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Abstract

It is generally well known that the Standard Model of particle physics is not the ul-

timate theory of fundamental interactions as it has inumerous unsolved problems, so it

must be extended. Deciphering the nature of dark matter remains one of the great chal-

lenges of contemporary physics. Supersymmetry is probably the most attractive extension

of the SM as it can simultaneously provide a natural solution to the hierarchy problem

and unify the gauge couplings at the GUT scale in such a way that doesn’t affect its

low-energy phenomenology. Furthermore, the lightest supersymmetric particle is one of

the most popular candidates for the dark matter particle.

In the first part of this thesis we study the interparticle potentials generated by the

interactions between spin-1/2 sources that are mediated by spin-1 particles in the limit

of low momentum transfer. We investigate different representations of spin-1 particle to

see how it modifies the profiles of the interparticle potentials and we also include in our

analysis all types of couplings between fermionic currents and the mediator boson. The

comparison between the well-known case of the Proca field and that of an exchanged

spin-1 boson (with gauge-invariant mass) described by a 2-form potential mixed with a

4-vector gauge field is established in order to pursue an analysis of spin- as well as velocity-

dependent profiles of the interparticle potentials. We discuss possible applications and

derive an upper bound on the product of vector and pseudo-tensor coupling constants.

The spin- and velocity-dependent interparticle potentials that we obtain can be used to

explain effects possibly associated to new macroscopic forces such as modifications of the

inverse-square law and possible spin-gravity coupling effects.

The second part of this thesis is based on the dark matter phenomenology of well-

motivated 𝑈(1)′ extensions of the Minimal Supersymmetric Standard Model. In these

models the right-handed sneutrino is a good DM candidate whose dark matter properties

are in agreement with the present relic density and current experimental limits on the DM-

nucleon scattering cross section. The RH sneutrino can annihilate into lighter particles via

the exchange of massive gauge and Higgs bosons through s-channel processes. In order

to see how heavy can the RH sneutrino be as a viable thermal dark matter candidate
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we explore its DM properties in the parameter region that minimize its relic density via

resonance effects and thus allows it to be a heavier DM particle. We found that the RH

sneutrino can behave as a good DM particle within minimal cosmology even with masses

of the order of tens of TeV, which is much above the masses that viable thermal DM

candidates usually have in most of dark matter particle models.

Keywords: Spin-dependent potentials; cosmology of theories beyond the Standard

Model, Supersymmetric Standard Model, supersymmetry phenomenology.
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Resumo

É geralmente bem conhecido que o Modelo Padrão da física de partículas não é a

teoria final das interações fundamentais, pois tem inúmeros problemas não resolvidos,

portanto, deve ser estendido. Decifrar a natureza da matéria escura continua sendo um

dos grandes desafios da física contemporânea. A Supersimetria é provavelmente a mais

atraente extensão do Modelo Padrão pois pode simultaneamente fornecer uma solução

natural para o problema da hierarquia e unificar os acoplamentos de calibre na escala

de Grande Unificação de uma tal maneira que não afeta a sua fenomenologia de baixas

energias. Além disso, a partícula supersimétrica mais leve é um dos candidatos mais

populares para a partícula de matéria escura.

Na primeira parte desta tese estudamos os potenciais interpartículas gerados pelas

interações entre correntes de spin 1/2 que são mediadas por partículas de spin 1 no limite

de baixa transferência de momento. Investigamos diferentes representações do mediador

de spin 1 para ver como ele modifica os perfis dos potenciais interpartículas e também

incluímos em nossa análise todos os tipos de acoplamentos entre correntes fermiônicas

e o bóson mediador. A comparação entre o caso bem conhecido do campo de Proca

e o de um bóson de spin-1 (com massa invariante de calibre) descrito pela mistura de

uma 2-forma com um campo quadrivetorial de calibre é estabelecida a fim de buscar

uma análise dos perfis dependentes de spin e de velocidade dos potenciais interpartículas.

Discutimos possíveis aplicações e derivamos um limite superior no produto das constantes

de acoplamento vetoriais e pseudo-tensoriais. Os potenciais interpartículas dependentes de

spin e de velocidade que obtivemos podem ser usados para explicar efeitos possivelmente

associados a novas forças macroscópicas, tais como modificações na lei do inverso do

quadrado e possíveis efeitos de acoplamento do tipo spin-gravidade.

A segunda parte desta tese é baseada na fenomenologia da matéria escura de exten-

sões 𝑈(1)′ do Modelo Padrão Supersimétrico Mínimo bem motivadas. Nestes modelos, o

sneutrino de mão direita é um bom candidato para a matéria escura cujas propriedades

da matéria escura estão de acordo com a densidade relíquia atual e os atuais limites ex-

perimentais obtidos para a seção de choque do espalhamento entre nucleons e matéria

v



escura. O sneutrino pode se aniquilar em partículas mais leves através da troca de bosons

de calibre massivos e bosons de Higgs através de processos de canal s. Para ver o quão

pesado o sneutrino de mão direita pode ser como candidato viável de matéria escura, nós

exploramos suas propriedades de matéria escura na região do espaço de parâmetros que

minimiza sua densidade relíquia via efeitos de ressonância e assim permite que ele seja

uma partícula de matéria escura mais pesada. Descobrimos que, no contexto do mod-

elo padrão de cosmologia, o sneutrino de mão direita pode se comportar como uma boa

partícula de matéria escura mesmo com massas da ordem de dezenas de TeV, o que está

bem acima das massas que os candidatos de matéria escura do tipo WIMPs geralmente

têm na maioria dos modelos de partículas de matéria escura.

Palavras-chave: Potenciais dependentes de spin; cosmologia de teorias além do Mod-

elo Padrão, Modelo Padrão Supersimétrico, fenomenologia de supersimetria.
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Chapter 1

Introduction

The Standard Model (SM) of elementary particle physics provides a very remarkably
and successful description of presently known phenomena of high energy physics. In the
last decades the SM has been extensively and successfully tested in many different ex-
periments associated to great particle colliders such as the Large Hadron Collider (LHC),
Tevatron and the Large Electron-Positron Collider (LEP). Complementary to the high en-
ergy phenomena probed at the LHC, many other low-energy experiments report excellent
agreement with all the predictions of the SM.

The SM is a renormalizable quantum field theory defined in a four-dimensional space-
time that respects Poincaré invariance whose gauge interactions are based on the following
gauge group

𝐺SM = 𝑆𝑈(3)𝐶 × 𝑆𝑈(2)𝐿 × 𝑈(1)𝑌 , (1.1)

where 𝐶 stands for color, 𝐿 for left in the sense of chirality and 𝑌 for hypercharge. The
presence of the 𝑆𝑈(2)𝐿 gauge group indicates that the SM is a chiral gauge theory, which
means that a left-handed field transforms in a different way compared to its right-handed
counterpart. As a result, the left-handed charged leptons 𝑒𝐿𝑖 and their corresponding
neutrinos 𝜈𝐿𝑖 form a doublet representation of the 𝑆𝑈(2)𝐿, while the right-handed charged
leptons 𝑒𝑅𝑖 are singlets. The quark fields are also separated in left-handed and right-
handed chiral components, whereas right-handed neutrino fields 𝜈𝑅𝑖 are not included in
the particle content of the SM. The quarks and leptons are divided in three families with
𝑖 = (1, 2, 3). The gauge bosons are the force carriers of the three fundamental interactions
that are described by the SM, which are the electromagnetic, the weak and the strong
forces. The particle content of the SM is shown in Figure 1.1 including the well-known
spin, masses and electric charges of each particle.

If the gauge symmetry were exact, not only the gauge bosons but also the matter
fermions would remain massless, as including mass terms for the vector bosons and Dirac
mass terms for the fermions would explicitly break the gauge symmetry. This problem is
solved by the method of spontaneous symmetry breaking proposed in the Brout-Englert-
Higgs mechanism [1,2], in which a neutral component of the Higgs doublet acquires a non-
zero vacuum expectation value. Because of this the electroweak gauge group 𝑆𝑈(2)𝐿 ×
𝑈(1)𝑌 breaks to the Abelian electromagnetic gauge symmetry 𝑈(1)em that describes all the
familiar electromagnetic interactions. As a consequence, the 𝑊± and 𝑍0 bosons acquire
masses proportional to the VEV of the Higgs field 𝑣, while the physical quarks and charged
leptons of the SM acquire masses proportional to the product of 𝑣 and their corresponding
Yukawa coupling. The new massive scalar particle discovered by the ATLAS and CMS
Collaborations of the LHC in 2012 is compatible with the Higgs boson predicted by the
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Figure (1.1) Content of particles of the SM with their corresponding masses, spin and
electric charges.

SM [3, 4], which was the only missing piece in the construction of this model. Therefore,
now the SM is complete and all its parameters are numerically determined.

Although the SM is in excellent agreement with almost all available experimental
results, it is not the ultimate particle physics theory. There are several problems that
cannot be solved by the SM, such as:

• Neutrinos Masses: currently there are many experimental evidences showing that
neutrinos oscillate from one flavor to another and, as a consequence, should have
masses [5, 6]. The generation of neutrino masses in the theory cannot be done
without extending the Standard Model. One way to generate mass terms for the
neutrinos is by adding right-handed neutrinos to the particle content and produce
Dirac mass terms via the Yukawa interaction with Higgs field. Another one is
via the see-saw mechanism [159–161] where Majorana masses for the neutrinos are
generated through the Weinberg operator [7];

• Dark Matter Candidate: cosmological and astrophysical observations provide
strong evidences that there is a new form of non-baryonic matter in the Universe
which composes approximately 80% of the its matter content. So far this mysterious
form of matter has only been observed indirectly via gravitational effects on the
galaxy rotation curves or via gravitational lensing effects because it does not interact
with light, therefore it is known as dark matter. The SM does not provide a viable
dark matter candidate consistent with its known properties;

• Hierarchy Problem: the Higgs mass must receive quantum corrections to get close
to 125 GeV. To include quantum corrections on the Higgs mass one must introduce a
cut-off scale Λ in such a way that the quantum corrections to 𝑚2

ℎ0 are proportional
to Λ2. Above the electroweak symmetry breaking scale the next natural scale of
new physics that we know is the Planck scale 𝑀𝑃 ≃ 1019 GeV, which implies on
extremely large corrections to the SM Higgs mass. This problem could be avoided
if a new Physics scale appears around the TeV region.
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• Gravity: The SM is not able to include a quantum description of gravity, which is
a phenomenon that appears to be relevant only at energy scales close to the Planck
scale. This points towards the direction that the SM is not the ultimate theory of
Nature but rather an effective description of an ultraviolet one. In this case string
theory appears to be the best candidate to describe quantum gravity in connection
to the SM.

Most macroscopic phenomena that we know originate either from gravitational or
electromagnetic interactions. There has been some experimental effort over the past
decades towards the improvement of low-energy measurements of the inverse-square law,
with fairly good agreement between theory and experiment [28, 29]. The equivalence
principle has also been recently tested to search for a possible spin-gravity coupling [30].
On the other hand, a number of scenarios beyond the Standard Model (BSM) motivated
by high-energy phenomena predict very light, weakly interacting sub-eV particles (WISPs)
that could generate new long-range forces, such as axions [31], SUSY-motivated particles
[32] or paraphotons [33–36].

The discovery of a new, though feeble, fundamental force would represent a remarkable
advance. Besides the Coulomb-like “monopole-monopole" force, it is also possible that
spin- and velocity-dependent forces arise from monopole-dipole and dipole-dipole (spin-
spin) interactions. Those types of behavior are closely related to two important aspects
of any interacting field theory: matter-mediator interaction vertices and the propagator
of intermediate particles. Part I of this thesis is mainly concerned with this issue and its
consequences on the shape of the potential between two fermionic sources. This discussion
is also of relevance in connection with the study, for example, of the quarkonium spectrum,
for which spin-dependent terms in the interaction potential may contribute considerable
corrections [37]. Other sources (systems) involving neutral and charged particles, with or
without spin, have been considered by Holstein [38].

Supersymmetry (SUSY) is one of the best motivated theories to describe new physics
beyond the Standard Model (SM) at TeV scale. It introduces a useful space-time symme-
try that relates bosons and fermions which can be used to cancel the quadratic divergencies
that appears in the radiative corrections of the masses of scalar bosons, providing thus
a natural solution to the hierarchy problem of the SM. It allows the gauge couplings to
unify at a certain grand unified scale in the vicinity of the Planck scale [115, 122–127]
and this can be seen as a clear hint that SUSY is the next step towards a grand unified
theory (GUT) [128]. One of the most interesting features of low energy supersymmetric
models is that, when conserving a discrete symmetry that appears in these models called
R-parity, the lightest supersymmetric particle (LSP) is absolutely stable and behaves as
a realistic weakly interacting massive particle (WIMP) dark matter candidate [129, 130]
which is able to account for the observed cold dark matter relic density recently measured
and precisely analyzed by Planck Collaboration ΩDMℎ

2 = 0.1188± 0.0010 [131].
The Minimal Supersymmetric Standard Model (MSSM) is the simplest supersym-

metric extension of the SM which contains the smallest number of new particles in a
consistent way with supersymmetry and the particle content of the SM. It is constructed
as a renormalizable 𝒩 = 1 super Yang–Mills theory also based on the gauge group
𝑆𝑈(3)𝐶 × 𝑆𝑈(2)𝐿×𝑈(1)𝑌 . Although the MSSM has been the mostly studied supersym-
metric model it does not solve all the open problems of the SM. The tree-level mass for
the SM-like Higgs boson in the MSSM is limited to the 𝑍0 boson mass via the relation
𝑚ℎ0|tree < 𝑚𝑍0 | cos 2𝛽| [132]. Thus, large quantum corrections are necessary to take into
account in this model to obtain the actual value for the Higgs mass 𝑚ℎ0 = 125 GeV, which
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requires a heavy third generation of squarks and large stop mixing [133–135]. It turns out
that this implies a hierarchy in the mass distribution of the squarks and thus it doesn’t
seem to be a natural prediction of the SM Higgs mass.

Therefore, in order to solve the problems of the MSSM, it is useful to consider exten-
sions of it. For concreteness we work with 𝑈(1)′ extensions of the MSSM which originate
from the breaking of the 𝐸6 GUT gauge group. These models, which are referred to as
UMSSM [166–170], contain three right–handed neutrino superfields plus an extra gauge
boson 𝑍 ′ and an additional SM singlet Higgs with mass ≃ 𝑀𝑍′ , together with their su-
perpartners. Models of this kind were first studied more than 30 years ago in the wake
of the first “superstring revolution” [48, 138]. This framework allows to study a wide
range of 𝑈(1)′ groups, since 𝐸6 contains two 𝑈(1) factors beyond the SM gauge group.
In comparison to the MSSM, the prediction of the mass of the lightest CP-even Higgs
boson at tree-level also receives contributions from an F- and a D-term in such a way that
it is not necessary to have large loop corrections to explain the correct SM Higgs mass.
Moreover, the scalar members 𝜈𝑅,𝑖 of the right–handed neutrino superfields make good
WIMP candidates [162–165,168–170].

In the UMSSM the right sneutrino is charged under the extra 𝑈(1)′ gauge symmetry;
it can therefore annihilate into lighter particles via gauge interactions. In particular, for
𝑀𝜈𝑅 ≃𝑀𝑍′/2 the sneutrinos can annihilate by the exchange of (nearly) on–shell gauge or
Higgs bosons. We focus on this region of parameter space. For some charge assignment we
find viable thermal 𝜈𝑅 dark matter for mass up to ∼ 43 TeV. This is very heavy compared
to most of the masses seen in the literature of WIMP-type dark matter candidates. Our
result can also be applied to other models of spin−0 dark matter candidates annihilating
through the resonant exchange of a scalar particle. These models cannot be tested at the
LHC, nor in present or near–future direct detection experiments, but could lead to visible
indirect detection signals in future Cherenkov telescopes.

In chapter 2 we review the dark matter problem in the context of cosmology and as-
trophysics. First we discuss some of the main observational evidences for the existence
of DM in the Universe and explain the necessary properties that a particle must have to
become a viable dark matter candidate. We focus in the category of Weakly Interacting
Massive Particles (WIMPs), which has been the most studied particle dark matter can-
didate in the literature. Then we introduce basic concepts of standard cosmology which
are essential to further describe in the next section the thermal production of DM in the
Early Universe and how the dark matter decoupled from the original thermal plasma to
give the relic density measured nowadays. This thesis is divided in two parts which are
organized as follows:

• Part I: in chapter 3 we investigate the role played by particular field representations
of an intermediate massive spin-1 boson in the context of interparticle potentials
between fermionic sources. We show that changing the representation of the spin-1
mediator one obtains different profiles of velocity- and spin-dependent interparticle
potentials in the limit of low momentum transfer [39];

• Part II: in chapter 4 we start by motivating supersymmetry and then we review
its theoretical framework. After a brief summary of the MSSM we introduce the
phenomenological tools mostly used to explore other models of particle physics be-
yond the SM in great detail. In chapter 5 we describe the theoretical framework of
the well-motivated 𝑈(1)′ extensions of the MSSM and discuss its particle content,
with a particular emphasis on the gauge, Higgs, sneutrino and neutralino sectors. In
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chapter 6 we firstly describe the calculation of the relic density of the right-handed
sneutrino and explain our procedure to minimize it. Secondly, we present the results
of our numerical analysis for the dark matter phenomenology of the right-handed
sneutrino in the general UMSSM and also discuss prospects of probing such scenarios
experimentally. The last two chapters are based on the article [40].

Finally in chapter 7 general conclusions about the most important results of this thesis
are given. Two Appendices follow: in the Appendix A, the list of all relevant vertices in
the low-energy limit used in chapter 3 are presented; next, in the Appendix B, we present
the multiplicative algebra of a set of relevant spin operators that appear in the attainment
of a set of propagators that we computed in Section 3.5.
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Chapter 2

Dark Matter

Currently, only 5% of the energy content of the Universe is made of ordinary matter
such as atoms which make stars, planets and us. All the rest is dark and unknown
composed of dark matter and dark energy where invisible dark matter makes up 27%
of the matter content of the Universe. Dark matter is a hypothetical form of matter
which has been postulated to explain certain phenomena which cannot be explained by
ordinary matter. So far the existence of dark matter is mostly inferred from observation
of gravitational effects on visible matter and background radiation and not through its
direct nor indirect detection. For a deeper review of the subject see refs. [9, 19,20].

In this chapter we introduce the basic concepts of dark matter phenomenology. In
particular, we will first discuss some of the main observational evidences of the existence
of DM in our Universe. Then we describe with more details the aspects of the most at-
tractive category of dark matter candidate known as WIMPs (Weakly Interacting Massive
Particles) and how they were thermally produced in the era of the early Universe.

2.1 Dark matter evidence
There are several observational evidences from astrophysics and cosmology that imply

the existence of a non-luminous form of matter in the Universe. The first one came from
Fritz Zwicky’s work [12] in 1933 where, applying the virial theorem to estimate the mass
of clusters of galaxies, he found that the magnitude of mass in the Coma Cluster was
about two orders bigger than the visually observable mass. The next one came with the
investigation of rotation curves of some spiral galaxies by Rubin and her collaborators
[13–15]. They worked with a new sensitive spectrograph that was able to obtain the
velocity curve of certain spiral galaxies with a higher level of accuracy. As a result, they
also concluded that most of the mass of these galaxies is also not in luminous stars. Here
I give a brief resume of their analysis.

In a spiral galaxy the mass distribution of the luminous matter is modelled by a disk
and a bulge. If we assume Newton’s laws of gravity, the circular velocity of a star of the
galaxy located at a distance 𝑟 from the galaxy’center is given by

𝑣circ(𝑟) =

√︂
𝐺𝑀(𝑟)

𝑟
, (2.1)

where 𝑀(𝑟) is the mass enclosed inside a radius 𝑟. Assuming all the mass is concentrated
in the galactic disc 𝑅𝑑𝑖𝑠𝑐, for distances larger than the disc (𝑟 > 𝑅𝑑𝑖𝑠𝑐) 𝑀(𝑟) should
remain constant, which leads to a circular velocity 𝑣𝑐𝑖𝑟𝑐(𝑟) ∝ 1/

√
𝑟. However, according
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to cosmological observations, the velocity distribution is approximately flat far away from
the center of the galaxy, as shown in Figure 2.1. The behaviour of the observed high
velocities cannot be explained by taking into account only the visible mass which is
proportional to light emitted by stars. This can be well explained if there is a spherical
halo around the galaxy with 𝑀(𝑟) ∝ 𝑟 in which case most of the mass of the galaxy would
be concentrated in the dark region of this halo. This shows that there must exist some
non-visible form of matter in the Universe known as dark matter. Similar results were
also obtained in the cases of other galaxies with different mass distributions.

Figure (2.1) Measurements of the velocity rotation curves of the galaxy NGC 6503 [16]
with different contributions coming from the galactic disc, dark matter halo and gas. The
data points that fit the total curve take into account all type of contributions.

In general, depending on which scale we are looking at, different methods of noting
and measuring directly or indirectly the presence of non-visible matter can be employed.
The following observations strengthen the fact that there is a significant amount of dark
matter in the Universe:

• Gravitational Lensing: according to Einstein’s gravity theory of general relativity,
the curvature of space-time caused by matter gives rise to a deflection of light rays.
Since the deflection angle is proportional to the mass of the object that causes the
deflection and behaves as a lens, this is a good tool for estimating directly the mass
of large astrophysical objects, from planets and upwards to galaxy clusters. The
analysis of the gravitational lensing data [17] indicates that there is a lot of dark
matter;

• Cosmic Microwave Background (CMB): at some moment in the epoch of the
Early Universe, matter and radiation formed a hot plasma in thermal equilibrium
and, as the Universe expanded and cooled, the photons eventually began to propa-
gate freely. Today these photons are interpreted as CMB, which is characterized in a
good approximation by a thermal black body spectrum with a mean temperature of
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𝑇 = (2.7255± 0.0006) K [26]. However, there have been observed some anisotropies
in the temperature distribution of the CMB. The COBE, WMAP and Planck satel-
lites measured the angular power spectrum of the thermal anisotropies in increasing
order of precision and the final results obtained by Planck Collaboration [11] are
shown in Figure 2.2. The positions and relative magnitudes of the peaks are used
to fit the parameters of specific models of cosmology. As a result, the best fit favors
the existence of cold dark matter in the Universe;

• Large Scale Structure Formation: since gravitational interaction is attractive,
large structures such as stars, galaxies and clusters of galaxies have been formed
because of huge gravitational collapses acting in opposition to the expansion of the
Universe. The amount of DM in the matter power spectrum has to be sufficiently
large to create enough gravitational fields that can overcome the electromagnetic
pressure of the baryonic matter, and thus eventually allow the formation of large
scale structures on the Universe.

Figure (2.2) Temperature power spectrum of the CMB anisotropies. The red points
represents the experimental data obtained by the Planck satellite [11] including error
bars, while the blue line gives the best fit of the standard model of cosmology, which is
the ΛCDM model, to the Planck data.

The observations cited above show that there is an important amount of evidence
that points DM as the dominant component of the matter spectrum of the Universe. DM
communicates with its environment essentially via gravitational interaction. However,
we still do not know the nature of dark matter. One of the first proposals to explain
this problem was considering the hypothesis that DM could be baryonic matter in the
form of MAssive Compact Halo Objects (MACHOs) such as black holes or brown dwarfs.
However, the study of baryonic production in the Big Bang Nucleosynthesis contradicts
MACHOs as DM [18]. Currently, the observations from astrophysics and cosmology give
higher support for non-baryonic particle-like DM candidate instead of a sizeable object.
Hence, it is believed that dark matter is composed of a new type of elementary particle
that appears in models of new physics beyond the SM [19, 130]. Several different DM
candidates have been proposed in the literature, for reviews see Ref. [20].
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2.2 Particle dark matter: WIMPs
Relativistic particles are candidates to Hot Dark Matter (HDM), whereas non-relativistic

particles are candidates to Cold Dark Matter (CDM). If we compare the relativistic to
the non-relativistic nature of the DM, it turns out that HDM is incompatible with data
from Large Scale Structure observations [21–23], which constrain the allowed average ve-
locity of the DM particles from above. For this reason, relativistic HDM particles cannot
dominate the constitution of DM. CDM particles is the option that mostly fulfills DM
constraints and, as a consequence, this scenario is the one that is considered in the stan-
dard model of cosmology. If there is a particle that plays the role for the DM candidate
it should respect the following requirements:

⋆ It must be electrically neutral and must interact very weakly with photons. Other-
wise it could have emitted light and been seen in astrophysical observations;

⋆ It must have no colour charge. Otherwise it would hadronise and behave as a
baryonic form of matter;

⋆ It must be stable or long-lived with a lifetime that exceeds the age of the Universe.
Otherwise, it would not have the relic density that we observe nowadays;

⋆ It must be in agreement with current experimental constraints and observations.

One of the main candidates for a non-baryonic cold dark matter particle that agrees
with all these requirements is the Weakly Interacting Massive Particle (WIMP), a class of
neutral stable particles that interacts with SM particles only via weak interactions. There
are two main motivations that made WIMPs become the favoured and most popular
category of DM candidates. The first one, as we will discuss in Sec. 2.4, is based on
the fact that the simplest production mechanism for massive dark matter relics from the
early Universe in standard cosmology automatically supports the weak scale. To obtain
the correct relic abundance the DM particle should have a self-annihilation thermally
averaged cross section of the order of 10−26 cm3/s [249, 250]. The second one is that
a roughly weak-scale annihilation cross section indicates that both the annihilation of
WIMPs at the current temperature of the Universe and the elastic scattering of WIMPs
on heavy target nuclei might be detectable; the former goes under indirect detection
experiments, while the latter constitutes techniques of direct detection.

2.3 Elements of standard cosmology
Considering the fact that on sufficiently large scales the properties of the Universe are

the same for all observers, one arrives at the cosmological principle of standard cosmology:
the Universe is homogeneous and isotropic. A solution of the Einstein’s General Relativity
(GR) Equations in agreement with this principle yields a spacetime metric in the so-called
Friedmann-Robertson-Walker (FRW) form. In spherical coordinates this metric is

𝑑𝑠2 = 𝑔𝜇𝜈𝑑𝑥
𝜇𝑑𝑥𝜈 = 𝑑𝑡2 − 𝑎(𝑡)2

[︂
𝑑𝑟2

1−𝐾𝑟2
+ 𝑟2

(︀
𝑑𝜃2 + sin2 𝜃𝑑𝜑2

)︀]︂
, (2.2)

where 𝑎(𝑡) is the scale factor of the Universe and 𝐾 is the curvature parameter which is
defined for three different cases: 0 for a flat Universe, +1 for a closed Universe and -1 for
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an open Universe. The scale factor is a function that depends only on the time coordinate
𝑡 and it is used to determine the behaviour of the evolution of the Universe.

The behaviour of the dynamics of the scale factor depends on the energy and matter
content of the Universe, which is represented by the energy-momentum tensor 𝑇𝜇𝜈 that
appears on the right-hand side of Einstein’s equations of GR

𝑅𝜇𝜈 −
1

2
𝑅𝑔𝜇𝜈 = 8𝜋𝐺 (𝑇𝜇𝜈 + Λ𝑔𝜇𝜈) . (2.3)

Here 𝑅𝜇𝜈 and 𝑅 are the Ricci tensor and the Ricci scalar respectively, whereas Λ is
the cosmological constant. With the assumption that the matter-energy content of the
Universe is described by a perfect homogenous and isotropic fluid with a time-dependent
total energy density 𝜌(𝑡) and a time-dependent pressure 𝑝(𝑡), we obtain the following
energy-momentum tensor

𝑇 𝜇𝜈 = diag(𝜌,−𝑝,−𝑝,−𝑝). (2.4)

Using eqs.(2.2), (2.3) and (2.4) one can obtain the so-called Friedmann-Lemaître equa-
tions:

𝐻2 =

(︂
�̇�

𝑎

)︂2

=
8𝜋𝐺

3
𝜌+

Λ

3
− 𝐾

𝑎2
(2.5)

�̈�

𝑎
= −4𝜋𝐺

3
(𝜌+ 3𝑝) +

Λ

3
, (2.6)

where 𝐻 is the Hubble parameter and the dots represent derivatives with respect to time.
The first equation describes the evolution of the expansion of the Universe, while the
second one determines if the expansion is accelerated or decelerated at a certain time 𝑡.

Combining eq.(2.5) with eq.(2.6) one arrives at the adiabatic equation:

𝑑

𝑑𝑡
(𝜌𝑎3) + 𝑝

𝑑

𝑑𝑡
(𝑎3) = 0 ⇒ �̇� = −3𝐻(𝜌+ 𝑝), (2.7)

which is the relativistic version of the first law of thermodynamics 𝑇𝑑𝑆 = 𝑑𝐸 + 𝑝𝑑𝑉 in
a Universe with constant entropy. The solution of eq.(2.7) gives the equations of state of
the fluids that compose the Universe, where the equations of state for radiation, matter
and vacuum energy (cosmological constant) are given below

𝜌 ∝ 𝑎−3(1+𝜔) ⇒

⎧⎨⎩
𝑝 = 1

3
𝜌 → 𝜌 ∝ 𝑎−4 for radiation

𝑝 = 0 → 𝜌 ∝ 𝑎−3 for matter
𝑝 = −𝜌 → 𝜌 ∝ constant for vacuum energy.

(2.8)

Eq.(2.5) can be used to determine the critical energy density 𝜌𝑐

𝜌𝑐 =
3𝐻2

8𝜋𝐺
, (2.9)

which is obtained by supposing that the Universe is flat and neglecting the cosmological
constant (Λ = 0). The cosmological data obtained in these last decades tell us that our
Universe is (practically) flat [10]. Usually it is more convenient to express the energy
densities of each components of the Universe as being its density divided by the critical
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density
Ω𝑖 ≡

𝜌𝑖
𝜌𝑐
, (2.10)

where 𝑖 stands for matter (𝑚) or radiation (𝑟). Noting that the specific cases of the
curvature and the cosmological constant are

Ω𝐾 = − 𝐾

𝑎2𝐻2
, ΩΛ =

Λ

3𝐻2
, (2.11)

we can write eq.(2.5) as

Ω𝑚 + Ω𝑟 + ΩΛ = Ω𝑡𝑜𝑡𝑎𝑙 = 1− Ω𝐾 , (2.12)

where we used 𝜌 = 𝜌𝑚 + 𝜌𝑟. According to the recent data obtained by the Planck
satellite [11], we have

Ω𝑚 = 0.315± 0.007, ΩΛ = 0.6847± 0.0073, Ω𝐾 = 0.001± 0.002. (2.13)

The curvature density is negligible and, using eq.(2.12) we can see that the radiation den-
sity of our Universe today is also very small. This means that the dominant components
of the Universe are the dark energy and the matter content, and thus the radiation does
not play a significant role in the present configuration of our Universe.

2.4 Dark matter thermal production
From a thermal point of view, a dark matter particle can be classified in two types:

relativistic or hot and non-relativistic or cold. A particle 𝑋 of mass 𝑚𝑋 at temperature
𝑇 is hot if 𝑇 ≫ 𝑚𝑋 and cold if 𝑇 ≪ 𝑚𝑋 . At temperatures much higher than the WIMP
mass, the colliding particle-antiparticle pairs of the plasma had sufficient energy to create
WIMP pairs in an efficient way. And also, the inverse reactions of WIMPs annihilating
into pairs of SM particles were as efficient as the WIMP-producing processes in such a
way that the WIMPs were in thermal equilibrium.

The Early Universe can be seen as a hot plasma of particles interacting with each
other in thermal equilibrium where WIMPs were annihilating and being produced in
collisions between these particles of the thermal plasma during the radiation-dominated
era. However, as the Universe expanded and cooled, two things happened: 1) the SM
particles produced by the annihilation of WIMPs no longer had sufficient kinetic energy
(thermal energy) to reproduce WIMPs through interactions and 2) the expansion of the
Universe diluted the number of all particles in such a way that the interactions were no
longer occuring as in the epoch of the Early Universe. In other words, at some point the
density of some massive particles became too low to support the frequent interactions of
the plasma and, as a consequence, the conditions for thermal equilibrium were violated.
At this point, particles are said to “freeze-out” and their number density remains constant.
Freeze-out occurs when the expansion rate of the Universe overtakes the annihilation rate.

In order to describe the physical processes that occurred in the hot Universe, we must
determine the thermal distribution of each particle in the thermal plasma. For a particle𝑋
in thermal equilibrium with temperature 𝑇𝑋 with an energy 𝐸𝑋 and a chemical potential
𝜇𝑋 , the thermal distribution fuction is
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𝑓𝑋(𝑝, �⃗�, 𝑡) =
1

𝑒
(𝐸𝑋−𝜇𝑋 )

𝑇𝑋 ± 1
, (2.14)

with 𝐸2
𝑋 = |𝑝|2 + 𝑚2

𝑋 . The sign is positive for a Fermi-Dirac particle (fermion) and
negative for a Bose-Einstein particle (boson). Using the cosmological principle and the
Robertson-Walker (RW) metric, the distribution function is simplified to a function that
depends only on the absolute value of the momentum of the particle and on time, hence
𝑓(𝑝, �⃗�, 𝑡) = 𝑓(|𝑝|, 𝑡). Noting that each particle 𝑋 has 𝑔𝑋 internal degrees of freedom,
the number density 𝑛𝑋, the energy density 𝜌𝑋 and the pressure 𝑝𝑋 of particles 𝑋 can be
defined as

𝑛𝑋(𝑡) =
𝑔𝑋

(2𝜋)3

∫︁
𝑓𝑋(|𝑝|, 𝑡)𝑑3𝑝 (2.15)

𝜌𝑋(𝑡) =
𝑔𝑋

(2𝜋)3

∫︁
𝐸𝑋(|𝑝|)𝑓𝑋(|𝑝|, 𝑡)𝑑3𝑝 (2.16)

𝑝𝑋(𝑡) =
𝑔𝑋

(2𝜋)3

∫︁ |𝑝|2
3𝐸𝑋(|𝑝|)

𝑓𝑋(|𝑝|, 𝑡)𝑑3𝑝. (2.17)

The annihilation rate of the DM particles can be defined as

Γ𝑎𝑛𝑛,𝑋 = ⟨𝜎𝑎𝑛𝑛𝑣⟩𝑛𝑒𝑞,𝑋, (2.18)

where 𝜎𝑎𝑛𝑛 is the DM annihilation cross-section, 𝑣 is the relative velocity of the DM
particles, the angle brackets denote an average over the DM thermal distribution and
𝑛𝑒𝑞,𝑋 is the number density of the dark matter particle in chemical equilibrium. For
non-relativistic particles, using the Maxwell-Boltzmann approximation on eq.(2.15) we
obtain

𝑛𝑒𝑞,𝑋 =
𝑔𝑋

(2𝜋)3

∫︁
𝑒−

𝐸𝑋
𝑇 𝑑3𝑝 = 𝑔𝑋

(︂
𝑚𝑋𝑇

2𝜋

)︂3/2

𝑒−𝑚𝑋/𝑇 , for 𝑇 ≪ 𝑚𝑋. (2.19)

The evolution of the number density 𝑛𝑋 of dark matter𝑋 is governed by the Boltzmann
equation [24,25]

𝑑𝑛𝑋

𝑑𝑡
= −3𝐻𝑛𝑋 − ⟨𝜎𝑎𝑛𝑛𝑣⟩(𝑛2

𝑋
− 𝑛2

𝑒𝑞,𝑋), (2.20)

where 𝐻 is the Hubble parameter and ⟨𝜎𝑎𝑛𝑛𝑣⟩ is the thermally averaged annihilation cross-
section times the relative velocity of the dark matter 𝑋. The first term on the right-hand
side of eq.(2.20) shows the effect of the expansion of the Universe, while the second term
represents the change in the number density of the dark matter due to annihilations and
creations. The WIMP number density 𝑛𝑋 that appears in eq.(2.20) is the sum of the
number densities of each species 𝑖 that eventually annihilates into the DM particle,

𝑛𝑋 =
𝑁∑︁
𝑙=1

𝑛𝑙, (2.21)

where 𝑁 is the total number of such species. The thermally averaged annihilation cross-
section contains the essencial pieces of particle physics that are necessary to calculate the
WIMP number density, and it must be computed in the context of a specific BSM model.
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It is customary to solve eq.(2.20) by introducing the yield 𝑌 ≡ 𝑛𝑋/𝑠 and a new
dimensionless variable 𝑥 = 𝑚𝑋/𝑇 , where 𝑠 is the entropy density and 𝑇 is the photon
temperature. In terms of these new variables, eq.(2.20) simplifies to [19,24]

𝑑𝑌

𝑑𝑥
= −⟨𝜎𝑎𝑛𝑛𝑣⟩𝑠

𝐻𝑥

(︀
𝑌 2 − 𝑌 2

𝑒𝑞

)︀
. (2.22)

The WIMP dark matter relic density is defined as the ratio of the WIMP mass density
and to the critical density

Ω𝑋ℎ
2 =

𝜌𝑋
𝜌𝑐
ℎ2 =

𝑛𝑋𝑚𝑋

𝜌𝑐
ℎ2. (2.23)

The present day relic density is obtained by taking the value of the yield at 𝑇 → 0

Ω𝑋ℎ
2 =

𝑌 (𝑥)𝑠(𝑥)𝑚𝑋

𝜌𝑐(𝑥)
ℎ2
⃒⃒⃒⃒
𝑥→∞

=
𝑌0𝑠0𝑚𝑋

𝜌𝑐,0
ℎ2 (2.24)

where ℎ = 𝐻0/(100km · s−1 ·Mpc−1) ≈ 0.678 is the dimensionless Hubble parameter [131],
𝑠0 ≈ 2.9× 10−3 is the present day entropy density [24] and 𝜌𝑐,0 ≈ 8× 10−47 ℎ2 GeV4 [26]
is the present critical density. The numerical solution of eq.(2.22) shows that at high
temperatures 𝑌 is close to its equilibrium value 𝑌𝑒𝑞. and, as the temperature decreases,
𝑌𝑒𝑞. becomes exponentially suppressed in such a way that 𝑌 can no longer track its
equilibrium value and then levels off to a frozen-out constant value. In the scenario of
standard cosmology, the WIMP freeze-out temperature is obtained for 10 . 𝑥 . 30. The
evolution of the WIMP abundance per comoving volume is shown in Figure 2.3, which
also shows that for higher annihilation cross section the freeze-out time is later.

Figure (2.3) The dynamics of the WIMP comoving number density during the freeze-
out epoch. The dashed curves show the current abundance, while the solid curve is the
equilibrium abundance.
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2.4.1 Precise calculation

The standard way to calculate the present day abundance of dark matter is by solving
the Boltzmann equation, expand 𝜎𝑎𝑛𝑛𝑣 in powers of 𝑣2

𝜎𝑎𝑛𝑛𝑣 = 𝑎+ 𝑏𝑣2 + ..., (2.25)

and then take the thermal average of this expansion using the Maxwell-Boltzman velocity
distribution. The first term of this expansion comes from an s-wave annihilation (L=0)
while the second one comes from s- and p-wave annihilation (L=1). There are cases in
which 𝑎 is dominant where 𝜎𝑣 would be energy independent, but there are also cases, for
example for a Majorana particle, where the s-wave annihilation is helicity suppressed and
thus the p-wave term must be taken into account.

This expansion can be done when ⟨𝜎𝑎𝑛𝑛𝑣⟩ varies slowly with the energy. However,
there are some special cases in which this does not work [27,199], and thus needs deeper
attention:

• s-channel resonance: when the DM annihilates into other particles via an s-
channel process in which the mediator mass is approximately 𝑀𝑆 ≈ 2𝑚𝑋 . Since the
annihilation cross section is not a smooth function of the Mandelstam variable s in
the vicinity of the pole of an s-channel diagram, the velocity expansion of ⟨𝜎𝑎𝑛𝑛𝑣⟩
fails;

• Annihilation thresholds: when the mass of the DM particle is close to the thresh-
old of the annihilation channel 𝑋 + 𝑋 → 𝐴 + 𝐵 with 2𝑚𝑋 ≈ 𝑚𝐴 + 𝑚𝐵. In this
case, the velocity expansion of ⟨𝜎𝑎𝑛𝑛𝑣⟩ diverges at the threshold energy;

• Coannihilations: when there are other exotic particles 𝑋 ′
𝑖 in the model that can

contribute to the calculation of the annihilation cross sections through processes like

𝑋 +𝑋 ′
𝑖 → 𝑆𝑀 + 𝑆𝑀 or 𝑋 ′

𝑖 +𝑋
′
𝑖 → 𝑆𝑀 + 𝑆𝑀.

Coannihilation effects are significantly relevant for the relic density calculation when
the exotic particle and the DM are almost degenerate in mass, with a mass difference
of about 𝑚𝑋′

𝑖
−𝑚𝑋 . 0.1𝑚𝑋 .

All these special cases are now taken into account in the numerical tool MicrOMEGAs
[222–224], which was used in Part II of this thesis to study the DM properties of the
right-handed sneutrino. The obtained value for the DM relic density from MicrOMEGAs
can then be compared to the current observed value [131]

ΩDMℎ
2 = 0.1188± 0.0010 , (2.26)

to see if a point of the parameter space of a model is in agreement or not with current
cosmological observations. MicrOMEGAs code also calculates with good precision the
thermally averaged annihilation cross section at different temperatures and the rates for
direct and indirect detection of dark matter of a specific model.
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Part I

Interparticle Potentials
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Chapter 3

Topologically Massive Spin-1 Particles
and Spin-Dependent Potentials

3.1 Introduction
Propagators are read off from the quadratic part of a given Lagrangean density and

depend on intrinsic attributes of the fields, such as their spin. Most of the literature is con-
cerned with spin-1 bosons in the

(︀
1
2
, 1
2

)︀
-representation of the Lorentz group (e.g., photon).

Here, we would like to address the following questions: for two different fields representing
the same sort of (on-shell) spin-1 particle, which role does a particular representation play
in the final form of the interaction? Is the form of the mass term (corresponding to some
specific mass-generation mechanism) determinant for the macroscopic characterization of
the interparticle potential?

The amplitude for the elastic scattering of two fermions is sensitive to the fundamental,
microscopic, properties of the intermediate boson. Our work sets out to study the poten-
tial generated by the exchange of two different classes of neutral particles: a Proca (vec-
tor) boson and a rank-2 anti-symmetric tensor, the Cremer-Scherk-Kalb-Ramond (CSKR)
field [41,42], mixed to another vector boson, i.e., the {𝐴𝜇, 𝐵𝜈𝜅}-system with a topological
mixing term. Two-form gauge fields are typical of off-shell SUGRA multiplets in four and
higher dimensions [43–47] and the motivation to take them into consideration is two-fold:

i) They may be the messenger, or the remnant, of some Physics beyond the Standard
Model. This is why we are interested in understanding whether we may find out the track
of a 2-form gauge sector in the profile of spin-dependent potentials.

ii) In four space-time dimensions, a pure on-shell rank-2 gauge potential actually de-
scribes a scalar particle. However, off-shell it is not so. This means that the quantum
fluctuations of a rank-2 gauge field may induce a new pattern of spin-dependence. More-
over, its mixing with an Abelian gauge potential sets up a different scenario to analyse
potentials induced by massive vector particles.

Our object of interest is a neutral massive spin-1 mediating particle, which we might
identify as a sort of massive photon. Such a particle is extensively discussed in the
literature, dubbed as 𝑍0′-particle. In the review articles of Ref. [48–50], the authors
present an exhaustive list of different 𝑍0′-particles and phenomenological constraints on
their masses and couplings. In this chapter, we shall be studying interaction potentials
between fermionic currents as induced by 𝑍0′ virtual particles; their effects are then
included in the interparticle potentials we are going to work out. Therefore, the velocity-
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and spin-dependence of our potentials appear as an effect of the interchange of a virtual
𝑍0′-particle.

We exploit a variety of couplings to ordinary matter in order to extract possible ex-
perimental signatures that allow to distinguish between the two types of mediation in
the regime of low-energy interactions. Just as in the usual electromagnetic case, where
the 4-potential is subject to gauge-fixing conditions to reduce the number of degrees of
freedom (d.o.f.), we shall also impose gauge-fixing conditions to the {𝐴𝜇, 𝐵𝜈𝜅}-system in
order to ensure that only the spin-1 d.o.f. survives. From the physical side, we expect
those potentials to exhibit a polynomial correction (in powers of 1/𝑟) to the well-known
𝑒−𝑚0𝑟/𝑟 Yukawa potential. This implies that a laboratory aparatus with typical dimen-
sions of ∼ 𝑚𝑚 could be used to examine the interaction mediated by massive bosons with
𝑚0 ∼ 10−3𝑒𝑉 .

Developments in the measurement of macroscopic interactions between unpolarized
and polarized objects [28, 29] [51–54] are able to constrain many of the couplings be-
tween electrons and nucleons (protons and neutrons), so that we can concentrate on more
fundamental questions, such as the impact of the particular field representation of the in-
termediate boson in the fermionic interparticle potential. To this end, we discuss the case
of monopole-dipole interactions in order to directly compare the Proca and {𝐴𝜇, 𝐵𝜈𝜅}-
mechanisms. We shall also present bounds on the vector/pseudo-tensor couplings that
arise from a possible application to the study of the hydrogen atom.

We would like to point out that our main contribution here is actually to associate
different field representations (which differ from each other by their respective off-shell
d.o.f.) to the explicit spin-dependence in the particle potentials we derive. Rather than
focusing on the constraints on the parameters, we aim at an understanding of the interplay
between different field representations for a given spin and spin-spin dependence of the
potentials that appear from the associated field-theoretic models. This shall be explicitly
highlighted in the end of Section 3.5.2. We anticipate here however that four particular
types of spin- and velocity-dependences show up only in the topologically massive case we
discuss here. The Proca-type massive exchange do exclude these four terms, as it shall
become clear in Section 3.5.2.

3.2 The Cremmer-Scherk-Kalb-Ramond field
In 1974, Cremmer and Scherk proposed a new mass generation mechanism [41] different

than the Higgs mechanism which was used in the context of dual models applied to strong
interactions. This mechanism of mass generation is based on a pair of fields, namely, a 4-
vector field and a 2-rank anti-symmetric tensor field which are connected via a topological
mixing term. Few days later, Kalb and Ramond introduced a similar system of fields to
study the equations of motion of the classical interaction between strings [42]. In this
section we introduce the {𝐴𝜇, 𝐵𝜈𝜅}-system of the topologically massive fields and explain
its properties.

The Proca vector field transforms under the
(︀
1
2
, 1
2

)︀
-representation of the Lorentz group

and its Lagrangean is the simplest extension leading to a massive intermediate vector
boson, but it is not the only one. A massive spin-1 particle can also be described through a
gauge-invariant formulation: a vector and a tensor fields connected by a mixing topological
mass term [56]. Both the vector 𝐴𝜇 and the tensor 𝐵𝜇𝜈 are gauge fields described by the
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following Lagrangean:

ℒ0 = −1

4
𝐹 2
𝜇𝜈 +

1

6
𝐺2
𝜇𝜈𝜅 +

𝑚0√
2
𝜖𝜇𝜈𝛼𝛽 𝐴𝜇𝜕𝜈𝐵𝛼𝛽, (3.1)

where the field-strength tensor for the vector field is given by 𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈 −𝜕𝜈𝐴𝜇 and the
field-strength for the anti-symmetric tensor is 𝐺𝜇𝜈𝜅 = 𝜕𝜇𝐵𝜈𝜅+𝜕𝜈𝐵𝜅𝜇+𝜕𝜅𝐵𝜇𝜈 . The origin
of the term “topological” lies in the fact that this term does not depend on the metric of
the space-time, which implies that it does not contribute to obtain the energy-momentum
tensor.

The action is invariant under the independent local Abelian gauge transformations
given by

𝐴′
𝜇 = 𝐴𝜇 + 𝜕𝜇𝛼 (3.2)

𝐵′
𝜇𝜈 = 𝐵𝜇𝜈 + 𝜕𝜇𝛽𝜈 − 𝜕𝜈𝛽𝜇 (3.3)

and, because of the anti-symmetry of 𝐵𝜇𝜈 , the vector function 𝛽𝜇(𝑥) can also suffer the
following gauge transformation that does not affect the primary gauge transformations:

𝛽𝜇(𝑥)
′ = 𝛽𝜇(𝑥) + 𝜕𝜇𝑓(𝑥). (3.4)

As one can note, from the original four degrees of freedom of the vector field 𝐴𝜇 one is
eliminated by choosing a gauge in eq. (3.2) and, from the original six degrees of freedom
of the 2-rank anti-symmetric tensor field 𝐵𝜇𝜈 , three are eliminated by the combination of
eqs. (3.3) and (3.4).

It can be shown that together with the equations of motion, the pair {𝐴𝜇, 𝐵𝜈𝜅} carries
three (on-shell) degrees of freedom, being, therefore, equivalent to a massive vector field.
It is interesting to note that, contrary to the typical Proca case, the topological mass term
does not break gauge invariance, so that no spontaneous symmetry breakdown is invoked.

Before moving to the analysis of the field equations, let’s briefly resume the behavior
of the model in the massless limit with 𝑚0 = 0. In this limit, the fields 𝐴𝜇 and 𝐵𝜇𝜈

are decoupled and behave as free fields that obey the equations 𝜕𝐹 𝜇𝜈 = 0 and 𝜕𝜇𝐺
𝜇𝜈𝜅 =

0. These equations of motion together with the gauge transformations and the Bianchi
identities shows us that 𝐴𝜇 is equivalent to the electromagnetic massless photon with two
degrees of freedom. And if we solve the equations for 𝐺 using 𝐺𝜇𝜈𝜅 = 𝜖𝜇𝜈𝜅𝜆𝜕

𝜆𝜙, where 𝜙
is a scalar function, we see that the free 𝐵𝜇𝜈 describes effectively only one massless scalar
degree of freedom carried by 𝜙.

Now let’s return to the topologically massive model described by the Lagrangian (3.1).
After applying the variational principle to this Lagrangian, we obtain the following set of
field equations

𝜕𝜇𝐹
𝜇𝜈 +

√
2𝑚0�̃�

𝜈 = 0 (3.5)

𝜕𝜇𝐺
𝜇𝜈𝜅 − 𝑚0√

2
𝐹 𝜈𝜅 = 0, (3.6)

where ̃︀𝐺𝜈 = 1
6
𝜖𝜈𝛼𝛽𝛿𝐺𝛼𝛽𝛿 is the dual field-strength of 𝐵𝜇𝜈 . By operating on these equations

with 𝜖𝜕 and using the Bianchi identities, one can extract two wave equations for the dual
field-strengths, which are
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(︀
2+𝑚2

0

)︀
�̃�𝜇 = 0 (3.7)(︀

2+𝑚2
0

)︀
𝐹 𝜇𝜈 = 0. (3.8)

Note that, as anticipated, the excitations described by the fields are massive excitations
with mass 𝑚0. A good way to see how the degrees of freedom are shared by the 𝐴𝜇 and
𝐵𝜇𝜈 fields is by writing �̃�𝜈 = 𝜕𝜈𝜉 + 𝑚0√

2
𝐴𝜈 to solve eq. (3.6) and rewrite eq. (3.5) as(︀

2+𝑚2
0

)︀
𝐴𝜇 − 𝜕𝜇

(︁
𝜕𝜈𝐴

𝜈 −
√
2𝑚0𝜉

)︁
. (3.9)

If we choose 𝜕𝜈𝐴𝜈 =
√
2𝑚0𝜉 as our gauge-fixing condition, we see that the equation

above describes a free massive vector boson with mass 𝑚0. Additionally, this gauge choice
shows that the longitudinal component of 𝐴𝜇 is described by a scalar degree of freedom
that originally belongs to 𝐵𝜇𝜈 . This dynamical transfer of degrees of freedom between
the gauge fields 𝐴𝜇 and 𝐵𝜇𝜈 happened thanks to the topological mixing term. Note that
here the vector field acquired a mass without breaking the gauge symmetry.

3.3 Methodology
Let us first establish the kinematics of our problem. We are dealing with two fermions,

1 and 2, which scatter elastically. If we work in the center of mass frame (CM), we can
assign them momenta as indicated in Fig. (3.1) below, where �⃗� is the momentum transfer
and 𝑝 is the average momentum of fermion 1 before and after the scattering.

Figure (3.1) Basic vertex structure and momentum assignments.

Given energy conservation and our choice of reference frame, one can readily show
that 𝑝 · �⃗� = 0 and that 𝑞𝜇 is space-like: 𝑞2 = −�⃗� 2. The amplitude will be expressed in
terms of �⃗� and 𝑝 and we shall keep only terms linear in |𝑝|/𝑚1,2. It will also include the
spin of the particles involved.

According to the first Born approximation, the two-fermion potential can be obtained
from the Fourier transform of the tree-level momentum-space amplitude with respect to
the momentum transfer �⃗�

𝑉 (𝑟, 𝑣) = −
∫︁

𝑑3�⃗�

(2𝜋)3
𝑒𝑖𝑞· �⃗�𝒜(�⃗�, 𝑚�⃗�), (3.10)
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where �⃗�, 𝑟 and 𝑣 = |𝑝|/𝑚1,2 are the relative position vector, its modulus and average
velocity of the fermions, respectively. The long-range behaviour is related to the non-
analytical pieces of the amplitude in the non-relativistic limit [55]. We evaluate the
fermionic currents up to first order in |𝑝|/𝑚1,2 and |�⃗�|/𝑚1,2, as indicated in the Appendix
A (an important exception is discussed in Section 3.5.2 in connection with the mixed
propagator ⟨𝐴𝜇𝐵𝜈𝜅⟩ since, in that case, contact terms arise).

We restrict ourselves to tree-level amplitudes since we are considering weakly interact-
ing particles, thus carrying tiny coupling constants that suppress higher-order diagrams.
The typical outcome are Yukawa-like potentials with extra 1/𝑟 contributions which also
depend on the spin of the sources, as well as on their velocity. Contrary to the usual
Coulomb case, spin- and velocity-dependent terms are the rule, not exception.

3.4 The pure spin-1 case: the Proca field
In order to establish the comparison between the two situations that involve a massive

spin-1 particle, we start off by quickly reviewing the simplest realization of a neutral
massive vector particle, the Proca field 𝐴𝜇(𝑥), described by the Lagrangean

ℒ𝑃𝑟𝑜𝑐𝑎 = −1

4
𝐹 2
𝜇𝜈 +

1

2
𝑚2

0𝐴
2
𝜇. (3.11)

Since we are concerned with the interaction mediated by such a field, it is necessary
to calculate its propagator, ⟨𝐴𝜇𝐴𝜈⟩. The Lagrangean above can be suitably rewritten as
1
2
𝐴𝜇𝒪𝜇𝜈𝐴

𝜈 , in which the operator 𝒪𝜇𝜈 , essentially the inverse of the propagator, is 𝒪𝜇𝜈 =
(2+𝑚2

0) 𝜃𝜇𝜈 + 𝑚2
0𝜔𝜇𝜈 , where we introduced the transverse and longitudinal projection

operators defined as

𝜃𝜇𝜈 ≡ 𝜂𝜇𝜈 −
𝜕𝜇𝜕𝜈
2

, (3.12)

𝜔𝜇𝜈 ≡ 𝜕𝜇𝜕𝜈
2

, (3.13)

which satisfy 𝜃2 = 𝜃, 𝜔2 = 𝜔, 𝜃𝜔 = 0 and 𝜃 + 𝜔 = 1. Due to these simple algebraic
properties it is easy to invert 𝒪𝜇𝜈 and, transforming to momentum space, we finally have

⟨𝐴𝜇𝐴𝜈⟩ = − 𝑖

𝑘2 −𝑚2
0

(︂
𝜂𝜇𝜈 −

𝑘𝜇𝑘𝜈
𝑚2

0

)︂
, (3.14)

from which we proceed to the calculation of the potentials.
Let us solve in more detail the case of two fermionic vector currents interacting via

the Proca field. Using the parametrization of Fig.(3.1) and applying the Feynman rules,
we get

𝑖𝒜𝑃𝑟𝑜𝑐𝑎
𝑉−𝑉 = �̄�(𝑝+ 𝑞/2)

{︀
𝑖𝑔𝑉1 𝛾

𝜇
}︀
𝑢(𝑝− 𝑞/2)⟨𝐴𝜇𝐴𝜈⟩ ×

× �̄�(−𝑝− 𝑞/2)
{︀
𝑖𝑔𝑉2 𝛾

𝜈
}︀
𝑢(−𝑝+ 𝑞/2)

with 𝑔𝑉1 and 𝑔𝑉2 refering to the coupling constants. The equation above can be put in a
simpler form as below

𝒜𝑃𝑟𝑜𝑐𝑎
𝑉−𝑉 = 𝑖 𝐽𝜇1 ⟨𝐴𝜇𝐴𝜈⟩ 𝐽𝜈2 . (3.15)
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If we use that 𝑞0 = 0 and current conservation, we find that the amplitude is 𝒜𝑃𝑟𝑜𝑐𝑎
𝑉−𝑉 =

− 1
𝑞 2+𝑚2

0
𝐽𝜇1 𝐽2𝜇 and, according to eq. (A.9), we have 𝐽 𝑖1 𝐽2𝑖 ∼ 𝒪(𝑣2/𝑐2). Therefore, only

the term 𝐽0
1 𝐽20 ≈ 𝑔𝑉1 𝑔

𝑉
2 𝛿1𝛿2 contributes to the scattering amplitude, thus giving

𝒜𝑃𝑟𝑜𝑐𝑎
𝑉−𝑉 = −𝑔𝑉1 𝑔𝑉2

𝛿1𝛿2
�⃗� 2 +𝑚2

0

, (3.16)

where 𝛿𝑖 (𝑖 = 1, 2 labels the particles) is such that 𝛿𝑖 = +1 if the 𝑖-th particle experiences
no spin flip in the interaction, and 𝛿𝑖 = 0 otherwise. In the eq. (3.16) above, the global
term 𝛿1𝛿2 is present to indicate that the amplitude is non-trivial only if both particles do
not flip their respective spins. If one of them changes its spin the potential vanishes. This
means that this interaction only occurs with no spin flip. In what follows, we shall come
across situations where only a single 𝛿𝑖 appears, thus justifying the effort to keep the 𝛿𝑖
explicit.

Finally, we take the Fourier transform in order to obtain the potential between two
static (vector) currents,

𝑉 𝑃𝑟𝑜𝑐𝑎
𝑉−𝑉 =

𝑔𝑉1 𝑔
𝑉
2 𝛿1𝛿2
4𝜋

𝑒−𝑚0𝑟

𝑟
, (3.17)

which displays the well-known exponentially suppressed repulsive Yukawa behaviour typ-
ical of a massive 𝑠 = 1 boson exchange. In our notation, the potential is indicated as
𝑉𝑣1−𝑣2 , where 𝑣1,2 refer to the vertices related to the particles 1 and 2. In the case above,
the subscripts 𝑉 stand for vector currents. As already announced, the typical decay
length is 1/𝑚0 and we expect that very light bosons will be measurable for (laboratory)
macroscopic distances, e.g. for masses of ∼ 10−3𝑒𝑉 , we have ranges of 𝑑 ∼ 1𝑚𝑚.

Following the same procedure, we can exploit other situations, namely: vector with
pseudo-vector currents and two pseudo-vector currents. The results are cast in what
follows:

𝑉 𝑃𝑟𝑜𝑐𝑎
𝑉−𝑃𝑉 = −𝑔

𝑉
1 𝑔

𝑃𝑉
2

4𝜋

{︁
𝑝 · ⟨�⃗�⟩2

𝛿1
𝑟

[︂
1

𝑚1

+
1

𝑚2

]︂
+

+
(1 +𝑚0𝑟)

2𝑚1𝑟2
[⟨�⃗�⟩1 × ⟨�⃗�⟩2] · 𝑟

}︁
𝑒−𝑚0𝑟 (3.18)

𝑉 𝑃𝑟𝑜𝑐𝑎
𝑃𝑉−𝑃𝑉 = −𝑔

𝑃𝑉
1 𝑔𝑃𝑉2

4𝜋
⟨�⃗�⟩1 · ⟨�⃗�⟩2

𝑒−𝑚0𝑟

𝑟
, (3.19)

and we notice that all kinds of spin-dependent interactions appear while the 𝑟 factors are
limited to 𝑟−2. It is also easy to see that 𝑉 𝑃𝑟𝑜𝑐𝑎

𝑃𝑉−𝑃𝑉 and 𝑉 𝑃𝑟𝑜𝑐𝑎
𝑉−𝑃𝑉 are even and odd against

a parity transformation, respectively. In the next section, we shall conclude that a richer
class of potentials is generated if the massive spin-1 Abelian boson exhibits a gauge-
invariant mass that comes from the mixing between a one- and a two-form potentials.

3.5 The topologically massive spin-1 case
Even though the Proca field and the mixed {𝐴𝜇, 𝐵𝜈𝜅}-system describe both an on-shell

spin-1 massive particle, these two cases are significantly different when considered off-
shell. Our topologically massive spin-1 system displays 6 d.o.f. when considered off-shell
(since gauge symmetry allows us to eliminate 4 compensating modes), whereas the Proca
field carries 4 off-shell d.o.f. (the subsidiary condition, which is an on-shell statement,
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eliminates one d.o.f.). It is the on-shell spin-1 massive boson corresponding to the mixed
{𝐴𝜇, 𝐵𝜈𝜅}-system that we refer to as our 𝑍0′-type particle. Its exchange between external
fermionic currents gives rise to the classes of interparticle potentials we wish to calculate
and discuss in this project.

On the other hand, since the potential evaluation is an off-shell procedure, we consider
relevant to compare both situations bearing in mind that the potential profiles may indi-
cate - if we are able to set up an experiment - whether a particular mechanism is preferable
in the case of a specific physical system. Characteristic aspects of the potentials in these
two situations might select one or other mechanism in some possible physical scenario,
therefore being able to distinguish between different BSM models.

Our goal is to investigate the potentials between fermions induced by the exchange
of the mixed vector and tensor fields and compare the spin-, velocity- and distance-
dependence against the Proca case. To do that, we need, first of all, to derive the whole
set of propagators.

3.5.1 The propagators

As in Section 3.4, it is important to obtain suitable spin operators in order to obtain
the propagators of the model. The spin operators that act on an anti-symmetric 2-form
are (︀

𝑃 1
𝑏

)︀
𝜇𝜈, 𝜌𝜎

≡ 1

2
(𝜃𝜇𝜌 𝜃𝜈𝜎 − 𝜃𝜇𝜎 𝜃𝜈𝜌) (3.20)(︀

𝑃 1
𝑒

)︀
𝜇𝜈, 𝜌𝜎

≡ 1

2
(𝜃𝜇𝜌 𝜔𝜈𝜎 + 𝜃𝜈𝜎 𝜔𝜇𝜌 − 𝜃𝜇𝜎 𝜔𝜈𝜌 − 𝜃𝜈𝜌 𝜔𝜇𝜎) (3.21)

which are anti-symmetric generalizations of the projectors 𝜃𝜇𝜈 and 𝜔𝜇𝜈 [57–59]. The
comma indicates that we have anti-symmetry in changes 𝜇 ↔ 𝜈 or 𝜌 ↔ 𝜎. The algebra
fulfilled by these operators is collected in the Appendix B. We quote them since they are
very useful in the extraction of the propagators from Lagrangean (3.1).

Adding up the gauge-fixing terms to the Lagrangean (3.1),

ℒ𝑔.𝑓. =
1

2𝛼
(𝜕𝜇𝐴

𝜇)2 +
1

2𝛽
(𝜕𝜇𝐵

𝜇𝜈)2 , (3.22)

yields the full Lagrangean ℒ = ℒ0 + ℒ𝑔.𝑓.. In terms of the spin operators, ℒ can be cast
in a more compact form as:

ℒ =
1

2

(︀
𝐴𝜇 𝐵𝜅𝜆

)︀(︂ 𝑃𝜇𝜈 𝑄𝜇𝜌𝜎

𝑅𝜅𝜆𝜈 S𝜅𝜆, 𝜌𝜎

)︂(︂
𝐴𝜈

𝐵𝜌𝜎

)︂
, (3.23)

where we identify

𝑃𝜇𝜈 ≡ 2𝜃𝜇𝜈 −
2

𝛼
𝜔𝜇𝜈 (3.24)

𝑄𝜇𝜌𝜎 ≡ 𝑚0 𝑆𝜇𝜌𝜎/
√
2 (3.25)

𝑅𝜅𝜆𝜈 ≡ −𝑚0 𝑆𝜅𝜆𝜈/
√
2 (3.26)

S𝜅𝜆, 𝜌𝜎 ≡ −2
(︀
𝑃 1
𝑏

)︀
𝜅𝜆, 𝜌𝜎

− 2

2𝛽

(︀
𝑃 1
𝑒

)︀
𝜅𝜆, 𝜌𝜎

. (3.27)

With the help of Appendix B, we invert the matrix operator in (3.23) and read off
the ⟨𝐴𝜇𝐴𝜈⟩, ⟨𝐴𝜇𝐵𝜅𝜆⟩ and ⟨𝐵𝜇𝜈𝐵𝜅𝜆⟩ momentum-space propagators, which turn out to be

22



given as below:

⟨𝐴𝜇𝐴𝜈⟩ = − 𝑖

𝑘2 −𝑚2
0

𝜂𝜇𝜈 + 𝑖

(︂
1

𝑘2 −𝑚2
0

+
𝛼

𝑘2

)︂
𝑘𝜇𝑘𝜈
𝑘2

(3.28)

⟨𝐵𝜇𝜈𝐵𝜅𝜆⟩ =
𝑖

𝑘2 −𝑚2
0

(︀
𝑃 1
𝑏

)︀
𝜇𝜈, 𝜅𝜆

+
2𝑖𝛽

𝑘2
(︀
𝑃 1
𝑒

)︀
𝜇𝜈, 𝜅𝜆

(3.29)

⟨𝐴𝜇𝐵𝜈𝜅⟩ =
𝑚0/

√
2

𝑘2 (𝑘2 −𝑚2
0)
𝜖𝜇𝜈𝜅𝜆 𝑘

𝜆. (3.30)

From the propagators above, we clearly understand that the massive pole 𝑘2 = 𝑚2
0,

present in (3.28)-(3.30), actually describes the spin-1 massive excitation carried by the
set {𝐴𝜇, 𝐵𝜈𝜅}.

In contrast to the off-shell regime of the so-called BF-model [60], our non-diagonal
⟨𝐴𝜇𝐵𝜈𝜅⟩-propagator exhibits a massive pole and it cannot be considered separately from
the ⟨𝐴𝜇𝐴𝜈⟩- and ⟨𝐴𝜇𝐵𝜅𝜆⟩-propagators: only the full set of fields together correspond to
the 3 d.o.f. of the on-shell massive spin-1 boson we consider in our study.

Different from the point of view adopted in Ref. [61], where the authors treat the topo-
logical mass term as a vertex insertion (they keep the ⟨𝐴𝜇𝐵𝜈𝜌⟩- and ⟨𝐵𝜇𝜈𝐵𝜅𝜆⟩-propagators
separately and with a trivial pole 𝑘2 = 0), we consider it as a genuine bilinear term and
include it in the sector of 2-point functions. For that, we introduce the mixed spin op-
erator 𝑆𝜇𝜈𝜅 in the algebra of operators and its final effect is to yield the mixed ⟨𝐴𝜇𝐵𝜈𝜅⟩-
propagator. The commom pole at 𝑘2 = 𝑚2

0 does not describe different particles, but a
single massive spin-1 excitation described by the combined {𝐴𝜇, 𝐵𝜈𝜅}-fields, as already
stated in the previous paragraph. Ref. [61] sums up the (massive) vertex insertions into
the ⟨𝐴𝜇𝐴𝜈⟩-propagator which develops a pole at 𝑘2 = 𝑚2. They leave the ⟨𝐵𝜇𝜈𝐵𝜅𝜆⟩-
propagator aside because the 𝐵𝜇𝜈-field does not interact with the fermions; the latter are
minimally coupled only to 𝐴𝜇.

On the other hand, in Ref. [62], the topological mass term that mixes 𝐴𝜇 and 𝐵𝜈𝜅 is
generated by radiative corrections induced by the 4-fermion interactions. So, for the sake
of their calculations, the authors work with a massless vector propagator whose mass is
dynamically generated. This is not what we do here. In a more recent paper [63], again
an induced topological mass term mixes 𝐴𝜇 and 𝐵𝜈𝜅 but, in this case, it is a topological
current that radiatively generates the mass.

We point out the seminal paper by Cremmer and Scherk [41], where they show that,
for the spectrum analysis, it is possible to take the field-strength 𝐺𝜇𝜈𝜅 and its dual ̃︀𝐺𝜇,
as fundamental fields, thus enabling them to go into a new field basis where a Proca-like
field emerges upon a field redefinition. We cannot follow this road here, for our 𝐵𝜇𝜈 is
coupled to a tensor and to a pseudo-tensor currents in the process of evaluating some of
our potentials. This prevents us from adopting ̃︀𝐺𝜇 as a fundamental field, as it is done
in [41]; this would be conflicting with the locality of the action. But, for the sake of
analysing the spectrum, Cremmer and Scherk’s procedure works perfectly well.

Finally, we also point out the paper by Kamefuchi, O’ Raifeartaigh and Salam [64]
that discusses the conditions on field reshufflings which do not change the physical results,
namely, the 𝑆-matrix elements. A crucial point is that the change of basis in field space
does not yield non-local interactions. So, once again, we stress that, once both the 𝐴𝜇-
and the 𝐵𝜇𝜈-fields interact with external currents, a diagonalization in the (free) kinetic
Lagrangean leads to non-local terms and we, therefore, would not be able to control the
equivalence between the results worked out with the two choices of field bases.
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3.5.2 The potentials

We have already discussed the procedure to obtain the spin- and velocity-dependent
potentials in previous sections. Thus, we shall focus on the particular case in which we
have the propagator ⟨𝐵𝜇𝜈𝐵𝜅𝜆⟩ and two tensor currents. In the following, we adopt the
same parametrization of Fig. (3.1). After applying the Feynman rules, we can rewrite the
scattering amplitude for this process as

𝒜⟨𝐵𝐵⟩
𝑇−𝑇 = 𝑖𝐽𝜇𝜈1 ⟨𝐵𝜇𝜈𝐵𝜅𝜆⟩𝐽𝜅𝜆2 (3.31)

with the tensor currents given by eq. (A.13). Substituting the propagator (3.29) in eq.
(3.31) and eliminating its longitudinal sector (due to current conservation), we have

𝒜⟨𝐵𝐵⟩
𝑇−𝑇 = − 1

𝑞2 −𝑚2
0

𝐽𝜇𝜌1 𝐽2𝜇𝜌. (3.32)

The product of currents leads to 𝐽𝜇𝜌1 𝐽2𝜇𝜌 = 2𝐽0𝑖
1 𝐽2 0𝑖 + 𝐽 𝑖𝑗1 𝐽2 𝑖𝑗. However, according to

eq. (𝐴.14), we conclude that 𝐽0𝑖
1 𝐽2 0𝑖 ∼ 𝒪(𝑣2/𝑐2) does not contribute to the non-relativistic

amplitude. The term 𝐽 𝑖𝑗1 𝐽2 𝑖𝑗 can be simplified by using eq. (𝐴.15) (with the appropriate
changes to the second current), so that we get

𝒜⟨𝐵𝐵⟩
𝑇−𝑇 =

1

2

𝑔𝑇1 𝑔
𝑇
2

�⃗� 2 +𝑚2
0

⟨�⃗�⟩1 · ⟨�⃗�⟩2. (3.33)

Performing the well-known Fourier integral, we obtain the non-relativistic spin-spin po-
tential, namely

𝑉
⟨𝐵𝐵⟩
𝑇−𝑇 = −𝑔

𝑇
1 𝑔

𝑇
2

8𝜋
⟨�⃗�⟩1 · ⟨�⃗�⟩2

𝑒−𝑚0𝑟

𝑟
, (3.34)

and, similarly, we find the interaction potentials between tensor and pseudo-tensor cur-
rents as well as two pseudo-tensors currents to be

𝑉
⟨𝐵𝐵⟩
𝑇−𝑃𝑇 =

𝑔𝑇1 𝑔
𝑃𝑇
2

8𝜋𝑟

{︁(︂ 1

𝑚1

+
1

𝑚2

)︂
𝑝 · (⟨�⃗�⟩1 × ⟨�⃗�⟩2) +

+
(1 +𝑚0𝑟)

2𝑟

(︂
𝛿2
𝑚2

⟨�⃗�⟩1 −
𝛿1
𝑚1

⟨�⃗�⟩2
)︂
· 𝑟
}︁
𝑒−𝑚0𝑟 (3.35)

𝑉
⟨𝐵𝐵⟩
𝑃𝑇−𝑃𝑇 =

𝑔𝑃𝑇1 𝑔𝑃𝑇2

8𝜋
⟨�⃗�⟩1 · ⟨�⃗�⟩2

𝑒−𝑚0𝑟

𝑟
. (3.36)

It is worthy comparing the potentials (3.34) and (3.36). We observe that they differ
by a relative minus sign. This means that they exhibit opposite behaviors for a given spin
configuration: one is attractive and the other repulsive. The physical reason is that the
𝑃𝑇 −𝑃𝑇 and 𝑇 − 𝑇 potentials stem from different sectors of the currents: the 𝑃𝑇 −𝑃𝑇
amplitude is composed by the (0𝑖)− (0𝑗) terms of the currents; the 𝑇 − 𝑇 amplitude, on
the other hand, arises from the (𝑖𝑗)− (𝑘𝑙) components, as it can be seen from eq. (3.31).

In the light of that, we check the structure of the ⟨𝐵𝜇𝜈𝐵𝜅𝜆⟩-propagator and it becomes
clear that, in the case of the ⟨𝐵0𝑖𝐵0𝑗⟩-mediator, an off-shell scalar mode is exchanged. In
contrast, in the ⟨𝐵𝑖𝑗𝐵𝑘𝑙⟩-sector the only exchange is of a pure 𝑠 = 1 (off-shell) quantum. It
is well-known, however, that the exchange of a scalar and a 𝑠 = 1 boson between sources of
equal charges yields attractive and repulsive interactions, respectively, therefore justifying
the aforementioned sign difference between Eqs. (3.34) and (3.36).
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For the mixed propagator ⟨𝐴𝜇𝐵𝜅𝜆⟩, eq. (3.30), we have four possibilities envolving
the following currents: vector with tensor, vector with pseudo-tensor, pseudo-vector with
tensor and pseudo-vector with pseudo-tensor. The results are given below:

𝑉
⟨𝐴𝐵⟩
𝑉−𝑇 =

𝑔𝑉1 𝑔
𝑇
2 𝛿1

4𝜋
√
2𝑚0𝑟2

[︀
1− (1 +𝑚0𝑟) 𝑒

−𝑚0𝑟
]︀
⟨�⃗�⟩2 · 𝑟 (3.37)

𝑉
⟨𝐴𝐵⟩
𝑃𝑉−𝑇 =

𝑔𝑃𝑉1 𝑔𝑇2
4𝜋

√
2𝑚0𝜇𝑟2

[︀
1− (1 +𝑚0𝑟) 𝑒

−𝑚0𝑟
]︀
(⟨�⃗�⟩1 · 𝑝) (⟨�⃗�⟩2 · 𝑟) (3.38)

𝑉
⟨𝐴𝐵⟩
𝑃𝑉−𝑃𝑇 =

𝑔𝑃𝑉1 𝑔𝑃𝑇2√
2𝑚0

{︂
𝛿2

2𝑚1𝑚2

[︂
𝛿3(�⃗�) +

𝑚2
0

4𝜋𝑟
𝑒−𝑚0𝑟

]︂
⟨�⃗�⟩1 · 𝑝+

+
1

4𝜋𝑟2
[︀
1− (1 +𝑚0𝑟) 𝑒

−𝑚0𝑟
]︀
(⟨�⃗�⟩2 × ⟨�⃗�⟩1) · 𝑟

}︂
. (3.39)

The richest potential is the one between vector and pseudo-tensor sources, given by

𝑉
⟨𝐴𝐵⟩

𝑉−𝑃𝑇 =
𝑔𝑉1 𝑔

𝑃𝑇
2√

2𝑚0

{︂
𝛿1𝛿2
2𝑚2

[︂
𝛿3(�⃗�) +

𝑚2
0

4𝜋𝑟
𝑒−𝑚0𝑟

]︂
+

+
𝛿1

4𝜋𝜇𝑟3
[︀
1− (1 +𝑚0𝑟) 𝑒

−𝑚0𝑟
]︀
�⃗� · ⟨�⃗�⟩2 +

+
1

2𝑚1

[︂
𝛿3(�⃗�) +

𝑚2
0

4𝜋𝑟
𝑒−𝑚0𝑟 − 1

4𝜋𝑟3
[︀
1 + (1 +𝑚0𝑟) 𝑒

−𝑚0𝑟
]︀]︂

⟨�⃗�⟩1 · ⟨�⃗�⟩2 +

+
1

8𝜋𝑚1𝑟3
[︀
3 +

(︀
3 + 3𝑚0𝑟 +𝑚2

0𝑟
2
)︀
𝑒−𝑚0𝑟

]︀
(⟨�⃗�⟩1 · 𝑟) (⟨�⃗�⟩2 · 𝑟)

}︂
(3.40)

where we have introduced the reduced mass of the fermion system 𝜇−1 = 𝑚−1
1 +𝑚−1

2 and
�⃗� = �⃗� × 𝑝 stands for the orbital angular momentum.

Naturally, the contact terms do not contribute to a macroscopic interaction. Never-
theless, they are significant in quantum-mechanical applications in the case of s-waves
which can overlap the origin. This is a peculiarity of ⟨𝐴𝜇𝐵𝜅𝜆⟩-sector due to the extra
𝑞2-factor in the denominator, which forces us to keep terms of order |�⃗�|2 in the current
products.

For the propagator ⟨𝐴𝜇𝐴𝜈⟩, eq. (3.28), we find the same results as the ones in the
Proca situation, due to current conservation. This means that, even though the vector
field appears now mixed with the 𝐵𝜇𝜈-field with a gauge-preserving mass term, for the
sake of the interaction potentials, the results are the same as in the Proca case as far
as the 𝐴𝜇-field exchange is concerned. We mention in passing that the 𝑉 ⟨𝐵𝐵⟩

𝑇−𝑇 , 𝑉 ⟨𝐵𝐵⟩
𝑃𝑇−𝑃𝑇 ,

𝑉
⟨𝐴𝐵⟩
𝑃𝑉−𝑇 and 𝑉 ⟨𝐴𝐵⟩

𝑉−𝑃𝑇 potentials are even under parity, while 𝑉 ⟨𝐵𝐵⟩
𝑇−𝑃𝑇 , 𝑉 ⟨𝐴𝐵⟩

𝑉−𝑇 and 𝑉 ⟨𝐴𝐵⟩
𝑃𝑉−𝑃𝑇 are

odd. This difference is due to the presence of a single factor of the momentum transfer
in the mixed propagator, eq. (3.30).

We point out that experiments with ferrimagnetic rare earth iron garnet test masses
[65] could be a possible scenario to distinguish the two different mass mechanisms. In
the Proca mechanism, we obtained the following spin- and velocity-dependence: 𝑝 · �⃗� ,
(�⃗�1 × �⃗�2) · 𝑟 and �⃗�1 · �⃗�2. These also appear in the gauge-preserving mass mechanism, but
there we have additional profiles, given by (�⃗�1×�⃗�2)·𝑝, �⃗�·𝑟, (�⃗�1·𝑝)(�⃗�2·𝑟) and (𝑟×𝑝)·�⃗�. The
experiment provides six configurations (𝐶1, ..., 𝐶6) by changing the relative polarization of
the detector and the test mass (with respective spin polarizations and relative velocities).
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One of these configurations is interesting to our work, namely, the 𝐶5 is sensitive only to
(𝑟 × 𝑝) · �⃗� dependence, which is only present in the gauge-preserving mass mechanism.
For the other profiles we cannot distinguish the contributions of different mechanisms in
this experiment. For example, the 𝐶2 configuration is sensitive to both (�⃗�1 ·𝑝)(�⃗�2 · 𝑟) and
�⃗�1 · �⃗�2 dependences.

3.6 Conclusions
The model we investigated describes an extra Abelian gauge boson, a sort of 𝑍0′ , which

appears as a neutral massive excitation of a mixed {𝐴𝜇, 𝐵𝜈𝜅}-system of fields. It may be
originated from some sector of BSM physics, where the coupling between an Abelian
field and the 2-form gauge potential in the SUGRA multiplet may yield the topologically
massive spin-1 particle we are considering. To have detectable macroscopic effect, this
intermediate particle should have a very small mass, of the order of meV. This would be
possible in the class of phenomenological models with the so-called large extra dimensions.

It is clear that the considerable number of off-shell degrees of freedom of the {𝐴𝜇, 𝐵𝜈𝜅}-
model accounts for the variety of potentials presented above. In order to distinguish be-
tween the two models, a possible experimental set-up could consist of a neutral and a
polarized source (1 and 2, respectively). Suppose the sources display all kinds of interac-
tions (V, PV, T, etc). In this case, we must collect the terms proportional to ⟨�⃗�⟩2 ≡ ⟨�⃗�⟩,
namely

𝑉 𝑃𝑟𝑜𝑐𝑎
𝑚𝑜𝑛−𝑑𝑖𝑝 = −𝑔

2

𝜇

𝑒−𝑚0𝑟

𝑟
𝑝 · ⟨�⃗�⟩ (3.41)

𝑉
{𝐴,𝐵}
𝑚𝑜𝑛−𝑑𝑖𝑝 = −𝑔

2

𝜇

𝑒−𝑚0𝑟

𝑟
𝑝 · ⟨�⃗�⟩+

− 𝑔2

𝑚1

(1 +𝑚0𝑟)𝑒
−𝑚0𝑟

𝑟2
𝑟 · ⟨�⃗�⟩+

+
𝑔2

𝑚0

[1− (1 +𝑚0𝑟) 𝑒
−𝑚0𝑟]

𝑟2
𝑟 · ⟨�⃗�⟩+

− 𝑔2𝑚0

𝑚1𝑚2

𝑒−𝑚0𝑟

𝑟
𝑝 · ⟨�⃗�⟩

+
𝑔2

𝜇𝑚0

[1− (1 +𝑚0𝑟) 𝑒
−𝑚0𝑟]

𝑟3
(�⃗� × 𝑝) · ⟨�⃗�⟩, (3.42)

where, for simplicity, we have omitted the labels in the coupling constants. In the macro-
scopic limit these would be effectively substituted by 𝑔 → 𝑔𝑁𝑖, being 𝑁𝑖 the number of
interacting particles of type 𝑖 in each source. If we consider the case in which the source
1 carries momentum so that 𝑝 // ⟨�⃗�⟩, the last term above vanishes. Similarly, it is easy to
see that the third term is essencially constant, while the fourth one is negligeable, since
𝑚0|𝑝|/𝑚1𝑚2 ≪ 1 by definition. In Fig.(3.2), we plot the two resulting potentials.

It would then be possible, in principle, to determine which field representation, Proca
or {𝐴𝜇, 𝐵𝜈𝜅}, better describes the interaction at hand. It is worth mentioning that this
difference is regulated by the 1/𝑚1 factor in the second term of eq. (3.42), so that only
the lightest fermions (i.e., electrons and not the protons or neutrons, provided that, in a
macroscopic source, we can safely neglect the internal structure of the nucleons) would
be able to contribute significantly.
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Figure (3.2) Monopole-dipole potentials with 𝑚1 = 𝑚𝑒 = 105 eV, 𝑚0 = 10−3 eV and
source 1 with velocity of order 𝑣 ≃ 10−6. The scale is irrelevant and coupling constants
were not included for simplicity.

If we take the second line of eq. (3.40), for example, we notice a coupling of the angular
momentum of the first fermion with the spin of the second. Such a spin-orbit coupling
is also found in the hydrogen atom, contributing to its fine structure (with typical order
of magnitude of 10−6𝑒𝑉 ). Supposing that the proton and electron are charged under
the gauge symmetries leading to the {𝐴𝜇𝐵𝜈𝜅}-fields, we can calculate a correction to the
energy levels of their bound state due to ⟨𝐴𝜇𝐵𝜅𝜆⟩ exchange as a means of estimation
for the 𝑉 − 𝑃𝑇 coupling constants as a function of 𝑚0. Expanding the exponential in
1− (1 +𝑚0𝑟)𝑒

−𝑚0𝑟 and keeping only the leading term, the spin-orbit term simplifies to

𝑉 𝐿𝑆
𝑉−𝑃𝑇 =

√
2𝑔𝑉1 𝑔

𝑃𝑇
2 𝑚0

8𝜋𝜇

1

𝑟
L · S (3.43)

with S = ⟨�⃗�⟩2/2. Applying first-order perturbation theory to this potential gives a cor-
rection to the energy of

Δ𝐸𝐿𝑆 =
𝑔𝑉1 𝑔

𝑃𝑇
2 𝑚0

8𝜋
√
2𝜇(𝑛2𝑎0)

𝑋𝑙, (3.44)

where 𝑋𝑙 = 𝑙 for 𝑗 = 𝑙+1/2 and 𝑋𝑙 = −(𝑙+1) for 𝑗 = 𝑙− 1/2. As we are interested in an
estimate, we suppose |𝑋𝑙|/𝑛2 ∼ 1. Given that the reduced mass and the Bohr radius are
𝜇 ≃ 𝑚𝑒 = 5.11×105 eV and 𝑎0 = 2.69×10−4 eV−1, respectively, we can constrain Δ𝐸𝐿𝑆 to
be smaller than the current spectroscopic uncertainties of one part in 1014 [66]. We then
obtain |𝑔𝑉 𝑔𝑃𝑇 | < 10−8 for a mass of order 𝑚0 ∼ 10−2 eV, which poses a less stringent,
but consistent (in regard to the orders of magnitude of other couplings [35]), upper bound
on the couplings. We see that this correction is much smaller than the typical spin-orbit
contribution. This problem can be analyzed with more details in a more comprehensive
study that applies atomic spectroscopy of both electronic and muonic hydrogen atoms.
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Part II

Supersymmetric Dark Matter

28



Chapter 4

Supersymmetry

4.1 Motivations
Supersymmetry is probably the most fascinating theory to describe the new physics

that may appear above the electroweak scale. Although the experimentalists have not yet
detected signals of supersymmetric particles, there are strong reasons to believe that low
energy supersymmetry is the next outcome of experimental and theoretical progress. The
main reason why low energy supersymmetry has long been considered the best-motivated
possibility for new physics at the TeV scale is that it can simultaneously solve numerous
fundamental open questions of the SM:

1. Hierarchy problem: Supersymmetry provides a solution to the hierarchy problem
[106–109] and explains how hierarchies arise. Adding a superpartner to each SM
particle, SUSY provides new loop corrections to the SM Higgs boson that can cancel
the quadratic divergent terms.

2. Electroweak symmetry breaking: In the SM the spontaneous breaking of the
electroweak symmetry is parameterized by the Higgs boson ℎ0 and its scalar poten-
tial 𝑉 (ℎ0). However there are no symmetry principles to constrain the Higgs sector,
and thus the Higgs field is put into the theory by hand. EWSB can occur in a natural
way via a certain radiative mechanism in the context of SUSY theories [110–112].

3. Gauge coupling unification: Although the SM unifies the electromagnetic and
weak interactions at 246 GeV into the single electroweak interaction, it cannot unify
this force with the strong QCD interaction. Because of its extended particle content,
the MSSM can unify the gauge couplings of the SM at the GUT scale, which is
𝒪(1016 GeV) [125–127]. The evolution of the coupling constants with the energy
scale 𝑄 is governed by their Renormalization Group Equations (RGEs). The one-
loop RGEs for the SM gauge couplings (𝑔1, 𝑔2, 𝑔3) are

𝛽𝑖 = 𝑄
𝑑

𝑑𝑄
𝑔𝑖(𝑄) =

1

16𝜋2
𝑏𝑖𝑔

3
𝑖 , (𝑖 = 1, 2, 3) (4.1a)

𝑄
𝑑

𝑑𝑄

(︂
𝑔2𝑖
4𝜋

)︂−1

= 𝑄
𝑑

𝑑𝑄
𝛼−1
𝑖 = − 1

2𝜋
𝑏𝑖, (4.1b)

29



where, according to GUT normalization, 𝑔1 =
√︀

5/3𝑔𝑌 . These equations show that
𝛼−1
𝑖 evolves linearly with log (𝑄). The coefficients 𝑏𝑖 for the SM and MSSM are as

follows [80]

(𝑏1, 𝑏2, 𝑏3)SM =

(︂
41

10
,−19

6
,−7

)︂
, (4.2a)

(𝑏1, 𝑏2, 𝑏3)MSSM =

(︂
33

5
, 1,−3

)︂
. (4.2b)

Figure 4.1 compares the two-loop RG evolution of the gauge couplings in the SM
and the MSSSM and shows the possibility of unifying all the three fundamental
forces at a scale 𝑄GUT ∼ 1016 GeV in the context of SUSY. Embedding the MSSM
gauge group in a larger gauge group of grand unification such as SU(5) [113–115],
SO(10) [116, 117] or 𝐸6 [48] one can also unify all the matter content in restricted
set of representations of the gauge group.

Figure (4.1) Two-loop renormalization group evolution of the inverse gauge couplings
𝛼−1
𝑖 in the SM (dashed) and the MSSM (solid lines). Figure taken from Ref. [80].

4. Cosmological challenges: Several problems appear when one tries to build cos-
mological models based solely on the SM particle content, such as the absence of
CDM particle and a small baryon asymmetry generated at the electroweak phase
transition. The Lightest Supersymmetric Particle (LSP) of the supersymmetric
models can behave as a stable dark matter particle with the correct relic abundance
if R-parity is preserved in the model. SUSY is able to link particle physics and cos-
mology not only through its possibility to have viable dark matter candidates but
also by providing viable inflaton candidates [118–120]. In order to reproduce the
observed baryon-antibaryon asymmetry, supersymmetric extensions of the SM can
clearly satisfy the necessary Sakharov conditions [121] for successful baryogenesis.

5. Gravitation: Although gravitation is a fundamental force, it is not included in
the SM. If SUSY is implemented as a local symmetry it automatically introduces a
spin-2 particle known as graviton that mediates the gravitational interaction. The
resulting gauge theory of local SUSY is called supergravity [71–77]. Supergravity is
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also seen as the low-energy limit of superstring theories, which shows that it plays
essential roles in the context of string theories.

4.2 Supersymmetry algebra and superfields
Relativistic quantum field theories are invariant under the Poincaré group which con-

tains all the symmetries of special relativity where space-time rotations are encoded in
the generator 𝑀𝜇𝜈 while space-time translations are realized by the generator 𝑃𝜇. The
Lie algebra of the Poincaré group is defined by the following commutation relations

[𝑃𝜇, 𝑃𝜈 ] = 0, (4.3)
[𝑀𝜇𝜈 , 𝑃𝜌] = 𝑖 (𝑃𝜇𝜂𝜈𝜌 − 𝑃𝜈𝜂𝜇𝜌) , (4.4)

[𝑀𝜇𝜈 ,𝑀𝜌𝜎] = 𝑖 (𝜂𝜇𝜎𝑀𝜈𝜌 − 𝜂𝜇𝜌𝑀𝜈𝜎 + 𝜂𝜈𝜌𝑀𝜇𝜎 − 𝜂𝜈𝜎𝑀𝜇𝜌) . (4.5)

Generally, the Poincaré algebra cannot mix non-trivially with other usual Lie algebras
defined only by commutation relations. In 1967 Coleman and Mandula [69] proved a no-go
theorem which says that in a consistent interacting quantum field theory the most general
bosonic symmetry that the S-matrix can have is a direct product of the Poincaré and
internal symmetries. Introducing fermionic generators which satisfy anti-commutation
relations indeed allows us to extend the symmetries of the quantum field theory. In 1975
Haag, Lopuszanski and Sohnius showed that a graded Lie algebra called super-Poincaré
algebra is the most general extension of the Poincaré algebra [70].

Supersymmetry is a spacetime symmetry that maps particles and fields of half-integer
spin (fermion) into particles and fields of integer spin (boson). The generators 𝑄 and 𝑄
of this symmetry are spinor operators that acts schematically as

𝑄|fermion⟩ = |boson⟩ 𝑄|boson⟩ = |fermion⟩ (4.6a)

𝑄|fermion⟩ = |boson⟩ 𝑄|boson⟩ = |fermion⟩. (4.6b)

In its most simple version where there is only 𝒩 = 1 pair of supersymmetric generators(︀
𝑄𝛼, 𝑄�̇�

)︀
with {𝛼, �̇�} = {1, 2}, the super-Poincaré algebra is defined by

{︀
𝑄𝛼, 𝑄�̇�

}︀
= 2(𝜎𝜇)𝛼�̇�𝑃𝜇 (4.7)

{𝑄𝛼, 𝑄𝛽} =
{︀
𝑄�̇�, 𝑄�̇�

}︀
= 0 (4.8)

[𝑃𝜇, 𝑄𝛼] =
[︀
𝑃𝜇, 𝑄�̇�

]︀
= 0 (4.9)

[𝑀𝜇𝜈 , 𝑄𝛼] = 𝑖(𝜎𝜇𝜈)
𝛽
𝛼 𝑄𝛽 (4.10)[︁

𝑀𝜇𝜈 , 𝑄
�̇�
]︁

= 𝑖(𝜎𝜇𝜈)
�̇�
�̇�
𝑄
�̇�
, (4.11)
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where the Pauli matrices 𝜎𝑖 are obtained from the following relations

(𝜎𝜇𝜈) 𝛽
𝛼 =

1

4

(︁
𝜎𝜇𝛼�̇�𝜎

𝜈 �̇�𝛽 − 𝜎𝜈𝛼�̇�𝜎
𝜇 �̇�𝛽

)︁
(4.12a)

(𝜎𝜇𝜈)�̇��̇� =
1

4

(︁
𝜎𝜇 �̇�𝛼𝜎𝜈

𝛼�̇�
− 𝜎𝜈 �̇�𝛼𝜎𝜇

𝛼�̇�

)︁
(4.12b)

𝜎𝜇 = (1, 𝜎i) (4.12c)
𝜎𝜇 = (1,−𝜎i). (4.12d)

In extended versions of the SUSY algebra with 𝒩 > 1 the supersymmetric field theories
must also contain particles of higher spin. We consider in this thesis only unextended
𝒩 = 1 supersymmetry because this is the only version that allows to define properly
chiral fermions [72–76] and thus is the most phenomenologically interesting one.

To construct supersymmetric field theories consistent with the super-Poincaré algebra
it is necessary to have fermionic coordinates 𝜃𝛼 and 𝜃�̇� associated to the SUSY generators
𝑄𝛼 and 𝑄�̇� together with the spacetime coordinates 𝑥𝜇 associated to the bosonic generator
𝑃𝜇. These fermionic coordinates are Grassmann variables that obey the relations{︀

𝜃𝛼, 𝜃𝛽
}︀
=
{︀
𝜃𝛼, 𝜃�̇�

}︀
=
{︀
𝜃�̇�, 𝜃�̇�

}︀
= 0. (4.13)

The resulting space with 4 bosonic and 4 fermionic coordinates X =
(︀
𝑥𝜇, 𝜃𝛼, 𝜃�̇�

)︀
is called

superspace and all the fields Ω(𝑥𝜇, 𝜃𝛼, 𝜃�̇�) defined in this extended space are called super-
fields. In the superspace a generic element 𝐺(𝑥, 𝜔, 𝜃, 𝜃) of the super-Poincaré group that
realizes a finite SUSY transformation on the superfields can be written as

𝐺(𝑥, 𝜔, 𝜃, 𝜃) = 𝑒𝑖(𝜃𝑄+𝜃𝑄−𝑥𝜇𝑃𝜇− 1
2
𝜔𝜇𝜈𝑀𝜇𝜈). (4.14)

More details about the differentiation and integration properties of the Grassmann vari-
ables of the superspace can be seen in [78–80].

Infinitesimal SUSY transformations applied on superfields can be written as

𝛿𝜖,𝜖Ω(𝑥, 𝜃, 𝜃) =

[︂
𝜖𝛼

𝜕

𝜕𝜃𝛼
+ 𝜖�̇�

𝜕

𝜕𝜃
�̇�
− 𝑖

(︂
𝜖𝛼𝜎𝜇

𝛼�̇�
𝜃
�̇� − 𝜃𝛽𝜎𝜇𝛽�̇�𝜖

�̇�

)︂
𝜕

𝜕𝑥𝜇

]︂
Ω(𝑥, 𝜃, 𝜃)

= 𝑖
(︀
𝜖𝒬+ 𝜖𝒬

)︀
Ω(𝑥, 𝜃, 𝜃), (4.15)

where 𝜖 and 𝜖 are Grassmann parameters. This shows that the SUSY generators have the
following representation in the differential form

𝒬𝛼 = −𝑖𝜕𝛼 − 𝜎𝜇
𝛼�̇�
𝜃
�̇�
𝜕𝜇 𝒬�̇� = 𝑖𝜕�̇� + 𝜃𝛽𝜎𝜇𝛽�̇�𝜕𝜇. (4.16)

It is useful to define SUSY-covariant derivatives that anticommute with the SUSY gen-
erators and thus are useful for writing down SUSY invariant expressions. They are given
by

𝐷𝛼 = 𝜕𝛼 + 𝑖𝜎𝜇
𝛼�̇�
𝜃
�̇�
𝜕𝜇 𝐷�̇� = 𝜕�̇� + 𝑖𝜃𝛽𝜎𝜇𝛽�̇�𝜕𝜇. (4.17)

Since these covariant derivatives obey Eqs. (4.7) and (4.8) they can be used to impose con-
straints on the general superfield to reduce its number of components in a way consistent
with the SUSY transformations. Note from Eqs. (4.16) and (4.17) that the superspace
coordinates 𝜃 and 𝜃 have mass dimension 𝑀− 1

2 .
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Because of the nilpotency of the Grassmann numbers 𝜃𝛼, the superfields can be written
explicitly as an expansion series in powers of 𝜃 and 𝜃 with a finite number of terms. The
most general superfield has the following expansion

Ω(𝑥𝜇, 𝜃, 𝜃) = 𝑓(𝑥) + 𝜃𝜓(𝑥) + 𝜃𝜒(𝑥) + 𝜃2𝑚(𝑥) + 𝜃
2
𝑛(𝑥)

+ 𝜃𝜎𝜇𝜃𝑣𝜇(𝑥) + 𝜃2𝜃 𝜁(𝑥) + 𝜃
2
𝜃𝜆(𝑥) + 𝜃

2
𝜃2𝐷(𝑥), (4.18)

where 𝑓(𝑥), 𝑚(𝑥), 𝑛(𝑥) and 𝐷(𝑥) are complex scalar fields, while 𝜓(𝑥), 𝜆(𝑥), 𝜒(𝑥) and
𝜁(𝑥) are Weyl spinor fields and 𝑣𝜇 is a complex four-vector field. Note that in the general
superfield there are 16 bosonic degrees of freedom and 16 fermionic degrees of freedom.
As a consequence of supersymmetry, all the superfields have the same number of bosonic
and fermionic degrees of freedom. However, by imposing SUSY covariant constraints
on the general superfield one can obtain other supermultiplets with smaller number of
component fields. We use two types of irreducible supermultiplets that are important to
build the Lagrangeans of 𝒩 = 1 supersymmetric gauge theories, which are the chiral and
vector superfields.

The chiral and the antichiral superfields are defined as superfields that obey the fol-
lowing SUSY invariant constraints

𝐷�̇�Φ = 0 chiral superfield (4.19)

𝐷𝛼Φ = 0 antichiral superfield. (4.20)

To obtain the general solutions of the equations above it is useful to define new bosonic
coordinates 𝑦𝜇 of the form

𝑦𝜇 = 𝑥𝜇 + 𝑖𝜃𝜎𝜇𝜃 𝑦𝜇 = (𝑦𝜇)* = 𝑥𝜇 − 𝑖𝜃𝜎𝜇𝜃. (4.21)

Observing that 𝐷𝛼𝜃�̇� = 0 and 𝐷�̇�𝜃𝛽 = 0 one can note that 𝐷𝛼𝑦
𝜇 = 0 and 𝐷�̇�𝑦

𝜇 = 0.
This implies that Φ depends on 𝑦 and 𝜃, whereas Φ depends on 𝑦 and 𝜃. In this basis of
coordinates the chiral and the antichiral superfields have the following expansion

Φ(𝑦, 𝜃) = 𝜑(𝑦) +
√
2𝜃𝜓(𝑦)− 𝜃2𝐹 (𝑦) (4.22)

Φ(𝑦*, 𝜃) = 𝜑(𝑦*) +
√
2𝜃 𝜓(𝑦*)− 𝜃

2
𝐹 (𝑦*). (4.23)

Physically, a chiral superfield describes one complex scalar 𝜑 and one Weyl fermion 𝜓. The
field 𝐹 represents an auxiliary scalar field with mass dimension 𝑀2. In supersymmetric
extensions of the SM, left-handed chiral superfields are used to describe left-handed quarks
and left-handed leptons with their corresponding supersymmetric partners. Performing a
Taylor expansion of Φ and Φ around 𝑥𝜇 we see that, as functions of the usual superspace
coordinates, the chiral and antichiral superfields assume the forms

Φ(𝑥, 𝜃, 𝜃) = 𝜑(𝑥) +
√
2𝜃𝜓(𝑥) + 𝑖𝜃𝜎𝜇𝜃𝜕𝜇𝜑(𝑥)− 𝜃2𝐹 (𝑥)

− 𝑖√
2
𝜃2𝜕𝜇𝜓(𝑥)𝜎

𝜇𝜃 − 1

4
𝜃2𝜃

2
2𝜑(𝑥) (4.24)
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Φ(𝑥, 𝜃, 𝜃) = 𝜑(𝑥) +
√
2𝜃 𝜓(𝑥)− 𝑖𝜃𝜎𝜇𝜃𝜕𝜇𝜑(𝑥)− 𝜃

2
𝐹 (𝑥)

+
𝑖√
2
𝜃
2
𝜃𝜎𝜇𝜕𝜇𝜓(𝑥)−

1

4
𝜃2𝜃

2
2𝜑(𝑥). (4.25)

To construct SUSY invariant Lagrangians using chiral superfields it is necessary to
know how their component fields respond to SUSY transformations. Plugging the differ-
ential SUSY generators into eq. (4.15) one gets

𝛿𝜑(𝑦) =
√
2𝜖𝜓(𝑦) (4.26)

𝛿𝜓𝛼(𝑦) =
√
2𝑖(𝜎𝜇𝜖)𝛼𝜕𝜇𝜑(𝑦) +

√
2𝜖𝛼𝐹 (𝑦) (4.27)

𝛿𝐹 (𝑦) = −
√
2𝑖𝜕𝜇[𝜓(𝑦)𝜎

𝜇𝜖]. (4.28)

Note that 𝛿𝐹 (𝑦) is a total derivative, which implies that the integration of the auxiliary
field 𝐹 over spacetime is invariant under SUSY transformations. The result is similar
for the SUSY transformations of antichiral superfields. In simple SUSY models with
Lagrangians constructed by the product of chiral superfields one only needs to obtain the
𝐹 component of this product and integrate over spacetime to obtain a SUSY-invariant
action. The Wess-Zumino model [81] is an example of a SUSY model constructed in this
way.

The vector superfield is another irreducible representation of the SUSY algebra defined
from the general superfield by imposing a condition of reality

𝑉 (𝑥, 𝜃, 𝜃) = 𝑉 (𝑥, 𝜃, 𝜃), (4.29)

which is useful to make the vector field 𝑣𝜇 become real as it should be to identify a
spin-1 gauge boson. This condition is preserved under SUSY transformations and, after
applying it in the general superfield (4.18), one obtains the following expansion for the
vector superfield

𝑉 (𝑥, 𝜃, 𝜃) = 𝜑(𝑥) + 𝜃𝜓(𝑥) + 𝜃 𝜓(𝑥) + 𝜃2𝑚(𝑥) + 𝜃
2
𝑚(𝑥)

+ 𝜃𝜎𝜇𝜃𝑣𝜇(𝑥) + 𝜃2𝜃 𝜆(𝑥) + 𝜃
2
𝜃𝜆(𝑥) + 𝜃2𝜃

2
𝐷(𝑥), (4.30)

where 𝜑(𝑥) and 𝐷(𝑥) are real scalar fields, 𝑚(𝑥) is a complex scalar field and 𝑣𝜇(𝑥) is
a real vector field, whereas 𝜓(𝑥) and 𝜆(𝑥) are Weyl spinors. Notice that this superfield
carries 8 bosonic and 8 fermionic degrees of freedom, which is still a big number. However,
it is possible to reduce the number of degrees of freedom via gauge fixing after realizing
the supersymmetric version of gauge transformations on the vector superfield.

Considering Λ a chiral superfield and Λ its complex conjugate, the following transfor-
mation

𝑉 → 𝑉 − 𝑖(Λ− Λ) (4.31)

can be seen as a gauge transformation because it reproduces the usual (abelian) gauge
transformation of the vector field 𝑣𝜇 and, if this transformation is a symmetry of the
theory then, by an appropriate choice of the field components of Λ, one can transform
away the components 𝜑(𝑥), 𝜓(𝑥) and 𝑚(𝑥) of 𝑉 (𝑥, 𝜃, 𝜃). As a result of this operation, the
final expression of the vector superfield simplifies to

𝑉WZ(𝑥, 𝜃, 𝜃) = 𝜃𝜎𝜇𝜃𝑣𝜇(𝑥) + 𝑖𝜃2𝜃 𝜆(𝑥)− 𝑖𝜃
2
𝜃𝜆(𝑥) +

1

2
𝜃2𝜃

2
𝐷(𝑥), (4.32)
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and this choice is called the Wess-Zumino gauge [82]. The highest 𝐷 component is another
auxiliary and, as the 𝐹 component of the chiral superfield, it transforms into a total
derivative under SUSY transformations.

4.3 Construction of 𝒩 = 1 SYM Lagrangians
The construction of general supersymmetric gauge theories becomes easier and more

practical with the formalism of superfields in superspace. The Lagrangians of these theo-
ries are constructed from a set of chiral and vector superfields used to write terms invariant
under local gauge transformations that belong to a compact Lie group 𝐺, which can be
a direct product of multiple group factors. In order for the action to be completely in-
variant under supersymmetry, the space-time Lagrangian density can at most change as a
total space-time derivative under supersymmetry transformations. We saw in the previous
section that the highest components of the chiral and vector superfields transform as to-
tal derivatives under SUSY transformations. Hence the supersymmetric Lagrangians are
constructed from the F- and D-terms obtained from a set of chiral and vector superfields.

In supersymmetric models the matter interactions is described by the superpotential,
a holomorphic function of the chiral superfields Φ𝑖. For a renormalizable theory the most
general form of the superpotential is

𝑊 = 𝐿𝑖Φ𝑖 +
1

2
𝑀𝑖𝑗Φ𝑖Φ𝑗 +

1

3
𝑌𝑖𝑗𝑘Φ𝑖Φ𝑗Φ𝑘. (4.33)

To preserve the gauge symmetry each term in the superpotential must form a gauge
singlet, which implies that 𝐿𝑖 is zero except for singlet superfields. Terms involving more
than three chiral superfields would have mass dimension higher than four and hence are
forbidden by renormalizability.

According to the non-renormalization theorem of supersymmetric theories [83,84], the
superpotential is not renormalized in perturbation theory. This indicates that any fine-
tuning of the potential at tree-level will not receive any higher order loop contributions.
Hence, this makes supersymmetry a potential solution to the hierarchy problem.

In the case of non-Abelian gauge theories the components of the vector superfields
are expressed in the form of matrices 𝑉 = 𝑉 𝑎𝑇 𝑎, where 𝑎 = 1, ...., dimG and 𝑇 𝑎 are
the generators of the gauge group G. Generally, the gauge transformations of the vector
superfields are of the form

𝑒2𝑔𝑉 → 𝑒𝑖Λ𝑒2𝑔𝑉 𝑒−𝑖Λ, (4.34)

where 𝑔 is the gauge coupling. The kinetic Lagrangian of the gauge fields is constructed
using the supersymmetric generalization of the field-strength 𝐹𝜇𝜈 which is given by

𝒲𝛼 = −1

4
𝐷 𝐷

(︀
𝑒−2𝑔𝑎𝑉 𝑎𝑇𝑎

𝐷𝛼𝑒
2𝑔𝑎𝑉 𝑎𝑇𝑎)︀

. (4.35)

The field-strength 𝒲𝛼 is a left-chiral superfield that transforms covariantly under the
gauge transformation as 𝒲𝛼 → 𝑒𝑖Λ𝒲𝛼𝑒

−𝑖Λ. Consequently, the 𝒩 = 1 supersymmetric
Yang-Mills Lagrangian can be obtained from the following F-term [78–80]
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ℒSYM =
1

32𝜋
Im
(︂
𝜏

∫︁
𝑑2𝜃 Tr𝒲𝛼𝒲𝛼

)︂
=

(︂
−1

4
𝐹 𝑎
𝜇𝜈𝐹

𝑎𝜇𝜈 − 𝑖𝜆𝑎𝜎𝜇𝐷𝜇𝜆
𝑎
+

1

2
𝐷𝑎𝐷𝑎

)︂
+

Θ𝑌𝑀

32𝜋2
𝑔2𝐹 𝑎

𝜇𝜈
̃︀𝐹 𝑎𝜇𝜈 , (4.36)

where 𝜏 = Θ𝑌 𝑀

2𝜋
+ 4𝜋

𝑔2
𝑖 is a complex coupling that carries the gauge coupling and the CP-

violating parameter. The term proportional to Θ𝑌𝑀 is a total derivative and thus it can
be integrated out.

The chiral and anti-chiral superfields in a representation R have, respectively, the fol-
lowing gauge transformations: Φ → 𝑒𝑖Λ

𝑎𝑇𝑎
𝑅Φ and Φ → Φ𝑒−𝑖Λ

𝑎𝑇𝑎
𝑅 . The combination of these

transformations with the gauge transformation of the vector superfields generate a gauge
invariant vector superfield of the form Φ𝑒2𝑔𝑉

𝑎𝑇𝑎
Φ. Therefore the complete Lagrangian for

charged matter and interaction reads

ℒmatter =

∫︁
𝑑2𝜃𝑑2𝜃 Φ𝑒2𝑔𝑉

𝑎𝑇𝑎

Φ +

∫︁
𝑑2𝜃 𝑊 (Φ𝑖) +

∫︁
𝑑2𝜃 𝑊 (Φ𝑖)

= (𝐷𝜇𝜑
*
𝑖 )
(︀
𝐷𝜇𝜑𝑖

)︀
− 𝑖𝜓𝑖𝜎

𝜇𝐷𝜇𝜓
𝑖 + 𝐹 *

𝑖 𝐹
𝑖 + 𝑖

√
2𝑔
(︀
𝜑𝜆𝜓 − 𝜓 𝜆𝜑

)︀
+ 𝑔 𝜑*

𝑖 (𝐷
𝑎𝑇 𝑎𝑅)

𝑖
𝑗 𝜑

𝑗 +

∫︁
𝑑2𝜃 𝑊 (Φ𝑖) +

∫︁
𝑑2𝜃 𝑊 (Φ𝑖), (4.37)

where, for simplicity, we used the Wess-Zumino gauge and introduced the usual gauge-
covariant derivative 𝐷𝜇 = 𝜕𝜇 + 𝑖𝑔𝐴𝑎𝜇𝑇

𝑎. This part of the Lagrangian contains the kinetic
terms for the matter fermions 𝜓𝑖 and the scalar fields 𝜑𝑖, as well as Yukawa-type interac-
tions between the gauginos 𝜆𝑎 and the matter fields.

In order to obtain the full 𝒩 = 1 SYM Lagrangian written in terms of the component
fields one shall first expand the superpotential in powers of 𝜃 as

𝑊 (Φ𝑖) = 𝑊 (𝜑𝑖)+
√
2
𝜕𝑊

𝜕𝜑𝑖

⃒⃒⃒⃒
Φ𝑖=𝜑𝑖

𝜃𝜓𝑖−𝜃2
(︃
𝜕𝑊

𝜕𝜑𝑖

⃒⃒⃒⃒
Φ𝑖=𝜑𝑖

𝐹 𝑖 +
1

2

𝜕2𝑊

𝜕𝜑𝑖𝜕𝜑𝑗

⃒⃒⃒⃒
Φ𝑖=𝜑𝑖

𝜓𝑖𝜓𝑗

)︃
. (4.38)

Plugging back this in eq. (4.37) and integrating out the unphysical auxiliary fields 𝐹 𝑖 and
𝐷𝑎 one finally obtains the on-shell SYM Lagrangian [78–80]:

ℒ = ℒSYM + ℒmatter

= Tr
(︂
−1

4
𝐹𝜇𝜈𝐹

𝜇𝜈 − 𝑖𝜆𝜎𝜇𝐷𝜇𝜆

)︂
+

Θ

32𝜋2
𝑔2Tr

(︁
𝐹𝜇𝜈 ̃︀𝐹 𝜇𝜈

)︁
+ (𝐷𝜇𝜑

*
𝑖 )
(︀
𝐷𝜇𝜑𝑖

)︀
− 𝑖𝜓𝑖𝜎

𝜇𝐷𝜇𝜓
𝑖 + 𝑖

√
2𝑔
(︀
𝜑𝜆𝜓 − 𝜓 𝜆𝜑

)︀
− 1

2

𝜕2𝑊

𝜕𝜑𝑖𝜕𝜑𝑗

⃒⃒⃒⃒
Φ𝑖=𝜑𝑖

𝜓𝑖𝜓𝑗 − 1

2

𝜕2𝑊

𝜕𝜑*
𝑖𝜕𝜑

*
𝑗

⃒⃒⃒⃒
Φ𝑖=𝜑*𝑖

𝜓𝑖 𝜓𝑗

−
(︃∑︁

𝑖

⃒⃒⃒⃒
𝜕𝑊

𝜕𝜑𝑖

⃒⃒⃒⃒2
Φ𝑖=𝜑𝑖

+
1

2
𝑔2
∑︁
𝑎

|𝜑 𝑇 𝑎𝑅 𝜑|2
)︃
, (4.39)
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where in the last line we have the supersymmetric scalar potential. If there is a U(1)
factor in the gauge group, there is one more term that can be added to the Lagrangian
known as the Fayet-Iliopoulos term.

4.4 Supersymmetry breaking
Exact supersymmetry predicts that all particles that appears in the same supermul-

tiplet should be mass degenerated. In other words, exact supersymmetric field theories
requires the SM particles to have the same mass as their superpartners, which is com-
pletely excluded by experiments. Thus, if supersymmetry occurs in nature it must be
broken either spontaneously or explicitly to give higher masses to the supersymmetric
partners of the SM particles.

In the following subsections we will first describe how supersymmetry can be softly
broken in a consistent way with its theoretical advantages and then we will show which are
the main mechanisms used to break SUSY spontaneously and give rise to the Lagrangian
terms that break SUSY explicitly.

4.4.1 Soft supersymmetry breaking

The simplest phenomenologically accepted approach to break supersymmetry is to
parametrize the breaking mechanism by introducing additional terms into the Lagrangian
that breaks supersymmetry. This is an approach that starts with the SUSY breaking
parameters at a low energy scale (like, for example, the electroweak scale), use them to
find parameter regions where the theoretical predictions are in agreement with the low
energy observables and, finally, derive some theoretical implications at the GUT scale.
For this reason, it is called bottom-up approach.

The terms that break supersymmetry should have positive mass dimension so that they
do not introduce new divergencies to the SUSY theory in such a way that they do not affect
the SUSY relations between the Yukawa and gauge couplings that cancels the quadratic
divergencies. For this reason they are known in the literature as soft breaking terms. In
1982 L. Girardello and M. T. Grisaru [85] showed that the possible soft supersymmetry-
breaking terms that can be added to the Lagrangian of a general 4-dimensional SUSY
theory are 1

ℒ𝑠𝑜𝑓𝑡 = − 1

2
(𝑀𝑎𝜆

𝑎𝜆𝑎 +𝐻.𝐶.)− (𝑚2)𝑖 𝑗𝜑
*𝑗𝜑𝑖

− 1

2

(︀
𝐵𝑖𝑗𝜑𝑖𝜑𝑗 +𝐻.𝐶.

)︀
− 1

6

(︀
𝑇 𝑖𝑗𝑘𝜑𝑖𝜑𝑗𝜑𝑘 +𝐻.𝐶.

)︀
. (4.40)

The first term represents gaugino masses for each gauge group and the second one rep-
resents scalar squared-mass terms for all scalar fields, whereas the third and the fourth
refers to bilinear and trilinear scalar interaction terms, respectively. It has been shown
that a softly broken supersymmetric theory with ℒ𝑠𝑜𝑓𝑡 as given above is free of quadratic
divergencies in quantum corrections to scalar masses to all orders in perturbation the-
ory [85].

1In certain cases one can also introduce non-holomorphic trilinear scalar couplings of the form
𝑐𝑖𝑗𝑘𝜑*𝑖𝜑𝑗𝜑𝑘 + 𝐶.𝐶. [80]. In models with gauge singlet scalar fields one can introduce linear terms to
the Lagrangean.
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4.4.2 Mechanisms of supersymmetry breaking

The soft SUSY breaking terms can be generated in a more fundamental level through
spontaneous supersymmetry breaking in which the Lagrangian remains invariant under
SUSY transformations while the vacuum does not respect supersymmetry. This can
occur when at least one of the auxiliary fields 𝐹 𝑖 or 𝐷𝑎 acquires a VEV. There are two
mechanisms that can break supersymmetry spontaneously, which are the O’Raifeartaigh
mechanism [86] where SUSY is broken by a nonvanishing F-term VEV and the Fayet-
Iliopoulos mechanism [87] where SUSY is broken by a non-zero D-term VEV. These
mechanisms are useful to break SUSY in simple models that have small field content,
which is not the case of the MSSM and its extensions.

The main scheme used to study the origin and the effects of supersymmetry breaking
in low energy is as follows: SUSY should be broken in a hidden sector which contains
exotic fields that couples very weakly to the visible sector which contains the SM particles
and their superpartners. The main scenarios of mediating the spontaneous breaking of
SUSY studied in the literature are:

• The gravity-mediated scenario [72] [80] [88–91], where the breaking of SUSY is
communicated to the MSSM via gravitational-strength interactions such as higher
order operators suppressed by 𝑀𝑃 , which are naturally addressed within the context
of 𝒩 = 1 supergravity. In the hidden sector there is a matter superfield 𝑋 whose
F-term gets a nonvanishing VEV and generates soft mass terms in the low energy
effective field theory of the following order

𝑚𝑠𝑜𝑓𝑡 ∼
⟨𝐹𝑋⟩
𝑀𝑃

∼ 𝑀2
𝑆𝑈𝑆𝑌

𝑀𝑃

, (4.41)

where 𝑀𝑆𝑈𝑆𝑌 is the scale where SUSY is spontaneously broken. Therefore, in order
to get mass terms for the supersymmetric particles of the order of TeV scale, SUSY
must be broken at 𝑀𝑆𝑈𝑆𝑌 ∼ 1011 GeV.

• The Gauge-Mediated Supersymmetry Breaking (GMSB) scenario, where there
is an intermediate sector called messenger sector which contains fields that cou-
ples to the hidden sector and interacts with the visible sector via gauge interac-
tions [92–97]. The mediation of SUSY breaking is communicated to the MSSM
through gauge interactions and it provides soft mass terms for the superpartners
through loop diagrams involving messenger particles. In this scenario, 𝑀𝑆𝑈𝑆𝑌 is
generally much smaller than it is in gravity-mediated scenarios.

• The Anomaly-Mediated Supersymmetry Breaking (AMSB) scenario [98,99],
where the breaking of SUSY is communicated to the visible sector via a combination
of gravity and anomalies. In this scenario the MSSM soft terms are originated from
an anomalous violation of the supersymmetric extension of scale invariance called
superconformal symmetry.

These scenarios of SUSY breaking mediation produce different mass spectrums and
have different predictions in low energy. Although the phenomenological tools that we
use in our numerical analysis can accomodate all of them, we will focus on the low energy
limit of the UMSSM where all the soft SUSY breaking parameters of the model are free
input parameters given at the SUSY breaking scale.
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4.5 The Minimal Supersymmetric Standard Model
The MSSM can be seen as a renormalizable supersymmetric non-Abelian gauge theory

constructed with the usage of the superfield formalism. As a consequence of minimal
supersymmetry (𝒩 = 1), each field of the SM has only one superpartner with both fields
accomodated in the same supermultiplet. All the quarks, leptons and Higgs matter fields
of the SM appear in chiral superfields with their corresponding superpartners, whereas the
gauge fields of the SM appear in vector superfields with their corresponding superpartners
called gauginos. The MSSM is a model that respects R-parity because it does not allow
its superpotential to have gauge-invariant terms that violates lepton or baryon number.

4.5.1 Description of the MSSM

As its name indicates, the minimal supersymmetric standard model [72, 100–104] is
the most simplified way to extend the SM with the usage of supersymmetry. It has the
same gauge structure as the SM, i.e. the 𝑆𝑈(3)𝐶×𝑆𝑈(2)𝐿×𝑈(1)𝑌 gauge group, with the
smalest particle content that respects SUSY implies in a good low energy phenomenol-
ogy. With respect to the particle content of the SM, besides providing a supersymmetric
partner for all particles of the SM, the MSSM needs 2 Higgs doublets with opposite hyper-
charges to generate masses for both up- and down-type quarks. These two Higgs doublets
are also necessary to cancel the chiral anomalies of the higgsinos because in supersymmet-
ric extensions of the SM the Yukawa interactions arise from the superpotential, which is
an analytic function of chiral superfields only. Left-handed fermions are accomodated in
left-handed supermultiplets while right-handed fermions in right-handed superfields. As
in the SM, there are no right-handed neutrinos in the MSSM but they are added in many
extensions of the MSSM known in the literature, such as the UMSSM which we describe
in chapter 5.

The supermultiplets of the MSSM with their corresponding particle content and gauge
quantum numbers are listed in Table 4.1. As in the SM, there are three families of quarks
and leptons and, to be consistent with supersymmetry, there are also three families of
squarks and sleptons in the MSSM.

The superpotential of the MSSM contains all the renormalizable gauge-invariant op-
erators that respects R-parity. It is given by

Ŵ𝑀𝑆𝑆𝑀 = (𝑌𝑢)𝑖𝑗Ĥ𝑢Q̂𝑖Û
𝑐
𝑗 − (𝑌𝑑)𝑖𝑗Ĥ𝑑Q̂𝑖D̂

𝑐
𝑗 − (𝑌𝑒)𝑖𝑗Ĥ𝑑L̂𝑖Ê

𝑐
𝑗 + 𝜇Ĥ𝑢Ĥ𝑑, (4.42)

where 𝜇 is a supersymmetric mass term for the Higgs sector and Yu, Yd, Ye are the
Yukawa matrices. The 𝜇 term 𝜇Ĥ𝑢Ĥ𝑑 is unique to the MSSM and there are no theoretical
predictions from the model for the energy scale on which this parameter should acquire
values. Thus, as a consequence, it behaves as a free parameter in the MSSM. However,
in order to have acceptable loop corrections to the mass of the SM Higgs boson and to
avoid another hierarchy problem, the 𝜇 parameter must not be much higher than the
electroweak scale. This means that in the MSSM 𝜇 has to be tuned to a value close to
𝑣ew, which is known in the literature as the 𝜇 problem [143].

The superpotential of the MSSM does not include all the possible terms that are com-
patible with the symmetries of the model. There are other terms that respects SUSY and
the gauge symmetry but violates the conservation of baryon (B) and lepton (L) numbers,
which constitutes the so-called R-parity violation operators [103,144,145]. Processes that
simultaneously violates B and L can lead to rapid proton decay [146–149], unless the co-
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efficients are strongly suppressed. In order to avoid these phenomenologically dangerous
processes a discrete symmetry called R-parity is added to the MSSM

𝑅𝑝 = (−1)3(B−L)+2𝑠, (4.43)

where 𝑠 stands for the spin of the particle. In a given superfield the R-parity of the
component fields are not the same: it can easily be noted that eq. (4.43) gives 𝑅𝑝 = +1
for ordinary particles and 𝑅𝑝 = −1 for supersymmetric particles.

The conservation of R-parity has two important consequences: supersymmetric parti-
cles can be produced only in pairs and the decay products of a supersymmetric particle
other than the LSP must contain an odd number of LSP (usually one). As a consequence,
the lightest supersymmetric particle must be a stable particle that does not decay into
lighter non-supersymmetric particles and, being electrically neutral and colorless, it can
be an interesting candidate for CDM.

The soft SUSY breaking Lagrangian of the MSSM reads

−ℒ���𝑆𝑈𝑆𝑌 = 𝑚2
𝐻𝑑

(︀
|𝐻0

𝑑 |2 + |𝐻−
𝑑 |2
)︀
+𝑚2

𝐻𝑢

(︀
|𝐻0

𝑢|2 + |𝐻+
𝑢 |2
)︀

+ �̃�†m2
Q̃
�̃�+ 𝑑†𝑅m

2
D̃c𝑑𝑅 + �̃�†𝑅m

2
Ũc�̃�𝑅 + �̃�†m2

L̃
�̃�+ 𝑒†𝑅m

2
Ẽc𝑒𝑅

+
1

2

(︁
𝑀1𝜆�̃�𝜆�̃� +𝑀2

3∑︁
𝑘=1

𝜆𝑘
�̃�
𝜆𝑘
�̃�

+𝑀3

8∑︁
𝑎=1

𝜆𝑎𝑔𝜆
𝑎
𝑔 +𝐻.𝐶.

)︁
+
(︁
𝐵
(︀
𝐻+
𝑢 𝐻

−
𝑑 −𝐻0

𝑢𝐻
0
𝑑

)︀
+𝐻.𝐶.

)︁
+
(︁
�̃�𝑐𝑅Tu�̃�𝐿𝐻

0
𝑢 − 𝑑𝑐𝑅Td𝑑𝐿𝐻

0
𝑑 − 𝑒𝑐𝑅Te𝑒𝐿𝐻

0
𝑑 +𝐻.𝐶.

)︁
, (4.44)

with m2
𝜙 being a 3 × 3 matrix in flavor space with 𝜙 = �̃�, �̃� 𝑐, �̃�𝑐, �̃�, �̃�𝑐. This Lagrangian

contains soft mass terms for all the scalar particles
(︁
(𝑚2

𝜙)𝑖𝑗,𝑚
2
𝐻𝑑
,𝑚2

𝐻𝑢

)︁
, mass terms for

the gauginos (𝑀1,𝑀2,𝑀3), and also bilinear and trilinear couplings between the scalar
fields. These terms are invariant under the gauge symmetry of the MSSM and they all
have positive mass dimension, thus they do not reintroduce quadratic divergences that
affects the solution that SUSY gives to the hierarchy problem.

Superfields Bosonic Fields Fermionic Fields 𝑆𝑈(3)𝐶 𝑆𝑈(2)𝐼 𝑈(1)𝑌
Gauge Supermultiplets Spin 1 Spin 1

2

V̂𝑎
𝐺 𝐺𝑎

𝜇 𝜆𝑎𝑔 8 1 0
V̂𝑘
𝑊 𝑊 𝑘

𝜇 𝜆𝑘
�̃�

1 3 0
V̂𝐵 𝐵𝜇 𝜆�̃� 1 1 0

Matter Supermultiplets Spin 0 Spin 1
2

Q̂𝑖 (�̃�𝐿, 𝑑𝐿)𝑖 (𝑢𝐿, 𝑑𝐿)𝑖 3 2 1
6

Û𝑐
𝑖 �̃�𝑐𝑅𝑖 𝑢𝑐𝑅𝑖 3 1 −2

3

D̂𝑐
𝑖 𝑑𝑐𝑅𝑖 𝑑𝑐𝑅𝑖 3 1 1

3

L̂𝑖 (𝜈𝐿, 𝑒𝐿)𝑖 (𝜈𝐿, 𝑒𝐿)𝑖 1 2 −1
2

Ê𝑐
𝑖 𝑒𝑐𝑅𝑖 𝑒𝑐𝑅𝑖 1 1 1

Ĥ𝑢 (𝐻+
𝑢 , 𝐻

0
𝑢) (�̃�+

𝑢 , �̃�
0
𝑢) 1 2 1

2

Ĥ𝑑 (𝐻0
𝑑 , 𝐻

−
𝑑 ) (�̃�0

𝑑 , �̃�
−
𝑑 ) 1 2 −1

2

Table (4.1) MSSM superfields and their gauge properties. As in the SM, there are 3
families of quarks and leptons with their corresponding superpartners (𝑖 = 1, 2, 3).
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4.5.2 Electroweak symmetry breaking and the the Higgs sector

In a general global SUSY model that contains a certain number of scalar fields 𝜑𝑖 and
a gauge group formed by direct product of simple Lie groups 𝐺𝐴 with gauge couplings 𝑔𝐴
and generators 𝑇𝐴, the scalar potential has the following general formula [78–80]

𝑉 (𝜑, 𝜑) =
∑︁
𝑖

⃒⃒⃒⃒
𝜕𝑊

𝜕𝜑𝑖

⃒⃒⃒⃒2
Φ𝑖=𝜑𝑖

+
1

2

∑︁
𝐴

𝑔2𝐴
∑︁
𝑎

|𝜑† 𝑇 𝑎𝐴 𝜑|2, (4.45)

where the first term appears when one integrates out the auxiliary fields 𝐹𝑖 of the chiral
superfields that are used to construct the superpotential𝑊 of the model, thus it is referred
to as the F-term; while the second one appears when one integrates out the auxiliary fields
𝐷𝑎 of the vector superfields and thus it is known as the D-term of the scalar potential.

Similar to the SM, the Higgs mechanism is the necessary ingredient to provide masses
for fermions and vector bosons. Since the MSSM has two complex Higgs doublets with
eight degrees of freedom for scalars on the total, the scalar potential of the MSSM is much
bigger than the scalar potential of the SM. The tree level scalar potential of the Higgs
fields is given by the sum of the contributions from the F-term, the D-term and the soft
supersymmetry breaking Lagrangian. These contributions are given by

𝑉𝐹 (𝐻𝑢, 𝐻𝑑) = |𝜇|2
(︁
|𝐻+

𝑢 |2 + |𝐻0
𝑢|2 + |𝐻0

𝑑 |2 + |𝐻−
𝑑 |2
)︁

(4.46a)

𝑉𝐷(𝐻𝑢, 𝐻𝑑) =
1

8

(︀
𝑔21 + 𝑔22

)︀ (︁
|𝐻0

𝑢|2 + |𝐻+
𝑢 |2 − |𝐻0

𝑑 |2 − |𝐻−
𝑑 |2
)︁2

+
1

2
𝑔21|𝐻+

𝑢 𝐻
0*
𝑑 +𝐻0

𝑢𝐻
−*
𝑑 |2

(4.46b)

𝑉𝑠𝑜𝑓𝑡(𝐻𝑢, 𝐻𝑑) = 𝑚2
𝐻𝑢

(︁
|𝐻+

𝑢 |2 + |𝐻0
𝑢|2
)︁
+𝑚2

𝐻𝑑

(︁
|𝐻0

𝑑 |2 + |𝐻−
𝑑 |2
)︁

+
(︁
𝐵
(︀
𝐻+
𝑢 𝐻

−
𝑑 −𝐻0

𝑢𝐻
0
𝑑

)︀
+𝐻.𝐶.

)︁ (4.46c)

𝑉 (𝐻𝑢, 𝐻𝑑) = 𝑉𝐹 (𝐻𝑢, 𝐻𝑑) + 𝑉𝐷(𝐻𝑢, 𝐻𝑑) + 𝑉𝑠𝑜𝑓𝑡(𝐻𝑢, 𝐻𝑑), (4.46d)

where 𝑔1 and 𝑔2 are the 𝑈(1)𝑌 and 𝑆𝑈(2)𝐼 gauge couplings, respectively. As in the SM,
in order to preserve the electromagnetic gauge symmetry, one can set 𝐻+

𝑢 = 𝐻−
𝑑 = 0 and

then the scalar potential becomes

𝑉 (𝐻0
𝑢, 𝐻

0
𝑑) =

(︁
|𝜇|2 +𝑚2

𝐻𝑢

)︁
|𝐻0

𝑢|2 +
(︁
|𝜇|2 +𝑚2

𝐻𝑑

)︁
|𝐻0

𝑑 |2 +
(︁
−𝐵𝐻0

𝑢𝐻
0
𝑑 +𝐻.𝐶.

)︁
+

1

8

(︀
𝑔21 + 𝑔22

)︀ (︁
|𝐻0

𝑢|2 − |𝐻0
𝑑 |2
)︁2
. (4.47)

Note that the quartic couplings of the Higgses are completely determined by the gauge
couplings as a consequence of supersymmetry and, therefore, they cannot be seen as free
parameters of the MSSM.

In the minimum of the scalar potential, the real part of the neutral Higgs fields acquire
non-zero vacuum expectation values that breaks spontaneously the electroweak symmetry
into the electromagnetic gauge group 𝑈(1)𝑒𝑚. The neutral components of the Higgs
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doublets are expanded as

𝐻0
𝑑 =

1√
2
(𝑣𝑑 + 𝜑𝑑 + 𝑖𝜎𝑑) (4.48a)

𝐻0
𝑢 =

1√
2
(𝑣𝑢 + 𝜑𝑢 + 𝑖𝜎𝑢), (4.48b)

in which 𝑣 =
√︀
𝑣2𝑢 + 𝑣2𝑑 = 246 GeV and tan 𝛽 = 𝑣𝑢/𝑣𝑑. The Higgs scalar potential is

minimized by solving the equations 𝜕𝑉/𝜕𝜑𝑢,𝑑 = 𝜕𝑉/𝜕𝜎𝑢,𝑑 = 0, the so-called tadpole
equations. The minimization conditions of the scalar potential can be written as

𝑚2
𝐻𝑢

+ |𝜇|2 −𝐵cot 𝛽 − 1

2
𝑚2
𝑍cos(2𝛽) = 0 (4.49)

𝑚2
𝐻𝑑

+ |𝜇|2 −𝐵tan 𝛽 +
1

2
𝑚2
𝑍cos(2𝛽) = 0, (4.50)

where 𝑚𝑍 is the tree-level mass term of the neutral vector boson of the SM. These condi-
tions show that the soft SUSY breaking parameters 𝑚2

𝐻𝑢
, 𝑚2

𝐻𝑑
, 𝐵 and the supersymmetric

parameter 𝜇 must all be of approximately the same order of magnitude as 𝑀𝑍 in such
a way that the EWSB occurs in a natural manner without requiring large fine-tuning of
these independent parameters. The mass matrices of the Higgs states are computed from
the second derivatives of the Higgs potential (4.47) taken at its absolute minimum. In the
gauge basis the mass matrices are not diagonal, but they can be diagonalized by unitary
matrices that change the basis to the basis of the physical states, which can be seen as
the eigenstates of the mass matrices.

After the electroweak symmetry breaking, three of the eight degrees of freedom of the
two Higgs doublets are eaten by the weak gauge bosons and become their longitudinal
components, resulting in five physical Higgs bosons which are classified as: two CP-even
ℎ0 and 𝐻0, one CP-odd denoted as 𝐴0 and two charged 𝐻±. The physical CP-odd Higgs
boson 𝐴0 is obtained from the imaginary parts of 𝐻0

𝑢 and 𝐻0
𝑑 by the relations(︂

𝐺0

𝐴0

)︂
=

(︂
sin 𝛽 − cos 𝛽
cos 𝛽 sin 𝛽

)︂(︂
𝜎𝑢
𝜎𝑑

)︂
, (4.51)

where 𝐺0 is the neutral Goldstone boson that, after a gauge transformation to the unitary
gauge, becomes the longitudinal part of the massive 𝑍0 boson. The tree-level mass of the
pseudoscalar Higgs is given by

𝑚2
𝐴0 =

𝐵

sin 𝛽 cos 𝛽
. (4.52)

The physical charged Higgs bosons come from the charged components of the Higgs dou-
blets (︂

𝐺+

𝐻+

)︂
=

(︂
sin 𝛽 − cos 𝛽
cos 𝛽 sin 𝛽

)︂(︂
𝐻+
𝑢

𝐻−*
𝑑

)︂
(4.53)

with 𝐺− = 𝐺+* and 𝐻− = 𝐻+*. In the unitary gauge the charged Goldstone bosons 𝐺±

are eaten by the weak charged vector bosons 𝑊± and become their longitudinal compo-
nents. The mass of the charged Higgs bosons is related to the mass of the pseudoscalar
Higgs via
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𝑚2
𝐻± = 𝑚2

𝐴0 +𝑀2
𝑊 . (4.54)

Moving on to the real components of the neutral Higgs fields, the rotation to the
eigenstates ℎ0 and 𝐻0 is given by(︂

ℎ0

𝐻0

)︂
=

(︂
cos𝛼 − sin𝛼
sin𝛼 cos𝛼

)︂(︂
𝜑𝑢
𝜑𝑑

)︂
, (4.55)

where the mixing angle 𝛼 is determined by [80]

sin 2𝛼

sin 2𝛽
= −

(︂
𝑚2
𝐻0 +𝑚2

ℎ0

𝑚2
𝐻0 −𝑚2

ℎ0

)︂
tan 2𝛼

tan 2𝛽
=

(︂
𝑚2
𝐴0 +𝑚2

𝑍

𝑚2
𝐴0 −𝑚2

𝑍

)︂
, (4.56)

and it is usually chosen to be negative (−𝜋 < 2𝛼 < 0) because, by convention, 𝑚𝐻0 > 𝑚ℎ0 .
The tree-level masses of the CP-even Higgs bosons are given by

𝑚2
ℎ0,𝐻0 =

1

2

(︂
𝑚2
𝐴0 +𝑚2

𝑍 ∓
√︁(︀

𝑚2
𝐴0 −𝑚2

𝑍

)︀2
+ 4𝑚2

𝑍𝑚
2
𝐴0 sin

2 2𝛽

)︂
. (4.57)

The light state ℎ0 is assumed to be the 125 GeV Higgs boson of the SM. In principle,
since𝑚𝐴0 , 𝑚𝐻+ and𝑚𝐻0 can be arbitrarily large because they all increase with |𝐵|/ sin 2𝛽,
𝑚ℎ0 is bounded from above. From eq. (4.57) one obtains the following upper limit for
the tree-level mass of the lightest Higgs [132]

𝑚2
ℎ0 ≤ |𝑚𝑍 cos 2𝛽|, (4.58)

which is a consequence of the fact that the Higgs self couplings are obtained by the
electroweak gauge couplings in the MSSM. This upper bound is ruled out by experiments,
but this does not rule out the MSSM because the mass of the SM Higgs can receive
radiative corrections already at the 1-loop level that are large enough to push 𝑚ℎ0 towards
the measured value of 125 GeV. Because of the size of the Yukawa couplings, the dominant
contribution comes from top-stop loops. These corrections become large for large tan 𝛽
and when stop masses are much bigger than the mass of the top quark.

4.5.3 Gluinos

As the superpartner of the gluon, gluino is a color octet Majorana fermion with mass
given by |𝑀3| and therefore its role and interactions are directly related to the properties of
the supersymmetric version of QCD (SQCD). Since 𝑆𝑈(3)𝐶 gauge symmetry is preserved,
the gluino cannot mix with any other fermion, and it must be interpreted as a physical
state. Gluino is being deeply searched by the ATLAS and CMS groups of the LHC, and
because of its strong interactions with quarks and gluons, gluino is naturally expected to
be one of the heaviest supersymmetric particles in many scenarios of the MSSM.

4.5.4 Neutralinos and charginos

The mixing between the neutral Higgsinos (�̃�0
𝑢, �̃�

0
𝑑) and the neutral gauginos 𝜆�̃�

(bino) and 𝜆�̃� 3 (wino) gives rise to four Majorana physical states called neutralinos �̃�0
𝑖

with 𝑖 ∈ {1, 2, 3, 4}. The contribution to the neutralino mass matrix comes from the
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soft SUSY breaking gaugino mass terms, the 𝜇 term and the couplings of Higgs fields to
gauginos and Higgsinos when the neutral Higgses acquire non-zero VEVs. In the basis(︁
𝜆�̃�, 𝜆�̃� 3 , �̃�0

𝑑 , �̃�
0
𝑢

)︁
, the neutralino mass matrix is given by

ℳ�̃�0 =

⎛⎜⎜⎝
𝑀1 0 −1

2
𝑔1𝑣𝑑

1
2
𝑔1𝑣𝑢

0 𝑀2
1
2
𝑔2𝑣𝑑 −1

2
𝑔2𝑣𝑢

−1
2
𝑔1𝑣𝑑

1
2
𝑔2𝑣𝑑 0 −𝜇

1
2
𝑔1𝑣𝑢 −1

2
𝑔2𝑣𝑢 −𝜇 0

⎞⎟⎟⎠ . (4.59)

This matrix is diagonalized by a unitary 4 × 4 matrix 𝑁 which gives the mass eigenstates
(�̃�0

1, �̃�
0
2, �̃�

0
3, �̃�

0
4) ordered in mass as a linear combination of

(︁
𝜆�̃�, 𝜆�̃� 3 , �̃�0

𝑑 , �̃�
0
𝑢

)︁
.

In supersymmetric models that respects R parity, the Lightest Supersymmetric Parti-
cle (LSP) is stable and can be eventually produced in the decay chain of all other heavier
superparticles [80]. Usually the lightest neutralino �̃�0

1 is the LSP of the MSSM and it
behaves as a neutral massive particle that interacts weakly with the other particles. As
a consequence, �̃�0

1 is the most commonly known supersymmetric WIMP DM candidate
studied in the literature, although SUSY also can provide other viable WIMP DM candi-
dates.

The two charged higgsinos (�̃�+
𝑢 , �̃�

−
𝑑 ) can mix with the two charged gauginos (�̃�+, �̃�−)

and form two charged fermions known as charginos 𝜒±
1,2. If we use the following gauge-

eigenstate basis for the positively and negatively charged states

𝜓+ =

(︂
�̃�+

�̃�+
𝑢

)︂
𝜓− =

(︂
�̃�−

�̃�−
𝑑

)︂
, (4.60)

the chargino mass terms can be written as

− 1

2

[︀
(𝜓+)TMT

𝑐 𝜓
− + (𝜓−)TM𝑐𝜓

+
]︀
+ h.c., (4.61)

where

M𝑐 =

(︂
𝑀2

√
2 sin 𝛽𝑀𝑊+√

2 cos 𝛽𝑀𝑊+ 𝜇

)︂
. (4.62)

There are two independent mixings that occur to diagonalize the chargino mass matrix
and, as a consequence, the mass eigenstates are obtained by two unitary rotation matrices.
They can be defined as

�̃�+ = V𝜓+ =

(︂
𝜒+
1

𝜒+
2

)︂
, (4.63)

�̃�− = U𝜓− =

(︂
𝜒−
1

𝜒−
2

)︂
. (4.64)

4.5.5 Sfermions

The sfermion sector includes all the superpartners of the leptons and quarks, namely
to each SM fermionic field 𝜓 there is a complex scalar field 𝜓. The mass matrices of the
sfermions receive contributions from the soft SUSY breaking Lagrangian (4.44) and from
EWSB. Mixing can occur between the left-handed and right-handed components of the
squarks and sleptons.
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4.6 Phenomenological tools to explore SUSY models
Supersymmetric extensions of the SM are usually models that possesses a big particle

content with many interaction terms in the Lagrangian and they have a large number of
free parameters. For example, in the simplest supersymmetric extension of the SM, the
MSSM, the particle content is increased by a factor bigger than two and there are a lot
of new interactions between all the particle fields required by SUSY. As a consequence,
the calculations of the relevant masses, vertices, tadpole equations and renormalization
group equations are tedious.

To realize a comprehensive analysis of a new SUSY model one has to first deal with
a long list of tasks, which are: choose a gauge group, make sure it is free of gauge
anomalies, calculate the Lagrangian, break some symmetries when necessary, solve the
tadpole equations to find the minimization conditions of the scalar potential, calculate
masses and vertices and finally calculate the renormalization group equations that are
needed to connect the values of parameters of the model at different energy scales. Since
most of the public tools used to study SUSY models are restricted to the MSSM or small
extensions of it, more generic and sophisticated tools are needed to explore non-minimal
SUSY models with the same precision as the MSSM. For this purpose the Mathematica
package SARAH [208–213] has been created to raise up the possibility to explore non-
minimal SUSY models in a faster way. In the next subsections we give a brief resume
about the SARAH framework and its connection with other useful tools.

4.6.1 SARAH

SARAH is optimized for handling a wide range of BSM models. Originally it was
created to study only SUSY models, but now recent versions of SARAH can also explore
non-supersymmetric extensions of the SM. The basic idea of SARAH is to give the user the
opportunity to build a model in an easier way, which is summarized as: choose a local
gauge group, choose global symmetries, define the particle content and representations and
finally write explicit non-gauge interactions for the superpotential. All these aspects must
be stored in the model file that SARAH reads. Additionally, the user has to specify which
fields acquire VEVs and which fields mix after symmetry breaking. After the initialisation
of a specified model, SARAH realizes some operations to check its (self-)consistency:

• Check for gauge and mixed gauge/gravity anomalies;

• Check for Witten anomalies [105];

• Check if all terms in the (super)potential respect the global and gauge symmetries;

• Check if terms allowed by the symmetries are missing in the (super)potential;

• Check if additional mass eigenstates can mix in principle;

• Check if all mass matrices are irreducible.

As a Mathematica package used to build and analyze SUSY and non-SUSY models,
SARAH performs a lot of analytical calculations for a given model beyond the derivation
of the Lagrangian. Let’s give a summary of them.
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a) Tadpole Equations: During the evaluation of a model SARAH calculates all the
minimization conditions of the tree-level scalar potential, which are known in the
Literature as the tadpole equations. SARAH also calculates one- and two-loop correc-
tions to tadpoles and self-energies for all particles;

b) Masses: SARAH calculates the mass matrices of the states which are rotated from
gauge eigenstates to mass eigenstates. Additionally, it also calculates the masses of
states that do not mix with other fields;

c) Vertices: SARAH calculates in an efficient way all tree-level interaction vertices from
the Lagrangian;

d) Renormalization Group Equations: In order to take into account the variation
of the parameters of a model with respect to the energy scale, SARAH calculates
the full two-loop RGEs for SUSY and non-SUSY models including the full CP and
flavour structure.

Finally, SARAH can export all of these information to LATEX files so that the user can
obtain a pdf file with all the analytical results calculated by SARAH. Further details about
the usage of SARAH for analytical and numerical analyses of a model can be found in
Refs. [213–215].

Since SARAH is a Mathematica package, it is not suited for deep numerical studies.
However, SARAH can use the analytical information derived about a model and pass it
to other phenomenological tools. Once the model implementation is successfully done,
SARAH can generate the required input files for many other popular tools so that the user
can realize a deeper phenomenological study of the model. A schematic illustration of the
workflow is shown in Figure 4.2. In the next subsections we give a summary of SPheno
and MicrOMEGAs, which were the tools mostly used in the project contained in this part
of this thesis, together with a brief resume of some other phenomenological tools.

Figure (4.2) The workflow within the framework of SARAH/SPheno.
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4.6.2 SPheno

To calculate certain observables of a parameter region of a model one needs to know
the masses of the particles and the interaction couplings that are necessary to take into
account in the calculation of the observable. SARAH criates a set of Fortran files for the
spectrum generator SPheno [216,217] that contains all the derived information about the
mass matrices, vertices, tadpole equations, loop corrections and RGEs of the given model.
SPheno is a spectrum calculator that calculates, for given values of the input parameters,
all masses and mixing matrices of a model, including full corrections of one loop order
for all the masses and the main corrections of two loop order for the scalar particles
of the model. Furthermore, after the calculation of the masses, it also calculates some
low-energy observables (such as the anomalous magnetic moment of the muon and other
lepton dipole moments), many flavor observables, as well as two- and three-body decay
widths. SPheno stands for S(upersymmetric) Pheno(menology) and, although the code
was originally developed to cover only the MSSM and its first simple extensions, now it
can cover many other models (including the non-supersymmetric ones) thanks to SARAH.

4.6.3 MicrOMEGAs

MicrOMEGAs [222–224] is a very popular tool used by many phenomenologists and dark
matter model builders to compute the properties and signatures of a dark matter candidate
in a generic model of new physics. This tool calculates not only the relic density for one
or more stable massive particle in a model, but it also gives the cross sections for direct
and indirect DM searches. MicrOMEGAs uses the CalcHEP package [226, 227] to evaluate
Feynman diagrams and calculate all tree-level matrix elements of all subprocesses used
for the relic density calculation and for the direct and indirect DM searches.

In order to implement the user’s model in MicrOMEGAs, SARAH generates model files
for CalcHEP and also writes main files which can be used to run MicrOmegas. Finally, to
obtain the dark matter properties of the dark matter candidate of the model in a certain
point of the parameter space, the mass spectrum file produced by SPheno is used as an
input file for the main file generated by SARAH that is used to run MicrOmegas.

4.6.4 Other tools

SARAH writes model files for many other tools that can be used to perform other
useful phenomenological analysis for the model, such as: collider studies, check Higgs
constraints and check the vacuum stability. Given the wealth of LHC results, one needs
Monte-Carlo (MC) event generators to perform an efficient collider study with the recent
data obtained by LHC. SARAH provides interfaces to the two event generators CalcHEP
and WHIZARD [228, 229] and, additionally, it writes a universal FeynRules output file
(UFO) [230], which is used to implement new models into several other MC tools such
as MadGraph [231, 232], GoSam [233], Herwig++ [234–236] and Sherpa [237–239]. The
consistency of the Higgs sector with experimental data of a given parameter point is
checked by HiggsBounds [240–242] and HiggsSignals [243]. Vacuum stability of the
scalar potential of the model can be tested with Vevacious [244], a tool that operates
to find the global minimum of the one-loop effective potential. With all these improved
numerical tools available, the barriers to performing studies of new physics beyond the
SM have been substantially reduced.
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Chapter 5

𝑈(1)′ Extensions of the MSSM

5.1 Introduction
The possibility of adding an extra 𝑈(1)′ gauge symmetry to the SM is well motivaded

by many studies beyond the SM, including superstring constructions [136], grand unified
theories [137,138] [166], models of dynamical symmetry breaking [139], little Higgs models
[140], large extra dimensions [141] and Stueckelberg mechanism [142]. Models with an
extended Abelian gauge group generally are expected to arise from the breaking of an
𝑆𝑂(10) or 𝐸6 symmetry to the SM gauge symmetry. They can be the low energy limit of
some superstring models and have interesting consequences both at the theoretical and
low energy phenomenological level. In the supersymmetric version, 𝑈(1)′ extensions of
the MSSM can provide a natural solution to the 𝜇 problem of the MSSM [143,150] where
the 𝜇 term is generated dynamically by the vacuum expectation value (VEV) of the SM
singlet field 𝑆 which breaks the 𝑈(1)′ symmetry [151]. Although this solution is similar to
the one provided by the next-to-minimal supersymmetric standard model (NMSSM) [152],
the UMSSM is free of the cosmological domain wall problem because the 𝑈(1)′ symmetry
forbids the appearance of domain walls which are created by the 𝑍3 discrete symmetry of
the NMSSM [153].

One of the main motivations to study the UMSSM is that, besides the well-known
neutralino of the MSSM, it provides another good WIMP candidate to describe the dark
matter properties: the right-handed sneutrino [168–170]. This is in contrast with the left–
handed sneutrinos of the MSSM, which have been ruled out as DM candidates by direct
WIMP searches because their scattering cross sections on nuclei are too large [171]. Right–
handed sneutrinos have small scattering cross sections on nuclei. Moreover, being scalar
𝑆𝑈(2) singlets, a right–handed sneutrino only has two degrees of freedom; in contrast, a
higgsino–like neutralino, which also has unsuppressed couplings to the 𝑍 ′ boson in many
cases, effectively has eight (an 𝑆𝑈(2) doublet of Dirac fermions, once co–annihilation has
been included). Another nice feature of the UMSSM is that it can also be used to study
electroweak baryogenesis by the fact that the interactions of the singlet Higgs with the
Higgs doublets can give rise to a strongly first order phase transition [157].

The confirmation that neutrinos should have tiny masses to explain their oscilations
is viewed as a natural motivation to add right-handed (RH) neutrinos to the SM field
content. UMSSM models can be used to obtain neutrino masses that are consistent with
neutrino oscillation data in such a way that the exact details depend on the form of the
extra 𝑈(1)′ gauge symmetry [158]. If the neutrinos are Majorana particles, the smallness
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2
√
6𝑄′

𝜓 2
√
10𝑄′

𝜒 2
√
10𝑄′

𝑁 2
√
15𝑄′

𝜂 2
√
15𝑄′

𝑆 2𝑄′
𝐼

𝜃𝐸6

𝜋
2

0 arctan
√
15 -arctan

√︀
5/3 arctan(

√
15/9) arctan

√︀
3/5

𝑄′
𝑄 1 -1 1 -2 -1/2 0

𝑄′
𝑈𝑐 1 -1 1 -2 -1/2 0

𝑄′
𝐷𝑐 1 3 2 1 4 -1
𝑄′
𝐿 1 3 2 1 4 -1

𝑄′
𝑁𝑐 1 -5 0 -5 -5 1

𝑄′
𝐸𝑐 1 -1 1 -2 -1/2 0

𝑄′
𝐻𝑢

-2 2 -2 4 1 0
𝑄′
𝐻𝑑

-2 -2 -3 1 -7/2 1
𝑄′
𝑆 4 0 5 -5 5/2 -1

Table (5.1) 𝑈(1)′ charges of the UMSSM chiral superfields for certain values of 𝜃𝐸6 .

of their masses is usually explained through a see-saw mechanism [159–161] which requires
the existence of a heavy RH neutrino whose natural mass scale is generally around 1012

GeV.

5.2 Description of the UMSSM
The UMSSM is well known as an Abelian extention of the MSSM with gauge group

𝑆𝑈(3)𝐶 × 𝑆𝑈(2)𝐿 × 𝑈(1)𝑌 × 𝑈(1)′, which can result from the breaking of the 𝐸6 gauge
symmetry [48,138]. In other words, it can be seen as the low energy limit of a – possibly
string-inspired – 𝐸6 grand unified gauge theory. 𝐸6 contains 𝑆𝑂(10) × 𝑈(1)𝜓 and, since
𝑆𝑂(10) can be decomposed into 𝑆𝑈(5)× 𝑈(1)𝜒, after applying the Hosotani mechanism
[172,173] and noting that 𝑆𝑈(5) contains the SM gauge group, one can break 𝐸6 directly
into 𝑆𝑈(3)𝐶 × 𝑆𝑈(2)𝐿 × 𝑈(1)𝑌 × 𝑈(1)𝜓 × 𝑈(1)𝜒. Here we assume that only one extra
𝑈(1) factor survives at the relevant energy scale, which in general is a linear combination
of 𝑈(1)𝜓 and 𝑈(1)𝜒, parameterized by a mixing angle 𝜃𝐸6 [138]

𝑈(1)′ = sin𝜃𝐸6𝑈(1)
′
𝜓 + cos𝜃𝐸6𝑈(1)

′
𝜒, (5.1)

with 𝜃𝐸6 ∈ [−𝜋
2
, 𝜋
2
]. The 𝑈(1)′ charges of all the fields contained in the model are then

given by

𝑄′(𝜃𝐸6) = sin𝜃𝐸6𝑄
′
𝜓 + cos𝜃𝐸6𝑄

′
𝜒 (5.2)

where 𝑄′
𝜓 and 𝑄′

𝜒 are the charges associated to the gauge groups 𝑈(1)′𝜓 and 𝑈(1)′𝜒,
respectively. In Table 5.1 we give the 𝑈(1)′ charge of all relevant matter and Higgs fields
in the UMSSM for certain values of the mixing angle 𝜃𝐸6 .

In addition to the new vector superfield 𝐵′ and the MSSM superfields, the UMSSM
contains one electroweak singlet supermultiplet 𝑆 ≡ (𝑠, 𝑠), with a scalar field 𝑠 that breaks
the 𝑈(1)′ gauge symmetry, and three RH neutrino supermultiplets �̂� 𝑐

𝑖 ≡ (𝜈𝑐𝑅, 𝜈
𝑐
𝑅)𝑖 whose

fermionic components are needed to cancel anomalies related to the 𝑈(1)′ gauge symmetry.
It should be noted that 𝑈(1)𝜓 and 𝑈(1)𝜒 are both anomaly–free over complete (fermionic)
representations of 𝐸6. Since 𝑈(1)𝜒 is a subgroup of 𝑆𝑂(10), which is also anomaly–free
over complete representations of 𝑆𝑂(10), and the SM fermions plus the right–handed
neutrino complete the 16−dimensional representation of 𝑆𝑂(10), 𝑈(1)𝜒 is anomaly–free
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Figure (5.1) 𝑈(1)′ charges of all the matter fields of the UMSSM as a function of 𝜃𝐸6 .

within the fermion content we show in Table 5.1. However, 𝑈(1)𝜓 will be anomaly–free
only after we include the “exotic” fermions that are contained in the 27−dimensional
representation of 𝐸6, but are not contained in the 16 of 𝑆𝑂(10). Here we assume that
these exotic superfields are too heavy to affect the calculation of the 𝜈𝑅,1 relic density.
We will see that this assumption is not essential for our result.

Figure 5.1 shows these charges as functions of the mixing angle 𝜃𝐸6 . We identify
by vertical lines values of 𝜃𝐸6 that generate the well–known 𝑈(1)′ groups denoted by
𝑈(1)′𝜓, 𝑈(1)′𝑁 , 𝑈(1)′𝐼 , 𝑈(1)′𝑆, 𝑈(1)′𝜒 and 𝑈(1)′𝜂. The black curve in Fig. 5.1 shows that
for 𝜃𝐸6 = arctan

√
15 the 𝑈(1)′ charge of the RH (s)neutrinos vanishes; this corresponds

to the 𝑈(1)′𝑁 model of Table 5.1. This model is not of interest to us, since the 𝜈𝑅,𝑖 are
then complete gauge singlets, and do not couple to any potential 𝑠−channel resonance.
Similarly, for 𝜃𝐸6 = 0, i.e. 𝑈(1)′ = 𝑈(1)′𝜒, the charge of 𝑆 vanishes; in that case 𝑠 cannot
be used to break the gauge symmetry, i.e. the field content we have chosen is not sufficient
to achieve the complete breaking of the (extended) electroweak gauge symmetry down to
𝑈(1)QED. All other values of 𝜃𝐸6 are acceptable for us.

SF Spin 0 Spin 1
2

Generations (𝑆𝑈(3)𝐶 × 𝑆𝑈(2)𝐿 × 𝑈(1)𝑌 × 𝑈(1)′)

Q̂ (�̃�𝐿 𝑑𝐿) (𝑢𝐿 𝑑𝐿) 3 (3,2, 1
6
, 𝑄′

𝑄)

L̂ (𝜈𝐿 𝑒𝐿) (𝜈𝐿 𝑒𝐿) 3 (1,2,−1
2
, 𝑄′

𝐿)

Ĥ𝑑 (𝐻0
𝑑 𝐻−

𝑑 ) (�̃�0
𝑑 �̃�−

𝑑 ) 1 (1,2,−1
2
, 𝑄′

𝐻𝑑
)

Ĥ𝑢 (𝐻+
𝑢 𝐻0

𝑢) (�̃�+
𝑢 �̃�0

𝑢) 1 (1,2, 1
2
, 𝑄′

𝐻𝑢
)

D̂𝑐 𝑑𝑐𝑅 𝑑𝑐𝑅 3 (3,1, 1
3
, 𝑄′

𝐷𝑐)

Û𝑐 �̃�𝑐𝑅 𝑢𝑐𝑅 3 (3,1,−2
3
, 𝑄′

𝑈𝑐)

Ê𝑐 𝑒𝑐𝑅 𝑒𝑐𝑅 3 (1,1, 1, 𝑄′
𝐸𝑐)

N̂𝑐 𝜈𝑐𝑅 𝜈𝑐𝑅 3 (1,1, 0, 𝑄′
𝑁𝑐)

Ŝ 𝑠 𝑠 1 (1,1, 0, 𝑄′
𝑠)

Table (5.2) Chiral superfields used in the UMSSM and their corresponding quantum
numbers.

The superpotential of the UMSSM contains, besides the MSSM superpotential with-
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out 𝜇 term, a term that couples the extra singlet superfield to the two doublet Higgs
superfields; this term is always allowed, since it is part of the gauge invariant 273 of 𝐸6.
The superpotential also contains Yukawa couplings for the neutrinos. We thus have:

�̂� = �̂�𝑀𝑆𝑆𝑀 |𝜇=0 + 𝜆𝑆�̂�𝑢 · �̂�𝑑 + �̂�𝐶Y𝜈�̂� · �̂�𝑢 , (5.3)

where · stands for the antisymmetric 𝑆𝑈(2) invariant product of two doublets. The
neutrino Yukawa coupling Y𝜈 is a 3×3 matrix in generation space and 𝜆 is a dimensionless
coupling. Note that for 𝜃𝐸6 ̸= 0 the 𝑈(1)′ symmetry forbids both bilinear �̂�𝐶

𝑖 �̂�
𝐶
𝑗 and

trilinear 𝑆�̂�𝐶
𝑖 �̂�

𝐶
𝑗 terms in the superpotential. In this model the neutrinos therefore obtain

pure Dirac masses, which means that the Yukawa couplings 𝑌𝜈,𝑖𝑗 must be of order 10−11

or less; in our numerical analysis we therefore set Y𝜈 = 0.
The electroweak and the 𝑈(1)′ gauge symmetries are spontaneously broken when, in

the minimum of the scalar potential, the real parts of the doublet and singlet Higgs fields
acquire non–zero vacuum expectation values. These fields are expanded as

𝐻0
𝑑 =

1√
2
(𝑣𝑑 + 𝜑𝑑 + 𝑖𝜎𝑑) ; (5.4a)

𝐻0
𝑢 =

1√
2
(𝑣𝑢 + 𝜑𝑢 + 𝑖𝜎𝑢) ; (5.4b)

𝑠 =
1√
2
(𝑣𝑠 + 𝜑𝑠 + 𝑖𝜎𝑠) . (5.4c)

We define tan 𝛽 = 𝑣𝑢
𝑣𝑑

and 𝑣 =
√︀
𝑣2𝑑 + 𝑣2𝑢 exactly as in the MSSM; this describes the

breaking of the 𝑆𝑈(2)𝐿 × 𝑈(1)𝑌 symmetry, and makes subleading contributions to the
breaking of 𝑈(1)′. The latter is mostly accomplished by the VEV of 𝑠. The coupling 𝜆
in eq.(5.3) then generates an effective 𝜇−term:

𝜇eff = 𝜆
𝑣𝑠√
2
. (5.5)

As well known, supersymmetry needs to be broken. We parameterize this by soft
breaking terms:

−ℒ𝑆𝐵 = 𝑚2
𝐻𝑑
|𝐻𝑑|2 +𝑚2

𝐻𝑢
|𝐻𝑢|2 +𝑚2

𝑆|𝑠|2 + �̃�†m2
Q̃
�̃�+ 𝑑†𝑅m

2
D̃C𝑑𝑅

+ �̃�†𝑅m
2
ŨC�̃�𝑅 + �̃�†m2

L̃
�̃�+ 𝑒†𝑅m

2
ẼC𝑒𝑅 + 𝜈†𝑅m

2
ÑC𝜈𝑅

+
1

2

(︁
𝑀1𝜆�̃�𝜆�̃� +𝑀2𝜆�̃�𝜆�̃� +𝑀3𝜆𝑔𝜆𝑔 +𝑀4𝜆�̃�′𝜆�̃�′ + ℎ.𝑐.

)︁
(5.6)

+
(︁
�̃�𝐶𝑅Tu�̃�𝐿 ·𝐻𝑢 − 𝑑𝐶𝑅Td�̃�𝐿 ·𝐻𝑑 − 𝑒𝐶𝑅Te�̃�𝐿 ·𝐻𝑑 + 𝑇𝜆𝑠𝐻𝑢 ·𝐻𝑑 + 𝜈𝐶𝑅T𝜈�̃�𝐿 ·𝐻𝑢 + ℎ.𝑐.

)︁
.

Here we have used the notation of SPheno [216,217]. The soft scalar masses and the soft
trilinear parameters of the sfermions are again 3× 3 matrices in generation space. In the
UMSSM, the 𝐵𝜇 term of the MSSM is induced by the 𝑇𝜆 term after the breaking of the
𝑈(1)′ gauge symmetry.

In the following subsections we discuss those parts of the spectrum in a bit more detail
that are important for our calculation. These are the sfermions, in particular sneutrinos;
the massive gauge bosons; the Higgs bosons; and the neutralinos. The lightest right–
handed sneutrino is assumed to be the LSP, which annihilates chiefly through the exchange
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of massive gauge and Higgs bosons in the 𝑠−channel. Requiring the lightest neutralino to
be sufficiently heavier than the lightest right–handed sneutrino gives important constraints
on the parameter space. The mass matrices in these subsections have been obtained with
the help of the computer code SARAH [208, 212, 213]; many of these results can also be
found in refs. [168–170].

5.3 Gauge bosons
The UMSSM contains three neutral gauge bosons, from the 𝑆𝑈(2)𝐿, 𝑈(1)𝑌 and 𝑈(1)′,

respectively. As in the SM and MSSM, after symmetry breaking one linear combination
of the neutral 𝑆𝑈(2)𝐿 and 𝑈(1)𝑌 gauge bosons remains massless; this is the photon. The
orthogonal state 𝑍0 mixes with the 𝑈(1)′ gauge boson 𝑍 ′

0 via a 2× 2 mass matrix:

ℳ2
𝑍𝑍′ =

(︂
𝑀2

𝑍0
Δ𝑍

Δ𝑍 𝑀2
𝑍′
0

)︂
, (5.7)

with

𝑀2
𝑍0

=
1

4
(𝑔21 + 𝑔22)𝑣

2 ; (5.8)

Δ𝑍 =
1

2
𝑔′
√︁
𝑔21 + 𝑔22

(︀
𝑄′
𝐻𝑑
𝑣2𝑑 −𝑄′

𝐻𝑢
𝑣2𝑢
)︀
; (5.9)

𝑀2
𝑍′
0

= 𝑔′2
(︁
𝑄′2
𝐻𝑑
𝑣2𝑑 +𝑄′2

𝐻𝑢
𝑣2𝑢 +𝑄′2

𝑆 𝑣
2
𝑠

)︁
. (5.10)

Recall that 𝑔2, 𝑔1 and 𝑔′ are the gauge couplings associated to 𝑆𝑈(2)𝐿, 𝑈(1)𝑌 and 𝑈(1)′,
respectively. The eigenstates 𝑍 and 𝑍 ′ of this mass matrix can be written as:

𝑍 = cos𝛼𝑍𝑍′𝑍0 + sin𝛼𝑍𝑍′𝑍 ′
0 ;

𝑍 ′ = − sin𝛼𝑍𝑍′𝑍0 + cos𝛼𝑍𝑍′𝑍 ′
0 . (5.11)

The mixing angle 𝛼𝑍𝑍′ is given by

sin 2𝛼𝑍𝑍′ =
2Δ𝑍

𝑀2
𝑍 −𝑀2

𝑍′
. (5.12)

The masses of the physical states are

𝑀2
𝑍,𝑍′ =

1

2

[︃
𝑀2

𝑍0
+𝑀2

𝑍′
0
∓
√︂(︁

𝑀2
𝑍′
0
−𝑀2

𝑍0

)︁2
+ 4Δ2

𝑍

]︃
. (5.13)

Note that the off–diagonal entry Δ𝑍 in eq.(5.7) is of order 𝑣2. We are interested in 𝑍 ′

masses in excess of 10 TeV, which implies 𝑣2𝑠 ≫ 𝑣2. The mixing angle 𝛼𝑍𝑍′ is 𝒪(𝑀2
𝑍/𝑀

2
𝑍′),

which is automatically below current limits [176] if 𝑀𝑍′ ≥ 10 TeV. Moreover, mass mixing
increases the mass of the physical 𝑍 ′ boson only by a term of order 𝑀4

𝑍/𝑀
3
𝑍′ , which is less

than 0.1 MeV for 𝑀𝑍′ ≥ 10 TeV. To excellent approximation we can therefore identify
the physical 𝑍 ′ mass with 𝑀𝑍′

0
given in eq.(5.10), with the last term ∝ 𝑣2𝑠 being the by

far dominant one.
Recall from the discussion of the previous subsection that the mass of the right–handed

sneutrinos can get a large positive contribution from the 𝑈(1)′ 𝐷−term for some range
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of 𝜃𝐸6 . In fact, from eqs.(5.20) and (5.10) together with the charges listed in Table 5.1 we
find that this 𝐷−term contribution exceeds (𝑀𝑍′/2)2 if

−
√
15 < tan 𝜃𝐸6 < 0 . (5.14)

For this range of 𝜃𝐸6 one therefore needs a negative squared soft breaking contribution
𝑚2
�̃�𝐶

1

in order to obtain 𝑀𝜈𝑅,1
≃𝑀𝑍′/2.

Note that we neglect kinetic 𝑍 − 𝑍 ′ mixing [170, 177]. In the present context this
is a loop effect caused by the mass splitting of members of the 27 of 𝐸6. This induces
small changes of the couplings of the physical 𝑍 ′ boson, which have little effect on our
results; besides, this loop effect should be treated on the same footing as other one–loop
corrections.

5.4 The Higgs Sector
The Higgs sector of the UMSSM contains two complex 𝑆𝑈(2)𝐿 doublets 𝐻𝑢,𝑑 and the

complex singlet 𝑠. Four degrees of freedom get “eaten” by the longitudinal components of
𝑊±, 𝑍 and 𝑍 ′. This leaves three neutral CP–even Higgs bosons ℎ𝑖, 𝑖 ∈ {1, 2, 3}, one CP-
odd Higgs boson 𝐴 and two charged Higgs bosons 𝐻± as physical states. After solving
the minimization conditions of the scalar potential for the soft breaking masses of the
Higgs fields, the symmetric 3× 3 mass matrix for the neutral CP–even states in the basis
(𝜑𝑑, 𝜑𝑢, 𝜑𝑠) has the following tree–level elements:

(︀
ℳ0

+

)︀
𝜑𝑑𝜑𝑑

=
[︁𝑔21 + 𝑔22

4
+ (𝑄′

𝐻𝑑
)2𝑔′2

]︁
𝑣2𝑑 +

𝑇𝜆𝑣𝑠𝑣𝑢√
2𝑣𝑑

(5.15a)

(︀
ℳ0

+

)︀
𝜑𝑑𝜑𝑢

= −
[︁𝑔21 + 𝑔22

4
− 𝑔′2𝑄′

𝐻𝑑
𝑄′
𝐻𝑢

− 𝜆2
]︁
𝑣𝑑𝑣𝑢 −

𝑇𝜆𝑣𝑠√
2

(5.15b)(︀
ℳ0

+

)︀
𝜑𝑑𝜑𝑠

=
[︁
𝑔′2𝑄′

𝐻𝑑
𝑄′
𝑆 + 𝜆2

]︁
𝑣𝑑𝑣𝑠 −

𝑇𝜆𝑣𝑢√
2

(5.15c)

(︀
ℳ0

+

)︀
𝜑𝑢𝜑𝑢

=
[︁𝑔21 + 𝑔22

4
+ (𝑄′

𝐻𝑢
)2𝑔′2

]︁
𝑣2𝑢 +

𝑇𝜆𝑣𝑠𝑣𝑑√
2𝑣𝑢

(5.15d)(︀
ℳ0

+

)︀
𝜑𝑢𝜑𝑠

=
[︁
𝑔′2𝑄′

𝐻𝑢
𝑄′
𝑆 + 𝜆2

]︁
𝑣𝑢𝑣𝑠 −

𝑇𝜆𝑣𝑑√
2

(5.15e)(︀
ℳ0

+

)︀
𝜑𝑠𝜑𝑠

= 𝑔′2(𝑄′
𝑆)

2𝑣2𝑠 +
𝑇𝜆𝑣𝑑𝑣𝑢√

2𝑣𝑠
. (5.15f)

This matrix is diagonalized by a unitary 3 × 3 matrix 𝑍𝐻 which gives the mass eigen-
states (ℎ1, ℎ2, ℎ3) ordered in mass as a linear combination of (𝜑𝑑, 𝜑𝑢, 𝜑𝑠). In general the
eigenstates and eigenvalues of the mass matrix above have to be obtained numerically.

At tree level, the lightest Higgs mass can be approximately written as [167] [170]

𝑀2
ℎ1
|tree ≃ 1

4
(𝑔21 + 𝑔22)𝑣

2cos22𝛽 +
1

2
𝜆2𝑣2sin22𝛽 + 𝑔′2𝑣2

(︀
𝑄′
𝐻𝑑

cos2𝛽 +𝑄′
𝐻𝑢

sin2𝛽
)︀2

− 𝑣2

𝑔′2(𝑄′
𝑆)

2

[︁
𝜆2 − 𝑇𝜆sin22𝛽√

2𝑣𝑠
+ 𝑔′2𝑄′

𝑆

(︀
𝑄′
𝐻𝑑

cos2𝛽 +𝑄′
𝐻𝑢

sin2𝛽
)︀ ]︁2

(5.16)
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where the first term on the right-hand side is the MSSM tree-level upper bound, the
second term is an F-term contribution that also appears in the NMSSM, while the third
and the last term are respectively a D-term and a combination of an F- and a D-term
that comes from the UMSSM. It is also possible to have a Higgs boson lighter than the
SM Higgs if the fourth term dominates. The clear dependence of the last two terms on
the 𝑈(1)′ charges shows that the magnitude of the tree-level contribution to the lightest
Higgs mass will strongly depend on the value of the 𝑈(1) mixing angle 𝜃𝐸6 .

The interaction between the SM singlet superfield and the two Higgs doublets brings
a new contribution to the tree level mass of the lightest Higgs, which is the same as in the
NMSSM. In addition, the UMSSM has also other contributions to enhance the SM-like
Higgs mass that comes from the 𝑈(1)′ D-term [151] [154] of the scalar potential and, as
a consequence of these contributions, the loop-induced corrections that comes from the
stop sector does not need to be large as in the MSSM. As well known, the mass of ℎ1 also
receives sizable loop corrections, in particular from the top–stop sector [155,156].

The CP-odd sector contains one pseudoscalar Higgs boson 𝐴0 and two Goldstone
bosons 𝐺0

𝑍 and 𝐺0
𝑍′ which are absorbed respectively to the physical massive neutral vector

bosons 𝑍0 and 𝑍2 after the breaking of the electroweak gauge symmetry. The Higgs mass-
squared matrix of this sector ℳ0

− is diagonalized by 𝑍𝐴 which gives the mass eigenstates
(𝐺0

𝑍 , 𝐺
0
𝑍′ , 𝐴0) as a linear combination of (𝜎𝑑, 𝜎𝑢, 𝜎𝑠). The tree level mass of the single

physical neutral CP–odd state is

𝑀2
𝐴|tree =

√
2𝑇𝜆

sin 2𝛽
𝑣𝑠

(︂
1 +

𝑣2

4𝑣2𝑠
sin2 2𝛽

)︂
. (5.17)

In our sign convention, tan 𝛽 and 𝑣𝑠 are positive in the minimum of the potential; eq.(5.17)
then implies that 𝑇𝜆 must also be positive.

The charged components of the Higgs doublets do not mix with the neutral Higgs
fields because of electric charge conservation, so the charged Higgs sector of the UMSSM
is the same as the one in the MSSM. It consists of one charged Higgs boson 𝐻+ and one
charged Goldstone boson 𝐺+

𝑊 that enters as the longitudinal polarization of the 𝑆𝑈(2)𝐿
charged vector boson 𝑊+ after the breaking of the electroweak gauge symmetry. The
mass-squared matrix of the charged Higgs is diagonalized by 𝑍+ which writes the mass
eigenstates

(︀
𝐺+
𝑊 , 𝐻

+
)︀

as a linear combination of (𝐻+
𝑑 , 𝐻

+
𝑢 ). The mass of the physical

charged Higgs boson at tree level reads

𝑀2
𝐻+|tree =𝑀2

𝑊+ +

√
2𝑇𝜆

sin 2𝛽
𝑣𝑠 −

𝜆2

2
𝑣2. (5.18)

As in the MSSM 𝑀2
𝐴 differs from the squared mass of the physical charged Higgs boson

only by terms of order 𝑣2. Both 𝐴 and 𝐻± are constructed from the components of 𝐻𝑢

and 𝐻𝑑, without any admixture of 𝑠.
As noted above, in the limit 𝑣𝑠 ≫ 𝑣 the mixing between singlet and doublet states

can to first approximation be neglected. Here we chose the heaviest state to be (mostly)
singlet. From the last eq.(5.15) and eq.(5.10) we derive the important result

𝑀2
𝑍′|tree ≃𝑀2

ℎ3
|tree +𝒪(𝑣2) . (5.19)

Here we have assumed |𝑇𝜆| ≤ 𝑣𝑠 because for larger values of |𝑇𝜆| the mass of the heavy
doublet Higgs can exceed the mass of the singlet state. As we will see, in the region of
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parameter space that minimizes the 𝜈𝑅,1 relic density we need 𝑀𝐴 < 𝑀𝜈𝑅,1
.

Eq.(5.19) leads to an ℎ3 − 𝑍 ′ mass splitting of order 𝑀2
𝑍/𝑀𝑍′ , which is below 1 GeV

for 𝑀𝑍′ > 10 TeV. Loop corrections induce significantly larger mass splittings, with
𝑀𝑍′ > 𝑀ℎ3 ; however, the splitting still amounts to less than 1% in the relevant region
of parameter space, which is well below the typical kinetic energy of WIMPs in the
epoch around their decoupling from the thermal bath. We thus arrive at the important
result that 𝑀𝜈𝑅,1

≃ 𝑀𝑍′ automatically implies 𝑀𝜈𝑅,1
≃ 𝑀ℎ3 in our set–up, so that 𝜈𝑅,1

annihilation is enhanced by two nearby resonances.

5.5 Sfermions
In the UMSSM, the 𝑈(1)′ gauge symmetry induces some new D-term contributions to

all the sfermion masses, which modify the diagonal components of the MSSM sfermion
mass matrices as

Δ𝐹 =
1

2
𝑔′2𝑄′

𝐹

(︁
𝑄′
𝐻𝑑
𝑣2𝑑 +𝑄′

𝐻𝑢
𝑣2𝑢 +𝑄′

𝑆𝑣
2
𝑠

)︁
, (5.20)

where 𝐹 ∈ {𝑄,𝐿,𝐷𝑐, 𝑈 𝑐, 𝐸𝑐, 𝑁 𝑐}. This D-term contribution can dominate the sfermion
mass for large values of 𝑣𝑆. Moreover, depending on the value of 𝜃𝐸6 this term can induce
positive or negative corrections to the sfermion masses. As can be seen in Figure 5.1,
for arctan

√
15 < 𝜃𝐸6 < 𝜋

2
all the sfermion masses receive positive corrections in such

a way that the corrections to the RH sneutrino masses are the smallest ones, while for
0 < 𝜃𝐸6 < arctan

√
15 the RH sneutrino masses receive large negative corrections compared

to the corrections that the other sfermion masses receive in the same range. On the other
hand, for 𝜃𝐸6 < 0 the RH sneutrino masses receive positive corrections larger than the
corrections that the other sfermion masses acquire from the D-term. As a consequence,
the lightest RH sneutrino can easily be the lightest sfermion of the model when 𝜃𝐸6 > 0,
but when 𝜃𝐸6 < 0 it needs to have a negative soft mass-squared parameter in order to
(possibly) become the LSP and behave as a dark matter particle.

The tree–level sneutrino mass matrix written in the basis (𝜈𝐿, 𝜈𝑅) is

ℳ2
𝜈 =

(︃
m2

𝜈𝐿𝜈
*
𝐿

−1
2
𝑣𝑑𝑣𝑠𝜆Y

*
𝜈 +

1√
2
𝑣𝑢T

*
𝜈

−1
2
𝑣𝑑𝑣𝑠𝜆Y

𝑇
𝜈 + 1√

2
𝑣𝑢T

𝑇
𝜈 m2

𝜈𝑅𝜈
*
𝑅

)︃
. (5.21)

The 3× 3 sub–matrices along the diagonal are given by:

m2
𝜈𝐿𝜈

*
𝐿
=
[︁
Δ𝐿 +

1

8

(︁
𝑔21 + 𝑔22

)︁(︁
𝑣2𝑑 − 𝑣2𝑢

)︁]︁
1+

1

2
𝑣2𝑢Y

*
𝜈Y

𝑇
𝜈 +m2

L̃
(5.22a)

m2
𝜈𝑅𝜈

*
𝑅
= Δ𝑁𝑐1+

1

2
𝑣2𝑢Y

𝑇
𝜈Y

*
𝜈 +m2

Ñc , (5.22b)

where 𝑔1 and 𝑔2 are the 𝑈(1)𝑌 and 𝑆𝑈(2)𝐿 gauge couplings, respectively. As noted earlier,
the neutrino Yukawa couplings have to be very small. We therefore set Y𝜈 = T𝜈 = 0, so
that the 6×6 matrix (5.21) decomposes into two 3×3 matrices.1 Since all interactions of
the 𝜈𝑅 fields are due to 𝑈(1)′ gauge interactions which are the same for all generations,
we can without loss of generality assume that the matrix m2

ÑC of soft breaking masses

1Strictly speaking some neutrino Yukawa couplings have to be nonzero in order to generate the required
sub–eV neutrino masses. However, the 𝜈𝐿 − 𝜈𝑅 mixing induced by these tiny couplings is completely
negligible for our purposes.
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is diagonal. The physical masses of the RH sneutrinos are then simply given by 𝑚2
𝜈𝑅,𝑖

=

𝑚2
�̃�𝐶

𝑖

+Δ𝑁𝐶 . Our LSP candidate is the lightest of the three 𝜈𝑅 states, which we call 𝜈𝑅,1.

5.6 Neutralinos
The neutralino sector is formed by the fermionic components of the neutral vector and

Higgs supermultiplets. So, in addition to the neutralino sector of the MSSM, the UMSSM
has another gaugino state associated with the 𝑈(1)′ gauge symmetry and a singlino state
that comes from the extra scalar supermultiplet 𝑆. The neutralino mass matrix written
in the basis

(︁
𝜆�̃�, �̃�

0, �̃�0
𝑑 , �̃�

0
𝑢, 𝑆, 𝜆�̃�′

)︁
is:

ℳ�̃�0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑀1 0 −1
2
𝑔1𝑣𝑑

1
2
𝑔1𝑣𝑢 0 0

0 𝑀2
1
2
𝑔2𝑣𝑑 −1

2
𝑔2𝑣𝑢 0 0

−1
2
𝑔1𝑣𝑑

1
2
𝑔2𝑣𝑑 0 −𝜇eff − 1√

2
𝑣𝑢𝜆 𝑔′𝑄′

𝐻𝑑
𝑣𝑑

1
2
𝑔1𝑣𝑢 −1

2
𝑔2𝑣𝑢 −𝜇eff 0 − 1√

2
𝑣𝑑𝜆 𝑔′𝑄′

𝐻𝑢
𝑣𝑢

0 0 − 1√
2
𝑣𝑢𝜆 − 1√

2
𝑣𝑑𝜆 0 𝑔′𝑄′

𝑆𝑣𝑠
0 0 𝑔′𝑄′

𝐻𝑑
𝑣𝑑 𝑔′𝑄′

𝐻𝑢
𝑣𝑢 𝑔′𝑄′

𝑆𝑣𝑠 𝑀4

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (5.23)

This matrix is diagonalized by a unitary 6 × 6 matrix 𝑁 which gives the mass eigenstates
(in order of increasing mass) �̃�0

1, �̃�
0
2, �̃�

0
3, �̃�

0
4, �̃�

0
5, �̃�

0
6 as a linear combinations of the current

eigenstates. We have ignored a possible (gauge invariant) mixed �̃��̃�′ mass term [184,185].
The properties of the neutralino sector in 𝐸6 inspired SUSY models have been analysed
in [151] [186–190], in particular as considering the neutralino LSP of the UMSSM as a
viable dark matter candidate [177] [191,192].

Note that the singlet higgsino (singlino for short) 𝑆 and the 𝑈(1)′ gaugino �̃�′ mix
strongly, through an entry of order 𝑣𝑠. On the other hand, these two new states mix with
the MSSM only through entries of order 𝑣. Therefore the eigenvalues of the lower–right
2 × 2 submatrix in eq.(5.23) are to good approximation also eigenvalues of the entire
neutralino mass matrix. Note that the smaller of these two eigenvalues decreases with
increasing 𝑀4. Requiring this eigenvalue to be larger than 𝑀𝜈𝑅,1

≃ 𝑀𝑍′/2 therefore
implies

|𝑀4| <
3

2
𝑀𝑍′ . (5.24)

Moreover, the smallest mass of the MSSM–like states should also be larger than 𝑀𝑍′/2,
which implies

|𝑀1| >
1

2
𝑀𝑍′ ; |𝑀2| >

1

2
𝑀𝑍′ ; |𝜆| > 1√

2
|𝑄𝑆𝑔

′| . (5.25)

We have used eqs.(5.5) and (5.10) in the derivation of the last inequality.
Since the 𝐵′ boson and the singlet Higgs Ŝ supermultiplets are electromagnetically

neutral they do not contribute to form the chargino spectrum. Hence, the chargino sector
of the UMSSM is identical to that of the MSSM.

5.7 Conclusions
In this chapter we analyzed the UMSSM, i.e. extensions of the minimal supersym-

metrized Standard Model that contain an additional 𝑈(1)′ gauge group as well as three
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additional right–handed (RH) neutrino superfields which are singlets under the SM gauge
group but carry 𝑈(1)′ charge. We assume that 𝑈(1)′ is a subgroup of 𝐸6, which has
been suggested as an (effective) GUT group, e.g. in the context of early superstring
phenomenology. In comparison to the MSSM, the field content of the UMSSM con-
tains additionally three RH neutrino superfields, one gauge boson associated to the extra
Abelian gauge symmetry and an SM singlet scalar field whose VEV is responsable for the
breaking of the 𝑈(1)′ symmetry.

In the UMSSM the lightest RH sneutrino 𝜈𝑅,1 can be a good dark matter candidate. It
can annihilate into lighter particles through some s-channel processes that are mediated
by the Higgs bosons and by the new massive gauge boson. If the RH sneutrino has a
mass close to half the mass of the mediator its annihilation cross section can be largely
increased and this allows the WIMP candidate to produce the observed dark matter relic
density with much higher masses. We will see in the next chapter how heavy can the
lightest RH sneutrino be in such a way that it still behaves as a viable thermal dark
matter candidate.
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Chapter 6

A Very Heavy Sneutrino as Viable
Thermal Dark Matter Candidate in
𝑈(1)′ Extensions of the MSSM

6.1 Introduction
It is interesting to ask how heavy a WIMP can be. As long as no positive WIMP

signal has been found, an upper bound on the WIMP mass can only be obtained within
a specific production mechanism, i.e. within a specific cosmological model. In partic-
ular, nonthermal production from the decay of an even heavier, long–lived particle can
reproduce the correct relic density for any WIMP mass, if the mass, lifetime and decay
properties of the long–lived particle are chosen appropriately [193]. Here we stick to stan-
dard cosmology, where the WIMP is produced thermally from the hot gas of SM particles.
The crucial observation is that the resulting relic density is inversely proportional to the
annihilation cross section of the WIMP [24]. It has been known for nearly thirty years
that the unitarity limit on the WIMP annihilation cross section leads to an upper bound
on its mass [194]. Using the modern determination of the DM density [131],

ΩDMℎ
2 = 0.1188± 0.0010 , (6.1)

the result of [194] translates into the upper bound

𝑚𝜒 ≤ 120 TeV . (6.2)

While any elementary WIMP 𝜒 has to satisfy this bound, it is not very satisfying.
Not only is the numerical value of the bound well above the range that can be probed
even by planned colliders; a particle that interacts so strongly that the annihilation cross
section saturates the unitarity limit can hardly be said to qualify as a WIMP. In order to
put this into perspective, let us have a look at the upper bound on the WIMP mass in
specific models. Since WIMPs have non–negligible interactions with SM particles, they
can be searched for in a variety of ways. Direct WIMP search experiments look for the
recoil of a nucleus after elastic WIMP scattering. These experiments have now begun
to probe quite deeply into the parameter space of many WIMP models [176, 195]. The
limits from these experiments are strongest for WIMP masses around 30 to 50 GeV. For
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lighter WIMPs the recoil energy of the struck nucleus might be below the experimental
threshold, whereas the sensitivity to heavier WIMPs suffers because their flux decreases
inversely to the mass.

An 𝑆𝑈(2) non–singlet WIMP can annihilate into 𝑆𝑈(2) gauge bosons with full 𝑆𝑈(2)
gauge strength. For a spin−1/2 fermion and using tree–level expressions for the cross
section, this will reproduce the desired relic density (6.1) for 𝑚𝜒 ≃ 1.1 TeV for a doublet
(e.g., a higgsino–like neutralino in the MSSM [196]); about 2.5 TeV for a triplet (e.g., a
wino–like neutralino in the MSSM [196]); and 4.4 TeV for a quintuplet [197]. Including
large one–loop (“Sommerfeld”) corrections increases the desired value of the quintuplet
mass to about 9.6 TeV [198].

One way to increase the effective WIMP annihilation cross section is to allow for
co–annihilation with strongly interacting particles [199]. Co–annihilation happens if the
WIMP is close in mass to another particle 𝜒′, and reactions of the kind 𝜒+ 𝑓 ↔ 𝜒′ + 𝑓 ′,
where 𝑓, 𝑓 ′ are SM particles, are not suppressed. In this case 𝜒𝜒′ and 𝜒′𝜒′ annihilation
reactions effectively contribute to the 𝜒 annihilation cross section. If 𝜒′ transforms non–
trivially under 𝑆𝑈(3)𝐶 , the 𝜒′𝜒′ annihilation cross section can be much larger than that
for 𝜒𝜒 initial states. On the other hand, 𝜒′ then effectively also counts as Dark Matter,
increasing the effective number of internal degrees of freedom of 𝜒. For example, in the
context of the MSSM, co–annihilation with a stop squark [200] can allow even 𝑆𝑈(2)
singlet (bino–like) DM up to about 3.3 TeV [201], or even up to ∼ 6 TeV if the mass
splitting is so small that the lowest stoponium bound state has a mass below twice that
of the bino [202]. Co–annihilation with the gluino [203] can put this bound up to ∼ 8
TeV [204]. Very recently it has been pointed out that nonperturbative co–annihilation
effects after the QCD transition might allow neutralino masses as large as 100 TeV if the
mass splitting is below the hadronic scale [205]; the exact value of the bound depends on
non–perturbative physics which is not well under control.

The WIMP annihilation cross section can also be greatly increased if the WIMP mass
is close to half the mass of a potential 𝑠−channel resonance 𝑅. Naively this can allow the
cross section to (nearly) saturate the unitarity limit, if one is right on resonance. In fact
the situation is not so simple [199], since the annihilation cross section has to be thermally
averaged: because WIMPs still have sizable kinetic energy around the decoupling tem-
perature, this average smears out the resonance. In the MSSM the potentially relevant
resonances for heavy WIMPs are the heavy neutral Higgs bosons; in particular, neutralino
annihilation through exchange of the CP–odd Higgs 𝐴 can occur from an 𝑆−wave initial
state [206]. However, the neutralino coupling to Higgs bosons is suppressed by gaugino–
higgsino mixing; it will thus only be close to full strength if the higgsino and gaugino
mass parameters are both close to 𝑀𝐴/2.

While the new Higgs superfield 𝑆 is a singlet under the SM gauge group, it is charged
under 𝑈(1)′. This forbids an 𝑆3 term in the superpotential. Hence the quartic scalar
interaction of this field is determined uniquely by its 𝑈(1)′ charge. As a result, the mass
of the physical, CP–even Higgs boson ℎ3 is automatically very close to that of the 𝑍 ′

boson, in the relevant limit 𝑀𝑍′ ≫ 𝑀𝑍 . Hence for 𝑀𝜈𝑅,1
≃ 𝑀𝑍′/2 the annihilation cross

section of the lightest right–handed sneutrino 𝜈𝑅,1 is enhanced by two resonances. Out
of those, the exchange of ℎ3 is more important since it can be accessed from an 𝑆−wave
initial state. For a complex scalar, 𝑍 ′ exchange is accessible only from a 𝑃−wave initial
state, which suppresses the thermally averaged cross section. Notice that the ℎ3𝜈𝑅,𝑖𝜈*𝑅,𝑖
coupling contains terms that are proportional to the VEV of 𝑠, which sets the scale of
the 𝑍 ′ mass; for 𝑀𝜈𝑅,1

≃ 𝑀𝑍′/2 this dimensionful coupling therefore does not lead to a
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suppression of the cross section. Finally, the couplings of ℎ3 to the doublet Higgs bosons
can be tuned by varying a trilinear soft breaking term. This gives another handle to
maximize the thermally averaged 𝜈𝑅,1 annihilation cross section in the resonance region.

6.2 Minimizing the Relic Abundance of the Right-Handed
Sneutrino

As described in the Introduction, we want to find the upper bound on the mass of
the lightest RH sneutrino 𝜈𝑅,1 from the requirement that it makes a good thermal WIMP
in standard cosmology. As well known [24], under the stated assumptions the WIMP
relic density is essentially inversely proportional to the thermal average of its annihilation
cross section into lighter particles; these can be SM particles or Higgs bosons of the
extended sector. The upper bound on 𝑀𝜈𝑅,1

will therefore be saturated for combinations
of parameters that maximize the thermally averaged 𝜈𝑅,1𝜈*𝑅,1 annihilation cross section.

All relevant couplings of the RH sneutrinos are proportional to the 𝑈(1)′ gauge cou-
pling 𝑔′. In particular, two RH sneutrinos can annihilate into two neutrinos through
exchange of a 𝑈(1)′ gaugino. This, and similar reactions where one or both particles in
the initial and final state are replaced by antiparticles, are typical electroweak 2 → 2 re-
actions without enhancement factors. They will therefore not allow RH sneutrino masses
in the multi–TeV range.

In contrast, 𝜈𝑅,1𝜈*𝑅,1 annihilation through 𝑍 ′ and scalar ℎ3 exchange can be resonantly
enhanced if 𝑀𝜈𝑅,1

≃ 𝑀𝑍′/2; recall that 𝑀ℎ3 ≃ 𝑀𝑍′ is automatic in our set–up, if ℎ3 is
mostly an SM singlet, as we assume. Note that the 𝑍 ′ exchange can only contribute if
the sneutrinos are in a 𝑃−wave. This suppresses the thermal average of the cross section
by a factor ≥ 7. For comparable couplings, ℎ3 exchange, which is depicted in Fig. 6.1, is
therefore more important.

h3
C1 Ch3φiφ∗j

ν̃∗R

ν̃R φ∗j

φi

Figure (6.1) Main annihilation process for the annihilation of RH sneutrinos. The fi-
nal state can contain both physical Higgs particles and the longitudinal components of
the weak 𝑊 and 𝑍 gauge bosons, which are equivalent to the corresponding would–be
Goldstone modes.

In the ℎ3 resonance region the annihilation cross section scales like

𝜎ann ∝ (𝑄′
𝑁𝐶 )

2

𝑀2
𝜈𝑅,1

. (6.3)

Since the ℎ3𝜈𝑅,1𝜈*𝑅,1 coupling, denoted by 𝐶1 in Fig. 6.1, originates from the 𝑈(1)′ 𝐷−term,
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it is proportional to the product of 𝑆 and 𝑁𝐶 charges:

|𝐶1| ≃ 𝑔′2 |𝑄′
𝑁𝐶𝑄

′
𝑆𝑣𝑠| . (6.4)

These charges are determined uniquely once the angle 𝜃𝐸6 has been fixed. The denomina-
tor in eq.(6.3) results from dimensional arguments, using the fact that there is essentially
only one relevant mass scale once the resonance condition has been imposed.1

Note that near the resonance the annihilation cross section is effectively only 𝒪(𝛼′),
not 𝒪(𝛼′2), where 𝛼′ = 𝑔′2/(4𝜋). The 𝜈𝑅,1𝜈*𝑅,1 annihilation cross section is then larger
than typical co–annihilation cross sections, if the latter are not resonantly enhanced. Even
co–annihilation with a superparticle that can also annihilate resonantly (e.g., a higgsino–
like neutralino) will not increase the effective annihilation cross section, but will increase
the effective number of degrees of freedom per dark matter particle 𝑔𝜒. As a result, we
find that co–annihilation reduces the upper bound on 𝑀𝜈𝑅,1

. For example, if all three RH
sneutrinos have the same mass, the upper bound on this mass decreases by a factor of√
3, since the annihilation cross section has to be increased by a factor of 3 in order to

compensate the increase of 𝑔𝜒. We therefore require that the lightest neutralino is at least
20% heavier than 𝜈𝑅,1.

As noted earlier, the initial–state coupling 𝐶1 in Fig. 6.1 is essentially fixed by 𝜃𝐸6 . The
upper bound on 𝑀𝜈𝑅,1

for given 𝜃𝐸6 can therefore be found by optimizing the final state
couplings. We find that the relic density is minimized if the effective final state coupling
𝐶2, defined more precisely below, is of the same order as 𝐶1. This can be understood
as follows. For much larger values of 𝐶2 the width of ℎ3 increases, which reduces the
cross section. On the other hand, since the peak of the thermally averaged cross section
is reached for 𝑀𝜈𝑅,1

slightly below 𝑀ℎ3/2 [199], ℎ3 → 𝜈𝑅,1𝜈
*
𝑅,1 decays are allowed, and

dominate the total ℎ3 width if 𝐶2 ≪ 𝐶1; in this case increasing 𝐶2 will clearly increase
the cross section, i.e. reduce the relic density.

The only sizable couplings of the singlet–like Higgs state ℎ3 to particles with even
𝑅−parity (i.e., to particles possibly lighter than the LSP 𝜈𝑅,1) are to members of the
Higgs doublets. ℎ3 couples to 𝐻𝑢 and 𝐻𝑑 through the 𝑈(1)′ 𝐷−term, with contributions
∝ 𝑔′2𝑄′

𝑆𝑄
′
𝐻𝑢,𝐻𝑑

𝑣𝑠; through 𝐹−terms associated to the coupling 𝜆, with contributions
∝ 𝜆2𝑣𝑠; and through a trilinear soft breaking term, with contributions ∝ 𝑇𝜆. In the
decoupling limit 𝑀2

𝐴 ≫𝑀2
𝑍 the relevant couplings are given by:

𝐶ℎ3𝐻+𝐻− ≃ 𝐶ℎ3ℎ2ℎ2 ≃ 𝐶ℎ3𝐴𝐴 ≃ − 𝑖
[︁
𝑔′2
(︀
cos2 𝛽𝑄′

𝐻𝑢
+ sin2 𝛽𝑄′

𝐻𝑑

)︀
𝑄′
𝑆𝑣𝑠

+ 𝑣𝑠𝜆
2 +

sin(2𝛽)√
2

𝑇𝜆

]︁
; (6.5)

𝐶ℎ3𝐺+𝐺− ≃ 𝐶ℎ3ℎ1ℎ1 ≃ 𝐶ℎ3𝐺0𝐺0 ≃ − 𝑖
[︁
𝑔′2
(︀
sin2 𝛽𝑄′

𝐻𝑢
+ cos2 𝛽𝑄′

𝐻𝑑

)︀
𝑄′
𝑆𝑣𝑠

+ 𝑣𝑠𝜆
2 − sin(2𝛽)√

2
𝑇𝜆

]︁
; (6.6)

𝐶ℎ3𝐻+𝐺− ≃ 𝐶ℎ3ℎ2ℎ1 ≃ 𝐶ℎ3𝐴𝐺0 ≃ − 𝑖
[︁
𝑔′2

sin(2𝛽)

2

(︀
𝑄′
𝐻𝑢

−𝑄′
𝐻𝑑

)︀
𝑄′
𝑆𝑣𝑠

− cos(2𝛽)√
2

𝑇𝜆

]︁
. (6.7)

1The couplings 𝐶1 and 𝐶ℎ3𝜑𝑖𝜑*
𝑗

in Fig. 6.1 carry dimension of mass. They are dominated by the VEV
𝑣𝑠, which is proportional to 𝑀𝑍′ ≃𝑀ℎ3

, and hence to 𝑀𝜈𝑅,1
if the resonance condition is satisfied.
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Since 𝑀ℎ3 ≫ 𝑣, at scale 𝑀ℎ3 𝑆𝑈(2)𝐿 is effectively unbroken. The couplings of ℎ3 to
two members of the heavy doublet containing the physical states 𝐻±, ℎ2 and 𝐴 therefore
are all the same, see eq.(6.5), as are the couplings to the light doublet containing ℎ1
and the would–be Goldstone modes 𝐺0 and 𝐺±, see eq.(6.6); finally, eq.(6.7) describes
the common coupling to one member of the heavy doublet and one member of the light
doublet. Of course, the would–be Goldstone modes are not physical particles; however,
again since 𝑀ℎ3 ≫ 𝑣 the production of physical longitudinal gauge bosons can to very
good approximation be described as production of the corresponding Goldstone states.
This is the celebrated equivalence theorem [207].2

We find numerically that the 𝜈𝑅,1 relic density is minimized when ℎ3 decays into two
members of the heavy Higgs doublet are allowed. From eqs.(5.17) and (5.18) we see that
this requires

√
2𝑇𝜆𝑣𝑠
sin 2𝛽

<
1

4
𝑔′2 (𝑄′

𝑆)
2
𝑣2𝑠 ⇒ 𝑇𝜆 <

𝑔′2 (𝑄′
𝑆)

2 sin 2𝛽

4
√
2

𝑣𝑠 . (6.8)

This implies that the singlet–like state is indeed the heaviest physical Higgs boson.
The contribution of the RH sneutrino annihilation channels that appear in Fig. 6.1 to

obtain acceptable relic densities is also affected by the decay width of the singlet Higgs. In
order to take this into account, we define an effective coupling squared which is the sum
over all annihilation channels of the product of |𝐶ℎ3𝜑𝑖𝜑𝑗 |2 and the kinematic square-root
factor that appears in the decay width Γℎ3𝜑𝑖𝜑𝑗 . It is given by

𝐶2
2 =

(︃
|𝐶ℎ3𝐻+𝐻− |2

√︃
1− 4𝑀2

𝐻+

𝑀2
ℎ3

)︃
+

1

2

(︃
|𝐶ℎ3ℎ2ℎ2|2

√︃
1− 4𝑀2

ℎ2

𝑀2
ℎ3

)︃
+

1

2

(︃
|𝐶ℎ3𝐴𝐴|2

√︃
1− 4𝑀2

𝐴

𝑀2
ℎ3

)︃

+

(︃
|𝐶ℎ3𝐺+𝐺−|2

√︃
1− 4𝑀2

𝑊+

𝑀2
ℎ3

)︃
+

1

2

(︃
|𝐶ℎ3ℎ1ℎ1|2

√︃
1− 4𝑀2

ℎ1

𝑀2
ℎ3

)︃
+

1

2

(︃
|𝐶ℎ3𝐺0𝐺0|2

√︃
1− 4𝑀2

𝑍

𝑀2
ℎ3

)︃

+ 2

(︃
|𝐶ℎ3𝐻+𝐺−|2

√︃
1− (𝑀𝐻+ +𝑀𝑊+)2

𝑀2
ℎ3

√︃
1− (𝑀𝐻+ −𝑀𝑊+)2

𝑀2
ℎ3

)︃

+

(︃
|𝐶ℎ3ℎ2ℎ1|2

√︃
1− (𝑀ℎ2 +𝑀ℎ1)

2

𝑀2
ℎ3

√︃
1− (𝑀ℎ2 −𝑀ℎ1)

2

𝑀2
ℎ3

)︃

+

(︃
|𝐶ℎ3𝐴𝐺0|2

√︃
1− (𝑀𝐴 +𝑀𝑍)2

𝑀2
ℎ3

√︃
1− (𝑀𝐴 −𝑀𝑍)2
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)︃
.

Since we are working in the s-decoupling limit, we have 𝑀𝐴 ≈ 𝑀𝐻+ ≈ 𝑀ℎ2 and we can
neglect the masses of 𝑊+, 𝑍0 and ℎ1. We can now define a simplified effective final–state
coupling 𝐶2 for the diagram shown in Fig. 6.1:

𝐶2 =

⎯⎸⎸⎷2 |𝐶ℎ3ℎ2ℎ2|2
√︃
1− 4𝑀2

ℎ2

𝑀2
ℎ3

+ 2 |𝐶ℎ3ℎ1ℎ1|2 + 4 |𝐶ℎ3ℎ2ℎ1|2
(︂
1− 𝑀2

ℎ2

𝑀2
ℎ3

)︂
. (6.9)

2Due to the effective restoration of 𝑆𝑈(2)𝐿 at scale 𝑀ℎ3
the total decay width of ℎ3, which determines

the total annihilation cross section via ℎ3 exchange, can still be computed from eqs.(6.5) to (6.7) even if
the decoupling limit is not reached; the dependence on the mixing between the CP–even states drops out
after summing over all final states.
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Here we have included the kinematic factors into the effective coupling, using the same
mass 𝑀ℎ2 for all members of the heavy Higgs doublet and ignoring 𝑀ℎ1 ,𝑀𝑊 and 𝑀𝑍 ,
which are much smaller than 𝑀ℎ3 . The numerical coefficients originate from summing
over final states: 𝐻+𝐻−, 𝐴𝐴 and ℎ2ℎ2 for the first term, where the last two final states
get a factor 1/2 for identical final state particles; 𝐺+𝐺−, 𝐺0𝐺0 and ℎ1ℎ1 for the sec-
ond term, again with factor 1/2 in front of the second and third contribution; and
𝐺+𝐻−, 𝐺−𝐻+, 𝐺0𝐴 and ℎ1ℎ2 for the third term.

Since the contribution from ℎ3 exchange is accessible from an 𝑆−wave initial state, it
peaks for DM mass very close to 𝑀ℎ3/2 where one needs quite small velocity to get exactly
to the pole 𝑠 = 𝑀2

ℎ3
; at such a small velocity, the 𝑍 ′ exchange contribution, which can

only be accessed from a 𝑃−wave initial state, is quite suppressed. As a consequence, near
the peak of the thermally averaged total cross section the ℎ3 exchange processes always
contributes more than 90% to the total, whereas the 𝑍 ′ exchange contribution shrinks as
we approach the peak. The latter reaches its maximum at a larger difference between 𝑀𝑍′

and 2𝑀𝜈𝑅,1
, but its contribution exceeds 10% of the total only if 2𝑀𝜈𝑅,1

is at least 3% below
𝑀𝑍′ , or else above the resonance. Note also that the annihilation into pairs of SM fermions
via 𝑍 ′ exchange is completely determined by 𝜃𝐸6 . In principle we could contemplate
annihilation into exotic fermions, members of 27 of 𝐸6 that are required for anomaly
cancellation, as noted in Sec. 5.2. However, the contribution from the SM fermions already
sums to an effective final state coupling which is considerably larger than the initial
state coupling; this helps to explain why the 𝑍 ′ contribution is always subdominant.
Adding additional final states therefore reduces the 𝑍 ′ exchange contribution to the 𝜈𝑅,1
annihilation cross section even further. This justifies our assumption that the exotic
fermions are too heavy to affect the calculation of the 𝜈𝑅,1 relic density.

Finally, all other processes of the model contribute at most 1% to the thermally av-
eraged total cross section in the resonance region. This shows that the parameters that
describe the rest of the spectrum are irrelevant to our calculation, as long as 𝜈𝑅,1 is the LSP
and sufficiently separated in mass from the other superparticles to avoid co–annihilation.
These parameters were therefore kept fixed in the numerical results presented below.

6.3 Numerical Results
We are now ready to present numerical results. We will first describe our procedure.

Then we discuss two choices for 𝜃𝐸6 , i.e. for the 𝑈(1)′ charges, before generalizing to the
entire range of possible values of this mixing angle.

6.3.1 Procedure

We have used the Mathematica package SARAH [208,212,213] to generate routines for
the precise numerical calculation of the spectrum with SPheno [216,217]. This code calcu-
lates by default the pole masses of all supersymmetric particles and their corresponding
mixing matrices at the full one–loop level in the DR scheme. SPheno also includes in
its calculation all important two–loop corrections to the masses of neutral Higgs bosons
[218–220]. The dark matter relic density and the dark matter nucleon scattering cross sec-
tion relevant for direct detection experiments are computed with MicrOMEGAs-4.2.5 [224].
The mass spectrum generated by SPheno is passed to MicrOMEGAs-4.2.5 through the
SLHA+ functionality [225] of CalcHep [226, 227]. The numerical scans were performed
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by combining the different codes using the Mathematica tool SSP [245] for which SARAH
already writes an input template.

SARAH can generate two different types of templates that can be used as input files for
SPheno. One is the high scale input, where the gauge couplings and the soft SUSY break-
ing parameters are unified at a certain GUT scale and their renormalization group (RG)
evolution between the electroweak, SUSY breaking and GUT scale is included. The other
one is the low scale input where the gauge couplings, VEVs, superpotential and soft SUSY
breaking parameters of the model are all free input parameters that are given at a specific
renormalization scale near the sparticle masses, in which case no RG running to the GUT
scale is needed. In this template the SM gauge couplings are given at the electroweak scale
and evolve to the SUSY scale through their RGEs. The dark matter phenomenology of a
model in the WIMP context is usually well studied at low energies; moreover, acceptable
low energy phenomenology for both the 𝑈(1)𝜓 and the 𝑈(1)𝜂 model in the limit where the
singlet Higgs decouples works much better with nonuniversal boundary conditions [166].
Finally, a bound that is valid for general low–scale values of the relevant parameters will
also hold (but can perhaps not be saturated) in constrained scenarios.

In our work we therefore define the relevant free parameters of the UMSSM directly
at the SUSY mass scale, which is defined as the geometric mean of the two stop masses.
We created new model files for different versions of the UMSSM to be used in SARAH and
SPheno where all the 𝑈(1)′ charges are written in terms of the 𝑈(1) mixing angle 𝜃𝐸6

using eq.(5.1).
Our goal is to find the upper bound on the mass of the lightest RH sneutrino, and

therefore on 𝑀𝑍′ ≃ 𝑀ℎ3 . We argued in Sec. 6.2 that co–annihilation would weaken the
bound. We therefore have to make sure that all other superparticles are sufficiently heavy
so that they do not play a role in the calculation in the relic density. The precise values
of their masses are then irrelevant to us. We therefore fix the soft mass parameters of
the gauginos and sfermions to certain values well above 𝑀𝜈𝑅,1

; recall from eq.(5.24) that
this implies an upper bound on the mass 𝑀4 of the 𝑈(1)′ gaugino. As noted in Sec. 5.2
we set Y𝜈 = 0, since the small values of the neutrino masses force them to be negligible
for the calculation of the relic density. We also set most of the scalar trilinear couplings
to zero, except the top trilinear coupling 𝑇𝑡 which we use together with tan 𝛽 and 𝑀3 to
keep the SM Higgs mass in the range 125±3 GeV, where the uncertainty is dominated by
the theory error [246]. Since we are interested in superparticle masses in excess of 10 TeV,
the correct value of 𝑀ℎ1 can be obtained with a relatively small value of tan 𝛽, which we
also fix.

As already noted in the previous Section, all relevant interactions of 𝜈𝑅,1 scale (either
linearly or quadratically) with the 𝑈(1)′ gauge coupling 𝑔′. Since our set–up is inspired by
gauge unification, we set this coupling equal to the 𝑈(1)𝑌 coupling in GUT normalization,
i.e.

𝑔′ =

√︂
5

3
𝑔1 . (6.10)

Note also that the charges in Table 1 are normalized such that
∑︀(︀

𝑄′
𝜓

)︀2
=
∑︀(︀

𝑄′
𝜒

)︀2
=

3
5

∑︀
𝑌 2, where the sum runs over a complete 27−dimensional representation of 𝐸6 [138].

We will later comment on how the upper bound on 𝑀𝜈𝑅,1
changes when 𝑔′ is varied.

Recalling that we work in a basis where the matrix m2
�̃�𝐶 is diagonal, with 𝑚2

�̃�𝐶 ,11

being its smallest element, the remaining relevant free parameters are thus:

𝑚2
�̃�𝐶 ,11

, 𝑣𝑠, 𝜆, 𝑇𝜆 and 𝜃𝐸6 . (6.11)
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All these parameters are related to the extended sector that the UMSSM has in addition
to the MSSM. Since the mixing angle 𝜃𝐸6 defines the 𝑈(1)′ gauge group, we want to
determine the upper bound on the mass of the lightest RH sneutrino as a function of 𝜃𝐸6 .
We will see below that this will also allow to derive the absolute upper bound, valid for
all versions of the UMSSM.

From the discussion of the previous Section we know that the first two of the pa-
rameters listed in (6.11) are strongly correlated by the requirement that 𝑀𝜈𝑅,1

is close to
𝑀𝑍′/2. More precisely, the minimal relic density is found if the RH sneutrino mass is very
roughly one ℎ3 decay width below the nominal pole position, the exact distance depending
on the couplings 𝐶1 and 𝐶2; this shift from the pole position is due to the finite kinetic
energy of the sneutrinos at temperatures around the decoupling temperature [199].

The parameters 𝜆 and 𝑇𝜆 have to satisfy some bounds. First, requiring the mass of
the 𝑆𝑈(2)𝐿 higgsinos to be at least 20% larger than 𝑀𝑍′/2 leads to the lower bound

𝜆 > 0.85𝑔′|𝑄′
𝑆| , (6.12)

where we have used eqs.(5.5) and (5.10). Moreover, 𝑇𝜆 has to satisfy the upper bound
(6.8), so that pairs of the heavy 𝑆𝑈(2)𝐿 doublet Higgs bosons can be produced in 𝜈𝑅,1
annihilation with 𝑀𝜈𝑅,1

≃ 𝑀𝑍′/2. Having fixed tan 𝛽 and 𝑇𝜆, the effective final state
coupling 𝐶2 defined in eq.(6.9) depends only on 𝜆, which is constrained by eq.(6.12);
fortunately this still leaves us enough freedom to vary 𝐶2 over a sufficient range.

The bound on the lightest RH sneutrino mass for a given value of 𝜃𝐸6 can then be
obtained as follows. We start by choosing some value of 𝑀ℎ3 ≃ 𝑀𝑍′ in the tens of
TeV range. Note that this fixes the coupling 𝐶1, since we have already fixed 𝑔′ and
𝜃𝐸6 and hence the charge 𝑄′

𝑁𝐶 . We then minimize the relic density for that value of
𝑀ℎ3 by varying the soft–breaking contribution to the sneutrino mass and 𝜆; as noted
in Sec. 3, the minimum is reached when the physical RH sneutrino mass is just slightly
below 𝑀𝑍′/2, and 𝐶2 is close to the initial state coupling 𝐶1 of eq.(6.4). If the resulting
relic density (Ωℎ2)1 is very close to the measured value of eq.(6.1), we have found the
upper bound on 𝑀𝑍′ and hence on 𝑀𝜈𝑅,1

. Otherwise, we change the value of 𝑀ℎ3 by the
factor

√︀
0.12/(Ωℎ2)1, and repeat the procedure. Since the minimal relic density to good

approximation scales like 𝑀2
ℎ3

, see eq.(6.3), this algorithm converges rather quickly.

6.3.2 The 𝑈(1)𝜓 Model

We illustrate our procedure first for 𝑈(1)′ = 𝑈(1)𝜓, where the 𝑈(1)′ charge of the RH
sneutrinos is relatively small (in fact, the same as for all SM (s)fermions). We choose the
SUSY breaking scale to be 18 TeV and we fix tan 𝛽 = 1.0, 𝑀3 = 18 TeV, and m2

Q̃
=

m2
ŨC = m2

D̃C = 2× 108 GeV2 · 1, m2
L̃
= m2

ẼC = 2.25× 108 GeV2 · 1,
(︀
𝑚2
�̃�𝐶

)︀
22

= 2.2× 108

GeV2,
(︀
𝑚2
�̃�𝐶

)︀
33

= 2.3×108 GeV2. To keep 𝑀ℎ1 close to 125 GeV, the top trilinear coupling
took values in the following range 𝑇𝑢,33 = [−55,−33] TeV; recall that the physical squared
sfermion masses also receive𝐷−term contributions, which amount to𝑀2

𝑍′/8 in this model.
In this model the two Higgs doublets have the same 𝑈(1)′ charge, and the product

𝑄′
𝐻𝑢
𝑄′
𝑆 is negative. As a result, the 𝜆2 and the 𝑔′2 terms in the diagonal couplings given

in eqs.(6.5) and (6.6) tend to cancel, while the contribution ∝ 𝑔′2 to the off–diagonal
couplings given in eq.(6.7) vanishes. The contributions involving these off–diagonal cou-
plings are therefore subdominant. The largest contribution usually comes from final states
involving two heavy 𝑆𝑈(2)𝐿 doublet Higgs bosons, but the contributions from two light
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states (including the longitudinal modes of the gauge bosons) are not much smaller. More-
over, due to this cancellation we need relatively large values of 𝜆; the numerical results
shown below have been obtained by varying it in the range from 0.32 to 0.46.

Figure 6.2a depicts the relic abundance of the RH sneutrino as a function of 𝑀𝜈𝑅,1
for

different values of the mass of the singlet Higgs boson. All the curves show a pronounced
minimum when 𝑀𝜈𝑅,1

is very close to but below 𝑀ℎ3/2. The blue and the green curves
are for 𝑣𝑠 = 59 TeV and thus have the same coupling 𝐶1 and (approximately) the same
mass of the singlet Higgs, but the blue curve has a smaller value of 𝐶2. This reduces
the width of ℎ3 as well as the annihilation cross section away from the resonance, and
therefore leads to a narrower minimum.
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Figure (6.2) Relic density as a function of 𝑀𝜈𝑅,1

(left) and its dependence on the ratio
of couplings 𝐶2

𝐶1
(right) for different singlet Higgs masses. The red lines correspond to the

limits on the dark matter abundance obtained by the Planck Collaboration, ΩDMℎ
2 =

0.1188± 0.0010.

In figure 6.2b we show the dependence of the relic density on the ratio of couplings
𝐶2/𝐶1 for fixed mediator masses close to the resonance. This confirms our expectations
from the previous Section: if 𝐶2 is significantly larger than 𝐶1, the relic density increases
with 𝐶2 because the increase of the mediator decay width over–compensates the increased
coupling strength in the total annihilation cross section. If 𝐶2 ≪ 𝐶1 the width of the
mediator is dominated by mediator decays into 𝜈𝑅,1𝜈*𝑅,1; hence increasing 𝐶2 reduces the
relic density because it increases the normalization of the annihilation cross section. Note
that the relic density curve is fairly flat over some range of 𝐶2/𝐶1. Moreover, the optimal
choice of 𝐶2/𝐶1 also depends somewhat on how far 𝑀𝜈𝑅,1

is below 𝑀ℎ3/2. Altogether,
for given 𝑀ℎ3 there is an extended 1−dimensional domain in the (𝑀𝜈𝑅,1

, 𝐶2/𝐶1) plane
over which the relic density is quite close to its absolute minimum. This simplifies our
task of minimization. Note also that we calculate the annihilation cross section only at
tree–level; a change of the predicted relic density that is smaller than a couple of percent
is therefore not really physically significant.

The parameters of the blue curve in Fig. 6.2b in fact are very close to those that
maximize 𝑀𝜈𝑅,1

within the 𝑈(1)𝜓 model, under the assumption that 𝜈𝑅,1 was in thermal
equilibrium in standard cosmology. 𝑀max

𝜈𝑅,1
≃ 11.5 TeV corresponds to an upper bound on

𝑀ℎ3 and 𝑀𝑍′ of about 23.0 TeV. This is clearly beyond the reach of the LHC, and might
even stretch the capabilities of proposed 100 TeV 𝑝𝑝 colliders.
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Recall that all left–handed SM (anti)fermions have the same 𝑈(1)𝜓 charge. As a result,
in the absence of 𝑍 −𝑍 ′ mixing the 𝑍 ′𝑓𝑓 couplings are purely axial vector couplings, for
all SM fermions 𝑓 . 𝑍 ′ exchange can therefore only contribute to spin–dependent WIMP–
nucleon scattering in this model. Since our WIMP candidate doesn’t have any spin, 𝑍 ′

exchange does not contribute at all. Once 𝑍 − 𝑍 ′ mixing is included, 𝑍 exchange con-
tributes a term of order 𝑀𝜈𝑅,1

𝑀𝑁 sin𝛼𝑍𝑍′/𝑀2
𝑍 ∝ 𝑀𝜈𝑅,1

𝑀𝑁/𝑀
2
𝑍′ to the matrix element

for 𝜈𝑅,1𝑁 scattering, while the mixing–induced 𝑍 ′ exchange contribution is suppressed by
another factor 𝑀2

𝑍/𝑀
2
𝑍′ ; here 𝑀𝑁 is the mass of the nucleon. There is also a small con-

tribution from the light SM–like Higgs boson ℎ1, which is very roughly of order 𝑀2
𝑁/𝑀

2
ℎ1

.
As a result the scattering cross section on nucleons is very small, below 10−13 pb for the
scenario that maximizes 𝑀𝜈𝑅,1

. For the given large WIMP mass, this is not only several
orders of magnitude below the current bound, but also well below the background from
coherent neutrino scattering (“neutrino floor”).

6.3.3 The 𝑈(1)𝜂 Model

We now consider a value of 𝜃𝐸6 with a larger 𝑈(1)′ charge of the right–handed neutrino
superfields. This increases the coupling 𝐶1 for given 𝑀𝑍′ , and thus the 𝜈𝑅,1 annihilation
cross section for given masses, which in turn will lead to a weaker upper limit on 𝑀𝜈𝑅,1

from the requirement that the 𝜈𝑅,1 relic density not be too large.
In our analysis we therefore choose the SUSY breaking scale to be 50 TeV and we fix

tan 𝛽 = 2.2, and m2
Q̃
= 1.28× 109 GeV2 · 1,m2

ŨC = 1.45× 109 GeV2 · 1, m2
D̃C = 3.0× 109

GeV2 ·1, m2
L̃
= 3.0×109 GeV2 ·1, m2

ẼC = 1.28×109 GeV2 ·1,
(︀
𝑚2
�̃�𝐶

)︀
22

= −4.0×108 GeV2,(︀
𝑚2
�̃�𝐶

)︀
33

= −3.9×108 GeV2. To keep𝑀ℎ1 close to 125 GeV, the top trilinear coupling took
values in the range 𝑇𝑢,33 = [−130,−114] TeV. In this case the 𝑈(1)′ 𝐷−term contributions
are positive for �̃�, �̃�𝐶 and 𝜈𝑅, but are negative for �̃� and 𝑑𝐶 .
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Figure (6.3) As in Fig. 6.2, but for the 𝑈(1)𝜂 model.

In this model the two Higgs doublets have different 𝑈(1)′ charges; hence there is a
sizable gauge contribution to the off–diagonal couplings of eq.(6.7). The Higgs doublet
charges again have the opposite sign as the charge of 𝑆, leading to cancellations between
the 𝜆2 and 𝑔′2 terms in the diagonal couplings (6.5) and (6.6). This cancellation is par-
ticularly strong for the coupling to two light states, so that for the interesting range of 𝜆
the most important final states involve two heavy 𝑆𝑈(2)𝐿 doublets, although final states
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with one light and one heavy boson are also significant. Partly because of this, and partly
because the coefficients of the 𝑔′2 terms are smaller than in the 𝑈(1)𝜓 model, smaller
values of the coupling 𝜆 are required; the numerical results below have been obtained
with 𝜆 ∈ [0.260, 0.352].

In Fig. 6.3 we again show the dependence of the relic density on the mass of the lightest
RH sneutrino (left) and on the ratio of couplings 𝐶2/𝐶1 (right). The qualitative behavior
is similar to that in the 𝑈(1)𝜓 model depicted in Fig. 6.2, but clearly much larger values
of 𝑀𝜈𝑅,1

are now possible, the absolute upper bound being near 35 TeV (see the blue
curves). The corresponding 𝑍 ′ mass of about 70 TeV is definitely beyond the reach of a
𝑝𝑝 collider operating at

√
𝑠 = 100 TeV

Since 𝑄′
𝑄 = 𝑄′

𝑈𝐶 ̸= 𝑄′
𝐷𝐶 in this model, there is no vector coupling of the 𝑍 ′ to up

quarks, but such a coupling does exist for down quarks. Hence now the 𝑍 ′ exchange
contribution to the matrix element for elastic scattering of 𝜈𝑅,1 on nucleons is comparable
to that of 𝑍 exchange once 𝑍 − 𝑍 ′ mixing has been included, and the ℎ1 exchange
contribution has roughly the same size as in the 𝑈(1)𝜓 model. The total 𝜈𝑅,1𝑁 scattering
cross sections are again below 10−13 pb, for parameters near the upper bound on 𝑀𝜈𝑅,1

.
Since our WIMP candidate is now even heavier than in the 𝑈(1)𝜓 model, this is even
more below the current constraints as well as below the neutrino floor.

6.3.4 The General UMSSM

In this subsection we investigate in more detail how the upper bound on 𝑀𝜈𝑅,1
depends on

𝜃𝐸6 . To this extent we have applied the procedure outlined in subsec. 6.3.1, and applied to
two specific 𝑈(1)′ models in subsecs. 6.3.2 and 6.3.3, to several additional 𝑈(1)′ models,
each with a different value of 𝜃𝐸6 .
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Figure (6.4) The upper limit on 𝑀𝜈𝑅,1
derived from the relic density as a function of

|𝑄′
𝑁𝐶 |. The straight line shows a linear fit to the six numerical results.

The results are shown in Fig. 6.4, where we plot the upper bound on the mass of the
lightest RH sneutrino as a function of the absolute value of the product 𝑔′𝑄′

𝑁𝐶 . In order
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of increasing |𝑄′
𝑁𝐶 |, the six red points correspond to the following choices of 𝜃𝐸6 :
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Note that the first point has a vanishing 𝑈(1)′ charge for the 𝑁𝐶 superfields, i.e. the
resonance enhancement of the annihilation cross section does not work in this case. We
checked that the cross section for elastic 𝜈𝑅,1𝑁 scattering is well below the experimental
bound for all other points.

Evidently the upper bound on 𝑀𝜈𝑅,1
scales essentially linearly with 𝑄′

𝑁𝐶 ; recall that
𝑔′ has been fixed to

√︀
5/3𝑔1 here. This linear dependence can be understood as follows.

The ℎ3𝜈𝑅,1𝜈*𝑅,1 coupling can be written as 𝑔′𝑄′
𝑁𝐶𝑀𝑍′ ≃ 2𝑔′𝑄′

𝑁𝐶𝑀𝜈𝑅,1
. Moreover, we saw

above that the maximal sneutrino mass is allowed if the effective final–state coupling 𝐶2

is similar to 𝐶1; it is therefore also proportional to 𝑄′
𝑁𝐶 . Therefore at the point where

the bound is saturated, the ℎ3 decay width scales like |𝐶1|2/𝑀ℎ3 ∝ 𝑔′2(𝑄′
𝑁𝐶 )

2𝑀𝜈𝑅,1
, where

we have again used that near the resonance all relevant masses are proportional to 𝑀𝜈𝑅,1
.

Note finally that for a narrow resonance – such as ℎ3, for the relevant parameter choices
– the thermal average over the annihilation cross section scales like 1/(𝑀ℎ3Γℎ3) [199].
Altogether we thus have

⟨𝜎𝑣⟩ ∝ |𝐶1𝐶2|2
𝑀ℎ3Γℎ3𝑀

4
𝜈𝑅,1

∝ 𝑔′2(𝑄′
𝑁𝐶 )

2

𝑀2
𝜈𝑅,1

. (6.13)

The linear relation between the upper bound on 𝑀𝜈𝑅,1
and 𝑄′

𝑁𝐶 then follows from the fact
that the thermally averaged annihilation cross section essentially fixes the relic density.

Note that here 𝑄′
𝑁𝐶 always comes with a factor 𝑔′; indeed, for a 𝑈(1) gauge interaction

only the product of gauge coupling and charge is well defined. The linear dependence of the
bound on 𝑀𝜈𝑅,1

on 𝑄′
𝑁𝐶 for fixed 𝑔′ depicted in Fig. 6.4 can therefore also be interpreted

as linear dependence of the bound on the product 𝑔′𝑄′
𝑁𝐶 . A fit to the points in Fig. 6.4

gives:
𝑀max

𝜈𝑅,1
= (0.071 + 113.477𝑔′|𝑄′

𝑁𝐶 |) TeV . (6.14)

This is the central result of this work.
The highest absolute value of |𝑄′

𝑁𝑐| in the UMSSM is about 0.82, which is saturated
for 𝜃𝐸6 = − arctan

[︁
1√
15

]︁
. Using the linear fit of eq.(6.14) and 𝑔′ =

√︀
5/3𝑔1 = 0.47 leads

to an absolute upper bound on 𝑀𝜈𝑅,1
in unifiable versions of the UMSSM of about 43.8

TeV. This corresponds to an absolute upper bound on the 𝑍 ′ mass of about 87.6 TeV.
Finally, we recall from eq.(5.14) that for 𝜃𝐸6 between − arctan

√
15 and 0 one needs

a negative squared soft breaking mass in order to have 𝑀𝜈𝑅,1
≃ 𝑀𝑍′/2. Since the �̂�𝐶

superfields appear in the superpotential (5.3) only multiplied with the tiny couplings Y𝜈 ,
this superpotential will not allow to generate negative squared soft breaking masses for
sneutrinos via renormalization group running starting from positive values at some high
scale. If we insist on positive squared soft breaking mass for all 𝜈𝑅 fields the upper bound
on |𝑄′

𝑁𝐶 | is reduced to
√︀
5/8 ≃ 0.79, in which case the bound on 𝑀𝜈𝑅,1

is reduced to
about 42 TeV. We note, however, that the �̂�𝐶 superfields can have sizable couplings to
some of the exotic color triplets that reside in the 27-dimensional representation [48].
Recalling that at least some of these exotic fermions are usually required for anomaly
cancellation it should not be too difficult to construct a UV complete model that allows

69



negative squared soft breaking terms for (some) 𝜈𝑅 at the SUSY mass scale.

6.4 Prospects for Detection
Clearly spectra near the upper bound presented in the previous subsection are not acces-
sible to searches at the LHC, nor even to a proposed 100 TeV 𝑝𝑝 collider.

As already noted for the 𝑈(1)𝜂 and 𝑈(1)𝜓 models the 𝜈𝑅,1 nucleon scattering cross
section is very small. The very large 𝑍 ′ mass suppresses the 𝑍 ′ exchange contribution; as
we saw in subsec. 5.3 it also suppresses 𝑍−𝑍 ′ mixing, so that the 𝑍 exchange contribution
also scales like 𝑀−2

𝑍′ . The contribution due to the exchange of the singlet–like Higgs boson
(ℎ3 in our analysis) is suppressed by the very large value of 𝑀ℎ3 as well as the tiny ℎ3𝑞𝑞
couplings, which solely result from mixing between singlet and doublet Higgs bosons.
Finally, the contribution from the exchange of the doublet Higgs bosons, in particular of
the 125 GeV state ℎ1, is suppressed by the small size of the ℎ1𝜈𝑅,1𝜈*𝑅,1 coupling, which is
of order 𝑔′𝑣 ≪𝑀𝜈𝑅,1

, as well as the rather small ℎ1𝑞𝑞 couplings, which are much smaller
than gauge couplings. As a result, the 𝜈𝑅,1 nucleon scattering cross section, and hence
the signal rate in direct WIMP detection experiments, is well below the neutrino–induced
background; recall that this “neutrino floor” increases ∝𝑀𝜈𝑅,1

since the WIMP flux, and
hence the event rate for a given cross section, scales ∝ 1/𝑀𝜈𝑅,1

.
The best chance to test these scenarios therefore comes from indirect detection. Naively

one expects the cross section for annihilation from an 𝑆−wave initial state to be essen-
tially independent of temperature, in which case the correct thermal relic density implies
⟨𝜎𝑣⟩ ≃ 2.4 · 10−26 cm3/s ≃ 0.8 pb · c [249,250]. However, as pointed out in [251,252] this
can change significantly in the resonance region; here the thermally averaged annihilation
cross section can be significantly higher in today’s universe than at the time of WIMP
decoupling.

This is illustrated in Fig. 6.5 for the parameter choice that saturates the upper bound
on 𝑀𝜈𝑅,1

in the 𝑈(1)𝜂 model. Here we show the thermally averaged 𝜈𝑅,1𝜈*𝑅,1 annihilation
cross section times relative velocity as function of the scaled inverse temperature 𝑥 =
𝑀𝜈𝑅,1

/𝑇 .3 We see that for a quite extended range of temperatures around the decoupling
temperature, ⟨𝜎𝑣⟩ grows almost linearly with 𝑥. This is because 𝑀𝜈𝑅,1

is only slightly
below the nominally resonant value 𝑀ℎ3/2; by reducing the temperature the fraction of
the velocity distribution that falls within approximately one ℎ3 decay width of the pole
therefore at first increases.

Today’s relic density is essentially inversely proportional to the “annihilation integral”,
defined as [199]

𝐽(𝑥𝐹 ) =

∫︁ ∞

𝑥𝐹

⟨𝜎𝑣⟩
𝑥2

𝑑𝑥 . (6.15)

An annihilation cross section that grows significantly for 𝑥 > 𝑥𝐹 therefore has to be com-
pensated by a smaller value of ⟨𝜎𝑣⟩(𝑥𝐹 ) in order to keep the relic density constant. As a
result, in our scenarios the annihilation cross section at decoupling is actually significantly
smaller than for typical 𝑆−wave annihilation.

Because for parameters that saturate the upper bound on 𝑀𝜈𝑅,1
the right-handed

sneutrino mass is somewhat below 𝑀ℎ3/2, for very large 𝑥, i.e. very small temperature,
3The total 𝜈𝑅,1 annihilation rate also receives a contribution from 𝜈𝑅,1𝜈𝑅,1 → 𝜈𝜈 annihilation via neu-

tralino exchange in the 𝑡− and 𝑢−channels. However, since this contribution is not resonantly enhanced,
it can safely be neglected.
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Figure (6.5) Thermally averaged cross section as a function of the scaled inverse temper-
ature 𝑥 ≡𝑀𝜈𝑅,1

/𝑇 for the parameters of the 𝑈(1)𝜂 model that saturate the upper bound
on the sneutrino mass. Nominal decoupling occurs at 𝑥 = 𝑥𝐹 = 27.2, whereas in today’s
galaxies 𝑥 ∼ 106.

the thermally averaged annihilation cross section starts to decrease again. However, for
the parameters of Fig. 6.5 it asymptotes to a value that is still about three times larger
than the “canonical” thermal WIMP annihilating from an 𝑆−wave initial state. As shown
in refs. [251, 252] this enhancement factor strongly depends on 2𝑀𝜈𝑅,1

−𝑀ℎ3 ; it can be
even larger for slightly smaller sneutrino masses that are even closer to 𝑀ℎ3/2.

The WIMP annihilation rate in today’s universe scales like the square of the WIMP
number density. This means that the flux of annihilation products scales like 1/𝑀2

𝜈𝑅,1
;

for parameters (nearly) saturating our upper bound on the sneutrino mass it is thus too
small to be detectable by space–based observatories like FermiLAT [253], simply because
of their small size. Recall also that our sneutrinos annihilate into (longitudinal) gauge or
Higgs bosons, and thus mostly into multi–hadron final states. This leads to a continuous
photon spectrum which, for parameters near the upper bound on the sneutrino mass,
extends well into the TeV region. Photons of this energy can be detected by Cherenkov
telescopes on the ground, via their air showers. Note also that the astrophysical cosmic
ray background drops even faster than 𝐸−2 with increasing energy 𝐸 of the cosmic rays;
the signal to background ratio therefore actually improves with increasing WIMP mass.
Indeed, simulations show that at least for a favorable distribution of dark matter particles
near the center of our galaxy, the continuum photon flux of multi–TeV WIMPs annihi-
lating with the canonical thermal cross section should be detectable by the Cherenkov
Telescope Array [254].

6.5 Partial conclusions
We found that even within minimal cosmology, and fixing the 𝑈(1)′ gauge strength to

be equal to that of the hypercharge interaction of the (MS)SM (in GUT normalization),
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𝜈𝑅,1 masses of tens of TeV are possible. For given 𝑈(1)′ charges the bound on 𝑀𝜈𝑅,1
is

saturated if 𝜈𝑅,1 can annihilate resonantly through the exchange of both the new 𝑍 ′ gauge
boson and of the new Higgs boson ℎ3 associated with the spontaneous breaking of 𝑈(1)′;
note that 𝑀𝑍′ ≃𝑀ℎ3 automatically in this model. Scalar ℎ3 exchange is more important
since 𝑍 ′ exchange can only occur from a 𝑃−wave initial state. The ℎ3𝜈𝑅,1𝜈*𝑅,1 coupling
is fixed by the 𝑈(1)′ charge 𝑄′

𝑁𝐶 of the right–handed neutrinos, but the ℎ3 couplings to
the relevant final states, involving 𝑆𝑈(2)𝐿 doublet Higgs bosons as well as longitudinal
𝑊 and 𝑍 bosons, can be tuned independently, allowing a further maximization of the
annihilation cross section. In our analysis we used 𝑆𝑈(2)𝐿 doublet Higgs bosons as well
as longitudinal 𝑊 and 𝑍 bosons as final states. While the light 𝑆𝑈(2) doublet Higgs
states, including the longitudinal 𝑊 and 𝑍 modes, are always accessible, we could have
replaced the heavy Higgs doublet in the final state by some exotic fermions which in most
cases are required to cancel anomalies. The only requirement is that the effective final
state coupling of ℎ3 should be tunable to values close to its coupling to 𝜈𝑅,1. Since the
𝑍 ′ exchange contribution is basically fixed by 𝜃𝐸6 , and non–resonant contributions are
negligible for 𝑀𝜈𝑅,1

∼ 𝑀𝑍′/2, most of the many free parameters of this model, which
describe the sfermion and gaugino sectors, are essentially irrelevant to us. The only
requirement is that these superparticles are sufficiently heavy to avoid co–annihilation,
which would increase the relic density in our case.
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Chapter 7

Conclusions

In this thesis we have studied many open questions related to new physics that goes
beyond the SM. We covered the following topics: topologically massive mediators and
spin-dependent potentials, dark matter thermal production in the early Universe and
supersymmetric extensions of the SM. Our work was firstly dedicated in finding modifi-
cations of the inverse square law possibly related to the existence of a fifth fundamental
force and secondly in studying theoretically well-motivated extensions of the SM that are
able to solve most of its open issues where we focused on the dark matter problem. Here
we give a deeper summary of the main contributions of this thesis.

Part I: Interparticle Potentials
In the first part of this thesis we discussed how macroscopic scalar potentials can be

obtained by microscopic interactions between fermionic sources and spin-1 bosons in the
limit of low momentum transfer. We calculated the potentials with different classes of
couplings for two cases: the well-known Proca case where the mediator obtain its mass
via an explicit breaking of the gauge symmetry and the {𝐴𝜇, 𝐵𝜈𝜅}-system where a 2-rank
tensor and a 4-vector are connected via a topological coupling in such a way that can
describe an on-shell massive spin-1 particle that acquires mass without breaking the 𝑈(1)
gauge symmetry that governs the electromagnetic interactions.

The calculation we have performed is based on the quantum field-theoretical scattering
amplitude in the non-relativistic limit, and the potential obtained - which can be inter-
preted as an operator - is also suitable to be introduced in the Schrödinger equation as
a time-independent perturbation to the full Hamiltonian. This is a reasonable approach
if these corrections are relatively small, which is to be expected, given that the standard
quantum mechanical/QED results are in good agreement with experiments.

At last, but not less interesting, one can note that it is possible to assign certain 𝐶𝑃 -
transformation properties to the fields 𝐴𝜇 and 𝐵𝜇𝜈 so that the topological mass term in
eq. (3.1) violates 𝐶𝑃 . This would induce an electric dipole moment (EDM) if we couple
our model to fermionic fields. Following the procedure employed by Mantry et al [67]
in the context of axions, one could also use information from the EDM to find further
bounds on the coupling constants and the mass of the intermediate spin-1 boson.
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Part II: Supersymmetric Dark Matter
In Part II, after reviewing the theoretical framework of SUSY and explaining how

both supersymmetric and non-supersymmetric extensions of the SM can be phenomeno-
logically explored in great details using SARAH [208–213], we studied the dark matter
phenomenology of the Standard Model singlet (“right-handed”) sneutrino 𝜈𝑅 in a class of
𝑈(1)′ extensions of the Minimal Supersymmetric Standard Model (UMSSM) that origi-
nate from the breaking of the 𝐸6 gauge group.

We found that the final upper bound on𝑀𝜈𝑅,1
is essentially proportional to the product

𝑔′|𝑄′
𝑁𝐶 |, where 𝑔′ is the 𝑈(1)′ gauge coupling. Within the context of theories unifiable into

𝐸6 this leads to an absolute upper bound on 𝑀𝜈𝑅,1
of about 43.8 TeV. This is the highest

mass of a good thermal dark matter candidate in standard cosmology that has so far
been found in an explicit model. Hence, our central result show that supersymmetry can
provide a viable thermal dark matter candidate within standard cosmology with masses
of the order of tens of TeV without needing to have co-annihilation with the NLSP. In
other words, in this fairly well motivated set–up we can find a thermal WIMP candidate
with mass less than a factor of three below the bound derived from unitarity [194]. This is
to be contrasted with an upper bound on the mass of a neutralino WIMP in the MSSM of
about 8 TeV for unsuppressed co–annihilation with gluinos [204]. In a rather more exotic
model featuring a WIMP residing in the quintuplet representation of 𝑆𝑈(2) a WIMP
mass of up to 9.6 TeV is allowed [198].

Of course, this mechanism requires some amount of finetuning: the mass of the WIMP
needs to be just below half the mass of the 𝑠−channel mediator. We find that typically
the predicted WIMP relic density increases by a factor of 2 when the WIMP mass is
reduced by between 1 and 3% from its optimal value. In contrast, the recent proposal to
allow thermal WIMP masses near 100 TeV via non–perturbative co–annihilation requires
finetuning to less than 1 part in 105 [205].

We also note that our very heavy WIMP candidates have very small scattering cross
sections on nuclei, at least two orders of magnitude below the neutrino floor. This shows
that both collider searches and direct WIMP searches are still quite far away from de-
cisively probing this reasonably well motivated WIMP candidate. On the other hand,
we argued that indirect signals for WIMP annihilation might be detectable by future
Cherenkov telescopes. Our analysis thus motivates extending the search for a continuous
spectrum of photons from WIMP annihilation into the multi–TeV range.

While the result (6.14) has been derived within UMSSM models that can emerge as
the low–energy limit of 𝐸6 Grand Unification, it should hold much more generally. To
that end 𝑔′|𝑄′

𝑁𝐶 | should be replaced by 𝑔𝜒𝜒𝜑/𝑚𝜑, where 𝜒 is a complex scalar WIMP
annihilating through the near resonant exchange of the real scalar 𝜑, 𝑔𝜒𝜒𝜑 being the
(dimensionful) 𝜒𝜒*𝜑 coupling. In order to saturate our bound the couplings of 𝜑 to the
relevant final states should be tunable such that the effective final state coupling, which
we called 𝐶2 in Sec. 6.2, should be comparable to the initial–state coupling 𝑔𝜒𝜒𝜑. In this
case the algorithm we used to find the upper limit on 𝑀𝜈𝑅,1

, see subsec. 6.3.1, can directly
be applied to finding the upper bound on 𝑀𝜒. We finally note that 𝑀𝜒 can be increased
by another factor of

√
2 if 𝜒 is a real scalar.

In this work we also predicted the existence of a new massive gauge boson 𝑍 ′ whose
mass is in agreement with the lower limits obtained by the ATLAS searches for 𝑍 ′ signals
based on the analysis of dielectron and dimuon final states [248]. Collider searches for
heavy 𝑍 ′ bosons have become very popular because they focus on the possible appearance
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of narrow dilepton resonances. Additionally, Ref. [255] shows that 𝑈(1)′ extensions of the
MSSM can also provide solutions to the 𝑅𝐾 and 𝑅𝐾* anomalies that appear in rare decays
of B meson [256, 257], which are strongly deviated from the SM predictions and cannot
be explained by the MSSM.
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Appendix A

Currents in the non-relativistic
approximation

In the following we present a brief summary of the conventions and main decomposi-
tions employed in the calculations carried out in the previous Sections.

A.1 Basic conventions
The basic spinors used to compose the scattering amplitude are the positive energy

solutions to the Dirac equation in momentum space [68], namely

𝑢(𝑝) =

(︂
𝜉

�⃗�·𝑝
2𝑚
𝜉

)︂
(A.1)

where 𝜉 =

(︂
1
0

)︂
or 𝜉 =

(︂
0
1

)︂
for spin-up and -down, respectively. Above we have

assumed the non-relativistic limit 𝐸 +𝑚 ≈ 2𝑚. The orthonormality relation 𝜉′†𝑟 𝜉𝑠 = 𝛿𝑟𝑠
is supposed to hold and we will usually suppress spinor indices.

The gamma matrices are chosen as

𝛾0 =

(︂
1 0
0 −1

)︂
and 𝛾𝑖 =

(︂
0 𝜎𝑖

−𝜎𝑖 0

)︂
, (A.2)

and the metric and Levi-Civita symbol are defined so that 𝜂𝜇𝜈 = diag(+,−,−,−) and
𝜖0123 = +1, respectively. We adopt natural units ~ = 𝑐 = 1 throughout.

A.2 Current decompositions
In order to calculate the spin-dependent potentials, it is useful to have the non-

relativistic limit of the source currents, where we assume

1) |𝑝|2/𝑚2 ∼ 𝒪 (𝑣2) → 0

2) Small momentum transfer: |�⃗�|2/𝑚2 → 0

3) The cross product tends to zero if |𝑝|/𝑚 and |�⃗�|/𝑚 are small. Energy-momentum
conservation implies 𝑝 · �⃗� = 0
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Here, we show the results of the main fermionic currents. We adopt the parametriza-
tion for the first current (i.e., first vertex), following Fig. (3.1). We denote the generators
of the boosts and rotations by

Σ𝜇𝜈 ≡ − 𝑖

4
[𝛾𝜇, 𝛾𝜈 ] , (A.3)

and ⟨𝜎𝑖⟩ ≡ 𝜉′† 𝜎𝑖 𝜉. In the Dirac representation, 𝛾5 is given by

𝛾5 =

(︂
0 1
1 0

)︂
. (A.4)

Making use of the Dirac spinor conjugate, �̄� ≡ 𝑢†𝛾0, we have the following set of
identities, omitting the coupling constants:

1) Scalar current (𝑆):
�̄�(𝑝+ 𝑞/2)𝑢(𝑝− 𝑞/2) ≈ 𝛿 . (A.5)

2) Pseudo-scalar current (𝑃𝑆):

�̄�(𝑝+ 𝑞/2) 𝑖𝛾5 𝑢(𝑝− 𝑞/2) = − 𝑖

2𝑚
�⃗� · ⟨�⃗�⟩ (A.6)

3) Vector current (𝑉 ):
�̄�(𝑝+ 𝑞/2) 𝛾𝜇 𝑢(𝑝− 𝑞/2), (A.7)

3i) For 𝜇 = 0,

�̄�(𝑝+ 𝑞/2) 𝛾0 𝑢(𝑝− 𝑞/2) ≈ 𝛿 (A.8)

3ii) For 𝜇 = 𝑖,

�̄�(𝑝+ 𝑞/2) 𝛾𝑖 𝑢(𝑝− 𝑞/2) =
𝑝𝑖
𝑚
𝛿 − 𝑖

2𝑚
𝜖𝑖𝑗𝑘 �⃗�𝑗 ⟨𝜎𝑘⟩ (A.9)

4) Pseudo-vector current (𝑃𝑉 ):

�̄�(𝑝+ 𝑞/2)𝛾𝜇𝛾5𝑢(𝑝− 𝑞/2) (A.10)

4i) For 𝜇 = 0,

�̄�(𝑝+ 𝑞/2) 𝛾0 𝛾5 𝑢(𝑝− 𝑞/2) =
1

𝑚
⟨�⃗�⟩ · 𝑝 (A.11)

4ii) For 𝜇 = 𝑖,
�̄�(𝑝+ 𝑞/2) 𝛾𝑖 𝛾5 𝑢(𝑝− 𝑞/2) ≈ ⟨𝜎𝑖⟩ (A.12)

5) Tensor current (𝑇 ):
�̄�(𝑝+ 𝑞/2)Σ𝜇𝜈 𝑢(𝑝− 𝑞/2) (A.13)

5i) For 𝜇 = 0 and 𝜈 = 𝑖 ,

�̄�(𝑝+ 𝑞/2)Σ0𝑖 𝑢(𝑝− 𝑞/2) =
1

2𝑚
𝜖𝑖𝑗𝑘 𝑝𝑗 ⟨𝜎𝑘⟩+

𝑖

4𝑚
𝛿 �⃗�𝑖 (A.14)
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5ii) For 𝜇 = 𝑖 and 𝜈 = 𝑗 ,

�̄�(𝑝+ 𝑞/2)Σ𝑖𝑗 𝑢(𝑝− 𝑞/2) ≈ −1

2
𝜖𝑖𝑗𝑘⟨𝜎𝑘⟩ (A.15)

6) Pseudo-tensor current (𝑃𝑇 ):

�̄�(𝑝+ 𝑞/2) 𝑖Σ𝜇𝜈 𝛾5 𝑢(𝑝− 𝑞/2) (A.16)

6i) For 𝜇 = 0 and 𝜈 = 𝑖,

�̄�(𝑝+ 𝑞/2) 𝑖Σ0𝑖 𝛾5 𝑢(𝑝− 𝑞/2) ≈ 1

2
⟨𝜎𝑖⟩ (A.17)

6ii) For 𝜇 = 𝑖 and 𝜈 = 𝑗

�̄�(𝑝+ 𝑞/2) 𝑖Σ𝑖𝑗 𝛾5 𝑢(𝑝− 𝑞/2) =
1

2𝑚
(𝑝𝑖⟨𝜎𝑗⟩ − 𝑝𝑗⟨𝜎𝑖⟩) + (A.18)

+
𝑖

4𝑚
𝛿 𝜖𝑖𝑗𝑘 �⃗�𝑘

In the manipulations above, we have kept the 𝑟𝑠 indices implicit in the 𝛿𝑟𝑠, as adopted
in the main text, pointing out only the particle label. Due to momentum conservation
and our choice of reference frame (CM), the second current (or second vertex) can be
obtained by performing the changes 𝑞 → −𝑞 and 𝑝→ −𝑝 in the first one.
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Appendix B

Spin operators

The spin operators satisfy the following algebra:(︀
𝑃 1
𝑏 + 𝑃 1

𝑒

)︀
𝜇𝜈, 𝜌𝜎

=
1

2
(𝜂𝜇𝜌𝜂𝜈𝜎 − 𝜂𝜇𝜎𝜂𝜈𝜌) ≡ 1𝑎.𝑠.𝜇𝜈, 𝜌𝜎 (B.1)

(︀
𝑃 1
𝑏

)︀
𝜇𝜈, 𝛼𝛽

(︀
𝑃 1
𝑏

)︀𝛼𝛽
, 𝜌𝜎

=
(︀
𝑃 1
𝑏

)︀
𝜇𝜈, 𝜌𝜎

(B.2)

(︀
𝑃 1
𝑒

)︀
𝜇𝜈, 𝛼𝛽

(︀
𝑃 1
𝑒

)︀𝛼𝛽
, 𝜌𝜎

=
(︀
𝑃 1
𝑒

)︀
𝜇𝜈, 𝜌𝜎

(B.3)

(︀
𝑃 1
𝑏

)︀
𝜇𝜈, 𝛼𝛽

(︀
𝑃 1
𝑒

)︀𝛼𝛽
, 𝜌𝜎

= 0 (B.4)

(︀
𝑃 1
𝑒

)︀
𝜇𝜈, 𝛼𝛽

(︀
𝑃 1
𝑏

)︀𝛼𝛽
, 𝜌𝜎

= 0. (B.5)

We notice that the mixing term between 𝐴𝜇 and 𝐵𝜇𝜈 introduces a new operator,
𝑆𝜇𝜈𝜅 ≡ 𝜖𝜇𝜈𝜅𝜆 𝜕

𝜆, which is not a projector, since

𝜖𝜇𝜈𝛼𝛽 𝐴𝜇𝜕𝜈𝐵𝛼𝛽 =
1

2

[︀
𝐴𝜇 𝑆𝜇𝜅𝜆𝐵

𝜅𝜆 −𝐵𝜅𝜆 𝑆𝜅𝜆𝜇𝐴
𝜇
]︀
, (B.6)

so that we need to study the algebra of 𝑆𝜇𝜈𝜅 with the projectors (3.20) and (3.21), giving
us

𝑆𝜇𝜈𝛼𝑆
𝛼𝜅𝜆 = −22

(︀
𝑃 1
𝑏

)︀ 𝜅𝜆

𝜇𝜈,
(B.7)

(︀
𝑃 1
𝑏

)︀
𝜇𝜈, 𝛼𝛽

𝑆𝛼𝛽𝜅 = 𝑆 𝜅
𝜇𝜈 (B.8)

𝑆𝜅𝛼𝛽
(︀
𝑃 1
𝑏

)︀ 𝜇𝜈

𝛼𝛽,
= 𝑆𝜅𝜇𝜈 (B.9)

(︀
𝑃 1
𝑒

)︀
𝜇𝜈, 𝛼𝛽

𝑆𝛼𝛽𝜅 = 0 (B.10)

𝑆𝜅 𝛼𝛽
(︀
𝑃 1
𝑒

)︀𝛼𝛽, 𝜇𝜈
= 0 (B.11)

𝑆𝜇𝛼𝛽𝑆
𝛼𝛽
𝜈 = −22𝜃𝜇𝜈 . (B.12)
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The possibility to obtain a closed algebra is not only desirable, but very important, in
order to complete the inversion of the matrix in eq. (3.23).
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