ
6144π4

s3

β4
IY , (3.59)

where IY is defined analogously to IQED−Y, cf. Eq. (3.51). Specializing to
√
s = 207 GeV

and using the numerical value of the integral including detector cuts from table 3.1, we

have

σY

(√
s = 207GeV

)
≃ 0.01

(
250GeV√

β

)8

fb . (3.60)

In the discussion above we have obtained the total cross sections involving the novel

3The result without detector cuts is: σY = XY
αc4θ

368640π2
s3

β4 .
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√
s [GeV] 91.2 207 250 350
IQED 27006 37976 41796 45854

IQED−Y 19.45 20.02 20.13 20.24
IY 0.138 0.139 0.139 0.139

Table 3.1: Values of the numerical integrals appearing in Eqs. (3.50), (3.59) and (3.42).
The first two energy values are relevant in the context of existing LEP data [79, 80],
whereas the last two are important for future e−e+ colliders, such as the ILC [69, 70, 71,
72, 82]. The following cuts were applied: Eγ > 5 GeV and | cos θγ| < 0.96 [79, 80].

neutral vertices originating in Eq. (3.13). The fact that only quartic vertices are produced

implies that e− e+ → 2 γ does not receive corrections, at least at tree-level, but e− e+ →
3 γ does. From dimensional analysis alone we expect the number of events with two

photons to be roughly two orders of magnitude times larger than with three photons, thus

making dedicated searches for three-photon events harder. Therefore, more commonly,

experiments look for multi-photon processes and the best available data to our knowledge

were collected at LEP where the CM energy of the e− e+ pair was scanned passing by the

Z-pole and reaching more than 200 GeV.

The L3 collaboration analyzed LEP data of events resulting in multiphoton final

states [79, 80]. Since electroweak corrections are heavily suppressed, these measurements

provide a clean test of QED, whose predictions were successfully confirmed. The calcula-

tions of the QED expectation were performed following ref. [81], where contributions up

to O(α3) are considered, i.e., the tree-level cross sections for two and three final photons

plus radiative corrections. Here, however, we are working with an effective theory and we

limit our analysis to tree-level and we refrain from employing their results.

The tree-level cross section for e− e+ → 2 γ is well known, cf. Eq. (3.37). No closed

form for the tree-level cross section for e− e+ → 3 γ in the CM could be found, so we

calculated the squared amplitude analytically and performed the phase-space integration

numerically including the appropriate detector cuts; cf. eq (3.43). Let us consider concrete

data to try to constrain
√
β. Since we are dealing with an effective theory whose effects

grow with energy, we will ignore data at the Z-pole [79] and focus on the more promising

high-energy results [80].

The L3 collaboration analyzed e− e+ → γγ(γ) data in detail and indicates cross-

section measurements for final states with two and three photons. The highest energy bin

is 207 GeV (cf. table 3 of ref. [80]) and they quote the expected O(α3) cross section as

9.9 pb, whereas our tree-level result is 9.2 pb. Given that the difference includes radiative

contributions deliberately unaccounted for here and possible effects from further selection

criteria, we are confident that our calculation delivers a meaningful result for the QED

prediction at tree-level.

Now, given that QED accurately describes the experimental data, we are only able to

find lower bounds on
√
β. In fact, we may constrain it by demanding that the effects of
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the non-linear extension hide under the relative experimental uncertainty

σQED−Y + σY

σQED

≲ δexp , (3.61)

with σQED being the tree-level expectation from QED. The cross sections for final states

with two and three photons are respectively σ2γ
QED, Eq. (3.37), and σ3γ

QED, eq (3.43). For

the sake of concreteness, we focus on the highest energy bin quoted in table 3 from

ref. [80],
√
s = 207 GeV, for which the relative uncertainty of the measured cross section

is δexp = 0.34/10.16 ≃ 0.034. Plugging this and σ2γ
QED+σ3γ

QED = 9.2 pb into Eq. (3.61), we

obtain
√
β ≳ 73 GeV.

The absolute number of e− e+ → 3 γ events is also reported in ref. [80] for different

energies, albeit without the respective experimental uncertainties. Focusing again on
√
s = 207 GeV, the expected tree-level cross section for pure QED is 0.29 pb. At this

energy, 29 three-photon events were observed, so we may conservatively assume that

the uncertainty is ∼
√
29 ≃ 5.4 events. Taking into account the effective integrated

luminosity, 87.8 pb−1, this is equivalent to 0.06 pb, so that the relative uncertainty is

δexp = 0.06/0.29 ≃ 0.21. With σQED = σ3γ
QED = 0.29 pb, Eq. (3.61) gives

√
β ≳ 97 GeV.

The bounds found above suffer from the same limitation as the one from the analysis

of Z-decay:
√
β <

√
s. This is, however, not surprising, since the experimental uncer-

tainties are orders of magnitude larger than the typical values expected from Eqs. (3.52)

and (3.60). We are thus confronted with the fact that the currently available data on

e− e+ → γγ(γ) do not yield viable bounds on
√
β.

Despite being experimentally more challenging, measuring e− e+ → 3 γ has the largest

potential, as only the process directly affected by the non-linear effects is examined. We

conclude, therefore, that a sensible lower limit on
√
β could be placed if future e− e+

colliders would include measuring this process in their research programs. Let us take

the ILC as an example, which targets a total integrated luminosity of 14 ab−1 over its

full operation time [82]. For the sake of clarity, let us focus on the initial stage with
√
s = 250 GeV, where an integrated luminosity of ∼ 500 fb−1 is planned to be attained

in the first five years. Assuming similar detector cuts as at LEP and a (pessimistic) 1%

effective luminosity4, ∼ 5 fb−1, pure QED predicts 1073 three-photon events, whereas the

non-linear terms would contribute with extra 3 events for
√
β = 300 GeV, i.e., the level

of precision required would be 3/1073 ∼ 0.3%. A similar precision would be required at
√
s = 350 GeV with

√
β = 400 GeV.

4For comparison, the analysis of e− e+ → γγ(γ) at LEP in the energy range 192 – 209 GeV contained
0.43 fb−1 of data, roughly ten times less.
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3.2.3 Pure gauge-boson scatterings

The electroweak sector of the SM is based on the non-Abelian gauge group SU(2)L ×
U(1)Y. This is manifest in the form of the covariant derivative, cf. Eq. (3.4), and the

non-linear transformation properties of the gauge bosons. Particularly relevant is the

presence of triple and quartic self-interaction couplings in the gauge sector. As a matter

of fact, in a pure Yang-Mills theory, the quartic coupling is related to the triple one, even

at the quantum level, as a consequence of gauge symmetry – this is a trade-mark feature

of a non-Abelian gauge theory. Given that the structure of the gauge self-couplings in

the electroweak sector is completely specified by construction, any deviations from this

would suggest the presence of new physics.

Measurements of the gauge self-couplings are therefore especially interesting from both

theoretical and experimental points of view. Particularly important are high-energy scat-

tering processes involving the Z-boson and the photon, which could give a clear signal

indicating SM extensions modifying the hypercharge sector like the one proposed here.

With this in mind, we consider some of the possible scattering processes proceeding via the

quartic couplings from Eq. (3.13) already at tree-level, instead of loop-level as predicted

by the SM.

As mentioned in Sec. 3.2.2, e−e+ colliders offer clean conditions for precision tests

of the SM. More interestingly, there are currently proposals of machines that can be

adapted to work as linear photon colliders. Important sources of photons at a linear

lepton collider include bremsstrahlung [83] and Compton laser back-scattering [84] (there

is also beamstrahlung [85]). At LEP or LHC bremsstrahlung is the dominating form of

radiation production, whereas at TESLA [86], ILC [69, 87] or CLIC [78, 88, 89], Compton

back-scattering of electrons in intense lasers would be used to produce γγ or eγ collisions.

In this scenario, the photons created may carry a substantial amount of the electron

energy [90].

Given that future linear e−e+ machines envision in their prospects the possibility of

an extension to include photon colliders at relatively low cost, let us focus on γγ collisions

producing exclusively vector bosons Vi = γ, Z, W±. In this context, measuring e.g. the

process γγ → W+W− in a photon collider is an attractive option due to its large (∼80 pb)

cross section [91, 92]. The non-linear realization of the hypercharge sector proposed in

this work, however, does not affect charged gauge bosons, so we shall focus on γγ fusion

leading to neutral gauge bosons as final products: γ γ → γ Z, γ γ → Z Z and γ γ → γ γ.

It is noteworthy that, within the SM framework, these processes receive only loop-level

contributions, but here they will be induced at tree-level by the effective operators present

in Eq. (3.13).

For the sake of concreteness, in the following we compute the non-linear contribution
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to the unpolarized cross section of the process γ γ → γ Z at tree-level. Though we consider

this particular process in more detail, all others may be analysed by similar means. From

Eq. (3.13) we see that the relevant vertex factor is V αβγδ
Z3γ , cf. Eqs. (3.16) and (3.17), but

with the substitutions: p → p1, q1 → −p2, q2 → q1 and q3 → q2 appropriate for a 2-to-2

scattering.

The tree-level amplitude for this process is then

− iM = ϵα(p1)ϵβ(p2)V
αβγδ
Z3γ (β) ϵ∗γ(q1)ϵ

∗
δ(q2) (3.62)

Here we are assuming that the unpolarized photons are on-shell and monochromatic5.

After summing and averaging over polarizations, the unpolarized squared amplitude be-

comes

⟨|M|2⟩ = c6θs
2
θ

8β4

[
m4

Z

(
s2 + t2 + u2

)
−2m2

Z

(
s3 + t3 + u3

)
+ s4 + t4 + u4

]
, (3.63)

where the Mandelstam variables, expressed in terms of the CM energy Ecm of the incoming

photons and the scattering angle θ, are

s = E2
cm , (3.64a)

t = −1

2
(E2

cm −m2
Z)(1− cosθ) , (3.64b)

u = −1

2
(E2

cm −m2
Z)(1 + cosθ) . (3.64c)

Setting x = m2
Z/s, the unpolarized differential cross section for the scattering γγ → γZ

reads

dσ

dΩ
=

c6θs
2
θ

4096π2

s3

β4
(1− x)3

[(
6− 2x2

)
cos2 θ

+(1− x)2 cos4 θ + 9 + 2x+ x2
]
, (3.65)

which can be integrated to yield

σ (γγ → γZ)Y =
s2θc

6
θ

1920π

(
s3

β4

)
(1− x)3

×
(
21 + 3x+ x2

)
. (3.66)

This result is shown in blue in Fig. 3.2 for
√
β = 250 GeV. If the non-linear hypercharge

sector is indeed realized in Nature, the expression above would provide the only tree-level

5This is a simplified scenario and a more detailed analysis would follow the strategy from ref. [25], for
example.
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Figure 3.2: Unpolarized total cross sections for selected processes (no angular cuts applied;
evaluated in the CM), cf. table 3.2. Here we set

√
β = 250 GeV for definiteness, but the

scaling for other values can be easily performed via Eq. (3.73).

contribution to the cross section, since this process cannot take place in the SM at this

order. In fact, the first SM contribution is generated via fermion and W-boson loops

with a cross section of ∼ 3× 10−4 fb shortly above threshold and peaking at ∼ 110 fb at

∼ 750 GeV [93].

Another process of interest in a photon collider is γ γ → Z Z which, similar to γ γ →
W+W−, may be used to study the gauge structure of the SM as well as Higgs physics.

As already mentioned, this process has no tree-level contribution in the SM – the first

non-trival amplitude arises through fermion and W-boson loops with a cross section of

∼ 20 fb immediately after threshold and roughly saturating at ∼ 300 fb for CM energies

≳ 800 GeV [86, 94, 95]. In our non-linear extension the first non-zero contribution is at

tree-level and the calculation of the (differential) cross section follows a similar rationale

as the one leading to Eq. (3.66). The result is listed in table 3.2 and shown in black in

Fig. 3.2.

Finally, let us briefly comment on γ γ → γ γ, light-by-light (LbL) scattering. In

Maxwell’s linear electromagnetism this process is forbidden, but in the 1930’s Heisenberg

and Halpern [31, 32] realized that quantum effects could induce it. In the 1950’s a full

calculation was presented [96] and the cross section was found to be ∼ 10−34 pb for visible

light [97, 98]. Only recently it was proposed that this elusive process could be observed

at the LHC in Pb-Pb collisions [99] – in fact, strong evidence for it has been reported by

the ATLAS [49] and CMS collaborations [50], being further confirmed by ATLAS [51].

The results are compatible with the SM prediction. As with the other photon-fusion

processes previously discussed, LbL scattering takes place only at loop-level in the SM.
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Process N κ(x) F (x)
γ γ → γ γ 7c8θ/1280π 1 1

γ γ → γ Z s2θc
6
θ/1920π (1− x)3 21 + 3x+ x2

γ γ → Z Z s4θc
4
θ/1280π

√
1− 4x 7− 26x+ 27x2

γ Z → γ γ s2θc
6
θ/5760π (1− x) 21 + 3x+ x2

γ Z → γ Z s4θc
4
θ/2880π (1− x)4 21 + 6x+ 16x2 + 6x3 + 6x4

γ Z → Z Z s6θc
2
θ/5760π (1− x)

√
1− 4x 21− 75x+ 98x2 − 20x3 + 6x4

Table 3.2: Total cross sections for processes involving only quartic couplings of neutral
gauge bosons, cf. Eq. (3.73) with x = m2

Z/s. These results are shown in Fig. 3.2 for√
β = 250 GeV.

Our non-linear extension, on the other hand, allows for it to proceed already at tree-level

and with a potentially large cross section, cf. Fig. 3.2.

The quartic vertices in Eq. (3.13) allow for a few more tree-level scattering processes

involving exclusively neutral gauge bosons than we have explicitly mentioned above. For

the sake of completeness, the unpolarized differential cross-sections for the scattering of

neutral gauge bosons in the non-linear extension considered in this work are given below,

considering βZ ≡
√

1− 4m2
Z/E

2
cm:

� γγ → γγ

dσ

dΩ
=

E6
cmc

8
θ (3 + cos2 θ)

2

4096π2β4
. (3.67)

� γγ → γZ

dσ

dΩ
=

c6θs
2
θ (E

2
cm −m2

Z)
3

4096π2β4E4
cm

[(
6E4

cm − 2m4
Z

)
cos2 θ

+9E4
cm +

(
E2

cm −m2
Z

)2
cos4 θ + 2E2

cmm
2
Z +m4

Z

]
. (3.68)

� γγ → ZZ

dσ

dΩ
=

c4θs
4
θE

2
cmβZ

4096π2β4

[
9E4

cm + E4
cmβ

4
Z cos4 θ

+ 6E4
cmβ

2
Z cos2 θ − 32E2

cmm
2
Z + 40m4

Z

]
. (3.69)

� γZ → γγ

dσ

dΩ
=

c6θs
2
θ (E

2
cm −m2

Z)

6144π2β4

[(
6E4

cm − 2m4
Z

)
cos2 θ

+9E4
cm +

(
E2

cm −m2
Z

)2
cos4 θ + 2E2

cmm
2
Z +m4

Z

]
. (3.70)
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� γZ → γZ

dσ

dΩ
=

c4θs
4
θ (E

2
cm −m2

Z)
4

49152π2β4E10
cm

[
99E8

cm + 20E6
cmm

2
Z

+ 74E4
cmm

4
Z + 20E2

cmm
6
Z +

(
E2

cm −m2
Z

)4
cos 4θ

− 8m4
Z

(
E2

cm −m2
Z

)2
cos 3θ

− 8m4
Z

(
11E4

cm + 2E2
cmm

2
Z + 7m4

Z
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cos θ

+ 4
(
7E8

cm − 4E6
cmm

2
Z + 4E4

cmm
4
Z

− 4E2
cmm

6
Z + 7m8

Z

)
cos 2θ + 35m8

Z

]
. (3.71)

� γZ → ZZ

dσ

dΩ
=

c2θs
6
θβZ (E2

cm −m2
Z)

6144π2β4E4
cm

[
9E8

cm − 30E6
cmm

2
Z

+45E4
cmm

4
Z +

(
E4

cm − 5E2
cmm

2
Z + 4m4

Z

)2
cos4 θ

+2E4
cmβ

2
Z

(
3E4

cm +m4
Z

)
cos2 θ

]
. (3.72)

The respective total cross sections, without any angular cuts, can be written in a

systematic way as

σ = N

(
s3

β4

)
κ(x)F (x), (3.73)

with x = m2
Z/s. Here N is a numerical factor, κ(x) is a kinematic and phase-space factor,

and further energy-dependent contributions are contained in F (x). These results are

summarized in table 3.2 and shown in Fig. 3.2 for a reference value of
√
β = 250 GeV. The

basic features are immediately salient: besides LbL scattering, all cross sections sharply

rise after the respective thresholds and grow with increasing CM energy, as expected from

the effective character of our hypercharge extension.

It is important at this point to contextualize our findings with recent results on anoma-

lous quartic gauge couplings (aQGC). In fact, it is interesting to discuss experimental

bounds and projected sensitivities on aQGC, as these may be translated into constraints

on the parameter β from different, but complementary perspectives, ranging from past

LHC runs to future lepton colliders. Particularly relevant is the discussion of recent results

related to the anomalous vertices γγγZ and γγγγ.

Anomalous quartic gauge couplings can be investigated with high precision at the LHC

through pp → pXp processes, where X can be for instance γγ or γZ. In particular, it is

interesting to focus on photon-induced processes in pp collisions since these processes are

very sensitive to aQGC and therefore new physics beyond the SM (e.g., extended Higgs

sectors or extra-dimensions).
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For instance, the γγγZ interaction appears in the SM through fermion and W-boson

loops. This anomalous vertex induces the rare decay Z → γγγ, contributes to e+e− →
γγγ and allows also for the γγ → γZ scattering. New physics appearing at a mass scale Λ,

much heavier than the experimentally accessible energies E, can have its effects described

via a low-energy effective field theory. The anomalous γγγZ interaction could then be

parametrized by dimension-8 operators such as

L(1)
Z3γ = ζ F µνFµνF

ρσZρσ + ζ̃ F µνF̃µνF
ρσZ̃ρσ . (3.74)

This is an effective description and we recover our model by making ζ = ζ̃ = − 1
8β2 sθc

3
θ.

Baldenegro et al. studied in great detail the γZ production with intact protons in

the forward region at the LHC using proton tagging [100]. In this way, a sensitivity

of ζ < 2 × 10−13GeV−4 could be established for the anomalous quartic gauge coupling

γγγZ at an integrated luminosity of 300 fb−1. This improves the result obtained through

the Z → γγγ measurement by about three orders of magnitude. This improvement in

the anomalous coupling sensitivity would, in turn, translate into an improvement on the

sensitivity of
√
β, putting it at the order of a few hundred GeV.

Very recently, Inan and Kisselev studied very carefully the γγ → γZ scattering of

photons produced by Compton backscattering at the CLIC and estimated the sensitivity

to the anomalous quartic coupling γγγZ [101]. They used the following parametrization:

L(2)
Z3γ = g1 F

ρµFαν∂ρFµνZα + g2 F
ρµF ν

µ∂ρFανZ
α. (3.75)

We can relate these coefficients with the previous ones through g1 = 8(ζ̃−ζ) and g2 = 8ζ̃.

The authors considered both polarized and unpolarized e+e− colisions at 1.5 and 3 TeV,

obtaining exclusion limits on the aQGCs and comparing their results with the previous

bounds obtained from γZ production at the LHC. The best bounds found by the authors

for the couplings g1,2 were approximately 4.4 × 10−14GeV−4 and 5.1 × 10−15GeV−4 for

the e+e− energies 1.5 and 3 TeV, respectively. They conclude that the sensitivities on

the anomalous couplings obtained at CLIC are roughly one to two orders of magnitude

stronger than the limits that can be obtained at the LHC. Such an improvement would

be enough to put the sensitivity on our non-linear parameter
√
β at the TeV scale.

Let us now move on to the anomalous coupling γγγγ. We can describe the non-linear

effects on LbL scattering by means of the following effective Lagrangian:

L(1)
4γ = ζ1FµνF

µνFρσF
ρσ + ζ2FµνF

νρFρσF
σµ . (3.76)

This can be related to our description if we write it in a different, but equivalent basis
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given by:

L(2)
4γ = ξFµνF

µνFρσF
ρσ + ξ̃FµνF̃

µνFρσF̃
ρσ , (3.77)

where the relation between the above parameters is given by ξ = ζ1 +
1
2
ζ2 and ξ̃ = 1

4
ζ2.

We can recover our model if we take the particular combination ξ = ξ̃ =
c4θ
32

1
β2 .

Fichet et al. analyzed the sensitivities to the anomalous coupling γγγγ at the LHC

through diphoton production with intact outgoing protons [102, 103]. The reported limits

at 14TeV with an integrated luminosity of L = 300 fb−1 on |ζ1| and |ζ2| were 1.5 ×
10−14GeV−4 and 3.0 × 10−14GeV−4, respectively. For the High-Luminosity LHC (HL-

LHC) the sensitivities obtained were a factor of two stronger. These results are strong

and can put the sensitivity on our
√
β at the TeV scale.

Very recently, Inan and Kisselev examined the anomalous couplings γγγγ in the po-

larized LbL scattering at CLIC [104]. Their results at 1.5TeV were comparable with the

bound obtained at HL-LHC stated above, but their results for 3TeV were approximately

one order of magnitude stronger, improving further the sensitivity on
√
β, but still keeping

it at the TeV scale. A similar result could be found considering the best sensitivities on

the anomalous couplings obtained through γγ → ZZ in ref. [105] and also through Zγγ

production in ref. [106], both considering e+e− collisions at 3 TeV at CLIC.

Finally, let us conclude this Chapter by reporting the latest experimental results on the

anomalous couplings of interest here. A more general effective description including the

nine independent dimension-8 operators respecting the SU(2)L ×U(1)Y gauge symmetry

as well as charge conjugation and parity invariance can be found in ref. [107]. This effective

description includes in particular

L ⊃ FT,8BµνB
µνBρσB

ρσ + FT,9BµνB
νρBρσB

σµ . (3.78)

To the best of our knowledge, the strongest experimental bounds on these anomalous

couplings are given by the very recent CMS results reported in refs. [108, 109, 110, 111],

considering different measurements in proton-proton collisions at
√
s = 13TeV performed

at the LHC. In particular, the strongest bounds on the anomalous couplings FT,8 and

FT,9 are reported in ref. [111] and give |FT,8| < 4.7 × 10−13GeV−4 and |FT,9| < 9.1 ×
10−13GeV−4. These coefficients are translated into our model by taking FT,8 + FT,9/2 =

1/32β2 and FT,9/4 = 1/32β2. Therefore, these experimental results put the bound on
√
β

at the order of a few hundred GeV.

In the very recent Ref. [112], the authors search for exclusive two-photon production

via photon exchange in proton-proton collisions, pp → pγγp, with intact protons using

the CMS and TOTEM detectors at a center-of-mass energy of 13 TeV at the LHC. They

report the following bounds on the anomalous four-photon coupling parameters: |ζ1| <
2.88 × 10−13GeV−4 and |ζ2| < 6.02 × 10−13GeV−4. This would give us a limit on

√
β
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around the same order of magnitude as the result reported above.

The most recent and strong contribution to the subject (to our knowledge) was recently

given by Ellis et al. [113], constraining the non-linear scale of a BI extension of the SM

to be ≳ 5TeV considering gg → γγ at the LHC. The authors estimate the sensitivities at

possible future pp colliders with
√
s = 100TeV to be around ≳ 20TeV.

Therefore, we conclude that the LHC results can give very strong constraints on aQGC.

These can be translated as bounds on
√
β typically at the order of a few hundred GeV

up to the TeV scale. Nevertheless, future colliders are expected to be able to supersede

these constraints, consequently improving the sensitivity on
√
β.
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Chapter 4

Concluding remarks

The Electroweak Theory is extremely successful, but there still remains an important

unanswered question of topological nature. In fact, even if it has never been observed, it

can be shown that it admits EW monopole solutions, with classical infinite energy, render-

ing, therefore, impossible to predict its mass. We are presenting here a regularization for

the EW monopole energy obtained by extending the hypercharge sector to a non-linear

version based on Logarithmic and Exponential versions of Electrodynamics. Further-

more, we identified the constraints that a more general non-linear extension should obey

to yield finite energy solutions. We have also worked out an estimate of the monopole

mass in each non-linear scenario here contemplated; the results are compared with the

result already known for the BI extension. We conclude that, in the cases we investigate,

our monopole solutions are lighter than the known BI solutions, but, unfortunately, our

masses remain still out of reach for the current colliders. We estimate the lower bound for

the monopole energy in our approach and conclude that it is possible to suitably modify

our solution to have an energy accessible at LHC. Finally, we investigated the simpler

case of a non-linear Dirac monopole in pure Electromagnetism, estimating its mass in

different non-linear scenarios and concluding that although this is a simplified scenario,

these energies are achievable at LHC.

Motivated by these recent results in the physics of electroweak monopoles, we in-

vestigated the consequences of a non-linear extension in the weak hypercharge sector in

high-energy processes. The first and most promising one, Z-decay, is a rare process occur-

ring only at loop-level in the SM, but induced at tree-level by non-linear effects. We are

confident that the experimental upper limit on the branching ratio will be significantly

improved in the near future, thus enabling us to set more stringent bounds on
√
β, read-

ily excluding the range
√
β ≲ mZ , cf. Fig. 3.1. We remark that, in a scenario where

experiment reaches the level of the SM prediction, lower bounds ∼ 300 GeV could be

set. The second process analyzed was electron-positron annihilation into three photons,

also a relatively rare process. It is well described by QED and the non-linear extension

provides small corrections also at tree-level. The non-linear effects are much smaller than
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the available precision and it was not possible to obtain viable bounds with the current

experimental data, but we project that the necessary improvements may be within the

reach of the next-generation lepton colliders. Finally, we have also analyzed selected scat-

tering processes involving exclusively neutral gauge bosons. The unpolarized tree-level

cross sections may reach a few hundred fb at
√
s = 200 GeV for

√
β = 250 GeV, cf.

Fig. 3.2. These processes are good candidates to detect possible signatures from the non-

linear extension in future experiments, given that they occur only at loop-level in the SM,

but are induced at tree-level via Eq. (3.13). In this respect, we also reported recent results

giving constraints on anomalous quartic gauge couplings obtained at the LHC considering

neutral gauge-boson scatterings. We used them to estimate the corresponding limits on√
β and found that typically they give us bounds of a few hundred GeV. Furthermore,

we analyzed the projections for these anomalous couplings in future lepton colliders and

found that they improve the sensitivity on
√
β, putting it at the TeV scale.

To conclude this Part, we remark that a more general implementation of the non-linear

extension of the electroweak sector is possible. Here we have considered the U(1)Y sector,

but an analogous modification may be performed in the SU(2)L sector. In this case, a

new electroweak monopole could be found. Moreover, the already analyzed neutral sector

would receive small modifications, and interesting non-linear effects would also be induced

in the charged sector of the SM. This topic will be the subject of a future work.
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Part II

Abelian vortices in parity-invariant

Maxwell-Chern-Simons models
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Chapter 5

Introduction

Vortices are ubiquitous in nature, appearing from the rotating water in a sink to

the winds surrounding a tornado. Such configurations can also be found throughout the

physics literature, as illustrated in Refs. [114, 115, 116, 117, 118, 119, 120]. In field theory,

vortices are defined as solitons and can appear whenever we have a continuous symmetry

that is spontaneously broken and a vacuum manifold with a circular structure, as for

example, in a (2+1)-dimensional abelian gauge theory in the Higgs phase [121].

In this sense, the first appearance of vortices in the literature was in the context of

superconductivity, through the work of Abrikosov in 1957 [122]. In 1973, Nielsen and Ole-

sen showed [123] that the Abelian-Higgs (AH) model in 2+1 dimensions (the relativistic

generalization of the Ginzburg-Landau model) admits finite-energy vortex solutions with

a quantized magnetic flux. An exact vortex solution was found by de Vega and Schaposnik

in 1976 [124], considering the particular relation between the couplings for which scalar

and vector bosons have the same mass. The Abrikosov-Nielsen-Olesen (ANO) vortex de-

scribed above is electrically neutral and, in fact, it was shown later by Julia and Zee in

1975 [6] that charged vortices with finite-energy cannot exist in the AH model.

A very interesting and subtle class of 2+1 topologically massive gauge theories was

introduced in 1982 by Deser, Jackiw, and Templeton [125, 126], called nowadays Chern-

Simons (CS) theories, after the pioneering work [127] (see also Refs. [128, 129, 130, 131]).

The CS term is exclusive of odd-dimensions, typically P- and T - odd, and topological in

nature. In 2+1 dimensions, it gives a gauge-invariant mass to the gauge field, providing a

mass gap that cures the infrared divergences of these theories, changing drastically their

physical content and leading to a quantization of the ratio between the CS parameter

and the gauge coupling. Over the years, CS theories have found applications all around

physics, but the most famous breakthrough came with the work of Witten [132], about

the relationship between CS theories and the Jones polynomial. For an introduction to

CS physics, see Ref. [133]; for a review of vortices in this context, see Ref. [134].

It is well-known that a CS term has the property of flux attachment when coupled

to matter fields, that is, it relates the electric charge with the magnetic flux. In 1986, it
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was shown that finite-energy charged vortices solutions exist in Abelian [135] and non-

abelian [136, 137, 138] Higgs models in the presence of a CS term (see also Ref. [139]); the

existence of quantum charged vortices has been shown in Ref. [140]. Interestingly enough,

charged vortices can play an important role in condensed matter, for example, in the

fractional quantum Hall effect [141], high-Tc superconductors [142], and superfluids [143].

In the pure CS limit, when the Maxwell kinetic term is absent, peculiar charged

vortices were shown to exist [144], with magnetic field vanishing at the origin, instead of

taking a finite value as usual. An interesting work studying vortices in a Maxwell-Chern-

Simons-Higgs model, interpolating between AH model and pure CS-Higgs case was done

in Ref. [145]. Upon choosing a suitable potential, it was shown in Refs. [146, 147] that it is

possible to obtain a Bogomol’nyi-type [148] energy lower bound with first order equations

that describe self-dual topological charged vortices in the Higgs phase of the Chern-

Simons-Higgs model. We remark that there are non-topological solitons with non-zero

flux in the symmetric vacuum [149]. Since Supersymmetry and self-duality are intimately

related [150, 151, 152, 153], a N = 2 supersymmetric extension is possible [154] (see

also [155, 156, 157]). In Ref. [158] the authors studied topological and non-topological

vortices in self-dual models with both Maxwell and Chern-Simons terms; for more details

on self-dual CS theories, one can see Ref. [159]. This kind of soliton solutions can also be

found in non-relativistic theories (see, for instance, Refs. [160, 161, 162, 163]).

It is usually said that the presence of a CS term necessarily causes the violation of

P and T symmetries. Although usually correct, this is not always true. In fact, it was

already pointed out in [125, 126] and later shown by Hagen [164](see also Ref. [165]),

that a gauge and parity-invariant CS theory can be constructed by essentially doubling

the gauge degrees of freedom and adopting their respective CS terms with opposite signs.

A different approach was proposed by Del Cima and Miranda [166] a few years ago in

the context of graphene physics (see also Ref. [167]). The authors introduced a parity-

preserving U(1) × U(1) massive quantum electrodynamics (QED) with two gauge fields

having different behaviors under parity, and a CS term mixing them, a distinctive feature

of the model. Its massless version was studied in Ref. [168], and it was shown that it

exhibits quantum parity conservation at all orders in perturbation theory [169]. Recently,

it was shown in Ref. [170], that the massive version is ultraviolet finite, that is, exhibits

vanishing β-functions associated to the gauge coupling constants and CS parameter, and

also vanishing anomalous dimensions. Furthermore, it was shown that the model is parity

and gauge anomaly free at all orders in perturbation theory.

Vortices in this context have already been discussed in the literature. In Ref. [171],

the authors studied vortices in a U(1) × U(1) CS model coupled with scalar matter ex-

hibiting fractional and mutual statistics. Following this work, the low energy dynamics

of vortices was investigated in [172] (see also [173]), hybrid anyons in [174], and vor-

tices in a CS theory coupled with fermions in [175]. These works had as a background
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experiments sugesting parity-invariance in high-Tc superconductors [176, 177, 178], and

the subsequent theoretical models agreeing with them [179, 180, 181, 182]. Finally, this

subject is also investigated in the mathematical physics literature [183, 184, 185], and

interestingly enough, similar models with a mixed CS term find many applications in

condensed matter [186, 187, 188, 189, 190, 191, 192, 193, 194, 195].

In the last few years, there have been several contributions to the literature of vor-

tices, and here we briefly mention some of them. In Ref. [196], the authors reported a

new topological vortex solution in a U(1)×U(1) Maxwell-Chern-Simons theory. Consid-

ering the situation in which one of the U(1)’s was spontaneously broken, they obtained

a long-range force, protected at the quantum level by the Coleman-Hill theorem [197].

Another interesting development was achieved in Refs. [198, 199], where the authors

used a systematic expansion in inverse powers of n to study giant vortices with large

topological charge, observed experimentally in condensed matter systems [200, 201, 202].

In Ref. [203], the authors considered a U(1) × U(1), N = 2 supersymmetric model in

2 + 1 dimensions, investigating magnetic vortex formation and discussing applications

of it. For some recent developments on vortex solutions within the gravitational con-

text, see for instance Refs. [204, 205]. Other interesting recent works can be found in

Refs. [206, 207, 208, 209, 210, 211]. Here, we propose a parity-invariant Maxwell-Chern-

Simons U(1)×U(1) scalar QED in 2+1 dimensions, in analogy with the fermionic matter

case studied in Ref. [166], and investigate the existence of topological vortices in the

Higgs phase of this model. Therefore, it comes as one more step towards the description

of physical phenomena where charged vortices or anyonic matter may play an important

role while preserving P and T .

Part II is organized in 4 Chapters, being the first one given by this Introduction.

Chapter 6 is organized as follows: in Sec. 6.1, we present the model and build the the-

oretical setup; in Sec. 6.2 we discuss general properties of the topological configurations

considered here; we present explicit vortex solutions in Sec. 6.3 and discuss its main fea-

tures; finally, the analysis of limiting cases is done in Sec. 6.4. Chapter 7 is organized

as follows: in Sec. 7.1 we build the main theoretical setup; in Sec. 7.2, we present the

self-duality equations and discuss the boundary conditions; we exhibit and discuss explicit

numerical solutions in Sec. 7.3. Finally, in Chapter 8, we state our concluding remarks

for the second part of this thesis.
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Chapter 6

Vortices in a parity-invariant

scenario

In this Chapter, we introduce the parity-invariant Maxwell-Chern-Simons U(1)×U(1)

model coupled with charged scalar matter in 2+1 dimensions. We describe the main

features of this model, and show that it admits finite-energy topological vortices in its

Higgs phase. We exhibit explicit numerical solutions, discuss their main properties, and

analyze different interesting regimes that can be found in some special limits. Here we

adopt ϵ012 = −1 and ϵij ≡ ϵ0ij, with Latin indices referring to spatial components.1

6.1 Theoretical setup

Let us introduce the parity-invariant Maxwell-Chern-Simons U(1)A × U(1)a scalar

QED in 2+1 dimensions with Lagrangian given by

L =− 1

4
FµνF

µν − 1

4
fµνf

µν + µϵµνρAµ∂νaρ

+ |Dµϕ+|2 + |Dµϕ−|2 − V (|ϕ+|, |ϕ−|) , (6.1)

where the covariant derivative with respect to the gauge group U(1)A × U(1)a acting on

the complex scalar fields ϕ+ and ϕ− is given by

Dµϕ± = ∂µϕ± + ieAµϕ± ± igaµϕ±. (6.2)

In the above expression, e and g are the gauge couplings associated with the gauge groups

U(1)A and U(1)a, respectively, and µ > 0 is the CS parameter. The field strength tensors

1This Chapter is based on arXiv: 2205.10427 [hep-th].
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are given by

Fµν = ∂µAν − ∂νAµ,

fµν = ∂µaν − ∂νaµ. (6.3)

Notice that the scalar fields have the same charge under U(1)A but opposite charges under

U(1)a. The mass dimensions here are: [e2] = [g2] = [µ] = 1 and [Aµ] = [aµ] = [ϕ±] = 1/2.

In this model, in analogy with the fermionic version studied in Ref. [166], the gauge field

aµ is a pseudo-vector under parity.

The Lagrangian presented here is by construction invariant under U(1)A×U(1)a gauge

transformations:

ϕ′
±(x) = ei(ρ(x)±ξ(x))ϕ±(x),

A′
µ(x) = Aµ(x)−

1

e
∂µρ(x),

a′µ(x) = aµ(x)−
1

g
∂µξ(x). (6.4)

To ensure parity-invariance, the scalar fields should behave somehow in the same way

under parity as the fermionic matter in Ref. [166]. Thus, we will extend the parity concept

to include a transformation in the space of fields that swaps the role of ϕ±:

AP
µ = P ν

µ Aν ,

aPµ = −P ν
µ aν ,

ϕP
± = η ϕ∓, (6.5)

where we have P ν
µ = diag(+ − +), and η is a complex phase. Here, every time we do

a statement about parity, it must be understood that we are referring to this extended

parity concept. Moreover, we would like to point out that the mixed CS term is a crucial

ingredient if we want to have a topological gauge-invariant mass term without breaking

parity. Using the above parity transformations, one can immediately see that our model

is parity-invariant (assuming that a suitable potential V is chosen, of course).

The most general renormalizable potential compatible with the symmetries is

V = m2
(
|ϕ+|2 + |ϕ−|2

)
+

M1

2

(
|ϕ+|4 + |ϕ−|4

)
+M2|ϕ+|2|ϕ−|2 +

g1
3

(
|ϕ+|6 + |ϕ−|6

)
+ g2

(
|ϕ+|2|ϕ−|4 + |ϕ−|2|ϕ+|4

)
, (6.6)

where the parameters should be carefully chosen in order to ensure the presence of only

stable vacua. It should be clear that, depending on the parameters, different vacua
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structures might appear, which could in principle lead to the spontaneous breaking of one,

both, or none of the U(1) symmetries. Let us choose the simplest scalar potential that

leads to a spontaneously broken but parity-symmetric vacuum. Thus, we will consider,

with λ > 0:

V (ϕ+, ϕ−) =
λ

4

(
|ϕ+|2 − v2

)2
+

λ

4

(
|ϕ−|2 − v2

)2
. (6.7)

This is the simplest extension of the Abelian-Higgs potential for the case under study.

Taking v ̸= 0, it will clearly induce a non-trivial vacuum expectation value (VEV) for the

scalar fields, putting the theory into the Higgs phase, where we have ⟨|ϕ±|⟩ = v. This

potential is not stable under quantum corrections, but this will not be an issue, since we

are focusing on classical solutions.

An important remark must be made at this point. If one defines the fields A±
µ =

(Aµ ± aµ) /
√
2, the pure gauge part of the Lagrangian would be rewritten as

L ⊃− 1

4
F+
µνF

µν+ − 1

4
F−
µνF

µν−

+
µ

2
ϵµνρ

(
A+

µ ∂νA
+
ρ − A−

µ ∂νA
−
ρ

)
, (6.8)

realizing the parity-invariance of the model in a different, although equivalent, form, as

studied in Ref. [164]. The other part of the Lagrangian in this setting is written as

L ⊃|
(
∂µ + iq1A

+
µ + iq2A

−
µ

)
ϕ+|2

+|
(
∂µ + iq2A

+
µ + iq1A

−
µ

)
ϕ−|2 − V (|ϕ+|, |ϕ−|) . (6.9)

In the above expression, one can see that ϕ+ and ϕ− have swapped effective charges,

defined as q1 = (e+ g) /
√
2 and q2 = (e− g) /

√
2. The parity transformation is realized

by A±
µ → P ν

µ A∓
ν and ϕ± → ηϕ∓. This setup explicitly exhibits the parity-invariance of

the CS sector. It is possible to show that, the on-shell free fields A+
µ and A−

µ provide the

vector representations of the three-dimensional Poincaré group with spins equal to +1 and

-1 (for µ > 0), respectively, as one can see in Ref. [212]. Following the same reasoning, we

could as well construct the complex fields σ = (ϕ+ + ϕ−) /
√
2 and π = i (ϕ+ − ϕ−) /

√
2

that transform under parity as a scalar and a pseudo-scalar, respectively. In this work,

although, we have chosen to work with the variables Aµ, aµ and ϕ± for convenience.

The equations of motion following from the Lagrangian are given by

∂µF
µν + µϵναβ∂αaβ = e

(
Jν
+ + Jν

−
)
,

∂µf
µν + µϵναβ∂αAβ = g

(
Jν
+ − Jν

−
)
,

DµD
µϕ± = − dV

dϕ∗
±
, (6.10)
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where the currents are Jν
± = i

[
ϕ∗
±D

νϕ± − ϕ±Dνϕ∗
±
]
.

Let us take a look at the peculiar Gauss laws that this model presents. Define the

electric and magnetic fields associated with the gauge fields Aµ and aµ by Ei = F i0,

B = ϵij∂iAj and ei = f i0, b = ϵij∂iaj, respectively. From the gauge fields equations of

motion, and using ρ± = J0
±:

∇⃗ · E⃗ + µb = e (ρ+ + ρ−) ,

∇⃗ · e⃗+ µB = g (ρ+ − ρ−) . (6.11)

Defining the electric charge Q = e
∫
d2x (ρ+ + ρ−) and the g-electric charge G =

g
∫
d2x (ρ+ − ρ−), and defining also the magnetic flux as Φ ≡

∫
d2xB and the g-magnetic

flux as χ ≡
∫
d2x b, we obtain upon integration:

Q = µχ, G = µΦ. (6.12)

That is, the electric charge associated with one gauge field is proportional to the magnetic

flux associated with the other. It is well-known that there is a flux attachment caused

by the CS term, but in our case this charge-flux relation happens between two different

gauge fields. This mutual statistics behavior [165] is a distinctive feature of this class of

models [171], but here we implement the flux attachment in a parity-invariant way.

The energy-momentum tensor here can be written as

T µν =

(
ηµν

1

4
FαβF

αβ − F µβF ν
β

)
+

(
ηµν

1

4
fαβf

αβ − fµβf ν
β

)
+Dµϕ∗

+D
νϕ+ +Dµϕ+D

νϕ∗
+ − ηµν |Dαϕ+|2

+Dµϕ∗
−D

νϕ− +Dµϕ−D
νϕ∗

− − ηµν |Dαϕ−|2

+ ηµνV. (6.13)

The energy functional following from this expression is

E =

∫
d2x

[
1

2

(
E⃗2 +B2

)
+

1

2

(
e⃗2 + b2

)
+ V

+|D0ϕ+|2 + |D0ϕ−|2 + |Diϕ+|2 + |Diϕ−|2
]
. (6.14)

We are interested only in the static regime, i.e., ∂0 ≡ 0. In the sequence, we briefly

address the perturbative spectrum of the model and its dispersion relations.

The vacuum configuration of the system is given by the absolute minimum of the

energy functional, that can be achieved, for instance, considering ϕ± = v and Aµ = aµ = 0.

In the unitary gauge we can write ϕ±(x) = v + h±(x)/
√
2. The quadratic part of the
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Lagrangian here is given by

Lquad = −1

4
FµνF

µν − 1

4
fµνf

µν +
1

2
(∂µh+)

2 +
1

2
(∂µh−)

2

+ 2v2
(
e2AµAµ + g2aµaµ

)
− λv2

2
(h2

+ + h2
−)

+
µ

2
ϵµνρAµ∂νaρ +

µ

2
ϵµνρaµ∂νAρ. (6.15)

From the above expression we can immediately see that we have two degenerate massive

scalars with mS =
√
λv2. For the gauge quadratic part we can write

Lquad
gauge =

1

2

(
Aµ aµ

)
Oµν

(
Aν

aν

)
, (6.16)

where we defined the gauge dynamical operator

Oµν =

(
2Θµν + 4e2v2ηµν µϵµρν∂ρ

µϵµρν∂ρ 2Θµν + 4g2v2ηµν

)
. (6.17)

After some manipulations, from the inverse of Eq. (6.17), one can find the dispersion

relations p2± = m2
±, where:

m2
± =

1

2
[µ2 + 4v2(e2 + g2)]

± 1

2

√
[µ2 + 4v2(e2 + g2)]2 − (8v2eg)2. (6.18)

It should be stressed that the above relation is necessarily real and non-negative,

which ensures the absence of taquions in the model. We can see that the gauge fields

will acquire mass contributions coming from the Higgs mechanism and also from the CS

term. In particular, in the absence of a CS term (µ = 0), we would have two massive

vector bosons with Me = 2ev and Mg = 2gv. In the case without spontaneous symmetry

breaking (v = 0), the Higgs mechanism does not take place and we find only a topological

mass given by µ. In the absence of a Maxwell term, we obtain two copies of the dispersion

relation p2 = 16e2g2v4/µ2, and we have degenerate gauge boson masses.

6.2 Topological configurations

In this section, we will see what are the asymptotic conditions that allow finite-energy

static solutions and propose a vortex ansatz to investigate the possibility of a topologically

non-trivial solution in this model.
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6.2.1 Asymptotic conditions

In order to have finite energy, each non-negative term in Eq. (6.14) must asymptote

to zero as |x⃗| = r → ∞ sufficiently fast in order to compensate the asymptotic behavior

of the measure and make the integral convergent. These asymptotic conditions can be

seen as boundary conditions for the fields at the boundary of space, that we can see as an

asymptotic sphere S1
∞ ≡ ∂R2 (the circle at infinity). In particular, the scalar fields must

asymptote to the vacuum manifold, i.e., with a fixed norm on the space of fields, but with

phase freedom given by an angle that parametrizes the sphere at infinity. Thus, in the

asymptotic limit we can take ϕ± → veiω±(θ) where θ parametrizes the sphere S1
∞, together

with Ai → −∂i (ω+ + ω−) /2e and ai → −∂i (ω+ − ω−) /2g, to ensure that the covariant

derivatives vanish at spatial infinity. To satisfy the remaining asymptotic conditions, we

can take A0, a0 → 0 as well as ∂iA0, ∂ia0 → 0.

Furthermore, since we have ϕ+ and ϕ−, there are two phase degrees of freedom in

the asymptotic limit. The asymptotic behavior of the fields defines a function from the

boundary of space into the gauge group, giving us a map

Φ∞ : S1
∞ → S1 × S1 ≡ U(1)× U(1), (6.19)

since topologically speaking U(1) and S1 are equivalents. Any such map can be clas-

sified by homotopy classes, and in particular, the maps from the circle S1 to the torus

S1 × S1 can be classified using two integers determined by the fundamental homotopy

group π1 (S
1 × S1) ≡ Z×Z. Mappings of different homotopy classes cannot be deformed

in each other by a continuous transformation, and therefore give rise to inequivalent con-

figurations. This is the topological origin of the stability of vortex solutions. Therefore

we conclude that the finite-energy condition implies an homotopy classification leading to

a labeling of the configurations by two integers.

Let us define a (m,n)-vortex as a finite-energy static configuration obeying the bound-

ary conditions stated above with the particular structure:

ϕ± → vei(m±n)θ,

Ai → −m

e
∂iθ,

ai → −n

g
∂iθ, (6.20)

where θ parametrizes the sphere at infinity as before, and we have ∇⃗ ≡ r̂∂r + θ̂ 1
r
∂θ.

In principle, we demand only that m±n ∈ Z, allowing m and n to take simultaneously

half-integer values. In the light of the natural doubling of degrees of freedom necessary to

ensure parity invariance, the possibility of half-integer numbers should not be worrisome.

From the equations of motion, we already know that there is a relation between charges
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and magnetic fluxes. But, by definition,

Φ =

∫
d2x ϵij∂iAj =

∫
S1
∞

dS r̂i ϵ
ijAj. (6.21)

Upon using the asymptotic behavior of the gauge field and the relations θ̂i = ϵij r̂j and

ϵijϵjk = −δik, we have,

Φ =

∫
dθ r r̂i ϵ

ij
(
−m

er
ϵjkr̂k

)
=

2π

e
m. (6.22)

Doing a totally equivalent reasoning, we can also find χ = 2π
g
n. Thus:

Φ =
2π

e
m, χ =

2π

g
n. (6.23)

Therefore, we can conclude that besides the magnetic flux associated with one gauge field

being proportional to the electric charge of the other, they are all topologically quantized,

and can be written as

Q =
2π

g
µn, G =

2π

e
µm. (6.24)

6.2.2 The vortex ansatz

Let us search now for an explicit vortex solution. To accomplish this, we will first write

an ansatz and then the differential equations that follow from the equations of motion.

We propose the following radially symmetric (m,n)-vortex ansatz:

ϕ± = v F±(r) e
i(m±n)θ,

Ai =
1

er
[A(r)−m] θ̂i,

ai =
1

gr
[a(r)− n] θ̂i,

A0 =
1

er
α(r),

a0 =
1

gr
β(r). (6.25)

To satisfy the asymptotic conditions, the functions above must satisfy the following bound-

ary conditions:

F±(∞) = 1, A(∞) = a(∞) = 0. (6.26)

We impose F±(0) = 0, A(0) = m, a(0) = n, and also α(0) = β(0) = 0 to avoid a

singularity at the origin, except when m = ±n, because in this case one of the scalar
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profiles can take a non-zero value at the origin. Under a parity transformation in the

vortex configuration, we have (m,n) → (−m,n), r → r, θ → −θ − π and F± → F∓, A →
−A, a → a, α → α, β → −β.

The energy density functional, considering this ansatz, can be written as

ϵ =
1

2e2r2

[
Ȧ2 +

(
α̇− α

r

)2]
+

1

2g2r2

[
ȧ2 +

(
β̇ − β

r

)2
]

+
λv4

4

[
(F 2

+ − 1)2 + (F 2
− − 1)2

]
+

v2

r2
[
F 2
+ (α + β)2 + F 2

− (α− β)2
]

+ v2
[
Ḟ 2
+ +

F 2
+

r2
(A+ a)2 + Ḟ 2

− +
F 2
−
r2

(A− a)2
]
. (6.27)

One can also compute the angular momentum of these finite-energy static vortex-like

configurations, given by

J =

∫
d2x ϵijriT0j. (6.28)

In general, we can write

T0j = ϵjk
(
EkB + ejb

)
+ 2Re

(
D0ϕ

∗
+Djϕ+ +D0ϕ

∗
−Djϕ−

)
. (6.29)

Therefore, the angular momentum can be written as a sum of a contribution Jg coming

from the gauge fields and another, Js from the scalar field sector. Defining ϕ± = |ϕ±|eiω± ,

we can write:

Re
(
D0ϕ

∗
±Djϕ±

)
= (eA0 ± ga0) (eAj ± gaj + ∂jω±) |ϕ±|2 (6.30)

Using the rotationally symmetric ansatz, where ω± = (m± n)θ, we can rewrite:

Re
(
D0ϕ

∗
±Djϕ±

)
=

|ϕ±|2
r

[eA0 ± ga0] [A± a] θ̂j. (6.31)

But in the static limit we can write for the charge densities, ρ± = −2 (eA0 ± ga0) |ϕ±|2,
and thus,

2Re
(
D0ϕ

∗
+Djϕ+ +D0ϕ

∗
−Djϕ−

)
= −1

r
[A (ρ+ + ρ−) + a (ρ+ − ρ−)] θ̂j. (6.32)
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Upon using the Gauss laws (7.7), we obtain for the scalar sector contribution:

Js =

∫
d2x

[
A

e
(∇ · E + µb) +

a

g
(∇ · e+ µB)

]
. (6.33)

Now, integrating by parts and using the boundary conditions, this expression will give us

a contribution that exactly cancels Jg, and another that is entirely given in terms of A

and a:

Js =

∫
d2x

(
B riE

i + b rie
i
)

− 2πµ

eg
[A(∞)a(∞)− A(0)a(0)] . (6.34)

Thus, using the ansatz, boundary conditions and equations of motion, in the static

limit we can obtain for the angular momentum of our (m,n)-vortices:

J =
2πµ

eg
nm =

QG

2πµ
. (6.35)

We conclude that the angular momentum of these configurations is quantized, propor-

tional to the product of charges, and fractional, with an anyonic nature. A similar result

exhibiting these features was already obtained before, as one can see for instance Ref. [171].

Inserting this ansatz in the equations of motion, we obtain differential equations that

must be solved in order to find an explicit solution. From the equations of motion, we

obtain:

α̈− α̇

r
+

α

r2
+ µ

e

g
ȧ =

M2
e

2

[
α∆F 2

+ + β∆F 2
−
]
, (6.36)

β̈ − β̇

r
+

β

r2
+ µ

g

e
Ȧ =

M2
g

2

[
β∆F 2

+ + α∆F 2
−
]
. (6.37)

and,

Ä− Ȧ

r
+ µ

e

g

(
β̇ − β

r

)
=

M2
e

2

[
A∆F 2

+ + a∆F 2
−
]
, (6.38)

ä− ȧ

r
+ µ

g

e

(
α̇− α

r

)
=

M2
g

2

[
a∆F 2

+ + A∆F 2
−
]
, (6.39)

where we defined ∆F 2
± = F 2

+ ± F 2
−. The first two equations correspond to the ν = 0

components, and the last two to the ν = i components. From the scalar sector:

F̈±+
Ḟ±
r

+
F±
r2
[
(α± β)2−(A± a)2

]
=
m2

S

2

(
F 2
± − 1

)
F±. (6.40)

These are the differential equations that we need to solve considering the boundary
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conditions given in Eq. (6.26) and the initial conditions stated in sequence. We were

not able to find an analytical solution for these equations, and therefore, in the next

section we will present for numerical solutions considering some particular cases that

represent different possible scenarios. In passing, we comment that, to recover the AH

model differential equations (and therefore the ANO vortex solution), we need only to

take F− = a = α = β = 0.

In the above differential equations, one can note the appearance of a few mass scales,

given by mS =
√
λv2, Me = 2ev, Mg = 2gv, and finally, µ. We can introduce the di-

mensionless coefficients K1 = µ/mS, K2 = Me/Mg = e/g, andK3 = Me/mS, writing the

equations above using the dimensionless distance x = mS r (the derivatives from now on

are with respect to x), in such a way that the differential equations can be written:

F̈++
Ḟ+

x
+
F+

x2

[
(α + β)2 − (A+ a)2

]
=
1

2

(
F 2
+ − 1

)
F+,

F̈−+
Ḟ−
x

+
F−
x2

[
(α− β)2 − (A− a)2

]
=
1

2

(
F 2
− − 1

)
F−,

Ä− Ȧ

x
+K1K2

(
β̇ − β

x

)
=

K2
3

2

[
A∆F 2

+ + a∆F 2
−
]
,

ä− ȧ

x
+

K1

K2

(
α̇− α

x

)
=

K2
3

2K2
2

[
a∆F 2

+ + A∆F 2
−
]
,

α̈− α̇

x
+

α

x2
+K1K2ȧ =

K2
3

2

[
α∆F 2

+ + β∆F 2
−
]
,

β̈ − β̇

x
+

β

x2
+

K1

K2

Ȧ =
K2

3

2K2
2

[
β∆F 2

+ + α∆F 2
−
]
. (6.41)

Before diving headfirst in the numerical solutions for these differential equations, we

can briefly analyze the asymptotic behavior of the vortex configurations. In fact, consid-

ering the asymptotic behaviors for the profiles F± → 1 and A, a, α, β → 0, we can write

F± = 1− F̃±, A = 0+ Ã, a = 0+ ã, α = 0+ α̃ and β = 0+ β̃, where all the quantities with

tilde are very small for large x. In this regime, we will consider only first order terms in

the quantities with tilde, neglecting higher orders.

In this approximation, the first two equations in Eq. (6.41) become ¨̃F + ˙̃F/x− F̃ = 0,

where we already used the expansion described above and neglected higher order terms.

Notice that this is a modified Bessel equation, therefore we can write for the asymptotic

behavior of the scalar profiles, F (r) ≈ 1−CK0(mS r), and conclude that the scalar fields

will approach their asymptotic value exponentially with a characteristic decay length

given by the scalar mass. In the same way, we can consider the third and last equations

in Eq. (6.41). Using the same approximation discussed above, we obtain the following

equations: ¨̃A− ˙̃A
x
+K1K2

(
˙̃β − β̃

x

)
= K2

3 Ã and ¨̃β −
˙̃
β
x
+ β̃

x2 +
K1

K2

˙̃A =
K2

3

K2
2
β̃. These differen-

tial equations lead to the following asymptotic behavior in terms of the modified Bessel
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functions of the second kind:

A(r) ≈ C± rK1(m±r),

β(r) ≈ D±K0(m± r). (6.42)

Therefore, the gauge profiles approach their asymptotic value exponentially, with a decay

length given by the gauge field masses m±, given in Eq. (6.18). The question of whether

both m+ and m− are equally valid is a subtle one (see Refs. [144, 213, 214]), and should

be investigated elsewhere. The same analysis can be done with the remaining equations

and naturally gives us similar results.

6.3 Explicit vortex solutions

In this section we will exhibit explicit numerical solutions for the differential equations

presented in the last section. The general strategy adopted here is as follows. We propose

to expand the profile functions F+, F−, A, a, α, β in powers of x around the origin, for

example, A(x) =
∑

k Akx
k. Plugging these expansions in the above differential equations

and using the initial conditions, we can obtain constraints in the expansion coefficients.

With these expansions near the origin at hand, we can proceed to search the numerical

solutions that will also satisfy the boundary conditions at infinity using a shooting method.

It is important to note that, since we have A(0) = m, a(0) = n, we need first of all to

specify which (m, n)-vortex we are trying to find.

In general lines, for the equations and initial conditions considered here, there are six

coefficients to be adjusted; the others vanish or can be found in terms of these six and

of the mass quotients Ki. Roughly speaking, near the origin we obtained the following

structure of expansions:

F+(x) = f+ x|n+m| + ...,

F−(x) = f− x|n−m| + ...,

A(x) = m+A2x
2+ A+x

2|n+m|+2+ A−x
2|n−m|+2+...,

a(x) = n+ a2x
2 + a+x

2|n+m|+2 + a−x
2|n−m|+2 +...,

α(x) = α1x+ α+x
2|n+m|+1 + α−x

2|n−m|+1 + ...,

β(x) = β1x+ β+x
2|n+m|+1 + β−x

2|n−m|+1 + ..., (6.43)

where f+, f−, A2, a2, α1, β1 are free parameters that are determined for each set of param-

eters (m,n,K1, K2, K3), in order to satisfy the asymptotic conditions at infinity.

In the following, we consider some examples representing distinctive classes of vortices.

For each case, we show explicit numerical solutions and analyze some aspects of them,

63



Figure 6.1: Left panel: Vortex solution for m = 0, n = 1. The scalar profile F is shown
in black, and the gauge profiles a and α in red and blue, respectively, as functions of
x = mS r. The other profiles are identically zero. The relevant parameters here are:
F1 = 0.58939309, a2 = −0.16046967, α1 = −0.36281397. Right Panel: The g-magnetic
(in red) and electric (in blue) fields as functions of x = mS r for the m = 0, n = 1 solution,
in units of g/m2

S and e/m2
S, respectively.

stating the relevant parameters for the solution. In Sec. 6.3.1, we will analyze the situation

where one of the integers is zero, using the case (m = 0, n = 1) as an example; In Sec. 6.3.2,

we investigate the situation where m and n are equal and non-zero, adopting the case

(m = n = 1) as illustration, and briefly commenting on (m = n = 1/2); In Sec. 6.3.3, we

study the case where m and n are non-zero and different, using the case (m = 2, n = 1)

as an example, and commenting on the case (m = 1/2, n = 3/2); Finally, in Sec. 6.3.4,

we analyze solutions obtained with different coefficients Ki.

6.3.1 m=0, n=1

Let us focus first on the solutions with m = 0 and n = 1, since this is the simplest

possible scenario. In this case, we obtain Φ = 0, implying G = 0 and J = 0, but χ = 2π/g,

giving Q = 2πµ/g. Thus, we would be dealing with configurations without magnetic flux,

g-electric charge and angular momentum, but with non-trivial g-magnetic flux and electric

charge.

Following the procedure described in the beginning of this section, we found a nu-

merical solution for the full set of differential equations that has the property of giving

equal profiles F+ = F− and identically zero solutions for A = β = 0. This means that,

for this simple (m = 0, n = 1) case, we found a posteriori that only half of the differential

equations are non-trivial, and therefore in the numerical analysis we only considered these

ones to simplify the analysis. The non-trivial profiles for the vortex solution are exhibited

in Fig. 6.1, together with its g-magnetic and electric fields.

Notice that the g-magnetic field is finite, non-vanishing, and acquires its maximum

value at the origin. The electric field is zero at the origin, maximum at a finite distance
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and vanishes asymptotically. This is exactly the situation reported in Ref. [135], where

the authors considered an AH model in the presence of a CS term, and obtained a charged

vortex solution. This is not a coincidence, because, although physically different, mathe-

matically speaking we are in a similar situation, since we have exactly the same differential

equations to be solved. But it should be stressed that, besides the parity-invariance of the

model and different field content (for instance, we have two gauge fields instead of only

one), our vortex solution has zero angular momentum, instead of a non-zero and frac-

tional value as reported in Ref. [135]. The charge and g-current densities display a similar

behavior, vanishing at the origin, attaining their maximum value at a finite distance and

decaying asymptotically to zero. We remark that an equivalent situation occurs when we

consider the case m = 1, n = 0.

We were not able to find numerical solutions for m = 0 or n = 0 with F+ ̸= F− and

A ̸= 0, β ̸= 0. It seems that, at least in this simple scenario with vanishing m or n, there

is a natural trivialization of a sector. One might wonder if this trivialization is somehow

a consequence of taking the Ki parameters all equal to 1, since they represent quotients

between mass scales appearing in our physical system, but it does not seems to be so. In

fact, in Sec. 6.3.4, we will consider a few numerical solutions for different values of Ki,

and in all cases we obtained similar scalar and gauge profiles, exhibiting the trivialization

property reported above.

It is interesting to see, for completeness, the solutions for n = 1, 2, 3 while keeping

m = 0, to illustrate the different profiles that can appear in this setup. The scalar profiles

are shown in Fig. 6.2, and we can note the typical power-law behavior near the origin as

we change n. We also plot the gauge profiles a and α for n = 1, 2, 3. Comparing them,

we see that in the cases with n ̸= 1, the g-magnetic field does not attain its maximum

value at the origin, but at a finite distance. The electric field, on the other hand, keeps

its qualitative behavior, only changing where it attains its maximum value, cf. Fig. 6.3.

6.3.2 m=n=1

Now, let us search for solutions with m = n = 1. In this case, looking to Eq. (6.24)

we immediately see that Q = 2πµ
g

and G = 2πµ
e
. This vortex has a non-trivial angular

momentum given by J = 2πµ
eg

, differently from the previous solution. We report this

vortex in Fig. 6.4, together with its electric and magnetic fields.

Notice that we obtained a posteriori a simplified solution where A = a, α = β, and

F− = 1. For the scalar profiles, it is important to remember that the exponential part of

the scalar fields ϕ± involves m ± n. Therefore, the fact that F− gives us a constant and

F+ displays a typical 2-vortex behavior is an indication that the true winding numbers

are given by m+ n and m− n, instead of m and n separately.

One can wonder again whether the trivial behavior of the gauge profiles is due to
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Figure 6.2: Left Panel: The scalar profiles F as a function of x = mS r for the solutions
with m=0 and n = 1 (red), 2 (green), 3 (blue). Right panel: The gauge profiles a and α
as functions of x = mS r for the solutions with m=0 and n = 1 (red), 2 (green), 3 (blue).
The solid lines correspond to the profile a and the dashed lines to the profile α.

Figure 6.3: The g-magnetic and electric fields as functions of x = mS r for the solution
with m=0 and n = 1 (red), 2 (green), 3 (blue). The solid lines correspond to the g-
magnetic field b in units of g/m2

S and the dashed lines correspond to the electric field Er

in units of e/m2
S.

the choice of coefficients. Unlike the previous case, the answer is affirmative, at least

with respect to the variation of K2 governing the relationship between different gauge

couplings. In fact, starting from the degenerate case and varying K2, the solutions for

profiles A and a as well as α and β are not degenerate anymore; however, the scalar profiles

do not present any appreciable qualitative change. Varying K1 and K3, we will find a

behavior similar to the ones described in the last case, as depicted in Sec. 6.3.4.

The case m = n = 1/2 does not present any appreciable qualitative change in com-

parison with the solution presented here, except by the scalar profile near the origin, that

displays a typical 1-vortex behavior, and by its lowest value of energy and angular mo-

mentum (J = πµ/2eg). The energy hierarchy of our solutions will be shortly discussed in

the next subsection.
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Figure 6.4: Left panel: Vortex solution for m = n = 1. The scalar profile F+ is shown in
solid black, F− in dashed black, and the gauge profiles a and α in red and blue respectively,
as functions of x = mS r. Notice that here we have A = a and α = β. The relevant
parameters here are F+2 = 0.28684863, F−0 = 1, A2 = a2 = −0.10644717, α1 = β1 =
−0.36047370. Right panel: The magnetic (in red) and electric (in blue) fields as functions
of x = mS r for the m = n = 1 solution, in units of e/m2

S. Notice that here we have B = b
and Er = er.

6.3.3 m=2, n=1

Finally, we will consider the case m = 2 and n = 1. Here, we readily obtain Q = 2πµ
g

and G = 4πµ
e
. Notice that we also have a non-vanishing angular momentum given by J =

4πµ
eg

. In this case, we expect to see a totally novel result, since there are no simplifications

in consequence of the choice of m and n.

The numerical solution obtained in this case is given in Fig. 6.5, together with its

electric and magnetic fields (as well as the g-electric and g-magnetic). As one can see,

this time there is no degeneracy in the profiles, being all of them non-trivial. In the

scalar profiles, notice that F− displays a behavior near the origin characteristic of a 1-

vortex, and F+ of a 3-vortex. For the first time, we observe an oscillating behavior in

the electric and g-magnetic fields, and in particular, we see that there is a finite distance

where they vanish. We remark that the gauge fields here are not necessarily related

with electromagnetic phenomena, possibly being used to describe some effective degree

of freedom in a condensed matter system, for instance, therefore one should be careful

before drawing any conclusion.

The case m = 1/2, n = 3/2 does not present any appreciable qualitative change in

comparison with the solution presented here, except by the scalar profiles near the origin,

since F+ and F− display a behavior typical of 2-vortex and 1-vortex solutions, respectively.

At this point, armed with all these vortex solutions, we can discuss their energy

densities and highlight the mass hierarchy between them. Let us first call attention to

the fact that we have been successful in finding finite-energy configurations, as one can

immediately see in Fig. 6.6. From these energy densities, defining M(m,n) as the mass
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Figure 6.5: Left panel: Vortex solution for m = 2, n = 1. The scalar profile F+ is shown in
solid black, F− in dashed black; the gauge profile A is shown in solid red, a in dashed red;
the profile α is shown in solid blue, β in dashed blue; all of them are given as functions
of x = mS r. The relevant parameters here are F+3 = 0.07723697, F−1 = 0.66377069,
a2 = 0.07718614, A2 = −0.22754617, α1 = −0.27824800, β1 = −0.68551826. Right panel:
The magnetic (solid red) and electric (solid blue) fields in units of e/m2

S; the g-magnetic
(dashed red) and g-electric (dashed blue) fields in units of g/m2

S. All of them as functions
of x = mS r for the m = 2, n = 1 solution.

Figure 6.6: The energy density for the (m,n)-vortex solutions in units of 1/v2m2
S. In red,

(1/2,1/2); in orange, (0,1); in green, (1,1); in blue, (1/2,3/2); in purple, (2,1).

associated with the (m,n)-vortex, we obtained the following mass hierarchy in units of v2:

M(1/2,1/2) ≈ 1.31 < M(0,1) ≈ 2.27 < M(1,1) ≈ 2.92 < M(1/2,3/2) ≈ 3.87 < M(2,1) ≈ 5.70.

Interestingly enough, one can observe that M(1/2,1/2) +M(−1/2,1/2) = 2M(1/2,1/2) > M(0,1).

Remember that in the (±1/2, 1/2)-vortex, F± is 1-vortex scalar profile, while F∓ lies in

the vacuum, whereas in the (0, 1)-vortex both of them are typical 1-vortex scalar profiles.

This suggests that there might be an attraction between these vortices. However, to truly

understand the interactions between these vortices and conclusively assert this, a more

thorough analysis should be done elsewhere, along the lines presented in Ref. [215].
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Figure 6.7: Left panel: The electric fields associated with m = 0, n = 1 solution in units of
e/m2

S for different values of (K1, K2, K3). In solid green, (1, 1, 1); in solid red, (1/2, 1, 1);
in solid blue, (2, 1, 1); in dashed red, (1, 1/2, 1); in dashed blue, (1, 2, 1); in dotted red,
(1, 1, 1/2); in dotted blue, (1, 1, 2). Right panel: The g-magnetic fields associated with
m = 0, n = 1 solution in units of g/m2

S for different values of (K1, K2, K3). In solid green,
(1, 1, 1); in solid red, (1/2, 1, 1); in solid blue, (2, 1, 1); in dashed red, (1, 1/2, 1); in dashed
blue, (1, 2, 1); in dotted red, (1, 1, 1/2); in dotted blue, (1, 1, 2).

6.3.4 Vortex solutions for different Ki’s

In this section, we investigate the existence of vortex solutions and their main proper-

ties upon varying the coefficients Ki. In the following, we will use as a reference the case

K1 = K2 = K3 = 1, already studied in the last sections, and change each Ki by a factor

of two keeping the others fixed, to find different vortex solutions and compare their main

features. It is important to keep in mind that each set of parameters Ki characterizes

a different physical system, and upon varying a Ki coefficient, we need to adjust the

parameters in order to obtain a vortex solution.

Focusing first in the case m = 0, n = 1, the variation of Ki led to qualitatively similar

scalar and gauge profiles, and the trivialization property already highlighted before. As

one can see from Fig. 6.7, the electric field qualitative behavior is the same for all the

values considered: zero at the origin, attaining a finite non-zero maximum value at some

distance and decaying to zero at large distances. Notice that by varying K1, there are

only small changes in the profile. By lowering K2, we can observe a more pronounced

decay and an improvement in its maximum value. On the other hand, by increasing K3

we observe a sensible increase at the absolute value of the maximum electric field value,

accompanied by a more pronounced decay and a small shift in the position where this

maximum occur. For the g-magnetic field, the qualitative behavior is also the same as we

vary Ki: attains a finite non-zero maximum value at the origin and decays monotonically

as we increase the distance going to zero in the asymptotic limit. By increasing K1, we see

that the maximum value of the g-magnetic field diminishes, and this is compatible with

the behavior observed in Ref. [145]. Lowering K2 or increasing K3, we observe a strong
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Figure 6.8: The magnetic (B), g-magnetic (b), electric (Er) and g-electric (er) fields
associated with the m = n = 1 solutions, for different values of K2. The solid lines refer
to B and Er; the dashed lines refer to b and er. B and b are shown in the upper part; Er

and er are shown in the lower part. In green, K2 = 1; in red, K2 = 1/2; in blue, K2 = 2.

change in the maximum value of the g-magnetic field as well as a more pronounced decay

as we go far from the origin. Lowering K1, increasing K2, or lowering K3, as before, has

the opposite effect, cf. Fig. 6.7.

Proceeding to the m = n = 1 solution, as already highlighted in the main text, the

degeneracy that we have found is due to the equality of the couplings when K2 = 1.

When we depart from this simpler case, we find vortex solutions with A ̸= a and α ̸= β,

naturally leading to different magnetic and g-magnetic (as well as electric and g-electric)

fields, as one can see in Fig. 6.8. Upon varying K1 and K3, we observed the same behavior

as described in the previous case.

Finally, we remark that in the case m = 2, n = 1 the variation of the coefficients Ki

did not lead to any substantial difference from the cases already discussed here.

For completeness, it would be interesting to analyze what happens in some limiting

cases of this model, for instance, when the CS terms or the Maxwell terms are absent.

This analysis is done in the next section.

6.4 Vortices in limiting cases

In this section, we study two particular limits of our model. First, we will briefly

address the simpler case in which we do not have a CS term, that is, µ = 0. From a

practical point of view, this can be achieved by setting K1 = 0, and the conclusions in

this part will come straightforwardly. Notice that this scenario bears resemblance to the

usual ANO vortex, since this is nothing but a scalar QED with two gauge fields and two

scalars with different charges.

Second, we will analyze our model in the absence of Maxwell terms, with the gauge

kinetic part given solely by the CS term. This allows us to solve the Gauss laws and write
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Figure 6.9: Left panel: Vortex solution for m = 0, n = 1 in the pure Maxwell limit. The
scalar profile F is shown in black and the gauge profile a in red, respectively, as functions
of x = mS r. The other profiles are identically zero. Right panel: The g-magnetic field in
the pure Maxwell limit, in units of g/m2

S, as a function of x = mS r. The magnetic field
as well as the electric and g-electric fields are zero here.

the time components of the gauge fields as functions of other quantities. This scenario,

where the CS term dominates and the Maxwell terms can be neglected, could be seen as

the low-energy regime of our model.

We remark that the results obtained in this section could be inferred by looking at

the behavior of magnetic and electric fields when we changed the coefficient K1 while

keeping the others coefficients fixed, since this increases (or decreases) the importance of

CS parameter with respect to the other scales of the system. Although it can give us a

hint of what would happen in the limits considered here, it is important to remark that

the passage from the model considered to the pure CS limit is a subtle one, as one can

see for instance in Ref. [145], which justifies a separate investigation of the latter.

Now, we briefly state the results for K1 = µ/mS = 0. We will consider the case m = 0

and n = 1 with K2 = K3 = 1 for definiteness, but we would have similar results in the

other examples. The vortex solution per se does not exhibit any appreciable change in

the profiles F and a as one can see in Fig. 6.9. But now we have α = 0, and this fact

is the most striking difference that appears in this regime. Since we do not have the CS

Gauss law constraint anymore, the electric field vanishes and we conclude that the vortex

is neutral, as expected. The g-magnetic field in this regime is stronger in magnitude, but

exhibit the usual profile, attaining a maximum at the origin and decaying as we increase

x, as one can also see in Fig. 6.9. This is in accordance with the already known results

(see for example Ref. [145]).

Proceeding to the more interesting scenario in which we can neglect the Maxwell terms,
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the Gauss laws constraints become much simpler,

µb = e (ρ+ + ρ−) ,

µB = g (ρ+ − ρ−) . (6.44)

Without Maxwell terms, we are able to obtain A0 and a0 directly from the other fields.

In fact, we can find:

eA0=Λ
[
eB
(
|ϕ+|2 − |ϕ−|2

)
−gb

(
|ϕ+|2 + |ϕ−|2

)]
ga0=Λ

[
gb
(
|ϕ+|2 − |ϕ−|2

)
−eB

(
|ϕ+|2 + |ϕ−|2

)]
, (6.45)

where we defined Λ ≡ µ/8eg|ϕ+|2|ϕ−|2 for convenience. Plugging the ansatz, and writing

in dimensionless variables using x = mS r and the coefficients Ki as before, we obtain the

following expressions for α and β:

α =
K1K2

2K2
3

1

F 2
+F

2
−

[
ȧ
(
F 2
+ + F 2

−
)
− Ȧ

(
F 2
+ − F 2

−
)]

,

β =
K1K2

2K2
3

1

F 2
+F

2
−

[
Ȧ
(
F 2
+ + F 2

−
)
− ȧ

(
F 2
+ − F 2

−
)]

. (6.46)

Now, we need only to plug these analytic expressions for α and β in the differential

equations (6.41), ignoring the contributions coming from the Maxwell terms, and solve

them for given m and n. Notice that we need only to care about the first four equations,

since the last two are already satisfied when we write α and β as above.

Although this is a legitimate path to be followed, we simply solved the full set of

differential equations in the absence of Maxwell contributions, without using explicitly

the CS constraint, stated here only for completeness. In the following, we will exhibit the

solution profiles and also the electric and magnetic (as well as g-electric and g-magnetic)

fields associated with them. For all of them, we considered K1 = K2 = K3 = 1 for

simplicity.

The solution for the equations of motion in the pure CS regime for the case m =

0, n = 1 is given in Fig. 6.10 together with the electric and g-magnetic fields. Notice that

they are zero at the origin, attains their maximum value at a finite distance and decays

asymptotically, exactly as reported in Ref. [147], for example. The m = n = 1 case gives

very similar results, see Fig. 6.11. Remember that we are considering here the particular

case in which K2 = 1 and therefore we have degenerate solutions, as we already discussed

before. The case m = 2, n = 1 presents a more complicated behavior, but it is reminiscent

of the solution presented in the main text. In fact, the solutions are shown in Fig. 6.12

together with its electric and magnetic (as well as g-electric and g-magnetic) fields. We

still have non-trivial solutions for all profiles and an oscillating behavior for the fields.
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Figure 6.10: Left panel: Vortex solution for m = 0, n = 1 in the pure CS limit. The
scalar profile F is shown in black; the gauge profiles a and α are shown in red and blue,
respectively, as functions of x = mS r. The other profiles are identically zero. Right
panel: The g-magnetic (in red) and electric (in blue) fields as functions of x = mS r for
the m = 0, n = 1 solution in the pure CS limit, in units of g/m2

S and e/m2
S, respectively.

Figure 6.11: Left panel: Vortex solution for m = n = 1 in the pure CS limit. The scalar
profile F+ is shown in solid black and F− in dashed black; the gauge profiles A and α are
shown in red and blue, respectively, as functions of x = mS r. Notice that here we have
A = a and α = β. Right panel: The magnetic (in red) and electric (in blue) fields as
functions of x = mS r for the m = n = 1 solution in the pure CS limit, in units of e/m2

S.
Notice that here we have B = b and Er = er.
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Figure 6.12: Left panel: Vortex solution for m = 2, n = 1 in the pure CS limit. The scalar
profile F+ is shown in solid black, F− in dashed black; the gauge profile A is shown in solid
red, a in dashed red; the profile α is shown in solid blue, β in dashed blue; all of them
are given as functions of x = mS r. Right panel: The magnetic (solid red) and electric
(solid blue) fields in units of e/m2

S; the g-magnetic (dashed red) and g-electric (dashed
blue) fields in units of g/m2

S. All of them as functions of x = mS r for the m = 2, n = 1
solution in the pure CS limit.
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Chapter 7

A self-dual regime

In this Chapter, we present a self-dual version of the parity-invariant Maxwell-CS

model studied in Chapter 6. We show that by choosing a suitable potential, the model

admits a Bogomol’nyi-type bound for the energy, whose saturation leads to first order

self-duality equations. We perform a detailed analysis of this system, examining its main

properties. We present explicit numerical solutions corresponding to finite-energy topo-

logical vortices and non-topological solitons, discussing their main features.1

7.1 Theoretical setup

Let us consider the parity-invariant U(1)A × U(1)a Maxwell-CS model coupled with

scalar matter, in the presence of additional fields N and M :

L =− 1

4
FµνF

µν − 1

4
fµνf

µν + µϵµνρAµ∂νaρ

+ |Dµϕ+|2 + |Dµϕ−|2 +
1

2
(∂µN)2 +

1

2
(∂µM)2

− V (|ϕ+|, |ϕ−|, N,M) , (7.1)

where we define Dµϕ± = ∂µϕ± + ieAµϕ± ± igaµϕ±. Here we have Fµν = ∂µAν − ∂νAµ

and fµν = ∂µaν − ∂νaµ, the gauge couplings associated with U(1)A and U(1)a are e and

g, respectively, and µ > 0 is the CS parameter.

This model has U(1)A × U(1)a gauge symmetry by construction, with the following

1This Chapter is based on Phys. Lett. B 833, 137326 (2022).
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transformations: 
ϕ′
± = eiρ(x)ϕ±,

A′
µ = Aµ − 1

e
∂µρ(x) ,

a′µ = aµ ;


ϕ′
± = e±iξ(x)ϕ±,

A′
µ = Aµ ,

a′µ = aµ − 1
g
∂µξ(x) .

(7.2)

Parity invariance is achieved here by extending the usual parity concept to include a

transformation that swaps the role of ϕ+ and ϕ− in the space of fields:

AP
µ = P ν

µ Aν , aPµ = −P ν
µ aν ,

ϕP
+ = η ϕ−, ϕP

− = η ϕ+,

NP = N, MP = −M. (7.3)

where P ν
µ = diag(+ − +), and η is a complex phase. This model is also time-reversal

invariant, but we will not discuss it here, since we will be mainly interested in static

configurations. Here one could also define A±
µ = (Aµ ± aµ) /

√
2, with parity acting as

A±
µ → Pν

µA
∓
ν , as already emphasized before.

To the purpose of investigating the existence of self-dual solitons, let us propose the

following potential:

V = (eN + gM)2|ϕ+|2 + (eN − gM)2|ϕ−|2

+
1

2

[
e
(
|ϕ+|2 − |ϕ−|2

)
− µM

]2
+

1

2

[
g
(
|ϕ+|2 + |ϕ−|2 − 2v2

)
− µN

]2
. (7.4)

This potential is consistent with all the symmetries of the model, and despite not being

the most general possibility, it arises naturally from the requirement of a Bogomol’nyi

bound for the energy. Setting |ϕ+| = |ϕ−| , M = 0, e = g, and appropriately rescaling

the remaining parameters, it exactly reproduces the potential proposed in [158], which

is known to contain both pure Maxwell and pure CS self-dual vortices as limiting cases.

Instead, if N = M = 0 and e = g, we can recover the potential used in Chapter 6.

The equations of motion for this model are given by

∂µF
µν + µϵναβ∂αaβ = e

(
Jν
+ + Jν

−
)
,

∂µf
µν + µϵναβ∂αAβ = g

(
Jν
+ − Jν

−
)
,

DµD
µϕ± = − dV

dϕ∗
±
, (7.5)
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supplemented by the equations for N and M

(2+ µ2)N =−2e
[
(eN + gM)|ϕ+|2 + (eN − gM)|ϕ−|2

]
+ µ

[
g(|ϕ+|2 + |ϕ−|2 − 2v2)

]
(2+ µ2)M =−2g

[
(eN + gM)|ϕ+|2 − (eN − gM)|ϕ−|2

]
+ µ

[
e(|ϕ+|2 − |ϕ−|2)

]
. (7.6)

The currents above are Jν
± = i

[
ϕ∗
±D

νϕ± − ϕ±Dνϕ∗
±
]
. We can define the electric and

g-eletric fields as Ei = F i0, ei = f i0 as well as the magnetic and g-magnetic fields as

B = ϵij∂iAj, b = ϵij∂iaj. From the zeroth component of the gauge fields equations, we

can obtain

∇⃗ · E⃗ + µb = e (ρ+ + ρ−) ,

∇⃗ · e⃗+ µB = g (ρ+ − ρ−) , (7.7)

where ρ± = J0
±. The electric and g-electric charges are given by Q = e

∫
d2x (ρ+ + ρ−),

G = g
∫
d2x (ρ+ − ρ−), and the magnetic and g-magnetic fluxes by Φ ≡

∫
d2xB, χ ≡∫

d2x b, respectively. Upon integration, we obtain:

Q = µχ, G = µΦ, (7.8)

relating the charge associated with one gauge field with the magnetic flux associated with

the other. This mutual statistics behavior [165] is a characteristic feature of models with

a mixed CS term [171], here implementing the flux attachment in a parity-invariant way.

The energy functional for this model is of the form:

E=

∫
d2x

[
1

2

(
E⃗2 +B2

)
+

1

2

(
e⃗2 + b2

)
+ V

+ |D0ϕ+|2 + |D0ϕ−|2 + |Diϕ+|2 + |Diϕ−|2

+
1

2

(
(∂0M)2+(∂0N)2+(∂iM)2+(∂iN)2

)]
(7.9)

The minimum energy configuration can be achieved, for instance, with Aµ = aµ = 0 and

constant scalar fields, provided that they minimize the potential. Inspection of Eq. (7.4)
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indicates that V = 0 if, and only if:

(eN + gM)2|ϕ+|2 = 0,

(eN − gM)2|ϕ−|2 = 0,

e
(
|ϕ+|2 − |ϕ−|2

)
− µM = 0,

g
(
|ϕ+|2 + |ϕ−|2 − 2v2

)
− µN = 0. (7.10)

Out of which only four possibilities arise:

• (0, 0) : |ϕ+|2= |ϕ−|2=0;M=0;N=−2gv2

µ
,

• (1, 1) : |ϕ+|2= |ϕ−|2=v2;M=N=0,

• (0, 1) : |ϕ+|2=0; |ϕ−|2=v2;M=−ev2

µ
;N=−gv2

µ
,

• (1, 0) : |ϕ+|2=v2; |ϕ−|2=0;M=
ev2

µ
;N=−gv2

µ
. (7.11)

The first vacuum corresponds to the symmetric, the second, to the asymmetric, and

the last two, to the partially symmetric phases of the gauge symmetry, respectively.

Notice that the first two vacua are invariant under parity, while the last two are not,

transforming into each other. All these vacua are degenerate, therefore, there can also be

domain walls solutions connecting them, but this case will not be considered here. We

will focus on the parity-invariant vacua, investigating the existence of topological vortices

and non-topological solitons.

Let us briefly discuss the perturbative spectrum by considering the quadratic part

of the fluctuations around each vacuum. We can see that in the (0, 0)-vacuum we do

not have spontaneous symmetry breaking since the only field acquiring a non-trivial vac-

uum expectation value (VEV) is neutral, and that in the (1, 1)-vacuum, both U(1)’s are

spontaneously broken. The quadratic part of the Lagrangian in this case is

Lquad
(0,0) = −1

4
FµνF

µν − 1

4
fµνf

µν + µϵµρνAµ∂ρaν

+ |∂µϕ+|2 + |∂µϕ−|2 +
1

2
(∂µM)2 +

1

2

(
∂µÑ

)2
−
(
2egv2

µ

)2(
|ϕ+|2+|ϕ−|2

)
−µ2

2

(
M2+Ñ2

)
(7.12)

Thus, on the (0, 0)-vacuum, one can find two massive complex scalar fields with masses

mϕ+ = mϕ− = 2egv2/µ, a real scalar and a real pseudoscalar with masses mN = mM = µ,

and two massive gauge bosons with masses equal to µ. We remark that this gauge boson

mass have a topological origin, since there is no Higgs mechanism taking place here, and

also that it is equal to the real scalar and pseudoscalar masses.

78



In the (1, 1)-vacuum, both charged scalar fields acquire a non-trivial VEV, putting

the theory totally into the Higgs phase, where both U(1)’s are spontaneously broken.

Here we expect that there will be a contribution to the mass coming from the Higgs

mechanism and another contribution of a topological nature coming from the CS term.

In the unitary gauge we can write ϕ±(x) = v + h±(x)/
√
2, and therefore, the quadratic

part of the Lagrangian reads:

Lquad
(1,1) = −1

4
FµνF

µν − 1

4
fµνf

µν + µϵµνρAµ∂νaρ

+ 2v2
(
e2AµA

µ + g2aµa
µ
)

+
1

2

[
(∂µh+)

2+ (∂µh−)
2+ (∂µM)2+ (∂µN)2

]
− 1

2

[
2v2(e2 + g2)(h2

+ + h2
−) + 4v2(g2 − e2)h+h−

− 2
√
2veµ(h+ − h−)M − 2

√
2vgµ(h+ + h−)N

+ (µ2 + 4v2g2)M2 + (µ2 + 4v2e2)N2
]
. (7.13)

Thus, in the (1, 1)-vacuum, one can find the same dispersion relation for the scalar and

gauge sectors, of the form p2 = m2
±, with

m2
±=

1

2

(
µ2+M2

e +M2
g ±
√
(µ2+M2

e +M2
g )

2−4M2
eM

2
g

)
, (7.14)

where each one has multiplicity 2 and the mass parameters are defined as M2
e = 4e2v2

and M2
g = 4g2v2. Therefore, we have 4 massive gauge and 4 massive scalar degrees of

freedom with mass squared m2
± distributed equally. Here we observe pairs of propagating

modes for a given mass, which is a common characteristic of self-dual models [158]. The

mass degeneracy for different spins even suggests a supersymmetric nature for the model.

7.2 Self-duality equations

The self-dual potential (7.4) makes it possible to rewrite the energy functional (7.9)

in a very suggestive form. Upon using the equations of motion and some integrations by
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parts, we can write (here we are using D± ≡ D1 ± iD2):

E=

∫
d2x

[
1

2

(
E⃗ ± ∇⃗N

)2
+

1

2

(
e⃗± ∇⃗M

)2
+ |D±ϕ+|2 + |D∓ϕ−|2 +

1

2
(∂0M)2 +

1

2
(∂0N)2

+
1

2

{
B ±

[
e
(
|ϕ+|2 − |ϕ−|2

)
− µM

]}2
+

1

2

{
b±

[
g
(
|ϕ+|2 + |ϕ−|2 − 2v2

)
− µN

]}2
+ |D0ϕ+ ∓ i(eN + gM)ϕ+|2

+ |D0ϕ− ∓ i(eN − gM)ϕ−|2

±2gv2b
]
, (7.15)

Therefore, since we have a sum of non-negative terms, we are naturally lead to a Bogomol’nyi-

type bound [148] to the energy functional, given by E ≥ 2gv2|χ| (for χ > 0 we choose

the upper sign, and for χ < 0 we choose the lower sign). Our main interest here is to

investigate the finite-energy static field configurations that saturate these bounds, satis-

fying first order self-duality equations determined by Eq. (7.15). Since we consider only

the static regime, in particular, ∂0M = ∂0N = 0. The field configurations saturating the

Bogomol’nyi bound have minimum energy given by E = 2gv2|χ|, and must satisfy the

first order self-duality equations:

D±ϕ+ = 0, D∓ϕ− = 0 (7.16a)

D0ϕ+ ∓ i(eN + gM)ϕ+ = 0, (7.16b)

D0ϕ− ∓ i(eN − gM)ϕ− = 0, (7.16c)

E⃗ ± ∇⃗N = 0, e⃗± ∇⃗M = 0 (7.16d)

B ±
[
e
(
|ϕ+|2 − |ϕ−|2

)
− µM

]
= 0, (7.16e)

b±
[
g
(
|ϕ+|2 + |ϕ−|2 − 2v2

)
− µN

]
= 0. (7.16f)

To satisfy Eqs. (7.16b), (7.16c), (7.16d), it is sufficient to take

A0 = ±N, a0 = ±M. (7.17)

The Eq. (7.16a) can be rewritten as:

Diϕ+ = ±iϵijDjϕ+,

Diϕ− = ∓iϵijDjϕ−. (7.18)
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Using the parametrization ϕ± = |ϕ±|eiω± for the scalar fields, we can obtain from Eq. (7.16a)

the following structure for the gauge fields spatial components:

eAi = ±1

2
ϵij∂j ln

|ϕ+|
v

∓ 1

2
ϵij∂j ln

|ϕ−|
v

− 1

2
∂i(ω+ + ω−)

gai = ±1

2
ϵij∂j ln

|ϕ+|
v

± 1

2
ϵij∂j ln

|ϕ−|
v

− 1

2
∂i(ω+ − ω−) (7.19)

Notice that, upon determining all the scalar fields, thanks to the self-dual structure, we

are able to obtain all the information present in the gauge fields. Now, acting with ϵki∂i,

we can obtain the magnetic and g-magnetic fields.

eB = ∓1

2
∇2 ln

|ϕ+|
v

± 1

2
∇2 ln

|ϕ−|
v

gb = ∓1

2
∇2 ln

|ϕ+|
v

∓ 1

2
∇2 ln

|ϕ−|
v

. (7.20)

Substituting this result into the self-dual equations (7.16e) and (7.16f), after some ma-

nipulations we can find

∇2 ln
|ϕ+|
v

=
[
(e2 + g2)|ϕ+|2 − (e2 − g2)|ϕ−|2

−µ

(
eM + gN +

2v2g2

µ

)]
∇2 ln

|ϕ−|
v

=
[
(e2 + g2)|ϕ−|2 − (e2 − g2)|ϕ+|2

−µ

(
−eM + gN +

2v2g2

µ

)]
. (7.21)

Finally, from the remaining equations, we can obtain:

(
∇2− µ2

)
N=2e

[
(eN + gM)|ϕ+|2+(eN − gM)|ϕ−|2

]
− µ

[
g
(
|ϕ+|2 + |ϕ−|2 − 2v2

)](
∇2− µ2

)
M=2g

[
(eN + gM)|ϕ+|2−(eN − gM)|ϕ−|2

]
− µ

[
e
(
|ϕ+|2 − |ϕ−|2

)]
. (7.22)

This is exactly the static limit of the equations of motion for N and M , cf. Eq. (7.6). The

equations (7.21) and (7.22), are the ones that must be solved in order to find the static

self-dual solutions.

In order to achieve finite energy, as we saw in the last Chapter, each term in Eq. (7.9)

must go asymptotically to zero in the limit |x⃗| = r → ∞. This asymptotic behavior can

be interpreted as boundary conditions at S1
∞ ≡ ∂R2. In particular, the complex scalar

fields ϕ± must go asymptotically to the vacuum manifold, with a fixed norm, but still

keeping a phase freedom. This will define a map Φ∞ : S1
∞ → S1 × S1 ≡ U(1) × U(1).
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These can be classified by two integers determined by the fundamental homotopy group

π1 (S
1 × S1) ≡ Z × Z. Therefore, the requirement of finite-energy implies an homotopy

classification leading to a labeling of our configurations by two integers. This reasoning

apply strictly when asymptoting to the (1, 1)-vacuum, but can be adapted for other cases.

In the previous Chapter, we showed that the parity-invariant Maxwell-Chern-Simons

U(1)×U(1) model admits finite-energy topological vortices characterized by two integers.

As already emphasized there, we only demanded that m±n ∈ Z, allowing m and n to take

half-integer values simultaneously. These configurations have quantized magnetic fluxes

and charges, that are related by some peculiar Gauss laws. Interestingly enough, their

angular momentum is quantized, proportional to the product of charges, and fractional.

Here we follow a different route, using the Bogomol’nyi equations to search for self-dual

solutions. Notice that such configurations must have finite energy, since they saturate the

Bogomol’nyi lower bound, E = 2gv2|χ|.
It is important to notice that there are 4 different degenerate vacua to which our scalar

fields can asymptote, and each of them would imply different asymptotic conditions. In

the following, we will consider mainly the situation in which the fields go asymptotically

to the (1, 1)-vacuum, to investigate the existence of topological vortices and also the

possibility of non-topological vortices when we asymptote to the (0, 0)-vacuum. It should

be noted that, although not analyzed here for the sake of scope, the parity-breaking vacua

(1, 0) and (0, 1) must also be investigated elsewhere, together with its solitons.

Let us consider here the following radially symmetric ansatz for the scalar fields:

ϕ±(r, θ) = v F±(r) e
i(m±n)θ,

N(r, θ) = v N̂ (r) ,

M(r, θ) = v M̂ (r) , (7.23)

where m± n ∈ Z, and the profiles F±, N̂ , and M̂ are dimensionless. Plugging the ansatz

above in Eqs. (7.19), we can obtain the gauge structure (here θ̂i = ϵijx
j/r):

Ai(r, θ) =
1

er
[A(r)−m] θ̂i,

ai(r, θ) =
1

gr
[a(r)− n] θ̂i, (7.24)

where we defined the gauge profiles as:

A(r) = ±1

2

(
rF ′

+

F+

− rF ′
−

F−

)
a(r) = ±1

2

(
rF ′

+

F+

+
rF ′

−
F−

)
, (7.25)

82



or, equivalently:

F ′
+ = ± F+ (A+ a)

r
,

F ′
− = ∓ F− (A− a)

r
. (7.26)

It should be stressed that, although the gauge field structure above (7.24) is the same used

in Chapter 6, here it does not appear as an independent ansatz for the gauge fields, but

it has its structure totally determined by the scalar fields ansatz, and as a consequence of

the self-dual equations obtained by saturating the Bogomol’nyi bound.

Let us first discuss the profiles behavior at the origin. Looking to the gauge struc-

ture (7.24), in order to avoid a singularity at the origin, we must have A(0) = m and

a(0) = n. Using Eq.(7.26) we see that they need to satisfy

(n+m)F+(0) = 0,

(n−m)F−(0) = 0. (7.27)

These considerations imply the following behavior:{
F+(r) ≈ r±(n+m)

F−(r) ≈ r±(n−m)
as r → 0. (7.28)

Therefore, to ensure that the fields have a regular behavior at the origin, we must have

±n > |m|. Notice that if we take n = 0, we cannot ensure a regular behavior at the origin

for both fields simultaneously, unless we also set m = 0, in which case F+(0) and F−(0)

remain undetermined. Finally, if we consider n = −m ̸= 0, then F+(0) is undetermined

while F−(0) = 0; if we consider n = m ̸= 0, then F−(0) is undetermined while F+(0) = 0.

It should be noted that the behavior of N̂ and M̂ near the origin will follow from their

equations of motion, once the behavior of F+ and F− for small r are determined.

Now, we proceed to the discussion of the asymptotic conditions. The energy contri-

bution coming from the potential implies that for any finite-energy configurations, we

must have F+(∞) and F−(∞) equal to 0 or 1. Furthermore, the covariant derivatives

contribution to the energy functional include the following terms:

E ⊃ 2πv2
∫

dr

[
F 2
+ (A+ a)2

r
+

F 2
− (A− a)2

r

]
(7.29)

Therefore, from the finite-energy condition, we find the following asymptotic conditions:

[A(∞) + a(∞)]F+(∞) = 0,

[A(∞)− a(∞)]F−(∞) = 0. (7.30)
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First of all, let us consider the case in which the scalar profiles asymptote to the (1, 1)-

vacuum, that is, when F+(∞) = F−(∞) = 1. In this case, we are dealing with topological

vortices, and we must have A(∞) = a(∞) = 0. These configurations have quantized

magnetic fluxes (Φ = 2π
e
m and χ = 2π

g
n), charges (Q = 2π

g
µn and G = 2π

e
µm) and

energy (E = 2gv2|χ| = 4πv2|n|).
Furthermore, we consider the case in which we asymptote to the (0, 0)-vacuum, that is,

when we have F+(∞) = F−(∞) = 0. In this case, we can generically assume that we have

F+(r) ≈ 1/r±(α+β) and F−(r) ≈ 1/r±(α−β) in the limit r → ∞, with ±α > β. We are now

dealing with non-topological vortices, and we have A(∞) ≡ −β and a(∞) ≡ −α. These

configurations do not have quantized magnetic fluxes, that now are given by Φ = 2π
e
(m+β)

and χ = 2π
g
(n + α), being α and β real numbers. Nonetheless, they are also self-dual

configurations that still saturate the energy bound, that can be written as E = 4πv2|n+α|.
We remark that the case α = 0 only makes sense if we also take β = 0, recovering therefore

the previous situation of topological vortices.

Last but not least, we comment that there is another asymptotic behavior that could be

considered. One could also analyze finite-energy configurations that asymptote to a parity-

breaking vacuum by considering F+(∞) = 0, F−(∞) = 1 or F+(∞) = 1, F−(∞) = 0,

which amounts to choosing β = α or β = −α, respectively. These will not be investigated

here, because we are only concerned with the parity-preserving scenario.

The angular momentum of these configurations is given by

J =

∫
d2x ϵijriT0j. (7.31)

In Chapter 6, one can find the following expression for the angular momentum of the

finite-energy, static, rotationally symmetric vortices:

J =
2πµ

eg
[A(0)a(0)− A(∞)a(∞)] . (7.32)

It should be noted that the model considered here does not lead to any change in the

above angular momentum expression. Here we have A(0) = m, a(0) = n and also A(∞) ≡
−β, a(∞) ≡ −α. Thus, we can rewrite this expression in the following way:

J =
2πµ

eg
(nm− αβ) =

QG

2πµ
− Q

e
β − G

g
α. (7.33)

This is in agreement with the result found in Ref.[171].
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(n,m)
(1
2
, 1
2
) (1, 0) (3

2
, 1
2
) (0, 0)

NT T NT T NT T NT

E(1/4πv2) 5.38 0.50 5.76 1.00 8.53 1.50 3.25

J(eg/2πµ) -4.78 0.25 0.81 0.00 0.75 0.75 0.75

Φ(e/2π) 1.53 0.50 -0.17 0.00 0.50 0.50 -0.23

χ(g/2π) 5.38 0.50 5.76 1.00 8.53 1.50 3.25

Table 7.1: Physical properties of topological vortices (T) and non-topological solitons
(NT) for different values of n and m.

7.3 Explicit solutions and discussion

In this section, we exhibit explicit numerical solutions for the self-duality equations.

First of all, we rewrite the differential equations using dimensionless quantities given by

x = gv r, γ = µ/gv and κ = e/g. After the dust has settled, the differential equations

are:

∇2
x lnF

2
+ = (1 + κ2)F 2

+ + (1− κ2)F 2
− − γκM̂ − γκN̂ − 2,

∇2
x lnF

2
− = (1 + κ2)F 2

− + (1− κ2)F 2
+ + γκM̂ − γκN̂ − 2,

∇2
xN̂ = −γ

(
F 2
+ + F 2

− − 2
)
+ 2κ2N̂

(
F 2
+ + F 2

−
)

+ 2κM̂
(
F 2
+ − F 2

−
)
+ γ2N̂ ,

∇2
xM̂ = −γκ

(
F 2
+ − F 2

−
)
+ 2M̂

(
F 2
+ + F 2

−
)

+ 2κN̂
(
F 2
+ − F 2

−
)
+ γ2M̂, (7.34)

The general strategy adopted here is the same one used in Chapter 6: we expand the

profile functions F+, F−, N̂ , M̂ in powers of x around the origin, using the generic nota-

tion A(x) =
∑

k Akx
k. Applying these expansions in the differential equations and using

the initial conditions, we can find constraints in the expansion coefficients. With these

expressions at hand, we can search for numerical solutions that also satisfy the asymp-

totic boundary conditions using a shooting method. In general lines, for the differential

equations and initial conditions considered here, there are 4 coefficients to be adjusted;

the others vanish or can be determined in terms of these 4.

In the following, we consider some examples with the lowest possible values for n andm

that represent each possible class of solutions. It is important to remember that ±n ≥ |m|
and that E ∝ |n + α|. The topological vortices (asymptoting to the (1, 1)-vacuum) and

non-topological solitons (asymptoting to the (0, 0)-vacuum), with its physical fields (i.e.,

electric, magnetic, g-electric and g-magnetic), for the cases (n,m) = (1
2
, 1
2
), (1, 0), (3

2
, 1
2
)

and (0, 0) are shown in Figs. 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, respectively. Their relevant

physical properties are shown in Table 7.1. The charges are not shown there, but can
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Figure 7.1: Topological vortex solution for n = m = 1/2 and its physical fields in units
of gv2 as functions of x = gv r. Upper figure: F+ and F− are shown in solid and dashed
black, N = M in blue, and A = a in red, respectively. Lower figure: In red, the magnetic
field; in blue, the electric field. Notice that in this case we have B = b and Er = er.
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Figure 7.2: Non-topological soliton for n = 1/2,m = 1/2 and its physical fields in units
of gv2, as functions of x = gv r. Upper figure: F+ and F− are shown in solid and
dashed black, N and M in solid and dashed blue, A and 0.4a in solid and dashed red,
respectively (a was rescaled to facilitate the visualization). Here we have β ≃ 1.03 and
α ≃ 4.88. Lower figure: The magnetic (solid red), g-magnetic (dashed red), electric (solid
blue) and g-electric (dashed blue) fields.

immediately be found remembering that Q = µχ and G = µΦ. Here we adopt γ = κ = 1

for simplicity, but in the end of this section we comment about the relevant changes in

the solutions when we vary these coefficients.

The topological vortices have quantized physical properties while non-topological soli-

tons do not, and the later have energy bigger than the former. The angular momentum

for topological vortices is quantized, proportional to the product of the charges and frac-

tional, exhibiting an anyonic nature. Therefore, having one of the charges equal to zero

is sufficient to have J = 0, what does not happen for the non-topological solitons. For

n = m = 0, the only solution asymptoting to the (1, 1)-vacuum is the trivial one.
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Figure 7.3: Topological vortex for n = 1,m = 0 and its physical fields in units of gv2, as
functions of x = gv r. Upper figure: F+ = F− are shown in black, N and M in solid and
dashed blue, A and a in solid and dashed red, respectively. Here we have A = M = 0.
Lower figure: In red, the g-magnetic field; in blue, the electric field. Here have B = er = 0.
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Figure 7.4: Non-topological soliton for n = 1,m = 0 and its physical fields in units of
gv2, as functions of x = gv r. Upper figure: F+ and F− are shown in solid and dashed
black, N and M in solid and dashed blue, A and 0.4a in solid and dashed red, respectively
(a was rescaled to facilitate the visualization). Here we have β ≃ −0.17 and α ≃ 4.76.
Lower figure: The magnetic (solid red), g-magnetic (dashed red), electric (solid blue),
and g-electric (dashed blue) fields.

The multiplicity of zeros of the scalar field is related to the winding number of the

vortex. Therefore, the power-law behavior of F+ and F− in Eq. (7.28) clearly indicates

that the true winding numbers are given by n + m and n − m, instead of m and n

separately, as is clearly illustrated in the explicit solutions that we found.

The most distinctive signature of a symmetry in a system is the presence of a degen-

eracy in the spectrum, hence it is reasonable to expect that the parity invariance of our

model should reproduce this effect. To this end, we state how the vortex solutions change

under parity transformations: (n,m) → (n,−m), r → r, θ → −θ − π, F± → F∓,M →
−M,N → N, β → −β, α → α, being all the others directly inferred from the self-duality
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Figure 7.5: Topological vortex for n = 3/2,m = 1/2 and its physical fields in units of
gv2, as functions of x = gv r. Upper figure: F+ and F− are shown in solid and dashed
black, N and M in solid and dashed blue, A and a in solid and dashed red, respectively.
Lower figure: The magnetic (solid red), g-magnetic (dashed red), electric (solid blue),
and g-electric (dashed blue) fields.

equations.

Considering the self-dual topological vortices, that is, that satisfy E ∝ |n|, it is imme-

diate to conclude that a given solution and its parity-transformed version have the same

energy. But the complete independence of the energy from m suggests a much greater

degeneracy. In fact, from the condition of regularity of the solutions as r → 0, we ob-

served that ±n ≥ |m|, which in turn implies that, for n > 0 (n < 0) there are 2n + 1

(2|n| + 1) solutions of the same energy. Since the energy does not depend on the sign

of n, we obtain a 2(2|n| + 1)-fold degeneracy. It is reasonable to speculate whether this

comes from a larger symmetry group. In the light of previous comments, a good candidate

would be supersymmetry or, given the structure of the degeneracy, an internal SU(2).

This investigation should be pursued elsewhere. The above discussion does not apply to

the non-topological solitons.

In the last Chapter, we studied the energies of different vortices, obtaining the following

result: M(1/2,1/2) +M(1/2,−1/2) = 2M(1/2,1/2) > M(1,0), where M(n,m) is the mass associated

with the (n,m)- topological vortex. The left-hand side of the inequality represents the

static energy of well-separated F+ and F− vortices of winding 1, while the right-hand side

is their energy when superimposed at the origin. Therefore, the inequality suggested a

possible attraction between these vortices. Now, in the self-dual model studied here, on

the other hand, 2M(1/2,1/2) = M(1,0), indicating that these vortices do not interact with

each other, allowing, for example, the existence of static multi-vortex configurations, as

it is usually the case for self-dual models.

In this section we considered γ = κ = 1 for simplicity, but the existence of solitons

here is not conditioned to this assumption, and we were able to find solutions for different

values of these coefficients. Interestingly enough, keeping κ fixed and increasing γ, we see
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Figure 7.6: Non-topological soliton for n = 3/2,m = 1/2 and its physical fields in units
of gv2, as functions of x = gv r. Upper figure: F+ and F− are shown in solid and
dashed black; N and M in solid and dashed blue; A and 0.4a in solid and dashed red,
respectively (a was rescaled to facilitate the visualization). Here we have β ≃ 0.00 and
α ≃ 7.03. Lower figure: The magnetic (solid red), g-magnetic (dashed red), electric (solid
blue) and g-electric (dashed blue) fields

that the magnetic field at the origin decreases; decreasing γ, the magnetic field increases,

cf. Fig. 7.8. Since γ ∝ µ, this suggests that it would reach a maximum value in the pure

Maxwell limit and go to zero in the pure CS limit, as it happens in the usual Maxwell-CS

case [145]. It is well-known that in the absence of a CS term, the vortices are electrically

neutral, therefore having zero electric field. In fact, we observed that in decreasing γ,

the maximum value of the electric field diminished, in accordance with what is expected.

Furthermore, keeping γ fixed and considering κ ̸= 1, we can see that for n = m = 1/2,

the electric and magnetic fields will not be degenerate anymore, cf. Fig. 7.8. In the other

examples considered, taking κ ̸= 1 does not lead to significant qualitative changes.

Finally, we also found solitons asymptoting to the parity-breaking (1, 0)- and (0, 1)-

vacua. Given the rich vacuum structure of this theory, in principle, one could also find

domain walls connecting any pair of degenerate vacua. These were not discussed here for

reasons of scope, since we focused on the parity-invariant cases.
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Figure 7.7: Non-topological soliton for n = m = 0 and its physical fields in units of gv2,
as functions of x = gv r. Upper figure: F+ and F− are shown in solid and dashed black;
N and M in solid and dashed blue; A and 0.4a in solid and dashed red, respectively
(a was rescaled to facilitate the visualization). Here we have β ≃ −0.23 e α ≃ 3.25.
Lower figure: The magnetic (solid red), g-magnetic (dashed red), electric (solid blue) and
g-electric (dashed blue) fields.
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Figure 7.8: Physical fields associated with the n = m = 1/2 topological vortex. Upper
figure: The electric (lower half-plane) and magnetic (upper half-plane) fields for κ = 1
and γ = 1 (green), 0.5 (red), 2 (blue). Lower figure: The magnetic, g-magnetic, electric
and g-electric fields, for γ = 1 and κ = 1 (green), 0.5 (red), 2 (blue). The solid lines refer
to B and Er; the dashed lines to b and er. B and b are shown in the upper half-plane; Er

and er in the lower half-plane.
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Chapter 8

Concluding remarks

We proposed a parity-invariant Maxwell-Chern-Simons U(1) × U(1) model coupled

with charged scalars in 2+1 dimensions, and investigated the existence of topological

vortices in this scenario. We described the main features of the model and discussed

general properties of topological configurations that could be present in it. Using an

appropriate ansatz and the equations of motion, we obtained the relevant differential

equations and solved them numerically. We explicitly analyzed three examples that are

representatives of the possible solutions and showed explicit vortex configurations for each

case, describing their main properties such as the electric and magnetic fields related with

each particular solution. We therefore conclude that there are vortex solutions in this

novel class of parity-invariant Maxwell-CS models. Furthermore, we investigated a self-

dual version of the parity-invariant Maxwell-CS U(1) × U(1) model coupled with scalar

matter. We obtained a Bogomol’nyi bound for the energy, whose saturation led us to

first-order self-duality equations. We exhibited explicit numerical solutions corresponding

to topological vortices and non-topological solitons, and discussed their main properties.

There are many directions to be explored, for example, it would be interesting to ana-

lyze the quantization of the CS parameter, as well as studying this model in a more general

manifold. A thorough investigation concerning the interaction between these vortices, an-

swering the question whether they attract or repel, would also be enlightening. The role

of monopole operators in this model should be understood, and the possibility of a theory

dual to the one presented here could lead to interesting developments. Furthermore, the

product structure of the angular momentum and the presence of two gauge potentials lead

us to speculate about a relation between these charged vortices and Dirac monopoles, in

the spirit of Refs. [216, 217, 218]. Therefore, it is important to consider the quantum

aspects of this model, to study the dynamics of these vortices, and to investigate the exis-

tence of dualities in this context. Interestingly enough, similar models can find many ap-

plications in condensed matter [186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 166, 168],

and it would be exciting to find a physical system accurately described by our model,

allowing it to be experimentally realized.
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It is also important to investigate the physics of the parity and time-reversal breaking

(1, 0)- and (0, 1)-vacua, and in particular, to study solitons asymptoting to them, as well

as the existence of domain walls connecting the degenerate phases of this model. The role

of parity and time-reversal in superconductors is a topic that has been attracting much

interest recently [219, 220, 221], and perhaps our model could find some use on it.

To conclude this Part, we remark that a natural development of this project is to

investigate the supersymmetric extension of our model, since self-duality and supersym-

metry are intimately related [150, 154, 155, 157]. In fact, the model considered in the

last Chapter can be shown to be the bosonic part of a N = 2 supersymmetric model,

with an entirely new fermionic part to be explored. Moreover, supersymmetry can find

applications in graphene [222, 223, 224] and can dynamically emerge in condensed matter

systems [225, 226, 227, 228]. Therefore, this could lead to physically interesting results.
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