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Abstract

In this work we employed Integral Representations to calculate the semiclassical evolution of co-
herent states using both Wigner functions and wavefunctions. In phase space, the propagator used
was the Final Value Representation for Wigner evolution, which was put to the test for the first time
and shown to successfully reproduce the intricate quantum evolution of the Wigner function of a
coherent state in the homogeneous Kerr system – an integrable system that is exact both quantum
and classical mechanically. For the semiclassical evolution of wavefunctions we used the Herman-Kluk
propagator, analyzing both the Kerr system and a new softly chaotic planar map that we called the
“coserf system”, which is also exactly solvable in both the quantum and the classical regimes. After
attesting for the accuracy of the Herman-Kluk propagator, we devised a procedure to obtain effective
regular trajectories from the Baker-Hausdorff-Campbell series, capable of erasing the chaotic orbits
in any planar hamiltonian map and replace them by regular ones. We then evolved a coherent state
using two distinct HK propagators: One using the coserf system’s true chaotic trajectories, and the
other the effective regular ones. The results show that the quantum propagation of a coherent state
in a chaotic system can be semiclassically reproduced without any reference to chaos, and its erasing
produces a better and longer-lasting approximation.
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Resumo

Neste trabalho empregamos Representações Integrais para o cálculo da evolução semiclássica de
estados coerentes utilizando tanto funções de Wigner quanto funções de onda. No espaço de fase o
propagador escolhido foi a Representação de Valor Final para a evolução da função de Wigner, demon-
stradamente capaz de reproduzir a intricada evolução quântica da função de Wigner de um estado
coerente sob a ação do hamiltoniano de Kerr homogêneo – um sistema integrável que é exatamente
solúvel tanto classicamente quanto quanticamente. Para a evolução semiclássica de funções de onda
foi utilizado o propagador de Herman-Kluk, empregando como modelos tanto o hamiltoniano de Kerr
quanto um mapa planar caótico e exatamente quantizável, apelidado de “mapa coserf”. Atestada a
precisão do propagador de Herman-Kluk, demos continuidade ao trabalho criando um procedimento
para definir trajetórias regulares efetivas a partir de séries de Baker-Hausdorff-Campbell, capazes de
substituir as órbitas caóticas de um mapa hamiltoniano no plano por órbitas regulares. Finalmente,
comparamos a evolução de estados coerentes para o mapa coserf usando dois propagadores de Herman-
Kluk distintos: Um baseado nas trajetórias verdadeiras do mapa (caóticas), e outra nas trajetórias
efetivas (regulares). A comparação com a propagação quântica exata mostra que não só a evolução
quântica de um sistema classicamente caótico pode ser reproduzida sem menção a caos, como seu
abandono provê uma aproximação de qualidade superior.
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Sabbe sattā bhavantu sukhitattā
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Dukkham eva hi, na koci dukkhito,
kārako na, kiriyā va vijjati,
atthi nibbuti, na nibbuto pumā,
maggam atthi, gamako na vijjati.

For suffering is, but no sufferer,
not the doer, but certainly the deed is found,
peace is, but not the appeased one,
the way is, but the walker is not found.

Visuddhimagga XVI 90, Bhadantācariya Buddhaghosa
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Chapter 0
Introduction

It takes a lifetime to learn the shakuhachi flute: The
earlier you start, the longer it takes.

Zen saying

Non-relativistic classical mechanics, the first theory to emerge in full form within physics, is respon-
sible for the description of our everyday life: “large” objects, “small” speeds, “low” energies. Evidently,
for a long time no one knew these limitations existed, and classical mechanics was believed to be om-
nipotent until a series of experiments performed in the beginning of the XX century evinced that, in
the end, nature was larger than everyday life. As a consequence, theories that deal with large speeds,
small objects, and high energies had to be developed in order to explain a rapidly increasing set of
mysterious experimental data.

Every physical theory directly depends on experimental parameters upon which it is tuned in
order to agree with measurements. In this dissertation, the only parameter we care about is Planck’s
constant h, which allows us to define what we mean by microscopic and macroscopic. We do not
consider relativistic effects, curved space-times, quantum field theories or dark matter. Worse yet, we
deal only with the specific set of hamiltonian systems, which is well-behaved when compared to the
general case. In a way, it can be said that we deal with the simplest possible systems nature has to
offer, especially because we specialize even more and treat exclusively the case of a single degree of
freedom. Why so much simplification? Well, it turns out nature is complicated. These simple systems
are already astonishingly rich in intricate phenomena that, to this day, have not fallen prey to rigorous
mathematical descriptions and remain elusive to intuition.

0.1 A brief historical account

Planck’s constant h, the experimental parameter that defines the limit between classical and quantum,
has dimensions of angular momentum, energy×time, or action: Large actions are classical, while small
actions are quantum. Evidently, “small” and “large”must be defined with respect to h or, more often,
its reduced form ~ = h/2π. This reduced Planck’s constant was shown by Bohr to quantize the angular
momentum of the electron in the hydrogen atom, giving us an idea of how tiny it is: The electron
orbiting the simplest atom in nature has an angular momentum of ~ in its ground state. Even slightly
larger atoms than hydrogen can have electrons with angular momenta of several ~s [Mil01].

Due to the smallness1 of ~, it didn’t take long for methods relying on large actions to be developed:
Not even 3 years after Schrödinger’s equation was introduced, van Vleck published his famous paper
introducing asymptotic solutions, later called semiclassical approximations, in quantum mechanics

1This is an often misinterpreted point: There is no “small” ~ limit – ~ is a constant! Semiclassical mechanics is not
the result of a limit taken over ~, but on the actions (even though the net effect is the same). The connection between
classical and quantum mechanics should be exact not when ~ = 0, but when the classical action is infinite – therefore, it
should never be exact. It is not possible to recover classical mechanics from quantum mechanics exactly, because ~ is not
zero, inasmuch as the classical action is not infinite. What happens, of course, is that quantum effects become muffled
as the classical action increases until the system can be considered effectively classical.

1



[Vle28]. One of the main theoretical values of these approximations is that they provide a direct
link between the theory of matter waves (quantum mechanics) and the theory of phase-space waves
(Hamilton-Jacobi theory). The superposition of states in quantum mechanics could then be mapped
into the superposition of branches of classical generating functions, a subject most physicists in the
1920s mastered, as classical mechanics was basically the whole of physics at that time.

Since ~ is a very small quantity, semiclassical mechanics appears very promising. The simplest
semiclassical rendering of quantum phenomena, namely the mapping between quantum numbers and
the invariant tori in integrable systems, was considered by Einstein before Schrödinger’s equation was
even discovered, where as usual Einstein went several decades ahead of his time by identifying the
problem of quantizing chaos [AD05]. Time-dependent phenomena, on the other hand, were not really
explored until the second half of the XXth century, since obtaining the classical trajectories employed
in semiclassical propagation can only be done by hand for very simple systems. With the advent of
computers, however, what was earlier of only theoretical value started to be effectively applied for
practical calculations, shedding light on two problems: First, Einstein’s insight was rediscovered and
the problem of the semiclassical quantization of chaotic systems could no longer be ignored; And
second, that van Vleck’s method is simply too cumbersome to be applied to most non-trivial systems.

Regarding the first problem above, we note that Planck’s constant does not only define a size-
scale, but is also responsible for filtering dynamical complexity. Since Schödinger’s equation is linear,
but Hamilton’s equations are generally non-linear, classical dynamics happens to be much more com-
plicated than its quantum correspondent due to the presence of chaos – Somehow, nature demands
chaos to be washed out when transitioning from large to small systems. As semiclassical methods
use classical trajectories to reproduce quantum behavior, it was unlikely that they could work for
the case of classically chaotic evolution, since the quantum end result would somehow have to turn
classical chaos into quantum integrability. The second problem has to do with looking for classical
trajectories: The short-time propagator devised by van Vleck, later generalized for longer times by
Gutzwiller [Lit91], is expressed as a sum over classical trajectories that fulfill specific boundary con-
ditions. Linear systems have only a single trajectory obeying these conditions, but non-linearities
introduce the need to numerically look for and select the trajectories entering the semiclassical sum –
the more trajectories included, the better. As if this numerical root-search were not enough, the final
propagator constantly diverges when traversing over trajectories that are near their classical turning
points, requiring algorithms specifically aimed at avoiding these infinities. Despite these difficulties,
the semiclassical propagator was successfully applied to the stadium billiard in the early 1990s, and it
was shown that not only the semiclassical calculations were astonishingly accurate, but that the in-
trinsic chaotic nature of the underlying classical trajectories was no impeditive in applying the method
[TH91]. Adding to that, the semiclassical solution remained accurate for at least 4 times the previously
theorized threshold, employing classical trajectories densily packed in phase-space regions with areas
smaller than h.

A significant revival of the field followed2 , with chemists using semiclassical propagation to model
classically chaotic reactions (e.g. [CB92, SH94, Gro96, SJ99, CB97]) and upper-bounds for accuracy be-
ing casually broken [STH92, TGU95, Mai00]. Many applications of semiclassical propagation were only
possible due to the problems with implementing the van Vleck-Gutzwiller propagator being bypassed
by employing the Integral Representations proposed in the 1970s, in which the sum over trajectories
was transformed into an integral over positions and momenta [Mil70]. Adding to their implementation
ease, the integral representations did not diverge at classical turning points – A huge advantage. The
Herman-Kluk (HK) propagator, a particular integral representation linked to coherent-state represen-
tations [HK84], quickly became the tool of choice of most chemists. Despite the [apparent] lack of a
rigorous exposition, the HK propagator has endured the test of time: More than 30 years after its
introduction, it is still the dominant integral representation in both chemistry and physics. However,
it is rather unfortunate that there are almost no studies comparing it with exactly solvable quantum
systems, its success being based on error estimates and autocorrelations that provide little intuition
due to the processes modeled being too complicated. As the HK propagator is not exactly solvable

2For a very good review of what was happening in the field of semiclassical methods in the 1990s, see the presentation
by Voros in [Vor96]. It does not look like any of the problems enumerated by him was really solved by now.
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even for the simple harmonic oscillator (while each and every other semiclassical propagator is), it
does not really make comparisons easier.

Both the van Vleck-Gutzwiller and Herman-Kluk propagators result in a kernel used to evolve
wavefunctions, which have no classical interpretation. Since there is genuine interest in transitioning
between classical and quantum regimes, it would be nice to have a description in terms of something
classical and quantum mechanics have in common: phase space. The Wigner function has become an
important tool in several areas of physics (e.g. quantum optics and resonant-cavity quantum electro-
dynamics [LD97, LGWR12, DEW+13, Git07]), and has the nice property of possessing a well-defined
classical limit: Here, the fundamental characteristics of quantum mechanics are completely erased and
we recover purely classical propagation (still as a function of ~, of course).

Although semiclassical propagators for the Wigner function have been around for decades, only
recently were Integral Representations for Wigner evolution developed [dAI14]. Without any mention-
ing to wavefunctions, the semiclassical phase-space propagators depend only on density operators and
are supposedly rigged for application to both closed and open quantum systems – at least in theory,
because the latter have not yet been tested.

0.2 The problems considered

In this dissertation, we used the propagation of coherent states as a tool to understand the connections
and contrasts between time-dependent phenomena in the quantum and classical worlds. By employ-
ing both integrable and chaotic systems, we performed direct tests of Integral Representations and
established a previously unknown role played by regular orbits in semiclassical evolution. The work
performed here can be divided into three stages:

1. Implementing the Final Value Representation (FVR) of Ozorio de Almeida et al [dAVZ13] for
the semiclassical propagation of the Wigner function of coherent states in the homogeneous Kerr
system, which is an integrable 4th order system having the remarkable property of being exactly
solvable both classical and quantum mechanically;

2. Testing the Herman-Kluk propagator for the same problem as above, then expanding the tests
to the coserf map, which is an exactly quantizable chaotic map that we devised in order to have
a planar toy model for which trajectories did not diverge;

3. Creating and implementing an algorithm to erase the coserf system’s chaotic orbits and replace
them by regular ones, and then use the Herman-Kluk propagator to semiclassically evolve co-
herent states employing either the chaotic or regular trajectories, comparing the approximations
to the exact quantum result.

The objective of item 1. is quite clear: We wanted to test a new propagator and see if it worked. The
Kerr system, which we used for tests, is an especially interesting testbed due to its quantum evolution
presenting an intricate structure of fractional revival patterns that should be hard to reproduce semi-
classically. For 2., what we aimed for was at the same time a comparison between the HK propagator
and the FVR and, later, the semiclassical description of a new softly chaotic system on the plane. For
3., it can be said that we had our eyes on a larger prey, namely that we wanted to see how fundamental
was classical chaos for quantum propagation: If quantum mechanics is already linear, why not filter
chaos since the beginning by substituting it by regularity?

0.3 Outline of results

A brief appetizer of what we concluded from our investigations follows.

1. The FVR was capable of semiclassically reproducing the Kerr system’s quantum evolution for
essentially all time values, achieving a striking accuracy even for fractional revival patterns such
as the Schödinger’s cat. The classical evolution for these patterns does not resemble in any way
what is seen in the quantum system, and an explanation is provided in terms of interferences
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of classical trajectories. Despite the FVR’s success, classical vestiges can still be spotted in the
semiclassical Wigner function, but these do not spoil measurable objects obtained from it.

2. The Herman-Kluk propagator was remarkably accurate and reproduced the quantum Kerr sys-
tem flawlessly. Besides, since the Kerr system is closed, there is no specific need to use a
phase-space method to analyze it and the HK propagator was much faster to calculate than the
FVR. Due to these reasons, we applied it to the coserf system, where it proved to be incredibly
accurate even when the initial coherent state was placed in a large chaotic sea.

3. The erasing of classical chaos improved the quality of semiclassical approximations and showed
that, apparently, quantum propagation is not only blind to classical chaos, but fares better
without it.

These results can be found in the following papers3:

1. G. M. Lando, R. O. Vallejos, G.-L. Ingold and A. M. Ozorio de Almeida, Quantum revival
patterns from classical phase-space trajectories, arXiv:1809.04139, 2018;

2. G. M. Lando and A. M. Ozorio de Almeida, Semiclassical evolution in phase space for a softly
chaotic system, arXiv:1907.06298, 2019;

3. G. M. Lando and A. M. Ozorio de Almeida, Quantum-chaotic evolution reproduced from effective
integrable trajectories, arXiv:1909.02600, 2019.

The results from item 1. compose the whole of Chapter 6, while Chapter 7 is devoted to items
2. and 3..

0.4 How this dissertation is organized4

Classical mechanics is used extensively in this dissertation, and it is rather unfortunate that there are
very few references on lagrangian submanifolds, generating functions and product manifolds outside
mathematical literature. I then chose to dedicate Chapter 1, which is a little more mathematical
than the others, to a self-contained presentation of the classical machinery needed in the following
chapters. I also rely heavily on numerical methods in classical mechanics, especially on the subject
of splitting symplectic integrators, to which I dedicate most of Chapter 2, where these integrators are
also shown to be equivalent to the discrete mappings obtained from periodically kicked hamiltonians
and associated to continuous systems build from effective hamiltonian functions.

Since “the formalism of quantum mechanics has become more familiar to physicists than the more
elementary structure of classical mechanics” [dA98], standard quantum theory is enumerated very
briefly in Chapter 3, as our objective is to arrive quickly at semiclassical methods and the Weyl-
Wigner representations. A much more detailed discussion on quantum mechanics is provided in an
appendix, such that the flow of ideas in the main body is [hopefully] not disturbed. The rest of
Chapter 3 deals mostly with a topic not used anywhere to obtain our results, which is Wentzel-
Kramers-Brillouin theory. I chose to write a rather comprehensive exposition on this subject because,
in the end, all semiclassical propagators are obtained by the same methods employed in WKB theory.
Also, since this dissertation deals with strategies that were developed to compensate the shortcomings
of van Vleck-Gutzwiller’s propagator, I consider it fundamental to have a clear understanding of what
these shortcomings are. The Herman-Kluk propagator, which is very important for us, is introduced
in this chapter using a similar strategy by which is was “derived”, but my exposition is nowhere as
rigorous as the one used to obtain the van Vleck-Gutzwiller propagator. The interested reader should
consult [MFL06], which provides, in my opinion, the most credible derivation of the HK propagator.

I then move to phase space in Chapter 4. As the Weyl-Wigner representations are not as well-
known as the position and momenum ones, a self-contained presentation on the subject is included

3The last two papers contain some inconsistencies with what is presented in this thesis, mostly in the definition of
Ehrenfest times, and shall be amended in later versions.

4As it reflects my personal opinions, this section is written in first person.
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here. In Chapter 5 the semiclassical ideas of Chapter 3 are expanded to deal with the Weyl-Wigner
representations, and we deduce the main tool for the results provided in Chapter 6: the Final Value
Representation for Wigner evolution. Chapter 6 also includes a test of the Herman-Kluk propagator
for the Kerr system and the adaptation of our numerical methods to deal with general systems.

Chapter 7 contains all of the results regarding the propagation of coherent states employing chaotic
trajectories, implemented to the coserf system. After attesting for the accuracy of the Herman-Kluk
propagator, we move on to describe the process of chaos-erasure using the effective hamiltonians
introduced in Chapter 2.

In order not to obscure the presentation, I relegated several important aspects to appendices –
many of which were originally in the main text, but were judged too technical to be there. Appendix
A enumerates a bit of differential geometry, used extensively in Chapter 1, and also proves some minor
lemmas. Appendix B presents the proofs of several lemmas in the theory of linear symplectomorphisms
that are used in later chapters, all very simple. In Appendix C I include a “personal” take on quantum
mechanics, a little bit of the theory of Gel’fand triples and rigged Hilbert spaces, and the Segal-
Bargmann representation – all used indirectly in the main text. Appendix D is a brief informal
description of stationary-phase approximations, and Appendix E presents a detailed calculation of the
pure Weyl-Wigner propagators for linear flows, using the van Vleck-Gutzwiller propagator as input.
Lastly, Appendix F includes several snipets of Python code used to obtain our results, a comparison
between our main programming languages (Python and Julia) and the computational times, grid sizes
and details for the numerical work done in Chapters 6 and 7.
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Chapter 1
Symplectic ingredients of classical mechanics

For me, understanding is not so much a demand for
mathematical rigor; rather, it is an anxiety to grasp intu-
itive plausibility. Then again, the very effort to achieve
rigor has been for me a terrific boost to intuition. Rigor
cleans the window through which intuition shines.

Ellis D. Cooper in Mathematical Mechanics

Analytical mechanics employs generalized coordinates to model physical systems. The term gen-
eralized refers to the fact that the equations of motion are no longer obtained from vector sums, as
in Newton’s second law, and variables can be endowed with a more general structure. For example:
One cannot sum two points on a circle to obtain another point on the circle, because the circle is not
a vector space. We can, however, use points on a circle as generalized positions and associate them
with velocities/momenta. The equations of motion are then obtained exclusively from differentiation,
so the only requirement placed on generalized positions is that they must be represented by differen-
tiable functions. Since each generalized position represents a degree of freedom and is matched with
a momentum or velocity, n degrees of freedom require the use of 2n-dimensional spaces. These spaces
must be composed of a base space, its elements being the positions themselves, and at every point
we must have a vector space on which momenta/velocities can be defined. This structure naturally
emerges if we consider the space of positions to be a differentiable manifold. Then, velocities and mo-
menta are elements of the tangent and cotangent spaces at a point, respectively, with corresponding
bundles. The study of even-dimensional spaces obtained in this way is encompassed in the field of
symplectic geometry, and it is impossible to attain a clear geometrical picture of classical mechanics
without it. We here give a brief and self-contained presentation of the concepts required for further
chapters, largely based on [dS11, AMRC80, Spi10], with particular emphasis in generating functions
and lagrangian submanifolds.

1.1 The symplectic category

An isomorphism is the morphism of the category of vector spaces; a diffeomorphism is the morphism
of the category of differential manifolds; a homomorphism is the morphism of the category of groups.
Morphisms are important because they define what equivalence means within a set of objects, e.g all
vector spaces of the same dimension are linearly equivalent because they are isomorphic, meaning that
there is no test capable of discriminating them – as far as linear algebra goes, they are the same. We
now define the category of symplectic manifolds and its morphisms.
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1.1.1 Manifolds and bundles

Let X be a smooth, n-dimensional manifold1. Let us first make sense of its associate tangent and
cotangent spaces. Start with the coordinate chart (U, {q1, . . . , qn}) of U ⊂ X, with homeomorphisms
qi : U −→ Rn. Then, at any a ∈ U , the manifold structure of X allows us to identify the following
canonical homeomorphisms for U and its tangent and cotangent charts:

(U, {q1, . . . , qn}) ∼ (Rn, {e1, . . . , en})(
TaU,

{
∂

∂q1

∣∣∣∣
a

, . . . ,
∂

∂qn

∣∣∣∣
a

})
∼ (Rn, {e1, . . . , en})

(T ∗
aU, {(dq1)a, . . . , (dqn)a}) ∼ (Rn, {e1, . . . , en}) ,

such that any point x ∈ U is mapped to {q1, . . . , qn}(x)
def
= {x1, . . . , xn}, and any vector v ∈ TaU and

1-form α ∈ T ∗
aU have coordinates v = {v1, . . . , vn} and α = {α1, . . . αn} in their respective canonical

bases, i.e.

v =
n∑

i=1

vi
∂

∂qi

∣∣∣∣
a

, α =
n∑

i=1

αi(dqi)a .

This is all we need about X, i.e. a smooth manifold is by definition locally homeomorhic to Rn, and
so are its tangent and cotangent spaces. Now, since a = {a1, . . . , an} in the chart {q1, . . . qn}, we have
the following disjoint union of tangent and cotangent spaces:

TU =
⊔

a∈U

TaU = {a, v} = {a1, . . . , an, v1 . . . , vn} ∼ (R2n, e1, . . . , e2n)

T ∗U =
⊔

a∈U

T ∗
aU = {a, α} = {a1, . . . , an, α1 . . . , αn} ∼ (R2n, e1, . . . , e2n) ,

which are the tangent and cotangent bundles of X in the neighbourhood U , respectively. In the above
we have also defined the map {q1, . . . , qn, p1, . . . , pn} 7−→ {q, p} which condenses coordinates in a chart.

1.1.2 Canonical and tautological forms

Let ω ∈ Ω2(X) be a de Rham 2-form on X, i.e for each a ∈ X the map ωa : TaX × TaX → R is
skew-symmetric bilinear and varies smoothly with a. The 2-form ω is said to be symplectic if it is
non-degenerate and closed, i.e. if dω = 0 and for all a ∈ X we have ωa(u, v) = 0, ∀v ∈ TaX =⇒ u = 0.
As we saw earlier, T ∗U is itself a 2n-dimensional manifold. For T ∗U = R2n, it is easy to show that
the 2-form ω = dq ∧ dp = dq1 ∧ dp1 + · · · + dqn ∧ dpn is a symplectic form over R2n [dS11], and that
ω = −dα, where α = p · dq = p1 dq1 + . . . pn dqn.

Definition 1.1.1. We call ω and α the canonical and tautological forms, respectively.

1.1.3 Symplectic manifolds and morphisms

We begin tying in cotangent bundles and canonical forms through

Definition 1.1.2. The pair (M,ω) of a cotangent bundle and a canonical form is a symplectic
manifold.

Symplectic manifolds exist that are not cotangent bundles, but here will be mentioned only in
passing. Unless one is interested in the global structure of a particular manifold it is not necessary
to delve into pathological cases since, as in the study of vector spaces, it is often easier to work with
a simpler space that is equivalent to the one we are interested in. For this, we must define what
equivalence in the category of symplectic manifolds means. From linear algebra it is obvious that all
symplectic vector spaces of the same dimension are locally isomorphic, i.e. indistinguishable as vector
spaces, but are they also indistinguishable in some symplectic sense? Just as in riemannian geometry,
which uses the metric, symplectic equivalence is defined via the canonical form.

1Differential manifolds will model our space of generalized positions. We include our conventions regarding this
category in Appendix A.
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Definition 1.1.3. We say (M1, ω1) ∼ (M2, ω2) iff there exists a diffeomorphism f : M1 −→ M2 that
pullsback canonical forms, namely f∗ω2 = ω1. We then say M1 and M2 are symplectomorphic and
f is a symplectomorphism2.

We expect symplectic equivalence to be stronger than linear equivalence, since it involves the
canonical form. Amazingly, symplectic equivalence is locally just as strong as linear equivalence,
such that all symplectic manifolds of the same dimension are locally symplectomorphic. This is an
important statement in the field and is given by

Theorem 1.1.4. (Darboux) Let (M,ω) be a 2n-dimensional symplectic manifold and U ⊂M . Let
ω = dQ ∧ dP in a cotangent chart (T ∗U, {Q,P}), where we use the condensed coordinates {Q,P} =
{Q1, . . . , Qn, P1, . . . , Pn}. Then there exists a symplectomorphism f : M −→ R2n such that f∗(dq ∧
dp) = dQ ∧ dP , where dq ∧ dp is the canonical form on R2n.

Proof. Can be found in [dS11] or [AMRC80] (we recommend the former). The proof is too technical
to be included here.

The importance of the above theorem cannot be overstated – It shows that any conclusion obtained
from the simplest possible symplectic manifold, namely (R2n, dq∧dp), is locally valid for all symplectic
manifolds with the same dimension: Conclusions using these manifolds are, therefore, quite general.
There are no fundamental symplectic invariants as in e.g. riemannian geometry: The symplectic form
is much more malleable than the riemannian metric, all due to its skew-symmetry instead of the
metric’s positive-definiteness [Spi10].

1.2 Vector fields and flows

We now start to endow symplectic manifolds with additional structure. Of fundamental importance
is the action of tangent bundle elements, i.e. vector fields, on the base manifold. Due to the non-
degeneracy of the canonical form, there is a single primitive for each vector field contraction with ω –
we will see this is precisely the statement of Hamilton’s equations3.

1.2.1 Hamiltonian fields and Hamilton’s equations

Let (M,ω) be a 2n-dimensional symplectic manifold. As seen in the previous section, ω = −dα and
ω is non-degenerate, so the following contraction is unique:

ω = −dα =⇒ ıXω = ıX(−dα) =⇒ ıXω = d[−α(X)] ,

where the contraction is defined by ıXω
def
= ω(X, ·). By representing the evaluation d[−α(X)] by dH

and writing X = XH , we have shown that there is a unique vector field on M such that

ıXH
ω = dH , (1.1)

the equation above being a coordinate-free version of the usual hamiltonian equations of motion.

Definition 1.2.1. The vector field XH associated to H by (1.1) is the [hamiltonian] vector field
generated by H. Its unique integral curves ρt : R ×M −→ M are its [hamiltonian] flow. The set
{y : y = ρt(x) ,∀t ∈ R} is the orbit of x.

We shall make extended use of Hamilton’s equations, but almost never in such coordinate-free form
as (1.1). To show that the fields defined by (1.1) are equivalent to the ones obtained from Hamilton’s

2These are known in physics as canonical transformations, and sometimes the use of the word “symplectomorphism”
is restricted to canonical transformations that are linear. We here follow the conventions in mathematics and use the
“symplectomorphism” term generally, prepending “linear” when this is the case. Regarding f∗, it is the pullback induced
by f , acting on k-forms as f∗dα = d(α ◦ f) (see Appendix A).

3We assume all hamiltonian functions and vector fields to be autonomous, i.e time-independent, unless stated.
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equations, we express (1.1) using a cotangent chart on T ∗
aM and its tangent counterpart, centered at

a ∈M , with which we locally write XH = (XH)q∂q + (XH)p∂p (a is omitted in the basis). Then4,

ıXH
ω = dH

⇐⇒ (dq ∧ dp)
[
(XH)q ·

∂

∂q
+ (XH)p ·

∂

∂p

]
=

(
∂H(q, p)

∂q

)
· dq +

(
∂H(q, p)

∂p

)
· dp

⇐⇒ (XH)q · dp− (XH)p · dq =

(
∂H(q, p)

∂q

)
· dq +

(
∂H(q, p)

∂p

)
· dp

=⇒ XH =
∂H

∂p
· ∂
∂q
− ∂H

∂q
· ∂
∂p

. (1.2)

It might not be that obvious that (1.1), just by fixing the form of the vector field XH as above,
establishes thatXH satisfies the usual form of Hamilton’s equations found in physics. The identification
is, however, rather trivial: Let ρt be the flow of XH , satisfying





dρt
dt

= XH ◦ ρt

ρ0 = I
=⇒ ρt(q, p) = exp [tXH(q, p)] (q, p) ,

Notation is often abused and flow ρt(q, p) written as (qt, pt), which is rather harmless and we shall
frequently do. Using the fixed form for XH in (1.2), we have

dρt(q, p)

dt
= XH [ρt(q, p)] ⇐⇒ ∂ρt

∂q
· dq
dt

+
∂ρt
∂p
· dp
dt

=
∂H

∂p
· ∂ρt
∂q
− ∂H

∂q
· ∂ρt
∂p

⇐⇒ ∂ρt
∂q
·
(
dq

dt
− ∂H

∂p

)
+
∂ρt
∂p
·
(
dp

dt
+
∂H

∂q

)
= 0

implying Hamilton’s equations

dq

dt
=
∂H

∂p
,

dp

dt
= −∂H

∂q
⇐⇒ dx

dt
= J

(
dH

dx

)
, (1.3)

where in the equivalence we have further compacted the equations of motion writing an arbitrary
point inM as x = (q, p) = (q1, . . . , qn, p1, . . . , pn), the derivative being shorthand for the gradient with
respect to each of its coordinates,

d

dx
=

(
∂

∂q
,
∂

∂p

)
=

(
∂

∂q1
, . . . ,

∂

∂qn
,
∂

∂p1
, . . . ,

∂

∂pn

)

and

J =

(
0n×n 1n×n

−1n×n 0n×n

)
, or, in components, Jij =





0 , i 6= j ± n
1 , i = j − n
−1 , i = j + n

. (1.4)

Definition 1.2.2. The matrix J above is the canonical matrix.

The canonical matrix emerges when dq ∧ dp acts on arbitrary elements of TaM ∼ R2n:

ωa(u, v) = (dq ∧ dp)(u, v)

= (dq ∧ dp) (uq∂q + up∂p, vq∂q + vp∂p)

= dq (uq∂q + up∂p) dp (vq∂q + vp∂p)− dq (vq∂q + vp∂p) dp (uq∂q + up∂p)

= uqvp − upvq
=⇒ ωa(u, v) = u · J v .

4We endow manifolds with a local metric “·” that, being isomorphic to an eucliean space, all charts can be associated
with. For its construction, see Corollary 1.2.3.
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Corollary 1.2.3. Every symplectic manifold admits a locally euclidean metric: For any x, y ∈ R2n

define ω(J x, y) = (J x) · J y = x · (J TJ y)
def
= x · y. This is the implicit metric every time we write a

dot product.

Using the canonical matrix, we can characterize the very important subgroup of linear symplecto-
morphisms, for which the transformation is given by a linear operator (we extend this discussion in
Appendix B).

Proposition 1.2.4. LetM : R2n 7−→ R2n be a linear transformation. It is a symplectomorphism iff
MTJM = J .

Proof. Since f∗ω = ω, we have

M∗ω(x, y) = ω(Mx,My) = ω(x, y) ⇐⇒ x ·
(
MTJM

)
y = xJ y =⇒ MTJM = J .

Corollary 1.2.5. IfM is a linear symplectomorphism, detM = ±1.

Definition 1.2.6. If a linear symplectomorphism has determinant +1, we say its matrix is symplec-
tic. The set of all symplectic matrices is the symplectic group Sp(n).

1.2.2 Brackets

The evaluation of the canonical form on the hamiltonian fields generated by two functions, say f and
g, is

ωa(Xf , Xg) = (dq ∧ dp)
(
∂f

∂p
· ∂
∂q
− ∂f

∂q
· ∂
∂p
,
∂g

∂p
· ∂
∂q
− ∂g

∂q
· ∂
∂p

)
=
∂f

∂q
· ∂g
∂p
− ∂f

∂p
· ∂g
∂q

=
df

dx
· J

(
dg

dx

)

=⇒ ωa(Xf , Xg) = {f, g} = [Xf , Xg] , (1.5)

where (1.5) defines two intrinsically connected backets that explore the Lie-algebraic structure of the
set of vector fields over a manifold using either their hamiltonians or the fields themselves.

Definition 1.2.7. The brackets of functions {f, g} and vector fields [Xf , Xg] are the Poisson bracket
and commutator, respectively.

The classical evolution in (1.3) can then be written in terms of the Poisson bracket by identifying
f ≡ x,

{x,H} = J
(
dH

dx

)
= ẋ ,

while for an arbitrary function ft(q, p) we have

dft(q, p)

dt
=
∂ft(q, p)

∂t
+

(
∂ft(q, p)

∂q

)
· dq
dt

+

(
∂ft(q, p)

∂p

)
· dp
dt

=
∂ft(q, p)

∂t
+

(
∂ft(q, p)

∂q

)
· ∂H(q, p)

∂p
−
(
∂ft(q, p)

∂p

)
· ∂H(q, p)

∂q

=
∂ft(q, p)

∂t
+ {f,H} ;

if f is autonomous, we get
∂f

∂t
= −{f,H} . (1.6)

Definition 1.2.8. The equation above is the Liouville equation.
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We can also express the action of XH on a function f in terms of Poisson brackets:

XH(f) =

(
∂H

∂p

∂

∂q
− ∂H

∂q

∂

∂p

)
(f) = {f,H} , (1.7)

and using XH the flow can be generally expressed as the Taylor series:

ρt(x) = exp (tXH) (x) =

(
I + tXH +

t2

2
X2
H + . . .

)
(x) = x+ t{x,H}+

t2

2
{{x,H}, H}+ . . .(1.8)

Notice the equation above is non-linear in x.

Example 1.2.9. (The free particle) For the hamiltonian and vector field

H(p) =
p2

2
=⇒ XH =

∂H

∂p

∂

∂q
= p

∂

∂q
,

we happen to have idempotency:

(
I + tXH +

t2

2
X2
H + . . .

)
= I + p

∂

∂q
+
t2

2

=0︷ ︸︸ ︷[
p
∂

∂q

(
p
∂

∂q

)]
+ 0 + 0 + · · · = I + p

∂

∂q
,

so that

ρt(x)
∣∣
x0

=

(
I + tp

∂

∂q

)
(q, p)

∣∣
x0

= (q0, p0) + t (p0, 0) . >

Example 1.2.10. (The SHO) We now have

H(q, p) =
p2

2
+
q2

2
=⇒ XH =

∂H

∂p

∂

∂q
− ∂H

∂q

∂

∂p
= p

∂

∂q
− q ∂

∂p
.

Therefore,

ρt(x) = exp (tXH)x = exp

[
t

(
p
∂

∂q
− q ∂

∂p

)]
(q, p)

=

(
q + tp− t2q

2!
− t3p

3!
+
t4q

4!
+ . . . , p− tq − t2p

2!
+
t3q

3!
+
t4p

4!
. . .

)

=

((
1− t2

2!
+
t4

4!
− . . .

)
q +

(
t− t3

3!
+ . . .

)
p,

(
1− t2

2!
+
t4

4!
− . . .

)
p−

(
t− t3

3!
+ . . .

)
q

)

=⇒ ρt(x)
∣∣
x0

= (q0 cos t+ p0 sin t, p0 cos t− q0 sin t) . >

Example 1.2.11. (The inverted SHO) Here we have a change of sign:

H(q, p) =
p2

2
− q2

2
=⇒ XH =

∂H

∂p

∂

∂q
− ∂H

∂q

∂

∂p
= p

∂

∂q
+ q

∂

∂p
,

So

ρt(x) = exp (tXH)x = exp

[
t

(
p
∂

∂q
+ q

∂

∂p

)]
(q, p)

=

(
q + tp+

t2q

2!
+
t3p

3!
+
t4q

4!
+ . . . , p+ tq +

t2p

2!
+
t3q

3!
+
t4p

4!
. . .

)

=

((
1 +

t2

2!
+
t4

4!
+ . . .

)
q +

(
t+

t3

3!
+ . . .

)
p,

(
1 +

t2

2!
+
t4

4!
+ . . .

)
p+

(
t+

t3

3!
+ . . .

)
q

)

=⇒ ρt(x)
∣∣
x0

= (q0 cosh t+ p0 sinh t, p0 cosh t+ q0 sinh t) . >

12



1.3 Submanifolds and product manifolds

In this section we show how classical mechanics naturally asks for a description in terms of product
manifolds in order to accommodate the time-dependence in the flow and characterize symplectomor-
phisms via generating functions. A consequence is the emergence of lagrangian submanifolds.

1.3.1 Movement as a symplectomorphism

A very important symplectomorphism is recognized in movement itself.

Proposition 1.3.1. Any hamiltonian flow ρt is a 1-parameter family of symplectomorphisms.

Proof. From the Lemmas in Section A.2 and the fact that ρ0 = I,

d

dt
ρ∗
tω = ρ∗

tLXH
ω = ρ∗

t (dıXH
ω + ıXH

dω) = ρ∗
t (ddH − ıXH

ddα) = 0 =⇒ ρ∗
tω = ω , ∀t ,

where in the first equality we used Lemma A.2.2 and, in the second, Lemma A.2.1.

Corollary 1.3.2. The Taylor expansion of the flow given in (1.8), i.e.

ρt(x) ≈ x+ t{x,H}+
t2

2
{{x,H}, H}+

t3

3!
{{{x,H}, H}, H}+ . . . ,

is not a symplectomorphism.

Proof. It is enough to show this in first order:

(ρ∗
tω)(x) = (ω ◦ ρt)(x) = ω(x+ t{x,H}+O(t2)) = ω

(
x+ t

dx

dt
+O(t2)

)
6= ω(x) .

We then see that the vector field associated to the approximation in (1.8) is time dependent and,
therefore, does not conserve energy. This establishes that approximating the hamiltonian flow by a
simple Taylor series in time is only useful for short times. If there is inherent interest in periodic flows,
for instance, this approximation is useless, since it does not respect flow topology. We return to this
point in Chapter 2.

1.3.2 Lagrangian submanifolds and twisted forms

We have proven that every diffeomorphism emerging as a hamiltonian flow is a symplectomorphism,
but we expect the set of symplectomorphisms to be smaller than that of diffeomorphisms, since con-
servation of the canonical form is not generally guaranteed. We have discussed how the existence of a
symplectomorphism is guaranteed for neighborhoods of symplectic manifolds of the same dimension,
but we haven’t said anything about finding them. Let (M1, ω1) and (M2, ω2) be 2n-dimensional sym-
plectic manifolds and ψ : M1 −→ M2 a general diffeomorphism. When is ψ a symplectomorphism,
i.e. ψ∗ω2 = ω1? To answer this question we will need the concept of submanifolds that are everythere
orthogonal with respect to the canonical form and, besides, have maximum dimension:

Definition 1.3.3. Given the 2n-dimensional symplectic manifold (M,ω), an n-dimensional subman-
ifold Y ⊂M is lagrangian if ω|Y = 0.

Notice that we always have ω = −dα, but only on a lagrangian manifold ω = 0, so dα = 0 =⇒
α = dS, valid locally by Poincaré’s lemma5. This simple consequence will soon make lagrangian sub-
manifolds the most important objects in the theory of semiclassical approximations and quantization.
They are especially prominent when dealing with product manifolds, since all [relevant] symplecto-
morphisms can be characterized in terms of generating functions for lagrangian submanifolds. To see
this, start by defining the product manifold M1 ×M2 and the canonical projections π1 and π2 by
means of the diagram below:

5Poincaré’s lemma states that in a smooth manifold any closed form is locally exact, i.e. we can decrease the form’s
domain until we find a primitive [AMRC80].
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(x1, x2) M1 ×M2 (x1, x2)

y π1

y
yπ2

y

x1 M1 M2 x2

Proposition 1.3.4. The 2-form ω = λ1(π1)∗ω1 + λ2(π2)∗ω2 is canonical on M1 ×M2.

Proof. {
dω = λ1π

∗
1dω1 + λ2π

∗
2dω2 = 0

ω((x1, x2), (y1, y2)) = λ1ω1(x1, x2) + λ2ω2(y1, y2) 6= 0
.

We are then inclined to take ω with λ1 = λ2 = 1, forming the symplectic product manifold
(M1 ×M2, ω). This 2-form, however, is not appropriate to describe the symplectic structure of its
separate components.

Definition 1.3.5. A 2-form ω is said to be twisted if we adopt λ1 = 1 and λ2 = −1. This new

2-form is written as ωσ
def
= π∗

1ω1 − π∗
2ω2. Naturally, it has a twisted primitive ασ

def
= −π∗

1α1 + π∗
2α2

We then obtain a classification of all symplectomorphisms by means of their graphs acting on the
twisted form:

Proposition 1.3.6. A diffeomorphism ψ : M1 −→ M2 is a symplectomorphism iff its graph Γψ is a
lagrangian submanifold of (M1 ×M2, ω

σ).

Proof. A submanifold of (M1×M2, ω
σ) is lagrangian iff ωσ = 0⇐⇒ Γ∗

ψω
σ = 0. In terms of the graph

of ψ, namely

Γψ : M1 −→M1 ×M2

x1 7−→ (x1, ψ(x1)) ,

we must have

Γ∗
ψ ω

σ = 0

Γ∗
ψ π

∗
1 ω1 − Γ∗

ψ π
∗
2 ω2 = 0

(π1 ◦ Γψ)∗ω1 − (π2 ◦ Γψ)∗ω2 = 0

I∗ω1 − ψ∗ω2 = 0

⇐⇒ ω1 = ψ∗ω2 ,

where we have used the graph’s definition to write (π1 ◦ Γψ)(x) = x and (π2 ◦ Γψ)(x) = ψ(x).

The proposition above shows the twisted product manifold is an extremely important object. In
fact, when it comes to symplectomorphisms, it is more important than the base manifolds M1 and M2

due to the proved exactness of its tautological form when restricted to the graph of a symplectomor-
phism.

1.3.3 Extended manifolds

An important example of product manifold emerges when considering the hamiltonian flow ρt acting
on M . It is sometimes desirable to immerse M into the (1 + 2n)-dimensional space that constitutes
the domain of ρt, namely R×M , paired with a new canonical form ωt. To fix an expression for ωt, we
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start by requiring the equations of motion to be the same when projected on M : Using the projection
on the second component, π2(R×M) = M , we express this as

(π∗
2 ◦ ıXH

)ωt = dH =⇒ π∗
2 ωt = ω = −dα .

Writing π1(R×M) = R, an immediate solution is

π∗
1ωt = dH ∧ dt =⇒ ωt = ω + dH ∧ dt = −dαt , αt = α−Hdt .

Definition 1.3.7. The product manifold (R×M,ωt) is the extended manifold associated to (M,ω).
The forms ωt and αt are the extended canonical and tautological forms, respectively, but the
latter is usually referred to as the Poincaré-Cartan integral invariant.

Notice the Poincaré-Cartan integral invariant can be written as

αt = α−Hdt = p · dq −Hdt =⇒ αt = [p · q̇ −H(p, q)] dt = Lt(q, q̇) dt , p =
∂Lt(q, q̇)

∂q̇
.

Definition 1.3.8. The function Lt(q, q̇), which exchanges a cotangent description by a tangent one,
is called the lagrangian.

We suspect this is where lagrangian manifolds inherit their name from: We need them to define
lagrangian functions (or at least to integrate them).

1.4 Generating functions and Hamilton-Jacobi theory

We now describe the structure of general symplectomorphisms, which are intrinsically connected with
usual and extended product manifolds, generating functions and, thus, lagrangian submanifolds. We
are then naturally led to the notion of invariant tori associated to action-angle coordinates.

1.4.1 The Hamilton-Jacobi equation

Proposition 1.3.6 says that there are as many lagrangian submanifolds in M1 × M2 as there are
symplectomorphisms from M1 −→M2. However, notice that, for the twisted tautological form ασ,

ωσ = −dασ =⇒ Γ∗
ψω

σ = 0⇐⇒ ασ = dS (1.9)

so that there are also as many closed6 1-forms on M1 ×M2 as there are symplectomorphisms and
lagrangian submanifolds.

Definition 1.4.1. The function S ∈ C∞(M1 ×M2), primitive to the twisted tautological form ασ, is
called a generating function for the lagrangian submanifold (x, ψ(x)).

The simplest product manifold is the extended (R × M,ωt) associated to an initial symplectic
manifold (M,ω). Here, the condition (1.9) written in terms of the Poincaré-Cartan invariant,

αt = dSt ⇐⇒ dSt(q) = p · dq −Ht(q, p) dt =⇒ St(q) =

∫ qt

q0

p · dq −
∫ t

0
dτ Hτ (q, p)

⇐⇒ St(q) =

∫ t

0
dτ Lτ (q, ˙(q)) , (1.10)

where we are now assuming the hamiltonian to be non-autonomous for generality. Notice we could
only integrate αt = Ltdt so easily because we are on a lagrangian manifold. We then immediately
have

p =
∂St(q)

∂q
,

∂St(q)

∂t
+Ht

(
q,
∂St(q)

∂q

)
= 0 . (1.11)

6In fact, there are as many equivalence classes of 1-forms, i.e. [α] = α + c, c ∈ R, but this is just a technicality.
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Definition 1.4.2. The equation above is the Hamilton-Jacobi equation, and the generating func-
tion St that satisfies it is said to be admissible.

For the autonomous hamiltonians which we have been considering up to now the Hamilton-Jacobi
equation assumes the form

H(q, ∂qS) = E , E ∈ R ,

which is just a re-statement of the principle of energy conservation, now in terms of the generating
function. The graph of S, namely ΓS = (t, q, S(q)), defines the relevant extended lagrangian manifold
in R×M . Since we are mostly interested in the autonomous case, we will often consider the restriction
M ⊃ π2(ΓS) = (q, S(q)), which is a true lagrangian submanifold.

1.4.2 Product manifolds and the Legendre transform

Consider now the submanifold M ×φ(M) ⊂M ×M , where φ is a symplectomorphism. The points in
M × φ(M) have the form (q, p, φ(q, p)). Writing φ(q, p) = (Q,P ) we have

Γ∗
φω

σ = 0 ⇐⇒ dQ ∧ dP − dq ∧ dp = 0

=⇒ dQ ∧ dP + dKt(Q,P ) ∧ dt− dq ∧ dp− dHt(q, p) ∧ dt = 0 ,

where in the second line we have extended the twisted canonical form to R×M×M , defining K as the
transformed hamiltonian. Four obvious types of generating function immediately arise as primitives
to the above equation, depending on what variables we choose them to be functions of:

(dQ ∧ dP − dq ∧ dp) + d [Kt(Q,P )−Ht(q, p)] ∧ dt = 0

⇐⇒





dS1
t (Q, q) = −P · dQ+ p · dq + [Kt(Q,P )−Ht(q, p)] dt

dS2
t (P, q) = Q · dP + p · dq + [Kt(Q,P )−Ht(q, p)] dt

dS3
t (Q, p) = −P · dQ− q · dp+ [Kt(Q,P )−Ht(q, p)] dt

dS4
t (P, p) = Q · dP − q · dp+ [Kt(Q,P )−Ht(q, p)] dt

, (1.12)

where the primitives correspond to the infamous “generating function types” of Goldstein [GJS01].
Notice that even thought they are all different, they are all primitives for the canonical form, sharing
the same exterior differential – just as there are infinite possible primitives for the same derivative
in calculus. In exterior calculus, however, there is a way to travel between primitives by using exact
differentials, which can be immediately understood from a single calculation: Take the generating
function dS1

t (Q, q) as an example and, ignoring its time-component (which is the same for all generating
functions), notice that

dS1
t (Q, q) = −P · dQ+ p · dq = (Q · dP −Q · dP )− P · dQ+ p · dq

= − (Q · dP + P · dQ) +Q · dP + p · dq
= −d(Q · P ) +Q · dP + p · dq
= d

[
−Q · P + S2

t (P, q)
]

=⇒ S1
t (Q, q) = −Q · P + S2

t (P, q) .

The reasoning above shows that even though we do not have a closed expression for S1
t (Q, q), we are

able to express it in terms of S2
t (P, q). What we have done can also be interpreted as exchanging a

description in terms of (Q, q) for one in terms of (P, q). Evidently, the time-component is unaltered
by such transformation.

Definition 1.4.3. The transformation described above is known as a Legendre transform.
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Notice that all generating functions satisfy the same differential equation with respect to time,

∂St
∂t

= Kt(Q,P )−Ht(q, p) , (1.13)

with the expressions for Q and P always fixed as P = −∂QSt, Q = ∂PSt. The expression above is
sometimes referred to as the Hamilton-Jacobi equation for generating functions [Arn89]. It’s easy to
see that, taking Kt(Q,P ) = 0, we recover the original Hamilton-Jacobi equation (1.11) – which makes
sense, since in this case we are just projecting back to R×M . Another option is to fix the transformed
hamiltonian as a quadractic form, linearizing the final hamiltonian vector field:

Kt(Q,P ) = Kt(X) =
1

2
X · AtX =⇒ Ẋ = AtX .

Due to the presence of natural resonances in hamiltonian vector fields [Arn89, dA90, AMRC80], it
is generally impossible to find such linearizing transformation. The process of “linearizing as much
as possible” is performed using especial symplectic algorithms, resulting in a transformed hamilto-
nian expressed as a Birkhoff normal form. This elimination process is the key to prove the famous
Komolgorov-Arnol’d-Moser (KAM) theorem [HI03].

1.4.3 Action-angle variables and invariant tori

The most interesting realization of (1.13) is obtained when we consider Kt(Q,P ) = Kt(Q), i.e. we
look for a generating function St whose symplectomorphism is not as powerful to linearize the final
vector field, but ends up eliminating the momentum-dependence of the transformed hamiltonian7. In
this case the equations of motion are trivially found to be:

Q̇ = 0 , Ṗ = −∂Kt(Q)

∂Q
=⇒ Qt = Q0 , Pt = P0 −

∫
dt

(
∂Kt(Q)

∂Q

)
, (1.14)

which represent a type of rectification, since in (q, p) coordinates we can have a very complicated
flow but in (Q,P ) it is always parallel to the P axis. Notice that finding such St is tantamount to
integrating the hamiltonian vector field XH , since if it exists the flow is integrated by the quadratures
in (1.14).

A simple, explicit transformation (q, p) 7−→ (ν, I) fulfilling (1.14) can be found for autonomous
hamiltonians. For this, we employ the “type 2” time-independent generating function S2(I, q), for
which, by (1.12),

p =
∂S2(I, q)

∂q
, ν =

∂S2(I, q)

∂I
, K(I) = H(q, p) = H

(
q,
∂S2(I, q)

∂I

)
, (1.15)

where we force the dependence of K in ν to vanish. We then have

İ = 0, ν̇ =
∂K(I)

∂I
=⇒ It = I0 , νt = ν0 − t

(
∂K(I)

∂I

)

I=I0

. (1.16)

The equations above, which are just (1.14) expressed in terms of (I, ν), define a free particle for each I0,
since the speed of νt is then a constant. If the flow of H was already formed by compact submanifolds,
no information is lost in compactifying8 the variable νt and interpreting each of its components as an
angular coordinate in R2, so 0 ≤ νt ≤ 2π for each component of νt = (ν1,t, . . . , νn,t). This is depicted
in Fig. 1.1. We then have

dS(q, I) = p · dq − ν · dI =⇒ S(q, I)|I=I0 =

∫ qt

q0

p · dq =⇒ S(I) =

∮

γ(I)
p · dq ,

where we have integrated over a full circuit γ(I). For this closed circuit, (1.15) fixes

dS(I)

dI
= 2π − 0 =⇒ S(I) = 2πI =⇒ I =

1

2π

∮

γ(I)
p · dq . (1.17)

7Or position, it doesn’t matter: We can exchange them using the linear symplectomorphism (q, p) 7−→ (−p, q).
8Any closed, non-self-intersecting curve on the plane is diffeomorphic to S1 [Spi99].
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I0

νt

νt = 0

H(q, p) K(I)

Figure 1.1: Parametrizing a curve on R2 in terms of (I, ν). The original compact flow ρt(q, p), whose value at each point
lies in a level curve of H(q, p), is mapped to a circle in the (I, ν) coordinates. This circle is a level curve of K(I), which
does not depend on ν.

Definition 1.4.4. The variables (I, ν) are called action and angle variables, respectively.

If a problem admits a solution (1.17) so that (1.16) is fulfilled, a bounded orbit can be described
using a set of n action-angle variables, each of then representing a circle in phase space. Since the
product of n circles is a torus, the orbit is then constrained to the surface of an n-dimensional lagrangian
torus. Due to the constraining, this torus is also said to be invariant, since a general lagrangian
submanifold will evolve when acted upon by the flow, but the tori remain static.

1.5 Centers and Chords

The generating functions described in the previous section do not exhaust the possibilities, after all
there is an infinite number of them. The generating functions that mix position and momentum
in (1.12) have the characteristic that they deal either with new momenta and old positions, or vice-
versa. In this section, following [Wei72], we define generating functions that mix new and old variables
symmetrically.

1.5.1 The symmetrized canonical form

Coming back to index notation, notice that we can symmetrize the canonical form on a chart in R2n

as

ω =
n∑

i=1

dqi ∧ dpi =
n∑

i=1

(
dqi ∧ dpi − dpi ∧ dqi

2

)
=

1

2

2n∑

i, j=1

Jij dxi ∧ dxj ,

where x = (q, p) = (q1, . . . , qn, p1, . . . , pn) and J is the canonical matrix (1.4). The symplectic condi-
tion of Definition 1.1.3 now reads

Γ∗
fω

σ = 0 ⇐⇒ f∗ω − ω = 0 ⇐⇒
2n∑

i, j=1

Jij d(xi ◦ f) ∧ d(xj ◦ f)− dxi ∧ dxj = 0 . (1.18)

Define x ◦ f def
= X such that X(a) = x(f(a)), which for the prototype product manifold is just f(a)

in the trivial chart x = I. Just as in the earlier sections, where the fact that Γ∗
fω

σ = 0 allowed us to
define a generating function in the product manifold, we will now do the same for the symmetrized
twisted form.

Proposition 1.5.1. The 1-forms

φ(f) =
2n∑

i,j

Jij (Xi − xi) d
(
Xj + xj

2

)
, ψ(f) = −

2n∑

i,j

Jij
(
Xj + xj

2

)
d (Xi − xi) ,

are primitives for the left hand side of (1.18), i.e. dφ(f) = dψ(f) = Γ∗
fω

σ.
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Proof. We specialize in φ(f), since the procedure is exactly the same for ψ(f). Taking the exterior
derivative of φ(f) we have

dφ(f) =
1

2

2n∑

i,j

Jijd (Xi − xi) ∧ d (Xj + xj) =
1

2

2n∑

i,j

Jij [dXi ∧ dXj + dXi ∧ dxj − dxi ∧ dXj − dxi ∧ dxj ]

=
1

2

2n∑

i,j

Jij [dXi ∧ dXj − dxi ∧ dxj ]−
1

2

2n∑

i,j

Jij
[(

∂Xi

∂xi

)
dxi ∧ dxj +

(
∂Xj

∂xj

)
dxj ∧ dxi

]
.

Since the indexes are dull, we can exchange i by j in the second sum in the equation above:

2n∑

i,j

Jij
(
∂Xi

∂xi

)
dxi ∧ dxj +

2n∑

i,j

Jij
(
∂Xj

∂xj

)
dxj ∧ dxi =

2n∑

i,j

Jij
(
∂Xi

∂xi

)
dxi ∧ dxj

+
2n∑

i,j

Jji
(
∂Xi

∂xi

)
dxi ∧ dxj

=
2n∑

i,j

Jij
[
∂Xi

∂xi

]
(dxi ∧ dxj − dxi ∧ dxj) = 0 ,

where we have used the fact that J T = −J .

1.5.2 Center and chord generating functions

The 1-forms of the previous section are much easier to understand by defining the variables

ηj = (Xj + xj)/2 , and ξi = Xi − xi ,

with which the primitives in Proposition 1.5.1 can be written concisely as

φ(f) =
2n∑

i,j

Jijξi dηj , ψ(f) = −
2n∑

i,j

Jijηj dξi ,

and since both φ(f) and ψ(f) are closed on the same lagrangian submanifold, there is a neighborhood
where there are generating functions S(η) and S̃(ξ) such that dS(η) = φ(f) and dS̃(ξ) = ψ(f).
Therefore,

dS(η) =
2n∑

i,j

Jijξi dηj = J ξ · dη , dS̃(ξ) = −
2n∑

i,j

Jijηj dξi = −J η · dξ ,

where we have preferred to write S and S̃ as functions of η and ξ and leave the dependence on
the symplectomorphism f implicit. We will also represent quantities associated to ξ with a ˜ to
differentiate them9 from functions of η, and the forms above give rise to the separate equations

ξ = −J
[
dS(η)

dη

]
, η = J

[
dS̃(ξ)

dξ

]
. (1.19)

Definition 1.5.2. The variables ξ and η are the center and the chord associated to the evolution
x0 7−→ ρt(x0). The functions S(η) and S̃(ξ) are the center and chord generating functions.

The reason for naming these variables as we did is shown in Fig. 1.2.

9We will use the same notation to represent quantities related to each other via Fourier transforms in quantum
mechanics – which, as we will see in Chapter 3, will be semiclassically connected to Legendre transforms.
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η

ξ

O

X = xt

x = x0

(a) Centers and chords for x 7−→ X.

η

O

X = xt

x = x0

ξ

(b) Geometry of generating functions.

Figure 1.2: (a) The evolution x0 = x 7−→ X = ρt(x) can be naturally interpreted in terms of the chord ξ and the center η
for the orbit traced by x, shown in red. The equation for S(η) in (1.19) means that by using the center generating function
we can determine the corresponding chord through its derivatives, interpreting classical evolution as a translation by ξ.
On the other hand, the equation for S̃(ξ) in (1.19) represents the evolution as a reflection around the chord η. (b) The
generating functions are just different ways of interpreting the dashed-gray area enclosed by the chord ξ.

Example 1.5.3. The generating functions S̃(ξ) = ξ · J v and S(η) = v · J η implicitly define classical
reflections and translations by v, since by (1.19)

ξ = −J
(
∂S(η)

∂η

)
= −J 2v = v , η = J

(
∂S̃(ξ)

∂ξ

)
= −J 2v = v ,

so in the first case v defines the center, and in the second, the chord. >

The center and chord generating functions interpret evolution as either a translation by ξ or a
reflection around η [dA98]. Defining the classical translation and reflection operators as

Rη(x) = 2η − x , Tξ(x) = x+ ξ , (1.20)

we can describe the mapping x0 7−→ xt = ρt(x0) as xt = Rη(x0) = 2η − x0 or xt = Tξ(x0) = x0 + ξ.
These operators follow a very simple algebra, as can be seen in

Lemma 1.5.4. The classical translation and reflection operators of (1.20) form a group, obeying

i) Rη ◦ Tξ = R
η−

ξ

2
; ii) Tξ ◦ Rη = R

η+ ξ

2

iii) Tξ ◦ Tξ′ = Tξ+ξ′ ; iv) Rη ◦ Rη′ = Tξ+ξ′ .

Proof. The proof is trivial:

i) (Rη ◦ Tξ)(x) = Rη(x+ ξ) = 2(η − ξ/2)− x = R
η−

ξ

2
(x) ;

ii) (Tξ ◦ Rη)(x) = Tξ(2η − x) = 2(η + ξ/2)− x = R
η+ ξ

2
(x) ;

iii) (Tξ ◦ Tξ′)(x) = Tξ(x+ ξ′) = x+ ξ + ξ′ = Tξ+ξ′(x) ;

iiv) (Rη ◦ Rη′)(x) = Rη(2η′ − x) = 2(η − η′)− x+ x = T2(η−η′)(x) .

1.5.3 Extended center and chord generating functions

The relationship between the center and chord generating functions is similar to the one followed by
their position and momentum equivalents described in the earlier section. For instance,

dS̃(ξ) = −J η · dξ = −J η · dξ + (J ξ · dη − J ξ · dη)

= −J η · dξ − J ξ · dη + dS(η) = d[−J ξ · η + S(η)]

=⇒ S̃(ξ) = S(η) + ξ · J η .
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This was predictable since, on the level of 1-forms, both dS(η) and dS̃(ξ) were primitives to the same
2-form Γ∗

fω
σ, forcing S(η) and S̃(ξ) to be related via Legendre transforms on the level of functions as

described in Section 1.4.2. We can also naturally extend the generating functions as

S̃t(ξ) = −
∫ ξt

ξ0

J η · dξ −
∫ t

0
dtH(ξt) , St(η) =

∫ ηt

η0

J ξ · dη −
∫ t

0
dtH(ηt) , (1.21)

which are condensed expressions for the Poincaré-Cartan integral invariant on R × M × M . The
geometrical meaning of generating functions above will be important in later chapters. Let us describe
this for the case of centers, which we depict in Fig. 1.2(b). Here, the evolution from x0 7−→ xt is
described by the center η = (xt + x0)/2, from which the generating function defines the chord ξ
through (1.19). The meaning of St(η) in (1.21) is, therefore, the area of the region enclosed by the
orbit ρt(x0) and the chord ξ – which is the segment linking the initial and final points.

Notice that, if we had used the chord generating function, the geometrical meaning described above
would be exactly the same, but variables would be obtained from the chord instead.
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Chapter 2
Numerical methods and discretization

From my experience, it is when we least want to work
with something that we end up making a living out of it.

Jair Koiller

We start this chapter by presenting the standard theory of splitting symplectic integrators, used
to solve Hamilton’s equations while preserving the flow’s symplecticity. Although our discussion is
quite general, we emphasize 2-step integrators and the troublesome case of non-separable hamiltonian
functions. The 2-step symplectic integrators are then promoted to discrete hamiltonian maps and
shown to be equivalent to the flows obtained from periodically kicked hamiltonians, which are generally
chaotic. As we have not yet spoken about chaos and integrability, we also briefly enumerate some
aspects of chaos theory that are needed to understand our results.

2.1 Going with the flow

In this section we describe how to solve Hamilton’s equations, i.e. integrate hamiltonian vector fields.
As is usually the case with numerical methods, the theoretical background is quite beautiful on its
own, employing concepts of Lie group theory and differential geometry.

2.1.1 Splitting symplectic integrators: First order theory

We have already shown that movement, i.e. the flow that integrates Hamilton’s equations, is a 1-
parameter family of symplectomorphisms with respect to time. We can express this flow both as an
exponential of a time-independent vector field or as a Poisson-bracket series using (1.7):

ρt = exp (tXH) = exp (−t{H, ·}) .

Now, the Baker-Hausdorff-Campbell (BHC) formula (actually the Zessenhaus formula [Yos90, Sch88])
allows us to split the exponential as

exp (tXH) = exp

[
t

(
∂H

∂p

∂

∂q
− ∂H

∂q

∂

∂p

)]
= exp

[
t

(
∂H

∂p

∂

∂q

)]
exp

[
t

(
∂H

∂q

∂

∂p

)]
+O(t2) ,

which is not particularly useful at this stage. However, if our Hamiltonian has the form

H(q, p) = F (p) + V (q) ⇐⇒ XH = XF +XV ,

the splitting of vector fields implies

exp (tXH) = exp [t (XF +XV )] = exp (tXF ) exp (tXV ) +O(t2) ⇐⇒ ρHt = ρFt ◦ρVt +O(t2) , (2.1)

that is, if our Hamiltonian can be written as a sum of “kinetic” and “potential” terms that are separate
functions of position or momentum, we can approximate movement as the successive action of two
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Hamiltonian flows: The first generated by V (q), and the second by F (p). Since, generally, {F, V } 6= 0,
the ordering of flows is not commutative, although the error has the same order in t:

{
ρHt = ρFt ◦ ρVt +O(t2)

ρHt = ρVt ◦ ρFt +O(t2)
, but ρFt ◦ ρVt 6= ρVt ◦ ρFt !

Definition 2.1.1. Hamiltonians of the form H(q, p) = F (p) + V (q) are called separable.

The splitting given by (2.1) gets better as t is decreased, and the group property of Hamiltonian
flows can be used to our advantage by discretizing time as a function of a small parameter ǫ:

ρt+s = ρt ◦ ρs =⇒ ρǫN =

N times︷ ︸︸ ︷
ρǫ ◦ ρǫ . . . ρǫ = (ρǫ)

N , t = ǫN .

Any hamiltonian flow can then be split as a sequence of infinitesimal flows. For the particular case of
separable Hamiltonians we have the possibilities





ρHt ≈ (ρFǫ ◦ ρVǫ )N
def
= (ρFVǫ )N

ρHt ≈ (ρVǫ ◦ ρFǫ )N
def
= (ρV Fǫ )N

, t = ǫN , (2.2)

where we have defined ρFVǫ and ρV Fǫ based on the chosen ordering. We can, therefore, approximate
the total flow by N iterations of the composite infinitesimal flows generated by the Hamiltonians V
and F , which are just shears and can be solved exactly:

H = V (q) =⇒
{
q̇ = 0

ṗ = −∂qV
=⇒ ρVǫ :

(
q0

p0

)
7−→

(
q0

p0 − ǫ ∂qV (q0)

)
=

(
qǫ
pǫ

)

H = F (p) =⇒
{
q̇ = +∂pF

ṗ = 0
=⇒ ρFǫ :

(
q0

p0

)
7−→

(
q0 + ǫ ∂pF (p0)

p0

)
=

(
qǫ
pǫ

)

Notice that each shear above is expressed as a triangular matrix, being thus symplectic by Lemma
B.1.3. Starting with an initial (q0, p0), for e.g. ρFVǫ the continuous flow is then decomposed as the
discrete sequence

(q0, p0)
ρV

ǫ7−→ (q0, pǫ)
ρF

ǫ7−→ (qǫ, pǫ)
ρV

ǫ7−→ (qǫ, p2ǫ)
ρF

ǫ7−→ (q2ǫ, p2ǫ)
ρV

ǫ7−→ · · · ρ
F
ǫ7−→ (qNǫ, pNǫ) ,

with t = Nǫ. Since the parameter ǫ is fixed and indexing by a natural number is much simpler, we
now take the successive applications of ρFVt to map the system from (q0, p0) 7−→ (qN , pN ) indexing by
iteration step, e.g. the sequence above becomes

(q0, p0)
ρF

ǫ ◦ρV
ǫ−−−−→ (q1, p1)

ρF
ǫ ◦ρV

ǫ−−−−→ (q2, p2)
ρF

ǫ ◦ρV
ǫ−−−−→ · · ·

ρF
ǫ ◦ρV

ǫ−−−−→ (qN , pN ) .

The map from (qi−1, pi−1) to (qi, pi) can then be expressed using either half-steps or a concatenated
single form:




first




qi− 1

2
= qi−1

pi− 1
2

= pi−1 − ǫ ∂qV (qi−1)

second




qi = qi− 1

2
+ ǫ ∂pF (pi− 1

2
)

pi = pi− 1
2

⇐⇒ ρFVt :

(
pi−1

qi−1

)
7−→

(
pi−1 − ǫ ∂qV (qi−1)
qi−1 + ǫ ∂pF (pi)

)
=

(
pi
qi

)

(2.3)
the equivalence being verifiable by direct substitution. The alternative ordering presented in (2.2)
reverses shears:




first




qi− 1

2
= qi−1 + ǫ ∂pF (pi−1)

pi− 1
2

= pi−1

second




qi = qi− 1

2

pi = pi− 1
2
− ǫ ∂qV (qi− 1

2
)

⇐⇒ ρV Ft :

(
qi−1

pi−1

)
7−→

(
qi−1 + ǫ ∂pF (pi−1)
pi−1 − ǫ ∂qV (qi)

)
=

(
qi
pi

)
.

(2.4)
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(q0, p0)

(qt, pt)

(q1/2, p1/2)

(q1, p1)

(p1, q1)(p1/2, q1/2)

(a) Approximating a continous flux by two dis-
crete steps.

(q0, p0)

(qt, pt)(pn, qn)

(qn, pn)

(b) The maps (2.3) and (2.4) are not equivalent.

Figure 2.1: (a) The black curve is the exact evolution (q0, p0) 7−→ (qt, pt) = ρH
t (q0, p0), which we approximate by a single

iteration of maps (2.3) (purple) and (2.4) (green). The half-steps for both algorithms are shown in fractional coordinates.
The distance between the final approximated points and the exact one is of O(t2), so it is best to choose a higher number
of steps, each with a smaller step-size ǫ, leading us to the panel on the right. (b) Here, we use several iterations of
the maps to approximate the exact flow. The associated hamiltonian, however, is not that of the original system, but
of the effective approximations in (2.5), displayed here as dashed lines. The errors are grossly exaggerated for ease of
visualization, since panel (b) should be more precise than panel (a).

A visual depiction of both algorithms is provided in Fig. 2.1. Note that, since the composition of
symplectic mappings is obviously symplectic1, the combined mappings in (2.3) and (2.4) are also
symplectic.

Definition 2.1.2. Numerical strategies that split the Hamiltonian flow into small symplectic pieces,
such as (2.3) and (2.4), are called splitting symplectic integrators (SSIs)2.

As mentioned earlier, since the potential and kinetic terms do not commute, the approximations
(2.3) and (2.4) are of O(ǫ2), which renders these SSIs first-order approximations – the order is defined
by the error in energy, not in the trajectories. To show why this makes sense notice that, again by the
BHC formula,





ρFVǫ = exp (ǫXF ) exp (ǫXV ) = exp
[
ǫ (XF +XV ) +

(
ǫ2

2

)
ω(XV , XF ) +O(ǫ3)

]
def
= exp [ǫXHF V ]

ρV Fǫ = exp (ǫXV ) exp (ǫXF ) = exp
[
ǫ (XV +XF ) +

(
ǫ2

2

)
ω(XF , XV ) +O(ǫ3)

]
def
= exp [ǫXHV F ]

.

Thus, the hamiltonians associated to each composite flow are not the original H, but the perturbative
series




HFV (q, p) = F + V +

(
ǫ
2

)
{V, F}+O(ǫ2) = H(q, p) +O(ǫ)

HV F (q, p) = F + V −
(
ǫ
2

)
{V, F}+O(ǫ2) = H(q, p) +O(ǫ) ,

, (2.5)

which differ from H by a term of at least O(ǫ). This is why we refer to the splitting schemes in
(2.2) as first-order SSIs. We will also call them 2-step SSIs, since we will briefly deal with integrators
employing more steps.

Definition 2.1.3. The perturbed hamiltonians in (2.5) are called effective hamiltonians for H.

Notice one of the effective hamiltonians misses the originalH from above, and the other from below.
Since ǫ is a free parameter, it is evident that the Poisson-bracket series in (2.5) do not always converge.
We can nevertheless choose a small enough step-size such that they converge in a neighborhood of

1Let M and N be symplectic. Then (MN )T J (MN ) = N T (MT J M)N = N T J N = J . �
2Technically, these would be called explicit integrators, since they depend exclusively on the system’s current state

to iterate it. The more expensive implicit methods require knowledge of the future for iteration and shall not be used
anywhere in this thesis, so we omit the “explicit”.
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some phase-space point. A consequence of choosing small values for ǫ, however, is that the number
of map iterations N that we need to perform in order to approximate long propagation times can be
very large, since N = t/ǫ. It would be nice to eliminate terms in the effective hamiltonians in order to
get smaller errors for the same ǫ, a procedure that will turn up to be very similar to the normalization
of a hamiltonian function mentioned in Subsection 1.4.2. We then need to move on to the theory of
higher-order symplectic integrators.

2.1.2 Splitting symplectic integrators: General theory

The reason that rendered the 2-step SSIs developed earlier first-order approximations was that the
commutator of potential and kinetic terms did not vanish. There are more clever ways, however, to
split the action of ρHt in order to eliminate further orders in the BHC expansion defining the effective
hamiltonian. For instance, the BHC series for the split used earlier is

exp(ǫX) exp(ǫY ) = exp(ǫZ) =⇒ Z = X + Y +
ǫ

2
[X,Y ] +

ǫ2

12
([X, [X,Y ]] + [Y, [Y,X]]) +O(ǫ3);

But a different splitting can indeed cancel the [X,Y ] term due to the commutator’s antisymmetry,
e.g.

exp

(
ǫX

2

)
exp(ǫY ) exp

(
ǫX

2

)
= exp(ǫZ) =⇒ Z =

X

2
+
X

2
+ Y +

ǫ

4

=0︷ ︸︸ ︷
([X,Y ] + [Y,X]) +O(ǫ2)

= X + Y +
ǫ2

6

(
[Y, [Y,X]]

2
+

[X, [Y,X]]

4

)
+O(ǫ4) ,

so that, by simply splitting the flow in three instead of two steps, we obtain a second order SSI. Notice
that canceling the [X,Y ] + [Y,X] term results in the vanishing of all terms proportional to it, so all
odd powers of ǫ disappear – this is why the next term is of O(ǫ4). The shear ordering corresponding
to this particular splitting, in analogy with (2.3), is





first





qi− 2
3

= qi−1

pi− 2
3

= pi−1 −
(
ǫ

2

)
∂qV (qi−1)

second




qi− 1

3
= qi− 2

3
+ ǫ ∂pF (pi− 2

3
)

pi− 1
3

= pi− 2
3

third





qi = qi− 1
3

pi = pi− 1
3
−
(
ǫ

2

)
∂qV (qi− 1

3
)

=⇒ ρHt = (ρVǫ/2 ◦ ρFǫ ◦ ρVǫ/2)N +O(ǫ3)
def≈ (ρV FVǫ )N ,

for X = XV and Y = XF . The effective hamiltonian for the above splitting algorithm is then

HV FV (q, p) = F + V +
ǫ2

24
{2F + V, {F, V }}+O(ǫ3) = H(q, p) +O(ǫ2) ,

which corresponds to a second order SSI because the error in energy is of O(ǫ2). Since the effective
hamiltonian above only contains even powers of ǫ, it is also symmetric with respect to time-reversal
(compare with the hamiltonians in (2.5), which are not). Evidently, we could also have started with a
shear in position, ending with HFV F – in fact, there are clearly infinite ways to split the flow. Given
that flows form a group, we can choose any possible splitting by shears

ρHt = ρs1 ◦ ρs2 ◦ · · · ◦ ρsn ,

as long as the final times match. Since any splitting strategy is valid, we are also left wondering what
sort of criterium to use. Yoshida [Yos90] uses the simplest possible prescription that added splittings
should cancel further orders in the effective Hamiltonian expansion and showed that 2 and 3-step
SSIs can be combined to form integrators of any desired order. These early algorithms, however,
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turn out to be inefficient for many degrees of freedom. More recent papers use different splitting
prescriptions [MA92] to devise SSIs that are efficient and machine-precise even for many degrees of
freedom [BCF+13, TS13]. Interestingly, the number of splittings used is usually very large, since it
was shown that a large number of steps can actually render computations surprisingly more efficient
due to the path traced by iterated points being smoother [RCV19].

2.1.3 The flow of non-separable hamiltonians

While it may look like the theory devised up to now solves the problem of numerical integration of
hamiltonian vector fields, it only works if our hamiltonian function is separable. This is a somewhat
significant limitation, since the effective hamiltonians themselves are necessarily non-separable due
to the commutators mixing functions of position and momentum. A very clever algorithm recently
proposed in [Tao16] deals with non-separable hamiltonians by injecting them in a higher dimensional
space in which, surprisingly, they become separable. We proceed to a brief exposition of this method
but leave all hard-analysis and error estimates aside (for these, see [Tao16]).

Let our symplectic manifold be the prototype (R2n, dQ∧dP ) andH : R2n → R a completely general,
smooth hamiltonian function, for which we have Hamilton’s equations and initial value problem

ıXH
(dQ ∧ dP ) = dH(Q,P ) =⇒





Q̇ =
∂H(Q,P )

∂P

Ṗ = −∂H(Q,P )

∂Q

, (Q,P )
∣∣
t=0

= (Q0, P0) ,

and as always our variables represent condensed coordinates, e.g. Q = (Q1, Q2, . . . , Qn). The aug-
mented Hamiltonian H is defined as

H : R4n × R −→ R

{(q, p, x, y), ω} 7−→ H(q, p, x, y;ω) = H(q, y) +H(x, p) + ω

[
(q − x)2

2
+

(p− y)2

2

]

def
= HA +HB + ωHC .

The parameter ω is a coupling constant whose significance will be postponed. The augmented space
is then taken as (R4n, dq ∧ dp+ dx ∧ dy), and we have the augmented initial value problem

ıXH
(dq ∧ dp+ dx ∧ dy) = dHA + dHB + ω dHC

⇐⇒





q̇ =
∂H(q, p, x, y)

∂p
=
∂HA

∂p
+ ω(p− y)

ṗ = −∂H(q, p, x, y)

∂q
=
∂HB

∂q
− ω(q − x)

ẋ =
∂H(q, p, x, y)

∂y
=
∂HB

∂y
− ω(p− y)

ẏ = −∂H(q, p, x, y)

∂x
=
∂HA

∂x
+ ω(q − x)

, (q, p, x, y)
∣∣
t=0

= (Q0, P0, Q0, P0) .

The initial value problem in the augmented space above is simply a cloning of the problem in the
original space, except for the terms proportional to ω. Since we indeed want the system to be a clone,
we must fix xt = qt and yt = pt, so that the terms proportional to ω vanish for the solutions, allowing
us to ignore them when dealing with the projections (q, p, x, y) 7−→ (q, y) and (q, p, x, y) 7−→ (x, p).
The former projections are separable and can be immediately seen as mixed shears in the augmented
space, being easily solvable. Take, for instance, the former projection described, for which we have an
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initial value problem involving solely HA = H(q, y):

HA :





q̇ = 0

ṗ = −∂qH(q, y)

ẋ = +∂yH(q, y)

ẏ = 0

=⇒ ρAt :




qt
pt
xt
yt


 7−→




q0

p0 − t ∂qH(q0, y0)
x0 + t ∂yH(q0, y0)

y0




with (q, p, x, y) = (q0, p0, x0, y0) = (Q0, P0, Q0, P0). The flow associated to HB is, analogously,

HB =⇒





q̇ = +∂pH(x, p)

ṗ = 0

ẋ = 0

ẏ = −∂xH(x, p)

=⇒ ρBt :




qt
pt
xt
yt


 7−→




q0 + t ∂pH(x0, p0)
p0

x0

y0 − t ∂xH(x0, p0)




with the same initial conditions. The initial value problem for HC can be considered separately and
is easily solved analytically:

ωHC =⇒





q̇ = ω(p− y)

ṗ = −ω(q − x)

ẋ = −ω(p− y)

ẏ = ω(q − x)

=⇒ ρCt,ω :




qt
pt
xt
yt


 7−→




(
q0 + x0

p0 + y0

)
+R(δ)

(
q0 − x0

p0 − y0

)

(
q0 + x0

p0 + y0

)
+R(δ)

(
q0 − x0

p0 − y0

)




with

R(δ) =

(
cos(δ) sin(δ)
− sin(δ) cos(δ)

)
, δ = 2ωt .

Of course, in the augmented space we must still include the flux generated by HC , even though we
can neglect it when considering the projections. Fixing t = ǫN , as in the previous subsections, the
final flow can be expressed as the 5-step splitting [Str68]

ρ̄ǫ =
(
ρAǫ/2 ◦ ρBǫ/2 ◦ ρCǫ,ω ◦ ρBǫ/2 ◦ ρAǫ/2

)N
+O(ǫ3) , t = ǫN , (2.6)

which as an error of O(ǫ3) in the trajectories, rendering is a second order SSI (higher-order algorithms
are presented in [Tao16]). Since the coordinates (x, y) are clones of (q, p), the solution can be projected
back to (R2n, dQ ∧ dP ) by either (q, p, x, y) 7−→ (q, p) or (q, p, x, y) 7−→ (x, y).

We now stop to describe the role played by ω. Note how ω is the factor that deviates H from
being simply the sum HA + HB, which in principle should work as well. This type of solution was
investigated by Pihajoki in [Pih14], where it was discovered that the solutions obtained by this method
diverge for times of O(1). Pihajoki himself suggests a fix that mixes augmented variables similarly to
our term ωHC , but the gain in convergence had the collateral effect of violating symplecticity. The
form of HC devised by Tao solves all these problems and produces a true symplectic integrator that
mixes augmented variables in such a way that divergences are indeed avoided. Unfortunately, the
hard analysis regarding error estimates due to varying ω is too intricate to be included here3. What
is important to us is that we can simply increase ω until convergence in the solutions is attained.
Computational cost appears to be independent of ω, as argued by Tao.

2.2 Hamiltonian dynamical systems

Now that we know how to solve the equations of motion, let us bind together flows and geometry, as
up to now we have been dealing with flows without paying much attention to the manifold on which

3Tao’s article [Tao16] is comprised of a single page describing the method and all the rest is dedicated to ω.
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they are defined. However, it is clearly necessary to say something about this domain, since it is
expected that the same evolution rule will produce very different results depending on whether it is
defined e.g. on a compact manifold (such as the torus or sphere) or on the plane. This gives rise to
the concept of a system, which is effectively what we use to model the real world.

Definition 2.2.1. A hamiltonian system is the triple (M,ω, ρHt ) of a symplectic manifold and a
hamiltonian flow. For the prototype (R2n, dq ∧ dp), we will refer to M as the phase space.

Hamiltonian systems are usually defined in terms of the hamiltonian function, not its flow, since
each hamiltonian has unique vector field and flow. Here, however, we will deal a lot with SSIs that
cannot be rigorously derived from any hamiltonian function, although they are usually linked to δ-
perturbed hamiltonians (see Subsection 2.2.2). Defining systems using the evolution law is standard
in the theory of dynamical systems, and will make our life much simpler – we already have too many
different kinds of continuous and discrete evolution laws in this dissertation. Several other definitions
of dynamical systems are possible depending on whether one is focusing on measure-theoretical prop-
erties, topology, etc, but we will stick to the one above and usually just state where the flow acts on
instead of writing the whole triple.

2.2.1 Continuous flows and discretization

All the theory of Chapter 1 assumed the flow to be continuous, since we always considered time as a
real number. In this case there is not much to say except to contextualize what was presented up to
now: Starting with a hamiltonian function H defined on M , we define our system of interest. Its flow
ρHt can be obtained by integrating its vector field numerically using the theory presented in Section
2.1, where we showed that the approximating numerical algorithms are in fact connected to effective
hamiltonians. For 2-step SSIs, for instance, a single continuous hamiltonian gives rise to two discrete
hamiltonian systems, depending on the chosen ordering: For the same time-discretization t = ǫN ,

(M,ω, (ρFVǫ )N )

(M,ω, ρHt )

(M,ω, (ρV Fǫ )N )

H 7−→HF V

H 7−→HV F

For small ǫ we evidently have (M,ω, (ρFVǫ )N ) ≈ (M,ω, (ρV Fǫ )N ) ≈ (M,ω, ρHt ), but we will soon let ǫ
assume arbitrary values. We remind the reader that the discretized flows cannot be extracted from
the effective hamiltonians, they just “conserve” them (if they converge).

2.2.2 Symplectic integrators as hamiltonian maps

The discretized flows ρV Fǫ and ρFVǫ emerged as discrete numerical algorithms used to approximate a
continuous hamiltonian flow for small ǫ. However, since they are symplectic for all ǫ, we can consider
what happens for arbitrary ǫ. The parameter ǫ, however, does not define a time per se, but rather the
distance between map iterations. In this context it is then intuitive to interpret ǫ as a kicking strength,
and since it does not need to be small we will substitute it for the letter T . Since the convergence of
the effective hamiltonians depends on us choosing small enough kicking strengths, large T values mean
that the discretized flows are no longer obtained from a conserved hamiltonian: They form completely
different systems when compared to the one they approximate when T is small.

Example 2.2.2. (The standard map) The 1-parameter family of discrete symplectomorphisms

{
pi = pi−1 + T sin(qi−1)

qi = qi−1 + Tpi
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is immediately seen to be a 2-step SSI by considering F (p) = p2/2 and V (q) = cos(q). It is usually
presented in the renormalized form obtained by the substitution p 7−→ p/T , namely





pi
T

=
pi−1

T
+ T sin(qi−1)

qi = qi−1 +
T pi
T

=⇒
{
pi = pi−1 +K sin(qi−1)

qi = qi−1 + pi
, K = T 2 ,

such that changes in the kicking strength K only affect the momentum coordinate. The map above
was devised by B. Chirikov [Chi79] and forms the standard system, which is usually defined acting on
[0, 2π]× [0, 2π] or R× [0, 2π].

Discrete systems like the one above are usually obtained from periodically kicked hamiltonians of
the form

Ht(q, p) = F (p) + TV (q)
∑

k

δ(t− Tk) , k ∈ N ,

where the δ function plays the role of creating infinitely strong kinetic kicks at t = Tk, and otherwise
evolution is free and given by F (p) (usually taken as p2/2). Using the hamiltonian above and manip-
ulating the δ in a formal way, we do arrive at the same expressions as the 2-step SSIs we have been
using, but suppress a significant amount of intuition. Besides, the 2-step integrators naturally led us
to effective hamiltonians, which play a fundamental role in this dissertation – we then stick to the
SSIs and set the kicked hamiltonians aside.

Definition 2.2.3. Discrete flows obtained by considering SSIs for arbitrary kicking strengths are
hamiltonian maps. In this context we will represent them by the symbol U instead of ρ.

Evidently, these maps are called hamiltonian because they are derived as discretizations of a
hamiltonian flow – they are symplectic and present all the characteristics of the flows described in
Chapter 1, although adaptations might be necessary. We must, for instance, discretize things that
were continuous earlier. As an example, we now show that it is possible to define a lagrangian for each
iteration of a hamiltonian map. For this, let’s get briefly back to small kicking strengths and choose
the time-discretization t = ǫN of (1.10), so

St(q) =

∫ t

0
dτ Lτ (q, q̇) = lim

ǫ→0

{
N∑

i=0

Lτ

(
qi,

qi − qi−1

ǫ

)
ǫ

}
≈

N∑

i=0

Lτ

(
qi,

qi − qi−1

ǫ

)
ǫ ,

where the approximation gets better as ǫ is decreased and, consequently, N is increased. The dis-
cretization above, however, is entirely valid for arbitrary kicking strengths T , although it is no longer
an approximation to a continuous integral: It is an exact lagrangian for the corresponding hamilto-
nian map iteration. Therefore, there is a generating function Si(qi, qi−1) such that, analogously to the
continuous case,

Si(qi, qi−1) = TLi

(
qi,

qi−1 − qi
ǫ

)
, S(q0, qN ) =

N∑

i=0

Si(qi, qi−1)T

pi =
∂Si(qi, qi−1)

∂qi
, pi−1 = −∂Si(qi, qi−1)

∂qi−1
.

It’s important to keep in mind that for different shear-orderings we get different lagrangians and
actions. For UFVT and UV FT , for example, the corresponding actions are not the same, since derivatives
are evaluated at different points: For UV FT we have

qi = qi−1 + T

(
∂F (p)

∂p

)

p=pi

=⇒ qi − qi−1

T
=
∂F (p)

∂p

∣∣∣∣
p=pi

(2.7)

but for UFVT

qi = qi−1 + T

(
∂F (p)

∂p

)

p=pi−1

=⇒ qi − qi−1

T
=
∂F (p)

∂p

∣∣∣∣
p=pi−1

. (2.8)
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N. B.: From now on, every time we talk about hamiltonian maps as dynamical systems we will employ
the letter U instead of ρ, i.e. every time the parameter ǫ represents more than just an iteration step,
but a real kicking strength, it will be written as T and the map will be e.g. UFVT instead of ρFVT . This
is because we will use several different mappings and flows and we do not want to confuse the reader
with the same symbol representing both a physically meaningless numerical discretization algorithm
and a real dynamical system. Thus, remember: If we write ρFVǫ , it should be taken as a theoretically
void SSI, but UFVT is a real discrete evolution law with physical significance.

2.2.3 Integrability and chaos

As shown earlier, the hamiltonian maps are associated to effective hamiltonians that may not be con-
served for large kicking strengths, opening the door to chaotic behavior. In this section we enumerate
some facts of chaotic motion that will be used in the future, without the pretension of covering any real
chaos theory, i.e. we do not talk about symbolic dynamics, topology, ergodicity and mixing, or even
really define chaos in a mathematically satisfactory way. The little we need is complicated enough.

In Subsection 1.4.3 we have shown that it is sometimes possible to find a symplectomorphism
that allows us to express the flow in terms of action and angle coordinates, defining n-dimensional
lagrangian tori in a 2n-dimensional symplectic manifold. Since tori are compact sets and there is no
continuous function that maps open sets to closed sets, the action-angle symplectomorphism will only
exist if the flow is restricted to a compact domain. As the flow is stationary when the vector field is
null, bounded flows are forced to orbit a point in the manifold.

Definition 2.2.4. A point where the vector field vanishes is a fixed point. If the flow in its vicinity
is bounded, the fixed point elliptic – otherwise it is hyperbolic or a saddle point.

Saddle points are combinations of hyperbolic and elliptic points and will not be mentioned again,
since they do not occur on the plane. Action-angle coordinates can then only exist in the neighbour-
hood of an elliptic fixed point, a situation already mentioned in Subsection 1.4.3.

Definition 2.2.5. If the action-angle coordinates can be defined globally, then the system at hand is
said to be integrable. Otherwise, it is chaotic.

Let us now develop some intuition regarding the definitions given above. Let us start with a 4-
dimensional phase space, which although might look like an unintuitive start, is not that bad since we
can treat the neighbourhood of an elliptic fixed point as a 2-dimensional torus T2 – a doughnut. The
orbits trace curves on the surface of this torus, having constant actions and angles that are generally
very complicated functions of these actions. Take now a specific orbit with its 2 action-angle variables
I = (I1, I2) and ν = (ν1, ν2), respectively. Each pair (Ik, νk) defines a circle, and if ν1/ν2 ∈ Qn the flow
eventually closes on itself and the orbit ends up being periodic. If ratio ν1/ν2 is irrational, however,
the orbit never closes on itself – we call it quasi-periodic. Notice that, since the requisite for being
periodic is to have rational frequencies, periodic orbits are dense on the torus but have zero measure.
Quasi-periodic orbits, however, are clearly a set of full measure.

We now come to the orbits for which action-angle coordinates cannot be found. There are many
subtleties regarding concepts like ergodicity, strong and weak mixing, etc, that one is bound to stumble
upon while pursuing a precise definition of chaos [dA90]. We will deal with these orbits by exclusion:
Chaotic orbits are the ones that, well... are bounded but do not form tori. In numerical simulations
they will be impossible to miss – its much easier to see chaos than to properly define it.

Definition 2.2.6. Periodic and quasi-periodic orbits are called regular, as opposed to chaotic.

We can then contextualize what it means for a system to be integrable: For each and every region
of the manifold a flow acts on, action-angle variables can be defined – choose a point, and it will
lie on a torus. Since these tori are lagrangian manifolds, we can then state this precisely as: A
system is integrable when its invariant tori provide a lagrangian foliation of phase space (this term
will be important in Chapter 3). Thus, the 2n-dimensional phase space of a hamiltonian system can
be decomposed as a dense, disjoint union of n-dimensional tori. Therefore, a system can only be
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integrable if it posseses n conserved actions and, therefore, n quantities invariant with respect to its
hamiltonian flow.

Corollary 2.2.7. There is no chaos in 1-dimensional autonomous hamiltonian systems, since their
phase space is foliated by inverse images of the hamiltonian function: M = ⊔iH−1(Ei).

The corollary above is of extreme importance for us: It states that the SSIs presented earlier,
which we promoted to hamiltonian maps, might not be integrable due to the effective hamiltonian
failing to be conserved. In fact, this is basically an affirmative: All SSIs obtained from a non-quadratic4

hamiltonian will have a T -threshold above which they are chaotic, even though the original hamiltonian
that generated these SSIs is integrable on the plane5.

We now include a very brief description of the most important result in the field of classical
chaos, the Komolgorov-Arnol’d-Moser (KAM) theorem, which will be mentioned several times in this
dissertation and is sure to be addressed in basically any text about chaos. We have already met
with invariant tori several times, for which there are action and angle variables describing orbits
that might be periodic or quasi-periodic. The question attacked by the KAM theorem is: If I have
an integrable system with hamiltonian H0 and perturb it to create H0 + ǫH1, what happens to my
invariant tori? If the perturbation is integrable the answer is trivial: Nothing, since the final system
will also be integrable. We are then led to consider non-linear perturbations, for which the KAM
theorem states: If the angle variables of your unperturbed orbits, bound to walk over invariant tori,
are irrational enough, they will stretch and deform but will not be destroyed. Periodic and quasi-
periodic orbits that do not fulfill the “irrational enough” condition [HI03], namely the Diophantine
condition |r1ν1 + ...+ rnνn| ≥ C|k|−1−n, with ri ∈ Z and C is a constant, will eventually collapse into
multi-dimensional Cantor sets (the “cantori” [Per79]). As KAM theory assumes some differentiability
of the flow to transform it to a normal form, but neither the Cantor sets nor the tori fulfill them for
sufficiently high perturbation strengths ǫ, it is eventually necessary to move to the realm of Aubry-
Mather theory, which weakens the assumptions necessary in the KAM domain [Per79]. In the end,
the only thing the reader must remember about KAM theory to understand this dissertation is that
it is impossible to destroy all invariant tori by perturbing an initially integrable system: Many will be
destroyed, but some will always remain or re-form.
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Chapter 3
Wentzel-Kramers-Brillouin theory

All theory, my dear friend, is gray,
But the golden tree of life springs ever green.

J. W. von Goethe in Faust, Vol. I

The quantum mechanical wavefunction is a complex object: at each q ∈ Rn and t ∈ R, we have
ψt(q) ∈ Cn. Thus, for every q and t we can write it in polar form

ψt(q) = At(q, ~) exp

[
iSt(q, ~)

~

]
, (3.1)

where we divide by ~ in order for the exponential to be dimensionless – this is an early sign that S
must be somehow related to a generating function, since ~ has units of action. Although the ansatz
above is valid for every point, it might be impossible to find A and S so that it is valid for the whole
evolution. Adding to that, we have no idea about how the amplitude and the phase depend on ~. The
Wentzel–Kramers–Brillouin (WKB) approximation assumes quantum mechanics depends smoothly on
~, allowing one to expand both the amplitude Vand the phase in the ansatz (3.1) in Taylor series. We
begin with a quick discussion on quantum mechanics, which is followed by the WKB approximation
of stationary states. We then include time-dependence and obtain an expression for the semiclassical
propagator in terms of WKB approximations, resulting in the well-known van Vleck formula. Lastly,
we introduce the concept of integral representation, the fundamental technique in this dissertation,
and briefly expose the problem of the semiclassical quantization of chaos.

3.1 Position and momentum in quantum theory

Quantum mechanics, just as its classical equivalent, is concerned with the description of stationary
and dynamical processes. In strong contrast to the classical world, however, the equations governing
quantum evolution are always linear, implying that chaos is not allowed in the microscopic world.
These equations can be written in two equivalent forms associated with the pictures of Schrödinger
and Heisenberg: The former places time-dependence on evolving quantum states, while the latter
evolves the theory’s self-adjoint operators instead. The equations of movement for each picture are

Schrödinger equation: i~
∂|ψt〉
∂t

= Ĥ|ψt〉 , Ĥ = Ĥ† , |ψt∈R〉 ∈ P (L2)

Heisenberg equation: i~

(
dÂt
dt

)
= −[Ĥ, Ât] , Ĥ = Ĥ† , Ât = Â†

t .

The set P(L2) is the projectivization of the space of square-integrable functions acting on Rn, rep-
resenting our space of quantum states – the kets (see Appendix C for details). Notice how similar
Heisenberg’s equation is to Liouville’s in (1.6), such that the simple substitution { , } 7−→ [ , ]/i~ and
the erasing of“hats” formally maps one into the other: This prescription is known as Dirac or canonical
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quantization. It is an incomplete quantization procedure and does not generally provide the correct
quantum correspondent of a classical system.

In the Schrödinger picture it is necessary to choose a basis in which to express the kets, which are
vectors. Since L2 is infinite-dimensional, but also a Hilbert space, it is reflexive and we can define a
set of bras acting as linear functionals on kets through the inner product of L2 [Bar95, BPT15]. The
existence of a countable orthonormal basis in L2 is also guaranteed due to its separability [BPT15],
so there exists a Hamel basis in which any ket can be expanded. In physics, however, it is costumary
to deal with position and momentum operators that follow the formal equations

q̂|q〉 = q|q〉 , p̂|p〉 = p|p〉 ,

which do not make any sense in L2, since the position and momentum kets are not normalizable.
Besides, such kets could never form bases in any Hilbert space, since q is real and a basis in L2 must
be countable [BPT15].

It is impossible to make sense of position and momentum eigenstates within Hilbert space the-
ory only, and for a rigorous exposition there are two immediate choices: Either formulate quantum
mechanics using the spectral theory of self-adjoint operators [Hel08, Mor16], or make sense of posi-
tion/momentum eigenvectors by leaving (or extending) the safe realm of Hilbert spaces. The latter
stategy is more mathematically accessible and involves the use of rigged Hilbert spaces, which employ
a stronger norm and allow for the incorporation of Schwartz distributions into quantum mechanics
[dlM01]. We discuss some fundamentals of a distributional formulation of quantum mechanics in
Appendix C, but here we just affirm that the bra-ket formalism can be made mathematically rigorous.

We shall employ the usual conventions in physics, which include expressing an arbitraty ket |ψ〉
in either position or momentum representations as 〈q|ψ〉 = ψ(q) and 〈p|ψ〉 = ψ̃(p), respectively.
These representations are defined as: The position (resp. momentum) representation is the one where
each component of the position (momentum) operator acts as a multiplication by a real number, and
each component of the momentum (position) operator acts as differentiation with respect to position
(momentum). Then, the operators

T̂ (a, p̂) = exp

[
i

~
(a · p̂)

]
, T̂ (a, q̂) = exp

[
− i
~

(a · q̂)
]

(3.2)

act as the generators of translations by a in the position and momentum representations [Bal08, dA98],
respectively:

T̂ (a, p̂)|q〉 = |q + a〉 , T̂ (a, q̂)|p〉 = |p+ a〉 .

The inner product used is just a notational convention and means, for instance, a· q̂ def
= a1q̂1 +...+anq̂n.

The Schrödinger equation itself can be also cast into e.g. the position representation, resulting in

i~
∂〈q|ψt〉
∂t

= 〈q|Ĥ|ψt〉 ⇐⇒ i~
∂ψt(q)

∂t
= Ĥ

(
q,−i~ ∂

∂q

)
ψt(q) ,

and [a reformulation of] the Riesz duality implies that ψ̃t(p) can be uniquely obtained as the Fourier
transform of ψt(q) for all values of t [Bar95].

Another basis commonly used in physics is formed by the eigenvectors of the anihilation operator

â
def
= (p̂− iq̂)/

√
2, known as coherent states. In the position representation, they are given by

〈q|α〉 =

(
1

π~

) 1
4

exp

{
−
(

1

2

) [
q −ℜ(α)

]2
+

(
iℑ(α)

~

) [
q −ℜ(α)

]}
, (3.3)

and will be used extensively in this dissertation. Just as position and momentum, coherent states can
also be interpreted as a distributional basis in the rigged-space formalism, except that they are said
to be over-complete due to 〈α|β〉 6= δ(β − α), while for position and momentum the equality holds.
The description in terms of the coherent-state basis is known in the mathematical literature as the
Segal-Bargmann representation [Fol89]. This whole discussion is extended in Appendix C.
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3.2 Stationary WKB states

We now proceed to semiclassical mechanics. Time-independent problems in quantum mechanics are
rather straightforward, since they depend only on the hamiltonian operator – its just linear algebra (or
Sturm-Liouville theory). Time-propagation, however, depends also on the initial state, being generally
much more intricate. Looking for eigenvectors, i.e. stationary states with respect to time evolution, is
therefore a good place to start our semiclassical treatment.

3.2.1 The WKB ansatz

The WKB ansatz for a one-dimensional stationary wavefunction ψ(q) is a modification of (3.1) and
takes the form

ψ(q) = A(q) exp

[
iS(q)

~

]
,

where A(q) and S(q) depend analytically on ~, but we omit this dependence to simplify notation. The
ansatz, therefore, consists of associating each eigenstate to an amplitude and a phase. To characterize
them, we introduce this ansatz in the time-independent Schrödinger equation, where we assume a
hamiltonian of the form Ĥ = p̂2/2 + V̂ (q̂):

[
Ĥ(q,−i~ ∂q)− E

]
ψ(q) = 0

⇐⇒ ∂2ψ(q)

∂q2
−
[
V (q̂)− E

~2

]
ψ(q) = 0

⇐⇒ −~

2

[
AS′′ + 2A′S′ + ~A′′

]
+

{
1

2

(
S′
)2

+ (V − E)

}
= 0 .

Through the identification p = ∂S/∂q = S′, the term within curly brackets is immediately recognized
as the time-independent Hamilton-Jacobi equation of Subsection 1.4.1, placing a strong requirement
on the function S(q): it must be an admissible1 generating function for the lowest order O(~0). We
assume this is the case and get rid of the curly brackets, proceeding to the square bracket term. For
a solution valid up to O(~2), we ignore the last term and obtain

AS′′ + 2A′S′ = 0 ,

known as the homogeneous transport equation [BW12]. It is trivially solved in the one-dimensional
case:

AS′′ + 2A′S′ = 0 ⇐⇒
(
A2S′

)′
= 0 =⇒ A = C

(
S′
)− 1

2 , C ∈ C , (3.4)

from which we see that the quantity A2S′ is conserved. In higher dimensions this derivative is a
divergence, and the homogeneous transport equation ends up being the time-independent continu-
ity equation ∇(ρ ζ) = 0, with p = S′ and ζ = A2 representing the velocity field and the density,
respectively. Since the density A2 is conserved, we must have the Radon-Nikodym [Bar95] derivative

√
dq√
dp

=
Ã(p)

A(q)
,

a strong indicative that WKB theory should actually be formulated in terms of half-densities instead
of densities [BW12, GS12], especially because of difficulties that occur due to lagrangian manifolds
changing orientation. In physics, however, the square-roots are usually taken care of by using a change
of coordinates in an integral form of the condition for amplitude conservation:

∫

Rn
dq A2(q) =

∫

Rn
dp Ã2(p) ⇐⇒

∫

Rn
dq A2(q) =

∫

Rn
dq

∣∣∣∣det

(
∂p

∂q

)∣∣∣∣ Ã
2(p)

⇐⇒ A2(q) =

∣∣∣∣det

(
∂p

∂q

)∣∣∣∣ Ã
2(p)

⇐⇒ A(q) =

∣∣∣∣∣det

(
∂2S(q)

∂q2

)∣∣∣∣∣

1
2

Ã(p)

1For the meaning of admissible, see Definition 1.4.2.
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We can easily see a source of trouble in (3.4): If S′ = p = 0, the approximation diverges, forming
the well-known classical turning points, where the potential energy becomes equal to the total energy:

H(q, p) =
p2

2
+ V (q) =⇒ p = ±

√
2 [H(q, p)− V (q)]

p = 0 ⇐⇒ V (q) = H(q, p) ,

This divergence is not limited to the expansions’s truncation at O(~). To see this, assume A = A0 as
in (3.4) is the O(~0) term in the A series and proceed to the next order in ~, namely A1. The result
follows from an equivalent computation to that of A0 and reads

[
Ĥ(q,−i~ ∂q)− E

] [
(A0 + ~A1) exp

(
iS

~

)]
= 0

⇐⇒ A1S
′′ + 2A′S′ = iA′′

0 ,

where we have ignored an O(~3) term (and assumed S to be admissible and to satisfy the homogeneous
transport equation). It is clear that each term Ak in the ~-series of A can be obtained recursively as

AkS
′′ + 2A′

kS
′ = iA′′

k−1 ,

with A0 as A in (3.4). The equation above is known as the inhomogeneous transport equation. Notice
that a blow up in A0 is reflected in all orders of A.

3.2.2 Polarizations and classical turning points

The classical return points, where ∂qS(q) = 0, clearly depend on the chart we use to describe S(q)
– we could have simply chosen the use a momentum chart instead. There is nothing wrong with the
generating function itself nor with its lagrangian manifold: It is the projection to the position axis that
was problematic. As a generating function, S can be expressed in a completely coordinate-independent
form as S =

∫
α, so that

ω = dq ∧ dp = −dα =⇒





α = p dq

α = −q dp
α = 1

2(p dq − q dp)
... =

...

, (3.5)

where we can run from one chart to the other through the Legendre transforms of Section 1.4. A
general solution for α is easily found, since

ω = −dα ⇐⇒ α = f(q, p) dq + g(q, p) dp =⇒ −dα =

(
∂g

∂p
− ∂f

∂q

)
dq ∧ dp ,

such that if we have a general α = f(q, p) dq + g(q, p) dp it will be a primitive for ω iff ∂pg − ∂qf = 1.
Notice this places no restriction on the derivatives of ∂qg and ∂pf , such that there is indeed an infinite
number of non-trivial local expressions for α. We will, however, focus on the first two possibilities in
(3.5), for which we have the generating functions2

dS(q) = p · dq =⇒ p =
∂S(q)

∂q
, and dS̃(p) = −q · dp =⇒ q = −∂S̃(p)

∂p
, (3.6)

corresponding to the lagrangian submanifolds (q, ∂qS(q)) and (−∂pS̃(p), p), which are embedded in a
chart symplectomorphic to (R2n, dq ∧ dp). Since both S(q) and S̃(p) are homeomorphisms, we have
then obtained two ways of potentially decomposing a symplectic manifold as graphs of generating
functions described in terms of either position or momentum charts.

Definition 3.2.1. A decomposition of a symplectic manifold M as the disjoint union of lagrangian
submanifolds is a lagrangian foliation. Each element in the foliation is a lagrangian leaf. The
different possible parametrizations of leaves are called polarizations3.
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(a) Branches of S(q) and S̃(p)
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p
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(q,−p(q))

(q,+p(q))

(b) A point is described in two charts
using S(q).

q

p

Q

P

−p

Γ̃1(p)

Γ̃2(p)

(q(p), p)

(q(−p),−p)

(c) The same point is in a single chart

of S̃(p).

Figure 3.1: The geometry of lagrangian graphs for the SHO. (a) Here, we see that the branches of S(q) and S̃(p) are
glued at different points in phase space, which are exactly where the classical turning points are defined. (b,c) A point
that requires two charts in the graph of a generating function is always parametrized by a single chart for a description
in terms of its Legendre transform.

Example 3.2.2. (The SHO): The one-dimensional simple harmonic oscillator was defined in Ex-
ample 3.3.1 by the hamiltonian H(q, p) = p2/2 + q2/2, with (q, p) ∈ R2. The pre-image H−1(E) of
any E ∈ R, i.e. each lagrangian leaf, is a circle and is parametrized by at least two charts. A position
polarization can be chosen by noticing that we can solve for momentum as p = ±

√
2H(q, p)− q2,

expressing the branches of S(q) as the charts Γ1(q) = (q,+p(q)) and Γ2(q) = (q,−p(q)). The position
can be isolated as well, giving q = ±

√
2H(q, p)− p2, and forming the momentum polarization with

branches Γ̃1(p) = (+q(p), p) and Γ̃2(p) = (−q(p), p), this time of S(p). Fig. 3.1(a) depicts a leaf in
which it is obvious that we change charts in position and momentum polarizations at different points,
i.e. they failure at different regions, allowing for the interchange of descriptions near a classical turn-
ing point. In Fig. 3.1(b) we show a point that needs two position charts might need only one for its
momentum equivalent, shown in Fig. 3.1(c). >

The choice of a polarization corresponds to expressing the WKB ansatz as either

ψ(q) = A(q) exp

[
iS(q)

~

]
or ψ̃(p) = Ã(p) exp

[
iS̃(p)

~

]
, (3.7)

which correspond to the position and momentum representations of |ψ〉. As we saw earlier, we have

S(q) =

∫
p · dq and S̃(p) = −

∫
q · dp ,

and using (3.6), we have the concomitant equalities for the arbitrary vector field X:

{
dα = 0 =⇒ dS = p · dq =⇒ dS(X) = 0 ⇐⇒ dq(X) = 0

dα = 0 =⇒ dS̃ = −q · dp =⇒ dS̃(X) = 0 ⇐⇒ dp(X) = 0
,

which are mutually valid iff we have the null vector field X = 0 or α = 0, the latter being generally
impossible, since it would imply ω = 0 everywhere. This means that whenever we have a caustic in
S(q), we necessarily do not have a caustic in S̃(p). The position and momentum polarizations are,
therefore, “semiclassically conjugate”, in the sense that each point in a symplectic manifold can be
described in a divergence-less manner by employing either polarizations: We just need to change from
one to the other near a classical turning point.

2The notation dS(q) used here does not mean that we evaluate the differential on a field q. It’s just notation to
distinguish choices of generating functions, representing the coordinates with respect to which we can differentiate.

3This is not the usual meaning of “polarization” found in geometric quantization. Here, the term is used as the
semiclassical equivalent of “representation” in quantum mechanics (see (3.7)).
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3.2.3 Stationary phase approximations and semiclassical superposition

We can then use the Fourier transform to express the WKB ansatz in momentum polarization as

ψ̃(p) =

∫
dq ψ(q) exp

(
− ip · q

~

)
=

∫
dq A(q) exp

(
i

~
[−p · q + S(q)]

)
, (3.8)

where, as discussed in Chapter 1, the phase is just the momentum generating function due to the
Legendre duality dS(p) = d[−p · q+S(q)]. The integral above is exact, but our WKB approximations
are not. Just as we have done for the Schödinger equation, we are interested in an expansion in ~.
The integrals above display highly oscillatory behavior for large actions due to the sine and cosine in
the complex exponential, so that most contributions to the complete integral end up being canceled
when the numerator and denominator in the phase are not numerically close. An approximation to
the full integral as a sum around the regions p · q− S(q) ≈ ~ is, therefore, believed to be a good one –
in fact, it has errors of the same order as the WKB ansatz itself with respect to ~ (see Appendix D).

Definition 3.2.3. The approximation of (3.8) based on the smallness of ~ when compared to S(q),
i.e. based on considering the non-oscillatory contributions arising from p · q − S(q) ≈ ~ ≈ 0, is a
stationary phase approximation (SPA).

We sketch a bit of the theory concerning these integrals in Appendix D. Here, we just present the
result of performing a SPA in (3.8) away from a turning point in momentum space,

φ̃(p) =
∑

j

A(q(j))

∣∣∣∣∣∣
det

[
∂2S(q)

∂q2

]

q=q(j)

∣∣∣∣∣∣

1
2

exp

(
i

~
[−p · q(j) + S̃(q(j))]

)
exp

(
π~ α̃j

4

)
, (3.9)

where the index j runs over all the critical points of −p · q + S̃(q) and

α̃ = sign



det

[
∂2S(q)

∂q2

]

q=q(j)





is the signature of ∂2
q S̃, i.e. its number of positive minus negative eigenvalues. The critical points q(j)

over which we are summing satisfy, for each p in the domain of φ̃,

∂

∂q
[p · q − S(q)]

∣∣∣∣
q=q(j)

= 0 =⇒ ∂S(q)

∂q

∣∣∣∣
q=q(j)

= p =⇒ p(q(1)) = p(q(2)) = · · · = p , (3.10)

where p
def
= ∂qS(q). As shown earlier, there are as many such positions per leaf as there are charts

needed to parametrize the leaf itself. Formula (3.9) is then telling us that to move from the position
to the momentum polarization we must sum over all branches of S̃(p), since each branch defines a
different critical point q(j). For hamiltonians expressed in the form F (p)+q2/2, each lagrangian leaf in
the momentum polarization has only two branches, but if we allow for more complicated dependence
on q it might be impossible to isolate the positions, i.e. to find analytically which branches need to be
included in (3.9).

Definition 3.2.4. The process of looking for the branches to be included in the WKB wavefunction
is called root-searching.

In physics literature it is standard to skip this ruminative step, where we interpret what effectively
comes out of the SPA, and just write it as a sum over the branches of S̃(p),

φ̃(p) =
∑

j

A(j)(p) exp

(
i

~

[
S̃(j)(p) +

π~ α̃j
4

])

which we now know to be equivalent to (3.9) due to each fixed momentum p being associated to
several critical positions q(j) through (3.10), and each position defining a corresponding branch of
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S̃(p). Mathematically, this is just a sum over branches, but if we interpret this from a physical point
of view, we see that the SPA allowed us to write a momentum wavefunction as a sum of several WKB
ansätze. In the semiclassical wavefunctions associated to a lagrangian submanifold, the embedded
generating function’s multiple branches superpose, meaning that WKB wavefunctions should be able
to reproduce quantum interference patterns – even though they are completely based on classical
quantities.

In our reasoning, we have started from the position polarization. However, there is no preference
with respect to which polarization to use, so we could just as well have started with momentum. The
SPA would then be performed in an inverse-Fourier transform with phase p ·q+ S̃(p), so the end result
includes a sum over all momenta that fulfill the boundary condition q = −∂pS̃(p), resulting this time
in a sum over the branches of S(q). Thus, the general form of the WKB wavefunction in the position
polarization is also a sum over branches:

φ(q) =
∑

j

A(j)(q) exp

(
i

~

[
S(j)(q) +

π~α(j)

4

])
,

with boundary conditions necessary for each q in the domain of φ:

∂

∂p

[
p · q + S̃(p)

] ∣∣∣∣
q=q(j)

= 0 =⇒ ∂S̃(p)

∂p

∣∣∣∣
p=p(j)

= −q =⇒ q(p(1)) = q(p(2)) = · · · = q ,

where q
def
= −∂pS̃(p). Analogously to the momentum case, hamiltonians of the form p2/2 + V (q)

generate lagrangian leafs that have only two branches in the position polarization. The SHO of
Example 3.2.2 is therefore very special, since its leafs in both the momentum and position polarizations
have the same number of branches.

3.3 Time-dependent WKB theory

Extending the previous section’s results to time-dependent WKB wavefunctions happens to be rather
intuitive, but with the added complication that the root-searching of the earlier section now takes
place in a product manifold.

3.3.1 WKB wavefunctions in extended phase space

Classically, allowing the WKB ansätze in (3.7) to acquire time-dependence is tantamount to formu-
lating a semiclassical theory in the extended product manifold: Since our phases and amplitudes will
be functions of initial and final positions and momenta, with generating functions that can depend on
them in all sorts of ways, the background manifold should be ρt(M)×M – which is lagrangian, as have
seen in Chapter 1. This manifold, when extended, was shown in Sec. 1.4 to be naturally associated
with Poincaré-Cartan integral invariants. If we ignore how the wavefunctions depend on positions and
momenta and just allow phases and amplitudes to be time-dependent, i.e.

φt(q) = At(q) exp

[
iSt(q)

~

]
and φ̃t(p) = At(p) exp

[
iSt(p)

~

]
, (3.11)

Schödinger’s equation with Ĥ = p̂2/2 + V̂ (q̂) gives, for φt(q),

[
Ĥ(q,−i~ ∂q)− ∂t

]
ψt(q) = 0

⇐⇒ ∂2ψt(q)

∂q2
− 1

~2

[
V (q̂)− ∂

∂t

]
ψ(q) = 0

⇐⇒ −~

2

{
∂(A2

t )

∂t
+

∂

∂q

[
A2
t

(
∂S

∂q

)]
+ ~

(
∂2At
∂q

)}
+

{
1

2

(
∂S

∂q

)2

+

(
V − ∂St

∂t

)}
= 0 .
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Ignoring the O(~2) term we obtain the continuity equation for ρ = A2
t in its full form for O(~) as a

requisite,
∂(A2

t )

∂t
+

∂

∂q

[
A2
t

(
∂S

∂q

)]
= 0 , (3.12)

together with the time-dependent Hamilton-Jacobi equation

H

(
q̂,−i~∂St

∂q

)
+
∂St
∂t

= 0 ,

which selects admissible generating functions only – now time-dependent. As time-evolution is a
result of classical evolution of positions and momenta from (q, p) to (q′, p′) = ρt(q, p), the generating
functions are precisely the Poincaré-Cartan forms for position and momentum:

St(q
′, q) = −

∫ q′

q
p · dq −

∫ t

0
dtH(q, p) , S̃t(p

′, p) =

∫ p′

p
q · dp−

∫ t

0
dtH(q, p) , (3.13)

∂St(q
′, q)

∂q′
= p′ ,

∂S̃t(q
′, q)

∂q
= −p , ∂S̃t(p

′, p)

∂p′
= q′ ,

∂S̃t(p
′, p)

∂p
= −q , (3.14)

which can be interpreted as pure position/momentum polarizations. This is due to the fact that in the
present product manifold we can also employ the mixed polarizations formed by the graphs of St(q

′, p)
and St(p

′, q), obtained via Legendre transformations of the above4. We can then rewrite (3.11) using
explicit dependencies in the initial and final positions/momenta in the pure polarizations as

φt(q
′, q) = At(q

′, q) exp

(
i

~
St(q

′, q)

)
, φ̃t(p

′, p) = Ãt(p
′, p) exp

(
i

~
S̃t(p

′, p)

)
,

where (q, p) and (q′, p′) are the position and momentum at t = 0 and t = t, namely (q′, p′) = ρt(q, p).
To relate the two polarizations in (3.13) we can use Fourier transforms5 with respect to p and p′:

φ̃t(p
′, p) =

∫
dq′dq φt(q

′, q) exp

[
i

~

(
−p′ · q′ + p · q

)]

=

∫
dq′dq At(q

′, q) exp

[
i

~

(
St(q

′, q)− p′ · q′ + p · q
)]
,

which, evaluating using an SPA with respect to q, gives

φ̃t(p
′, p) ≈

∫
dq′

∑

roots

At(q
′, q)

∣∣∣∣∣det

(
∂2St(q

′, q)

∂q2

)∣∣∣∣∣

− 1
2

exp

[
i

~

(
St(q

′, q)− p′ · q′ + p · q
)
− iπα

4

]
, (3.15)

where α is the signature of ∂2
qS. The stationary condition on the phase implies, as expected, that we

must sum over all initial positions q(j) such that

∂

∂q

{
St(q

′, q)− p′ · q′ + p · q
}

= 0 =⇒ ∂St(q
′, q)

∂q

∣∣∣∣
q=q(j)

= −p

⇐⇒ p(q′, q(1)) = p(q′, q(2)) = ... = p , (3.16)

with p
def
= −∂qSt(q′, q), so that we must sum over all initial positions with initial momentum p. Now,

since the integral in (3.15) is convergent with respect to q′, we can perform a second SPA with respect
to the final positions:

φ̃t(p
′, p) ≈

∑

more roots

At(q
′, q)

∣∣∣∣∣det

(
∂2St(q

′, q)

∂q2

)∣∣∣∣∣

− 1
2
∣∣∣∣∣det

(
∂2St(q

′, q)

∂q′2

)∣∣∣∣∣

− 1
2

exp

[
i

~

(
St(q

′, q)− p′ · q′ + p · q
)

+
iπ(α̃′ − α̃)

4

]
, (3.17)

4These are associated to the so called Kirkwood representations [Kir33, BJ84].
5These enter with different signs due to initial and final coordinates having opposing signs in (3.14), which have to

be recovered in the SPA (see (3.16)).
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where the stationary phase condition gives the more substantial root-search

∂

∂q′

{
St(q

′, q)− p′ · q′ − p · q
}

= 0 =⇒ ∂St(q
′, q)

∂q′

∣∣∣∣
q′=q′(j)

= p′

⇐⇒ p′(q′(1), q) = p(q′(2), q) = ... = p′ ,

with p′ def
= −∂q′St(q

′, q), which filters (3.16) and states that it is not enough to just sum over all initial
positions: We must sum over initial positions that connect p and p′ at the same time. Notice that,
since p′(q, p) = p, this can be parametrized in terms of initial variables: Coming briefly back to explicit
time-dependencies, the roots p′ = pt fulfill

pt(q0, p0) = pt , p0(q0, p0) = p0 . (3.18)

Due to the “nice” properties of WKB wavefunctions, there are several identities that can be em-
ployed in order to simplify the expression (3.17). First, notice that amplitude conservation (3.12)
implies

A2
t (q

′, q)

∣∣∣∣∣det

(
∂2St(q

′, q)

∂q2

)∣∣∣∣∣

−1 ∣∣∣∣∣det

(
∂2St(q

′, q)

∂q′2

)∣∣∣∣∣

−1

= A2
t (q

′, q)

∣∣∣∣det

(
∂p(q)

∂q

)∣∣∣∣
−1 ∣∣∣∣det

(
∂p′(q′)

∂q′

)∣∣∣∣
−1

= Ã2
t (p

′, p) .

Secondly, the combined sets of roots imply that we must sum over all initial and final momenta that
fulfill (3.18), but just as in the time-independent case, there are as many such momenta as there are

branches in S̃t(p
′, p), so the sum over roots is really only a sum over the branches S̃

(j)
t (p′, p). Thirdly,

since we can transition between generating functions using Legendre transforms, we quickly identify
the phase in (3.17) as

St(q
′, q)− p′ · q′ + p · q = S̃t(p

′, p) . (3.19)

Lastly, we shall write the signature difference as

α̃

4
− α̃′

4
=
κ̃

2
, (3.20)

which we justify in Section 3.3.3. The final expression for φ̃t(p
′, p) is, therefore [Lit91, Gut90, dA90],

φ̃t(p
′, p) =

∑

j

Ã
(j)
t (p′, p) exp

(
i

~

[
S̃

(j)
t (p′, p)− ~πκ̃(j)

2

])
,

running over the j branches of S̃t(p
′, p) or, equivalently, all the trajectories fulfilling the boundary

conditions (3.18). The accuracy of this wavefunction is completely dependent on how many such
trajectories are included in the sum.

Just as in the time-independent case, we have started with the position polarization without any
particular reason. The exact same procedure applied to φ̃(p′, p) results in the WKB wavefunction in
position polarization:

φt(q
′, q) =

∑

j

A
(j)
t (q′, q) exp

(
i

~

[
S

(j)
t (q′, q)− ~πκ(j)

2

])
, (3.21)

where the sum over branches of St(q
′, q) is equivalent to the boundary conditions

∂S̃t(p
′, p)

∂p′

∣∣∣∣
p′=p′(j)

= −q′ ,
∂S̃t(p

′, p)

∂p

∣∣∣∣
p=p(j)

= q ⇐⇒ qt(q0, p0) = qt , q0(q0, p0) = q0 ,

where in the last equation we parametrized the root-search in terms of initial variables, obtaining the

equivalent to (3.18). Naturally, q0 = q
def
= ∂pS̃t(p

′, p) and qt = q′ def
= −∂p′S̃t(p

′, p).
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p′(1)
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p(1)

p(2)

p(3)

p(4)

Q

Figure 3.2: Several different trajectories start at q and end at q′ for the same time-interval t. This is only possible
because they all have different initial momenta and the underlying dynamics is non-linear.

Example 3.3.1. (The SHO) As seen in Example , for the SHO we have
(
q′

p′

)
=

(
cos t sin t

− sin t cos t

)(
q

p

)
.

Imagine two solutions, q1
t (q, p) and q2

t (q, p), which fulfill q1
t (q, p

1) = q2
t (q, p

2) = q′. This amounts to

q′ = q cos t+ p1 sin t = q cos t+ p2 sin t ⇐⇒ p2 − p1 = 0 .

Thus, for the SHO there is only a single solution that connects q to q′ (this is true for any linear flow
– see Proposition B.1.1).

3.3.2 The van Vleck–Gutzwiller propagator

The quantum propagator provides a general algorithm for obtaining solutions to the Schrödinger
equation: Instead of solving for a specific initial state, it allows us to represent the evolution of any
initial wavefunction as an integral. Evidently, we need to choose a particular representation, e.g.

〈q|ψt〉 = 〈q|Ût|ψ0〉 =

∫

Rn
dQ 〈q|Ût|Q〉〈Q|ψ0〉 =

∫

Rn
dQKt(q,Q)ψ0(Q)

=

∫

Rn
dP 〈q|Ût|P 〉〈P |ψ0〉 =

∫

Rn
dQKt(q, P )ψ0(P ) ;

〈p|ψt〉 = 〈p|Ût|ψ0〉 =

∫

Rn
dP 〈p|Ût|P 〉〈P |ψ0〉 =

∫

Rn
dP Kt(p, P )ψ0(P )

=

∫

Rn
dQ 〈p|Ût|Q〉〈Q|ψ0〉 =

∫

Rn
dQKt(p,Q)ψ0(Q) ,

and, of course, many more types of representations are also possible, corresponding to different po-
larizations when considered semiclassically. Since the propagator in the position representation is the
kernel

Kt(q, q′) = 〈q|Ût|q′〉 ,
if we consider q′ to be just q, then Ût|q〉 corresponds semiclassically to the final position at time t.
Then, an interesting interpretation for the propagator follows [Lit91]: Let q and q′ be the position at
t = 0 and t = t, respectively. Then for a short time t = ǫ, we have

lim
ǫ→0+

Kǫ(q, q′) = δ(q′ − q) ,

such that we obtain a simple way of thinking about the propagator: For t > 0, Kt(q, q′) is the solution
ψt(q

′) of the time-dependent Schrödinger equation subject to the initial condition ψ0 = δ(q′ − q). If
we can find a semiclassical expression for the evolved Dirac’s delta δ(q′ − q), we can obtain the final
semiclassical wavefunction from the simple integral

ψt(q
′) =

∫
dqKt(q, q′)ψ0(q) =

∫
dq δ(q′ − q)ψ0(q) .
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One can immediately see a problem with looking for a representation of a Dirac’s delta in the po-
sition polarization: It is singular and doesn’t exist. However, as we have already seen that divergences
in one polarization do not spoil the others, we can employ mixed or the momentum polarizations6 in
order to represent δ(q′ − q).

We start by writing some distributional properties of At(q
′, q) under coordinate changes leading to

mixed polarizations. First, notice we can define the mixed amplitude and phase At(q, p
′) and St(q, p

′)
using the conservation of amplitudes and Legendre transforms:

At(q, p
′) = At(q, q

′)

∣∣∣∣det

(
∂q′

∂p′

)∣∣∣∣

1
2

, S(q, p′) = S(q, q′)− p′ · q′ . (3.22)

Since the amplitude is also invariant with respect to time-evolution,

A2
t (q, p

′) dp′ = A2
0(q, p) dp =⇒ A0(q, p) = At(q, p

′)

∣∣∣∣det

(
∂p′

∂p

)∣∣∣∣

1
2

, (3.23)

and St(q, p) is just S0(q, p′). Combining (3.22) and (3.23) we have an expression for At(q
′, q) in terms

of the mixed polarization (q, p):

At(q, q
′) = A0(q, p)

∣∣∣∣det

(
∂p

∂q′

)∣∣∣∣
1
2

.

To understand why this polarization is appropriate, we notice that the final position q′ is a function
of q and p:

q′ = q′(q, p) , q′(q, p)
∣∣
t=0

= q ,

so δ(q′−q) = δ(q′(q, p)−q), with δ(q′(q, p)−q)t=0 = δ(0). Since p′(q, p)t=0 = p, we can use the Fourier
expression

lim
t→0

[
δ(q′(q, p)− q)

]
= lim

t→0

[(
1

2π~

)n
2
∫

Rn
dp′ exp

{
i

~

[
p′ ·

(
q′(q, p)− q

)]}
]

≡ lim
t→0

{
At(q, p

′) exp

[
i

~
St(q, p

′)

]}

= A0(q, p) .

That is, in order to identify the first and second lines in the equations above, all we have to do is to
fix A0(q, p) = 1/(2π~)n/2, since the phase vanishes. Substituting these results into (3.21):

δ(q′ − q) =
∑

j

A
(j)
t (q, q′) exp

(
i

~

[
S

(j)
t (q′, q)− ~πκ(j)

2

])

= exp

(
iπα0

4

)∑

j

A
(j)
0 (q, p)

∣∣∣∣det

(
∂p

∂q′

)∣∣∣∣
1
2

j

exp

(
i

~

[
S

(j)
t (q, q′)− ~πκ(j)

2

])

= exp

(
iπα0

4

)(
1

2π~

)n
2 ∑

j

∣∣∣∣∣det

(
∂2S(j)(q, q′)

∂q′∂q

)∣∣∣∣∣

1
2

exp

(
i

~

[
S

(j)
t (q, q′)− ~πκ(j)

2

])
,

although we do not yet know the initial signature α0, which stands for the number of positive minus
negative eigenvalues of the mixed hessian of St(q, p

′) at t = 0. Since

lim
t→0

{
∂2St(q, p

′)

∂q ∂p′

}
= − lim

t→0

{
∂q′

∂q

}
,

6The classic paper dealing with this subject, namely [Lit91], employs the pure momentum polarization, while here we
use the shorter path provided by mixed polarizations.
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the initial eigenvalues are all negative and equal to −1, and since the dimension of the hessian above
is n, there are n negative eigenvalues. Substituting exp(iπα0/4) = exp(−iπn/4), we arrive at our final
result:

KvV
t (q, q′) =

(
1

2πi~

)n
2 ∑

j

∣∣∣∣∣det

(
∂2S(j)(q, q′)

∂q′∂q

)∣∣∣∣∣

1
2

exp

(
i

~

[
S

(j)
t (q, q′)− ~πκ(j)

2

])
, (3.24)

where we have defined the propagator KvV
t (q, q′) as the WKB expression for the Dirac’s delta distri-

bution δ(q′ − q), q′ being interpreted as a final position: q′ = qt, q = q0.

Definition 3.3.2. The semiclassical propagator in (3.24) is known as the van Vleck[-Gutzwiller]
propagator, the primitive propagator or sometimes simply as“the” semiclassical propagator.

Even though the van Vleck propagator beautifully intertwines classical and quantum mechanics,
it suffers from the taxing root-search problem that we have described in the previous sections. Even
when an efficient algorithm to select trajectories is devised, one is still faced with the task of dealing
with the several divergences that are bound to happen when

∂q′

∂p
−→ 0 ⇐⇒ ∂p′

∂q
−→ ±∞ ⇐⇒ ∂2St(q

′, q)

∂q′∂q
−→ ±∞ . (3.25)

Definition 3.3.3. The points where the second derivatives of the action fulfill (3.25) are caustics.

As can be seen, caustics are a generalization of the classical turning points of Section 3.2, and
are completely dependent on which polarization we chose: Classical turning points in momentum are
not the same as in position (see Fig. 3.1), allowing us to interchange polarizations when nearing a
caustic occurring for a particular one – a technique we employed several times before. Using Airy
functions, it is possible to express the propagator as a uniform approximation, rendering it convergent
over a caustic [BM72], but as soon as the second caustic is reached it breaks down and needs to be
modified – it is a local method. Since we would like a solution that not only globally avoids infinities,
but is also independent of the root-search procedure, more elaborate methods need to be devised.
Before developing these new methods, however, we stop for a moment to understand what are these
divergences plaguing the van Vleck propagator.

3.3.3 Monodromy matrices, caustics and the Maslov index

Double derivatives of generating functions have persistently appeared in semiclassical amplitudes – for
now, they appear one at a time, but will emerge simultaneously for propagators more intricate than
van Vleck’s. As we have done earlier, we can rewrite these double derivatives as a single derivative of
final coordinates with respect to initial ones, e.g.

∂2S(q, q′)

∂q′ ∂q
=

(
∂q′

∂p

)−1

,
∂2S̃(p, p′)

∂p′ ∂p
=

(
∂p′

∂q

)−1

,

etc. We employ again the notation q′ ≡ qt and q ≡ q0 in order to explicitly include time dependence,
so a propagated phase-space point x0 is brought to xt = ρt(x0), where ρt is the hamiltonian flow. The
derivatives of the action can be condensed in the matrix

Mt(x0) =
dρt(x)

dx

∣∣∣∣
x=x0

=
dxt
dx

∣∣∣∣
x=x0

=




∂qt(q, p)

∂q

∂qt(q, p)

∂p
∂pt(q, p)

∂q

∂pt(q, p)

∂p




(q,p)=(q0,p0)

. (3.26)

Definition 3.3.4. The matrixMt above is the monodromy matrix.

Since the flow obeys ρ̇t(x) = XH [ρt(x)] = JH ′[ρt(x)] and ρt is of class C
∞, by the chain rule we

have
dMt(x)

dt
=

d

dt

{
dρt(x)

dx

}
=

d

dx
[ρ̇t(x)] = JH ′′ [ρt(x)]

(
dρt(x)

dx

)
,
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where H ′ and H ′′ are the jacobian and the hessian of H, respectively. Thus, the monodromy matrix
satisfies the linear differential equation

Ṁ(xt) = JH ′′(xt)M(xt) .

Since the monodromy matrix can be identified as the first order term in an expansion of the flow
around x0 and the flow is a symplectomorphism, the monodromy is clearly a symplectic matrix.

The monodromy terms appeared due to performing integrals via the SPA, together with their
signatures in the phase. In (3.20) we expressed the signature difference after crossing a caustic as a
multiple of 2, which we now justify and expand. We first state the basic result from linear algebra that
if a 2n-dimensional matrix A is invertible, then the number of its positive and negative eigenvalues is
equal to the dimension of the space: Denoting the number of positive and negative eigenvalues by ν+

and ν−, respectively, we have 2n = ν+ +ν− =⇒ sign(A) = 2(n−ν−). The difference in signatures after
crossing a caustic, where A becomes singular, is then given by κ = sign(A) − sign(A′) = 2(ν ′

− − ν−),
which is why we took κ to be an even number. Consider now the evaluation of eigenvalues along
a curve: Every time ν ′

− increased by 1 we must have ν− decreasing by 1, since the dimension is an
invariant. This reflects in κ as 2(ν ′

− − ν−) = 2[(ν ′
− + 1) − (ν− − 1)] = 2(ν ′

− − ν−) + 4, meaning that
κ = 2(ν ′

− − ν−) is actually an equivalence class with 4 elements [dG06], i.e. [κ] ∈ {0, 1, 2, 3}. Since
the value of κ increases by one at each caustic and we begin at κ = 0, what this index is effectively
doing is counting how many caustics we have passed along a particular curve on a lagrangian manifold
modulo 4 – but the exponential is also an equivalence class with 4 elements:

exp

(
iπκ

2

)
∈ {1, i,−1,−i} ,∀κ ∈ Z ,

so we can interpret κ as the exact caustic count along a curve, since when it crosses 4 caustics both
the equivalent class [κ] and the exponential reset to their initial values.

Definition 3.3.5. The index κ, measuring the number of caustics crossed in a particular direction
along a lagrangian submanifold, is the Maslov index.

The arguments presented above are focused on a particular direction, but are general due to
van Vleck’s propagator being a sum over trajectores, which are curves. The disjoint union of these
curves reconstructs the full evolving lagrangian manifold – they are 1-dimensional lagrangian leaves ,
after all.

3.3.4 Integral representation for the van Vleck propagator

The semiclassical propagator in (3.24) is seldom considered on its own, being usually employed in
calculations as a kernel:

〈ψ|Ût|φ〉 =

∫

R2n
dq dq′ 〈ψ|q〉〈q|Ût|q′〉〈q′|ψ〉 ≈

∫

R2n
dq dq′KvV

t (q, q′)ψ∗(q)φ(q′) ,

where the q and q′ variables are classically connected in the sense that at t = 0 the system is at q,
while at t = t it is at q′. The semiclassical propagator includes a sum over all trajectories connecting
q ←→ q′ for the fixed time t, indexed by initial momenta. Substituting the van Vleck propagator
(3.24) in the equation above,

〈ψ|Ût|φ〉 ≈
(

1

2πi~

)n
2
∫

R2n
dq dq′

∑

j

∣∣∣∣∣det

(
∂2S

(j)
t (q′, q)

∂q∂q′

)∣∣∣∣∣

1
2

exp

(
i

~

[
S

(j)
t (q′, q)− ~πκ(j)

2

])
ψ∗(q)φ(q′) ,

(3.27)
As q′ is a function of initial positions and momenta, we can write (3.27) with explicit dependencies as

〈ψ|Ût|φ〉 ≈
(

1

2πi~

)n
2
∫

R2n
dq dq′(q, p)

∑

j

∣∣∣∣det

(
∂q′(q, p)

∂p

)∣∣∣∣
− 1

2

p=p(j)

× exp

(
i

~

[
St(q

′(q, p(j)), q)− ~πκ(j)

2

])
ψ∗(q)φ(q′) . (3.28)

44



At this point we invoke an observation made by Heller [TH91], although in a slightly different context:
The sum over roots takes place on a set of initial momenta p(j), which is a subset of all momenta
defined in Rn. The condition for a root p to be selected, namely q′(q, p) − q′ = 0, can be written in
terms of Dirac’s delta distribution as

δ(q′(q, p)− q′) ,

with q fixed, so that every time the variable p runs over p = p(j), the corresponding trajectory is
selected. This appears very clearly when integrating the equation above:

∫
dp
[
δ(q′(q, p)− q′)

]
=

∫
dq′

∣∣∣∣det

(
∂q′(q, p)

∂p

)∣∣∣∣
−1

δ(q′(q, p)− q′) =
∑

j

∣∣∣∣det

(
∂q′

∂p

)∣∣∣∣
−1

p=p(j)

.

Even more importantly, notice that the calculations above immediately imply

∫
dp

∣∣∣∣det

(
∂q′(q, p)

∂p

)∣∣∣∣

1
2

δ(q′(q, p)− q′) =
∑

j

∣∣∣∣det

(
∂q′

∂p

)∣∣∣∣
− 1

2

p=p(j)

, (3.29)

which is a well-behaved integral since the amplitude is never singular. This nice expression for the
root-search can be substituted in (3.28) to give

〈ψ|Ût|φ〉 ≈
(

1

2πi~

)n
2
∫

R2n
dq dp dq′(q, p)

∣∣∣∣det

(
∂q′(q, p)

∂p

)∣∣∣∣

1
2

δ(q′(q, p)− q′)

× exp

(
i

~

[
St(q

′(q, p), q)− ~πκ

2

])
ψ∗(q)φ(q′(q, p)) ,

which, integrating with respect to q′ but writing the final variable as q′ = q′(q, p), results in [Mil01]

〈ψ|Ût|φ〉 ≈
(

1

2πi~

)n
2
∫

R2n
dq dp

∣∣∣∣det

(
∂q′

∂p

)∣∣∣∣

1
2

exp

(
i

~

[
St(q

′, q)− ~πκ

2

])
ψ∗(q)φ(q′) . (3.30)

What is accomplished in the expression above is one of the benchmark achievements in the history
of semiclassical mechanics: Besides substituting the root search by an integral, the diverging amplitude
in the van Vleck propagator is inverted and now, instead of blowing up, converges to zero at a caustic.

Definition 3.3.6. A semiclassical algorithm that represents propagation as an integral is an integral
representation, and if the integral is a function of initial variables such as (3.30), it is called an
Initial Value Representation (IVR). If it had used final variables, we would call it a Final Value
Representation (FVR).

3.3.5 The Herman-Kluk propagator

Naturally, there are multiple representations from which we can extract expressions such as (3.30),
and we can transition between them through Fourier and Legendre transforms as usual. Consider, for
instance, expressing the wavefunctions in the momentum representation:

ψ∗(q) =

(
1

2π~

)n
2
∫

Rn
dp exp

[(
i

~

)
p · q

]
ψ̃∗(p) , φ(q′) =

(
1

2π~

)n
2
∫

Rn
dq′ exp

[
−
(
i

~

)
p′ · q′

]
φ̃(p′) ,

and substitute them in (3.30) to get

〈ψ|Ût|φ〉 ≈
(
i−

1
3

2π~

) 3n
2 ∫

R4n
dq dp dp dp′

∣∣∣∣det

(
∂q′

∂p

)∣∣∣∣

1
2

exp

(
i

~

[
St(q

′, q)− p′ · q′ + p · q
])
ψ̃∗(p) φ̃(p′) ,

where we have neglected the Maslov index κ, which will soon reemerge in a new form. As in (3.19), we
recognize the generating function in the phase as S̃t(p

′, p), and performing the change of coordinates
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p 7−→ q′(q, p) we have

〈ψ|Ût|φ〉 ≈
(
i−

1
3

2π~

) 3n
2 ∫

R4n
dq dq′ dp dp′

∣∣∣∣det

(
∂p

∂q′

)∣∣∣∣
∣∣∣∣det

(
∂q′

∂p

)∣∣∣∣

1
2

exp

(
i

~

[
S̃t(p

′, p)
])
ψ̃∗(p) φ̃(p′)

=

(
i−

1
3

2π~

) 3n
2 ∫

R4n
dq dq′ dp dp′

∣∣∣∣det

(
∂q′

∂p

)∣∣∣∣
− 1

2

exp

(
i

~

[
S̃t(p

′, p)
])
ψ̃∗(p) φ̃(p′) .

We can now perform SPAs with respect to q and q′ to obtain

〈ψ|Ût|φ〉 ≈
(

1

2πi~

)n
2
∫

R2n
dp dp′

∑

j

∣∣∣∣det

(
∂p′

∂q

)∣∣∣∣
− 1

2

j

exp

(
i

~

[
S̃

(j)
t (p′, p)− ~πκ̃(j)

2

])
ψ̃∗(p) φ̃(p′) ,

(3.31)
which is just the propagator expressed in terms of the momentum polarization for van Vleck’s prop-
agator and we have reintroduced the Maslov index in momentum polarization, κ̃, and performed the
sum over roots as in (3.18). Using the same trick as in (3.29), we finally get the momentum IVR

〈ψ|Ût|φ〉 ≈
(

1

2πi~

)n
2
∫

R2n
dq dp

∣∣∣∣det

(
∂q′

∂p

)∣∣∣∣

1
2

exp

(
i

~

[
S̃t(p

′, p)− ~πκ̃

2

])
ψ̃∗(p) φ̃(p′) .

Evidently, we could have also derived the result above starting from the momentum expression for
(3.24), which appeared naturally in (3.31). What if we had not chosen the momentum representation?
We could, in principle, use the Segal-Bargmann transforms of ψ(q) and φ(q) (see Appendix C), namely

ψ(q) = 〈q|ψ〉 ∝
∫

Cn
dαα(q)ψ(α) , φ(q′) = 〈q′|ψ〉 ∝

∫

Cn
dα′ α′(q′)φ(α′) ,

with static and dynamic coherent states

α(q) ∝ exp

{
−|q −ℜ(α)|2

2
+
iℑ(α)

~
· [q −ℜ(α)]

}

α′(q′) ∝ exp

{
−|q

′ −ℜ(α′)|2
2

+
iℑ(α′)

~
· [q′ −ℜ(α′)]

}
.

This is equivalent to looking for an expression for the semiclassical propagator in a coherent-state
basis. The final expression would look like

〈ψ|Ût|φ〉
≈∝
∫

R4n
dq dq′ dα dα′

∣∣∣∣det

(
∂q′

∂p

)∣∣∣∣
− 1

2

exp

(
i

~
[Φ]

)
ψ∗(α)φ(α′) ,

where

Φ = St(q
′, q) +

(
i~

2

)
|q −ℜ(α)|2 +

(
i~

2

)
|q′ −ℜ(α′)|2 + ℑ(α) · [q −ℜ(α)]−ℑ(α′) · [q′ −ℜ(α′)] .

This integral appears in a different context in [HK], and is evaluated by performing stationary phase
approximations with respect to q and q′. The stationary phase conditions on the phase are then

St(q
′, q)

∂q
+ i~[q −ℜ(α)] + ℑ(α) = 0 ⇐⇒ ℑ(α)− p+ i~[q −ℜ(α)] = 0

St(q
′, q)

∂q′
+ i~[q′ −ℜ(α′)]−ℑ(α′) = 0 ⇐⇒ −ℑ(α′) + p′ + i~[q′ −ℜ(α′)] = 0 ,

which fix the form of the coherent states in a way that integrating with respect to e.g. dα is equivalent
to dq dp: The difficulty of moving to a higher dimensional complex space is only apparent, since even
though we are integrating over complex trajectories, they have their form fixed based on real boundary

46



conditions. The determinants arising from the SPAs, further jacobians and coordinate changes are
analysed in [HK] and the final integral is expressed as

〈ψ|Ût|φ〉 ≈
(

1

2π~

)n
2
∫

R2n
dq dp

∣∣∣∣det

(
∂α′

∂α

)∣∣∣∣

1
2

exp

(
i

~
[St(q, p)]

)
α(q)α′(q′)ψ∗(q)φ(q′) , (3.32)

with the determinant in the pre-factor easily calculated as

det

(
∂α′

∂α

)
≡ det

(
∂αt
∂α0

)
= det

{
1

2

[(
∂pt
∂p0

+
∂qt
∂q0

)
+ i

(
1

~

∂pt
∂q0
− ~

∂qt
∂p0

)]}
.

Notice the primed variables are all functions of the unprimed ones, e.g. q′ = q′(q, p) ≡ qt(q0, p0). Also,
since the linear complexification does not change the value of the classical action7, the phase is still
the integral of the lagrangian with respect to time.

Definition 3.3.7. The propagator in (3.32) is the Herman-Kluk propagator.

Notice that the Herman-Kluk propagator has a complex amplitude, which cannot be zero due to
the symplecticity of the monodromy matrix (see Appendix B). This amplitude, however, changes
branch in the complex plane as time evolves, and it was shown by Kay that tracking the branch that
renders the amplitude continuous with respect to time evolution is equivalent to obtaining the correct
Maslov phase across a caustic [Swe11, Kay94, dLC16].

The Herman-Kluk propagator has received a considerable amount of criticism, e.g. it was argued
that it cannot be obtained as a semiclassical approximation to a coherent state propagator due to
a missing factor [BdAK+01]; [DE06], however, establishes a connection between this factor and a
linearization. In [Kay94] a derivation from first principles is attempted based on the non-bijective
nature of the Bargmann transform, i.e. on the over-completeness of the coherent state basis, but then
a multitude of equivalent propagators is possible and it is not clear why this particular expression
would be anything special – which it is, because other options supposed to be equivalent to it are not
as accurate. By formulating WKB theory in the Segal-Bargmann representation, the final word on
the subject of whether or not the HK propagator is derivable as an asymptotic approximation appears
to have been written [MFL06], but why it is so much accurate than other semiclassical propagators is
still a mystery [Kay93].

3.4 Integrability and chaos in WKB theory

The WKB method exposes a deep connection between quantum mechanics and classical generating
functions and, therefore, the lagrangian submanifolds they define. In Chapter 2 we have shown that
for integrable systems the generating functions give rise to tori, from which we extract the lagrangian
foliations required by WKB to mimic quantum representations. It is important to remember that these
tori are invariant, i.e. they remain still under the action of the flow, and can be quantized directly using
time-independent WKB theory – although in this context it is usually called Einstein-Brillouin-Keller
(EBK) theory. When we do not have a complete foliation by tori, the leaves associated to chaotic
orbits will not form invariant sets: These leaves evolve in time, such that summing over their branches
becomes generally impossible. If we have graphs composed exclusively of such leaves (dubbed as hard
chaos), we can use the connection between ergodicity and Random Matrix Theory (RMT) to obtain
some information about our system. However, if time-evolving leaves are intertwinned with invariant
tori (the so called soft chaos scenario), neither EBK nor RMT theories are applicable.

The time-dependent scenario, however, is considerably simpler: We do not need to sum over
branches, so we can simply ignore the fact that our lagrangian submanifolds can have extremely
complicated evolutions. As we only need to sum over trajectories, the only clear impeditive for the
application of semiclassical methods to quantum propagation is the tangling of classical orbits in
regions smaller than h. As is well known in the field [TH91], this turns out to be a weak impeditive,
and chaotic orbits are frequently successfully employed in semiclassical propagation – although for
how long they should work remains an open problem [STH92].

7The mapping taking the position and momentum basis to the coherent-state basis is a linear complexification and
conserves the canonical form – see Appendix B.
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Chapter 4
The Weyl-Wigner representations

In my opinion, quantum mechanics is revolutionary be-
cause it shows that an idea does not have to be amenable
to human understanding in order to be correct.

Alfredo M. Ozorio de Almeida

The position representation in quantum mechanics was defined as the one where the position oper-
ator acts as a multiplication, and the momentum operator as differentiation with respect to position.
The duality between position and momentum allows us to define the momentum representation as
the one where these roles are reversed, namely position acts as differentiation and momentum as
multiplication. Representing a quantum system as a function of position and momentum simulta-
neously requires us to find a way to mix representations – a non-trivial task required to develop a
phase-space formulation of quantum theory. By constructing operators that are generators of trans-
lations in momentum and position spaces at once, we obtain the Weyl representation of quantum
mechanics – with the unfortunate drawback that these simultaneous-translation operators are not
self-adjoint. The reflection operators obtained from them, however, are self-adjoint and provide us
with the Wigner function, which has a well-defined classical limit. It is then interesting to establish
limits for which classical propagation is enough to approximate quantum evolution, which we pursue
in terms of autocorrelation functions.

4.1 Translation and reflection operators

In order to move to phase space, we must find a way to mix position and momentum together in
quantum mechanics. Instead of looking for a ket that is a function of position and momentum simul-
taneously, we can look for operators whose domain is phase space. Since it is perfectly possible to write
an operator that acts as a translation in both position and momentum representations simultaneously,
i.e. 〈p|T̂|q〉 ∝ 〈p + ξp|q + ξq〉, this is the starting point to obtain the Weyl-Wigner representation of
quantum mechanics.

4.1.1 Weyl-Wigner symbols

A mixed translation in both position and momentum spaces can be formed by mixing the simple
translations in (3.2):

T̂(ξ)
def
= exp

{
i

~
(ξp · q̂ − ξq · p̂)

}
= exp

{
i

~
(ξ · J η̂)

}
, (4.1)

where ξ = (ξq, ξp) = (ξq1 , . . . , ξqn , ξp1 , . . . , ξpn) and η̂ = (q̂1, . . . , q̂n, p̂1, . . . , p̂n) are the position and
momentum components of the phase space vector ξ and the operator η̂, respectively, and J is given
in (1.4).

Definition 4.1.1. The operators T̂ in (4.1) are the Heisenberg or translation operators.
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Since [q̂, p̂] = i~Î, the operator T̂ can be split using the Baker-Hausdorff-Campbell (BHC) formula
as

T̂(ξ) = exp

{
i

~
(ξp · q̂ − ξq · p̂)

}
= exp

[
i

~
(ξp · q̂)

]
exp

[
− i
~

(ξq · p̂)
]

exp

{
−
(

1

2~2

)
[ξp · q̂, ξq · p̂]

}

= T̂ (ξp, q̂)T̂ (ξq, p̂) exp

[
−
(
i

2~

)
ξq · ξp

]
,

where the translations in the last line are the ones in (3.2). Using again the BHC formula, it is easy
to see that

T̂(ξ2)T̂(ξ1) = exp

{
i

~
(ξ2 · J η̂)

}
exp

{
i

~
(ξ1 · Jη̂)

}
= exp

{
i

~
(ξ1 + ξ2) · J η̂

}
exp

[
−
(
i

2~

)
ξ1 · J ξ2

]

= T̂(ξ1 + ξ2) exp

[
−
(
i

2~

)
ξ1 · J ξ2

]
(4.2)

and, obviously, T̂(0) = Î and T̂†(ξ) = T̂(−ξ), so that these operators are not self-adjoint. Tracing
with respect to position, however, we obtain

tr
[
T̂(ξ)

]
=

∫

Rn
dq 〈q|T̂ (ξ)|q〉 =

∫
dq exp

[(
i

2~

)
ξp · ξq

]
〈q|T̂ (ξq, p̂)T̂ (ξp, q̂)|q〉

= exp

[(
i

2~

)
ξp · ξq

] ∫
dq exp

[(
i

~

)
ξp · q

]
〈q|q + ξq〉

= (2π~)n exp

[(
i

2~

)
ξp · ξq

]
δ(ξ)

≡ (2π~)nδ(ξ) ,

where the last equivalence is due to that fact that, as an integral kernel,

exp

[(
i

2~

)
ξp · ξq

]
δ(ξ) = exp

[(
i

2~

)
ξp · ξq

] ∣∣∣∣
ξ

δ(ξ) = δ(ξ) .

We then have the Hilbert-Schmidt norm

tr
[
T̂(ξ2)T̂†(ξ1)

]
= tr

[
T̂(ξ2)T̂(−ξ1)

]
≡ (2π~)nδ(ξ2 − ξ1) . (4.3)

The space of operators that act over a Hilbert space H is a vector space, so what we have just found
out is that the translation operators form a basis in this space: Any of its elements can be expanded
as

Û =

(
1

2π~

)n ∫
dξ Ũ(ξ)T̂(ξ) , Û : H −→ H , Û Û † = Î .

Definition 4.1.2. The coefficient Ũ(ξ) in (4.3) is the Weyl symbol of Û .

The Weyl symbol can be easily obtained using the orthogonality in (4.3):

Û =

(
1

2π~

)n ∫
dξ′ Ũ(ξ′)T̂(ξ′) ⇐⇒ tr

[
Û T̂†(ξ)

]
=

(
1

2π~

)n ∫
dξ′ Ũ(ξ′) tr

[
T̂(ξ′)T̂†(ξ)

]

=
(2π~)n

(2π~)n

∫
dξ′ Ũ(ξ′) exp

[(
i

2~

)
ξ · J ξ′

]
δ(ξ′ − ξ)

=⇒ tr
[
Û T̂†(ξ)

]
= Ũ(ξ) . (4.4)

As we saw earlier, the translation operators can be decomposed as a product of separate translations
in momentum and position plus a phase. Each of these translations is restricted to the momentum or
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position representation, and can therefore be associated with a Pontryagin dual. To this end, notice
that we can compose a Fourier transform and a translation, the final action being:

∫
dα exp

(
− iαp

~

)
T̂ (α, p̂) : ψ(q) 7−→

∫
dα exp

(
− iαp

~

)
ψ(q + α)

=

∫
dQ exp

(
− i(Q− q)p

~

)
ψ(Q)

= exp

(
iqp

~

)
ψ̃(p) ,

and equivalently for the position translation acting in momentum space. We can then define the family

R̂(η) =
1

(4π~)n

∫
dξ exp

[
i

~
(ξ · J η)

]
T̂(ξ) . (4.5)

Definition 4.1.3. The Pontryagin dual obtained by integration with respect to the kernel exp
[
i
~

(ξ · J η)
]

is the symplectic Fourier transform.

Definition 4.1.4. The operators R̂ in (4.5) are the Großmann-Royer or reflection operators.

Our interest in R̂ lies in the fact that, as T̂(ξ) forms basis, so does R̂(η):

Û =

(
1

2π~

)n ∫
dη U(η)R̂(η) , Û : H −→ H , Û Û † = Î , (4.6)

which is obvious by the Fourier transform properties. Unlike T, however, the reflection operators are
self-adjoint. This is proved in the following lemma, which also shows where R receives its name from.

Lemma 4.1.5. The translation and reflection operators follow the algebra

i) R̂(η)T̂(ξ) = exp

[
− i
~

(ξ · J η)

]
R̂

(
η − ξ

2

)

ii) T̂(ξ)R̂(η) = exp

[
− i
~

(ξ · J η)

]
R̂

(
η +

ξ

2

)

iii) T̂(ξ2)T̂(ξ1) = exp

[
− i

2~
(ξ1 · J ξ2)

]
T̂(ξ1 + ξ2)

iv) R̂(η2)R̂(η1) = exp

[
− i
~

(η2 · J η1)

]
T̂[2(η2 − η1)] ,

which is just a projective operator version of the algebra followed by classical reflections and transla-
tions in Lemma 1.5.4.

Proof. iii) was already proved in (4.2) and we can use it to prove i):

R̂(η)T̂(ξ) =
1

(4π~)n

∫
dξ′ exp

[
− i
~

(
ξ′ · J η

)]
T̂(ξ′)T̂(ξ)

=
1

(4π~)n

∫
dξ′ exp

{
− i
~

[
ξ′ · J

(
η − ξ

2

)]}
T̂(ξ′ + ξ)

=
1

(4π~)n

∫
dΞ exp

{
− i
~

[
(Ξ− ξ) · J

(
η − ξ

2

)]}
T̂(Ξ)

= exp

[
− i
~

(ξ · J η)

]
R̂

(
η − ξ

2

)
.

Since ii) follows from a computation identical to the one performed above, we now proceed to iv).
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Using ii),

R̂(η2)R̂(η1) =
1

(4π~)n

∫
dξ exp

[
− i
~

(ξ · J η2)

]
T̂(ξ)R̂(η1)

=
1

(4π~)n

∫
dξ exp

{
− i
~

[ξ · J (η1 − η2)]

}
R̂

(
η1 +

ξ

2

)

=
1

(4π~)n

∫
dΠ exp

{
− i
~

[2 (Π − η1) · J (η2 − η1)]

}
R̂ (Π)

= exp

[
− i
~

(η2 · J η1)

]
T̂[2(η2 − η1)] .

Notice that, by iv), we have R̂(0) = R̂2(η) = Î. Of course, we also have R̂(η) = R̂†(η) and, again
from iv), the reflection basis can be shown to be orthonormal:

R̂(η2)R̂(η1) = exp

[
− i
~

(η2 · J η1)

]
T̂[2(η2 − η1)]

=⇒ tr
[
R̂(η2)R̂(η1)

]
= (2π~)n exp

[
− i
~

(η2 · J η1)

]
δ(η2 − η1) ≡ (2π~)nδ(η2 − η1) , (4.7)

such that the decomposition in (4.6) is indeed valid.

Corollary 4.1.6. The operators T̂(ξ) and R̂(η) form a projective unitary representation of the trans-
lation and reflection group of Lemma 1.5.4. Hence the name given to R̂(η).

We can now use (4.7) to invert the decomposition (4.6), obtaining the expansion coefficient U(η):

Û =

(
1

2π~

)n ∫
dη′ U(η′)R̂(η′)

=⇒ tr
[
ÛR̂(η)

]
=

(
1

2π~

)n ∫
dη′ U(η′)tr

[
R̂(η′)R̂(η)

]

=

∫
dη′ U(η′) exp

[
− i
~

(
η′ · J η

)]
δ(η′ − η)

=⇒ tr
[
ÛR̂(η)

]
= U(η) . (4.8)

Definition 4.1.7. The coefficient U(η) above is the Wigner symbol of Û .

By mixing position and momentum operators and retaining duality with respect to the symplectic
Fourier transform, i.e.

U(η) =

(
1

2π~

)n
2
∫
dξ exp

[
i

~
(ξ · J η)

]
Ũ(ξ) , (4.9)

a description in terms of Wigner and Weyl symbols is the phase-space analogue of the Heisenberg
picture of quantum mechanics, where the emphasis is placed on operators instead of state vectors.

Definition 4.1.8. The descriptions in terms of Weyl or Wigner symbols are the Weyl-Wigner
representations.

The Weyl-Wigner representations provide a phase-space rendering of the density operator ˆ̺ [Bal08].
The fact that all quantum systems can be described by density operators implies that these representa-
tions are very general and can be adapted to describe open quantum systems, whereas a representation
based on the wavefunction is applicable only to systems describing pure states – that is, states for
which a wavefunction can be defined.
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4.1.2 The Wigner function

The normalized chord and center symbols to the density operator ˆ̺, given by

χ(ξ) =

(
1

2π~

)n
tr
[
ˆ̺T̂(ξ)

]
and W (η) =

(
1

2π~

)n
tr
[
ˆ̺R̂(η)

]
, (4.10)

deserve special treatment.

Definition 4.1.9. The Weyl and Wigner symbols χ(ξ) andW (η) are the characteristic andWigner
functions of the system described by ˆ̺, respectively.

We can trace with respect to position to obtain expressions for the characteristic and Wigner
functions in terms of the density operator in position representation. Using the decomposition of
translation operators in terms of position and momentum,

χ(ξ) =

(
1

2π~

)n
tr
[
ˆ̺T̂(ξ)

]

=

(
1

2π~

)n ∫
dq

〈
q

∣∣∣∣ ˆ̺
{
T̂ (ξp, q̂)T̂ (ξq, p̂) exp

[
−
(
i

2~

)
ξq · ξp

]}∣∣∣∣ q
〉

=

(
1

2π~

)n
exp

[
− i

2~
(ξq · ξp)

] ∫
dq 〈q | ˆ̺| q + ξq〉 exp

{
i

~
[ξp · (q + ξq)]

}

=⇒ χ(ξ) =

(
1

2π~

)n ∫
dγ

〈
γ − ξq

2

∣∣∣∣ ˆ̺
∣∣∣∣γ +

ξq
2

〉
exp

[
i

~
(ξp · γ)

]
, (4.11)

where γ was defined by the change of variables q 7−→ γ−ξq/2. Taking the symplectic Fourier transform
we obtain the position representation for the Wigner function:

W (η) =
1

(2π~)n

∫
dξ exp

[
i

~
(ξ · J η)

]
χ(ξ)

=

(
1

2π~

)n ∫
dγ dξq dξp

〈
γ − ξq

2

∣∣∣∣ ˆ̺
∣∣∣∣γ +

ξq
2

〉
exp

[
i

~
(ξp · γ)

]
exp

[
i

~
(ξq · ηp − ξp · ηq)

]

=

(
1

2π~

)n ∫
dγ dξq dξp

〈
γ − ξq

2

∣∣∣∣ ˆ̺
∣∣∣∣γ +

ξq
2

〉
exp

{
i

~
[ξp · (γ − ηq)]

}
exp

[
i

~
(ξq · ηp)

]

=

(
1

2π~

)n ∫
dγ dξq

〈
γ − ξq

2

∣∣∣∣ ˆ̺
∣∣∣∣γ +

ξq
2

〉
δ(γ − ηq) exp

[
i

~
(ξq · ηp)

]

=⇒ W (η) =

(
1

2π~

)n ∫
dγ

〈
ηq −

γ

2

∣∣∣∣ ˆ̺
∣∣∣∣ηq +

γ

2

〉
exp

[
i

~
(γ · ηp)

]
. (4.12)

Notice that the position element of the density operator in both (4.11) and (4.12) is a type of spatial
correlation, for which we cannot guarantee positivity. Since the Wigner function is obtained as a
coefficient in an expansion in a basis of self-adjoint operators, its reality is guaranteed – but it can
still be negative. For the characteristic function the basis is not even self-adjoint and it is generally
complex. Nevertheless, we can employ (4.12) to deduce properties that make the Wigner function
interesting despite the fact that it is not a true probability distribution1. First, we notice that

∫
dηpW (η) =

(
1

2π~

)n ∫
dγ dηp

〈
ηq −

γ

2

∣∣∣∣ ˆ̺
∣∣∣∣ηq +

γ

2

〉
exp

[
i

~
(γ · ηp)

]

=

(
1

2π~

)n ∫
dΓ dηp 〈ηq| ˆ̺|ηq + Γ〉 exp

[
2i

~
[ηp · (ηq − Γ)]

]

=

∫
dΓ 〈Γ| ˆ̺|2ηq + Γ〉 δ (Γ− ηq)

=⇒
∫
dηpW (η) = 〈ηq| ˆ̺|ηq〉 ; (4.13)

1The characteristic function’s properties can be accessed with equivalent calculations using (4.11)).
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and, analogously,
∫
dηpW (η) = 〈ηq| ˆ̺|ηq〉

⇐⇒
(

1

2π~

)n ∫
dηq

{∫
dηp exp

[
i

~
(ηp · J ηq)

]
W (η)

}
=

(
1

2π~

)n ∫
dηq 〈ηq| ˆ̺|ηq〉 exp

[
i

~
(ηp · J ηq)

]

=⇒
∫
dηqW (η) = 〈ηp| ˆ̺|ηp〉 . (4.14)

Therefore, the Wigner function provides a complete description of a quantum system. Of course, both
(4.13) and (4.14) imply ∫

dηpdηqW (η) =

∫
dηqdηpW (η) = 1 ,

so everything up to now is consistent and the Wigner function is normalized. Many more identities
concerning Wigner and characteristic functions are discussed in [dA98].

4.2 Weyl-Wigner dynamics

As the density operator is expanded in either translation or reflection bases, the time-evolution of
the Weyl-Wigner symbols can be expressed as both the evolved density operator expanded in static
bases or the static operator expanded in evolving bases. This constitutes the core of the semiclassical
approximations to be derived in Chapter 5, and shall be developed in this section.

4.2.1 Quantum evolution

Although the expressions (4.11) and (4.12) are useful for explicit calculations and are the ones usually
found in literature, the condensed expressions (4.10) are invaluable when dealing with theoretical
considerations. The time-evolution of the characteristic and Wigner functions, for example, can be
succinctly written using the evolution for the density operator ̺t = Ût ˆ̺Û

†
t , whose details are provided

in Appendix C. Together with the invariance of the trace with respect to permutations, we have

χt(ξ) ∝ tr
[
ˆ̺t T̂(ξ)

]
= tr

[
Ût ˆ̺Û

†
t T̂(ξ)

]
, Wt(η) ∝ tr

[
ˆ̺t R̂(η)

]
= tr

[
Ût ˆ̺Û

†
t R̂(η)

]

=⇒ χt(ξ) =

(
1

2π~

)n
tr
[
ˆ̺T̂t(ξ)

]
, Wt(η) =

(
1

2π~

)n
tr
[
ˆ̺R̂t(η)

]
, (4.15)

so that, just as in the Heisenberg picture, the evolved characteristic and Wigner functions can be ob-
tained from keeping the density operator still, while evolving either translation or reflection operators.
Using the symplectic Fourier transform we can also evidently write

Wt(η) =

(
1

2π~

)n ∫
dξ exp

[
− i
~

(η · J ξ)
]
χt(ξ) , χt(ξ) =

(
1

2π~

)n ∫
dη exp

[
i

~
(η · J ξ)

]
Wt(η) .

(4.16)
A simple lemma sheds light on the formulas above.

Lemma 4.2.1. The translation and reflection operators have the following Wigner-Weyl symbols:

i)
[
R̂(η)

]
(η′) ≡ (2π~)nδ(η′ − η) , ii)

[
R̂(η)

]
(ξ′) = 2−n exp

[
− i
~

(
ξ′ · J η

)]
,

iii)
[
T̂(ξ)

]
(ξ′) ≡ (2π~)nδ(ξ′ − ξ) , iv)

[
T̂(ξ)

]
(η′) = exp

[
i

~

(
ξ · J η′

)]

Proof. Take the trace of 4.1.5. i) and iii) were already indirectly proved in (4.3) and (4.7).

Thus, we can interpret the symplectic Fourier transform as a decomposition of R̂ and T̂ themselves
in translation and reflection bases:

R̂(η) =
1

(4π~)n

∫
dξ exp

[
− i
~

(ξ · J η)

]
T̂(ξ) =

1

(2π~)n

∫
dξ
{[

R̂(η)
]
(ξ)
}
T̂(ξ)

T̂(η) =
1

(2π~)n

∫
dη exp

[
i

~
(ξ · J η)

]
R̂(η) =

1

(2π~)n

∫
dη
{[

T̂(ξ)
]
(η)
}
R̂(η) ,
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Using (4.15) with time dependence either in the density operator or the translation/reflection opera-
tors, Lemma 4.2.1 allows us to write the Wigner function of (4.16) as

Wt(η) =

(
1

π~

)n ∫
dξ
{[

R̂(η)
]
(ξ)
}
χt(ξ) (4.17)

=

(
1

π~

)n ∫
dξ
{[

R̂t(η)
]
(ξ)
}
χ0(ξ) . (4.18)

Equation (4.17) interprets Wigner evolution as a static reflection in the Weyl representation, integrated
against an evolving characteristic function. However, as seen in (4.18), we can also interpret Wigner
dynamics as a static characteristic function integrated against a time-evolving reflection as the kernel.
The same reasoning can be obviously applied to the characteristic function, for which

χt(ξ) =

(
1

2π~

)n ∫
dη
{[

T̂(ξ)
]
(η)
}
Wt(η) (4.19)

=

(
1

2π~

)n ∫
dη
{[

T̂t(ξ)
]
(η)
}
W0(η) . (4.20)

Notice the cross-behavior: We use the characteristic function to evolve the Wigner function, and vice-
versa. This is due to Lemma 4.2.1: The Wigner symbol for a reflection, just as the Weyl symbol for a
translation, are Dirac’s delta functions. Since the characteristic function is expressed as a symplectic
Fourier transform of the Wigner function, it makes sense that the evolved case follows the same rule,
which resumes to the static case when t = 0 by Lemma 4.2.1.

4.2.2 The classical limit

As seen in Example 1.5.3, the generating functions in the exponentials of (4.17) and (4.19) can be
classically interpreted as generators of translations and reflections. By exponentiating them, what
we are building are the Wigner and Weyl symbols for the quantum generators of translations and
reflections. Now, we can use (4.18) and (4.20) to establish a further classical analogy: If e.g. S̃(ξ) =
ξ ·J η generates a classical reflection by η, then S̃t(ξ) = ξ ·J ηt describes dynamics in terms of reflections
by a time-evolving center, since

S̃t(ξ) = ξ · J ηt =⇒ ∂S̃t(ξ)

∂ξ
= J ηt , St(η) = ξt · J η =⇒ ∂St(η)

∂η
= −J ξt ,

where in the second equation we have expanded this to the center generating function.

Theorem 4.2.2. The evolution of the Wigner function has a well-defined classical limit, given by

W (ηt) =

(
1

π~

)n ∫
dξ exp

[
− i
~

(ξ · J ηt)
]
χ0(ξ) ,

where the coordinate ηt obeys Hamilton’s equations η̇t = {ηt, H}.

Proof. The proof is very simple: Using the ideas developed earlier, we just identify the time-evolving
Weyl symbol in (4.18) with minus the exponential of its classical version, i.e. −S̃t(ξ):

Wt(η) =

(
1

π~

)n ∫
dξ
{[

R̂t(η)
]
(ξ)
}
χ0(ξ) ≈

(
1

π~

)n ∫
dξ exp

[
− i
~

(ξ · J ηt)
]
χ0(ξ) = W (ηt) .

To show this makes sense, suppose we calculate the Wigner evolution at a point ηt = (qt, pt) which,
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by definition, evolves according to Hamilton’s equations:

dW (qt, pt)

dt
=

(
1

π~

)n ∂

∂t

{∫
dξq dξp exp

[
− i
~

(ξq · pt − ξp · qt)
]
χ0(ξ)

}

=

(
1

π~

)n {
− iṗt

~

(∫
dξq dξp (ξq) exp

[
− i
~

(ξq · pt − ξp · qt)
]
χ0(ξ)

)

+
iq̇t
~

(∫
dξq dξp (ξp) exp

[
− i
~

(ξq · pt − ξp · qt)
]
χ0(ξ)

)}

=

(
∂H(qt, pt)

∂qt

)
∂

∂pt

{(
1

π~

)n ∫
dξq dξp exp

[
− i
~

(ξq · pt − ξp · qt)
]
χ0(ξ)

}

−
(
∂H(qt, pt)

∂pt

)
∂

∂qt

{(
1

π~

)n ∫
dξq dξp exp

[
− i
~

(ξq · pt − ξp · qt)
]
χ0(ξ)

}

=

(
∂H(qt, pt)

∂qt

)(
∂W (qt, pt)

∂pt

)
−
(
∂H(qt, pt)

∂pt

)(
∂W (qt, pt)

∂qt

)

⇐⇒ dW (ηt)

dt
= −{W (ηt), H(ηt)} , (4.21)

which is just the Liouville equation2 (1.6).

The Wigner representation allows us to define a classical limit [Gro46, Moy49], which is some-
thing that does not exist in the Schrödinger picture of quantum mechanics: There are no “classical
wavefunctions” or even “classical operators”, since Dirac’s quantization condition, when applied to the
Heisenberg picture, does not really tell us how to obtain classical operators corresponding to quantum
ones (i.e. to dequantize operators). The Moyal formulation [Moy49] of quantum mechanics is com-
pletely based on (4.21), using it to define an algebraic deformation in terms of a poissonian structure
{{, }}, the Moyal bracket, for which

Ẇt = −{{Wt, Ht}} = −{Wt, Ht}+O(~) .

Just as there are rigorous formulations of quantum mechanics using spectral theory and C∗-
algebras, which employ deformation theory, the Moyal formulation is the phase-space way to deform
the Poisson bracket and develop a rigorous classical limit in quantum theory. However, it is rather
hopeless from the numerical point of view: The Moyal equation above is not really “meant” to be
solved, being of a more “contemplative” nature. The geometrical theory which we have been using so
far when interpreting things in terms of centers and chords does not lead to a much simpler algorithm
to solve for the exact Wigner evolution, but has a somewhat natural semiclassical limit that we shall
develop in the following chapter. This theory can be found in the review [dA98], our main reference
for this chapter, being first developed in [Gro76, Roy77, BJ84].

Coherent state dynamics

As mentioned in Chapter 3, coherent states are the quantum equivalent of classical phase-space points
and this dissertation will be mostly focused on their propagation. Using the wavefunction (3.3) and
(4.12), the Wigner function for a coherent state centered at α = (ℜ(α),ℑ(α)) on the phase plane is
given by

W (q, p) =

(
1

2π~

)∫
dγ

〈
q − γ

2

∣∣∣∣ ˆ̺
∣∣∣∣q +

γ

2

〉
exp

(
iγ · p
~

)

=

(
1

4π~

) 1
2
∫
dγ exp

{
− 1

2~

∣∣∣∣q +
γ

2
−ℜ(α)

∣∣∣∣
2

+
1

2~

∣∣∣∣q −
γ

2
−ℜ(α)

∣∣∣∣
2

+
iγ

~
· [ℑ(α)− p]

}

=⇒W (q, p) =

(
1

π~

)
exp

{
−1

~
|q −ℜ(α)|2 − 1

~
|p−ℑ(α)|2

}
,

2Notice that, due to the characteristic function employing the kernel exp[i...] instead of exp[−i...], there is a sign
difference and we do not recover the Liouville equation – The characteristic function does not provide us with a meaningful
classical limit (quite obvious, since it’s a complex object).
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or, more compactly,

W (η) =

(
1

π~

)
exp

(
−|η − α|

2

~

)
, η = (q, p) .

The expression above shows that coherent states conserve their gaussian form when represented in
phase space. The characteristic function, easily obtained by a symplectic Fourier transform of the
equation above, is given by

χ(ξ) = exp

[
−1

~

(
|ξ|2
4
− iα · J ξ

)]
, ξ = (q, p) ,

which we can employ to derive the classical evolution of the Wigner function using Theorem 4.2.2:

W (η−t) =

(
1

π~

)∫
dξ exp

[
− i
~

(ξ · J ηt)
]
χ0(ξ)

=

(
1

π~

)∫
dξ exp

[
− i
~

(ξqpt − ξpqt)
]

exp

{
−1

~

[
(ξ2
q + ξ2

p)

4
− i(ℜ(α)ξp −ℑ(α)ξq)

]}
.

Completing the square, performing the gaussian integral above and substituting t 7−→ −t to describe
forward propagation,

W (qt, pt) =

(
1

π~

)
exp

{
−1

~
[q−t −ℜ(α)]2 − 1

~
[p−t −ℑ(α)]2

}
,

which we can write compactly as

W (ηt) =

(
1

π~

)
exp

(
−|η−t − α|2

~

)
, ηt = (qt, pt) . (4.22)

Again, the coherent states present us with a remarkable property: The classical evolution of a coherent
state in the Wigner representation is just the Wigner function for the coherent state evaluated along
the classical trajectory (but notice the negative sign in (4.22)).

4.2.3 Characteristic times and the autocorrelation function

Interpreting the classical approximations as zeroth-order terms in an ~-series, just as in Moyal’s for-
mulation, we see that the phenomenon of quantum superposition can be interpreted as a correction to
classical propagation, i.e. the zeroth-order term is classical, and the following terms are associated to
the classical one interfering with itself. Of course, if the initial Wigner function is highly non-classical
and oscillatory, the O(~) term is the most significant, since ~2 is already tiny with respect to the
classical action. It is expected, therefore, that a O(~) truncation of quantum propagation is already
enough to recover most of quantum mechanics – which constituted the basis of Chapter 3.

As quantum dynamics is singular with respect to the limit ~ −→ 0, the use of asymptotic analysis
becomes unavoidable and will be the focus of later chapters. For very short times, however, we expect
the zeroth-order term3

[
R̂t(η)

]
(ξ) ≈ exp

[
− i
~

(ξ · J ηt)
]

to provide meaningful results, since for these tiny times the initial distribution, implicitly assumed to
be localized, has not yet deformed under quantum evolution to start interfering with itself. In fact,
the classical approximation in the Wigner-Weyl representations has been used in chemistry to model
large molecules and provides very good results in many cases (see [Liu15] for a recent review). This is
because the classical action for these systems is large when compared to ~, so that they lie closer to
the classical than to the quantum world: S ≫ ~, so S/~ is only slow varying in a small region, outside

3Note that, even though we talk about classical evolution, ~ is ubiquitous. Everything still breaks down in the limit
~ −→ 0, mostly because this limit is meaningless (as discussed in the Introduction).
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of which it is rapidly oscillating and the Riemann-Lebesgue lemma applies4 – this allows for the use
of stationary phase approximations, which are the bread and butter of asymptotic analysis.

A nice way to find out the time-limit over which the classical approximations of Theorem 4.2.2
are enough to model quantum systems is through the interferences of the Wigner function with its
starting value:

A2
t = 2π

∫
dηWt(η)W0(η) , (4.23)

since this object should present very different behaviors under classical and quantum propagations for
long enough times.

Definition 4.2.3. The function At in (4.23) is the autocorrelation function.

Indeed, the autocorrelation function in (4.23) is just the Wigner-function way of writing the usual
squared autocorrelation |〈ψt|ψ0〉|2. The following subsections should be read while comparing with
Fig. 4.1.

Autocorrelation for the classical evolution of coherent states

At represents the normalized area of intersection between the initial Wigner function and its evolution,
so if the evolution is purely classical all interference is positive (classical evolution cannot make a
positive initial distribution become negative). If the dynamics takes place in a bounded phase-space
region, we expect At to begin at A0 = 1 and to gradually lose intensity to reach At ≈ 0, representing
the moment at which it has evolved away from the initial region and the intersection has a minimum.
Shortly after nearing 0, however, we have two possibilities:

• The classical dynamics is integrable, so the initial distribution is propagated along regular orbits
that end up bringing back some pieces of the Wigner function back to the initial region, increasing
At;

• The classical dynamics is chaotic, therefore ergodic, and after a while scattered portions of the
propagated Wigner function end up reaching the initial region, increasing At.

In a word: A0 = 1, then it moves to At ≈ 0, and then it increases. Due to dynamics being symplectic
and, thus, conserving areas, we expect it to stabilize for long enough times, representing an intersection
area that approaches a constant due to Poincaré recurrence – which is completely general and does not
depend on the dynamical nature of the system. For discrete evolution, however, the autocorrelation
might never reach a constant value and develop some small oscillatory behavior.

Autocorrelation for the quantum evolution of coherent states

There is no quantum chaos, so we only need to worry about regular dynamics in the quantum case. We
expect At to behave exactly as its classical equivalent in the sense that it starts at 1 and drops close to
0, so the classical and quantum autocorrelation functions should match in this time regime. However,
whereas the classically evolved Wigner function remained positive for all times and the intersection
area was always positive, the quantum Wigner function will interfere with itself and generate negative-
valued fringes. These fringes will end up caught in the region occupied by the initial Wigner function
and will provide negative contributions to At, which will alternate with the positive contributions: In
the quantum case, At oscillates.

Oscillations in the autocorrelation function should be dominant for quantum propagation after a
certain time, which we proceed and define as τE . It represents the instant at which the quantum and
the classical autocorrelation functions no longer match – that is, the classical propagation is no longer
a good approximation to the quantum one.

Definition 4.2.4. The time τE is the Ehrenfest time.
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(a) Classical evolution be-
fore τE .

(b) Quantum evolution
before τE .

(c) Classical evolution af-
ter τE .

(d) Quantum evolution
after τE .

Figure 4.1: In all panels, the dashed-gray region represents the initial Wigner function. (a) The classical Wigner function,
in black, is evolved for a short time and has a single tip inside the gray region – At is small. (b) The same, but for the
quantum evolution, with its positive and negative interferences represented in blue and red, respectively. Notice At is
the same as in (a). (c) The classical Wigner function is now evolved for a time long enough for it to come back to the
initial gray region, so At should start to rise. (d) The same, but for the quantum Wigner function, for which we now
have interferences falling inside the initial gray area. These interferences create negative contributions in At, forbid it
to remain constant and cause it to oscillate as time evolves – classical and quantum Ats are no longer identical.

The Ehrenfest time establishes an interesting time-scale, especially for quantum systems whose
classical counterparts are chaotic, since it is both connected with the start of quantum oscillations
and with the speed at which initially close phase-space points diverge when propagated under chaotic
dynamics (thus, they are connected to Lyapunov exponents [SVT12]). When analyzing chaotic systems
in this dissertation, we will often choose to represent propagation times in terms of Ehrenfest-time
multiples.

For high-dimensional systems that occupy vast phase-space regions, it takes a long time for the
propagated distribution to return and interfere with its initial self. This is exactly the case for the
systems successfully modeled by the classical approximation by the chemists, which from a physicist’s
point of view are monstrously large. Within the chemical community, the classical Wigner function
is usually referred to as the Linearized Semiclassical Initial Value Representation (LSC-IVR), and is
obtained using a very different [and somewhat cumbersome] line of reasoning (see [Liu15] for a review).
It is also referred to in physics as the Truncated Wigner Approximation (TWA), and a nice review in
this context can be found in [Pol10].
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Chapter 5
Semiclassical approximations in phase space

(...) o que merece especulada atenção do observador, da
vida de cada um, não é o seguimento encadeado de seu
fio e fluxo, em que apenas muito de raro se entremostra
algum aparente nexo lógico ou qualquer desperfeita co-
erência; mas sim as bruscas alterações ou mutações –
estas, pelo menos, ao que têm de parecer, amarradinhas
sempre ao inviśıvel, ao mistério.

J. Guimarães Rosa in A estória do homem pinguelo

(Estas Estórias)

In Chapter 3 we used SPAs to obtain a semiclassical formulation of standard position-momentum
quantum mechanics, and we now do the same for the the Weyl-Wigner representations. As we have
seen in Chapter 4, the description in terms of the Wigner function is entirely analogous to using the
more standard position-momentum wavefunctions, but with the bonus of a well-defined classical limit.
It is then possible to analyze evolution in three different regimes: Classical, quantum and semiclassical.
We start by obtaining the Weyl-Wigner symbols for the propagator restricted to linear systems, which
are rather easy to generalize using the same reasoning as in 3. Later, we consider the propagation
of arbitrary operators, where it becomes clear that the problem of general propagation is entirely
characterized by the semiclassical evolution of translations and reflections, which we manage to solve.
We then devise IVRs and, especially, a FVR for Wigner evolution, providing in detail the means for
its calculation. This chapter is entirely based on [dAVZ13], although we employ different notational
conventions.

5.1 The semiclassical propagator in the Weyl-Wigner representation

For sufficiently short times there is only one trajectory connecting two distinct points in phase space
and caustics were still not reached (see Appendix B), so the van Vleck propagator of Section 3.3.2 is
represented by a single term:

KvV
t (q, q′) =

(
1

2πi~

)n
2

∣∣∣∣∣det

(
∂2S(q, q′)

∂q∂q′

)∣∣∣∣∣

1
2

exp

[
i

~
S(q, q′)

]
. (5.1)

The case of linear systems is very particular because the formula above is not an approximation, but
general and exact – the only thing missing is the allowance for a change of branch in S (i.e. the
inclusion of the Maslov index). In this section we employ a strategy devised by Berry [Ber89] in which
we calculate the semiclassical propagator in phase space through the Weyl-Wigner symbols of the
van Vleck propagator above, gradually generalizing it from the linear case to arbitrary systems and
long times.
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5.1.1 Weyl-Wigner symbols for linear flows

We shall use the van Vleck propagator (5.1) as starting point to obtain expressions for the Weyl and
Wigner symbols (4.4) and (4.8) for the evolution operator corresponding to linear flows – that is, flows
that have the form

x′ =Mtx ⇐⇒
(
q′

p′

)
=

(
At Bt
Ct Dt

)(
q
p

)
,

where each block is a function of time exclusively. These flows substantially simplify the expressions
for the center and chord generating functions, which become (see Appendix B)

S̃t(ξ) = ξ · B̃tξ/4 , B̃t = J (Mt − I)−1(Mt + I) (5.2)

St(η) = η · Btη , Bt = J (I +Mt)
−1(I −Mt) , (5.3)

where B̃ and B are known as the Cayley parametrizations ofMt.
Now, the Weyl symbol for short times can be generally expressed in terms of the van Vleck

propagator in (5.1) by inserting it in (4.4):

Ũt(ξ) = tr
[
ÛtT̂(ξ)

]
= tr

[
T̂(−ξ)Ût

]
=

∫
dq dq′ 〈q|Ût|q′〉〈q′|T̂(−ξ)|q〉

= exp

(
iξq · ξp

2~

)∫
dq dq′ exp

(
iq · ξp
~

)
KvV
t (q, q′)〈q′|q − ξq〉

= exp

(
iξq · ξp

2~

)∫
dq exp

(
iq · ξp
~

)
KvV
t (q, q − ξq) . (5.4)

However, evaluating the integral above is much simpler for linear flows, since in this case the SPA is
exact and results in

Ũt(ξ) = |det (Mt − I)|−
1
2 exp

{
i

~

[
S̃t(ξ) +

~πα̃

4

]}
, α̃ = sign

{(
∂2S̃t(ξ)

∂ξ2

)}
, (5.5)

with S̃t(ξ) as in (5.2). The complete calculations are provided in Appendix E, together with the
passage to the center symbol using the symplectic Fourier transform of the above, namely

Ut(η) = 2n|det (I +Mt) |−
1
2 exp

{
i

~

[
St(η) +

iπα

4

]}
, α = sign

{(
∂2St(η)

∂η2

)}
, (5.6)

with St(η) as in (5.3). The short-time propagations in (5.5) and (5.6) can be easily extended for
long times: As the flow is linear, Lemma B.1.1 ascertains root-searching will never be required, so
the only correction that needs to be included is a change of signature in ∂2

ηSt(η) or ∂2
ξ S̃t(ξ). By the

same argument of Subsection 3.3.3, the signature entering the phase will be the number of negative
eigenvalues of the hessians before the caustic minus after the caustic – these are even-numbers which
we define as σ and σ̃ [dA98, dAI14]. Thus, we have the long-time propagators for linear dynamics:

Ũt(ξ) = |det (Mt − I)|−
1
2 exp

{
i

~

[
S̃t(ξ) +

~πσ̃

2

]}
, S̃t(ξ) = ξ · B̃tξ/4 ,

Ut(η) = 2n|det (I +Mt) |−
1
2 exp

{
i

~

[
St(η) +

iπσ

2

]}
, St(η) = η · Btη ,

with B̃t and Bt as in (5.2) and (5.3). Notice the Weyl representation is singular for t = 0, since
M0 = I.

Example 5.1.1. (Weyl-Wigner caustics for the SHO) Let us examine the caustic structure of
the SHO, for which

Mt =

(
cos t sin t
− sin t cos t

)
=⇒ M0 =

(
1 0
0 1

)
, Mπ =

(
−1 0
0 −1

)
.

The case t = 0 depicts a caustic in Ũt(ξ): Since ξ = 0, all centers have the same chord. For t = π, we
have a caustic in Ut(η): Since η is at the origin, all chords joining diametrically opposing points on a
same orbit have the same center. This latter case is depicted in Fig. 5.1. Notice that, since the Ũt(ξ)
has no caustic at t = π, we can exchange polarizations when approaching this time value. >
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x0 x0 x0

xt

xt

x0
xt

xt

Figure 5.1: Center caustics for the SHO: The evolution leading x0 7−→ xt is well-described in the Wigner formalism for
times up to t = π, each center corresponding to a single chord. However, when passing through t = π, there are infinite
chords with the same center (shown in cyan) and the Wigner symbol diverges. After the caustic is passed, however, the
Wigner symbol is again well defined. By exchanging between Wigner and Weyl symbols we can avoid any caustic, since
their associate center and chord polarizations are never singular at the same time.

5.1.2 Semiclassical symbols for the evolution operator

The generalization from the linearized case to general flows can be obtained by inserting the general
van Vleck propagator in (5.4) and approximating it using SPAs. Here, however, we choose a simpler
path that follows from a trivial identification: The semiclassical amplitudes appearing in the Weyl
and Wigner symbols, namely

Ã2(ξ) = |det (M− I)|−1 and Ã2(η) =

∣∣∣∣det

(
I +M

2

)∣∣∣∣
−1

,

can have their arguments identified with

M− I =
d

dx
(Mx− x) =

dξ(x)

dx
,

M+ I

2
=

d

dx

(Mx+ x

2

)
=
dη(x)

dx
, (5.7)

So that the linear propagators of the earlier section can be written as

Ũt(ξ(x)) =

∣∣∣∣det

(
dξ(x)

dx

)∣∣∣∣
− 1

2

exp

{
i

~

[
S̃t(ξ(x)) +

iπσ̃

2

]}
(5.8)

Ut(η(x)) =

∣∣∣∣det

(
dη(x)

dx

)∣∣∣∣
− 1

2

exp

{
i

~

[
St(η(x)) +

iπσ

2

]}
. (5.9)

After performing so many SPAs in all sorts of representations, we can leave calculations on the side
and use our semiclassical intuition to generalize the propagators above to non-linear systems. The
first thing we must have in mind is that, for short-enough times, the propagators for general systems
must look exactly as above, since short times can be well approximated by quadratic propagation.
The changes that will take place have to do with the non-linearity of the flow, which was represented
earlier byMtx, but is now given by ρt(x). The amplitudes in (5.7) must be generalized to





d

dx
(ρt(x)− x) =

dρt(x)

dx
− I = Mt(x)− I

d

dx

(
ρt(x) + x

2

)
=

1

2

(
dρt(x)

dx
+ I

)
=

Mt(x) + I

2

, (5.10)

where M(x) is the monodromy matrix of Section 3.3.3 calculated at the point x. In the same way, the
generating functions are no longer quadratic functions of chords and centers, being generally not even
analytical. We then have, for short times, the same propagators as in (5.8) and (5.9), except that the
proper amplitudes are now given in (5.10) and the generating functions are general. Extending them
for long times is immediate and follows the same steps as in Chapter 3: Trajectories will have to be
added to the sum and selected through root-searching, just as in (E.2), but now the solution is not
unique:

∂

∂ξ

(
S̃(ξ) + ξ · J η

)
⇐⇒ ∂S̃(ξ)

∂ξ

∣∣∣∣
ξ=ξ(j)

= −J η ⇐⇒ n(ξ(1)) = n(ξ(2)) = ... = η , (5.11)
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with n
def
= J ∂ξS̃. The instruction given above is, in words: The semiclassical contribution at the fixed

center η is given by the sum over all chords centered on it. The SPA for centers provides the analogous
search

∂

∂η
(S(η)− ξ · J η) ⇐⇒ ∂S(η)

∂η

∣∣∣∣
η=η(j)

= J ξ ⇐⇒ z(η(1)) = z(η(2)) = ... = ξ , (5.12)

with z
def
= −J ∂ηS. Again, root-searching for these chords/centers is equivalent to summing over

the branches of S and S̃. Combining everything up to now, we finally write the completely general
expressions for the Weyl and Wigner symbols1:

Ũt(ξ(x)) =
∑

j

∣∣∣∣det

(
dξ(x)

dx

)∣∣∣∣
− 1

2

x=x(j)
exp

{
i

~

[
S̃t(ξ(x

(j))) +
iπσ̃(j)

2

]}
(5.13)

Ut(η(x)) =
∑

j

∣∣∣∣det

(
dη(x)

dx

)∣∣∣∣
− 1

2

x=x(j)
exp

{
i

~

[
St(η(x(j))) +

iπσ(j)

2

]}
, (5.14)

where the root-search for each propagator is a parametrization of (5.11) and (5.12) in terms of x: The
correct x(j) is defined, for each propagator above, as

n(ξ(1)(x)) = n(ξ(2)(x)) = ... = η ⇐⇒ n(ξ(x(1))) = n(ξ(x(2))) = ... = η ;

z(η(1)(x)) = z(η(2)(x)) = ... = ξ ⇐⇒ z(η(x(1))) = z(η(x(2))) = ... = ξ ,

respectively.

The semiclassical propagators, just as almost everything in this dissertation, were obtained from
stationary phase approximations. We have already met with the several shortcomings of “raw” prop-
agators in Chapter 3, which are also manifest in the expressions above: They diverge at caustics and
require root-searching. Notice, however, that the divergences in the propagators above are different
from what was described in WKB theory.

5.1.3 Phase-space caustics and Conley-Zehnder indexes

Unlike the caustic singularities of Chapter 3, the zeros appearing in the Weyl-Wigner representations
are a function of the whole monodromy matrix instead of its individual components. They are also
different among themselves, reflecting that, just as position and momentum, we can exchange between
the Weyl and the Wigner polarizations when a caustic is approached in either one – a fact we have
already used earlier. Thus, just as in Chapter 3, these indexes are modified every time we are forced
to change polarization in order to avoid caustics.

Definition 5.1.2. The indexes σ and σ̃ are the Conley-Zehnder indexes.

These indexes count the zeros of det [Mt(x)− I] and det [Mt(x) + I], while in WKB theory we only
counted the zeros of a single monodromy matrix component. This renders the semiclassical Wigner
functions considerably more computationally expensive then semiclassical wavefunctions, but it’s a
price one is required to pay to formulate semiclassical theory in phase space. The extra complexities
associated to the semiclassical propagation of Wigner functions are unavoidable when dealing with
non-unitary evolution, although they might be overkill for the case of closed quantum systems.

In the end, all indexes arising due to exchanging between parametrizations of a lagrangian foliation
(i.e. polarizations) are related [dG06, AG]. When choosing parametrizations employing position and
momentum, we were expressing the same lagrangian manifold using two different descriptions that
were singular at different regions. Using chords and centers, we have the exactly same situation,
except we choose a more intricate parametrization employing Cayley transforms (see Appendix B).
Caustics, therefore, occur at different regions, but the Conley-Zehnder indexes can still be understood
as a caustic count – not the same caustics, however: For position and momentum they happened when
the derivatives of the position-position generating function exploded, but now they happen when Mt

has eigenvalues equal to +1 or −1.

1Notice that, in the terminology of Chapter 3, employing either the center and chord generating functions is tanta-
mount to choosing between the center or chord polarizations in the product manifold.
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5.1.4 Initial value representations

Following Chapter 3, we now attempt to get rid of root-searches and infinities in the raw propagators
(5.13) and (5.14). For this, we use the exactly same reasoning as in Section 3.3.4: Start by expressing
the root-search equations (5.11) and (5.12) as a function of the initial point:

δ(z(x)− ξ) and δ(n(x)− η) ,

so that if z(x) = ξ this particular root is selected. Then,

∫
dx

∣∣∣∣det

(
dz(x)

dx

)∣∣∣∣

1
2

δ(z(x)− ξ) =
∑

j

∣∣∣∣det

(
dξ(x)

dx

)∣∣∣∣
− 1

2

x=x(j)
(5.15)

∫
dx

∣∣∣∣det

(
dn(x)

dx

)∣∣∣∣

1
2

δ(n(x)− η) =
∑

j

∣∣∣∣det

(
dη(x)

dx

)∣∣∣∣
− 1

2

x=x(j)
.

We shall perform the subsequent calculations exclusively for the Wigner symbol, but the generalization
to the Weyl symbol is immediate. To use the equalities obtained above, the key is to use the symplectic
Fourier transform (4.9) and write

U(η) =

(
1

2π~

)n ∫
dξ exp

[
i

~
(ξ · J η)

]
Ũ(ξ)

=⇒ U(η) ≈
(

1

2π~

)n ∫
dξ(x)

∑

j

∣∣∣∣det

(
dξ(x)

dx

)∣∣∣∣
− 1

2

x=x(j)
exp

{
i

~

[
ξ(x) · J η + S̃

(j)
t (ξ(x)) +

iπσ̃(j)

2

]}
.

Now, substitute the sum by (5.15),

U(η) =

(
1

2π~

)n ∫
dx dξ(x)

∣∣∣∣det

(
dz(x)

dx

)∣∣∣∣

1
2

δ(z(x)− ξ(x))

× exp

{
i

~

[
ξ(x) · J η + S̃t(ξ

(j)(x)) +
iπσ̃(j)

2

]}
.

and integrate with respect to ξ to get

U(η) ≈
(

1

2π~

)n ∫
dx

∣∣∣∣det

(
dξ(x)

dx

)∣∣∣∣

1
2

exp

{
i

~

[
ξ(x) · J η + S̃t(ξ(x)) +

iπσ̃

2

]}
.

The same procedure applied to the Weyl symbol gives

Ũt(ξ) ≈
(

1

π~

)n ∫
dx

∣∣∣∣det

(
dη(x)

dx

)∣∣∣∣

1
2

exp

{
i

~

[
ξ · J η(x) + St(η(x)) +

iπσ

2

]}
.

The integral representations above, which are integrals with respect to the initial phase-space point
x (thus belonging to the class of IVRs), are the direct equivalents of what was developed in Section
3.3.4: They get rid of infinities and require no root-searching.

5.2 Semiclassical evolution of general operators

Up to now we have focused on the evolution operator Ût. However, this is not enough to be able to
propagate arbitrary operators in phase space. For this, we need to understand how translations and
reflections evolve semiclassically.
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x+

x−

x′+

x′−

η′

ρt

ρ−1
t

(a) The x− 7−→ x+ circuit as viewed
in the center picture.

x+

x−

x′+

x′−

ρt

ρ−1
t

ξ′

(b) The x− 7−→ x+ circuit as viewed
in the chord picture.

Figure 5.2: (a) The semiclassical Wigner representation calls for the interpretation of the circuit x− 7−→ x+ as being
constructed by the composition of the flow ρt, followed by a reflection around η′, and finally by the inverse flow ρ−1

t . (b)
In the semiclassical Weyl representation, the only difference is that the intermediate step is given by a translation by the
chord ξ′.

5.2.1 The geometry of phase-space propagation

From Chapter 4 we know that we can use the cyclic property of the trace to move time-dependence
to reflection and translation operators, resulting in the evolved symbols

At(η) = tr
[
Â R̂t(η)

]
, R̂t(η) = Û †

t R̂(η) Ût

Ãt(ξ) = tr
[
Â T̂t(ξ)

]
, T̂t(η) = Û †

t T̂(ξ) Ût .

Introducing four resolutions of the identity in the position basis, we have

At(η) =

∫

R4n
dq0 dq1 dq2 dq3

{
〈q0|Ût|q1〉〈q1|R̂t(η)|q2〉〈q2|Û †

t |q3〉
}
〈q3|Â|q0〉

Ãt(ξ) =

∫

R4n
dq0 dq1 dq2 dq3

{
〈q0|Ût|q1〉〈q1|T̂(ξ)|q2〉〈q2|Û †

t |q3〉
}
〈q3|Â|q0〉 .

where the terms in curly brackets can be semiclassically interpreted using the van Vleck propagator,
which we do in the following. Notice that understanding how translations and reflections evolve will
allow us to describe the semiclassical evolution of any Â.

The center view

The semiclassical Wigner symbol can be written as

At(η
′) ≈

∫

R4n
dq0 dq1 dq2 dq3

{
KvV
t (q0, q1)〈q1|R̂(η′)|q2〉KvV

t (q3, q0)
}
〈q3|Â|q0〉 , (5.16)

where the van Vleck propagators allows us to associate a momentum pi with the position qi, i =
0, 1, 2, 3 through the generating functions entering their phases. What the equation above is telling
us is that the evolution inside the curly brackets allows for the classical phase-space interpretation

(q0, p0)
ρt−→ (q1, p1)

Rη′−→ (q2, p2)
ρ−1

t−→ (q3, p3) ,

where R represents a classical reflection around η′. The evolution entering the semiclassical reflection
can then be described in three steps:

1. Start with x− = (q0, p0) and evolve it using the flow to build (q1, p1) = x′
− = ρt(x−);

2. Reflect the point x′
− around η′ and define (q2, p2) = x′

+ = Rη′(x′
−) = 2η′ − x′

−;

3. Evolve the point x′
+ backwards using the inverse flow to get (q3, p3) = x+ = ρ−1

t (x′
+).

The value of Â depends, as can be seen, both on the center η′ and on the initial point x−, which
parametrizes the whole circuit. This circuit is depicted in Fig. 5.2(a).
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The chord view

Now, the version equivalent to (5.16) takes the form

At(ξ
′) ≈

∫

R4n
dq0 dq1 dq2 dq3

{
KvV
t (q0, q1)〈q1|T̂(ξ′)|q2〉KvV

t (q3, q0)
}
〈q3|Â|q0〉 ,

allowing for the classical interpretation

(q0, p0)
ρt−→ (q1, p1)

Tξ′−→ (q2, p2)
ρ−1

t−→ (q3, p3) ,

where Tξ′ represents a classical translation by ξ′. The evolution is then given in three steps:

1. Start with x− = (q0, p0) and evolve it using the flow to build (q1, p1) = x′
− = ρt(x−);

2. Translate the point x′
− by the chord ξ′ and define (q2, p2) = x′

+ = Tξ′(x′
−) = ξ′ + x′

−;

3. Evolve the point x′
+ backwards using the inverse flow to get (q3, p3) = x+ = ρ−1

t (x′
+).

The value of Â now depends on both the chord ξ′ and on the initial point x−. This circuit is depicted
in Fig. 5.2(b).

5.2.2 IVRs for the Weyl-Wigner symbols

We now proceed to approximate the expressions




At(η) =

(
1

π~

)n ∫
dξ
{[

R̂t(η)
]
(ξ)
}
Ã(ξ) ≈

(
1

π~

)n ∫
dξ
{[

R̂t(η)
]
(ξ)
}SC

Ã(ξ)

Ãt(ξ) =

(
1

2π~

)n ∫
dη
{[

T̂t(ξ)
]
(η)
}
A(η) ≈

(
1

2π~

)n ∫
dη
{[

T̂t(ξ)
]
(η)
}SC

A(η)

using the geometry presented in the earlier section and the IVRs of Section 5.1.4. First, notice that
the classical flow that brings x− 7−→ x+ in Fig. 5.2(a) is given by

x+(η′, x−) = (ρ−t ◦ Rη′ ◦ ρt)(x−) ,

while in Fig. 5.2(b) it is
x+(ξ′, x−) = (ρ−t ◦ Tξ′ ◦ ρt)(x−) .

Since the classical flow depends on both η′/ξ′ and the initial point x−, the generating functions that
will give rise to these centers and chords will also have dependencies in the form St(η(η′, x−)) and
S̃t(ξ(ξ

′, x−)). The semiclassical propagators corresponding to this compound evolution have the form

{[
R̂t(η

′)
]
(ξ)
}SC

=
∑

j

∣∣∣∣det

(
dξ(η′, x−)

dx−

)∣∣∣∣

1
2

j

exp

{
i

~

[
S̃

(j)
t (ξ(η′, x−)) +

iπσ̃(j)

2

]}

{[
T̂t(ξ

′)
]
(η)
}SC

=
∑

j

∣∣∣∣det

(
dη(ξ′, x−)

dx−

)∣∣∣∣

1
2

j

exp

{
i

~

[
S

(j)
t (η(ξ′, x−)) +

iπσ(j)

2

]}
,

where the sum runs over the branches of S̃ and S. Using the logic of the earlier section, we arrive at
the IVRs

At(η
′) ≈

(
1

2π~

)n ∫
dx−

∣∣∣∣det

(
dξ(η′, x−)

dx−

)∣∣∣∣

1
2

exp

{
i

~

[
S̃t(ξ(η

′, x−)) +
iπσ̃

2

]}
Ã(ξ(η′, x−)) (5.17)

Ãt(ξ
′) ≈

(
1

π~

)n ∫
dx−

∣∣∣∣det

(
dη(ξ′, x−)

dx−

)∣∣∣∣

1
2

exp

{
i

~

[
St(η(ξ′, x−)) +

iπσ

2

]}
A(η(ξ′, x−)) . (5.18)

What do the propagators above mean? Well, in both cases x− runs over the same circuit, presented in a
slightly different way in Fig. 5.3(a), the difference is that in the Wigner representation the intermediate
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η′

ρ−1
t

ρt

ξ′

η

ξ

(a) Reinterpretation of Figs. 5.2(a)
and 5.2(b) as an evolving chord ξ.

η′

ξ′

η

ξ

ρ−1
t

η

ξ

(b) Evolving η′ backwards to η
doesn’t work: we end up with a dif-
ferent initial chord ξ.

Figure 5.3: (a) We re-interpret the circuit performed by x− as a final chord/center evolving backwards to an initial
chord/center. The variables we take as starting point are now x′

±, from which we form either ξ′ or η′ depending on
whether we are in the Wigner or Weyl representations, respectively. This is just a way of simplifying dependencies in
the IVRs (5.17) and (5.18). (b) The area of the circuit x− 7−→ x+ is given by the area of the dashed-green quadrilateral,
plus the area in gray, minus the area in pink. These latter areas are given by the center generating functions evaluated
at the midpoints between x± and x′

±, defined as η±.

step is a reflection, while in the Weyl representation it is a translation – The Wigner symbol tells us
how to calculate evolution using a center, and the Weyl symbol does the same, but using a chord.
Now, both propagations are functions of variables we still haven’t defined, namely initial chords and
centers ξ and η, which are very easy to infer: ξ = x+ − x− is the chord joining our starting point x−

and its final arrival, x+; and η is just the midpoint (x+ + x−)/2 (see Fig. 5.3(a)). We now use the
Wigner symbol as a probe to understand this scenario.

Since the Wigner symbol is expressed as a function of chords, we can then reinterpret the circuit
in Fig. 5.2(b) as evolving and initial chord from ξ 7−→ ξ′, parametrizing the whole evolution as a
function of x− as in Fig. 5.3(a). A subtle observation renders this interpretation cumbersome: The
only available data for us are the initial point x− and the final center η′, which is where we want to
calculate our symbol. If the initial center η were available, we could simply reflect x− around it to
create x+, defining the initial chord to be propagated to ξ′. Can we define this center without using
the whole circuit? Isn’t η just the inverse ρ−t(η

′)? Unfortunately, no: There’s only one situation
in which the midpoint between two arbitrary phase-space points remains being the midpoint when
evolved – linear evolution. This can be simply put as: The only case in which lines evolve into lines
is when evolution is linear. The backwards-evolved center η obtained by ρ−t(η

′), therefore, does not
coincide with the true center η. This is depicted in Fig. 5.3(b).

By interpreting ξ(x−) 7−→ ξ′(x−) in the Wigner representation, we are therefore required to perform
the complete circuit x− 7−→ x+ in order to obtain the required variables2. It is a cumbersome method
because it uses input that is defined at unmatched times, but taking a look at Fig. 5.3(a) we then
wonder if it’s not easier to just backwards-evolve ξ′, since in this case it is absolutely true that x′

+ is
obtained by reflecting x′

− around η′. This would provide an integral representation using final centers
η′ and final points x′

− as input, eliminating the problems of initial variables defined at unmatched
times.

5.2.3 FVRs for the Weyl-Wigner symbols

Following the reasoning proposed by the end of the last section, let us interpret evolution not as
ξ(x−) 7−→ ξ′(x−), but as ξ(x′

−) 7−→ξ′(x′
−). Our initial variable is now x′

−, which we reflect around
η′ to obtain x′

+ = 2η′ − x′
−. These form the final chord ξ′ which we can backwards-evolve to ξ =

ρ−t(x
′
+)−ρ−t(x

′
−) = x+−x−. Alternatively, we can also start from η′ and ξ′ to obtain x′

± = η′± ξ′/2.

2The flow ρt is generally numerical and introduces an error ǫ, meaning that we miss the exact spot x′
− by ǫ and later

backwards evolve it again, missing x′
+ again by ǫ (the intermediate reflection is exact). It can then be argued that the

double error propagation is also a disadvantage of this method [dAVZ13].
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This latter approach is the one we follow now. Since x− is now a function of final chords, we have

dξ(η′, ξ′)

dx−(η′, ξ′)
=

(
dξ(η′, ξ′)

dξ′

)(
dx−(η′, ξ′)

dξ′

)−1

=⇒
∣∣∣∣det

(
dξ(η′, ξ′)

dx−(η′, ξ′)

)∣∣∣∣

1
2

dx− =

∣∣∣∣det

(
dξ(η′, ξ′)

dξ′

)∣∣∣∣

1
2

dξ′ ,

and analogously for centers,

∣∣∣∣det

(
dη(ξ′, η′)

dx−(ξ′, η′)

)∣∣∣∣

1
2

dx− =

∣∣∣∣det

(
dη(ξ′, η′)

dη′

)∣∣∣∣

1
2

dη′ .

Using which we finally arrive at final value representations corresponding to the IVRs (5.17) and
(5.18):

At(η
′) ≈

(
1

2π~

)n ∫
dξ′

∣∣∣∣det

(
dξ(ξ′, η′)

dξ′

)∣∣∣∣

1
2

exp

{
i

~

[
S̃t(ξ(ξ

′, η′)) +
iπσ̃

2

]}
Ã(ξ(ξ′, η′)) (5.19)

Ãt(ξ
′) ≈

(
1

π~

)n ∫
dη′

∣∣∣∣det

(
dη(η′, ξ′)

dη′

)∣∣∣∣

1
2

exp

{
i

~

[
St(η(η′, ξ′)) +

iπσ

2

]}
A(η(η′, ξ′)) .

Now, the procedure to obtain the variables used in the equation above is much simpler than for
the IVRs, and can be enumerated for both representations as:

1. Begin with independent variables given by final chords and centers ξ′ and η′, from which we
extract the final phase-space points as x′

± = η′ ± ξ′/2;

2. Propagate the x′
± above backwards to build x± = ρ−t(x±), which we use to write the initial

chords and centers as η = (x+ + x−)/2 and ξ = x+ − x−;

3. Perform calculations and, for the Wigner or Weyl symbols, integrate over ξ′ or η′, respectively.

The formula (5.19) is the most important one for the first part of the results obtained in this
dissertation. However, in the present state it is not computationally applicable, since we have explained
how to obtain the employed variables but not how to calculate its terms.

5.3 FVR for Wigner functions

In this section we obtain closed expressions for all the terms included in the FVR (5.19).

The amplitude

We now obtain a closed expression for the amplitude in (5.19). Since

ξ′ = Rη′(x′
−)− x′

− = 2(η′ − x′
−) =⇒ dξ′ = 2dx′

− ,

the amplitude can be written as
dξ

dξ′
=

1

2

dξ

dx′
−

. (5.20)

Lemma 5.3.1. The complete circuit performed by x− 7−→ x+ = (ρ−t◦Rη′ ◦ρt)(x−) has a monodromy
matrix M expressible as

Mt = −M−1
t (x+)Mt(x−) , Mt(x±) =

dρt(x)

dx

∣∣∣∣
x=x±

,

whereMt(x±) represent the monodromies for each segment x± −→ x′
±.
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Proof. The monodromy for the complete circuit is given by Mt = dx+/dx−, for which

dx+

dx−

∣∣∣∣
η′,x−

=
d

dx−

[
(ρ−t ◦ Rη′ ◦ ρt)(x−)

] ∣∣∣∣
x−

=

{
dρ−t

[
(Rη′ ◦ ρt)(x−)

]

d
[
(Rη′ ◦ ρt)(x−)

]
} ∣∣∣∣

(Rη′ ◦ρt)(x−)

{
dRη′ [ρt(x−)]

d [ρt(x−)]

} ∣∣∣∣
ρt(x−)

dρt(x−)

dx−

∣∣∣∣
x−

=

{
dρ−t(x

′
+)

dx′
+

} ∣∣∣∣
x′

+

{
d(2η′ − x′

−)

dx′
−

} ∣∣∣∣
x′

−

dρt(x−)

dx−

∣∣∣∣
x−

.

Notice, however, that





dρ−t(x
′
+)

dx′
+

∣∣∣∣
x′

+

=
dx+

dx′
+

∣∣∣∣
x′

+

=

[
dx′

+

dx+

]−1 ∣∣∣∣
x+

=M−1
t (x+)

dρt(x−)

dx−

∣∣∣∣
x−

=
dx′

−

dx−

∣∣∣∣
x−

=Mt(x−)

d(2η′ − x′
−)

dx′
−

= −I

.

Therefore, the monodromy matrix for the complete cycle is given as a function of the monodromies
for each segment as

Mt =M−1
t (x+)

[
− I

]
Mt(x−) = −M−1

t (x+)Mt(x−) .

Substituting the lemma above in (5.20) we have

dξ

dξ′
=

(
1

2

)
dξ

dx′
−

=

(
1

2

)(
d(x+ − x−)

dx−

)(
dx−

dx′
−

)
=

(
1

2

) [
−M−1

t (x+)Mt(x−)− I
]
M−1

t (x−)

= −
(

1

2

) [
M−1

t (x+) +M−1
t (x−)

]

and, finally,

∣∣∣∣det

(
dξ

dξ′

)∣∣∣∣ =

∣∣∣∣∣det

(
M−1

t (x+) +M−1
t (x−)

2

)∣∣∣∣∣

=

(
1

22n

)
det(Mt(x−))

∣∣∣det
(
M−1

t (x+) +M−1
t (x−)

)∣∣∣ det(Mt(x+))

=

(
1

22n

)
|det (Mt(x+) +Mt(x−))| ,

where we used the fact that detMt(x−) = 1. We obtain the final expression for the amplitude as

∣∣∣∣det

(
dξ

dξ′

)∣∣∣∣
1
2

=

∣∣∣∣det

(Mt(x+) +Mt(x−)

2

)∣∣∣∣

1
2

, Mt(x±) =
dρt(x)

dx

∣∣∣∣
x=x±

, (5.21)

where we recover a factor of 1/2n missing from (4.15) of [dAVZ13] (as already noted in [Buc15]).

The action

The action S̃t(ξ(ξ
′, η′)) employs chords and centers simultaneously, since the initial ξ is a function of

η′. We can un-mix polarizations by using the Legendre transforms presented in Chapter 1, i.e.

S̃t(ξ(ξ
′, η′)) = ξ · J η − St(η′(η)) ,
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η

ξ

η′

ξ′

(a) The area traveled by ξ 7−→ ξ′.

η

ξ

η′

ξ′

η−

η+

(b) Decomposition of the area.

Figure 5.4: (a) The symplectic area of the circuit x− 7−→ x+ is now interpreted as the area traveled by the initial chord ξ
while evolving to ξ′ – of course, it makes more sense to picture this area as being covered by ξ′ while evolving backwards
to ξ. (b) This area can be decomposed as the symplectic area of the dashed-green quadrilateral, plus the area in gray,
minus the area in pink. These latter areas are given by the center generating functions evaluated at the midpoints
between x± and x′

±, defined as η±. The symplectic area of the quadrilateral is just (x′
− − x+) · J (x′

+ − x+)/2, expressed
in terms of centers and chords as (η − η′) · J(ξ + ξ′)/4.

where St(η
′(η)) is the center generating function in the extended product manifold:

St(η
′(η)) =

∫ η′

η
J ξ · dη −

∫ t

0
dtH(η) =

∫ η′

η
J ξ · dη − [(H(x+)−H(x−)]t ,

where the first term represents the area of traveled by ξ while evolving to ξ′, i.e. the area of the circuits
considered in the earlier sections. As we can see in Fig. 5.4, this area can be decomposed into three
terms: the two symplectic areas that join x± 7−→ x′

± and the symplectic area of the quadrilateral
joining the points in the circuit by straight lines. From Section 1.5.3, we identify the gray and pink
areas in Fig. 5.4(b) as the extended center generating functions St(η±) calculated at the midpoints
η± = (x′

±+x±)/2, while the symplectic area of the quadrilateral is trivially given by (η−η′)·J(ξ+ξ′)/4.
Thus, we have

S̃t(ξ(ξ
′, η′)) = ξ · J η − 1

4

[
(η − η′) · J(ξ + ξ′)

]
− St(η+) + St(η−) + [H(x+)−H(x−)] t . (5.22)

with St(η±) as in (1.21).

The indexes

The Conley-Zehnder indexes are the caustic count of x− 7−→ x+, except that when the caustics are hit
during the forward step x− 7−→ x′

−, the indexes are positive; while for the backward step x′
+ 7−→ x+

they are negative. We provide more details on their calculation in Appendix F.

The final formula

Gathering the results obtained in the earlier subsections, we can express the Wigner function using
the FVR by setting Ã = χ, the characteristic function at t = 0, resulting in

Wt(η
′) =

(
1

2π~

)n ∫
dξ′

∣∣∣∣det

(
dξ(ξ′, η′)

dξ′

)∣∣∣∣

1
2

exp

[
i

~

(
S̃t(ξ(ξ

′, η′)) +
~πσ̃

2

)]
χ(ξ(η′, ξ′)) , (5.23)

with amplitude and action as in (5.21) and (5.22), respectively. The only thing left is to choose an
initial state to propagate through its characteristic function χ(ξ).
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Chapter 6
Numerical simulations: The Kerr system

The truth will set you free. But not until it is finished
with you.

D. Foster Wallace in Infinite Jest

As seen in Chapter 2, non-separable hamiltonians present significant difficulties for numerical
algorithms. The most important continuous system in this dissertation, the [homogeneous] Kerr
system, is obtained from the flow of the non-separable hamiltonian

H(q, p) =
(
p2 + q2

)2
. (6.1)

This system is an invaluable toy model due to its flow being analytical despite it being obtained from a
4th order hamiltonian. Remarkably, it is also exactly solvable for the quantum propagation of a coher-
ent state and presents an intriguing and kaleidoscopic evolution, which we reproduce semiclassically
in this chapter. Computational details are provided in Appendix F.

6.1 Classical dynamics

In this brief section we apply the classical theory developed in the main body of this dissertation:
First, we obtain the classical flow associated to (6.1) by using the concepts presented in Chapter 1;
Then, we use this flow to classically propagate Wigner functions in phase space, following Section
4.2.2.

We begin by calculating the flow generated by the hamiltonian (6.1). For the vector field, we have

XH =
∂H

∂p

∂

∂q
− ∂H

∂q

∂

∂p
= 4

(
p2 + q2

)(
p
∂

∂q
− q ∂

∂p

)
= ω(q, p)

(
p
∂

∂q
− q ∂

∂p

)
,

which is just the SHO vector field presented in Example 1.2.10 multiplied by ω(q, p) = 4|x|2. Its
integration follows the exact same steps of Example 1.2.10:

ρt(x) = exp (tXH) (x) = exp

[
ω(q, p)t

(
p
∂

∂q
− q ∂

∂p

)]
(q, p)

=⇒ ρt(x0) =

(
cos [ω(x0)t] sin [ω(x0)t]]

− sin [ω(x0)t] cos [ω(x0)t]

)(
q0

p0

)
, ω(x0) = 4(q2

0 + p2
0) . (6.2)

The orbits for the Kerr system, just as the SHO’s, are circles. The fundamental distinction between
them is that the latter has a constant angular speed per orbit, while for the Kerr system each orbit
has its own angular frequency ω(q0, p0). Since ω(q0, p0) represents the squared-radius of the circular
orbit, we see that the angular speed is monotonically increasing with the distance from the origin:
Outer orbits move faster than inner orbits. The net-effect of differing angular speeds is the disfiguring
of an initial phase-space distribution into a filament that gets thinner as time evolves. This can be
seen in phase space by employing (4.22) for the propagation of the Wigner function of a coherent state
initially centered at (q0, p0) = (5, 0), using the Kerr flow (6.2). This is displayed in Fig. 6.1.
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where we have used the decomposition of a coherent state in terms of SHO eigenvectors [Bal08],
represented by |m〉. Notice that, for k ∈ Z, the substitution t 7−→ kπ/4 in the expression above
implies |αkπ/4〉 = |α0〉, so that the propagation of a coherent state under the Kerr system’s dynamics
reconstructs the initial state for integer multiples of π/4 [YS86].

Definition 6.2.1. The reproduction of the initial state is called a full revival, and the time Trev = π/4
is called the revival time for the Kerr system.

Thus, the Kerr system is periodic with period equal to the revival time. The exponential term
inside curly brackets in (6.3) is also periodic and its period can be found from

4m2t− 4(m+ n)2t = 2πk , k ∈ Z =⇒ (2nm+ n2)t = 2πk .

If we choose rational multiples of the revival time, namely t = (a/b)Trev, this simplifies to

(2mn+ n2)Trev = 2πk =⇒ (2mn+ n2)
a

b
= k

m7−→b/2
=⇒ (m+ 2b)a ∈ Z , ∀m,

so we guarantee a period of b/2 whenever q 6= 4 – therefore, from now on we assume b to be odd. The
exponential in the curly brackets of (6.3) can then be expanded in a Fourier series for t = (2a/b)Trev:

exp
[
−4im2t

]
= exp

[
−4πim2a

2b

]
=

b−1∑

s=0

cs exp

[
−2πism

b

]
, cs =

1

b

b−1∑

r=0

exp

[
2πim

b
(s− am)

]
,

so the coherent state’s time-evolution is significantly simplified to

|απa/2b〉 = e−
|α|2

2
− iπa

2b

b−1∑

s=0

∞∑

m=0

cs√
m!

[
α exp

(
−2πia

b

)]m
exp

[
−2πism

b

]
|m〉

= e−
|α|2

2
− iπa

2b

b−1∑

s=0

∞∑

m=0

cs√
m!

{
α exp

[
−2πi

b
(a+ s)

]}m
|m〉

=⇒ |απa/2b〉 = e− iπa
2b

b−1∑

k=0

ck

∣∣∣∣α exp

[
−2πi

b
(a+ k)

]〉
, (6.4)

where the big ket in the equation above is just a coherent state with the α-value multiplied by the
exponential. The coefficients ck, for odd values of b, can be obtained recursively:

ck′ =
1

q

q−1∑

n=0

exp

[
2πi

(
k′

b
n− a

b
n2
)]

=
1

q

q−1∑

n=0

exp

[
2πi

(
k

b
n+

2a

b
n− a

b
n2
)]

=
1

q

q−1∑

n=0

exp

[
2πi

(
k

b
n− a

b
(n− 1)2

)]
exp

(
2πi

a

b

)

=⇒ ck′ = ck exp

[
2πi

(
k + a

b

)]
, (6.5)

with

c0 =
1

q

q−1∑

n=0

exp

(
−2πin2a

b

)
. (6.6)

The position representation 〈q|απa/2b〉 is easily obtained by simply substituting in (3.3). Under the
restrictions placed here, namely that we can only access rational times t = aπ/2b with q odd, the
Fourier expansion for the propagation of a coherent state under Kerr evolution converges and is exact.
The restriction we have on time-values is also rather irrelevant, since we can approximate any real
number using a fraction composed of mutually prime integers. The only problem of fine tuning a and
b values is that to access some time of interest we might need very large b and, since we are actually
approximating Kerr evolution as a sum of b coherent states (see (6.4)), the sums might become too
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Figure 6.8: Left: Triangular revival recovered by the semiclassical Wigner function at t = π/12 for the displaced first
excited Fock state, initially centered at (q = 5, p = 0). Contour lines of the exact Wigner function are superposed, for
which solid and dashed lines represent positive and negative values, respectively. Right: Position marginals for the exact
(line) and semiclassical (points) Wigner functions on the left.

Since j+ − j− and j+ + j− have the same parity, the phase in (6.11) is always an even multiple of
π. The relevant final chords are, therefore, selected such that the final Wigner function is localized
exactly over the initial one, reproducing the complete revival as expected.

For fractional revivals with times t = π/β, the only difference is that the relevant final chords
might perform fractional revolutions around the origin. We can express this condition as

ω±π

β
=

4|η±|2π
β

= 2π(j± + α) ,

where α is a rational number that reflects the positions of the final coherent states and thus depends
on β. In contrast to the revived coherent states, the interference patterns appearing near the origin
for the cat state revival (β = 8) are due exclusively to long chords, typically spanning the diameter of
the classical spiral.

6.4 Propagating a non-classical state

The FVR is not restricted to the propagation of coherent states. We can, for instance, displace a SHO
eigenvector 〈q|n〉, i.e. a Fock state, to obtain 〈q|T̂(ξ)|n〉, and then evolve it using the Kerr dynamics.
Since the quantum Kerr hamiltonian has the same eigenvectors as the SHO, the action of

〈q|T(ξ)|n〉t =
〈
q
∣∣∣exp

[
− (it) ĤKerr

]
T̂(ξ)

∣∣∣n
〉

can be calculated exactly: For revival times composed of a small number of superposing coherent
states, such as 2 or 3, the calculations can be performed by hand. We calculated it for the triangular
revival of the displaced n = 1 Fock state3, with ξ = (5, 0), and compared it with the FVR used to
evolve the same initial state, whose characteristic function is

χ0(ξ) =

(
ξ · ξ − 2

2

)
exp

{
ix0 · Jξ −

ξ · ξ
4

}

3The final formula occupies a full page and we will not display it here.
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In Fig. 6.11 we plot the probability amplitude for the Kerr system using the semiclassical wave-
function obtained via the HK propagator for the same time-values as Fig. 6.5. All the calculations are
performed numerically. For this, the action entering the HK phase is just the integral of the lagrangian
evaluated numerically:

∫ qt

q0

p · dq −
∫ t

0
dtH(qt, pt) =

∫ t

0
dt [p · q̇ −H(qt, pt)] ≈

N∑

k=0

[
pk ·

∂H(q, p)

∂p

∣∣∣∣
(qk,pk)

−H(qk, pk)

]
δ ,

where the propagation time has been discretized as t = Nδ. We use the numerical flow obtained
from Tao’s algorithm as well, together with the same finite-difference monodromies used for the FVR
in Subsection 6.5.2. The procedure to obtain the proper branch in the amplitude is done via the
conditions below, which must be fulfilled simultaneously:

{
ℜ [Rk(qk, pk)] < 0

ℑ([Rk(qk, pk)]×ℑ [Rk−1(qk−1, pk−1)] < 0
(6.13)

where R is the HK pre-factor

Rk(qk, pk) = det

{
1

2

[(
∂pk
∂p0

+
∂qk
∂q0

)
+ i

(
∂pk
∂q0
− ∂qk
∂p0

)]}
. (6.14)

That is: When the real part of the amplitude is negative and the imaginary part crosses a branch,
the Maslov index increases by +1. Formulated this way, this is equivalent to Maslov tracking [Kay94,
Swe11].

6.6 Discussion

We are in a rather satisfying position: Both the FVR and the HK propagators worked. As far as we
know,

1. This is the first time an integral representation in phase space has been implemented and its
success, attested;

2. We have performed a very stringent test of an ubiquitous method, the HK propagator, proving
it indeed works.

We must be careful about what kind of conclusions we extract from comparing Figs. 6.6 and 6.11:
They do not attest an absolute supremacy of the HK propagator over the FVR, since these propaga-
tion methods are meant to do different things. Direct comparison of probability marginals is also not
exactly fair to the FVR, since while basically all semiclassical propagators can approximate wavefunc-
tions, it is only the FVR that is able to do it directly to the Wigner function. As stated earlier, in the
absence of a wavefunction the HK propagator is useless, and we must resort to the FVR. However, the
former is clearly extremely successful when we are interested in working with closed systems (see Ap-
pendix F); The latter, on the other hand, is completely real and might facilitate the understanding of
the role played by classical structure behind semiclassical propagation. We are particularly interested
in the blank regions formed in phase space by the FVR method, since they do not impact the mea-
surable objects extrated from the Wigner function and, at the same time, emerge due to destructive
interferences between classical trajectories in places they should not occur. We suspect that this might
be due to some theoretically interesting mechanism, although we have not yet explored the subject in
depth.

One thing we can be sure when looking at Figs. 6.6 and 6.11 is that the HK propagator is stable:
It displays no oscillations and never misses from below – in fact, it never misses at all. This is due
to its pre-factor never reaching zero, so that errors cannot force the result to be negative [Kay94]
– The HK’s domain is already the complex field, so its amplitude is naturally complex and changes
of imaginary branch are expected. The FVR, on the other hand, is a real object and its pre-factor
does reach zero across caustics: Although zero is better then infinite, as would happen in van Vleck
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propagation, errors might result in unexpected imaginary amplitudes that render marginals negative.
Of course, there might also be problems associated to the FVR’s phase, which is calculated using
trajectory pairs and is much more sensitive then HK’s.

There are two main directions to generalize what was done in this chapter:

1. Use the FVR to approximate the Kerr system in an open environment, possibly with linear
Lindblad operators to facilitate calculations;

2. Move on to chaotic systems.

The first item above is being currently investigated and will not reapper. For the rest of this
thesis we shall focus on the second item, employing semicassical approximations to deal with closed
systems that have chaotic classical counterparts. Due to the remarkable results obtained using the HK
propagator and its high computational efficiency, it will be our standard semiclassical method from
now on.
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Chapter 7
Numerical simulations: The coserf system

It seems sometimes that through a preoccupation with
science, we acquire a firmer hold over the vicissitudes of
life and meet them with greater calm, but in reality we
have done no more than to find a way to escape from
our sorrows.

Hermann Minkowski in a letter to David Hilbert

In this chapter we generalize the use of the Herman-Kluk propagator to chaotic systems by applying
it to the hamiltonian maps of Chapter 2. Most discrete hamiltonian systems, however, are defined
on the torus instead of the plane (such as Chirikov’s standard system [Chi79]). One problem with
this domain is that, unfortunately, it makes results rather cumbersome to visualize: When an initial
curve is evolved and escapes outside the unit square it is brought back via the equivalence relations
and evolution looks discontinuous on the plane (visualizing the system on the torus is out of the
question – no one can do that!). We consider the loss of intuition a high price to pay in exchange for
compact orbits, and therefore devise a map on the plane following a strategy pioneered by Berry et al
[BBTV79], who in the early days of quantum chaos needed his evolved curves to remain bounded in
order not to explode the computers of the time. Their chosen strategy was to build a map that did
not grow too quickly as (q, p) −→∞. This reasoning serves as our starting point.

7.1 Classical dynamics

In this section we introduce the coserf system (actually systems), on which we focus for the rest of
this dissertation. We then use them to propagate coherent states just as we did in Chapter 6, except
that now we are dealing with chaotic systems and evolution is more intricate.

We start from the standard-like hamiltonian Hα(q, p) = p2/2 + q2/2 − α cos(q), which is quite
interesting: It is a modification of the SHO, having at least an elliptic fixed point at the origin, but
its orbits are deformed by the cosine. Its vector field Xh = p ∂q − [q + α sin(q)]∂q has a fixed point at

{
p = 0

q + α sin(q) = 0
,

which can be numerically solved to show that, for any reasonable range of positions (i.e. from −40 to
40), its fixed point at the origin is the only one. We choose α = 2 in order to achieve a significant
deformation of the orbits of the SHO. The symplectic integrator map (2.3) build from H2(q, p) =
p2/2 + q2/2− 2 cos(q) is, for instance,

{
pi = pi−1 − T (qi−1 + 2 sin qi−1)

qi = qi−1 + Tpi

which is quickly diverging on the plane for T > 0.4, so that chaos cannot be actually reached without
the need to eliminate the diverging trajectories. Since the diverging variable is the momentum due
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to the cosine in the potential, we can sum a function to pi in order to force it to diverge at least
slowly. The first function that comes to mind is a gaussian in q, since it tends to zero faster than any
polynomial. This reasoning leads us to the map

{
pi = pi−1 − T

[
qi−1 + 2 sin qi−1 − exp(−q2

i−1)
]

qi = qi−1 + Tpi

which is shown (numerically) to be extremely robust with respect to T , i.e. chaos is easily reached and
is either bounded between surviving tori or includes chaotic trajectories that diverge very slowly. This
is due to an interesting property of its orbital speeds: They are not monotonically increasing with the
distance from the origin (as opposed to the Kerr system) – While inner orbits have very high speeds,
as we move to outer phase-space regions the orbits start slowing down. Since

exp(−q2) =

(√
π

2

)
d[erf(q)]

dq
, erf(q) =

2√
π

∫ q

0
exp(−x2)dx ,

we define

Definition 7.1.1. The coserf systems are defined via the maps UFVT and UV FT , both acting on
(R2, dq∧dp), where the maps UFVT and UV FT correspond to the two possible 2-step SSIs obtained from
the coserf hamiltonian

Hcsrf(q, p) =
p2

2
+
q2

2
− 2 cos(q)−

(√
π

2

)
erf(q) , (7.1)

namely

UFVT =

{
pi = pi−1 − T

[
qi−1 + 2 sin qi−1 − exp(−q2

i−1)
]

qi = qi−1 + Tpi
(7.2)

UV FT =

{
qi = qi−1 + Tpi−1

pi = pi−1 − T
[
qi + 2 sin qi − exp(−q2

i )
] . (7.3)

As all SSIs, the coserf maps are 1-parameter families of symplectomorphisms with respect to the
continuous variable T .

In the first row of Fig. 7.1 we display some orbits of the position-first shear (7.3) for three different
values of T . In panel 7.1(a) we have T = 0.05 and the coserf map acts effectively as a SSI for the vector
field of (7.1) and approximates its level curves – this, remember, is the original use of SSIs (see Section
2.1). In panel (b) we set T = 0.45 and chaotic behavior is already clearly visible in the dark, dense
orbits around the stability islands formed by hamiltonian resonances. Several quasi-periodic tori are
seen to survive even for this significant kicking strength around the main fixed point at origin, where
position and momentum values are small enough for energy to be conserved. A careful examination
shows that tori can be found actually everywhere, be it as envelopes to islands, the islands themselves,
or highly deformed regular regions between chaotic seas: This is the KAM theorem in action. The
perturbation strength is not strong enough to destroy all tori in the system, a fact that is strikingly
depicted in 7.1(c), where we set T = 0.7: Here, the perturbation strength is strong enough to destroy
all1 tori outside a neighborhood of the origin, although we can clearly see some that survive around
the origin.

What makes the coserf system special is that we could reach phase-space topologies such as the ones
in the first row of Fig. 7.1 without paying any attention to divergences, since what usually happens is
that everything blows up much earlier. Even though we are zooming on the origin and the orbits in
Fig. 7.1 are actually scattered around a (−30, 30) square, they remain bounded. We can actually hit

1Almost all, actually. The measure of the set of quasi-periodic tori fulfilling the diophantine condition tends to zero
as the kicking strength is increased, meaning that the probability of us sampling initial conditions that hit a tori far
away from the origin goes to zero as we increase T .
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7.2 Quantum dynamics

Just as the Kerr system, the coserf systems are exactly quantizable by direct employment of Dirac’s
quantization recipe. After defining the quantum analogues of UFVT and UV FT we propagate the wave-
function of an initial coherent state and Wigner-transform it, obtaining the quantum analogue of
Fig. 7.2. We then proceed to the establishment of an Ehrenfest-time scale for our model, comparing
classical and quantum autocorrelation functions. As in Chapter 6, we set ~ = 1.

7.2.1 Quantum maps

The flows (7.2) and (7.3) emerge as numerical solutions to Hamilton’s equations and work by substi-
tuting the exponential of the vector field XH by its decomposition XH = XF + XV , obtained using
the Baker-Hausdorff-Campbell series:

exp (−TXH) = exp [−T (XF +XV )] ≈
{

exp (−TXF ) ◦ exp (−TXV )

exp (−TXV ) ◦ exp (−TXF )

with XZ(·) = {Z, ·}. Both the classical and the quantum equations of motion, however, generate flows
that obey the same algebra, namely Heisenberg’s algebra [Fol89], and the difficulty of transitioning
between representations is the multiple possible operator orderings. For SSIs, however, there are
no ordering problems, since the propagation is decomposed in terms of purely kinetic and purely
potential flows, meaning that the classical flow operator above can be immediately quantized using
Dirac’s quantization prescription, resulting in

exp
(
−itĤ

)
= exp

[
−it

(
F̂ + V̂

)]
≈





exp
(
−itF̂

)
exp

(
−itV̂

)
def
= ÛFVt

exp
(
−itV̂

)
exp

(
−itF̂

)
def
= ÛV Ft

.

Thus, quantum dynamics can also be solved using SSIs (although in this context these methods
are usually called split operator methods). More importantly, we can exactly associate a quantum
equivalent to every classical map obtained from a SSIs, each shear ordering having its particular
quantized equivalent. The flow of ÛV Ft , for example, is given in position representation by

〈q|ÛV Ft |q′〉 =
〈
q
∣∣∣exp

(
−itV̂

)
exp

(
−itF̂

)∣∣∣ q′
〉

= exp (−itV (q))
〈
q
∣∣∣exp

(
−itF̂

)∣∣∣ q′
〉

= exp (−itV (q))

∫

Rn
dp exp (−itF (p)) 〈q|p〉〈p|q′〉

= exp (−itV (q))

∫

Rn
dp exp (−itF (p)) exp

[
−ip(q′ − q)

]
.

For the usual kinetic term F (p) = p2/2 the integral above is gaussian and solvable by completing the
square, resulting in [BBTV79]

〈q|ÛV Ft |q′〉 =

(
1

2πit

) 1
2

exp

[
−itV (q) +

i(q − q′)2

2t

]
. (7.4)

The quantum flow for the alternate order of shears is also easily found to be

〈q|ÛFVt |q′〉 =

(
1

2πit

) 1
2

exp

[
−itV (q′) +

i(q − q′)2

2t

]
.

Evidently, the flows above are to be interpreted as a single iteration of kicking strength t. Just as
in the classical case, we are interested in decomposing the time t as k iterations with kicking strength
T , generating the discretized time t = τk = kT . The final wavefunction corresponding is, therefore,
expressed recursively as

〈q|ψk〉 =

∫
dq′〈q|

(
ÛT
)k
|q′〉〈q′|ψ0〉 , (7.5)
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centered at (q0 = 2, p0 = 0). We mark the approximate locations of our estimated Ehrenfest kicks
kE = τE/T , i.e. the kick-values at which classical and quantum autocorrelation functions cease to
agree.

7.3 Semiclassical dynamics

In Chapter 6 we implemented both the FVR and the HK propagators for the Kerr system, achieving
remarkable results and validating both methods. The generality of the FVR propagator, however, is
not necessary when the systems of interest are closed, and numerical efficiency is also very desirable.
Thus, we decide to analyze the coserf system’s semiclassical limit using the HK propagator. As all the
routines required have already been numericized in Section 6.5, the modifications required to transport
the code to the coserf systems are minimal – especially because the classical iterations are already
exact. Of course, what we earlier interpreted as time is now a certain number of kicks with a specific
kicking strength, and movement is discrete.

7.3.1 The monodromy matrix

A nice property of SSIs is that they present exact monodromy matrices. This can be seen by noticing
that for each iteration we have a monodromy, and since the final iteration is the product of iterations,
the final monodromy is also the product of monodromies. Consider, then, the jacobians for each
iteration of ρFVi as given in (2.3):

∂(qi− 1
2
, pi− 1

2
)

∂(qi−1, pi−1)
=

(
1 0

−TV ′′(qi− 1
2
) 1

)
,

∂(qi, pi)

∂(qi− 1
2
, pi− 1

2
)

=

(
1 TF ′′(pi− 1

2
)

0 1

)
,

which are triangular and, by Lemma B.1.3, are symplectic. The complete monodromy is then

∂(qi, pi)

∂(qi− 1
2
, pi− 1

2
)

∂(qi− 1
2
, pi− 1

2
)

∂(qi−1, pi−1)
=

∂(qi, pi)

∂(qi−1, pi−1)
,

which, being a composition of symplectic matrices, is also symplectic. Therefore, we can express the
monodromy associated to N kicks as a function of the initial values (p0, q0) as

MN (p0, q0) =
∂(pN , qN )

∂(p0, q0)
=
∂(p1, q1)

∂(p0, q0)

∂(p2, q2)

∂(p1, q1)
. . .

∂(pN , qN )

∂(pN−1, qN−1)

⇒MN (p0, q0) =
N∏

i=1

∂(pi, qi)

∂(pi−1, qi−1)
, M0 = I .

Such a decomposition has the further advantage that it can be computed in parallel with the equations
of motion, decreasing computational cost. Using this matrix, we form the Herman-Kluk pre-factor
(6.14) and calculate the Maslov indexes using the exact same procedure as in Subsection 6.5.3.

7.3.2 The classical action

The classical action corresponding to discrete maps is not obtained from an integral, but from the
discretized lagrangians of Subsection 2.2.2. The actions are obtained by direct application of the
theory of this subsection and care must be taken when dealing with the two possible orderings UV FT
and UFVT , since they have different lagrangians (compare (2.7) and (2.8)).

7.3.3 Propagating coherent states

Propagating coherent states in the discrete case is identical to what was described in Subsection
6.5.3, except that now the flow is substituted by a map. What is required in the transition from the
“continuous” to the discrete case is really nothing, because the continuous case was never continuous
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7.4 Chaos erasure: From tangles to tori

In the earlier section we presented strong numerical evidence that semiclassical propagation can be
applied even for chaotic systems – which is no news by itself since the seminal work by Steven Tomsovic
and Eric Heller, published in the early 1990s [TH91], even though we may have performed a more
comprehensive analysis for a generally more complex system. Taking a good look at Figs. 7.2 and
7.3, however, we notice that while the system’s dependence on the kicking strength T is absolutely
fundamental to mold classical propagation, the impact on the quantum regime is not so strong. The
emergence of islands and chaotic seas completely deforms and scatters the initial distribution, while
the quantum Wigner functions appears to completely ignore both small (≤ ~) and large (≥ ~) classical
structure formed by chaos. What happens if we simply ignore chaos altogether? The first step towards
erasing chaos from a classical system is, of course, thiking about what it will be replaced with: We
must find a way to map chaotic orbits into regular ones without depriving the initial system of its
defining characteristics. This is when the effective hamiltonians of Subsection 2.1.1 come into play.

7.4.1 Effective trajectories

The effective hamiltonians were found to be the energies associated to the SSIs – for small kicking
strengths there were conserved, and for large ones they weren’t. However, as we have mentioned
earlier, the kicking strength is just a parameter, not time. Thus, just as the hamiltonian maps they
are extracted from, the effective hamiltonians are a family with respect to T and define separate vector
fields and flows: For HV F , for instance, we have the Hamilton equations





dq

dt
=
∂HV F
∂p

=
∂

∂p

[
F (p) + V (q) +

T

2
{V (q), F (p)}+O(ǫ2)

]
= F ′(p) +

TF ′′(p)V ′(q)

2
+O(T 2)

dp

dt
= −∂H

V F

∂q
= − ∂

∂q

[
F (p) + V (q) + T

2 {V (q), F (p)}+O(T 2)
]

= −V ′(q) +
TF ′(p)V ′′(q)

2
+O(T 2)

,

(7.6)

with a solution we shall call ρHV F

t . The kicking strength T is then seen to be a coupling constant
between the initial hamiltonian vector field and a Poisson-bracket perturbation series. Since all terms
in the equations above are autonomous and our system is defined on the plane, the effective system
(R2, dq ∧ dp, ρHV F

t ) is integrable by Corollary 2.2.7. Its flow, namely ρHV F

t , is then a perturbation of
the original flow ρV FT : For T = 0, they are identical, and are also very close for small T . However,
when we increase T enough for the map to be chaotic, the effective flow remains regular and washes
away all chaos by running over the map’s chaotic regions as if they were integrable: Starting with
the same phase-space point x, the exact map ρV FT (x) will perform very complicated dynamics and

possibly fall on chaotic seas, while ρHV F

t (x) will be always restricted to the surface of a torus (in this
case, a circle).

Effective hamiltonians have been used before in contexts such as e.g. chaos assisted tunneling
[BSU01, LBKS10], with a system’s original chaotic sets substituted by the level sets of an effective
hamiltonian, and explored as normal forms for maps in [Lan15]. Notice, however, that as a perturbative
series mixing position and momentum, the effective hamiltonian is not a separable function and cannot
be solved by the standard SSIs: That’s where Tao’s algorithm, presented in Subsection 2.1.3, finds
its use. We employ it to embed the effective hamiltonian into the augmented phase space and solve
(7.6) for a step-size δ, which has no physical interpretation and is only an iteration parameter taken
as small in order to increase the numerical integrator’s accuracy. The final discretized time in the
effective flow solved by Tao’s algorithm will then be tδ = δK, K being the number of kicks, while
in the original map it will be tT = TN . Since these times must match, we must have K = (T/δ)N ,
so that we immediately see that if we want a lot of accuracy in numerical integration, the number of
iterations K in Tao’s algorithm quickly becomes huge.

Example 7.4.1. Suppose we want to employ Tao’s algorithm for T = 0.5 and we are interested in
the very long propagation time t = 100, which corresponds to N = 200. For δ = 10−3, we have
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not you include classical chaos when propagating states (at least coherent ones).
The case of stationary states, however, requires summing over entire lagrangian submanifolds in-

stead of trajectories. The semiclassical quantization of chaotic systems, as described in Subsection 3.4,
is problematic because it involves sums over evolving lagrangian submanifolds, which in the integrable
case are just invariant tori, but when the system is chaotic are complicated and open. Due to the
ergodicity of these submanifolds a statistical interpretation is sometimes possible and leads to Ran-
dom Matrix Theory (RMT), where it is found that quantum-chaotic systems display level repulsion:
The systems have so little internal classical symmetries that their quantum eigenvalues cannot assume
the same values [dA90, Gut90]. The distribution of eigenvalues in integrable systems, in contrast to
time-dependent properties, is well understood: The extreme symmetry of these systems leads to se-
vere degeneracies of the spectrum, regardless to whether the system is separable or not [BT76]. Even
though we could reproduce quantum-chaotic propagation using an integrable system, the validity of
such approach for the extraction of stationary properties looks, at first glance, impossible: While the
chaotic system displays level repulsion, the spectrum of its effective twin should be degenerate.

The situation described above would seem hopeless except for a single detail: The coserf system, as
all hamiltonian maps on the plane, cannot have its spectrum entirely modelled by RMT. This is due to
its soft chaotic nature, defined by small tori appearing intertwined with chaotic regions: For RMT to be
applied, one needs full ergodicity of classical orbits, while for EBK quantization complete integrability
is required. Soft chaos, therefore, lies in an obscure region where neither of the currently available
stationary formalisms is expected to work [HdA83]. Based on the numerical evidence presented here,
for instance, we can be quite sure that important maps (such as Chirikov’s of Example 2.2.2) can be
modelled using effective regular trajectories for a significant range of kicking strengths.

Our conclusions also touch an important point regarding quantization (pure quantization, not the
semiclassical one): The effective hamiltonian, when quantized, must lie very close the quantum coserf
hamiltonian, which is a periodically kicked system. We are then met with a rather weird situation:
The quantization of a periodically kicked system is somehow equivalent to a quantized perturbation
series (at least for small kicking strengths). Naturally, this topic deserves attention by itself.

As a last observation, we consider what can go wrong when applying the method of effective
hamiltonians to arbitrary systems. There are two factors that might play significant roles behind our
results:

1. We are restricted to the plane;

2. The coserf map is a perturbation of an integrable system.

We start from 1.: The restriction to the plane forces the effective hamiltonian to be integrable, since
it is autonomous and Corollary 2.2.7 applies. In the general case what must be considered is a Poisson-
series perturbation of the form H(q, p) = F (p) + V (q) + ǫ{F (p), V (q)}. For completely separable
systems, where the potential and kinetic terms themselves are separable, e.g. V (q) = V (q1)+V (q2)+...,
the system F +V is guaranteed to be integrable [Arn89]. Is H integrable? This is a question regarding
the KAM theory of Poisson-type perturbations, and our attempted proof is still unfinished. We remind
the reader that the theory of integrable perturbations is far from simple (for an example see [BBM12]).

We now move to item 2.: If our chaotic map is not obtained by perturbing an initially integrable
system, then its phase space is not folliated by tori even when the kicking strength is zero. This is
the case, for instance, of perturbations of general systems in high dimensional phase spaces. If the
method really relies on the existence of lagrangian tori for small kicking strengths, it should not work
in this case.

Despite the difficulties that might arrise when adapting our method to more complex systems,
the extraction of deep and often generalizable phenomena is often achieved from the study of simple
mappings, e.g. the famous connection between Chirikov’s map and Anderson localization [GP84]. As
an example of a practical use of chaos-erasure, chaotic trajectories were recently mapped into regular
ones using the concept of dominant-interaction hamiltonians and were shown to be able to reproduce
the spectrum characteristic of high harmonic generation3 [ZGGR12]. We then expect our results to

3Their method cannot be really taken as chaos-erasing due to the switching between dominant hamiltonians reflecting
the original system’s chaotic nature. Here, however, chaos is entirely absent from the final trajectories.
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find a place within practical calculations, but the intriguing theoretical aspects they brought up are
already enough to motivate further research.
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Appendix A
Mathematical companion

A.1 Differentiable manifolds

Let (M, T ) be a Hausdorff space equipped with a topology T , which from now on we will omit. A
chart is a pair C = (U, x) such that x : M ⊃ U −→ V ⊂ Rn, where U and V are open sets and
φ is a homeomorphism. We call x a chart or local coordinate system on M . Let C1 = (U1, φ1) and
C2 = (U2, φ2) be charts over M such that U1 ∩ U2 6= ∅. This means that there is a subset of M
that belongs both to the domains of φ1 and φ2. It is then necessary to be sure that such a subset
is mapped equally, and this means to assure that φ2 ◦ φ−1

1 and φ1 ◦ φ−1
2 are homeomorphisms. For

differentiable manifolds it is required that those compositions be actually Ck-diffeomorphisms, and
we’ll take k =∞. The diagram below is, therefore, commutative.

φ1

φ2
φ1 ◦ φ

−1

2

φ2 ◦ φ
−1

1

U1 ∩ U2

V1

V2

The compositions in the above diagram are called transition functions or coordinate changes.

Let us now come back to the topological spaceM . A Hausdorff space is said to be second countable
if, roughly, it can be decomposed as a countable union of open sets. Let us assume this is the case.
We then have M ⊆ ⋃i∈N Ui, each Ui being an open set. By equipping each Ui with a homeomorphism
φi, we are saying that each neighborhood of M is locally homeomorphic to a subset of an euclidean
space. The collection of all (Ui, φi) is called an atlas, and of course there are many ways of coveringM
by open sets. Second countability, nevertheless, restricts the ways M can be covered, and we define
the maximal atlas to be the atlas that contains all other atlases, A =

⋃
i∈N(Ui, φi) . Finally, we call

the pair (M,A) a differentiable manifold or simply manifold, in our context. If all the φi map on an
euclidean space of dimension n, then the manifold M (we’ll omit the atlas from now on) is said to be
n-dimensional.

TpM , that is, the tangent space to M at p, can now be defined. Pick a chart x : U → Rn and let
γ : R ⊃ I → U ⊆ M be a curve such that γ(0) = p and x ◦ γ is differentiable at p. Then (x ◦ γ)′(p)
gives a tangent vector to M at p. There are clearly an infinity of curves that have the same derivative
at p, and we form an equivalence class of such derivatives [Spi99]. TpM is then defined as the space
composed of all equivalence classes of derivatives of curves at p and easily proven to be a vector space
with the same dimension asM [Spi99]. If xi are the components of a local coordinate system at p, then
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the associated basis of TpM is proven to be ∂
∂xi
|p, and in this way vectors in TpM can be obtained from

curves in M , i.e, vectors can be seen as operators acting on the space of smooth functions over M .
Naturally, as a vector space, TpM has a dual space T ∗

pM called cotangent space to M at p, whose dual
basis is proven to be dxi(p). As we are considering only finite-dimensional manifolds, TpM ∼ T ∗

pM .
We can also define tangent TM and cotangent bundles T ∗M of M as being the union of all tangent
and cotangent spaces at all points in M .

Let f : M → N be a smooth (class C∞) mapping from a manifold M to a manifold N . Taking
p ∈M and f(p) ∈ N , a mapping dfp : TpM → Tf(p)N is also induced by f and called its pushforward
at p. What this function does is to associate a vector in TpM to a vector in Tf(p)N : if (x ◦ γ)′(0) is
a tangent vector to M at p in a coordinate system x, then (y ◦ f ◦ γ)′(0) is a vector tangent to N
at f(p) in the coordinate system y (this definition is clearly coordinate free). The transpose of the
pushforward is called pullback, and is a function f∗

p : T ∗
f(p)N → T ∗

pM defined by

(f∗α)p(X) = αf(p)(dfp(X)) , (A.1)

where αp is a 1-form in T ∗
pN and X is a vector in TpN . Taking αp ≡ dβp, then (A.1) becomes

(f∗dβ)p(X) = dβf(p)(dfp(X)) = d(β ◦ f)p(X) ⇐⇒ f∗(dβ) = d(β ◦ f),

where we have omitted the point p and used the chain rule. This identification will be extensively
used in this dissertation, and is easy to generalize to k-forms [Spi99].

A.2 Two lemmas involving Lie derivatives

Lemma A.2.1. (Cartan’s magic formula) For the Lie derivative LX , we have LX = d◦ ıX + ıX ◦d.
Proof. Let ω = be a 1-form. Writting it using the basis dx and Einstein notation, we have ω = ωµdx

µ.
Then,

(d ◦ iX + iX ◦ d)ω = diXω + iXdω

= d(Xµωµ) + iX(∂νωµdx
ν ∧ dxµ)

= dXµωµ +Xµdωµ + ∂νωµ(dxν(X)dxµ − dxµ(X)dxν)

= (∂νX
µωµ +Xµ∂νωµ) dxν + (Xµ∂µων −Xµ∂νωµ)dxν

= (Xµ∂µων + ωµ∂νX
µ)dxν

= LXω .
Since the Lie derivative is a derivation, this conclusion is valid for any k-form. We used 1-forms
because dealing with a single index is easier.

Lemma A.2.2. Let ρt be the flow of a hamiltonian H, interpreted as a 1-parameter group of diffeo-
morphisms. Then,

d

dt
ρ∗
tω = ρ∗

tLXH
ω .

Proof.




d

dt
ρ∗
tω = limα→0

{(
ρ∗
t+α − ρ∗

t

)

α

}
ω

d

dt
ρ∗
tω

∣∣∣∣
t=0

= limα→0

{
(ρ∗
αω − ω)

α

}
= LXH

,

so
d

dt
ρ∗
tω = ρ∗

t

d

dt
ρ∗
tω

∣∣∣∣
t=0

= ρ∗
tLXH

,

where we have used Lemma A.2.1.
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Appendix B
Linear symplectomorphisms

Linear movement is the simplest in nature. Since the flow forms a group with respect to time and
arises from exponentiation, it forms a Lie group and a first order approximation to any flow is a
matrix. This matrix naturally reflects several properties of the flow and, inverting this logic, presents
also a way of identifying a symplectomorphism through its jacobian. We have already encountered
the symplectic group Sp(n) in Chapter 1, and here prove some lemmas and introduce some concepts
used in the main body of this dissertation about it.

B.1 Lemmas regarding Sp(n) group

Let the mapping (q, p) 7−→ (Q,P ) be linear and represented by a matrixM

X =Mx ⇐⇒
(
Q
P

)
=M

(
q
p

)
, M =

(
A B
C D

)
,

where the blocks A, B, C and D are in general functions of time. Naturally,M can be a function of
anything except the initial points (q, p).

Lemma B.1.1. For a linear symplectomorphism, considered as a flow of a hamiltonian, there is only
a single trajectory that connects arbitrary initial and final points x and X in a fixed time t.

Proof. Suppose X =Mx1 =Mx2. Then X −X =Mx1 −Mx2 =M(x1 − x2) = 0 =⇒ x1 = x2.

Lemma B.1.2. LetM∈ Sp(n). Then

M =

(
A B
C D

)
=⇒





ATC − CTA = 0

ATD − CTB = 1

BTC −DTA = −1

BTD −DTB = 0

.

Proof. Directly application of Proposition 1.2.4:

MTJM = J ⇐⇒
(
AT CT

BT DT

)(
0 1
−1 0

)(
A B
C D

)
=

(
0 1
−1 0

)
.

Lemma B.1.3. Every upper- and lower-triangular matrix is symplectic.

Proof. Again by direct application of Proposition 1.2.4, for any upper-triangular A we have

A =

(
I L
0 I

)
=⇒ ATJA =

(
I 0
L I

)(
0 I
−I 0

)(
I L
0 I

)
=

(
0 I
−I 0

)
.

The proof for lower-triangular matrices is identical.
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B.2 Position-position generating functions

As we saw in Section 1.4, there are infinite possible generating functions for M ∈ Sp(n), depending
on what variables we choose to represent it with. We will be mostly interested in obtaining closed ex-
pressions for the position-position generating function (“type 1 generation function” [GJS01]) S1

t (Q, q),
and for the center and chord generating functions S(η) and S̃(ξ). Let us start with S1

t (Q, q). Writing
the mapping in terms of initial and final momentum,

{
Q = Aq +Bp

P = Cq +Dp
=⇒

{
p = B−1Q−B−1Aq

P = (C −DB−1A)q +DB−1Q
, (B.1)

but, from Lemma B.1.2, we have BTD = DTB =⇒ (DB−1)T = DB−1 and, using this symmetry,

ATD−CTB = 1 =⇒ ATDB−1−CT = (B−1) =⇒ (DB−1)TA−C = (B−1)T = DB−1A−C ;

Substituting in (B.1) and assumingM to be free, i.e. detB 6= 0, then1

{
p = B−1Q−B−1Aq

P = DB−1Q− (B−1)T q
,

and, as we saw in Section 1.4, we must have




p = −∂S
1
t (q,Q)

∂q

P =
∂S1

t (q,Q)

∂Q

=⇒





∂S1
t (q,Q)

∂q
= B−1Aq −B−1Q

∂S1
t (q,Q)

∂Q
= DB−1Q− (B−1)T q

=⇒ S1
t (q,Q) =

Q · (DB−1)Q

2
+
q · (B−1A)q

2
−Q · (B−1)T q

=

(
q
Q

)
·
(

B−1A −B−1

−(B−1)T DB−1

)(
q
Q

)
.

We now prove an important lemma regarding the mixed derivatives of S1
t (q,Q).

Lemma B.2.1. Let

M =

(
A B
C D

)

be a free symplectic matrix and

S1
t (q,Q) =

(
q
Q

)
·
(
α −β
−β γ

)(
q
Q

)
, where α = B−1A , β = DB−1 , γ = B−1 .

Then,

det (M− I) = (−1)n det
(
γ−1

)
det

(
α+ β − γ − γT

)

.

Proof. Since detB 6= 0 the block B is invertible and we can factorize S − I as
(
A− I B
C D − I

)
=

(
0 B
I D − I

)(
C − (D − I)B−1(A− I) 0

B−1(A− I) I

)
;

hence,

det(S − I) = det(−B) det
(
C − (D − I)B−1(A− I)

)
= (−1)n detB det

(
C − (D − I)B−1(A− I)

)
.

Now, using (B−1)T = DB−1A− C,
C − (D − I)B−1(A− I) = B−1A+DB−1 −B−1 − (B−1)T = α+ β − γ − γT ,

and since γ = B−1, the lemma follows.
1This assumption is not restrictive because, since det M 6= 0, there will always be two blocks with non-vanishing

determinants that we can use to parametrize M. Every symplectic matrix can, therefore, be written as a product of at
most two free matrices [dG06].
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B.3 Center and chord generating functions

In the case of centers and chords, two particular matrix parametrizations occur very naturally – we
can extract them directly from equations (1.19). Start with the general quadratic generating functions
for linear symplectomorphisms

{
S(η) = η · Bη
S̃(ξ) = ξ · B̃ξ/4

,

Using the chord equation in (1.19) and the quadratic form S(η) above,

ξ = −2JBη
⇔ X − x = −JB (x+X)

⇔ (I + JB)X = (I − JB)x

⇒ X = (I + JB)−1(I − JB)x ;

the same reasoning applied to the center equation in (1.19) leads to

X = −(I − JB̃)−1(I + JB̃)x .

Since X =Mx, we have

M = (I + JB)−1(I − JB) , for centers

M = −(I − JB̃)−1(I + JB̃) , for chords.

Solving the equations above for B and B̃ gives us the well-known Cayley parametrizations [Hel08]

{
B = J (I +M)−1(I −M)

B̃ = J (M− I)−1(M+ I)
. (B.2)

B.4 Linear complexification

We now introduce a particular linear transformation that is not a symplectic, but can effectively be
treated as if it were. It is an example of what is sometimes called symplectomorphism with a multiplier,
whereM∗ω = αω, α ∈ Cn, whereas the definition of “pure” symplectomorphism has α = 1.

We start by noticing that, by considering the symplectomorphismMt to have emerged as the flow
associated to a hamiltonian function H(x), the linearity of the flow implies that the hamiltonian is a
quadratic form:

H(x) = x · Ax =⇒ ẋ = Ax =⇒ ρt(x0) =Mtx0 , Mt = exp (tA) .

We now proceed to the

Definition B.4.1. The transformation

C : R2n −→ C2n

(
q
p

)
7−→

(
z
z∗

)
=

1√
2

(
p− iq
p+ iq

)
=

1√
2

(
−iIn×n In×n

iIn×n In×n

)(
q
p

)

is the linear complexification of phase-space variables.

It is easy to see the transformation above is a symplectomorphism with multiplier −i:

CTJ C =
1

2

(
−iI iI
I I

)(
0 I
−I 0

)(
−iI I
iI I

)
=

1

2

(
−iI −iI
−I I

)(
−iI I
iI I

)
=

(
0 −iI
iI 0

)
= −iJ ,
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so that the transformed canonical form is given by dq ∧ dp = (C∗)−1(−idz∗ ∧ dz). We also have

∂

∂z
=

1√
2

(
∂

∂p
+ i

∂

∂q

)
,

∂

∂z∗
=

1√
2

(
∂

∂p
− i ∂

∂q

)
,

where the signs are exchanged in order for ∂zz = ∂z∗z∗ = I. Therefore, from (1.3),





q̇ =
∂H(q, p)

∂p

ṗ = −∂H(q, p)

∂q

=⇒





d

dt

(
p− iq√

2

)
=
−i√

2

(
∂

∂p
− i ∂

∂q

)
H(q, p)

d

dt

(
p+ iq√

2

)
=

i√
2

(
∂

∂p
+ i

∂

∂q

)
H(q, p)

⇐⇒





ż = −i
(
∂H(z, z∗)

∂z∗

)

ż∗ = i

(
∂H(z, z∗)

∂z

) ,

which are the complexified form of Hamilton’s equations, abbreviated as Ż = −iJ dH(Z)/dZ, with
Z ∈ C2n. Notice this form is completely general and not at all restricted to quadratic hamiltonians, but
the SHO acquires a particularly simple expression when complexified: It just |z|2. It’s also worthwhile
mentioning that any mapping that goes from R2n to C2n is at most an immersion, since R2n ∼ Cn.
This means that we can perform all calculations in some complex coordinates u and v as if there were
independent, but the underlying structure fixes v = u∗.
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Appendix C
An extended discussion on quantum theory

Quantum mechanics was borne out of several experimental facts that departed strongly from the
behavior predicted by classical mechanics. Suddenly, the outcome of measurements of several systems
prepared in the same initial state could not be generally predicted and behaved stochastically. A
description in terms of a probabilistic theory was then necessary where the focus was shifted from
predicting an experimental outcome to establishing the probability of its occurrence. The dominant
interpretation of the theory also implies that physical properties do not really have fixed values until
they’re measured, the whole system magically collapsing to a single state. As could be fathomed from
experiment, measurements were also not generally commutative, so that observable variables could not
be described by functions over manifolds. Somehow, though, everything needs to approach classical
theory as the system’s size is increased, meaning that the failure to commute should be a function of
a very small parameter with respect to the classical world. A description in terms of two entities Â
and B̂ associated to two separate measurements should therefore fail to commute proportionally to a
small constant ~:

ÂB̂ − B̂Â = [Â, B̂] ∝ ~ .

Since the hamiltonian fields associated to position and momentum do not commute, a clear analogy
with classical variables emerges:

[Xq, Xp] = {q, p} = 1 ,

This is a fundamental connection between classical and quantum mechanics and is the starting point
of most quantization procedures, which are recipes for associating classical systems to their quantum
equivalents. Notice that, since all f ∈ C∞(X) are commutative for any X, it is very natural to
associate Â and B̂ with operators acting on a particular space. Obviously, these do not need to have
a faithful matrix representation, but one is sure to exist at least for the finite-dimensional case.

C.1 Finite quantum mechanics

Quantum evolution is governed by linear differential equations. This is the source of the most striking
differences between classical and quantum motion, since it is this linearity that allows for state super-
position and quantum interference and, simultaneously, makes quantum chaos impossible. While the
mathematics of classical mechanics were rather simple but the dynamical behavior was generally quite
complex due to non-linearities, the mathematical background of quantum mechanics is more involved
but the output dynamics is unexpectedly simpler than its classical counterpart.

Mathematical background

Having established that quantum observables must be non-commutative, a further aspect that should
be considered is: Since our observables are now described by operators instead of functions, what do
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we effectively measure in the lab? We start by noticing that the number of possible outputs associated
to an operator must be invariant with dimension: A measurement with n outcomes must be associated
to an operator with n possible outputs. Thus, n needs to be described by an invariant and the only
invariant in the vector-space category is dimension. A measurement experimentally associated with
n possible outputs is then postulated to be described by an operator acting on Rn and belonging to
Rn×n. Also, systems can be prepared in several different states and these provide different sets of
measurements for the same operator, thus the operators’ domain needs to be the space of initial states
– which, by the earlier reasoning, should be n-dimensional. Mathematically, one has this set of initial
kets {|ψi≤n〉}, and some operator Û that acts on it. For n <∞ the operator Û has a faithful matrix
representation and |ψi〉 ∈ V , with dim(V ) = n, and Mat(n) ∋ Û : V −→ V .

What information do we extract from Û when we measure it? If Û is expected to describe an event
with n possible outcomes, there must be n scalar quantities associated to it. The only guaranteed
quantity to satisfy this requisite are the eigenvalues of Û . If we denote the set of eigenvectors of Û by
{|ui≤n〉} with distinct eigenvalues ui≤n, we can always decompose any |ψ〉 as

|ψ〉 =
∑

i≤n

ci|ui〉 , where Û |ui〉 = ui|ui〉 .

The simples way to force the eigenvectors of Û to be always capable of forming a basis is to force Û
to be self-adjoint1, so from now on we know Û † = Û .

Being a vector space, the space of kets V is isomorphic to its dual V ∗ and there is a unique bra
V ∗ ∋ 〈ψ| : V −→ R such that 〈ψ|ψ〉 = |ψ|2, where the action of an linear functional over V is naturally
described in terms of the induced conjugate-symmetric inner-product in V × V defined as

( , ) : V × V −→ R

(|ψ〉, |φ〉) 7−→ (ψ, φ) = 〈ψ|φ〉 = (〈φ|ψ〉)∗ ,

such that, choosing a basis {|ai〉} for |ψ〉 and |φ〉, we have


∑

i≤n

ci|ai〉,
∑

j≤n

dj |aj〉

 =

∑

i≤n

cid
∗
i .

Therefore, we can take {|ui≤n〉} to be normalized and write

Û |ψ〉 =
∑

i≤n

ciui|ui〉 =⇒ (ψ,Uψ) = (Û †ψ,ψ) = 〈ψ|Û |ψ〉 = 〈ψ|Û †|ψ〉 =
∑

i≤n

ui|ci|2 .

Notice that if Û = Î we recover the invariant norm of |ψ〉, but otherwise we obtain information of
Û through its eigenvalues using the inner product above. Indeed, we obtain all information we want
from Û , so it makes sense to identify eigenvalues as measurement outcomes and the inner products as
measurements themselves. These inner products, however, have the exact form of a mean value of ui
with probability density function |ci|2 as long as we fix

〈ψ|ψ〉 =
∑

i≤n

|ci|2 = 1 ,

so that ci represent amplitudes and a probabilistic component is naturally introduced in the theory
by imposing normalization. This is the first restriction we place on the space of states V , from which
we take only the subset of all normalized states. The dimension is the only vector space invariant and
the subspace of normalizable vectors of V would at first glance appear isomorphic to V , but this is

1The fact that Û must be self-adjoint was fixed much earlier by postulating that it should always have n linearly
independent eigenvectors associated to n different eigenvalues so that they can be used as a basis for V – self-adjoint
operators are guaranteed to fulfill this requisite. Strictly speaking, however, self-adjointness is sufficient but not necessary,
and formulations of quantum mechanics in terms of P T -symmetric operators have attained a considerable degree os
success in the past years. In fact, some measurements that appear in quantum optics can only be described in terms of
P T -symmetric operators [BBJ03].
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not true: the zero vector is not normalizable. Our final space is, therefore, not isomorphic to V , but
to the projectivization2

P(V ) = {[x] ∈ V/{0} : x, y ∈ [x]⇐⇒ x = αy} .

The equivalence relation is naturally required by state vectors due to the normalization requisite, from
which the factor α can be easily obtained:

|ψ|2 = 1 ⇐⇒ |α|2|ψ|2 = 1 =⇒ |α|2 = 1 =⇒ α = eis , s ∈ R ,

which is just a global phase factor.

The Schrödiger picture

Let us now consider the operators associated to time-evolution, which we shall call Ût : R× P(V ) −→
P(V ). Their action is taking an initial state |ψ0〉 to the final state |ψt〉 = Ût|ψ0〉. We don’t know how
Ût depends on time yet. Suppose, however, that we take one of its eigenvectors:

Ût|λ〉 = λ|λ〉 =⇒ 〈λ|Û †
t Ût|λ〉 = |λ|2〈λ|λ〉 = |λ|2 = 1 ,

since we must have |λ〉 ∈ P(V ). This amounts to evolving an initial state that is stationary under the
action of Ût, from which we obviously expect that the measured quantities λ and their probability
distribution does not change. We then immediately have Ût ∈ U(n) and the quite obvious

Proposition C.1.1. For unitary the operator Ût ∈ U(n), we have

i) Ût1+t2 = Ût1Ût2 = Ût2Ût1

ii) Û †
t1 = Û−t1 .

Proof. To prove i):

Ût1 |ψ0〉 = |ψt1〉 ⇐⇒ Ût2Ût1 |ψ0〉 = Ût2 |ψt1〉 = |ψt1+t2〉 = Ût1+t2 |ψ0〉 = Ût2+t1 |ψ0〉

The statement in ii) is trivially proved by substituting t2 = −t1.

What we have shown is that the evolution operators Ût form a unitary, one-parameter group that
acts on the complex projective space P(V ). We now completely characterize such operators by means
of a very simple representation lemma found ubiquitously in Lie group theory.

Proposition C.1.2. Every unitary operator Ût ∈ U(n) depending smoothly on t admits a unique
representation in terms of the exponential of an associated self-adjoint operator K̂, given by

Ût = exp(−itαK̂) . (C.1)

Proof. Smooth dependence on t is fundamental for time-propagation to be continuous – the unitary
operators considered do not form only a group, but a Lie group. This implies, of course, that Ût can
be expanded as a Taylor series in t:

Ût = I − dÛt
dt

∣∣∣∣
t=0

t+O(t2) ⇐⇒ Û †
t Û = I − t

[
dÛt
dt

+
dÛ †

t

dt

]

t=0

+O(t2) , (C.2)

but since Û †
t Ût = Î, the O(t) term must vanish. The adoption

dÛt
dt

def
= −iαK̂ , K̂ = K̂† , α ∈ R , (C.3)

2The projectivization of an n-dimensional vector space is isomorphic to the complex projective space CPn−1. The
space CP1, for example, is known in physics literature as the Bloch sphere.
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clearly cancels the term inside square brackets in (C.2). Take now property i) in Proposition C.1.1
and differentiate it with respect to t2:

Ût1+t2 = Ût1Ût2 ⇐⇒ ∂Ût1+t2

∂t2

∣∣∣∣
t2=0

= Ût1

(
∂Ût2
∂t2

)

t2=0

= −iαK̂Ût1 ⇐⇒ ∂Ût
∂t

∣∣∣∣
t=t1

= −iαK̂Ût1 ,

where we have employed (C.3). The group condition forces Û(0) = Î, so that the equation above has
the unique solution given in (C.1). The operator K̂ is called the generator of the family Ût.

We can then employ the exponential form of Ût and write

Ût = exp(−iαtĤ) =⇒
(
dÛt
dt

)
|ψ0〉 =

∂|ψt〉
∂t

⇐⇒ −iαĤ|ψt〉 =
∂|ψt〉
∂t

.

This is a linear, first order partial differential equation in |ψt〉, so that

i

α

∂|ψt〉
∂t

= Ĥ|ψt〉 , |ψt〉 = exp(−iα tĤ)|ψ0〉 . (C.4)

We now collect some results obtained previously. As stated in the introduction, observables do not
commute by a factor proportional to a small quantity, which we called ~. We now know, however, that
quantum theory should be described by self-adjoint operators, such that the commutator presented in
the introduction should therefore be expanded to

[Â, B̂] ∝ ~ 7−→ [Â, B̂] = ~ Ĉ , (C.5)

since the product of operators is a new operator. We also absorb any multiplication constants into ~

in order to write an equality. We run into the no-go

Proposition C.1.3. The operator Ĉ in (C.5) is not self-adjoint.

Proof. Self-adjointness of Ĉ would imply [Â, B̂]† = ~ Ĉ†, but

[Â, B̂]† =
(
ÂB̂ − B̂Â

)†
= B̂†Â† − Â†B̂† = B̂Â− ÂB̂ = −[Â, B̂] ∝ −~ Ĉ 6= ~Ĉ†

Corollary C.1.4. The substitution Ĉ 7−→ iĈ solves the self-adjointness problem.

Proof.

[Â, B̂] = i~ Ĉ ⇐⇒ [Â, B̂]† = −i~ Ĉ†

ÂB̂ − B̂Â = i~Ĉ ⇐⇒ B̂Â− ÂB̂ = −i~Ĉ

so that everything fits for Ĉ = Ĉ†.

Due to the corollary above, we subsequently modify (C.5) to

[Â, B̂] = i~Ĉ , (C.6)

guaranteeing that the operator ring is closed with respect to conjugate-transposition. Interestingly,
this commutation relation is deeply connected to the standard deviation of general observables. To
see this we start by defining the operator Â′ = Â− 〈Â〉ψ Î, identified with the standard deviation by

〈Â′〉ψ = 〈ψ|Â− 〈Â〉ψ Î|ψ〉 = 〈Â〉ψ − 〈Â〉2ψ = σ2
ψ(Â) .
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By the Schwartz inequality,

σ2
ψ(Â)σ2

ψ(B̂) = |〈ψ|Â′|ψ〉||〈ψ|B̂′|ψ〉| ≥ |〈ψ|Â′B̂′|ψ〉|2

≥
∣∣∣ℑ
(
〈ψ|Â′B̂′|ψ〉

)∣∣∣
2

=
1

4
|〈ψ|Â′B̂′|ψ〉 − 〈ψ|B̂′Â′|ψ〉|2 ,

=⇒ σ2
ψ(Â)σ2

ψ(B̂) ≥ |〈ψ|[Â
′, B̂′]|ψ〉|2
4

.

But

[Â′, B̂′] = (Â− 〈Â〉ψ Î)(B̂ − 〈B̂〉ψ Î)− (B̂ − 〈B̂〉ψ Î)(Â− 〈Â〉ψ Î) = [Â, B̂] = i~Ĉ ,

where we employed (C.6). Therefore:

σψ(Â)σψ(B̂) ≥ ~

2
|〈σψ(Ĉ)〉| ,

The inequality in (C.6) is the well-known Heisenberg’s uncertainty principle. It states that, in
quantum mechanics, there are variables which we simply cannot measure at the same time, since the
better we know the value of the observable Â the less we know the value of B̂. This happens exactly
when the commutator of Â and B̂ does not vanish, otherwise there is no problem in obtaining a
complete and simultaneous knowledge of them. Non-commuting variables are often called conjugate.

One missing piece remains: What is α in (C.4)? Start by writing the commutator of an arbitrary
operator Ŵ conjugate to Ĥ,

[Ŵ , Ĥ] = i~Ẑ .

Since

i

α

∂|ψ〉
∂t
− Ĥ|ψ〉 = 0 ⇐⇒

(
i

α

∂

∂t
− Ĥ

)
|ψ〉 = 0 =⇒ Ĥ =

i

α

∂

∂t
,

we have

[Ŵ , Ĥ] = i~Ẑ ⇐⇒
[
Ŵ ,

i

α

∂

∂t

]
|ψ〉 = i~Ẑ|ψ〉 ⇐⇒

[
1

α

∂Ŵ

∂t
− ~Ẑ

]
= 0

strongly suggesting that α = 1/~ by dimensional considerations. Then, (C.4) becomes the Schrödinger
equation

i~
∂|ψt〉
∂t

= Ĥ|ψt〉 , Ĥ = Ĥ† , |ψt∈R〉 ∈ P(V ) ,

with solution [for time-independent hamiltonian operators]

U(n) ∋ Ût : R× P(V ) −→ P(V )

|ψt〉 7−→ Ût|ψ0〉 = exp

(
− itĤ

~

)
|ψ0〉 .

The Heisenberg picture

The Heisenberg picture of quantum mechanics can be easily derived from Schrödinger’s by placing
time-dependence on the operators instead of on the kets. The expectation value of some observable Â
calculated in a state |ψt〉 in the Schrödinger representation,

〈Â〉ψt
= 〈ψt|Â|ψt〉 ,

with its time-dependence expressed explicitly, reads

|ψt〉 = Ût|ψ0〉 =⇒ 〈Â〉ψt
= 〈ψ0|Û †

t ÂÛt|ψ0〉 ,
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implying that operators evolve as

Ât = Û †
t ÂÛt . (C.7)

We can proceed to obtain an evolution law based on the derivative of the above with respect to time:

dÂt
dt

=

(
dÛ †

t

dt

)
ÂÛt + Û †

t

(
∂Â

∂t

)
Ût + Û †

t Â

(
dÛt
dt

)

=

(
iĤt

~

)
Û †
t ÂÛt + Û †

t

(
∂Â

∂t

)
Ût − Û †

t ÂÛt

(
iĤt

~

)

=

(
i

~

)
Û †
t ĤtÛtÛ

†
t ÂÛt − Û †

t ÂÛtÛ
†
t ĤtÛt

(
i

~

)
+ Û †

t

(
∂Â

∂t

)
Ût

=
i

~
[Ĥt, Ât] +

∂Â

∂t
,

where we have employed the evolution operator expressed in terms of is Hermitian generator. For a
hamiltonian operator that is not a function of time, we have the [time-independent] Heisenberg’s
equation

−i~
(
dÂt
dt

)
= [Ĥ, Ât] .

Notice how Heisenberg’s equation is similar to the Liouville equation 1.6, implying the näıve canonical
quantization procedure that associates classical observables to quantum operators by





f 7−→ f̂

{·, ·} 7−→ 1

i~
[·, ·]

.

A special type of operators, called projectors, can be expressed in terms of arbitrary bras and kets:
If |ψ〉 ∈ V and 〈ψ| ∈ V ∗, the dyadic product |ψ〉〈ψ| acts on the left as V −→ V and on the right as
V ∗ −→ V ∗. It clearly provides a complete characterization of |ψ〉. Since projectors in the Schödinger
picture evolve as

β̂ = |ψt〉〈ψt| = Ût|ψ0〉〈ψ0|Û †
t ,

that is, backwards when compared to Heisenberg evolution (C.7), time-differentiation easily results in
the dynamical equation

i~

(
∂β̂

∂t

)
= [Ĥ, β̂] ,

which is the von Neumann equation. Its most important use is related to the projector

ˆ̺ = |Ψ〉〈Ψ| =
∑

i∈N

|λi|2|ψi〉〈ψi| , |ψi〉 ∈ V ,
∑

i∈N

|λi|2 = 1 , 〈ψi|ψj〉 = δij ,

where |Ψ〉 is used in order to imply that our system is entirely characterized by this state vector. The
projector ˆ̺ is known as the density operator. It is easy to see that the unitarity of |Ψ〉 implies ˆ̺2 = ˆ̺,
and that the expectation value of an operator is expressed quite succinctly as

〈Ψ|Â|Ψ〉 =
∑

i∈N

|λi|2〈ψi|Â|ψi〉 = tr


∑

i∈N

|λi|2|ψi〉〈ψi|Â

 = tr(ˆ̺Â) .

By using projectors we can also write any self-adjoint operator in a specific form called its spectral
decomposition, which is much more general than bras and kets [Mor16, Hel08]. For this, let {|ai≤n〉}
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and {ai≤n} be the eigenvectors and eigenvalues of Â, respectively. Then, since the set of eigenvectors
is linearly independent, we have

|ai〉〈aj | = Îδij =⇒
∑

i≤n

|ai〉〈ai| = Î .

This implies

Â


∑

i≤n

|ai〉〈ai| = Î


 =⇒

∑

i≤n

ai|ai〉〈ai| = Â .

The name “spectral decomposition” clearly stems in the fact that we are representing an operator as
a function of its spectrum, defined in the finite-dimensional case as the set of points {si≤n} for which
det(Â− siÎ) = 0, coinciding with the eigenvalues of Â. A function of an operator is then defined as

f(Â) =
∑

i≤n

f(ai)|ai〉〈ai| , f ∈ C∞(Cn) .

C.2 Transitioning to function spaces

Let |ψ〉 ∈ V . There is no name for a vector such that |ψ|2 <∞, since this is never false. However, if
n = ∞ the whole field of functional analysis is proof that the matter becomes much more intricate.
Infinite-dimensional quantum mechanics is, however, everything we are actually concerned about in
this thesis, so we spare some time to enumerate some details.

Mathematical background

In order to extend the interpretation developed for the finite to the infinite case, several subtleties
need to be accounted for. To make sense of the probabilistic component of the theory, for instance,
quantum mechanics requires the huge simplification provided by Hilbert spaces, which are complete
vector spaces H equipped with an inner product-induced norm. There was no need to mention such
special spaces earlier, since every finite-dimensional vector space is a Hilbert space, but in infinite
dimensional theory these are a major simplification when compared to general Banach spaces:

1. An infinite-dimensional basis of orthogonal vectors exists is normalizable by Gram-Schmidt
([BPT15], theorem 5.3.10);

2. For separable3 H, the orthonormal bases are countable ([BPT15], theorem 5.4.3);

3. Separable Hilbert space H is reflexive, i.e. they are isomorphic to their dual H∗ ([Hel08], theorem
10.1);

4. Every element in H∗ can be uniquely written as an inner-product contraction (Riesz representa-
tion’s theorem, item (c) of theorem 10.1 in [Hel08]);

and others. Since this is intermediate functional analysis material, the proofs involve several auxiliary
lemmas and theorems such as Banach-Steinhaus’ and closed graph’s, so we refer to [BPT15, Hel08]
for proofs. The main point here is that infinite dimensional Hilbert spaces are as close as one can
get from finite-dimensional behavior. The most important Hilbert space in quantum theory (actually,
pretty much the only) emerges due to our need to interpret the norm |f |2 as a continuous probability
density function. We then draw the analogy

(∑

i≤n

|f |2 = 1

)
7−→

(∫

A
dµ(x)|f(x)|2 = 1

)
,

3A space is separable if it contains a countable dense subset, e.g. R is separable because Q is dense in R. All spaces
in this thesis are separable.
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together with

(
(ψ, φ) = 〈ψ|φ〉 =

∑

i≤n

aib
∗
i

)
7−→

(
(f, g) = 〈f |g〉 =

∫

A
dµ(x)f(x)g∗(x)

)
. (C.8)

The inner product on the right hand side of the equation above is ubiquitous in functional analysis.
We then define the space of absolutely square integrable functions

L2(A) =

{
f ∈ C∞(A) :

∫

A
dx |f(x)|2 <∞

}
,

where dx is the n-dimensional Lebesgue measure over A, which should also be substituted in the inner
product in (C.8). It is standard in measure theory courses to prove that L2, with inner product in (C.8),
is a Hilbert space (it is the only Lp to be so) [Bar95, BPT15]. We then have all prerequisites needed to
interpreted the absolute value squared as a probability distribution on an infinite-dimensional Hilbert
space. The domain A we will be most interested in is the particularly problematic Rn, and we also
bring back the fact that we need to exclude non-normalizable functions from L2(Rn) and employ the
same equivalence classes as used in the finite-dimensional case – this leaves us with the projective
Hilbert space of absolutely square integrable functions

P[L2(Rn)] = {[f ] ∈ L2(Rn)/{0} : f ∼ g ⇐⇒ f = eisg almost everywhere} ,

which we shall refer to simply as H.
Now that we are free to pick infinite-dimensional operators, we would like to keep using Dirac’s

elegant notation also in the infinite dimensional case, since it beautifully allows us to ignore all the
mathematical difficulties involved in quantum mechanics and confuses us into believing everything is
alright. However, to employ e.g. the position representation as is it is used in physics, which for a
single degree of freedom reads

〈q|q̂|f〉 = q〈q|f〉 , 〈q|p̂|f〉 = −i~ dq〈q|f〉 ⇐⇒ q̂f(q) = qf(q) , p̂f(q) = −i~f ′(q) ,

we immediately run into a very obvious problem: Can we guarantee f(q) ∈ H after the application
of q̂? We clearly can’t, since the fact that f(q) is square integrable does not imply that qf(q) is also
square integrable. We must then define a domain D(q) in which the position operator makes sense,

D(q) =

{
f(q) ∈ H : qf(q) ∈ H ⇐⇒

∫

R

dq |qf(q)|2 <∞
}
,

where clearly D(q) ⊂ H, since f(q) is square integrable by definition. In the exactly same way, for the
momentum we have

D(p) =

{
f(q) ∈ H : f ′(q) ∈ H ⇐⇒

∫

R

dq |f ′(q)|2 <∞
}
.

As we can see, we cannot guarantee that a function will remain square integrable after the application
of any combination of positions to it. This is in severe contrast to the finite dimensional case, since all
matrices are bounded operators and we have no reason to even suspect that something might go wrong
after applying them to our states. There is, however, a remarkable exception to this rule: Notice that

D(q p) =

{
f(q) ∈ H : qf ′(q) ∈ H ⇐⇒

∫

R

dq |qf ′(q)|2 <∞
}

D(p q) =

{
f(q) ∈ H : [qf(q)]′ ∈ H ⇐⇒

∫

R

dq |qf ′(q) + f(q)|2 <∞
}

=⇒ D̄(q p− p q) =

{
f(q) ∈ H : qf ′(q) ∈ H ⇐⇒

∫

R

dq |f(q)|2 <∞
}

!
= H ,

where the bar represents the closure of a set. We then arrive at an incredible fact: The invariant
subspace generated by the commutator of position and momentum is our initial H – especially if one
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considers that Lebesgue integration will naturally ignore the closure4. In the general case, however,
we must define a space where it makes sense to talk about all possible applications of position and
momentum, namely

Φ =
⋂

m,n=0
A,B=Q,P

D(AnBm) , (C.9)

which is a small space when compared to H, known as the maximal invariant subspace generated by
q̂ and p̂: Here, and only here, we can be sure AΦ ⊂ Φ, with A = q, p, such that all quantities like
expectation values and standard deviations have a meaning. Notice that the elements of Φ are smooth
and very well behaved when compared to the ones in H.

What happens to functions such as q, p or exp(−iqp/~), which are clearly not in Φ nor in H? In
order to keep using Dirac’s bra-ket notation, we must provide them with a meaning. We then run into
a technical problem of great importance: We can only guarantee H ∼ H∗ if it is the projectivization
of the whole L2, otherwise we no longer have the safety net of Riesz representation theorem. As Φ is
not a Hilbert space, its dual Φ′ will no longer be isomorphic to it, so we can form the Gel’fand triple
(Φ,H,Φ′), made of:

1. A dense subspace Φ ⊂ H where position and momentum operators have meaning;

2. The projectivization of the space of square integrable functions L2(R);

3. The dual Φ′, whose elements act as linear functionals on Φ.

In physics, the dual Φ′ is the vector space where general bras live, including the ones obtained from
position and momentum eigenvectors – for which we haven’t defined a set yet. Thus, let us define the
associate triple (Φ,H,Φ×), where Φ× is the space of anti-linear functionals over Φ: This is the space
whose points are general kets, since they act as anti-linear functionals over Φ through the inner product
of H. In the language of Schwartz distributions, Φ is the space of test functions and Φ× is the space
of distributions [dlM01]. Then, every contraction of kets and bras involving position and momentum
eigenvectors must be interpreted as the kernel of an integral operator, namely a weak derivative over
Φ, and Dirac’s notation makes complete sense: We can write |q〉 and still be able to sleep at night. It
is enough to remember that general kets and bras are not directly linked to observables, but can still
be contracted into kernels.

A note on the Segal-Bargmann representation

We now include some words on the Segal-Bargmann representation, where coherent states are used as
a basis:

ψ(q) −→
∫
dq α(q)ψ(q) , α(q) ∝ exp

{
− [q −ℜ(α)]2

2
+
iℑ(α)

~
[q −ℜ(α)]

}
.

Notice that, in the position representation, we impose the normalization condition

〈ψ|ψ〉 = 1 =⇒
∫

R

dq |ψ(q)|2 <∞ ,

but if we choose to represent |ψ〉 using coherent states,

〈ψ|ψ〉 = 1 =⇒
∫

C

dα |ψ(α)|2 <∞ ⇐⇒
∫

R

dq |ψ(q)|2|α(q)|2 <∞

⇐⇒
∫

R

dq |ψ(q)|2 exp
{
−[q −ℜ(α)]2

}
<∞ . (C.10)

As can be seen above, the Segal-Bargmann representation induces an inner product that includes a
gaussian smoothing on the probability amplitude |ψ(q)|2, such that functions that didn’t belong to H

4Or, in other words, [q̂, p̂] = i~Î. Notice proportionality to Î is only possible due to dimension being infinite.
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generally belong to the Bargmann space, composed of the elements whose Bargmann transform fulfills
(C.10). In particular, the gaussian smoothing of Wigner functions represented in Segal-Bargmann
space is known as the Husimi function [dA98]. Notice that, since the gaussians converge faster than
any polynomial diverges, the Bargmann space at least contains the maximal invariant space in (C.9)
[Fol89]. It is also easy to establish a mapping between the Bargmann space and the Fock-Bargmann
space, which arises by expanding states in terms of the eigenvectors of the simple harmonic oscillator
[Fol89]. These Fock states |n〉 are a nice way to understand quantum mechanics from a mathematical
point of view, since they form a countable orthonormal basis, which really belong in a Hilbert space
setting.
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Appendix D
Stationary phase approximations

As stated several times in the main body of this dissertation, it doesn’t take much for the action to
become much larger than ~ – it is then not surprising that including first order corrections in ~ already
allows for very good agreement with experimental data. As we always deal with highly oscillatory
integrals, we are led to consider an expansion around the extrema of the action, i.e. its critical points
x0 where S′(x0) = 0, since these define the regions where S(x0) ≈ ~ ≈ 0:

S(x) ≈ S(x0) +

(
1

2

)
S′′(x0)(x− x0)2 ,

Since away from these regions the integrals tend to zero. Thus, integrals of the type

I =

∫
dxA(x) exp [ikS(x)] , k = 1/~ ,

can be approximated near a fixed point x0 by

I(x0) ≈
∫
dxA(x) exp

{
ik

[
S(x0) +

(
1

2

)
S′′(x0)(x− x0)2

]}

= exp [ikS(x0)]

∫
dxA(x) exp

{(
ik

2

)
S′′(x0)(x− x0)2

}
.

The amplitude A(x), however, does not depend on ~ or any other quantity as tiny as ~, so it is quite
safe to assume the exponential above oscillates much more quickly than any oscillations performed by
A(x), and we can move it outside the integral1 to obtain

I(x0) = A(x0) exp [ikS(x0)]

∫
dx exp

{(
ik

2

)
S′′(x0)(x− x0)2

}
.

Assume now that the hessian S′′(x0) does not vanish, i.e. that we stay away from caustics. Then the
integral above is just a simple Fresnel integral [GS90], with

∫
dx exp

{(
ik

2

)
S′′(x0)(x− x0)2

}
=

(
2π

sdet [S′′(x0)]

)n
2

exp

{
iπ

4
sign

[
S′′(x0)

]}
.

Evidently, all critical points of S enter the integral and we have i =
∑

allx0
I(x0), so

I ≈
(

1

2π~

)− n
2 ∑

Σ

∣∣detS′′(x0)
∣∣− n

2 A(x0) exp

{
i

~

[
S(x0) +

π

4
sign

(
S′′(x0)

)]}
,

where Σ is the critical set Σ = {x0 : S′(x0) = 0}. For a proof that its error is of O(~
n
2 ) see

[GS90, GS12].
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Appendix E
Weyl-Wigner symbols for linear flows

We here provide the complete calculations of the Weyl-Wigner symbols for linear flows, i.e. we fill-in
the steps leading from (5.4) to (5.5) and (5.6).

In Appendix B.2 we have shown that, for the linear flow

x′ =Mtx ⇐⇒
(
q′

p′

)
=

(
At Bt
Ct Dt

)(
q
p

)
,

the position-position generating function assumes the form

St(q, q
′) =

q · αtq
2

+
q′ · βtq′

2
− q · γtq′

2
− q · γTt q′

2
, where αt = B−1

t At , βt = DtB
−1
t , γt = B−1

t .

(E.1)

Substituting St(q, q
′) in (5.4) and noticing that ∂2

qq′St = −γt and that det(−γt) = (−1)n det γt,

Ũt(ξ) =

(
1

2πi~

)n
2

exp

(
iξqξp
2~

)∫
dq exp

(
iq · ξp
~

)
KvV
t (q, q − ξq)

=

(
1

2πi~

)n
2

exp

(
iξqξp
2~

)√
|(−1)n det γt|

∫
dq exp

(
iq · ξp
~

)

× exp

[
i

~

(
q

q − ξq

)
·
(
αt −γt
−γTt βt

)(
q

q − ξq

)]

=

∣∣∣∣∣
(−1)n det γt

det (γt + γTt − αt − βt)

∣∣∣∣∣

1
2

exp

{
i

~

[
ξp + (βt − αt)ξpξq + (γ2

t − αtβt)ξq
2(γt + γTt )− 2(αt + βt)

]}
.

The amplitude above is recognizable from Lemma B.2.1, where we prove that

(−1)n det γt
det (γt + γTt − αt − βt)

=
1

det (Mt − I)
;

also, by substituting the values for α, β and γ given in (E.1) in the phase,

ξp + (βt − αt)ξpξq + (γ2
t − αtβt)ξq

2(γt + γTt )− 2(α+ β)
=
Ctξ

2
q + (Dt −At)ξpξq −B2

t ξ
2
p

At +Dt − 4

=
1

4

(
ξq
ξp

)
·
{
J [Mt − I]−1 [I +Mt]

(
ξq
ξp

)}
,

where we have used Lemma B.1.2 and the fact that, sinceM in symplectic, detM = AtDt−BtCt = 1.
Upon the identification of the phase as the Cayley parametrization in (B.2), the final result for short
times can thus be written as

Ũt(ξ) = |det (Mt − I)|−
1
2 exp

{
i

~

[
S̃t(ξ) +

~πα̃

4

]}
,
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where we have included a signature in the phase that would have naturally arisen if we had started
with Ut(η) (see Section 3.2.3). To obtain the Wigner symbol we use the symplectic Fourier transform
(4.9), and the result is now obtained in terms of the center generating function in (B.2):

Ut(η) =

(
1

2π~

)n
2
∫
dξ exp

[
i

~
(ξ · J η)

]
Ũt(ξ)

=

(
1

2π~

)n
2

|det (Mt − I) |− 1
2

∫
dξ exp

{
i

~

[
S̃t(ξ) + ξ · J η

]}
.

Even though the integral above is gaussian due to S̃(ξ) being a quadratic form, it is enlightening to
evaluate it using the stationary phase approximation, which is exact for the quadratic case but brings
to surface important considerations regarding long times. The reason is that the SPA requires a sum
over the fixed points of the phase, namely the trajectories fulfilling

∂

∂ξ

(
S̃t(ξ) + ξ · J η

)
=⇒ ∂S̃t(ξ)

∂ξ

∣∣∣∣
ξ=ξ(j)

= −J η ⇐⇒ n(ξ(j)) = −2B̃−1J η , (E.2)

where n
def
= ∂ξS̃(ξ), which in the quadratic case resumes to a single one due to the root-search equation

being linear in ξ (see Lemma B.1.1). The signature of S̃t(ξ) also pops up and we obtain

Ut(η) =

(
1

2π~

)n
2

|det (Mt − I) |− 1
2

∣∣∣∣∣det

(
∂2S̃t(ξ)

∂ξ2

)∣∣∣∣∣

− 1
2

exp

{
i

~

[
S̃t(ξ) + ξ · J η +

iπα

4

]}
,

where

α = sign

{(
∂2S̃t(ξ)

∂ξ2

)}
.

The amplitude can be explicitly written using (E.2) and (B.2):

∂2S̃t(ξ)

∂ξ2
=

∂2

∂ξ2

[
ξ · Btξ

4

]
=
Bt
2

=
J
2

(Mt − I)−1(Mt + I) ,

which, since all matrices are even-dimensional, implies

∣∣∣∣∣det (Mt − I) det

(
∂2S̃t(ξ)

∂ξ2

)∣∣∣∣∣

− 1
2

=

∣∣∣∣
det (Mt − I) det (Mt + I)

22n det [(Mt − I)]

∣∣∣∣
− 1

2

= 2n |det (I +Mt)|−
1
2 .

The final short-time propagation in the Wigner representation is, therefore,

Ut(η) = 2n|det (I +Mt) |−
1
2 exp

{
i

~

[
St(η) +

iπα

4

]}
.
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Appendix F
Computational and numerical details

We here provide a brief account of the computational aspects in this dissertation. We have used three
computer languages for calculations: Python, Julia and Mathematica. We will focus on Python, which
is more well-known, although many numerical calculations were actually performed in Julia. We omit
all considerations regarding Mathematica, which was only used for some algebraic manipulations and
cross-checking.

Some facts about Python

Python is an interpreted language: A great effort is done by the Python community in making the
interpreter smarter and faster, so that it can efficiently simplify the input code before it is effectively
compiled, sometimes even ignoring chucks of useless code that might have slipped the programmer’s
hands. This results in almost all built-in functions being more efficient than raw code, together with
a preference for some algorithms instead of others. For example, there is no distinction between input
type for Python functions, such that a function defined to act on an integer can be applied with no
modification to a list, a matrix, or any kind of tensor. This is usually stated as saying that functions
in Python are actually generalized functions, rendering them extremely easy to use, but since the
interpreter needs to compensate such arbitrariness by identifying and passing which kind of object the
functions are actually acting on instead of the programmer, it can also be a slow process.

A similar situation is encountered when dealing with “for” loops, which in Python should almost
never be explicitly written – instead, one uses the concept of vectorization, employing generalized
functions to a list instead of an atomic function in a loop. While this may look be nice for those
running simple codes, it is sometimes not a desirable characteristic at least because:

• Lists occupy memory: one can be absolutely sure a 1990s computer can run any “for” loop
in e.g. C, although it might take forever; in Python, however, one can only immediately apply
vectorization if the computer is able to create the tensor on which we intend to apply a generalized
function. If this tensor is huge, the computer will crash due to memory overflow;

• Generalized functions are slow: Compensating the programmer’s incompetence with a very smart
interpreter can be a great advantage in many situations, but not all of them – sometimes it is
just better to train the user.

Several Python packages, such as Numba, were developed in order to correct problems such as the
ones listed above, and in the hands of an experienced Python programmer numerical programming
(done with the package Numpy) can be quite efficient. The same programmer, however, would achieve
faster results in almost any compiled language, but for these languages code development is just
too slow. The advantage of the Python language is really its simplicity, but when one finds an
efficient algorithm and is interested in speed, it usually needs to be translated to Fortran or C –
which is not so easy since Python uses built-in functions so much. This need of using one language
for code development and another one for efficiency is the famous two language problem of scientific
programming.
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Python is also very nice for scientific purposes due to being dynamically typed, such that we can
actually write theory in LATEX and perform calculations simultaneously in a same environment (such
as in a Jupyter Notebook). The defined variables are stored and can be used in further calculations,
and cells can be compiled one at a time. A multi-paradigmatic language, Python also allows for both
procedural and object-oriented programming, accommodating both sets of programmers instead of
adding to the controversy over which paradigm is best.

Some facts about Julia

Julia is a compiled language, but it is rather different from C, Fortran, and most older languages. For
instance, just as Python, Julia is garbage-collected, meaning that the compiler automatically looks for
unused memory sections and reuses them in further calculations. This is in strong contrast with the
compiler in C, which is “stupid”, i.e. the programmers themselves need to think about each memory
allocation and address. Garbage-collection consumes time and can be less efficient than a well-devised
manipulation of pointers and memory in a low level language such as C – the problem is that training
someone to learn how to efficiently manipulate memory in C can take a lifetime, and the excess of
pointers and pointers to pointers and pointers to pointers to pointers can render C code unintelligible.
It is somewhat commonplace between programmers that garbage-collection is a good idea.

Unlike Python, however, functions in Julia are not generalized, although one can modify them
to be. Such a modification renders them pretty much as slow as in Python and is usually avoided.
Instead, the Julia compiler uses the concept of multiple dispatch, meaning that it actually builds
different functions to deal with different data structures – the programmer can also help by providing
as much information about the input/output as possible. Although this might look stupid, it is similar
to what the interpreter in Python is doing behind the stage, but Python creates general methods and
multiple dispatch is much more efficient by being run-time based. Also, Julia loves “for” loops: Stacked
“for”s are a reality in Julia just as they are in C, and might be hard to get used to in the beginning1.
Again, stacked “for”s might look stupid, but are once more what the Python interpreter is effectively
doing when we use vectorization – except that it is also allocating a lot of memory, while loops allocate
almost nothing.

In even starker contrast with other compiled languages, Julia can also by dynamically typed. The
Jupyter environment mentioned earlier can be modified to run on a Julia kernel, so that it can be
used just as Python for scientific projects. The ubiquitous MatPlotLib package for scientific plotting,
well-known to Python users, has also been translated to Julia, so people migrating from Python should
already feel at home with respect to data visualization.

The Julia language was developed with scientific computing in mind. It can be as fast as C, but
it is also almost as high-level as Python, so code development is easy. One can say that Julia allows
for the programmer to use all his/her knowledge and that knowledge pays off, but if the programmer
is lazy the compiler will do its best to compensate for his/her ignorance (which is Python’s leitmotif).
As of today, and at least for scientific computing, it can be said that the Julia language is the closest
we have ever gotten to solving the two language problem.

F.1 Numerical discretization

There are no continuous objects in numerical analysis. Everything is effectively discrete:

• continuous functions are functions for which the spacing between points in the image is small
when compared to some parameter of interest,

• derivatives are finite differences,

• integrals are sums,

1Especially because the Julia indexing, just as Matlab’s, moves faster on the left, while in C and Python the fastest
index is always on the right.
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etc. This can be resumed as: Objects in calculus that are obtained as limits of something going to
zero are really calculated as this something not approaching zero, but a small value instead. The grids
we use for calculations are, thus, tensors whose dimension depends on what we are calculating. There
is a huge difference, however, between how we deal with grids in Python and Julia.

Grid manipulation

Grids in Python are simple. Importing numpy as np, we can form grids as2

np.arange(-3,4,1) # this is 1D grid

>> array([-3,-2,-1,0, 1, 2, 3])

np.mgrid[-3:4:1, -10:11:dx] # this is a 2D grid

>> array([[[-3, -3, -3, -3, -3, -3, -3],

[-2, -2, -2, -2, -2, -2, -2],

[-1, -1, -1, -1, -1, -1, -1],

[ 0, 0, 0, 0, 0, 0, 0],

[ 1, 1, 1, 1, 1, 1, 1],

[ 2, 2, 2, 2, 2, 2, 2],

[ 3, 3, 3, 3, 3, 3, 3]],

[[-3, -2, -1, 0, 1, 2, 3],

[-3, -2, -1, 0, 1, 2, 3],

[-3, -2, -1, 0, 1, 2, 3],

[-3, -2, -1, 0, 1, 2, 3],

[-3, -2, -1, 0, 1, 2, 3],

[-3, -2, -1, 0, 1, 2, 3],

[-3, -2, -1, 0, 1, 2, 3]]])

The first grid is the set (−3, 3), with spacing between elements given by 1; the second grid is composed
of two 7 × 7 matrices, each representing an axis, which include all possible (x, y) tuples that form a
2-dimensional grid, so we can identify the first with y components and the second with x components.

When we talk about propagating and applying functions to grids in Python, these are the types of
grids we are using as input. In Python, defining and applying a function to a grid is done, for instance,
as

grid=np.mgrid[-1:2:1, -1:2:1] # defines the input

def f(x): # defines a function

return np.cos(x)

f(grid) # applies function to input

>> [[[0.54030231 0.54030231 0.54030231]

[1. 1. 1. ]

[0.54030231 0.54030231 0.54030231]]

[[0.54030231 1. 0.54030231]

[0.54030231 1. 0.54030231]

[0.54030231 1. 0.54030231]]]

The classical flow for the Kerr system, presented in Chapter 6, is nothing but a function as the above,
since the equations of motion are exact.

2Notice that Python “eats” the last element. The notation >> symbolizes output.
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Numerical integration

Wigner functions, classical actions and Fourier transforms are all integrals. To perform them numer-
ically, we simply discretize them as Riemann sums. Nowhere in this dissertation a more elaborate
integration algorithm was used. As an example, take the numerical classical actions of (6.12). These
are evaluated simply by

def numerical_actions(path):

p , q = path[0], path[1]

xi_p, xi_q = p - p[0], q - q[0] # chords

A = 4*q*(q**2+p**2) # derivative of H wrt q

B = 4*p*(q**2+p**2) # derivative of H wrt p

return (1/2)*np.sum(xi_q*A + xi_p*B, axis=0)*T

where the input path is just the orbit we wish to evaluate the action for. This orbit was already
calculated using, for instance, the SSIs for Subsection F.2.

F.2 Classical dynamics

For computing the classical dynamics of maps and coherent states, we simply define functions over
the grids of Section F.1. The exact evolution for the Kerr system, for instance, is given by

def init(t, p, q):

phasespaceradius2 = p**2+q**2

angle = 4*phasespaceradius2*t

cosine = np.cos(angle)

sine = np.sin(angle)

pi = p*cosine+q*sine

qi = -p*sine+q*cosine

return pi, qi

where the equations need to be time-reversed because classical probability distributions evolve back-
wards (see e.g. (4.22)). Using this exact evolution, Fig. 6.1 can be reproduced using

def coherent_evolution(x, kick, alpha, T):

P, Q = init(t, p, q)

return (1/(np.pi))*np.exp(-(Q - alpha.real)**2 - (P - alpha.imag)**2)

easily recognizable as an implementation of (4.22). The classical evolution of maps is equally obvious,
employing SSIs instead of init, and is described in the following.

Splitting symplectic integrators

The implementation of SSIs is trivial. For instance, (2.4) can be easily implemented as

def SSI(V_pr, x, kick, T): 1.

path = np.zeros(shape = np.hstack((kick+1, np.asarray(x).shape))) 2.

P, Q = path[:,0], path[:,1] 3.

P[0], Q[0] = x 4.

for n in range(1,kick+1): 5.

X0, Y0 = Q[n-1], P[n-1] 6.

X1 = X0 + T*Y0 7.

Y1 = Y0 - T*V_pr(X1) 7.

Q[n], P[n] = X1, Y1 8.

return path 9.
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where3

1. Calls the SSI, whose input is given by the derivative of the potential energy V_pr (we assume
F (p) = p2/2), the initial grid to be propagated x, the number of iterations kicks and the kicking
strength T;

2. Builds a tensor of zeros, to be later filed with the orbit of x;

3. Defines the momentum and position components of the orbit above;

4. Sets the initial grid to be propagated as x;

5. Iterates over kicks;

6. Each element for a present kick n equals the element for kick n-1;

7. Direct implementation of (2.4);

8. Defines the element at kick n.

9. Returns result.

The iteration of any initial grid using the SSI above results in figures like Fig. 7.1. Tao’s algorithm
for integrating non-separable hamiltonians is a combination of several SSIs as the one above, except
that grids are now 4-dimensional and occupy too much space to be reproduced here, but after the
example above is understood the implementation of Tao’s algorithm is straightforward.

F.3 Quantum dynamics

Quantum propagation is slightly more complicated than its classical counterpart in the earlier section,
although in the end it is nothing but the direct implementation of the formulas developed in the main
body of this dissertation.

The Kerr system

The quantum propagation of a coherent state under the Kerr hamiltonian was presented in Section
7.2, its final result being (6.4). In Python, we use object-orientation and implement evolution as a
class. The class initializes with

def __init__(self, p, q, alpha, x0, npts):

where p and q are not momentum and position, but the a and b mutually prime integers that multiply
the revival time in Definition 6.2.1. The class also takes the center of the initial coherent state as
input, namely alpha, the number of points in the grid npts and x0 to define its boundaries, given by
-x0 and x0. We now proceed and enumerate each of its components.

Naturally, we need a coherent state, given by

def gaussian(self, x, ar):

return np.pi**(-.25)*np.exp(-0.5*(x - np.sqrt(2)*ar.real)**2

+ 1j*ar.imag*(np.sqrt(2)*x - ar.real))

The c0 and ck in (6.5) and (6.6) are implemented as

def get_c0(self):

nvals = np.arange(self.q)

phases = np.exp(-2j*np.pi*self.p*nvals**2/self.q)

return np.sum(phases)/self.q

3We remind the reader that in Python all variables can be grids.
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def generate_ck(self):

self.coeffs = np.ndarray(shape=(self.q,), dtype=np.complex128)

k = 0

self.coeffs[0] = self.get_c0()

for _ in range(self.q-1):

knew = (k+2*self.p) % self.q

self.coeffs[knew] = self.coeffs[k]*np.exp(2j*np.pi*(k+self.p)/self.q)

k = knew

culminating in

def generate_alphas(self):

self.alphas = self.alpha*np.exp(-2j*np.pi*np.arange(self.p, self.p+self.q)/self.q)

which builds the big coherent states in (6.4). After generating the Fourier coefficients, the wavefunction
is trivial:

def wavefunction(self, x):

self.generate_ck()

self.generate_alphas()

self.coeffs = self.coeffs[:, np.newaxis]

self.alphas = self.alphas[:, np.newaxis]

psi = np.sum(self.coeffs*self.gaussian(x, self.alphas), axis=0)

return psi*np.exp(-0.5j*np.pi*self.p/self.q)

and the only thing missing is the Wigner transform, which will be described in Section F.3.

The coserf system

The quantum coserf system is considerably simpler than the Kerr system. Although implementing it
is as a class using object-orientation in Python, the calculations essentially resume to the recursive
loop

for n in range(1,self.kick+1):

A = np.sqrt(1/(2*self.T*pi))*np.exp(-1j*self.V(q)*self.T)*exp(-1j*pi/4)

B = np.exp(1j*(q-q[:,np.newaxis])**2/(2*self.T))*psi_prime[n-1]

psi_prime[n] = A*np.sum(B,axis=1)*self.dx

which is the exact Pythonic equivalent of (7.4) substituted in (7.5), psi_prime[0] representing the
initial coherent state.

Wigner transforms of wavefunctions

The Wigner transform of (4.12) has been implemented using several tricks throughout the years, many
of them based on identifications with the Fast Fourier Transform (FFT) as long as one sets grid spacing
to be equal to

dx = np.sqrt(np.pi/(2*npts))

otherwise such identification is not possible. The advantage of using FFTs is that, as the name
says, they are fast: A culmination of several symmetry-searching algorithms, the FFTs in Python are
especially fast – even if compared with compiled languages. The problem is that, by fixing the grid
spacing, the endpoints of the grid must remain free in order to render the algorithm really efficient,
which can lead to huge grids being generated even though we are interested in a Wigner function that
occupies a tiny phase-space portion. This can be resumed as: The FFT does not allow us to focus on
the Wigner function, but does allow us to use monstrous grid sizes.

We have used all sorts of Wigner-transform algorithms in this dissertation, including FFTs, tricks
with np.lib.stride_tricks.as_strided and simple direct implementation. We will not go into the
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details of the first two methods mentioned, because their advantage over direct implementation is
efficiency only: What takes 15min to calculate by direct implementation can take 12ms using strides

or np.fft.fft. For the direct Wigner function, the transform is given simply by

def wigner(self):

gamma = np.arange(-self.x0, self.x0 + self.dx/2, self.dx)[:, np.newaxis]# (1.)

grid_p = np.arange(-self.x0, self.x0 + self.dx/2,

self.dx)[:, np.newaxis, np.newaxis] # (2.)

R = np.conjugate(self.wavefunction(self.grid_q - gamma/2)) # (3.)

L = self.wavefunction(self.grid_q + gamma/2) # (4.)

W = (self.dx/np.pi)*np.sum(R*L*np.exp(-1j*gamma*grid_p),axis=1) # (5.)

return W.real

The marked lines have the following function in implementing (4.12)):

1. Defines the γ grid;

2. Defines the p grid;

3. Calculates the wavefunction displaced by −γ/2 and takes conjugate;

4. Calculates the wavefunction displaced by +γ/2;

5. Integrate with respect to the p grid (axis=1) using Riemann sum.

F.4 Semiclassical dynamics

The calculations in semiclassical dynamics are much more intricate than the ones in the classical and
quantum sections of this appendix. We will not explicitly include them here, but rather describe what
is done using some code snippets when necessary.

The Kerr system

The FVR for Kerr evolution starts with a chord grid, from which we extract the initial phase-space
points that we employ for backward-propagation. The Wigner function is calculated as a sum of slices,
meaning that the complete W (q, p) is obtained as a union of W (q, p1) ∪W (q, p2) ∪W (q, p3)..., each
slice as the ones displayed in Fig. 6.10.

Defining variables

We first show in detail how to form all variables defined in the enumeration of Subsection 5.2.3.
Naturally, everything in this section happens inside a class with

def __init__(self, alpha, t, evaluation_grid, integration_grid):

self.alpha = alpha # center of initial state

self.t = t # evaluation time

self.a_i, self.b_i, self.npts_i = evaluation_grid # evaluation grid limits

self.dx_i = abs(self.a_i-self.b_i)/self.npts_i # evaluation grid spacing

self.l = self.npts_i # evaluation grid size

self.a_g, self.b_g, self.npts_g = integration_grid # integration grid

self.dx_g = abs(self.a_g-self.b_g)/self.npts_g # is made of chords!

self.Xi_p, self.Xi_q = np.mgrid[self.a_g:self.b_g

+self.dx_g:self.dx_g,self.a_g:self.b_g

+self.dx_g:self.dx_g] # this is a chord grid!
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Then, the variables used by the semiclassical Wigner function, following strictly the instructions of
Subsection 5.2.3, are defined as

for n in range(self.l):

eta_p, eta_q = p0, n*self.dx_i+self.a_i # final center grid

Xp_p, Xq_p = eta_p + self.Xi_p/2, eta_q + self.Xi_q/2 # final x+ grid

Xp_m, Xq_m = eta_p - self.Xi_p/2, eta_q - self.Xi_q/2 # final x- grid

xp_p, xq_p = self.init(self.t, Xp_p, Xq_p) # initial x+ grid

xp_m, xq_m = self.init(self.t, Xp_m, Xq_m) # initial x- grid

All functions required by the FVR and described in Section 5.3 are easily implemented in terms
of the variables above.

The Conley-Zehnder indexes

Obtaining the Conley-Zehnder indexes for the Kerr system is done by solving (6.8). Since the left
hand side of this equation is periodic and we don’t really need to find the zeros, only how many of
them were crossed during time-evolution, the strategy chosen was to use the trace’s period. Start by
equating the left hand side of (6.8) to zero, writing this in the simplified form

A cos(Ωt) +B sin(Ωt) = 0 =⇒ φ
def
=

1

2π

[
Ωt− arctan

(
A

B

)]
,

where φ is rounded in order to be an integer. In practice, np.floor(φ) represents the number of
periods realized by the left hand side of (6.8). Then, start with σ̃ = 2φ, since each period has two
zeros, and map the intermediate zero through

{
A cos(Ωt) +B sin(Ωt) <= −2 , σ̃ = σ̃ + 1

φ < np.floor(φ)andA cos(Ωt) +B sin(Ωt)and > −2 , σ̃ = σ̃ + 2
,

where the first case represents us falling in the middle of a period of A cos(Ωt) + B sin(Ωt), so that
the index increases by 1, while in the second we have passed a full period and the index increases by
2. This is implemented in Python as

def cz_index(self, t, P, Q, p, q): #

A = 2*(1+32*t**2*(P*q-p*Q)**2)

B = 8*t*(P**2+Q**2-p**2-q**2+8*t*(P*q-p*Q)*(P*p+q*Q))

omega = 4*(q**2+p**2-Q**2-P**2)

trM = A*np.cos(omega*t)+B*np.sin(omega*t)

phi = abs(omega*t-np.arctan2(B, A))/(2*np.pi)

pre_maslov = 2*np.floor(phi)

mid_maslov = np.where(trM <= -2, pre_maslov+1, pre_maslov)

end_maslov = np.where((phi < np.round(phi))&(trM > -2), mid_maslov+2, mid_maslov)

return end_maslov

where we later use the signs of the actions to decide whether of not the Conley-Zehnder indexes are
positive or negative.

The coserf system

The coserf system used the Herman-Kluk propagator and was implemented almost entirely in Julia.
From what was presented up to now, it is quite clear that implementing the HK propagator is trivial:
Everything we need to do is to use a discretized lagrangian in the action and a procedure to calculate
the Maslov indexes. Since the coserf system is composed of a discrete map, all that needs to be done
is to directly implement the conditions (6.13).
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Effective dynamics

The procedure required for effective trajectories is exactly the same as for discrete or continuous ones,
except that we now use Tao’s algorithm to calculate the flow.

F.5 Settings for all figures

All figures were calculated using a personal computer with 8gb of RAM and i7-7500U processor
running the Linux OS (Mint 18.3). We did not use any optimization procedure, such as selecting only
a particular set of chords or trajectories. Everything was obtained by direct implementation. We now
present all grid sizes and computation times required for each of them individually.

The Kerr system

For the Kerr system, the evaluation and integration grids are different: We evaluate at the points we
want to see, and integrate over larger grids to attain better results. Integration grids are all (−10, 10).
The autocorrelation could have also been extracted directly without the need to calculate hundreds of
Wigner functions, but since the cluster was at our disposal, we used it.

Figure grid size elapsed time comments

6.1 2000 x 2000 1min each
6.2 401 by 401 2s each b taken as 15711
6.3 1000 x 1000 (class) + 401 x 401 (quan) sum of times around 8 min
6.5 1001 x 1001 (eval) 2001 x 2001 (integ) 26h
6.6 doesn’t apply doesn’t apply extracted from 6.5
6.7 1001 x 1001 (eval) 2001 x 2001 (integ) ? ran on cluster at U. Augsburg
6.8 1001 x 1001 (eval) 2001 x 2001 (integ) 26h
6.9 101 x 101 (eval=integ) 1min/16min exact/numerical
6.10 101 x 101 (eval=integ) 1min/16min exact/numerical
6.11 101 x 101 0.3s compare with 6.5

The coserf system

Autocorrelations were also obtained from wavefunctions. Integration and evaluation grids are the
same, equal to (−4π, 4π). We represent “chaotic” by ch and “effective” by eff.

Figure grid size elapsed time comments

7.1 doesn’t apply µs computationally trivial
7.2 2000 x 2000 3min each
7.3 212 ms/4min wavefunctions/Wigner transf.
7.4 doesn’t apply doesn’t apply calculated from the above
7.5 250 x 250 sum of times several days
7.6 501 x 501 8h
7.7 doesn’t apply doesn’t apply extracted from 7.6
7.8 250 x 250 (semiclass) sum of times several days
7.9 doesn’t apply µs
7.10 2000 x 2000 (ch) 501 x 501 (eff) 2min (ch) 17min (eff)
7.11 501 x 501 6h/8h chaotic/effective

The times in 7.11 might look surprising, since the effective flow needs thousands iterations and the
exact chaotic flow, only a few. However, the chaotic flow was implemented in Python and the effective
in Julia – here resides the difference.
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