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RESUMO

Nesta tese, calculamos as respostas eletromagnéticas de gases

relativísticos de elétrons e de bósons e mostramos que a

permissividade elétrica e permeabilidade magnética desses

meios podem assumir valores simultaneamente negativos den-

tro de uma região de frequência limitada pelas frequências

das oscilações coletivas de plasmon. A partir da lei de Snell,

mostramos que, quando ambos ε e µ são negativos, os gases

têm índice de refração n =−1. Esse comportamento ocorre em

sistemas relativísticos, presentes em vários exemplos na física,

como em estrelas compactas de nêutrons. Para o gás de bó-

sons carregados, obtivemos estruturas tipo rotons, similares às

que são observadas em um superfluido, na relação de dispersão

do gás. Essa excitação de rotons surge apenas na fase conden-

sada, desaparecendo para temperaturas acima da temperatura

crítica de transição do condensado de Bose - Einstein. Também

obtivemos correções à pressão, temperatura crítica e densidade

de carga do condensado, causadas pela interação corrente-

corrente induzida por flutuações quânticas eletromagnéticas

tratadas via eletrodinâmica quântica escalar.

Palavras chave: Gás de eletrons relativístico; gás de bósons rel-

ativistico; índice de refração negativo; eletrodinâmica quântica
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ABSTRACT

In this thesis, we calculated the electromagnetic responses of

relativistic gases of electrons and bosons, and showed that the

electric permittivities and magnetic permeabilities can be si-

multaneously negative in a certain frequency region limited

by the frequencies of collective oscillations of plasmon modes.

From Snell’s law, we showed that when both ε and µ are neg-

ative, the gases have index of refraction n = −1. This behavior

will occur in relativistic systems, present in several examples in

Physics, as in compact neutron stars. In addition, we obtained

roton structures, similar to those in superfluid systems, in the

dispersion relation of the charged relativistic Bose gas, which

disappear above the critical temperature of Bose-Einstein con-

densation. We also obtained corrections for the pressure, criti-

cal temperature, and condensed charged density caused by the

current-current interaction induced by electromagnetic quan-

tum fluctuations treated via Scalar Quantum Electrodynamics.

Keywords: Relativististic electron gas; relativistic Bose gas;

negative index of refraction; Quantum Electrodynamics
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Chapter 1

Introduction

1.1 The concept of metamaterial and historical remarks

The challenge of manipulating electromagnetic fields inside matter has led, over the

years, to the pursuit and development of novel materials. A not-so distant example is that

of photonic crystals, which consist of a periodic dieletric arrangement artificially manufac-

tured to create a band structure that allows the propagation of electromagnetic waves in a

specific frequency range [1]. Another example of customized internal structures of materials

to obtain a specific electromagnetic response is given by the so-called metamaterials1 .

The first mention of "metamaterial " appeared in the literature in the year 2000 [2],

when it was demonstrated that a periodic array of conducting elements behaves as an ef-

fective medium for an electromagnetic wave whenever the wavelength is much longer than

the lattice spacing. The propagating wave sees the periodic array as a continuum where the

electromagnetic responses can be expressed in terms of effective parameters.

Such periodic arrays are made up of geometric arrangements of nanostructures called

Split-Ring Resonators (SRR) [3, 4, 5], whose effective electric permittivity εeff(ω) and mag-

netic permeability µeff(ω) may assume values not observed in ordinary materials. A defi-

nition of metamaterial may be quite defying because of the wide range of applications in-

volved. Originally, the concept applied to media with simultaneously negative permittivity

1The prefix meta (µετα from Greek) means beyond
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CHAPTER 1. INTRODUCTION 5

and permeability. Nowadays, however, it denotes artificially structured composite materials

engineered to have desired responses to wave propagation. Indeed, besides electromagnetic

metamaterials, there exist, for instance, acoustic ones, where sound (rather than electromag-

netic) propagation is of interest [6].

Historically, the concept of electromagnetic metamaterial goes back to the work of

Viktor Veselago [7], who described the electrodynamics of a hypothetical material with si-

multaneously negative values of electric permittivity ε and magnetic permeability µ. The

electric permittivity and magnetic permeability are essential parameters in the description

of a medium’s response to electric and magnetic fields. Also known as constitutive parame-

ters, they are related to the absorption and dispersion of light in materials.

The first consequence for a material with those characteristics is that, when we look

at Maxwell’s equations for a plane monochromatic wave, in which all quantities are propor-

tional to e i (~k·~z−ωt ), then

~k ×~E = ω

c
µ~H ,

~k × ~H = −ω
c
ε~E , (1.1)

if ε< 0 andµ< 0 simultaneously, the vectors~E , ~H and~k form a left-handed triplet. A medium

with such a behavior is also called as left-handed material (LHM). Therefore, in those media

energy flow and wave fronts travel in opposite directions, i.e, the Poynting vector ~S ∝ ~E × ~H
and the wave vector~k are antiparallel, as depicted in Fig. (1.1), and the phase velocity of light

is also opposite to the energy flow.

Figure 1.1: Right-handed orientation and left-handed orientation of the field vectors.

New phenomena arise in a left-handed material: as Veselago pointed out, since the
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index of refraction may be taken as n ≡ c
p
ε
p
µ, in a LHM one obtains a negative value (n <

0). Thanks to this, when light rays refract into a LHM, the refracted angle is reversed (θr →
−θr ), which allows for the development of super-lenses that go beyond the diffraction limit

[8, 9]. Other reversals in fundamental phenomena also take place, such as backward wave

propagation, inverse Cherenkov radiation, and inverse Doppler effect [10].

Regarding the two effective parameters, ε and µ, most materials found in nature have

positive values of the electric permittivity and magnetic permeability, that is, ε > 0 and µ >
0. Negative permittivity (ε < 0) can be found in a dispersive medium, where the electric

permittivity ε(ω) depends on the frequency of radiation, such as a homogeneous isotropic

electric plasma. At low frequencies, the permittivity may be approximated by ε(ω) = 1 −
(ω2

p /ω2) [11], where ω2
p = e2N /m is the plasmon frequency. When ω < ωp , the permittivity

ε(ω) is clearly negative, indicating that the direction of the electric field induced in matter is

opposite to the direction of the external electric field.

On the other hand, modulating the permeability µ(ω) presents a challenge, since at

optical frequencies, due to molecular currents, the magnetic permeability tends to the value

in free space µ = 1 [12]. However, an environment such as a magnetic plasma could have a

dispersive magnetic response µ(ω). The combination of the forbidden and allowed values of

ε and µ may be summarized in an electromagnetic parametric space (Fig.1.2).

Figure 1.2: Parametric space for ε and µ, extracted from reference [15].

No one has ever found a material in nature exhibiting simultaneously negative values



CHAPTER 1. INTRODUCTION 7

of ε and µ. Consequently, this restriction imposes a limitation on the propagation of light in

matter. Also, it was believed that the refractive index could not take negative values (n < 0).

Nevertheless, there seems to be no physical reason why materials with negative refractive

index could not exist in nature.

In fact, the discussion began with Sir Arthur Schuster and Sir Horace Lamb, in 1904

[13]: because the dielectric function is dispersive, they believed that the signs of the group

velocity and energy-flow could be anti-parallel whenever the frequency of the EM wave was

close to the absorption resonance frequency. Similar conclusions were drawn by Mandel-

stham in 1945 [14], who presented an example of negative group velocity in spatially periodic

media. That is a direct consequence of the signs of the electric permittivity and magnetic

permeability.

It is not immediately obvious that simultaneously ε < 0 and µ < 0 imply a negative

index of refraction n < 0. The appropriate choice of sign of n is a consequence of the reversal

of the wave vector in a LHM. Considering an isotropic medium, the index of refraction may

be obtained from Snell’s law: the wave vector~k in a LHM is opposite to the propagation of

the wave; then, the continuity of the electromagnetic fields at the interface of two media,

one with n1 = 1 (RHM) and incidence angle θ1, and the other a LHM with index of refraction

n and transmission angle θ2, imply [16]

sinθ1 = n sinθ2. (1.2)

With n < 0, sinθ2 < 0, and the transmitted rays make a negative angle with respect to the

normal to the interface (fig.1.3).

One may derive the same conclusion about the sign of n by noting that ε, µ and n are

complex numbers, which may be written as

n =√|ε||µ|e i
2 (θ+φ). (1.3)

If one imposes that the imaginary part of n should be positive (energy loss), this implies that

the phase is limited to 0 < 1
2 (θ+φ) <π. If the real parts of ε and µ are both negative, (cosθ < 0

and cosφ< 0), we must have, π2 < 1
2 (θ+φ) <π, i.e., a negative real part of the refractive index
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Figure 1.3: Rays and wave vectors when an incident radiation from vacuum passes through a LHM with
refractive index n < 0. The direction of the wave vector is opposite to the direction of energy flow. Figure
extracted from reference [16].

nR ≡ Re[n] =√|ε||µ|cos
1

2
(θ+φ) < 0. (1.4)

Therefore, demanding that n has a positive imaginary part leads to the conclusion that if ε

and µ have negative real parts, the real part of n must be also be negative.

1.2 A natural candidate for a system with left-handed

behavior

Despite the fact that artificial metamaterials are a physical reality today, the existence

of natural metamaterials remains a mystery. The question of the existence of natural meta-

materials was recently treated by de Carvalho [17], who obtained simultaneously negative

electric permittivity and magnetic permeability in a natural physical system with fast moving

electrons of velocity v ∼ c, a relativistic electron gas (REG) at finite temperature and density.

As the sources of magnetic fields are current densities, in relativistic systems one obtains

magnetic responses comparable to electric ones, in opposition to nonrelativistic (v ¿ c),

where the magnetic responses are much smaller than electric ones.

In fact, it was shown that, in the long wavelength limit, a finite density of relativistic

electrons exhibits Drude-type responses for both ε and µ−1 at temperature T = 0, implying
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that they can be simultaneously negative for frequencies that are low when compared to the

electric plasmon frequency. In addition, the validity of the model has been tested in the non-

relativistic limit by successfully [18] describing the experimental behavior of the plasmon

energy, as a function of both temperature and wave vector, in low energy condensed- matter

systems such as graphite and tin oxide [19, 20].

The REG is a plasma of electrons which, in the absence of interactions, obeys a Fermi-

Dirac distribution at very high densities, or very high temperatures, or both. Under those

circumstances, either the Fermi energy of the system, or its thermal energy, or both, will

be much greater than the electron rest mass, so that many electrons will have relativistic

speeds. The appropriate formalism to treat the REG is that of Quantum Electrodynamics

(QED) [21]. It describes the interaction of electrons and positrons with photons, the quanta

of EM fields, and was initially proposed at zero temperature and zero average densities, i.e.,

for equal number of electrons and positrons, characteristic of a vacuum state. QED was soon

generalized for finite values of temperature and average charge which characterize the REG

(more electrons than positrons) [22, 23, 24]. We will be interested in the interaction of this

REG with an EM field composed of a classical background part plus quantum (photonic)

fluctuations around it. Our main concern is to show how this medium reacts to the classical

EM field in order to establish that it is a natural example of a left-handed material.

In order to accomplish our goal, in chapter 2 we discuss in detail the work of de Car-

valho [17]. We start from the partition function of QED at finite temperature and charge

density, and perform a semiclassical expansion around the classical EM background by in-

tegrating over quantum fluctuations of the EM field, as well as over the fermionic fields of

electrons and positrons. In leading order in the fine structure constant α, we may neglect

the fermion-fermion interactions obtained from the integration over EM fluctuations, and

restrict our attention to the interaction of the fermions with the EM classical background.

Then, integrating over fermions yields a determinant that may be functionally expanded in

the EM background. If the background is weak, we need not go beyond the quadratic term,

which leads to a linear response to the external field (this is the familiar RPA approximation).

The procedure just described allows for the computation of an effective action for the clas-
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sical EM field. Extremizing that action yields Maxwell’s equations, with the polarization and

magnetization that result from quantum fluctuations of the fermions around the classical

background. From those quantities, we extract the responses of both medium and vacuum

to an external classical background.

Thanks to the QED treatment, we were able to estabilish that: (i) all responses de-

pend on three scalar functions (one for the vacuum; two for the medium); (ii) polarizations

depend on both the electric and magnetic fields, just as magnetizations depend on both

magnetic and electric fields; and (iii) many aspects of the analysis of the electric responses

carry over to the magnetic ones, due to the analogies between permittivities ε and inverse

permeabilities ν≡ µ−1, among them the fact that both ε and ν exhibit Drude-like responses

at low frequencies in the long wavelength limit.

In chapter 3, we calculate the real and imaginary parts of the electromagnetic re-

sponses of the relativistic electrons [25]. At temperature T 6= 0, the problem is reduced

to one-dimensional (1-D) integrals which involve the Fermi-Dirac occupation numbers for

electrons and positrons. At T = 0, however, as the occupation numbers become step func-

tions, we obtain analytic expressions for the medium contributions. The real part of the

longitudinal responses may be used to obtain dispersion relations for plasmon modes that

propagate as the external electromagnetic fields induce resonant charge density collective

oscillations in the electron gas. Such modes are present even if we neglect electron-electron-

interactions, as is well established in the Condensed Matter [26, 27, 28] and Finite Temper-

ature Field Theory literatures [29, 22]. The imaginary parts of the longitudinal responses

are useful to calculate regions of instability for plasmon propagation. The appearance of

non zero imaginary parts is associated with the creation of electron-hole (low energies) or

electron-positron (high energies) pairs.

Analytic results for the response functions of the REG at T = 0 have already appeared

in the literature in the context of plasma physics [30, 31, 32, 33, 34, 35, 36], but only ex-

pressions for the longitudinal and transverse parts of the electric permittivity, εL and εT ,

were derived. It is worth noting that, in the non-relativistic case, electromagnetic responses

may be completely obtained from εL and εT . In the relativistic case, however, responses de-
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pend on three independent functions, one of which accounts for the vacuum contribution,

as mentioned before. It turns out that the vacuum contribution is negligible at low frequen-

cies for typical electron densities, so one can obtain magnetic responses from electric ones.

Nonetheless, one might envisage situations of extremely low densities, in which the vacuum

may contribute at low frequencies. The chapter presents analytic results at T = 0, and nu-

merical ones at T 6= 0, for electric permittivities and for magnetic permeabilities.

It should also be noted that finite temperature and density QED has been used by

several authors to compute electromagnetic responses [37, 38, 39, 40, 41, 42]. Nevertheless,

those articles do not obtain analytic expressions at T = 0, and concentrate on some limiting

cases for T 6= 0.

We finish chapter 3 with a general discussion of the collective modes of oscillation in

the REG [43]. Rewriting the propagator for the electromagnetic field in terms of the electric

and magnetic responses, the modes that propagate in the gas are identified. As expected,

the usual collective excitations are obtained, i.e., a longitudinal electric and two transverse

magnetic plasmonic modes. In addition, a purely photonic mode is found, which satisfies

the wave equation in vacuum, for which the electron gas is transparent.

In chapter 4, we show that a gas of relativistic electrons is a left-handed material at

low frequencies by computing the effective electric permittivity and effective magnetic per-

meability that appear in Maxwell’s equations in terms of the responses appearing in the con-

stitutive relations, and showing that the effective responses are both negative below the same

frequency, which coincides with the zero-momentum frequency of longitudinal plasmons.

We also show, by explicit computation, that the photonic mode of the electromagnetic ra-

diation does not dissipate energy, confirming that it propagates in the gas with the speed of

light in vacuum, and that the medium is transparent to it. We then combine those results

to show that the gas has a negative effective index of refraction neff = −1. We illustrate the

consequences of this fact for Snell’s law, and for the reflection and transmission coefficients

of the gas [44].

In chapters 5 and 6, we investigate the Relativistic Bose gas (RBG) [45, 46]. The

RBG is an ideal gas of charged bosons and antibosons whose dispersion relation is E±(~p) =
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±√
~p2c2 +m2c4 (+ bosons, − antibosons). A chemical potential −mc2 ≤ ξ ≤ +mc2 is used

to fix the conserved charge, proportional to the number of bosons minus antibosons. The

system undergoes a phase transition, forming a Bose-Einstein condensate below a critical

temperature Tc [47, 48, 49].

In the nonrelativistic limit, the ideal charged Bose gas is used to describe a supercon-

ducting system. Schafroth [50], for instance, has shown that it exhibits the Meissner effect,

the total expulsion of an external magnetic field. It is also used to describe the phenomenon

of superfluidity in liquid Helium at low temperatures, where a microscopic field-theoretic

description is formulated in terms of the complex charged Bose gas [51]. The superfluid

state emerges when the U (1) symmetry of the Lagrangian is spontaneously broken. The

main physical ingredient to obtain a superfluid is a Bose-Einstein condensate, which is re-

sponsible for frictionless flow [52].

In the relativistic limit, it is useful to investigate the Bose plasma, a charged gas of

bosons and antibosons, which may be found in astrophysical scenarios such as neutron stars

[53]. This environment provides ideal conditions for the creation of charged pion pairs, al-

lowing for the phenomenon of pion condensation [54, 55, 56].

As a result of the investigation: i) we establish the gas as a left-handed material below

the transverse plasmon frequency; ii) we show that it supports longitudinal and transverse

plasmons, and a photonic mode that propagates without loss with the velocity of light in

vacuum, which we use to characterize it as a medium with negative effective index of refrac-

tion n eff = −1 below the transverse plasmon frequency; iii) we check for signatures of the

condensed phase in the dispersion relations of the electromagnetic propagation modes.

Besides the search for left-handed behavior through the electromagnetic responses

of the RBG, the other motivation of the study was the search for structures in the condensed

phase of the gas, inspired by the physics of superfluids such as liquid 4He, described by self-

interacting charged scalars. There, the observation via neutron scattering [57] of collective

phonon-roton modes in the (condensed) superfluid phase was a major discovery. Such col-

lective excitations were ultimately responsible for superfluidity, according to the seminal

work of Landau [58].
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We have found structures similar to superfluid rotons in the dispersion relation of

the longitudinal plasmon mode of the RBG, which exhibits a roton type local minimum that

disappears at the critical temperature, and whose gap energy vanishes at Tc . This strongly

suggests that we are seeing rotons in the charge density oscillations that disorder the system,

and drive it into the normal phase.

In chapter 6, we compute deviations from ideal gas behavior of the pressure, density,

and Bose-Einstein condensation temperature of a relativistic gas of charged scalar bosons

caused by the current-current interaction induced by electromagnetic quantum fluctuations

treated via scalar quantum electrodynamics. We obtain expressions for those quantities in

the ultra-relativistic and nonrelativistic limits, and present numerical results for the relativis-

tic case.

Most of the calculations in this thesis use Euclidean metric. Euclidean and Minkowski

coordinates are related by x4 = i x0 and x j = x j . For gauge fields, A4 = i A0 and A j = A j . For

Dirac matrices, γ4 = iγ0 and γ j = γ j . The Minkowski metric is ηµν = (+,−). In appendix A, we

discuss aspects of the Euclidean and Minkowski metric in Maxwell and Dirac Lagrangians.

We mostly use natural (Heaviside) units, kB = × = c = 1, so that β = 1/T is the inverse of

temperature, and α= e2/4π= 1/137 is the fine-structure constant.
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Chapter 2

Electromagnetic responses of the

relativistic electron gas

2.1 Introduction

In this chapter, we derive a general strategy to compute the electric permittivity, ε,

and the magnetic permeability, µ, of a gas of charged particles. These two quantities ac-

count for the polarization and magnetization in a material under an external electromag-

netic (EM) field. From Maxwell’s equations, their values determine how waves propagate

in the medium. We shall concentrate on systems with magnetic responses comparable to

electric ones. Since current densities are the sources of magnetic fields, a system with fast-

moving electrons (v ≈ c) such as the Relativistic Electron Gas (REG) satisfies this condition,

so that it will be our first object of study.

2.2 Field theory treatment

Let us consider a gas of fast moving electrons under the action of an electromagnetic

external field Aν. We may treat this system by using QED at finite temperature and den-

sity, whose grand partition function is given by Ξ = Tre−β(Ĥ−ξ∆N̂), and which describes an

electron gas, with fixed ∆N = Ne −Np (Ne is the number of electrons; Np is the number of

positrons) at temperature T = β−1 (Boltzmann constant kB = 1), and chemical potential ξ,

15
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coupled to the EM field Aν. The grand partition functionΞmay be expressed as a functional

integral over gauge and fermion fields

Ξ=
∮

[d Aµ]M [A]e−S A[A]Ξe [A], (2.1)

where

Ξe [A] =
∮

[i dψ†][dψ]e−Se [ψ†,ψ,A], (2.2)

M [A] = δ (F [A])det
(
∂F
∂λ

)
, and the determinant is the Jacobian of the gauge transformation

Aν → Aν−∂νλ, the Faddeev-Popov determinant. The delta function δ(F [A]), with F [A] =
∂νAν, imposes the Lorentz gauge condition. The Euclidean action is S A[A] = ∫

d 4x 1
4 FµνFµν,

with Fµν = ∂µAν−∂νAµ, the field strength tensor, and Se [A,ψ†,ψ] = ∫
d 4x

[
ψ̄(i /D −m − iξγ4)ψ

]
,

where /D ≡ γ · (∂− i e A) ; e and m are the electron charge and mass, and ψ̄=ψ†γ4. The chem-

ical potential ξ was introduced in the Dirac grand partition function as a consequence of its

invariance under a global symmetry U (1), with a Noether conserved current jµ = ψ̄γµψ, for

which the total conserved fermion number is ∆N = ∫
d 3x ψ†ψ.

The integral in (2.1) is over gauge fields obeying the condition Aν(0,~x) = Aν(β,~x),

whereas the electron fields obey ψ(0,~x) = −ψ(β,~x). A semiclassical approximation can be

performed by writing Aµ = A(c)
µ +×aµ (Appendix B), where Aµ = A(c)

µ is a classical solution

of the sourceless equation of motion for Aµ, which we identify with the external classical

field incident on the electron gas. In the lowest order of the semiclassical approximation, the

functional integral is given by

Ξ(sc) = e−S(c)
A

∮
[i dψ†][dψ]exp

[∮
d 4xψ̄(i /D (c) −m − iξγ4)ψ

]
, (2.3)

where /D (c) = /D(A(c)) and F (c)
µν = Fµν(A(c)).

For the integration over the fermion fields, it is most convenient to work in (~p,ωn)

space in the imaginary time formalism,

ψα(~x, t ) = 1p
V

∑
n

∑
~p

e i (~p·~x+ωnτ)ψ̃α;n(~p), (2.4)

where τ = i t is the imaginary time defined over the interval 0 ≤ τ ≤ β, and the discrete fre-

quencies are ωn = (2n+1)π
β

for fermions. Thus, if we integrate over Grassman variables, we
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obtain the fermion determinant

Ξe [A] = det
[−βγ4(i /D (c) −m − iξγ4)

]
. (2.5)

Using det[Γ] = eTrlnΓ, we obtain an effective action with the quantum contribution of the

electrons in interaction with the external classical field Aµ = A(c)
µ . Thus,

Ξ(sc) = e−Seff , (2.6)

where

Seff =
∮

d 4x

[
1

4
F (c)
µνF (c)

µν +
1

2λ
(∂µA(c)

µ )2 − (∂µC̄ )(∂µC )]

]
+Trln[−βγ4(i /D (c) −m − iξγ4)], (2.7)

with C̄ and C the auxiliary ghost fields due to the Fadeev-Poppov procedure on the func-

tional integral, and λ the gauge parameter. The equation of motion for the external classical

eletromagnetic field in interaction with the electron gas can be obtained by extremizing (2.7)

δSeff

δAν
= 0. (2.8)

We obtain Maxwell’s equations,

∂µFµν =−Tr[eγνGF [A]] = Jν, (2.9)

where GF [A] ≡ (i /D −m − iξγ4)−1 is the fermion propagator in the presence of the external

classical gauge field Aν. We dropped the superscript c with the understanding, from now on,

that A is just the classical field.

The current density in eq.(2.9) has the contribution of the free, J (0)
ν (for A = 0), and

induced current, J I
ν, so the total density current is Jν = J 0

ν+ J I
ν. We may write the equation of

motion for the induced current as,

J I
ν = Jν− J 0

ν

= −Tr[eγνGF (A)]+Tr[eγνGF (0)], (2.10)

In the presence of a medium, we rewrite Maxwell’s equations in (2.9) to account for the po-

larization as

∂µF eff
µν = ∂µ(Fµν+Pµν) = j 0

ν . (2.11)
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From that, we identify the medium contribution for the induced current

∂µPµν = −J I
ν,

∂µPµν = −Tr[eγνGF (0)]+Tr[eγνGF (A)]. (2.12)

The tensor Pµν defines the polarization ~P (P4 j = i P j ) and magnetization ~M(Pi j = −εi j k M k )

vectors. Eq. (2.9) is the Maxwell equation for the total current in the REG, obtained from an

effective action for the electromagnetic field. The induced current accounts for the quantum

contribution of the electrons in interaction with the gauge field, obtained from the fermion

integration in eq. (2.7).

We may perform an expansion in the field Aν in the fermion propagator appearing

in Tr[eγνGF (A)]. This type of expansion leads to an infinite sum of one-loop graphs in the

effective action, which is equivalent to the random phase approximation [17] in condensed

matter physics. We write the fermion propagator as

G(A) = (i /D −m − iξγ4)−1

= (G−1
0 +e /A)−1

= G0(I+e /AG0)−1, (2.13)

where G0 ≡ GF (A = 0) = (i /∂−m − iξγ4)−1. The propagator can be expanded in the back-

ground field Aν, Fig.2.1, to yield

GF (A) =G0 −eG0 /AG0 +e2G0 /AG0 /AG0 +O (e3)+ . . . (2.14)

Figure 2.1: Expansion of the electron propagator in the external field, represented by wiggly lines.

Substituting (2.14) into (2.12), and only retaining the linear term, which corresponds to the

linear response approximation, we obtain

∂µPµν =−Tr[e2γνG0γσAσG0]. (2.15)
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The equation above may be written in momentum space as

i qµPµν(q) =ΠνσAσ(q), (2.16)

whereΠνσ is the polarization tensor of QED,

Πνσ =−e2

β

+∞∑
n=−∞

∫
d 3p

(2π)3
Sp[γνG0(p)γσG0(p −q)], (2.17)

and G0(p) = −( /p +m + iξγ4)−1 is the fermion propagator in momentum space. The sum

in (2.17) is over Matsubara frequencies p4 = (2n + 1)πT , with Sp denoting the trace over

Dirac matrices. The field theory treatment allows us to obtain the induced current J I
ν =

−Πνσ(q)Aσ(q) in the gas, the result of a fully quantum description of the relativistic elec-

trons, through the QED polarization tensor Πνσ at one loop, and linear response in the ex-

ternal classical EM field Aσ.

The current conservation law, qν J I
ν = 0, is associated to the gauge invariance of the

polarization tensor, qνΠνσ = 0. Thus, we can solve eq. (2.12) by noting that Pµν may be

written as

Pµν =−i

(
qµ
q2
ΠνσAσ−ΠµσAσ

qν
q2

)
, (2.18)

where from i qµPµν we recover the one-loop, linear response result, since qµΠµν = 0. So,

using the fact that the electromagnetic tensor in momentum space is Fνσ = i qνAσ− i qσAν,

eq. (2.18) becomes

Pµν =
(
Πµσ

q2
Fνσ− Πνσ

q2
Fµσ

)
. (2.19)

The polarization tensor involves vacuum (T = ξ= 0) and medium contributions. To investi-

gate the solution of (2.17), one may write Πνσ =Π(v)
νσ+Π(m)

νσ , where the vacuum contribution

Π(v)
νσ may be written in a fully covariant form

−Π
(v)
νσ

q2
=

(
δσν− qνqσ

q2

)
C (q2). (2.20)

The scalar function C (q2) may be obtained from the standard calculation at T = ξ = 0 [21].

However, one cannot write the medium contribution tensor Π(m)
νσ in a fully covariant form
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due to the fact that the center of mass frame of the medium introduces a preferred reference

frame. The symmetry is then reduced to three-dimensional rotation and gauge invariance,

leading to (Appendix C)

−
Π(m)

i j

q2
=

(
δi j −

qi q j

|~q|2
)
A +δi j

q2
4

|~q|2 B. (2.21)

−Π
(m)
44

q2
=B, −Π

(m)
4i

q2
= q4qi

|~q |2 B, (2.22)

where A (q4,~q) and B(q4,~q) are scalar functions determined from the Feynman graph in

eq. (2.17) at finite temperature and density. The Matsubara sums of Π(m)
µµ and Π(m)

44 , are cal-

culated in detail in Appendix D. Once we subtract the vaccum contribution, the functions

A (q4,~q) and B(q4,~q) read

A = −e2

2π3q2
Re

∫
d 3p

ωp
nF (p)

p · (p +q)

q2 −2p ·q
+

(
1− 3q2

2|~q|2
)
B, (2.23)

B = −e2

2π3q2
Re

∫
d 3p

ωp
nF (p)

p ·q −2p4(q4 −p4)

q2 −2p ·q
, (2.24)

where p4 = iωp = i
√|~p|2 +m2, and nF (p) is the Fermi-Dirac distribution for particles and

antiparticles,

nF (p) = 1

eβ(ωp−ξ) +1
+ 1

eβ(ωp+ξ) +1
. (2.25)

Expressions (2.23) and (2.24) may be integrated over angles (Appendix E). The final result

with the functions analytically continued to Minkowski metric, A →A ∗ and B →B∗, may

be obtained by changing, q4 → iω and q2 →−q2
M , with q2

M =ω2 −|~q|2,

A ∗−
(

1+ 3q2
M

2|~q|2
)
B∗ =− e2

π2q2
M

∫ ∞

0

p2d p

ωp
nF (p)

[
1+ 2m2 +q2

M

8p|~q| f1

]
, (2.26)

B∗ =− e2

π2q2
M

∫ ∞

0

p2d p

ωp
nF (p)

[
1+

4ω2
p +q2

M

8p|~q | f1 −
ωpω

2p|~q | f2

]
, (2.27)
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where,

f1 = ln

(
(q2

M −2p|~q|)2 −4ω2
pω

2

(q2
M +2p|~q|)2 −4ω2

pω
2

)
, (2.28)

f2 = ln

(
q4

M −4(p|~q|+ωpω)2

q4
M −4(p|~q|−ωpω)2

)
. (2.29)

The next step is to derive ε and µ as function of A ∗(ω,~q) and B∗(ω,~q).

2.3 Constitutive equations

We may obtain the constitutive equations which relate the fields induced in the gas,

the polarization ~P and the magnetization ~M , with the external fields ~E and ~B . Eq.(2.19) re-

lates polarization and magnetization to the fields ~E(F4 j = i E J ) and ~B(Fi j = εi j k B k ), thus

yielding electric and magnetic susceptibilities and, ultimately, electric permittivities and

magnetic permeabilities. From eq. (2.19), the components, P4 j and Pi j , may be written

as

P4 j = Π44

q2
F j 4 + Π4k

q2
F j k −

Π j k

q2
F4k , (2.30)

Pi j = Πi 4

q2
F j 4 + Πi k

q2
F j k −

Π j 4

q2
Fi 4 −

Π j k

q2
Fi k . (2.31)

The components of the EM tensor in the Euclidean metric are related to the electromagnetic

fields (~E and ~B) in Minkowski metric via F4 j = i E j and Fi j = εi j k B k . The field equations in

the medium [12], are ~D = ~E+~P and ~H = ~B− ~M . They relate to the induced charge and current

as~∇·~P =−ρi nd and~∇× ~M =~Ji nd . This leads us to define, in the Euclidean metric, P4 j = i P j

and Pi j =−εi j k M k . Thus, the polarization component vector P j is written from eq. (2.30) as

P j =
(
−Π44

q2

)
E j +

(
−Π j k

q2

)
E k +

(
−iε j kl

Π4k

q2

)
B l , (2.32)

and the magnetization M k from eq. (2.31) as

M k = iεki j
Πi 4

q2
E j + Π j j

q2
B k − Πl k

q2
B l . (2.33)
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If we split the polarization tensor into vacuum and medium contributions, and using the

relations (2.20-2.22) in P j and M j in eqs. (2.32) and (2.33), we obtain for D j and H j

D j =
{[

1+A +
(

1+ q2
4

|~q|2
)
B+

(
2− q2

4

q2

)
C

]
δ j k +

(
−A − |~q |2

q2
C

)
q̂ j q̂k

}
E k

+ ε j kl q̂l
(i q4)

|~q|
(
B+ |~q |2

q2
C

)
B k , (2.34)

and

H j =
{[

1+A +2
q2

4

|~q|2 B+
(
2− |~q|2

q2

)
C

]
δ j k +

(
A + |~q|2

q2
C

)
q̂ j q̂k

}
B k

+ ε j lk q̂l
(i q4)

|~q|
(
B+ |~q |2

q2
C

)
E k . (2.35)

Here, we have used q̂ i ≡ q i /|~q |. Expressions for D j and H j may be simplified, and going to

Minkoswki metric q4 → iω, we have

D j = ε j k E k +τ j k B k , (2.36)

H j = ν j k B k +τ j k E k , (2.37)

where we have used the notation ν j k ≡ (µ−1) j k for the inverse of the magnetic permeability

tensor. The linear-response tensors are

ε j k = εδ j k +ε′q̂ j q̂k , (2.38)

ν j k = νδ j k +ν′q̂ j q̂k , (2.39)

τ j k = τε j kl q̂l . (2.40)

Again, ν≡ µ−1 and ν′ ≡ µ′−1. For ε j k , the eigenvalues λ satisfy det(ε j k −λδ j k ) = 0, leading to

(ε−λ)2(ε+ ε′−λ) = 0. The eigenvector associated with ε+ ε′ is along q̂k , thus longitudinal,

whereas the two eigenvectors corresponding to the eigenvalues ε are in directions transverse

to q̂k . The same occurs for ν j k , with eigenvalues ν+ν′ and ν, while τ j k is clearly transverse.
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One should stress that there are contributions to (~D , ~H) along the directions of the

fields (~E ,~B), of the wave vector ~q , and of (~q × ~B ,~q ×~E). This is a characteristic of a bian-

isotropic medium, because the electromagnetic responses described by the general relations

ε j k , ν j k and τ j k are tensors, and they depend on the wave vector in the material. Different

from an isotropic medium, where electric field ~E and electric displacement ~D = ε~E , as well as

magnetic field ~B and induced magnetic field ~H =µ−1~B , are parallel to one another. Materials

with bi-isotropic and bianisotropic properties have found many potential applications, from

microwave to optical frequencies, including bianisotropic crystals [84, 85], and the so-called

split-ring resonators.

The set of parameters in (2.38-2.40) defines the electric permittivities and inverse

magnetic permeabilities,

ε = 1+A ∗+
(
1− ω2

|~q|2
)
B∗+

(
2− ω2

q2

)
C ∗, (2.41)

ν = 1+A ∗−2
ω2

|~q|2 B∗+
(
2+ |~q|2

q2

)
C ∗, (2.42)

ε′ = −ν′ = |~q|2
q2

C ∗−A ∗, (2.43)

τ = ω

|~q|
( |~q|2

q2
C ∗−B∗

)
, (2.44)

where here the asterisk means q4 → iω. C ∗ may be obtained from the standard calculation

at T = ξ= 0,

C ∗ = −e2

12π2

{
1

3
+2

(
1+ 2m2

q2

)
[h ×arccot(h)−1]

}
(2.45)

with q2 =ω2 −~q2, h =√
(4m2/q2)−1, and the renormalization condition is e2/(4π) = 1/137,

with e2 = e2(ω= 0,~q = 0).

The vacuum contributions to permittivities and permeabilities are obtained by set-

ting A ∗ = B∗ = 0. On the other hand, medium susceptibilities may be obtained by taking

C ∗ = 0. Thus, for the longitudinal responses, one obtains
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εL ≡ ε+ε′ = 1+C ∗+
(
1− ω2

|~q|2
)
B∗, (2.46)

νL ≡ ν+ν′ = 1+2C ∗+2A ∗−2
ω2

|~q |2 B∗. (2.47)

Whenever C ∗ is negligible with respect to A ∗ and B∗, the longitudinal εL and transverse

εT ≡ ε electric permittivities may be used to compute A ∗ and B∗. Indeed, A ∗ = εT −εL and

B∗ = (|~q |2/q2)(1− εL). In this case, we will have νL = νL(εL ,εT ) and νT = νT (εL ,εT ), as in

a non-relativistic system. However, Fig. 2.2 exhibits situations where the vacuum makes a

relevant contribution to the longitudinal permittivity εL .

η=10-14η0

T=0
|q⃗|/qc=0.008

C*=0
C*≠0

(b)

η=10-12η0

T=0
|q⃗|/qc=0.008

C*=0
C*≠0

(a)

Figure 2.2: Plot of (Re εL −1) for low densities of the electron gas at T = 0. The dashed line has the vacuum
contribution (C ∗ 6= 0), whereas the full line only has the medium contribution (C ∗ = 0). (a) Electron density
η= 10−12η0 and (b) η= 10−14η0, where η0 ≈ 1.76×1030 cm−3. Both the frequency and wave vector are given in
units of ωc = mc2/×, the Compton frequency, and qc = mc/×, the Compton wave vector.

We have obtained relativistic expressions for the longitudinal responses of the rela-

tivistic Fermi gas at finite temperature and density. It is useful to analyze the long-wavelength
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limity, |~q|→ 0, where the wavelength of the radiation is much larger than the Compton wave-

length of the electrons. In particular, for T = 0, the electric permittivity ε and the inverse of

magnetic permeabilityµ−1 have Drude-type responses in the relativistic case for |~q |→ 0 (Ap-

pendix F).

ε = 1− ω2
e

ω2
+ e2

3π2
ge (ζ)+O

(
ω2

4m2

)
, (2.48)

µ−1 = 1− ω2
m

ω2
+ 5e2

6π2
gm(ζ)+O

(
ω2

4m2

)
, (2.49)

where ζ ≡ ξ/m. We note that there is a relation between ωm and ωe , i.e, ωm = p
2ωe , and

the vacuum contribution is O (ω2/4m2). These Drude-type expressions imply that the elec-

tric and magnetic responses may be simultaneously negative for small frequencies ω. This

is only due to the medium contribution, since the vacuum contribution is of order (ω2/4m2),

and does not exhibit any such behavior. However, as we will show, taking the long-wavelength

limit after the nonrelativistic limit of the system yields a Drude expression only for ε, but not

for µ−1.

2.4 Nonrelativistic limit

Nonrelativistic expressions for the dielectric functions [27, 61] will follow whenever

|ξ−m|¿ m and βm À 1(m À T ). The total energy of each fermion, for |~p|¿ m, is

ωp =
√

m2 +|~p|2 ≈ m + |~p|2
2m

. (2.50)

Looking at the Fermi-Dirac distribution, we have

ωp −ξ ≈ |~p|2
2m

−ξ′ ¿ m (2.51)

ωp +ξ ≈ m +ξ+|~p|2/2m ≥ 2m (2.52)

where ξ′ = ξ−m. The expression in (2.52) implies that β(ωp + ξ) À 1, so the Fermi-Dirac

distribution in the nonrelativistic limit becomes
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nF (p) → n(p) = 1

eβ(ωp−ξ) +1
+O (e−2βm)

≈ 1

eβ
(
ε~p−ξ′

)
+1

, (2.53)

where we have defined ε~p ≡ |~p|2
2m . With that in mind, we will calculate the nonrelativistic limit

of the scalar functions A (q4,~q) and B(q4,~q) defined in Euclidean space. Taking the limit of

ωP ≈ m → p4 ≈ i m, we write (2.23) as

A −
(
1− 3q2

2|~q|2
)
B = −e2

4π3(|~q |2 +q2
4)

Re
∫

d 3p n(p)
−1+ ~p·~q

m2 + i q4
m

|~q|2−2~p·~q
2m − i q4 + q2

4
2m

. (2.54)

Since q4 = 2πnT , this leads to q4/m ∼ T /m ¿ 1, and q4 ∼ |~q|2/2m, with q2
4 ¿ ~q2. Then, we

obtain

A −
(
1− 3

2

)
B = e2

4π3
Re

∫
d 3p n(p)

1

ε~p+~q −ε~p − i q4
. (2.55)

If we perform the same steps for B(q4,~q) in eq.(2.24), we also obtain

1

2
B(q4,~q) = e2

4π3
Re

∫
d 3p n(p)

1

ε~p+~q −ε~p − i q4
, (2.56)

which is the same result obtained in (2.55). So we conclude that A (q4,~q) = 0 in the nonrel-

ativistic limit. Taking the vaccum contribution C ∗ = 0, we have ε′ = ν′ = 0, and the longi-

tudinal response εL ≡ ε ≈ 1+B. Letting q4 → iω+γ and performing a change of variables

~p −~q = ~p ′ in (2.56), we may convert the expression of the electric permittivity to the well

known Lindhard [62] formula of the dielectric function at finite temperature

ε(ω,~q) = 1− e2

4π3|~q |2 Re
∫

d 3p
n(~p +~q)−n(~p)

ε~p+~q −ε~p −ω− iγ
. (2.57)

Let us analyze the long-wavelength of the nonrelativistic limit expression in (2.56).

By taking the real part and integrating over angles, we obtain

B∗(ω,~q) = e2m

2π|~q|3
∫ ∞

0
d p p n(p) ln

(|~q |2 +2p~q
)2 −4m2ω2(|~q |2 +2p~q
)2 −4m2ω2

. (2.58)
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At T = 0, the Fermi-Dirac distribution becomes n(p) →Θ(pF −ξ′), where Θ(x) is the Heavi-

side step function, and pF =√
2mξ′ is the Fermi momentum. Expanding the equation above

in the limit of |~q |→ 0, and integrating over p, we obtain

B∗(ω,~q) =− e2

3π2m

p3
F

ω2
, (2.59)

so the electric permittivity ε= 1+B∗ becomes

ε= 1− ω2
e

ω2
, (2.60)

where ω2
e = ηe2/m is the plasmon frequency, with electron density η= p3

F /(3π2) (× = 1). So,

in the nonrelativistic limit we also obtained a Drude-type expression in the long-wavelength

limit, which implies negative values when the frequency ω < ωe . Therefore, if we make the

same analysis for µ−1 = 1−2(ω2/|~q |2)B∗, in the limit of |~q|→ 0 of the nonrelativistic expres-

sion, we obtain µ−1 ≈ 1. In addition, the term τ = −(ω/|~q |)B∗ → 0 in the long-wavelength

limit, and we recover the usual isotropy of the vector ~D = ε~E and ~H = µ−1~B . Thus, we may

conclude that the only way to obtain both ε and µ negative, is in a relativistic system as we

have showed.

2.5 The chemical potential

To compute the electromagnetic responses of the REG through equations (2.41) -

(2.44), one needs to obtain the chemical potential ξ, which depends on the temperature

and carrier density. The carrier density is η=∆N /V , where ∆N = N−−N+ is the difference

between the N− number of particles and the N+ number of antiparticles in the system. Then,

one needs to solve the transcedental equation [17]

∆N = N−−N+ =∑
~p

g f (p,β,ξ), (2.61)

where

f (p,β,ξ) = 1

eβ(Ωp−ξ) +1
− 1

eβ(Ωp+ξ) +1
(2.62)
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is the distribution function accouting for the presence of both particles and antiparticles,

Ωp =√
p2c2 +m2c4 is the relativistic energy of a carrier with momentum p, and g = 2 is the

degeneracy factor of the electron gas. Equation (2.61) reduces to

η̃= η

η0
=

∫ ∞

0
d y y2 f (y, β̃, ξ̃). (2.63)

where η0 = g q3
c /(2π2) ≈ 1.76×1030cm−3. Here, we have defined the dimensionless variables

y = p/mc, β̃=βmc2 and ξ̃= ξ/mc2, and qc = mc/×. The term η0 only depends on universal

constants and may therefore be used as a natural unit to measure the effective carrier density

η of the REG . It should be noted from (2.62) that f (y, β̃, ξ̃) = − f (y, β̃,−ξ̃), i.e., f = f (y, β̃, ξ̃)

is an odd function of the chemical potential. Eq. (2.63) implicitly defines the function ξ̃ =
ξ̃(β̃, η̃). One sees that η̃= 0 leads to η/η0 = 0, a case with corresponds to the vacuum.

The chemical potential as a function of β̃ is is displayed in fig. 2.3. Calculations were

performed for three different values of the density expressed in units of η0. The numerical

results suggest a weak temperature dependence of the chemical potential, if compared with

mc2 ≈ 0.511MeV, in the low-temperature limit (β̃ → ∞). Actually, the chemical potential

exhibits variations of a few eV in the low-temperature limit, a fact which agrees with the

non-relativistic theory of the electron gas (see below).
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Figure 2.3: Chemical potential as a function of the gas temperature. Solid, dashed, and dotted lines corre-
spond to η̃= 0.01, η̃= 1, and η̃= 10, respectively.
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The chemical potential is displayed in Figure 2.4 as a function of the density ex-

pressed in units of η0. Numerical results were obtained for three different values of the gas

temperature. The chemical potential is a growing monotomic function of η̃. One may note

that the chemical pontetials for β̃ = 10 and β̃ = 100 essentially coincide in the scale of the

figure [cf. dashed and doted lines in Figure 2.4]. The ratio ρ = N+/N−, as a function of β̃ is
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Figure 2.4: Chemical potential as a function of the gas density. Solid, dashed, and dotted lines correspond to
β̃= 1, β̃= 10, and β̃= 100, respectively.

displayed in Figure 2.5 for various values of the density, where

ρ = N+

N− =

∫ ∞
0 d y y2

e
β̃

(p
y2+1+ξ̃

)
+1∫ ∞

0 d y y2

e
β̃

(p
y2+1−ξ̃

)
+1

. (2.64)

For a given temperature, it is apparent that the number of particles exceeds the number of

antiparticles in all cases, and the ratio ρ = N+/N− decreases as the density of particles in the

electron gas is increased, as expected. One may also note that ρ→ 0 as β̃→∞, since in the

low-temperature limit one has N+ ¿ N−. In other words, in the limit of β̃→∞, the term cor-

responding to the occupation factor of antiparticles in the Fermi-Dirac distribution function

[cf. the second term in the RHS of Equation 2.62] may essentially be neglected (N+ ¿ N−),

and the non-relativistic limit of the Fermi-Dirac distribution function is eventually recov-

ered.
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Figure 2.5: The ration ρ = N+/N− [cf. Equation (2.64)] as a function of of β̃. Solid, dashed, and dotted lines
correspond to η̃= 0.01, η̃= 1, and η̃= 10, respectively.

We have also explored the behavior of the chemical potential for density and temper-

ature values appropriate for solid-state materials. In this respect, we have defined

ξe (T ) = ξ(T )−mc2 (2.65)

as the non-relativistic chemical potential. According to the non-relativistic theory of the

free-electron gas, it is well known that [28]

ξe (T ) ≈ EF

[
1− π2

12

(
T

TF

)2]
, (2.66)

where

EF =
(

6π2

g
η

)2/3 ×2

2m
(2.67)

is the Fermi-Energy and TF = EF /kB is the Fermi temperature. The chemical potential ξe is

depicted in Figure 2.6 as a function of the gas temperature. Calculations in Figure 2.6a were

performed for three different values of η varying within the range exhibited by most of the

solid-state materials. In Figure 2.6b, we have assumed η≈ 2.0×1023cm−3, corresponding to

the electron density in silicon. The solid line corresponds to the result computed by combin-
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ing Equations (2.63) and (2.65), whereas the dashed line was obtained from Equation (2.66).

The Fermi energy computed from the non-relativistic electron-gas model [cf. full dot in the

vertical axis of Figure 2.6b and Equation (2.67)] essentially coincides with the numerical re-

sult obtained from Equations (2.63) and (2.65) in the limit T → 0. Low-temperature results

obtained from the non-relativistic model agree with those derived from the relativistic the-

ory, as expected.
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Figure 2.6: Chemical potential measured with respect to the mc2 rest energy [cf. Equation (2.65)], as a func-
tion of the gas temperature for different values of the η gas density. Solid and dashed lines corresponds to
numerical results obtained from Equations (2.63) and (2.66), respectively. The set of curves 1, 2, and 3 in (a)
correspond to η= 1021cm−3, η= 1022cm−3, and η= 1023cm−3, respectively. In (b), calculations were performed
for η corresponding to the electron density in silicon. The full dot in the left vertical axis corresponds to the
Fermi energy obtained from Equation (2.67)



Chapter 3

Propagation in the relativistic electron gas

3.1 Introduction

We compute the real and imaginary parts of the electric permittivities and magnetic

permeabilities of relativistic electrons from quantum electrodynamics at finite temperatures

and densities, for weak fields, neglecting electron–electron interactions. For non-zero tem-

peratures, electromagnetic responses are reduced to one-dimensional integrals computed

numerically. For zero temperature, we find analytic expressions for both their real/dispersive

and imaginary/absorptive parts. As an application of our results, we obtain the dispersion

relation for longitudinal electric plasmons. Present calculations support our recent claim

that, at low frequencies and long wavelengths, the system will exhibit simultaneously nega-

tive electric and magnetic response

Dispersion relations for the plasmon modes at zero and finite temperatures are pre-

sented and the intervals of frequency and wavelength where both electric and magnetic re-

sponses are simultaneously negative are identified, a behavior previously thought not to oc-

cur in natural systems. The investigation of the electromagnetic responses of a relativistic

electron gas shows that, apart from the usual longitudinal electric plasmon mode and the

two transverse magnetic plasmon modes, there is also a pure photonic mode that propa-

gates with the speed of light, as if the medium were transparent.

32
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3.2 Real and imaginary parts of longitudinal responses εL

and νL

Let us write the functions (2.23) and (2.24) as

B∗ = − e2

π2q2

∫ ∞

0

p2d p

ωp
nF (p)

[
1+

4ω2
p +q2

8p|~q| L1 +
ωpω

p|~q |L2

]
, (3.1)

D∗ = − e2

π2q2

∫ ∞

0

p2d p

ωp
nF (p)

[
1+ 2m2 +q2

8p|~q| L1

]
, (3.2)

where D∗ =A ∗− [
1+3q2/(2|~q|2)B∗]

, and the functions L1 and L2 are given by

L1 = ln

{
(χ2 −by)2 −a2x2

(χ2 +by)2 −a2x2

}
, (3.3)

L2 = ln

∣∣∣∣χ2 −by +ax

χ2 +by +ax

∣∣∣∣− L1

2
, (3.4)

where we have used dimensionless variables x ≡ ωp /m, y ≡ p/m =
p

x2 −1, a ≡ ω/2m, b ≡
|~q|/2m, and χ2 ≡ a2 −b2 = q2/4m2.

Real parts at T 6= 0

The real parts of B∗ and D∗ reduce to 1-D integrals. We write them as

ReB∗ = −e2

4π2χ2

(∫ ∞

1
d x nF

√
x2 −1+ 1

4b

∫ ∞

1
d x nF

[
(x2 +χ2R1 +4axR2)

])
, (3.5)

ReD∗ = −e2

4π2χ2

(∫ ∞

1
d x nF

√
x2 −1+ 1

8b

∫ ∞

1
d x nF

[
1+2χ2]R1

)
, (3.6)

with R1 ≡ ReL1 and R2 ≡ ReL2. Since C ∗ is real, we obtain

Re εL = 1+C ∗− χ2

b2
ReB∗, (3.7)

Re νL = 1+2C ∗+2ReD∗+ χ2

b2
ReB∗. (3.8)

The result above allows for the calculation of plasmon dispersion relations, as we will show

later on.
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Imaginary parts at T 6= 0

The vacuum contribution does not have an imaginary part. On the other hand, imag-

inary parts for B∗ and D∗ will appear whenever the argument in L1 becomes negative (note

that ImL2 =−ImL1/2). For that to occur, the product of the numerator N times the denomi-

nator D of the argument must satisfy,

ND= [(χ2 −by)2 −a2x2][(χ2 +by)2 −a2x2] < 0. (3.9)

The roots of the related biquadratic equation in x (≥ 0) are x± = a±bη, where η2 ≡ 1−(1/χ2),

leading to the condition (a −bη)2 < x2 < (a +bη)2. Three cases have to be considered:

(i) χ2 < 0 (η> 1; a < b < bη) : −a +bη< x < a +bη;

(ii) 0 <χ2 < 1 (η pure imaginary): the condition is never satisfied and ImL1 = 0;

(iii) χ2 > 1 (η< 1; a > b > bη): a −bη< x < a +bη.

The difference between numerator N and denominator D is given by −χ2by . For case (i),

this implies N > 0, D < 0, whereas for case (iii) N < 0, D > 0. For case (ii), 0 < χ2 < 1, cor-

responding to the same sign for N and D, ImB∗ = ImD∗ = 0. For cases (i) and (iii), we take

ImL1 = sign(N)π. The choice of sign corresponds to the continuation q4 → iω−0+. For the

longitudinal responses, we have

Im εL =−sign(χ2)e2

16πb3

∫ a+bη

xl

d x nF
[
(x −a)2 −b2] , (3.10)

Im νL = sign(χ2)e2

16πbχ2

∫ a+bη

xl

d x nF
(
(1+2χ2)

)− Im εL . (3.11)

The regions where imaginary parts are non-vanishing are shown in figure 3.1. Im εL

and Im νL vanish in region (i i ) of the (a,b) plane. In region (i ) xl = −a +bη and in region

(i i i ) xl = a −bη. Using expressions for the imaginary parts in regions (i ) and (i i i ), we may

see how their values evolve from T = 0 to non-zero temperatures. This is shown in figure

3.2. One should note that the appearance of non-zero imaginary parts is associated with the

creation of electron-hole (lower energies) or electron-positron (higher energies) pairs.
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0 1
b0

1

a

(iii)

(ii)

(i)

Figure 3.1: Regions of the (a,b) ∼ (×ω,×|~q |) plane where the imaginary parts of the responses are given by
different expressions. In region (i i ), they always vanish, whereas in regions (i ) and (i i i ) they are given by (3.10)
and (3.11).

We have thus derived electromagnetic responses as functions of a, b, T /m, and ξ/m,

the two latter ones coming from the Fermi-Dirac distribution function.

(II)
(II)

(I)

(I)

(II)

(II)

Figure 3.2: Evolution with temperature of the regions of the (a,b) ∼ (×ω,×|~q |) plane with non-vanishing
imaginary parts. As β̃ decreases, the two T = 0 regions (labeled I) expand. For a value of β̃ = 103, imaginary
parts appear in all regions labelled I and I I . Eventually, as T →∞, only the unshaded region of figure 3.1 will
have vanishing imaginary parts.
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Imaginary parts at T = 0

At T = 0, we have nF (x) →Θ(xF −x), with xF ≡ εF /m = ξ/m and y = (1/m)
√
ε2

F −m2,

where εF is the Fermi energy. We may analytically perform the integrals for both imaginary

and real parts of the response functions. Additional restrictions come into play because of

the integration limit xF imposed by the functionΘ(xF −x).

From calculations in 3.2, we identify four regions in the (a,b) plane where longitudi-

nal responses will have different values. We use [ f (x)]xu
xl

≡ f (xu)− f (xl ) and refer the reader

to the appendix G for the calculation of b±, b̄±, b′
± and b̄′

±. The regions are

Region (A): for 0 < a < (xF −1)/2 and (xF +1)/2 < a < xF , b̄− < b < b̄+, xL =−a +bη,

xu = a +bη,

Im εL = e2

48πb3

[
(x −a)3 −3b2x

]a+bη
−a+bη , (3.12)

Im νL =− e2

16πbχ2

[
2a(1+2χ2)

]− Im εL . (3.13)

Region (B): for (xF −1)/2 < a < (xF +1)/2 and a > xF , b− < b < b+, xL =−a+bη, xu = xF ,

Im εL = e2

48πb3

[
(x −a)3 −3b2x

]xF

−a+bη , (3.14)

Im νL =− e2

16πbχ2

[
(xF +a −bη)(1+2χ2)

]− Im εL . (3.15)

Outside regions (A) and (B), for χ2 < 0 the imaginary parts of εL and νL vanish.

Region (C): for 0 < a < (xF −1)/2 and (xF +1)/2 < a < xF , b̄′− < b < b̄′+, xL =−a +bη,

xu = a +bη,

Im εL =− e2

48πb3

[
(x −a)3 −3b2x

]a+bη
a−bη , (3.16)
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Im νL = e2

16πbχ2

[
2bη(1+2χ2)

]− Im εL . (3.17)

Region (D): for (xF −1)/2 < a < (xF +1)/2 and a > xF , b′− < b < b′+, xL = a −bη, xu = xF ,

Im εL =− e2

48πb3

[
(x −a)3 −3b2x

]xF

a−bη , (3.18)

Im νL = e2

16πbχ2

[
(xF −a +bη)(1+2χ2)

]− Im εL . (3.19)

Outside regions (C ) and (D), for χ2 > 1 the imaginary parts of εL and νL vanish.

Finally, in case (i i ), 0 < χ2 < 1, one has Im εL = Im νL = 0. The various regions of the

(a,b) plane that correspond to the different expressions discussed above are depicted in Fig.

3.3

2pF
0

2

D

B
C

A

Figure 3.3: Regions in the (a,b) ∼ (×ω,×|~q |) plane where the imaginary parts are non vanishing for T = 0. The
limits of regions A, B , C , D and the values of the longitudinal responses in each of them are shown in 3.2
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Real parts at T = 0

For the real parts at T = 0, we replace nF with Θ(xF − x) in (3.5) and (3.6). The calcu-

lations detailed in G.2 lead to

Re B∗ = −e2

4πχ2 [XB +YB +ZB ] , (3.20)

Re D∗ = −e2

4πχ2 [XD +YD +ZD ] , (3.21)

where XB , XD , YB and YD are given by (Ri = ReLi )

XB = xF

12b
[(x2

F +3χ2)R1(xF )+6axF R2(xF )], (3.22)

XD = xF

8b
(1+2χ2)R1(xF ), (3.23)

YB = 2

3
[xF yF −b2 ln(xF + yF )], (3.24)

YD = 1

2
[xF yF +2χ2 ln(xF + yF )], (3.25)

whereas ZB and ZD are given by

ZB ,D =CB ,D [(MB ,D +NB ,D )I0 −NB ,DI2]. (3.26)

CB ,D (a,b), MB ,D (a,b), NB ,D (a,b), and the integrals I0(a,b, xF ) and I2(a,b, xF ) are defined

and calculated in G.15. The longitudinal responses (2.46) and (2.47) are given by

ReεL = 1+C ∗+ e2

4π2b2
[XB +YB +ZB ], (3.27)

ReνL = 1+2C ∗− e2

2π2χ2
[XD +YD +ZD ]− e2

4π2b2
[XB +YB +ZB ]. (3.28)

3.3 Plasmon excitations

Electromagnetic responses may be used to obtain the dispersion relations for plas-

mon modes that propagate when external electromagnetic fields induce resonant charge

density collective oscillations in the electron gas. The dispersion relation for longitudinal

electric plasmons, for instance, is obtained from the well-known condition εL = 0 [26, 28, 63,

64, 65]. As an application of our formulae, we will use our expressions for ReεL and ImεL to

obtain it.
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The solutions to ReεL = 0 are plotted in Fig. 3.4, for T = 0. Since we must have εL = 0,

the full curve in the figure is the physical one, because most of it lies in the unshaded region,

where we also have ImεL = 0. The dashed curve lies completely in the region where there is

an imaginary part, so that it never satisfies εL = 0. The shaded region in Fig.3.4 is the same as

the lower region of Fig. 3.3, where ImεL 6= 0. The dashed curve is fully within that region and

thus a decaying mode, whereas the full curve lies mostly in the region where ImεL = 0. Thus,

it describes a plasmon mode. As the curve enters the region where there is an imaginary

part, the plasmon mode becomes unstable to the decay into electron-hole pairs, just as in

the nonrelativistic case.

Analytic results at T = 0 and numerical results at T 6= 0 may be used to compute

decay constants and dispersion relations for both longitudinal and transverse plasmons. A

complete discussion of the modes that propagate in the relativistic electron gas is presented

in the next section 3.4.

Figure 3.4: Upper (ωL
p plasmon frequency) and lower frequency zeroes of εL (Solid and dashed lines, re-

spectively) as functions of the |~q | wave vector. Calculations were performed for β̃→∞ (T = 0) by taking the
density electron gas η= 10−2η0, where η0 ≈ 1.76×1030cm−3. The shaded area corresponds to the region where
electron-hole excitations occur. Note the maximum value of the wave vector (|~q |max ) beyond which the longi-
tudinal plasmon decays into electron-hole pairs.
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3.4 Collective excitations and plasmon modes

To obtain the collective modes of oscillation, we compute how the medium affects

the photon propagator in the electron gas. We rewrite the grand partition function of QED

in eq (2.6) as a quadratic functional integral

Ξ=
∮

[d Aµ]det[−∂2]exp

(
− 1

2β

∞∑
n=−∞

∫
d 3q

(2π)3
AµΓµνAν

)
, (3.29)

where the quadratic kernel Γµν is

Γµν = q2δµν−
(
1− 1

λ

)
qµqν−Πµν, (3.30)

with q2 = q2
4+|~q|2The determinant comes from the Lorentz gauge condition, andλ is a gauge

parameter. Πµν =Π(v)
µν +Π(m)

µν is the polarization tensor of QED defined in eq. (2.17). Follow-

ing [22], we introduce the projector

Pµν = δµν−
qµqν

q2
(3.31)

and the transverse projector P T
i j = δi j − q̂i q̂ j , with P T

44 =P T
4i = 0. The longitudinal projector

is then P L
µν ≡Pµν−P T

µν. They obey

P (L,T )
µν P (L,T )

νσ = P (L,T )
µσ , (3.32)

P T
µνP

L
νσ = P L

µνP
T
νσ = 0, (3.33)

P T
µνqν = P L

µνqν = 0. (3.34)

We may then write the polarization tensor with a longitudinal and transverse contribution,

so that

Πµν =Π(v)
µν +Π(m)

µν = FP L
µν+GP T

µν, (3.35)

where F and G are scalar functions. From the vacuum and medium contributions to the

polarization tensor defined in (2.20 - 2.22), and using the definition of the projectors Pµν,

we may write

Π(v)
µν = −C q2Pµν, (3.36)

Π(m)
µν = −

{
B

[(
1+ q2

4

~q2

)
P L
µν+

q2
4

~q2
P T
µν

]
+A P T

µν

}
q2. (3.37)



CHAPTER 3. PROPAGATION IN THE RELATIVISTIC ELECTRON GAS 41

By summing vacuum and medium contributions of Πµν, we identify the functions F and G

as

F =−q2

(
C +B+ q2

4

|~q|2 B

)
, (3.38)

G =−q2

(
C +A + q2

4

|~q|2 B

)
, (3.39)

and we write the quadratic kernel as

Γµν = (q2 −F )P L
µν+ (q2 −G)P T

µν+
1

λ
qµqν. (3.40)

The inverse of photon propagator may be obtained from Γ−1
µνΓνσ = δµσ. If we write its inverse

as

Γ−1
µν =CLP L

µν+CT P T
µν+CQ qµqν, (3.41)

we obtain

CL(q2 −F )δµσ+
[
CT (q2 −G)−CL(q2 −F )

]
P T
µσ+

[
CQ

λ
q2 − CL(q2 −F )

q2

]
qµqν = δµσ. (3.42)

We identify

CL(q2 −F ) = 1 →CL = 1

q2 −F
, (3.43)

CL(q2 −G)−CL(q2 −F ) = 0 →CL = 1

q2 −G
, (3.44)

CQ

λ
q2 − CL(q2 −F )

q2
= 0 →CQ = λ

q4
. (3.45)

The inverse of photon propagator reads

Γ−1
µν =

P L
µν

q2 −F
+

P T
µν

q2 −G
+ λ

q2

qµqν
q2

. (3.46)

We now use Equations (3.38) and (3.39) and write the propagators in Minkowski space by

letting q4 → iω−0+. We then obtain for the longitudinal and transverse propagator

1

q2 −F
→ 1

−q2εL
, (3.47)

1

q2 −G
→ 1

−q2(νL +1)
. (3.48)
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The poles of the photon propagator correspond to collective excitations, and yield

their dispersion relations. In the P L
µν longitudinal propagator in eq.(3.47), this occurs when-

ever the longitudinal electric permittivity is

εL(ω,~q) = 0, (3.49)

leading to the usual Condensed Matter dispersion relation of the longitudinal plasmon col-

lective excitation, which corresponds to an oscillation of the charge density of the gas. For

εL(ω,~q) nonzero, Maxwell’s equations lead to transverse fields (~q ·~E = 0), which means that

the pole q2 = 0 in the longitudinal propagator is not realized in this case.

The P T
µν transverse propagator has poles whenever

νL(ω,~q) =−1, (3.50)

q2 =ω2 −|~q|2 = 0. (3.51)

The inverse of the magnetic permeability becomes negative µ−1
L (ω,~q) ≡ νL(ω,~q) =−1. Anal-

ogous to the longitudinal case, Equation (3.50) yields the dispersion relation of the trans-

verse plasmon collective excitations, and it corresponds to collective oscillations of the cur-

rent density. Equation (3.51) shows us that we have another transverse mode of propagation

in the REG whenever q2 = ω2 −|~q |2 = 0, yielding a photonic mode that propagates with the

speed of light c = 1 in vacuum, something not yet accounted for in the literature.

In order to have more explicit expressions for the plasmon modes, it is useful to write

the projectors as

Pµν = n(1)
µ n(1)

ν +n(2)
µ n(2)

ν +n(3)
µ n(3)

ν , (3.52)

P T
µν = n(1)

µ n(1)
ν +n(2)

µ n(2)
ν , (3.53)

where n(i )
µ = (0, n̂(i )), q̂ · n̂ = 0, |n̂(i )| = 1, for i = 1,2, satisfying n(1)

i n(1)
j +n(2)

i n(2)
j + q̂i q̂ j = δi j .

For n(3)
µ , we find

n(3)
µ =

(
−|~q|√

q2
,

q4q̂√
q2

)
. (3.54)
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If we demand that it must be normalized, and orthogonal to qµ and n(i )
µ , i = 1,2, thus satis-

fying n(1)
µ n(1)

ν +n(2)
µ n(2)

ν +n(3)
µ n(3)

ν + (qµqν/q2) = δµν, then

P L
µν = n(3)

µ n(3)
ν , (3.55)

P T
µν = n(1)

µ n(1)
ν +n(2)

µ n(2)
ν . (3.56)

A few observations are in order:

(i) in Minkowski space, we have

n(3)
µ =

(
i |~q|√

q2
,
ωq̂√

q2

)
, (3.57)

which in the long-wavelength limit becomes n(3)
µ = (0, q̂);

(ii) in that limit, one obtains Drude expressions for εL = 1− (ω2
e /ω2) and νL = 1− (ω2

m/ω2)

[17]. Inserting this into (3.47) and (3.48), and using the fact that ω2
m = 2ω2

e , we find

ω2
e−ω2 as the denominator for both longitudinal and transverse plasmon propagators.

The collective plasmon excitations correspond to charge density and current density

oscillations. Indeed the collective field AL ≡ n(3)
µ P L

µνAν = Aνn(3)
ν , in Euclidean space, is given

by

AL = −i~q · (−i~q A4 + i q4~A)√
q2|~q |

= −~∇·~E√
q2|~q|

. (3.58)

Since the field has a longitudinal component, we may define an effective charge density ρe

as ~∇ ·~E ≡ ρe (q). Similarly, the collective field AT
µ ≡ P T

µνAν is given by (0,~AT ), where ~AT =
A1n̂(1) + A2n̂(2) and Ai = ~A · n̂(i ). One then obtains

~AT = i~q × (i~q ×~A)

|~q|2 =
~∇×~B
|~q |2 . (3.59)

We may then define an effective current density ~je through~∇×~B =~je . Then, if we use (3.38),

(3.39), and (3.40), and leave aside the gauge term, the plasmon Lagrangian may be written in

Minkowski space as

ρe (q)

(
εL

|~q|2
)
ρe (q)+ j k

e (q)

 (νL +1)
(
1− ω2

|~q|2
)

2|~q |2

 j k
e (q), (3.60)
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where q = (ω,~q). The above expression physically describes the interaction of charge den-

sities induced by the longitudinal component of the fluctuating electric fields, and current

densities (loops in the plane perpendicular to q̂) induced by the fluctuating magnetic fields.

Apart from that, whenever εL 6= 0 and νL 6= −1, we just have the propagation of an electro-

magnetic wave with the propagator given by (3.48).

An alternative and somewhat complementary analysis may be obtained from Maxwell’s

equations combined with the constitutive relations written out previously. Maxwell’s equa-

tion for harmonic plane waves in Fourier space are (we have now restored the speed of light

c)

qi Di = 0, (3.61)

qi Bi = 0, (3.62)

εi j k q j Ek = ω

c
Bi , (3.63)

εi j k q j Hk = −ω
c

Di . (3.64)

From equation (3.61), and the constitutive relations D j = ε j k EK +τ j k Bk and H j = ν j k BK +
τ j k Ek , we derive

(~q ·~E)εL = 0. (3.65)

If εL 6= 0, then we must have ~q ·~E = 0, so that Equation (3.64) and the constitutive relations

give [
τ|~q|+εω

c

]
~E +

[
ν|~q|−τω

c

]
(q̂ ×~B) = 0, (3.66)

which combined with Equation (3.63) yields a generalized wave equation for ~E (and an anal-

ogous one for ~B) [
|~q |2 −µεω

2

c2
−2µτ|~q|ω

c

]
~E = 0. (3.67)

For a plane-wave, the relation |~q | = |~q |(ω), which satisfies Eq. (3.67), leads to the index of

refraction n(ω) = |~q |/ω. For τ = 0, we recover the usual expression n = p
µ
p
ε. Notice that,

in the long-wavelength limit, one has τ= 0, n =p
µ
p
ε, and electric and magnetic responses

may be simultaneously negative. It then follows that one may obtain negative indices of re-

fraction for the relativistic regime in such a limit. In the next chapter, we will give a general

description of the effective responses and of the index of refraction in the REG.
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Using the Equations (2.41) to (2.44), and the equations for εL and νL in (2.46) and

(2.47), Equation (3.66) becomes,

(νL +1)
[
~q ×~B + ω

c
~E

]
= 0, (3.68)

whereas Equation (3.67) yields

(νL +1)q2 = (νL +1)

[
ω2

c2
−|~q|2

]
= 0. (3.69)

We see that Maxwell’s equation (3.61) will be satisfied if εL = 0. This coincides with the longi-

tudinal plasmon condition. If εL 6= 0, then ~E is transverse, and Equation (3.69) will be satis-

fied if either νL =−1 (transverse plasmons) or q2 = 0 (photons). The fact that the wave equa-

tion factors out into two terms is a consequence of the specific form of the EM responses of

the REG.

The plasmon modes and the photonic mode obtained from quantum responses to

the electromagnetic fields will appear whenever the dispersion relation ω = ω(|~q |) obeys

one of the conditions derived in Equations (3.49)-(3.51) (εL = 0; νL = −1, and ω = |~q|, re-

spectively). Otherwise, the electromagnetic field will propagate with responses given by

εi j (ω, |~q|) and νi j (ω, |~q |).

The real part of εL is depicted in Figure (3.5) as a function of ω in units of ωc . Results

were computed for η̃ = 0.01, and different values of |~q | expressed in units of qc . In Figures

3.5(a) and 3.5(b), we have set β̃= 1000 and β̃= 10, respectively. The real part of the longitudi-

nal electric permittivity exhibits two zeros for a given value of q̃ at a given temperature. The

lower zero lies within a region where Im[εL] 6= 0. Therefore, in spite of the fact that Re[εL] = 0,

it is a mode that does not propagate.
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Figure 3.5: Real part of εL as a function of frequency in units of ωc = mc2/×, for various values of the wave
vector q̃ = |~q |/qc , with qc = mc/× is the Compton wave vector. The density gas η̃= 0.01, and β̃= 1000 (fig. a),
and β̃= 10 (fig. b).

We display in Figure 3.6 the upper (solid line) and lower (dashed lines) frequency

zeros of the real part of εL as functions of q̃ = |~q|/qc . Numerical results were computed

for η̃ = 0.01, and different values of β̃. Figure 3.6 clearly indicates that there is a maximum

value of the wave vector (q̃max) beyond which the longitudinal plasmon decays into particle-

antiparticle pairs.
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Figure 3.6: Upper (ωL
p plasmon frequency) and lower frequency zeroes of εL (solid and dashed lines, re-

spectively) as function of the |~q | wave vector. Calculations were performed for β̃ = 100 and β̃ = 10 by taking
η̃ = 0.01. The shaded area corresponds to the region where particles-antiparticle excitation occur. Note that
the maximum value of the wave vector (q̃max ) is the value beyond which the longitudinal plasmon decays into
particle-antiparticle pairs. Both the frequency and wave vector are given in units of ωc and qc respectively.

The condition νL = −1 [cf. (3.50)] leads to the ωT
p frequency of the REG transverse

plasmon modes. We display in Figure 3.7 the real part of νL as a function of the ω fre-

quency in units of ωc , obtained for η̃ = 0.01 and different values of the wave vector |~q| in

unit of qc . Results depicted in Figures 3.7(a) and 3.7(b) where computed for β̃ = 1000 and

β̃= 10, respectively. We would like to stress that numerical results (not shown here) indicate

that Im[νL] = 0 within the respective frequency ranges considered in both Figure 3.7(a) and

3.7(b). Therefore, in the present cases, the transverse plasmon frequencies may be obtained

by solving the transcendental equation Re[νL] =−1.

We display in Figure 3.8 the dispersion curves for the transverse and longitudinal

plasmon modes at T = 0 [cf. Equations (3.49) and (3.50)]. The shaded area corresponds

to the region where the excitation of particle–antiparticle pairs occurs. The dashed line is

discarded as solution for the longitudinal plasmon dispersion as it lies entirely in the region

of nonzero imaginary parts of εL . We have also shown the dispersion for the photon mode

ω̃γ = q̃ [cf. (3.51)]. Although not shown in the figure, the straight dotted line for the photon

dispersion will eventually reach the upper region where the excitation of electron-positron

pairs will take place.
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Figure 3.7: Real part of νL as a function of frequency in units of ωc = mc2/×, for various values of the wave
vector q̃ = |~q |/qc , with qc = mc/× is the Compton wave vector. The density gas η̃= 0.01, and, β̃= 1000 (fig. a),
and β̃= 10 (fig. b).

The model has been tested in the non-relativistic limit for some metals. Figure 3.9

shows the experimental dependence of the plasmon energy of silicon [66] at T = 0 as a func-

tion of wave vector parallel to the electromagnetic field that excited the plasmon mode. The

numerical results show good agreement with the experimental data.

Finally, we display in Figure 3.10 the different relevant regions of the (q̃ ,ω̃) plane

where the real parts of εL and νL have different signs [25]. We would like to stress that there is

a region where both εL and νL are simultaneously negative, indicating that the REG exhibits

a behavior that has not been experimentally observed in natural materials. This fact was

previously remarked by one of the authors [17], as mentioned.

A figure similar to Figure 3.10 can be obtained using the values of densities and tem-
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Figure 3.8: The dispersion curves for transverse and longitudinal plasmon modes at T = 0 and η̃ = 0.01
[cf. Equations (3.49) and (3.50)]. In the shaded area, Im[εL] = 0, indicating decay of the longitudinal mode.
The dashed line is discarded as a solution for the longitudinal dispersion as it lies entirely in the region of
nonzero imaginary part of εL . We have also shown the dispersion (dotted line) for the photon mode ω̃γ = q̃
[see Equation (3.51)].
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Figure 3.9: Energy loss dispersion along the [111] and [100] directions of the Silicon at T = 0 and silicon
density ηs = 2.0×1023cm−3. Solid line correspond to the theoretical result. Squares and triangles correspond
to experimental values from Stiebling [66]

.

peratures encountered in astrophysical scenarios, as in a superdense electron-plasma (e−p)

in gamma ray bursts (GRBs) [67, 68], where the e − p density is in the range of η = (1030 −
1037)cm−3. According to ref. [67], in Condensed Matter, a e−p plasma will eventually be pro-

duced in the laboratory with laser systems. Laser pulses with focal densities I = 1022W cm−2

incident on material targets could lead to a e−p plasma with densities in the range of (1023−



CHAPTER 3. PROPAGATION IN THE RELATIVISTIC ELECTRON GAS 50

νL

νL

νLL

L

L

Figure 3.10: Regions of the (q̃ ,ω̃) plane according to the signs of the real parts of εL and νL . Outside the
shaded regions the real parts of εL and νL are positive. Results were obtained for T = 0 and η̃= 0.01.

1028)cm−3. We have used the upper limit of that density range in our calculations.

Summing up, we have presented a theoretical study of the EM propagation and re-

sponses of a REG for various temperatures and carrier densities. Using linear response and

RPA, we have identified the propagation modes and their dispersion relations from the QED

propagators, as well as from Maxwell’s equations, with the added input of the constitutive

relations obtained from the QED responses. We found a longitudinal plasmon mode, two

transverse plasmon modes, and a photonic mode which propagates with the speed of light

in vacuum, i.e., for which the medium is transparent, thanks to the specific form of its rela-

tivistic electromagnetic responses. In deriving dispersion relations, we were able to identify

stable solutions and regions of instability where the plasmon modes decay. Finally, we have

also identified the regions in the (|~q |,ω)) plane where the longitudinal permittivity εL and

longitudinal inverse permeability νL are both simultaneously negative.



Chapter 4

Negative refraction in the relativistic

electron gas

4.1 Introduction

The quantities that Veselago assumed to be simultaneously negative were the elec-

tric permittivity and magnetic permeability appearing in Maxwell’s equations. Although in

nonrelativistic systems these are the same quantities that appear in the constitutive equa-

tions, this is NOT the case for the REG. In fact, we will show that what appears in Maxwell’s

equations for the REG are combinations of the responses present in the constitutive rela-

tions. Those combinations are to be interpreted as the effective electric permittivity and

permeability that would have to be simultaneously negative in some frequency range in or-

der to realize the Veselago system. Here, we will construct them, and show that both become

negative below the same frequency value, which we associate with a longitudinal plasmon

frequency.

From the study of the poles in the electromagnetic propagator, we have also shown

that the REG supports the propagation of longitudinal and transverse plasmon modes, whose

dispersion relations we have calculated, as well as that of a purely photonic mode with the

speed of light in vacuum c. The photonic mode corresponds to an electromagnetic wave

propagating in the gas. The fact that its speed was c implied that the modulus of the in-

51
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dex of refraction was equal to one, and that there was no energy loss to the gas, something

novel that we thought should be confirmed and clarified. In the present chapter, we explic-

itly calculate the energy dissipated to the medium by the electromagnetic wave, and show

that it vanishes. Furthermore, we interpret this as a natural consequence of the absence of a

dissipation mechanism in an ideal gas.

With those two ingredients well established, i.e., simultaneously negative effective

permittivity and permeability, and the existence of a photonic mode for which the effective

index of refraction neff has modulus one, we combine them in the discussion of refraction

to show that neff = −1, a consequence anticipated in Veselago’s work [7]. That completed

our proof that the REG is indeed a LHM, something we had suggested previously, but lacked

explicit demonstration. Additionally, we illustrate how this affects the reflection and trans-

mission coefficients of the electromagnetic wave. We may now finally claim that the REG is

a natural LHM.

4.2 Veselago effective responses

In order to find the exact analog of the situation proposed by Veselago [7], we need

the effective electric permittivity and effective magnetic permeability that emerge in the two

Maxwell equations with sources. To obtain them, we start with the polarization Pi (2.32)

and magnetization Mi (2.33), and using (2.20-2.22) combined with electric and magnetic

permeabilities in (2.41-2.44), we have

Pi = (ε−1)E T
i + (εL −1)E L

i −τεi j k q̂ j B T
k , (4.1)

Mi = (1−ν)B T
i + (1−νL)B L

i +τεi j k q̂ j E T
k , (4.2)

where the superscript refers to longitudinal and transverse. Maxwell’s equations imply

εi j k q j Ek =ωBi , (4.3)

εi j k q j Hk =−ωDi . (4.4)
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For an electromagnetic wave, the longitudinal components of the fields B L = E L = 0 vanish

in Eqs. (4.1) and (4.2), so that the constitutive equations (2.36) and (2.37) read

Di = εE T
i −τεi j k q̂ j B T

k , (4.5)

Hi = νB T
i −τεi j k q̂ j E T

k . (4.6)

Substituting them into Maxwell’s equations yields

~q ×~E T =ω
(

µ|~q |
|~q|−ωµτ

)
~H T , (4.7)

~q × ~H T =−ω
(
ε+ |~q|

ω
τ

)
~E T . (4.8)

Comparing with Veselago’s work [7], we identify the effective responses of the REG as

µeff =
µ|~q|

|~q|−ωµτ , (4.9)

εeff = ε+
|~q|
ω
τ. (4.10)

Note that, when τ = 0, we recover µeff = µ and εeff = ε. Defining |neff| ≡ |~q |/ω, then n2
eff =

µeffεeff. The LHM behavior will occur whenever εeff and µeff are both negative.

Figure 4.1 shows the behavior of the real parts of εeff andµeff at T = 0 for |~q| = 5.1k eV/×c.

Both effective responses become negative in the shaded region, exhibiting LHM behavior. In

that region, the imaginary parts Imεeff = Imµeff = 0 are null, so that wave propagation occurs

without energy dissipation, something we will confirm by explicit calculation in the next

section.

We remark that the zero temperature value used in the calculations of Fig.4.1 is a

good approximation to many systems with relativistic densities. An ideal relativistic electron

gas is a well-defined statistical system, whose equilibrium dynamics may be treated in the

canonical ensemble, where the temperature T and the density η are independent thermo-

dynamic variables. The gas is considered relativistic if either its Fermi energy or its thermal
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Figure 4.1: Real parts of εeff (solid line) and µeff (dashed line) as a function of ×ω, and ×c|~q | = 5.12 keV, where
|~q | is the wave vector. When ω ↓ |~q |, εeff →−∞. The shaded area corresponds to the region where both εeff and
µeff are simultaneously negative. Results were obtained for T = 0 and electron gas density η= 1.76×1028cm−3.

energy kT , or both are greater than or equal to the electron rest energy mc2. High Fermi en-

ergy translates into high densities η≥ (mc/ħ)3. Thus, there is nothing to prevent a relativistic

electron gas from having relativistic densities and very low (even zero) temperatures.

As an example in Plasma Physics presented in [69], high power laser pulses with in-

tensities up to 1022W/cm2 may be used to investigate the interaction of intense laser beams

with a plasma of electrons and positrons in the relativistic and quantum regimes. Such a

plasma, with average temperature Tp exceeding several tens of electron volts, and extremely

high number densities, in the range 1023 −1028cm−3, may be considered a degenerate elec-

tron gas. For density values of 1028cm−3, the Fermi energy EF =×c(3π2η)1/3 = 0.13MeV, thus

kTp ¿ EF , validating the ZERO temperature approximation.

Using the definitions of the permittivities and permeabilities in Eqs. (2.41-2.44), we

may write the effective responses (4.9) and (4.10) in terms of the scalar functions A ∗ and

B∗, neglecting the vacuum contribution C ∗ ¿ 1, to derive

εeff = 1+A ∗− ω2

|~q|2 B∗, (4.11)

µeff =
(
1+A ∗− ω2

|~q|2 B∗
)−1

. (4.12)
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So, we obtain εeff =µ−1
eff = νeff; thus n2

eff = 1. This again implies that an electromagnetic wave

will propagate with the speed of light in vacuum.

From Eqs. (2.41) and (2.42), with C ∗ = 0, we derive

εeff = νeff = ν+
ω2

|~q |2 +ω2
(ε−ν). (4.13)

In the long-wavelength limit |~q | → 0, we may use the Drude expressions in Eqs. (2.48) and

(2.49), neglecting small corrections of O (α), to find

εeff = νeff = ε=
(
1− ω2

e

ω2

)
. (4.14)

Therefore, in the long-wavelength limit, the effective responses will have the exact same

Drude behavior, both being negative below the longitudinal electric plasmon frequency, to

appear in the next section. Those simultaneously negative responses characterize the gas as

a LHM, as we will show. In summary, for Fermi gases, the LHM behavior is a characteristic

that appears only in a relativistic context.

4.3 Propagation without loss

A complete discussion of the modes that propagate in the REG was given in 3.4,

where analytic results at T = 0 and numerical results for T 6= 0 were used to compute de-

cay constants and dispersion relations for both longitudinal and transverse plasmons. In

order to obtain the collective modes of oscillation, we computed how the medium affects

the photon propagator in the REG. The inverse of the quadratic kernel Γµν in eq.(3.46) gives

the photon propagator

Γ−1
µν =

P L
µν

−q2εL
+

P T
µν

−q2(νL +1)
+ λ

q2

qµqν
q2

, (4.15)

with the projectors Pµν ≡ P L
µν +P T

µν = δµν− qµqν/q2, P T
i j = δi j − q̂i q̂ j , and P T

44 = P T
4i =

0; λ is the gauge parameter. The poles of the photon propagator correspond to collective

excitations and yield their dispersion relations.

In the longitudinal propagator, there is a pole whenever the longitudinal electric per-

mittivity vanishes εL(ω,~q) = 0, which leads to the dispersion relation of the longitudinal plas-

mon collective excitation. For εL(ω,~q) nonzero, Maxwell’s equations lead to transverse fields,
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~q ·~E = 0, which means that the pole q2 = 0 in the longitudinal propagator is not realized in

this case. The transverse propagator has poles whenever the inverse of the magnetic per-

meability becomes µ−1
L (ω,~q) ≡ νL(ω,~q) = −1. They correspond to collective oscillations of

the current density. There is another transverse mode of propagation in the REG whenever

q2 =ω2−|~q |2 = 0, corresponding to a photonic mode that propagates with the speed of light

c in vacuum.

Our main interest here will be the photonic mode, which corresponds to an electro-

magnetic wave that travels through the REG as if it were in vacuum. We will show by explicit

computation that no energy is dissipated into the medium by the electromagnetic wave. We

start by constructing the energy-momentum tensor Tµλ

Tµλ = FµνFλν−δµλ
F 2

4
, (4.16)

which satisfies

∂µTµλ =−JµFµλ, (4.17)

with T44 =−u, u being the energy density , and T j 4 = i S j , ~S being the Poynting vector.

The total current Jµ is the sum of the free and induced current contributions, Jµ =
J F
µ + J I

µ. The current J I
ν induced in the REG by the external electromagnetic field is related to

the polarization Pµν by ∂µPµν = −J I
ν. Since J I

4 = i~∇ · ~P and J I
j = −∂t P j − (~∇∧ ~M) j , eq.(4.17)

may be expressed in Minkowski space, using J M
0 = i J E

4 , ~JM =−~JE

∂u

∂t
+~∇·~S =−~E ·

(
~J F +~∇∧ ~M + ∂~P

∂t

)
. (4.18)

Eq.(4.18) expresses the Poynting theorem [11, 58], with u = (~E 2+~B 2)/2, ~S = ~E ∧~B , and ~M and

~P the magnetization and polarization vectors, respectively. A simple rewriting leads to[
~E · ∂

~D

∂t
+ ~H · ∂

~B

∂t

]
+∇· (~E ∧ ~H) =−~E ·~J F . (4.19)

The total energy dissipated may be identified as

E =
∫

d 4x

(
~E · ∂

~D

∂t
+ ~H · ∂

~B

∂t

)
. (4.20)

In terms of the Fourier transforms,

E =
∫

d 4q

(2π)4
iω

[
E j (q)D j (−q)+H j (q)B j (−q)

]
. (4.21)
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Since the fields are real, E j (x) = E∗
j (x), we have E j (−q) = E∗

j (q). Inserting the constitutive

equations of the REG for H and D ,

E =
∫

d 4q

(2π)4
(−iω)

[
εL|EL|2 +ε|E T

j |2 −νL|BL|2 −ν|B T
j |2 +2τεi j k q̂k Re(E∗

i B j )
]

. (4.22)

From Maxwell’s equations, we have EL = BL = 0, and Bi = B T
i = εi j k q j E T

k /ω. Thus,

E =−i
∫

d 4q

(2π)4
ω

[
ε(q)−ν(q)

|~q|2
ω2

+2τ(q)
|~q|
ω

]
|E T

i (q)|2. (4.23)

For the photonic mode, |~q |2−ω2 = 0, the term inside the brackets in eq.(4.23) is [ε(q)−ν(q)+
2τ(q)]. Setting C ∗ = 0 in eqs.(2.41)-(2.44), we have

ε(q)−ν(q)+2τ(q) =
(
1− ω

|~q|
)2

B∗. (4.24)

Thus, for the electromagnetic wave, |~q | =ω implies

E = 0 (4.25)

No energy is dissipated.

In conclusion, the photonic mode propagates with the speed of light in vacuum,

meaning that there are no losses to the medium, as explicitly verified by our calculation of

the vanishing energy dissipation. Physically, this is inevitable, because there is no mecha-

nism for dissipating energy in the REG, as it is an ideal gas. Its particles do not interact with

each other, only with the photons of the external radiation, which will only change the mo-

menta of the electrons, without losing energy (elastic collisions). Had we been dealing with

atoms, the photons could induce transitions in the energy levels of the electrons, and that

would lead to energy loss.

4.4 Negative index of refraction

For the photonic mode, since |n eff| = 1, the effective responses in eqs. (4.9) and (4.10)

become εeff = ε+τ and ν eff = ν−τ, where ν eff = µ−1
eff. Neglecting the vacuum term C ∗ = 0,

eqs. (2.41), (2.42), and (2.44) become

ε= 1+A ∗, (4.26)
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ν= 1+A ∗−2B∗, (4.27)

τ=−B∗, (4.28)

leading to

ε eff = ν eff = 1+A ∗−B∗. (4.29)

The longitudinal responses for the photonic mode are

εL = ε+ε′ = 1, (4.30)

νL = ν+ν′ = 1+2(A ∗−B∗), (4.31)

leading to

ε eff = ν eff =
νL +1

2
. (4.32)

This becomes negative for νL <−1 and, then,

ε eff = ν eff < 0. (4.33)

A numerical calculation shows that, for the electromagnetic wave of the photonic mode ω=
|~q|, ε eff = ν eff →−∞, keeping the product n2

eff = µ effε eff = 1. That can be seen by taking the

limit ω ↓ |~q| from above, since ω= limmγ→0

√
~q2 +m2

γ, mγ being the vanishing photon mass,

as shown in Fig. 4.2. Thus, we have ε eff < 0 and ν eff < 0, for the electromagnetic wave.

Maxwell’s equations provide the relative orientation of the wave unit vector (q̂) with

respect to the electric (ê) and magnetic (ĥ) field unit vectors. For the usual case where the

medium is right-handed, we have q̂ ∧ ê = +ĥ and q̂ ∧ ĥ = −ê. On the other hand, Maxwell’s

equations (4.7) and (4.8), for a LHM with µ eff < 0 and ε eff < 0, yield q̂∧ê =−ĥ and q̂∧ĥ =+ê.

From previous considerations, the REG is a LHM. Then,

ê ∧ ĥ =−q̂ . (4.34)

From the definition of the Poynting vector, ~S ≡ ~E ∧ ~H , the vector ŝ = ê ∧ ĥ is opposite to its

wave vector by eq.(4.34).
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Figure 4.2: Effective permittivity for values of ω ↓ |~q | (photonic mode). Calculations were performed at T = 0
and electron density η= 1.76×1028cm−3.

Let us analyze the refraction of light into a LHM. Maxwell’s equations lead to bound-

ary conditions at the interface (z = 0) delimited by the two media

E(x y)a = E(x y)b , H(x y)a = H(x y)b , (4.35)

ε1E(z)a = ε effE(z)b , µ1H(z)a =µ effH(z)b , (4.36)

where ε1 and µ1 correspond to the responses of a right-handed material (RHM). As Veselago

argued, the boundary conditions must be satisfied regardless of the relative rightness of the

media. Thus, because of the continuity of the tangential component of ~q , an incident wave

with Poynting vector ~S 0 and wave vector ~q 0 from medium (a) has two possibilities to refract

into medium (b), depicted in Fig. 4.3, depending on the rightness of the vector fields. If ε eff

and µ eff are simultaneously negative in medium (b), the only way to refract is with an angle

θ 2 opposite to the one for a RHM. Since the radiation flows along the Poynting vector ~S 2,

which is antiparallel to wave vector ~q 2, Snell’s law implies that, for the pure photonic mode,

ω= |~q |, the index of refraction is n eff =−1, which completes our proof.

Indeed, let us define the wave vector of the radiation incident from the RHM as ~q0,

that of the reflected wave as ~q1, and that of the wave refracted in the LHM as ~q2. Then,

from the continuity of the tangential components, the boundary conditions on (4.35) and

(4.36) lead to q0y = q1y = +q2y . In the LHM, the tangential component q2y has positive

sign. However, its Poynting vector ~S2y has a minus sign, S0y = −S2y . Since, |~q0| = |~q1| =
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ω|n1|, where n1 is the refractive index of medium (a), following standard calculations [58],

for transparent media θ0 = θ1, and we obtain Snell’s law

p1 n1 sinθ0 = p2 n2 sinθ2, (4.37)

where for a RHM, p1 =+1, and for a LHM, p2 =−1, with n1 > 0, and n2 < 0.

We have thus shown that the only way that the electromagnetic wave propagates in

the REG is with n eff =−1 in the photonic modeω= |~q |. This result corrects a misunderstand-

ing in Ref.[70], which misused the concept of index of refraction for the electric plasmon

oscillation. The concept of index of refraction can only be applied to a propagating elec-

tromagnetic wave, not to a plasmon excitation, which is an oscillation of the electric charge

density in the medium.

(a)

y

z

RHM

(b) LHM

Figure 4.3: Illustration of the two media with refractive index (a) n vac = 1 and (b) n eff = −1 . When the
electromagnetic wave enters the LHM (b), the Poynting vector ~S2 is opposite to ~q2, and the refracted angle is
θ2.
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4.5 Reflection and transmission coefficients

Although the REG may be bianisotropic, since its polarization and magnetization de-

pend on both ~E and ~B , for the EM wave characteristic of the photonic mode this is NOT the

case. This is shown in detail in Appendix H. The electric and magnetic fields in a LHM may

be obtained from Maxwell’s equation, where

~D = εeff~E , (4.38)

~H = νeff~B . (4.39)

We shall use the boundary conditions given by Eqs.(4.35) and (4.36) in order to find the

reflection and transmission coefficients for an incoming wave propagating from medium

(a)(RHM) to medium (b) (LHM), as shown in Fig.4.3.

Let us start with the case where the electric field only has the component ~Ei = Ei x̂

(TE-mode). From (4.7) we obtain

Hy =
(

1

ωµeff

)
qzEx . (4.40)

Therefore, continuity of tangential components of ~E and ~H leads to

E0 +E1 = E2, H0 +H1 = H2, (4.41)

where E0x = E0, E1x = E1 and E2x = E2. Noting that q1z =−q0z , after some algebraic manip-

ulations and using Snell’s law for transparent media [58], we find

E1 = α−β
α+βE0, (4.42)

E2 = 2α

α+βE0. (4.43)

where, α = |µ eff|sinθ2 cosθ0, and β = µ1 sinθ0 cosθ2. These results allow us to compute the

reflection and transmission coefficients for the TE-incident wave. For that, we need to com-

pute the Poynting vector Si = εi j k E j Hk . For a LHM, using Maxwell’s equations (4.7) and

(4.8),

Si =−
√
εeff

µeff
E j E j q̂i . (4.44)
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where we identified q̂i |~q|/ω=−|n eff|q̂i .

The reflection coefficient R = 〈S1〉/〈S0〉 may be computed as the ratio between the

average reflected flux 〈S1〉 and the average incident flux 〈S0〉. For the transmission coeffi-

cient, we have T = 〈S2〉/〈S0〉, where 〈S2〉 is the average transmitted flux. Assuming 〈S1〉 in the

same direction as the wave vector, as we are in a right-handed medium, θ0 = θ1, and consid-

ering medium (a) (n = 1) and medium (b) (neff =−1) transparent, from Eqs.(4.42) and (4.43)

we obtain

R = (α−β)2

(α+β)2
, (4.45)

T = 4αβ

(α+β)2
, (4.46)

which give the reflection and transmission coefficient for a TE-incident wave. Note that R +
T = 1 as expected, since no energy is absorbed by the LHM, as we have seen before.

Eqs.(4.45) and (4.46) can be further simplified for the photonic mode, ω= |~q |, where

θ0 = θ2, as shown in Fig.4.3. We find

R =
( |µeff|+µ1

|µeff|−µ1

)2

, (4.47)

T = 4|µeff|µ1(|µeff|+µ1
)2 . (4.48)

As mentioned before, for the photonic mode ω = |~q|, εeff = νeff →−∞, or µeff → 0. We then

obtain the coefficients of reflection R = 1, and transmission T = 0, for that mode. This im-

plies that, if the radiation propagates in vacuum (n = 1), and the external medium is a LHM

(neff = −1), we obtain total reflection at the interface for any angle of incidence, suggesting

that a LHM can be used as a waveguide with no energy dissipation.



Chapter 5

Electromagnetic responses of a charged

relativistic Bose gas

5.1 Introduction

In this chapter, we address the interaction of a classical electromagnetic field with

the relativistic Bose gas, using a semiclassical version of scalar quantum electrodynamics at

finite temperature and charge density. Using an approach similar to the one discussed in the

relativistic electron gas in previous chapters, we derive the effective electric permittivity, the

effective magnetic permeability, and the electromagnetic modes of propagation of the gas,

both in the normal and condensed phase.

5.2 Field theory treatment

Let us begin by writing the Euclidean grand partition function of the relativistic Bose

gas interacting with an external electromagnetic field Aµ as a functional integral over gauge

and charged bosonic fields φ∗ and φ

Ξ=
∮

[d A][dφ∗][dφ]det

(
∂F

∂λ

)
δ(F )×exp

(
−

∫
d 4xE LSQED

)
. (5.1)

Here, φ is the complex scalar field (φ∗ its complex conjugate) that represents charged spin-0

bosons with mass m and charge e. The Lagrangian density LSQED of Scalar Quantum Elec-

63
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trodynamics (SQED) is written as [22]

LSQED = 1

4
FµνFµν+ D̄µφ

∗D̄µφ+m2φφ∗, (5.2)

with Fµν = ∂νAµ−∂µAν, the field strength tensor, and D̄µφ= (∂̄µ−i e Aµ)φ, the gauge-covariant

derivative. Here, we also introduced the chemical potential ξ via ∂̄µ ≡ (∂4 − ξ,∂i ). Integrat-

ing Eq.(5.1) over the scalar fields with boundary conditions φ(0,~x) = φ(β,~x), one obtains a

bosonic determinant. This leads to an effective action Seff

Seff =
1

4

∫ β

0
dτ

∫
d 3x

(
FµνFµν

)+Trln(−D̄2 +m2). (5.3)

Since we accounted for the quantum contribution of the bosons by the integration over the

scalar fields, by extremizing the effective action in Eq. (5.3)

δSeff

δAν(x)
= 0, (5.4)

we obtain the equation of motion

−∂µFµν+ δ

δAν(x)
Trln(−D̄2 +m2) = 0, (5.5)

that is, Maxwell’s equation ∂µFµν = Jν(x), where the total current Jν is given by

Jν(x) = δ

δAν(x)
Trln(−D̄2 +m2). (5.6)

Note that

Ḡ−1(A) ≡−D̄2 +m2 = (Ḡ−1
0 +Π) = (1+ΠḠ0)Ḡ−1

0 , (5.7)

where Ḡ−1
0 ≡ Ḡ−1(A = 0) = (−∂̄2 +m2) is the inverse of the free boson propagator, and

Π= 2i e A · ∂̄+ i e(∂̄ · A)+e2 A2. (5.8)

Therefore, Eq.(5.6) reads

Jν(x) = δ

δAν(x)
Trln(Ḡ−1

0 )+ δ

δAν(x)
Trln(1+ΠḠ−1

0 ), (5.9)

Note that the dependence on the external gauge field A comes only through Π≡Π(A), thus

TrlnḠ0
−1

does not contribute to the current density which is given by

Jν = δ

δAν(x)
Trln(1+ΠḠ−1

0 ). (5.10)
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We are interested in the linear response to the external gauge field, therefore one may

expand Eq.(5.10), and retain terms up to order O(A2). For weak background Aν, the current

density in linear response is

Jν(x) = δ

δAν(x)

(
Trln(ΠḠ0)− 1

2
Trln(ΠḠ0ΠḠ0)

)
. (5.11)

One may Fourier transform Eq.(5.11) (see Appendix I) to obtain

Jν(q) =Πµν(q)Aµ(q), (5.12)

whereΠµν is the field theory polarization tensor for scalar quantum electrodynamics, which

contributes two terms to the current: the tadpole and the thermal bubble Feynman graphs

Πµν(q) =−2e2

β

+∞∑
n=−∞

∫
d 3p

(2π)3

δµν

p̄2 +m2
+ e2

β

+∞∑
n=−∞

∫
d 3p

(2π)3

(2p̄µ+qµ)(2p̄ν+qν)

(p̄2 +m2)[(p̄ +q)2 +m2]
.

(5.13)

The sum is over bosonic Matsubara frequencies p̄4 = 2nπT + iξ, with ξ the chemical poten-

tial. Writing Πµν =Π(v)
µν +Π(m)

µν , where the former corresponds to the value at T = 0 and ξ= 0,

we have used symmetry and gauge invariance [21, 23] to derive its tensor form in Appendix

C. Here, the scalar functions A and B will be a function of the components of the polar-

ization tensor for bosons in (5.13), Π44 and Πµµ. The Matsubara sum and the integral over

angles can be done using the same procedure we used for fermions in appendices D and E,

to arrive at

B(q4,~q) = −Π
(m)
44

q2

= e2

q2
Re

∫
d 3p

(2π)3

nB (p)

ωp

(
~q2 +4ω2

p −2p4q4 +2~p ·~q
q2 +2p4qq +2~p ·~q

)
, (5.14)

and

A (q4,~q) = −Π
(m)
µµ

2q2
+

(
3

2|~q|2 − 1

q2

)
Π(m)

44

= e2

2(2π)3q2
Re

∫
d 3p

ωp
nB (p)

3q2 +3m2 +4p ·q

q2 +2p ·q
+

(
1− 3q2

2|~q |2
)
B, (5.15)

where nB (p) = n−
B (p)+n+

B (p) is the Bose-Einstein distribution for bosons and antibosons

nB (p) = 1

eβ(ωp−ξ) −1
+ 1

eβ(ωp+ξ) −1
. (5.16)
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The contribution of the antibosons becomes relevant only for relativistic temperatures (T À
m) or relativistic densities (ηÀ m3). Fig. 5.1 shows the ratio of the density of antibosons and

that of bosons, ρ = N+/N−, as a function of temperature for some values of the total density

for an ideal Bose gas, where

ρ = N+

N− =
∫

d 3p 1
eβ(ωp+ξ)−1∫

d 3p 1
eβ(ωp−ξ)−1

. (5.17)
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Figure 5.1: The ratio η= N+/N− of the densities of antibosons and bosons for the ideal relativistic Bose gas
as a function of the temperature for some values of total density η (in units of (mc/×)3).

We are now ready to discuss the responses both above and below the critical temper-

ature of Bose-Einstein condensation:

a. For T > Tc , the permittivities and inverse permeabilities are determined by the three

scalar functions A ∗, B∗, and C ∗. The asterisk denotes continuation to Minkowski

space q4 → iω−0+ of the Euclidean scalar functions A (|~q|, q4), B(|~q |, q4) and C (~q2 +
q2

4). From now on, we shall use the Minkowski definition q2 =ω2 −|~q|2 (q2
E →−q2

M );

b. For T < Tc , a part η(c)(T ) of the density of charge n+−n− condenses in the ground state

(~p = 0), as Bose-Einstein condensation sets in for ξ = m. To account for the part that

condenses, the Bose-Einstein distribution n(p) must be modified to

n(p) → (2π)3η(c)(T )δ(3)(~p)+n′(p), (5.18)

with

n′(p) = 1

eβ(ωp−m) −1
+ 1

eβ(ωp+m) −1
. (5.19)



CHAPTER 5. ELECTROMAGNETIC RESPONSES OF A CHARGED RELATIVISTIC BOSE GAS67

However, the contribution of the antibosons will vanish in condensed phase, n+ = 0.

The modification has a contribution due to the charge density in the ground state, and

another due to the particles in excited states. The longitudinal responses become

εL(ω, |~q|) = 1+C ∗−ω2
e

(
q2 −4m2

q4 −4m2ω2

)
− q2

|~q|2 B∗
T ,

νL(ω, |~q |) = 1− 2ω2
e

q2
+2C ∗+2A ∗

T −2
ω2

|~q|2 B∗
T . (5.20)

ω2
e = e2η(c)/m is the longitudinal electric plasmon frequency; A ∗

T and B∗
T are the func-

tions A ∗ and B∗ with the modification n(p) → n′(p).

c. For T = 0, all the charge condenses, so n′
c (p) → 0, and the scalar functions A ∗

T and B∗
T

vanish. Neglecting the vacuum contribution (C ∗ << 1), one obtains

εL(ω, |~q|) = 1−ω2
e

(
q2 −4m2

q4 −4m2ω2

)
,

νL(ω, |~q |) = 1− 2ω2
e

q2
, (5.21)

for q2 < 4m2. For q2 > 4m2, as |~q | → 0, the longitudinal responses at T = 0 are the same as

those obtained in [17] for the relativistic electron gas, εL = 1−ω2
e /ω2 and νL = 1−2ω2

e /ω2.

5.3 Imaginary part of εL

The imaginary part of the longitudinal permittivity is

ImεL =− q2

|~q|2 ImB∗. (5.22)

Note that the scalar function is B∗ =Π(m)
00 /q2. The component Π00 =Π(m)

00 +Π(v)
00 of the po-

larization tensor for bosons may be computed in alternative form as

Π00 = e2
∫

d 3p

(2π)3

1+n+(p)+n−(p)

ωp

− e2
∫

d 3p

(2π)3

C∗

4ωpωp+q

[
− 1+n+(p)+n−(p +q)

ω−ωp −ωp+q + i 0+ + n−(p +q)−n−(p)

ω+ωp −ωp+q + i 0+

− n+(p)−n+(p +q)

ω−ωp +ωp+q + i 0+ + 1+n−(p)+n+(p +q)

ω+ωp +ωp+q + i 0+

]
, (5.23)

where C∗ = 2(ω2
p +ω2

p+q )−ω2. At T = 0, a macroscopic charge density condenses in the

ground state (~p = 0), so we have n−(p) = (2π)3ηδ(3)(~p) and n−(p+q) = (2π)3ηδ(3)(~p+~q), with
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n+(p) = n+(p +q) = 0. Thus, substituting the component of the polarization tensor above in

the scalar function B∗, we obtain the longitudinal permittivity εL

εL = 1− e2

~q2

∫
d 3p

(2π)3

1

ωp
+ e2η

m~q2

− e2

~q2

∫
d 3p

(2π)3

(ωp −ωp+q )2

4ωpωp+q

[
1

ω+ωp +ωp+q + i 0+ − 1

ω−ωp −ωp+q + i 0+

]
− e2

~q2
η

(ωq −ω0)2

4ωqω0

[
1

ω−ωq −ω0
− 1

ω+ω0 +ωq

]
− e2

~q2
η

(ωq +ω0)2

4ωqω0

[
1

ω+ω0 −ωq
− 1

ω+ωq −ω0

]
, (5.24)

where ω0 = m. Note that the first integral has a divergent contribution, which can be sup-

pressed by a minimal subtraction renormalization. The imaginary part of εL may be ob-

tained using the relation

1

ω−ω0 ± i 0+ = P

(
1

ω−ω0

)
∓ iπδ(ω−ω0). (5.25)

For ω> 0, we have

ImεL = e2π

~q2

∫
d 3p

(2π)3

(ωp −ωp+q )2

4ωpωp+q
δ(ω+ωp +ωp+q ). (5.26)

After we integrate the expression above over angles, imaginary parts appear only for frequen-

cies such that ω2 > 4m2 + |~q|2. Note that, when |~q | = 0, we always have imaginary parts for

ω > 2m, which indicates that photons will decay into boson-antiboson pairs of total mass

2m. Thus, the expression for imaginary part at T = 0 is

ImεL(ω, |~q |) = e2

48π

(
q2

q2 −4m2

)3/2

. (5.27)

5.4 Nonrelativistic limit for bosons

The nonrelativistic limit of longitudinal responses may be obtained similarly to what

was done for the REG in 2.4. The Bose distribution nB (p) → [eβ(ωp−ξ) −1]−1 ≡ n(p) accounts

only the for the boson contributions, since the antibosons contribution will vanish, and the

longitudinal responses in that limit become εL ≈ 1+B. We obtain

εL = 1− e2

|~q|Re
∫

d 3p

(2π3)

n(~p −~q)−n(~p)

εp−q −εp −ω− i 0+ . (5.28)
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The result above is the same as the one obtained in [72] for a charged Bose gas in the random-

phase approximation, and similar to what was obtained for the REG in the nonrelativistic

limit, with the Fermi distribution. Integrating the expression above over angles, one obtains

εL = 1+ e2m

4π2|~q|3
∫ ∞

0
p d p n(p) ln

[
(|~q|2 +2p|~q|)2 −4m2ω2

(|~q|2 −2p|~q|)2 −4m2ω2

]
. (5.29)

We may now discuss the Bose-Einstein condensation. For temperatures T < Tc , where

Tc is the critical temperature of condensation. With the Bose-Einstein distribution modified

to include the ground state charged density as defined in 5.19, we obtain in the condensed

phase T < Tc

εL = 1− ω2
e

ω2 −|~q|2/4m2
+ e2m

4π2|~q|3
∫ ∞

0
p d p n′(p) ln

[
(|~q|2 +2p|~q|)2 −4m2ω2

(|~q|2 −2p|~q|)2 −4m2ω2

]
, (5.30)

with ω2
e = e2η(c)/m, and n′(p) ≡ [eβωp −1], where ξ = 0 is the condition for condensation in

the nonrelativistic limit. At T = 0, all the charge density condenses (n′(p) → 0), and

εL = 1− ω2
e

ω2 − |~q|2
4m2

. (5.31)

Note that, in the long-wavelength limit (~q → 0), we obtain a Drude-type expression for the

longitudinal response, εL = 1−ω2
e /ω2.

5.5 Propagation

We now turn our attention to the propagation of collective modes in the gas, and

evaluate how the medium affects the photon propagator. Just as in the case of the relativistic

electron gas, we obtain the photon propagator Γ−1
µν in the form

Γ−1
µν =

P L
µν

−q2εL
+

P T
µν

−q2(νL +1)
+ λ

q2

qµqν
q2

, (5.32)

where we have introduced the longitudinal P L
µν and transverse P T

µν projectors in eq. (3.31).

The poles of the photon propagator correspond to collective excitations and yield their dis-

persion relations.

In the longitudinal propagator, there is a pole whenever the longitudinal electric per-

mittivity vanishes εL(ω,~q) = 0, leading to a longitudinal plasmon mode. For εL(ω,~q) nonzero,
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Maxwell’s equations lead to transverse fields ~q ·~E = 0 that vanish when contracted with P L
µν,

so that q2 = 0 is not realized in this case. The transverse propagator has a pole whenever

µ−1
L (ω,~q) = νL(ω,~q) = −1, which corresponds to collective oscillations of the current den-

sity. It has another pole whenever q2 =ω2 −|~q |2 = 0, which corresponds to a photonic mode

propagating with the speed of light c in vacuum. Similar modes have already appeared in

the relativistic electron gas [43].

At T = 0, the plasmon modes have longitudinal ωL(|~q|) and transverse ωT (|~q |) dis-

persion relations, obtained from (5.21), given by

ω2
L± = 1

2
(4m2 +ω2

e +2|~q|2)± 1

2

√
(4m2 −ω2

e )2 +16m2|~q|2,

ω2
T =ω2

e +|~q|2. (5.33)

The expression for ω2
L has two branches: one beginning at ωL− = ωe , at |~q| = 0; the other,

which leads to pair creation, beginning at ωL+ = 2m, at |~q | = 0. For ω2
e < 4m2, the longitudi-

nal mode will show a local minimum at low values of |~q |, known as negative dispersion [71].

This behavior will appear only in the relativistic regime, since in the non-relativistic limit

our expression reduces to ω2
L =ω2

e +|~q |4/4m2, the same result obtained in [72] for a charged

Bose gas within the random phase approximation. Fig 5.2 shows the normalized longitu-

dinal modes ωL− at zero temperature as a function of wave vector for some value of Bose

gas density. Fig. 5.3 shows the dispersion curves of the two possibilities for the longitudinal

mode and the transverse modes.

5.6 Negative refraction

We stress that the responses discussed thus far are NOT the ones appearing in Maxwell’s

equations. In order to find the exact analog of the situation proposed by Veselago [7], we

need the effective electric permittivity and effective magnetic permeability that appear in

the two equations with sources. Following [44] and eqs. (4.9) and (4.10), we may define the
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Figure 5.2: Normalized longitudinal plasmon dispersion, ωL−, for ω2
e < 4m2, at zero temperature for some

values of boson density η in units of mc/×)3. The region of negative dispersion is shown in the inset.
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Figure 5.3: Longitudinal (ωL), transverse (ωT ), and photonic (ωγ) modes at T = 0 and boson density η =
10(mc/×)3.

effective responses as

νeff = νT − ωτ

|~q | , εeff = εT + |~q|
ω
τ, (5.34)

where εT = ε and νT = ν. In terms of A ∗ and B∗ (C ∗ << 1), we have

εeff = νeff =µ−1
eff =

νL +1

2
= 1+A ∗− ω2

|~q|2 B∗. (5.35)

Expression (5.35) immediately implies that |neff| =µeffεeff = 1, for any temperature and chem-

ical potential. It also implies εeff = νeff < 0 as long as νL < −1, which means that we will

have left-handed behavior for frequencies below the transverse plasmon frequency ωT (|~q|),

(νL =−1), for any temperature and chemical potential. In particular, for T = 0, using (5.21),
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we obtain

εeff = νeff =
νL +1

2
=

(
1− ω2

e

q2

)
, (5.36)

which reduces, in the limit |~q |→ 0, to a Drude expression εeff = νeff = (1−ω2
e /ω2).

The existence of a photonic mode ωγ = |~q | with the speed of light in vacuum is an-

other indication that the modulus of the effective index of refraction of the gas is equal to

one. Since, both εeff < 0 and νeff < 0, for ωγ(|~q|) ≤ ω < ωT (|~q |), for any temperature and

chemical potential, one may use Snell’s law to show that neff =−1 in that region, a negative

refraction typical of a left-handed material [7, 44]. The shadowed sections of Fig.5.4 illustrate

those regions for both T = 0 and T 6= 0. Similar behavior was obtained in the analysis of the

relativistic electron gas, confirming our hypothesis that the relativistic nature of the gas was

the key ingredient to achieve left-handed behavior.
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Figure 5.4: The shadowed regions illustrate where the RBG is a LHM: (a) in the condensed phase, the LHM
region decreases with the temperature until we reach the critical temperature Tc ; (b) above the critical tem-
perature Tc , the LHM region starts to increase with the temperature; (c) transverse plasmon ωT at |~q | = 0 as a
function of the relative temperature. Calculations were performed for η= 10(mc/×)3 and Tc = 5.47mc2/kB .

Fig.5.4(a) shows that, in the condensed phase, the region where the gas exhibits left-
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handed behavior shrinks with increasing temperature, at least up to Tc . Somewhere above

Tc (see Fig.5.4.(b)), the region expands and, for the case of ultra-relativistic densities (η ≥
(mc/×)3), it begins to expand at the critical temperature T = Tc , as illustrated in Fig.5.4(c).

Fig.5.5 shows the plasmon energy at |~q | = 0, normalized by its value at T = 0, as a function of

T /Tc (η) for various densities.
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Figure 5.5: Normalized transverse plasmon frequency in the long-wavelength limit (|~q | = 0) as a function of
the relative temperature for various densities [in units of (mc/×)3] of the Bose gas in units of ΩT ≡ ωT (|~q| =
0,T = 0). In the shadowed region, below the critical temperature Tc , the gas is in the Bose-Einstein condensed
phase (BEC). For each density η, the critical temperatures [in units of (mc2/kB )] are Tc = 5.47(η = 10), Tc =
1.72(η= 1), Tc = 0.53(η= 10−1), and Tc = 0.14(η= 10−2).

In contrast to the non-relativistic case, the transverse plasmon frequency at |~q| = 0,

known as plasmon gap energy, is a function of temperature for relativistic densities. In fact,

the two regimes just described correspond to T < Tt and T ≥ Tt , where Tt is the temperature

at which the transverse plasmon gap energy reaches a minimum, and then increases linearly

with temperature. The ratio Tt /Tc (η) decreases with increasing density until it reaches unity,

as can be seen in Fig.5.6.

For ultra-relativistic densities, one may perform a high temperature hard thermal

loop expansion [22], and derive analytic solutions for the transverse plasmon frequency

ωT (|~q|). At |~q| = 0, we obtainω2
T (0) =ω2

e +e2T 2/9, for T ≤ Tc , andω2
T (0) = e2T 2/9, for T ≥ Tc .

For T < Tc , using ω2
e = e2η(c)/m, and the ultra-relativistic expression η(c) = η(1−T 2/T 2

c ), we

obtain

ω2
T (0) = e2η

m

[
1−

(
T

Tc

)2]
+ e2T 2

9
, (5.37)
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Figure 5.6: The ratio Tt /Tc (η) as a function of the total charge density η. For temperatures T ≥ Tt , the trans-
verse plasmon gap energy, ωT , increases linearly with the temperature, where Tc (η) is the critical temperature
where the gas condenses for density η. For densities above η= 1, we have Tt ≈ Tc , characterizing the relativistic
regime.

which shows that the transverse plasmon frequency decreases with temperature in the con-

densed phase, whereas it increases linearly in the normal phase, with ωT (0) = eT /3, for

T ≥ Tc .

5.7 Rotons

We now turn to the longitudinal plasmon mode. For T > 0, we have to resort to nu-

merical results. Fig.5.7(a) depicts the longitudinal dispersion relation Re[εL] = 0 for tem-

peratures above and below the critical temperature Tc of Bose-Einstein condensation. For

T > Tc , the dispersion relation is similar to the case of the relativistic electron gas. For T < Tc ,

we observe a new kind of elementary excitation, with a local maximum and a local minimum

analogous to the maxons and rotons in the spectrum of neutral superfluid 4He described by

Landau [58], who proposed the existence of two kinds of elementary excitations in a neutral

superfluid: phonons, for low wave vectors, associated to acoustic waves; and rotons, gapped

excitations at finite momentum |~q| = |~qr ot |, interpreted as vortices in the superfluid.

The existence of roton-like structures has been predicted for condensates of dipolar

particles [59, 60, 73, 74, 75], of nonpolar atoms under the action of an intense laser light [76],

and for Rydberg-excited condensates [77]. Recently, these vortex-like quasi-particles have
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Figure 5.7: (a) Dispersion curves for longitudinal modes for T > Tc (solid and dotted-dashed line), 0 < T <
Tc (dotted line), and T = 0 (dashed line). The dotted-dashed line for T > Tc is discarded because, for high
temperatures, the longitudinal plasmon mode will behave similarly to the plasmon excitations in a relativistic
electron gas, with a superior and an inferior branch. The latter does not propagate because all its values of
frequency ωL(|~q |) lie in the region where Im[εL(ω, |~q |)] 6= 0, as discussed in [43]; (b) Roton gap energy as a
function of the relative temperature. Calculations were performed for η= 10−2(mc/×)3, and Tc = 0.14mc2/kb .

been observed for the first time in a Bose-Einstein condensate of ultra-cold atoms [78, 79].

However, in a charged superfluid, it has been shown that the phonon mode of the neutral

superfluid is pushed to a finite plasmon frequency ωp , whereas the roton mode is more or

less unaffected [86, 87]. In the charged case, the spectrum of the superfluid field shows a

plasmon excitation that turns into a roton excitation, with a gap energy ∆(|~qr ot |) for higher

|~q |.

In the present study of a charged relativistic Bose gas, the dispersion relation of the

longitudinal plasmon mode shows an ordinary plasmon, near |~q| = 0, and a roton excitation,

near the value of |~q | that corresponds to the local minimum. As the temperature is increased,

the gap energy of the local minimum decreases, and Fig.5.7(b) shows how it depends on the
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temperature. We may view the gap energy as an order parameter, which vanishes at T = Tc .

For 0 < T < Tc , as the temperature is increased, the ordinary plasmon near |~q| = 0 turns into

an elementary roton excitation with a (lower) minimum energy at finite momentum. We fur-

ther illustrate the presence of rotons by presenting the dispersion curves of the longitudinal

mode for various densities at temperatures below the critical temperature Tc in Fig.5.8, for

non-relativistic densities [Fig.5.8(a) and (b)], and for relativistic and ultra-relativistic densi-

ties [Fig.5.8(c) and (d)]. It should be noted that those results agree remarkably well with the

non-relativistic results reported in the literature, obtained via a different route [88].
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Figure 5.8: Dispersion curves for longitudinal modes for various temperatures below the critical tempera-
ture Tc (in units of mc2/kB ), and various densities η [in units of (mc/×)3]. In (a) and (b), calculations were
performed for non-relativistic densities and temperatures; in (c) and (d), for relativistic and ultra-relativistic.

Figures 5.7 and 5.8 suggest that thermal effects induce the rotons that will contribute

to disorder the system. Thermally induced rotons were also present in the bosonic spectrum

of a two-dimensional dilute Bose gas [89], where it was argued that their emergence is a

consequence of the strong phase fluctuation in two dimensions.

We remark that the Lagrangian density in our approach does not include a self-interaction
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term λ(φ∗φ)2. The condensate is introduced by performing the substitution (5.18), which

yielded T = 0 results for the longitudinal plasmon mode in agreement with the literature

in both relativistic [54] and nonrelativistic limits [72]. We plan to include self-interactions,

either directly or induced by integration over quantum electromagnetic fields, in a future

investigation. In the non-relativistic limit, that inclusion will be useful in the description of

the superfluidity of liquid Helium at low temperatures [51]. In the relativistic limit, it could

possibly help in the study of the relativistic Bose plasma found in astrophysical scenarios

such as neutron stars, where the creation of charged pion pairs and pion condensation may

take place [54, 55].



Chapter 6

Electromagnetic quantum shifts in

relativistic Bose-Einstein condensation

6.1 Introduction

In this chapter, we compute deviations from ideal gas behavior of the pressure, den-

sity, and Bose-Einstein condensation (BEC) temperature of a relativistic gas of charged scalar

bosons caused by the current-current interaction induced by electromagnetic quantum fluc-

tuations treated via scalar quantum electrodynamics.

Normally, BEC is considered only for free boson gases. The inclusion of interactions,

going now from an ideal gas into a real gas, in general is highly non trivial and several pro-

cedures have been developed. The influence of an interacting potential on the BEC criti-

cal temperature in the non-relativistic case has been discussed by several authors [90],[91].

Here, however, interaction emerges from vacuum fluctuations in scalar electrodynamics. No

interacting potential is introduced by hand. The idea is to integrate out the photon degrees

of freedom, producing an effective interaction for the charged bosons.

Because of its electromagnetic (EM) charge e, the gas will inevitably couple to EM

quantum fluctuations that induce a current-current interaction. Thus, it may no longer be

treated as ideal - one has to treat it via scalar quantum electrodynamics at finite temperature

and charge density, the microscopic theory that naturally incorporates such fluctuations.

78
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Within that framework, we will show that the interaction changes the pressure, den-

sity, and critical temperature of condensation of the gas with respect to their ideal gas values

by amounts that depend on the fine structure constant α= e2/4π×c, and compute the devi-

ations in the ultra-relativistic (UR), relativistic, and nonrelativistic (NR) regimes.

Our calculation starts with the grand partition function of the systemΞ= Tre−β(Ĥ−µ∆N̂ ),

∆N̂ ≡ N̂+−N̂−, written as a functional integral over EM and scalar fields. Doing the quadratic

integration over EM quantum fluctuations, we obtain an effective action for the scalars with

an induced current-current interaction proportional to α.

We treat the induced interaction as a perturbation in the remaining integral over the

scalars, and compute a Feynman graph that gives the current-current expectation value. Fi-

nally, we integrate that expectation value, times the photon propagator, over photonic mo-

menta.

6.2 Formalism

From the thermodynamic potential Ω = −T lnΞ, we obtain the pressure P = −Ω/V ,

and the density η = ∆N /V = (∂P/∂µ)T,V . Since, as before, the zero momentum state does

not contribute to the sum, the condensation temperature comes from equating the integral

over occupation numbers to η.

In natural units, the action for Euclidean scalar quantum electrodynamics at finite

temperature and density is

S =
∫
Ω

d 4x

[
1

4
FρσFρσ+ D̄ρφ

∗D̄ρφ+m2φ∗φ
]

, (6.1)

where
∫
Ωd 4x ≡ ∫ β

0 d x4
∫

V d 3x, D̄ρφ= (∂̄ρ− i e Aρ)φ, and ∂̄ρ ≡ (∂i ,∂4 −µ). The grand partition

function of the system may be expressed as a functional integral [22]

Ξ=
∮

[dφ∗][dφ]dΣ[A]e−S[φ∗,φ,A], (6.2)

where dΣ[A] is the gauge invariant measure for the EM field, as discussed in chapter 2. The

integral symbol denotes a sum over field configurations of Aρ,φ, andφ∗ whose value at (~x,0)

is the same as at (~x,β), boundary conditions that implement the trace.
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We sum over the quantum fluctuations of the EM field, by doing the quadratic inte-

gral over Aρ, and derive a current-current interaction. The grand partition function becomes

Ξ=
∮

[dφ∗][dφ]e−(S0+SI ), (6.3)

where S0 is the free bosonic action, obtained by setting Aρ = 0 in Eq.(6.1), and the interacting

part is

S I [φ] =−e2
∫
Ω

d 4x
∫
Ω

d 4x ′ Jρ(x)Gφ
ρσ(x −x ′)Jσ(x ′). (6.4)

The current Jν = i (φ∗∂νφ−φ∂νφ∗) interacts via the photon propagator in the background of

the field φ, whose inverse is (Gφ
ρσ)−1 ≡ Γφρσ = Γρσ+2e2|φ|2δρσ. For the free propagator, we

have Γρσ =−∂2δρσ+ (1−λ−1)∂ρ∂σ, with λ a gauge parameter. In momentum space,

Gρσ(q) = Γ−1
ρσ(q) = δρσ

q2
+ (λ−1)

q2

qρqσ
q2

. (6.5)

Note that the term proportional to e2|φ|2 is not present in Gρσ(q). It comes from the cou-

pling of two photons with two bosons in the interaction Lagrangian density Lint = e JµAµ+
e2 A2|φ|2. However, if we include the term e2 A2|φ|2 through Gφ

ρσ, instead of using the free

propagator, in the expression for the grand partition functionΞ (see below), the order e2 ∼α
extra term will contribute in order e4 ∼ α2, which can be neglected, as we will show in the

numerical results.

We expand the grand partition function to first order to find

Ξ/Ξ0 = 1+ e2

2

∫
Ω

d 4x
∫
Ω

d 4 y Gρσ(x − y)〈Jρ(x)Jσ(y)〉, (6.6)

where Ξ0 is the ideal gas grand partition function (S I = 0), and the current-current expecta-

tion value is computed from the scalar theory (Appendix J) given by Eq.(6.3)

〈Jρ(x)Jσ(y)〉 = 〈Jρ(x)Jσ(y)〉c +〈Jρ(x)〉〈Jσ(y)〉, (6.7)

with 〈Jρ(x)〉 = δρ4η. The second term in Eq.(6.7) gives a (lnV /V ) contribution to the pressure

that vanishes in the thermodynamic limit. Besides, it does not contribute to the density

either, since it is independent of µ. On the other hand, the connected part 〈Jρ(x)Jσ(y)〉c ≡
Jρσ(x − y) leads to

Ξ/Ξ0 = 1+ e2V

2

∞∑
nq=−∞

∫
d 3q

(2π)3
Jρσ(qµ)Gρσ(−qµ). (6.8)
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Jρσ is given by the Feynman graph

Jρσ = T
∞∑

np=−∞

∫
d 3p

(2π)3

(2p̄ρ+qρ)(2p̄σ+qσ)

(p̄2 +m2)[(p̄ +q)2 +m2]
, (6.9)

with q4 = 2πnq T , p̄4 = 2πnp T + iµ. Due to current conservation, qρJρσ = Jρσqσ = 0, the

Figure 6.1: Feynman diagram.

gauge-dependent second term of the propagator in Eq.(6.5) will not contribute. Introducing

the trace J (qµ) ≡Jρρ(qµ), we have

Ξ/Ξ0 = 1+ e2V

2

∞∑
nq=−∞

∫
d 3q

(2π)3

J (qµ)

q2
. (6.10)

If we perform the Matsubara sum in Eq.(6.9), and subtract the vacuum part J(0,0), the medium

contribution Jm =J(T,µ) −J(0,0) is given by

Jm(qµ) = Re
∫

d 3p

(2π)3

n̄(p)

ωp

[
q2 +4pq −4m2

q2 +2pq

]
, (6.11)

where pq = iωp q4 +~p ·~q , ωk = (~k 2 +m2)1/2, and n̄(k) = n+(k)+n−(k),

n±(k) = 1

eβ(ωk∓µ) −1
. (6.12)

Keeping only the medium contribution, and defining ∆Ξm ≡Ξm −Ξ0,

∆Ξm/Ξ0 = e2V

2

∫
d 3q

(2π)3

∞∑
nq=−∞

Jm(qµ)

q2
, (6.13)

with Jm conveniently written as

Jm = Re
∫

d 3p

(2π)3

n̄(p)

ωp

[
2− q2

q2 +2pq
− 4m2

q2 +2pq

]
. (6.14)

As before, we subtract the T = 0 part of Eq.(6.13), and call the result ∆Ξ∗/Ξ0. We will now

compute expressions for pressure, density, and condensation temperature in the UR and NR

limits, and present numerical results for those quantities in the relativistic case.
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6.3 Ultrarelativistic limit

In the UR limit, T >> m and/or η >> m3, the last term in (6.14) does not contribute

to the grand partition function in leading order (we have checked this numerically). We

perform the sum over nq in (6.13), and the integral over angles in (6.14), analytically. The

real part of the integral over the radial momentum p, and the final radial integral over q may

also be computed analytically, yielding

∆Ξ∗

Ξ0
= e2

60
V T 3. (6.15)

The thermodynamic potential is given by

Ω∗ =−T lnΞ∗ =−T lnΞ0 −T ln

[
1+ ∆Ξ

∗

Ξ0

]
. (6.16)

As ∆Ξ∗/Ξ0 is of order α= e2/4π, we expand the log

∆Ω∗ =Ω∗−Ω0
∼=−T

∆Ξ∗

Ξ0
=−πα

15
V T 4. (6.17)

In the UR limit,Ω0/V T 4 =−Γ(4)ζ(4)/(3π2) =−π2/45, so the pressure is

P∗ = P0 +∆P∗ = π2

45
T 4 + πα

15
T 4. (6.18)

We go back to Eq. (6.16) to derive the density

η∗ =
(
∂P∗

∂µ

)
T,V

= η0 +∆η∗ = η0 − 1

V

∂∆Ω∗

∂µ
, (6.19)

where η0 is the density of the relativistic ideal gas

η0 =
(
∂P0

∂µ

)
T,V

=
∫

d 3p

(2π)3

[
n+(p)−n−(p)

]
. (6.20)

We then use the ansatz

η∗ = η0 +∆η∗ = 1

3
µT 2 [

1+ f (ξ)ατ
]

. (6.21)

We define τ≡ T /m, ξ≡µ/m, and the function f (ξ), shown in Fig. (6.2), which is determined

numerically. We take its value for µ= m to be f (1) = γ. Numerically, γ= 2.14 ∼= 2π/3.

In order to obtain Tc , the temperature where Bose-Einstein condensation sets in, we

use µ= m and η= η∗

η= η∗ = 1

3
m3τ2

c

[
1+γατc

]
, (6.22)
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Figure 6.2: Numerical calculation of f (ξ), a function of ξ=µ/m.

which may be written

τ2
c

[
1+γατc

]= 3η/m3 ≡ Nu. (6.23)

Setting τc = Nu
1/2 −∆τ, to first order in α

τc = Nu
1/2 − γ

2
αNu, (6.24)

where Nu
1/2 is the ideal gas value, and αNu = (e/4π)Q, with Q ≡ e∆N being the total EM

charge.

6.4 Nonrelativistic limit

In the NR limit, T << m and/or η << m3, we again perform the sum over nq and

integrate over angles. The leading term is now

∆Ξ∗

Ξ0
= ατ

3π
V η0, (6.25)

where η0 is the nonrelativistic expression for the particle density of the ideal gas (antiparti-

cles are suppressed by e−m/T )

η0(ν) = (mT )3/2

p
2π2

∫ ∞

0
d z

z1/2

ez−ν−1
, (6.26)

with ν ≡ (µ−m)/T < 0. The shift in the thermodynamic potential with respect to the ideal

gas value is

∆Ω∗ =−T
∆Ξ∗

Ξ0
=−ατ

3π
T V η0. (6.27)
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However, since ∂Ω0/∂ν=−T V η0,

Ω∗(ν) =Ω0(ν)+ ατ

3π

∂Ω0

∂ν
(ν) =Ω0(νem), (6.28)

νem(ν,τ) = ν+ ατ

3π
. (6.29)

Therefore, the effect of the electromagnetic quantum fluctuations is to increase the chemical

potential by an amount proportional to (ατ)T . They also lead to an increase in the pressure

∆P∗ = P0(νem)−P0(ν) = ατ

3π
Tη0. (6.30)

The nonrelativistic density is

η∗(ν,τ) = 1

T

∂P∗

∂ν
= 1

T

∂P0

∂νem
= η0(νem,τ). (6.31)

Condensation will take place whenever ν em = 0, which means νc =−(ατc )/3π. Then,

the total density is given by η= η∗(νc ,τc ) = η0(0,τc ). Since νc << 1, we follow [92] to compare

the condensation temperature Tc with the temperature T0 of an ideal gas with density η and

ν= νc

η= ζ(3/2)

(
mT0

2π

)3/2 [
1−

p
4π|νc |
ζ(3/2)

]
. (6.32)

Since η= ζ(3/2)[mTc /2π]3/2, Eq. (6.32) leads to

τc = τ0

[
1− 2

3

p
4π|νc |
ζ(3/2)

]
. (6.33)

Introducing Nn = [(2π)3/2/ζ(3/2)](η/m3),

τc = Nn
2/3 −Cα1/2Nn,

C = 4

3
p

3ζ(3/2)
= 0.295. (6.34)

Again, the shift is proportional to the EM charge α1/2Nn = (1/2
p
π)Q.

The critical temperature is always lower than the ideal gas value, an indication that

electromagnetic repulsion acts against condensation. In the ultra-relativistic and nonrela-

tivistic cases, this shift is related to an electromagnetic increase in the chemical potential

proportional to α

µem =µ+ g (ξ,τ)αT. (6.35)
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We have g (ξ,τ) = τ/3π for τ<< 1 (NR), and g (ξ,τ) = ξ f (ξ) for τ>> 1 (UR), with f (ξ) defined

in Eq.(6.21). Electromagnetic repulsion is also responsible for an increase in pressure when

compared to that of the ideal gas. In the UR and NR limits,

∆P∗
u /m4 = π

15
ατ4, (6.36)

∆P∗
n /m4 = 1

3π
ατ2 η0

m3
= ζ(3/2)

6π2
p

2π
ατ7/2. (6.37)

As for the increase in density, in the UR limit, we have

∆η∗/m3 = ξ f (ξ)

3
ατ3. (6.38)

In the NR limit, ∆η∗ = η∗(ν,τ)−η0(ν,τ) = η0(νem,τ)−η0(ν,τ). Using Eq.(6.32), we obtain

∆η∗/m3 = 1

6π2
√

2|1−ξ|
(6.39)

6.5 Numerical results

For the relativistic case, the shift in pressure and density as functions of tempera-

ture for some values of the chemical potential are shown in Figs.(6.3) and (6.4), respectively.

Fig.(6.5) shows the critical temperature as a function of the density. In all the figures, we have

taken m to be the charged pion mass mπ± = 139.6MeV/c2.
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Figure 6.3: Change in the pressure as a function of temperature. The charged pion mass mπ± = 139.6 MeV
was used for m.
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Figure 6.4: Particle density of the ideal gas (full line) and of the gas with electromagnetic interaction (EM gas
- dashed line) as a function of temperature for some values of the chemical potential.
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Figure 6.5: Condensation temperature as a function of particle density for the ideal gas and for the gas with
electromagnetic interaction.

It is clear from the numerical calculations that the pressure and the density increase

with respect to the ideal gas values, whereas the condensation temperature decreases, all

this as a consequence of the electromagnetic repulsion that sets in via quantum fluctuations.

The increase in pressure and density is expected because the gas will experience a repulsive

interaction, since we are fixing the electromagnetic (EM) charge Q = e∆N , proportional to

the number of particles minus the number of antiparticles. For positive chemical potential

µ > 0, there are more particles than antiparticles. At low temperatures, no antiparticles will

be produced from the vacuum, so that we are left with a system of particles (positive net
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particle number), all with the same EM charge e, that repel each other. As we increase the

temperature above 2mc2, zero-charge particle-antiparticle pairs will be continuously cre-

ated from and annihilated into the vacuum, but this does not change the net charge, and

the system still consists of same sign charges that experience a net repulsion. Although the

results are order α corrections, as we move into the UR regime, those corrections become

more relevant. However, we cannot trust our first order calculation for values of τ = T /m

close to, or larger than, 1/α.

Since our calculations show that the first order O (e2) of the expansion gives a small,

yet relevant, contribution in the ultra-relativistic limit, higher order O (e4) corrections will

lead to even smaller contributions that can be neglected in the calculation of physical quan-

tities such as the pressure, density, and critical temperature of condensation.

We point out that temperatures in the graphs do not exceed τ ∼ 10 < 137, spanning

a region where our approximations should hold. Note that the increase in pressure already

reaches 5% for values of τ ∼ 2−3. As for the increase in density, it may reach 9% for τ ∼ 6,

whereas the decrease in condensation temperature reaches 5% for τ ∼ 6. In order to detect

changes of the order of 5−10%, one would have to search for physical scenarios with temper-

atures corresponding to τ= 2−10, so that relativistic effects become appreciable still within

the validity of our computations.

In the inner core of a neutron star, where pion condensation may occur [93, 94, 95],

densities exceed 1014 g/cm3, with number densityρ > 0.4fm−3, and pressure P > 1033 dyn/cm2.

In our numerical calculations, the shift in condensation temperature shown in Fig.(6.5) be-

comes appreciable for number densities η/(mπ±)3 > 2, or η > 1.4fm−3, and temperatures

where kTc > 350MeV or Tc > 4×1012 K. Such temperatures T ∼ 1012 K are found in the center

of neutron stars.

In conclusion, we have shown that EM quantum fluctuations increase the pressure

and the density of the gas with respect to ideal gas values by amounts proportional to α

times a power of τ. The condensation temperature is, however, lowered by a correction pro-

portional to the charge Q = e∆N . The shifts become more relevant (of the order of a few

percent) the more relativistic is the system. The combination of quantum and relativistic ef-
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fects in dense hot gases leading to deviations from ideal gas behavior should also be present

whenever other conserved charges interact via the exchange of their vector boson carriers,

as in Quantum Flavordynamics or Quantum Chromodynamics, for example. We plan to in-

vestigate this in the near future.



Chapter 7

Conclusions

We have shown that a relativistic quantum gas satisfies the requirement of having

ε < 0 and µ < 0 simultaneously negative. As the sources of magnetic fields are current den-

sities, in relativistic systems one obtains magnetic responses comparable to electric ones, in

opposition to nonrelativistic systems (v << c), where magnetic responses are much smaller

than electric ones. A relativistic system is then a key ingredient to achieve a natural left-

handed behavior.

Summing up, we have presented a theoretical study of the EM propagation and re-

sponses of a relativistic electron gas and a relativistic Bose gas, for various temperatures and

carrier densities. Using linear response and RPA, we have identified the propagation modes

and their dispersion relations from the QED propagators as well as from Maxwell’s equa-

tions with the added input of the constitutive relations obtained from the QED responses.

We have found a longitudinal plasmon mode, two transverse plasmon modes, and a pho-

tonic mode which propagates with the speed of light in vacuum, i.e., for which the medium

is transparent thanks to the specific form of its relativistic electromagnetic responses. In de-

riving dispersion relations, we were able to identify stable solutions and regions of instability

where the plasmon modes decay. Finally, we have also identified the regions in the (|~q|,ω))

plane where the longitudinal permittivity εL and longitudinal inverse permeability νL are

both simultaneously negative.

For T = 0, we have obtained analytic expressions that coincide with those existing in

89
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the literature if we neglect the vacuum contributions. The appearance of non-zero imaginary

parts indicates that the system is unstable to the decay into electron–hole (lower energies)

or electron–positron (higher energies) pairs. The former is well known to occur in the non-

relativistic limit. Thus, the region of imaginary parts of longitudinal responses will define

a region where the plasmon cannot propagate, that is, there exists a maximum wavevector

beyond which (inside the region of imaginary parts) the plasmon excitation disappears. Fur-

thermore, the explicit expressions for longitudinal electric and magnetic responses allow for

the calculation of dispersion relations for plasmons.

We have shown, from Maxwell’s equations, that the REG has effective permittivity and

permeability that are both negative at frequencies below the longitudinal electric plasmon

frequency in the long wavelength limit (in the study of the relativistic charged Bose gas, we

obtained this result for frequencies below the transverse plasmon frequency for any chem-

ical potential and temperature, in the long wavelength limit |~q | → 0, where both plasmon

frequencies are equal, ωL(0) = ωT (0)). We conclude that the REG is a natural realization

of a LHM, and this occurs because the gas is relativistic. We have also confirmed that the

photonic mode propagates in the REG with the speed of light in vacuum, without losses, by

explicitly computing the energy dissipated in the gas and finding that it vanishes, a conse-

quence of the fact the electrons do not self-interact. The REG is thus completely transparent

to the photonic mode. Finally, we use Snell’s law to argue that the index of refraction for the

photonic mode is neff = −1, and explore the implications of this fact for the reflection and

transmission coefficients. We suggest that the REG can act as a perfect waveguide, with no

energy dissipation.

In the study of the relativistic Bose gas, we have derived the effective electromagnetic

responses and the electromagnetic propagation modes that characterize the gas as a left-

handed material with negative effective index of refraction neff = −1 below the transverse

plasmon frequency, that is, the region of LHM behavior is limited to the region ωγ <ω<ωT ,

where ωγ = |~q| is the frequency of photonic mode. In addition, we have obtained analyti-

cal expressions for the longitudinal and transverse plasmon modes at T = 0, which coincide

with the literature in the relativistic [71] and nonrelativistic limits [72], and numerical results
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for T 6= 0 in the condensed phase. We remark that the Lagrangian density in our approach

does not include a self-interaction term λ(φ∗φ)2. The condensate is introduced by the in-

clusion of the condensed density at zero momentum (ground state) in the Bose-Einstein

distribution. We plan to include a self-interaction in a future investigation.

Since the Bose gas is a LHM below the transverse plasmon frequency, we have ob-

tained, for ultra-relativistic densities, analytical solutions for the transverse plasmon fre-

quencyωT (|~q |), and have shown that in the long-wavelength limit, |~q |→ 0, in the condensed

phase the transverse plasmon frequency decreases when the temperature is increased to

T → Tc , whereas, above the transition critical temperature Tc , ωT (0) increases. We sug-

gest that this behavior may be explained by the contribution of antibosons above the critical

temperature of condensation. In the condensed phase (T < Tc ), there are no antibosons in

the gas, and particularly for ultra-relativistic densities, the density of antibosons increases

rapidly, implying that more energy is needed to obtain a collective excitation such as a trans-

verse plasmon. When we look at relativistic and non-relativistic densities, we have to go

beyond the critical temperature of condensation (Tt > Tc ) for the transverse plasmon fre-

quency to start to increase with the temperature. This is reasonable because only in the

ultra-relativistic domain there is a sharp transition at Tc in the density of antibosons (Fig.5.1).

For lower densities, the transition is smooth, so that a higher temperature is required for the

plasmon frequency to start increasing with temperature.

In particular, for the longitudinal mode, the plasmon dispersion relation exhibits a

roton-type local minimum that disappears at the transition temperature. This roton struc-

ture agrees remarkable well with the non-relativistic results reported in the literature [88].

There, in a charged superfluid, it has been shown that the phonon mode of the neutral super-

fluid is pushed to a finite plasmon frequencyωp , whereas the roton mode is more or less un-

affected. In the charged case, the spectrum of the superfluid field shows a plasmon excitation

that turns into a roton excitation, with a gap energy ∆(|~qrot|) for higher |~q |. This gap energy

∆(T ) may be interpreted as an order parameter, whose temperature dependence defines the

regions of BEC and normal phase. For T = Tc , the gap energy disappears, and we obtain a

normal phase. We believe that in the vicinity of the critical temperature of BEC (T → Tc ) we
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may extract a critical exponent of the phase transition. We also hope to obtain an analytic

solution for the spectrum gap energy ∆(T ) in the non-relativistic limit to compare with the

result obtained in [88], where the authors studied the dynamical properties of a weakly cou-

pled charged Bose gas at finite temperature by means of the dielectric formalism. With all

this, we hope to obtain an energy spectrum that behaves like E 2
p = ω2

L +∆(T )2 +C (η−ηc ),

where C is a parameter which may depend on the temperature and charge density, to better

understand how the roton excitation is thermally induced.

Finally, we have computed deviations from ideal gas behavior of the pressure, den-

sity, and Bose-Einstein condensation temperature of a relativistic gas of charged scalar bosons

caused by the current-current interaction induced by electromagnetic quantum fluctuations

treated via Scalar Quantum Electrodynamics. We have obtained expressions for those quan-

tities in the ultra-relativistic and nonrelativistic limits, and presented numerical results for

the relativistic case. We have shown that EM quantum fluctuations increase the pressure and

the density of the gas with respect to ideal gas values by amounts proportional to α times a

power of T . The condensation temperature is, however, lowered by a correction proportional

to the charge Q = e∆N , all this as a consequence of the electromagnetic repulsion that sets in

via quantum fluctuations. The increase in pressure and density is expected because the gas

will experience a repulsive interaction, since we are fixing the electromagnetic (EM) charge.

The shifts become more relevant (of the order of a few percent) the more relativistic is the

system.

Thus, we notice that the inclusion of electromagnetic interactions in the non-relativistic

charge Bose gas gives small corrections that can be neglected, compared with the ideal Bose

gas. However, for relativistic densities such as in astrophysical scenarios as neutrons stars

and white dwarfs, the correction of the critical temperature has a small relevant contribu-

tion that shows we cannot neglected the electromagnetic quantum fluctuations of a charged

system. We must to emphasize that our calculations are limited in first order in α, thus we

cannot trust in corrections beyond α= 1/137, because for densities η→∞, the critical tem-

perature Tc → 0.

The combination of quantum and relativistic effects in dense hot gases leading to
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deviations from ideal gas behavior should also be present whenever other conserved charges

interact via the exchange of their vector boson carriers, as in Quantum Flavordynamics or

Quantum Chromodynamics, for example. We plan to investigate this in the near future.

We also plan to investigate the role of strong magnetic fields in scenarios like pion

condensation. A condensed pion phase inside a magnetar (neutron star with a intense mag-

netic field) is a very important topic today. Thus, considering how an external strong mag-

netic field affects our results is certainly a line of research to be pursued.

Another development that we contemplate is the extension of our results to 2+1 di-

mensions, where experiments with graphene may provide accessible testing grounds for our

findings. Relativistic dispersion relations emerge naturally in the discussion of graphene, so

that we hope to investigate electromagnetic responses in such systems, in a systematic way,

by using our formalism.
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Appendix A

Minkowski to Euclidean

Most of the calculations in this thesis were performed with Euclidean metric, and to

obtain the final results we performed an analytic continuation to Minkowski metric. For this,

we defined the temporal coordinate in Euclidean metric as x4 ≡ τ= i t , with t = x0.

A.1 Fourier Transforms

In Minkowski space, the Fourier transform of a function f (x) is

f̃ (q) =
∫

d 4x e i qx f (x),

f (x) =
∫

d 4q

(2π)4
e−i qx f̃ (q), (A.1)

with q = (ω,~q), x = (t ,~x), and
∫

d 4x = ∫
d x0

∫
d 3x. The product q ·x = q0x0−~q ·~x =ωt−~q ·~x. In

Euclidean space we have q0 → i q4 ≡ iωn , where ωn is the Matsubara frequencies for bosons

or fermions, so that

(q · x)M →−(q · x)E =−ωnτ−~q ·~x (A.2)

or (q · x)E = ωnτ+~q ·~x. The subscript M denotes Minkowski and E Euclidean. The Fourier

transforms in Euclidean metric are

f̃ (ωn ,~q) =
∫ β

0
dτ

∫
d 3xe−iωnτ−i~q·~x f (τ,~x), (A.3)

f (τ,~x) = T
∑
n

∫
d 3q

(2π)3
e iωnτ+i ~q ·x f̃ (ωn ,~q), (A.4)
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and the Euclidean derivatives are

∂µ f (τ,~x) = T
∑
n

∫
d 3q

(2π)3
(i qµ)e i qx f̃ (ωn ,~q), (A.5)

so ∂µ→ i qµ. In Minkowski metric, we have

∂µ f (x) = T
∑
n

∫
d 3q

(2π)3
(−i qµ)e−i qx f̃ (q), (A.6)

so we identify ∂µ→−i qµ.

A.2 Electromagnetic field

In Minkowski space, we write the four-vector potential as A ≡ (A0, Ai ) = (φ, Ai ), where

A0 =φ is the time component and A1, A2, A3 the space components, with contravariant com-

ponents Ai =−Ai . In Euclidean metric, we have AE ≡ (A4, AE
i ), with A4 = iφ= i A0. The spa-

tial coordinantes are xE
i = xi

M and AE
i = Ai

M , where the superscript E is for Euclidean and M

for Minkowski.

The components of electromagnetic tensor Fµν in Minkowski metric are

F M
i j = ∂i AM

j −∂ j AM
i =−(∂i A j

M −∂ j Ai
M ), (A.7)

= −
(
∂AE

j

∂xE
i

− ∂AE
i

∂xE
j

)
=−F E

i j . (A.8)

Thus, from Minkowski to Euclidean, F M
i j =−F E

i j . The temporal coordinate F M
0 j is

F M
0 j = ∂0 AM

j −∂ j AM
0 =−∂0 A j

M −∂ j A0
M ,

= −i

(
∂AE

j

∂xE
4

− ∂AE
4

∂xE
j

)
=−i F E

4 j . (A.9)

We obtain F M
0 j =−i F E

4 j , and the components of electric and magnetic fields are

F E
i j = −F M

i j = B k
M , (A.10)

F E
4 j = i F M

0 j = i E j
M , (A.11)

and F0i F 0i → −F4i F4i and F M
i j F i j

M → −F E
i j F E

i j . Therefore, the Maxwell Lagrangian density

transforms as

LM =−1

4
F M
µνFµν

M → 1

4
F E
µνF E

µν, (A.12)



APPENDIX A. MINKOWSKI TO EUCLIDEAN 102

or

LE = 1

4
FµνFµν. (A.13)

A.3 Dirac field

The fermion Lagrangian density with the inclusion of chemical potential ξ, is

LF = ψ̄(iγ0∂t + i~γ ·~∇+m −ξγ0)ψ, (A.14)

where ψ̄ = ψ†γ0 and γµ = (γ0,~γ) are the Dirac matrices. In Quantum Electrodynamics, the

interacting Lagrangian in Lint = eψ̄ /Aψ= eψ̄γ0 A0ψ−eψ̄~γ ·~Aψ. Writing the temporal coordi-

nate as ∂t = i∂4, and A4 = i A0, we obtain

LF +Lint = iψ† [−i D4 −γ0~γ ·~D − i mγ0 −ξ]ψ, (A.15)

where D4 ≡ (∂4 − i e A4) and ~D ≡ (~∇− i e~A). Thus, if we perform the functional integral over

the fermion fields in Euclidean metric, we have

Ze =
∮

[i dψ†][dψ]exp

(∮
d 4xE iψ† [

i D4 +γ0~γ ·~D + i mγ0 − iξ
]
ψ

)
= det

[
β

(
i D4 +γ0~γ ·~D − i mγ0 − iξ

)]
. (A.16)

We may rewrite the determinant using γ4 = iγ0, γi = γi . Then, we obtain eq.(2.5)

det
[
β

(
i D4 +γ0~γ~D − i mγ0 − iξ

)] = det
[−βγ4

(−iγ4i D4 − i~γ~D +m + iξγ4
)]

= det
[−βγ4

(
i /D −m − iξγ4

)]
. (A.17)



Appendix B

Semiclassical expansion of Z

The action of Quantum Electrodynamics in Euclidean metric is

S[A,ψ̄,ψ] =
∫

d 4x

(
1

4
FµνFµν+ ψ̄(∂µγµ−m − iξ)ψ+eψ̄γµAµψ

)
, (B.1)

where Fµν = ∂µAν−∂νAµ, and we have used the shorthand
∫

d x ≡ ∫ β
0 d x4

∫
d 3x. Considering

the electromagnetic field Aµ = A(c)
µ +×aµ as the sum of an external classical field plus quan-

tum fluctuations, the electromagnetic action S[A] = S[A(c) +×a] may be expanded around

the classical part

S[A] = S[A(c)]+×
∫

d 4x
δS A

δAµ

∣∣∣∣
A(c)

aµ(x)+ ×2

2!

∫
d 4xd 4 y aµ(x)

δ2S

δAµ(x)δAν(y)

∣∣∣∣
A(c)

aν(y)+O (×4).

(B.2)

The first integral is zero because the classical field A(c)
µ is a solution of the equation of motion,

and

δ2S

δAµ(x)δAν(y)

∣∣∣∣
A(c)

= (∂2δµν−∂µ∂ν)δ(y −x). (B.3)

Thus, to second order in the Planck constant, we obtain

S[A,ψ̄,ψ] = S[A(c),ψ̄,ψ]+×2Sa[a,ψ̄,ψ], (B.4)

and the functional integral over aµ is given by the quadratic form

Sa = 1

2

∫
d 4xd 4 y ax

µ[Gγ
µν]−1

x y ay
ν +e

∫
d 4x(ψ̄γνψ)ax

µ, (B.5)

where Gγ
µν is the photon propagator in the chosen gauge. The quadratic integral may be

performed. Taking minus its logarithm

Sint
e =−e2

2

∫
d 4x d 4 y (ψ̄γµψ)xGγ

µν(x − y)(ψ̄γνψ)y . (B.6)
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The integral over quantum fluctuations of the gauge field leads to electron-electron inter-

actions mediated by the photon propagator. The remaining fermionic integral is given by

Z (sc)
e [A(c)] =

∮
[i dψ†][dψ]e−S(sc)

e [ψ†,ψ,A(c)], (B.7)

where the fermionic semiclassical action is S(sc)
e = Se+Sint

e . Expanding exp(−Sint
e ), the fermion

integral reads

Z (sc)
e [A(c)] ≈

∮
[i dψ†][dψ]e−Se [ψ†,ψ,A(c)][1−Sint

e ], (B.8)

where we have neglected a term O (α4). The approximation in (2.5) only kept the leading

term in (B.8). There, we dropped the superscript c with the understanding that A is a classi-

cal field. The fermion determinant which results from the integration involves the electron

propagator in the presence of the background field. That propagator can be expanded in

the background, 2.1, so that Trln
[−βγ4G[A]

]−Trln
[−βγ4G−1

0

]
, with G0 ≡G[A = 0], is given

as an infinite sum of one-loop graphs: a fermion loop with an even number (due to Furry’s

theorem) of insertions of the classical field

1

2
Tr(G0 /AG0 /A)+ 1

4
Tr(G0 /AG0 /AG0 /AG0 /A)+ . . . (B.9)

The first term of the series is just

1

β

∑
n

∫
d 3q

(2π)3
Aµ(q)Πµν(q)Aν(−q), (B.10)

with Πµν(q) given by (5.13), the one-loop vacuum polarization tensor. The next term, with

four insertions, is still one-loop, nonlinear in the fields, depending on (T,ξ), and typically of

order α(αE 2/m4) or α(αB 2/m4).

If we consider the first contribution from the electron-electron interaction, we have

to contract the four-fermion term in Sint
e with the electron propagator in the external field.

The resulting graph (Fig. B.1) is a two-loop contribution. When we expand in the exter-

nal field, the first contribution that depends on the field is quadratic and of order α2, and

contributes in linear response. The next terms in the expansion in the external field are non-

linear, (T,ξ)- dependent contributions of order α(αE 2/m4), α(αB 2/m4).
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Figure B.1: Graph for the electron-electron interaction expanded in the external field (wiggly lines). The
dashed wiggly lines represent the photon propagator.

Thus, restricting our attention to formula (2.5) is equivalent to neglecting one-loop

contributions that are nonlinear, as well as a two-loop contribution to linear response of

order α2, and nonlinear ones that also come with electron-electron interactions. Although

non-linear terms might bring interesting effects [96], we restrict our analysis to fields that

are not strong enough to invalidate the linear response approximation.



Appendix C

Three-dimensional rotation and gauge

invarianve ofΠµν

The gauge invariance of the polarization tensorΠµν allows us to write

qµΠµν =

ν= 4 q4Π44 +qiΠi 4 = 0,

ν= j q4Π44 +qiΠi 4 = 0.
(C.1)

Multiplying the first equation by q4 and the second by q j , we obtain

q2
4Π44 +q4qiΠi 4 = 0, (C.2)

q j q4Π44 +qi q jΠi 4 = 0. (C.3)

SinceΠi 4 =Π4i , subtracting the equations, we have

Π44 = qi qi

q2
4

Πi j . (C.4)

One may write the tensor as Πµν =Π(v)
µν +Π(m)

µν , to split the vacuum (T = ξ = 0) and medium

contributions. The vacuum contribution may be written in a fully covariant form

−Π
(v)
µν

q2
=

(
δµν−

qµqν
q2

)
C (q2), (C.5)

where the scalar function C (q2) may be obtained from standard calculation at T = ξ = 0

[21]. However, one cannot write the medium contribution tensor Π(m)
νσ in a fully covariant

form due the fact that the center of mass of the medium introduces a preferred reference.
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The symmetry is then reduced to three-dimensional rotation and gauge invariance, leading

to [23]

−
Π(m)

i j

q2
=

(
δi j −

qi q j

|~q|2
)
A +δi j

q2
4

|~q|2 B, (C.6)

where A (q4,~q) e B(q4,~q) are scalar functions. We write (C.4) as

Π44 = (−q2)

[
qi q j

q2
4

(
δi j −

qi q j

|~q |2
)
A + qi q j

q2
4

δi j
q2

4

|~q|2 B

]
, (C.7)

and obtain

B(q4,~q) =−Π
(m)
44 (q)

q2
. (C.8)

From (C.1), we have Π̃(m)
4 j

Π(m)
4 j = −qi

q4
Π(m)

i j

= −qi

q4
(−q2)

(
(δi j −

qi q j

~q2
)A +δi j

q2
4

~q2
B

)

= q4
q2

~q2
q j B. (C.9)

The scalar function B(q4,~q) allows us to define the tensorsΠ(m)
44 and Π(m)

4 j . Finally, the func-

tion A (q4,~q), may be obtained taking the traceΠ(m)
i j

Π(m)
i i = −q2

[
(δi i −1)A +δi i

q2
4

~q2
B

]

= −2q2A +3
q2

4

|~q |2Π
(m)
44 . (C.10)

AddingΠ(m)
44 on both sides of the equation above, withΠ(m)

µµ =Π(m)
i i +Π(m)

44 , we obtain

Π(m)
i i +Π(m)

44 =−2q2A + 3q2
4

~q2
Π(m)

44 +Π(m)
44 . (C.11)

Thus, we obtain the scalar functions A and B in terms of Π(m)
44 and the trace Π(m)

µµ from the

medium contribution to the polarization tensor

A (q4,~q) =− 1

2q2
Π(m)
µµ +

(
3

2|~q|2 − 1

q2

)
Π(m)

44 , (C.12)

B(q4,~q) =−Π
(m)
44

q2
. (C.13)

We define ∆Πµν =Πµν(T,µ)−Πµν(0,0) by subtracting the vacuum contribution.



Appendix D

Calculation of the Matsubara sums ofΠ(m)
44

andΠ(m)
µµ for fermions

D.1 Computation ofΠ(m)
44

The componentΠm
44 of the polarization tensor 5.13 is

Π44 =−e2T
∞∑

n=−∞

∫
d 3p

(2π)3
Sp

[
γ4GF (p)γ4GF (p −q)

]
, (D.1)

where GF (p) =−(γµp̄µ+m)−1 is the fermion propagator in momenta space, p̄µ ≡ (p̄4, p j ) =
(p4 + iξ, p j ), with p4 = 2πT

(
n + 1

2

)
, and qµ = (q4,~q). The fermion propagator may be written

as

GF (p) =− /̄p −m

p̄2 −m2
, (D.2)

where ¯/p = γµpµ. Calculating the spin trace in D.1 we have

Sp
[
γ4GF (p)γ4GF (p −q)

]= Sp
[
γ4( /̄p −m)γ4( /̄p − /q −m)

]
(p̄2 +m2)[(p̄ − q̄)2 +m2]

. (D.3)

The numerator may be computed using the algebra of Dirac matrices1, eq. D.1 reads

Π44 −4e2T
∞∑

n=−∞

∫
d 3p

(2π)3

p̄4(p̄4 −q4)−~p · (~p −~q)−m2

(p̄2 +m2)[(p̄ − q̄)2 +m2]
. (D.4)

1

Sp[γ4γµγ4γν] = 4(δ4µδ4ν+δ4νδ4µ−δµνδ44)

Sp[γ4γµγ4] = 0

Sp[γ2
4m2] = −m2Sp[I ] =−4m2
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Writing the numerator of (D.1) as

p̄4(p̄4 −q4)−~p · (~p −~q)−m2 = 1

2
(p̄2

4 +ω2
p )+ 1

2
[(p̄4 −q4)2 +ω2

p−q ]− C

2
, (D.5)

where ω2
p = ~p2 +m2, and

C = q2 +4ω2
p −4~p ·~q , (D.6)

with q2 = q2
4 +~q2, eq. D.4 reads

Π44 =−2e2T
∫

d 3p

(2π)3

{ ∞∑
n=−∞

1

p̄2
4 +ω2

p
+

∞∑
n=−∞

1

(p̄4 −q4)2 +ω2
p−q

−C
∞∑

n=−∞
1

(p̄2
4 +ω2

p )[(p̄4 −q4)2 +ω2
p−q ]

}
(D.7)

The problem reduces to solving the three Matsubara sums in the equation above. Solving

the first sum, we have

∞∑
n=−∞

1

p̄2
4 +ω2

p
= 1

(2πT )2

∞∑
n=−∞

1

(n + 1
2 + iξ)2 +ω2

p

, (D.8)

where ξ ≡ βξ
2π and ωp ≡ βωp

2π . We may identify the term (n + 1
2 + iξ)2 +ω2

p = (n − x+)(n − x−),

and using the result

∞∑
n=−∞

1

(n −x+)(n −x−)
=πcotπx+−cotπx−

x−−x+
(D.9)

with x± =−1
2 ± i (ωp ∓ξ), we have cotπx± = cot

[
π

(−1
2 ± i (ωp −ξ)

)]
. Noting that

cot

[
π

(
l ± 1

2
+ i b

)]
= i

1+e2πbe−2πi l e∓πi

1−e2πbe−2πi l e∓πi ,
(D.10)

if l =±1,±2, . . ., we obtain

cot

[
π

(
l ± 1

2
+ i b

)]
= i

e−πb −eπb

e−πb +eπb
=−i tanhπb. (D.11)

We may identify tanh(πb) = 1−2nF (2πb), where

nF (θ) = 1

eθ+1
, (D.12)

thus

cotπx± =∓i
[
1−2nF

(
β(ωp ∓ξ)

)]
. (D.13)

Therefore, the sum (D.14) is

∞∑
n=−∞

1

p̄2
4 +ω2

p
= 1

2Tωp
[1−n−

F

(
p

)−n+
F

(
p

)
], (D.14)
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where n±
F (p) ≡ nF (βωp −βξ). The second sum in D.4 may be evaluated directly if we write

the term p̄4 −q4 = (2n + i )πT + i (µ+ i q4). Thus, if we let µ→ µ+ i q4, where, q4 = 2πl T , and

ωp →ωp−q , we can use the same result of the first sum (D.14). We have

∞∑
n=−∞

1

(p̄4 −q4)2 +ω2
p−q

= 1

2ωp−q T

[
1−n−

F

(
p −q

)−n+
F

(
p −q

)]
. (D.15)

This result is identical to the first sum, because one may let ~p → ~p−~q in the
∫

d 3p and obtain

n±
F (p) → n±

F (p −q). It remains to calculate the last sum

S =
∞∑

n=−∞
1

(p̄2
4 +ω2

p )[(p̄4 −q4)2 +ω2
p−q ]

. (D.16)

Splitting in partial fractions, we obtain

S =
∞∑

n=−∞

{
a1

p̄4 −α1
+ a2

p̄4 −α2
+ a3

p̄4 −α3
+ a4

p̄4 −α4

}
, (D.17)

where, α1 = iωp , α2 = −iωp , α3 = q4 + iωp−q and α4 = q4 − iωp−q . We must calculate the

factors ai . From the partial fraction decomposition, we obtain

a1 = a∗
2 = 1

2iωp

[
(iωp −q4)2 +ω2

p−q

]
= 1

2iωp
(
q2 −2pq

) , (D.18)

where p ·q = iωp q4 +~p ·~q , and

a3 = a∗
4 = 1

2iωp−q
[
(q4 + iωp−q )2 +ω2

p
] , (D.19)

where a∗
i is the complex conjugate of ai . Now we need to compute the sum

S′
i =

∞∑
n=−∞

1

p̄4 −αi
=

∞∑
n=−∞

1

2πT
(
n + 1

2 + iξ−αi
) (D.20)

where αi = βαi
2π . The sum may be written as

S′
i =

β

2π

∞∑
n=−∞

1

n −xi
, (D.21)

where xi =−1
2 +αi − iξ. The sum above may be rewritten in the form

S′
i = β

2π

[
− 1

xi
+

∞∑
n=1

(
1

n −xi
+ 1

−n −xi

)]
= βx

π

(
− 1

2x2
i

+
∞∑

n=1

1

(n −xi )(n +xi )

)
.
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From eq. (D.14), we already know how to evaluate the last sum

∞∑
n=−∞

1

(n −xi )(n +xi )
= − 1

x2
i

+2
∞∑

n=1

1

(n −xi )(n +xi )

= i
π

xi
, (D.22)

where Imαi is the imaginary part of αi . We obtain

S′
i =

iβ

2

[
1−2nF

(
β(Imαi −ξ)

)]
. (D.23)

The complete sum is S = a1S′
1 + a2S′

2 + a3S′
3 + a4S′

4. Since a1 = a∗
2 and a3 = a∗

4 , and writing

ai ≡ Reai + i Imai , we obtain

S = 2iβ

{
Rea1

[
n+

F (p)−n−
F (p)

]+ i Ima1
[
1−n+

F (p)−n−
F (p)

]
+ Rea3

[
n+

F (p −q)−n−
F (p −q)

]+ i Ima3
[
1−n+

F (p −q)−n−
F (p −q)

]}
. (D.24)

The sum above will be integrated over
∫

d 3p. Thus, if we let ~p → ~p −~q , this implies ωp →
ωp−q , and we obtain a1 →−a∗

3 . The first and third terms above will cancel in the
∫

d 3p, and

we obtain

S =−2βIma1
[
1−nF (p)

]
, (D.25)

where,

nF (p) = n−
F (p)+n+

F (p)

= 1

eβ(ωp−ξ) −1
+ 1

eβ(ωp+ξ) −1
, (D.26)

and the polarization tensorΠ44 is

Π44 =−2e2
∫

d 3p

(2π)3

1

ωp
[1−nF (p)][1+2C Ima1ωp ]. (D.27)

The term C = q2 −4~p ·~q −2p2
4 ∈R. Thus, substituting a1 we write

Π44 = −2e2
∫

d 3p

(2π)3

1

ωp
[1−nF (p)]Re

(
1− C

q2 −2p ·q

)
= − e2

2π3
Re

∫
d 3p

ωp

[
1−nF (p)

] p ·q −2p4(q4 −p4)

q2 −2p ·q
. (D.28)

Here, we redefine p4 = iωp . We are interested in the medium contribution to the polarization

tensor, which can be obtained by subtracting the vacuum contribution Π44(T = 0,ξ = 0) ≡
Π(v)

44 , of (D.28), whereΠ(m)
44 =Π44(T,ξ)−Π44(0,0). We obtain

Π(m)
44 = e2

2π3
Re

∫
d 3p

ωp
nF (p)

p ·q −2p4(q4 −p4)

q2 −2p ·q
. (D.29)
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D.2 Computation ofΠ(m)
µµ

To calculate the Matsubara sum of the traceΠ(m)
µµ we will apply a similar procedure to

the one used forΠ(m)
44 . We have

Πµµ = −e2T
∞∑

n=−∞

∫
d 3p

(2π)3
Sp

[
γµGF (p)γµGF (p −q)

]
= −e2T

∞∑
n=−∞

∫
d 3p

(2π)3

Sp
[
γµ( /̄p −m)νγµ( /̄p − /q −m)σ

]
(p̄2 +m2)[(p̄ − q̄)2 +m2]

. (D.30)

The spin trace in the numerator is

Sp
[
γµ

(
γνp̄ν−m

)
γµ

(
γσ(p̄σ−qσ)−m

)]= Sp[γµγνγµγσ](p̄ν(p̄ −q)σ)+Sp[γµγµ]m2. (D.31)

One may show that Sp[γµγνγµγσ] =−8νσ, and Sp[γµγµ] =−16. We then obtain

Πµµ =−e2T

π3

∞∑
n=−∞

∫
d 3p

(2π)3

−p̄ · (p̄ −q)−2m2

(p̄2 +m2)[(p̄ −q)2 +m2]
. (D.32)

Writing the numerator as

−p̄ · (p̄ −q)−2m2 =−1

2

[
(p̄2 +m2)+ (

(p̄ −q)2 −m2)−D
]

, (D.33)

where D ≡ q2 −2m2 ∈ R, we have

Πµµ = e2T

2π3

∫
d 3p

{ ∞∑
n=−∞

1

p̄2
4 +ω2

p
+

∞∑
n=−∞

1

(p̄4 −q4)2 +ω2
p−q

−D
∞∑

n=−∞
1

(p̄2
4 +ω2

p )[(p̄4 −q4)2 +ω2
p−q ]

}
.

The result above is analogous to eq. (D.7), therefore we may apply the same results obtained

before to solve the sums inΠ44. We have

Πµµ = e2

2π3

∫
d 3p

ωp
[1−nF (p)][1+2DIma1ωp ]

= − e2

π3
Re

∫
d 3p

ωp
[1−nF (p)]

p · (p +q)

q2 −2p ·q
, (D.34)

and finally, subtracting the vacuum contribution from the equation above, we arrive at the

medium contributionΠ(m)
µµ

Π(m)
µµ = e2

π3
Re

∫
d 3p

ωp
nF (p)

p · (p +q)

q2 −2p ·q
. (D.35)



Appendix E

Integral over angles of A and B for

fermions

We may write eq. (2.23) as

A + 1

2

(
1+ 3q2

4

|~q |2
)
B =− e2

2π3q2
Re

∫ ∞

0

2πp2d p

ωp
nF (p)

∫ π

0
sinθdθ

p2 +p ·q

q2 −2p ·q
, (E.1)

where θ is the angle between the vectors ~p e ~q . We may write

p2 +p ·q

q2 −2p ·q
= −m2 + iωp q4 +|~p||~q|cosθ

q2 −2iωp q4 −2|~p||~q |cosθ

= − α1 +x

λ1 +2x
, (E.2)

where x = cosθ, and

α1 =
−m2 + iωp q4

|~p||~q| , λ1 =
2iωp q4 −q2

|~p||~q| . (E.3)

The integral over angles will be of the form∫ 1

−1
d x

α+x

λ+2x
= 1+ 1

2

(
α− λ

2

)
ln
λ+2

λ−2
. (E.4)

Performing it in (E.1) yields∫ π

0
sinθdθ

p2 +p ·q

q2 −2p ·q
=−

[
1+ q2 −2m2

4|~p||~q | ln

(
q2 −2|~p||~q |−2iωp q4

q2 +2|~p||~q|−2iωp q4

)]
(E.5)

We may split the logarithm into real and imaginary parts in order to retain only the real part

in (E.1). Since ln z = ln |z|+ iφ, we have

ln
(
q2 ±2|~p||~q|−2iωp q4

)= 1

2
ln

[
(q2 ±2|~p||~q|)2 +4ω2

p q2
4

]
− i arctan

(
2ωp q4

q2 ±2|~p||~q|
)

. (E.6)
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Defining |~p| ≡ p, eq. (E.1) becomes

A + 1

2

(
1+ 3q2

4

|~q |2
)
B = e2

π2q2

∫ ∞

0

p2d p

ωp
nF (p)

{
1+ 2m2 −q2

8p|~q | ln
(q2 +2p|~q|)2 +4ω2

p q2
4

(q2 −2p|~q|)2 +4ω2
p q2

4

}
. (E.7)

A similar procedure may be used to obtain the integral over angles of (2.24)

B = −e2

2π3q3
Re

∫
d 3p

ωp
nF (p)

p ·q −2p4(q4 −p4)

q2 −2p ·q
. (E.8)

We may write

p ·q −2p4(p4 +q4)

q2 −2p ·q
=− α2 +x

λ2 +2x
, (E.9)

where

α2 =
−2ω2

p − iωp q4

p|~q | , λ2 =
2iωp q4 −q2

p|~q| . (E.10)

Then,

B = e2

2π3q3
Re

∫ ∞

0

2πp2d p

ωp
nF (p)

∫ 1

−1
d x

α2 +x

λ2 +2x

= − e2

2π3q3
Re

∫ ∞

0

2πp2d p

ωp
nF (p)

{
1+

q2 −4ω2
p −4iωp q4

4p~q
ln

(
2iωp q4 −q2 +2p|~q |
2iωp q4 −q2 −2p|~q |

)}
.

Extracting the real part, comes

B = e2

π2

∫ ∞

0

p2d p

ωp
nF (p)

[
1+

4ω2
p −q2

8p~q| ln

(
(q2 +2p|~q|)2 +4ω2

p q2
4

(q2 −2p|~q|)2 +4ω2
p q2

4

)

− ωp q4

p|~q | arctan

(
8p|~q |ωp q4

4ω2
p q2

4 −4p2|~q|2 +q4

)]
. (E.11)

The results for A and B may be continued to Minkowski metric by letting q4 → iω and

q2 →−q2
M , with q2

M =ω2 −|~q|2, and using the relation

arctan(i x) = i arctanh(x) ≡− i

2
ln

(
1+ z

1− z

)
, (E.12)

the scalar functions A →A ∗ and B →B∗ in Minkoswki metric are

A ∗−
(

1+ 3q2
M

2|~q|2
)
B∗ =− e2

π2q2
M

∫ ∞

0

p2d p

ωp
nF (p)

[
1+ 2m2 +q2

M

8p|~q| f1

]
, (E.13)

B∗ =− e2

π2q2
M

∫ ∞

0

p2d p

ωp
nF (p)

[
1+

4ω2
p +q2

M

8p|~q | f1 −
ωpω

2p|~q | f2

]
, (E.14)
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where

f1 = ln

(
(q2

M −2p|~q|)2 −4ω2
pω

2

(q2
M +2p|~q|)2 −4ω2

pω
2

)
, (E.15)

f2 = ln

(
q4

M −4(p|~q|−ωpω)2

q4
M −4(p|~q|+ωpω)2

)
. (E.16)



Appendix F

Limiting behavior, (|~q|→ 0), of ε and µ−1

for relativistic Fermi gas

In order to access the long-wavelength limit of the relativistic electromagnetic re-

sponses, for ω 6= 0 and ω = 0 (static case), one takes |~q | → 0 and expands the expressions

A ∗ and B∗ after doing the angular integrals. Introducing the dimensionless variables x ≡
ωm/m, a ≡ω/2m, and b ≡ |~q |/2m, and the functions

L1(a,b) ≡ ln
(
ax +b

√
x2 −1+a2 −b2

)
, (F.1)

L2(a,b) ≡ ln
(
ax +b

√
x2 −1+a2

)
, (F.2)

we may rewrite the functions f1 and f2 in (2.28) and (2.29) as

f1 = −L1(a,b)−L1(−a,b)+L1(a,−b)+L1(−a,−b), (F.3)

f2 = +L2(a,b)+L2(−a,−b)−L1(a,−b)−L2(−a,b). (F.4)

Expanding f1 and f2 in powers of b, we derive

f1p
x2 −1

= −2b

a
F (1)
− − 2b3

3a3

[
F (1)
− +aF (2)

+ + (a2 −1)F (3)
−

]
, (F.5)

f2p
x2 −1

= 2b

a
F (1)
+ + 2b3

3a3

[
F (1)
+ −aF (2)

− + (a2 −1)F (3)
+

]
, (F.6)

where we have used

F ( j )
± ≡ 1

(x +a) j
± 1

(x −a) j
. (F.7)
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In terms of the dimensionless variables introduced above, we have

B∗ = − e2

4π2

1

a2 −b2

∫ ∞

1
d xnF (x)

[√
x2 −1+ (x2 +a2 −b2)

4b
f1 − a

2b
f2

]
, (F.8)

D∗ = − e2

4π2

1

a2 −b2

∫ ∞

1
d xnF (x)

[√
x2 −1+ (1+2a2 −2b2

8b
f1

]
. (F.9)

Using (F.3) and (F.4), we obtain

a2

b2
B∗ = e2

4π2

[
2

3a2
I (0) + 1+14a2

3a2
I (1) +4a2I (2)

]
, (F.10)

a2D∗ =− e2

4π2

[
I (0) + 1+2a2

2
I (1)

]
, (F.11)

which lead to

A ∗ = 3e2

2π2
[I (1) +a2I (2)], (F.12)

where the integrals I ( j ) are given by

I ( j ) ≡
∫ ∞

1
d xnF (x)

p
x2 −1

(x2 −a2) j
, (F.13)

with I (2) = ∂I (1)/∂a2. We may compute these integrals exactly at T = 0, when nF (x) =Θ(ζ−
x). We use the Euler substitutions

p
(x −1)(x +1) = t (x + 1) and decomposition in partial

fractions to derive

I (0) = 1

2

[
ζ

√
ζ2 −1− ln

(
ζ+

√
ζ2 −1

)]
, (F.14)

I (1) = ln

(
ζ+

√
ζ2 −1

)
− 1

σ(a)
arctan

(
σ(a)

σ(ζ)

)
, (F.15)

where σ(y) ≡ y/
√|1− y2|. We have used q2

M →ω2 > 0. Since we are interested in ω→ 0, we

have also taken a ¿ 1. Using the expressions

ε= 1+C ∗+A ∗+
(
1− a2

b2

)
B∗, (F.16)

µ−1 = 1+2C ∗+A ∗+−2
a2

b2
B∗, (F.17)

and expanding (F.10) and (F.11) for a ¿ 1 [C ∗ is O (a2)], we obtain

ε= 1− a2
e

a2
+ e2

3π2
ge (ζ)+O (a2) (F.18)
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µ−1 = 1− a2
m

a2
− 5e2

6π2
gm(ζ)+O (a2), (F.19)

where a2
m = 2a2

e ,

a2
e =

ω2
e

4m2
= e2

12π2

(ζ2 −1)3/2

ζ
, (F.20)

and the O (α) corrections are given by

ge (ζ) = ln

(
ζ+

√
ζ2 −1

)
− 1

σ(ζ)
− 7

6σ3(ζ)
, (F.21)

gm(ζ) = ln

(
ζ+

√
ζ2 −1

)
− 1

σ(ζ)
− 14

15σ3(ζ)
. (F.22)



Appendix G

Imaginary and Real parts at T = 0

G.1 Imaginary parts at T = 0

Again, the vacuum contribution does not have an imaginary part. We then refer to

the three cases described in subsection 3.2, which correspond to different regions in the

(a,b) plane.

In case (i), χ2 < 0, η > 1, a < b < bη, the lower integration limit of (3.10), (3.11) is

xl = −a + bη whereas the upper one is xu = a + bη. For a nonvanishing result, we need

xl =−a +bη< xF . This will occur if b− < b < b+, where

b± =± yF

2
+

√
y2

F

4
+a(xF +a). (G.1)

Depending on whether xu < xF or xu > xF , results for the imaginary part will differ. For

xu = a +bη< xF , one needs a < xF and

b2 − yF b +a(xF −a) < 0, (G.2)

b2 + yF b +a(xF −a) > 0. (G.3)

To satisfy (G.2), the argument of the square-root appearing in the roots of the associated

equation has to be positive, so that 0 < a < (xF −1)/2 and (xF +1)/2 < a < xF . Then, (G.3) will

always be satisfied whereas (G.2) implies b̄− < b < b̄+, where

b̄± = yF

2
±

√
y2

F

4
−a(xF −a). (G.4)
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As a result, the integrals in (3.10) and (3.11), with the definition [ f (x)]xu
xl

≡ f (xu)− f (xl ), de-

fine regions (A) and (B) in subsection 3.2.

In case (iii) [χ2 > 1, η < 1 (a > b > bη)], the lower integration limit of (3.10), (3.11) is

xl = a−bη whereas the upper one is xu = a+bη. For a nonvanishing result, xl = a−bη< xF .

This will always occur if a < xF whereas for a > xF , b′− < b < b′+, where

b′
± =± yF

2
+

√
y2

F

4
−a(xF −a). (G.5)

Again, depending on whether xu < xF or xu > xF , results for the imaginary part will differ.

For xu = a +bη< xF , a < xF and

b2 − yF b +a(xF −a) > 0, (G.6)

b2 + yF b +a(xF −a) > 0. (G.7)

To satisfy (G.6), the argument of the square-root appearing in the roots of the associated

equation has to be positive, so that 0 < a < (xF −1)/2 and (xF +1)/2 < a < xF . Then, (G.7) will

always be satisfied whereas (G.6) implies b̄′− < b < b̄′+, with

b̄′
± = yF

2
±

√
y2

F

4
−a(xF −a). (G.8)

We may then define regions (C) and (D) in subsection 3.2.

G.2 Real parts at T = 0

The first integral in expressions (3.5) and (3.6) is simply

1

2

[
xF yF − ln(xF + yF )

]
, (G.9)

whereas the last ones may be integrated by parts, using R1(1) = R2(1) = 0, to yield

xF

12b
[(x2

F +3χ2)R1(xF )+6axF R2(xF )]− 1

12b

∫ xF

1
d x [(x3 +3χ2x)R ′

1 +6ax2R ′
2], (G.10)

for (3.5), and

xF

8b
(1+2χ2)R1(xF )− 1

8b

∫ xF

1
d x(1+2χ2)xR ′

1, (G.11)
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for (3.6). It is convenient to introduce

L±(x) ≡ ln

( |±ax +by +χ2|
|±ax −by +χ2|

)
, (G.12)

so that R1 = −(L+ + L−), R2 = −(L+ + L−)/2. Taking derivatives, dividing out the resulting

polynomials, and adding the ± contributions leads to

xF

12b
[(x2

F +3χ2)R1(xF )+6axF R2(xF )]+ 1

6

[
xF yF + (

3−4b2) ln(xF + yF )
]+ZB , (G.13)

for (3.5) and

xF

8b
(1+2χ2)R1(xF )+ 1

2

(
1+2χ2) ln(xF + yF )+ZD , (G.14)

for (3.6), with ZB and ZD defined and calculated in section below

Definition and calculation of ZB and ZD

The explicit expressions of ZB ,D are

ZB ,D =CB ,D

∫ xF

1

d xp
x2 −1

MB ,D x2 +NB ,D

(x2 +ζ2)2 −4a2x2
, (G.15)

where ζ2 ≡ a2 −η2b2, CB = 1/3 and CD = (1+ 2χ2)/2. The expressions for MB ,D and NB ,D

depend solely on a and b,

MB =−2a2(1+4b2)− [1−2b2 −2a2(2−η2)]ζ2,

NB =−ζ4(1−2b2),

MD = 2a2(1+η2)−ζ2,

ND =−ζ4.

Defining t =
√

(x2 −1)/x2 = y/x, (G.15) reduces to

ZB ,D =CB ,D [(MB ,D +NB ,D )I0 −NB ,DI2], (G.16)

where I j is

I j =
∫ tF

0

d t t j

Ct 4 +Bt 2 +A
, (G.17)

and the coefficients are C= ζ4, B=−2[ζ2(ζ2+1)−2a2], and A= (ζ2+1)2−4a2. There are two

cases to be considered, depending on the roots of the biquadratic equationCt 4+Bt 2+A= 0:
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(i) For η2 > 0, the roots are real

t 2
± = ζ2(ζ2 +1)−2a2 ±2ab|η|

ζ4
, (G.18)

so that the integrals become

I j = 1

4ab|η|
[

t j
+

∫ tF

0

d t

t 2 − t 2+
− t j

−
∫ tF

0

d t

t 2 − t 2−

]
. (G.19)

One may show that t 2
± > 0, therefore∫ tF

0

d t

t 2 − t 2
±
= 1

2t±
ln

∣∣∣∣ tF − t±
tF + t±

∣∣∣∣ , (G.20)

where, from (G.18), we may write t± = (y±/|x±|), with x± = a ±bη and y± =
√

x2
±−1. Then,

I0 = 1

4ab|η|
[

1

2t+
ln

∣∣∣∣ tF − t+
tF + t+

∣∣∣∣− (t+ → t−)

]
, (G.21)

I2 = 1

4ab|η|
[

t+
2

ln

∣∣∣∣ tF − t+
tF + t+

∣∣∣∣− (t+ → t−)

]
. (G.22)

(ii) For η2 < 0, the roots are complex conjugate (t 2
c , t̄ 2

c ), with

t 2
c = [ζ2(ζ2 +1)−2a2]+ i [2ab|η|]

ζ4
. (G.23)

We may decompose into partial fractions to obtain I j = I+j −I−j (tr ≡ Re tc ; ti ≡ Im tc )

I±j = 1

4ζ4tr |tc |2
∫ tF

0

[
d t t j (t ±2tr )

t 2 ±2tr t +|tc |2
]

, (G.24)

and write

I0 = 1

8ζ4tr |tc |2
{

ln

∣∣∣∣∣ t 2
F +2tr tF +|tc |2

t 2
F −2tr tF +|tc |2

∣∣∣∣∣+
2tr

|ti |
[arctan(

tF + tr

|ti |
)+arctan(

tF − tr

|ti |
)]

}
, (G.25)

as well as

I2 = 1

8ζ4tr

{
− ln

∣∣∣∣∣ t 2
F +2tr tF +|tc |2

t 2
F −2tr tF +|tc |2

∣∣∣∣∣+
2tr

|ti |
[arctan(

tF + tr

|ti |
)+arctan(

tF − tr

|ti |
)]

}
, (G.26)

where, from (G.23), one may show that tc = (yc /xc ), with xc = a + i b|η| and yc =
√

x2
c −1.



Appendix H

Polarization and magnetization vectors

Although the REG may be bianisotropic, since its polarization and magnetization de-

pend on both ~E and ~B in eqs. (4.1) and (4.2), for the EM wave characteristic of the photonic

mode this is NOT the case.

For the photonic mode, Maxwell’s equations qi Di = 0 and qi Bi = 0 lead to EL = BL =
0, where we have used Di = εi j E j +τi j B j , with εi j = εδi j +ε′q̂i q̂ j , and the fact that εL = ε+ε′ 6=
0. From ~q × ~H =−ω~D , and using the constitutive relations of Hi and Di , we derive

q̂ ×~BT =−[(ε+τ)/(ν−τ)]~ET . (H.1)

Using the equations (4.26)-(4.28), we obtain

ε+τ= ν−τ= 1+2C ∗+A ∗−B∗, (H.2)

which yields

q̂ ×~BT =−~ET . (H.3)

Eqs.(4.1) and (4.2), with EL = BL = 0 read

~P = (ε−1)~ET −τ(q̂ ×~BT ), (H.4)

~M = (1−ν)~BT +τ(q̂ ×~ET ). (H.5)

For the photonic mode, q̂ ×~BT =−~ET and q̂ ×~ET = ~BT , leading to

~P = (ε−1+τ)~ET , (H.6)
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~M = (1−ν+τ)~BT . (H.7)

Since ~D = ~E +~P and ~H = ~B − ~M , we end up with

~D = (ε+τ)~ET , (H.8)

~H = (ν−τ)~BT . (H.9)

Thus, for |~q| =ω, the effective responses in (4.10) and (4.9) read ε eff = ε+τ, νeff = ν−τ, and

furthermore ε eff = νeff. This leaves us with the usual expressions

~D = εeff~E , (H.10)

and

~H = νeff~B . (H.11)

Therefore, ~P and ~D lie along the direction of the electric field, whereas ~M and ~H lie along

the direction of the magnetic field. Thus, the bianisotropy does not occur for an EM wave

typical of the photonic mode, and we are justified in using this to calculate the reflection and

transmission coefficients in section 4.5.



Appendix I

Current Jµ for relativistic Bose gas

The current density in linear response may be split in two parts

Jµ(x) = δ

δAµ(x)

{
Tr (ΠḠ0)− 1

2
Tr (ΠḠ0ΠḠ0)

}

= J (a)
µ (x)+ J (b)

µ (x). (I.1)

Let us calculate each term explicitly.

I.1 Calculation of J (a)
µ

We have

J (a)
µ (x) = δ

δAµ(x)

∫
d 4 yd 4z 〈y |Π|z〉︸ ︷︷ ︸

〈y |z〉Π(z)

〈z|Ḡ0|y〉︸ ︷︷ ︸
Ḡ0(z,y)

. (I.2)

SubstitutingΠ(z) defined in 5.8, and using the definition of the Dirac delta function,

J (a)
µ (x) = δ

δAµ(x)

∫
d 4 y d 4z δ(4)(y − z)

{
2i e Aν(z)∂̄z

ν+ i e(∂̄ · A)z
}

Ḡ0(z, y)

+ δ

δAµ(x)

∫
d 4 y d 4z δ(4)(y − z)e2 A2(z)Ḡ0(z, y). (I.3)

Taking the functional derivative in Aµ(x), and integrating over d 4z, we obtain

J (a)
µ (x) =

∫
d 4 y δ(4)(y − z)

{
2i e∂̄x

µ− i e∂̄x
µ

}
Ḡ0(z, y)+2e2

∫
d 4 y δ(4)(y − z)Aµ(x)Ḡ0(x, y), (I.4)
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therefore,

J (a)
µ (x) =

∫
d 4 y δ(4)(y −x)

{
i e∂̄x

µḠ0(x, y)
}
+2e2 Aµ(x)Ḡ0(x, x). (I.5)

In momentum space, the current density and the free boson propagator are written in Eu-

clidean metric as

J (a)
µ (q) =

∮
d 4x e−i q·x Jµ(x), (I.6)

Ḡ0(x, y) =
∮

d 4p

(2π)4

e i p·(x−y)

p̄2 +m2
, (I.7)

with p̄4 ≡−i (∂4 −ξ). The current density J (a)
µ (x) becomes

J (a)
µ (x) =−e

∮
d 4p

(2π)4

p̄µ
p̄2 +m2

+2e2 Aµ(x)Ḡ0(x, x). (I.8)

The first term in (I.8) is the free current density in the gas, since it is a constant independent

of the background field Aµ. The second term contributes to the total current density in first

order in Aµ. We may write this term as[
J (a)
µ (x)

]
ind

=
∮

d 4q

(2π)4
e i qx Aµ(q)(2e2)

∮
d 4p

(2π)4

1

p̄2 +m2︸ ︷︷ ︸[
J (a)
µ (q)

]
ind

. (I.9)

We have [
J (a)
µ (q)

]
ind

=Πtad
µν (q)Aµ(q). (I.10)

We identify the tensorΠtad
µν as the contribution from the tadpole diagram in the current den-

sity

Πtad
µν (q) = 2e2

∮
d 4p

(2π)4

δµν

p̄2 +m2
. (I.11)

I.2 Calculation of J (b)
µ

The contribution J (b)
µ to the induced current is

J (b)
µ = δ

δAµ(x)

{
−1

2
Tr (ΠḠ0ΠḠ0)

}
. (I.12)

Computing the trace,

−1

2
Tr

(
ΠḠ0ΠḠ0

)=−1

2

∫
d 4x d 4 y d 4z d 4w〈x|Π|〉y 〈y |Ḡ0|〉z︸ ︷︷ ︸

Ḡ0(y,z)

〈z|Π|〉w 〈w |Ḡ0|〉x︸ ︷︷ ︸
Ḡ0(w,x)

, (I.13)
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and substituting 5.8, we have

−1

2
Tr

(
ΠḠ0ΠḠ0

) = −1

2

∫
d 4x d 4 y d 4z d 4wδ(4)(x − y)

{
2i e A · ∂̄y + i e

[
∂̄ · A

]
y +e2 A2(y)

}
Ḡ0(y, z)

× δ(4)(z −w)
{
2i e A · ∂̄w + i e

[
∂̄ · A

]
w +e2 A2(w)

}
Ḡ0(w, x). (I.14)

Keeping the second order terms in Aµ, and writing them in Fourier space,

−1

2
Tr

(
ΠḠ0ΠḠ0

)=−1

2

∫
d 4x d 4 y d 4z d 4w δ(4)(x − y)δ(4)(z −w)

{
2i e

∮
d 4q

(2π)4
Aµ(q)e i q y

×
∮

d 4p

(2π)4

i p̄µe i p(y−z)

p̄2 +m2
+ i e

∮
d 4q

(2π)4
i qµAµ(q)e i q y

∮
d 4p

(2π)4

e i p(y−z)

p̄2 +m2

}

×
{

2i e
∮

d 4q ′

(2π)4
Aρ(q ′)e i q ′w

∮
d 4p ′

(2π)4

i p̄ρe i p ′(w−x)

p̄ ′2 +m2
+ i e

∮
d 4q ′

(2π)4
i q ′

ρAρ(q ′)e i q ′w
∮

d 4p ′

(2π)4

e i p ′(w−x)

p̄ ′2 +m2

}
,

we obtain

−1

2
Tr

(
ΠḠ0ΠḠ0

) = −e2

2

∮
d 4q

(2π)4

d 4p

(2π)4

d 4q ′

(2π)4

d 4p ′

(2π)4
(2π)4δ(4)(q +p −p ′)(2π)4δ(4)(−p +q ′+p ′)

×
[

Aµ(q)
(2p̄µ+qµ)

p̄2 +m2

(2p̄ ′
ρ+q ′

ρ)

p̄ ′2 +m2
Aρ(q ′)

]
. (I.15)

Integrating over d 4q ′ and d 4p ′,

−1

2
Tr

(
ΠḠ0ΠḠ0

) = −e2

2

∮
d 4q

(2π)4

d 4p

(2π)4
Aµ(q)

(2p̄µ+qµ)(2p̄ρ+qρ)

(p̄2 +m2)([p̄ +q]2 +m2)
Aρ(−q)

= e2

2

∮
d 4q

(2π)4
Aµ(q)Πloop

µρ Aρ(−q), (I.16)

whereΠloop
µρ , is the 1-loop contribution to the polarization diagram in the medium, given by

Π
loop
µρ =−e2

∮
d 4p

(2π)4

(2p̄µ+qµ)(2p̄ρ+qρ)

(p̄2 +m2)([p̄ +q]2 +m2)
. (I.17)

Therefore, for the current density, we write

J (b)
µ (x) = δ

δAµ(x)

[
1

2

∮
d 4x d 4 y Aµ(x)Πloop

µν (x − y)Aν(y)

]
=

∮
d 4 y Πloop

µν (x − y)Aν(y)

=
∮

d 4q

(2π)4
Π

loop
µν (q)Aν(q). (I.18)
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In momentum space, we have J (b)
µ (q) = Πloop

µν (q)Aν(q), and the total current density Jµ =
J (a)
µ + J (b)

µ is

Jµ(q) =Πµν(q)Aν(q) (I.19)

withΠµν =Πtad
µν +Πloop

µν being the full polarization tensor in the medium

Πµν(q) =−2e2
∮

d 4p

(2π)4

δµν

p̄2 +m2
+e2

∮
d 4p

(2π)4

(2p̄µ+qµ)(2p̄ν+qν)

(p̄2 +m2)([p̄ +q]2 +m2)
. (I.20)



Appendix J

Derivation of 〈Jµ(x)Jν(y)〉.

The expectation value 〈Jµ(x)Jν(y)〉 is

〈Jµ(x)Jν(y)〉 = 1

Ξ0

∮
[dφ∗][dφ]Jµ(x)Jν(y)e−S0[φ], (J.1)

where S0[φ] = ∫
Ωd 4z d 4z ′ φ∗(z)G−1(z − z ′)φ(z ′), is the free scalar action, with G−1 ≡ (−∂2 +

m2) the free scalar propagator, and Jµ = φ∗i∂µφ−φi∂µφ∗ the scalar current density. Here,

Ξ0 is the ideal gas grand partition function which acts as a normalization factor. To obtain

the expectation value in (J.1), we may writeΞ in the presence of an external current, and take

its functional derivatives

Ξ[ j∗, j ] =
∮

[dφ∗][dφ]e−∫
Ωd 4z[φ∗G−1φ− j∗φ−φ j]. (J.2)

Writing L j [φ] =φ′∗G−1φ′− j∗G j , with φ′ =φ−G j and φ′∗ =φ∗− j∗G , then

Ξ[ j∗, j ] =
[∮

[dφ∗][dφ]e−∫
Ωd 4xφ′∗G−1φ′

]
e

∫
Ωd 4zd 4z ′ j∗(z)G(z−z ′) j (z ′)

= Ξ0e〈 j∗G j 〉. (J.3)

Defining the normalized partition function ΞN =≡ Ξ[ j∗, j ]/Ξ0, and taking the functional

derivatives

δΞN

δ j∗(x)

∣∣∣∣
j=0

= 〈φ(x)〉, δΞN

δ j (x)

∣∣∣∣
j=0

= 〈φ∗(x)〉, (J.4)

and the second functional derivative

δ

δ j (x)

[
i∂µ

δΞN

δ j∗(x)

]
j=0

= 1

Ξ0

∮
[dφ∗][dφ]φ∗i∂µφ(x)e−S0[φ]

= 〈φ∗(x)i∂µφ(x)〉, (J.5)
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one may obtain the expectation value 〈Jµ(x)〉 = 〈φ∗(x)i∂µφ(x)−φ(x)i∂µφ∗(x)〉 as

〈Jµ(x)〉 =
{[

δ

δ j (x)

(
i∂µ

δ

δ j∗(x)

)
− δ

δ j∗(x)

(
i∂µ

δ

δ j (x)

)]
ΞN

}
j=0

, (J.6)

and the expectation value 〈Jµ(x)Jν(y)〉

〈Jµ(x)Jν(y)〉 =
{[

δ

δ j (x)

(
i∂x

µ

δ

δ j∗(x)

)
− δ

δ j∗(x)

(
i∂x

µ

δ

δ j (x)

)]
×

[
δ

δ j (y)

(
i∂y

ν

δ

δ j∗(y)

)
− δ

δ j∗(y)

(
i∂y

ν

δ

δ j (y)

)]
ΞN

}
j=0

. (J.7)

Note that the expression above will have four functional derivative in j . Thus, when we take

j = 0, only terms in ΞN with four currents j will contribute. Therefore, expanding ΞN

ΞN = 1+〈 j∗G−1 J〉+ 1

2!
〈 j∗G−1 J〉〈 j∗G−1 J〉+ . . . (J.8)

the term that will contribute to the expectation value in J.7 is

Ξ≡Ξ(4)
N = 1

2!

∫
d 4z1d 4z2d 4z3d 4z4 j∗(z1)G(z1 − z2) j (z2) j∗(z3)G(z3 − z4) j (z4). (J.9)

Taking the functional derivative in J.7, we have 〈Jµ(x)Jν(y)〉 =Ω1 +Ω2 +Ω3 +Ω4, where

Ω1 =
{[

δ

δ j (x)

(
i∂x

µ

δ

δ j∗(x)

)
δ

δ j (y)

(
i∂y

ν

δ

δ j∗(y)

)]
Ξ(4)

N

}
j=0

= i∂x
µG(x −x+)i∂y

νG(y − y+)+ i∂x
µG(x − y)i∂y

νG(y −x). (J.10)

Ω2 =
{
−

[
δ

δ j∗(x)

(
i∂x

µ

δ

δ j (x)

)
δ

δ j (y)

(
i∂y

ν

δ

δ j∗(y)

)]
Ξ(4)

N

}
j=0

= −i∂x
µG(x+−x)i∂y

νG(y − y+)−G(x − y)i∂x
µi∂y

νG(y −x). (J.11)

The termΩ3 is obtained fromΩ2 by taking x → y , and µ→ ν

Ω3 =−i∂y
νG(y+− y)i∂x

µG(x −x+)−G(y −x)i∂y
νi∂x

µG(x − y). (J.12)

Since G(y − x) =G(x − y), and i∂x
µG(x − x+) =−i∂x

µG(x+− x), we haveΩ3 =Ω2. The termΩ4

is the complex conjugate ofΩ1, which is real, thusΩ1 =Ω3, and

〈Jµ(x)Jν(y)〉 = 4

[
i∂x

µG(x −x+)i∂y
νG(y − y+)+ 1

2
i∂x

µG(x − y)i∂y
νG(y −x)− 1

2
G(x − y)i∂x

µi∂y
νG(y −x)

]
.

(J.13)
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The propagator is

G(x − y) =
∮

d 4p

(2π)4

e i p(x−y)

p2 +m2
, (J.14)

and

〈Jµ(k)Jν(k ′)〉 =
∫
Ω

d 4xd 4 ye−i kxe−i k y〈Jµ(x)Jν(y)〉. (J.15)

Substituting (J.13), we obtain

〈Jµ(k)Jν(k ′)〉 = 4

{
(2π)8δ(4)(k)δ(4)(k ′)

[∮
d 4p

(2π4)

(−pµ)

p2 +m2

][∮
d 4p

(2π4)

(−p ′
ν)

p ′2 +m2

]}

+ 1

4
(2π)4δ(k +k ′)

∮
d 4p

(2π)4

(2p −k)µ(2p −k)ν
(p2 +m2)[(p −k)2 +m2)]

. (J.16)

Note that,

〈Jµ(x)〉 = δ

δ j (x)

[
i∂µ

δΞN

δ j∗(x)

]
. (J.17)

Here, only terms with two factors of the current in ΞN = Ξ(2)
N = 〈 j∗G−1 j 〉〈 j∗G−1 j 〉 will con-

tribute. We have

〈Jµ(x)〉 = 2i∂x
µG(x −x+) = 2

∮
d 4p

(2π)4

(−pµ)

p2 +m2
. (J.18)

So, eq. (J.13) may be written as

〈Jµ(k)Jν(k ′)〉 = (2π)8δ(4)(k)δ(4)(k ′)〈Jµ(x)〉〈Jν(y)〉+〈Jµ(k)Jν(k ′)〉c , (J.19)

where the subscript "c" means connected. Taking the Fourier transform to compute 〈Jµ(x)Jν(y)〉,
then

〈Jµ(x)Jν(y)〉 =
∮

d 4k

(2π)4

d 4k ′

(2π)4
e i kxe i k ′y〈Jµ(k)Jν(k ′)〉. (J.20)

Substituting (J.19), we obtain 〈Jµ(x)Jν(y)〉 = 〈Jµ(x)〉〈Jν(y)〉+〈Jµ(x)Jν(y)〉c , where

〈Jµ(x)Jν(y)〉c =
∮

d 4k

(2π)4
e i k(x−y)Jµν, (J.21)

with

Jµν =
∮

d 4p

(2π)4

(2p +k)µ(2p +k)ν
(p2 −m2)[(p +k)2 +m2]

. (J.22)

We may use the previous results to compute the grand partition function in first order

Ξ

Ξ0
= 1+ e2

2

∫
Ω

d 4xd 4 y〈Jµ(x)Jν(y)〉Gγ
µν(x − y). (J.23)
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We derive

Ξ

Ξ0
= 1+ e2

2

∫
Ω

d 4xd 4 y〈Jµ(x)〉Gγ
µν(x − y)〈Jν(y)〉+ e2

2
V

∮
d 4q

(2π)4

Jµµ(q)

q2
. (J.24)

We have obtained two contributions to the current-current expectation value: a discon-

nected 〈Jµ(x)〉〈Jν(y)〉; and a connected 〈Jµ(x)Jν(x)〉 term. However, in the grand partition

function Ξ, the disconnected part will vanish in the thermodynamic limit, since it will give

a (lnV /V ) contribution to the pressure. Besides, it does not contribute to the density either,

since it is independent of the chemical potential µ.

The finite T free photon propagator, for r = |~x −~y |, r4 = |x4 − y4|, is

G(r,r4) = T

8πr

sinh(2πTr )

sin2(πTr4)+ sinh2(πTr )
, (J.25)

using this result in the disconnected term, we obtain ∼Q2/RT , V = 4π
3 R2, with Q =∆N . Note

that, at T = 0, the expression for the propagator properly reduces to G(x−y) = 1/4π2(x−y)2.
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