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If quantum mechanics is the fundamental theory in physics, at least in principle, it must
assign states at every level of description of a system. Consequently, quantum mechan-
ics must provide a two-way of describing nature. Firstly, the theory should connect a
microscopic state to a macroscopic (effective) description of a system. Secondly, in an
opposite direction, assuming access only to a macroscopic description of a system, quan-
tum mechanics must assign to it an ensemble of microscopic quantum states that abides
by all macroscopic constraints. This thesis proposes to investigate both directions, which
we named micro-to-macro mapping and macro-to-micro mapping. We first formalize a
coarse-graining map that plays the role of a general micro-to-macro mapping. Such an ap-
proach aims to model general macroscopic descriptions of a quantum system, even when
there is an ambiguity in the split between system’s and environment’s degrees of freedom.
As an application, we construct a coarse-graining map to model an imperfect detection
of a well-isolated spin-system in an optical lattice scenario. We readily apply this coarse-
graining to describe spin-entanglement dynamics in different ranges of resolution of the
system. In the second part of the thesis, assuming that our macroscopic perception of
nature is inherently coarse-grained, we construct a macro-to-micro operation called aver-
aging assignment map. This map assigns to a set of macroscopic coarse-grained observa-
tions a microscopic description which is the ensemble-average of all microscopic states
that are compatible with that effective observations. As an application, we construct a
nonlinear stochastic state dynamical map that emerges from underlying deterministic lin-
ear quantum evolution. As a by-product, we show how effective nonlinear dynamics can
be used to improve state discrimination.
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Chapter 1

Introduction

Currently, quantum mechanics plays the role of a fundamental theory of physics. A cen-

tury has passed since its birth, and quantum mechanics has been proving to be the most

successful scientific theory ever formulated. Such status is mainly attributed to the ex-

traordinary agreement between theoretical predictions and the varied experimental results

at levels never seen in science. A remarkable example is the prediction for the electron

g-factor [1], which has an extraordinary experimental agreement within ten parts in a bil-

lion [2]. If today, for instance, matter at its subatomic level is successfully described by

the standard model of particles physics [3], it is thanks to its root in quantum mechanics.

Given its fundamental character, quantum mechanics should not be thought of as a

theory that deals only with small constituents or larger physical systems at very restricted

conditions – as for instance the Bose–Einstein condensate, typically formed when a boson

gas at a low density is cooled to extremely low temperatures [4]. Indeed, all the knowledge

we have about nature provided by modern science, supports a reductionist view of the laws

of nature: the behavior of the parts determines the behavior of the whole. Consequently,

as the atomic hypothesis states that the macroscopic world is composed of a collection

of small constituents, quantum mechanics directly assumes a universal status. Quantum

mechanics predictions, in principle, must then be in agreement with phenomena in all

ranges of description.

The universality of quantum mechanics implies a bidirectional way to describe nature.
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Firstly, a micro-to-macro direction: given a microscopic description of a quantum system,

the theory must be able to explain how macroscopic (effective) observations emerge. Sec-

ondly, in opposite way, a macro-to-micro direction: given a macroscopic observation that

effectively describes a system, the theory must assign to it a properly compatible ensem-

ble of microscopic quantum states. Note that what we mean by a macroscopic description

of a system is that given by a few effective degrees of freedom, while in a microscopic

description we assume a complete characterization of the underlying physical system. In

Figure 1.1 we illustrate this bidirectional mapping in a pictorial way.

(a) Micro-to-macro mapping

(b) Macro-to-micro mapping

FIGURE 1.1: (a) The micro-to-macro mapping assigns to a full micro-
scopically described system a macroscopic (effective) description. A mi-
croscopic description of a cat (in blue), that takes into account the state of
all its fundamental particles (blue circles in the cat), is mapped to a macro-
scopic description (red cat). (b) The micro-to-macro mapping assigns to
a macroscopic description an ensemble of microscopic states that are in
agreement with the observed data. Given a macroscopic description of a
cat the macro-to-micro map assigns an ensemble of microscopic states that

the cat can be in.

The present thesis aims to give a contribution in the generalization of both micro-to-

macro and macro-to-micro assignments. In the following sections we summarize some

motivations for the study of both micro-to-macro and macro-to-micro assignments. We

will briefly contextualize some traditional frameworks in which such studies are currently
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addressed in the literature, summarizing their domains of application and its limitations.

Then it will be succinctly indicated and discussed what will be the main ideas and method-

ologies adopted in this work for the construction of our approach.

1.1 Micro-to-macro

Throughout the development of quantum physics, a major motivation for the study of

micro-to-macro mapping was the attempt to reconcile our everyday perception of nature

with intriguing properties of quantum mechanics.

A prominent example is the effort to physically interpret quantum entanglement [5],

and why such a fundamental quantum property does not seem to exist in the macro-

scopic world. Basically, such an issue was guided by the question: "What process does a

microscopic quantum-described system undergo such that in a macroscopic observation

entanglement does not seem to exist?".

A traditional approach to deal with this question is based on the quantum open sys-

tem paradigm [6]. Such a scenario acknowledges the fact that no physical system is

completely isolated from its surroundings. Therefore, to suitably describe a quantum sys-

tem, we need to consider its coupling to the surrounding environment – the latter being

a "huge" quantum system whose microscopic degrees of freedom are inaccessible. Then,

in the open quantum system scenario, the effective description of a system is given by

splitting the microscopic degrees of freedom, between those we have access to – identi-

fied as the system – from those we don’t have access – the environment – which are then

removed – See Figure 1.2 (b). Mathematically this removal of environmental variables is

given by the partial trace map, through this procedure quantumness seems very sensitive.

Despite being successful in its application regime [6], the open quantum system paradigm

has crucial limitations in representing more general effective descriptions. As described

above, such an approach is limited to model physical scenarios which present a clear mi-

croscopic split between the degrees of freedom of the system and environment, in which
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the partial trace can be properly applied. So for general applications, the open quantum

system scenario must be generalized.

It is worth to mention that, especially in the scope of the development of quantum

technologies, there is a renewed demand for the study of more general micro-to-macro

mapping. Nowadays, well-isolated quantum systems with a significant number of qubits

are at the disposal of physicists [7, 8, 9]. However, its control and characterization con-

sume expensive resources growing with system size. Quantum state tomography, for

example, beyond requiring quite accurate individual particle access, in the case of a large

system makes its realization and data postprocessing intrinsically time consuming [10].

Therefore, since fundamental quantum features are a crucial resource for the develop-

ment of quantum technologies – for example, quantum computation and cryptography

[11, 12, 13] – it is of fundamental importance an approach that can describe how both the

environment and unsharp measurements can affect quantum properties to be detected.

Motivated by these problematic circumstances, in this thesis, we define a general

micro-to-macro map that aims to overcome some of the limitations presented in the open

quantum system paradigm. Supported by the quantum information formalism and its

tools, we formalize a coarse-graining map that aims to model general situations where

we don’t have full microscopic access of a quantum system. We pictorially represent in

Figure 1.2 (c) an effective (coarse-grained) description of a closed quantum system, which

in general cannot be modeled in the open quantum systems approach. Then, employing

such a coarse-graining framework, we generalize the open quantum system scenario to an

extended definition of subsystems [14, 15, 16, 17].

Once formalized, as a concrete application of our coarse-graining approach, we con-

struct a map that models an imperfect resolution detection of an isolated quantum system

[18, 16]. We readily apply such a map to describe the dynamics of spin-entanglement in

a coarse-grained optical lattice. Our results suggest that even if we are not able to fully

resolve the system, entanglement can still be detected at some coarse-graining levels.
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(a) Microscopic system (b) Open quantum system (c) Coarse-grained system

FIGURE 1.2: (a) Here we represent a quantum system composed by a set
of qubits (the blue circles with arrow) with the interaction among them rep-
resented by blue lines. In a fully microscopic description we must take into
account all degrees of freedom (a single qubit represents one local degree
of freedom). (b) in the open quantum system scenario the effective descrip-
tion of a system is given by splitting the microscopic degrees of freedom
between those we have access to, the red qubits – identified as the system –
from those we don’t have access to – the environment – which are removed
by the partial-trace map. (c) An example of a scenario where, depending
on how coarse-grained is the effective description, the open quantum sys-
tem scenario cannot be applied. In this case the effective description of
the underlying microscopic system is given by coarse-grained qubits, each
one related to a coarse-grained detection of two qubits. Physically speak-
ing, such a scenario can model a situation where we do not resolve any
individual microscopic degree of freedom of the system, but we only have
access to the effective description that emerges from a blurry detection of

the whole system.

1.2 Macro-to-micro

As stated before, the macro-to-micro quantum mapping has the role of assigning a quan-

tum microscopic description that properly represents a given arbitrary set of macroscopic

observations. In the literature, such assignments are in general covered by the theory of

quantum statistical physics [19, 20]. Traditionally, such an approach also assumes the

open quantum system scenario: a "small" system of interest interacting with a “large”
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environment (also referred to as reservoir), about which we do not have microscopic con-

trol. Considering a set of macroscopic properties about the system and/or its reservoir

(e.g. volume, pressure, temperature), statistical physics asserts that the best description

of the system, depending on the case, is given by the canonical ensemble. However, now

in the macro-to-micro perspective, the quantum open system assumption also comes with

the limitations previously pointed.

Therefore, with the intention of formalizing an approach that can describe the diver-

sity of ways that a system can be macroscopically characterized, we formalize a general

macro-to-micro quantum mapping. Basically, our method assigns to an arbitrary set of

macroscopic (coarse-grained) observations, a microscopic ensemble which is the average

of all quantum states that the underlying physical system could be in.

Macro-to-micro assignments play an important role in elucidating emergent phenom-

ena in physics [21]. Among its capabilities, this procedure must be able to show how

emerging macroscopic behavior is in accordance with the underlying quantum mechan-

ics rules. Emergent nonlinear dynamics, for example, is one of these phenomena that

still lacks a general first principle description. Thus, as a by-product of our macro-to-

micro mapping, we derive a description of general effective stochastic dynamics, which

makes more clear under which conditions nonlinear dynamics emerges from linear quan-

tum dynamics. In simple terms, as it will be properly demonstrated, in our approach the

nonlinear character will depend not only on how the system microscopically evolves but

on how "coarse-grained" is our ability to prepare a physical system.

1.3 Overview

This thesis is organized as follows:

• In Chapter 2, we formalize the micro-to-macro mapping. Grounded on quantum

information formalism, we will define a general coarse-graining map that connects

a microscopic quantum state of a system to macroscopic/effective descriptions. As
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an application, we discuss two coarse-graining maps, the partial trace operation, and

a map that models a blurred and saturated detection in an optical lattice scenario.

• In Chapter 3 we explore the blurred and saturated coarse-graining map as a tool

to describe spin-entanglement in an optical lattice scenario with different levels

of resolution. Comparing it with recent experimental realizations performed with

ultracold atoms, we describe to what coarse-grained level the entanglement could

still be detected.

• In Chapter 4, we formalize the macro-to-micro mapping. Assuming that we only

have a coarse-grained description of a system, we show how to assign to it a micro-

scopic quantum state that abides by all macroscopic constraints. As an application,

we construct an effective state dynamics approach, and show how nonlinear dynam-

ics can emerge from linear quantum evolution. We readily apply such nonlinear

dynamics to a state discrimination task.

• In Chapter 5, we summarize the leading results of the thesis and make final com-

ments about the most important message we want to convey. We also list applica-

tions and perspectives for the continuity of our work.
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Chapter 2

Micro-to-macro assignments:

Coarse-graining maps

As discussed in the previous chapter, the universality of quantum theory implies a two-

way of describing nature: a micro-to-macro and a macro-to-micro. In this chapter, we will

propose a model for the former. From a quantum information perspective, we will formal-

ize a coarse-graining map that plays the role of a general micro-to-macro mapping. The

main virtue of such coarse-graining formalism is its general character. In principle, such

an approach is able to model general (macroscopic) effective descriptions of a quantum

system, even when there is an ambiguity in the split between the degrees of freedom of

system and environment. As an application, two coarse-graining maps will be discussed,

the partial trace operation, and a map that models a blurred and saturated detection in an

optical lattice scenario.

The essential idea of coarse-graining models is to provide a description of a com-

plex many-body system focusing only on a small number of effective degrees of freedom.

From this basic idea, coarse-grained models are widely used in many branches of science.

In chemistry, for instance, it aims to model complex protein structures, dynamics, and in-

teractions [22]. In biology, coarse-graining approaches are used to study how a function of

biological structures emerges from molecular-scale dynamics [23]. In computer science,

coarse-graining models are also known as granularity models, and are specially used in
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parallelism computation techniques [24]. Finally, in physics, coarse-graining models play

a crucial role in plenty of different areas. We can highlight, as an example, two seminal

coarse-graining approaches, within statistical physics. The first, is the Ehrenfest’s coarse-

graining procedure, which plays a fundamental role in the seminal work [25], presenting

an argument on how irreversibility can be derived from reversible classical dynamics. The

second example, we can cite the coarse-graining approach in Kadanoff’s blocking proce-

dure [26], which can be considered as the basis of the Wilson renormalization group [27]

and modern renormalization group approaches [28].

Given the multiplicity of scenarios and contexts in which coarse-graining models are

used, it is to be expected that such models are defined in many different ways. In this

work, the coarse-graining framework is constructed in a quantum information context.

As it will be described in the next sections, the coarse-graining procedure is defined as

a quantum operation [11] which reduces the dimension of a microscopic quantum state,

thus resulting in what we called a coarse-grained system.

This chapter is organized as follows, firstly the quantum operation formalism will be

presented, in Sec. 2.1. In the sequence, in Sec. 2.2, we will define our general coarse-

graining map, finishing with the two important examples that will be used in this thesis:

the partial trace map and the blurred and saturated detector map.

2.1 Quantum operations

In quantum mechanics, the quantum operation formalism aims to describe the set of gen-

eral transformations that a quantum system can undergo. In the context of quantum infor-

mation, a quantum operation also is usually called a quantum channel.

There are different but equivalent ways of defining quantum operations, here we

choose a physically motivated axiomatic approach [11].

Given L(H) the linear operators acting on H, a quantum map represented by E :
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L(HA)→ L(HB), is a quantum operation if it obeys the following three axiomatic prop-

erties:

1. Firstly, E must be trace preserving (TP):

tr
[
E [M ]

]
= tr[M ], (2.1)

with M being any linear operator in L(HA).

2. Secondly, the quantum operation E is a convex-linear map on the set of density

operators

E
[∑

i

piψi
]

=
∑
i

piE [ψi] (2.2)

where ψi ∈ L(HA) with probabilities {pi}.

3. Thirdly, E must be completely positive (CP). That is, if E : L(HA)→ L(HB), then

E [M ] ≥ 0 for any positive operator M ∈ L(HA). Moreover, if we introduce an

extra system E with arbitrary dimension, it must be true that (E ⊗ 1E)[M ] ≥ 0 for

any positive operator M ∈ L(HA ⊗ HE), where 1E denotes the identity map in

HE .

Each of these three axioms represents a particular and important physical property

that a quantum operation E must obey. The first axiom ensures the conservation of the

norm: tr[ψ] = tr[E [ψ]] = 1.

The second property, comes from the reasonable assumption that a general quantum

process E : L(HA) → L(HB) must act linearly on mixture of pure state. That is, sup-

pose the input preparation ψ ∈ L(HA) to E is acquired by randomly picking a state

from an ensemble {pi, ψi} of quantum states, so ψ =
∑

i piψi. Due to the linearity of

quantum processes, it is expected that the resulting state E [ψ] ∈ L(HB) corresponds to

a random selection from the ensemble {p(i), E [ψi]}, so E [ψ] =
∑

i piE [ψi]. Besides,
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as demonstrated by Gisin in [29], any deterministic nonlinear quantum operation allows

communication in a finite time over arbitrarily large distances, violating the non-signaling

principle, then broken the compatibility between quantum mechanics and special theory

of relativity.

Finally, the third property also comes as a physical requirement on a quantum oper-

ation. Beyond E(ψ) be a valid density operator, considering as input a bipartite system

described by the density operator ψAE ∈ L(HA⊗HE), if E acts only on A, (E ⊗1)[ψAE]

must still result in a valid state in L(HB ⊗HE).

Therefore, the quantum operation can be simply defined as

Definition: A quantum operation E : L(HA) → L(HB) is a linear and completely

positive trace preserving (CPTP) map, for which:

M → E [M ] (2.3)

for any linear operator M ∈ L(HA).

As a trivial example, considering a system described by a density operator ψ ∈

L(HA), any unitary operation U is an admissible quantum operation

ψ → UψU † = U [ψ], (2.4)

in which U : L(HA)→ L(HA).

Once properly defined, now we will present a general and suitable way to represent

quantum operations: the Kraus operators sum representation (Kraus representation, in an

abbreviated form) [11]:

Theorem: Let Hn and Hm be Hilbert spaces with dimensions n and m, E : L(Hn) →
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L(Hm) is CPTP, if and only if, there exists a finite set of linear operators {Ki}N≤nmi=1 with

Ki : Hn → Hm, such that

E [M ] =
N∑
i

KiMK†i , (2.5)

with
N∑
i

K†iKi = 1n. (2.6)

The elements {Ki} are called Kraus operators.

Relation (2.6) fits the trace-preserving property: tr[E [M ]] = tr
[∑

iKiMK†i
]

=

tr
[∑

iK
†
iKiM

]
= tr[M ].

Observe that if we can write a transformation in the form of equation (2.5) we know

for sure that this transformation is completely positive, and consequently it can be related

to a quantum operation.

2.2 Coarse-graining map

Finally, the coarse-graining operation can be properly defined. As mentioned, the cen-

tral idea of coarse-graining models is to give an effective description of a system taking

account only a small number of effective degrees of freedom. Thus, in a simple way, a

general quantum coarse-graining map can be defined as

Definition: A linear and completely positive trace preserving (CPTP) map

Λ : L(HD)→ L(Hd) (2.7)

is a coarse-graining map if dim(HD) > dim(Hd).
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From this general definition, throughout this work we will explore some useful appli-

cations of coarse-graining operations. In the sequence we will present two coarse-graining

maps that play an important role in this thesis.

2.2.1 Partial trace

A simple and well-known quantum operation is the partial trace, trE : L(HS ⊗ HE) →

L(HS), which is indeed a coarse-graining operation. The partial trace is defined as fol-

lows:

Definition: The partial trace map trE : L(HS ⊗ HE) → L(HS), takes density ma-

trices ψSE ∈ L(HS ⊗ HE) to density matrices ψS ∈ L(HS). It is defined as the linear

extension of the mapping

trE : MS⊗ME → tr[ME]MS (2.8)

for any linear operators MS ∈ L(HS) and ME ∈ L(HE).

Consider an arbitrary composite system SE, such that we wish to trace out the sub-

system E. Let {|ai〉} and {|bi〉} be orthonormal bases for HS and HE respectively.

Since any arbitrary linear operator MSE ∈ L(HS ⊗ HE) can be written as MSE =∑
ijkl cijkl|ai〉〈aj| ⊗|bk〉〈bl|, the partial trace over a bipartite operator is defined as fol-

lows

trE[MSE] =
∑
ijkl

cijkltr[|bk〉〈bl|]|ai〉〈aj|

=
∑
ijkl

cijkl 〈bl|bk〉︸ ︷︷ ︸
δlk

|ai〉〈aj|

=
∑
ijk

cijk|ai〉〈aj| (2.9)
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which gives a linear operator MS ∈ L(HS).

An easy way to classify the partial trace as a quantum operation is finding a valid

Kraus representation (2.5). Considering Ki : HSE → HS defined by Ki = 1S ⊗ 〈bi|, the

partial trace can be written in the Kraus form (2.5), therefore the partial trace is a quantum

operation.

Finally, since dim(HSE) > dim(HS), the partial trace trE : L(HS ⊗HE) → L(HS)

can be also classified as a coarse-graining map.

The partial trace is a quantum operation extensively used in literature. The partial

trace is a tool commonly used in situations when the interest is to restrict the description

of a whole system only to a particular set of localized subsystems – the already discussed

open quantum system scenario. An immediate application is found in the decoherence

theory, where the description of the loss of information of a quantum system is described

in terms of its interaction with an inaccessible/uncontrolled environment [30]. There, the

effective description of a system is given by splitting the microscopic degrees of freedom

to which we have access – identified as the system – from the rest of degrees of freedom to

which we don’t have access – the environment. The latter is removed by the partial-trace

map.

2.2.2 A blurred and saturated detector

Now we present a coarse-graining map modeling a blurred and saturated detection of a

well-closed quantum system realized in a optical lattice scenario [18, 31]. The construc-

tion is directly inspired by fluorescence imaging, which is a detection technique present in

experimental realizations with cold atoms in optical lattices [32, 33] and in trapped ions

[34].

As background scenery, we start by considering as reference the following experi-

mental procedure. Bose-Hubbard spin-systems, realized with cold atoms in an optical
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lattice, can be single-site resolved [35, 36] if the experimentalist is equipped with a high-

resolution quantum gas microscope [32, 37]. Such a measurement process is based on the

fluorescence technique: roughly, the spin chain is illuminated with a laser in such a way

that the microscope detects scattered light by atoms in excited states. Given that, in such

realizations, each atom encodes a qubit (a spin-1/2), the fluorescence imaging is roughly

described as follows: each atom stored in the optical lattice is illuminated with a laser in

such a way that if light is scattered, the atom was in excited state |1〉 whereas if no light

is scattered, the atom was in non-excited state |0〉.

From this basic description of a single-site detection, let us consider an adverse sce-

nario. Imagine that we want to measure the light that comes from a number of neighboring

atoms in a lattice by fluorescence imaging, but our detecting device does not have enough

resolution to identify the light coming from each individual atom. To describe this situa-

tion we can construct a coarse-graining model in such way that we take the information of

these multiple unresolved signals as effectively coming from one single atom in a coarse-

grained level (such situation is pictorially illustrated in Figure 2.1).

FIGURE 2.1: A pictorial scheme of coarse-graining model. In the left the
two circles that represent a composite system of two atoms. In the middle
we have the blurred detection of the system. Then in the third picture we
approximate the blurred signal as a single one related to a single effective

atom in a coarse-graining level.

In this way a system of N spins is described by a D-dimensional state ψ ∈ L(HD),

with D = 2N . So we want to construct a coarse-graining map Λ : L(HD)→ L(H2) such

that it takes a system of N spins to an effective coarse-grained level of a single spin.

Starting from the simplest case, where our detector can not resolve two neighboring

atoms and the amount of light coming from a single atom is already sufficient to saturate

the detector, the resulting signal can be related to a single atom in a coarse-grained level.
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Such situation suggests the following coarse-graining map ΛBnS : L(H4) → L(H2),

introduced in [18, 31]:

ΛBnS[|00〉〈00|] = |0〉〈0| ΛBnS[|10〉〈00|] = 1√
3
|1〉〈0|

ΛBnS[|00〉〈01|] = 1√
3
|0〉〈1| ΛBnS[|10〉〈01|] = 0

ΛBnS[|00〉〈10|] = 1√
3
|0〉〈1| ΛBnS[|10〉〈10|] = |1〉〈1|

ΛBnS[|00〉〈11|] = 1√
3
|0〉〈1| ΛBnS[|10〉〈11|] = 0

ΛBnS[|01〉〈00|] = 1√
3
|1〉〈0| ΛBnS[|11〉〈00|] = 1√

3
|1〉〈0|

ΛBnS[|01〉〈01|] = |1〉〈1| ΛBnS[|11〉〈01|] = 0

ΛBnS[|01〉〈10|] = 0 ΛBnS[|11〉〈10|] = 0

ΛBnS[|01〉〈11|] = 0 ΛBnS[|11〉〈11|] = |1〉〈1|

(2.10)

The heuristics that lead us to construct such a map are as follows: as the detector can-

not resolve if the fluorescence light comes from one atom or the other, then both states

|01〉〈01| and |10〉〈10| lead to an effective single excitation |1〉〈1|. Moreover, we assume

that the detector makes no distinction between one or two excitations, i.e. that it saturates

already with a single excitation signal. As such, the state |11〉〈11| is also mapped to the ef-

fective state |1〉〈1|. The coherence between the excited subspace, span({|01〉, |10〉, |11〉}),

with the no-excitation subspace |00〉, maps to the effective coherence 1/
√

3|1〉〈0|. The

factor 1/
√

3 comes from the dimensionality of the subspaces, and it ensures the complete

positiveness of the coarse-graining map. Lastly, the coherence terms within the excited

subspace, span ({|01〉, |10〉,|11〉}), vanish in the coarse-grained description. This occurs

because the vectors |01〉, |10〉 and |11〉 cannot be discriminated by the detection process,

then no interference between these vectors can be observed in the coarse-grained level.

It is worth to stress the point about the blurred and saturated coarse-graining map

ΛBnS, that it cannot be seen as the partial trace trE of either one of the two atoms – note

in (2.10), that both |01〉〈01| and |10〉〈10| are mapped to |1〉〈1|.
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To give a better visualization on how such a coarse-graining map transforms a quan-

tum state, consider a general two-qubit pure state ψ = |ψ〉〈ψ| ∈ L(H4), written in the

computational basis: |ψ〉 =
∑1

i,j=0 cij|ij〉, with cij ∈ C and
∑

ij |cij|2 = 1. Applying the

map (2.10), the coarse-grained state is given by:

ΛBnS(ψ) =

 |c00|2 1√
3
c00[c∗01 + c∗10 + c∗11]

1√
3
c∗00[c01 + c10 + c11] |c01|2 + |c10|2 + |c11|2

 . (2.11)

As stated in the construction of (2.10), here we clearly observe the effective coherences

coming from the microscopic states that the blurry detection is able to discriminate, i.e.

the coherence between the microscopic excited subspace span({|01〉, |10〉,|11〉}), with the

no-excitation microscopic subspace |00〉.

The Kraus representation for the blurred and saturated coarse-graining map (2.5) can

be easily obtained by a quantum process tomography [11], with the Kraus operators given

by:

K1 =

1 0 0 0

0 1/
√

3 1/
√

3 1/
√

3

 K3 =

0 0 0 0

0 1/
√

3 −1/
√

3 0



K2 =

0 0 0 0

0 1/
√

3 0 −1/
√

3

 K4 =

0 0 0 0

0 0 1/
√

3 −1/
√

3


(2.12)

The blurred and saturated detector ΛBnS : L(H4)→ L(H2) was constructed to model

a detector that cannot resolve two neighboring atoms. However, it is of interest to extend

such a result in the case where the detector cannot resolve more atoms. As an application,

such a extension offers a suitable platform to study the limits of detectability of quantum
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features, for example. A straightforward way to do this is by composing ΛBnS as follows:

Λ4→1
BnS = ΛBnS ◦ (ΛBnS ⊗ ΛBnS), (2.13)

Λ8→1
BnS = ΛBnS ◦ (ΛBnS ⊗ ΛBnS)◦

◦ (ΛBnS ⊗ ΛBnS ⊗ ΛBnS ⊗ ΛBnS), (2.14)

... (2.15)

ΛN→1
BnS = ΛBnS ◦ (ΛBnS ⊗ ΛBnS) ◦ · · · ◦

◦ (ΛBnS)⊗
N
4 ◦ (ΛBnS)⊗

N
2 , (2.16)

the superscript N → 1 indicate that N qubits are mapped to 1, and "◦" denotes composi-

tion of maps.

For later convenience, we define the coarse-graining level l as the number of times

a layer of coarse-graining maps is applied: for the microscopic level, where no coarse-

graining operation is applied we have l = 0; starting from N qubits in the microscopic

level, a single effective qubit will be obtained at level l = logN (we use logarithms in

base 2 throughout the text) after the application of successive layers of coarse-graining

maps. This process is schematically represented in Fig. 2.2.

FIGURE 2.2: From a composition of ΛBnS, higher dimensional coarse-
graining operations Λ4→1

BnS and Λ8→1
BnS can be defined.
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2.3 Summary and conclusions

In this chapter we formalized a general coarse-graining operation Λ : L(HD) → L(Hd)

that maps a well defined microscopic quantum state ψ ∈ L(HD) to a coarse-grained state

% ∈ L(Hd). The coarse-graining approach generalizes the usual open quantum system

scenario, which presumes a clear split between system and environment, to an extended

definition of subsystems. As exemplified, in the coarse-graining approach, the loss of

information is not related only to the standard open quantum system scenario, in which

subsystems that we do not have interest or we are not able to describe are traced out. In

the blurred and saturated detection, for instance, the system of interest is the whole system

(no subsystem is traced), however the total information we have access to is limited by a

lack of resolution in the detector apparatus.

In the next chapters, the analyzed coarse-graining maps will play a central role in

two distinct scenarios. Firstly, in Chapter 3, the blurred and saturated detector map will

be applied in order to describe spin-entanglement dynamics in different coarse-graining

levels of an optical lattice. After that, in Chapter 4, grounded in the premise that macro-

scopic descriptions are inherently coarse-grained, we will propose a general macro-to-

micro map which defines the microscopic ensemble that represents general macroscopic

observations.
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Chapter 3

Entanglement in a coarse-grained

optical lattice

Genuine quantum features are no longer exclusively seen as intriguing theoretical pre-

dictions of quantum mechanics. Present-day, cutting-edge technologies are intimately

dependent on fundamental quantum properties [38]. Besides, such fundamental quantum

concepts play a central role as a resource for promising quantum technologies, in special

quantum computation and quantum cryptography [11, 12, 13].

However, despite the current stage of technological development allows the explo-

ration of well-isolated quantum systems with an increasing number of qubits [7, 8, 9],

crucial difficulties remain. As the size of the system increases, the experimental control

and characterization of many-body quantum systems spend expensive resources, mak-

ing them impracticable. Full quantum state tomography, for instance, requires laborious

individual particle access, with both experimental procedure and data post-processing in-

herently time-consuming for large systems [10].

Given this challenging scenario, effective descriptions may represent a worthwhile al-

ternative to deal with the characterization of quantum many-body systems. Since genuine

quantum features may be displayed even in non-completely resolved quantum systems,

imprecise (and less costly) measuring processes may then still be useful in characterizing
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aspects of quantum many-body systems. Therefore, it is crucial to investigate how differ-

ent degrees of inaccuracy in a measurement affect the detection of quantum features.

Motivated by the above framework and focusing on entanglement as a genuine quan-

tum feature, in this chapter, we explore the blurred and saturated coarse-graining map

(2.10) as a tool to describe spin-entanglement in an optical lattice scenario. It is worth

to mention that, since entanglement is fragile in its nature and it is absent in the classi-

cal world [39], the study of entanglement decay in a coarse-grained detection, also sheds

some light on the quantum-to-classical transition, bringing to the discussion other mech-

anisms that perturb quantum resources beyond decoherence [39].

This work was inspired by a recent experimental achievement, where many-body en-

tanglement is explored in an ultracold atoms system in an optical lattice [35]. Briefly

summarizing, equipped with a high-resolution quantum gas microscope, it was possible

to measure spin-entanglement waves in a Bose-Hubbard chain with only a few atoms [35].

Considering this experimental scenario, we explore the blurred and saturated detector map

as a tool to analyze up to what coarse-grained level of description entanglement can still

be measured. As it will be shown, our results suggest that even if we are not able to fully

resolve a system, entanglement can still be detected for some coarse-graining levels. Fur-

thermore, we show that it is possible to have some information about the “microscopic”

entanglement, even if we only have access to the system’s coarse-grained description.

Such a study is the subject of our published paper [40].

This chapter is organized as follows: firstly, in Sec. 3.1, we present a brief de-

scription of the entanglement spreading during single spin-impurity dynamics in an one-

dimensional Bose-Hubbard system. After that, in Sec. 3.2 we use the blurred and sat-

urated coarse-graining map, defined in Eq. (2.10), to describe the entanglement due to

spin-impurity dynamics in a coarse-grained Bose-Hubbard spin-chain. Using concur-

rence and negativity as entanglement quantifiers, we explore how entanglement behaves

taking into account different ranges of resolutions of the spin-chain. Finally in Sec. 3.3

we summarize our results and discuss some implications of this coarse-graining approach.
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3.1 Entanglement in a Bose-Hubbard spin-chain

In this section we describe the entanglement generation and spreading during spin-impurity

dynamics in a 1D spin-1/2 XX-chain [41, 42]. In the mentioned experimental work

[35, 36], it was produced a ferromagnetic Heisenberg spin-chain with ultracold bosonic

atoms in an optical lattice. In these experiments, individual atoms are trapped in each

potential minimum of a periodic potential associated with a stationary wave created by

counter-propagating laser beams [43, 44]. Deep in the Mott-insulator regime with unity

filling, two hyperfine levels of each atom act as a spin-1/2 (qubit), and neighboring

spins interact with each other via isotropic spin-1/2 Heisenberg Hamiltonian [45]: Ĥ =

−Jex
∑

j ~σj · ~σj+1. In this Hamiltonian, ~σj = (σx,j, σy,j, σz,j) denotes the spin-1/2 vector

of Pauli matrices at site j, and Jex is the exchange coupling which is constant for ho-

mogeneous chains (see the supplementary information of [36]). In the case of a single

spin-impurity in a 1D lattice (single excitation subspace), the Hamiltonian can be written

in a simplified form:

H = −Jex
∑
j

(σ+,jσ−,j+1 + σ−,jσ+,j+1), (3.1)

where σ±,j = (σx,j±iσy,j)/2 are the spin-1/2 raising (lowering) operators at site j. The

term Jex
∑

j σz,jσz,j+1 was dropped, since it gives rise only to an energy offset within the

single excitation subspace [36].

An infinite spin-up chain with a single spin-down (spin-impurity) on site j can be

represented by the state

|j〉 ≡ |· · · , 0j−1, 1j, 0j+1, · · ·〉, (3.2)

where |1〉 and |0〉 refer to spin down and spin up states respectively, in the z-basis. As

initial state it is considered a single spin-down at the “center” of the chain (j = 0). The

spin-impurity spreading is given by the time evolution generated by the Hamiltonian in
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equation (3.1), and it can be described by

|ψ(t)〉 =
∑
j

φj(t)|j〉, (3.3)

where φj(t) = ijJj(Jext/~), with Jj(x) the Bessel function of the first kind [46]. For

simplicity, from now on we will consider the time evolution in dimensionless time unit

Jext/~.

3.1.1 Concurrence between two sites

The next step is to quantify the entanglement between spins in two different sites A and

B in the chain. The reduced density operator related to a pair of different arbitrary sites

A and B is given by:

ψAB(t) = trAB[|ψ(t)〉〈ψ(t)|], (3.4)

where AB means the complementary sites to AB. Using (3.3) and the basis states |00〉,

|01〉, |10〉 and |11〉 for sites A and B, we get:

ψAB =



1− |φA|2 − |φB|2 0 0 0

0 |φB|2 φAφ
∗
B 0

0 φ∗AφB |φA|2 0

0 0 0 0


. (3.5)

Explicit time dependence is suppressed whenever obvious, to avoid cluttered notation.

The matrix representation (3.5) of ψAB can be identified as a X-matrix:

X =



X11 0 0 X14

0 X22 X23 0

0 X∗23 X33 0

X∗14 0 0 X44


, (3.6)
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whose concurrence is easily calculated [47]

C(X) = 2 max{0, |X14| −
√
X22X33, |X23| −

√
X11X44}. (3.7)

Thus, the concurrence C(ψAB) between A and B sites is given by:

C(ψAB) = 2|φAφ∗B|. (3.8)

Figure 3.1 illustrates the expected entanglement dynamics between symmetric sites with

respect to the spin at position j = 0. Such an entanglement wave – see Fig. 3.1(b) – was

observed experimentally showing a reasonable agreement with the theoretical prediction

[35].

3.2 Entanglement spreading in a CG Spin Chain

Now that we have already constructed the coarse graining map that plays the role of a

blurred detector, Eq. (2.10), let’s analyze how entanglement evolves under this coarse

graining view. In the same way as the entanglement detection was studied in [35], we will

calculate the entanglement behavior between two symmetric sites around the center of a

spin-chain, but now considering coarse-grained sites, that is, entanglement between two

coarse-grained blocks of spins.

Before we start, in order to properly write the microscopic (l = 0) reduced state ψl=0
AB

on the blocks A = {A1, . . . , AN} and B = {B1, . . . , BN}, it is convenient to define the

following family of vectors:

|kN〉A ≡ |0A1 , · · · , 0Ak−1
, 1Ak

, 0Ak+1
· · · , 0AN

〉, (3.9)

|0N〉A ≡ |0A1 , · · · , 0AN
〉, h
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(a)

(b)

(c)

FIGURE 3.1: Entanglement dynamics of a single impurity spin-chain. (a)
Schematic representation of the spin-chain with its labels. (b) Time evolution of
concurrence C(ψA,−A) between spins of sitesA and−A for different choices ofA
(the time evolution is given in dimensionless unit Jext/~). (c) Spin entanglement

wave with single site resolution.

with k ∈ {1, . . . N}, and similarly for B. It is clear that |kN〉A(B) is a state vector with a

single spin impurity at the k-th site of block A(B), and |0N〉A(B) is the no-impurity state.

3.2.1 l = 1 : CG Entanglement (2→ 1)

In the first situation, l = 1, we want to compute the entanglement between two coarse-

grained sites, each one coming from a block of two neighboring sites (N = 2) at the

microscopic level (l = 0), A = {A1, A2} and B = {B1, B2}, as it is schematically

represented in Fig. 3.2. Remembering that we are in the single excitation subspace, and
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FIGURE 3.2: Schematic representation of a block of spins where the coarse
graining map ΛBnS is going to be applied.

using {|k2〉A(B)} ∪ |02〉A(B) as basis, the reduced state ψl=0
AB can be written as

ψl=0
AB = trAB[|ψ(t)〉〈ψ(t)|]

=
(
1−

2∑
k=1

|φAk
|2 −

2∑
k=1

|φBk
|2
)
|02〉A〈02| ⊗ |02〉B〈02|+

+
2∑

k=1

(|φAk
|2|k2〉A〈k2| ⊗ |02〉B〈02|+ |φBk

|2|02〉A〈02| ⊗ |k2〉B〈k2|)+

+
2∑

k 6=k′=1

(
φAk

φ∗Ak′
|k2〉A〈k′2| ⊗ |02〉B〈02|+ φBk

φ∗Bk′
|02〉A〈02| ⊗ |k2〉B〈k′2|

)
+

+
2∑

k,k′=1

(
φAk

φ∗Bk′
|k2〉A〈02| ⊗ |02〉B〈k′2|+ φ∗Ak

φBk′
|02〉A〈k2| ⊗ |k′2〉B〈02|

)
, (3.10)

with |ψ(t)〉 given by Eq. (3.3).

In this form, Eq. (3.10), it is now simple to apply the coarse graining map defined

in (2.10). Observe that the internal coherences φAk
φ∗Ak′

and φBk
φ∗Bk′

(for k 6=k′) related

to each spin-block present in state (3.10) no longer survive in the coarse-grained state, as

ΛBnS[|10〉〈01|] = ΛBnS[|01〉〈10|] = 0. The effective two-qubit is then:

ψl=1
AB = (ΛBnS ⊗ ΛBnS)[ψl=0

AB ]

=



1−
∑2

k=1 |φAk
|2 −

∑2
k=1 |φBk

|2 0 0 0

0
2∑

k=1

|φBk
|2 1

3

2∑
k,k′=1

φAk
φ∗Bk′

0

0 1
3

2∑
k,k′=1

φ∗Ak
φBk′

2∑
k=1

|φAk
|2 0

0 0 0 0


,

(3.11)
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where we used the basis states {|k1〉A(B)} ∪ |01〉A(B), for each effective site.

The entanglement between two coarse-grained sites is derived analogously to that

found before for two (non-coarse-grained) sites in (3.8). Since the state (3.11) takes the

X-form (3.6), using the equation (3.7), its concurrence is given by

C(ψl=1
AB ) =

2

3

∣∣∣∣ 2∑
k,k′=1

φAk
φ∗Bk′

∣∣∣∣. (3.12)

For the purpose of giving a concrete view of the consequences of this result, we nu-

merically investigated the entanglement evolution in a seventeen sites chain with the spin-

impurity beginning at its center. In Fig. 3.3(a) we plot in blue the concurrence between

symmetric sites around the center of the spin-chain in the "microscopic" level, and in

red the concurrence considering their related coarse-grained sites. In the microscopic

level we use Eq. (3.8) to calculate the concurrence between the first two pairs of sites

before the coarse graining: C(ψl=0
1,−1) = 2|φ1φ

∗
−1| and C(ψl=0

2−2) = 2|φ2φ
∗
−2|. Then, we

calculate the concurrence of the resulting pair of coarse-grained sites using Eq. (3.12):

C(ψl=1
1,−1) = (2/3)|(φ1 + φ2)(φ−1 + φ−2)∗|. In the same way we calculate the concur-

rence between other symmetric sites around the center both at the microscopic level and

at coarse-grained level with l = 1.

As expected, we observe that concurrence decays in the coarse graining level. Despite

of this, a significant amount of entanglement still survives. Even in the coarse-grained

description we observe a propagating entanglement “wave” (See Fig. 3.3(b)), with values

above the error bar (black dashed line) coming from the single site detection scenario ob-

served by the experimental realization in [35]. It is interesting to notice that the maximum

value of concurrence values in coarse graining level l = 1 are in better agreement with the

experimental results showed in [35] than when compared with the theoretical results in

microscopic level l = 0. One can thus speculate that the experimental procedure in [35]

does take into account some coarse graining as the one introduced here.
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(a)

(b)

(c)

(d)

FIGURE 3.3: Coarse-grained entanglement in l = 1. (a) Effective spin
chain with a single layer of coarse graining. (b) Comparison between con-
currence evolution of the first four symmetric pairs of coarse-grained sites,
C(ψl=0

−A,A) (red line), with respect to the concurrence between their rela-
tive pair of microscopic sites (blue lines). (c) Entanglement wave in the
coarse-grained level. The black dashed constant line represents the error in
experimental detection (taken from [35]). (d) Comparison between negativ-
ity evolution of the first symmetric pairs of coarse-grained sites, N (ψl=1

−1,1)

(red line), and the negativity N (ψl=0
{−2,−1},{1,2}) among their relative four

microscopic sites (blue lines). The time evolution is given in dimensionless
unit Jext/~.

A complementary way of studying the differences in entanglement between the mi-

croscopic level and the coarse-grained level is through negativity [48]. Using concurrence

we are somewhat restricted to calculate only bipartite entanglement for systems with two
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spins (two sites in the spin-chain). Negativity, on the other hand, can be evaluated for

bipartite systems of any local dimensions, and it is defined as follows:

N (ψ) =
||ψTB ||1 − 1

2
(3.13)

whereψTB is the partial transpose ofψ with respect to subsystemB and ||A||1 = tr
√

(A)†A

is the trace norm.

Here we restrict our analysis to the coarse-grained state ψl=1
−1,1 and its related micro-

scopic state ψl=0
{−2,−1},{1,2}. Results are shown in Fig.3.3 (d). Differently from the concur-

rence approach, with negativity we can properly compare the entanglement within blocks

in different ranges of description. We observe that entanglement in the coarse graining

level is smaller than the total entanglement in the microscopic state.

3.2.2 l = 2 : CG Entanglement (4→ 1)

For the next level of resolution (l = 2), we map four sites (N = 4) as a single effective

one. Given an arbitrary pair of spin-blocks composed by four neighboring atoms A =

{A4, A3, A2, A1} and B = {B1, B2, B3, B4}– as shown in Fig. 3.4 – we proceed in the

same way as above to find the coarse-grained state.

FIGURE 3.4: Schematic representation of a block of spins where the coarse
graining map Λ4→1

BnS is going to be applied.
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Considering the single excitation subspace, and using {|k4〉A(B)} ∪ |04〉A(B) as basis,

in this case the reduced state ψl=0
AB where Λ4→1

BnS ⊗ Λ4→1
BnS will be applied, can be written as

ψl=0
AB = trAB[|ψ(t)〉〈ψ(t)|]

=
(
1−

4∑
k=1

|φAk
|4 −

4∑
k=1

|φBk
|4
)
|04〉A〈04| ⊗ |04〉B〈04|+

+
4∑

k=1

(|φAk
|4|k4〉A〈k4| ⊗ |04〉B〈04|+ |φBk

|4|04〉A〈04| ⊗ |k4〉B〈k4|)+

+
4∑

k 6=k′=1

(
φAk

φ∗Ak′
|k4〉A〈k′4| ⊗ |04〉B〈04|+ φBk

φ∗Bk′
|04〉A〈04| ⊗ |k4〉B〈k′4|

)
+

+
4∑

k,k′=1

(
φAk

φ∗Bk′
|k4〉A〈04| ⊗ |04〉B〈k′4|+ φ∗Ak

φBk′
|04〉A〈k4| ⊗ |k′4〉B〈04|

)
, (3.14)

with |ψ(t)〉 given by Eq. (3.3).

Applying Λ4→1
BnS ⊗ Λ4→1

BnS :

ψl=2
AB = (Λ4→1

BnS ⊗ Λ4→1
BnS )[ψl=0

AB ]

=



1−
∑4

k=1 |φAk
|4 −

∑4
k=1 |φBk

|2 0 0 0

0
4∑

k=1

|φBk
|2 1

32

4∑
k,k′=1

φAk
φ∗Bk′

0

0 1
32

4∑
k,k′=1

φ∗Ak
φBk′

4∑
k=1

|φAk
|2 0

0 0 0 0


.

(3.15)

As observed in the previous subsection (3.2.1), the internal coherence related to spin-

blocks, φAk
φ∗Ak′

and φBk
φ∗Bk′

, with k 6= k′, do not survive in the effective state (3.15). As

before, this happens because ΛBnS[|10〉〈01|] = ΛBnS[|01〉〈10|] = 0, and due to the fact that

Λ4→1
CG = ΛBnS ◦ (ΛBnS ⊗ΛBnS). The square power on the 1/3 factor reflects the two layers

of coarse graining which were applied.
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For such a state the concurrence can be easily evaluated to give:

C(ψl=2
AB ) =

2

32

∣∣∣∣ 4∑
k,k′=1

2φAk
φ∗Bk′

∣∣∣∣. (3.16)

Again we analyze the entanglement evolution by looking at the seventeen centralized

sites of the microscopic chain (l = 0) whose spin-impurity begins at its center. Re-

sults are shown in Fig.3.5. We use equation (3.8) to calculate the concurrence between

the first four pair of sites before the coarse graining (in blue): C(ψl=0
−1,1) = 2|φ−1φ

∗
1|,

C(ψl=0
−2,2) = 2|φ−2φ

∗
2|, C(ψl=0

−2,3) = 2|φ−3φ
∗
3| and C(ψl=0

−4,4) = 2|φ−4φ
∗
4|. Then, we calcu-

late the concurrence of resulting pair of coarse-grained sites using the equation (3.16) (in

green): C(ψl=2
−1,1)=(2/9)|(φ−1+φ−2+φ−3+φ−4)(φ1+φ2+φ3+φ4)∗|. We proceed in the

same way to calculate the concurrence between the other symmetric sites.

As expected, we observe that the concurrence becomes weaker when compared to the

concurrence in the microscopic level or even with the one in the first coarse grained level

(3.3). Consequently we observe a very weak entanglement “wave”, in the limit of the

experimental error detection (see 3.3(c)). Therefore in this scheme, if we consider the

error bars of the experimental work [35], our results suggest that entanglement would no

longer be detectable.

Analogously to the last subsection, here we calculate the negativity for the different

description levels of the system l = 0, 1, 2. We consider the coarse-grained states ψl=2
−1,1

and ψl=1
{−2,−1},{1,2}, and their correspondent microscopic state ψl=0

{−4,−3,−2,−1},{1,2,3,4}. Re-

sults are shown in Fig. 3.5 (c). We observe how drastic it is the effect of the coarse

graining on the entanglement among different levels. This result is in agreement with the

ones for concurrence, indicating a weak entanglement signal after two layers of coarse

graining (level l = 2). That is, if the detector cannot resolve the signal coming for a en-

semble of four neighboring sites in a spin-chain, entanglement will be hardly detectable

in the experimental situation. Again we observe that the effective entanglement is smaller

than the total entanglement in the super-cell.
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(a)

(b)

(c)

(d)

FIGURE 3.5: Coarse-grained entanglement in l = 2. (a) Effective spin-
chain with two layers of coarse graining. (b) Comparison between con-
currence evolution of the first two symmetric pairs of coarse-grained sites,
C(ψl=2

−A,A) (green line), and the concurrence between their relative eight
microscopic sites (blue lines). The time evolution is given in dimension-
less unit Jext/~ (c) Spatial dynamics of concurrence in the CG level. The
black dashed constant line represents the error in experimental detection.
(d) Comparison between negativity evolution in different levels of descrip-
tion, l = 1 (upper red line), l = 2 (lower green line), and the negativity in
the microscopic supercell, l = 0 (blue line). The time evolution is given in

dimensionless unit Jext/~.

3.2.3 l = logN : CG Entanglement (N → 1)

In this section we generalize the previous concurrence results to any level of coarse grain-

ing. At the microscopic level, we consider two blocks of sites A = {A1, A2, · · · , AN}

and B = {B1, B2, · · · , BN}, in which we will apply logN layers of the coarse graining
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map:

ΛN→1
BnS = ΛBnS ◦ (ΛBnS ⊗ ΛBnS) ◦ · · · ◦

◦
(
ΛBnS

)⊗N
4 ◦
(
ΛBnS

)⊗N
2 . (3.17)

Using the total pure state in equation (3.3), and definition (3.9), we can write the

reduced state over the blocks A and B as:

ψl=0
AB = trAB[|ψ(t)〉〈ψ(t)|]

=
(
1−

N∑
k=1

|φAk
|2 −

N∑
k=1

|φBk
|2
)
|02〉A〈02| ⊗ |02〉B〈02|+

+
N∑
k=1

(|φAk
|2|kN〉A〈kN | ⊗ |0N〉B〈0N |+ |φBk

|2|0N〉A〈0N | ⊗ |kN〉B〈kN |)+

+
N∑

k 6=k′=1

(
φAk

φ∗Ak′
|kN〉A〈k′N | ⊗ |0N〉B〈0N |+ φBk

φ∗Bk′
|0N〉A〈0N | ⊗ |kN〉B〈k′N |

)
+

+
N∑

k,k′=1

(
φAk

φ∗Bk′
|kN〉A〈0N | ⊗ |0N〉B〈k′N |+ φ∗Ak

φBk′
|0N〉A〈kN | ⊗ |k′N〉B〈0N |

)
.

(3.18)

The rational to apply the coarse graining map in both supercells, ΛN→1
CG ⊗ΛN→1

CG , is as

before. The first term contains no excitations, and as such goes to (1 −
∑N

k=1 |φAk
|2 −∑N

k=1 |φBk
|2)|0〉A〈0|⊗|0〉B〈0|. The second term contains the diagonal/population elements

where the excitation is either in part A or in part B. As the coarse graining maps states in

the single-excitation subspace into (smaller dimensional) single-excitation subspace, this

term goes to
∑N

k=1(|φAk
|2|1〉A〈1|⊗|0〉B〈0|+|φBk

|2|0〉A〈0|⊗|1〉B〈1|). The third term contains

off-diagonal/coherence elements where the excitation is either in the part A or in the part

B. As k 6= k′, these elements represent coherences between states that the detector cannot

distinguish, and as such, at some level, these elements vanish. Lastly we have the term
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with coherences between the single-excitation subspace and the no-excitation subspace

within a supercell. At a given layer there will always be per block one element of the

form |01〉A〈00| or |10〉A〈00|, with all others being as |00〉A〈00|. The action of the coarse

graining map on the first type of elements gives |1〉A〈0|/
√

3, while on the second gives

|0〉A〈0|. The same reasoning applies for the Hermitian conjugate elements and for the

block B. Since we start with N spins per block, we can repeat this process logN times,

and as such, at level l = logN , this term goes to (1/3)logN
∑N

k,k′=1 φAk
φ∗Bk′
|1〉A〈0| ⊗

|0〉B〈1| + φ∗Ak
φBk′
|0〉A〈1| ⊗ |1〉B〈0|. In summary, after applying the coarse graining map

logN times on the pure state (3.3), we get:

ψl=logN
AB = (ΛN→1

CG ⊗ ΛN→1
CG )[ψl=0

AB ]

=



1−
∑N

k=1 |φAk
|2 −

∑N
k=1 |φBk

|2 0 0 0

0
N∑
k=1

|φBk
|2 1

3logN

N∑
k,k′=1

φAk
φ∗Bk′

0

0 1
3logN

N∑
k,k′=1

φ∗Ak
φBk′

N∑
k=1

|φAk
|2 0

0 0 0 0


.

(3.19)

As before, now it is simple to evaluate the effective concurrence:

C(ψl=logN
AB ) =

2

3logN

∣∣∣ N∑
k,k′=1

φAk
φ∗Bk′

∣∣∣. (3.20)

Now we can evaluate the limit of effective concurrence detection. To do this we

compare the maximum value attained for concurrence C(ψl−1,1) at each coarse graining

level. Results are shown in Fig. 3.6. We note that from l = 3 onward the values became

smaller than the experimental detection error observed in [35], which suggests that no

entanglement could be detected in this experimental resolution.
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FIGURE 3.6: Concurrence behavior at each coarse graining level. Each
dot represents the maximum value attained for the concurrence at the re-
spective coarse graining level. The black dashed constant line represents

the error in experimental detection.

From Eq. (3.20) it is simple to established that the effective concurrence at a given

coarse graining level l is smaller than the sum of all bipartite microscopic concurrences:

C(ψl=logN
AB ) ≤ 1

3logN

N∑
k,k′=1

C(ψl=0
AkBk′

). (3.21)

We observe an exponential entanglement decay with respect to the coarse graining level

l = logN .

Moreover, now we can address the following physically motivated question: From the

coarse-grained concurrence can we say something about entanglement at the microscopic

level? Let

Cl=0
max = max

k,k′
C(ψl=0

AkBk′
) (3.22)

Then from the above inequality we have:

Cl=0
max ≥

(
3

4

)logN

C(ψl=logN
AB ). (3.23)
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Therefore with this procedure we can construct a lower bound for the maximal con-

currence between a pair of spins in the microscopic level. Naturally, we are not able to

identify the pair of spins which shares the maximum entanglement at a given time, but we

can say that there is a pair of spins in the microscopic chain with entanglement at least

(3/4)logN of the concurrence measured in the macroscopic level.

3.3 Summary and conclusions

In the present chapter, we have presented the results related to our paper Ref. [16]. So we

explored the blurred and saturated coarse-graining map (2.10), defined in the last chap-

ter, as a tool to describe entanglement dynamics in different degrees of resolution of a

coarse-grained spin-chain. Comparing with the experimental realizations performed with

ultracold atoms in optical lattices [35], our results suggest that even if we are not able

to fully resolve the system, entanglement can be still detected at some coarse-graining

levels. With our approach, we showed that even if a detector cannot resolve the signal

that comes from two or four neighboring qubits an entanglement wave can be still de-

tected. Furthermore, we showed that it is possible to have some information about the

microscopic entanglement even if we have access only to the coarse-graining description

(3.23).

Therefore, our results evidence how the coarse-graining approach can play an impor-

tant role in describing the detectability of quantum features in imprecise measurements

scenarios. As already pointed out, such a topic is of fundamental importance in quan-

tum technologies development, since nowadays experimentalists are able to control well-

isolated quantum systems with an increasing number of qubits. Beyond that, as said in the

introduction of this chapter, we hope that this approach represents a step toward elucidat-

ing the quantum-to-classical transition problem, bringing to the discussion more general

mechanisms that perturb quantum resources beyond decoherence.
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Chapter 4

Macro-to-micro quantum mapping and

the emergence of nonlinearity

In this chapter, we will turn our attention to the opposite scenario studied in the last two

chapters. Considering the universality of quantum mechanics, firstly, in Chapters 2 and

3, we formalized a coarse-graining channel as the general micro-to-macro mapping, and

as an application we described the behavior of entanglement in macroscopic (effective)

descriptions. Now, addressing the opposite direction, we will propose a macro-to-micro

assignment that maps general macroscopic observations of a system to an ensemble of

microscopic quantum states that the system could be in. As it will be presented, such

an approach represents a step toward a general framework to understand the emergence

of macroscopic behavior of nature. As an application, we will describe how effective

stochastic nonlinear state dynamics emerge from linear deterministic microscopic evolu-

tions. The content of this chapter is the subject of our recent preprint [49].

Traditionally, macro-to-micro assignments are the object of study of statistical physics

[20]. From a general perspective, statistical mechanics, grounded on probability theory

and statistical methods, explains macroscopic behavior of nature from the behaviors of

large ensembles of microscopic constituents. In classical thermodynamics, for example,

statistical mechanics successfully explains macroscopic properties, such as temperature,

heat capacity, pressure, in terms of microscopic parameters. The open system scenario
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is the usual paradigm of statistical mechanics. Considering the interaction between the

system and environment, its main goal is to assign the proper microscopic ensemble to

the macroscopic properties of a system – canonical and grandcanonical ensembles [20],

for example.

Given the traditional framework presented above, aiming to shed some light towards a

more general quantum statistical mechanics, we will propose a macro-to-micro mapping

that overcomes the open quantum system scenario, showing that not only the locality of

observables matter, but also how coarse-grained is our level of description.

Basically, such an approach is grounded on two basics premises:

1. Our perception of nature invariably arises through measurement processes. Whether

considering the everyday perception of our surrounding environment or a sophisti-

cated experimental setup, physical systems are fundamentally perceived and char-

acterized in terms of measurement results of physical observables.

2. Our macroscopic perception of the world is inherently coarse-grained, with “clas-

sical” features emerging due to an effective description of quantum systems.

Following these premises, we formalize a macro-to-micro assignment, which we call av-

eraging assignment map, that assigns to a set of macroscopic (coarse-grained) observa-

tions a microscopic description which is the ensemble-average of all compatible micro-

scopic states. A pictorial representation of our approach is found in Figure 4.1.

In addition, as an application of our method, we use our averaging procedure as a

framework to describe how macroscopic phenomena emerge from microscopic quantum

mechanics. Specifically, we derive an effective state dynamical model which can be used

to explain how nonlinear dynamics emerges from linear quantum mechanics, and we

readily apply it to a state discrimination task.

This chapter is organized as follows: firstly, in Sec. 4.1 the macro-to-micro averaging

assignment map will be formalized. As examples, we apply such a framework in the open

quantum system, and in the blurred and saturated detection scenarios. In the sequence, in
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MACRO MICRO
(a)

(b)

FIGURE 4.1: (a) Micro-to-macro assignment. In the right side, we pic-
torially represent in blue the set all microscopic states that are mapped
through the coarse-graining operation Λ to a unique effective macroscopic
state – represented by the red cat in the left. (b) Macro-to-micro assign-
ment. The mapAΛ assigns to the system an ensemble given by the average
over all microscopic states that comply with the macroscopic observations.

Sec. 4.2, by an operational procedure we derive an effective state dynamical approach. As

an application, considering scenarios beyond the open quantum system scenario, we de-

scribe how nonlinear dynamics can emerge from microscopic linear quantum mechanics.

As an application of this effective nonlinearity, in Sec. 4.3, we readily apply to the state

dynamics in the blurred and saturated detection scenario in a discrimination task. Finally,

in 4.4, we discuss the main conclusions and some perspectives.

4.1 The averaging assignment map

Let us start by defining the macro-to-micro assignment that was qualitatively described

above. Such an approach is grounded on the coarse-graining maps formalized in Chapter

2, so it is convenient to start by doing a brief review. As discussed in Chapter 2, the coarse-

graining channels play the role of general micro-to-macro mapping approach, which maps

microscopic quantum states of a system to macroscopic (coarse-grained) states. As de-

fined in (2.7), a coarse-graining map Λ : L(HD) → L(Hd) is a CPTP map that connects
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a microscopic level of description, with dimension D, to a macroscopic level with dimen-

sion d (d < D). Therefore, given a state ψ ∈ L(HD) describing a microscopic system, its

related coarse-grained (macroscopic) description is Λ[ψ] ∈ L(Hd).

After this brief review, we are now able to address the opposite direction. We want to

define a procedure that maps a macroscopic (coarse-grained) description of a system, with

d degrees of freedom, to a microscopic one, with D degrees of freedom (with d < D).

Firstly, we assume that a macroscopic level of description is a coarse-grained version of

a microscopic level, say by a coarse-graining map Λ : L(HD) → L(Hd). Then, given

a physical system described by a set O = {oi} of NO observed macroscopic quantities,

quantum mechanics assigns to the underlying system a pure quantum state ψ := |ψ〉〈ψ| ∈

L(HD) and observables Oi ∈ L(Hd) such that oi = tr[Λ[ψ]Oi].

In the scenario pictured above, note that the micro-state ψ satisfying the macroscopic

constraints O is, however, not unique in general. We then define the set of all possible

microscopic pure quantum states that abide by the macroscopic constraints:

ΩΛ(O) =
{
ψ ∈ L(HD)

∣∣ tr[OiΛ[ψ]
]

= oi , ∀ 1≤ i≤NO
}
. (4.1)

Therefore, in an operational perspective, when assembling an effective preparation

with properties O, which is accessed through a coarse-graining map Λ, microscopically

we are in fact sampling from the set ΩΛ(O). Due to the linearity of the expectation value,

this perspective suggests an averaging assignment map AΛ : O → L(HD) that assigns

the description to the microscopic ensemble:

AΛ[O] ≡ ΩΛ(O)
ψ

=

∫
dµψPrΛ(ψ|O)ψ, (4.2)

where dµψ is the uniform Haar measure over pure states, and PrΛ(ψ|O) is the probability

density of having the microscopic state ψ given the macroscopic constraints imposed by

O and the coarse-graining map Λ. Note that PrΛ(ψ|O) = 0 for any ψ 6∈ ΩΛ(O).
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In the particular case where the set O is big enough as to allow for the full state

reconstruction of % in L(Hd), i.e. O is tomographically complete, then AΛ becomes a

map between states, AΛ : L(Hd)→ L(HD):

AΛ[%] = ΩΛ(%)
ψ

=

∫
dµψPrΛ(ψ|%)ψ, (4.3)

with ΩΛ(%) = {ψ ∈ L(HD)
∣∣ Λ[ψ] = %}.

In general, the averaging assignment map – either in (4.2) or (4.3) –, is neither lin-

ear, with respect to the coarse-grained description, nor completely positive. Differently

from the quantum operations defined in Section 2.1, these characteristics pose no funda-

mental problems or physical inconsistencies in the averaging assignment map. Briefly

remembering, the quantum operation E : L(HA) → L(HB), defined in (2.3), represents

a general process that a physical system can undergo, with linearity and completely pos-

itivity being crucial properties that guarantee its physical consistency. Such properties

are not fundamental in the averaging assignment map, since its physical meaning is quite

different. The average procedure represents an inference about the microscopic state of

the underlying coarse-grained observed system, not a physical process that the system

undergoes. Therefore, the nonlinearity with respect to the macro observation poses no

problem with superluminal communication [29], for example. Besides, since the action

of the averaging map AΛ gives a linear combination of the states in ΩΛ(%), it is clear that

even when we extend the microscopic system by adding auxiliary systems, the average

state will always produce a valid quantum state.

In the following, we will apply the averaging assignment map (4.3) in two distinct

scenarios. Firstly, we will study how the open quantum system scenario fits in our av-

eraging procedure, evaluating the average state considering the partial trace trE as the

coarse-graining map. Next, our second example will be to calculate the averaging state

related to the blurred and saturated detector map ΛBnS.
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4.1.1 Averaging assignment map: open quantum system

As discussed in 2.2.1, the partial trace plays a crucial role in the open quantum system

scenario (system+environment). We assume that the effective description of the system

is given by %S ∈ L(HS). No further constraints are assumed. In this case, the set of pure

states of the system+environment is given by,

ΩtrE(%S) = {ψ ∈ L(HS ⊗HE)|trE[ψ] = %S}, (4.4)

which is formed by the purifications of %S . As no further constraints are imposed, each

purification appears with the same probability in ΩtrE(%S). Thus, evaluating (4.3) in the

partial trace case, we have:

AtrE [%S] = %S ⊗
1

dE
, (4.5)

with dE = dim(HE). The calculation of this result is shown in the Appendix A.1. Note

that for the choice of partial trace as coarse-graining map, the averaging assignment map

AtrE is linear in %S and completely positive.

Considering the open quantum system perspective, the above result have a reason-

ably straightforward meaning. Given that our effective level of knowledge allows us to

consider only the description of the system, having complete ignorance about the en-

vironment and how it interacts with the system, the average map assign as the state of

system+environment the product state between the reduced state of the system and the

maximum mixture state of the environment.

4.1.2 Averaging assignment map: blurred and saturated detector

Now we turn our attention to the case of a blurred and saturated detection scenario ana-

lyzed in the Section 2.2.2, which is described by the coarse-graining map ΛBnS : L(H4)→

L(H2) defined in (2.10).



4.1. The averaging assignment map 45

Then, to a preparation of a system given by an effective qubit % ∈ L(H2), quantum

mechanics assigns to the underlying system a pure quantum state ψ ∈ L(H4) such that

% = ΛBnS[ψ]. So, as stated by the average procedure, the description at the microscopic

level is given by AΛBnS
[%], meaning that we need to take the average over the states be-

longing to the set

ΩΛBnS(%) = {ψ ∈ L(H4)|ΛBnS[ψ] = %}. (4.6)

In order to better present the results, we write the elements of % in the computational

basis as

% =

%00 %01

%∗01 %11.

 , (4.7)

Then calculating (4.3), the averaging assignment procedure gives:

AΛBnS
[%] =



%00
%01√

3

%01√
3

%01√
3

%∗01√
3

%11

3

|%01|2

2%00

− %11

6

|%01|2

2%00

− %11

6
%∗01√

3

|%01|2

2%00

− %11

6

%11

3

|%01|2

2%00

− %11

6
%∗01√

3

|%01|2

2%00

− %11

6

|%01|2

2%00

− %11

6

%11

3


. (4.8)

The calculation is detailed in the Appendix A.2.

Observe that differently from the average state related to the partial trace case (4.5), for

the blurred and saturated detector the assigned average state is nonlinear on %. Note that

the nonlinear terms are related to the coherences within the excited subspace span({|01〉,

|10〉,|11〉}), which are exactly the states that the blurry detector cannot resolve. Thus,

all these nonlinear terms vanish after the blurred and saturated coarse-graining map is

applied. However, as it will be shown in the next section, in the effective state dynamics,

this nonlinearity can appear, allowing for the emergence of nonlinear processes.
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4.2 Effective state dynamics

Now that we know how to connect macroscopic to microscopic descriptions through the

averaging assignment map, we will establish an operational procedure that characterizes

how general stochastic effective dynamics arise from deterministic unitary quantum dy-

namics.

In order to construct the effective (macroscopic) description of a dynamical process of

a system, our approach will assume access only to the coarse-graining map that describes

our ability to construe the microscopic world, and to a model of the underlying quantum

microscopic dynamics.

More explicitly, given an initial effective state %(0) ∈ L(Hd), we want to construct a

family of effective dynamical maps Γt : L(Hd)→ L(Hd), such that for each time t ∈ R+

the evolved effective state is given by

%(t) = Γt[%(0)], (4.9)

Once again we appeal to the operational mindset in order to obtain Γt. Our procedure

is inspired in the quantum state tomography (QST) task, which requires a sufficiently large

set of initial identical preparations of the system in order to completely reconstruct its

quantum state. One way of thinking is, to prepare the initial effective state %(0) ∈ L(Hd)

means, in each run, to prepare a microscopic state from the set

ΩΛ(%(0)) = {ψ ∈ L(HD)|Λ[ψ] = %(0)}. (4.10)

Let ψ(i)(0) ∈ ΩΛ(%(0)) be the microstate selected, with probability PrΛ(ψ(i)(0)|%(0)), in

the i-th run. Microscopically, this state evolves through the unitary map Ut, and then to

obtain its effective description we apply the coarse-graining map Λ. All this leads, in the

i-th run, to %(i)(t) = (Λ ◦ Ut)[ψ(i)(0)] – see Figure 4.2 (a). If we are to determine the final

effective state, for instance via quantum state tomography (QST), this procedure has to be
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performed many times, and an averaging naturally appears:

%(t) =

∫
dµψ(0)PrΛ(ψ(0)|%(0)) (Λ ◦ Ut)[ψ(0)]

= (Λ ◦ Ut)
[∫

dµψ(0)PrΛ(ψ(0)|%(0))ψ(0)

]
. (4.11)

In the second line above we used the linearity of both the unitary evolution and coarse-

graining channel. Note that the integral in (4.11) is the very definition of the averaging

assignment map acting on %(0). Combining all the three steps, the effective dynamical

map Γt : L(Hd)→ L(Hd) is obtained as:

Γt = (Λ ◦ Ut ◦ AΛ), (4.12)

with (4.9) rewritten as

%t = Γt[%(0)]

= (Λ ◦ Ut ◦ AΛ)[%(0)]. (4.13)

The construction of the effective coarse-grained dynamical model is schematically repre-

sented in Fig. 4.2 (b).

The evolved state (4.13), in general, will be nonlinear as a function of the initial ef-

fective state %(0), and not completely positive. These properties come from the averag-

ing assignment map (4.3), which, is nonlinear and not completely positive. However,

as discussed in the last chapter, such properties pose no physical problems, since AΛ is

not a physical process that the system undergoes, but an inference about its microscopic

quantum description, given our coarse-grained information. Note that the effective dy-

namical map Γt = (Λ ◦ Ut ◦ AΛ), is defined as a composition of three maps, where

Ut and Λ represent physical processes which the system undergoes, and both are linear
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(a)

(b)

FIGURE 4.2: (a) Single run evolution. In the i-th run, the prepa-
ration of %(0) implies the random preparation of a microscopic state
ψ(i)(0) ∈ ΩΛ(%(0)), which then evolves according to the unitary map
Ut, and through the coarse-graining map Λ finally gives the effective state
%(i)(t) = (Λ ◦ Ut)[ψ(i)(0)]. In each run a possibly different effective state
is created. (b) Effective evolution. The scheme in (a), together with the
linearity of quantum mechanics, suggests an effective dynamics given by

Γt = (Λ ◦ Ut ◦ AΛ).

and CPTP. Therefore, by construction, the nonlinearity manifested in (4.13) is an effec-

tive phenomenon observed in macroscopic levels of description. Thus (4.13) does not

represent any disagreement with microscopic linear quantum mechanics, superluminal

communication remains forbidden [29].

4.2.1 Effective state dynamics: open quantum system

In the partial trace case, the description of the whole system and environment fulfilling

the constraint is given by the averaging assignment map, AtrE [%(0)] = %(0) ⊗ 1
dE

. From
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(4.12), in this open quantum system scenario, the effective evolved state %t is obtained as

follows:

%(t) = (trE ◦ Ut)[%(0)⊗ 1

dE
]. (4.14)

Note that the effective dynamics in this case is linear on %(0), since both the unitary

evolution Ut and the coarse-graining map trE are linear operations. Moreover, as Ut and

trE are completely positive, so is Γt.

From (4.14) we can analyze a simple scenario of a local unitary evolution. With

Ut = USt ⊗ UEt , the unitary evolution:

%(t) =(trE ◦ USt ⊗ UEt )[%(0)⊗ 1

dE
]

=USt [%(0)] (4.15)

is recovered, so the effective evolution Γt = USt , more than linear, it is unitary.

4.2.2 Effective state dynamics: blurred and saturated detector

As previously discussed, the average state in the detector case, Eq.(4.8), has a nonlinear

dependence on the coarse-grained state. This may lead to a nonlinear effective dynamics

if we allow the composite system to evolve before the application of the coarse-graining

map. For the nonlinearity in the average state to imply a nonlinear effective dynamics, an

appropriate unitary evolution must be chosen so that the nonlinear term in (4.8) shows up

in elements other than the single excitation subspace coherences, as those vanish by the

action of ΛBnS.

As an example, we start by considering the initial coarse-grained state %(0) ∈ L(H2):

%(0) =

 1

2
%01(0)

%01(0)
1

2

 , (4.16)

with %01(0) ∈ R+, to simplify the analysis.



50 Chapter 4. Macro-to-micro quantum mapping and the emergence of nonlinearity

Given that %(t) = (ΛBnS ◦ Ut ◦ AΛBnS
)[%(0)], the first step is the average state

AΛBnS
[%(0)], which can be easily constructed following the general form given by the

equation (4.8).

The next step is the microscopic evolution. We consider the unitary evolution gener-

ated by the local HamiltonianH = ~ω1⊗σy, i.e., the unitary evolution of the averaged as-

signed state is given by Ut[AΛBnS [%(0)]] = UtAΛBnS [%(0)]U †t with Ut = exp[−iωt(1⊗σy)].

Finally, we apply the coarse-graining map ΛBnS, given by (2.10). Under these circum-

stances, the evolved coarse-grained effective description at ωt = π/3 is given by:

%(π/3ω) =
1

16

 (1− 2%01(0))2 (1− 2%01(0))2(1 + 2%01(0))

2
(1− 2%01(0))2(1 + 2%01(0))

2
1− (1− 2%01(0))2

 (4.17)

Clearly, it shows a nonlinear dependence on the initial state.

As it will be explored in the following, such a nonlinear character can be used in

a state discrimination task, then gaining added value in effective quantum information

processing protocols.

4.3 Applications: Effective state discrimination

Nonlinear dynamical models have far-reaching applications, ranging from condensed

matter physics to the description of biological systems [50]. In the following, we show

that the nonlinear dynamics shown above can be useful in the task of discriminating be-

tween two effective states.

4.3.1 State discrimination

In essence, quantum state discrimination describes the distinguishability of different quan-

tum states, and the general process of extracting classical information from quantum sys-

tems [51]. Such a state discrimination task underlies various applications in quantum
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information processing, as an example, in the characterization of mutual information in

cryptography protocols [52, 53].

Since our goal is to give an example of a useful application of the effective nonlinear

dynamics, it will be sufficient to present only a simplified discrimination scheme.

Consider a quantum communication channel composed of two parts: the sender (S),

who controls a source, and the receiver (R), who controls a measurement device. The

source can generate two states: % or χ in L(H). It is known to both parties – S and R

– that, in each run, S sends to R one of these two states (either % or χ) with probability

1/2. So just before the measurement, from R’s perspective, the system is described by a

probabilistic mixture: %/2 + χ/2. Then, R performs the measurement. Finally, in such a

single-shot communication procedure, R can learn about the state sent by S from the de-

tection outcome produced by the measurement. This is the quantum state discrimination

scheme, and it is represented in Figure 4.3.

FIGURE 4.3: Quantum state discrimination scheme.

In this scenario, the so-called Helstrom bound [54], one foundational result in quan-

tum information theory, tells that the maximum probability of a single-shot measurement

to correctly identify which state was produced by the source device, is given by

(1 +D(%, χ)) /2, (4.18)

where D(%, χ) = tr|% − χ|/2 is the trace distance between the states. Therefore, the

larger the distance between the two states, the bigger is the probability of distinguishing

between them.
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Another central result of quantum information theory is that the distance between two

states does not increase by the action of a linear CPTP map E : L(HA)→ L(HB), i.e.,

D(E [%], E [χ]) ≤ D(%, χ). (4.19)

As such, the probability of distinguishing between two states cannot increase by further

linear processing of the system.

4.3.2 Effective state discrimination

Now assume that the receiver (R) wants to distinguish between two effective states, and

he had access to a nonlinear dynamics given by an effective dynamical channel of the

form (4.12). In this case the probability of discriminating between two states can in fact

increase, as it will be shown.

For concreteness, assume the discrimination scenario described above, with a source

being able to generate the coarse-grained states %(0) = 1/2 or χ(0) = |χ〉〈χ| (with

|χ〉 =
√

0.8|0〉+
√

0.2|1〉). Now, before the measurement, R is able to apply the effective

dynamical channel Γt = (Λ ◦ Ut ◦ AΛ). Let the coarse-graining channel be the ΛBnS, and

the microscopic dynamics be governed by the Hamiltonian H = ~ω(1 ⊗ σy + σy ⊗ 1)

– See Figure 4.4 (a). In this case, the effective channel Γt is nonlinear, and as shown in

Fig. 4.4 (b) the distance among the two effective states can be bigger than its initial value,

allowing therefore for a better effective state discrimination.

It must be stressed that the increase in state discrimination is only possible in the

effective level. Since Γt = (Λ ◦ Ut ◦ AΛ), defining %′ = AΛ[%(0)], χ′ = AΛ[χ(0)] and

E ′ = (Λ ◦ Ut), in (4.19), it is simple to see that:

D(Γt[%(0)],Γt[χ(0)]) ≤ D(AΛBnS [%(0)],AΛBnS [χ(0)]). (4.20)
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(a)

(b)

FIGURE 4.4: Effective distance evolution. (a) Coarse-grained quan-
tum discrimination scheme (b) The distance between two effective sys-
tem’s description can increase due to a nonlinear coarse-grained dynamics.
The red solid line describes the distance evolution D(%(t), χ(t)); the red
dashed line represents the initial distance D(%(0), χ(0)); while the blue
dot-dashed line shows the distance between the underlying assignments

D(AΛBnS [%(0)],AΛBnS [χ(0)]).

Thus the best effective discrimination is never better than the best microscopic discrim-

ination. If it were possible to increase the success of discriminating between two states

by throwing away some information, besides astonishing, it would also violate the non-

signaling principle [29, 55].

4.4 Summary and conclusions

In this chapter, employing quantum information tools, we formalized a general macro-

to-micro assignment. Going beyond the open quantum system paradigm, not only the

locality of observables matter, but also how coarse-grained is our level of description. In
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this sense, we are convinced that our approach offers a contribution towards a generalized

quantum statistical mechanics, enlarging the usual scenario where we have a clear split

between system and environment, to an extended definition of subsystems.

From this approach, looking at the stochastic effective state dynamics, nonlinear evo-

lutions may emerge naturally from the deterministic unitary linear quantum dynamics.

Again the level of description, and thus the ability to prepare and describe macroscopic

systems, is the key. Through our averaging procedure, it became clear that fixing a coarse-

grained preparation is usually not sufficient to determine the underlying quantum pure

state. As we exemplify in the blurred and saturated scenario, the best suited description

of the microscopic state is possibly nonlinear on the macroscopic description. This effec-

tive nonlinearity can be, in general, expressed in the dynamical process, but introduces no

conflict with the physical tenets of complete positivity and no-signaling.

The present framework may have impact not only on foundational aspects – like the

quantum-to-classical transition –, but also in more applied topics – such as in quantum

communication protocols that exploit the discrimination between effective states.
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Chapter 5

Conclusions and Perspectives

In this last chapter, we summarize and discuss the leading results of this thesis. We

also list perspectives for the continuity of our work, mentioning the developments such

contributions may take.

Universality of quantum mechanics

As discussed in Chapter 1, if we assume quantum mechanics as a fundamental theory of

physics, quantum mechanics inherits a universal status. It means that, at least in princi-

ple, the theory must assign a quantum state to any level of description of a system. The

universality of quantum mechanics implies a two-way describing nature. In the first one,

a micro-to-macro mapping, the theory must describe how to connect microscopic quan-

tum states of a system to macroscopic/effective descriptions of a physical system. In the

second and opposite direction, a macro-to-micro mapping, quantum mechanics assigns

to a macroscopic description an ensemble of microscopic quantum states that the system

could be in.

Micro-to-macro mapping

To deal with the micro-to-macro mapping, in Chapter 2, we formalized a general coarse-

graining operation that maps microscopic quantum states to macroscopic states. The



56 Chapter 5. Conclusions and Perspectives

coarse-graining map was defined as a quantum operation (a linear and CPTP map) that

lowers the dimension of the microscopic state of a system. We showed that the coarse-

graining formalism generalizes the open quantum system paradigm, since it models sce-

narios where rather than the locality of observables, the blurriness of the level of descrip-

tion is the determinant feature. In this sense, we are convinced that the coarse-graining

approach offers a more general framework to study macroscopic/effective descriptions of

a physical system that may emerge from microscopic quantum mechanics.

As an illustration, still in Chapter 2, we have presented two coarse-graining situations.

The first one was the usual open quantum system scenario, where the description of the

system of interest is described by tracing out the degrees of freedom of its environment.

In this case, given a clear split between the system and environment, the partial trace

trE plays the role of coarse-graining map, getting rid of the environment’s degrees of

freedom. The second physical situation was an imperfect detection of a spin-system in

an optical lattice. Inspired by the fluorescence imaging technique [32], we constructed

a coarse-graining map ΛBnS that models a blurred and saturated spin-detection, and, as

demonstrated, such a coarse-graining situation does not fit in the open quantum system

scenario.

In sequence, in Chapter 3, we explored the blurred and saturated coarse-graining map

ΛBnS as a tool to describe spin-entanglement in an optical lattice scenario considering

a range of coarse-grained resolution. Comparing it with recent experimental realizations

performed with ultracold atoms [35], it allows us to conjecture up to what limit the lack of

resolution of the equipment compromises the detection of quantum entanglement. Such

application demonstrates how the coarse-graining formalism can be a promising frame-

work to investigate the fragility of genuine quantum features to different levels of im-

precise (and less costly) measuring processes. In addition, the coarse-graining approach

sheds some light on the characterization of the quantum-to-classical transition. Different

from the traditional decoherence theory, which is placed on the open quantum system

paradigm, the coarse-graining approach brings to the discussion other mechanisms that
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disturb quantum resources without necessarily resorting to the interaction between system

and environment.

Once summarized our main results concerning the micro-to-macro mapping, we list

two main perspectives about possible improvements in our model and further applications:

• Apply our coarse-graining model to other physical scenarios, modeling other coarse-

grained situations and describing the behavior of different quantum features.

• A generalization in the definition of coarse-grained maps by considering non-completely

positive maps.

The first point concerns the extension of the application of the blurred and saturated

coarse-graining map to other physical circumstances. Nowadays, ultracold atoms in an

optical lattice represent a prominent platform for the simulation of a range of other quan-

tum many-body problems [37, 33]. Part of this success is due to the development of

high-precision detection devices such as quantum gas microscopes [32, 37]. Since our

coarse-graining is constructed to model this kind of detection, we hope that our model

will be relevant for other ultracold-atom-based quantum simulations. Viable possibili-

ties are to probe quantum magnetism, to realize and detect topological matter, and to

study quantum systems with long-range interactions [37, 33]. Situations where more

than one excitation is present in the system, and the full XXZ Hamiltonian (such as in

Refs. [58, 59]), can also be directly modeled by our map. Moreover, given its simplicity

and intuitive construction, we expect that this coarse-graining approach will be adapted

and extended to other experimental achievements in which detection cannot be made with

proper accuracy.

The second point is motivated by the results of two works, [56] and [57]. The authors

argued that complete positivity (CP) is not a requirement for a good representation of

general quantum transformation. Their calculations suggest that to get a full understand-

ing of quantum transformations, non-completely positive maps should be considered as

well. Our coarse-graining map is formalized inspired by the quantum operation definition
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which requires complete positivity, so if we dismiss the CP constraint, we can, at first

sight, define a more general coarse-graining map. This is a step that must be taken with

caution, an in-depth study is needed to verify the physical consistency.

Macro-to-micro mapping

In Chapter 4, we formalized a macro-to-micro model: the averaging assignment map

AΛ. Considering a set of coarse-grained observations that macroscopically characterizes

a system, the averaging map AΛ assigns to this macroscopic description a microscopic

average-ensemble of all pure quantum states that obey the observed data. Grounded on

the coarse-graining formalism, the averaging assignment goes beyond the open quantum

system scenario. Our results demonstrate that a more general macro-to-micro assignment

needs to account not only for the locality of the observations but also to describe how

coarse-grained is the level of description. Therefore, by extending the definition of sub-

system to scenarios that do not present a clear split between system and environment,

we are convinced that the average assignment approach represents a contribution towards

generalized statistical mechanics.

If in fact, the average assignment procedure represents the mechanism that properly

connects macroscopic descriptions with microscopic quantum mechanics; such an ap-

proach must play an important role in elucidating emergent phenomena in physics [21]

from first principles. That is, the averaging assignment map must be a tool to describe

how emerging macroscopic behavior is in accordance with the underlying quantum me-

chanics rules. To illustrate such an idea, as a by-product of our averaging assignment

approach, we defined an effective state dynamic map that naturally emerges from deter-

ministic linear quantum mechanics. As a consequence of the nonlinearity of AΛ in the

blurred and saturated, we showed how effective nonlinear dynamics naturally emerges

from linear quantum evolution. As a application, we employed such nonlinear dynamic

in a state discrimination task.
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Proceeding in the same way as in the previous section, we now list some ideas about

possible improvements in our macro-to-micro assignment and further applications:

• Study how different the averaging assignment is from the usual maximum entropy

method.

• Explore the nonlinearity of our effective state dynamical map to investigate how

chaotic dynamics can emerge from microscopic quantum mechanics.

Let us clarify each point above. The first point is to describe an alternative macro-to-

micro assignment inspired by a more traditional approach. Remember that the averaging

assignment map connects a coarse-grained description to an ensemble that is the average

of the set of pure states that abide by the coarse-graining constraint. However, alterna-

tively we could construct the ensemble that maximizes the entropy. Such approach is

inspired by quantum statistical mechanics, which says that the state that better describes

a system defined by a Hamiltonian H , in thermal equilibrium with a heat bath at temper-

ature T is given by the Gibbs state:

χG =
1

Z
exp[−βH] (5.1)

with β is such that satisfies tr(HχG) = E and Z = tr[exp(−βH)] is called the partition

function. This state maximizes the von Neumann entropy, S(ψ) = −trψ lnψ, of the

state subjected to the fixed average energy constraint [19, 20]. Transporting this scheme

to a coarse-graining description, at first, the idea would be instead of an fixed energy

constraint, we define our assigned microscopic state as the maximum entropic mixture

related to the set Ω(%) = {ψ ∈ L(HD)|Λ[ψ] = %}.

Characterizing the macro-to-micro assignment using the maximum entropic principle

may lead to relevant differences in macroscopic predictions if compared with the aver-

aging method. Such difference must become evident if we look at the effective state
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dynamics Γt = Λ ◦ Ut ◦ AΛ, for example. Note that if we replace the averaging assign-

ment AΛ by the maximum entropy procedure, the effective dynamics Γt fundamentally

changes. Therefore, we think that the disagreement between averaging and maximum

entropy procedures would be a key issue to properly describe macroscopic phenomena.

The second point is motivated by the crucial role of nonlinear dynamics in the mani-

festation of chaotic behavior [60]. Different from models where nonlinear dynamics are

obtained via specific phenomenological approximations [60, 61], our nonlinear effective

state dynamic model could be a route for elucidating the emergence of chaotic behavior

from first principles. Even though presented in this vague way, we think it is important to

mention this possible application of our approach.

Finally, we conclude this thesis, leaving open a possible experimental verification of

our macro-to-micro model. Since the construction of the averaging assignment map and,

consequently, the effective state dynamics model are easily related to an operational sce-

nario of quantum state tomography, our procedure becomes, at least in principle, favorably

open for experimental testing.
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Appendix A

Evaluation of the average state

A.1 Averaging assignment: open quantum system

Here we explicitly evaluate the average state related to the partial trace case, in equation

(4.5). The method to be presented here will serve as inspiration for the calculation of the

average state related to the blurred and saturated detector.

Given the partial trace map trE : L(HS ⊗ HE) → L(HS) and a coarse-grained

description % ∈ L(HS), the average state AtrE [%] is given by

AtrE [%] =

∫
dµψPrtrE(ψ|%)ψ; (A.1)

where dµψ is the uniform Haar measure in HS ⊗ HE , and the conditional probability

PrtrE(ψ|%) is non-null only in ΩtrE(%) = {|ψ〉 ∈ HS ⊗ HE | trE[|ψ〉〈ψ|] = %}. The

elements of ΩtrE(%) are thus the purifications of % in the extended spaceHS ⊗HE .

In order to abide by the coarse-graining constraint, the conditional probability distri-

bution PrtrE(ψ|%) must be proportional to δ(trE[ψ] − %). Such a probability is invariant

by unitary transformations in the “environment” part, that is:

PrtrE(ψ|%) = PrtrE(1⊗Uψ1⊗U †|%), ∀U ∈ L(HE). (A.2)

As the purifications of % are connected by local unitary transformations acting in HE ,
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this invariance implies that all the elements in ΩtrE(%), given no further constraints, are

equally likely.

Since the Haar measure dµψ is also invariant by unitary transformations, the average

state for the partial trace case can be equivalently written by changing the variables |ψ〉 →

1⊗U |ψ〉 as:

AtrE [%] =

∫
dµψPrtrE(ψ|%)1⊗Uψ1⊗U †. (A.3)

Given the choice of unitary U in the equation above plays no role, we can average over

all such unitary transformations, to obtain:

AtrE [%] =

∫
dµψPrtrE(ψ|%)1⊗Uψ1⊗U †

µU
. (A.4)

As we have established an equal probability for all states in ΩtrE(%), this average is

performed using the Haar measure on the environment part, and its explicit evaluation is

a standard result in quantum information [55]:

1⊗Uψ1⊗U †
µU

= trE[ψ]⊗ 1

dE
= %⊗ 1

dE
. (A.5)

Note that the above result is independent of ψ, depending only on the coarse-grained

density matrix %. The integral in (A.4) is then now easily calculated:

AtrE [%] = %⊗ 1

dE

=1︷ ︸︸ ︷∫
dµψ PrtrE(ψ|%)

= %⊗ 1

dE
. (A.6)

Therefore, in the partial trace case, the average state is just the tensor product between the

coarse-grained state % and the identity in subspaceHE .
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A.2 Averaging assignment: blurred and saturated detec-

tor

Here we calculate the average state related to the blurred and saturated detector, as induced

by the coarse-graining map ΛBnS : L(H4) → L(H2), in equation (4.8). Following the

same steps as in the above calculation, the average assignment for the present case is

given by:

AΛBnS [%] =

∫
dµψPrΛBnS(ψ|%)ψ; (A.7)

where dµψ is the uniform Haar measure inH4, and the conditional probability distribution

PrΛBnS(ψ|%) is non-null only in ΩΛBnS(%) = {|ψ〉 ∈ H4 |ΛBnS[|ψ〉〈ψ|] = %}.

The coarse-graining constraints imply that PrΛBnS(ψ|%) ∝ δ(ΛBnS[|ψ〉〈ψ|] − %). Here,

however, the symmetry obeyed by this conditional probability distribution is not so im-

mediately spotted. In order to make it apparent, we write |ψ〉 in the computational basis in

H4 as |ψ〉 =
∑1

i,j=0 cij|ij〉, where cij ∈ C, and
∑

ij |cij|2 = 1. Consequently, the average

assignment can be written as:

AΛBnS [%] =

∫
dc00dc01dc10dc11PrΛBnS(c00, c01, c10, c11|%)ψ(c00, c01, c10, c11)×

× δ(|c00|2 + |c01|2 + |c10|2 + |c11|2 − 1). (A.8)

Now note that the action of ΛBnS on ψ is the following one:

ΛBnS[ψ] =

 |c00|2 1√
3
c00[c∗01 + c∗10 + c∗11]

1√
3
c∗00[c01 + c10 + c11] |c01|2 + |c10|2 + |c11|2

 . (A.9)
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Therefore, in terms of the coefficients cij , the proportionality PrΛBnS(ψ|%) ∝ δ(ΛBnS[|ψ〉〈ψ|]−

%) can be rewritten as:

PrΛBnS(c00, c01, c10, c11|%) ∝δ
(
|c00|2 − %00

)
× (A.10)

× δ
(
|c01|2 + |c10|2 + |c11|2 − %11

)
× (A.11)

× δ
( c00√

3
[c∗01 + c∗10 + c∗11]− %01

)
, (A.12)

where %ij = 〈i|%|j〉 are the components of % in the computational basis in H2. Note that

the normalization restriction δ(|c00|2 + |c01|2 + |c10|2 + |c11|2 − 1) is already implied by

the normalization of % and the constraints in (A.10) and (A.11).

The coefficients cij are complex numbers, and can be thus be written as cij = aij+i bij

with aij, bij ∈ R. In this sense, in order to calculate the integral in (A.8) it is convenient

to rewrite |ψ〉 as:

|ψ〉 = Y V, (A.13)

with Y and V respectively defined as:

Y ≡



1 0 0 0 i 0 0 0

0 1 0 0 0 i 0 0

0 0 1 0 0 0 i 0

0 0 0 1 0 0 0 i


, V ≡



a00

a01

a10

a11

b00

b01

b10

b11



. (A.14)
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The density matrix representation is then equivalently written as |ψ〉〈ψ| = Y V V TY †,

with the average state (A.8) expressed now as:

AΛBnS [%] =

∫
dV PrΛBnS(V |%)Y V V TY † δ(V TV − 1), (A.15)

where dV =
∏1

i,j=0 daijdbij and the probability

PrΛBnS(V |%) ≡ PrΛBnS(a00, . . . , a11, b00, . . . , b11|%). (A.16)

Without loss of generality we can ignore a global phase and consider c00 real, such that

a00 = c00 and b00 = 0. With these considerations, PrΛBnS(V |%) can be rewritten as the

following product of the delta functions:

PrΛBnS(V |%) ∝ δ
(
a2

00 − %00

)
× δ
(
b00

)
× (A.17)

δ
(
a2

01 + a2
10 + a2

11 + b2
01 + b2

10 + b2
11 − %11

)
× (A.18)

δ
(a00√

3
(a01 + a10 + a11)−Re[%01]

)
× (A.19)

δ
(
− a00√

3
(b01 + b10 + b11)− Im[%01]

)
. (A.20)

The first two delta functions in the expression above already fix a00 =
√
%00, and b00 = 0.

The second line, (A.18), imposes a spherical symmetry for the real coefficients in the

excited subspace, as it is equivalent to a sphere of radius
√
%11 in such a subspace. This

symmetry suggests the conditional probability PrΛBnS(V |%) to be invariant over orthogonal

transformations on the excited subspace.

The orthogonal transformations that leave PrΛBnS(V |%) invariant are, however, further

restricted by the constraints in Eqs. (A.19) and (A.20). The allowed transformations are

those that maintain the hyper-planes a01 + a10 + a11 =
√

3Re[%01]/a00 and b01 + b10 +

b11 = −
√

3Im[%01]/a00 invariant. Such transformations are rotations in the corresponding

subspaces along vectors normal to the hyper-planes.
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We thus established that

PrΛBnS(V |%) = PrΛBnS(O(θ, φ)V |%). (A.21)

for orthogonal transformations of the form

O(θ, φ) = 1⊕Ra(θ)⊕1⊕Rb(φ) =



1 0 0 0 0 0 0 0

0

0

0

Ra(θ)

0

0

0

0 0 0

0 0 0

0 0 0

0 0 0 0 1 0 0 0

0

0

0

0 0 0

0 0 0

0 0 0

0

0

0

Rb(φ)



, (A.22)

where Ra(θ) is a rotation in the “a” excited subspace by an angle θ ∈ [0, 2π[ along the

axis a = (1, 1, 1), and similarly, Rb(φ) is a rotation in the “b” excited subspace by an

angle φ ∈ [0, 2π[ along the axis b = (1, 1, 1).

Now we can proceed as for the partial trace case. Using the invariance property (A.21)

in the average assigned description (A.15) we get:

AΛBnS [%] =

∫
d(O(θ, φ)V ) PrΛBnS(O(θ, φ)V |%)Y O(θ, φ)V V TOT (θ, φ)Y †×

× δ(V TOT (θ, φ)O(θ, φ)V − 1)

(A.23)

=

∫
dV PrΛBnS(V |%)Y O(θ, φ)V V TOT (θ, φ)Y †δ(V TV − 1), (A.24)

where we used that d(O(θ, φ)V ) = dV as O(θ, φ) is an orthogonal transformation. As

the above equation is true for any choice of θ and φ, we can uniformly average over these
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parameters to get:

AΛBnS [%] =

∫
dV PrΛBnS(V |%)Y O(θ, φ)V V TOT (θ, φ)

µO
Y † δ(V TV − 1), (A.25)

where µO is the uniform measure over the orthogonal transformationsO(θ, φ). Explicitly,

this averaging can be written as:

Y O(θ, φ)V V TOT (θ, φ)
µO
Y † = Y

(
1

(2π)2

∫ 2π

0

dθ

∫ 2π

0

dφO(θ, φ)V V TOT (θ, φ)

)
Y †.

(A.26)

Although tedious, the integral can be exactly calculated, and leads to the following matrix:

Y O(θ, φ)V V TOT (θ, φ)
µO
Y † =



© 4 4 4

4∗ ♦ � �

4∗ � ♦ �

4∗ � � ♦


, (A.27)

with the coefficients©,♦,4 and � dependent of aij and bij as follows:

© = a2
00,

♦ =
1

3
(a2

01 + a2
10 + a2

11 + b2
01 + b2

10 + b2
11),

4 =
1

3
a00(a01 + a10 + a11 − i b01 − i b10 − i b11),

� =
1

3
(a01a10 + a01a11 + a10a11 + b01b10 + b01b11 + b10b11). (A.28)

Employing the constraints in Eqs.(A.17) - (A.20), these coefficients can be rewritten as

© = %00, ♦ =
%11

3
, 4 =

%01√
3
, � =

3|4|2

©
− ♦

2
. (A.29)



76 Appendix A. Evaluation of the average state

With these results, we finally get:

Y O(θ, φ)V V TOT (θ, φ)
µO
Y † =



%00
%01√

3

%01√
3

%01√
3

%∗01√
3

%11

3

|%01|2

2%00

− %11

6

|%01|2

2%00

− %11

6
%∗01√

3

|%01|2

2%00

− %11

6

%11

3

|%01|2

2%00

− %11

6
%∗01√

3

|%01|2

2%00

− %11

6

|%01|2

2%00

− %11

6

%11

3


.

(A.30)

Note that the above matrix is independent of V , i.e., it is independent of |ψ〉, depending

only on the elements of the effective given state %. As such, the average assignment can

be obtained as:

AΛBnS [%] = Y O(θ, φ)V V TOT (θ, φ)
µO
Y †

=1︷ ︸︸ ︷∫
dV PrΛBnS(V |%)δ(V TV − 1)

= Y O(θ, φ)V V TOT (θ, φ)
µO
Y †. (A.31)

Thus the average state related to the blurred and saturated coarse-graining is given by

(A.30).
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