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by Gabriel Dias CARVALHO

Quantum theory is undoubtedly a successful physics theory: it is consistent, its
mathematical formalism is well founded and the laws that govern the small scale
phenomena are, mostly, well described by quantum theory. However, in our daily
lives we do not experience quantum phenomena. Classical physics is well enough
to describe the daily world. In this thesis we use quantum information theory tools,
particularly quantum channels, to contribute to the search for an answer to the ques-
tion: what is the real role/importance of the impossibility of accessing all the degrees
of freedom of a quantum system to emergence of the effective, "classical", realm and,
parallel, the "death" of quantum features? Such impossibility is translated mathe-
matically via a coarse-graining quantum channel. We start by developing a frame-
work to investigate what kinds of dynamics emerge when one does not have full
access to the degrees of freedom of a given system. As an application of the devel-
oped general framework, we present attempts to model a quantum measurement
process: a system to be measured consisting of a qubit in a superposition interacts
with a measuring apparatus consisting of a spin coherent state (first attempt) and
a N qubit state (second attempt). Looking at the emerging, effective description of
the apparatus, we were able to recover the superposition coefficients of the system
(in both attempts). In the first attempt, we were also able to visualize the death of
quantum correlations between system and apparatus and the creation of classical
ones. In the second, we managed to observe the death of quantum coherences in the
apparatus’ effective state, obtained through the coarse-graining action. A situation
akin to decoherence, although it was not necessary to evoke any interaction with the
surrounding environment.
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Chapter 1

Introduction: history and
motivation

1.1 Late XIX (nineteenth) and early XX (twentieth) centuries:
the birth of modern physics

The nineteenth century was a period in which the humankind watched and achieved
big scientific advances and inventions, responsible for a modernization never seen
before and considerable improvement in the quality of life of the world population
[3]. To cite key aspects, we had the industrial revolution taking place initially in
Great Britain and spreading to other countries. Advances in medicine, disease pre-
vention and the understanding of human anatomy contributed to the population
growth and to a minimal health security. Urbanization intensified in several coun-
tries of the globe and slavery was greatly reduced, particularly in Brazil (1888) [3, 4].

It wasn’t different in the domain of Physics. In 1873, James Clerk Maxwell (1831-
1879) published his Treatise on Electricity and Magnetism [5], considered one of the
most significant events of that century, establishing a robust theoretical underpin-
ning to physical observations. Light, electric and magnetic effects, hitherto seen as
different phenomena, were different manifestations of electromagnetic radiation, and
were now unified in an electromagnetic theory.

The German physicist Heinrich Rudolf Hertz (1857-1894) was the one who, be-
tween 1886 and 1889, conduct a series of experiments that first detected effects of
electromagnetic radiation, giving experimental support to the theory of Maxwell
[6, 7, 8]. By the same period and working on similar experimental realizations, Hertz
discovered an effect that would be one of the responsible for the birth of one of the
most intriguing theories in physics just two decades latter, the photoelectric effect [9].

Hertz was still a child when also a German physicist called Gustav Robert Kirch-
hoff (1824-1887), among important contributions, studied the radiation emitted by
thermal bodies. Kirchhoff was the first to state the black-body radiation problem and to
recognize its importance [10].

Many put the black-body radiation problem and the photoelectric effect as the
foundation stones for the construction and development of quantum theory [11].
The physical theories established at that time were not able to explain and under-
stand what nature had shown in these experimental achievements.

Note that by the end of the nineteenth century, science was entering the domain
of small scales in length and beginning to create mechanisms that would allow to
understand the matter in its most fundamental constituents. And we can’t dissociate
such events from technological advances in experimental physics and changes in
paradigms taking place in the world. The door to a new universe of phenomena and
philosophical discussions was opening up.
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But not all the scientific community seemed to realize the revolution that was
underway. Lord Kelvin (1824-1907), mathematical physicist and engineer, important
and respected scientist of that time, said around 1900 at the British Association for
the advancement of Science something like "There is nothing new to be discovered
in physics. All that remains is more and more precise measurement" [12], which is
symbolic to represent the skepticism that the new changes would face.

1.1.1 A new way of looking at nature

Contemporary to Lord Kelvin’s commentary is the work of the German physicist
Max Planck (1858-1947) solving the black-body radiation problem [13]: how does
the intensity of the electromagnetic radiation emitted by a black-body depend on
the frequency of the radiation and the temperature of the body? The problem was
well placed and responded experimentally, but no theory could explain so far.

After more than five years working on such problem and some unsuccessful at-
tempts, Planck was able to explain the experimental results satisfactorily making use
of an idea already considered by the Austrian physicist Ludwig Eduard Boltzmann
(1844-1906) back in 1877: Boltzmann suggested that the energy levels of a physical
system could be discrete [14].

Deeply suspicious of the philosophical and physical implications of such an in-
terpretation, Planck assumed that the electromagnetic radiation could only be emit-
ted in a quantized form [13]. I.e., the energy could only be a multiple of an ele-
mentary unit: E = hν. He has considered at first this assumption purely formal,
and confessed that had not thought much about it. But this simple equation gave
the kick-start for the development of quantum theory, and the Nobel Prize to Max
Planck in 1918.

Five years latter, in 1905, the German physicist Albert Einstein (1879-1955) pub-
lished a paper explaining theoretically the photoelectric effect [15]. To do so, Einstein
postulated that all electromagnetic radiation can be divided into a finite number of
energy quanta that are localized points in space. Translated from his own words:

"According to the assumption to be contemplated here, when a light ray
is spreading from a point, the energy is not distributed continuously over
ever-increasing spaces, but consists of a finite number of ’energy quanta’
that are localized in points in space, move without dividing, and can be
absorbed or generated only as a whole".

A. Einstein, 1905.

Currently it is known that photons cannot be sharply localized points in space, as
pointed out by A. Einstein [16]. Another important contribution from the same sci-
entist was the article about heat capacity of solids [17].

I would like to make it clear that the chronological presentation of facts, ideas
and arguments that contributed to the development of quantum theory comes as an
attempt to contextualize and motivate the reader. I believe that this kind of exposure
creates a background that enriches and facilitates the understanding of our work.
Reading and trying to understand past discussions is one of my greatest sources of
learning and motivation, and I have no audacity to judge any of the arguments. Only
when necessary for the understanding of our thesis work I will make comments
expressing my understanding.

The contributions of Planck and Einstein were complementary and, together,
gave more credibility to both; but it was not free from criticism, even from the au-
thors themselves. In 1913, the Danish physicist Niels Henrik David Bohr (1885-1962)
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adapted the atomic model of the British physicist Ernest Rutherford (1871-1937) us-
ing the ideas of quantization developed by Planck and was able to explain the spec-
tral lines of the hydrogen atom [18], representing an important step in the consoli-
dation of quantum theory.

In the following years, quantum theory didn’t stop receiving important theo-
retical and experimental contributions: Stern-Gerlach experiment (1922) [19, 20, 21]
showing the quantized nature of spin; the theory of matter waves (1924) from the
French physicist Louis De Broglie (1891-1987) [22]; the development of matrix me-
chanics by Heisenberg, Born and Jordan (1926) [23, 24]; the Schrodinger’s wave
equation (1926) [25] and Dirac’s equation (1928) [26] and the uncertainty principle
by Heisenberg (1927) [27], to cite just a few.

1.2 Interpretation discussions

Although the quantum mathematical formalism was consistent and explain much
of the experimental results, its implications on the way nature would behave at the
Planck scale gave rise to different interpretations, leading to philosophical discus-
sions. Some remain to this day.

It’s difficult to isolate the different open topics and discussions, since they are
closely related to each other. For now on, I will exhibit some ideas of different cur-
rents of thought of quantum theory from the perspective of a very intriguing topic:
the quantum measurement problem [28].

We shall start by analyzing the Schrodinger equation, published in 1926 by the
Austrian physicist Erwin Schrodinger (1887-1961) [25]:

ih̄
∂

∂t
|Ψ(t)〉 = H |Ψ(t)〉 , (1.1)

where H is the Hamiltonian operator which dictates the deterministic temporal evo-
lution of the state vector of the system |Ψ(t)〉. Since we have here a first order lin-
ear differential equation and a linear Hilbert state space, if |Ψa(t)〉 and |Ψb(t)〉 are
solutions of 1.1, any linear combination of both, for example |Ψc(t)〉 = α |Ψa(t)〉+
β |Ψb(t)〉 also is. The probability for the system to be found in state |Ψa(t)〉 or |Ψb(t)〉
after a measurement procedure is proportional to |α|2 and |β|2 (Born’s rule), respec-
tively.

This is one of the most fundamental and revolutionary principles in quantum
mechanics, and well known these days as the quantum superposition principle. Until
the time of Schrodinger’s wave equation article, no one had never heard about some-
thing similar in physics. It was known from classical mechanics the superposition of
waves that propagate in material media, for instance water waves, or the superpo-
sition of forces acting in a body, but in the way Schrodinger’s equation suggested it
sounded very strange.

To a certain extent, the conclusions that we can draw about nature’s intrinsic be-
havior looking at the quantum superposition principle are a matter of interpretation.
During the decade of 1920 a very strong way of thinking on the meaning of quantum
mechanics, advocated by illustrious scientists as Niels Bohr and Werner Heisenberg,
became known as the Copenhagen interpretation.

According to this group of scientists from the University of Copenhagen, while
an observable of a physical system is not measured, it cannot be said that the system
is in a well-defined eigenstate of the observable, but in a superposition of them. The
act of measuring would break the superposition state leading to the reduction to
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only one possible state after the measurement. This phenomenon is called the wave
function collapse. Everything that quantum mechanics can predict is the probability
that a measurement of a specific observable produce a specific result. In other words,
once written the state vector of the system on the basis of eigenstates of an observable
A, it would remain in a superposition until it interacts with, or be observed by the
external world.

In 1935, A. Einstein, B. Podolsky and N. Rosen, working together at Princeton,
published a paper [29] where they argue that the description of reality as given by
the wave function is not complete. Consequently, according to the authors, the con-
cepts of the quantum theory may be said to not be satisfactory. They used the follow-
ing reality criterion: "If, without in any way disturbing the system, we can predict
with certainty the value of a physical quantity, then there exists an element of phys-
ical reality corresponding to this physical quantity".

Lets understand the key aspect which led them to this conclusion. Considering
two particles that interact for a finite period of time and are then separated, they
expand the total wave function of the system in a series of orthogonal functions in
two different ways:

Ψ(x1, x2) =
∞

∑
n=1

ψn(x2)un(x1) or Ψ(x1, x2) =
∞

∑
s=1

φs(x2)vs(x1), (1.2)

where the functions ψn(x2) and φs(x2) are eigenfunctions of momentum and posi-
tion operators for the particle 2, respectively, and the functions un(x1) and vs(x1) are
eigenfunctions of some observable A and B for the particle 1, respectively.

Now, using the left total wave function in equation 1.2, if it were to measure the
observable A for the first particle, it would be possible to gain information about the
momentum of particle 2 without disturbing it. On the other hand, using the right
total wave function in equation 1.2, if it were to measure the observable B for the
first particle, it would be possible to gain information about the position of particle
2, again without disturbing it. But quantum theory says that these two quantities
(momentum and position of particle 2) cannot have simultaneously reality. Then, the
theory would not provide a complete description of the physical reality, according
to the authors.

The thought experiment in the EPR paper shows strange consequences of the
quantum superposition principle and the collapse of the wave function, inducing
them to question the completeness of quantum theory. The theory seemed to be cor-
rect in the sense of its concordance with experimental results, but from the authors’
point of view it wasn’t giving a satisfactory description of reality. It is interesting to
note here the beginning of the debates involving the concepts of reality, locality and
entanglement, although the latter wasn’t well defined at the time.

Inspired by the EPR article, also in 1935, Schrodinger published his famous cat
thought experiment paper [30], showing how absurd he found the Copenhagen
interpretation about the quantum superposition principle, and contributing to the
good discussions that took place in those years.

The situation is quite simple. Imagine a cat inside a box with a glass tube with
poison. Inside the box there is also a device that with certain probability causes the
glass to break, leading to the death of the cat. Naturally, there is some nonzero prob-
ability of the glass not to break, and the cat remain alive. According to Schrodinger,
the Copenhagen interpretation implies that, as long as one does not open the box,
the cat remains both dead and alive. It wasn’t his idea to defend the assumption that
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a cat could really exist in such superposition, but to show how absurd the current
interpretations could be when extrapolated to the macro-world.

Schrodinger’s cat paper is an evincive of concern related to the coverage limits
of quantum theory and its applications and consequences when extrapolated to the
macro-world, the world that we experience in our daily lives. His thought experi-
ment is used up to now in attempts of understanding alternative interpretations of
quantum theory, their weaknesses, and is often evoked in discussions of the mea-
surement problem and the quantum-classical transition.

The main motivation of all the research done involving this thesis is to gain in-
sight, understand better and give some contribution to the discussion of the quantum-
classical transition from the perspective of the quantum measurement problem, study-
ing emerging dynamics from coarse-grained quantum systems and trying to model
a measurement process.

Despite of the strangeness pointed out by Schrodinger, I would like to present
some questions regarding the measurement process and collapse of wave function,
taking advantage of the hook to introduce my understanding regarding some inter-
pretations of the meaning of quantum theory mathematical formalism.

1.2.1 Measurements in quantum theory

Despite the strange and counter-intuitive implications of the superposition princi-
ple, its mathematical formulation is constantly tested and able to explain the exper-
imental evidences. The task was to reconcile the greatness of states’ possibilities at
the underlying quantum level, guaranteed by the hugeness of Hilbert space, to our
observations of just a few and well defined macroscopic classical states. Assuming
that quantum mechanics talks about reality, why does the world seem classical to
us despite the quantum nature of its fundamental constituents and the possibility of
arbitrary superpositions at that level?

The diffraction experiment with electrons performed by Davisson and Germer
in 1927 [31], supporting the wave-particle duality, kindled the debate about the fun-
damental importance of understanding the role of the experimentalist/observer, or
in other words the interaction between the system to be measured and the world
around it, in order to explain satisfactorily the acquired results.

The first to model a generic measurement process was John Von Neumann (1903-
1957) in his work Mathematical Foundations of Quantum Mechanics (1932) [32], origi-
nally published in German. Von Neumann puts as a fundamental requirement of
the scientific point of view: it must be possible to describe the subjective perception
of the observer (what he call "extra-physical process") as if it were in reality in the
physical world.

Suppose we would like to measure some property of a system, for example
length or temperature, using a measuring apparatus. After the system-apparatus
interaction, the observer must perceive the response of the measuring device to gain
information about the system. One can include as the apparatus for example the
measuring device up to the retina of the observer, or even up to the brain. But, at
some point (and one is free to choose this boundary), one end up with "and it is
perceived by the observer".

Accordingly, when modelling a measurement process we must divide the world
into two parts, the observed system and the observer. In modelling the physical
processes taking place on the first part, one can be arbitrarily precise. However, this
is not true for the second. The boundary between them is arbitrary and can be put as
deep as desired, for example inside the observer body, but it must exist in order to
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have a model for a measurement process. The point is that in an experiment we can
only say that an observer made a subjective observation, and never that a physical
quantity has a certain value.

Following this thought, Von Neumann works on two models of measurements:
premeasurement without detection and measurement with irreversible detection. In
both, treating the apparatus as a quantum object. Suppose we have a system to be
measured S and a measurement apparatus A initially in states |ΨS〉 = ∑n cn |ψn〉 and
|ΨA〉 = |a0〉, respectively. They interact with each other via a unitary evolution U:

|ΨS〉 |ΨA〉 = ∑
n

cn |ψn〉 |a0〉 U−→∑
n

cn |ψn〉 |an〉 , (1.3)

where the vectors |an〉 are pointer states, corresponding to macroscopic and distin-
guishable positions of the detector’s pointer, each one related to the outcome of a
measurement of the system in state |ψn〉.

The evolution process is attributed as premeasurement. Calculating the reduced
density matrix for the system we could see that it is left in an ensemble of possible
states ∑n |cn|2|ψn〉〈ψn|, each one with probability |cn|2. As the name suggests, this
process does not suffice to conclude that a measurement has been finished. There-
fore, we need an additional physical process, for example some collapse mechanism,
to make it clear how to account for the definite pointer positions that are perceived
in a measurement.

A natural question is: why do we always perceive the pointer in a well defined
position, representing a well defined apparatus state |an〉? This is one of the aspects
that compose the quantum measurement problem, the problem of definite outcomes:
what selects a specific well defined outcome? The second aspect is the problem of the
preferred basis: after the system-apparatus interaction, the total final state |ΨSA(t)〉
can be written as a linear combination of basis’ elements in different ways, depend-
ing on the basis chosen. That is, the expansion of the total final state is not unique.
Consequently, the measured observable is not uniquely defined.

Now we can see the real importance in understanding the quantum measure-
ment problem, or else quantum theory will not be complete. Understanding how to
perform measurements will bring to science new physics, predictions to be tested. It
is more than a matter of interpreting the mathematical formalism.

On the light of Copenhagen interpretation, the world is divided in two classes of
systems: the underlying, small, world where the superposition principle works, and
the macro, daily-life world, where the superposition principle isn’t observed. The
measurement consists in interacting some system which can be applied the super-
position principle with one system which it cannot. In such an interpretation, the
random collapse has a central role. But there are other interpretations of quantum
theory that try to elucidate the measurement problem each in its own way. Lets start
with the so called many-worlds interpretation [33, 34].

In some many-worlds formalism there is no distinction between systems in which
the superposition principle holds or doesn’t. It is universal. All the possible out-
comes of a measurement actually happen; there is no collapse as understood by
Copenhagen interpretation. Everything happen and is happening right now, but in
different worlds. And we are not aware of all, but just one, the one which we live,
experience.

Notice that the observer has a active role here, it is the one who continuously
breaks the superposition of the state vector of the system, making the experience
shows the result that it actually shows. It feels like a transfer of responsibility from
the collapse of the wave function, the interaction, to the observer. The feeling is as
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if the problem persists. Another important point is that the occurrence of all possi-
ble outcomes of a measurement together with the determinism of the Schrodinger’s
equation convert quantum mechanics in a fully deterministic theory.

Applied to the Schrodinger’s cat thought experiment, both dead and alive cat
still persist after the box is open. The initial situation with one observer and a dead
and alive cat inside a box split in two new configurations: an observer looking at a
dead cat and an observer looking at an alive cat, but there is no communication or
interaction between the two. If we are the observer, however, we just experience one
of the possibilities.

In his 1951 paper, David Bohm (1917-1992) [35, 36] suggested an interpretation of
quantum theory in terms of what he called "hidden" variables. Bohm highlights that
the usual quantum theory interpretation, or orthodox Copenhagen interpretation,
is based on two mutually consistent assumptions that cannot be verifiable if true.
They are: 1. The wave function with its probability interpretation determines the
most complete possible specification of the state of an individual system; 2. The pro-
cess of transfer of a single quantum from observed system to measuring apparatus
is inherently unpredictable, uncontrollable, and not analyzable. To avoid assump-
tions that cannot be tested, he proposes to study the consequences of postulates that
would contradict assumptions 1 and 2, and suggests a new interpretation.

In Bohmian mechanics, a wave function of a quantum system still evolves ac-
cording to the Schrodinger’s equation, but it only provides a partial description of
the system. It is necessary to specify the actual positions of the particles that com-
pose the system. Such positions evolves according to an equation which expresses
the velocities of the particles in terms of the wave function. Therefore, the config-
uration of a system of particles evolves via a deterministic trajectory drawn by the
wave function.

Believing that the wave function does not provide a complete description of
physical reality, as posed in the conclusion of the EPR paper, in 1949 A. Einstein,
when questioned about a theory which would give a more complete description of
physical reality, remarked [37]: "the statistical quantum theory would...take an ap-
proximately analogous position to the statistical mechanics within the framework of
classical mechanics". Bohmian mechanics may fit this position. Indeed, Bohm thanks
Einstein for stimulating discussions in the acknowledgments of his 1951 paper.

But, how does Bohmian mechanics justify the wave function collapse? What the
theory tells us about a measurement process? Those questions are answered in the
second part of his 1951 paper [36].

The procedure is as follows: in a measurement process we have a system to be
measured and an apparatus, which interact with each other. After the interaction,
correlations are created between the both in such a way that each state of the ob-
served system is associated with a range of states in the apparatus. The error, uncer-
tainty in the measurement is related with a lack of definition in these correlations.

We have then what Bohm calls an impulsive measurement, i.e., a very strong inter-
action occurring in a short time interval. This is sufficient to allow neglect the system
and apparatus Hamiltonian, leaving as the only relevant contribution the interaction
Hamiltonian HI .

With the objective of measuring an generic observable O in a system of particles
S we must specify its coordinates positions ~x and also the relevant coordinates y
concerning the apparatus. In order to study a concrete example, Bohm considered
as the interaction Hamiltonian HI = cOpy, with c constant and py the momentum
conjugate to y.
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A key aspect of Bohmian mechanics is the role of the wave function, here called
the field Ψ. In this example it is described by a function of ~x and y. The motion
of a representative point (~x, y) in its four-dimensional space, also called the config-
uration space is dictated by forces produced by the field Ψ. How to find Ψ(~x, y, t)?
Schrodinger’s wave equation.

Making the assumption of independence of system and apparatus just before
the interaction and writing Ψ(~x, y, 0) = g0(y)∑q cqψq(~x), with g0 a packet centred in
y = 0 with width ∆y; ψq(~x) eigenfunctions of the observable O with eigenvalues q;
and cq constants, he arrived at the following equation for the field [36] at time t:

Ψ(~x, y, t) = ∑
q

cqψq(~x)g(y− cqt). (1.4)

As shown in equation 1.4, the interaction created correlations between the system
and apparatus, visible through the presence of q in the argument of g. What does
it really mean? Notice that the center of the qth packet in y space is at y = ctq, and
consequently the separation of centers of adjacent packets is δy = ctδq, dependent
on the product ct. In this expression is highlighted the importance of intensity and
time duration of the interaction.

During the interaction between S and the apparatus, the wave function Ψ(~x, y, t)
becomes very complicated. Eventually, if the interaction lasts long enough, packets
g(y− cqt) corresponding to different values of q will cease to overlap in y direction.
If we have a sufficient big product ct, the adjacent packets separation will be greater
than the packets width ∆y, being large enough to be classically describable.

Once coordinate y, corresponding to the apparatus, is in a region of a specific
packet, it will remain within thereafter, since in the intermediate regions the proba-
bility density |Ψ(~x, y, t)|2 is almost zero. In other words, after long enough the points
(~x, y) will stay in a region of configuration space corresponding to a specific, now
fixed, q. This specific packet will determine the result of the measurement, obtained
by the experimentalist when looking at the apparatus. Finally, we can replace the
full wave function in equation 1.4 by a new normalized one:

Ψ(~x, y, t) = ψq(~x)g(y− cqt), (1.5)

where q corresponds to the packet that actually contains y. In the way this example
was built, actually there isn’t a quantum measurement problem, and we did not
need to make use of the collapse concept, as in the orthodox interpretation.

We still have to understand what is the probability of obtaining a specific mea-
surement outcome q. According to Born’s rule, it must be |cq|2. To obtain such
probability, we have to integrate the probability density |Ψq(x, y)|2 over all possible
values of x and y near the qth packet.

Ψq(x, y) = cqψq(x)g(y− cqt); (1.6)

⇒
∫

x,y
|Ψq(x, y)|2dxdy = |cq|2

∫
x
|ψq(x)|2dx

∫
y
|g(y− cqt)|2dy = |cq|2, (1.7)

since g(y− cqt) and ψq(x) are normalized. It is just exactly the expected result.
Back to Schrodinger’s cat example, but now on the light of Bohmian interpreta-

tion. Besides the wave functions corresponding to the dead cat ψdead and to the alive
cat ψalive, it is also necessary to specify the position of the constituents in the con-
figuration space, which we can denote by Q. As in the previous example, after the
interaction, Q is either in the domain where ψdead is nonzero or in the domain where
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ψalive is nonzero. These two regions no longer overlap. So the cat is either dead or
alive, and never both, as the orthodox interpretation says. To actually know the cat
state we have to make the measurement, i.e., open the box.

Despite these interesting examples, Bohmian interpretation is not unanimity within
the scientific community, in particular when discussing the classical limit of Bohmian
trajectories [38, 39, 40, 41]. Before going into the Decoherence approach, a popular
theory to elucidate the quantum-classical transition and the quantum measurement
problem, I would like to comment on a thought experiment posed by the Hungarian
physicist Eugene Wigner (1902-1995) in 1961 that is intimately related to the mea-
surement problem and Schrodinger’s cat: Wigner’s friend [42].

The thought experiment is about two friends, one inside (Wigner’s friend) and
the other outside (Wigner) of a sealed laboratory. Wigner is observing his friend
making a quantum measurement in a physical system. Following quantum theory
formalism, the observer and the super-observer (outside the lab) formulate a state-
ment about the state of the measured system after the measurement. Nevertheless,
depending on the interpretation the statements of the friends can contradict each
other.

In his original work, Wigner propose the experiment to support his view that
consciousness is necessary to complete the quantum measurement process. Sup-
pose the friend has a system S inside the laboratory. The system is initially in a
superposition state, c0 |0〉 + c1 |1〉. Then with probability |c0|2 the friend will mea-
sure |0〉 and with probability |c1|2 he will measure |1〉. From the friend’s point of
view, the system will be or in the state |0〉S or in the state |1〉S.

Wigner, outside the isolated lab, models the joint state system + friend, S ⊗ F.
From his point of view, with probability |c0|2 his friend will measure |0〉S, and will
be in state |0〉F, and with probability |c1|2 his friend will measure |1〉S, and will be
in state |1〉F. Therefore, in Wigner’s perspective, the total state is c0 |0〉S ⊗ |0〉F +
c1 |1〉S ⊗ |1〉F.

At the end we have Wigner assigning a superposition state to the total system
and his friend experiencing a collapsed state. This is the usual, Copenhagen inter-
pretation. In the light of many-words for example, there are many copies of Wigner’s
friend in different words, each one experiencing one possibility. For Wigner himself,
after asking his friend about the acquired information and being conscious of his an-
swer, the superposition is broken. Wigner’s point of view opens the door to a new
universe of discussions and possibilities regarding the necessity in using quantum
theory to understanding complex aspects of life, consciousness and our perception
of reality.

The discussions about interpretations of quantum theory concerning the quan-
tum measurement problem, and more broadly the quantum-classical transition, are
stimulating and remain until this day; not only involving pure science, but attract-
ing researchers that work on practical problems, such as quantum engineering [43].
Even though not able to give all the expected answers nor immune to criticisms,
the decoherence approach has fundamental importance in the debate, besides being a
popular approach to explain the emergence of classicality from the quantum world
[44, 39].

1.3 Decoherence approach

Objectively speaking, decoherence is the demolition of quantum coherence via inter-
action with the surrounding environment. In other words, environment can destroy
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coherence. In fact, the familiar classical states of our daily experience are rare when
compared to the huge number of possibilities allowed by the vastness of the Hilbert
space and the superposition principle.

Imagining a quantum system and its corresponding possible states placed in con-
tact with the external environment, not all quantum superpositions suffer the same
consequences. There will be a preferred set of states that are singled out by the inter-
action with the environment, the so called pointer states, while their superpositions
loose phase coherence (decohere).

This nomenclature, introduced by the polish physicist W. H. Zurek in 1981, arose
from the context of quantum measurements [45]. The pointer states are associated
with the pointer positions in a measurement apparatus. They are stable and remain
correlated with the outcome of the measurement device after the environment in-
teraction. This selection process of preferred states by the environment is called
environment-induced superselection, or purely einselection [46].

Therefore, the monitoring of a quantum system in a superposition by the envi-
ronment induces two phenomena, decoherence and einselection. Namely, the loss
of quantum coherence and the selection of a set of preferred states associated with
the observables monitored by the environment. The classical domain of the selected
states designates the result of the two processes.

Although both may occur simultaneously with classical processes, for instance
dissipation, decoherence and einselection are quantum phenomena 1. Note that in
classical physics one can always, in principle, make a measurement without disturb-
ing the system. On the other hand, in quantum mechanics the act of measuring itself
poses serious risks of redefinition in the state of the system.

As in both theoretical and experimental physics the systems of interests are mostly
"isolated", the idea of emergence of classicality and loss of quantum coherence by
just opening the sealed box and allowing the interaction with the environment is
recent [47, 45, 46] and related with two aspects. First, it is possible and plausible to
associate elements of reality with measurements outcomes; second, when a system
interacts with its surrounding environment, transfer of information usually occurs.

To introduce the mathematical formalism of decoherence, lets reconsider the Von
Neumann model for quantum measurements with the environment E included. We
have then three parts of our composite system: the system to be measured S, the
apparatus A and the environment E.

As in equation 1.3, initially |ΨS〉 = ∑n cn |ψn〉, |ΨA〉 = |a0〉 and |ΨE〉 = |e0〉. The
whole system unitarily evolves as following:

|ΨS〉 |ΨA〉 |ΨE〉 =
(

∑
n

cn |ψn〉
)
|a0〉 |e0〉 →

(
∑
n

cn |ψn〉 |an〉
)
|e0〉 →∑

n
|ψn〉 |an〉 |en〉 ,

(1.8)
where the environment states |en〉 are each one associated with the corresponding
pointer state of the apparatus |an〉. Note that before the last step the observable of
the system which will be ultimately recorded by the apparatus is not well defined.
Only the interaction, generating transfer of information and correlations between
apparatus-environment, remove the ambiguity in the definition of the recorded ob-
servable.

1Interesting questions to think about: at the quantum level, what does dissipation mean? What is
the mechanism that makes us perceive it as dissipation?
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We can assume that the environment is interacting predominantly with the appa-
ratus, usually macroscopic, and in some situations with the system, usually micro-
scopic, but the focus of attention is on the apparatus. The evolution process repre-
sented in equation 1.8 occurs as follows: the system-apparatus interaction dynamics
creates stable quantum correlations between them, which is responsible for record-
ing information about the system in the apparatus; such information can be mea-
sured by the apparatus interacting with the environment. The states |an〉 are then
the robust preferred states superselected by the environment.

Before proceeding it is worth mention the following caveat: for two subsystems S
and A a diagonal decomposition of the form ∑n cn |ψn〉 |an〉 is always possible. How-
ever, there is no Schmidt decomposition in the case of three or more subsystems.
Therefore, in the case of S, A and E, a decomposition of the form ∑n cn |ψn〉 |an〉 |en〉
is not possible. Thus, the Hamiltonian which dictates the evolution(

∑
n

cn |ψn〉 |an〉
)
|e0〉 →∑

n
cn |ψn〉 |an〉 |en〉 (1.9)

must have its eigenstates as direct-product states [48, 45, 46].
The interaction with the environment also cannot disturb the quantum correla-

tions between the system state |ψn〉 and the corresponding apparatus state |an〉. In
a realistic measurement process this is really difficult to happen. In fact, this idea of
a robust apparatus, in the sense of indicating the state of the system, involves the
definition of a measurement device. Therefore, einselection applied to the Von Neu-
mann scheme gives an intuition of why measurement devices seem to be designed
to measure just a specific physical observable.

Suppose now a situation in which we don’t have a measurement apparatus, but
only a system S and an environment E evolving respectively by Hamiltonian HS and
HE and interacting via Hint. How can we determine the pointer states of the system,
i. e., the set of states that are most robust under the influence of the environment?

In a larger number of relevant cases we have the interaction so strong that the
Hamiltonian Hint dominates the composite evolution. In other words, the intrinsic
evolution of system and environment represented by HS and HE are insignificant
when compared to the evolution induced by the interaction. Then, the total Hamil-
tonian can be approximated by just the interaction Hamiltonian Hint.

Our objective now is to find the states |ψn〉 that are robust under the influence
of the interaction. Namely, the states |ψn〉 such that the composite state system-
environment, initially |ψn〉 |e0〉 at t = 0, remains in the product form |ψn〉 |en〉 for all
t > 0. Mathematically speaking, we need that

Uint |ψn〉 |e0〉 = e−iHintt |ψn〉 |e0〉 = |ψn〉 |en〉 , (1.10)

where the time dependence of |en〉 is implicit and h̄ = 1.
Looking at equation 1.10 is enough to infer that the pointer states |ψn〉 will be

given by the eigenstates of the part of the Hamiltonian Hint related to the Hilbert
space of the system [45]. The states |ψn〉 will be stationary under the action of Hint.
The approximation of the total Hamiltonian by only its interaction term is usually
called the quantum-measurement limit [44]. In this context, we can also construct the
pointer observables OS = ∑n ψn|ψn〉〈ψn|; it is straightforward to see that [OS, Hint] = 0.

Lets consider now a more concrete and didactic example, with |ΨS〉 = ∑n cn |xn〉
and the environment initially in the sate |e0〉. The interaction Hamiltonian is given
by Hint = x⊗ E, where x and E are operators acting on the Hilbert spaces associated
with S and E, respectively. The evolution will yield
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e−iHintt ∑
n

cn |xn〉 |e0〉 = ∑
n

cn |xn〉 e−ixnEt |e0〉 = ∑
n

cn |xn〉 |exn〉 . (1.11)

Evaluating the total system-environment density matrix ρSE,

ρSE =
(

∑
n

cn |xn〉 |exn〉
)

∑
m

c∗m 〈xm| 〈exm | = ∑
n,m

cnc∗m|xn 〉〈 xm| ⊗ |exn 〉〈 exm |. (1.12)

As we don’t have access to the environment degrees of freedom, we must look to
the reduced density matrix of the system ρS, obtained tracing out E: ρS = TrE[ρSE].
We will leave the global level of description to go to the local level, of the system.
Ending up with

ρS = ∑
n,m

cnc∗m|xn 〉〈 xm|〈exn |exm〉. (1.13)

But 〈exn |exm〉 = 〈e0| eixnE†te−ixmEt |e0〉, and 〈e0|e0〉 = 1. Then, if xn = xm, 〈exn |exm〉 =
1, and if xn 6= xm, 〈exn |exm〉 ∝ e

−t
τd , where τd is a characteristic decoherence timescale,

which can be evaluated using values of the parameters in each model. The system
reduced density matrix is then

ρS = ∑
n
|cn|2|xn〉〈xn|+ ∑

n 6=m
cnc∗m C e

−t
τd , (1.14)

with C constant. The first factor of two in the right hand side includes the diagonal
terms and can be seen as a mixture of pointer states, while the second includes those
off-diagonal, the coherences. So, if we look at the composite system locally, just
to the system without environment, after a sufficiently long time interacting it will
decohere. The characteristic timescale is particular for each model [49, 50].

The number of possible different situations involving the energy scales of the
Hamiltonians HS, HE and Hint is enormous. For instance, one can have the situation
in which the environment is slow and the Hamiltonian HS dictates the evolution
of the system. Such limit is the quantum limit of decoherence. The pointer states will
be the energy eigenstates of HS. There is also the situation in which HS and Hint
contribute in equal strengths for the evolution, called the intermediate regime. In all
of them, it is valid the rule that the pointer states are the most robust under the
evolution generated by the total Hamiltonian.

1.3.1 Quantum Darwinism

Until now, we have focused our observations at the level of the system. We did not
mention the observer nor his interaction with any of the subsystems S, A or E; the
environment was considered just a monitoring agent. Precisely because of this last
fact, information is encoded in the environment, which can be used as a resource for
indirect collection of information about the system by the observer.

Indeed, analyzing measuring experiments, in some cases the observer collects
information about the system looking at the environment that had interacted with
it. For instance, in our daily-life we are constantly measuring the systems through
the environment: the act of "seeing" an object consists of detecting the photons (light)
that are scattered around the object.

Still in our daily-life example, two observers could make the measurement (act
of "seeing" an object) as many times as they want, and their results would always
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agree. This is a feature of the classical physics domain. Classical states are robust,
usually don’t get disturbed by the act of measuring and can be observed by a multi-
ple number of observers, contributing to the notion of existence of a classical reality.

However, making measurements in a closed quantum system, in general, dis-
turbs the state of the system. A natural question appears: how does the classical
reality that we perceive emerges from the quantum realm? Notice that the deco-
herence formalism and the environment-induced superselection of preferred states
are not sufficient to answer the above question, since they don’t give us an effective
(classical) description for the apparatus nor for the system. On the other hand, con-
tribute to the understanding of why only a subset of possible states in the Hilbert
space is observable.

Within this new perspective of the role of the environment, it is possible to gain
information about a system without disturbing it, but investigating the environment
that it has previously interacted with. We have now the environment as a witness of
the system’s state, or a communication channel between system and observer. The
study of which kind of information about the system can be stored and proliferated
by the environment in a stable manner is the quantum Darwinism, a recent research
area that has developed quite quickly in the last decades [51, 52, 53].

Some groups [54, 55] claim that they have found that the system observable that
can be most completely and redundantly (this is important for more than one ob-
server to obtain the same result) stored in distinct subsets of the environment agrees
with the pointer observable selected by the system-environment interaction.

Then, the einselected states would have their importance increased. Besides be-
ing the states less disturbed by the interaction with the environment, they also would
be the states most easily found when probing environmental degrees of freedom
without disturbing the system. As the same information about the pointer observ-
ables is stored in different parts of the surrounding environment, different observers
could probe such pieces and agree on their findings [53]. In this sense, therefore, it
would be possible to consider an effectively objective existence of the pointer states.

Now let’s get into some mathematical aspects of quantum Darwinism. The den-
sity matrix approach is intuitive here. Remember that in decoherence the focus was
on the system, to determine what states survive information leaks to the environ-
ment E. In quantum Darwinism the search is for information about the system
that can be found out from fragments of E, considered to be initially in the state

|ΨE〉 =
∣∣∣e(1)0

〉
⊗
∣∣∣e(2)0

〉
⊗
∣∣∣e(3)0

〉
..⊗

∣∣∣e(N )
0

〉
, with N the number of subsystems.

Technically speaking, while in decoherence the relevant quantity was the re-
duced density matrix of the system, now it will be the reduced density matrix of
S including a fragment F of the environment, which in turn may include several
subsystems, since we are looking for correlations between such pieces and the sys-
tem:

ρSF = TrE−F[ρSE], (1.15)

with E − F meaning tracing out the environment fragment that is not included in
F. The amount of information encoded in F about S, or the degree of correla-
tion between them, is generally quantified via the mutual information I(S, F) =
HS +HF −HS,F, defined as the difference between the subsystems entropies (Hi’s)
separately and jointly.

Consider two states in S, |ψ1〉 and |ψ2〉, and their multiple copies printed in sub-
systems of E without disturbing them. Knowing the existence of the no-cloning
theorem, the first question is: is this even possible? Suppose we have a superposi-
tion state |Ψ〉 = α |0〉+ β |1〉 with unknown complex coefficients. To make a copy
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of |Ψ〉we take a state |e〉 and evolve the product state |Ψ〉 |e〉 unitarily, assuming the
existence of such operation. Then,

U(|Ψ〉 |e〉)→ (α |0〉+ β |1〉)(α |0〉+ β |1〉) = α2 |00〉+ αβ |01〉+ βα |10〉+ β2 |11〉
(1.16)

But by linearity of quantum mechanics,

U(|Ψ〉 |e〉) = Uα |0〉 |e〉+ Uβ |1〉 |e〉 → α |00〉+ β |11〉 . (1.17)

Since equations 1.16 and 1.17 are not equal U can not act as a general copy opera-
tion. This is the no-cloning theorem [56]. Now, in the quantum Darwinism context,
the states imprinted in environment fragments come from the decomposition of a
system state |ΨS〉 on a basis of a specific observable. This escapes the theorem since
in this situation |ΨS〉 isn’t an unknown state.

But how does this copy actually takes place? Back to the states |ψ1〉 and |ψ2〉 in
S, they will be imprinted in the environment: |ψ1〉 |e0〉 → |ψ1〉 |e1〉 and |ψ2〉 |e0〉 →
|ψ2〉 |e2〉. As this is a unitary process, it is true that

〈ψ1|ψ2〉〈e0|e0〉 = 〈ψ1|ψ2〉〈e1|e2〉, (1.18)

with 〈e0|e0〉 = 1. For the above equation to be true we need to have 〈e1|e2〉 = 1 or
〈ψ1|ψ2〉 = 0. If the first is true, the states will not be printed. If the second true,
〈e1|e2〉 is arbitrary and even a perfect copy 〈e1|e2〉 = 0 is allowed.

Consequently, multiple copies of |e1〉 and |e2〉, perfect or not, can be imprinted on
fragments of E. And more, only sets of orthogonal states can be copied, explaining
the selection of a set of possible outcomes. Why pointer states are favoured? First,
they survive copying. Second, only the pointer obervables can leave a redundant
and robust imprint on E (mathematical proof in reference [57]). 2

Thereby, having system S and environment E initially in states |ΨS〉 = ∑n cn |ψn〉,
with {|ψn〉} eigenstates of the observable OS; and |ΨE〉 =

∣∣∣e(1)0

〉
⊗
∣∣∣e(2)0

〉
⊗
∣∣∣e(3)0

〉
..,

tensor product of N subsystems, the evolution takes place:

|ΨS〉 |ΨE〉 =
(

∑
n

cn |ψn〉
)( ∣∣∣e(1)0

〉
⊗ ...

∣∣∣e(N)
0

〉 )
→∑

n
cn |ψn〉

∣∣∣e(1)n

〉
⊗
∣∣∣e(2)n

〉
⊗ ...

∣∣∣e(N)
n

〉
,

(1.19)
where many copies of |ψn〉 were imprinted on N subsystems of E. Note that in
the beginning, before the interaction, there is no correlations between system and
environment, nor between environment’s subsystems.

Calculating the reduced density matrix as written in 1.15,

ρSF = TrE−F[∑
n,m

cnc∗m |ψn〉 〈ψm| ⊗
( ∣∣∣e(1)n

〉
⊗ ...

∣∣∣e(N)
n

〉 )( 〈
e(1)m

∣∣∣⊗ ...
〈

e(N)
m

∣∣∣ )]. (1.20)

For instance, in the case of photons as the environment (probing the system to
be measured), F would represent the ones able to reach the detector, for example
of our retina, while E− F the photons that, though scattered by the system, are not
detected. Proceeding,

ρSF = ∑
n,m

cnc∗m |ψn〉 〈ψm| ⊗
∣∣∣EF

n

〉 〈
EF

m

∣∣∣ CE−F
nm , (1.21)

2The concept of redundancy is defined as the number of disjoint subsets of the environment contain-
ing almost all information about an specific observable O present in the entire environment, and hence
the maximum number of observers that can, in independent ways, find out about O in E [57].
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with∣∣∣EF
n

〉
≡
∣∣∣e(1)n

〉
⊗
∣∣∣e(2)n

〉
...
∣∣∣e(NF)

n

〉
and CE−F

nm = 〈EE−F
n |EE−F

m 〉 ≡
N

∏
k=NF+1

〈e(k)n |e(k)m 〉.

(1.22)
Assuming an interaction Hamiltonian of the form Hint = ∑k OS ⊗Ok

E, with ob-
servables OS and Ok

E acting on the system S and the environmental subsystem k,

respectively, we have OS |ψn〉 = λn |ψn〉 and
∣∣∣e(k)n

〉
= e

−itλnOk
E

h̄

∣∣∣e(k)0

〉
. Thus, similar to

the second term in equation 1.14, for n 6= m CE−F
nm will be typically very small as

time and the number of unobserved subsystems (terms in the multiplicand) increase
[57, 58]. In this limiting case, the final expression for ρSF yields:

ρSF = ∑
n
|cn|2|ψn〉〈ψn| ⊗ |EF

n〉〈EF
n | = ∑

n
|cn|2|ψn〉〈ψn| ⊗ |e(1)n 〉〈e(1)n |...⊗ |e(NF)

n 〉〈e(NF)
n |.
(1.23)

In possession of an observable acting on F, OF, which perfectly distinguish be-
tween the orthogonal states

∣∣EF
n
〉
, the state of the system after the measurement of

such an observable in F will be exactly the state of S after a direct measurement of
OS:

OF = ∑
i

aiOi ≡∑
i

ai|EF
i 〉〈EF

i | →
TrF[OiρSFOi]

Tr[ρSFOi]
=
|cn|2|ψn〉〈ψn|
|cn|2

= |ψn〉〈ψn|. (1.24)

Note that all the information about OS is given by an indirect measurement of
OF, not disturbing directly the system S, but projecting it in an eigenstate of the
observable OS. Moreover, averaging the outcomes of measurement OF, or tracing
out F in equation 1.23, the reduced density matrix of S is a mixture of eigenstates of
OS.

To finalize this simple construction, which has served to give an intuition about
the quantum Darwinism view concerning a quantum measurement process, let’s
comment on the assumptions made. We assumed that the interaction between sys-
tem and environment, initially in a product of pure states, was sufficiently strong
for the interaction Hamiltonian to dictate the evolution and that every environmen-
tal subsystem couples to the same system observable.

As the self-Hamiltonian HS of the system is disregarded, monitoring by the en-
vironment occurs in static states of the system, selecting pointer states only by the
interaction. The same behaviour is observed if HS and Hint commute. In cases where
those approximations are no longer valid, it can happen a suppression of the evo-
lution dictated by HS by the environment monitoring [57]; or the composite system
can enter in the quantum-limit discussed in section 1.3 [59], where the evolution
dictated by HS is stronger than the one dictated by the interaction, for instance.

Regarding the environment, there is a huge number of possible more compli-
cated situations: the fragments can evolve jointly or separately and interact with its
neighbours or with more distant fragments. The interaction between environment
subsystems can make them to get entangled and its reduced states mixed. Hence,
even with the environment containing all possible information about the relevant
S observable, it can become inaccessible by the observer. This is related to the as-
sumption of system and environment initially in pure states, which we know is a
rare situation in practice.

Finally, the assumption about the coupling of environmental subsystems with
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only one system observable is reasonable, since typical system-environment cou-
plings tend to depend on relative position between them. It is true, however, that
may exist different environments monitoring distinct observables. In these cases,
the dominant coupling will select one observable, and the others will be perceived
like noise.

Considerations arise regarding the relation between the preferred selected ob-
servable by the system-environment interaction and the states of the system that are
easier to infer by an observer which has only access to one subsystem of the envi-
ronment. There are researchers interested in related questions, for example to which
extent the Gaussian states, of much importance in the decoherence formalism, are
the easiest states to infer [60].

In this context, when the available and useful environmental fragments to the
observer are not contained in the set of the ones responsible for decoherence, one can
still suppose that the states of S that can have information collected via the available
fragments represent a coarse-grained version of the pointer states. In time, there
are theorems [57] that guarantee that whenever more than one observable can be
inferred redundantly from a fixed set of different fragments of E, they necessarily
correspond to a coarse-grained version of a so called maximally refined redundantly
imprinted observable.

Notice that the concept of coarse-graining here is related with the "lack of reso-
lution", or inability to access all the information desired. This is precisely one of the
key points of our work. Motivated by the measurement problem debate and with a
measurement process as study object, we discuss the dynamics of a quantum system
perceived by an observer not able to access all its details. This is the main subject of
this thesis.

To close our brief discussion about quantum Darwinism, some recent work to
illustrate the on going research: researchers are studying quantum Darwinism in
the case of mixed environments [61]; also for an object illuminated by a black body
[52]; studying the emergence of classical features and new correlation quantifiers
[53] and the importance of redundant records for consistent histories [62], to cite a
few but featured examples.

1.4 Effective dynamics

Quantum theory is undoubtedly a successful physics theory, in the sense that it is
consistent, its mathematical formalism is very well founded and the laws that gov-
ern the small scale phenomena are, mostly, well described by quantum theory. It is
our best description until the moment. However, in our daily lives we do not expe-
rience quantum phenomena. Classical physics is well enough to describe the daily
world.

As discussed in the above sections, one of the general remaining fundamental
problems in physics involves understanding how effectively classical systems and
properties around us emerge from the underlying quantum domain.

To say that this problem is general is not in vain; it is possible to study the
quantum-classical transition problem in several fronts, encompassing various re-
search topics in physics, like quantum mechanics, thermodynamics and classical
physics. We may understand our notion of "classicality" as an emergent concept, as
something that isn’t in contradiction but rather justified by the features of quantum
mechanics.
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As history shows, progress in science is closely related to technological advances.
Therefore, the old questions concerning measurement processes and the quantum-
classical transition are much more treatable. In last decades we had the revolution in
the field of experimental physics and related techniques, which has allowed for the
control of quantum systems with various degrees of freedom, for example the tech-
niques of trapping and cooling ions and atoms [63, 64]. Besides that, the evolution
of supercomputers and the development of numerical techniques and mathematical
methods and tools provided by quantum information theory reascended the search
for answers.

Thus, in this thesis we want to use quantum information theory tools, particu-
larly quantum channels, to contribute to the search for an answer to the following
question: what is the real role/importance of the impossibility of accessing all the
degrees of freedom of a quantum system to the emergence of the effective, "classi-
cal", realm and, parallel, the "death" of quantum features?

There are prominent groups working on this idea. The fact that a "large" quan-
tum system might still have pronounced quantum features - contradicting the intu-
ition of small meaning quantum and large meaning classical 3 -, if one has access to
all its degrees of freedom, was nicely shown by Prof. Časlav Brukner and his group
[66, 67]. In [66] they show that a large spin length still behaves in a quantum way if
one can measure all the possible values of the spin, say, in the z-direction. It is only
when the measurement outcomes are coarse-grained, i.e., when we cannot resolve
nearby outcomes and integrate their signal, that a classical description is obtained.

To illustrate the presence of quantum features in "large" systems, particularly en-
tanglement, already exist theoretical works on entanglement in macroscopic objects
[68, 69] and macroscopic spin ensembles [70], and experimental demonstration of
entanglement in a system of 1012 atoms [71]. More recently, Hacker et al. created
in a deterministic way entangled atom-light Schrodinger-cat states [72]. These work
support our idea of coarse-grained descriptions inducing classicality.

1.5 Thesis outline

Hereafter, the thesis is organized as follows: in chapter 2 is given an introduction
on quantum channels - the main used mathematical tool -, particularly the coarse-
graining channels. Then, it is presented our framework to study emerging dynamics
arising from coarse-grained quantum systems. The work depicted in chapter 2 is
also published in PRA:
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.96.032113.

In chapter 3 and appendix B are detailed our attempts to model a quantum mea-
surement process, involving different coarse-graining channels. It is also discussed
on the context of our model the decay of quantum correlations in presence of "strong
coarse-graining channels" - whose meaning will become clear latter. Closing the the-
sis, in chapter 4 are located the conclusions and perspectives of our work, including
possible applications.

3In fact, a physical system which is made by a large number N of constituents does not necessarily
obey the rules of classical physics [65].
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Chapter 2

Emerging dynamics arising from
coarse-grained quantum systems

Travelling in an imaginary spacecraft as a non-interacting observer and strolling be-
tween different nature’s time and length scales, we are able to experience distinct
phenomena characteristic from each visited region. Different physical theories are
then necessary in order to elucidate the wide variety of observed phenomena. More-
over, the transition between two theories used to explain physical phenomena occur-
ring in, for example, successive length scales is expected to be smooth. They must
be compatible in the transition zone.

However, this is usually not the case. Things are much more complicated. Physics
has no general answer for the question of how does a general physical description
in one scale emerge from the description in a deeper (meaning "more microscopic")
scale. How does an ensemble of atoms, molecules, electrons, with a very compli-
cated microscopic description can interact with us, in the macroscopic world, in the
form of a chair or a musical instrument? What is the number of different dynamics
that might emerge from the quantum world, since we do not have access to it in our
daily lives? More specifically, what dynamics might emerge from a fully quantum
description of a system if we are not able to resolve the system in all its details? This
is the key question of this chapter.

The impossibility in resolving all the system details is translated mathematically
via a coarse graining procedure. Different ways of coarse graining [73, 74, 75, 76] the
description of a system are often employed in order to "zoom out" from one level
and obtain an effective description. Coarse graining frequently appears in Statistical
Physics [77], and is arguably the central tool in the renormalization method initiated
by Kadanoff and Wilson [78, 79]. Nevertheless, some of these early methods are
sometimes based on not so well controlled approximations or on projections, leading
thus to ill-defined and/or probabilistic effective dynamics when applied to quantum
systems.

In order to get a well defined coarse graining procedure, we will employ quan-
tum information tools. More specifically, a coarse graining operation will be de-
scribed by a quantum channel ΛCG, giving an effective description of the system.
Rewriting chapter’s key question in a more concrete way (see figure 2.1): given a
system represented by a density matrix state ψ0 evolving by the unitary map Ut
(ψt = Ut(ψ0) = Ut(ψ0)U†

t ) what is the dynamics Γt induced by a coarse graining
ΛCG?

The theory of quantum channels, which describes the most general transforma-
tions that can be applied to a system [80, 81, 82], became well established in the
last decades [83, 84]. This was accompanied and supported by the formalization
and development of a theory for quantum correlations and by efficient descriptions
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FIGURE 2.1: Coarse graining induced dynamics. Schematic diagram rep-
resenting the different levels of description connected by a coarse graining.
Given an initial state of the system ψ0, its evolution, Ut, and a coarse graining
map ΛCG, we want to determine what is the induced dynamics Γt, and its

properties, such that Γt ◦ΛCG(ψ0) = ΛCG ◦ (Ut(ψ0)U†
t ).

of many-body quantum systems [84]. Working together with other scientists and
employing some of these tools, we tried to obtain effective descriptions of quantum
systems and their dynamics, answering the questions asked in the above paragraphs
[85].

2.1 Quantum channels

Let’s start the discussion by studying quantum channels and reviewing some of its
important properties. Consider an evolution in the Schrodinger picture of quantum
mechanics described by a map Λ : L(HD) → L(Hd), where HD and Hd are Hilbert
spaces assigned to a D-dimensional and d-dimensional quantum systems, respec-
tively, and L(Hi) the set of all linear operators acting on the Hilbert spaceHi.

If Λ describes a physically meaningful evolution, meaning that acting on density
matrices it returns a valid density matrix, it should fulfill three conditions. The first
one is linearity: for all operators ρA and ρB ∈ L(HD) and c ∈ C : Λ(cρA + ρB) =
cΛ(ρA) + Λ(ρB). It is easy to perceive the importance of such property. Suppose
two friends Alice and Bob share a bipartite pure state ψ, and Alice has a physical
device which is characterized by a non-linear map Λnl on density operators. Namely,
there exists a convex decomposition of Alice’s reduced state ψA = ∑i λiρi such that
∑i λiΛnl(ρi) 6= Λnl(∑i λiρi).

If Bob leaves his reduced state untouched and Alice applies Λnl , her state will be
given by Λnl(ψA). However, if Bob applies an instrument [80] in order to prepare
ρi on Alice’s side with probability λi, her state will be ∑i λiΛnl(ρi). By the non-
linear character of Alice’s device, she can distinguish if Bob applies in his subsystem
a linear map or not, with probability of success bigger than one half. That is, by
looking at her local system she can gain information about what Bob applied in his
reduced density matrix, implying a locality breakdown.

Aware of the importance of linearity, the second is the trace preserving condition.
The operation Λ has to map density matrices (trace one) onto density matrices, and
we must guarantee that probabilities are conserved under the channel action. Then,
for all ρ ∈ L(HD) : Tr[Λ(ρ)] = Tr[ρ].

Finally, we demand complete positivity. Suppose we have a global system com-
posed of two parts, with total Hilbert space HD ⊗Hz, so that the evolution of the
total system is described by Λ ⊗ 1z, with 1z representing the identity map in the
Hilbert space Hz. Positivity of Λ alone is not sufficient, Λ ⊗ 1z should again be a
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positive map for all dimensions z. This guarantees that even if the channel acts only
on a subsystem of the whole, states are mapped onto states.

We call quantum channel a map that fulfills the three above conditions. Quantum
channels are the most general framework in which general input-output relations
are described within quantum mechanics. One can parametrize and represent such a
channels in various ways, for example in terms of a bipartite quantum state, leading
to the state-channels duality introduced by Jamiolkowski and Choi [86, 87, 88], or
as the reduced dynamics of a larger (unitarily evolving) system as expressed by the
theorems of operator sum representation (Kraus representation), Stinespring, and
Neumark (for POVM’s) [89, 90, 91]. In our work we use Kraus and Stinespring
representations, and I’ll focus here on these two.

Let’s begin with a theorem for Kraus representation.

Theorem 1 (Kraus representation) A linear map Λ : L(HD) → L(Hd) is a quantum
channel if and only if there exists a finite set of linear operators {Ki}N

i=1, with each Ki :
HD → Hd known as a Kraus operator, such that ∀ψ ∈ L(HD):

Λ(ψ) =
N

∑
i=1

KiψK†
i with

N

∑
i=1

K†
i Ki = 1D.

This decomposition has the following properties:

1. Normalization: Λ is trace preserving iff ∑N
i=1 K†

i Ki = 1D and unital1 iff
∑N

i=1 KiK†
i = 1D.

2. Kraus rank2 r: The number of Kraus operators in a minimal representation.
In general, the number of Kraus operators is unlimited, but it is always possi-
ble to find a minimal representation; i. e., to characterize a quantum channel
Λ : L(HD) → L(Hd) with a set of Kraus operators with at most D.d elements
(maximal number in this minimal representation), as this is the number of gen-
erators for the map. So, r ≤ D.d.

If we want to find r for a given quantum channel Λ, we have to use the corre-
sponding Choi state ρΛ,

ρΛ = 1D ⊗Λ(|φ+〉〈φ+|), (2.1)

where |φ+〉 is the maximally entangled state, D × D-dimensional. The Kraus
rank r is given by the rank of matrix ρΛ ∈ L(HD ⊗Hd). That’s why r ≤ D.d.

3. Freedom: Two sets of linearly independent Kraus operators {Kj} and {K′l}
represent the same map Λ iff there is a unitary U so that Kj = ∑l UjlK′l , where
a possibly smaller set is padded with zeros.

This more general type of evolution allows for describing processes where there
is a loss of information about the system, with pure states evolving to mixed ones.
It is worth noticing that quantum channels generalize the evolution of a quantum

1In abstract algebra, a unital map is a map Λ which preserves the identity element: Λ(1) = 1.
2The rank of a matrix is the dimension of the vector space spanned by its columns, or rows. Anal-

ogously, the maximum number of independent columns, or rows. Note that the Kraus rank is related
to the quantum channel representation, and therefore it is not related, in general, with just one specific
matrix Kj.
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system, with the unitary evolution being a particular channel in which d = D and
with a single Kraus operator, namely the unitary Ut itself. The Kraus representations
of a completely positive map Λ and its dual Λ∗ are related via interchanging Kj ↔
K†

j . Moreover, Λ = Λ∗ iff there is a representation with Hermitian Kraus operators.

Notice a simple consequence of the Kraus representation Λ(ρ) = ∑r′
i KiρK†

i : we
can construct an isometry V† := ∑r′

i Ki ⊗ |i〉, with |i〉 any orthonormal basis in Cr′ , r′

at least the Kraus rank of Λ, and VV† = ∑j K†
j Kj = 1D, reflecting the trace preserving

condition. Then, the following theorem holds by construction.

Theorem 2 (Stinespring representation) Let Λ : L(HD) → L(Hd) be a completely
positive linear map. Then for every r′ ≥ r (recall that r ≤ D.d) there is a V† : CD →
Cd ⊗Cr′ such that

Λ(ρ) = Trr′ [V†ρV], ∀ρ ∈ L(HD).

V is an isometry (i.e., VV† = 1D) iff Λ is trace preserving.

PROOF: Since Λ(ρ) = ∑r′
i KiρK†

i = ∑r′
i (1d ⊗ 〈i|)V†ρV(1d ⊗ |i〉) = Trr′ [V†ρV].

On the other way,

Trr′ [V†ρV] = Trr′ [(∑r′
i Ki ⊗ |i〉)ρ(∑r′

j K†
j ⊗ 〈j|)] = Trr′ [∑r′

i,j KiρK†
j ⊗ |i〉 〈j|] = ∑i KiρK†

i .

The auxiliary space Cr′ is sometimes called in the literature as dilation space
[80]. Note that the same way in which we constructed V† from the set of Kraus
operators can be useful to obtain the latter from V† as Ki = (1d ⊗ 〈i|)V†. As r is
the smallest number of Kraus operators, it is also the smallest possible dimension
for a representation of the form shown in the theorem 2. Dilations with r′ = r are
called minimal. From the unitary freedom in the choice of Kraus operators (theorem
1) we obtain that, for minimal dilations, V† is unique up to the unitary freedom
V† → (1d ⊗U)V†.

For a good description of open quantum systems, so as to our purpose in de-
scribing coarse graining operations, and to obtain well defined equations of motion
(we intend to find them in a future work - see "Conclusions and Perspectives"), the
following operational way to describe quantum channels turn the approach simpler.

Theorem 3 ("Open-system representation") [80] Let Λ : L(HD) → L(Hd) be a com-
pletely positive and trace-preserving linear map. Then there exists an auxiliary Hilbert space
Hr, with dimension r ≤ d, and a unitary U acting onHD ⊗Hr ⊗Hd such that

Λ(ρ) = TrDr[U(ρ⊗ |0〉〈0| ⊗ |0〉〈0|)U†].

PROOF: Starting from Trr′ [V†ρV], we can choose r
′
= Dr. In this way we can embed

V into a unitary which acts on a tensor product and write V† = U(1D ⊗ |00〉〈00|) for
|00〉〈00| ∈ L(Hr)⊗L(Hd).

Why "Open-system representation" with quotation marks? A common approach
in the case of open quantum systems consists of coupling the system to an envi-
ronment, which is initially in the state |00〉〈00| for instance, let them evolve jointly
according to a unitary U and finally disregard (trace out) environmental degrees of
freedom, as one has no control over them. Here, however, the system and environ-
ment roles are unclear. As we want to allow for channels with different input-output



2.1. Quantum channels 23

FIGURE 2.2: Operational interpretation of a quantum channel. The input
and output states are depicted by density matrices ψ and ρ, respectively.

dimensions, the partial trace is taken over the auxiliary system (Hr) and also over
the factor encoding the system initial state (see figure 2.2).

Again, the representations of theorem 1 and theorem 3 are completely equivalent,
U(1D ⊗ |0〉 ⊗ |0〉) = ∑D

i=1 ∑r
j=1 |i〉 ⊗ |j〉 ⊗ Kij, with U an unitary acting on L(HD ⊗

Hr ⊗Hd). Note that the auxiliary system is necessary as to accommodate quantum
channels which require a number of Kraus operators bigger than D, or one will not
even be able to write the corresponding unitary. Indeed, for a quantum channel with
a set of Kraus operators {Ki}N

i=1, we take the dimension of Hr as r = N/D. If N is
not divisible by D, we take r as the next natural number after N

D and must find an
equivalent set of Kraus operators with Dr elements, {K′i}Dr

i=1. For instance, suppose
we have a system with D = 3 dimensions and a quantum channel with 4 Kraus
operators. We need an auxiliary basis corresponding to r = 2 (right-hand side of the
above expression) and a new set of Kraus operators with 6 elements to construct the
unitary.

Given a general introduction about quantum channels, in the next section are
presented some properties of one specific kind of them, the coarse graining channels.

2.1.1 Coarse graining channels

In our daily descriptions of the world, we only use a small fraction of the variables
needed for a complete description of the systems we interact with. Our daily per-
ception of the world are highly coarse grained. Coarse graining in classical physics
is made natural by our limited powers of observation and computation. The same is
true in quantum mechanics, but in the latter a coarse graining procedure shall be de-
scribed as a reduced description obtained by the action of a quantum channel. Roughly
speaking, descriptions are named coarse grained when some fine details of the un-
derlying model are smoothed out, or replaced by average behaviours.

A reduced description of a quantum physical system which we aren’t able to
resolve in detail is obtained by means of the action of a quantum channel ΛCG :
L(HD) → L(Hd), with D > d. After the action of ΛCG, we have the output density
matrix as an effective state of the system.

Consider the diagram represented in figure 2.3, similar to the one in figure 2.1,
extended to give a better understanding of the coarse graining action. As the reader
can see, three levels of description are considered: the lower level, which sometimes
we call "microscopic level"; the intermediate level - this one just a mathematical ab-
straction to elucidate the coarse graining action, detailed in the next paragraph; and
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FIGURE 2.3: The distinct levels and dynamics induced by the coarse grain-
ing.

the upper level, which sometimes we call "macroscopic level". It’s important to stress
that quantum mechanics is assumed to be valid in all levels, the terminology "mi-
croscopic" and "macroscopic" come to facilitate the understanding.

Assume we do not have access to all degrees of freedom of a quantum system de-
scribed by the density matrix ψ0 ∈ L(HD). Operationally, applying the coarse grain-
ing channel means: i) to couple the state |00〉〈00| to ψ0, increasing the dimension of
the system; ii) apply the coarse graining unitary U on the new total system. At this
point we have the density matrix χ0 = U(ψ0 ⊗ |00〉〈00|)U† ∈ L(HD ⊗Hr ⊗Hd).
The unitary U is responsible for the interaction between the system and the auxil-
iary states, mixing the degrees of freedom. We can divide the total system in two
parts. One part belonging to Hd and the other to HD ⊗Hr, which does not prevent
them from being correlated3. Completing the coarse graining procedure, iii) trace
out the degrees of freedom which we don’t have control over or aren’t interested in
(HD ⊗Hr), giving the effective state ρ0 ∈ L(Hd). Notice that the coarse graining
channel ΛCG can be applied at any time of the microscopic dynamics.

To proceed, it’s worth remembering the questions we want to answer: what’s the
effective/induced dynamics perceived in the "macroscopic level" Γt? What proper-
ties Γt must have such that Γt ◦ΛCG(ψ0) = ΛCG ◦ (Ut(ψ0)U†

t )? The latter condition
guarantees that if one evolves ψ0, in the microscopic level, and then apply ΛCG, one
ends with the same state ρt that would be obtained if had applied the coarse graining
in ψ0 and then evolved it via Γt.

The above construction and our framework (presented in the next section) apply
for any coarse graining quantum channel. But, to build concrete examples we need
to choose a specific coarse graining map. To motivate and justify our choice, consider
a typical optical lattice experiment [1]. In these experiments, a periodic oscillating
potential is constructed by counter-propagating light beams and individual atoms
are trapped in each potential minimum. In the deep Mott insulator regime hyperfine
levels of each atom act as a qubit, and neighbouring qubits interact with each other
via a Heisenberg-like Hamiltonian. The measurement of each atom is made via a
fluorescence technique: the atoms are shone with a laser in a way that if an atom is
in the state |1〉, lots of light is scattered; if in the state |0〉, no light is scattered. In
order to resolve the light coming from each atom, a powerful lens is necessary, and
only recently a single-atom resolution was accomplished [1].

For simplicity, lets consider the case with only two atoms. In this example, our
lens is not good enough as to resolve the light coming from each atom (figure 2.4)

3In theory of open quantum systems, they are usually related to system and environment, but this
is not the case here.
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FIGURE 2.4: Experiment illustrating the blurred detector [1].

and the amount of light coming from a single atom is sufficient to saturate our detec-
tor. In this situation, the states |01〉 and |10〉 cannot be distinguished. Besides that,
having two excitation, |11〉, or one excitation, |01〉 or |10〉, leads to the same signal.
In such conditions, to describe the experiment with two atoms an effective descrip-
tion is already enough. This experimental conditions suggest the coarse graining
presented in Table 2.1.

TABLE 2.1: Coarse graining for a blurred and saturated detector. Kraus
operators can be easily obtained by a quantum process tomography. With

the Kraus operators, one can find the corresponding unitary U.

Note that as the detector does not distinguish between the states |01〉, |10〉, and
|11〉, there can be no coherence in this subspace. To give a better intuition, consider
the following experimental perspective: a photon sent to a Mach-Zehnder interfer-
ometer. After the first 50/50 beam splitter, we have a superposition state meaning
the photon took the lower arm of the interferometer and the photon took the upper
arm. We can assign to these the states |01〉 and |10〉, respectively. Once we distin-
guish the two arms of the interferometer, we can insert a glass plate in one of them
in order to visualize interference after the second beam splitter. Decreasing the dis-
tance between the two arms, at some point we will no longer be able to place the
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plate in just one. The interference pattern will be lost.
The 1/

√
3 factors are necessary to make ΛCG trace preserving and completely

positive. These factors signals that coherences in the effective description might
decrease, but they do not necessarily vanish. This can be readily seen by evaluating
the action of ΛCG over a general two-qubits pure state |ψ〉 = ∑1

i,j=0 cij |ij〉, which
gives:

ΛCG(|ψ〉〈ψ|) =
(

|c00|2 c00
c∗01+c∗10+c∗11√

3
c∗00

c01+c10+c11√
3

|c01|2 + |c10|2 + |c11|2

)
.

This effective state accounts for the statistics of all possible measurements that
can be carried out by the detector here modelled. It is thus the description that really
matters for this experimental condition, not carrying inaccessible information.

2.2 Coarse-graining induced dynamics

Having in mind the discussions of the previous sections, it is time to address the
central question of this chapter: what dynamics might emerge from a fully quan-
tum description if we are not able to resolve the system in all its details? We look
for an effective map Γt which makes the diagram in figure 2.1 consistent. The in-
duced dynamics then emerges from a coarse grained description of the underlying
dynamics.

In order to obtain the induced dynamics Γt acting on the effective state ρ0 =
ΛCG(ψ0), we generalize the procedure suggested by Štelmachovič and Bužek in [92].
The authors proposed to write the states of system and environment as the tensor
product of its local parts plus a correlation term. Despite the fact that here we do
not have such splitting between system and environment, the action of the coarse-
graining unitary UCG, now identified by CG, represented in the extended diagram
(figure 2.3) suggests the following decomposition:

χ0 = (ω0 ⊗ ρ0) + (χ0 −ω0 ⊗ ρ0) , (2.2)

where χ0 = UCG(ψ0 ⊗ |0〉〈0| ⊗ |0〉〈0|)U†
CG ∈ L(HD ⊗Hr ⊗Hd); ρ0 = ΛCG(ψ0) =

TrDr(χ0) ∈ L(Hd) and ω0 = Trd(χ0) ∈ L(HD ⊗ Hr). Equation 2.2 is equivalent
to Štelmachovič and Bužek decomposition in the intermediate (and abstract) level
HD ⊗ Hr ⊗ Hd, with the last term now representing the correlation between the
degrees of freedom which can be assessed and those that cannot.

We can rewrite equation 2.2 as:

ψ0 ⊗ |0〉〈0| ⊗ |0〉〈0| = U†
CG(ω0 ⊗ ρ0)UCG + U†

CG(χ0 −ω0 ⊗ ρ0)UCG. (2.3)

Now, applying UCG.(Ut ⊗ 1⊗ 1)(·)(U†
t ⊗ 1⊗ 1).U†

CG on both sides of equation 2.3
and tracing over Dr, we end up with

TrDr(UCG(Ut(ψ0)U†
t ⊗ |0〉〈0| ⊗ |0〉〈0|)U†

CG) = TrDr(Wt(ω0 ⊗ ρ0)W†
t )

+ TrDr(Wt(χ0 −ω0 ⊗ ρ0)W†
t ),

(2.4)

where Wt = UCG.(Ut ⊗ 1⊗ 1).U†
CG act as the unitary evolution operator in the level

HD ⊗Hr ⊗Hd, i. e., χt = Wtχ0W†
t (see figure 2.3). Note that what we have in the
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left hand side of equation 2.4 is ΛCG ◦ (Ut(ψ0)U†
t ), which is equal to ρt (just choose

the bottom path in figures 2.1 and 2.3).
To ensure consistency, ρt = Γt(ρ0), and equation 2.4 becomes

Γt(ρ0) = ∑
i,j

Mijρ0M†
ij + TrDr

(
Wt (χ0 −ω0 ⊗ ρ0)W†

t
)
, (2.5)

with Mij =
√pj(〈φi| ⊗ 1)Wt(

∣∣φj
〉
⊗ 1), where we employed the spectral decompo-

sition ω0 = ∑j pj|φj〉〈φj|. This is the dynamics that emerges if one is not able to
resolve all the details of the underlying system. Notice that the effective channel Γt
is generated by the underlying evolution Ut, the coarse-graining unitary UCG and
the underlying initial state ψ0.

Equation 2.5 is composed by two terms: the first term displays a Kraus form
(theorem 1), with {Mij} the corresponding set of effective Kraus operators; the sec-
ond one represents the evolution of the correlations between accessible and non-
accessible degrees of freedom. For a better understanding of the latter, consider the
Bloch representation of χ0, ρ0 and ω0:

χ0 =
1

Drd
(1Dr ⊗ 1d + 1Dr ⊗~α.~σd + ~β.~σDr ⊗ 1d + ∑

i,j
θijσ

(i)
Dr ⊗ σ

(j)
d );

ρ0 =
1
d
(1d +~α.~σd);

ω0 =
1

Dr
(1Dr + ~β.~σDr),

(2.6)

where the σ
(i)
q are the q× q generalized Pauli matrices,~σq = (σ

(1)
q , σ

(2)
q , . . . , σ

(q2−1)
q )T;

~α ∈ Rd2−1 and ~β ∈ R(Dr)2−1 are the Bloch vectors of ρ0 and ω0, respectively. The
((Dr)2 − 1)(d2 − 1) coefficients θij ∈ R fix the correlation between accessible and
non-accessible degrees of freedom.

Defining the correlation matrix [Θ]ij = (θij − βiαj)/Drd, the evolution of the
coarse grained state can be written as:

Γt(ρ0) = ∑
i,j

Mijρ0M†
ij + ∑

i,j
ΘijTrDr

(
Wtσ

(i)
Dr ⊗ σ

(j)
d W†

t
)
. (2.7)

It can be verified that ∑i,j M†
ij Mij = 1d:

∑
i,j

M†
ij Mij = ∑

i,j

√
pj(
〈
φj
∣∣⊗ 1d)W†

t (|φi〉 ⊗ 1d)
√

pj(〈φi| ⊗ 1d)Wt(
∣∣φj
〉
⊗ 1d)

= ∑
j

pj(
〈
φj
∣∣⊗ 1d)W†

t (∑
i
|φi〉〈φi| ⊗ 1d)Wt(

∣∣φj
〉
⊗ 1d)

= ∑
j

pj(
〈
φj
∣∣⊗ 1d)W†

t Wt(
∣∣φj
〉
⊗ 1d)

= ∑
j

pj(
〈
φj
∣∣⊗ 1d)(U†

CG.(U†
t ⊗ 1⊗ 1).UCG)(UCG.(Ut ⊗ 1⊗ 1).U†

CG)(
∣∣φj
〉
⊗ 1d)

= ∑
j

pj(〈φj|φj〉 ⊗ 1d) = 1d.

(2.8)
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And that Trd

(
TrDr

(
Wtσ

(i)
Dr ⊗ σ

(j)
d W†

t
))

= 0, as Wt is unitary and the (generalized)
Pauli matrices are traceless:

Trd

(
TrDr

(
Wtσ

(i)
Dr ⊗ σ

(j)
d W†

t
))

= Trd

(
TrDr

(
σ
(i)
Dr ⊗ σ

(j)
d W†

t Wt
))

= Trd

(
TrDr

(
σ
(i)
Dr ⊗ σ

(j)
d

))
= Trd(σ

(j)
d )TrDr(σ

(i)
Dr) = 0.

(2.9)

These guarantee that Trd(Γt(ρ0)) = 1 for all times. The structure of this type of
evolution is very similar to the one describing open quantum systems when system
and environment are initially correlated [93, 92].

Let’s consider the situation described in section 2.1.1: atoms in neighbouring
wells of an optical lattice being measured by a blurred and saturated detector. Sup-
pose that two atoms in such situation are initially represented by a two-qubit pure
state |ψ0〉 = ∑1

i,j=0 cij |ij〉 and interacting via the Hamiltonian H = h̄Jσz ⊗ σz. At a
latter time t, the state |ψ0〉 evolves to:

|ψt〉 = (c00 |00〉+ c11 |11〉)e−i Jt + (c01 |01〉+ c10 |10〉)ei Jt. (2.10)

The effective state at time t can be evaluated via ρt = ΛCG(ψt), and it gives us a
matrix very similar to the one evaluated in section 2.1.1:

ρt =

 |c00|2 c00
e−2i Jt(c∗01+c∗10)+c∗11√

3

c∗00
e2i Jt(c01+c10)+c11√

3
|c01|2 + |c10|2 + |c11|2

 .

Figure 2.5 shows the evolution of the purity, Tr(ρ2
t ), as a function of time for the

concrete example in which J = 1 rad/s and all coefficients cij in ψ0 = |ψ0〉〈ψ0| are
all equal: cij =

1
2 for i, j ∈ {0, 1}. One can see that the purity oscillates with time; i.

e., the state alternates between pure (when equal to 1) and mixed. Remember that
in the underlying level the system is pure for all times, although this is not the way
our detector observes the effective system.

Another key point to stress is that changing the coefficients cij, besides chang-
ing the state ρt (as the reader can see in the matrix representation above), might
also change the effective channel Γt. This fact become clear if we look at the Kraus
operators Mij in the first term of equation 2.5, which came from the spectral decom-
position of ω0 = Trd(χ0). The same is true for the correlation matrix Θij in equation
2.7. In other words, by changing the input ρ0 the effective channel Γt may change.
Let’s clarify this point and explore some properties of Γt in the next section.

2.2.1 Properties of the effective dynamics

So far, the exact dependence of Γt with ψ0 is unclear. Equation 2.7 doesn’t make
explicit how the channel depends on the underlying state ψ0. In this section, making
use of the Bloch representation for ψ0 (equation 2.11 below), we are going to clarify
this dependence and study the domain, the positivity and complete positivity of Γt.
In order to do that, we are going to try to answer two important questions: i) how do
we change the effective channel Γt for a fixed effective input state ρ0? And ii) how
to change the effective input state keeping Γt fixed?

Let
ψ0 =

1
D
(1 + ~γ0.~σD) (2.11)
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FIGURE 2.5: Effective evolution as seen by a blurred-saturated detector.
The plot shows an oscillatory behaviour for the purity of the effective state.

The inset shows the effective state trajectory in the Bloch sphere.

and
ρ0 =

1
d
(1 + ~α0.~σd) (2.12)

be the Bloch decomposition for ψ0 and ρ0 with ~γ0 ∈ RD2−1 and ~α0 ∈ Rd2−1

their Bloch vectors, respectively. After the action of a fixed coarse-graining channel
in an underlying state ψ0, the components of ρ0’s (= ΛCG(ψ0)) Bloch vector ~α0 are
obtained via the linear equations written below (see equation 2.12):

α01 = Tr[ΛCG(ψ0(~γ0))σ
(1)
d ];

α02 = Tr[ΛCG(ψ0(~γ0))σ
(2)
d ];

...
...

...

α0d2−2
= Tr[ΛCG(ψ0(~γ0))σ

(d2−2)
d ];

α0d2−1
= Tr[ΛCG(ψ0(~γ0))σ

(d2−1)
d ].

(2.13)

Seeking to understand well the properties of Γt, it is convenient to evoke a geo-
metrical approach. In the (D2 − 1)−dimensional space of Bloch vectors ~γ0, which
for now on we will call "γ-space", equations 2.13 represents hyper-planes whose
intersection depicts the effective state ρ0.

Since we are dealing with a coarse-graining map, with D > d, the set of equations
2.13 is under-determined, meaning that we can have more than one state ψ0 leading
to the same effective state ρ0. In the γ-space, this many-to-one mapping is visualized
as a hyper-surface of possible solutions.

With the help of figure 2.6 A), and considering fixed the underlying evolution
and the coarse graining channel, it can be seem that changes in ψ0 that represent
movements in the intersection of the hyper-planes won’t affect the effective state
ρ0. However, such changes can induce modifications in ω0 and Θij, since both have
information about ~γ, and consequently in Γt. Figure 2.7 shows a simple example of
fixing ρ0 and changing the effective channel.

Now that we have the first question answered, lets turn to the following: how do
we change the effective input state ρ keeping Γt fixed? Changing the effective state
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FIGURE 2.6: The γ-space, and the effects of changing the underlying state.
The intersection between the hyper-planes defines the effective state. A non
point-like region reflects the fact that many underlying states lead to the same
effective state. A) The left panel shows a change in the underlying state that
does not change the effective state ρ0. This change may, nevertheless, have
impact on the effective channel. B) Changing the underlying state such that
its Bloch vector ~γ moves normally to the hyper-planes changes only the ef-
fective state, preserving the effective channel. The region obtained by such
normal displacement of the Bloch vector defines the domain of an effective

channel.

FIGURE 2.7: Simple example of fixing ρ0 and changing the effective chan-
nel. For the case where we fix the unitary mapping as the SWAP, i.e.,
Ut |ij〉 = SWAP |ij〉 = |ji〉, and the coarse graining as the usual partial trace
on the second component, we see that different underlying states generate
different effective channels. The fact that the emergent channels cannot be
the same is clear, as if that was the case the same input would lead to two

different outputs.
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ρ is a consequence of changes in αi’s. Moving the αi’s means, geometrically, to move
the hyper-planes in the γ-space. After a specific movement, the hyper-planes will
intersect all together in a new different position, representing another effective state.

As shown in figure 2.6 A), moving ~γ in the intersection of the hyper-planes, par-
allel to it, may change the channel. Therefore, in order to keep the channel fix and
change only the effective state, we must move ~γ outside the intersection, perpendic-
ular to it, as depicted in figure 2.6 B).

The reader may be wondering if the movement depicted in 2.6 B), outside the
intersection, and consequently in the α’s, won’t modify ω0 or Θ. In fact, it will.
But this change in the Kraus operators and the correlation matrix is only due to the
change in the input ρ(α) of the effective channel Γt. One can rewrite the dynamical
equation 2.7 in order to clarify this dependence on the Bloch vector of ρ, α:

Γt(ρ(α)) = ∑
i,j

Mij(α)ρ(α)M†
ij(α) + ζ(α), (2.14)

with ζ(α) = ∑i,j Θij(α)TrDr(Wtσ
(i)
Dr ⊗ σ

(j)
d W†

t ) the correlation term.
At this time we already know what means to fix the input state ρ0 and to fix

the channel Γt. Let’s study its properties, beginning with its domain. Our effective
channel Γt, as mentioned before, is generated by the underlying state ψ0, the coarse
graining ΛCG, which also fixes the hyper-planes in the γ-space through 2.13, and the
underlying evolution Ut(·)U†

t . Therefore, ρ0 = ΛCG(ψ0) is our first element of the
domain, and starting point.

Consider now two states ρ0 and ρ1 in the γ-space, represented by different re-
gions of intersection of hyper-planes. The states ρ0 = ΛCG(ψ0) and ρ1 = ΛCG(ψ1)
undergo the action of the same channel Γt if the two points in the γ-space corre-
sponding to the underlying states ψ0 and ψ1 can be connected via the relation:

~γ1 = ~γ0 +
d2−1

∑
i

ci~ni, (2.15)

where ci ∈ R and the vector ~ni is the normal vector of the i-th hyper-plane, defined
only by the coarse graining. This condition guarantees that ~γ1, Bloch vector of ψ1,
can be reached from ~γ0, Bloch vector of ψ0 and our initial point in γ-space, by mov-
ing it perpendicular to the hyper-planes; therefore not changing the effective channel
Γt. The domain of Γt is then given by all ρ = ΛCG(ψ) generated from ψ, with Bloch
vector ~γ, for which there exists coefficients ci ∈ R such that an equation like 2.15 is
satisfied.

Equation 2.15 implies that the domain of Γt is convex. Let’s see: consider ρA =
ΛCG(ψA) and ρB = ΛCG(ψB) in the domain of Γt. This means that exists coefficients
{cAi} and {cBi} such that the Bloch vectors of ψA and ψB can be written as ~γA =

~γ0 + ∑d2−1
i cAi~ni and ~γB = ~γ0 + ∑d2−1

i cBi~ni, respectively, with cAi and cBi ∈ R. The
convex combination of ψA and ψB, ψ = pψA + (1− p)ψB with p ∈ [0, 1], has a Bloch
vector ~γ0 + ∑d2−1

i (pcAi + (1− p)cBi)~ni and ΛCG(ψ) = pρA + (1− p)ρB, which is the
convex combination of ρA and ρB and is also in the domain of Γt. Then, the domain
of Γt is convex.

What about the positivity of Γt? As one can see in equation 2.14, our dynam-
ics does not have a Kraus form (theorem 1). This means that, if we consider Γt :
D(Hd) → D(Hd), with D(Hd) the set of all density matrices acting in Hd, Γt is not
completely positive and we cannot guarantee that it is even positive. However, as
explained above, not all the states of D(Hd) are in the domain of Γt. And we can
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FIGURE 2.8: Recovering strict complete positivity for the effective chan-
nel. One way to obtain a family of CP effective channels is to require the

channel Ntk = ΛCG ◦ Utk to be CP-divisible.

guarantee the positivity of the channel in its domain, just using the consistence of
the diagram in figure 2.3: Γt(ρ0) = Γt ◦ ΛCG(ψ0) = ΛCG ◦ (Ut(ψ0)U†

t ). In the last
term we are applying two positive channels on ψ0, making the first term, and also
Γt, positive in all its domain.

We have to be careful when studying the complete positivity of Γt, since it isn’t
all the extensions of effective states ρ into ρ′ ∈ D(Hd ⊗Hz), Hz an auxiliary Hilbert
space, that are possible. The possible extensions for ρ = ΛCG(ψ) are those that can
be obtained from states Ψ ∈ D(HD ⊗Hz), such that Trz(Ψ) = ψ. This guarantees
that Trz((ΛCG ⊗ 1z)(Ψ)) = ρ and that ψ generates the channel Γt. Note that the
extension has to come from the underlying level. As we do not have control of all
system degrees of freedom, not all the states in the upper level can be generated.
The complete positivity is then guaranteed by the same arguments as the positivity
(consistence of the diagram in figure 2.3), and the set of states Ψ is the set of effective
complete positivity for Γt.

We can still re-obtain strict complete positivity if we demand the composite chan-
nelNt := ΛCG ◦ Ut, with Ut(·) = Ut(·)U†

t to be CP-divisible (CP meaning completely
positive) [94], as shown in figure 2.8. If that is the case, the definition of CP-divisible
channels requires Ntk = Γ(tk ,tj) ◦ Ntj for all tk ≥ tj to be completely positive, with
Γ(tk ,tj) representing the effective channel from time tk to time tj. This shows a connec-
tion between the theory of coarse-graining maps and the theory of non-Markovian
maps [94, 95].

2.2.2 Effective Distance Increase

We know from Physics that the discrimination between two unknown quantum
states cannot be improved by any further processing of the states [84]. This fact
is reflected in a common property of quantum channels (theorem 1): the distance
between two input states cannot increase. Mathematically, let Υ : L(Hd) → L(Hd)
be a quantum channel and ψ and ψ′ states in L(Hd). Then, ||Υ(ψ) − Υ(ψ′)||1 ≤
||ψ− ψ′||1, where the 1-norm distance is defined as ||A||1 := Tr(

√
A† A).

Looking at equation 2.5 one can see that the effective channel Γt is not, in general,
in Kraus form. A natural question then arises: It is possible for us to have ||Γt(ρ0)−
Γt(ρ′0)||1 ≥ ||ρ0 − ρ′0||1? We already know by intuition that the distance between the
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effective states in the upper level of the dynamics cannot be greater than the distance
between the underlying states. Since we do not have access to all degrees of freedom
in the underlying level, how would we be able to distinguish it better than if we had
full information about it? It’s prohibited, and simple to check.

Let ρ0 = ΛCG(ψ0) and ρ′0 = ΛCG(ψ
′
0) be effective states in L(Hd) with respective

evolved states ρt = Γt(ρ0) and ρ′t = Γt(ρ′0). Then,

||ρt − ρ′t||1 = ||ΛCG(ψt)−ΛCG(ψ
′
t)||1;

≤ ||ψt − ψ′t||1; (2.16)
= ||Ut(ψ0)−Ut(ψ

′
0)||1;

≤ ||ψ0 − ψ′0||1 (2.17)

The last inequality turns into an equality in the case of a unitary mapping Ut, i.e,
Ut(.) = Ut(.)U†

t for some unitary Ut.
The above expressions doesn’t prevent an increasing in distance between effec-

tive states. In fact, the answer for the question made two paragraphs above is yes, it
is! It is possible to have an increase in distance between the effective states undergo-
ing the same effective channel in comparison with the distance between the effective
states before the evolution take place (t = 0).

Let’s consider an example of such distance increase, taking advantage of the
geometric description presented in section 2.2.1. Consider as the coarse-graining
quantum channel the one describing the blurred and saturated detector (figure 2.1)
and two two-qubits states ψ0 and ψ′0, which generate the same effective channel
Γt. In the γ-space of Bloch vectors, the coarse-graining map fixes the normal vec-
tors ~ni of the hyper-planes. Rewriting the linear system 2.13 in this case, where
ΛCG : L(H4)→ L(H2),

α01 = Tr[ΛCG(ψ0(~γ0))σ
(1)
2 ] = Tr[ΛCG(ψ0(~γ0))σx];

α02 = Tr[ΛCG(ψ0(~γ0))σ
(2)
2 ] = Tr[ΛCG(ψ0(~γ0))σy];

α03 = Tr[ΛCG(ψ0(~γ0))σ
(3)
2 ] = Tr[ΛCG(ψ0(~γ0))σz].

(2.18)

Above we have three hyper-plane equations in the γ-space of Bloch vectors cor-
responding to the states ∈ L(H4). In the left hand side, the α0i ’s are the coefficients
of the Bloch vector ~α0 (eq. 2.12). Detailing the expressions we will be able to extract
the three corresponding normal vectors, required to find a state ψ′0 so that ρ′0 evolves
under the same effective channel Γt. For such, we should write the state ψ0 in its
Bloch decomposition (eq. 2.11), which gives

α01 = Tr[ΛCG(14)σx
4 + ∑15

i=1
γ0i ΛCG(σ4i )σx

4 ];

α02 = Tr[ΛCG(14)σy
4 + ∑15

i=1
γ0i ΛCG(σ4i )σy

4 ];

α03 = Tr[ΛCG(14)σz
4 + ∑15

i=1
γ0i ΛCG(σ4i )σz

4 ].

(2.19)

The matrices σ4i are the 4× 4 Gell-Mann matrices, a generalized representation
for the Pauli matrices. Then, the i-component of the normal vector to the first hyper-

plane, for example, is given by
Tr[ΛCG(σ4i )σx ]

4 . For the second and the third hyper-
planes, σx is changed by σy and σz, respectively. Thus, the normal vectors~ni are
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
~n1 = { 1

2
√

3
, 1

2
√

3
, 0, 1

2
√

3
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

~n2 = {0, 0, 0, 0, 0, 0, 1
2
√

3
, 1

2
√

3
, 0, 1

2
√

3
, 0, 0, 0, 0};

~n3 = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
2 , 1

2
√

3
, 1

2
√

6
}.

(2.20)

Notice that the normal vectors are completely determined by the coarse-graining
channel, regardless of the initial microscopic state ψ0. In order to see the effect of
increasing in distance (or distinguishability) between states with respect to the trace
norm, we are free to choose ψ0 and ψ

′
0, provide that they generate the same effective

channel Γt. For such, it must exist real numbers ci such that the corresponding Bloch
vectors ~γ0 and ~γ

′
0 satisfy the relation ~γ

′
0 = ~γ0 + ∑3

i=1 ci~ni. It is satisfied for example
if we pick



~γ0 = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
c1 = 0, 72;
c2 = 2;
c3 = 1, 035;

~γ
′
0 = { 3

√
3

25 , 3
√

3
25 , 0, 3

√
3

25 , 0, 0, 1√
3
, 1√

3
, 0, 1√

3
, 0, 0, 207

400 , 69
√

3
400 , 69

√
3
2

400 }.

(2.21)

The states ψ0 and ψ′0 can be obtained using equation 2.11 and information of 2.21,
allowing us to calculate ||ψ0 − ψ′0||1 and also ||ρ0 − ρ′0||1, using that ρ0 = ΛCG(ψ0).
In order to evaluate ||ρt − ρ′t||1, with ρt = Γt(ρ0), we need to know the underlying
dynamics U (.) governed by the Hamiltonian H. The underlying dynamics together
with the coarse-graining channel ΛCG(.) and the initial state ψ0 will specify the ef-
fective channel Γt(.). Relation 2.15 guarantees that ρ0 and ρ′0 are under the action of
the same channel.

We studied two situations with different Hamiltonians. First, an Ising Hamilto-
nian H = h̄Jσz ⊗ σz. Figure 2.9 A) shows how the distance ||ρt − ρ′t||1 evolve in time.
Note that, despite the oscillation, ||ρ0 − ρ′0||1 ≥ ||ρt − ρ′t||1 for all times. If we switch
on a transverse field, the Hamiltonian becomes H = h̄Jσz⊗ σz + h̄Ω(σx⊗ 1+ 1⊗ σx)
and the evolution of the distance between the effective states is shown in figure 2.9
B). The reader can see that the distance ||ρt − ρ′t||1 can go beyond ||ρ0 − ρ′0||1 for
some specific times, opening a myriad of opportunities.

Immediate questions arise when we come across this result, for instance: which
kind of dynamics or microscopic Hamiltonians could cause this effect? What kind
of coarse-grainings channels? What pairs of initial microscopic states? It is possible
to predict quantitatively this effect? Could it be a sign of chaos emergence? Is it
possible to find bounds? In the concluding chapter we talk about a tool, namely
quantum master equations, that can help us in dealing with these questions.
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FIGURE 2.9: Distance increase for the effective dynamics. In the above
plots ||ρt − ρ′t||1, ||ψ0 − ψ′0||1, and ||ρ0 − ρ′0||1 are represented, respectively
by the blue-continuous line, red-dashed line, and the black-dot-dashed line.
Contrary to the usual contractive property of quantum channels, on the ef-
fective level the distance between two states undergoing the same process
may increase. This increase is, however, upper-bounded by the distance be-
tween the underlying states (red-dashed line). A) The underlying interaction
is dictated by the Hamiltonian H = h̄Jσz ⊗ σz. We see that the distance oscil-
lates, increasing for some time intervals. Nevertheless, in this case, we always
have ||ρ0− ρ′0||1 ≥ ||ρt− ρ′t||1. B) The underlying evolution is dictated by the
Hamiltonian H = h̄Jσz ⊗ σz + h̄Ω(σx ⊗ 1 + 1⊗ σx), and we set J = 1 rad/s
and Ω = 3 rad/s. In this case we see that ||ρt − ρ′t||1 can even go beyond

||ρ0 − ρ′0||1.
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Chapter 3

Modeling a quantum measurement
process

Until now, we set out a historical discussion concerning the development of quan-
tum theory, motivating and building a background for the remaining of this thesis.
In chapter 2 we investigated emerging dynamics experienced by an observer due to
its inability in resolving all the degrees of freedom of a system of interest. Making
use of the approach presented in the previous chapter, here we try to model a quan-
tum measurement process involving a system and an apparatus. As will be clear in
chapter 4, this is only one of several possible situations to which the formalism of
chapter 2 can be applied.

Currently, nature’s best description is given by quantum mechanics. According
to quantum theory, to every system we assign a quantum state ψ, and its evolution
is dictated by Schrodinger’s equation [96]. As Schrodinger himself realized, if we
take this postulate to our macroscopic and everyday world, we quickly run into
paradoxical situations – for example the possibility of an alive-and-dead cat [30].
Not only we do not observe quantum effects on macroscopic systems, but also we
do not employ the full quantum description for such systems. In fact, our everyday
life experiences heavily rely on effective (macroscopic) descriptions which are far
less complex than their underlying quantum characterization (microscopic).

The quantum-classical transition then requires two things to happen: first, that
quantum features, like superposition and entanglement, must fade away; second,
that an effective description of the macroscopic system must emerge from its quan-
tum description. These issues become more prominent in the measuring process of a
microscopic system [97, 39, 98]. In such a situation we interact a system like a single
atom, whose description is given by quantum mechanics, with a macroscopic mea-
suring apparatus, for which a classical description is more suitable. The two realms,
quantum and classical, meet in such situation. Much like in the Schrodinger’s cat
scenario, we do not expect to observe an entangled state between the atom and the
apparatus. Also, for the measuring apparatus to be of any use, we should observe
the apparatus’ pointer in a well defined position, and not on a superposition of pos-
sible classical values. That amounts for the apparatus to be described by its effective
classical description. How are these traits obtained if we depart from a fully quan-
tum description? In other words, how do we reconcile our classical description of
the measuring process with the fact that intrinsically both the system being mea-
sured and the measuring apparatus are mostly well described by quantum theory?

Traditionally, these questions are addressed by the formalism of decoherence [50,
99, 100], which appeals to the unavoidable interaction between system+apparatus
and the environment to explain the diminishing of quantum features. Nevertheless,
this approach only cares for local observables and does not explain how the effective
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description of the apparatus emerges from its quantum mechanics many-body state.
Without that, quantum properties of the apparatus could still be observed.

The fact that a large quantum system might still have pronounced quantum fea-
tures, if one has access to all its degrees of freedom, was nicely shown by Brukner
and his group [66, 67]. In [66] they show that a large spin length still behaves in a
quantum way if one can measure all the possible values of the spin, say, in the z-
direction. It is only when the measurement outcomes are coarse-grained, i.e., when
we cannot resolve nearby outcomes and integrate their signal, that a classical de-
scription is obtained.

The approach devised by Brukner’s group, however, is not dynamical, in the
sense that it applies a coarse graining procedure directly on the measurement out-
comes. Inspired by such results, we, at Quantum Information Group at CBPF (qig@CBPF)
in collaboration with researchers from the Federal University of Minas Gerais (UFMG)
and Federal University of Pernambuco (UFPE), developed a framework that applies
a coarse graining procedure directly on the many-body system [85], as described in
chapter 2. In this way we can obtain both the effective description of the system
and its effective dynamics. Our framework then combines the dynamical aspects of
the decoherence approach, with the coarse graining procedure devised by Brukner’s
group.

The aim of the present chapter is thus to use the developed tools to analyze the
effective dynamics of a quantum measurement process. In this way we hope to shed
light on one of the most intriguing points of the quantum formalism, the measurement
problem [101].

Given the generality of quantum channels, in subsection 2.1.1 we used them to
construct well-defined deterministic coarse-grainings. A coarse-graining map is then
a quantum channel ΛCG which maps states from L(HD) → L(Hd) with D > d.
Physically speaking, the coarse-graining operation defines a partition of the system
into accessible and non-accessible degrees of freedom, and then selects only the ac-
cessible ones.

The dimension of this accessible part can be much smaller than the dimension of
the whole system, rendering a less complex description of the system, i.e., an effec-
tive system. In this way, a coarse graining operation is related to a given experimen-
tal situation: if all the microscopic details can be observed, then no coarse graining is
necessary. On the other hand, if one cannot resolve all the details of the system, the
effective description that can be measured corresponds to the coarse-grained state.
This is similar to what was described in [66], but this time at the level of the systems.

In section 2.2 we determined the properties of the effective evolution Γt : L(Hd)→
L(Hd), which is induced by the underlying evolution Ut, the initial state ψ0, and the
coarse graining ΛCG. In other words, we determined the effective evolution Γt which
fulfills the consistence relation Γt ◦ ΛCG(ψ0) = ΛCG ◦ Ut(ψ0). See figure 2.1. With
such formalism at hand, now we are going to apply it to a quantum measurement
process.

3.1 Quantum measurement process

The measurement process within quantum mechanics, i.e., using a quantum descrip-
tion for both system and measurement apparatus, was first spelled out by Von Neu-
mann [32]. Revisiting it, suppose that a system S is in a state |χ〉 ∈ HdS and a scientist
wants to measure an observable J ∈ L(HdS) with corresponding eigenvectors and
eigenvalues |j〉 and j ∈ R (assumed non-degenerated), respectively.
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It is possible to write the initial system state as |χ〉 = ∑j cj |j〉, with cj ∈ C such
that ∑j |cj|2 = 1. To perform the measurement, the scientist couples the system to
the measurement apparatus A, which is in its idle state |x0〉 ∈ HdA representing the
measurement pointer at position x0. Observe that for a real quantum measurement
situation we have dA � dS. The two systems interact via an unitary operation USA :
L(HdS)⊗L(HdA)→ L(HdS)⊗L(HdA), which ideally is such that:

|ψ0〉 ≡ |χ〉 |x0〉 =
(

∑
j

cj |j〉
)
|x0〉 USA−−→ |ψt〉 ≡∑

j
cj |j〉 |x0 − αj〉 , (3.1)

with α ∈ R some proportionality constant. Assuming that the pointer positions
at the measurement apparatus are distinguishable, 〈x0 − αi|x0 − αj〉 = δij, it will
be at position x0 − αj with probability |cj|2. However, the composed state of sys-
tem+apparatus has not a well defined position for the pointer after the interaction.
Indeed we get an entangled state between the system and apparatus, a situation akin
to Schrodinger’s cat [30].

At this point the decoherence program invokes the coupling to an environment
E, which initial state is |φ0〉. The measurement dynamics is then changed to:

|χ〉 |x0〉 |φ0〉 =
(

∑
j

cj |j〉
)
|x0〉 |φ0〉 USA−−→∑

j
cj |j〉 |x0 − αj〉 |φ0〉

USAE−−→∑
j

cj |j〉 |x0 − αj〉
∣∣φj
〉

,
(3.2)

where USAE describes the interaction with the environment. As we can not control
the environmental degrees of freedom, they are traced out and, using that 〈φi|φj〉 =
δij, we are left with

∑
j
|cj|2|j〉〈j| ⊗ |x0 − αj〉〈x0 − αj|.

This state indeed represents an incoherent mixture of product states of the sys-
tem and measurement apparatus, i.e., only classical correlations are present. Never-
theless, for each value of j we have a quantum state for the apparatus. An effective
description for the measurement apparatus is thus not obtained by such formalism,
and, as such, still depends on a fully quantum description of the apparatus.

In order to tackle this issue, we intend to model the resolution of the measure-
ment apparatus in order to design a coarse graining operation ΛCG : L(HdA) →
L(Hd′A

), with dA > d′A. Such coarse graining encompasses the decoherence ap-
proach, in the sense that it can be used even in closed quantum systems. After the
interaction between the system and apparatus, the action of the coarse graining on
the apparatus is as follows:

|ψt〉〈ψt| = ∑
jk

cjc∗k |j〉〈k| ⊗ |x0 − αj〉〈x0 − αk|

1⊗ΛCG−−−−→ ρt ≡∑
jk

cjc∗k |j〉〈k| ⊗ΛCG(|x0 − αj〉〈x0 − αk|).
(3.3)

For a suitably constructed coarse graining map ΛCG, we expect that the larger
the difference dA − d′A, the smaller will be the contribution of the off-diagonal terms
ΛCG(|x0 − αj〉〈x0 − αk|), with j 6= k. In the limit of a macroscopic detector, dA −
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d′A → ∞, we should obtain

|ψt〉〈ψt| = ∑
jk

cjc∗k |j〉〈k| ⊗ |x0 − αj〉 〈x0 − αk| 1⊗ΛCG−−−−→ ρt ≈∑
j
|cj|2|j〉〈j| ⊗ωj; (3.4)

with ωj ≡ ΛCG(|x0− αj〉〈x0− αj|) the effective state of the apparatus when we mea-
sure j, such that Tr(ωjωk) = δjk.

Using the techniques developed in chapter 2, we want to obtain not only the ef-
fective final state of the measurement, but also the effective dynamics Γt : L(HdS ⊗
Hd′A

)→ L(HdS ⊗Hd′A
) induced by the coarse graining ΛCG, the underlying dynam-

ics Ut(·) = UAB(·)U†
AB, and by the initial state ψ0 = |χ0〉〈χ0| ⊗ |x0〉〈x0|. Very much

like in Fig. 2.1, the consistency for such dynamics now implies

Γt ◦ (1⊗ΛCG)(|χ0〉〈χ0| ⊗ |x0〉〈x0|) = (1⊗ΛCG) ◦ Ut(|χ0〉〈χ0| ⊗ |x0〉〈x0|). (3.5)

In this way, we will be able to describe the whole measurement process for different
levels of coarse graining, i.e., different values of dA − d′A.

3.2 Detailing our proposal

The general objective of this chapter is to apply the tools of quantum information,
more specifically those related to quantum channels and the ones developed in pre-
vious chapters [85], in order to analyze a quantum measurement process. While the
construction in [85] is general and somewhat abstract, here we want to specialize to
a concrete scenario of a quantum measurement. To do that, I will describe now the
step-by-step procedure.

First we need to devise an exemplary system and measurement apparatus. For
instance, as the system to be measured we can take a spin 1/2 system (a qubit),
and as the measuring apparatus a system with N qubits. The system+apparatus
interaction will then be crafted as to act like a measurement of a system’s observable
(see Eq. 3.1).

Another possibility to be tested for measurement apparatus is a system with
large angular momentum, as used in Ref. [66]. In such a case, the initial state of
the apparatus can be taken as a spin-coherent state, and the interaction can be a con-
ditional displacement (a rotation for spin-coherent systems) – this is the situation
placed in section 3.3 and appendix B.

Once the system-apparatus microscopic model is fixed, we need to construct and
characterize a physically consistent coarse graining channel ΛCG. In [85], and also in
chapter 2, we give an example of a coarse graining channel that illustrates a blurred-
and-saturated detector. It is an elucidating and didactic example, but to study the
measurement process we need a more realistic coarse graining map.

Recently in the literature [102], it was proposed a coarse graining map from a
spin-J system to a spin-1/2 system (from qudits to qubits). This can be directly
applied to the model for which the measurement apparatus is represented by a large
angular momentum system. This coarse graining, differently from the one proposed
in [85], has the advantage that it preserves the rotation symmetry. As such, the
effective dynamics can be easily computed – if at the underlying level we have a
conditional rotation, then at the effective level we expect to obtain also a conditioned
rotation.

Inspired by the constructions in [85, 102], we try to obtain a well-defined coarse
graining channel to act on the measuring apparatus. Besides describing the lack of
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resolution of a measurement apparatus, the coarse graining has to give an effective
description of the apparatus, and to transform the entanglement between system
and apparatus into classical correlations.

The next step is then to apply the coarse graining channel, in correspondence
with the formalism developed in [85], in order to study the quantum measure-
ment process. We will determine the effective evolution which is induced by the
coarse graining ΛCG, the underlying evolution USA and the combined initial state
|χ0〉〈χ0| ⊗ |x0〉〈x0|. Like in [85], the effective dynamics is to be constructed observ-
ing the consistency in 3.5. This means that the effective evolution of the effective
state (1⊗ ΛCG)(|χ0〉〈χ0| ⊗ |x0〉〈x0|) must be the same as to evolve the underlying
system, and then apply the coarse graining map. Once this is done, we will pursue
the equation of motion for the effective state, i.e., a Lindblad-like equation. This, as
suggested in [85], might be a non-linear equation for coarse-grained times.

The coarse graining defined in [102] maps systems of dimension dA always to
two-dimensional systems. Ideally, however, it would be interesting to design a
coarse graining map such that it could map a system with an arbitrary dimension
dA to an effective system with arbitrary dimension d′A, with the only constraint that
dA > d′A. This would allow us to go deeper in the analysis by studying different
levels, dA − d′A, of coarse graining of a quantum system. Pictorially speaking, this
would allow us to observe the apparatus in different levels of “zoom out”. Thus, we
would be able to go from the microscopic and highly detailed underlying level of
the apparatus, up to its macroscopic and effective description.

We expect that these process will be responsible by the emergence of the classical
features of the system, and that it will be more and more evident as we approach the
"macroscopic" description. To analyze that, we also intend to, for instance, observe
how the amount of entanglement between system and apparatus get smaller for
larger difference dA − d′A, while the purely classical correlations rise up.

Until the end of this chapter two different modeling attempts are presented, and
one more is shown in appendix B. The numbering of the attempts is in chronolog-
ical order. The main difference between them is in the coarse-graining channels
involved in the calculations, while the mathematical procedure is basically the same
(explained in section 3.1).

3.3 Model 1: coarse-graining preserving rotation symmetry

A beautiful theory-experiment paper published by Serge Haroche and others in 1992
[103] is the most responsible for the design of the model that is described in this
section and in section 3.4. The authors use atoms, one by one passing through a
cavity, to reconstruct the photon number distribution of an oscillatory field present
within it.

When applied to an initial bosonic coherent field, the intermediate steps of the
measuring sequence by the atoms produce quantum superpositions of classical fields,
Schrodinger cat states. The Hamiltonian is such that an atom passing through the
cavity induces a displacement (or rotation) in the phase space of the coherent state in
one direction or the other conditioned to the states of the atom, which act as a qubit
– for instance in a superposition of states |e〉 (excited) and |g〉 (ground).

They were also able to visualize the death of quantum coherences via decoher-
ence inspecting the Wigner function corresponding to the field state [103] – the in-
terference pattern seen previously is lost. The decay of quantum properties happens
on account of the photon losses from the cavity to the surrounding environment.
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We have here a very similar situation but with some differences. We will use an
atomic coherent state in order to gain information about a qubit in a superposition
state. Our first objective is to recover the coefficients c0 and c1 of the qubit superposi-
tion. Our second objective is to visualize the death of quantum features, but without
evoking the decoherence formalism. The main responsible for this effect will be a
coarse-graining channel, which mathematically translates our inability in accessing
all the degrees of freedom of a given system. So that, to define a good physically
motivated coarse-graining will be our biggest challenge.

We then begin our attempts to model a quantum measurement process using the
coarse-graining channel introduced in [102]:

ΛCG(Ψ) =
1
2
(
1 +

1
j

3

∑
i=1
〈Ji〉Ψ σi

)
, (3.6)

where Ji (i = 1, 2, 3) are the three Cartesian angular momentum components, the
generators of SU(2) rotations around the x, y, and z axes, in the d-dimensional
Hilbert spaceHd [102]. The denominator j is the largest eigenvalue of Ji (d = 2j + 1)
and 〈Ji〉Ψ =Tr[Ji Ψ] denotes its expectation value evaluated on the state Ψ.

The coarse-graining channel maps a state Ψ in L(Hd) to an effective state ρ =
ΛCG(Ψ) in L(H2). Unable to access Ψ in all its details, we are left with an effec-
tive description. Since in our modelling the channel will act on the measurement
device – as explained in section 3.2 –, here represented by a spin coherent state, a
property of the channel is convenient: it preserves rotation symmetry. As posed by
the authors in [102], this was their main motivation to use the channel. Although a
good physical motivation to use it is lacking, it allowed us to get beautiful results,
including analytical expressions.

The work done by Haroche in [103] and the channel in 3.6 together guided
our choice of a spin coherent state for the measuring apparatus. Why? They are
minimum-uncertainty states, the closest to "classical states" [2]. In the three dimen-
sional spin coherent state’s space, we can visualize them as localized regions, mak-
ing the visualization of the dynamics more intuitive (figure 3.2).

Consider as the system to be measured a qubit initially in a state

|χ0〉 = c0 |0〉+ c1 |1〉 , (3.7)

with ci ∈ C, and the apparatus initially in a spin coherent state. Knowing that a
coherent state |θ, φ〉 is obtained by a rotation of the Dicke state |−j〉, the eigenvector
associated with the lowest eigenvalue of Jz, two cases will be considered here for
the apparatus’ initial state |x0〉: (i) |x0〉 = |−j〉 ≡ |0, φ〉 and (ii) |x0〉 =

∣∣π
2 , φ

〉
=

R π
2 ,φ |−j〉. The rotation operator is given by Rθ,φ ≡ e−iθ~n·~J , θ ≡ ωt the rotation angle

and φ setting the axis ~n = (sin φ,− cos φ, 0) around which the rotation occurs (see
figure 3.1).

We have then our total initial state in the (i) case

|ψ0〉 = |χ0〉 ⊗ |x0〉 = (c0 |0〉+ c1 |1〉)⊗ |−j〉 . (3.8)

The interaction between system and apparatus plays an important role. It is the
responsible for generating entanglement between the parts and also for what we
will call here the conditioned rotation. The interaction Hamiltonian is given by H =
h̄ω σz ⊗~n ·~J, with ω meaning frequency, σz the Pauli matrix in the z-direction, ~J the
angular momentum vector of operators and the unit vector ~n = (sin φ,− cos φ, 0)
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(see figure 3.1). Individual Hamiltonians of system and apparatus will not be con-
sidered. The state of the system is written on the basis of the eigenvectors of σz:
σz |0〉 = +1 |0〉 and σz |1〉 = −1 |1〉.

FIGURE 3.1: Definition of the rotation Rθ,φ in angular momentum space.
Rotations on the state |−j〉 ≡ |0, φ〉, localized in the south pole, give us the

coherent states |θ, φ〉. Figure from [2].

Therefore, the evolved total state |ψt〉 = Ut |ψ0〉 = e
−itH

h̄ |ψ0〉 is equal to

|ψt〉 = c0 e−itω 1⊗~n·~J |0〉 |−j〉+ c1 e+itω 1⊗~n·~J |1〉 |−j〉 , (3.9)

since the states |0〉 and |1〉 are eigenstates of the σz operator with eigenvalues +1
and −1, respectively. Equation 3.9 shows that the qubit states |0〉 and |1〉 induce
rotations in the counterclockwise and clockwise directions, respectively, in the ap-
paratus: e−itω~n·~J |−j〉 = Rθ,φ |−j〉 ≡ |θ, φ〉 and e+itω~n·~J |−j〉 = R−θ,φ |−j〉 ≡ |−θ, φ〉 –
the temporal dependence will be implicit on θ. Notice that the definition of the di-
rection of rotation is conditioned to the eigenvalues of σz; in other words, to the qubit
state.

In order to view geometrically the dynamics of interaction and the difference
between the two cases (i) and (ii), consider the three-dimensional spheres in figure
3.2: the apparatus is initially placed in the "south pole" (i) and in the "equator" (ii).
When the system+apparatus interaction is turned on, we have a superposition of
two possibilities for the apparatus (red areas representing "positions" of the coherent
state): rotations by θ and−θ angles are induced, weighted by c0 and c1, respectively.
In figure 3.2 the red areas will run the circumference in blue, each in a direction,
clockwise and counterclockwise.

This is how the apparatus acquires information about the system to be measured.
The two possible directions of rotations are weighted by c0 and c1. The probability
of finding the apparatus effective state in one of the superposition possibilities after
a measurement contains information about c0 and c1. Their values can be recovered
looking at such probabilities. This is precisely what we will do: measuring mag-
netization (σz) in the apparatus’ effective state after the coarse-graining channel, we
will have two possible outcomes, 1 and −1, each one keeping information of one
coefficient ci. We will be able to reconstruct c0 and c1.

We can then rewrite the total system-apparatus entangled state |ψt〉 (3.9) as

|ψt〉 = c0 |0〉 |θ, φ〉+ c1 |1〉 |−θ, φ〉 . (3.10)
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FIGURE 3.2: Induced dynamics by the Hamiltonian H. On the left,
(i) |x0〉 = |−j〉; on the right, (ii) |x0〉 =

∣∣π
2 , φ

〉
. The red areas represent the

"positions" of the possibilities for the apparatus’ state after a "time" θ = ωt.

It’s better from now on to work on the formalism of density matrices, since we are
interested in studying correlations and populations. Let D = 2d be the dimension of
the total system+apparatus state. We define L(HD) as the set of all linear operators
acting on HD, and D(HD) = {Ψ ∈ L(HD)| Ψ ≥ 0, Tr(Ψ) = 1} the convex set
containing all the possible states (density matrices) of the total system. For the total
state Ψt = |ψt〉〈ψt|,

Ψt = |c0|2|0〉〈0| ⊗ |θ, φ〉〈θ, φ|+ c0c∗1 |0〉〈1| ⊗ |θ, φ〉〈−θ, φ|
+ c1c∗0 |1〉〈0| ⊗ | − θ, φ〉〈θ, φ|+ |c1|2|1〉〈1| ⊗ | − θ, φ〉〈−θ, φ|.

(3.11)

Realize that once interacting, the dynamics represented in figure 3.2 will continue
indefinitely. The spin coherent states will keep circular trajectories on the general-
ized sphere representing the total angular momentum space. It is important to high-
light two points: first, the overlap of two coherent states |〈θ, φ|θ ′ , φ〉|2 = cos(Θ

2 )
4j,

with Θ the angle between them. In our effective description, as we are mapping
states from d = 2j + 1 to j = 1

2 , the overlap between the coherent states increases. It
is important to keep this in mind in order to understand that there will be times in
the dynamics that the two contributions for the coherent state will be indistinguish-
able. In those moments, therefore, no information can be acquired.

The second point refers to the time required by the coherent states to complete
a full period and restart the cycle in the sphere (figure 3.2). The coarse-graining
preserves rotation symmetry, which means that the angular velocities of the coherent
state in its original and effective description will be the same. However, the linear
velocities to travel through arc lengths will be different, smaller for the effective
description, since it is related to the radius of the trajectory and this, in turn, with
the dimension d = 2j + 1. This means that, comparing the linear velocities just
before and after the coarse-graining channel, for increasing values of j, the effective
description will become slower and slower in comparison with the original. In the
limit j→ ∞, it will be necessary an infinity time for a cycle in the sphere (figure 3.2)
to be completed.

Assuming we aren’t able to access the measuring apparatus in all its details but
only via an effective state which shall we call ρA ∈ L(H2), we should apply on it the
coarse graining channel ΛCG, responsible for translating such disability mathemati-
cally. As we also do not have access to the system to be measured, we should apply
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the map 1⊗ΛCG(·) in the total state 3.11.

⇒ ρt = 1⊗ΛCG(Ψt) = |c0|2|0〉〈0| ⊗ΛCG(|θ, φ〉〈θ, φ|) + c0c∗1 |0〉〈1| ⊗ΛCG(|θ, φ〉〈−θ, φ|)
+ c1c∗0 |1〉〈0| ⊗ΛCG(| − θ, φ〉〈θ, φ|) + |c1|2|1〉〈1| ⊗ΛCG(| − θ, φ〉〈−θ, φ|).

(3.12)

In order to find ρt and then ρA = TrS(ρt), with the help of equation 3.6 we
must evaluate ΛCG(|θ, φ〉〈θ, φ|), ΛCG(|θ, φ〉〈−θ, φ|), ΛCG(| − θ, φ〉〈θ, φ|) and ΛCG(| −
θ, φ〉〈−θ, φ|). For such, it is convenient to rewrite the coarse-graining channel in
equation 3.6 in terms of Dicke states.

⇒ ΛCG(Ψ) =
1
2

(
1 +

1
j

Tr[Jx Ψ] σx +
1
j

Tr[Jy Ψ] σy +
1
j

Tr[Jz Ψ] σz

)
. (3.13)

Considering each term,

Tr[Jz Ψ] = ∑
m
〈m|Ψ Jz |m〉 = ∑

m
h̄m 〈m|Ψ |m〉 ; (3.14)

Tr[Jx Ψ] = ∑
m
〈m|Ψ 1

2
(J+ + J−) |m〉 = ∑

m
(〈m|Ψ J+

2
|m〉+ 〈m|Ψ J−

2
|m〉)

= ∑
m

h̄
2

(
[(j−m)(j + m + 1)]

1
2 〈m|Ψ |m + 1〉

+ [(j + m)(j−m + 1)]
1
2 〈m|Ψ |m− 1〉

)
;

(3.15)

Tr[Jy Ψ] = ∑
m
〈m|Ψ 1

2i
(J+ − J−) |m〉 = ∑

m
(〈m|Ψ J+

2i
|m〉 − 〈m|Ψ J−

2i
|m〉)

= ∑
m

h̄
2i

(
[(j−m)(j + m + 1)]

1
2 〈m|Ψ |m + 1〉

− [(j + m)(j−m + 1)]
1
2 〈m|Ψ |m− 1〉

)
.

(3.16)

The coarse-graining channel then becomes

ΛCG(Ψ) =
1
2

{
1 +

h̄
j ∑

m

{
|0〉〈0|m 〈m|Ψ |m〉 − |1〉〈1|m 〈m|Ψ |m〉

+ |0〉〈1|[(j + m)(j−m + 1)]
1
2 〈m|Ψ |m− 1〉

+ |1〉〈0|[(j−m)(j + m + 1)]
1
2 〈m|Ψ |m + 1〉

}}
.

(3.17)

Let’s start by calculating ΛCG(| ± θ, φ〉〈±θ, φ|), which encompasses ΛCG(|θ, φ〉〈θ, φ|)
and ΛCG(| − θ, φ〉〈−θ, φ|).

⇒ ΛCG(| ± θ, φ〉〈±θ, φ|) = 1
2

{
1 +

h̄
j ∑

m

{
|0〉〈0|m 〈m| ± θ, φ〉 〈±θ, φ|m〉

− |1〉〈1|m 〈m| ± θ, φ〉 〈±θ, φ|m〉
+ |0〉〈1|[(j + m)(j−m + 1)]

1
2 〈m| ± θ, φ〉 〈±θ, φ|m− 1〉

+ |1〉〈0|[(j−m)(j + m + 1)]
1
2 〈m| ± θ, φ〉 〈±θ, φ|m + 1〉

}}
.

(3.18)

We have very similar internal products involving Dicke states and atomic coher-
ent states. From equation (3.13) in reference [2] and reminding that (i) Rθ,φ |−j〉 ≡
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|θ, φ〉,

〈m + n| ± θ, φ〉 =
(

2j
j + m + n

) 1
2

sinj+m+n(
±θ

2
)cosj−m−n(

±θ

2
)e−i(j+m+n)φ, (3.19)

with n = {−1, 0, 1}. All the internal products in equation 3.18 can be evaluated via
relation 3.19. Considering h̄ = 1, case (i) yields

ΛCG(| ± θ, φ〉〈±θ, φ|) = 1
2

{
|0〉〈0|

(
1 +

1
j ∑

m
m
(

2j
j + m

)
sin2(j+m)(

±θ

2
)cos2(j−m)(

±θ

2
)
)

+ |1〉〈1|
(

1− 1
j ∑

m
m
(

2j
j + m

)
sin2(j+m)(

±θ

2
)cos2(j−m)(

±θ

2
)
)

+ |0〉〈1|1
j ∑

m

2j!
(j−m)!(j + m− 1)!

sin2(j+m)−1(
±θ

2
) cos2(j−m)+1(

±θ

2
) e−iφ

+ |1〉〈0|1
j ∑

m

2j!
(j + m)!(j−m− 1)!

sin2(j+m)+1(
±θ

2
) cos2(j−m)−1(

±θ

2
) eiφ

}
.

(3.20)

For the coherences ΛCG(| ± θ, φ〉〈∓θ, φ|) the procedure is slightly different. Ex-
perimentally, the output state ΛCG(| ± θ, φ〉〈∓θ, φ|) may be obtained by preparing
the input states |θ, φ〉, |−θ, φ〉, |+〉 = 1√

2
(|±θ, φ〉+ |∓θ, φ〉) and |−〉 = 1√

2
(|±θ, φ〉+

i |∓θ, φ〉) and forming linear combinations of ΛCG(|+〉〈+|), ΛCG(|−〉〈−|) and ΛCG(|±
θ, φ〉〈±θ, φ|). To get close to the daily routine in the lab, with the help of equation
8.154 in [84], we have:

ΛCG(| ± θ, φ〉〈∓θ, φ|) = ΛCG(|+〉〈+|) + iΛCG(|−〉〈−|)

− 1 + i
2

ΛCG(| ± θ, φ〉〈±θ, φ|)− 1 + i
2

ΛCG(| ∓ θ, φ〉〈∓θ, φ|).
(3.21)

The terms ΛCG(| ± θ, φ〉〈±θ, φ|) and ΛCG(| ∓ θ, φ〉〈∓θ, φ|) can be computed using
equation 3.20, while ΛCG(|+〉〈+|) and ΛCG(|−〉〈−|) using 3.17 and 3.20.

With the result of expression 3.21 and equation 3.20 we are able to compute the
final effective state ρt = 1⊗ΛCG(Ψt) in equation 3.12. Summations will be simpli-
fied making the transformation j + m → k and also 2j → n, then identifying the
results with Newton’s binomials. We end up with

ρt = |c0|2|0〉〈0| ⊗
[

sin( θ
2 )

2 sin(θ)
2 e−iφ

sin(θ)
2 eiφ cos( θ

2 )
2

]

+ (−1)2j cos(θ)2j−1
{

c0c∗1 |0〉〈1| ⊗
[
−sin( θ

2 )
2 sin(θ)

2 e−iφ

− sin(θ)
2 eiφ cos( θ

2 )
2

]

+ c1c∗0 |1〉〈0| ⊗
[
−sin( θ

2 )
2 − sin(θ)

2 e−iφ

sin(θ)
2 eiφ cos( θ

2 )
2

] }
+ |c1|2|1〉〈1| ⊗

[
sin( θ

2 )
2 − sin(θ)

2 e−iφ

− sin(θ)
2 eiφ cos( θ

2 )
2

]
.

(3.22)

Above is written the total system+apparatus state after an interaction time t, with
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the temporal dependence implicit in the rotation angle θ ≡ θ(t) = ωt. The coarse-
graining channel was applied only in the measuring apparatus, meaning that we
already have an effective quantum state for the apparatus. The ideal scenario would
be, in the case of strong coarse-graining (j → ∞), the disappearance of all quantum
correlations and the maintenance and growth of the classical ones.

In order to make a better analysis, the reduced density matrix of the apparatus
will be useful. Consider ρA = TrS[ρt], where we are tracing out the system’s degrees
of freedom in ρt – given by equation 3.22 (case (i)). For convenience, we can choose
the axis that defines the rotation plane so as to simplify the calculations. Selecting
the rotation plane as x-z, φ = 0 and e−iφ = 1, as depicted in figure 3.1. Therefore,

ρA =
1
2

[
1− cos(θ) sin(θ)(2|c0|2 − 1)

sin(θ)(2|c0|2 − 1) 1 + cos(θ)

]
. (3.23)

Inspecting the apparatus’ reduced density matrix ρA in 3.23, the first question is
whether it is possible to gather information about the target system measuring the
populations corresponding to the apparatus’ states |0〉〈0| and |1〉〈1|. In other words,
the whole quantum measurement process modeled here is given as follows: the
qubit, initially in a superposition, is placed to interact with a spin coherent state, our
measuring device; after a certain interaction time, we measure σz in the apparatus’
effective state ρA.

The probabilities of obtaining the two possible outcomes 1 and −1 in the mea-
suring device, associated with the states |0〉〈0| and |1〉〈1|, respectively, would allow
us to recover the values of the coefficients |c0| and |c1| in the initial state of the sys-
tem (3.7). This is what we expected. However, there is no dependence on |c0|2 in
the diagonal of 3.23. Thus, it is not possible to gather information about the system
measuring the populations of the apparatus’ reduced density matrix.

That was our motivation to analyze the case (ii). We need to find the corre-
sponding reduced density matrix ρA. We can start by tracing out system’s degrees
of freedom in an equation analogous to 3.12 but for case (ii). The only difference is
the transformation |θ, φ〉 →

∣∣θ + π
2 , φ

〉
. So,

ρA = TrS(1⊗ΛCG(Ψt))

= |c0|2ΛCG(|θ +
π

2
, φ〉〈θ + π

2
, φ|) + |c1|2ΛCG(| − θ +

π

2
, φ〉〈−θ +

π

2
, φ|). (3.24)

Using that the coarse-graining channel ΛCG preserves rotation symmetry,

ρA = |c0|2ΛCG(|θ +
π

2
, φ〉〈θ + π

2
, φ|) + |c1|2ΛCG(| − θ +

π

2
, φ〉〈−θ +

π

2
, φ|)

= |c0|2ΛCG(Rθ,φ|
π

2
, φ〉〈π

2
, φ|R†

θ,φ) + |c1|2ΛCG(R−θ,φ|
π

2
, φ〉〈π

2
, φ|R†

−θ,φ)

= |c0|2ΛCG(Rθ,φR π
2 ,φ| − j〉〈−j|R†

π
2 ,φR†

θ,φ) + |c1|2ΛCG(R−θ,φR π
2 ,φ| − j〉〈−j|R†

π
2 ,φR†

−θ,φ)

= |c0|2R π
2 ,φΛCG(Rθ,φ| − j〉〈−j|R†

θ,φ)R†
π
2 ,φ + |c1|2R π

2 ,φΛCG(R−θ,φ| − j〉〈−j|R†
−θ,φ)R†

π
2 ,φ

= |c0|2R π
2 ,φΛCG(|θ, φ〉〈θ, φ|)R†

π
2 ,φ + |c1|2R π

2 ,φΛCG(| − θ, φ〉〈−θ, φ|)R†
π
2 ,φ.

(3.25)

Notice that we already know the quantities ΛCG(| ± θ, φ〉〈±θ, φ|), they are given in
matrix form in 3.22. Considering φ = 0 as in case (i), we reach the final result. The
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reduced state ρA for case (ii) is given by

ρA =
1
2

[
1 + sin(θ)(1− 2|c0|2) −cos(θ)

−cos(θ) 1 + sin(θ)(2|c0|2 − 1)

]
. (3.26)

Remembering the movement in the generalized sphere (figure 3.2), in (i) the
two possible configurations of the apparatus, as time passes, will always be in the
same latitude (notice the black circle connecting the red areas on the left-hand side
sphere). We credit this fact for the non-observance of the effect of the coefficients c0
and c1. Measuring on the z basis on the effective apparatus’ state is like projecting
on the z-axis, and thus we don’t see any correlation. In (ii), instead, one possible
configuration will take direction to the north pole and the other to the south pole,
and the presence of c0 and c1 becomes visible – phenomenon shown in figure 3.3.

It is convenient to plot one population – or the probability of obtaining a specific
outcome after a series of measurements – as function of θ (or time) and the coeffi-
cient c0. The graph depicted in figure 3.3 is for the population regarding outcome 1.
Notice that it is possible to gain information about c0 and c1 no matter the apparatus’
initial dimension (3.26). On the vertical axis we have the absolute value of the pop-
ulations (it cannot exceed 1) and on the horizontal axes we have the rotation angle θ
and the coefficient c0.

FIGURE 3.3: Apparatus’ reduced density matrix population for outcome 1
in the (ii) case. The angle θ is in radians and j = 100 – the apparatus’ initial

dimension d = 2j + 1.

We have then an effective bi-dimensional state for the measurement apparatus
with two possible measurement outcomes, which we will call 1 and −1, or up and
down, making a direct connection with the states |0〉〈0| and |1〉〈1|, respectively. These
two possibilities motivate us to name the quantum measurement process here mod-
eled as a digital measurement scenario. Nevertheless, as can be seen inspecting matri-
ces 3.23 and 3.26, the coherences of the apparatus’ effective state don’t vanish, not
even in the limit j→ ∞.

Remember that without external influence, system and apparatus interact indef-
initely. As expressed in equation 3.9, before the coarse-graining action we have for
most of the time a system-apparatus entangled state with a superposition of two di-
rections of rotations associated each with one possible state for the system. In figure
3.3 in order to localize the angular position of the coherent states with respect to the
south pole in the 3D sphere, one should add π

2 to the θ value given in the axis for
one contribution, and subtract π

2 for the other.
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For an experimentalist, there are certain interaction times, or angles of rotation,
which are better to acquire information about the system. Revisiting the discussion
about the overlap between two coherent states, |〈θ, φ|θ ′ , φ〉|2 = cos(Θ

2 )
4j, it is min-

imal – 0 – when the coherent states are in diametrically opposite positions. This is,
the best rotation angles to recover c0 and c1 are such that the two contributions of the
spin coherent state are positioned close to the poles of the sphere – they are initially
positioned in equator.

Effectively, in the Bloch sphere, this means close to the orthogonal eigenstates of
σz, |0〉 and |1〉. From the point of view of the purity of the effective state 3.26, given
by Tr[ρ2

A] and shown in the graph 3.4 as a function of c0 and θ, in fact, for θ a multiple
integer of π we have maximum information about ρA – it is a pure state.

FIGURE 3.4: Purity of ρA (3.26) as a function of c0 and θ. It oscillates in
time, reaching their maximum value for θ a multiple integer of π.

Our next step is to analyze quantum correlations, in particular entanglement. For
such, we calculate for the (i) case the concurrence, analytically and numerically, and
the mutual information, just numerically, considering the total system+apparatus
state after the coarse graining action as a function of θ and for increasing values of j.
We also investigate the situation j→ ∞ (apparatus’ initial dimension d→ ∞).

In figure 3.5 are depicted four graphs with two plots each: concurrence (orange
lines) and mutual information (blue lines). The j values grow from left to right and
top to bottom and the θ angle grows positively from the south pole in the counter-
clockwise direction. The concurrence is defined as C(ρ) ≡ max(0, λ1−λ2−λ3−λ4),
in which the λi’s are the eigenvalues, in decreasing order, of the Hermitian matrix
R =

√√
ρρ′
√

ρ, ρ ∈ D(H4), and ρ′ = (σy ⊗ σy)ρ∗(σy ⊗ σy) [104, 105].
As can be seen from the graphs, the interaction creates entanglement. For θ val-

ues close to π, the red areas on the left-hand side of figure 3.2 meet at the north
pole, overlap, and entanglement goes to zero. Then begins to grow again, going to
zero when the red areas reach the south pole, restarting the cycle. As our inability
to resolve the apparatus in all its details increases, meaning here an increase in the
apparatus’ initial dimension, the entanglement starts to drop considerably (figure
3.5). This event reinforces our idea of the death of quantum features due to a crude
view of the studied system.

For the mutual information, which quantifies the presence of quantum or clas-
sical correlations, we use the definition I(S : A) = S(ρS) + S(ρA) − S(ρSA), with
S(·) the Von Neumann entropy. The states ρS and ρA are the reduced states for sys-
tem and apparatus, and ρSA the total state. Notice that for small values of j the
mutual information reaches its highest value – 2 – (figure 3.5), indicating the pres-
ence of classical and quantum correlations. With the increase of the coarse graining
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FIGURE 3.5: Concurrence and mutual information graphs on the total
system-apparatus state for increasing values of j. The larger the j, the larger
the apparatus’ initial dimension d and, consequently, the stronger the coarse-

graining action. The angle θ is in radians and c0 = c1 = 1√
2

.

strength, their values decline considerably and then stabilize, meaning the death of
quantum correlations and the creation of classical ones.

FIGURE 3.6: Concurrence 3D graph as a function of the rotation angle
θ and j. Decay of quantum correlations by increasing the strength of the
coarse-graining channel. It is shown the global behaviour of the orange lines
in figure 3.5. The angle θ is in radians and c0 = c1 = 1√

2
. In the right-hand

side the analytical plot and in the left-hand side the numerical plot.

Entanglement’s behaviour becomes clearer if we look to figure 3.6, which is a 3D
concurrence graph as a function of θ and j. Notice the decay of quantum correlations
already for not so large values of j. Evaluating the eigenvalues λ′is used to calculate
C(ρ), it is not difficult to find an expression in the form C(j, θ). Using the total state
3.22 to find analytically the eigenvalues, there are two of them different from zero.
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Following the calculations,

λ1 − λ2 − λ3 − λ4 =
{
|c0|2|c1|2tan2(θ)(cos(θ) + (−1)2j+1cos2j(θ))2} 1

2

−
{
|c0|2|c1|2tan2(θ)(cos(θ) + (−1)2jcos2j(θ))2} 1

2

= |c0c1sin(θ)(1 + (−1)2j+1cos2j−1(θ))| − |c0c1sin(θ)(1 + (−1)2jcos2j−1(θ))|
= |c0c1sin(θ)(1 + (−1)2j+1cos2j−1(θ)− 1 + (−1)2j+1cos2j−1(θ))|
= |2c0c1sin(θ)cos2j−1(θ)(−1)2j+1|.

⇒ C(j, θ) = 2|c0c1sin(θ)cos2j−1(θ)|.
(3.27)

This is the plot in the right-hand side of figure 3.6. Notice that j can not assume any
value, but j ∈ {0, 0.5, 1, 1.5..}. In the limit of a strong coarse-graining,

lim
j→∞

2|c0c1sin(θ)cos2j−1(θ)| = 0, (3.28)

which can be seen writing cos2j−1(θ) as (e−iθ + eiθ)2j−1 21−2j.
The physical situation becomes even more interesting if we consider another

viewpoint in the Schrodinger’s cat scenario. Let’s imagine the cat as an apparatus
with the objective of measuring the atom that is about to decay. Note that we have
a digital measurement scenario with two possibilities: 1, dead cat, for instance, the
atom has decayed; −1, alive cat, the atom has not decayed. As shown above, due to
the action of the coarse graining channel it is possible to observe the decay of quan-
tum correlations. Also, one of the motivations for using the channel was exactly to
model a situation in which we do not have access to the system (here, the atom) and
only partial information about the apparatus, an effective state (the cat).

Thus, after opening the box and actually measuring, we are not looking at the cat
(apparatus) in his fully quantum version, but via an effective description with just
two possibilities, dead or alive. This is a possible way to address the Schrodinger’s
cat paradox without evoking any interference from the surrounding environment or
the leakage of information by the box.

Despite of the beautiful results obtained using the coarse-graining channel 3.6, it
is difficult to extract a good physical intuition regarding the meaning of the channel
itself. In search for a more physically intuitive coarse-graining channel ΛCG able
to show us the death of coherences in the apparatus’ effective state in the limit of
a strong coarse-graining, we set out for the second and third attempts, presented
in the next section and in appendix B (for not having obtained conclusive results),
respectively.

3.4 Model 2: a magnetization measurement

At this point of our discussions, looking for to improve our model of a quantum
measurement process and with the feeling given by the modelling 1, we have de-
cided to imagine the measuring apparatus consisting of N qubits. Instead of looking
at the apparatus as a coherent state, it is as if we look at each of its parts. This change
of focus along with the design of a new coarse-graining map allowed us to obtain
new results, that were not reached before.
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The global situation is similar to what we had in model 1: a system to be mea-
sured consisting of a qubit initially in a superposition and an apparatus consisting
of N qubits (N >> 1) interact. The corresponding interaction Hamiltonian is such
that it induces a conditioned rotation. Depending on the state of the qubit-system the
apparatus will rotate in one direction on the other. Thus, information about c0 and c1
will be imprinted in the measuring device. Again, the observable that will be mea-
sured is magnetization. With a subtle difference from model 1: now, the apparatus’
effective state ρ ∈ L(H3). We will have then three possible outcomes in our digital
measurement scenario: −1, 0 and 1.

Let’s start writing the total system+apparatus initial state. The target qubit |ψ0〉 =
c0 |0〉+ c1 |1〉 and |Ψ〉 = √p |0〉+

√
1− peiφ |1〉 is the state of each one of the N ap-

paratus’ constituents – eiφ a phase and p ∈ [0, 1]. The total initial state is then given
by

|χ0〉 = |ψ0〉S ⊗
∣∣∣ΨN

〉
A
= |ψ0〉S ⊗

{
|Ψ〉 ⊗ |Ψ〉 ⊗ |Ψ〉 ⊗ ...⊗ |Ψ〉

}
A

= (c0 |0〉+ c1 |1〉)⊗
{
(
√

p |0〉+
√

1− peiφ |1〉)⊗ (
√

p |0〉+
√

1− peiφ |1〉)⊗

· · · ⊗(√p |0〉+
√

1− peiφ |1〉)
}

.

(3.29)

The measuring device is initially in a product state, meaning that neither classical
nor quantum correlations are present. In fact, neither between the apparatus’ con-
stituents nor between system to be measured and apparatus. The main motivation
for such configuration came from systems of nuclear magnetic resonance (NMR),
where the nuclear atomic spins play the role of qubits. Measures of magnetization
and magnetic fields are important in such systems [106].

As in section 3.3, the main tool used by us to extract information about the quan-
tum measurement process is the density matrix. The initial total system+apparatus
density matrix, before any interaction, is given by the separable state

|χ0〉〈χ0| =
{
|c0|2|0〉〈0|+ c0c∗1 |0〉〈1|+ c1c∗0 |1〉〈0|+ |c1|2|1〉〈1|

}
⊗ |ΨN〉〈ΨN |. (3.30)

System and apparatus interaction is the responsible for generating entanglement
between the parts.

The interaction Hamiltonian is chosen by H = h̄ ω
N σz ⊗ ~Jx, where ~Jx is the vector

sum of each individual angular momentum operator in the x-direction ~Jxi, namely
~Jx = ~Jx1 + ~Jx2 + ... + ~JxN , and ω the coupling constant, the angular frequency of
the rotation induced by the angular momentum operator around the x-axis. It is
important to divide the Hamiltonian by N to ensure that it is bounded even for
increasing values of N.

The evolution will induce rotations in each apparatus’ constituent, clockwise
(−θ) and counterclockwise (+θ) directions, conditioned to the system’s qubit states
|0〉 and |1〉 – here, σz |0〉 = +1 |0〉 and σz |1〉 = −1 |1〉. The evolved total state is then
given by

|χt〉〈χt| = Ut,0 |χ0〉〈χ0|U†
t,0 = e−i ω t

N σz⊗~Jx |χ0〉〈χ0|e+i ω t
N σz⊗~Jx

= |c0|2|0〉〈0| ⊗ Rθ,x |ΨN〉〈ΨN |R†
θ,x + c0c∗1 |0〉〈1| ⊗ Rθ,x |ΨN〉〈ΨN |R†

−θ,x

+ c1c∗0 |1〉〈0| ⊗ R−θ,x |ΨN〉〈ΨN |R†
θ,x + |c1|2|1〉〈1| ⊗ R−θ,x |ΨN〉〈ΨN |R†

−θ,x,
(3.31)
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with Rθ,x = e−i ω t
N
~Jx and θ ≡ ωt

N . In equation 3.31 we have a system+apparatus en-
tangled state representing a rotation of θ or −θ (around the x-axis) in the apparatus’
constituents conditioned to the eigenvalue +1 or −1 of the operator σz acting in the
system’s state.

Our first objective here is to recover c0 and c1 ∈ [0, 1]; to gain information about
the system looking at the measuring apparatus. Just as we are considering in our
modeling the system inaccessible, we also do not have access to the measuring de-
vice in all its details, but via an effective description. Mathematically, this effective
description will be provided by a coarse graining channel ΛCG, which we will define
soon. Differently from the model 1, here ΛCG : L(H2N ) → L(H3), with L(Hi) the
space of linear operators acting on the Hilbert space Hi. Once again, however, the
output dimension is fixed.

Notice that the output dimension of the coarse graining channel is 3, and no
longer 2. Which means that when measuring magnetization of the effective state
of the apparatus in the z-direction, three outcomes will be possible: −1, 0 and 1.
Therefore, our digital measurement scenario now has three possibilities. There will
be some probability of finding 1, 0 or −1 in the apparatus’ display, after a time t of
interaction, which will be related to the absolute values of c0 and c1. Let’s start by
analyzing such probabilities in order to gain intuition and construct ΛCG.

Let’s define the total magnetization of the apparatus by the sum of σz:

Mz =
N

∑
i=1

σz i, (3.32)

where we are summing on all the N constituents. This would be the case if we had
access to each one of the N qubits. Unfortunately, we don’t have such resolution.
Inspired by the work done by David Poulin when studying macroscopic observables
– defined by the author as the total value of a physical quantity over a collection of
quantum systems [107] –, we decided to model this lack of resolution through a
division in bins.

Our coarse description will be such that: if more than 2
3 of the N apparatus’ con-

stituents are in the state |0〉 (σz |0〉 = +1 |0〉), the measuring device will show in the
display magnetization 1; if less than N

3 are in the state |0〉, it will show magnetization -1;
if in the interval (N

3 , 2N
3 ), the apparatus will show magnetization 0. With this division

in three bins, or regions [0, N
3 ], ( N

3 , 2N
3 ) and [ 2N

3 ,N], projectors on different magneti-
zation subspaces are being grouped and perceived as an effective one depending on
the region that contains it. In other words, rather than perceiving changes in total
magnetization with the resolution of one qubit, only changes involving N

3 qubits are
perceptible.

In this context, the probabilities will be represented by Pr(ZN
i |ΨN

t ), with ΨN
t =

TrS(|χt〉〈χt|) ∈ L(H2N ) the evolved reduced density matrix of the apparatus and ZN
i

we define as the sum of projectors on subspaces of the same total magnetization (ex-
pressions 3.33), representing sums of the POVM elements of the total magnetization
on the z-direction.
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Now the expressions for ZN
i :

ZN
1 =

N

∑
l= 2N

3

∑
σ

Πσ|0102..0l11..1N−l〉〈0102..0l11..1N−l |Π†
σ;

ZN
0 =

< 2N
3

∑
l> N

3

∑
σ

Πσ|0102..0l11..1N−l〉〈0102..0l11..1N−l |Π†
σ;

ZN
−1 =

N/3

∑
l=0

∑
σ

Πσ|0102..0l11..1N−l〉〈0102..0l11..1N−l |Π†
σ,

(3.33)

where each sum also includes all possible states represented by permutations of 0’s
and 1’s. To give an intuition, consider the following example with N = 3:

Z3
1 = |001〉〈001|+ |010〉〈010|+ |100〉〈100|+ |000〉〈000|;

Z3
−1 = |110〉〈110|+ |101〉〈101|+ |011〉〈011|+ |111〉〈111|.

(3.34)

It is an emblematic example, no projector makes up ZN
0 . Nevertheless, there is no

contradiction or counter-intuitive fact here. As suggested by the projectors in equa-
tion 3.33, the application of the new coarse-graining map in the computational basis
elements of a state of N qubits, with Πσ the permutation operator, will be given by:

ΛCG(Πσ|0102..0l11..1N−l〉〈0102..0l11..1N−l |Π†
σ) =

{ | − 1〉〈−1|, if l ≤ N
3 ∀ σ;

|1〉〈1|, if l ≥ 2N
3 ∀ σ;

|0〉〈0|, if N
3 < l < 2N

3 ∀ σ;

ΛCG(Πσ|0102..0l11..1N−l〉〈0102..0l11..1N−l |Π†
σ
′ ) = 0, ∀ σ 6= σ

′
;

(3.35)

The states |1〉〈1|, |0〉〈0| and | − 1〉〈−1| represent the diagonal terms, from top to bot-
tom, in that order, in our effective description ∈ L(H3). They are directly related
with the magnetization outcomes 1, 0 and −1, respectively.

The action of the map on the elements Πσ|0102..0l11..1N−l〉〈0102..0l11..1N−l |Π†
σ
′ is

0 by the fact that our description does not distinguish between Πσ|0102..0l11..1N−l〉
and Π

′
σ|0102..0l11..1N−l〉, two elements with the same number of 0’s and 1’s ex-

changed in a different way. Therefore, there can be no coherence between them.
In the example 3.34 the projectors which make up Z3

1 will be mapped in |1〉〈1| and
the projectors which make up Z3

−1 in | − 1〉〈−1|.
It is time to think about the probabilities Pr(ZN

i |ΨN
t ). The quantities ZN

i have
already been defined. Let’s now focus on ΨN

t , the evolved reduced density matrix
of the apparatus. For such, let’s look at equation 3.31. Not all terms will survive the
operation of tracing out the system, necessary since we do not have access to it. We
will have left with

ΨN
t = TrS(|χt〉〈χt|)
= |c0|2Rθ,x |ΨN〉〈ΨN |R†

θ,x + |c1|2R−θ,x |ΨN〉〈ΨN |R†
−θ,x.

(3.36)

We need to calculate Rθ,x = e−i ωt
N
~Jx and R−θ,x = e+i ωt

N
~Jx , where θ is given by ωt/N,

with the time dependence implicit. Remembering that the total angular momentum
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operator~Jx = (~Jx1 +~Jx2 + ... +~JxN), it is possible to write

Rθ,x |ΨN〉〈ΨN |R†
θ,x = Rθ,x,1 |Ψ〉〈Ψ|1R†

θ,x,1 ⊗ Rθ,x,2 |Ψ〉〈Ψ|2R†
θ,x,2...⊗ Rθ,x,N |Ψ〉〈Ψ|N R†

θ,x,N .
(3.37)

Rotations by the same angle θ will be induced in each constituent of the apparatus.
This is what the above equation is showing us.

Noticing that |Ψ〉〈Ψ| ∈ L(H2), for each constituent we have Jx = σx
2 , considering

h̄ = 1. Using that e−i θ
2 σx = 1 cos( θ

2 )− i σx sin( θ
2 ),

Rθ,x |Ψ〉〈Ψ| R†
θ,x =

[
cos θ/2 −i sin θ/2
−i sin θ/2 cos θ/2

]
·[

p
√

p(1− p)e−iφ√
p(1− p)eiφ 1− p

]
·
[

cos θ/2 i sin θ/2
i sin θ/2 cos θ/2

]
.

(3.38)

Which gives

Rθ,x |Ψ〉〈Ψ| R†
θ,x =

1
2

{
|0〉〈0|

{
1 + (−1 + 2p) cos θ + 2

√
p(1− p) sin θ sin φ

}
+ |0〉〈1|

{
i(−1 + 2p) sin θ + 2

√
p(1− p)(cos φ− i cos θ sin φ)

}
+ |1〉〈0|

{
i(1− 2p) sin θ + 2

√
p(1− p)(cos φ + i cos θ sin φ)

}
+ |1〉〈1|

{
1 + cos θ − 2p cos θ − 2

√
p− p2 sin θ sin φ

}}
.

(3.39)

Making the tensor product (..) ⊗ (..) ⊗ ..⊗ (..) of 3.39 N times, we will finally
have Rθ,x |ΨN〉〈ΨN | R†

θ,x. It is a complicated calculation. However, our first objective
is to find the probabilities, which requires only the knowledge of the diagonal ele-
ments. Writing x ≡

{ 1
2 + (− 1

2 + p) cos θ +
√

p(1− p) sin θ sin φ
}

, 1− x ≡ 1
2

{
1 +

cos θ− 2p cos θ− 2
√

p− p2 sin θ sin φ
}

and forgetting for now the off-diagonals ele-
ments – ZN

1 , ZN
0 and ZN

−1 will only select the diagonal ones –, we should calculate

[
x

1− x

]
1
⊗
[

x
1− x

]
2
⊗ ..⊗

[
x

1− x

]
N
=

 xN

xN−1(1− x)1

...
. . .

 .

(3.40)
The subscripts are identifying the constituents. For N constituents there are 2N di-
agonal elements in the resulting matrix. Each x represents an entry associated with
the projector |0〉〈0| and each 1− x represents an entry associated with the projector
|1〉〈1|.

Therefore,

Pr(ZN
1 |ΨN

t ) = Pr(ZN
1 | |c0|2Rθ,x |ΨN〉〈ΨN |R†

θ,x + |c1|2R−θ,x |ΨN〉〈ΨN |R†
−θ,x)

= |c0|2
N

∑
k= 2N

3

(
N
k

)
xk(1− x)N−k + |c1|2

N

∑
k= 2N

3

(
N
k

)
yk(1− y)N−k,

(3.41)

where we get y from x doing θ → −θ. We can also rewrite |c1|2 = 1− |c0|2. The
binomial term accounts for the permutations of 0’s and 1’s once fixed the number k
of 0’s. At the point of equation 3.41 the probability depends on p, θ, φ, N and c0. In
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other words, on the initial states of system and apparatus and the time (θ = ωt/N).
Notice that Pr(ZN

1 |ΨN
t ) is exactly the first diagonal element of the effective state of

the apparatus, after the coarse-graining. Proceeding, for magnetization outcome 0
and 1, respectively,

Pr(ZN
0 |ΨN

t ) = Pr(ZN
0 | |c0|2Rθ,x |ΨN〉〈ΨN |R†

θ,x + |c1|2R−θ,x |ΨN〉〈ΨN |R†
−θ,x)

= |c0|2
< 2N

3

∑
k> N

3

(
N
k

)
xk(1− x)N−k + (1− |c0|2)

< 2N
3

∑
k> N

3

(
N
k

)
yk(1− y)N−k;

(3.42)

Pr(ZN
−1|ΨN

t ) = Pr(ZN
−1| |c0|2Rθ,x |ΨN〉〈ΨN |R†

θ,x + |c1|2R−θ,x |ΨN〉〈ΨN |R†
−θ,x)

= |c0|2
N
3

∑
k=0

(
N
k

)
xk(1− x)N−k + (1− |c0|2)

N
3

∑
k=0

(
N
k

)
yk(1− y)N−k.

(3.43)

The expressions 3.41, 3.42 and 3.43 are the probabilities of outcomes 1, 0 and −1
in the measuring device after system+apparatus interaction – remember that x and
1− x have implicit temporal dependence. The calculation of the probabilities using
ZN

i gives us exactly the same result as if we had applied the coarse-graining map
and then evaluated the probabilities in the effective description, as expected.

Before the interaction, or in other words, immediately after switching on the
apparatus, θ = 0, x and y → p and (1− x) and (1− y) → (1− p). The dependence
on c0 disappears, as expected. They are given by

Pr(ZN
1 | |c0|2 |ΨN〉〈ΨN |+ |c1|2 |ΨN〉〈ΨN |)

= |c0|2
N

∑
k= 2N

3

(
N
k

)
pk(1− p)N−k + (1− |c0|2)

N

∑
k= 2N

3

(
N
k

)
pk(1− p)N−k

=
N

∑
k= 2N

3

(
N
k

)
pk(1− p)N−k.

(3.44)

Similarly,

Pr(ZN
0 | |c0|2 |ΨN〉〈ΨN |+ |c1|2 |ΨN〉〈ΨN |) =

< 2N
3

∑
k> N

3

(
N
k

)
pk(1− p)N−k; (3.45)

Pr(ZN
−1| |c0|2 |ΨN〉〈ΨN |+ |c1|2 |ΨN〉〈ΨN |) =

N
3

∑
k=0

(
N
k

)
pk(1− p)N−k. (3.46)

Below follow 3D plots for the above probabilities as functions of the superposi-
tion coefficient p for the initial states of the apparatus’ constituents and the number
of constituents N (figures 3.7 to 3.9). Notice that, for large values of N, with the pur-
pose of measuring magnetization in the z-axis, if we choose p = 0.5 the apparatus
will always show 0 on the display. The probabilities of showing 1 or −1 are zero. In
fact, before coupling the measurement apparatus to the system, and when turning
it on, it is expected to show magnetization 0. It is a really interesting result, which
approaches our model to the real daily in the lab. The condition of a huge number
of constituents is important to give a feeling of the situation with an apparatus with
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size that we are familiar with in daily-life.

FIGURE 3.7: Probability of measuring magnetization 0 before the interac-
tion. For large N and p close to 0.5, it is one. On the graph, N starts from

2.

FIGURE 3.8: Probability of measuring magnetization +1 before the inter-
action. For large N and p close to 0.5, it is zero. On the graph, N starts from

2.

FIGURE 3.9: Probability of measuring magnetization -1 before the inter-
action. For large N and p close to 0.5, it is zero. On the graph, N starts from

2.

For times greater than zero, the probabilities oscillate over time periodically,
reaching local maxima whose values depends on the coefficient c0. Note that the
oscillatory nature of the probabilities was expected, since the rotations to which the
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apparatus’ constituents are subjected occur continuously. The graphs shown in fig-
ures 3.7 to 3.9 suggest the choice of p = 0.5. For simplicity, we have also chosen
φ = π

2 . Below follow 3D plots for the probabilities as function of a parametrization
of time θ = ωt

N and the number of constituents N (figures 3.10 to 3.12). For each
outcome 1, 0 and −1 we construct two graphs, corresponding to c0 = 1√

2
(on the

left) and c0 = 1√
3

(on the right).

FIGURE 3.10: Probability of measuring magnetization 0 as a function of
a parametrization of time θ = ωt

N and N. On the left, c0 = 1√
2

; on the right,

c0 = 1√
3

. In both, N starts from 2.

FIGURE 3.11: Probability of measuring magnetization 1 as a function of
a parametrization of time θ = ωt

N and N. On the left, c0 = 1√
2

; on the right,

c0 = 1√
3

. In both, N starts from 2.

Recapitulating, we are measuring magnetization of the apparatus’ effective state
with respect to the z-axis, with each of its N constituents rotating over the x-axis
from the initial state |Ψ〉 = 1√

2
|0〉 + i√

2
|1〉, and the θ angle growing positively in

the counterclockwise direction. That is, considering the Bloch sphere for each con-
stituent, it is initially aligned with the equator. This is the reason for the apparatus to
measure 0. In fact, the probability of measuring 0 is maximum when the constituents
are close to the equator’s plane in the Bloch sphere – θ a multiple integer of π (figure
3.10. As the interaction occurs, the apparatus remains in a superposition of rotating
in two directions. The best moments to acquire information about the system being
close to the poles, aligned with the z-axis (figures 3.11 and 3.12).
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FIGURE 3.12: Probability of measuring magnetization -1 as a function of
a parametrization of time θ = ωt

N and N. On the left, c0 = 1√
2

; on the right,

c0 = 1√
3

. In both, N starts from 2.

In the case of large values of N, interesting processes occur. First, the plateaus
that are seen in the graphs increase, meaning that for more and more time we have
a well defined resulting outcome. I.e., the temporal region in which we can best
acquire information about the system increase. Second, for large values of N (N >>
1), the time required to go through a period will be infinite, since θ = ωt

N . In practise,
in the limit N → ∞ there will be no more oscillation. Thus, having waited for the
time necessary to reach the plateau, the observer can look at the display in any time,
being able to gain information about the system’s initial state via c0 and c1. Again,
our model approaches the daily-life situation.

Having analyzed the probabilities of each outcome −1, 1 and 0, and in order to
study the behavior of quantum coherences, we need to define the coarse-graining
map action in the rest of the computational basis elements. Using the same argu-
ments as before, we define ΛCG(Πσ|0102..0l1112..1N−l〉〈0102..0l′1112..1N−l′ |Π†

σ
′ ) equal

to:

n1(N) | − 1〉〈1|, if l ≤ N
3

and l
′ ≥ 2N

3
;

n2(N) | − 1〉〈0|, if l ≤ N
3

and
N
3

< l
′
<

2N
3

;

n3(N) |1〉〈0|, if l ≥ 2N
3

and
N
3

< l
′
<

2N
3

;

0 if l ≥ 2N
3

and l′ ≥ 2N
3

, l 6= l′;

0 if l ≤ N
3

and l′ ≤ N
3

, l 6= l′.

(3.47)



60 Chapter 3. Modeling a quantum measurement process

Above,

n1(N) =

{ N
3

∑
k=0

N−k

∑
n= 2N

3 −k

N−n−k

∑
m= 2N

3 −n

N!
k!n!m!(N − n− k−m)!

}−1
2

;

n2(N) =

{ < 2N
3

∑
k> N

3

N−k

∑
n= 2N

3 −k

< 2N
3 −k

∑
m> N

3 −k

N!
k!n!m!(N − n− k−m)!

}−1
2

;

n3(N) =

{ < 2N
3

∑
k> N

3

< 2N
3 −k

∑
n> N

3 −k

N
3 −n

∑
m=0

N!
k!n!m!(N − n− k−m)!

}−1
2

.

(3.48)

It will be clear in a while where the normalization factors n1(N), n2(N) and n3(N)
came from. Now we are able to write the full effective state ρN

t = ΛCG(ΨN
t ) ∈

L(H3) for the apparatus after the coarse-graining channel in equations 3.35 and 3.47.
Namely,

ρN
t = |c0|2 ΛCG(Rθ,x |ΨN〉〈ΨN |R†

θ,x) + |c1|2 ΛCG(R−θ,x |ΨN〉〈ΨN |R†
−θ,x). (3.49)

Writing the evolved total state Rθ,x |ΨN〉〈ΨN |R†
θ,x as (similar to equation 3.40):[

x x∗c
xc 1− x

]
1
⊗
[

x x∗c
xc 1− x

]
2
⊗ ..⊗

[
x x∗c
xc 1− x

]
N

, (3.50)

with subscript c meaning coherence,

x ≡
{1

2
+ (−1

2
+ p) cos θ +

√
p(1− p) sin θ sin φ

}
(3.51)

and
xc ≡

1
2
{

i(1− 2p) sin θ + 2
√

p− p2(cos φ + i cos θ sin φ)
}

. (3.52)

We need to find the general 2N × 2N matrix resulting from 3.50, apply the coarse-
graining map in its elements and insert the result in 3.49, not forgetting the contri-
bution coming from |c1|2 ΛCG(R−θ,x |ΨN〉〈ΨN |R†

−θ,x). But how is it possible to get
the coarse-graining effective state of the general 2N × 2N matrix? Counting! For
instance, consider the generic element

Πσ|0102..0l11..1N−l〉〈0102..0l11..1N−l |Π†
σ
′ . (3.53)

The permutation operators are placed as a way to represent not only this element,
but all that result from permutations of 0’s and 1’s in the ket (Πσ) and in the bra
(Π†

σ
′ ).
However, the permutations are related, because each element as above comes

from the composition of N elements of dimension 2. For example, the element
|011〉〈110| = |0〉〈1| ⊗ |1〉〈1| ⊗ |1〉〈0| (in case N = 3) is associated with the combi-
nation x∗c (1 − x)xc in the tensor product 3.50. It is the permutations of the latter
combination, which means to exchange the order of |0〉〈1|, |1〉〈1| and |1〉〈0| in the ex-
ample above, that we should count. This is the origin of the factors N!

k!n!m!(N−n−k−m)! ,
n1(N), n2(N) and n3(N). With this counting in mind and equations 3.35 and 3.47 it
is possible to construct the effective state ρN

t .
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Finished this procedure, the total evolved effective state for the apparatus ρN
t is

given by:

ρN
t = |c0|2 ΛCG(Rθ,x |ΨN〉〈ΨN |R†

θ,x) + |c1|2 ΛCG(R−θ,x |ΨN〉〈ΨN |R†
−θ,x)

= |1〉〈1|
(
|c0|2

N

∑
k= 2N

3

(
N
k

)
xk(1− x)N−k + |c1|2

N

∑
k= 2N

3

(
N
k

)
yk(1− y)N−k

)

+ |0〉〈0|
(
|c0|2

< 2N
3

∑
k> N

3

(
N
k

)
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In the expression 3.54 for the total effective state of the apparatus, it is important
to remember that we get y from x and yc from xc doing θ → −θ in expressions 3.51
and 3.52. Notice that all the coefficients x, y, xc and yc have implicit temporal de-
pendence. Looking at the populations of states |1〉〈1|, |0〉〈0| and | − 1〉〈−1|, which in
turn are associated with apparatus’ outcomes 1, 0 and −1, respectively, we have the
probabilities of system’s magnetization 1, 0 and −1 as a function of time, obtained
in expressions 3.41, 3.42 and 3.43.

With the help of all the figures from 3.7 up to 3.12, we have already studied the
behaviour of the probabilities and how to recover the superposition coefficients c0
and c1 of the target system. Now it is time to look at the behaviour of the coherences
in the effective reduced state of the apparatus ρN

t .
Each coherence term involves, in its numerator and denominator, equal sums

containing the factor N!
k!n!m!(N−n−k−m)! , all sums growing with N. However, in nu-

merator are present quantities in absolute values smaller than 1 – they are x, xc, y,
(1− x), (1− y) and yc – to powers which, summed up, are of the order of N. This
ensures that for large values of N, i. e. in the limit of a huge measuring apparatus,
for instance consisting of moles of atoms, the coherences vanishes exponentially –
see graphs in figure 3.13. Not only by the size of the apparatus, but mainly by our
inability to access it in all its degrees of freedom, our coarser description.

FIGURE 3.13: Death of coherences for the total evolved effective state of
the apparatus. The θ angle in radians, p = 0.5, φ = π

2 and c0 = 1√
2

.

I close this chapter after these interesting results first making it clear that we
managed to see death of quantum coherences without evoking any interaction with
the environment and the formalism of decoherence. This makes us very motivated:
the work continues! In order to give continuity to the proposal in section 3.2, our
next immediate step is to formalize the coarse-graining map in equations 3.35 and
3.47.
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Chapter 4

Conclusions and Perspectives

Emphasizing the main aspects of the work developed, in this last chapter we sum-
marize the leading results of the thesis and its possibilities of application. We also
list perspectives for the continuity of our work and make final comments about the
most important message we want to convey.

4.1 Emerging dynamics

In chapter 2 we developed a general framework to investigate what kinds of dynam-
ics emerge when one does not have full access to the degrees of freedom of a given
system, for example in the case of a practical limitation or even a choice. Generally,
we believe that our formalism is useful in the study of quantum many-body sys-
tems, where a complete description of such a systems and their dynamics becomes
highly unpractical as the number of constituents increase, since the systems degrees
of freedom grows exponentially with that number. That’s why effective descriptions
are so important, and essential in the study of macroscopic (with a huge number of
micro-constituents) systems.

Notice that in developing the formalism in chapter 2 we did not distinguish be-
tween closed or open quantum systems, so that it can be applied in both cases. Re-
garding the theory of open quantum systems [108], in this case the usual split is
made between system and environment degrees of freedom, while in our formalism
the split that takes place is between accessible and non-accessible degrees of free-
dom. Notice that this is also the case of decoherence. Here, however, precisely in
chapter 3, we take into account practical aspects of the measuring process, not only
locality but also imprecision.

Remember that our general effective evolution channel Γt is not in Kraus form.
The reason is due to the fact that we have the possibility of correlations between the
accessible and non-accessible degrees of freedom, represented by the term ζ(α) in
equation (2.14). This possibility of correlations allowed for the distance between two
effective states to increase under the action of the same effective channel, differently
from what occurs in the underlying level (section 2.2.2).

Other interesting aspect to point out is the fact that the Kraus operators in the ef-
fective evolution (first term in equation (2.14)) may depend on the input state. Then,
if we look at the system only in time intervals in which the correlation term ζ(α)
might vanish (in other words, for a coarse grained time [109]), the non-linearity of
the Kraus-term might become apparent. This possibility, together with the possibil-
ity of an increase of the distinguishability between states may contribute to explain
how non-linear dynamics may emerge and how chaotic systems may arise from the
underlying quantum linear description.
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One important tool we are learning about and that we believe will be very im-
portant in the application of the formalism of chapter 2 in quantum thermodynam-
ics, more specifically in an attempt to explain the thermalization of closed quantum
systems [110, 111], and also in the study of a quantum measurement process is the
framework of [101] quantum master equations. Let’s give a sense of what it is about
and our perspectives on this path.

4.1.1 Quantum master equations

In section 2.1 we have discussed key properties of quantum channels, the most gen-
eral transformations that can be applied over quantum states. For instance an uni-
tary transformation evolving a quantum system from time t1 to time t2. Generally,
if we want to describe the time evolution of open quantum systems, we need a one-
parameter family of quantum channels {Λt, t ≥ 0}. A large class of interesting
physical phenomena may be described by evolution which satisfies the expression
Λt+s = ΛtΛs, usually called the semi-group condition or Markov property [108].

The latter named in honour of the Russian mathematician Andrey Markov (1856-
1922). In probability theory and statistics, a stochastic process has the Markov prop-
erty if the conditional probability distribution of future states of the process depends
only upon the present state, not on the sequence of events that preceded it. A dy-
namical map is called Markovian if it does not carry any memory effects, the evolu-
tion does not depends on the systems history.

Mathematically speaking, a dynamical map Λ is Markovian if it is completely
positive, trace-preserving, and satisfies the semi-group property Λt+s,0 = Λt,0Λs,0.
Then, Λ(t) = eLt and it leads to a Markovian equation in Lindblad form [112, 113],
namely

dρt

dt
= Lρt, (4.1)

where ρt = Λt(ρ), ρ ∈ {domain of L}, and the linear map L the semi-group genera-
tor, usually called Lindbladian. Notice that L is an operator acting on a vector space
of linear operators. Therefore, a super-operator. Equation (4.1) is also called quantum
master equation, Lindblad equation, or quantum Markovian master equation.

In reference [114], the authors propose a less restrictive definition, where a map
is defined as Markovian when it is a trace preserving and divisible CP map. In that
case, Λt1+t2,0 = Λt1+t2,t1 Λt1,0, where Λt1+t2,0 is completely positive for any t1, t2 > 0.
The generators L then can also be time dependent. This will be the case if we had
the situation depicted in figure 2.8. When dealing with such a situation, we have to
be sure that for all time steps ti, the underlying corresponding states ψi generates
the same effective quantum channel.

Regarding an arbitrary channel Λ, it is possible to find a general form for L, the
step by step procedure is found in references [115, 108, 116]. A quantum system
will undergo a Markovian dynamics provided that its evolution satisfies a master
equation of the Lindblad form:

Lρ = −i[H, ρ] +
d2−1

∑
k=0

γk(VkρV†
k −

1
2
{V†

k Vk, ρ}). (4.2)

The Hermitian operator H is the effective Hamiltonian of the system, γk ≥ 0, ∀k,
and the operators Vk are usually called Lindblad operators. The γk’s play the role of
relaxation rates for the different decay modes of the open quantum system, and the
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second term of equation (4.2) accounts for dissipative and dephasing effects. If the
dissipative term is equal to zero, we end up with a quantum analogue of the classical
Liouville equation, where the first term represents the unitary dynamics generated
by the effective Hamiltonian H. In the case of time-dependent generators, L(t) can
be written in the standard form (4.2) with H(t), γk(t) ≥ 0 and Vk(t) potentially time
dependent [114]. If one have a Markovian dynamics, γk ≥ 0; if non-Markovian, γk’s
are negative [112].

We have the prospect of deriving a quantum master equation for the effective,
emerging, dynamics (upper level of diagrams in figures 2.1 and 2.3). Notice that Λ,
as a quantum channel, has the Kraus form 1. However, our general dynamics (2.14)
cannot be written in such a way. The second term, which is not in Kraus form, makes
calculations more complicated.

Finding such a master equation will allow us to study in more detail and depth
the Markovianity properties of the emerging dynamics. We can also study the states
ρt that make the left hand side of equation (4.1) equal to zero, the stationary states.
Besides that, the fact that our effective dynamics Γt can increase the distance (or
distinguishability) between states (section 2.2.2) makes us wonder if we are dealing
with the emergence of non-linear effects from linear. This implication can also be
investigated.

4.1.2 Thermalization

A possible application of the emerging dynamics approach is to understand how
the well known properties of the microscopic world can be modelled by a statisti-
cal theory in which quantum thermodynamic laws emerge. This is one of the focus
of quantum thermodynamics, a research field that has grown considerably in the
last decades, supported by great advances in technology and experimental physics
[117, 118]. Quantum thermodynamics tries to extend standard thermodynamics in
order to include quantum effects and ensembles with ever smaller sizes. The under-
standing of how quantum fluctuations compete with thermal fluctuations is essen-
tial to adapt technologies to be valid in decreasing scales, and to develop new ones
[117].

One of the perspectives that has emerged in quantum thermodynamics is the
study of thermalization. In the quantum information theory approach of thermal-
ization, arguments of entanglement play an important role [119, 117]. But what does
it mean to thermalize? One can use the term thermalization to refer to equilibration
towards a state that is close to being indistinguishable from a thermal state propor-
tional to e−βH, for some inverse temperature β > 0 [110].

When thermalization occurs for a given system, it is expected that for almost all
initial states of the system it will end up in a thermal state, and the expectation val-
ues of many macroscopic observables will saturate to values predicted from thermal
states. In generic isolated systems, non-equilibrium dynamics is expected to result
in thermalization: a relaxation to states in which the values of macroscopic quanti-
ties are stationary, universal with respect to widely differing initial conditions, and
predictable using statistical mechanics.

With our formalism and a quantum master equation in hands, we have the
prospect of going in the discussion of thermalization of closed quantum many-body
systems focusing on the dynamical approach of it [120].
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4.2 Modeling a measurement process

At the end of the work described in this thesis, we managed to model a quantum
measurement process in two similar but different ways which we judge interesting
and that have brought us beautiful results. In general, we model a process in which
the system is a two level system (a qubit) and the measuring device composed by a
spin coherent state (section 3.3) and N qubits (section 3.4). One of the goals achieved
was to recover the coefficients c0 and c1 and gain information about the system. For
such, the system+apparatus dynamics corresponded to a rotation in the apparatus
conditioned to the system’s state |0〉 and |1〉.

Using the first coarse-graining channel, motivated by reference [102], we were
able to model a digital measurement scenario with two outcomes. We visualize the
death of quantum correlations between system and the apparatus’ effective state
and the creation of classical correlations when the strength of the coarse graining
channel is increased. We also find an analytical expression for the concurrence as a
function of θ (or time) and j. Though, the channel ΛCG still lacked a stronger physical
motivation.

Using the channel in model 2, which we still need further to formalize, allowed
us to model a digital measurement scenario with three outcomes, representing mag-
netization positive, negative and zero. More interesting is the fact that the outcome
zero in the limit of a large apparatus only appears when we turn on the measuring
device. This is a situation closer to everyday life in the lab. We also visualize the
death of coherences in the apparatus’ reduced effective state the coarser the descrip-
tion. A situation akin to decoherence, although it was not necessary to evoke any
interaction with the surrounding environment. In particular, in section 3.4, for large
N the effective state 3.54 can be seen as a statistical mixture of possibilities.

At this point, what I consider the most difficult part is the modelling of the coarse
graining map. It is imperative the map to have a clear physical motivation, it must
be a quantum channel and with general input-output dimensions.

Also because of this fact, in the short term, as an immediate continuation of our
work, we will continue to analyze different coarse-graining descriptions. Although
we have achieved beautiful results in sections 3.3 and 3.4 confirming our intuition
of the death of quantum correlations due to the lack of access to all system’s degrees
of freedom, we still believe we can go further. To do so, we believe it is necessary to
find a coarse-graining channel with a very clear and strong physical description. So
that we can find the corresponding effective dynamics and analyze different levels
of coarse graining, as was our initial proposal.

As a final comment, I would like to highlight again some papers in the field that
caught our attention [66, 101, 121]. In [66], the authors present a new theoretical ap-
proach to macroscopic realism and emergence of classical physics within quantum
theory. They focus on the limits of observability of quantum effects of macroscopic
objects, which is closely related to our idea of coarse-graining (chapter 2). The au-
thors demonstrate that for unrestricted measurement accuracy, no classical descrip-
tion is possible for arbitrarily large systems. However, for a certain time evolution
they show that under coarse-grained measurements macrorealism emerges out of
the Schrödinger equation and the projection postulate.

In [101], the authors reaffirms his point of view: "The classical world arises
from within quantum theory when neighboring outcomes are not distinguished but
bunched together into slots in the measurements of limited precision" [101]. Note
that according to the authors the classical world seems to arise via a coarse-graining
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procedure, which is the key idea of this thesis. In particular, a very similar proce-
dure was made in section 3.4. I believe that we can contribute more to this discussion
when developing future works.
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I. INTRODUCTION

It is widely accepted that quantum mechanics provides
currently the best description we have of the physical world.
However, the description of systems in our daily lives does not
require the whole framework arising from quantum mechanics.
In fact, our everyday life experiences heavily rely on effective
(macroscopic) descriptions which are far less complex than
their underlying intricate quantum characterization. For ex-
ample, to describe the behavior of a macroscopic object, like
the thermal expansions or compressions of a rail line, we do
not need to specify the quantum states of all atoms composing
such an object. In this situation, we resort to the theory of
thermodynamics [1], which is probably the clearest example
of effective theories. Although the systems treated within this
theory are composed of many quantum interacting particles,
macroscopic variables—such as temperature, volume, and
pressure—describe the systems well enough, allowing, for
instance, for the design of thermal machines.

The idea of different scales is central in physics. But how
does the description in one scale emerge from the description
in a deeper scale? Different ways of coarse graining the
description of a system are often employed [2–6] in order to
“zoom out” from one level and obtain an effective description.
Coarse grainings frequently appear in statistical physics [6]
and are arguably the central tool in the renormalization method
developed by Kadanoff and Wilson [7,8]. Nevertheless, some
of these early methods are sometimes based on not-so-well-
controlled approximations or on projections, leading thus
to ill-defined and/or probabilistic effective dynamics when
applied to quantum systems.

*cristhiano@mat.ufmg.br
†gabrieldc@cbpf.br
‡nadjakb@df.ufpe.br
§fmelo@cbpf.br

In recent decades, with the birth of the quantum information
field, various tools were developed to deal with many-body
quantum systems [9]. In particular, the theory of completely
positive linear maps [10–12], which aims at describing the
most general transformations that can be applied to a system
(including the most general time evolution), became well
established. This has been accompanied and supported by
the formalization and development of a theory for quantum
correlations [13] and by efficient descriptions of many-body
quantum states [14,15]. The goal of the present contribution
is to employ some of these tools in order to obtain effective
descriptions of quantum systems and their dynamics. More
concretely (see Fig. 1), given a system in the state represented
by a density operator ψ0 evolving by the unitary map Ut , what
is the dynamics �t induced by a coarse graining �CG? What
types of dynamics might emerge when we departure from a
full quantum description of the systems?

In what follows, we present a framework to address these
questions. Its construction is closely related to that of open
quantum systems [16–19]. In fact, concepts like the correlation
between system and environment, and map divisibility will
play an important role here as well. Nevertheless, our frame-
work encompasses and generalizes this previous formalism,
as ours can be used in many other situations. It can, for
instance, be used to describe closed systems from which just
partial information is available, which might play a significant
role in the thermalization of closed quantum systems [20,21].
Our work is also related to recent articles by Kofler and
Brukner [22,23]. In these articles, the authors analyze the
effect of coarse-grained measurements in order to explain the
emergence of the classical word. Their approach, however,
is not dynamical, and that is exactly the gap we want to fill
out.

Our article is organized as follows: In Sec. II, we introduce
two different characterizations of completely positive and trace
preserving (CPTP) linear maps, which will allow us to describe

2469-9926/2017/96(3)/032113(9) 032113-1 ©2017 American Physical Society
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FIG. 1. Coarse-graining-induced dynamics. Schematic diagram
representing the different levels of description connected by a coarse
graining. Given an initial state of the system, with density operator
ψ0, its evolution, Ut , and a coarse-graining map �CG, we want to
determine the induced dynamics �t and its properties, such that
�t ◦ �CG(ψ0) = �CG ◦ Ut (ψ0).

generalized quantum dynamics and the coarse-graining maps.
In this contribution, a coarse-graining map will simply be a
CPTP linear map that reduces the dimension of the system.
Such maps were recently used to obtain a sufficient criteria
for the entanglement of high-dimensional bipartite states [24].
After that, in Sec. III, we obtain the effective dynamics �t

induced by the coarse-graining �CG, underlying evolution Ut ,
and initial state ψ0. The properties of the effective map �t are
discussed in Sec. IV. In Sec. V, we show that the distance
between two effective states may increase under the action
of the same effective map �t . This is in contrast with the
usual contractive property of CPTP linear maps [9]. Finally,
in Sec. VI, we draw some final conclusions and hint at some
possible applications of the developed formalism.

II. CPTP LINEAR MAPS: GENERAL DYNAMICS
AND COARSE GRAINING

In order to define the coarse-graining operations, which
are the ones we are interested here, we will first briefly
review some properties of CPTP linear maps. Comprehensive
expositions can be found, for example, in Refs. [9–12].

Let HD � CD be the Hilbert space assigned to a D-
dimensional quantum system. We define L (HD) as the set
of all linear operators acting on HD , and D(HD) = {ψ ∈
L (HD)| ψ � 0,Tr(ψ) = 1} as the convex set containing all
the possible states of the system. Let � : L (HD) → L (Hd )
be a linear map which abides by two constraints: (i) it
is trace preserving, meaning that ∀ψ ∈ L (HD) we have
Tr(ψ) = Tr(�(ψ)); and (ii) it is completely positive, i.e., for all
positive operators ψ ∈ L (HD ⊗ HZ), with HZ an arbitrary
finite-dimensional Hilbert space, the linear map � ⊗ 1 :
L (HD ⊗ HZ) → L (Hd ⊗ HZ) is such that � ⊗ 1(ψ) � 0
[12]. The first imposition guarantees that probabilities are
conserved through the map action, while the completely
positivity condition ensures that states are mapped into states
even if the map acts only on a subsystem of the whole
system. The following well-known theorem gives a very useful
characterization of CPTP linear maps.

Theorem 1 ([9,12]). A linear map � : L (HD) → L (Hd )
is completely positive and trace preserving if and only if

FIG. 2. Operational interpretation of a CPTP linear map �.

there exists a finite set of linear operators {Ki}Ni=1, with
each Ki : HD → Hd known as a Kraus operator, such that
∀ψ ∈ L (HD):

�(ψ) =
N∑

i=1

KiψK
†
i with

N∑
i=1

K
†
i Ki = 1D.

It is worth noticing that CPTP linear maps generalize the
evolution of a quantum system, with the unitary evolution
being a particular linear map Ut : L (HD) → L (HD) with a
single Kraus operator, namely the unitary Ut itself. In general,
the number of Kraus operators is unlimited, but it is always
possible to characterize a CPTP linear map � : L (HD) →
L (Hd ) with a set of Kraus operators with at most Dd elements
[9], as this is the number of generators for the map. Moreover,
the set of Kraus operators describing a given CPTP linear map
is not unique. Given the two sets {Ki}Ni=1 and {K ′

i}Mi=1, with
N � M , they represent the same CPTP linear map if, and only
if, there exists a unitary U ∈ SU(N ) such that Ki = ∑

j UijK
′
j

(where, if necessary, we pad the smallest set with zeros) [9,12].
This more general type of evolution allows for describing

processes where there is a loss of information about the system,
with pure states evolving to mixed ones. That is the case, for
instance, when one is dealing with open quantum systems [16].

For the coarse-graining operations we are going to employ
below, the following (see Fig. 2) operational way to describe
CPTP linear maps will be handy.

Theorem 2 ([12]). Let � : L (HD) → L (Hd ) be a CPTP
linear map. Then there exists an auxiliary Hilbert space Hr ,
with dimension r � d, and a unitary V acting on HD ⊗ Hr ⊗
Hd such that ∀ψ ∈ L (HD)

�(ψ) = TrDr [V (ψ ⊗ |0〉〈0| ⊗ |0〉〈0|)V †].

Operationally, this theorem means that we can interpret
CPTP linear maps � as a unitary interaction among three
systems and further discard the first two parties. See Fig. 2.
This interpretation is reminiscent of open quantum systems,
where the system interacts unitarily with the environment, with
the latter being discarded as we have no control over or interest
in it. Here, however, the roles of system and environment are
not so well delineated. As we want to allow for maps with
different input-output dimensions, the partial trace is taken
over the auxiliary system and also over the factor encoding the
initial system state.
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FIG. 3. The distinct levels and dynamics induced by the coarse-
graining �CG.

The theorems above provide equivalent characteriza-
tion of CPTP linear maps, and hence we will use them
interchangeably. In fact, it is easy to relate them by
setting ∀ |ψ〉 ∈ HD, V (|ψ〉 ⊗ |0〉 ⊗ |0〉) = ∑D

i=1

∑r
j=1 |i〉 ⊗

|j 〉 ⊗ Kij (|ψ〉). This connection shows that the auxiliary
system is necessary as to accommodate CPTP linear maps
which require a number of Kraus operators bigger than D.
We should stress that for a CPTP linear map with a set of
Kraus operators {Ki}Ni=1, we take the dimension of Hr as
r = �N/D�, and must find an equivalent set of Kraus operators
with Dr elements, {K ′

i}Dr
i=1. Hence, whenever N > D the

auxiliary dimension r will be greater than one.
We are finally in position to establish the coarse-graining

operations. Roughly speaking, descriptions are named coarse
grained when some fine details of the underlying model are
smoothed out or replaced by average behaviors. In order to
get valid descriptions of states after the coarse graining, we
define it as a CPTP linear map that reduces the dimension of
the system:

�CG : L (HD) → L (Hd ) with D > d.

When one is not able to resolve the system in full detail, the
coarse-graining map gives an effective state for the system.

Resorting to the characterization of CPTP linear maps in
Theorem 2, we know that there exists an auxiliary space Hr

and a unitary V : HD ⊗ Hr ⊗ Hd → HD ⊗ Hr ⊗ Hd , such
that

�CG(ψ) = TrDr [V (ψ ⊗ |0〉〈0| ⊗ |0〉〈0|)V †].

Operationally, what the unitary V accomplishes is to “write”
the accessible degrees of freedom into the party in Hd ,
while the unaccessible degrees of freedom are left in
HD ⊗ Hr to be later discarded. See Fig. 3. The intermedi-
ate states χ0 = V (ψ0 ⊗ |0〉〈0| ⊗ |0〉〈0|)V † and χt = V (ψt ⊗
|0〉〈0| ⊗ |0〉〈0|)V †, which live in HD ⊗ Hr ⊗ Hd , are virtual
states, in the sense that they are mathematical abstractions.
In this level, the two contributions of degrees of freedom,
accessible and nonaccessible, are split but may be correlated.

A. Example: A blurred and saturated detector

In order to give a concrete example, let us consider a
typical optical lattice experiment [25–27]. In these exper-
iments, a periodic oscillating potential is constructed by
counterpropagating light beams, and individual atoms are
trapped in each potential minimum. In the deep Mott insulator
regime, two hyperfine levels of each atom act as a qubit, and

TABLE I. Coarse graining for a blurred and saturated detector. If
a detector does not distinguish between the two systems and does not
differ between one or two excitations, this coarse graining gives the
effective description of the system.

�CG(|00〉〈00|) = |0〉〈0| �CG(|01〉〈00|) = |1〉〈0|√
3

�CG(|00〉〈01|) = |0〉〈1|√
3

�CG(|01〉〈01|) = |1〉〈1|
�CG(|00〉〈10|) = |0〉〈1|√

3
�CG(|01〉〈10|) = 0

�CG(|00〉〈11|) = |0〉〈1|√
3

�CG(|01〉〈11|) = 0

�CG(|10〉〈00|) = |1〉〈0|√
3

�CG(|11〉〈00|) = |1〉〈0|√
3

�CG(|10〉〈01|) = 0 �CG(|11〉〈01|) = 0
�CG(|10〉〈10|) = |1〉〈1| �CG(|11〉〈10|) = 0
�CG(|10〉〈11|) = 0 �CG(|11〉〈11|) = |1〉〈1|

neighboring qubits interact with each other via a Heisenberg-
like Hamiltonian. The measurement of each atom is made via a
fluorescence technique: The atoms are illuminated with a laser
in way that if an atom is in the state, say, |1〉, light is scattered
by the atom, whereas if its state is |0〉, no light is scattered.
To resolve the light coming from each atom, a powerful lens
is necessary, and only recently a single-atom resolution was
accomplished [28].

To simplify, consider the case with only two atoms. Suppose
that the lens available is not good enough to resolve the light
coming from each individual atom. In this situation, the states
|01〉 and |10〉 cannot be distinguished. Moreover, imagine that
the amount of light coming from a single atom is already
sufficient to saturate the detector. Then, having two excitations,
|11〉, or one excitation, |01〉 or |10〉, leads to the same signal.
In such conditions, describing the experiment with two atoms
is superfluous, and an effective description becomes handy.
These experimental conditions suggest the coarse graining
presented in Table I.

Note that as the detector does not distinguish among the
states |01〉, |10〉, and |11〉, there can be no coherence in this
subspace. Furthermore, the 1/

√
3 factors are necessary to

make �CG a CPTP linear map. This signals that coherences
in the effective description might decrease, but they do not
necessarily vanish [21]. This can be readily seen by evaluating
the action of �CG over a general two-qubit pure state |ψ〉 =∑1

i,j=0 cij |ij〉, with cij ∈ C, which gives

�CG(|ψ〉〈ψ |) =
(

|c00|2 c00
c∗

01+c∗
10+c∗

11√
3

c∗
00

c01+c10+c11√
3

|c01|2 + |c10|2 + |c11|2
)

.

This effective state accounts for the statistics of all possi-
ble measurements that can be carried out by the detector
here modeled. It is thus the description that really matters
for this experimental condition, not carrying unaccessible
information.

The Kraus operators for this map can be easily obtained by
a quantum process tomography [9], and are given by

K1 =
(

1 0 0 0

0 1/
√

3 1/
√

3 1/
√

3

)
;

K2 =
(

0 0 0 0

0 1/
√

3 0 −1/
√

3

)
;
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K3 =
(

0 0 0 0

0 1/
√

3 −1/
√

3 0

)
;

K4 =
(

0 0 0 0

0 0 1/
√

3 −1/
√

3

)
.

As we have four Kraus operators, N = 4, and the dimension
of the underlying system is also four, D = 4, then the auxiliary
system in Hr can be taken as one dimensional and as such can
be ignored. With the above Kraus operators, and neglecting the
system in Hr , one can immediately obtain the corresponding
unitary V for this example:

V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 0 1/

√
3 0 1/

√
3 0 1/

√
3 0

0 1 0 0 0 0 0 0
0 0 1/

√
3 −1/

√
3 0 0 −1/

√
3 0

0 0 0 0 0 1 0 0
0 0 1/

√
3 1/

√
3 −1/

√
3 0 0 0

0 0 0 0 0 0 0 1
0 0 0 1/

√
3 1/

√
3 0 −1/

√
3 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

III. COARSE-GRAINING-INDUCED DYNAMICS

Now we address the central question of this contribution: What
are the dynamics that might emerge from a fully quantum
description if we are not able to resolve the system in all
its details? More concretely, we look for an effective map
�t which makes the diagram in Fig. 1 consistent, i.e, in a
way that ρt ≡ �t (ρ0) = �CG ◦ Ut (ψ0), with ρ0 = �CG(ψ0).
The induced dynamics then emerges from a coarse-grained
description of the underlying dynamics.

To obtain the induced dynamics �t acting on the effective
state ρ0, we generalize the procedure suggested by Štelma-
chovič and Bužek in Ref. [18]. There they proposed to write
the state of the system and environment as the tensor product
of its local parts plus a correlation term. Despite the fact that
here we do not have such a splitting between system and
environment, the action of the unitary V , see Fig. 3, suggests
the following decomposition:

χ0 = (ω0 ⊗ ρ0) + (χ0 − ω0 ⊗ ρ0), (1)

where χ0 = V (ψ0 ⊗ |0〉〈0| ⊗ |0〉〈0|)V †, ρ0 = �CG(ψ0) =
TrDr (χ0), ω0 = Trd (χ0). Note that ω0 is a state in D(HD ⊗
Hr ). Equation (1) is equivalent to Štelmachovič and Bužek
decomposition in the abstract level HD ⊗ Hr ⊗ Hd , with the
last term now representing the correlation between the degrees
of freedom which can be accessed and those that cannot. As
V is unitary, we can equivalently write

ψ0 ⊗ |0〉〈0| ⊗ |0〉〈0| = V †(ω0 ⊗ ρ0)V + V †(χ0 − ω0 ⊗ ρ0)V.

(2)

From the left-hand side of Eq. (2), we get the evolved
effective state by applying the underlying evolution map Ut

onto the first tensor factor, followed by the application of V

and further partial trace of the two first tensor factors:

ρt = �CG ◦ Ut (ψ0)

= TrDr [V (Ut (ψ0) ⊗ |0〉〈0| ⊗ |0〉〈0|)V †] = �t (ρ0).

The last equality comes from demanding consistence of the
diagram in Fig. 1. Accordingly, assuming the underlying
evolution map of the form Ut (·) = Ut (·)U †

t , from the right-
hand side of Eq. (1) we get the effective evolution:

�t (ρ0) = TrDr (Wt (ω0 ⊗ ρ0)W †
t )

+ TrDr (Wt (χ0 − ω0 ⊗ ρ0)W †
t ), (3)

where Wt = V (Ut ⊗ 1⊗ 1)V † is the unitary evolution op-
erator in the level HD ⊗ Hr ⊗ Hd , i.e., χt = Wtχ0W

†
t . See

Fig 3.
The above evolution equation can be rewritten in a more

meaningful way as

�t (ρ0) =
∑
i,j

Mijρ0M
†
ij + TrDr [Wt (χ0 − ω0 ⊗ ρ0)W †

t ], (4)

with Mij = √
pj (〈φi | ⊗ 1)Wt (|φj 〉 ⊗ 1), where we employed

the spectral decomposition ω0 = ∑
j pj |φj 〉〈φj |. This is the

dynamics that emerges if one is not able, or does not wish, to
resolve all the details of the underlying system.

The expression in Eq. (4) is composed by two contributions:
The first one displays a Kraus form (see Theorem 1), with
{Mij } being the corresponding set of effective Kraus operators;
the second one represents the evolution of the correlations
between accessible and nonaccessible degrees of freedom.
This second term can be more clearly appreciated by evoking
the Bloch representation of χ0:

χ0 = 1

Drd

(
1Dr ⊗ 1d + 1Dr ⊗ �α.�σd

+ �β �σDr ⊗ 1d +
∑
i,j

θij σ
(i)
Dr ⊗ σ

(j )
d

)
, (5)

where �σq = (σ (1)
q ,σ (2)

q , . . . ,σ
(q2−1)
q )T is a vector whose com-

ponents are the q × q generalized Pauli matrices, �α ∈ Rd2−1

is the Bloch vector of ρ0, �β ∈ R(Dr)2−1 is the Bloch vector
of ω0, and the [(Dr)2 − 1](d2 − 1) coefficients θij ∈ R fix
the correlation between accessible and nonaccessible degrees
of freedom. Defining the correlation matrix [
]ij = (θij −
βiαj )/Drd, the evolution of the coarse-grained state can be
written as

�t (ρ0) =
∑
i,j

Mijρ0M
†
ij +

∑
i,j


ij TrDr

(
Wtσ

(i)
Dr ⊗ σ

(j )
d W

†
t

)
.

(6)

It can be easily verified that
∑

i,j M
†
ijMij = 1d , and that

Trd (TrDr (Wtσ
(i)
Dr ⊗ σ

(j )
d W

†
t )) = 0 as Wt is unitary and the

(generalized) Pauli matrices are traceless. These conditions
guarantee that Trd (�t (ρ0)) = 1 for all times. The structure of
this type of evolution is very similar to the one describing open
quantum systems when system and environment are initially
correlated [17,18].

A. Example: Effective dynamics as seen by a blurred
and saturated detector

Consider again the situation described in Subsec. II A: two
atoms in neighboring wells of an optical lattice being observed
by a blurred and saturated detector. Suppose now that the atoms
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FIG. 4. Effective evolution as seen by a blurred-saturated de-
tector. The plot shows an oscillatory behavior for the purity of
the effective state. The inset shows the effective state trajectory in
the Bloch sphere. The underlying dynamics is determined by the
Hamiltonian H = h̄Jσz ⊗ σz, and we set J = 1 rad/s.

interact as specified by the Hamiltonian H = h̄Jσz ⊗ σz, with
J a coupling constant in units of frequency. In such situation,
an initial two-qubit pure state |ψ0〉 = ∑1

i,j=0 cij |ij〉 evolves
to

|ψt 〉 = (c00 |00〉 + c11 |11〉)e−iJ t + (c01 |01〉 + c10 |10〉)eiJ t .

The evolution of the effective state can then be easily
evaluated via ρt = �CG(ψt ) to give

ρt =
⎛
⎝ |c00|2 c00

e−2iJ t (c∗
01+c∗

10)+c∗
11√

3

c∗
00

e2iJ t (c01+c10)+c11√
3

|c01|2 + |c10|2 + |c11|2

⎞
⎠.

As a concrete example, the effective evolution of a state ψ0

with all coefficients cij equal, cij = 1/2 for i,j ∈ {0,1}, is
shown in the inset of Fig. 4. Figure 4 also shows how the
purity, Tr(ρ2

t ), oscillates with time, exhibiting the alternation
between pure and mixed state in the effective level. This is
in clear contrast with the complete description of the system,
where the system is pure for all times.

It is interesting to notice that the coefficients of ψ0 define
the state ρ0 but also enter in the definition of the effective map
�t . In the above example, this can be verified by evaluating
ω0 = TrDrχ0, which will also depend on the coefficients cij .
That in turn, means that the effective Kraus operators Mij

will also change with the cij —thus by changing ρ0 the map
may change. The same is true for the correlation matrix 
ij .
This interdependence of the parameters is treated in the next
section, where the properties of �t are analyzed.

IV. PROPERTIES OF �t

The effective map �t is generated by the underlying
evolution Ut , the coarse-graining map �CG, and the state ψ0.
Equation (6), however, does not make explicit how the map
depends on the elemental state ψ0. For instance, how do we
change the effective map �t for a fixed input state ρ0? Or, how
to change the effective input state keeping �t fixed? In what
follows, we address these and other questions, making use of

the Bloch representation for ψ0:

ψ0 = 1

D
(1D + �γ0. �σD), (7)

where �γ0 ∈ RD2−1 is the Bloch vector of ψ0.

A. Fix ρ0, change �t

Fixed the coarse-graining map, the Bloch vector �α of ρ0 is
obtained from �γ0 by the linear relations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1 = Tr
[
�CG(ψ0( �γ0))σ (1)

d

]
;

α2 = Tr
[
�CG(ψ0( �γ0))σ (2)

d

]
;

...
...

...

αd2−2 = Tr
[
�CG(ψ0( �γ0))σ (d2−2)

d

]
;

αd2−1 = Tr
[
�CG(ψ0( �γ0))σ (d2−1)

d

]
.

(8)

In the (D2 − 1)-dimensional space of Bloch vectors �γ0 of
ψ0, these constraints represent hyperplanes whose intersection
depicts the effective state ρ0. It is important to notice that
since D > d, the set of linear equations for the coefficients
αj is underdetermined, meaning that various states ψ0 lead
to the same effective state ρ0. Geometrically, in the γ space,
this many-to-one mapping is visualized as an hypersurface of
possible solutions.

Now, with this geometric perspective in mind, a fixed coarse
graining and a fixed underlying evolution, it can be seem that
changes in ψ0 that move �γ0 parallel to the hyperplanes within
the solution hypersurface will not affect the effective state ρ0.
Nevertheless, such change can induce modifications in ω0 or in

, and as such �t will change. A simple example is presented
in Fig. 5, and an abstract representation of the γ space and the
change in �t can be seen in Fig. 6.

B. Fix �t , change ρ0: The domain of �t

To change the effective state ρ0 we must change the value
of the αi’s. Geometrically this is represented by moving the
hyperplanes, defined in Eq. (8), in the γ space. After the
hyperplanes’ displacement, a new intersection is obtained
representing now another effective state, say, ρ1. As moving �γ0

parallel to the hyperplanes changes the map, this time we must
move �γ0 perpendicular to the hyperplanes. This guarantees that
only the effective state is changing. See Fig. 6(a).

It is important to notice that this change might in fact modify
ω0 or 
. This, however, comes only because of the change in
the effective input state, as these quantities might be functions
of �α. Putting it differently, the effective Kraus operators might
change, but this is only due to the change in the input of the
effective map �t . The dynamical equation (6) can be rewritten
as to make this dependence explicit:

�t [ρ0(α)] =
∑
i,j

Mij (α)ρ0(α)M†
ij (α) + ζ (α), (9)

where ζ (α) = ∑
i,j 
ij (α)TrDr (Wtσ

(i)
Dr ⊗ σ

(j )
d W

†
t ).

We can now determine the domain of a given �t . An
effective map �t is generated by an elemental state ψ0, an
underlying evolution map Ut , and a coarse-graining map �CG.
This information already gives the first element in the domain
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FIG. 5. Simple example of fixing ρ0 and changing the effective
map. For the case where we fix the unitary mapping as the SWAP ,
i.e., Ut |ij〉 = SWAP |ij〉 = |ji〉, and the coarse graining as the
usual partial trace on the second component, we see that different
underlying states generate different effective maps. The fact that the
emergent maps cannot be the same is clear because if that was the
case the same input would lead to two different outputs.

of �t , namely, ρ0 = �CG(ψ0). The coarse graining �CG fixes
the hyperplanes in the γ space through Eq. (8). Let �vi be
the normal vector for the ith hyperplane, and �γ0 be the
Bloch vector of ψ0. The domain of �t is then given by all
ρ = �CG(ψ) generated from ψ with Bloch vector �γ for which
there exists coefficients ci ∈ R such that �γ = �γ0 + ∑

i ci �vi .
The latter condition guarantees that the Bloch vector of all
states in the domain of �t can be reached from �γ0 by moving
it perpendicular to the hyperplanes in Eq. (8), and as such not
changing the effective map.

This immediately implies that the domain of �t is convex:
Let ρa = �CG(ψa) and ρb = �CG(ψb) be in the domain
of �t . This means that there exists coefficients {ai} ⊂ R

and {bi} ⊂ R such that the Bloch vectors of ψa and ψb

can be written as �γa = �γ0 + ∑
i ai �vi and �γb = �γ0 + ∑

i bi �vi ,
respectively. There are many states in L (HD) which after
the coarse graining lead to the convex combination ρ =
pρa + (1 − p)ρb, with p ∈ [0,1]. In particular, the state ψ =
pψa + (1 − p)ψb is such that �CG(ψ) = ρ and it has Bloch
vector �γ0 + ∑

i[pai + (1 − p)bi]�vi . Therefore the convex
combination ρ is also in the domain of �t .

C. Effective positivity and complete-positivity of �t

Equation (9) clearly shows that in general �t is not of Kraus
form, like shown in Theorem 1. This means that if �t is taken
as a map between states from D(Hd ) to itself, then �t is not
completely positive, possibly not even positive.

FIG. 6. The γ space, and the effects of changing the underlying
state. The intersection between the hyperplanes defines the effective
state. A non-point-like region reflects the fact that many under-
lying states lead to the same effective state. (a) The top panel shows
a change in the underlying state that does not change the effective
state ρ0. This change may, nevertheless, have impact on the effective
map. (b) Changing the underlying state such that its Bloch vector �γ
moves normally to the hyperplanes changes only the effective state
preserving the effective map. The region obtained by such normal
displacement of the Bloch vector defines the domain of an effective
map.

However, as we have just seen, the domain of a given �t is
not necessarily all the states in D(Hd ). Restricting the action
of �t to its domain guarantees the positivity of the map. This
can be immediately verified by the simple consistence of the
diagram in Fig. 3, which demands

�t (ρ0) = �t ◦ �CG(ψ0) = �CG ◦ Ut (ψ0).

As the rightmost part of this equation is a composition of
positive maps, then the positivity of the first term is also
guaranteed.

The same line of thought can be used to argue for the
complete positivity of �t . Indeed, as we are constructing our
framework upon quantum mechanics, no contradiction with it
can be obtained. However, this argument should not go through
without a caveat: Not all extensions of effective states ρ in the
domain of a given �t into ω ∈ D(HA ⊗ Hd ), with HA the
Hilbert space of an auxiliary system, are possible. The possible
extensions for ρ = �CG(ψ) are those that can be obtained
from states � ∈ D(HA ⊗ HD) such that TrA(�) = ψ , which
guarantees that TrA[1A ⊗ �CG(�)] = ρ, and that ψ generates
the map �t (together with the underlying evolution Ut ). We
call such a family of states � as the set of effective complete
positivity for �t . Physically this constraint comes from the
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FIG. 7. Recovering strict complete positivity for the effective
map. One way to obtain a family of CP effective maps is to require
the map Ntk = �CG ◦ Utk to be CP divisible.

fact that if one does not have control of all the degrees of
freedom of a system, then not all the states can be generated.
In another perspective, the entanglement that can be created in
the fundamental level HA ⊗ HD is, in general, decreased by
the action of the coarse-graining map [24].

Strict complete positivity can be reobtained if we demand
that the composite map Nt := �CG ◦ Ut to be CP divisible
[29]. If that is the case, the definition of CP-divisible maps
requires Ntk = �(tk ,tj ) ◦ Ntj for all tk � tj , with �(tk ,tj ), the
effective evolution map for the time interval [tj ,tk], completely
positive (see Fig. 7). This shows a connection between
the theory of coarse-grained maps and the theory of non-
Markovian maps [19,29].

V. CONSEQUENCE: EFFECTIVE DISTANCE
INCREASE BY �t

A common property of CPTP linear maps (1) is that the
distance between two input states cannot increase. Mathemat-
ically, let � : L (HD) → L (Hd ) be a CPTP linear map and ψ

and ψ ′ be states in L (HD). Then ||�(ψ) − �(ψ ′)||1 � ||ψ −
ψ ′||1, where the 1-norm is defined as ||A||1 := Tr(

√
A†A).

Physically, this means, for instance, that the discrimination
between two unknown quantum states cannot be improved by
any further processing of the states [9].

The effective map �t , as discussed in the previous section,
is not in general of Kraus form. Can then the distance
between two effective states increase? As argued before, no
contradiction with quantum mechanics can arise. In fact, it
is simple to check that the distance between two effective
states is upper bounded, for all times, by the distance between
the underlying initial states. Let ρ0 = �CG(ψ0) and ρ ′

0 =
�CG(ψ ′

0) be effective states in L (Hd ) with respective evolved
states ρt = �t (ρ0) and ρ ′

t = �t (ρ ′
0). Then

||ρt − ρ ′
t ||1 = ||�CG(ψt ) − �CG(ψ ′

t )||1;

� ||ψt − ψ ′
t ||1; (10)

= ||Ut (ψ0) − Ut (ψ
′
0)||1;

� ||ψ0 − ψ ′
0||1. (11)

(a)
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FIG. 8. Distance increase for the effective dynamics. In the above
plots, ||ρt − ρ ′

t ||1, ||ψ0 − ψ ′
0||1, and ||ρ0 − ρ ′

0||1 are represented,
respectively by the blue continuous line, red dashed line, and the
black dot-dashed line. Contrary to the usual contractive property
of CPTP linear maps, on the effective level, the distance between
two states undergoing the same process may increase. This increase
is, however, upper bounded by the distance between the underlying
states (red dashed line). (a) The underlying interaction is dictated by
the Hamiltonian H = h̄Jσz ⊗ σz. We see that the distance oscillates,
increasing for some time intervals. Nevertheless, in this case, we
always have ||ρ0 − ρ ′

0||1 � ||ρt − ρ ′
t ||1. (b) The underlying evolution

is dictated by the Hamiltonian H = h̄Jσz ⊗ σz + h̄�(σx ⊗ 1+ 1⊗
σx), and we set J = 1 rad/s and � = 3 rad/s. In this case, we see
that ||ρt − ρ ′

t ||1 can even go beyond ||ρ0 − ρ ′
0||1.

The last inequality turns into an equality in the case
of a unitary mapping Ut , i.e., Ut (.) = Ut (.)U

†
t for some

unitary Ut .
This, however, does not imply that a distance increasing

between effective states is not allowed. In fact, it is possible
to have an increase in distance between the effective states
undergoing the same effective map. Take, for example,
the coarse graining describing the blurred-saturated detector
(Sec. II A), the underlying dynamics given by the Hamiltonian
H = h̄Jσz ⊗ σz (Sec. III A), and select two states ψ0 and
ψ ′

0 which generate the same effective map as in Sec. IV B.
Figure 8(a) shows the distance evolution between the two
effective states ρt = �CG(ψt ) and ρ ′

t = �CG(ψ ′
t ). A clear

oscillation of the distance is observed. In this example,
nevertheless, we have that ||ρ0 − ρ ′

0||1 � ||ρt − ρ ′
t ||1 for all

times.
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Now, switch on a transversal field, turning the Hamiltonian
into H = h̄Jσz ⊗ σz + h̄�(σx ⊗ 1+ 1⊗ σx), with � the
field frequency, and take initial states ψ0 and ψ ′

0 in a way
to have the same effective map. The evolution of the distance
between the effective states is shown in Fig. 8(b). In this case,
we see that the distance ||ρt − ρ ′

t ||1 can go beyond ||ρ0 − ρ ′
0||1

for some specific times.

VI. CONCLUSION

When dealing with complex many-body quantum systems,
the full description of the system and of its dynamics is
prohibitive. Even in principle, it assumes that one has access to
all the system’s exponentially (in the number of constituents)
many degrees of freedom. A simple system composed of 60
qubits would require in general the measurement of about
(260)2 � .1.33 × 1036 observables to be fully characterized—
even if each measurement is performed in one femtosecond,
this would take more than 3000 times the age of the universe to
be accomplished. This is only for the state; the characterization
of the dynamics is far more complex. Effective descriptions
are thus mandatory in order to perceive macroscopic systems.

Pursuing the direction of effective descriptions, here we
investigated what types of dynamics may emerge from a full
quantum description when one does not have access to, or
is not interested in, all the degrees of freedom of a given
system. The presented formalism generalizes the theory of
open quantum systems, as it works also for closed systems.
Here the split between system and environment is substituted
by the split between accessible and nonaccessible degrees of
freedom. The possibility of correlations between these two
types of degrees of freedom may generate effective dynamics
that are not of Kraus form—without violating any principle
of quantum mechanics. This, in turn, allowed for the distance
between two effective states to increase under the action of

a fixed effective—in contrast to what is achievable in the
underlying quantum description.

Other aspects of this effective dynamics can be further
explored: most notably, the fact that the Kraus operators may
depend on the state the map is acting on. This suggests
a possible way to explain how nonlinear dynamics may
emerge from the quantum linear description: If one looks
at the system only at time intervals for which the term
quantifying correlations between accessible and nonaccessible
degrees of freedom, ζ (α) in Eq. (9), vanishes; i.e., for a
coarse-grained time [30], then the nonlinearity of the first term
may become apparent. This (possible) nonlinearity together
with the distance increase between effective states undergoing
the same effective map may be the key to explain how
chaotic systems arise from the underlying quantum mechanical
description.

Lastly, we hope that the formalism here presented can
shed some light on the quantum-to-classical transition: the
higher the “zoom out” (stronger coarse graining, in the sense
of larger difference between D and d), the more simplified
the description of the system and its dynamics becomes, with
quantum features fading away. We believe that these ideas can
be of interest for areas as quantum thermodynamics—which
tries to explain the thermalization of closed quantum systems
[20,21]—and even to address the measurement problem in
quantum mechanics [31].
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Appendix B

Model 3: ΛCG involving averages
in the coherent states space

The physical system is the same as before: a system and an apparatus initially in
states |χ0〉 = c0 |0〉+ c1 |1〉 and |x0〉 = |−j〉 interact via the Hamiltonian H = h̄ω σz⊗
~n ·~J. After a time t, the total entangled state is

|ψt〉 = c0 e−itω 1⊗~n·~J |0〉 |−j〉+ c1 e+itω 1⊗~n·~J |1〉 |−j〉 = c0 |0〉 |θ, φ〉+ c1 |1〉 |−θ, φ〉 ,

representing a superposition of two possible states: an atomic coherent state rotating
in clockwise and counterclockwise directions, determined by the states of the target
system.

Our objective is to model a quantum measurement process in which the mea-
surement of the apparatus allows the experimentalist to acquire information about
the system. And more, due to the inability to access all the apparatus’ degrees of
freedom, we obtain an effective state for such. We believe that this aspect must be
taken into account in the search for understanding why we experience a classical
reality in our daily lives.

Inspired by a suggestion of Prof. Časlav Brukner, here we construct a coarse-
graining map using the expectation values of the input state ρ on the atomic coherent
states

∣∣Ωj
〉
≡ |θ, φ〉j, each of them a point in a generalized sphere which represents

the space of angular momentum with dimension d = 2j + 1. We work with the three
different constructions shown below:

(i)ΛCG(ρ) =
∫

dΩjN |Ω 1
2
〉〈Ωj|ρ|Ωj〉〈Ω 1

2
|;

(ii)ΛCG(ρ) =
∫

dΩj

∫
dΩ

′
jNn fn(Ωj) |Ω 1

2
〉〈Ωj|ρ|Ω

′
j〉〈Ω

′
1
2
| fn(Ω

′
j)

+
∫

dΩj

∫
dΩ

′
jNs fs(Ωj) |Ω 1

2
〉〈Ωj|ρ|Ω

′
j〉〈Ω

′
1
2
| fs(Ω

′
j);

(B.1)

And the (iii),

ΛCG(ρ) = ∑
m,m′

∫
dΩj { fn(Ωj) + fs(Ωj)}g(m, Ω, κ, j)g∗(m′, Ω, κ, j)|Ω 1

2
〉〈m|ρ|m′〉〈Ω 1

2
|,

(B.2)
with

g(m, Ω, κ, j) =
√
N (m, κ, j) c(Ω, m, j)

=
√
N (m, κ, j)

(
2j

j + m

) 1
2

sinj+m(
θ

2
)cosj−m(

θ

2
)ei(j+m)φ.

(B.3)
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FIGURE B.1: Fisher-Bingham distribution representing Gaussian func-
tions on the poles of a sphere. If κ → 0 we have an uniform distribution
over the sphere. As κ grows, the spread of the distribution increases. In the

limit κ → ∞ we have delta functions at the poles.

In all cases, ΛCG : L(Hd) → L(H2). We are averaging the d-dimensional state ρ
and, after the application of the coarse-graining channel, we end up with an effective
description for the apparatus’ state in the bi-dimensional angular momentum space.
The N ’s are normalization constants, and must be determined so that the channels
in B.1-B.3 are trace-preserving maps.

The factors fn(Ωj) and fs(Ωj) are Gaussian functions on the surface of a general-
ized sphere, which represents the d-dimensional angular momentum space, centred
in the north (subscript n) and south poles (subscript s) (figure B.1). The role of the
Gaussian functions is to introduce a weight in the contributions of the expectation
values, favouring those closest to the poles. Its analytical expression is given by the
Fisher-Bingham distribution [122], and here takes the form

fn(Ω) = fn(θ) =
κ

4πsinh(κ)
e−κ cos(θ) j2 , (B.4)

with the parameter κ ≥ 0 controlling the spread of the distribution. For the south
pole the exponential argument has opposite sign.

The reader should be warned that we still don’t have conclusive results regard-
ing correlations, like those in section 3.3, for the channels listed in B.1. Before pro-
ceeding with the calculations, it is important to determine the normalization con-
stants N ’s. For simplicity, let’s start by the (i) map. Identifying the Kraus operators
as KΩ =

√
N |Ω 1

2
〉〈Ωj| we must have∫

dΩ K†
ΩKΩ = 1 ⇒

∫
dΩjN |Ωj〉〈Ω 1

2
|Ω 1

2
〉〈Ωj| =

∫
dΩjN |Ωj〉〈Ωj| = 1. (B.5)

From reference [2] it is known that∫
dΩj|Ωj〉〈Ωj| =

∫
dθdφ sin(θ) |θ, φ〉〈θ, φ| = 4π

2j + 1
. (B.6)

Then, in the (i) case N = 2j+1
4π . For the (ii) case we can identify the Kraus operators

as

Kn =
∫

dΩj
√
Nn fn(Ωj) |Ω 1

2
〉〈Ωj| and Ks =

∫
dΩj

√
Ns fs(Ωj) |Ω 1

2
〉〈Ωj|. (B.7)
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In order to have a trace-preserving channel, it must be true that K†
nKn + K†

s Ks = 1.∫
dΩj

∫
dΩ

′
jNn fn(Ωj) |Ωj〉〈Ω 1

2
|Ω′

1
2
〉〈Ω′

j| fn(Ω
′
j)

+
∫

dΩj

∫
dΩ

′
jNs fs(Ωj) |Ωj〉〈Ω 1

2
|Ω′

1
2
〉〈Ω′

j| fs(Ω
′
j) = 1.

(B.8)

As the two terms above are quite similar, let’s work with one of them. Insert-
ing the completeness relation for Dicke states and omitting one of the integration
symbols,∫

dΩj dΩ
′
jNn fn(Ωj) fn(Ω

′
j) ∑

m,m′,m”
|m〉〈m|Ωj〉〈Ω 1

2
|m”〉〈m”|Ω′

1
2
〉〈Ω′

j|m′〉〈m′|. (B.9)

Notice that the m′′ can only assume the values {− 1
2 , 1

2} and that in the internal prod-
ucts involving m′′, j = 1

2 . Using the relation 3.19,

∑
m,m′,m”

|m〉〈m′|
(

2j
m + j

) 1
2
(

2j
m′ + j

) 1
2 ∫

dθdθ′dφdφ′sin(θ)sin(θ′)Nn (
κ

4πsinh(κ)
)2

e−κ j2(cos(θ)+cos(θ′))sinj+m+m′′+ 1
2 (

θ

2
)cosj−m−m′′+ 1

2 (
θ

2
)e−i(j+m−m′′− 1

2 )φ

sinj+m′+m′′+ 1
2 (

θ′

2
)cosj−m′−m′′+ 1

2 (
θ′

2
)e−i(−j−m′+m′′+ 1

2 )φ
′
.

(B.10)

Discriminating each integral,

∑
m,m′,m”

|m〉〈m′|
(

2j
m + j

) 1
2
(

2j
m′ + j

) 1
2

Nn (
κ

4πsinh(κ)
)2

∫ π

0
dθ sin(θ) sinj+m+m′′+ 1

2 (
θ

2
) cosj−m−m′′+ 1

2 (
θ

2
) e−κ j2cos(θ)

∫ π

0
dθ′ sin(θ′) sinj+m′+m′′+ 1

2 (
θ′

2
) cosj−m′−m′′+ 1

2 (
θ′

2
) e−κ j2cos(θ′)

∫ 2π

0
dφ e−i(j+m−m′′− 1

2 )φ
∫ 2π

0
dφ′ e−i(−j−m′+m′′+ 1

2 )φ
′
.

(B.11)

In order to evaluate the integrals in θ, we should make the transformation of
variables cos(θ) = u. Then, evaluating all the integrals; the sum in m′′; incorporating
the term with the function fs(Ωj) of equation B.8; and finally simplifying, we end
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up with

∑
m,m′
|m〉〈m′|

(
2j

m + j

) 1
2
(

2j
m′ + j

) 1
2

(
κ

4πsinh(κ)
)2 e−2κ j2

{−4e−2iπ(j+m− 1
2 )(1 + e2iπ(j− 1

2+m))(−1 + e2iπ(j+m′−1))

(j + m− 1)(−1 + j + m′)

Γ[
1
2
(2−m + j)]Γ[

1
2
(3 + m + j)] Γ[

1
2
(2−m′ + j)] Γ[

1
2
(3 + m′ + j)]{

e4κ j2Nn H1F1R[
1
2
(2−m + j),

5
2
+ j,−2κ j2]H1F1R[

1
2
(2−m′ + j),

5
2
+ j,−2κ j2]

+Ns H1F1R[
1
2
(2−m + j),

5
2
+ j,+2κ j2]H1F1R[

1
2
(2−m′ + j),

5
2
+ j,+2κ j2]

}
− e−2iπ(j+m+ 1

2 )(1 + e2iπ(j+m+ 1
2 ))(−1 + e2iπ(j+m′))

Γ[
1
2
(3−m + j)] Γ[

1
2
(m + j)] Γ[

1
2
(3−m′ + j)] Γ[

1
2
(m′ + j)]{

e4κ j2Nn H1F1R[
1
2
(3−m + j),

5
2
+ j,−2κ j2]H1F1R[

1
2
(3−m′ + j),

5
2
+ j,−2κ j2]

+Ns H1F1R[
1
2
(3−m + j),

5
2
+ j,+2κ j2]H1F1R[

1
2
(3−m′ + j),

5
2
+ j,+2κ j2]

}}
= 1d,

(B.12)

where Γ(·) is the usual gamma function and H1F1R[a,b,z] is our notation to the
regularized confluent hypergeometric function 1F1(a,b,z)

Γ(b) .
Inspecting equation B.12, it is not simple to find Nn and Ns so that the (ii) chan-

nel is trace-preserving for any input dimension d = 2j + 1. To gain some intu-
ition, consider the case j = 1

2 . Back to the φ-integrals in sum B.11, they result in
2π δm,m′′ 2π δm′,m′′ .

⇒
1/2

∑
m=−1/2

|m〉〈m|( κ

sinh(κ)
)2 1

4
{Nn

∫ π

0
dθ sin(θ) sin1+2m(

θ

2
) cos1−2m(

θ

2
) e−κ cos(θ)/4

∫ π

0
dθ′ sin(θ′) sin1+2m(

θ′

2
) cos1−2m(

θ′

2
) e−κ cos(θ′)/4 +Ns

∫ π

0
dθ sin(θ)

sin1+2m(
θ

2
) cos1−2m(

θ

2
) e+κ cos(θ)/4

∫ π

0
dθ′ sin(θ′) sin1+2m(

θ′

2
) cos1−2m(

θ′

2
) e+κ cos(θ′)/4}.

(B.13)

⇒
1/2

∑
m=−1/2

|m〉〈m|( κ

sinh(κ)
)2 1

4

{
Nn{

∫ π

0
dθ sin(θ) sin1+2m(

θ

2
) cos1−2m(

θ

2
) e−κ cos(θ)/4}2

+Ns{
∫ π

0
dθ sin(θ) sin1+2m(

θ

2
) cos1−2m(

θ

2
) e+κ cos(θ)/4}2

}
.

(B.14)
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Considering Nn = Ns = N ,

⇒ |1
2
〉〈1

2
| N (

κ

sinh(κ)
)2 1

4

{
{
∫ π

0
dθ sin(θ) sin2(

θ

2
) e−κ cos(θ)/4}2

+ {
∫ π

0
dθ sin(θ) sin2(

θ

2
) e+κ cos(θ)/4}2

}
+ |−1

2
〉〈−1

2
| N (

κ

sinh(κ)
)2 1

4

{
{
∫ π

0
dθ sin(θ) cos2(

θ

2
) e−κ cos(θ)/4}2

+ {
∫ π

0
dθ sin(θ) cos2(

θ

2
) e+κ cos(θ)/4}2

}
.

(B.15)

Finally,

N 8[−8 + (8 + κ2)cosh( κ
2 )− 4 κ sinh( κ

2 )]

sinh2(κ) κ2
{|1

2
〉〈1

2
|+ |−1

2
〉〈−1

2
|} = 12.

⇒ N (κ) =
sinh2(κ) κ2

8[−8 + (8 + κ2)cosh( κ
2 )− 4 κ sinh( κ

2 )]
.

(B.16)

Above we have the normalization constant for the (ii) coarse-graining channel,
where we assume thatNn = Ns = N and j = 1/2. However, a map ΛCG : L(H2)→
L(H2) is not what we consider the ideal case. Motivated by the complexity of the
equation B.12, we modified a the coarse-graining channel (ii), obtaining the (iii)
map. For such, the Kraus operators can be written as

K(Ω) =
√

fn(Ω) + fs(Ω)
j

∑
m=−j

√
N (m, κ, j) c(Ω, m, j)|Ω 1

2
〉〈m|. (B.17)

with ΛCG(ρ) =
∫

dΩK(Ω)ρK†(Ω). Let’s find the normalization N (m, κ, j).

⇒
∫

dΩK†(Ω)K(Ω) =
∫

dΩ{ fn(Ω) + fs(Ω)}

∑
m,m′

c∗(Ω, m, j)c(Ω, m′, j)
√
N (m, κ, j)

√
N (m′, κ, j)|m〉〈m′|.

(B.18)

= ∑
m,m′

√
N (m′, κ, j)

√
N (m, κ, j)

(
2j

j + m

) 1
2
(

2j
j + m′

) 1
2

|m〉〈m′|
∫ π

0
dθ sin(θ){ fn(θ) + fs(θ)}sin2j+m+m′(

θ

2
)cos2j−m−m′(

θ

2
)
∫ 2π

0
dφ ei(m′−m)φ.

(B.19)

Since the φ-integral give us 2π δm,m′ ,

= ∑
m
N (m, κ, j)

(
2j

j + m

)
|m〉〈m| κ

2 sinh(κ){ ∫ π

0
dθ sin(θ)e−κ j2cos(θ)sin2j+2m(

θ

2
)cos2j−2m(

θ

2
)

+
∫ π

0
dθ sin(θ)e+κ j2cos(θ)sin2j+2m(

θ

2
)cos2j−2m(

θ

2
)
}

.

(B.20)
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Evaluating the θ-integrals,

⇒
∫

dΩK†(Ω)K(Ω) = ∑
m
N (m, κ, j)|m〉〈m|2j! κ e−j2κ

sinh(κ)
{

H1F1R[1 + j−m, 2 + 2j, 2j2κ]

+ H1F1R[1 + j + m, 2 + 2j, 2j2κ]
}

.
(B.21)

Therefore, the normalization N (m, κ, j) for the (iii) map must be

N (m, κ, j) =
ej2κ sinh(κ)

2j! κ
{

H1F1R[1 + j−m, 2 + 2j, 2j2κ] + H1F1R[1 + j + m, 2 + 2j, 2j2κ]
} .

(B.22)

In the last few pages we have built three different coarse-graining channels with
a better physical intuition than the one of section 3.3, as well as find their respec-
tive normalization constants. However, when inspecting the quantum correlations
through the concurrence and mutual information, the results are not so interesting
as the ones in section 3.3. This motivates us to continue our attempts to model a
quantum measurement process, seeking to construct a coarse-graining map as close
as possible to the ideal.
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[92] Peter Štelmachovič and Vladimír Bužek. Dynamics of open quantum systems
initially entangled with environment: Beyond the kraus representation. Phys.
Rev. A, 64:062106, Nov 2001.

[93] Hilary A. Carteret, Daniel R. Terno, and Karol Życzkowski. Dynamics beyond
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