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Abstract

Relaxation and diffusion nuclear magnetic resonance (NMR) studies of confined fluids

performed in high-field conditions are presented and discussed within the framework of

time-domain (TD) NMR. Particularly, an emphasis was given to the foundation of suitable

theoretical frameworks for the analysis of relaxation times and time-dependent diffusion

coefficients extracted from NMR data sets and the establishment of proper relations be-

tween these parameters and physical properties of fluids and confining spaces. A retro-

spect on relaxation and diffusion NMR studies in porous media and the fundamentals of

NMR are presented, respectively. A systematic study of high- (500 MHz) and low-field

(15 MHz) NMR T2 relaxation times performed on artificial sintered sand glass samples

saturated with water is presented. Sample’s pore structure was analyzed by scanning

electron microscopy and microtomography techniques, the latter used for the determina-

tion of pore size distributions through image processing techniques. NMR data sets were

analyzed using three different approaches: (i) Laplace inversion with optimized regular-

ization based on measured noise level, (ii) bi-exponential and (iii) q-exponential nonlinear

least-squares. Upon a careful measurement protocol, the assumption of a fast diffusion

regime and the relation between the observed relaxation rates and pore size distribution is

addressed. It is presented a characterization of phase configuration in water-saturated syn-

thetic porous samples after oil injection, through the analysis of time-dependent diffusion

coefficients obtained from sets of pulsed field gradient nuclear magnetic resonance (PFG

NMR) measurements, pre and post drainage. Short-time analysis of diffusion coefficients

extracted from PFG measurements was used for estimates of samples surface-to-volume

ratio and permeability from pre drainage PFG measurements, and to quantify the increase

in surface-to-volume ratio probed by the wetting phase after drainage. Analysis of water

and oil diffusion coefficients from post drainage PFG experiments were carried out using

a bi-Gaussian model, and two distinct scenarios were considered to describe fluids confor-

mation within pores. The application of the singlet-assisted NMR technique to the study

of restricted diffusion in the long-time regime is also discussed, and initial experimental

developments are presented.

Keywords: NMR; relaxation; diffusion; porous media; confined systems.
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Resumo

Estudos de relaxação e difusão de ressonância magnética nuclear (RMN) de fluidos con-

finados realizados em condições de alto campo são apresentados e discutidos dentro do

arcabouço teórico de RMN no domı́nio do tempo (TD). Em particular, foi dada ênfase

à fundação de arcabouços teóricos adequados para a análise de tempos de relaxação e

coeficientes de difusão dependentes do tempo extráıdos de conjuntos de dados de RMN e

o estabelecimento de relações adequadas entre esses parâmetros e propriedades f́ısicas de

fluidos e espaços confinantes. Uma retrospectiva sobre os estudos de relaxação e difusão

de RMN em meios porosos e os fundamentos de RMN são apresentados, respectivamente.

É apresentado um estudo sistemático de tempos de relaxação T2 de RMN de alto (500

MHz) e de baixo campo (15 MHz) realizado em amostras artificiais de areia de vidro

sinterizada saturadas com água. A estrutura dos poros das amostras foi analisada por

técnicas de microscopia eletrônica de varredura e microtomografia, esta última utilizada

para a determinação da distribuição de tamanhos de poros por meio de técnicas de pro-

cessamento de imagens. Os conjuntos de dados de RMN foram analisados utilizando-se

três abordagens distintas: (i) inversão de Laplace com regularização otimizada com base

no ńıvel de rúıdo medido, mı́nimos quadrados não lineares por modelo (ii) bi-exponencial

e (iii) q-exponencial. Mediante um protocolo de medição cuidadoso, a suposição de um

regime de difusão rápida e a relação entre as taxas de relaxação observadas e a distribuição

do tamanho dos poros é abordada. É apresentada uma caracterização da configuração de

fases em amostras porosas sintéticas saturadas com água após a injeção de óleo, através

da análise dos coeficientes de difusão dependentes do tempo obtidos a partir de conjuntos

de medidas de ressonância magnética nuclear de gradiente de campo pulsado (PFG), pré

e pós-drenagem. A análise de tempos curtos dos coeficientes de difusão extráıdos das me-

didas de PFG foi utilizada para estimativas da razão superf́ıcie-volume e permeabilidade

em amostras pré-drenagem, e para quantificar o aumento na razão de superf́ıcie-volume

sondado pela fase molhante após a drenagem. A análise dos coeficientes de difusão de

água e óleo de experimentos PFG pós-drenagem foram realizados usando um modelo bi-

Gaussiano, e dois cenários distintos foram considerados para descrever a conformação de

fluidos dentro dos poros. A aplicação da técnica de RMN assistida por estados single-

tos ao estudo da difusão restrita no regime de tempos longos também é discutida e os
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desenvolvimentos experimentais iniciais são apresentados.

Palavras-chave: RMN; relaxação; difusão; meios porosos; sistemas confinados.
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like to thank Cátia and Rogério, Greta’s parents, for the long-distance yet always

strong support.

• To the Queda Livre Blues Band friends: Prof. Ivan Oliveira, Prof. João Paulo Sin-

necker, Prof. Itzahk Roditi, Prof. Marcello Neto and Anna Chataignier. Thank you

for all the amazing moments shared, specially the virtual ones during the unforget-

table year of 2020.

vi



Preface

I started working with NMR during the second half of 2015, when I re-encountered in

Rio de Janeiro an old friend, Dr. Maury Duarte Correia, a former physics Ph.D. candidate

from the Brazilian Center for Research in Physics (CBPF) and currently a geophysicist

at the research center in PETROBRAS (CENPES). At the time Dr. Correia introduced

me to Prof. Ivan S. Oliveira, leader of the NMR and quantum computing research group

in CBPF, who was also his former and my soon-to-be supervisor. The establishment of

a cooperation term between CBPF and CENPES was been discussed at the time and a

research team was about to be assembled.

From 2016 to 2018 I had the opportunity to compose this team of five researchers on the

first R&D Project between the NMR groups from CBPF and CENPES, particularly as in

charge of the enhancement and development of NMR relaxation techniques for application

in porous media petrophysics. During this period I concluded my Master’s in Physics, also

under the supervision of Prof. Oliveira and further the results obtained during the M.Sc.

developed the work presented in the Chapter 3 of this thesis.

In 2018 a second, and this time four year-long cooperation term was signed, with new

goals and a larger research team, a group of 7 other scientists working in numerical simula-

tions, theoretical models, mathematical approaches for data analysis, nanofabrication and

the development of NMR instrumentation. The new experimental developments in NMR

were expected to have an emphasis in flow and transport properties of confined fluids.

Hence, still in 2018 I became a Ph.D. candidate at CBPF and started my studies in diffu-

sion NMR while working as a NMR scientist in this new R&D project. During this period

I shared most of my Ph.D. time and developments with Dr. Moacyr do Nascimento, a

former Ph.D. candidate in CBPF and currently a geophysicist at CENPES research center,

who also worked with NMR of confined systems.

The works presented in Chapter 3, 4 and 5 of this thesis were developed from the sec-

ond half of 2017 to the first half of 2020, in the context of these R&D projects funded by

PETROBRAS. Naturally, the petrophysical application of models and techniques investi-

gated has always been the north of our research. Nevertheless, the results presented in this

thesis are applicable to the study of confined systems and porous materials, in general.
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Chapter 1

A Retrospect on Relaxation and

Diffusion NMR

in Porous Media

Nuclear magnetic resonance (NMR) has been widely applied in several segments of both

industrial and academic research since its simultaneous discovery in 1946 by Edward

Purcell and Felix Bloch [1], at Harvard and Stanford University, respectively. The reason

upholding NMR rapid dissemination is also one of its main advantages up to present days:

NMR is a high-sensitivity technique able to provide information in a non-invasive manner

reaching internally occurring processes and phenomena in samples, without affecting them.

Fluid molecules diffusing within porous geometries have become accessible through the

interaction between magnetic fields and magnetic moments associated with proton spin.

As theoretical and empirical models were proposed to explain the effects of confinement in

nuclear magnetic relaxation, a wide range of NMR applications in the condensed matter

physics quickly emerged. In this Chapter we present a retrospect on important historical

and theoretical aspects regarding the development and the application of relaxation and

diffusion NMR techniques to confined systems.

In 1946 Bloch phenomenologically added relaxation terms into the equations that descri-

bed the Larmor precession of the angular momentum ~L (or the magnetic moment ~µ

associated with nuclear spin) experienced in the presence of a magnetic field ~B [2, 3]. Even

though a theoretical background for relaxation processes was not presented at the time,

the relaxation terms introduced by Bloch would became a milestone in NMR, especially

on what regards its applications in porous media [4–6]. These equations will be addressed

again in Section 1.2, in which the fundamentals of NMR are presented.
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A theory relating the dependence of relaxation times in liquids on parameters associated

with molecular motion, such as temperature and viscosity, was proposed by Bloembergen,

Purcell and Pound (BPP theory), in 1948, two years after the discovery of NMR [7].

The work already presented notions related to the “saturation” behavior of spin systems

absorbing energy from applied radio-frequencies, and the use of such effect on the observa-

tion of spin-lattice relaxation times. The idea that fluid molecules could be absorbed near

solid surfaces and have their movement restricted was also presented, despite the fact that

confinement influence on nuclear magnetic relaxation times had not been experimentally

observed yet. Bloch, in 1951, also addressed the role of confinement as a mechanism to

promote an increase in relaxation rates [8].

In 1950 the seminal work by Hahn entitled “Spin Echoes” [9] would establish the grounds

for the vast development of pulsed-NMR techniques on the following decades, both in

relaxation and diffusion studies. An ensemble of spins under the action of a static magnetic

field B0 can be driven to a non-equilibrium state through the application of radiofrequency

(RF) pulses perpendicular to the polarizing magnetic field and tuned at the nuclei’s Larmor

frequency (see Section 1.2). The direction of the macroscopic magnetization vector can be

changed in proportion to the time during which the RF pulse is held on, inducing a time-

controlled rotation in spins’ magnetic moments. Once the RF is removed the ensemble will

once again precess freely under the action of the static magnetic field, and a distribution

of precession frequencies will be imposed upon the ensemble by inhomogeneities in B0.

Hanh observed that after two successive 90° (or π/2) radiofrequency-induced rotations

(pulses), separated by a short time interval, such distribution of precession frequencies

inflicted some sort of constructive interference as the precessing ensemble recovered phase

coherence, giving rise to what Hahn called in his work “spontaneous nuclear induction

signals”, or spin echoes.

Herman Y. Carr and Edward Purcell would present in 1954 the advantages of a π pulse

for the refocusing effect on precession phase coherence and the formation of a spin echo

[10]. The observed phenomenon provided an opportunity for the wide development of

pulsed-field NMR techniques. Among a huge set of echo-based protocols, renowned pulse

sequences can be cited as an example, such as the CPMG (Carr-Purcell-Meiboom-Gill)

protocol [10, 11] for transverse relaxation measurements, the pulsed-field gradient (PFG)

sequence proposed by John Tanner in 1965 [12], that would become the foundation for

NMR-based diffusion protocols, and also the spin-warp technique that was to be applied

a few decades later on the development of magnetic resonance imaging (MRI).

Ten years after the discovery of NMR, in 1956, confinement effects and the influence

of pore surface on relaxation rates were observed experimentally. Brown and Fatt [13]

studied the influence of wettability on relaxation rates and proposed the use of NMR as a
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tool to characterize porous rocks with different wettabilities. Also in 1956 two vital works

were published by Torrey. The first one brought the inclusion of diffusion terms (and the

self-diffusion1 coefficient D) into Bloch equations [14], giving rise to the so-called Bloch-

Torrey equation of motion for the magnetization. The second work presented by Torrey in

1956 was entitled “Theory of nuclear spin relaxation of liquids for large surface-to-volume

ratios” [15], and brought in two fundamental notions for the application and interpretation

of relaxation measurements of liquids under confinement: the establishment of a diffusion

regime and an expression accounting for the surface influence on relaxation rates. Torrey

introduced the idea that, if molecules diffuse fast enough, nuclear magnetization inside a

single pore can be held uniform, and the interaction of molecules with pore surface would

inflict an increase in the overall relaxation rate. As a consequence of such regime it was

proposed that the observed relaxation rate inside a pore could be modeled as:

1

T
=

1

Tb
+
Vs
V

1

(Ts + τ)
, (1.1)

wherein Tb stands for the bulk relaxation time, Vs is the volume of a surface layer of the

liquid, V is the pore volume, Ts is the relaxation time associated with pore surface, and

τ represents the residence time of molecules in the surface layer. The hypothesis of fast

diffusion regime would support, for years to come, one of the most common models used

in petrophysics, relating pore sizes and multiexponential relaxation profiles, that will be

addressed in the following sections.

Here, the author would like to remark some important features regarding the application

of relaxation measurements to confined fluids that will compose the main motivation for

the work presented in the Chapter 3 of this thesis. Almost all the information extracted

from relaxation profiles of liquids in porous media is model-dependent [16]. Molecules

under thermal motion are constantly diffusing within (and sometimes among) pores and

interacting with pore walls. Confinement scale, pore network connectivity, surface physico-

chemical properties and diffusion regimes are a few examples of features that will influence

observed relaxation rates, and must be considered for the application of models and

interpretation of the results. This is especially relevant for the case of porous rocks,

and the development of NMR in Petrophysics. A macroscopic rock sample can represent

a complex system of pores, in which the previously mentioned features are not necessarily

homogeneous. Hence, in these systems, relaxation is expected to be multi-exponential, and

the extraction of relaxation rates from raw data and the establishment of a relation between

these rates and confinement geometry features depends on a set of a priori hypothesis.

1Two approximations will be considered in the upcoming developments presented in this thesis. The
first one is that the diffusion tensor D is space-independent. The second one is that the diffusion process
of nuclei is isotropic. Considering these two approximations, the diffusion tensor can be reduced to a scalar
diffusion coefficient D [4]. Here the term self-diffusion was also employed. A proper distinction between
diffusion and self-diffusion processes will be addressed in the first section of Chapter 4.
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Notwithstanding, the application of NMR to petrophysical studies was closely related to

the development of the technique itself.

As the relation between relaxation rates of confined fluids and confinement features was

being investigated, the research on logging projects was actively promoted by oil industry.

Table 1.1, adapted from the work of Kleinberg and Jackson [17], presents a timeline with

the development highlights of nuclear magnetic resonance for well logging (NML), from

the discovery of NMR in 1946 up to the year 2000. In 1948 results obtained by Russell

Varian, observing the proton NMR free precession using the Earth’s magnetic field, led to

several studies focused on the building of a tool capable of detecting NMR signals from

water and oil in porous rocks, inside the wells at thousands of meters bellow the sea level.

Varian itself filed a patent in 1952 for the construction of a NMR tool for well logging

using Earth’s magnetic field [18].

The investments from oil industry on NML research were an important part of the

expansion of NMR since its early days. The potential application of relaxation and

diffusion measurements to the characterization of water and oil in porous rocks motivated

the development of new NMR techniques. Up to recent years several prominent authors

with a solid work on the application of NMR techniques to the characterization of porous

media, such as Yi-Qiao Song, Martin D. Hürlimann, Lalitha Venkataramanan, Robert L.

Kleinberg and Lawrence M. Schwartz, were also part of oil companies research staff.

The initial steps on NML were focused on the development of a tool capable of detecting

separated NMR signals from water and oil. This idea was based on the notion that bulk

samples of both fluids present distinct relaxation rates (almost one order of magnitude

higher for oil compared to water). However, not much later than this first initiative

researchers would realize that under confinement, and mostly in a configuration where

water is the wetting phase and oil occupies the innermost part of pore space, both

fluids could exhibit similar relaxation rates. Although this behavior could frustrate the

efforts invested in NML, still in the 1950’s the relationship between relaxation rates

and confinement geometrical features such as specific surface, porosity and permeability

was being investigated, which motivated further developments. A U.S. patent entitled

“Methods for investigating the properties of fluid (materials) within porous media” [19]

was filed in 1956 by Henry Torrey, Jan Korringa and Bob Brown, summarizing NMR

relaxation techniques applied in well logging for observation of water and oil in porous

rocks.

The development of NML in the 1960’s included initial experimental tryouts and the

availability of the first commercial NML service for field applications. Seevers [20] proposed

in 1966 a method to estimate the specific permeability of sandstones using the free fluid

index (FFI) - a parameter created to quantify the movable portion of a confined fluid -
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Table 1.1: Timeline of NMR Logging. Adapted from ref. [17].
Copyright © 2001 John Wiley & Sons, Inc.

1946 Discovery of NMR by Bloch (Stanford) and Purcell (Harvard)

1948 Russell Varian files patent for Earth’s-field NMR magnetometer

1950 Spin echo, Hahn (U. of Illinois)

1952 Russell Varian files patent for Earth’s-field NMR well logging

1953 Nobel Prize in Physics awarded to Bloch and Purcell

1954 Carr and Purcell devise spin-echo pulse train

Harold Schwede (Schlumberger) files patent application for permanent magnet well
logging tool

1956 Discovery of reduced fluid relaxation time in porous media by Brown, Fatt, and others

1960 First Earth’s-field NML tool—Chevron Research Lab and collaborators

1960’s Laboratory and theoretical studies in various universities and petroleum laboratories

of the effect of restricted diffusion on T1, and relationship of T1 and permeability

1960’s Several companies offer NML commercial logging service

NML fails to live up to advance billing; NML gains bad reputation in petroleum
industry

1978 Schlumberger introduces new, improved NML tool

1978 Jackson at Los Alamos, invents first “inside-out” pulsed RF NMR logging technique

1980 Laboratory demonstration of Los Alamos technique

1983 Proof-of-principle demonstration of Los Alamos logging technique at Houston API test
pit

1984 NUMAR formed to commercialize advances in medical NMR technology

Schlumberger begins development of permanent magnet/pulsed NMR technique

1985 NUMAR obtains license for Los Alamos inside-out NMR patent

1985 NUMALOG demonstrates increased S/N for new magnet/RF scheme in laboratory
scale model

1989 First field test of full scale NUMAR logging tool in Conoco test hole, Ponca City, OK

1990 NUMAR announces commercial availability of MRIL logging service based on Series B

single frequency tool

1992 Schlumberger starts field test of skid-type pulsed NMR tool

1993 Numar and Western Atlas sign cooperative agreement for MRIL services

1994 NUMAR introduces dual frequency MRIL Series C tool

Western Atlas logs MRIL in combination with conventional tools

1995 Schlumberger announces commercial introduction of CMR tool

Peoples Republic of China purchases two logging systems from Western Atlas, including
MRIL

1996 NUMAR and Halliburton sign cooperative agreement for MRIL services

1997 Halliburton buys NUMAR

1990’s Laboratory and theoretical studies of the effect of restricted diffusion on T2 (most NMR
logging data use T2)

2000 NMR logging-while-drilling prototype
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and T1 relaxation times. In the late 1960’s the notion of a “cutoff” T1 relaxation time was

introduced by Timur [21], and applied to distinguish a movable water phase, associated

with longer relaxation times, from an irreducible one, exhibiting faster relaxation.

In the 1970’s significant biological applications of NMR were developed alongside the

research in petrophysics. The employment of increased relaxation times to the detection

of tumors was proposed in 1971 by Raymond Damadian [22]. Chang et al. [23] conducted

a study on the influence of confinement on the NMR spectral line width of water in rat

muscle cells. Nonetheless, possibly one of the most important works of that decade was

published by Kenneth R. Brownstein and Charles E. Tarr in 1979, entitled “Importance of

classical diffusion in NMR studies of water in biological cells” [24]. In this seminal work

the authors proposed a theory based on classical diffusion and the Bloch-Torrey equation

to explain the multi-exponential behavior of NMR signals obtained from fluid molecules

diffusing under confinement, without the need to consider the existence of different fluid

phases.

The main presented idea was to separate the relaxation associated with the volumetric

part of the confinement environment, or “bulk sink”, from the relaxation associated with

the confining surface, or “surface sink”. According to the proposed model the diffusion

equation for the magnetization density m(~r, t) inside a volume V , and the boundary

condition2 on the confining surface S can be written, respectively:

∂m(~r, t)

∂t
= D∇2m− λm, (1.2)

[
D
∂m(~r, t)

∂n̂
+ ρm

]∣∣∣∣∣
S

= 0, (1.3)

wherein λ [s−1] accounts for the relaxation rate associated with the bulk sink, n̂ is the

unity vector normal to the surface, ρ [m/s] is the parameter associated with the relaxation

on the surface S (or surface relaxivity [25]) and the magnetization density m(~r, t) satisfy

the initial condition m(~r, 0) = M(0)/V . The general solution for these equations can be

written as a summation over a set of normal modes:

m(~r, t) =

∞∑
n=0

AnFn(~r)e
−t
Tn , (1.4)

in which An are constants, and Fn(~r) and 1/Tn [s−1] are the eigenfunctions and eigenvalues,

respectively, that satisfy the eigenvalue problem described by Equations 1.2 and 1.3.

2The boundary condition expressed in Equation 1.3 is called Robin boundary condition, used to portray
an impermeable surface on which nuclei can partly lose their magnetization. Here, this loss is expressed
by the parameter ρ [25]. The case of an impermeable wall that does not affect nuclei magnetization
(∂m(~r, t)/∂n = 0) is referred to as a Neumann boundary condition [4].
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The observed macroscopic magnetization M(t), defined as the integral of m(~r, t) over

the volume V, will now be expressed as a summation of magnetization modes, each one

associated with your respective eigenvalue (relaxation rate):

M(t) = M(0)

∞∑
n=0

Ine
−t
T1n , (1.5)

wherein In represents the weight of the nth eigenfunction (with its associated eigenvalue

1/Tn) on the observed signal, satisfying the normalization condition:

∞∑
n=0

In = 1. (1.6)

In their original work, Brownstein and Tarr presented the solution for these equations

for regular confining geometries (planar, cylindrical and spherical), and also successfully

applied the model to adjust NMR data obtained from spin-spin relaxation measurements in

rat gastronemius muscle cells. The proposed model showed that a multi-exponential NMR

signal, depending on the diffusion regime, could be observed even from fluid molecules

confined into a single pore, as no more than a consequence of the mathematical structure

of an eigenvalue problem with boundary conditions.

Although they were considered for applications in biological systems, the results obtained

by Brownstein and Tarr could be applied for any kind of porous media, including rocks

[26]. Another important feature of this work was the distinction between different diffusion

regimes for the analysis of the overall relaxation rates observed. Supposing a fluid with a

self-diffusion coefficient D [m2/s] confined within a simple geometry with a characteristic

dimension a [m] and a surface relaxivity ρ [m/s], the dimensionless parameter ρa/D can

be used to define a diffusion regime, wherein:

ρa

D
� 1, (1.7)

characterizes a slow diffusion regime, and:

ρa

D
� 1, (1.8)

defines a fast diffusion regime. In the former case, diffusion limits the signal decay and

the observed relaxation rate will be, in a fair approximation, proportional to a2/D [24,

26]. For the latter case, molecules will, on average, experience the relaxation at pore

surface several times, and the observed decay will be dominated by surface effects, and

proportional to a/ρ.

Once again, it is important to draw attention to the tricky effort on interpreting
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observed NMR relaxation rates, or even to directly associate such rates to geometrical

parameters. Although it may seem straightforward to employ this theoretical framework

and its approximations on complex porous materials, such as rocks, one can not perform

this task without the assumption of a set of a priori information on confinement features,

especially the ones regarding pore network connectivity. To set a proper definition for

the concept of a “pore” itself is non-trivial when porous space is well connected. Most

of the approximations employed above can be successfully applied in systems where the

diffusion of fluid molecules will occur predominantly inside a single pore, rather than

among pores, in a way that the observed set of relaxation rates will reflect the individual

contribution of each “isolated” pore to the total signal decay, and most importantly, that

the assumed pore scale heterogeneity do not implicates the presence of different diffusion

regimes in the investigated system. Elliot Grunewald and Rosemary Knight [27] presented

a systematic study on the influence of pore coupling, referring to the process where nuclei

diffusing within a well connected porous systems probe two different pores before relaxing

completely. Their results are discussed considering the role of surface relaxivity on such

process and the observed distribution of relaxation rates in systems with a heterogeneous

and well connected pore scale.

Another common assumption relates to the surface relaxivity parameter ρ and regards

its homogeneity along the investigated system. While this approximation can be held

valid for some specific biological samples, or even for some particular types of rocks, it

can not be applied for systems that exhibit significant heterogeneities in its chemical

composition, such as carbonate rocks, for an example. A thorough investigation on the

microscopic details of surface relaxation is not necessary here for one to intuitively relate

the chemical composition of pore walls to the overall effect of ρ in surface relaxation

and, consequently, to assume the existence of a distribution of ρ values in systems with

mineralogenic heterogeneity. An enlightening discussion on the microscopic mechanisms

of surface relaxation, along with a theoretical framework for nuclear magnetic relaxation

in the presence of surface paramagnetic sites, is presented in the PhD thesis of Moacyr do

Nascimento [28, 29]. Despite those specifics, the model proposed by Brownstein and Tarr

had a largely positive impact on NMR Petrophysics, and numerous works and techniques

were (and still are) dedicated to comprehend and characterize the parameter associated

with surface relaxivity and its influence on the nuclear magnetic relaxation of confined

fluids [26, 30–32].

Crucial developments on diffusion studies were also achieved in the 1960’s and the 1970’s

after the seminal work by Stejskal and Tanner [33] in 1965, presenting the pulsed-field

gradient nuclear magnetic resonance (PFG-NMR) technique for diffusion measurements.

Nonetheless, the first steps in NMR diffusometry were given long before. The effect of

molecular self-diffusion in NMR had already being addressed in the work of Hahn [9] in
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1950, in which he observed that the measured NMR signal was attenuated by the self-

diffusion of molecules carrying nuclear spins. Hahn noticed that this process depended on

the homogeneity of the applied magnetic field, and used the known value of water self-

diffusion coefficient to estimate the field gradient of his own magnet. Carr and Purcell [10]

also proposed in 1954 an arrangement of wires carrying electrical currents to produce a

magnetic field gradient that could be used to estimate the water self-diffusion coefficient.

Initial developments in NMR diffusometry took place between the late 1950’s and the

earliest 1960’s, and were based in the application of constant magnetic field gradients

[34–36]. The development of coil technologies and the opportunity for rapidly switching

and reversing magnetic field gradients provided the grounds for the fundamental PFG

technique proposed by Stjeskal and Tanner. In this new NMR-based diffusion measurement

protocol a pair of strong magnetic field gradient pulses of reversed polarity were employed

to “label” and “read” molecules carrying nuclear spins according to a space-dependent

precession phase, introduced by the field gradient pulses. The diffusion coefficient of

molecules could then be determined associating the remaining phase of the spin ensemble

with the displacement of molecules between labeling and reading steps. The theoretical

background for the PFG-NMR technique will be addressed in details in Chapter 4.

The non-invasive ability of relaxation and diffusion NMR to monitor processes in molecu-

lar level was one of the main reasons for its application in different research fields, other

than porous media petrophysics, such as food science [37], molecular dynamics [38],

polymer systems [39], crude oils [38, 40] and also material science [41]. All these fields

also benefit from the capabilities of the high-field NMR spectroscopy. The chemical

shift resolution of protons with different molecular environments, in the presence of high-

homogeneity magnetic field strengths up to 28 T, produced by superconducting magnets

[42], allows a detailed investigation of molecular structure and dynamics. On the other

hand, low-field NMR, usually performed with benchtop equipment, based on permanent

magnets with relatively low homogeneity, does not possess such ability, and the search to

improve its resolving power motivated the development of 2-dimensional techniques, or

2D NMR.

The idea was to combine different experiments into one protocol, varying two distinct

parameters simultaneously, in order to access more information on molecular level. Since

relaxation and diffusion of fluids were shown to be sensitive to features like pore confinement

scale, fluid viscosity or concentration of ions, both techniques could be combined into one

protocol able to produce two-dimensional correlation maps, with significantly increased

resolving power. Relaxation-relaxation protocols (T1-T2) [43], (T2-T2) [44, 45], or even

diffusion-relaxation (D-T2) [46] and diffusion-diffusion (D-D) [47] are a few examples of

techniques that can be performed in low-field equipment, and are capable to produce two-

10



dimensional correlation maps that can be interpreted to distinguish different components

of a sample, and also to monitor molecular dynamics (see Section 1.2.3).

Concurrently, data processing of 2D NMR measurements emphasized another important

aspect of relaxation studies, also relevant for one-dimensional experiments: the extraction

of relaxation rates from multiexponential data sets. The determination of time constants

in multiexponential decay phenomena is a subject of interest in many areas of knowledge,

especially in relaxation NMR. The inherent difficulties related to the mathematical structure

of the problem can cause data analysis to be a considerably burdensome, and most often,

an ambiguous task.

A multiexponential signal f(t) (as the one commonly observed in NMR relaxation

measurements of liquids in porous materials, for an example) can be represented by a

sum of exponential decays, each one characterized by a decay amplitude A and a decay

rate λ, expressed by:

f(t) =

n∑
i=0

Ai exp(−λit), (1.9)

for the discrete case, and

f(t) =

∫ ∞
0

g(λ) exp(−λt) dλ, (1.10)

for the continuous case, wherein the spectral function g(λ) represents a continuous distribu-

tion of decay rates.

Assuming a context where one holds a model based on a priori information, regarding

the behavior of total signal as a function of its exponential components, a simple fit

procedure can be applied to the measured data for one to extract such distribution of

rates. Nonetheless, the general method for solving the multiexponential analysis problem

expressed in Equation 1.10, known as the Laplace integral equation, can be achieved

performing the inverse Laplace transform of f(t) in order to determine g(λ) [48]. Notwith-

standing, equations such as 1.10 belong to a class of differential equations known as

Fredholm integral equations of the first kind, which are known to be ill posed, or poorly

conditioned from the mathematical standpoint, meaning that to this end, the obtained

solution g(λ) may not be unique, not exist, or even may not depend continuously on the

data set [49].

Therefore, in order for one to minimize uncertainties, and extract a mathematical

solution with physical meaning, a set of a priori information must be incorporated into

the inversion method. These imposed constraints are known as regularization tools.

The positivity constraint regarding the solution g(λ), based on the assumption that the

investigated system possess no relaxation rates associated with negative amplitudes, or

even the principle of parsimony, applied for one to choose the simplest solution among
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all possible ones, are important examples of common regularization tools. The necessity

of extracting time constants from real data sets, which are discrete and also commonly

noisy, motivated the development of inverse Laplace transform algorithms, with different

regularization methods, which could be applied to the analysis of one- and two-dimensional

NMR experiments [43, 50–52].

The ill-posed character of multi-exponential analysis inflicts here another barrier on the

onerous task of interpreting relaxation rates obtained from NMR experiments, which in

this case, relates only to the mathematical structure of the problem. Different mathematical

solutions, in some cases with equally valid but distinct physical meanings, can be obtained

from the same data set depending on noise level, or on the chosen regularization method

and the criteria adopted to determine the value of the applied regularization parameter

[49]. Once more, one will be required to evaluate the available information on the

investigated system, in order to choose, among the set of possible solutions, the most

suitable one according to the phenomena investigated. The mathematical problem of

multiexponential analysis, as well as the other previously mentioned barriers of interpreting

relaxation rates obtained from liquids under confinement, are discussed on the work

presented in Chapter 3.

The 1980’s brought another milestone in the history of NMR, made possible mostly by

improvements in pulsed-field gradient technology: the development of magnetic resonance

imaging (MRI), one of the greatest achievements of NMR comprising both relaxation

and diffusion techniques. The combination of selective (narrow band) radio-frequency and

field gradient pulses allows the excitation of spins in a limited region of the sample’s space,

such as a specific plane or volume, as well as the labeling of the observed magnetization

by a space-dependent precession phase. The recorded NMR signal intensities are spatially

resolved and can be associated with representations in a reciprocal-space, also known as

k-space, or the domain of spacial frequencies [53–56]. These reciprocal-space variables

(“wavenumbers”) can be converted into real-space images by two- or three-dimensional

Fourier transformations of the signal as a function of the respective wave-vector components.

The technique proposed by Edelstein in 1980, known as the “spin-warp” method, set

the ground for the development of several MRI techniques, employing different contrast

mechanisms and covering a wide range of applications.

Advances in relaxation and diffusion NMR techniques for the characterization of fluids

confined in porous media were mostly motivated by the abundant information that could

be retrieved from nuclear spins diffusing across the pore network, their interactions with

the confining surfaces and the overall effect of confinement in measured relaxation rates

and diffusion coefficients. The extraction and interpretation of such information relies

on the accompanying development of proper theoretical frameworks to provide a physical

12



description on the internally occurring processes. Particularly, the substantial increase in

the observed relaxation rates of fluids under confinement was a subject of great interest.

Initially, it was believed that diffusing molecules were somehow locked up at pore surface

under the action of binding forces, during a time interval wherein relaxation mechanisms

took place, such as homonuclear dipole-dipole coupling, or the interaction between nuclei

and paramagnetic centers or free electrons at the pore surface [4, 29]. Notwithstanding,

field-gradient NMR diffusivity measurements of aqueous protein systems, and also polar

and non-polar fluids adsorbed in porous silica glass, presented by Kimmich et al. [57,

58], demonstrated that the observed attenuation in measured diffusion coefficients was

mainly associated with geometric restrictions rather than to interactions of adsorbates

with solid surfaces, which means that the residence time of molecules diffusing across the

surface was actually not as long as it was expected, and adsorbate molecules exhibited

translational diffusivities close to bulk values. Despite those findings, it was known

that the characteristic time scale of molecular reorientation process3 of confined fluid

molecules could be increased by up to eight orders of magnitude in comparison with bulk

conditions [4]. The explanation for the discrepancy between the two observed phenomena

was provided by the theory called bulk mediated surface diffusion (BMSD) [63, 64]. It was

proposed that adsorbate molecules move from one adsorbing site to another, performing

a kind of Lévy walk along pore surface. That being the case, the reorientation process of

adsorbate molecules was indeed correlated with surface topology, or its orientations, and

was mediated by these translational displacements.

A two-dimensional theory was proposed by Korb et al. to correlate adsorbate diffusion

and the role of paramagnetic sites in relaxation of molecules at pore surface [65, 66]. The

model was successfully applied in field-cycling NMR experiments (i.e., measurement of

relaxation rates at different magnetic field strengths) of hydrated cement-based materials

containing paramagnetic contaminants (e.g., iron ions), and the observed dispersion of

relaxation rates was used to extract the surface to volume ratio of the confining geometry.

[67, 68].

The presence of paramagnetic sites in pore walls acting as relaxation “sinks” was shown

to be a crucial mechanism to explain enhanced relaxation of liquid molecules at pore

surface. Nascimento et al. [29] also proposed a theory for the NMR relaxation of polar

fluids (e.g., water) confined to porous structures exhibiting a scarce surface distribution

of paramagnetic centers, referring to any molecular configuration able to bear unpaired

electrons, such as adsorbed paramagnetic ions or even superficial crystallographic defects.

3An important feature of liquid water is the presence of directional hydrogen-bond interactions. These
bonds can assume different configurations with distinct bond lengths and angles, associated with liquid
water capacity in rearranging its molecules to enable, for example, the solvation of reactants. This
rearrangement is characterized by the molecular reorientation of the water molecules. Experimental
techniques like NMR [59] and light scattering [60] can be used to investigate this process [61, 62].
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One of the main results accomplished by the proposed model was to show that the local

anisotropy introduced by the dominant dipolar coupling in the relaxation rates of active

surface elements can be measured by the dependence on sample orientation in the overall

relaxation rates of the saturating fluid.

The overall effect of confinement in the diffusion of liquids in porous media was also

observed. The diffusivity of fluid molecules within porous materials was attenuated with

respect to its bulk value, and diffusion itself could be used to extract information from

the interaction between the fluid and the porous matrix, along with geometric properties

of the pore space (see Chapter 4). The behavior of spin-echo attenuation due to diffusion

of molecules in restricted geometries, such as in a set of isolated pores, in the presence of

steady gradients, was investigated by Neuman [69], and adapted for the case of pulsed-field

gradients by Murday et al. [70] and Callaghan et al. [71].

In materials with interconnected pores, molecules are allowed to probe the pore space

depending on pore connectivity and the diffusion length, a quantity proportional to the

bulk diffusivity of the fluid and the diffusion time. Accordingly, the analysis of the effect

of confinement in diffusion must be carried out considering the observed diffusion regime.

Mitra [72] analyzed the diffusion of confined fluids in the so called short-time regime,

which can be assumed under the validity of the condition:

∆� Rp
2

D0
, (1.11)

wherein ∆ [s] represents the diffusion time, Rp [m] denotes the characteristic pore radius

and the fluid bulk diffusivity is expressed by D0 [m2/s]. Mitra derived an expression

relating the observed diffusivity of confined fluids with geometry parameters, such as

specific surface (or surface-to-volume ratio), grain average curvature and surface relaxativity.

The application of short-time regime analysis on diffusion measurements became a powerful

tool for the characterization of porous materials, including porous rocks [30]. The ability of

diffusion measurements to distinguish fluids with distinct diffusivities and the framework of

short-time regime diffusion analysis were applied to the investigation of water-oil geometrical

conformation in drainage experiments. This work, and a detailed theoretical background

on diffusion NMR are presented in Chapter 4.

Restricted diffusion of fluid molecules in interconnected pore spaces could also be

analyzed in the long-time regime, in which the diffusion length can be considered much

larger than the characteristic confinement scale:

∆� Rp
2

D0
. (1.12)
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In such regime, molecules diffuse within and across pores, probing, on average, not only the

confinement scale but also the connectivity of the pore network. Both properties relate to

an important geometrical characteristic of pore spaces: the tortuosity (see Section 5.2.1).

Depending on the physical quantity investigated, different types of tortuosities can be

defined, including the so-called diffusive tortuosity (τd) [73], related to the ratio between

the diffusion coefficient of diffusing species in free fluid (D0) and its value measured in a

porous medium (D(∆)) in the long-time diffusion regime [30, 73]:

lim
∆→∞

D0

D(∆)
= τd. (1.13)

The major barrier regarding long-time measurements in NMR is relaxation, since as

diffusion time is increased, longitudinal and transverse relaxation attenuate the observed

signal. If one considers the diffusion of water molecules at room temperature (D0 ≈
2.3× 10−9 m2/s) in a porous sample with characteristic pore scale of tens of nanometers,

the condition expressed by Equation 1.12 can be fulfilled for diffusion times as large as a few

milliseconds, which are accessible by usual NMR techniques. Notwithstanding, for samples

exhibiting pore sizes with characteristic lengths as large as hundreds of micrometers, a

long-time regime condition for diffusion may only be reached with diffusion times as large

as tens of seconds, a time range during which almost all NMR signal can be lost due to

relaxation effects.

In 2004 Carravetta et al. [74, 75] presented a new technique wherein special molecules

containing pairs of coupled spins-1/2 displayed long-lived nuclear spin order, exhibiting

relaxation times of orders of magnitude above their usual longitudinal relaxation time.

The two nuclear spins can be combined to create a non-magnetic singlet state with total

spin I = 0, and such long-lived states could be exploited in a variety of NMR experiments

[76–78]. Tourell et al. [79] presented the application of long-lived singlet order in diffusion

NMR experiments to measure the tortuosity in samples of randomly packed spheres,

reaching diffusion times of up to 240s. The technique comprises complex pulse sequences

combining the steps for the preparation and maintenance of singlet states, as well as the

encoding and decoding stages for PFG-NMR measurements. The theoretical background

and initial experimental developments in singlet-assisted NMR are presented in Chapter

5.

15



Chapter 2

Nuclear Magnetic Resonance

(NMR)

2.1 Fundamentals of NMR

In this Section a theoretical background for nuclear magnetic resonance will be presented.

Notions from both, the semi-classic and the quantum descriptions of NMR, will be resorted

in order to clarify important aspects of the phenomenon and the techniques presented

in the following Chapters. A more detailed parallel on the classical and the quantum

descriptions of NMR and their equivalences can be found in references [2] and [3].

2.1.1 Magnetic Moments in a Magnetic Field

In the electromagnetism theory the Ampère’s law quantitatively relates a magnetic field to

the electric current or varying electric field that produces it. Therefrom, the phenomenon

of magnetism on matter was similarly associated with the existence of microscopic current

loops [2].

For an example, the orbital magnetic moment ~µL associated with the orbit of an electron

with charge e and an orbital angular momentum ~L, has its magnitude expressed1 as:

µL =
( e

2me

)
L, (2.1)

1Equation 2.1 can be easily deduced assuming the magnetic moment associated with a current loop
µ = I A, where A denotes the area of a circular loop. The current I can be expressed in terms of the
charge e and the orbital period, T , wherein I = e/T and T = 2πr/v, being v the velocity of the electron on
its trajectory. Using the expression for the magnitude of the angular momentum in a circular trajectory
L = rmv, the relation in Equation 2.1 is obtained.
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wherein me is the electron mass. Electrons also exhibit an intrinsic angular momentum

associated with their spin 1/2. The experiment of Stern and Gerlach proved the existence

of a magnetic moment ~µS associated with the electronic spin momentum ~S, whose magni-

tude could be expressed similarly to the result obtained in Equation 2.1:

µS =
( e

2me

)
gS, (2.2)

in which g is the Landé splitting factor, or g factor, whose value is approximately 2 for a

free electron.

Nuclei also exhibit a magnetic moment associated with the total nuclear spin angular

momentum, ~I, a quantity represented by an integer or half-integer number. The nuclear

magnetic moment associated with the spin momentum was also measured in the experi-

ments of Stern and Gerlach [80], and its magnitude can be similarly expressed:

µI =
( e

2mp

)
gII, (2.3)

wherein mp stands for the proton mass and gI is the corresponding g factor. Considering

that the proton mass mp is a few thousand times greater than the electron mass me, and

that both S and I are of the order of unity, the spin magnetic moments of nuclei are in

fact one thousandth of the electron spin magnetic moment.

Particles such as electrons, protons and neutrons can be imagined as spinning on their

axes. In many atoms the nucleus, containing a certain number of protons and neutrons,

exhibits no overall spin (such as 12C), since these spins are paired against each other.

Nevertheless, in some atoms such as 1H and 13C the nucleus does possess an overall spin.

According to the quantum mechanics theory, a nucleus of spin I will have 2I + 1 possible

orientations, or quantum states. A nucleus with spin I = 3/2 will exhibit four possible

orientations, +3/2, +1/2, −1/2 and −3/2. In the absence of an external magnetic field,

these orientations are of equal energy. In the presence of a magnetic field these energy

levels split, and for each orientation, the component parallel to the direction of the applied

magnetic field will assume values of h̄m (see Figure 2.1), wherein m is the magnetic

quantum number [81], running from −I to I in steps of unity. This split in the energy

levels in the presence of a static magnetic field is known as the Zeeman effect (named

after Dutch physicist Pieter Zeeman) and the splitted energy levels are also referred to as

Zeeman levels.

The energy of a magnetic moment ~µ under the action of a magnetic field ~B is described

by classical magnetism as the inner product:

E = −~µ · ~B, (2.4)
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and the energy associated with the mth state, considering a magnetic field with the form

~B = (0, 0, B0), is given by:

E = −
( gIe

2mp

)
mh̄B0. (2.5)

The factor gIe/2mp is defined as the nuclear gyromagnetic ratio γ, a property (or a

signature) of the observed nuclei, and also an important quantity in NMR. Table 2.1,

adapted from reference [2], shows the value of the gyromagnetic ratio for nuclei commonly

used in NMR, as well as their natural abundance. Hence, following Equation 2.5, the

energy difference between two adjacent levels can be written as:

∆E = h̄γB0. (2.6)

According to the Planck-Einstein relation (E = h̄ω), the expression in Equation 2.6

Figure 2.1: Zeeman energy levels for a nuclear spin I = 3/2 in the presence of an applied
magnetic field ~B = (0, 0, B0). The magnetic quantum number m can assume four different
values (2I + 1), and the energy difference between two adjacent levels is proportional the
applied magnetic field and the nucleus gyromagnetic ratio γ.

implies that transitions between two energy levels (or resonance) can be induced through

an applied radiation with angular frequency ω, wherein:

ω = γB0. (2.7)

The angular frequency ω, also known as the resonance frequency, had its first applications

after the development of NMR for the determination of magnetic field intensities, using

the known value of the proton gyromagnetic ratio. Since the magnetic field experienced

by a certain atomic nucleus is affected by local field fluctuations, related to the nucleus
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Table 2.1: Gyromagnetic ratio of some nuclei and their natural abundance. Adapted from
ref. [2].
Copyright © Cambridge University Press.

Isotope
Spin

[I]

Natural Abundance

[%]

Gyromagnetic Ratio γ/2π

[MHz/Tesla]

1H 1/2 100 42.58

2H 1 0.02 6.54

3He 1/2 0.0001 32.44

7Li 3/2 92 16.55

13C 1/2 1.1 10.71

19F 1/2 100 40.06

23Na 3/2 100 11.26

29Si 1/2 4.7 8.46

35Cl 3/2 75 4.17

chemical environment and diamagnetic screening effects from electrons and interactions

with other nuclei, the resonance frequency ω became the foundation for the elucidation of

chemical structures, one of the most prosperous applications of NMR.

Let us consider, for an example, the case of a system composed by N spin-1/2 nuclei

in the presence of a magnetic field ~B = (0, 0, B0). Following the Boltzmann statistics, in

the thermodynamical equilibrium at a fixed temperature T, a number Nm of nuclei will

occupy an energy level Em, according to:

Nm =
Ne−Em/kT∑
m′ e

−Em′/kT
=

Ne−γh̄mB0/kT∑
m′ e

−γh̄m′B0/kT
, (2.8)

wherein k is the Boltzmann constant, T denotes the temperature, m′ = {−1/2,+1/2}
and the occupation numbers Nm satisfy the condition N =

∑
mNm. The macroscopic

equilibrium magnetization M0 can be obtained by the summation over magnetic moments

in each population:

M0 =
∑
m

Nmµz = γh̄
∑
m

mNm = γh̄
(N+

2
− N−

2

)
, (2.9)

in which N+ and N− denote the populations occupying, respectively, the lower energy

level, representing the spin up or parallel to the applied field, and the higher energy level,

representing the spin down or anti-parallel to the applied field. Therefore, the nuclear

polarization will depend on the difference between both populations, and from Equation

2.8 it follows that:
N−

N+
= e−γh̄B0/kT . (2.10)
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A quick estimate can be carried out: the thermal energy at room temperature kT is of

the order of 4 × 10−21 J, while the magnetic energy γh̄B0, considering a magnetic field

capable of producing a resonance frequency of 2 MHz for the proton (B0 ≈ 0.04 T), is

approximately 12× 10−14 J. Therefore, the factor e−γh̄B0/kT ≈ 1− 3× 10−7, which means

that the number of spins occupying the lower energy level N+ will exceed the number

of spins occupying the higher energy level N− by only three parts per ten million. The

nuclear polarization, or the net magnetization, is in fact extremely low and also depends on

the value of the applied magnetic field. This represents one of the challenges in performing

NMR techniques using nuclei with low natural abundance (see Table 2.1), and also one of

the advantages of high-field NMR equipment, since superconducting magnets are capable

of producing magnetic field strengths from a few Tesla up to tens of Tesla, increasing

significantly the nuclear polarization.

2.1.2 Larmor Precession and the Spin Equation of Motion

Here, we shall address the classical description of a magnetic moment under the action of

a magnetic field, as a simple framework for one to investigate the dynamics of a collection

of such moments and the relation between magnetic resonance and relaxation.

A magnetic moment ~µ in the presence of a magnetic field ~B will experience a torque Γ

expressed as:

Γ = ~µ× ~B. (2.11)

According to the rotational analogue to Newton’s Second Law, the torque equals the rate

of change of the angular momentum. For the spin angular momentum I, we have:

~µ× ~B =
∂~I

∂t
, (2.12)

and since the magnetic moment and the spin angular momentum are parallel and proportional

(~µ = γ~I) we can write for the magnetic moment ~µ:

∂~µ

∂t
= γ~µ× ~B. (2.13)

The summation of magnetic moments for a system with an assembly of nuclear spins from

the same kind gives rise to a macroscopic magnetization. Hence, Equation 2.13 holds for

the magnetization vector ~M :

∂ ~M

∂t
= γ ~M × ~B. (2.14)

The static magnetic field is commonly assumed parallel to the z axis ( ~B = B0k̂). Hence,
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following Equation 2.14, the equations of motion for the magnetization components are:

∂Mx

∂t
= γB0My, (2.15)

∂My

∂t
= −γB0Mx, (2.16)

∂Mz

∂t
= 0. (2.17)

Assuming that the magnetization direction forms an angle θ with the z axis (Figure 2.2),

the respective solutions, as a function of the magnitude M , can be written as:

Mx(t) = M sin(θ) cos(γB0t), (2.18)

My(t) = −M sin(θ) sin(γB0t), (2.19)

Mz(t) = M cos(θ). (2.20)

Figure 2.2: Rotation of the magnetization vector ~M by a static magnetic field B0.

The solutions expressed in Equations 2.18, 2.19 and 2.20 mean that the magnetization

component in the transverse plane (x− y) has a constant magnitude and it rotates in the

clockwise direction with angular velocity ω0 = γB0, which is exactly the angular frequency

expressed in Equation 2.7. The longitudinal component of the magnetization (z axis) has

also a constant magnitude. The movement of the magnetization vector in the presence of

a magnetic field is called Larmor precession (named after Joseph Larmor) and the angular

frequency ω0 is referred as the precession frequency, or Larmor frequency. According to
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these equations, the precession of the transverse component of the magnetization vector

by B0 develops indefinitely and the longitudinal component exhibits a constant value.

Notwithstanding, real systems tend to evolve to equilibrium states like the one expressed

by Equation 2.8, obtained in the framework of Boltzmann statistics. In practice, not

only the longitudinal component of the magnetization achieves such equilibrium along

the B0 direction during a certain time range, but also the transverse component of the

magnetization vanishes with time. The explanation for these discrepancies relies in the

concept of relaxation.

2.2 NMR Relaxation

2.2.1 Longitudinal and Transverse Relaxation

The obtained equations for the motion of the magnetization components assumed that

nuclei experience the exact same magnetic field ~B. Nonetheless, each nuclei probes a local

magnetic field, as a summation of the applied field and local interactions, that can vary

spatially and also fluctuate in time. Among several sources for the existence of such local

fields, two can be said of major importance. The first one is associated with the fact that

the applied magnetic field ~B will not be perfectly homogeneous spatially, even in magnets

from high-end equipment, and consequently a distribution of field values will always be

imposed along the sample. This spatial distribution of the magnetic field is especially

relevant for the case of fluids confined in porous media.

Here, it is necessary to recall the distinction on the magnetic fields ~B and ~H. Strictly, ~H

is defined as the magnetic field intensity, or the magnetizing force, while ~B is the magnetic

flux density. The practical difference is that ~H is a quantity induced in the space around

moving charges, while ~B is a response of the medium to the applied excitation ~H. When

~H is impressed through a magnetic permeable material, the flux density ~B is increased

proportional to the relative permeability of the material. The relation between ~B and ~H

is defined as:

~B = µ0( ~H + ~M), (2.21)

wherein µ0, here, denotes the magnetic permeability of vacuum and ~M is the resultant

magnetization. The relation between ~M and ~H is defined as a function of the magnetic

susceptibility χ, a dimensionless quantity representing a property of the medium:

χ =
~M

~H
, (2.22)
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and Equation 2.21 can be rewritten as:

~M =
χ

1 + χ

~B

µ0
. (2.23)

As magnetic susceptibility values in nuclear paramagnetic systems can be of the order of

10−9, the expression in Equation 2.23 is sometimes approximated by:

~M =
χ

µ0

~B. (2.24)

Fluids (e.g., air or water) and the material of confining porous samples (e.g., rocks)

exhibit distinct susceptibility values, thus, as a result of this difference (contrast) the

applied ~B field distribution is distorted and will exhibit different values along the porous

space, i.e., magnetic field gradients will be formed within pores. This is a very important

aspect regarding the NMR of confined fluids, since diffusing nuclei will experience such

gradients and this will affect both relaxation and diffusion measurements [82–84]. The

influence of internal magnetic field gradients in relaxation measurements will be addressed

again in the following Sections, and in the discussion of the results presented in Chapter 3

and 4. Some modern NMR techniques, denominated magnetization decay due to diffusion

in the internal magnetic field (DDIF), proposed by Song [85], successfully employed

the diffusion of fluid molecules through internal field gradients as tool to probe the

characteristic confinement scale of porous samples.

The second and most important source of varying local magnetic fields relies on the

principle that nuclear magnetic moments not only produce magnetic fields, but also

respond to them. Interactions of the nuclear magnetic moment with fields created by

the electronic cloud, or even the direct dipole-dipole coupling between nuclei, result in

different local magnetic fields, which in the case of fluid molecules, will also fluctuate in

time as nuclei are moving (diffusing). The overall effect, according to Equation 2.7, is that

a distribution of field values, actually imposes on the system a distribution of precession

frequencies. Therefore, such incoherence of precessing motion results in dephasing and

consequently relaxation of the magnetization. Thus, we shall distinguish the mechanisms

that promote relaxation and their effect on the magnetization components.

The evolution of the magnetization to the equilibrium state, during which spins shift

between lower or higher energy configurations (in order to the occupation numbers in

Equation 2.8 to take place), is a process that implicates energy exchange between the

spins and the degrees of freedom of the environment, also referred to as the “lattice”.

Therefore, since the value of the longitudinal component (z) of the magnetization varies

depending on the population of each level, this process is also referred to as spin-lattice,

or longitudinal relaxation. The transverse, or spin-spin relaxation process involves no
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energy exchange and is a simple consequence of a loss of precession coherence between

rotating magnetic moments, as spins experiencing different local fields will exhibit distinct

precession frequencies. As a consequence, the transverse magnetization, a summation over

the components of the precessing magnetic moments in the x−y plane, vanishes as a result

of destructive interference.

Relaxation processes may be parametrized by time constants. As mentioned in Chapter

1, Bloch [1] phenomenologically included relaxation times to the equations describing the

dynamics of the magnetization components Mx, My and Mz in the presence of a static

(or polarizing) magnetic field ~B, known as Bloch Equations:

dMx

dt
= γ( ~M × ~B)x −

Mx

T2
, (2.25)

dMy

dt
= γ( ~M × ~B)y −

My

T2
, (2.26)

dMz

dt
= γ( ~M × ~B)z −

Mz −M0

T1
, (2.27)

wherein M0 denotes the equilibrium magnetization directed at the z axis ( ~Meq = (0, 0,M0),

since Mx and My relax to zero and Mz relax to M0) in the presence of a magnetic field

~B = (0, 0, B0). T1 and T2 represent the spin-lattice (or longitudinal) and the spin-spin (or

transverse) relaxation times, respectively. Assuming once more that the initial condition

for My(0) = 0, the solution for Mx and Mz components, now including the effects of T1

and T2 relaxation (Figure 2.3), can be expressed as:

Mx(t) = Mx(0) cos(ω0t)e
−t/T2 , (2.28)

Mz(t) = M0 − [M0 −Mz(0)]e−t/T1 , (2.29)

wherein Mz(0) denotes the initial condition for the longitudinal magnetization and M0 is

the equilibrium value.

The exponential behavior associated with the decay of magnetization and relaxation

times is commonly observed in fluids, although relaxation can exhibit a non-exponential

behavior. Non-exponential NMR relaxation behaviors are mainly related to two different

situations. The first one regards dynamically heterogeneous systems with distinguishable

populations characterized by individual, yet exponential, relaxation decays [27]. A suitable

example in the context of this thesis is the multiexponential behavior of the NMR relaxation

of liquids confined in porous rocks. In these systems, under a proper set of approximations

(see Section 1.4) the total magnetization decay can be modeled as a summation of exponen-

tial decays arising from fluids confined within pores with distinct characteristics. Each

population contributes to the total signal with a single relaxation rate, and the distribution
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Figure 2.3: Illustration of longitudinal and transverse relaxation of the magnetization
components Mz and Mx with time.

of such rates can be related with the heterogeneity of confinement features [5]. Nevertheless,

some homogeneous systems can exhibit intrinsic non-exponential relaxations [86, 87],

which require distinct modeling approaches from the ones assumed as part of the scope of

this thesis.

Regardless of its exponential or non-exponential behavior, one should draw attention

to the fact that relaxation is the reason why the observation of NMR is possible. What is

being monitored is indeed the evolution (relaxation) of the system from non-equilibrium

states back to the equilibrium.

2.2.2 The Rotating Frame of Reference

A common feature regarding both continuous-wave2 and pulsed NMR techniques is the

application of oscillating magnetic fields in order to conduct the system to the required

non-equilibrium state, in which relaxation is then observed. The Larmor precession and

the dynamics of the magnetization in the presence of a large static field and transverse

oscillating fields can be more easily comprehended from the point of view of a frame of

reference that rotates with the same precession frequency (ω0 = γB0) as the magnetic

2An NMR signal can be observed by two distinct experimental approaches, known as pulsed-field (PF)
and continuous-wave (CW) NMR. At the simultaneous development of NMR by Edward Purcell and Felix
Bloch in 1946, the continuous-wave spectroscopy was the technique employed. In CW-NMR the transverse
spin magnetization is generated by a continuous oscillating magnetic field of low intensity and its signal
is recorded as a function of the oscillation frequency or the static field strength B0. The transverse
magnetization signal is maximized and a peak is observed in the spectrum when the oscillation frequency
matches the nuclear resonance frequency [2, 3, 88]. The development of pulsed NMR, wherein short-
duration and strong magnetic field bursts (pulses) are employed (see Section 1.3.3), was accomplished by
Hahn, in 1950.
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moments. Over the perspective of an observer rotating at the same ω0 frequency, the

effect of the static field B0 on the magnetic moments actually disappears. Let us write

the equations for the new frame of reference in order to visualize the effect of such

transformation into the equation of motion for the magnetic moment (Equation 2.13).

The derivative with respect to the time of the magnetic moment vector ~µ is written as

a function of the derivatives of each component. For a stationary frame of reference we

have:
d~µ

dt
=

∂

∂t
(µxî) +

∂

∂t
(µy ĵ) +

∂

∂t
(µzk̂) =

∂µx
∂t

î+
∂µy
∂t

ĵ +
∂µz
∂t

k̂, (2.30)

wherein î, ĵ and k̂ represent the orthogonal unit vectors from the stationary frame of

reference. Considering a non-stationary frame of reference the derivative of ~µ must also

include the derivatives of î, ĵ and k̂:

d~µ

dt
=
(∂µx
∂t

î+
∂µy
∂t

ĵ +
∂µz
∂t

k̂
)

+ µx
∂î

∂t
+ µy

∂ĵ

∂t
+ µz

∂k̂

∂t
, (2.31)

in which the three terms in brackets represent the rate of change of ~µ according to the

stationary frame of reference, denoted by the partial derivative ∂~µ/∂t.

We shall consider a frame rotating about the z axis with angular frequency ω. The

new unit vectors î
′
, ĵ
′

and k̂
′
, as seen from the stationary frame of reference, will vary

according to:

î
′

= î cos(ωt) + ĵ sin(ωt), (2.32)

ĵ
′

= −î sin(ωt) + ĵ cos(ωt), (2.33)

k̂
′

= k̂. (2.34)

Hence, the time derivatives in Equation 2.31 can be written as:

∂î
′

∂t
= −î sin(ωt)ω + ĵ cos(ωt)ω = ωĵ

′
, (2.35)

∂ĵ
′

∂t
= −î cos(ωt)ω − ĵ sin(ωt)ω = −ωî′ , (2.36)

∂k̂
′

∂t
= 0. (2.37)

Thus, according to the new frame of reference, Equation 2.31 can be rewritten as:

d~µ

dt
=
∂~µ

∂t
+ ω(µxĵ − µy î) = ωk̂ × ~µ, (2.38)
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and since the angular velocity is expressed as ~ω = ωk̂ we have:

d~µ

dt
=
∂~µ

∂t
+ ~ω × ~µ. (2.39)

We can finally visualize the effect of such transformation into the equation of motion for

the magnetic moment in the presence of a magnetic field ~B (Equation 2.13). Considering

the result obtained in Equation 2.39, according to the new frame of reference the rate of

change of the magnetic moment ∂~µ/∂t can be written as:

∂~µ

∂t
=
d~µ

dt
− ~ω × ~µ = γ~µ× ~B − ~ω × ~µ, (2.40)

or rearranging:

∂~µ

∂t
= γ~µ× ( ~B + ~ω/γ). (2.41)

The important result expressed in Equation 2.41 is the presence of an effective magnetic

field ( ~Beff = ~B + ~ω/γ), experienced by the magnetic moment in the rotating frame of

reference. This means that the Larmor precession of a magnetic moment in the presence

of a magnetic field ~B = B0k̂ = (ω0/γ)k̂, as seen in a frame of reference that rotates with

an angular frequency ω0 = −γ/B0, will appear stationary.

2.2.3 Radiofrequency Pulses and Rotations

The behavior of the Larmor precession of magnetic moments in a rotating frame of

reference is particularly useful when one considers the presence of transverse oscillating or

rotating fields, along with an static magnetic field. Strictly, a linearly polarized rotating

magnetic field ~B1 is expressed as a summation of a rotating and a counter-rotating part:

2B1 cos(ωt)̂i = B1[cos(ωt)̂i+ sin(ωt)ĵ] +B1[cos(ωt)̂i− sin(ωt)ĵ]. (2.42)

In practice, the contribution of the component rotating in the opposite sense with respect

to the Larmor precession is negligible in comparison with the effect of the component

moving with the precession [2]. Therefore, let us consider the case of magnetic moments

in the presence of two magnetic fields, one static field ~B0 = B0k̂ and a second oscillating

field ~B1 rotating in the plane transverse to ~B0 with frequency ω. The total magnetic field

can then be expressed as:

~Btotal = B1[cos(ωt)̂i+ sin(ωt)ĵ] +B0k̂. (2.43)
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According to the transformations obtained, in a frame of reference rotating with angular

frequency ~ω′ = ω′k̂, the effective magnetic field experienced by a magnetic moment can

be expressed as:

~Beff = ~Btotal + ~ω/γ = B1{cos[(ω − ω′)t]̂i+ sin[(ω − ω′)t]ĵ}+ (B0 + ω/γ)k̂. (2.44)

Considering the case where the field ~B1 and the rotating frame have the same angular

frequency, the transverse field appear to be stationary (Figure 2.4), and the effective

magnetic field is simplified to:

~Beff = B1î+ (B0 + ω/γ)k̂. (2.45)

The most interesting case regarding the effective magnetic field as seen in a rotating

frame is obviously the resonance condition, when ω = ω0. In this case, since B0 = −ω0/γ,

the effective magnetic field reduces to:

~Beff = B1î, (2.46)

which means that, as seen from the rotating frame of reference, the effective field is static

and rests in the transverse plane. The result expressed in Equation 2.46 is especially useful

Figure 2.4: Illustration of the effective magnetic field ~Beff as summation of a static
magnetic field ~B0 and a transverse rotational field ~B1, as seen in a stationary and in
a rotating frame of reference.

in the context of pulsed-field NMR. Once the field ~B1 is applied, the nuclear magnetic

moments will experience a torque and precess in the plane transverse to ~B1 about its

direction. Hence, defining the time during which ~B1 is applied, it is possible to induce

controlled rotations on the magnetic moments, and consequently on the macroscopic
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magnetization vector ~M (Figure 2.5).

These transverse field pulses are known as radio-frequency (RF) pulses, since considering

the proton gyromagnetic ratio γ = 42.58 MHz/T, for field strengths ranging from tenths

of a Tesla up to a few Tesla, the pulse frequency (ω/2π) values will be in the range of

mega Hertz, or radio frequencies. In NMR, RF pulses are also referred to by their resulting

rotation angles. The most common ones are the π/2 and the π pulses. Considering the

magnitude of the angular velocity ω1 = γB1, we have:

γB1t90◦ = π/2, (2.47)

t90◦ =
π

2γB1
, (2.48)

wherein t90◦ represents the time duration of the applied ~B1 field that results in a π/2 RF

pulse, which rotates the equilibrium magnetization pointing at the z-direction ( ~M = M0k̂)

to the transverse plane, and:

γB1t180◦ = π, (2.49)

t180◦ =
π

γB1
, (2.50)

in which t180◦ represents the time duration of the applied ~B1 field that results in a π RF

pulse, which inverts the equilibrium magnetization sense ~M to − ~M (Figure 2.5). These

pulses are used to manipulate the magnetization vector and to conduct the system to

non-equilibrium states, in which relaxation processes will take place.

Figure 2.5: Illustration of the π/2 and the π rotations of the magnetization vector in the
y − z plane by a transverse RF pulse ~B1 applied in the positive x-direction, as seen in a
rotating frame of reference.
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2.2.4 Free Induction Decay (FID) and NMR Spectroscopy

We will now take a closer look at the behavior of the magnetization at the transverse

plane after the application of a π/2 RF pulse. Once in the transverse plane, the ensemble

of magnetic moments will precess about the static magnetic field directed at the z axis,

and immediately after the π/2 pulse the magnitude of the transverse magnetization Mxy

equals the equilibrium magnetization M0. Notwithstanding, a distribution of precession

frequencies is imposed on the ensemble due to a distribution of local fields experienced

by the the nuclei. Thus, the magnetic moments start losing precession coherence, and

the macroscopic magnetization signal starts to decay due to destructive interference. This

process is known as free induction decay (FID), and is the most simple experiment that

can be performed in pulsed NMR.

As formerly discussed, two physically distinct reasons contribute to create a spatial

distribution of local magnetic fields: the inhomogeneities in the static magnetic field as

the result of intrinsic imperfections in the magnet itself or from susceptibility-induced

field distortions, and the interactions of diffusing magnetic moments with their chemical

environment. The time constant associated with the free induction decay of the magnetiza-

tion, considering a summation of all these effects, is referred to as T ∗2 (reads “T2-star”),

which is different from the relaxation time T2 in the sense that the latter is considered

as arising only from intrinsic interactions at the atomic or molecular levels, and does not

account for inhomogeneities in the static magnetic field. For this reason T2 is often referred

to as the “real” or “true” T2, while T ∗2 is the “observed” or “effective” T2.

Let us consider the example of a real system composed by a collection of magnetic

moments (e.g., same specie nuclei in a liquid sample) in the presence of a static magnetic

field ~B = B0k̂ after the application of a π/2 RF pulse in the positive x-direction. The initial

conditions, describing the magnetization immediately after the RF pulse are Mx(0) = 0

and My(0) = M0, wherein M0 denotes the magnitude of the equilibrium magnetization.

The equation of motion for the magnetization components Mx and My, considering the

observed transverse relaxation time T ∗2 , can be written as (Equations 2.25 and 2.26):

dMx

dt
= −ω0My −

Mx

T ∗2
, (2.51)

dMy

dt
= ω0Mx −

My

T ∗2
. (2.52)

Defining the magnitude of the transverse magnetization as Mxy = Mx + iMy, Equations

2.51 and 2.52 can be combined into:

dMxy

dt
= (iω0 −

1

T ∗2
)Mxy. (2.53)
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Considering the initial conditions, the solution can be expressed as:

s(t) =
Mxy(t)

M0
= eiω0te−t/T

∗
2 , (2.54)

wherein s(t) denotes the normalized recorded signal in the time domain. We can obtain

the signal in the frequency domain performing the Fourier Transform of the time domain

signal. Considering the case wherein the time domain signal is a decaying exponential

f(t) = e−at, the Fourier Transform can be defined3 as:

F{f(t)} = F (ω) =

∫ ∞
0

e−ate−iωtdt =
e−(a+iωt)

−(a+ iωt)

∣∣∣∣∞
0

=
1

(a+ iω)
=

a+ iω

(a2 + ω2)
. (2.55)

Hence, Fourier transforming the result in Equation 2.54 we obtain:

S(ω) = F{s(t)} =
T ∗2

1 + (T ∗2 )2(ω0 − ω)2
+

i(ω0 − ω)

1 + (T ∗2 )2(ω0 − ω)2
. (2.56)

The expression in Equation 2.56 denotes a complex Lorentzian function, or a Lorentzian

lineshape, with a real (or absorption) and an imaginary (or dispersion) component (Figure

2.6). As the NMR spectrum can be record in complex form, it is possible to observe both

of these components. Strictly, the a raw spectra is a linear combination of the real and

imaginary parts, and phase correction procedures are used to convert this mixed form into

a pure lineshape. Nevertheless, since the real part is associated with a narrower linewidth,

it is usually the component that is plotted as the NMR spectra (left plot from Figure 2.6).

The real part in Equation 2.56 is the expression of a Lorentzian function centered in ω0

with a linewidth at half-height given by:

∆ν =
∆ω

2π
=

1

πT ∗2
, (2.57)

wherein ν denotes the linear frequency [1/s].

In a bulk liquid sample the effect of field inhomogeneities in the overall relaxation rate

1/T ∗2 is actually much greater than the one associated with the relaxation time T2. For this

reason the spectrum linewidth at half-height of liquids is commonly used as a measurement

of the static field inhomogeneity. Note that, the greater the magnetic field inhomogeneity

is, the smaller (shorter) T ∗2 is and the broader the linewidth. Finally, for the case of

complex molecules, in which same specie nuclei experience different magnetic fields as

a consequence of distinct chemical environments, the signal expressed in Equation 2.54

will be a composition of signals with different resonance frequencies. Hence, the Fourier

3One should notice that although the Fourier Transform integration must be performed from −∞ to
+∞, here, the observed signal is only different from zero, or defined, for t > 0.
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Figure 2.6: Illustration of the Lorentzian lineshape in the frequency domain (Equation
2.56). The left plot shows the real, or absorption, lineshape and the dispersion, or
imaginary, lineshape is shown in the right plot. The linewidth ate half-height in the
left plot is inversely proportional to T ∗2 . The greater the magnetic field inhomogeneity is,
the smaller (shorter) T ∗2 is and the broader the linewidth.

Transform of the recorded NMR signal will exhibit a composition of peaks distributed

along the frequency axis with their respective amplitudes (areas) representing the nuclei

population associated with a particular chemical environment, or chemical group. This is

the foundation of the NMR spectroscopy technique.

2.2.5 Spin Echoes

Let us consider the behavior of the magnetization at the transverse plane after the

application of a π/2 pulse. Once in the transverse plane, magnetic moments start losing

phase coherence due to inhomogeneities in the static field and the presence of local fields

produced by interactions with the chemical environment. From the point of view of an

observer standing at the rotating frame of reference, the magnetic moments with precession

frequencies smaller than ω0 will appear to rotate clockwise (Figure 2.7), and the magnetic

moments with precession frequencies greater than ω0 will appear to rotate counterclockwise

(see also Figure 2.4). Intuitively, one can assume that after a short period of time, the most

effective way to recovering precession coherence would be to invert the rotation direction

of magnetic moments. As we will see in the following steps such refocusing effect can be

achieved by a π pulse.

It is possible to build a simple model in order for one to visualize the effects of local

fields experienced by spins in the loss of precession coherence, and also the formation of a
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Figure 2.7: Illustration of the loss of precession phase coherence by the magnetic moments
after a π/2 pulse applied in the positive x-direction, from the point of view of an observer
standing at the rotating frame of reference. Immediately after the π/2 pulse the magnitude
of the transverse magnetization equals the equilibrium value Mxy = M0.

spin echo. First, we are going to assume that the magnetic field experienced at a certain

ith spin site can be written as the summation of an static field ~B0 and the local magnetic

field deviation at the ith spin site ~bi. Two important approximations are being considered

in this simplified model. The first one relates to the interaction between spins, as for

this purpose solely, spins are being regarded as independent. This means that each spin

experiences a field which is a composition of the contribution from all of its neighbours

and the static field, in an approach similar to mean field, or single particle approximations.

The second important approximation relates to the effect of the deviation field ~bi. It

will be assumed that only the component of ~bi which is parallel to the static field will

cause changes in the precession frequency about ~B0, and consequently only the local fields

parallel to the static field will be taken in to account. Anderson and Weiss [89] first

considered these simplifications in order to investigate the spectral lineshape of a spin

system taking into account their interactions with local dipolar fields.

Under the light of these two approximations, and considering the static magnetic field

pointing at z-direction, the local field experienced at the ith spin site can be written as:

~Bi = (B0 + bi)k̂, (2.58)

and the equation of motion for the magnetic moment is:

d~µi
dt

= γ~µi × ~Bi = γ~µi × (B0 + bi)k̂. (2.59)

As the local field transverse components were neglected, the longitudinal component

dµz/dt resulting from the cross product in Equation 2.59 vanishes, which means that

33



this simplified model is not capable to approach longitudinal relaxation. Similarly to

the transverse magnetization, we can define the complex transverse magnetic moment as

µxy = µx+iµy. Here, as we intend in this model to approach only the transverse relaxation

effect, the notation µxy will be simplified to only µ, and the subscripts will be used to

denote different spins. Assuming the complex magnetic moment form, the equation of

motion following from the cross product can be written as:

dµi(t)

dt
= −iγ(B0 + bi)µi(t). (2.60)

It must be noticed that the deviation field ~bi was defined as the spatial variation of the

applied static field ~B0, and especially for liquid samples, since spins are moving (diffusing),

these fields change with time. Assuming that the motion is sufficiently slow so that the

time variation of ~bi can be neglected, the solution of Equation 2.60 can be written as:

µi(t) = e−iγ(B0+bi)tµi(0), (2.61)

wherein one can observe that each spin i will precess with an “effective” angular frequency

ωi = γ(B0 + bi). The macroscopic magnetization considering a system with N spins is

defined as the summation over magnetic moments per unit volume:

~M =
1

V

N∑
i=1

~µi, (2.62)

and assuming once more the complex form for the transverse components, and the same

simplified notation used in Equation (2.60) we have:

M(t) =
1

V

N∑
i=1

µi =
1

V

N∑
i=1

e−iγ(B0+bi)tµi(0). (2.63)

Considering that the initial value of the transverse magnetic moment of the ith spin

µi(0) is independent from its associated local field ~bi, the initial magnetization may be

factorized:

M(0) =
1

V

N∑
i=1

µi(0), (2.64)

hence, the magnetization expression becomes:

M(t) = e−iγB0t 1

N

N∑
i=1

e−iγbitM(0), (2.65)

wherein the term exp[−iγB0t] represents the precession of the magnetization at the Larmor
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frequency, and the summation term denotes the distribution of precession frequencies

which gives rise to the loss of phase coherence illustrated in Figure 2.7, and consequently

the decay of the transverse magnetization signal.

As seen in Section 1.3.2, from the point standpoint of a rotating frame of reference with

angular frequency ω0 = γB0, the magnetization vector appears to be stationary, which

means that the term exp[−iγB0t] can be removed from Equation 2.65, and the expression

for the transverse magnetization at a time t is given by:

M(t) =
1

N

N∑
i=1

e−iγbitM(0). (2.66)

Let us now consider the effect of a π pulse, applied at the positive x-direction, on the

magnetization components. After a rotation of π about the x axis the magnetization

components will be transformed the following way: Mx → Mx, My → −My and Mz →
−Mz. Effectively, a π pulse will transform the transverse magnetization M into its complex

conjugate M∗. Considering that the spin ensemble evolved during a time τ after the initial

π/2 pulse, and that at t = τ a π pulse was applied, immediately after the second pulse

the expression of the magnetization can be written as:

M(τ) =
1

N

N∑
i=1

e+iγbiτM∗(0). (2.67)

The subsequent time evolution of the magnetization after the π pulse can be obtained

multiplying the term in the summation by exp[−iγB0t]:

M(t+ τ) =
1

N

N∑
i=1

e−iγbite+iγbiτM∗(0), (2.68)

M(t+ τ) =
1

N

N∑
i=1

e−iγbi(t−τ)M∗(0). (2.69)

According to the expression in Equation 2.69, when t = τ the magnetization recovers its

full value:

M(2τ) = M∗(0). (2.70)

Notwithstanding, this fully-recovered behavior is not observed in real systems, and this

occurs by two reasons. The first relates to the fact that in this simple model we took an

approximation to neglect the effect of motion on the local deviation fields. Although for

small values of τ this could be considered valid, strictly, the ~bi fields will vary with time.
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The second and most important reason for the partial refocusing effect of a π pulse

regards the effect of the pulse on local dipolar fields, which arise from the interaction of

spins with its “neighbours”. A π pulse reverts the spin orientation and also the source of

dipolar fields. The cross product between the magnetic moment ~µ and the local fields ~b

in the equations of motions will thus remain unchanged, and consequently the pulse has

no effect on such mechanism.

In practice a π pulse will recover the precession phase coherence loss due to inhomogenei-

ties in the static field, but it does not avoid the magnetization loss associated with local

dipolar fields, which means that the transverse relaxation process related to atomic and

molecular interactions (associated with the T2 time constant) will proceed as before, and

Equation 2.70 becomes:

M(2τ) = M∗(0)e−2τ/T2 . (2.71)

Figure 2.8: Illustration of the effect of a π pulse, applied on the positive x-direction, on the
recovering of the precession phase coherence and the formation of a spin echo at t = 2τ .
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2.2.6 Common Protocols for Relaxation Measurements

Free Induction Decay (FID) - T ∗2

As we saw in Section 1.3.4, the most simple experiment for the determination of the T ∗2
time constant is to apply a π/2 pulse and immediately after to observe the free decay of

the magnetization. Also, the spin echo mentioned in the previous section has the exact

shape of two back-to-back FIDs, and the experiment π/2 - τ - π - τ - echo can be used

to the determination of T ∗2 . In fact, this protocol, known as a Hahn echo sequence, is

very useful considering electronic-related detection effects, since signal observation will

take place far away from the high-voltage RF pulse, which can affect the reception of the

induced signal.

Distinct effects contribute to the free decay of the magnetization after a π/2 pulse;

spatial inhomogeneities in the static field along the sample, local interactions in atomic

and molecular levels and also the diffusion of spins through internal field gradients, in the

sense that, generally, there is no reason for the observed field (or frequency) distribution

to be exactly a Lorentzian. Hence, the relaxation will not be exponential, and T ∗2 was for

a long time only used as a rough measurement of the relaxation time-scale.

Nevertheless, the analysis of NMR signals in the time domain such as the FID, or other

relaxation time constants (T1 and T2), as well as time-dependent diffusion coefficients,

comprise an important NMR segment denominated Time-Domain (TD) NMR, which

became especially useful in low-field situations wherein high-resolution spectroscopy is

not available. A wide range of relaxometric and diffusometric techniques, such as the ones

presented in this thesis, can be implemented on cost-effective benchtop NMR equipment,

with applications in different research segments such as fuel [90], food [91] or polymer

science [92].

Carr-Purcell-Meiboom-Gill (CPMG) - T2

The formation of a spin echo after the π/2-τ -π-τ is a powerful tool for one to recover the

magnetization signal, and multiple π pulses can be used to monitor the echo amplitude

decay in order for one to determinate the time constant T2. The method, proposed initially

by Carr and Purcell in 1954 [10], consists in the observation of an echo-train obtained by

a series of consecutive, and equally spaced π pulses, after the application of the initial

π/2 pulse (Figure 2.9). It is important to observe that this approach is different from

the one wherein multiple echoes are obtained in a series of π/2-τ -π-τ -echo acquisitions for

different τ values. The latter approach is often referred to as a Hahn echo protocol, and

some practical and physical differences can be pointed out.
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On what regards the acquisition process, the Carr-Purcell method is actually much

faster, since the complete echo train can be observed in a single shot after multiple π

pulses. Nevertheless, the most important difference between the two approaches relates

to the diffusion of molecules during the interval between RF pulses. The echo amplitude

is attenuated if one considers the movement of spins through internal field gradients (see

Section 3.1.1), and the greater the diffusion time (or the separation between refocusing

pulses) the less effective the refocusing effect will be. In essence, the method was developed

with the purpose to reduce the influence of diffusion on relaxation. Performing such

echo train acquisitions with short τ values minimizes the effect of spin diffusion through

internal field gradients in signal attenuation and simultaneously increases the time scale

of observation of the transverse magnetization decay.

For the case of a Hahn echo protocol as the time interval between the π/2 and the

π pulse is increased in each step, so is the effect of spin diffusion through internal field

gradients. The practical consequence is that in each step the echo amplitude will be

affected differently by the distinct mechanisms promoting relaxation.

The effect of spin diffusion on the attenuation of the echo amplitude can be estimated.

Considering that the local fields bi are no longer constant due to diffusion of spins and

the presence of magnetic field gradients, the expression obtained in Equation 2.66 can be

written in a general form:

M(t) =
1

N

N∑
i=1

exp
{
− iγ

[ ∫ t

0
bi(t
′) dt′

]}
M(0), (2.72)

and after a π pulse the magnetization is transformed to its complex conjugate:

M(t) =
1

N

N∑
i=1

exp
{

+ iγ
[ ∫ t

0
bi(t
′) dt′

]}
M∗(0). (2.73)

The normalized amplitude of the echo formed at 2t can then be expressed as:

E(2t) =
1

N

N∑
i=1

exp
{
− iγ

[ ∫ 2t

t
bi(t
′) dt′ −

∫ t

0
bi(t
′) dt′

]}
, (2.74)

and taking the average over the number of particles we have:

E(2t) =
〈

exp
{
− iγ

[ ∫ 2t

t
bi(t
′) dt′ −

∫ t

0
bi(t
′) dt′

]}〉
. (2.75)

38



The argument in Equation 2.75 denotes a phase angle φi(t) expressed as:

φi(2t) = −γ
[ ∫ 2t

t
bi(t
′) dt′ −

∫ t

0
bi(t
′) dt′

]
. (2.76)

Assuming that the acquired phase φ is a random variable with a Gaussian distribution (also

known as the Gaussian Phase Approximation (GPA)) the expression for the relaxation

function can be fairly approximated by exp(−〈φ2〉/2) [2, 4, 53], hence the expression in

Equation 2.75 becomes:

E(2t) = exp
{γ2

2

〈[ ∫ t

0
bi(t
′) dt′ −

∫ 2t

t
bi(t
′) dt′

]2〉}
. (2.77)

Using the transformation (a−b)2/2 = a2+b2−(a+b)2/2 the squared argument in Equation

2.77 can be rewritten. Let us take as an example the first term after the transformation

(a2):

a2 =
γ2

2

[ ∫ t

0
b(t′) dt′

][ ∫ t

0
b(t′) dt′

]
=
γ2

2

[ ∫ t

0
dt′1

∫ t

0
b(t′1)b(t′2) dt′2

]
, (2.78)

and applying the average bracket we have:

〈a2〉 =
γ2

2

[ ∫ t

0
dt′1

∫ t

0
〈b(t′1)b(t′2)〉dt′2

]
, (2.79)

We may define the autocorrelation function of the variable b(t′) as the average 〈b(t′1)b(t′2)〉.
The property of stationarity relating a random variable and its autocorrelation function

ensure that, for systems in equilibrium, the dependence of b with t′ can be determined

only through the difference t′2 − t′1 [93]. This way, for a random stationary variable b(t′),

such as the one in Equation 2.79, we may write:

γ2

2
〈b(t′1)b(t′2)〉 = G(t′2 − t′1), (2.80)

wherein G(t′2−t′1) denotes the autocorrelation function, and the integration Equation 2.79

becomes:

〈a2〉 =

∫ t

0
dt′1

∫ t

0
G(t′2 − t′1) dt′2. (2.81)

With a change of variables, and considering that G only depends on t′, we may write:

〈a2〉 = 2

∫ t

0
(t− t′)G(t′) dt′. (2.82)

Applying the same procedure for all the terms resulting from the transformation (a −
b)2/2 = a2 + b2 − (a + b)2/2 in the squared argument in Equation 2.77, we may rewrite
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the echo amplitude using autocorrelation functions:

E(t) = exp
{
−
∫ t

0
(t− t′)[G(t′/2)−G(t′)] dt′

}
. (2.83)

In order for one to apply the result obtained in Equation 2.83 to the problem of the

diffusion influence on echo attenuation, the diffusion autocorrelation function must be

determined considering the spatial dependence of the magnetic field gradient experienced

by diffusing molecules. Assuming that the static field points at the z-direction, and

considering a simple sinusoidal form for the field gradient b(z) such as:

b(z) = A sin(qz), (2.84)

the diffusion correlation function G(t) may be expressed as [2, 94]:

G(t) =
γ2g2

q2
exp(−q2Dt), (2.85)

wherein the diffusion parameter q = q(γ, g, t) [m−1] is known as the wavevector amplitude,

g stands for the gradient strength and D [m2/s] is the molecular self-diffusion coefficient.

Using the diffusion correlation function described by Equation 2.85 in the expression of

the echo attenuation (Equation 2.83) we have:

E(t) = exp
{
−
∫ t

0
(t− t′)γ

2g2

q2
[exp(−q2Dt′/2)− exp(−q2Dt′)] dt′

}
, (2.86)

wherein solving the integration leads to:

E(t) = exp
{ γ2g2

q6D2
[4 exp(−q2Dt/2)− exp(−q2Dt)− 3 + q2Dt]

}
. (2.87)

In order to obtain the behavior of the echo attenuation in the presence of a constant

field gradient, we must observe the limit when the wavelength (1/q) is large compared to

the sample’s dimensions, i.e., the regime when the oscillations in the assumed sinusoidal

gradient form can be neglected and the gradient can be considered linear. This can be

achieved taking the limit q → 0 in the expression in Equation 2.87. Expanding the

exponentials in the argument and taking the limit we finally obtain:

E(t) = exp(−γ2g2Dt3/12). (2.88)

The result obtained in Equation 2.88, regarding the echo signal decay due to diffusion of

molecules through a field gradient g, can be included4 into the result obtained in Equation

4Strictly, the solution of the Bloch Equations including diffusion terms is only factorable into separate
relaxation and diffusion parts under certain approximations, regarding the diffusion propagator and the
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2.71. Hence, the echo amplitude at a given time t using the Carr-Purcell protocol may be

expressed as:

M(t) = M(0)e−t/T2e(−γ2g2Dt3/12). (2.89)

In a CPMG experiment with a sufficiently small τ value, the time molecules have

to diffuse between two refocusing π pulses is short, and for weak field gradients g the

diffusion term in Equation 2.89 may be neglected. It is important to recall that according

to Equation 2.71 the magnetization recorded at the time t = 2τ , after the first π pulse,

is the complex conjugate of the equilibrium magnetization attenuated by the exponential

relaxation factor exp(−2τ/T2). The next echo, formed at t = 4τ , will be the complex

conjugate of the previous one, and so on, in the sense that the echoes are not formed in

the same direction. The effective shape of the recorded signal in the protocol proposed by

Carr and Purcell is illustrated in Figure 2.9.

Figure 2.9: Illustration of the protocol suggested by Carr and Purcell for the measurement
of the T2 relaxation time. Each refocusing π pulse induces the formation of a new spin
echo, which is the complex conjugate of the previous one. In this protocol the π pulses
are applied in the same direction as the π/2 pulse. The amplitude of the echoes decrease
due to relaxation and is modulated by the exponential decay expressed in Equation 2.89.

Nevertheless, when the π pulse is wrongly calibrated, a possible situation on real

measurements, the refocusing of magnetization will be compromised in the sense that

My will not be fully reversed and a small part of the magnetization may be placed in

the z-direction. One should also notice that this error will accumulate along the π pulse

local field components. The result obtained in Equation (2.88) is only valid for bulk fluids undergoing
unrestricted diffusion. These considerations will be addressed in Chapter 4.
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train. An approach to correct this error was proposed by Meiboom and Gill in 1958 [11].

The authors proposed that the π pulse should be applied perpendicular to the π/2 pulse,

i.e., in the same direction as the magnetization points at after the first π/2 pulse (+y

direction in our example). As a consequence, the effect of the refocusing pulse will be just

to reverse the sign of the dephased part. This way, a small error in the π pulse will not be

cumulative, and the echoes will be formed in the same direction. This method is known

as the Carr-Purcell-Meiboom-Gill (CPMG) sequence (Figure 2.10).

Figure 2.10: Illustration of the Carr-Purcell-Meiboom-Gill (CPMG) method for the
measurement of the T2 relaxation time. In this protocol the π pulses are applied
perpendicular to the π/2 pulse and all echoes are formed at the same direction. The
amplitude of the echoes decrease due to relaxation and is modulated by the exponential
decay expressed in Equation 2.89.

Inversion- and Saturation-Recovery - T1

For a measurement of T1 the behavior of the longitudinal component of the magnetization

Mz must be observed. The solution of the Bloch Equation for the dynamics of the z

component of the magnetization was expressed in Equation 2.29:

Mz(t) = M0 − [M0 −Mz(0)]e−t/T1 , (2.90)

in which M0 denotes the equilibrium magnetization directed at the z axis, considering a

polarizing magnetic field ~B = (0, 0, B0), and Mz(0) is the initial condition.

The equilibrium magnetization can be driven to a non-equilibrium state by an initial π/2

or π RF pulse. In the former, the equilibrium magnetization is rotated to the transverse

plane (x− y), and the initial condition will be Mz(0) = 0. For the latter, the equilibrium

magnetization is reversed so that Mz(0) = −M0. In both cases, given a certain time
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after the initial pulse, a second π/2 pulse is applied to project the Mz component to the

transverse plane for the detection of the signal. These methods for T1 measurement are

referred to as saturation-recovery and inversion-recovery, respectively (Figure 2.11).

Figure 2.11: Illustration of the saturation-recovery (a) and the inversion-recovery (b)
protocols for the measurement of the T1 relaxation time. The upper graphs illustrate the
pulse sequence schemes and the lower graphs show the evolution of the observed Mz(t)
signal as the pulse separation delay is increased in each repetition of the pulse sequence.

Considering the initial conditions for each method, the solution in Equation 2.90 can

expressed as:

Mz(t) = M0[1− exp(−t/T1)], (2.91)

for the saturation-recovery protocol, and:

Mz(t) = M0[1− 2 exp(−t/T1)], (2.92)

for the inversion-recovery protocol.

It should be recalled that the equations presented in this Section as the solution for the

measurement of transverse and longitudinal relaxation times (T2 and T1) did not consider

any boundary condition whatsoever, therefore being valid only for bulk samples, in the case
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of fluids. The effect of confining geometries must be considered in the form of boundary

conditions in order for one to properly solve the equations of motion for the magnetization

components. Some of the most commonly used approaches developed with the purpose

of accounting confinement effects into relaxation rates will be addressed in the following

Sections.

2.2.7 2D NMR

In two-dimensional NMR different protocols can be combine into a single experiment,

wherein two distinct parameters are varied simultaneously. The total magnetization signal

in a 2D NMR experiment can be expressed in the following general form [4]:

M(x1, x2) =

∫∫
k1(x1, R1)k2(x2, R2)F(R1, R2) dR1 dR2, (2.93)

wherein R1 and R2 represent the spectroscopic properties of the investigated sample (e.g.,

the resonance frequency ω, or the spin-lattice relaxation time T1), and x1 and x2 denote

the pulse sequence parameters that will be varied (e.g., RF pulses, evolution periods or

magnetic field gradients). The functions k(x,R), referred to as kernel functions, represent

the response of the system to the NMR experiments that are being combined, depending

on the spectroscopic properties R1 and R2. The correlation function F(R1, R2) denotes

the probability distribution, or the density map, of molecules with properties R1 and R2,

and it is the quantity to be measured.

For an example, if one of the experiments is a spectroscopy measurement the kernel

k(x,R) can be represented as k(t, ω) = exp(−iωt), wherein ω ≡ R and t ≡ x. For the

case of a CPMG experiment the kernel can be written as a simplified exponential form of

Equation 2.89 k(t, T2) = exp(−t/T2), and so on. In 2D experiments the respective kernels

are replaced in Equation 2.93 and the correlation function F(R1, R2) can be obtained by

performing the 2D Inverse Laplace transform of the measured 2D signal [95].

Different correlation maps can be obtained depending on the two experiments involved.

The most common ones are relaxation-relaxation, diffusion-relaxation and diffusion-diffu-

sion correlation experiments. In a T1-T2 experiment, for an example, the measured

signal, considering the combination of an inversion-recovery and a CPMG protocol, can

be expressed as:

M(τ1, τ2) =

∫∫
(1− 2e−τ1/T1)(e−τ2/T2)F(T1, T2) dT1 dT2, (2.94)

in which τ1 and τ2 represent the time parameters that are being varied in the inversion-

recovery and in the CPMG experiment, respectively.
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Figure 2.12 and 2.13 illustrate the pulse sequence scheme for the T1-T2 and the T2-T2

correlation experiments, respectively.

Figure 2.12: Illustration of the pulse sequence for the T1-T2 correlation map combining an
inversion recovery and a CPMG experiment, during which the spin system experiences
longitudinal and transverse relaxations, respectively. The parameter te denotes the
separation between the π/2 and the pi pulses, or the echo time. Data is obtained varying
the parameters τ1 and τ2. For each τ1 value the echo train in the CPMG is measured,
wherein τ2 = 2nte and n is the number of echoes acquired. The data matrix M(τ1, τ2) is
constructed over the two independent variables τ1 and τ2.

In a T2-T2 correlation map, both segments are CPMG experiments, commonly separated

by a time interval ∆, during which the signal from the first CPMG protocol is stored as

polarization (longitudinal magnetization), and the observed magnetization signal may be

expressed as:

M(τ1, τ2) =

∫∫
(e−τ1/T2a)(e−τ2/T2b)e−∆/T1F(T2a, T2b) dT2a dT2b. (2.95)

In a similar way, diffusion-relaxation maps can be obtained through the combination of

some NMR-based diffusion protocol, such as a pulsed-field gradient (PFG) sequence, with

a relaxation protocol, for an example, a CPMG. As it is shown in Chapter 4, the exact form

of the kernel in the diffusion protocol, and which parameter will be varied, depends on the

pulse sequence adopted. Differently from relaxation measurements, there is a large set of

pulse sequences to be employed for the determination of self-diffusion coefficients, each one

of them being best suited for a certain application depending on sample’s characteristics.

An enlightening review on PFG NMR diffusion sequences, including their exact expressions

for the echo attenuation (i.e., the respective kernels), was presented by Stallmach and

Galvosas [96]. Two of those sequences, including a suitable one for the measurement of
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Figure 2.13: Illustration of the pulse sequence for the T2-T2 self-correlation map, combining
two CPMG experiments, during which the spin system experiences transverse relaxation,
separated by a time interval ∆, wherein the longitudinal relaxation acts. After the first
segment the second π/2 pulse stores the signal as longitudinal magnetization. After
the interval ∆ the CPMG in the second segment acquires the echo train. The variable
parameters are τ1 = n1te1 and τ2 = n2te2, wherein nitei denotes the number of pulses and
the echo time adopted in each segment.

self-diffusion coefficients in confined fluids will be presented in Chapter 4.

Multidimensional experiments have been long applied in high-field NMR spectroscopy

[97], and since the variable parameters are frequencies, a multidimensional inverse Fourier

Transform must be applied to the data matrix in order for one to extract the corresponding

correlation function [98]. On what regards diffusion and relaxation experiments, the

signal decay is often associated with exponential profiles, and being that the case, a

inverse Laplace Transform is employed instead of a Fourier one. The application of

multidimensional inverse Laplace transform using conventional algorithms requires a great

computational power [99, 100]. In 2000 a fast Laplace inversion (FLI) algorithm was

developed [95, 101] enabling rapid inverse Laplace transform to be performed in regular

desktop computers.

2.3 NMR in Petrophysics

The development of NMR instrumentation and techniques, especially the low-field ones,

were mainly driven by the energy industry, particularly by oil research and its interest

in accessing hydrocarbon reserves in subsurface conditions [5, 6, 102]. The NMR signals

obtained from fluids under confinement can be interpreted in order to provide insightful
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information on petrophysical properties of porous rocks, both in qualitative and quantita-

tive manners. The need to perform such measurements in situ motivated the development

of portable NMR devices to be integrated in the so-called well logging tools.

Well logging tools, as the name suggests, comprises a set of characterization techniques

used to exploration (uncased reservoirs) and surveillance of subsurface reservoirs. Different

techniques, such as acoustic, electromagnetic and chemical are employed to provide data

that can be analyzed for the determination of subsurface physical properties and reservoir

parameters, such as porosity, permeability or even fluid content (oil, water or gas). These

measurements are collected versus depth along a well, and thus respond to variations in

rock lithology and fluid composition. The profiles obtained by each technique are combined

in a vertical data sheet for comparison and a petrophysical interpretation of the results,

so that the commercial feasibility of the reservoir, as well as producible volumes of oil

and gas, can be evaluated. Figure 2.14 shows an idealized log profile, including NMR

T2 distribution (to be addressed in this Section), porosity and permeability data, for a

reservoir containing portions of oil and brine (salt-saturated water).

The first NMR logging tool was patented by Russell Varian in 1952 [18], proposing

the use of the Earth’s magnetic field to perform measurements of liquids confined in

porous rocks at subsurface formations. In the 1970’s new logging tools started to be

developed and since then, companies like Schlumberger and Halliburton created and added

sophisticated logging tools to routine analysis, that can be run along with different logging

instruments such as resistivity, gamma ray, among others. Modern logging tools offer a set

of useful resources which goes from logging while drilling (LWD) capabilities (a resource

that represents a considerable cost reduction, since the drilling process does not need to

be interrupted for the logging measurements), until magnetic resonance imaging logging

(MRIL) systems [5].

Naturally, NMR measurements can also be performed in laboratory conditions using

rock samples obtained from cored plugs extracted during the well drilling. Although in

some cases the extracted samples may be maintained at reservoir pressures [4], commonly

they are allowed to equilibrate with surface temperature and pressure conditions, a process

during which the most volatile hydrocarbons are lost. The plugs are submitted to routine

procedures of cleaning and drying, in order to be prepared for a large set laboratory

measurements, denominated routine core analysis (RCAL). Routine measurements include

porosity, permeability, mercury intrusion porosimetry, chemical analysis, microscopy imag-

ing, among others [5].

A different group of techniques, denominated special core analysis (SCAL), relates

to measurements such as wettability, relative permeability, and also NMR. Laboratory

relaxation and diffusion NMR measurements are usually performed at low-field bench-
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Figure 2.14: Illustration of an idealized log interpretation from a reservoir containing brine
and a medium viscosity oil. Adapted from reference [103]. A series of T2 distributions are
stacked in the left column, as a function of the well depth. The vertical red line in the
T2 distributions represent the T2 cutoff, a value determined experimentally as a reference
to separate relaxation times associated with oil (shorter T2) and brine (longer T2). The
black and blue areas in the central column stands for the producible volumes of oil and
water, respectively. The dashed line represents the total porosity φ. The right column
presents a permeability estimate, calculated using the logarithmic mean of the relaxation
time distribution and an empirical function [104]. Three distinct regions are marked on
the left. Region I correspond to a cap rock, a highly impermeable rock, usually shale,
anhydrite or salt, which seal the reservoir rock so that fluids cannot escape. Region II
correspond to a low-permeability oil reservoir. Region III denotes a moderate-permeability
water saturated rock.
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top equipment, so that the spin dynamics, and consequently the physical framework, can

be consistent with the one from logging tool measurements. This is especially relevant

considering the formerly discussed field distortions, induced by susceptibility contrast,

and the influence of internal field gradients in the observed relaxation rates.

In this section we will discuss the theoretical framework required for one to comprehend

how the interpretation of NMR measurements can be used to provide relevant information

on petrophysical properties of porous rocks.

2.3.1 Fast Diffusion Regime and Relaxation Rates

The information provided by NMR logging profiles relates to relaxation time distributions,

extracted from a series of longitudinal (T1) or transverse (T2) relaxation measurements

(depending on the tool) versus the well depth. Before we discuss how such relaxation

time distributions can be obtained, we shall recall some concepts regarding the behavior

of fluids under confinement. The transverse magnetization signal obtained from a CPMG

experiment in a bulk liquid sample, can be expressed by Equation 2.89, which can be

rewritten as:

M(t) = M(0)e−t/T2 , (2.96)

wherein 1/T2 denotes the observed, or effective transverse relaxation rate, which considering

our developments up to this point, can be expressed as:

1

T2
=

1

T2b
+
D(γgτ)2

12
, (2.97)

in which 1/T2b is the bulk value of the transverse relaxation rate and the second term on

the right side accounts for the contribution associated with the diffusion through internal

field gradients (Equation 2.88).

Notwithstanding, the influence of confinement was not yet considered in our calculations.

For such task, the appropriate boundary conditions must be included to the solution of the

Bloch-Torrey equations, which describe the dynamics of the magnetization components,

including the diffusion terms [14]:

∂Mx

∂t
= γ( ~M × ~B)x −

Mx

T2
+D∇2Mx, (2.98)

∂My

∂t
= γ( ~M × ~B)y −

My

T2
+D∇2My, (2.99)

∂Mz

∂t
= γ( ~M × ~B)z −

Mz −M0

T1
+D∇2Mz, (2.100)
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wherein ~M and ~B are the local magnetization vector and the homogeneous polarizing

magnetic field from the original Bloch equations, M0 denotes the equilibrium magnetization

directed at the z axis (considering a polarizing magnetic field ~B = (0, 0, B0)) and D is the

molecular self-diffusion coefficient.

As proposed by Brownstein and Tarr [24], a general solution considering a Robin

boundary condition, i.e., portraying an impermeable surface on which nuclei can partly

lose their magnetization, can be written as summation of normal magnetization modes

(Equations 1.2 to 1.4). Considering the expressions obtained for the transverse and the

longitudinal magnetization (Equations 2.89 and 2.90), and assuming that both calculations

are also valid considering the case of fluids within a certain confining geometry, general

solutions for the longitudinal and transverse magnetization densities in the presence of

geometrical boundary conditions can be expressed as:

mz(t) = m0 − [m0 −mz(0)]e−t/T1b
∞∑
n=0

AnFn(~r)e
−t
Tn , (2.101)

mxy(t) = mxy(0)e−t/T2be(−γ2g2Dt3/12)
∞∑
n=0

AnFn(~r)e
−t
Tn , (2.102)

wherein T1b and T2b denote the longitudinal and the transverse bulk relaxation times,

respectively, An are constants, and Fn(~r) and 1/Tn are the eigenfunctions and eigenvalues,

respectively, that satisfy the eigenvalue problem described by Equations 1.2 and 1.3.

As discussed earlier, these equations show that multiexponential NMR signals, for

both longitudinal and transverse magnetization, may emerge as a simple consequence of

the mathematical structure of the problem regarding the solution of the Bloch-Torrey

Equation with boundary conditions. Nevertheless, in order for one to give a proper

interpretation for the observed relaxation rates it is important to analyze the role of

diffusion in surface relaxation, and consequently in the solutions expressed above. The

Robin boundary condition in Equation 1.3 means that diffusing molecules will partly

lose their magnetization due to some sort of surface relaxation at the confining surface,

a process associated with the parameter ρ. Notwithstanding, the total number of molecules

that will encounter a confining surface will depend on the relation between the characteristic

confining scale a and the molecular self-diffusivity D.

The relations expressed in Equations 1.7 and 1.8 can be used to determine which

diffusion regime should be considered in the analysis of relaxation profiles. In the slow

diffusion regime (i.e., ρa/D � 1), the relaxation process is referred to as being diffusion-

limited, which means that depending on the relation between the characteristic confinement

scale parameter a and the self-diffusion coefficient D, molecules may not, on average,

experience an expressive number of encounters with pore walls, and consequently, surface
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effects will not dominate over the measured relaxation rates. Nonetheless, in the fast

diffusion regime (i.e., ρa/D � 1), the relaxation process is referred to as being surface-

limited, as diffusing molecules will experience surface relaxation several times (Figure

2.15).

Figure 2.15: Illustration of the slow (left) and fast (right) diffusion regimes of confined
fluid molecules. In the slow diffusion regime molecules do not experience an expressive
number of encounters with pore walls and the relaxation process is diffusion-limited. In
the fast diffusion regime molecules experience surface relaxation several times, and the
relaxation process is referred to as surface-limited.

Particularly, the fast diffusion regime allows a more straightforward interpretation of

multiexponential relaxation signals, and it became a very common approximation in

NMR petrophysics. In the fast diffusion regime, diffusion of molecules will lead to a

relative homogenization of the magnetization density, and the observed magnetization

decay will be, in a fair approximation, ruled by a single relaxation rate, associated with

surface effects. This means that the summation expressed in Equations 2.101 and 2.102

will be dominated by a single relaxation mode F , which in this case can be considered

approximately constant. Integrating Equation 1.2 over the volume V and Equation 1.3

along the confining surface S, we have for the main magnetization mode F :∫
V

(D∇2F − λF ) dV = 0, (2.103)

∮
S

(D~∇F · n̂+ ρF ) da = 0. (2.104)
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Using the Gauss theorem, Equations 2.103 and 2.104 can be rearranged to:∮
S
ρF da = λ

∫
V
F dV, (2.105)

and since F is approximately constant, we have for the governing relaxation rate λ the

relation:

λ ≈ ρ S
V
. (2.106)

The result expressed in Equation 2.106 is especially important for the interpretation

of relaxation profiles obtained from fluids in porous rocks. Under the assumption of a fast

diffusion regime, the magnetization decay obtained from fluid molecules inside a confining

surface (pore) will be dominated by a single relaxation rate (i.e., mono-exponential), which

relates directly to pore’s geometry (S/V ) and chemical (ρ) features. If one considers that

the diffusion of molecules within a single pore dominates over the diffusion along different

pores, heterogeneous systems such as porous rocks with restricted pore connectivity, can

be modeled by collection of “isolated” pores with different sizes, which can be thus

characterized by a multiexponential relaxation profile. These assumptions, regarding the

fast diffusion regime and the relation between the observed relaxation rates and pore

features, are the foundation for the interpretation of relaxation time distributions obtained

from NMR logging, which will be addressed in the following Sections.

In the fast diffusion regime, including the effect of confinement obtained in Equation

2.106, the observed longitudinal and transverse relaxation rates for a fluid within a confining

surface (pore) may be approximated as:

1

T1
=

1

T1b
+ ρ1

S

V
, (2.107)

1

T2
=

1

T2b
+ ρ2

S

V
+
D(γgτ)2

12
, (2.108)

wherein T1b and T2b denote the longitudinal and transverse bulk relaxation times, and

ρ1 and ρ2 represent the surface relaxivity parameter associated with longitudinal and

transverse relaxation processes, respectively.

2.3.2 A Microscopic Note on Surface Relaxation Processes

It is crucial to bear in mind that, in our previous developments the longitudinal and

transverse surface relaxation processes of the nuclear spin are summarized, or represented,

by the parameters ρ1 and ρ2, relating to the surface relaxation “strength”, or its overall

effect. Microscopically, spin relaxation at the pore surface concerns complex processes

involving the microdynamics of adsorbed molecules. Disregarding the choice of an exact
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microscopic framework (one can find enlightening models and discussions in references

[29] and [65]), generally, surface relaxation of nuclear spins can be understood as a 3-step

process (Figure 2.16).

At first, the excited spin will diffuse through the bulk phase to encounter a pore wall and

be adsorbed in the surface bound layer, a process which is bulk-mediated and whose time-

scale depends initially on the balance between the confinement scale and the molecular self-

diffusivity. Once at the surface, we enter the second phase, associated with the residence

time of spins at the surface adsorbing sites, during which relaxation processes take place.

Here, several mechanisms can be responsible for promoting spin relaxation [105].

Among the most common ones we may cite: the homonuclear dipole-dipole coupling,

which can reduce the frequency of molecular motion; cross-relaxation processes by other

nuclear spins, such as strong proton-proton interactions at the surface; relaxation promoted

by paramagnetic ions, related to the large magnetic moment of electrons; and also relaxation

promoted by free electrons, which occurs due to the presence of unpaired electron spins,

usually populating crystallographic point defects at the surface. Furthermore, it was

discovered that adsorbed molecules may diffuse along the surface, performing a sort of

Lévy walk from one adsorbing site to another [63, 64, 106]. Hence, during the surface

diffusion process any of those mechanisms, or even a combination of them, may cause

nuclear spins to relax.

Surface relaxation processes were also found to be dependent on the magnetic field

strength, a phenomenon known as relaxation rate dispersion. The first theory proposed

to explain the dependence of relaxation rates on the magnetic field strength was the BPP

theory (Bloembergen, Purcell and Pound [7]), in 1948, although the application of the

model is considered more successful in homogeneous bulk systems than in heterogeneous

complex ones. Late theories were also prosperous in explaining relaxation rate dispersion

curves [29, 65, 107] with physical frameworks at a microscopical level. All of these model-

predicted dispersions of relaxation rates can be experimentally verified by the use of field

cycling NMR techniques - i.e., variable field NMR - [108]. Finally, at the last phase, the

relaxed spin leaves the surface and returns to the bulk phase.

The overall effect of surface relaxation and its effect into the observed relaxation rates

in NMR experiments will depend, firstly, on the relation between molecular self-diffusivity

and the confinement scale (or the surface-to-volume ratio), which defines, on average, the

rate of encounters between excited diffusing spins and the pore surface. Nonetheless, the

actual ”strength” of surface relaxativity will rely on features regarding fluid’s molecular

properties, such as polarity, molecular shape and the nuclei chemical environment [76,

109], its affinity for the pore surface, as well as the surface topology [110]. Thereby, it

should be emphasized that ρ1 and ρ2 quantities expressed in equations describing the role
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Figure 2.16: Illustration of the 3-step surface relaxation process considering, for an
example, the interaction of the 1H proton nuclear spin with free electrons or paramagnetic
ions at the pore surface. (I) The excited proton spin diffuses from the bulk phase to the
surface bound layer. (II) Relaxation mechanisms take place during the residence time of
molecules at the surface bound layer, during which molecules may diffuse along adsorbing
sites. (III) The relaxed proton spin diffuses back to the bulk phase.

of surface in the observed relaxation time of confined fluids synthesize the global effect

resulting from an intricate network of microdynamical processes occurring at the pore

surface, in a similar way as the parameters used to describe chemical reaction rates.

2.3.3 Inversion of Multiexponential Decays and Relaxation Time

Distributions

Let us take once more, for an example, the measurement of the magnetization decay in

a CPMG experiment, this time performed in a fluid-saturated porous rock. Assuming

that the system is in fast diffusion regime, and that pore connectivity is such that the

diffusion of molecules along different pores can be neglected, each pore will contribute to

the total magnetization decay with its own relaxation rate 1/T2. Denoting by f(T2) the

function representing the T2 density, the total magnetization signal at a given time τ may
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be expressed as:

M(τ) =

∫
f(T2) exp(−τ/T2) dT2. (2.109)

Equation 2.109 express a multiexponential NMR signal associated with a distribution of

relaxation times, which here, arises from a collection of fluid-saturated (and approximately

isolated) pores in a rock sample, in the fast diffusion regime.

The T2 density function f(T2) in Equation 2.109 may be obtained by the Inverse Laplace

Transform of the acquired signal M(τ). In the case of a real measurement, the inversion

process aims to find a set of T2 amplitudes, or a discrete T2 density function F , from a

discrete data set of echo amplitudes M . Accordingly, the discretized version of Equation

2.109 may be expressed as:

M(τ) =
n∑
i=1

F (T2) exp(−τ/T2,i). (2.110)

Let us assume that the data set M is a m-dimensional vector, in which m represents

the number of acquired echos. The discrete density function F , a unknown vector, is

predetermined to be n-dimensional, which means that there will be a number n of T2

values, commonly taken to be logarithmic distributed, whose amplitudes we want to

determine. The relation between the matrices M and F is established by the new discrete

kernel function K = exp(−τm/T2,n), which is thus a m× n matrix:

M = KF +N, (2.111)

wherein N represents the m-dimensional noise matrix. Solving for F may be achieved

through a least squares fit performed to minimize the squared error sum functional defined

by [52]:

Φ[F (T2)] = ‖M −KF‖2 (2.112)

Generally, a valid solution for F should be determined in order to fulfill the condition:

‖M −KF‖ < σ, (2.113)

in which σ denotes the noise variance. Notwithstanding, the ill-posed character of the

inverse Laplace problem inflicts that, for a finite signal-to-noise ratio, there is a set

of mathematically valid solutions which satisfy the condition in Equation 2.113. In

order to assist the solution choice process, a collection of a priori information, known

as regularization tools, can be incorporated into the inversion procedure. Among several

regularization techniques, the method proposed by Tikhonov [50, 51] became very popular

as a general approach for one to solve Fredholm integral equations of the first kind, such as
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Equation 2.109. Tikhonov proposed that an approximate solution could be found instead

of an exact one. By performing such approximation, the new functional to be minimized

can be generally expressed as:

Φα[F (T2)] = ‖M −KF‖2 + αΩ[F (T2)], (2.114)

wherein Ω[F (T2)] represents a regularizing (or smoothing) functional, and α is known as

the regularization parameter.

In practice, the implementation of Tikhonov’s method requires the choice of both, a

smoothing functional form and the value of the corresponding regularization parameter.

Different forms for the smoothing functional Ω may be employed depending on the problem

investigated, relating to the zeroth, first and second derivatives of the density function F

[52]. Once the smoothing functional is chosen, the value of the regularization parameter

will determine the balance between the exact and the smoothed solutions. Taking the

value of α as 0 to minimize the expression in Equation 2.114 usually leads to a solution

which is unstable with respect to small fluctuations in F (i.e., experimental noise) and

may have no physical meaning. However, large α values may stabilize, but also overly

smooth the solution, meaning that relevant physical information may be lost.

Several distinct criteria may be employed to assist a proper choice for the value of the

regularization parameter, most of them being commonly related to the existence, or not,

of some a priori information regarding the noise variance [111, 112], as well as problem

features.

Although these criteria will not be detailed here, the effect of the regularization parameter

value on the inversion process is illustrated in Figure 2.17. The decaying signal on

the left plot is a normalized 2000-point synthetic data composed by the summation of

three exponential decays with distinct weights, and relaxation rates which differ one from

another by approximately one order of magnitude:

S(t) = 0.2e−t/T2,1 + 0.3e−t/T2,2 + 0.5e−t/T2,3 +N, (2.115)

wherein T2,1, T2,2 and T2,3 were defined as 3, 30 and 150 ms, respectively, and N was added

using a random noise function so that the final signal-to-noise ratio was S/N = 5, in order

to simulate a real experimental data set. The inverse Laplace transform was performed

using a Tikhonov regularization algorithm with a non-negativity constraint [113].

The results of the inversion for three different values of the regularization parameter α

are shown in the right plot of Figure 2.17. For small values (α = 0.025) the solution is

actually unstable, and the inversion shows a relaxation distribution with several peaks,

which in this case are only mathematical artifacts. For large alpha values (α = 25) the
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presented solution is overly smoothed, and part of the information on the three initial

relaxation rates which compose S(t) is lost. An intermediate behavior is seen for α = 2.5,

when the solution partially recovers a relaxation time distribution with three regions,

relatively close to the initially proposed time constants. Noise plays an important role

in the solution of inverted data, since it is usually the data signal-to-noise ratio that will

dictate the weight of the smoothed solution over the exact one [114].

Figure 2.17: Inverse Laplace transform of a synthetic data composed by the summation of
three exponential decays (left plot) with distinct weights and relaxation rates (Equation
2.115), using a Tikhonov regularized algorithm with positivity constraint, for three
different values of the regularization parameter α (right plot). The amplitudes of the
inverted solutions were normalized by their maximum height for a clear visualization.
The behavior of the inverted data depends on the balance between the exact and the
smoothed solutions, determined by the value of α.

The regularized inverse Laplace transform of data obtained from relaxation profiles

inverts the signal in the time domain to a quasi-continuous distribution of relaxation times,

and is the standard procedure for the analysis of NMR logging measurements (first column

of Figure 2.14 ). The interpretation of the inverted data, assuming the condition of fast

diffusion, is to associate a distribution of relaxation times with a pore size distribution, as a

consequence of the relation expressed in Equation 2.108, assuming that the bulk relaxation

rate and the effect of diffusion through internal field gradients may be neglected, and that

the surface relaxivity ρ can be considered sufficiently homogeneous along the sample.

There are other advantages in visualizing NMR data as a distribution of relaxation

times. The area underneath the inverted solution represents the total volume of fluid being

measured and under a proper calibration the sample’s porosity - the ratio between the
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total porous volume (≈ fluid volume5) and the sample’s total volume - can be determined.

Besides, the association between pore sizes and relaxation rates allows one to relate smaller

relaxation times to fluids under heavy confinement, or with low mobility, also referred to

as bound fluids, and consequently, the ones with greater relaxation times are related to

movable portions, or free fluid. Usually, a reference value known as T2 cutoff is used

to separate these two portions of fluid in the T2 distribution, in order to provide a rough

estimate of both volumes along the vertical NMR profile, i.e., versus the well depth (Figure

2.14).

It must be noted that, the association between NMR relaxation rates and pore size

distributions rely on a particular set of constraints regarding the diffusion regime (which

depends itself on the self-diffusivity of the fluid and the relation between the value of the

surface relaxivity parameter ρ and the confinement scale), the pore scale and connectivity

(the latter determines if the diffusion within pores will dominate the over the diffusion

along pores), and also the homogeneity of ρ along the porous sample. Furthermore, in

the particular case of NMR logging profiles, each measurement will be sensitive to, and

consequently averaged over a portion of the reservoir (depending on the tool design),

which must be presumed to hold a certain degree of homogeneity in order for these

approximations to be applied.

Chapters 3 and 4 present two works regarding the application of high-field NMR

techniques to the characterization of confined fluids in porous media. Each of those works,

developed in the context of a research project in NMR Petrophysics, was motivated by a

careful evaluation of the respective framework employed for data analysis - including all

the involved parameters, regimes and approximations - and the subsequent interpretation

of the results, especially on what regards geometrical features of the investigated systems,

and correlated properties.

In Chapter 3, we present a systematic study on T2 relaxation times obtained from a set

of water-saturated synthetic porous samples in high- and low-field NMR equipment. The

choice for synthetic porous media was motivated by the possibility of achieving a better

control on all the previously mentioned variables that influence the observed relaxation

rates of confined fluids. Pre-selecting the material and customizing the fabrication process

it was possible to produce a set of samples with distinct confinement scales, although

maintaining the same mineralogy, in order to assure a homogeneous effect of surface

relaxation along a single sample and also among different samples. All samples were

carefully characterized for chemical composition, topology and also for petrophysical

5The total porous volume matches the fluid volume only in the case of full saturation, i.e., when all the
available pore space is filled with fluid. In practice this does not always happen. The ratio between the
fluid volume and the sample’s volume is referred to as the effective porosity, accounting for the saturable
portion of the pore space. The ratio between the total pore space, saturable or not, and the sample’s
volume is referred to as the absolute porosity, often determined by micro imaging techniques.
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properties such as porosity, permeability and pore size distribution, the latter performed

by the processing of micro computed tomography images, in order to assure a proper

analysis on the correlation between the measured relaxation rates and samples geometrical

features. The influence of the magnetic field strength and the mathematical procedure for

the processing of raw data on the observed relaxation rates were also addressed.

The work presented in Chapter 4 relates to the same paradigm: the analysis and

interpretation of NMR data for the characterization of confined fluids, this time under the

light of diffusion NMR. In this work, a set of time-dependent diffusion NMR experiments

are carried out under the framework of restricted diffusion in order to provide information

on conformation features of water-oil emulsions under confinement. The motivation relies

on merging the capabilities of diffusion NMR techniques to identify distinct fluids, with the

geometrical features that can be extracted through data analysis within the framework

of restricted diffusion, in order to propose a methodology capable to provide valuable

information not only on individual characteristics of both water and oil phases, but also

on the conformation scenario of both fluids under confinement. Following an author’s

structure choice, the theoretical background for diffusion NMR, as well as the framework

of restricted diffusion, were not presented in this Chapter, instead, both are discussed in

Chapter 4, as a preparation to the referred work.

Chapter 5 presents a relatively new high-field NMR technique and its potential applica-

tion to the characterization fluid-saturated porous media, which relate to future works

and applications which are still under initial development. The application of long-lived

singlet sates is presented as a tool allowing the access to long-time regimes in diffusion

NMR experiments with fluids under confinement. The behavior of molecular self-diffusion

coefficients in the long-time regime can be associated with geometrical properties of porous

media of great interest. The theoretical background, a potential application and initial

developments are presented.
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Chapter 3

Multi-exponential Analysis of

Water NMR Spin–Spin Relaxation

in Porosity/Permeability -

Controlled Sintered Glass

3.1 Motivation and Background

Nuclear magnetic resonance (NMR) experiments involving fluids confined in porous media

are long used for the geometrical characterization of porous structures [4, 6]. Since the

most common pore systems are filled with water, the technique often employed is proton

NMR.

The association of nuclear magnetic decay and microstructure is based on the observed

increased rate of relaxation generally promoted by confinement [6]. In ordinary sized

samples, e.g., fluids contained in probe tubes of NMR spectrometers, with dimensions in

the order of millimeters - i.e., bulk samples - the nuclear magnetic relaxation of water

protons is well described by Bloch equations [2]. In practice, this means that single

exponential curves fit the decay profiles obtained from typical NMR experiments. As the

samples, however, become confined to dimensions in the order of tens of micrometers, a

substantial increase in relaxation rates is observed, as surface relaxation effects become

prominent. In this case, multiexponential NMR decays may arise as a consequence of a

summation of magnetization modes, or from a system which is dynamically heterogeneous.

In this case, the addition of more exponentials to fit the measured data is somewhat

unrestricted since the number of exponentials needed to a good fit is generally not fixed
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a priori. Notwithstanding, it is well known that two or three exponentials terms suffice

in describing a general decay behavior, which does not produce a conclusive information

since entirely different multi-exponential fits can adjust to the same data with similar

precision [52].

Assuming that the confined fluid molecules are in the fast diffusion regime (see Section

2.3.1), every pore in a porous system decays mono-exponentially and hence the overall

relaxation corresponds to a sum of many exponential decays. In this particular case, data

fitting by multiple exponentials is unfruitful in the sense that the exact number of signal

components is unknown. In this case, a “guessed” interval for the values of T2 is set, and

numerical Laplace transform inversion techniques have become the usual approach for

processing NMR relaxation data. Although the analytical inverse Laplace transform may

be uniquely determined, the numerical procedure is highly sensitive to small fluctuations

such as experimental noise, a problem commonly surpassed with regularization tools [49].

Inverted distributions are therefore not unique and the range of their distinction depends

directly on the quality of the acquired data [114]. In any case, further conditions can

always be assumed to ensure uniqueness or to pick a reasonable distribution among the

available ones.

On the view of the most common interpretation, the inverted distribution of relaxation

times corresponds to the distribution of pore sizes in the sample considered. As discussed

in Chapter 2, there are clearly some problematic issues on establishing a direct relation

between pore sizes and relaxation times. Whenever material heterogeneity is present,

or even if the fast diffusion regime may not be assured, the relation cannot be imposed

without concern and a model of how surface related parameters influence relaxation times

needs to be introduced before any association with pore sizes is made.

Another issue relates to the fact that in general porous systems the pores are rarely

disconnected. The impact of pore communication on relaxation however may be much

more complex as it does not only depend on geometrical features of the pore space, since

diffusion and intensity of surface activity also play important roles [27].

Evaluating surface activity in nuclear magnetic relaxation is then a fundamental step

for a better interpretation of NMR decays and their relation with pore size distributions.

From the mathematical perspective, the problem relates to include boundary conditions

that account for surface effects in the Bloch-Torrey equations [14]. In the light of early

heuristic attempts [8, 116] and formulations based on non-equilibrium thermodynamics

principles [107, 117, 118], surface relaxation processes are taken to be well represented

by the surface relaxivity parameter ρ, introduced in Chapter 2. Furthermore, the nuclear

magnetization over a pore can be considered homogeneous in fast-diffusion regime, and

so it is possible to associate to each pore a decay rate which is generally represented by
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Equations 2.107 and 2.108.

Although the use of such approximations to the case of communicated porous structures

should be carefully addressed, it is nevertheless the traditional interpretation for NMR

relaxation data of saturated porous media. The relaxivity influence on the incremental

pore relaxation rate is usually overlooked when applying Equations 2.107 and 2.108 to

real pore systems on the grounds that specimens are sufficiently uniform in material

composition or diffusion is fast enough to homogenize effectively surface heterogeneities.

While the latter argument may be considered valid on single pores, it most definitely

cannot be true for the entire sample as a result of the relatively short distance traveled by

most nuclear spins. Material homogeneity, on the other hand, may be safely assumed for

synthetic structures, provided a controlled fabrication process, whereas for most natural

ones, the assumption in fact only leads to a desirable approximation. In order for one

to understand the exclusive effects of confinement on the NMR proton relaxation, one

must assure an uniformity of surface activity along the sample, most easily obtained by

employing artificial porous systems.

In spite of the vast literature on this subject, broadly motivated by the important

applications in the oil industry, there is still room for systematic studies under controlled

laboratory conditions on the roles that acquisition noise and the physical properties of the

sample play on the observed NMR decay, as well on the conditions with which such data

can be interpreted as corresponding to pore size distributions.

In this work a thorough study of T2 water relaxation times is performed in artificially

sintered sand-glass samples using high- (500 MHz) and low-field (15 MHz) NMR, under

conditions of porosity and permeability control and low noise. Setting of material and

geometric parameters is achieved by selecting different grain sizes and applying a specific

thermal treatment. The pore size distribution of sintered samples is calculated through

the analysis of 2D micro-tomography images using image processing tools and a proper

segmentation algorithm.

The experimental NMR data is then analyzed by three distinct procedures: Laplace

inversion with optimized regularization and nonlinear least-square curve fittings, first, with

bi-exponential functions and, finally, q-exponentials. This last approach is based in the

assumption of a chi-square distribution of relaxation times [119], as opposed to a Gaussian

or half-Gaussian distribution in the case of a stretched exponential [120]. The results of

the three methods are compared and it is discussed to what extent the distribution of

relaxation times so obtained may be interpreted as pore size distributions.
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3.2 Sample Fabrication and Characterization

3.2.1 Sintering and Chemical Analysis

Solid glass microspheres of four different size ranges (A: 53-106µm; B: 150-212µm; C: 250-

300µm; D: 350-500µm) were sintered to produce four types of porous samples. Microspheres

from each range were placed in cylindrical ceramic crucibles (Al2O3 99.8%) and taken to

a chamber furnace (Carbolite CWF 1200) for the following heat treatment: from room

temperature to 560 C◦ at 140 C◦/min, held for 20 minutes; from 560 to 700◦ C at 20◦ C

/min, held for 1 hour; from 700 to 490◦ C at 14◦ C /min, 490 to 440◦ C at 28◦ C /min, and

then cooled to room temperature. For each size range, two sizes of cylindrical crucibles

were used to produce samples with �8× 40mm and �38× 28mm (Figure 3.1) for use in

high- and low-field NMR equipment, respectively.

Figure 3.1: Ceramic crucibles (left) and synthetic porous samples from size range D after
sintering (right), for application in high- and low-field equipment.

In order to assure the desired material homogeneity samples from all ranges were

submitted to energy dispersive x-ray spectroscopy (EDS) in a scanning electron microscope

(JEOL JSM-6490), in the LabNANO laboratory at CBPF. The EDS technique comprises a

chemical microanalysis, usually performed in conjunction with scanning electron microscopy

(SEM), wherein x-rays emitted from the sample during bombardment by an electron beam

are detected to characterize the elemental composition of the analyzed volume. Results

from the EDS analysis performed in samples of all size ranges are presented in Figure 3.2.

65



Figure 3.2: Energy dispersive spectroscopy analysis in sintered synthetic samples from
size ranges A to D. The presented graphs denote the average signal obtained from several
acquisitions performed in different regions of a sample, showing no significant variation in
composition among the observed samples.
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3.2.2 Porosity and Permeability Measurements

After the sintering process, samples were weighed, saturated with water and weighed again

to a crude first mechanical estimation of porosity values. Saturation was performed using

the method known as imbibition. The dry sample and the water recipient are placed

in a desiccator connected to a vacuum pump. After the establishment of a low vacuum

condition in the desiccator the sample is then dropped into the water recipient in order to

minimize the formation of trapped air bubbles during saturation process.

Effective porosity and absolute permeability were respectively measured by the free-gas

expansion [121] and steady-state method [122] using in-house equipments at the research

center of Petrobras. Effective porosity accounts for the ratio between interconnected

pore volume - or the saturable volume - and total sample volume, not considering the

contribution of isolated pores:

φe =
interconnected pore volume

total sample volume
(3.1)

Absolute permeability, on the other hand, is related to the porous media ability to allow

the flow of a single fluid, and can be defined by the relation:

v = −κ
µ

dP

dL
(3.2)

wherein v represents the apparent fluid velocity, κ is the sample permeability measured

in units of Darcys1, µ is the viscosity of the fluid, and dP/dL is the pressure drop per

unit length. Whereas porosity values present no significant changes among the studied

samples, permeability values, on the other hand, show a high dependence with average

grain diameter, as it can be seen in Figure 3.3.

The sintering protocol was designed to preserve most of the porosity in the original

unconsolidated sphere packing, which is nearly the same over all grain size ranges employed.

This allows for the assumption of similar amounts of saturating fluid over samples that

exhibit different pore sizes and, incidentally, with respect to NMR technique, a fair

comparison between corresponding signals. Scanning Electron Microscopy (SEM) and

micro-computed tomography techniques were used to evaluate the structure of porous

spaces. Typical images are shown in Figure 3.4.

1A porous sample with permeability equal to 1 Darcy allows a flow of 1cm3/s of a fluid with viscosity
of 1mPa.s under a pressure gradient of 1atm/cm acting across an area of 1cm2.
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Figure 3.3: (Left) Porosity values estimated by saturated mass (triangles) versus the
values obtained using the free-gas expansion method (squares). (Right) Permeability
values obtained using the steady-state method. A significant increase of permeability is
observed, in opposition to porosity, which remains nearly constant. Here, the average
grain diameter represents simply the mathematical average between the lower and upper
microspheres’ diameters within each chosen grain (sample) size range.

3.3 Calculation of Pore Size Distribution from 2D Micro-

Tomography Images

In order to investigate confinement features from the samples after the sintering process,

2D micro-tomography images with a resolution of 5 µm/pixel were processed for the

determination of pore size distributions and two-dimensional porosity values. The first step

regards the segmentation of pore spaces and grains in transverse (x− y plane) 2D images

obtained from cylindrical samples (Figure 3.5). Although this task can be considerably

burdensome in the case of real rocks, mostly due to the mineralogical and geometrical

heterogeneities of the porous space, it can be much simpler in the case of synthetic

samples with a narrow grain size range and homogeneous mineralogical composition.

Image segmentation was performed using the Image Processing toolbox (MATLAB 2019b).

Figure 3.6 shows an example of a segmented micro-tomography image for a sample from

size range C.

The crucial step for one to obtain a pore size distribution relates to the choice of a proper

method to identify and characterize pore regions and sizes in the segmented image. For

such task the algorithm proposed by Rabbani et al. [123] was adopted. One of the most

positive aspects of the proposed method relates to the coupling of well-known distance

functions and a watershed flooding segmentation algorithm [123–125], in order to directly
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Figure 3.4: SEM images (left) and micro-tomography slices (right) artificial samples
examples for each size range of grains. In spite the clear variation of porous sizes, the
porosity remains nearly the same in all samples.
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Figure 3.5: Scheme illustrating the acquisition of 2D transverse micro-tomography images
from cylindrical samples. Each sample is scanned along the z axis for a full set 2D images.

Figure 3.6: Example of segmentation of pore space and grains from a 2D micro-tomography
image in a synthetic sample from size range C. After the calibration of an appropriate
threshold the original image is processed to be converted in a binary map. In the original
image, the light gray pixels represent the grains and the dark gray pixels denote the
porous space. Segmentation was performed using the Image Processing toolbox (MATLAB
2019b).

70



identify and separate pore regions and throats.

The foundation of the watershed flooding algorithm can be understood considering the

dynamics of a water drop once it is placed into a topographic relief, as it will flow to the

nearest minimum. The method consist of identifying these regional minimum points and

assuming each one of them as a water source, used to flood the entire relief. In points

wherein floods by two distinct sources meet a watershed line (barrier) is created, and two

distinct regions are defined.

A common procedure for the location of regional minimum points is to perform the

calculation of the Euclidean distance distribution from the binary image (Figure 3.7). In

the Euclidean distance map the intensity of each pixel represents the distance between

that pixel and the first non-zero pixel in the original binary image. Through the distance

map topographic regional minimum points can be found according to the location of high

or low intensity pixels. Once the source points are defined, flooding by each one of the

sources will result in distinct regions separated by a watershed.

Figure 3.7: Example of a watershed segmentation process. An Euclidean distance map
(central image) is calculated from the original image (left image), composed by two
overlapping spheres. In the Euclidean distance map the intensity of each pixel represents
the distance between that pixel and the first non-zero pixel in the original binary image.
Regional minimum points are determined through the location of high or low intensity
pixels. After the flooding by each one of the sources distinct regions are then separated
by a watershed (right image).

The distribution of pore sizes in each 2D image was obtained assuming that the radius

of realistic pores (regions) are equal to the radius of model circular pores with the same

area. For each sample a set of 2D micro-tomography images of 864×864 pixels in size

and a resolution of 5 µm/pixel were processed and the resulting pore size distribution was
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represented by a 30-bin frequency histogram for a clear visualization of the results. The 2D

porosity was calculated for each image simply as the ratio between the porous area and the

total image area. Values of 2D porosity obtained from each transverse micro-tomography

image were plotted against the slice number for an analysis of the porosity variation along

the z axis. Pore size distributions and 2D porosity values obtained for samples from size

range A to D are shown in Figures 3.9 to 3.12. In each pore size distribution histogram

the green bar represents the average pore size of the obtained distribution and the red bar

denotes an estimate of the pore radius considering the relation dpore ≈ 0.45dbead, proposed

by Rémond et al. [126] for a lose packing of mono-sized beads.

An interesting behavior can be noticed in the average 2D porosity values obtained by

image processing in comparison with measured values (Figure 3.8). For the case of samples

with smaller bead size range (samples A and B) a considerable discrepancy between image-

processed and measured porosity values can be seen, due to the fact that the image

resolution and pore size scale are the same order of magnitude. As the characteristic

confinement scale increases in comparison with the image resolution (samples C and D)

such discrepancy decreases, and image-processed porosities approximate the measured

values. Another feature from 2D porosity curves is the noticeable dispersion of values

along the z axis. Such behavior is believed to be a consequence of the expected tighter

packing of smaller beads among each size range at the bottom of the ceramic crucible

before sintering, and most importantly points out a fabrication feature to be improved.

Figure 3.8: Porosity values obtained by the free-gas expansion method (blue squares),
saturated mass (red triangles) and by 2D micro-tomography image processing (green
circles) as a function of the average range diameter. The vertical bars in the green circles
denotes the standard deviation of values obtained along the set of micro-tomography
images.
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Figure 3.9: Synthetic sample A (53-106µm): (Left) Porosity values obtained from
segmented 2D transverse micro-tomography images versus the slice number along the
z axis. (Right) Sample’s pore size distribution obtained from the analysis of 2D micro-
tomography images using the algorithm proposed by Rabbani et al. [123]. The green bar
represents the average pore size of the obtained distribution and the red bar denotes an
estimate of the pore radius considering the relation proposed by Rémond et al. [126].

Figure 3.10: Synthetic sample B (150-212µm): (Left) Porosity values obtained from
segmented 2D transverse micro-tomography images versus the slice number along the
z axis. (Right) Sample’s pore size distribution obtained from the analysis of 2D micro-
tomography images using the algorithm proposed by Rabbani et al. [123]. The green bar
represents the average pore size of the obtained distribution and the red bar denotes an
estimate of the pore radius considering the relation proposed by Rémond et al. [126].
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Figure 3.11: Synthetic sample C (250-300µm): (Left) Porosity values obtained from
segmented 2D transverse micro-tomography images versus the slice number along the
z axis. (Right) Sample’s pore size distribution obtained from the analysis of 2D micro-
tomography images using the algorithm proposed by Rabbani et al. [123]. The green bar
represents the average pore size of the obtained distribution and the red bar denotes an
estimate of the pore radius considering the relation proposed by Rémond et al. [126].

Figure 3.12: Synthetic sample D (350-500µm): (Left) Porosity values obtained from
segmented 2D transverse micro-tomography images versus the slice number along the
z axis. (Right) Sample’s pore size distribution obtained from the analysis of 2D micro-
tomography images using the algorithm proposed by Rabbani et al. [123]. The green bar
represents the average pore size of the obtained distribution and the red bar denotes an
estimate of the pore radius considering the relation proposed by Rémond et al. [126].
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Average pore radius values (green bars) were in fair agreement with predicted values

(red bars) for all samples. One must notice that each sample was in fact fabricated

with beads distributed over a size range, instead of mono-sized ones, and also that beads

were sintered. Both factors implicate in a slight reduction of the average confinement

scale, which can be noticed in the obtained data as distribution average values are always

smaller than the estimated ones considering a lose packing. It is also worth noting that the

image resolution also influences the observation of small sizes in pore size distributions,

and hence the left side of each histogram is expected to be poorly represented as the image

resolution became comparable with the confinement scale, an effect already evidenced on

the processing of 2D porosity values.

3.4 NMR Relaxation Measurements and Data Analysis

NMR transverse relaxation (T2) measurements were performed at 25°C using both a Varian

(Agilent) 500 MHz (high-field) and a SpecFit (Fine Instrument Technology) 15 MHz (low-

field) spectrometers, applying CPMG protocols with same echo-time spacing, 1 ms. All

samples were saturated using the imbibition method with distilled water (100%). To

minimize desaturation during the experiments, samples were coated with thread seal tape

before insertion into the sample holder. This procedure was insufficient in the case of

sample D due to its high permeability. Measurements with this sample were deemed

inconclusive, therefore discarded from this discussion.

NMR spectra measured after a π/2 pulse obtained for samples A, B and C are shown in

Figure 3.13. One can observe a systematic line-broadening with the decrease of grain sizes.

This is consistent with the idea that magnetic field inhomogeneities due to susceptibility

contrast are greater in more confined regions due to the fact that relatively larger portions

of these regions are subjected to more intense field heterogeneities.

The results for high and low-field transverse relaxation are shown in Figure 3.14. A

strong dependence of the decaying curves on grain size can be clearly seen, indicating

that greater confinement yields faster relaxation. Notice that the effective relaxation rates

found under high-field conditions are consistently higher than the low-field ones. This

result is in sharp disagreement with the tendency reported in Ref. [107] in which the

longitudinal relaxation rates of water protons decrease with increasing field, provided it

can be assumed that the major mechanism of relaxation in the synthetic samples used

in this work is the same reported in Ref. [107], namely, dipolar coupling with adsorbed

paramagnetic ions.

Although only the field dependence of longitudinal relaxation rates is reported on that
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Figure 3.13: High field NMR spectra and respective line width values obtained for each
sample. As the porous sizes decreases the NMR line becomes broader.

work, it could be anticipated that a similar trend should be observed in the case of

transverse relaxation on the grounds that, essentially, longitudinal and transverse rates

differ from one another by a field-independent contribution, the so-called adiabatic2 T2 [2,

3]. It is yet true that these authors only present experimental data points up to about

20MHz but they also propose a model that extrapolates the behavior as decreasing in

higher field conditions. One possible reason that could lead to these differences would be

the presence of paramagnetic impurities in the solid matrix, as well as the influence of

magnetic susceptibility contrast between the fluid and the porous matrix on the measured

relaxation rates, depending on the spin echo decay regime. These points will be addressed

further in the discussion.

As none of the decay curves obtained can be satisfactorily fit with a mono-exponential

function, it is unreasonable to associate a single relaxation time to the systems in spite

of the fact that all studied samples are produced within relatively narrow grain size

2Considering the Heisenberg picture, a quantum mechanical description of longitudinal and transverse
relaxation functions can be carried out through the definition of an appropriate Hamiltonian to account
for the dynamics of the magnetization operator, especially on what regards its interaction part. The exact
behavior of the relaxation functions will depend, among other features, on the relation between system’s
motion time scale and its Larmor frequency, according to the obtained correlation functions. Particularly,
the adiabatic approximation comprises a system wherein particle motion can be considered much slower
than its Larmor frequency. For such case it can be shown that the classical behavior of relaxation functions
presented in Chapter 2 is recovered. A reader-friendly quantum mechanical approach on transverse and
longitudinal relaxation functions in liquids is presented in Chapter 7 of Cowan’s book [2].
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Figure 3.14: High and low-field transverse magnetization decay. Relaxation of water
nuclear spin magnetization is faster in samples with smaller porous sizes. The systematic
is the same on both, high and low-fields, but relaxation times are shorter in high-field.
The continuous lines are bi-exponential fits (see text).

distributions. It becomes necessary therefore to introduce an alternative method for

processing relaxation data.

There is a vast literature covering the issue of multi-exponential analysis, in particular,

the comprehensive review by Istratov and Vyvenko [52], which describes the various

existing methods, their limitations, the role played by noise, etc. The experiments presented

here were designed to level the noise condition and, in some extent, to guarantee an uniform

surface relaxativity among samples, whose porous structure can be characterized by three

petrophysical parameters: porosity, granulometry and permeability. Nevertheless, as it

was discussed in Chapter 2, some of the main difficulties of multi-exponential analysis

remain, simply due to the fact that they are inherent to the mathematical structure of the

problem.

The data analysis was performed using three different approaches: (i) Laplace inversion

with optimized regularization, (ii) bi-exponential and (iii) generalized q-exponentials non-

linear least-squares. Numerical Laplace inversion was carried through by a nonnegatively

constrained Tikhonov regularized algorithm. The amount of regularization used was
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determined by application of the principle of discrepancy [127], wherein the norm of

data errors is the only knowledge required. It was used the fact that in quadrature

detection, after a proper phase correction, the recorded signal on the 90◦-shifted detection

channel consists only of noise. Hence, it may be considered a sample of the random

processes that contaminate the experimental data. The norm of the quadrature signal

therefore is taken as the measure of errors on the zero phase signal. This identification

allows a successful application of the principle and consequently an unique selection of

regularization parameter based on the measured noise level.

For the nonlinear least-squares, two exponential functions were necessary and sufficient

to achieve excellent fit in all samples’ data. The quality of fit was verified by looking

simultaneously at Sum of Squares due to Error (SSE) and the R-square coefficient which

is about 0.9999 for all presented fits. Of course, the introduction of more exponential

functions results in fits of comparable quality (effectively the SSE is reduced), but based

in the principle of simplicity [52], the number of exponential functions was kept equal to

two.

The use of the so-called q-exponentials was first applied to the problem of processing

NMR relaxation data of fluid saturated porous media by Correia et al. [119]. These

functions have the interesting feature of representing the exact Laplace transform of χ2

distributions, which, consequently, leads to the assumption that, whenever they are a

good fit, a χ2 distribution of relaxation rates is a reasonable model. In motivation,

the method is similar to the use of the stretched exponentials [120] in which a half-

Gaussian or Gaussian distribution is implied. The fitting also yields directly the average

relaxation time, 〈T2〉, and the average relaxation rate, 〈1/T2〉, the former connected to

the q parameter. Unfortunately, for the data considered, no reasonably good fit can be

obtained with a single q-exponential function, so a composition of two is employed instead.

Figure 3.15 and Figure 3.16 compare the three methods of analysis respectively for high

and low-field data. Table 3.1 and Table 3.2 refer to the relevant information obtained from

bi-exponential and q-exponential least-squares in high and low-field measurements.

In all cases there are two very distinct modes, the second one exhibiting relaxation

times a factor about 4 times larger than the first. In what concerns their weights, it

was observed an approximate factor of 2 between them. It is clear that virtually the

same information regarding the dominant relaxation times is retrieved from all methods.

The agreement is in fact much better for slower modes although faster ones are seen in

the same order of magnitude. As an analytical tool, the q-exponential method has the

advantage of providing an explicit representation of the distributions, which is appealing

from a physical point of view, as 〈T2〉 and 〈1/T 2〉 also result directly from the fit.
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Figure 3.15: Comparison between the three methods of numerical analysis for high-field
decay data. On top, it is shown the χ2 distributions obtained from q-exponentials least-
squares. In the middle, Laplace inversion with optimized regularization, and in the
bottom bi-exponential nonlinear least-squares. The distributions fall in the same region
of relaxation times and the weights of the modes are similar to each other. The relaxation
times of the bi-exponential modes approximately meet the corresponding ones in the other
distributions.
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Figure 3.16: The same analysis made in Figure 3.15 but for low-field decay data. One can
observe that the general behavior is similar for high and low-fields. The corresponding
areas under the curves agree to each other within 10%.
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In contrast, the bi-exponential fit, although parametrically simpler, seems to provide

only the main tendencies of the signal decay. Any information whatsoever pertaining to

a dispersion of relaxation times is revealed, an undesirable feature for an interpretation

based on a direct relation of the latter with pore sizes. From the numerical standpoint,

it is hard to assess the sensibility of fit parameters to the noise level [52]. The presented

agreement may therefore indicate low noise conditions. Laplace inversion, on the other

hand, does not rely on distribution models, since it is a numerical procedure performed

directly on raw digitized relaxation data. The approach however introduces in the analysis

an element of uncertainty on the form of the regularization parameter α which greatly

influences shape, number and relative position of the distribution modes (see Figure 2.17).

By a proper adjustment of NMR quadrature signals and a reasonable definition of noise

level, an optimized choice of the regularization parameter can be made by choosing the

largest value which yields a residue equal to the measured noise level3.

On the basis of the assumed relation between pore sizes and relaxation times, it is

difficult to give a proper interpretation to the fastest modes due to the apparent homogenei-

ty in porous structure revealed in the processing of micro-tomography scans. Although

not noticed in the scanning microscopy images, these fast modes may be an indication of a

secondary porosity in the microspheres, or even small crevices formed during manipulation

and thermal treatment. The reappearance of essentially the same features in the derived

distributions, as field conditions are varied, is taken as a reasonable indication that those

distributions in fact correspond to samples geometry features.

It is well known that the presence of paramagnetic impurities on the solid matrix

affects the relaxation rates in two different ways, first due to the appearance of internal

field gradients induced by susceptibility contrast [82–84] and also by enhancing surface

relaxation effects [27]. The overall influence can be seen as the result of a balance between

paramagnetic impurities concentration, pore size scale and the diffusion length, being

the latter proportional to the time during which molecules diffuse through internal field

gradients, which in this case is the time interval between refocusing π pulses. Hence,

the observed relaxation rates depend on the echo spacing used in transverse relaxation

experiments, and for this reason measured T2 values are often referred to as apparent

relaxation times [128].

In order to investigate the influence of susceptibility contrast on the reported transverse

relaxation rates samples were submitted to energy dispersive spectroscopy (EDS) for a

compositional analysis. All the samples showed iron concentration no higher than 0.39%

in weight, and no significant quantities of other paramagnetic impurities were found.

Muncaci and Ardelean [129] investigated the influence of magnetic susceptibility difference

3The residue of regularized solutions as a function of the regularization coefficient, even for the
nonnegatively constrained problem considered here, is usually non-decreasing.
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on effective transverse relaxation rates as a function of echo spacing te for sintered porous

ceramic samples, with grain sizes between 63 and 120µm, each sample containing different

iron concentrations. For low iron content (< 1%), a decrease of approximately 50% in

transverse relaxation rates was observed by reducing CPMG echo spacing in one order

of magnitude (from 1 to 0.1ms), in a 20MHz field. Scanning electron microscopy images

show that the final pore size scale of the sintered ceramic samples reported by Muncaci

and Ardelean is in fact smaller than the one in the samples produced by glass beads

sintering. This fact, added to the low concentration of magnetic impurities on the latter,

suggests that a similar decrease could be expected in the low-field (15MHz) relaxation

rates measured in this work.

Table 3.1: High-field NMR (500 MHz) T2 exponential and q-exponential fitting parameters

Samples

Relaxation times

(ms)

Weights

(%)

SSE

(.10−3)

T2
(1) T2

(2) A(1) A(2)

Synthetic A
exp

24.7

(±0.6)

102.3

(±0.7)

35.4

(±0.7)

64.6

(±0.7)
3.256

q-exp
14.9

(±0.2)

83.8

(±0.5)

31.5

(±0.5)

68.5

(±0.6)
0.108

Synthetic B
exp

30.7

(±0.8)

135.3

(±0.6)

25.9

(±0.5)

74.1

(±0.5)
2.321

q-exp
18.4

(±0.6)

119.5

(±0.7)

22.7

(±0.8)

77.3

(±0.9)
0.167

Synthetic C
exp

51.1

(±1.4)

262.8

(±0.8)

20.4

(±0.4)

79.6

(±0.4)
3.828

q-exp
27.8

(±1.3)

239.9

(±1.7)

19.2

(±1.2)

80.8

(±1.1)
0.320

Hurlimann [83] proposed an expression for a relevant length scale l∗ that can be used to

determine if spins are diffusing in the so-called “small” or “large” pore regime. A pore can

be said “large” when the pore size scale is large compared to the local dephasing length

(lg = {D0/(γgeff)}1/3), a function of the effective field gradient geff defined as the typical

length scale over which a spin must diffuse to dephase by 2π radians. When molecules are

diffusing in a “large” pore the echo dephasing is essentially governed by the free diffusion

regime. In the “small pores”, the pore size is small compared to lg and the internal

field inhomogeneities are motionally averaged. Assuming that the variation in the local

field is upper bounded [130] one can calculate the maximum value of the effective field

gradient considering the echo attenuation due to diffusion in the susceptibility-induced

field inhomogeneities [83], and the length l∗ can be expressed as:
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l∗ =

(
D0

γ∆χB0

)1/2

, (3.3)

wherein D0 is the molecular self-diffusion coefficient, γ is the gyromagnetic ratio, B0 is the

static field, and ∆χ is the magnetic susceptibility difference between water and the porous

matrix. All the samples were then submitted to magnetic susceptibility measures using a

Vibrating Sample Magnetometer (Quantum Design PPMS) and the obtained susceptibility

difference ∆χ values were used to calculate the length scale l∗ for low (15MHz) and high-

field (500MHz). Calculated l∗ values according to Equation 3.3 ranged from approximately

70 to 280µm for high and low field respectively. Comparing pore size scale from sample’s

micro-tomography images with calculated l∗ values showed that pores are in fact “large”

and thus a significant dependence of relaxation rates on the echo spacing te should be

expected in this case.

Table 3.2: Low-field NMR (15 MHz) T2 exponential and q-exponential fitting parameters

Samples

Relaxation Times

(ms)

Weights

(%)

SSE

(.10−3)

T2
(1) T2

(2) A(1) A(2)

Synthetic A
exp

71.4

(±1.1)

333.7

(±1.5)

36.5

(±0.4)

63.5

(±0.4)
5.717

q-exp
61.1

(±2.2)

299.9

(±3.8)

49.9

(±1.2)

51.1

(±1.1)
2.034

Synthetic B
exp

118.8

(±1.7)

540.9

(±1.5)

24.2

(±0.3)

75.8

(±0.3)
4.940

q-exp
87.4

(±2.7)

495

(±2.6)

30.3

(±0.6)

69.7

(±0.7)
1.207

Synthetic C
exp

148.9

(±2.2)

750.8

(±2.1)

22.8

(±0.4)

77.2

(±0.6)
7.476

q-exp
101.4

(±3.3)

674.7

(±3.3)

26.1

(±0.5)

73.9

(±0.6)
1.866

Finally, to evaluate the influence of this dependence on the results and analysis presented

so far, the sample with smallest confinement scale (A: 53-106µm) was submitted to

complementary CPMG experiments in high-field (500MHz), with variable echo spacing

from 1.1 to 0.3ms. The largest decrease observed in relaxation rates with lowering echo

spacing in that range was approximately 45% for the fastest of the two relaxation rates

observed on the decay curve. Still, the respective weights of the two modes showed a

variation no larger than 5%. These results indicate that despite the fact that relaxation
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rates obtained for these samples, for both low- and high-field measurements, exhibits an

expected dependence on echo spacing, variations on the absolute values of those rates and

their respective weights do not compromise the analysis presented comparing the results

obtained by the three different approaches, in the author’s opinion.

One remarkable aspect of the presented data is the relatively good agreement between

mode weights when the same method of exponential analysis is applied to measurements

acquired under distinct field conditions; the absolute deviation is less than 10% in all

cases. It is important to remark that such a consistency reflects the reproducibility of

the sintering protocol in yielding samples of completely different size standards without

breaking the similarity of porous structures. At last, it can be said that all methods of

analysis lead to the same picture.

3.5 Concluding Remarks

With a proper sintering protocol, artificial porous structures can be produced keeping

constant porosities, which is important to establish an even noise level among samples

with varied characteristic pore sizes, and uniform surface relaxativity. These attributes are

essential in the reduction of ambiguities in assessment of how relaxation time distributions

relate to pore size or, more appropriately, confinement characteristics.

Despite the effort in producing model porous media capable of maintaining close porosity

values yet with distinct confinement scales, in order for one to establish a fair investigation

of surface effects on relaxation rates, pore size scale and connectivity in all samples were

nevertheless high, the former estimated considering a relevant diffusion length of molecules

through internal field gradients and the latter confirmed by permeability measurements.

The scenario wherein diffusion among pores is comparable with diffusion within pores,

or even when internal field inhomogeneities are not motionally averaged, inhibit the

application of the approximations deduced for the fast diffusion regime, and hence the

establishment of a direct relation between relaxation time distributions and pore sizes.

The inherent problem of multi-exponential analysis has also been addressed and the

results of three different approaches were compared, yielding essentially consistent features.

The choice for either method seems therefore entirely conventional unless some a priori

information is available to justify the adherence to some type of distribution. In such

context, Laplace inversion may appear unbiased but it is important to recall the intrinsic

difficulties and inevitable uncertainty associated with this method and regularization tools.

Natural next steps for this work are varying the porosity of samples, which can be

achieved by mixing different grain sizes, and their mineral contents, which require new
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sintering protocols or doping processes. Paramagnetic coating and cleaning off impurities

are already under development, which can be used to extend the performed analysis to

the appraisal of how surface activity affects relaxation.
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Chapter 4

PFG NMR Time-Dependent

Diffusion Coefficient Analysis of

Confined Emulsion: Post Drainage

Phase Conformation.

4.1 Diffusion NMR

4.1.1 Self-Diffusion and the Diffusion Equation

The first step to comprehend NMR-based diffusion techniques is in fact the proper distinc-

tion on two different physical processes, both described by the same term, diffusion. The

mutual (or concentration) diffusion characterizes the dynamics of a system with distinct

components inhomogeneously distributed in a non-equilibrium configuration, wherein the

random motion of particles from each component, driven by a chemical potential gradient,

leads to changes in the concentration differences. The dynamics of the concentration c(~r, t)

is described by the diffusion equation, a partial differential equation (Equation 4.1) also

known as the Fick’s second law [4].

The self- (or translational) diffusion regards the random thermal motion of particles in

a system in equilibrium, which does not require a chemical potential gradient since it is

driven by internal kinetic energy. The self-diffusion process may also be described by the

diffusion equation if one considers the motion of labeled particles through an environment
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of unlabeled yet identical particles [96]:

∂c∗(~r, t)

∂t
= D ~∇2c∗(~r, t), (4.1)

wherein D is the self-diffusion coefficient and c∗(~r, t) denotes the concentration of labeled

particles. Self-diffusion is actually the process which is observed by the pulsed-field

gradient (PFG) NMR diffusion techniques presented in this Chapter, which from this

point forward may be referred to only as diffusion.

Diffusion may be measured by several distinct techniques, all of them based on the

same principle: an initial concentration of particles must be labeled - in preference by a

non-invasive technique which does not influence the particles’ motion - followed by the

subsequent observation of the change in the concentration c∗ of labeled particles. The

measured concentration values are then used to fit the solution for the diffusion equation,

using D as the adjustable parameter. The non-invasive character of NMR is once more

the most important feature regarding NMR-based diffusion techniques. As it will be

presented in the following sections the labeling and the motion observation steps in PFG

NMR diffusion experiments are just two successive parts of a pulse sequence.

4.1.2 The Averaged Propagator

Solving the diffusion equation requires the establishment of an initial condition for the

concentration c∗0 and also a proper boundary condition:

0 = Dn̂~∇c∗ + θc∗
∣∣∣
s
, (4.2)

in which ~∇c∗ denotes the particle flux due to self-diffusion and the parameter θ accounts for

interface properties wherein particles may be passed through, absorbed or even reflected.

Among the usual mathematical approaches for one to solve partial differential equations,

the concept of propagator can be said of particular interest in the case of diffusion processes

considering its relation with the mean-squared displacement of labeled particles and the

measured NMR signal in PFG experiments, as it will be discussed further in Section 4.1.4.

Considering a point source for the initial concentration c∗0 = δ(~r2 − ~r1) and solving the

diffusion equation with respect to the appropriate boundary condition (Equation 4.2) one

obtains the propagator P (~r2, ~r1, t), a conditional probability of finding a particle, initially

at a position ~r1, in a position ~r2 after an interval of time t. The solution of the diffusion

equation for a general initial condition p0(~r1) may be obtained by integrating the product
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of the propagator with the initial concentration for all possible starting positions ~r1 [4]:

P̄ (~r, t) =

∫
V
P (~r1 + ~r, ~r1, t)p0(~r1) d~r1, (4.3)

in which ~r represents the displacement vector (~r = ~r2 − ~r1) and P̄ (~r, t) is the so-called

averaged propagator, representing the probability density of an arbitrary particle of being

displaced by the distance r during a time t.

4.1.3 Pulsed-Field Gradient (PFG) NMR

Encoding Period

The pulsed-field gradient (PFG) NMR technique was proposed by Stejskal and Tanner [33]

in 1965 and became the foundation for a large set of NMR-based protocols for diffusion

measurement. A PFG NMR experiment may be separated into three distinct time intervals

(Figure 4.1): encoding, the diffusion interval and decoding. During the encoding interval

the molecules are labeled with a space-dependent precession frequency imposed upon the

system by a magnetic field gradient pulse G(t), commonly applied along the z-direction.

For the upcoming developments regarding the description of each PFG interval it is thus

necessary to define the one-dimensional magnetization density m(z, t), in the sense that

the total magnetization M(t) at a given time t can be obtained by integrating over the

magnetization density m(z, t). It is worth noticing that m(z, t) does not represent the

longitudinal component of the magnetization mz(t). Instead, m(z, t) represents solely a

distribution of magnetization along the z axis.

After the initial π/2 pulse (for an example, applied in the +y-direction) the magnetization

density m(z, t) is homogeneously distributed in space with a single component pointing

in the positive x-direction. Neglecting for now the effects of transverse relaxation, in

the rotating frame of reference during the first field gradient pulse G(t) the precession

frequency ω(z, t) of nuclear spins is dependent on the z-coordinate, which means that

molecules will experience a frequency offset ∆ω with respect to the static field Larmor

frequency ω0, depending on their position:

∆ω(z, t) = ω0 − ω(z, t) = −γG(t)z. (4.4)

The magnetization density m(z, t) is rotated from its initial x-direction during the first

field gradient pulse G(t), and the rotation phase φ(z, t) will also depend on the z-position:

φ(z, t) =

∫ t

0
∆ω(z, t′) dt′ =

∫ t

0
−γG(t′)z dt′. (4.5)
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Figure 4.1: Simplified pulsed field gradient sequence. The upper schematic diagram

illustrates the free induction decay of the magnetization after a π/2 pulse with (red line)

and without (blue line) the pair of gradient pulses (−G and +G) applied during the

encoding and decoding periods, illustrated in the central schematic. Both gradient pulses

are matched in amplitude and length, but with opposite directions. The lower schematic

illustrates the helix-like effect of the encoding gradient pulse on the magnetization and the

phase evolution of the spins due to random thermal motion during the diffusion interval.
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Assuming that the gradient pulse has a time duration δ the total accumulated phase will

be equal to γGδz. Using the complex notation the magnetization density m(z, t) right

after the first gradient pulse may be expressed as a function of its x- and y-components:

m(z) = mx + imy = m0[cos(γGδz) + i sin(γGδz)] = m0 exp(iγGδz). (4.6)

The effect of the field gradient pulse during the encoding period can be represented by

a helix-like twist in the magnetization density m(z, t) (Figure 4.1). The space-dependent

precession phase imposed by the first gradient pulse on nuclear spins, which destroys the

overall phase coherence in the transverse plane (and consequently the magnetization), is

indeed the label applied in PFG NMR protocols which later will be used in the evaluation

of molecules self-diffusion.

Diffusion Period

After the encoding period molecules carrying nuclear spins labeled by a precession (or

magnetization) phase are allowed to diffuse during a time ∆ = ∆′ + δ (Figure 4.1), and

it is in fact the molecular self-diffusion process that will determine the evolution of the

space-dependent magnetization density. In that sense, the diffusion equation (Equation

4.1) represents the equation of motion for the space-dependent magnetization density,

with the corresponding initial condition expressed by Equation 4.6. For one to obtain the

magnetization density m(Gδ,∆, z2) after the diffusion interval during a time ∆ the same

procedure applied in Equation 4.3 may be repeated, but this time considering the initial

condition expressed in Equation 4.6:

m(Gδ,∆, z2) =

∫
P (z2, z1,∆)m0 e

iγGδz1 dz1, (4.7)

wherein P (z2, z1,∆) represents the diffusion propagator. The random motion of molecules

in a homogeneous infinitely extended liquid volume (unrestricted diffusion) is normally

distributed, thus the propagator is a Gaussian function and m0 is a constant. Hence,

Equation 4.7 may be rewritten as:

m(Gδ,∆, z2) =
m0√

4πD∆

∫
exp

[
− (z2 − z1)2

4D∆

]
e(iγGδz1) dz1, (4.8)

which can be solved leading to:

m(Gδ,∆, z2) = Ψ(Gδ,∆)m0 e
iγGδz2 , (4.9)
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wherein,

Ψ(Gδ,∆) = exp[−(γδG)2D∆] (4.10)

represents the attenuation factor Ψ illustrated in Figure 4.1. The overall encoding phase

exp(iγGδz) is maintained after the diffusion interval.

Decoding Period

Following the diffusion period a second field gradient pulse of amplitude G′ is applied

in the opposite direction with respect to the first gradient pulse. The decoding period

is responsible for removing the encoding phase in order to restore the precession phase

coherence in the transverse plane and consequently the macroscopic magnetization signal.

The second gradient pulse superimposes an additional phase in the magnetization

density after the diffusion interval expressed in Equation 4.9:

m(Gδ,∆, z2) = Ψ(Gδ,∆)m0 e
iγ(G−G′)δz2 , (4.11)

and the macroscopic magnetizationM(t) can be obtained by integration of the magnetization

density expressed in Equation 4.11:

M(Gδ,∆) = Ψ(Gδ,∆)

∫
m0 e

iγ(G−G′)δz2 dz2. (4.12)

When G = G′ the overall phase is canceled and the resulting magnetization equals the

initial value M0 attenuated by the factor Ψ:

M(b) = Ψ(b)M0 = e−bDM0, (4.13)

in which the so-called b-factor is given by b = (γGδ)2∆. One should notice that only

after the second gradient pulse the phase coherence is restored and the macroscopic

magnetization arises. In practice, any mismatches between the amplitude of the encoding

and the decoding gradient pulses inflicts a remaining precession phase leading to an

additional loss in the NMR signal and consequently to erroneously determined diffusion

coefficients. In that sense, the spin echo PFG sequences present important practical

advantages which will be addressed further in Section 4.1.6.

4.1.4 Narrow Pulse and Gaussian Phase Approximations

The developments presented in Section 4.1.3 and consequently the expression obtained

for the signal attenuation due to diffusion in Equation 4.13 do not take into account the
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movement of molecules during the application of the encoding and decoding field gradient

pulses. Strictly, these developments can be considered valid when the gradient pulse

duration δ is very short (δ → 0). Although δ may be set for small values in the case

wherein high gradient amplitudes are available, in real experiments gradient pulses have

nevertheless a finite duration. For practical applications, as long as the diffusion time

interval is much larger than the encoding and decoding periods (∆� δ) the developments

in Section 4.1.3 can be considered valid in a good approximation.

The above condition is known as narrow gradient pulse approximation (NPA). For the

case wherein the NPA may not be considered valid the self-diffusion processes during

encoding and decoding periods must be taken into account during the analysis of the

observed spin echo attenuation. In Section 4.1.5 the Bloch–Torrey equation and the

theoretical background for such considerations is presented.

Another important approximation relates to the signal attenuation expression in Equa-

tion 4.10 wherein diffusion was assumed to take place in a homogeneous infinitely extended

volume, which allowed the assumption of a Gaussian propagator function. As one may

expect, in real systems the diffusion propagator may deviate from a Gaussian function

and a more general approach is recommended [4, 96].

The precession phase of a single spin after the decoding period depends directly on

its displacement in gradient direction during the diffusion interval. Considering that the

spin is displaced by a distance z = z2 − z1 during the diffusion period, its net phase after

the decoding interval will be given by exp(iφ), wherein φ = γGδ(z2 − z1) = γGδz. By

integrating the phase factor over all possible displacements to account for the contribution

of all spins one obtains the total signal. Each displacement must be weighted however by

the proper conditional probability density regarding the movement of the spins, or, in this

case, the averaged propagator in the gradient direction P̄ (z,∆). The signal attenuation

is thus expressed as:

Ψ(Gδ,∆) =
M(Gδ,∆)

M0
=

∫
P̄ (z,∆) eiγGδz dz. (4.14)

The expression in Equation 4.14 represents the Fourier transform of the averaged

propagator with respect to the displacement z. Accordingly, the inverse Fourier transform

of Equation 4.14 results in an expression for the averaged propagator as a function of the

measured echo attenuation:

P̄ (z,∆) =
1

2π
=

∫
Ψ(Gδ,∆) e−iγGδz d(γGδ). (4.15)

The Fourier relationship expressed in Equations 4.14 and 4.15 is a fundamental advantage
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of NMR-based diffusion studies since the measured echo attenuation and the averaged

propagator are Fourier conjugates. This important result relates a solely theoretical

description of the diffusion process, based on an approach for the solution of the diffusion

Equation, with the resulting signal attenuation obtained from a real experiment. Naturally,

assuming a Gaussian function for the averaged propagator leads to the results obtained in

Section 4.1.3.

An useful approach for the analysis of diffusion measurements is to look at the series

expansion of the signal attenuation in Equation 4.14 with respect to its exponential term:

Ψ(Gδ,∆) =

∫
P̄ (z,∆) dz +

∞∑
n=1

(iγGδ)n

n!

∫
znP̄ (z,∆) dz, (4.16)

in which the first term on the right-side is equal to unity, as P̄ (z,∆) represents a conditional

probability integrated over all the possible displacements, and the summation term stands

for the higher order moments of the averaged propagator for n ≥ 1, which will define the

shape of the signal attenuation. Considering that displacements in +z and −z directions

are equally probable inflicts that averaged propagator is an even function. Under this

assumption all the odd moments (n ≥ 2k + 1 with k ∈ N) will vanish, and Equation 4.16

can be rewritten as:

Ψ(Gδ,∆) = 1 +

∞∑
k=1

(−1)k(γGδ)2k

(2k)!

∫
z2kP̄ (z,∆) dz. (4.17)

Any PFG NMR data set may be fitted with a polynomial in (γGδ)2 for the determination

of the moments of the averaged propagator. For small field gradient values the terms in

the summation expressed in Equation 4.16 for n ≥ 2 may be neglected, and the signal

attenuation due to diffusion may be expressed as:

Ψs(Gδ,∆) = 1 + iγGδ

∫
z(∆)P̄ (z,∆) dz − (γGδ)2

2

∫
z2(∆)P̄ (z,∆) dz, (4.18)

which can be rewritten as:

Ψs(Gδ,∆) = 1 + iγGδ〈z(∆)〉 − (γGδ)2

2
〈z2(∆)〉, (4.19)

wherein 〈z(∆)〉 and 〈z2(∆)〉 represent the first and the second moments of the averaged

propagator, respectively. This approximation, known as Gaussian phase approximation

(GPA) it is extensively used in the analyses of PFG NMR data sets, including magnetic

resonance imaging [131]. The first moment 〈z(∆)〉, associated with the imaginary part

of the averaged propagator for small gradients, denotes the mean displacement in the

gradient direction. For the case of unrestricted self-diffusion (random thermal motion)
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the mean displacement is zero.

The second moment 〈z2(∆)〉, associated with the real part of Ψs(Gδ,∆), represents the

mean squared displacement in gradient direction. The initial slope from the real part of

the measured signal attenuation, associated with small gradient values, may be analyzed

for the determination of the mean squared displacement, which may also be seen as a

diffusion measurement:

dR{Ψs(Gδ,∆)}
d(γGδ)2

=
〈z2(∆)〉

2
= ∆Deff(∆), (4.20)

wherein the symbol R stands for the real part of Ψs(Gδ,∆) and Deff(∆) defines an effective

diffusion coefficient - related with the mean squared displacement - which depends on

the diffusion time. This approximation is especially useful on the analysis of diffusion

measurements of confined fluids and will be addressed again on the discussion of the

results presented in Section 4.5.

4.1.5 The Bloch-Torrey Equation

The transport of local magnetization components is described by the Bloch-Torrey equation

of motion [14], which combines the Bloch equations for the magnetization (2.25, 2.26 and

2.27) with the diffusion equation (4.1):

∂ ~M(~r, t)

∂t
= γ ~M × ~B − Mxêx +My êy

T2
− Mz −M0

T1
êz +D∇2 ~M, (4.21)

wherein ~M(~r, t) is the local magnetization vector and ~B = (0, 0, B0) is the homogeneous

polarizing magnetic field in the ẑ direction. Under the commonly accepted approximation

that off-resonance field components can be neglected, the presence of magnetic field

gradients only affects field z-component [96]. In this case, considering that the diffusion

propagator is a Gaussian function, Equation (4.21) can be solved using a variable separation

ansatz [96, 132], and a general solution may be written as:

M(t) = Ψ(t)R(t)M0, (4.22)

in which M0 is the equilibrium magnetization, Ψ(t) denotes the signal attenuation due to

diffusion processes and R(t) represents signal attenuation due to relaxation effects.

The NMR signal attenuation due to molecules self-diffusion Ψ(t) can be calculated
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solving the double integral [96]:

Ψ(t) = exp
{
−Dγ2

∫ t

0
dt′
[ ∫ t′

0
dt′′G∗(t′′)

]2}
, (4.23)

wherein D is the molecule self-diffusion coefficient, γ is the gyromagnetic ratio and G∗(t)

represents the effective magnetic field gradient. The solution of the double integral in

Equation 4.23 depends specifically on the time profile of G∗(t), which will change according

to the PFG NMR pulse sequence adopted.

On what regards the signal loss due to relaxation, the term R(t) may also be calculated

(or measured) considering the exact form of the PFG sequence adopted. Notwithstanding,

a particular type of data acquisition known as time-independent acquisition can be quite

useful. In time-independent experiments the diffusion time is held fixed while the gradient

pulse amplitudes are varied for the observation of the signal decay due to diffusion. As

long as the diffusion time (and all the other sequence delays) are held equal for all points

in the gradient strength array, the signal loss due to relaxation will be exactly the same

along the decay points, becoming a normalization constant.

It is important to recall that the determination of transverse and longitudinal relaxation

profiles, especially on the case of confined fluids, may be a burdensome task depending

on the diffusion regime and the influence of the confining surface on relaxation. Hence,

time-independent acquisitions are indeed advantageous for the determination of diffusion

coefficients, as long as the approximations regarding the solution for the Bloch-Torrey

expressed in Equation 4.22 can be considered valid.

4.1.6 Spin Echo PFG Sequence

One of the major downsides of the simple PFG sequence shown in Figure 4.1 is that

the available time for the encoding, diffusion and decoding periods is limited by T ∗2 , the

FID time constant, which is affected by inhomogeneities on the static magnetic field B0.

As discussed in Section 2.2.5 a π pulse can be employed to produce a spin echo and to

minimize the signal loss due to inhomogeneities on B0.

The pulsed gradient spin echo (PGSE) sequence, proposed by Stejskal and Tanner [33],

combines the simple PFG protocol with a refocusing π RF pulse resulting in a modified

Hahn echo sequence (Figure 4.2), wherein the total available time is now T2, instead of

T ∗2 .

The spin echo PFG have another crucial advantage. Since the π refocusing pulse is

applied after the first gradient pulse, it inverts not only the magnetization’s precession
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Figure 4.2: Spin echo PFG sequence (PGSE) proposed by Stejskal and Tanner [33] in the
presence of a constant background gradient g. The refocusing π pulse inverts the phase
imposed by the first gradient pulse during the encoding period. After the second gradient
pulse a spin echo will be formed at te = 2τ .

direction, but also the phase imposed by the encoding gradient pulse. Thus, the second

gradient pulse applied during the decoding period does not need to be inverted with

respect to the first gradient pulse. As discussed in Section 4.1.3 any mismatches between

the amplitudes of the two gradient pulses may inflicts in a remaining precession phase

leading to an additional loss in the NMR signal. From the instrument stand point it is

much easier to produce two gradient pulses of identical amplitudes in the same direction

than in opposite ones.

The evaluation of the double integral expressed in Equation 4.23 must be carried on for

each sequence interval considering that G∗(t) = G(t) + g(t). For the case of the spin echo

sequence illustrated in Figure 4.2 the evaluation of the double integral in Equation 4.23

leads to [96]:

Ψ(te) = exp{−Dγ2[Ap(te) +Ab(te) +Ac(te)]}, (4.24)
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wherein, Ap, Ac andAb denote the pulsed, cross and background gradient terms, respectively:

Ap(te) = δ2
(

∆− 1

3
δ
)
G2, (4.25)

Ac(te) = δ
[
2τ2 − 2

3
δ2 − (δ2

1 + δ2
2)− δ(δ1 + δ2)

]
Gg (4.26)

and

Ab(te) =
2

3
τ3g2. (4.27)

The pulsed term Ap depends only on the applied gradients (+G and −G). The background

term Ab depends, in this case, on the constant gradient g and the cross term Ac represents

the coupling between the pulsed and the background gradients.

4.1.7 Stimulated Spin Echo PFG Sequence

During a spin echo PFG protocol the signal decay along the diffusion period is governed

by the transverse relaxation (T2). In systems where T1 > T2 it is useful to store the

magnetization in the longitudinal axis. For such task the refocusing π RF pulse can be

divided in two π/2 pulses, separated by the diffusion interval. This protocol, known as

pulsed gradient stimulated echo (PGSTE), is illustrated in Figure 4.3.

The evaluation of the double integral in Equation 4.23 for the case of the stimulated

echo sequence illustrated in Figure 4.3 leads to [96]:

Ap(te) = δ2
(

∆− 1

3
δ
)
G2, (4.28)

Ac(te) = δ
[
2τ(∆′ + τ)− 2

3
δ2 − (δ2

1 + δ2
2)− δ(δ1 + δ2)

]
Gg (4.29)

and

Ab(te) = τ2
(

∆′ +
2

3
τ
)
g2. (4.30)

4.1.8 13-Interval PFG Sequence by Cotts

Cotts et al. [133] proposed a stimulated echo PFG sequence divided in 13 intervals,

wherein both encoding and decoding periods contain a pair of gradient pulses of same

amplitude but opposed polarities, separated by a π pulse (Figure 4.4). PFG sequences

with gradient pulses of opposed polarities are also referred to as alternate pulsed field

gradient (APFG). The evaluation of the double integral in Equation 4.23 for the case of
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Figure 4.3: Stimulated echo PFG sequence (PGSTE) in the presence of a constant
background gradient g. After the first gradient pulse a π/2 pulse rotates the magnetization
to the z-axis. After the storage (diffusion) interval a third π/2 pulse rotates the
magnetization back to the transverse plane. The phases of the two π/2 pulses can be
set to have the same refocusing effect of the π pulse in the spin echo sequence. After the
second gradient pulse a spin echo will be formed at te = ∆′ + 2τ .

the 13-interval sequence illustrated in Figure 4.4 leads to:

Ap(te) = (2δ)2
[
∆′ +

3

2
τ − 1

6
δ
]
G2, (4.31)

Ac(te) = 2δτ(δ1 − δ2)Gg (4.32)

and

Ab(te) =
4

3
τ3g2. (4.33)

There are several practical advantages in the 13-interval PFG sequence proposed by

Cotts. The main one relates to the suppression of the background gradient influence on

the signal decay due to diffusion. The cross attenuation term Ac(te), which depends on

both pulsed and background gradients, may be completely eliminated for δ1 = δ2, which

can be easily achieved since both quantities are sequence delays. In this case, the pure

background term Ab(te) acts in much the same way as the relaxation term R(te), in the
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sense that if g may be considered constant during the time between encoding and decoding

periods, Ab(te) will represent just an additional global attenuation term, reducing the total

signal amplitude, but not affecting the analysis of the observed echo attenuation [96].

The value of Ab(te) can only be neglected for the cases wherein the magnitude of the

background gradient is small in comparison with the pulsed gradients and the condition

gτ � Gδ is fulfilled.

Figure 4.4: 13-Interval stimulated echo APFG sequence proposed by Cotts et al. [133] in
the presence of a constant background gradient g. The encoding and decoding intervals
are both composed by a pair of gradient pulses with opposed polarities separated by a
π RF pulse. Similarly to the stimulated echo sequence, after the encoding interval the
magnetization is stored in the z-axis. A spin echo will be formed at te = ∆′+ 4τ after the
decoding period.

It is also worth noticing that, even though encoding and decoding intervals use each

one a pair of gradient pulses with opposed polarities, the positive aspect of spin echo

PFG sequences on what regards the matching between encoding and decoding gradient

amplitudes is preserved, since from the instrument standpoint the same net phase is being

applied in encoding and decoding stages. The π RF pulses between each pair of gradient

pulses invert the phase imposed by the first gradient pulse, ensuring that the phase imposed
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by the second is in fact added to the first one.

For the case of small δ1 and δ2 values this separation also allows the application of a

larger net phase, although maintaining each pulse width small, an important feature for

the validity of the narrow pulse approximation. The two π/2 RF pulses separated by the

∆′ time interval act like a π pulse reverting the magnetization phase imposed at the end

of the encoding interval, allowing both encoding and decoding gradient pulse pairs to be

equal.

Provided that the background gradient g(t) may not be considered constant, for an

example, in the case of fluid molecules diffusing during large storage times through strong

internal field gradients imposed by confinement, a more general approach should be

considered assuming that g(t) exhibits two different values during the encoding and decoding

periods. Notwithstanding, the same evaluation for the double integral in Equation 4.23

can be carried out, although in this case the background and the cross gradient terms can

not be easily neglected [96].

4.1.9 Restricted Diffusion and Short-Time Analysis

The assumption that the averaged propagator is a Gaussian function is valid considering

the self-diffusion of fluid molecules due to random thermal motion in a homogeneous

infinitely extended volume. For confined fluids the movement of molecules is now restricted

by pore geometry, which consequently affects the probability density of finding a particle

in a given position. In this case the diffusion propagator will not be a Gaussian function.

In restricted diffusion processes the influence of pore geometry on diffusive motion,

however, will depend on the balance on how much time molecules have to diffuse and

pore confinement scale. During short diffusion intervals, on average, only the molecules

which are closer to the confining surface will have their movement restricted, while for

the molecules which are far from pore walls diffusion will take place as in the unrestricted

case. Therefore, for sufficiently short diffusion times the averaged propagator for restricted

diffusion may be fairly approximated by a Gaussian function. This approximation, known

as short-time regime, may be expressed by the condition:√
D0∆� Rp, (4.34)

in which D0 is the bulk self-diffusion coefficient, ∆ denotes the diffusion (or storage) time

and Rp represents the characteristic confinement scale (or the average pore radius).

The diffusion coefficients obtained in measurements with confined fluids by PFG NMR

reflect those geometry-imposed restrictions, and the observed values are in fact dependent
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on the diffusion time. For this reason the diffusion coefficients of confined fluids are also

commonly referred to as apparent or effective diffusion coefficients [131]. The idea that

diffusion of confined fluid molecules would remain Gaussian, even though being slowed

down by geometry obstacles, is one of the foundations for the application of the GPA

mentioned in Section 4.1.4 (valid for small gradient values), on the analysis of apparent

diffusion coefficients from confined fluids.

Mitra et al. [72] derived an analytical expression for the behavior of time-dependent

diffusion coefficients in the short-time regime as a function of confinement geometrical

parameters. In the short-time regime it may be assumed that only the molecules which

started to diffuse within a surface layer of width
√
D0t have their movement restricted by

pore walls. This layer defines a portion of walkers proportional to
√
D0t(S/V ), wherein S

represents the surface area and V is the volume of the considered domain. The measured

apparent (or time-dependent) diffusion coefficient D(t) will reflect the diffusion of both

surface-affected and unaffected portions. Mitra showed that assuming a surface with

smooth boundaries in the presence of surface relaxativity (partially absorbing boundary

condition), the time-dependent diffusion coefficient D(t) can be expressed by:

D(t)

D0
' 〈|~r(t)− ~r(0)|2〉

6t
= 1− 4(D0t)

1/2

9
√
π

S

V
+(D0t)

S

V

[
− H

12
+

ρ

6D0

]
+O[(D0t)

3/2], (4.35)

wherein (S/V ) denotes the porous media surface-to-volume ratio, H is the pore mean

curvature, ρ represents the surface relaxativity and the last term on the right side stands

for the contributions of the order of (D0t)
3/2.

The analysis of short-time effective diffusion coefficients has being successfully applied

to the characterization of geometrical parameters in model porous media such as glass

sphere packs [134] and also natural rock samples [135].

4.2 Motivation: The Characterization of Multiphase

Saturation in the Framework of Restricted Diffusion

Characterization of emulsions (immiscibe fluid mixtures) is an essential part of research in

different industry segments such as foods, chemicals, pharmaceutics and also oil exploration

[37, 136–139]. For the latter, due to the very own nature of oil formation and migration

processes, reservoir rocks are commonly found saturated with water-oil mixtures, and

some oil recovery strategies also utilize emulsions injection in underground reservoirs as a

mechanism to increase oil extraction [139, 140]. Among several different tools employed to

measure physical and chemical properties from fluids in saturated rocks, NMR relaxometry
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techniques stand out as being non-invasive, and have been long used in porous media

petrophysics [5, 102].

Although the application of one-dimensional relaxometry techniques and their theoretical

framework on rocks saturated with a single fluid allows a relatively straightforward data

interpretation, the analysis of relaxation profiles becomes problematic when porous space

contains more than one phase. Water and oil subjected to different confinement conditions

may exhibit similar relaxation rates, depending on pore features like geometry and surface

physico-chemical properties [6, 115]. Moreover, as a result of magnetization transfer

between present phases, exchange effects must now be accounted for into the Bloch

equation formalism [141] and the behavior of solutions can be become quite distinct from

what it is generally expected from the single phase case.

A significant improvement in fluid identification can be achieved by combining molecular

diffusion measurements, obtained from pulsed-field gradient (PFG) NMR, and relaxometry

protocols into two-dimensional techniques such as diffusion-relaxation (D-T2) and diffusion-

diffusion (D-D) correlation maps [46, 47]. Despite the considerable increase in available

information, these experiments can be very time-consuming and the extraction of correlation

maps from raw data often relies on two-dimensional inverse Laplace Transform algorithms

[95].

Restricted diffusion coefficients obtained from PFG NMR experiments in one dimension

also provide valuable information on bulk emulsion [142, 143] and, for the case of molecules

undergoing diffusion in the pore space, parameters pertaining to the confining geometry,

such as porous media surface-to-volume ratio, become accessible under specific diffusion

regimes [72, 135, 144].

In this Chapter we present the analysis of time-dependent diffusion coefficients, obtained

from sets of one-dimensional PFG NMR measurements, to characterize the effects of

drainage in phase conformation in water-saturated sintered glass beads, in order to identify

and evaluate individual characteristics of water and oil phases, and mixture conformation

features after drainage.

4.3 Fluid Conformation After Drainage

When oil is forced into a porous rock previously saturated with water, an emulsion

can be formed inside the pore space. Conformation of fluids within pores depends on

several factors such as physico-chemical properties of both phases, injection pressure,

pore connectivity, and also on the relation between wetting and non-wetting phases [145].

Wettability is the property that intermediates the contact between a liquid and a solid
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surface, determined by the interplay among attractive (adhesive) and repulsive (cohesive)

forces. Although surface wettability can be altered by physico-chemical processes in the

long-time presence of two fluids, reservoir rocks are commonly water-wet [139]. The process

of forcing a non-wetting phase into a porous media previously saturated with a wetting

phase is defined as drainage. Usually, oil migrates into most reservoirs as the non-wetting

phase, which characterizes a drainage process [146].

The result of oil injection in a water-saturated porous sample, on what regards connectivi-

ty of wetting and non-wetting phases, may be illustrated by two simplified scenarios. In

the first one (Fig. 4.5 - (a)) oil is distributed into several droplets, located in the innermost

region of pores. In this case pore throats remain filled with water, and the non-wetting

phase exhibits limited or no connectivity. In a second scenario oil fills both inner regions of

pores and throats, in a highly-connected configuration (Fig. 4.5 - (b)). Naturally, scenarios

(a) and (b) in Figure 4.5 only illustrate opposite cases related to the connectivity of the

non-wetting phase. In complex porous media such as natural rocks, a combination of both

scenarios is most likely to describe fluid conformation after drainage.

Figure 4.5: Illustration of simplified conformation scenarios for the non-wetting phase after
drainage. (a) Oil is located only in the innermost region of pores, with pore throats still
filled with water. In this scenario the non-wetting phase exhibits limited or no connectivity.
(b) Non-wetting phase fills both inner regions of pores and throats, in a highly-connected
configuration.

Conformation of water and oil phases after drainage and porous geometry features

will determine how molecules of each fluid diffuse through the pore space. Molecular

movement is now restricted and the time-dependent self-diffusion coefficients from each

phase, measured through PFG NMR experiments, are expected to reflect these constraints.

In the following Sections a set of one-dimensional PFG NMR experiments performed
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in water-saturated synthetic porous samples - pre and post drainage - is presented. The

acquired data was analyzed under the framework of restricted diffusion and the short-

time regime for an evaluation of the available information on individual phases and post

drainage conformation features.

4.4 Experimental Description

4.4.1 Samples and Preparation

Samples of distilled water (100%) and isoparaffin (ISOFAR 17/21 100%) were used in

the experiments. Synthetic porous samples were produced by glass microspheres sintering

(diameter 250− 300µm). The fabrication protocol is the same as described in Chapter 3

[147]. The microspheres were placed in a cylindrical ceramic crucible (Al2O3 99.8%) and

taken to a chamber furnace (Carbolite CWF 1200) for the following heat treatment: from

room temperature to 560◦ C at 140◦ C /min, held for 20 minutes; from 560 to 700◦ C at

20◦ C /min, held for 1 hour; from 700 to 490◦ C at 14◦ C /min, 490 to 440◦ C at 28◦ C

/min, and then cooled to room temperature.

The effect of the thermal treatment in sample’s pore structure, designed to lightly fuse

the microspheres while preserving most of the porosity of the original sphere package

before sintering, can be seen in the two-dimensional micro-tomography image presented

in Figure 4.6.

Water saturation was performed by imbibition using a desiccator connected to a vacuum

pump. The dry sample was placed inside a desiccator containing a recipient with distilled

water. Only after the establishment of a low-vacuum condition the sample is then dropped

into the water container in order to prevent the formation of trapped air bubbles within

pores. Samples were left submerged in the water recipient in low-vacuum condition for

approximately 30 minutes to remove residual air content.

For the drainage process the water-saturated samples were clothed in a rubber sleeve

and placed into a cylindrical holder, illustrated in Figure 4.7. An oil volume equal to

the sample’s volume was manually forced into the sample using a piston at an average

injection rate of 1 ml/s. Immediately after the drainage process samples were placed in

the glass tubes for the NMR measurements.
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Figure 4.6: 2D micro-tomography image of microspheres after the sintering process
employed in the fabrication of the synthetic porous samples. The sintering protocol was
designed to preserve most of the porosity from the original package [147].

Figure 4.7: Illustration of the experimental setup employed for the drainage of water-
saturated samples. An oil volume equal to the sample’s total volume was forced into the
water-saturated samples using a manually controlled piston at an average rate of 1 ml/s.
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4.4.2 Measurements

1H Spectroscopy, inversion recovery (T1) and PFG NMR measurements were performed at

room temperature (25◦ C) in bulk samples of both fluids, in an oil-saturated porous sample,

and in a water-saturated porous sample before and after oil injection. Measurements were

carried out in a Varian (Agilent) 500 MHz spectrometer using a 5 mm probe.

A 13-interval bipolar PFG NMR sequence (Fig. 4.4) was used for the PFG measurements.

Several acquisitions were performed fixing the storage time ∆ and varying the magnetic

field gradient strength (time-independent acquisition) to monitor the signal attenuation

due to diffusion. The PFG NMR experiments were performed using 18 different diffusion

times ∆ varying from 3 to 60 ms. The duration of magnetic field gradient pulses δ was

set as 1 ms, and τ duration was set as 1.4 ms for all experiments.

4.5 Results and Discussion

4.5.1 Fluids Characterization

Individual phase self-diffusion coefficients were measured in bulk samples of each fluid.

Figure 4.8 shows the signal attenuation Ψ as a function of squared gradient G2, and linear

fittings performed with the Curve Fitting toolbox (MATLAB version R2019b). Obtained

values were Dw
0 = 2.29× 10−9 m2/s for water (upper plot) and Do

0 = 0.79× 10−9 m2/s for

oil (lower plot). The fitting error was no greater than 1 % for both samples and the water

diffusion coefficient value is in fair agreement with previously reported values [148]. No

reference diffusion coefficient value was found in literature for this particular oil sample at

298.15 K.

4.5.2 Pre Drainage PFG Analysis

Figures 4.9 to 4.11 show signal attenuation Ψ as a function of squared gradient G2 for

different diffusion times ranging from 3 to 60 ms, obtained from PFG measurements in the

water-saturated porous sample, before oil injection. Time-dependent diffusion coefficients

(Figure 4.12) were extracted from the PFG decay curves by a linear fit combining the

expressions in Equations (4.24) and (4.31) for the signal attenuation due to diffusion

Ψ(te):

Ψ(te) = exp{−Dγ2[Ap(te) +Ab(te) +Ac(te)]}

= exp{−Dγ2[(2δ)2
[
∆′ +

3

2
τ − 1

6
δ
]
G2]}

(4.36)
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Figure 4.8: Bulk water (a) and oil (b) normalized spin echo attenuation Ψ as a function
of squared gradient G2. Diffusion time (∆) value was 40 ms for water and 100 ms for oil
measurements. Black lines denote fittings using Equation (4.36). Self-diffusion coefficients
obtained were Dw

0 = 2.29× 10−9 m2/s for water and Do
0 = 0.79× 10−9 m2/s for oil.

The cross gradient term Ac(te) (Equation (4.32)) was canceled making δ1 = δ2 in the

PFG pulse sequence, and the background term Ab(te) (Equation (4.33)) was neglected

assuming that the background gradient g(t) is, in a fair approximation, constant over the

relatively short time scale of the experiments, which were designed to observe molecules

self-diffusion during the short-time regime. Under such conditions Ab(te) represents just a

renormalizable attenuation term, not affecting the analysis of the observed echo attenuation

[96].

Observing the signal attenuation in a vertical logarithmic scale it is possible to notice

that the linear behavior, present in measurements with small ∆ values (< 20 ms), is

gradually lost as diffusion time is increased. This graphical approach is a useful tool to
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Figure 4.9: Signal attenuation Ψ as a function of squared gradient G2 for different diffusion
times, on the water-saturated porous sample, for ∆ values between 3 and 8 ms. The
black lines represent linear fittings considering the initial slope of each data set. Loss of
linear behavior for different ∆ values can be used to validate the Gaussian propagator
approximation, and the short-time regime definition.

Figure 4.10: Signal attenuation Ψ as a function of squared gradient G2 for different
diffusion times, on the water-saturated porous sample, for ∆ values between 9 and 16
ms. The black lines represent linear fittings considering the initial slope of each data
set. Loss of linear behavior for different ∆ values can be used to validate the Gaussian
propagator approximation, and the short-time regime definition.

evaluate the validity of the Gaussian propagator approximation, and to properly define a

short-time regime in the case of restricted diffusion. According to the behavior of signal

decays showed in Figures 4.9 to 4.11, only the diffusion coefficients extracted from data

sets with diffusion times up to 20 ms were considered for the analysis presented in Figure

4.12, in order to ensure the validity of the short-time regime and the Gaussian propagator
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Figure 4.11: Signal attenuation Ψ as a function of squared gradient G2 for different
diffusion times, on the water-saturated porous sample, for ∆ values between 18 and 60 ms.
The black lines represent linear fittings considering the initial slope of each data set. Loss
of linear behavior for different ∆ values can be used to validate the Gaussian propagator
approximation, and the short-time regime definition.

Figure 4.12: Analysis of the normalized time-dependent diffusion coefficients as a function
of diffusion length

√
D0∆, extracted from the decay curves presented in Figures 4.9 to

4.11, performed using the short-time approximation proposed by Mitra et al. In order to
assure the validity of the short-time regime only the diffusion coefficients extracted from
data sets with ∆ values up to 20ms were considered. The black line represents a linear
fitting considering only the term of order O[(D0t)

1/2] in Equation (4.35).

approximation.

Figure 4.12 shows an analysis of the extracted time-dependent diffusion coefficients as a

function of the storage time ∆, performed using the short-time approximation (Eq. (4.35))
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proposed by Mitra et al. A linear fitting of the data was performed considering initially

only the first order term in Equation (4.35). A sufficiently good adjustment was obtained

with a surface-to-volume ratio value of S/V = 9.22×104 m−1 with a relative error of 5 %.

The quality of the fit was verified by looking at the Sum of Squares due to Error (SSE)

and the R-square coefficients, which are about 6×10−4 and 0.9896, respectively.

The inclusion of the higher order term in the expansion forD(t) adds two new parameters

to the fit procedure, the surface relaxivity ρ and the pore mean curvature H. In this new

fit the values obtained for the new parameters ρ and H exhibited associated errors which

were larger than the parameters’ values themselves, whereas no improvement was observed

in the fit quality coefficients and also no significant change was verified in the value of the

parameter S/V . Following the principle of simplicity, the first fit procedure, containing

only the first order term in Equation (4.35), was considered.

An estimate of the surface-to-volume ratio for the porous space in a system composed

by a random closed packing of mono-sized spheres can be performed using the relation

S/V = 6(1 − φ)/(dsφ), wherein ds stands for the spheres’ diameter and φ represents the

porosity of the package. Assuming ds = 250 µm and the close random packing porosity

as φ ≈ 37 % leads to a value of S/V ≈ 4.1× 104 m−1.

Although the S/V value obtained by NMR data fitting with Equation (4.35) comes from

an analytical expression, the estimated value on the other hand was obtained assuming

an idealized system composed by a package of mono-sized spheres with perfect sphericity.

The real measured system is the result of a sintering process performed in a random

package of spheres with diameters varying within a size range, which are assumed to

exhibit sphericities smaller than 1. A balance of all these factors is then expected to

influence the resulting S/V of the fabricated samples. For these reasons the estimated

S/V value was considered in fair agreement with the value extracted from PFG data

using Equation (4.35).

The geometry of the samples used in this work can be approximated by a packing

of overlapping spheres, considering the effect of the applied sintering protocol in glass

microspheres, analyzed in scanning electron microscopy (SEM) images [147]. Weissberg

[149] deduced an approximate expression for the geometric tortuosity τ of overlapping

spheres as a function of geometry porosity φ:

τg = 1− 1

2
lnφ. (4.37)

An estimate of samples permeability can be performed using the S/V value extracted from

the PFG measurements and the Kozeny-Carmen relation [150]:
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kperm ≈
(V
S

)2 φ

2τg
, (4.38)

wherein φ is the porosity and τg represents porous media geometric tortuosity.

A permeability estimate combining the S/V value extracted from data in Figure 4.12,

and Equations (4.37) and (4.38), leads to a value of kperm ≈ 16 D with a relative error of

12 %, wherein in this case D stands for the permeability unit Darcy (1 D ≈ 0.98 µm2). The

permeability value reported in [147] for this sample, measured by the free gas expansion

method, is kperm ≈ 28 D.

It is important to remark that Equation (4.38) represents simply a correlation between

permeability and porous media geometrical properties, and not an exact dependency. It is

noticeable that the permeability estimate performed with the surface-to-volume ratio value

extracted from PFG data processing, and the tortuosity value obtained from Equation

(4.37), recovered the high permeability value associated with this type of sample [147], and

therefore, in the author’s opinion, can be considered in fair agreement with the measured

value.

4.5.3 Post Drainage PFG Analysis

1H NMR spectra of an oil-saturated sample, and a water-saturated sample before and

after drainage, are shown in Figure 4.13. Although lines are particularly broad, it is

possible to identify water and oil phases in the post drainage spectrum. A bi-Lorentzian

fit was performed to estimate fluids proportion after drainage. In general, this evaluation

should not be considered an accurate one, since distinct effects contribute to the observed

spectrum line shapes. Considering the case of confined fluids, a line broadening in spectrum

is expected due to the presence of grossly inhomogeneous magnetic fields inside porous

matrix. In addition, NMR spectrum of crude oils present multiple peaks, relating to

the combined chemical-shift structure of various molecules. In this case, the former

mentioned line-broadening effect due to confinement will affect all peaks, and the shape of

the resulting spectrum is not necessarily a Lorentzian. Here, the intent of the presented

spectra is not to determine quantities of both fluids, but mainly to confirm the presence

of both phases after drainage.

Relative quantities of both phases were also evaluated by weighed mass, longitudinal

relaxation (T1) and PFG measurements (Figure 4.14). The model used to analyze the PFG

data after drainage is discussed further. For the analysis of T1 measurements after drainage

both phases were assumed to be in the fast diffusion regime. Initial calibration experiments

revealed that the fabricated samples saturated with a single fluid exhibit mono-exponential
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Figure 4.13: 1H spectra of oil-saturated sample (red dotted line), water-saturated sample
before (blue dashed line) and after (solid black line) drainage. Even though line are
particularly broad it is possible to roughly identify the presences of oil and water peaks
in the post drainage spectrum.

T1 decays. Assuming that both phases after drainage are in fast diffusion regime and

considering that there is no spin exchange between the water and the oil phases allows a

simpler estimate for the relative content of both fluids using a bi-exponential model for

the T1 relaxation.

For the case of water-saturated samples before drainage, Gaussian approximation for the

diffusion propagator, and the extension of a short-time diffusion regime, can be evaluated

through the analysis of signal attenuation linearity, in a semi-logarithmic Ψ(t) versus

squared gradient G2 plot. However, after oil injection, in the presence of two fluids

with different diffusion coefficients, PFG signal attenuation will no longer exhibit a single

Gaussian behavior. Although a graphical validation for this approximation is no longer

possible, the hypothesis that measurements may be carried in a short-time regime, where

the Gaussian propagator approximation could be considered valid for both fluids, is quite

reasonable, and is assumed in the presented analysis.

A two-fluid model was proposed by Stallmach and Thomann [151] to determine fluid

fractions with different translational mobilities in porous media, by PFG NMR. The

analysis of time-dependent diffusion coefficients from water-saturated samples after drainage

was carried considering a similar bi-Gaussian model in the form:

Ψ(te) = sw exp[−Dw(te)γ
2(Ap(te))] + so exp[−Do(te)γ

2(Ap(te))], (4.39)
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Figure 4.14: Estimate of water and oil quantities obtained from weighed mass,
spectroscopy (Figure 4.13), longitudinal relaxation (T1) and PFG measurements after
drainage. The estimate error (vertical black bars) was 6% for the weighed mass method
and not greater than 4% for the NMR-based techniques. The errors for the spectrum and
the T1 methods were determined as the relative fitting error considering a bi-Lorentzian
and a bi-exponential model, respectively. The error for the PFG method was determined
as the standard deviation for the saturation values (sw and so) obtained from fittings
considering the data sets for different ∆ values, using for each one of them the bi-Gaussian
model expressed in Equation 4.39.

in which Dw(te), D
o(te), sw and so denotes the water and oil time-dependent diffusion

coefficients and their respective saturations, with sw + so = 1. The term Ap(te) has the

form expressed in Equation (4.31).

Representative signal decays obtained from post drainage PFG measurements for five

different ∆ values are shown in the upper plot of Figure 4.15. The lower plot in Figure

4.15 shows the time-dependent diffusion coefficients obtained from all the 18 performed

measurements for water and oil, as a function of the diffusion length (
√
D0∆), from PFG

data analysis after drainage using Equation (4.39).

Throughout the ∆ time interval investigated water diffusion coefficient values (blue

squares) showed a clear attenuation while diffusion time is increased. As expected in both

scenarios illustrated in Figure 4.5, wetting phase exhibits a good connectivity, as water

molecules probe the new available porous space after drainage.

A new analysis of the short-time behavior of water time-dependent diffusion coefficients

(black line in the lower plot) using Equation (4.35) reveals a new water-probed surface-to-

volume ratio S/V = 3.01×105 m−1; an increase of more than 300 % compared to its value

before oil injection. This behavior is expected since not only the surface area of the water
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Figure 4.15: [Upper plot] Signal attenuation Ψ as a function of squared gradient
G2 for different diffusion times, on the water-saturated porous sample after drainage.
Acquisitions were performed for 18 different ∆ values between 3 and 60 ms. Representative
signal decays for ∆ values 3, 7, 12, 20 and 30 ms are shown. [Lower plot] Time-dependent
diffusion coefficients obtained for water (blue squares) and oil (red triangles) extracted
using the bi-Gaussian model in Equation (4.39) from PFG experiments in water-saturated
sample after drainage. Fitting error bars are shown for both fluids, however for the oil
points error is smaller than marker size. Dashed blue line and dotted red line represent
bulk values of water and oil diffusion coefficients (Dw

0 and Do
0), respectively. The black

line on the lower plot represents the analysis of post drainage water time-dependent
diffusion coefficients as a function of diffusion length

√
D0∆, performed using the short-

time approximation (Eq. (4.35)) considering only the term of order O[(D0t)
1/2].

phase is increased with the addition of a contact surface between wetting and non-wetting

phases, but also a significant amount of wetting phase is drained in the injection to be

occupied by the non-wetting phase (Figures 4.5 and 4.13).

Oil time-dependent diffusion coefficients (red triangles - Fig. 4.15) nevertheless showed
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no significant variation with diffusion time. Such behavior can be analyzed over two

different perspectives. In the first one, oil phase would also be distributed in a connected

configuration, and considering that oil molecules bulk diffusivity is approximately three

times smaller than water (Fig. 4.8), the diffusion time range investigated, from 3 to 60

ms, would not be long enough for one to measure an expressive attenuation in oil D(∆)

values, similar to the one observed in water during the same time range. Although a low

diffusivity could be used to justify the small variation between oil D(∆) values, the time-

dependent diffusion coefficient of oil observed in a post drainage PFG experiment with

the shortest available diffusion time (∆ = 3 ms) corresponds to almost half of its bulk

value (red dotted line - lower plot of Fig. 4.15). This considerable attenuation, observed

during a small diffusion time, would not be expected assuming that oil is distributed in a

connected configuration.

A different analysis can be done considering that oil diffusion coefficients have actually

reached a stationary regime, which, in this case, indicates a highly-restricted diffusion

process. Here, a scenario where non-wetting phase is poorly connected would be most

likely to describe fluids conformation after drainage, and a distribution of oil-in-water

droplets may have formed within pores.

An expression for the signal attenuation of molecules diffusing inside spherical cavities

in PFG experiments was calculated by Murday and Cotts [70], and an approximation for

it was later proposed by Callaghan et al. [71]. Assuming that oil droplets have spherical

shape, and that a Gaussian distribution of droplets radii is to be found along the sample,

PFG signal attenuation due to oil molecules diffusion can be approximated by [71, 152]:

Ψ(δ,G, r0, σ) = Ψ0
1√

1 + 2σ2β2
exp

(
− β2r2

0

1 + 2σ2β2

)
, (4.40)

wherein r0 is the average radius of the droplets radii distribution, σ is the standard

deviation and β2 = γ2δ2G2/5. The validity of this expression is based on the assumption

that the Gaussian phase approximation is valid, meaning that although short, gradient

pulses have a finite duration δ, and spins, during this interval, accumulate a Gaussian

distribution of phases. The correct corresponding between r0, σ and signal attenuation,

using Equation (4.40), should be obtained only for small values of β2 [71].

Once the diffusion time ∆ was increased to the regime where signal attenuation does

not depend on ∆, the initial slope in the plot of ln[Ψ(δ,G, r0, σ)/Ψ0] versus β2 can be

adjusted with Equation (4.40) for small values of β2, and assuming a Gaussian distribution

of droplets radii, r0 and σ values can be estimated directly from data [71]. Figure 4.16

presents the signal attenuation ln[Ψ(δ,G, r0, σ)/Ψ0] as a function of β2, and a fitting
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performed with Equation (4.40) for oil diffusion after drainage. Validity of the carried

approximations can be observed through the agreement between data and the assumed

model for small β2 values. Extracted values for the average oil droplet radius and the

radii standard deviation were r0 ≈ 20 µm and σ ≈ 4 µm, respectively.

Figure 4.16: Signal attenuation ln[Ψ(δ,G, r0, σ)/Ψ0] as a function of β2 for oil diffusion
after drainage. Blue solid line denotes the fitting performed with Equation (4.40)
considering the formation of oil-in-water droplets within pores. Validity of the carried
approximations can be observed through the agreement between data and the proposed
model (red triangles) for small β2 values. Cross markers represent large β2 values that
were excluded from fit. The extracted values for the average radius and the standard
deviation assuming a Gaussian distribution of oil droplets radii were r0 ≈ 20 µm and σ ≈
4 µm, respectively. The relative error in the estimate of r0 was less than 1 %.

Although the bi-Gaussian model employed in the analysis of post drainage PFG data

is based in a set of a priori information on the investigated system, which from the

physical standpoint upholds the interpretation of the results, its application relies in a

mathematical fit procedure. Grebenkov [131] addressed the mathematical limitations of

the bi-exponential model on the analysis and interpretation of effective diffusion coefficients

obtained from diffusion measurements in a two-phase system. On what regards the fit

procedure, the analysis of PFG decays obtained for small diffusion times are the most

challenging, as for these curves the signal attenuation is considerably smaller than the

one obtained for larger diffusion times, as shown in Figure 4.15. It must be considered

the possibility that oil diffusion coefficients obtained from bi-exponential fits performed in

the data sets presented in this work may be misrepresented for the case of small diffusion

times. The option of analyzing such data sets by inverse Laplace transform was initially

considered but also discarded due to the fact that the procedure is also affected by nonzero

baseline offsets [52], and without a proper baseline reference no reasonable regularization
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criteria could be adopted for the choice of a regularization parameter. Nevertheless,

water diffusion coefficients obtained from fit procedures performed in different data sets

exhibited a very consistent behavior with respect to what was expected physically for

the conformation of both fluids after drainage, reflecting the significant increase in the

surface-to-volume ratio probed by the wetting phase.

The effect of the diffusion of fluid molecules through internal magnetic field gradients

induced by susceptibility contrast, considering the use of a high magnetic field in the

experiments (500MHz), should also be analyzed. The influence of diffusion through

internal gradients on the NMR signal decay results from the interplay of pore confinement

scale, molecular diffusion and the magnetic field strength (including the gradients induced

by susceptibility contrast), and hence cannot be simply determined a priori. In this case,

asymptotic limits can be used to investigate such effect, as proposed by Hürlimann [83].

According to Hürlimann’s definition, three length scales are relevant in this analysis: the

diffusion length lD:

lD =
√
D0τ , (4.41)

wherein D0 and τ stand for the molecular diffusion coefficient and the diffusion time scale,

respectively; the length of the characteristic pore size scale, ls; and the dephasing length

lg:

lg = {D0/(γg)}1/3, (4.42)

wherein γ is the gyromagnetic ratio and g denotes the internal magnetic field gradient.

The shortest among these three lengths, considering their order of magnitude, determines

which asymptotic regime applies. In practice, due to diffusive coupling between pores and

variations in local magnetic susceptibility contrast, it is common for two of these lengths

to be of the same order. In this case, considering the relatively large pore size scale of the

fabricated samples used in this work (see Figure 4.6), it is expected that lD and lg would

be competing for the governing asymptotic regime.

The calculation of lg, however, is not straightforward considering that internal gradients

have a spatial profile and the dephasing length will, in fact, depend on the effective field

gradient, which for the one-dimensional case can be expressed as lg(z) = {D0/(γgeff(z))}1/3.

Assuming the hypothesis proposed by Brown and Fantazzini [130] that the total variation

in the local field is effectively bounded by ∆χB0, wherein ∆χ and B0 represent the

susceptibility contrast and the static magnetic field values, respectively, allows the estimate

of an upper limit for the effective gradient (gmax) and consequently for the definition of

the relevant length scale expressed in Equation (3.3) of Chapter 3:

l∗ =

(
D0

γ∆χB0

)1/2

. (4.43)
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The calculated value for l∗ considering the result of the magnetic susceptibility measures

performed in the fabricated samples using a Vibrating Sample Magnetometer (Quantum

Design PPMS) is l∗ ≈ 70µm. Notwithstanding, during the diffusion time range investigated

(from 3 to 60ms), lD values are expected to range from about 1 and 8µm, approximately,

which is almost one order of magnitude smaller than l∗.

The case wherein lD is the shortest length scale among the three defines the so-called

short-time diffusion regime. In this regime the contribution of the background term Ab(te)

in the signal attenuation due to diffusion (Equation (4.33)), becomes a normalization

constant, in the sense that it reduces the total signal amplitude in the same way for all the

points in the gradient strength array (a positive feature of time-independent acquisition)

and does not alter the analysis of the experimentally observed spin echo attenuation.

It is worth noticing that the validity of this approximation also relies on two assumptions:

the first being the Gaussian behavior assumed for the diffusion propagator, which was

investigated and discussed on the analysis of data in Figures 4.9 to 4.12. The second one

regards the hypothesis that the probed background gradient g, associated in this case with

internal field gradients originated due to susceptibility contrast, can be assumed constant

during the experiment time scale, which in the authors opinion, given the short duration of

the encoding, decoding and storage periods adopted, is also a reasonable approximation.

Hence, considering the estimates for the relevant length scales previously mentioned and

the adopted experimental conditions, it is not believed that the analysis of the effective

self-diffusion coefficients presented in this work was, in this case, compromised by virtue

of being performed in high-field conditions. In fact, the use of bipolar PGSTE sequences

in an electronically-robust high-field equipment permitted the application of sufficiently

strong, yet short, gradient pulses allowing the observation of signal decays due to diffusion

during considerably small diffusion times, without violating important conditions such as

the narrow-pulse approximation (NPA).

4.6 Concluding Remarks

Time-dependent diffusion coefficients measured by PFG NMR can be used to characterize

drainage experiments, providing valuable information on the individual phases and post

drainage fluid conformation. Pre drainage PFG measurements in water-saturated samples

were used to extract confinement features, and estimates of samples surface-to-volume

ratio and permeability values, carried from PFG data analysis, were shown to be in fair

agreement with analytical and reported results, respectively. The short-time analyses of

time-dependent diffusion coefficients obtained from PFG measurements can be used to

118



characterize the increase in surface-to-volume ratio probed by the wetting phase after

drainage.

Wetting and non-wetting phase time-dependent diffusion coefficients, extracted from

PFG NMR experiments, can be analyzed to infer dynamics of single phases and to

portray post drainage fluids conformation scenarios. The case where non-wetting phase

was considered to exhibit a poorly connected geometry was analyzed assuming a restricted

diffusion process and the formation of an oi-in-water distribution of droplets within pores,

and PFG signal attenuation was used to determine a Gaussian distribution of oil-in-water

droplets radii.

Analyses of post drainage PFG measurements were performed using simple bi-Gaussian

models. Although the presented analysis required a particular set of approximations

regarding self-diffusion regimes and diffusion propagators that are, nevertheless, common

in the analysis of PFG NMR measurements in confined systems, data behavior itself can

be used to check the regime in which said approximations become valid, so to ensure a

proper interpretation of raw data and better estimations of the involved parameters.

Next steps for this work regard the application of the two dimensional D-T2 NMR

technique to the characterization of water- and oil-saturated porous samples under the

framework of restricted diffusion and short-time analysis, in low-field conditions. In

addition to the extra available information brought by the second (relaxation) kernel

to the description of system’s dynamics, data analysis is also greatly benefited from the

mathematical standpoint. The inclusion of a CPMG protocol at the end of the initial PFG

pulse sequence can be used to ensure that the measured signal decay will in fact reach

the noise level, minimizing the influence of non-zero baseline offsets on data processing,

especially for the case of short diffusion time data sets, wherein signal attenuation due to

diffusion can be considerably small.

These new experiments are been designed to be performed on a bench-top low-field

NMR equipment, allowing not only the use of larger samples on the experimental setup

but also minimizing the influence of diffusion through magnetic field gradients induced by

susceptibility contrast on signal decay.
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Chapter 5

Applications in Progress and

Future Works: Singlet States as a

Tool for the Determination of

Diffusive Tortuosity

5.1 Singlet States and Long-Lived Spin Order

As discussed in Chapter 2 relaxation relates to the establishment of a thermal equilibrium

between a disturbed spin system and its environment. Roughly, these processes may

be represented by the time constants T1 and T2, and for most NMR experiments the

accessible life time of a disturbed spins system is limited by a time of the order of ∼ 5T1,

after which the spin-state populations recover their equilibrium configuration and the

transverse magnetization coherence is completely lost. Spin systems wherein relaxation

times can be substantially increased are known, such as spin-state isomers orthohydrogen

and parahydrogen in dihydrogen gas samples [153], even though these experiments are

considered an exception and are not regarded as usual NMR experiments performed in

ordinary systems.

A new technique entitled “Singlet-Assisted NMR” was presented in 2004 [74, 75] wherein

special molecules containing pairs of coupled spin-1/2 nuclei displayed long-lived nuclear

spin order and relaxation times of orders of magnitude above their usual longitudinal

relaxation time. Such long-lived states may be exploited in a variety of NMR experiments,

including diffusion NMR [79].

In this Chapter we present the theoretical and experimental concepts regarding singlet-
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assisted NMR experiments and discuss their applicability to diffusion studies of confined

fluids under the framework of long-time diffusion regime, jointly to the presentation of

initial experimental developments. In this Section the quantum mechanical description of

NMR is necessary to present the technique’s theoretical background, and it will be resorted

accordingly. An enlightening presentation of the NMR quantum mechanical concepts,

especially on what regards the theory of pairs of coupled spins, can be found in the book

“Spin Dynamics: Basics of Nuclear Magnetic Resonance”, by Malcolm H. Levitt [76].

The bold notation A will be resorted in this Chapter to denote the quantum operator

related to the physical observable A, and the symbol ρ will be used to represent the density

operator.

5.1.1 Coupled Spin-1/2 Systems: Singlets and Triplets

Initially, let us consider a homonuclear system composed by two coupled spin-1/2 nuclei,

whose spin operators are denoted by I1 and I2. Each isolated spin with quantum number

I exhibits 2I + 1 possible Zeeman states and any spin state may be represented as a

superposition of these 2I + 1 states, which for I = 1/2 spins can be denoted by the kets

|α〉 and |β〉, wherein α denotes a state with angular momentum of +1
2 h̄ along the direction

of the applied magnetic field and β denotes a state with angular momentum of −1
2 h̄ in

the opposite direction. Here the Dirac’s bracket notation |ψ〉 is been used to denote the

spin state ψ. For the case of a pair of two coupled spins-1/2 any spin state can be written

as a combination of the four Zeeman product states |αα〉, |αβ〉, |βα〉 and |ββ〉 [76].

In particular, the Zeeman product states of the coupled spin pair may be combined to

construct one singlet and three triplet states, defined as:

|S0〉 =
1√
2

(|αβ〉 − |βα〉)

|T+1〉 = |αα〉

|T0〉 =
1√
2

(|αβ〉+ |βα〉)

|T−1〉 = |ββ〉,

(5.1)

wherein |S0〉 denotes the singlet state and |T+1〉, |T0〉 and |T−1〉 represent the three states

of the triplet manifold. The singlet state exhibits a total nuclear spin I = 0 according to

the eigenequations [81]:

I2|S0〉 = 0

Iz|S0〉 = 0,
(5.2)

wherein the spin operator I2 is defined as I2 = I2
x + I2

y + I2
z and Iµ = I1µ + I2µ, with
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µ ∈ {x, y, z}. Thus, the singlet state is often referred to as a non-magnetic state. The

same, however, does not occurs to the triplet manifold states |TM〉, which in this case

behave as the three states of a spin-1 particle:

I2|TM 〉 = 2|TM 〉

Iz|TM 〉 = M |TM 〉,
(5.3)

in which M ∈ {−1, 0,+1}.

5.1.2 Singlets in Magnetically Equivalent Environments

Considering the case wherein the two coupled spins-1/2 are in a magnetically equivalent

environment (as an example, the protons in a water molecule), the eigenstates of the

nuclear spin Hamiltonian are given by the singlet and triplet states. Let us consider that

the nuclear spin Hamiltonian is given by:

H = ω0Iz + 2πJI1 · I2, (5.4)

wherein w0 is the imposed Larmor frequency (w0 = γB0), J denotes the coupling constant

and I1 · I2 represents the inner product between I1 and I2. Using the eigenstate basis

composed by the singlet and the three triplet manifold states in Equation 5.1, the nuclear

spin Hamiltonian may be written in its matrix form as:

H =



|S0〉 |T+1〉 |T0〉 |T−1〉

−3
2πJ 0 0 0

0 ω0 + 1
2πJ 0 0

0 0 1
2πJ 0

0 0 0 −ω0 + 1
2πJ


. (5.5)

Singlet states act as non-magnetic particles (Equation (5.2)) and hence do not give rise

to a NMR signal. In the case of a water molecule, as an example, the observable NMR

signal arises exclusively from the transitions between the triplet manifold states (Figure

5.1), and a measurement of T1 in this case reflects a property of triplet states only.

The transitions between populations of the singlet and the central triplet states are

in fact the key for one to comprehend the practical advantage on the applicability of

singlet states. Roughly these transitions depend on the exchange symmetry of both the

involved spin states and the transition mechanism itself. The triplet manifold spin states
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Figure 5.1: Representation of the energy levels for the singlet and triplet states, which
in this case compose the base that diagonalizes the Hamiltonian in Equation 5.4.
This representation considers a system of coupled spins in a magnetically equivalent
environment, assuming the case wherein γ > 0 and J > 0.

are referred to as exchange symmetric states, in the sense that the exchange of spin 1 and

2 in Equation (5.1) does not alter the final triplet states. Under the same logic - or spin

exchange - the singlet state is referred to as an exchange antisymmetric state. Transitions

between spin populations of two symmetric states, such as the transitions between |T+1〉
and |T−1〉 states, characterized by the longitudinal relaxation time-scale T1, can only be

mediated by an exchange symmetric mechanism (Figure 5.2). Notwithstanding, transitions

between an antisymmetric and a symmetric state, as the one between populations of the

singlet |S0〉 and the |T0〉 triplet states, in this case characterized by a time-scale Ts, can

only occur mediated by an exchange antisymmetric mechanism [76].

The main reason why Ts happens to be much longer than T1 relies on the fact that many

strong relaxation mechanisms, such as the dipole-dipole coupling between the nuclei, are

in fact symmetric, and even though they may be the dominant relaxation mechanism for

T1, they will not contribute to Ts. Usually, a relaxation mechanism can only promote

singlet – triplet transitions if it acts differently in each nuclear spin. This logic holds to

any molecule that contains a pair of magnetic nuclei. Since the singlet state does not give

rise to an NMR signal, the secret for one to exploit such state is in magnetic inequivalence.

5.1.3 Singlets in Magnetically Inequivalent Environments

Let us consider now the case wherein each spin in the coupled spin pair is in a different

chemical environment, i.e., it experiences a different chemical shift. The new Hamiltonian

in this case may be written as:

H = ω0(1 + δ1)I1z + ω0(1 + δ2)I2z + 2πJI1 · I2, (5.6)
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Figure 5.2: Illustration of the exchange mechanisms relating to transitions between two
exchange symmetric spin states (upper scheme) and between an exchange antisymetric
and an exchange symmetric state (lower scheme).

wherein δ1 and δ2 denotes the chemical shifts of spins 1 and 2 respectively. The matrix

representation of the new Hamiltonian, considering the same basis composed by the singlet

and the triplet states, is expressed as:

H =



|S0〉 |T+1〉 |T0〉 |T−1〉

−3
2πJ 0 1

2ω0∆δ 0

0 ω0(1 + 1
2

∑
δ) + 1

2πJ 0 0

1
2ω0∆δ 0 1

2πJ 0

0 0 0 −ω0(1 + 1
2

∑
δ) + 1

2πJ


, (5.7)

in which, ∑
δ = δ1 + δ2,

∆δ = δ1 − δ2.
(5.8)

In a magnetically inequivalent environment the basis vector set {|S0〉, |T+1〉, |T0〉, |T−1〉}
is no longer the set of eigenvectors of the Hamiltonian. On what regards the relaxation of

the spin system, the small difference in chemical environments on the case of a magnetically

inequivalent spin pair it is not expected to strongly influence the fluctuation of microscopic

fields, in a fair approximation [77]. This means that, on what concerns relaxation, the
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singlet state |S0〉 was expected to be long-lived independently of the system’s magnetic

equivalency, which is not observed in practice.

The explanation for such effect relies on the two off-diagonal terms 1
2ω0∆δ on the right-

side of Equation (5.7) connecting the singlet and the central triplet states. These terms

actually represent that transitions occurring between the |S0〉 and the |T0〉 states are

induced proportionally to the chemical shift difference ω0∆δ between both nuclei. Let us

perform a quick estimate: consider a system composed by homonuclear coupled spin-1/2

pairs, in a magnetic inequivalent environment with a chemical shift difference of 1ppm,

under the action of a 500 MHz static magnetic field, as the one used in the works presented

in this thesis. Even though for this system the singlet state |S0〉 is expected to be long-

lived, transitions between the singlet and the central triplet state |T0〉 are complete within

2 ms, after which the relaxation proceeds as usual, with the balancing between triplet

states populations, governed by T1. In this case the immunity of singlet states to strong

relaxation mechanisms is not observed simply due to the fast transitions induced by the

chemical shift difference in inequivalent sites.

That is to say, the singlet state long-lived order can not be observed in magnetically

equivalent environments because it does not give rise to an NMR signal and is obscured

in magnetically inequivalent environments due to fast transitions induced by the chemical

shift difference. The success on the application of singlet-assisted NMR techniques in

fact relies on the use of experimental approaches for the suppression of the chemical shift

difference term, by “switching” the magnetic inequivalence on and off. Two of the most

common procedures adopted are:

• Field cycling or low-field evolution: in this approach the static magnetic field is

reduced to a sufficiently low value after the preparation of singlet states in high-

field conditions, in order to suppress the chemical shift difference between nuclei.

Considering that high magnetic fields are often produced by superconducting magnets,

which can not be switched on and off, this procedure requires an instrumental setup

allowing a sufficiently fast transportation of the sample through high- and low-field

conditions, on demand.

• Radiofrequency spin-locking: a resonant RF field is applied to temporally suppress

the chemical shift difference between the nuclei after the singlet state is populated.

This procedure has the practical advantage that RF pulses can be rapidly switched

on and off in high-field spectrometers and does not require the transportation of the

sample to low-field conditions.

Other not so common chemical shift suppression methods relate to the use of heteronuclear

symmetry switching techniques or chemical reactions [77].
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Generally, singlet-assisted NMR sequences can also be divided into 3 steps: initially, it

is necessary to create and overpopulate the singlet state, starting from the initial Zeeman

states (Equation (5.1)). This stage is usually referred to as the magnetization-to-singlet

(M2S) or preparation stage. After the singlet state energy level is overpopulated it is

necessary to prevent the transitions between the singlet and the central triplet states

in order for the long-lived character of singlet states to be observed. The last step is

responsible for converting singlet states back to observable magnetization (Zeeman states),

usually referred to as the singlet-to-magnetization (S2M) or reading stage.

Depending on the technique chosen to suppress the singlet-triplet transitions, several

distinct experimental setups and pulse sequences for the preparation, storage and observation

of singlet long-lived spin order may be employed. Our initial developments with singlet-

assisted NMR were based in the radiofrequency spin-locking technique, whose details are

presented in the following Sections.

5.1.4 High-Field Radiofrequency Spin-Locking

Singlet State Preparation by Zero-Quantum Coherence

The first stage of singlet-assisted NMR, right before the application of a spin-locking

technique, relates to the preparation of a density operator ρ containing a singlet population

|S0〉〈S0|, which may be expressed using Cartesian operators as [76]:

|S0〉〈S0| =
1

2
(|αβ〉 − |βα〉)(〈αβ| − 〈βα|)

=
1

2
(|αβ〉〈αβ| − |βα〉〈αβ| − |αβ〉〈βα|+ |βα〉〈βα|),

(5.9)

wherein using the definition of raising and lowering operators:

I+ = Ix + iIy

I− = Ix − iIy,
(5.10)

leads to:

|S0〉〈S0| =
1

2
(Iα1 I

β
2 − I

+
1 I
−
2 − I

+
1 I
−
2 + Iβ1 I

α
2 )

= −1

2
(I+

1 I
−
2 + I−1 I

+
2 )− I1zI2z +

1

4
1 .

(5.11)

The projection (or polarization) operators Iα and Iβ are defined as [76]:

Iα =
1

2
1 + Iz

Iβ =
1

2
1 − Iz

(5.12)
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with,

Iα|α〉 = |α〉,

Iα|β〉 = 0,

Iβ|α〉 = 0,

Iβ|β〉 = |β〉.
(5.13)

In order to evaluate the result expressed in Equation (5.11) it is important to recall

the meaning of multiple-quantum (MQ) coherence in NMR. The coherence definition is

based on the expression of the time-dependent wave function |Ψ(t)〉 of the system as a

summation of stationary basis function |i〉:

|Ψ(t)〉 =

n∑
i=1

ci(t)|i〉, (5.14)

wherein ci(t) denotes the time-dependent coefficients and n is the dimension of the considered

Hilbert space. There will be a coherence between any two states |p〉 and |q〉 when

the ensemble average of the product of coefficients ρpq(t), defined as the density matrix

element:

ρpq(t) = cp(t)c∗q(t), (5.15)

is non-vanishing [3, 76].

The order of the coherence is determined by the difference between the magnetic

quantum numbers ∆mpq = mp − mq, according to the split in energy levels due to

the Zeeman interaction in the presence of a polarizing magnetic field (Figure 2.1). An

important coherence is the single-quantum (SQ) coherence (∆mpq = ±1) - which can

be excited by a simple π/2 pulse - as it corresponds to the observable NMR signal (or

transverse magnetization) induced into the detection coil. A coherence which can be

directly detected as a NMR signal, such as the SQ coherence, is often referred to as an

“allowed” coherence and the ones which can not be directly detected are referred to as

“forbidden”. For the case of an isolated spin I = 1/2 this “allowed” coherence relates to

the transitions between the |α〉 and |β〉 (up and down) spin states.

Let us consider once more the case of a system composed by two homonuclear spin-1/2

coupled nuclei, whose energy split between the singlet and the triplet manifold states is

represented in Figure 5.1. In this case, the density operator ρ, depending on the wave

function |Ψ(t)〉, can be expressed as a summation of several product operator terms, such

as the one expressed in Equation (5.15). Consider the following random density operator:

ρ = c11 + c2I1z + c32I1xI2y + ... , (5.16)

wherein c1, c2 and c3 are real numbers. Each term composing the density operator implies
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a certain configuration for the populations and coherences. Let us assume, as an example,

the matrix form of the operator I1z:

I1z =
1

2



|αα〉 |αβ〉 |βα〉 |ββ〉

1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1


. (5.17)

If the density operator ρ contains a positive I1z term it means that the populations of |βα〉
and |ββ〉 states are depleted with respect to the populations of the |αα〉 and the |αβ〉 states,

indicating a population differential across the single-quantum transitions (∆mpq = ±1) of

spin I1.

The operator 2I1xI2y is represented in its matrix form as:

2I1xI2y =
1

2i



|αα〉 |αβ〉 |βα〉 |ββ〉

0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0


. (5.18)

The presence of a 2I1xI2y term in the expression of ρ indicates that there are zero- (ZQ)

and double-quantum (DQ) coherences in the spin ensemble. Differently from the single-

quantum coherence, the double- and the zero-quantum coherences do not induce a NMR

signal. Notwithstanding, as discussed previously, these coherences are very important as

both can be converted into single-quantum coherence, which do induce a NMR signal,

through the application of suitable RF pulse sequences, which will be detailed in the

following Sections.

Analyzing the expression obtained for the |S0〉〈S0| term in the last line of Equation

(5.11) it is possible to notice that a singlet population may be constructed by the excitation

of zero-quantum coherence (first term on the right-side) and/or longitudinal spin order

(second term on the right-side). The search for optimized protocols for the conversion of

Zeeman states into singlet states, on what regards the conversion efficiency, was addressed

in the work of Sørensen and Levitt [154, 155]. In this work, the zero-quantum method
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applied by Carravetta [75] was chosen for the creation of singlet states, whose pulse

sequence goes as follows:

900 − τ1 − 1800 − (τ1 + τ2)− 9090 − τ2, (5.19)

in which the carrier frequency is set to the mean of the two chemical shifts and the notation

βφ indicates a strong, non-selective pulse, with flip angle β and phase φ. The delays τ1

and τ2 are given by:

τ1 =
1

4J

τ2 =
π

2|γB∆δ|
,

(5.20)

wherein ∆δ denotes the chemical shift difference expressed in Equation (5.8).

Assuming that the investigated 2-spin-1/2 system is weakly coupled, i.e. the chemical

shift difference is much greater than the coupling constant J :

|γB∆δ| � |πJ |, (5.21)

the effect of the pulse sequence in Equation (5.19) goes as follows: the first π/2 pulse

transforms Iz into −Iy. The subsequent spin echo interval τ1 − 1800 − τ1 performs the

following transformation:

−Iy
τ1−1800−τ1−−−−−−−→ −2I1xI2z − 2I1zI2x. (5.22)

After the spin echo step an isotropic evolution takes place during the time interval

τ2. Considering that τ2 is usually a relatively short period the simultaneous J−coupling

evolution may be ignored [76, 77], and for a positive gyromagnetic ratio the components

of the density operator evolve as:

−2I1xI2z − 2I1zI2x
τ2−→ 2I1yI2z − 2I1zI2y, (5.23)

and the zero-quantum coherence can be finally obtained after the last π/2 pulse:

2I1yI2z − 2I1zI2y
900−−→ 2I1yI2x − 2I1xI2y = −i(I+

1 I
−
2 − I

−
1 I

+
2 ), (5.24)

even though the phase of the coherence is still not right. After the last time interval τ2

the correct phase is obtained:

−i(I+
1 I
−
2 − I

−
1 I

+
2 )

τ2−→ −(I+
1 I
−
2 + I−1 I

+
2 ), (5.25)

which can be rewritten as:
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−(I+
1 I
−
2 + I−1 I

+
2 ) = −|αβ〉〈βα| − |βα〉〈αβ| = |S0〉〈S0| − |T0〉〈T0|. (5.26)

It is worth noticing that the result obtained in Equation (5.26) depends directly on the

carrier frequency to be centered at the mean of the two chemical-shifts, which implies that

both chemical shifts must be known.

Radio-frequency Spin-Locking

The next step following the population of the singlet state comprises a spin-locking method

for the supression of the chemical shift difference, according to the average Hamiltonian

theory 1 [156]. The role of the spin-locking is to sustain the singlet state during the entire

storage period, which depending on the molecule employed and the desired application

can be a time of the order of minutes. This brings up an immediate concern regarding the

application of a continuous radiofrequency pulse, or a set of them, during a long period

of time. In this case not only the amplifier’s and probe’s capabilities can easily be pushed

further their limits on what regards operation power and duty cycle, but also during large

pulsing cycles the sample is irradiated with a considerable large amount of power, which

may lead to undesirable heating effects.

The characteristics of the spin-locking RF actually depend on both the chemical shifts

of the coupled nuclei and the modulation scheme chosen for the spin-locking field. An

unmodulated spin-locking scheme comprises the application of a continuous-wave field.

Considering the RF frequency denoted by δref, the resonance offset frequencies will be

given by:

Ω1 = 2πγB(δ1 − δref),

Ω2 = 2πγB(δ2 − δref).
(5.27)

Generally, a successful spin-locking using a CW field requires the condition:

|ωnut| � |Ω1|, |Ω2|, (5.28)

wherein ωnut represents the nutation frequency of the RF field.

In order to evaluate the effect of long spin-locking periods under the standpoint of the

1The average Hamiltonian theory is a powerful tool for the analysis of the dynamics of nuclear spins
in magnetic resonance experiments. The explicit form of such dynamics would require the solution of the
Schrödinger equation for the spin system considering all contributions to the Hamiltonian from interactions
of the spins with each other and their chemical environment, which are commonly both time-dependent
and might not commute with each other. In average Hamiltonian theory the explicit time-dependent
Hamiltonian is replaced by a time-independent effective Hamiltonian, which can be calculated up to a
certain order by the use of proper expansion methods [156].

130



NMR instrument, let us consider once more the example of two coupled spin-1/2 nuclei

with a chemical shift difference of 1 ppm in a 500 MHz polarizing field. In this case,

assuming that the carrier frequency is set to the mean of the two chemical shifts, the

offset frequencies will be |Ω1/2π| = |Ω2/2π| = 250Hz, and a reasonable spin-locking can

be achieved using a nutation frequency of ≈ 1kHz, which can be applied for times as large

as one or two minutes without risk of hardware damage. Suppose now that the coupled

spins at the extremities of the spectrum are separated by 10 ppm. In this case the offset

frequencies will be ten times larger ≈ 2.5 kHz and no effective spin-locking can be achieved

without the application of a considerably large RF field and most probably some hardware

damage and heating effects as well.

Another alternative for spin-locking schemes is the application of trains of broadband

refocusing pulses, known as modulated or decoupling methods. During the initial tests with

singlet spin-locking presented in this thesis the WALTZ-16 [157, 158] and the XY-16 [159]

protocols were tested, and will be presented in details in Section 5.1.5. Assuming that

after the preparation interval the singlet state is overpopulated with respect to the central

triplet state, and that sign(J) = sign(γ), the density operator before the spin-locking

application may be approximated by [77]:

H =



|S0〉 |T+1〉 |T0〉 |T−1〉

1 + B 0 0 0

0 0 0 0

0 0 1− B 0

0 0 0 0


, (5.29)

wherein B denotes the Boltzmann factor:

B =
h̄γB

kBT
. (5.30)

During the spin-locking procedure, at short-times, the density operator evolves so that

the populations of the triplet manifold states are balanced:

H =



|S0〉 |T+1〉 |T0〉 |T−1〉

1 + B 0 0 0

0 1− 1
3B 0 0

0 0 1− 1
3B 0

0 0 0 1− 1
3B


. (5.31)
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Over long times the singlet and triplet populations will be equalized due to the relaxation

process associated with Ts, proportional to ε = exp(−t/Ts). At the end of the spin-locking

stage the density operator may be described as:

H =



|S0〉 |T+1〉 |T0〉 |T−1〉

1 + Bε 0 0 0

0 1− 1
3Bε 0 0

0 0 1− 1
3Bε 0

0 0 0 1− 1
3Bε


. (5.32)

Singlet Detection

The observation of singlet states after the storage interval requires the conversion of singlet

populations back to the observable Zeeman states, which can also be performed by distinct

methods. The simplest one regards the application of a strong 900 pulse after a period τ2

following the end of the spin-locking interval [77]. Most elaborate protocols were developed

with the intention of suppressing undesirable T1 relaxation artifacts at the detection stage,

such as the one employed by Carravetta et al. [74]:

900 − (τ2 + τ1)− 18090 − τ1 − 9045. (5.33)

The calculation for the conversion of singlet state population into observable Zeeman

states can be performed in a similar way as in Equations (5.22) to (5.26). Notwithstanding,

the interesting feature about the protocol expressed in (5.33) regards the combined effect

of the two π/2 pulses, considering that the interval τ1 − 18090 − τ1 relates solely to a spin

echo step.

The relative 45 degree phase between two π/2 non-selective pulses separated by a τ2

interval act as a single frequency-selective π/2 pulse. The resulting NMR spectra after the

Fourier transform of the time-domain signal exhibits a characteristic anti-phase spectra at

the position of the chemical shift δ2, while the NMR signals deriving from T1 relaxation

are seen separated at the chemical shift δ1 [74]. The two separated doublets are typical

from spin systems of the AX kind, in which the two protons are weakly coupled according

to the condition expressed in Equation (5.21).
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5.1.5 Sample Preparation and Experimental Setup

Experiments of 1H inversion recovery (T1), singlet-assisted relaxation (Ts) and singlet-

assisted NMR spectroscopy were performed using a sample of 2,3-dibromothiophene diluted

in dimethylsulfoxide-d6 (DMSO-d6) at a concentration of 20 mM. Figure 5.3 shows the

molecular representation of the 2,3-dibromothiophene with the two weakly-coupled 1H

nuclei to compose the desired AX system. Singlet relaxation experiments were performed

using the pulse sequence illustrated in Figure 5.4, for two distinct spin-locking protocols.

All the experiments were performed in a Varian (Agilent) 500 MHz spectrometer using a

5mm probe.

The WALTZ-16 and the XY16 spin-locking pulse schemes are illustrated in Figure 5.5.

The WALTZ-16 protocol can be understood as an evolution of the primitive dynamic

decoupling protocol WALTZ-4. A curiosity for the music affectionate: the name is a

direct reference to the waltz music, a form of classical dance music based on the 3/4 time

signature. In the original WALTZ-4 scheme a sequence of 3 pulses, 90, 180 and 270◦, also

denoted 123, is repeated 4 times (with the appropriate phase for each pulse), exactly as

in the 3/4 waltz time signature. The WALTZ-16 is a highly effective dynamic decoupling

protocol wich can also be employed as a spin-locking procedure [158].

The XY16 is also a dynamic decoupling protocol with high efficiency in correcting effects

of pulse miscalibration [159]. It consists in a train of 16 π pulses with alternating phases,

denoted by x, y, −x and −y.

Figure 5.3: Representation of the 2,3-dibromothiophene molecule showing the two protons
considered for the singlet-assisted NMR experiments to fulfill the homonuclear weak
coupling condition of a spin-1/2 pair in a magnetically inequivalent environment.
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Figure 5.4: Illustration of the singlet-assisted NMR pulse sequence using the (a) WALTZ-
16 and the (b) XY-16 spin-locking scheme. The conversion of Zeeman states into singlet
states and back are illustrated in the M2S and S2M blocks, respectively. The storage
interval, during which the Ts relaxation takes place, is denoted as the spin-locking interval.

5.1.6 Preliminary Results and Discussion

Figure 5.6 shows the characteristic anti-phase spectrum obtained for the sample of 2,3-

dibromothiophene 20 mM, using the pulse sequence illustrated in Figure 5.4, with a single

loop of the XY16 spin-locking scheme. The obtained spectra is in agreement with the

results presented in Ref. [74], showing the anti-phase singlet peaks at the site of the

δ2 chemical shift and the peaks related to the signal from T1 relaxation at the site of

δ1. Figure 5.7 shows the inversion-recovery results for the 2,3-dibromothiophene sample

and the T1 values obtained considering the peaks of each chemical shift site. The values

obtained for each chemical shift were T1(δ1) = 8.1± 0.2 s and T1(δ2) = 8.9± 0.2 s. Both

values were considerably smaller than the T1 values reported by Carravetta et al. [74] for

this sample (T1 ≈ 17 s).

One possible reason for such discrepancy was the absence of a degassing step in the

preparation stage in order to remove dissolved gas from the solution before the NMR

measurements. The presence of dissolved oxygen is known as a strong relaxation mechanism

in liquid state NMR [160]. Generally, the main mechanisms promoting proton T1 relaxation

are dipole-dipole interactions between protons, or between a proton and unpaired electrons.

Dissolved molecular oxygen is a paramagnetic material which greatly contributes to increase

relaxation. The freeze-pump-thawing method and sample bubbling with nitrogen are

examples of procedures that can be performed to significantly reduce the dissolved content
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Figure 5.5: Illustration of the WALTZ-16 (a) and the XY-16 (b) spin-locking scheme. In
the WALTZ-16 pulse sequence the pulse phases are denotes by x, y, −x and −y. The
lower case q denotes the same pulse block as in Q, but with the inverted pulse phases. In
the XY16 sequence all the pulses have a 180◦ flip angle (π), with the respective phases
also denoted by x, y, −x and −y.

of oxygen in liquid samples, both of which are yet to be tested.

Figure 5.8 shows the singlet relaxation (Ts) results using the sequence illustrated in

Figure 5.4 for five different storage times during the spin-locking interval. Both peaks

of the anti-phase spectra were processed separately considering the exponential decay

described in Equation (5.32). The peaks pertaining to the first spectra were discarded

from the fit procedure in order to avoid the signal attenuation due to the balancing of

triplet manifold populations over the short-time regime (Equation 5.31) on the analysis of

the singlet relaxation [75].

Although the characteristic anti-phase peak was observed in all the acquisitions - a

signature of weakly-coupled AX systems following the singlet detection sequence [74] -

the measured time constant Ts for both peaks was no greater than the measured T1 value
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Figure 5.6: 1H singlet-assisted NMR spectra of the 2,3-dibromothiophene solution (20mM
in DMSO-d6). The characteristic anti-phase peak can be seen at the site of the chemical
shift δ2 ≈ 7.72ppm.

Figure 5.7: Inversion-recovery T1 measurement of the 2,3-dibromothiophene solution
(20mM in DMSO-d6). The values obtained for each chemical shift were T1(δ1) = 8.1± 0.2
s and T1(δ2) = 8.9± 0.2 s.
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Figure 5.8: Singlet relaxation Ts of the 2,3-dibromothiophene solution (20mM in DMSO-
d6) obtained with the sequence illustrated in Figure 5.4, using the XY 16 spin-locking
protocol. The singlet relaxation time-constant Ts values obtained for each peak of the
anti-phase spectra were Ts = 8.1 ± 0.5 s and Ts = 8.6 ± 0.5 s for the positive and the
negative peaks, respectively. The cross markers denote the peaks which were excluded
from the fit procedure (see text).

using a standard saturation recovery protocol, despite the spin-locking method adopted.

The reasons why the long-lived behavior of singlet states could not be observed are still

under investigation.

It is possible that the lack of a degassing stage in samples preparation somehow affected

these initial results, as observed for the longitudinal relaxation measurements, even though

it was reported that singlet states are between two to three times less sensitive to relaxation

due to paramagnetic dissolved gas than conventional nuclear magnetization [160]. On

what regards the storage interval, different power values were tested for both spin-locking

methods within the safe duty cycle range of the employed instrument, with no success in

surpassing the longitudinal relaxation time.

Nevertheless, it should be noticed that the initial decay observed in the singlet relaxation

measurements, i.e., the signal loss between the first and the second pairs of peaks, associated

with the balancing between the populations of the triplet manifold states in short times,

shows a significantly larger signal attenuation in comparison with previously reported

results using [74, 75, 161, 162]. Such discrepancy could indicate two things: an inefficacy

of the preparation stage, responsible for the overpopulation of singlet states with respect
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to the central triplet state, or an inefficacy of the spin-locking procedure in suppressing the

chemical shift difference between the coupled proton pair in a magnetically inequivalent

environment, and consequently not preventing the transitions between the singlet and

the triplet states from occurring over the short-time regime. This hypothesis would

explain why the singlet relaxation times Ts observed are quite similar to the T1 relaxation

times measured in the usual longitudinal relaxation experiments. Notwithstanding, new

experiments are yet to be performed in order to investigate this behavior. Different singlet

preparation methods, as well as new spin-locking techniques will be tested.

5.2 Singlet-Assisted Diffusion NMR (SAD-NMR)

One important application of long-lived singlet states is the study of restricted molecular

self-diffusion in the long-time regime. Although the use of time-independent acquisition

PFG protocols, employed under a proper framework, allows the analysis of time-dependent

diffusion coefficients disregards the effects of signal attenuation due to relaxation, most of

the observable magnetization is lost due to relaxation effects much before the long-time

diffusion regime can be achieved, especially for fluid molecules diffusing within porous

media. In 2005, only one year after the first results with singlet relaxation experiments,

Cavadini et al. [163] reported the method which would later be known as Singlet-Assisted

Diffusion NMR, wherein the long-lived behavior of singlet states were combined with

the pulsed-gradient encoding and decoding steps of a pulsed-field gradient (PFG) NMR

diffusion experiment, allowing the observation of the behavior of molecules under restricted

diffusion during the long-time regime.

In the years following the presentation of the technique several relevant works were

published relating to the analysis of time-dependent self-diffusion coefficients of fluids

undergoing restricted diffusion over the long-time regime, obtained with singlet-assisted

diffusion techniques. Distinct applications can be cited such as the study of large molecules

with slow diffusion coefficients [163–166], the analysis of diffusion-diffraction patterns

in porous structures with larger characteristic distances [167, 168], magnetic resonance

imaging with singlet-tagging localization [169, 170] or the determination of diffusive tortuo-

sity in porous materials [79].

5.2.1 Diffusive Tortuosity and The Long-Time Diffusion Regime

Tortuosity can be seen as a tool on the onerous task of modeling fluid flow and transport

properties in complex porous media, such as natural rocks. In these porous systems the

path available for fluid flow is most often complex and tortuous, which prevents an exact
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pore-scale modeling and forces the averaging of the microscopic conservation laws over a

portion of the pore space which can be considered homogeneous. This approach inevitably

rely on a set of coefficients - or parameters - which summarize an specific property of the

porous geometry, such as permeability, diffusivity and electrical conductivity, and whose

values can be determined experimentally.

The definition of tortuosity was proposed by Carman [171] as an attempt to match

measured permeability values with theoretical predictions in a system composed by a

bundle of capillary tubes. Tortuosity would later acquire distinct formulations depending

on the physical property investigated [73], most often being defined as a geometry-related

parameter, associated with hydraulic, electric or diffusive conductivity properties. General-

ly, tortuosity can be expressed as the ratio of the effective path length to the shortest

path length in a porous medium. The relation between molecular self-diffusion and

tortuosity comes from the association between molecular-self diffusion and the mean-

squared displacement of diffusing molecules, discussed in Chapter 4 and expressed for

the one-dimensional case by Equation (4.20):

dR{Ψs(Gδ,∆)}
d(γGδ)2

=
〈z2(∆)〉

2
= ∆Deff(∆). (5.34)

The mean squared displacement 〈~r 2(t)〉 can be defined as the second moment of the

average propagator P̄ (~r, t):

〈~r 2(t)〉 =

∫
V
P̄ (~r, t)~r 2 d~r. (5.35)

Assuming the case wherein diffusion goes unrestricted, the averaged propagator is given

by the 3D Gaussian function:

P̄ (~r, t) =
1

(
√

4πDt)3
exp

((~r(t))2

4Dt

)
. (5.36)

Solving Equation (5.35) for the 3D Gaussian propagator leads to the known Einstein

relation:

〈~r 2(t)〉 = 6Dt. (5.37)

which can be understood as an alternative definition for the self-diffusion coefficient [4,

96].

Nevertheless, as discussed in Chapter 4, when molecules experience restricted motion

the diffusion coefficient exhibits a time dependence, and the relation between the mean-

squared displacement and the effective diffusion coefficient becomes:

〈~r 2(t)〉 = 6D(t)t. (5.38)
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wherein D(t) now represents an effective (Deff(∆)) or apparent diffusion coefficient.

Due to restrictions imposed by the porous interface to molecular motion, D(t) decreases

in time from its initial (bulk) value D0, and molecular diffusion must be analyzed according

to the specific diffusion regime, depending on the relation between the characteristic

diffusion length and the confinement scale. The long-time diffusion regime may be expressed

by the condition
√
D0∆ � Rp, wherein D0 denotes the molecular (bulk) self-diffusion

coefficient, ∆ represents the diffusion time and Rp is a characteristic pore confinement

scale.

Here, it is important to make a distinction between two different scenarios for the case

of restricted diffusion in the long time asymptotics. The first one relates to porous systems

composed by isolated pores. In this case, on the long time asymptotic, molecules will probe

the available pore space as a whole and the magnetic field gradient will be averaged out.

During this diffusion regime, referred to as a motional narrowing or averaging regime [131],

the acquired magnetization phase of diffusing particles was also found to be approximately

Gaussian [69]. As molecules probe the entire pore space the mean-squared displacement

~r 2(t)〉 is expected to saturate while the diffusion time ∆ is increased. In this case the

signal attenuation due to diffusion in the long time asymptotic can be used to estimate

the characteristic confinement scale, as employed in the determination of a size distribution

of oil droplets in Section 4.5.3.

For the case of systems where pores are well connected, or isolated pores are composed

by permeable membranes, the porous geometry imposes barriers to molecular diffusion,

but do not prevent molecules to reach new regions of the porous space. In this case, at

long times, the time-dependent (or effective) diffusion coefficient Deff is expected to reach

a lower asymptotic value2 D∞ (or D(∆ → ∞)). [4, 33, 96, 135]. The ratio between

the asymptotic effective diffusion coefficient at long times and its bulk value defines the

property known as diffusive tortuosity τD:

lim
t→∞

D(t)

D0
=

1

τD
. (5.39)

The determination of diffusive tortuosity depends directly on the long-time condition for

diffusion to be fulfilled, which requires in practice a porous media with small confinement

scales, such as nanoporous materials [172, 173], and/or long diffusion times. The latter

cannot be easily achieved in NMR experiments with confined fluids simply due to the fact

that relaxation effects often destroy the observable magnetization much before the long

time regime can be reached.

2Here, the cases of anomalous diffusion processes are not being considered.
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Let us take as an example the samples described in Chapter 3, fabricated by sintering

of glass microspheres. The pore size scale for these samples, considering the average pore

radius estimated by the processing of microtomography images, ranges from approximately

100 to 200µm. In this case, the long-time condition, assuming the diffusion of water

molecules (D0 = 2.29m2/s at 25◦C), would be fulfilled for diffusion times ∆� 17s, which

in this case can be considered inaccessible since T2 and T1 relaxation times for water

protons under such confinement scale range between tenths and hundreds of milliseconds

[147].

5.2.2 Time-Dependent Diffusion Coefficients in Packed Glass Beads

To illustrate the relation between time-dependent diffusion coefficients and pore size scale

five model porous samples were prepared using loose packs of soda lime glass microspheres

(Cospheric) from five narrow size ranges: A: 45-53µm; B: 106-125µm; C: 212-250µm; D:

425-500µm and E: 710-850µm. All the samples were prepared in 5mm NMR tubes and

saturated with 100% distilled water. Signal attenuation due to diffusion was measured for

all samples using 18 different values for the diffusion time ∆ varying from 4ms up to 1s.

All measurements were performed using the 13-interval APFG sequence proposed by

Cotts (Figure 4.4) with time-independent acquisition, i.e., fixing the storage time ∆ and

varying the gradient strength G for the observation of signal attenuation due to diffusion.

Measurements were performed in a 500 MHz (VARIAN) spectrometer, in a 5 mm probe.

Figures 5.9 to 5.13 show the signal attenuation due to diffusion as a function of the gradient

field strength for all the 5 samples and the 18 storage times employed.

Time-dependent diffusion coefficients were extracted for all the 5 samples using a simple

Gaussian model (Equations (4.24) and (4.31)), considering only the data sets (∆ values)

wherein the Gaussian approximation for the diffusion propagator was considered valid.

As in the analysis of the results presented in Chapter 4, the linearity of each data set in

the logarithmic plot of Ψ versus G2 was used to validate such approximation. The loss

of linearity with increasing diffusion time ∆ can easily be verified in Figures from 5.9 to

5.13. It is also possible to notice the expansion of the time range of ∆ values during which

the Gaussian approximation is valid as the pore size scale (∝ microspheres size range) is

increased.

Figure 5.14 shows the extracted time-dependent diffusion coefficients for the 5 samples

as a function of diffusion time. The plot in Figure 5.14 shows only the values of Deff

extracted from data sets with a linear Ψ versus G2 decay, even though measurements were

performed for diffusion times up to 1 s for all samples. The effect of signal loss due to

relaxation can be verified by the increasing error bar in Deff values as the diffusion time
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Figure 5.9: Signal attenuation due to diffusion Ψ as a function of gradient field strength
G2 for the water-saturated microsphere packing A: 45-53µm, using the 13-interval APFG
sequence (Figure 4.4). Diffusion was measured for 18 different diffusion time ∆ values,
ranging from 4ms up to 1s.

Figure 5.10: Signal attenuation due to diffusion Ψ as a function of gradient field strength
G2 for the water-saturated microsphere packing B: 106-125µm using the 13-interval APFG
sequence (Figure 4.4). Diffusion was measured for 18 different diffusion time ∆ values,
ranging from 4ms up to 1s.

is increased. One should notice that even the largest diffusion time employed (∆ = 1s)

would not satisfy the long-time condition
√
D0∆ � Rp for these samples, which in this
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Figure 5.11: Signal attenuation due to diffusion Ψ as a function of gradient field strength
G2 for the water-saturated microsphere packing C: 212-250µm using the 13-interval APFG
sequence (Figure 4.4). Diffusion was measured for 18 different diffusion time ∆ values,
ranging from 4ms up to 1s.

Figure 5.12: Signal attenuation due to diffusion Ψ as a function of gradient field strength
G2 for the water-saturated microsphere packing D: 425-500µm using the 13-interval APFG
sequence (Figure 4.4). Diffusion was measured for 18 different diffusion time ∆ values,
ranging from 4ms up to 1s.

case ranges from approximately ∆ � 1 s, for the smallest microspheres (45 − 53µm), up

to ∆� 5 min, for the largest microspheres (710− 850µm).
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Figure 5.13: Signal attenuation due to diffusion Ψ as a function of gradient field strength
G2 for the water-saturated microsphere packing E: 710-850µm using the 13-interval APFG
sequence (Figure 4.4). Diffusion was measured for 18 different diffusion time ∆ values,
ranging from 4ms up to 1s.

Figure 5.14: Effective diffusion coefficients extracted from the data sets in Figures from 5.9
to 5.13 using a standard 13-interval PGSTE sequence. Only the data sets with diffusion
times ∆ wherein the Gaussian approximation for the diffusion propagator was taken as
valid were considered for the analysis. The error bar for the determination of Deff values
increases with the diffusion time as an effect of signal loss due to relaxation.
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Tourell et al. [79] reported a set of results from a singlet-assisted diffusion study using

two different home-synthesized molecular systems for singlet preparation and a variety

of microsphere packages, including the same soda-lime glass package sample E (710 −
850µm) employed in our previous example. On the reported results, using a singlet-assisted

diffusion protocol, diffusion coefficients were obtained from data sets with diffusion times

up to 240s.

5.2.3 SAD-NMR Pulse Sequences

The pulsed-field gradients of a regular stimulated echo PFG (PGSTE) sequence employed

for encoding and decoding of a magnetization phase in diffusion experiments can be

combined with the preparation and reading stages of singlet states to produce a singlet-

assisted PGSTE protocol. Figure 5.15 shows the protocol proposed by Yadav et al. [167,

174].

Figure 5.15: Singlet-assisted pulsed-field gradient stimulated echo (Singlet-PGSTE)
sequence proposed by Yadav et al. [167, 174]. The upper scheme (RF) represents the
radio-frequency pulses and the lower scheme (G) the pulsed gradients. At the lower scheme
the encoding and decoding pulsed-gradient pairs are illustrated in blue and the spoiler
gradients g1 and g2 are illustrated in red. The phase cycling schemes are: φ1 = x; φ2 =
x; φ3 = x, y, x, y,−x, y, x, y; φ4 = x, y, x, y, x, y, x, y and ϕR = x, x, x, x,−x,−x,−x,−x.

The singlet preparation stage is similar to the protocol described in Figure 5.4. The first

pair of encoding gradient pulses are applied during the first spin echo interval τ1−180−τ1,

immediately before and after the refocusing π pulse. Singlet detection is performed with

π/4 pulse followed by another spin echo interval τ1−180−τ1, wherein both gradient pulses
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for phase decoding are also placed right before and after the π pulse. The delays τ1 and τ2

are the same described in Equation (5.20). Two additional spoiling gradient pulses g1 and

g2 (illustrated in red), as the ones employed in magnetic resonance imaging techniques [175,

176], are used to filter unwanted coherences. The suppression of singlet-triplet transitions

can be achieved by a continuous wave (CW) or a composed pulse decoupling (CPD) spin-

locking method. The phase cycling scheme for each pulse (φ1 to φ4) and the receiver (ϕR)

can be found detailed at the caption of the figure.

Different examples of singlet-assisted diffusion sequences can be found in References

[79, 167, 168, 170], even though they are based on the same principle, merging singlet

preparation and reading stages with pulsed-gradients for phase encoding and decoding.

The SAD-NMR experiments are yet to be performed, after a proper investigation on

the preliminary results presented in Section 5.1.6 and a refinement on the experimental

methodology, in order for the the long-lived behavior of singlet states to be properly

exploited.
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Chapter 6

Conclusion

Relaxation and diffusion NMR techniques can be widely employed for the characterization

of confined fluids, providing insightful information on both saturating fluids and confining

space. Particularly, three distinct applications, performed under high-field conditions,

were presented and discussed in this thesis. In all of them, a special attention was brought

to the establishment of a suitable framework for data analysis, in order to ensure a proper

interpretation of parameters extracted from NMR data sets and their correlation with

physical properties of fluids and geometrical features of porous structures. One of the main

advantages of high-field NMR, associated with high resolutions for the determination of

chemical-shifts and spectroscopy applications, is lost when fluids are under confinement

in porous geometry, wherein magnetic fields become grossly inhomogeneous. Therefore,

distinct applications of the time-domain analysis of relaxation rates and effective diffusion

coefficients, performed in data sets obtained from controlled experiments using model

porous samples, were discussed.

The problem of multi-exponential analysis and the direct association between relaxation

rates and pore size distributions was addressed in Chapter 3, through a controlled study

of water transverse relaxation rates obtained in a set of home-fabricated synthetic porous

structures, designed to exhibit homogeneous pore size distributions and mineralogy, in

different confinement scales, yet keeping close levels of porosity, which from the standpoint

of data analysis upholds a fair comparison among data sets obtained from different samples

on what regards the water content, i.e., signal-to-noise ratio. The pore size distribution of

the fabricated samples was determined by the processing micro tomography images. Even

though the smallest observable pore size is known to be limited, in this case, by the image

resolution, there were no signs nonetheless of the presence of two different size scales in

pore size distributions, in opposition to the bi-exponential transverse relaxation profiles

obtained for all samples.
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The problem of magnetization loss due to diffusion of molecules through strong internal

magnetic field gradients, originated from the enhanced magnetic susceptibility contrast

between the porous and the fluid space in high-field NMR was also evaluated. Even

though it was verified that this effect indeed affects the observed relaxation rates, the bi-

exponential behavior of transverse relaxation was also observed in low-field measurements,

wherein this effect is significantly reduced (and sometimes neglected), as it is proportional

to the magnetic field strength. It is worth mentioning that despite the effort in producing

model porous media for a fair investigation of surface effects on relaxation rates, pore size

scale and connectivity in all samples were nevertheless high, indicating points wherein

the methodology could be improved. Notwithstanding, the results obtained in this set

of controlled experiments illustrate the problems related to the often unwary assumption

of a fast diffusion regime and the establishment of a direct relation between relaxation

time distributions and pore sizes, especially on what concerns NMR of porous rocks in oil

industry.

An NMR diffusion-based methodology was proposed as a tool for the characterization of

distinct fluid phases, as well as to the evaluation of conformation features, in bi-saturated

porous media, with potential applications for the study of fluids in porous materials

not only in oil, but also food or pharmaceutical industries. It was shown that through

the analysis of time-dependent diffusion coefficients extracted with simple bi-Gaussian

models from PFG NMR data sets it is possible to obtain valuable information on both

wetting and non-wetting phases and conformation features. The short-time analysis of

time-dependent diffusion coefficients was used to characterize the porous samples in pre-

drainage experiments and it was shown to be sensitive to the enhancement in the surface-

to-volume ratio probed by the wetting phase, in post drainage experiments, i.e., after

the injection of a second non-wetting fluid. It was discussed how the behavior of time-

dependent diffusion coefficients of the non-wetting phase can be analyzed in order for one to

draw possible conformation scenarios for both phases. Next steps for this work are already

under development regarding the analysis time-dependent diffusion coefficients obtained

from 2-dimensional D-T2 experiments in low-field conditions with multi-saturated porous

media, under the framework of restricted diffusion.

The influence of molecular diffusion through internal field gradients in the presence high

magnetic fields was once more addressed in Chapter 4. In this case it was demonstrated

that, under the choice of a proper framework, it is possible to evaluate the validity of

the set of approximations regarding the analysis of time-dependent coefficients in the

short-time diffusion regime, even in high-field conditions. It is worth mentioning that,

particularly for the case of diffusion studies, high-field equipment bring some practical

advantages. The often robust hardware electronic present in high-field NMR spectrometers

allows the application of relatively strong and short gradient pulses, which can be rapidly
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switched on and off. This is important not only for the observation of diffusion during

short times, but also to create an experimental setup wherein the validity of fundamental

approximations in diffusion theory such as the narrow pulse (NPA) and the Gaussian

phase (GPA) approximations can be ensured, yet producing a sufficiently large signal

attenuation for the analysis of molecular diffusion.

Initial experiments with the singlet-assisted NMR technique were reported, although

some further investigation is yet to be performed in order for the long-lived behavior of

singlet states to be better exploited. Among several possible applications, the long-lived

spin order of singlet states can be employed to the observation of restricted molecular

diffusion in the long-time regime. For the case of connected porous media, the asymptotic

value of the effective diffusion coefficient in the long-time regime can be directly associated

with porous media tortuosity, an important geometry-related parameter for the study of

flow and transport properties of confined fluids.
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Phys. Rev. Lett. 75 (15 1995), pp. 2855–2858. doi: 10.1103/PhysRevLett.75.2855.

url: https://link.aps.org/doi/10.1103/PhysRevLett.75.2855.

[107] S. Godefroy et al. “Surface nuclear magnetic relaxation and dynamics of water

and oil in macroporous media”. In: Phys. Rev. E 64 (2 2001), p. 021605. doi:

10.1103/PhysRevE.64.021605. url: https://link.aps.org/doi/10.1103/

PhysRevE.64.021605.

[108] R. Kimmich, ed. Field-cycling NMR Relaxometry. Instrumentation, Model Theories

and Applications. New Developments in NMR. The Royal Society of Chemistry,

2019, P001–571. isbn: 978-1-78801-154-9. doi: 10 . 1039 / 9781788012966. url:

http://dx.doi.org/10.1039/9781788012966.

[109] Hiroshi Shimizu. “Effect of Molecular Shape on Nuclear Magnetic Relaxation. II.

Quadrupole Relaxation”. In: The Journal of Chemical Physics 40.3 (1964), pp. 754–

761. doi: 10.1063/1.1725202. eprint: https://doi.org/10.1063/1.1725202.

url: https://doi.org/10.1063/1.1725202.

160



[110] J.-P. Korb et al. “Relative role of surface interactions and topological effects in

nuclear magnetic resonance of confined liquids”. In: The Journal of Chemical Physics

101.8 (1994), pp. 7074–7081. doi: 10.1063/1.468333. eprint: https://doi.org/

10.1063/1.468333. url: https://doi.org/10.1063/1.468333.

[111] Frank Bauer, Martin Gutting, and Mark A. Lukas. “Evaluation of Parameter

Choice Methods for Regularization of Ill-Posed Problems in Geomathematics”.

In: Handbook of Geomathematics. Ed. by Willi Freeden, M. Zuhair Nashed, and

Thomas Sonar. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, pp. 1713–

1774. isbn: 978-3-642-54551-1. doi: 10.1007/978- 3- 642- 54551- 1_99. url:

https://doi.org/10.1007/978-3-642-54551-1_99.

[112] N. P. Galatsanos and A. K. Katsaggelos. “Methods for choosing the regularization

parameter and estimating the noise variance in image restoration and their relation”.

In: IEEE Transactions on Image Processing 1.3 (1992), pp. 322–336.

[113] Daniela Calvetti et al. “Tikhonov regularization with nonnegativity constraint”.

In: Electronic Transactions on Numerical Analysis 18 (Jan. 2004), pp. 153–173.

[114] M Bertero, C De Mol, and El R Pike. “Linear inverse problems with discrete data. I.

General formulation and singular system analysis”. In: Inverse problems 1.4 (1985),

p. 301.

[115] M. Sergiu et al. “Frequency-dependent NMR relaxation of liquids confined inside

porous media containing an increased amount of magnetic impurities”. In: Magnetic

Resonance in Chemistry 51.2 (2013), pp. 123–128. doi: 10.1002/mrc.3924. eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1002/mrc.3924. url: https:

//onlinelibrary.wiley.com/doi/abs/10.1002/mrc.3924.

[116] S. D. Senturia, J. D. Robinson, et al. “Nuclear spin-lattice relaxation of liquids

confined in porous solids”. In: Society of Petroleum Engineers Journal 10.03 (1970),

pp. 237–244.

[117] H.C. Torrey et al. “Magnetic spin pumping in fluids contained in porous media”.

In: Physical Review Letters 3.9 (1959), p. 418.

[118] Morrel H Cohen and Kenneth S Mendelson. “Nuclear magnetic relaxation and the

internal geometry of sedimentary rocks”. In: Journal of Applied Physics 53.2 (1982),

pp. 1127–1135.

[119] M. D. Correia et al. “Superstatistics model for T2 distribution in NMR experiments

on porous media”. In: Journal of Magnetic Resonance 244 (2014), pp. 12–17.

[120] W. E. Kenyon et al. “A three-part study of NMR longitudinal relaxation properties

of water-saturated sandstones”. In: SPE formation evaluation 3.03 (1988), pp. 622–

636.

161



[121] Mohammad Mahdi Labani et al. “Evaluation of pore size spectrum of gas shale

reservoirs using low pressure nitrogen adsorption, gas expansion and mercury porosimetry

A case study from the Perth and Canning Basins, Western Australia”. In: Journal

of Petroleum Science and Engineering 112 (2013), pp. 7–16.

[122] Usman Ahmed, SF Crary, GR Coates, et al. “Permeability estimation: the various

sources and their interrelationships”. In: Journal of Petroleum Technology 43.05

(1991), pp. 578–587.

[123] A. Rabbani, S. Jamshidi, and S. Salehi. “An automated simple algorithm for

realistic pore network extraction from micro-tomography images”. In: Journal of

Petroleum Science and Engineering 123 (2014). Neural network applications to

reservoirs: Physics-based models and data models, pp. 164 –171. issn: 0920-4105.

doi: https://doi.org/10.1016/j.petrol.2014.08.020.
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[126] S. Rémond, J. L. Gallias, and A. Mizrahi. “Characterization of voids in spherical

particle systems by Delaunay empty spheres”. In: Granular Matter 10 (2008),

pp. 329–334. issn: 1434-7636. doi: 10.1007/s10035-008-0092-4. url: https:

//doi.org/10.1007/s10035-008-0092-4.

[127] Mario Bertero, Christine De Mol, and Edward Roy Pike. “Linear inverse problems

with discrete data: II. Stability and regularisation”. In: Inverse problems 4.3 (1988),

p. 573.

[128] Stingaciu L. R. et al. “Characterization of unsaturated porous media by high-field

and low-field NMR relaxometry”. In: Water Resources Research 45.8 (2009).

[129] S. Muncaci and I. Ardelean. “Probing the Pore Size of Porous Ceramics with

Controlled Amount of Magnetic Impurities via Diffusion Effects on the CPMG

Technique”. In: Applied Magnetic Resonance 44.7 (2013), pp. 837–848.

[130] R. J. S. Brown and P. Fantazzini. “Conditions for initial quasilinear T−1
2 versus τ

for Carr-Purcell-Meiboom-Gill NMR with diffusion and susceptibility differences in

porous media and tissues”. In: Phys. Rev. B 47 (22 1993), pp. 14823–14834. doi:

10.1103/PhysRevB.47.14823. url: https://link.aps.org/doi/10.1103/

PhysRevB.47.14823.

162



[131] Denis S. Grebenkov. “Chapter 3 From the Microstructure to Diffusion NMR, and

Back”. In: Diffusion NMR of Confined Systems: Fluid Transport in Porous Solids

and Heterogeneous Materials. The Royal Society of Chemistry, 2017, pp. 52–110.

isbn: 978-1-78262-190-4. doi: 10.1039/9781782623779-00052. url: http://dx.

doi.org/10.1039/9781782623779-00052.

[132] R.F. Karlicek and I.J. Lowe. “A modified pulsed gradient technique for measuring

diffusion in the presence of large background gradients”. In: Journal of Magnetic

Resonance (1969) 37.1 (1980), pp. 75 –91. issn: 0022-2364. doi: https://doi.

org/10.1016/0022-2364(80)90095-5. url: http://www.sciencedirect.com/

science/article/pii/0022236480900955.

[133] R.M. Cotts et al. “Pulsed field gradient stimulated echo methods for improved

NMR diffusion measurements in heterogeneous systems”. In: Journal of Magnetic

Resonance (1969) 83.2 (1989), pp. 252 –266. issn: 0022-2364. doi: https://doi.

org/10.1016/0022-2364(89)90189-3. url: http://www.sciencedirect.com/

science/article/pii/0022236489901893.

[134] L.L. Latour et al. “Time-Dependent Diffusion Coefficient of Fluids in Porous Media

as a Probe of Surface-to-Volume Ratio”. In: Journal of Magnetic Resonance, Series

A 101.3 (1993), pp. 342 –346. issn: 1064-1858. doi: https://doi.org/10.1006/

jmra.1993.1056. url: http://www.sciencedirect.com/science/article/pii/

S1064185883710569.

[135] M.D. Hurlimann et al. “Restricted Diffusion in Sedimentary Rocks. Determination

of Surface-Area-to-Volume Ratio and Surface Relaxivity”. In: Journal of Magnetic

Resonance, Series A 111.2 (1994), pp. 169 –178. issn: 1064-1858. doi: https:

//doi.org/10.1006/jmra.1994.1243. url: http://www.sciencedirect.com/

science/article/pii/S1064185884712435.

[136] B.A. Khan et al. “Basics of pharmaceutical emulsions: A review”. In: African

Journal of Pharmacy and Pharmacology 5(25) (2011), pp. 2715–2725. issn: 1996-

0816. doi: https : / / doi . org / 10 . 5897 / AJPP11 . 698. url: http : / / www .

academicjournals.org/AJPP.

[137] M.J. Lawrence and G.D. Rees. “Microemulsion-based media as novel drug delivery

systems”. In: Advanced Drug Delivery Reviews 45.1 (2000). Emulsions for Drug

Delivery, pp. 89 –121. issn: 0169-409X. doi: https://doi.org/10.1016/S0169-

409X(00)00103-4. url: http://www.sciencedirect.com/science/article/

pii/S0169409X00001034.

[138] J.G. Speight. “A review of: “Emulsions Fundamentals and Applications In the

Petroleum Industry” By Laurier L. Schramm, Editor”. In: Fuel Science and Technology

International 10.7 (1992), pp. 1237–1237. doi: 10.1080/08843759208916047.

163



[139] A. Perazzo et al. “Emulsions in porous media: From single droplet behavior to

applications for oil recovery”. In: Advances in Colloid and Interface Science 256

(2018), pp. 305 –325. issn: 0001-8686. doi: https://doi.org/10.1016/j.cis.

2018.03.002. url: http://www.sciencedirect.com/science/article/pii/

S0001868618300174.

[140] C.D. McAuliffe. “Oil and Gas Migration—Chemical and Physical Constraints”. In:

AAPG Bulletin 63.5 (May 1979), pp. 761–781. issn: 0149-1423. doi: 10.1306/

2F9182CF-16CE-11D7-8645000102C1865D.

[141] H. M. McConnell. “Reaction Rates by Nuclear Magnetic Resonance”. In: The

Journal of Chemical Physics 28.3 (1958), pp. 430–431. doi: 10.1063/1.1744152.

eprint: https://doi.org/10.1063/1.1744152. url: https://doi.org/10.1063/

1.1744152.

[142] K.J. Packer and C. Rees. “Pulsed NMR studies of restricted diffusion. I. Droplet

size distributions in emulsions”. In: Journal of Colloid and Interface Science 40.2

(1972), pp. 206 –218. issn: 0021-9797. doi: https://doi.org/10.1016/0021-

9797(72)90010-0. url: http://www.sciencedirect.com/science/article/

pii/0021979772900100.

[143] K.G. Hollingsworth and M.L. Johns. “Measurement of emulsion droplet sizes using

PFG NMR and regularization methods”. In: Journal of Colloid and Interface

Science 258.2 (2003), pp. 383 –389. issn: 0021-9797. doi: https://doi.org/

10.1016/S0021- 9797(02)00131- 5. url: http://www.sciencedirect.com/

science/article/pii/S0021979702001315.

[144] R. Valiulin, ed. Diffusion NMR of Confined Systems. Fluid Transport in Porous

Solids and Heterogeneous Materials. Royal Society of Chemistry, 2017.

[145] G.J. Hirasaki. “Wettability: Fundamentals and Surface Forces”. In: 6 (02 1991).

doi: 10.2118/17367-PA.

[146] Schlumberger. Oil Field Glossary - Drainage. 2020. url: https://www.glossary.

oilfield.slb.com/en/Terms/d/drainage.aspx.

[147] B. Chencarek et al. “Multi-exponential Analysis of Water NMR Spin–Spin Relaxation

in Porosity/Permeability-Controlled Sintered Glass”. In: Applied Magnetic Resonance

50 (2019), pp. 211–225. doi: 10.1007/s00723-018-1050-x. url: https://doi.

org/10.1007/s00723-018-1050-x.

[148] R. Mills. “Self-diffusion in normal and heavy water in the range 1-45.deg.” In:

The Journal of Physical Chemistry 77.5 (1973), pp. 685–688. doi: 10 . 1021 /

j100624a025. eprint: https://doi.org/10.1021/j100624a025. url: https:

//doi.org/10.1021/j100624a025.

164



[149] H.L. Weissberg. “Effective Diffusion Coefficient in Porous Media”. In: Journal of

Applied Physics 34.9 (1963), pp. 2636–2639. doi: 10.1063/1.1729783. eprint:

https://doi.org/10.1063/1.1729783. url: https://doi.org/10.1063/1.

1729783.

[150] L.M. Schwartz et al. “Cross-property relations and permeability estimation in

model porous media”. In: Phys. Rev. E 48 (6 1993), pp. 4584–4591. doi: 10.

1103/PhysRevE.48.4584. url: https://link.aps.org/doi/10.1103/PhysRevE.

48.4584.

[151] F. Stallmach and H. Thomann. “Producible fluid volumes in porous media determined

by pulsed field gradient nuclear magnetic resonance”. Pat. US5565775A. 1995.

[152] P.J. McDonald et al. “Magnetic-resonance determination of the spatial dependence

of the droplet size distribution in the cream layer of oil-in-water emulsions: Evidence

for the effects of depletion flocculation”. In: Phys. Rev. E 59 (1 1999), pp. 874–884.

doi: 10.1103/PhysRevE.59.874. url: https://link.aps.org/doi/10.1103/

PhysRevE.59.874.

[153] C. Russell Bowers and Daniel P. Weitekamp. “Transformation of Symmetrization

Order to Nuclear-Spin Magnetization by Chemical Reaction and Nuclear Magnetic

Resonance”. In: Phys. Rev. Lett. 57 (21 1986), pp. 2645–2648. doi: 10.1103/

PhysRevLett.57.2645. url: https://link.aps.org/doi/10.1103/PhysRevLett.

57.2645.

[154] O. W. Sørensen. “A universal bound on spin dynamics”. In: Journal of Magnetic

Resonance (1969) 86.2 (1990), pp. 435 –440. issn: 0022-2364. doi: https://doi.

org/10.1016/0022-2364(90)90278-H. url: http://www.sciencedirect.com/

science/article/pii/002223649090278H.

[155] M. H. Levitt. “Unitary evolution, Liouville space, and local spin thermodynamics”.

In: Journal of Magnetic Resonance (1969) 99.1 (1992), pp. 1 –17. issn: 0022-2364.

doi: https://doi.org/10.1016/0022-2364(92)90151-V. url: http://www.

sciencedirect.com/science/article/pii/002223649290151V.

[156] B. Andreas. “Introduction to average Hamiltonian theory. I. Basics”. In: Concepts

in Magnetic Resonance Part A 45A.6 (2016), e21414. doi: https://doi.org/10.

1002/cmr.a.21414. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.

1002/cmr.a.21414. url: https://onlinelibrary.wiley.com/doi/abs/10.

1002/cmr.a.21414.

[157] A.J. Shaka et al. “An improved sequence for broadband decoupling: WALTZ-16”.

In: Journal of Magnetic Resonance (1969) 52.2 (1983), pp. 335 –338. issn: 0022-

2364. doi: https://doi.org/10.1016/0022-2364(83)90207-X. url: http:

//www.sciencedirect.com/science/article/pii/002223648390207X.

165



[158] G. Pileio and M. H. Levitt. “Theory of long-lived nuclear spin states in solution

nuclear magnetic resonance. II. Singlet spin locking”. In: The Journal of Chemical

Physics 130.21 (2009), p. 214501. doi: 10.1063/1.3139064. eprint: https://doi.

org/10.1063/1.3139064. url: https://doi.org/10.1063/1.3139064.
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