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Resumo

Utilizando ferramentas da Física Estatística, investigou-se sistemas
complexos relacionados às áreas de Ecologia e Epidemiologia. Es-
pecificamente, esta tese focou na fenomenologia emergente a partir
de cinco problemas: (i) dinâmica da metapopulação sob o efeito Al-
lee e restrições espaciais; (ii) dinâmica de 2 espécies sob o cenário
de uma competição quase neutra dentro de uma estrutura de me-
tapopulação; (iii) dinâmica populacional com perturbações depen-
dentes do tempo com padrões de complexidade distintos; (iv) mode-
lo de 2 populações Susceptível-Infectado-Recuperado-Assintomático-
Sintomático-Morto (SIRASD), em que as populações diferem pelo
grau de cumprimento das políticas de distanciamento social; (v) di-
nâmica conjunta opinião-vacinação-epidemias. Em tais problemas,
a contribuição desta tese varia de adicionar novos fenômenos a um
dado arcabouço teórico (i-v), estabelecer uma nova perspectiva so-
bre um fenômeno previamente estabelecido (i-v), definir uma nova
potencial agenda para futuras investigações empíricas (i-iii), forne-
cer novas circunstâncias onde fenômenos biológicos contra-intuitivos
podem emergir (i,ii,v).

Palavras-chaves: Sistemas biológicos complexos. Simulação de Mon-
te Carlo. Abordagem de campo médio.



Abstract

Employing tools from Statistical Physics, we work on complex sys-
tems related to the fields of Ecology and Epidemiology. Specifical-
ly, we investigate the emergent phenomenology from five problem-
s: (i) metapopulation dynamics under the Allee effect and spatial
restrictions; (ii) 2-species dynamics under the scenario of a quasi-
neutral competition within a metapopulation framework; (iii) pop-
ulation dynamics with the Allee Effect and time-dependent pertur-
bations rates with distinct complexity patterns; (iv) 2-population
Susceptible-Infected-Recovered-Asymptomatic-Symptomatic-Dead
(SIRASD) model, where populations differ by their degree of compli-
ance with social distancing policies; (v) coupled opinion-vaccination-
epidemics dynamics in modular networks. In such problems, our con-
tribution ranges from adding a new feature to a theoretical frame-
work (i-v), providing a novel perspective on an established phe-
nomenon (i-v) and setting a new potential agenda for empirical in-
vestigations within the approach of Synthetic Biology (i-iii) as well
as providing novel circumstances where counter-intuitive biological
dynamics can emerge (i,ii,v).

Keywords: Complex Biological systems. Monte Carlo Simulation.
Mean-field approach.
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Introduction

While Physics has a long tradition of using mathematical
apparatus, Biology is still moving towards a greater insertion of
mathematical tools in many of its subfields. In particular, Ecology
and Epidemiology are two subfields of Biology that are receptive to
the introduction of mathematical tools(MACKEY; MAINI, 2015).

The first influential applications of mathematics in mod-
ern Ecology took place in the early 1900s(MCCANN, 2012). For
instance, the predator-prey system of equations, a crucial model in
Ecology of competitions, was independently developed by the math-
ematicians Alfred Lotka in 1925 and Vito Volterra in 1926(MCCAN-
N, 2012; BACAËR, 2011). Levins’ work(LEVINS, 1969) is another
significant mathematical contribution in modern Ecology where the
new concept of metapopulations was explicitly established(HANSKI;
GILPIN, 1991).

In turn, mathematical models were established as a solid
tool in Epidemiology in the early 1900s(MCCANN, 2012). For in-
stance, in 1911 Ronald Ross introduced a breakthrough idea in Epi-
demiology. At that time it was commonly accepted that any initial
quantity of mosquitoes would lead to a persistence of malaria in a
given population (BRAUER; CASTILLO-CHAVEZ; FENG, 2019).
Ross developed a flexible compartmental model (ROSS, 1911) that
incorporated the human-mosquito interaction. He revealed that de-
creasing the mosquito density below a threshold would be sufficient
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to eradicate malaria. Why the threshold for an epidemic outbreak
was missed by many public health and infectious disease experts?
The possible reason is that such a threshold cannot be discovered
straightforwardly from empirical data; it demands a mathematical
model to elucidate its existence(WEISS, 2013). Based on a determin-
istic epidemic model, Kermack and McKendrick formulated, around
1927, an expression for the final epidemic size, which highlights a
threshold for the population density. Above this threshold massive
outbreaks can take place, whereas below such threshold the epidemic
dies out(KERMACK; MCKENDRICK, 1927).

In this thesis we work on complex biological systems related
to Ecology and Epidemiology. Our goal is to investigate the possible
emerging scenarios from minimal models. As we will discuss in each
part of this thesis, our models can be naturally seasoned with further
elements that account for the traits of a given system. It is well-
known that the use of minimal models is very helpful in providing
an understanding of the cornerstone mechanisms present in tailored
models.

This thesis is structured in 5 works that we address in the
following way:

• In the chapter 1 we study how dispersal influences ecological
dynamics under the Allee effect and spatial restrictions mod-
eled with a k-regular graph. We employ a microscopic minimal
model in a metapopulation (without requiring nonlinear birth
and death rates).

• In the chapter 2 we investigate the emergent phenomenolo-
gy from two-species dynamics under the scenario of a quasi-
neutral competition within a metapopulation framework us-
ing a k-regular graph. We employ stochastic and determinis-
tic approaches, namely spatially-constrained individual-based
Monte Carlo simulations and coupled mean-field ODEs.

• In the chapter 3, we aim at shedding light on the question: how
extinction is molded by time-dependent perturbations with dis-
tinct complexity patterns? To address this issue we employ e-
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cological dynamics with the Allee-effect under time-dependent
rates with different complexity but the same autocorrelation.

• In the chapter 4 we scrutinize the potential scenarios from a
Susceptible-Infected-Recovered-Asymptomatic-Symptomatic-Dead
(SIRASD) model.As a novelty we consider populations strat-
ified in groups according to socioeconomic features that are
present in emerging and developing countries. As a case study,
we consider the case of Brazil. Our results also provide insight-
s for nations where the informal economy has a considerable
size.

• In the chapter 5, we study an epidemics spreading under a vac-
cination campaign with agents in favor and against the vaccine.
The chain of contagion is modeled by the SIRS with the ad-
ditional compartment for the Vaccinated agents. The opinion
dynamics follow a pairwise model.

The chapters 1-3 have in common the fact of treating ecolog-
ical problems. Besides these chapters set an agenda for experimental
works within the framework of Synthetic biology where bacteria can
be programmed to exhibit new behavior. Moreover, chapters 1 and
3 are related in the sense that both are based on Allee-like dynam-
ics. Apart from this, chapter 1 is also related to chapter 2 since
both use metapopulations. In turn, chapters 4-5 have in common
the treatment of problems of Epidemiology with models that are
extensions of the paradigmatic SIR model. While chapter 4 intro-
duces economic-based features in a multigroup epidemic dynamics,
chapter 5 introduces opinions dynamics in a community-based vacci-
nation dynamics. By bridging multiple fields, both works are beyond
the standard approach that employs only epidemic models.

It is well established that several of the most important mile-
stones in biology reached during the last two centuries were achieved
by acknowledging the importance of random dynamics (HEAMS,
2014), thus in all works of this thesis, the randomness was present
as a main or an auxiliary ingredient. In chapters 1 and 5 we ob-
serve bistability induced by randomness. In chapter 2 we show the
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presence of scenarios in which the randomness is crucial for deter-
mining the winner species. In chapter 3 we show how randomness
jeopardizes the long-run proliferation of organisms. In chapter 4 the
random-based approach is employed to test the robustness of the
outcomes obtained with the deterministic framework.

All chapters can be seen from the perspective of nonequi-
librium statistical physics. Specifically, all models addressed here
have a nonequilibrium transition to an absorbing state, where once
the dynamics enter such a state it cannot escape anymore. In the
ecological problems of chapters 1-3 the absorbing state is usually
undesirable, the extinction of species. Whereas in chapters 4-5 the
absorbing state is welcome, the eradication of a disease.

In order to accomplish our goals we use computational and
mathematical tools. On the computational side we develop codes
in C and R to perform extensive Monte carlo simulations. On the
mathematical side, we work with three main tools. From one hand
we employ networked (coupled) local-mean-field equations that are
able to capture global correlations through a network topology. In
the second category we employ ordinary differential equation (ODE)
to address important issues. When necessary we use agent-based
simulations.



Chapter 1

Optimal dispersal in ecological

dynamics with Allee effect in

metapopulations

In this chapter, we address the question: how dispersal im-
pacts on ecological dynamics under the Allee effect and spatial con-
straints? To this task we develop an ecological metapopulation dy-
namics in order to investigate how the threefold interplay between
the Allee Effect, dispersal, and spatial restrictions influences the sur-
vival probability of a population dynamics. At first sight, it is pre-
sumed that dispersal has an advantageous influence on population
persistence by weakening the local struggle for resources. However,
interestingly, we note that for rigid spatial restrictions there is the
appearance of an optimal dispersal rate that supports the highest
survival probability. This nonmonotonic relationship between sur-
vival and dispersal — which is not very intuitive at first glance —
was recently recognized in controlled experiments with engineered
bacteria (SMITH et al., 2014). This work is available in Ref.(PIRES;
QUEIRÓS, 2019).
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INTRODUCTION

Table 1.1 – List of symbols used in this chapter.
Symbol Meaning

λ Reproduction rate
α Death rate
D Dispersal rate
nS Number of sources in the network
L Number of populations in the metapopulation
N Number of individuals in the metapopulation

The logistic growth model is one of the most common dy-
namics of population Biology. Despite its ubiquity across Ecology,
there are several instances where it cannot describe properly collec-
tive phenomena emerging in sparse populations such as the Allee
effect (COURCHAMP; BEREC; GASCOIGNE, 2008a).

The Allee effect is an influential finding named after the ecol-
ogist Warder Clyde Allee (ALLEE, 1931) concerning a phenomenon
typically manifested by the departure from the standard logistic
growth that enhances the susceptibility to extinction of an already
vulnerable sparse population. For illustration consider the Fig.1.1.
In the logistic model there is a negative correlation between the per
capita growth and population size. In the weak Allee effect, the per
capita growth is smaller than in the logistic model, but now at low
population sizes there is a positive correlation between the per capi-
ta growth and the population size. In the strong Allee effect, there
is an additional feature: below a threshold the reduced per capita
growth rate becomes negative.

The Allee effect can emerge from a variety of mechanisms
such as mate limitation, cooperative breeding, cooperative feeding,
habitat amelioration (DRAKE; KRAMER, 2011; COURCHAMP;
BEREC; GASCOIGNE, 2008a). Empirical support to the Allee Ef-
fect can be found in terrestrial arthropods, aquatic invertebrates,
mammals, birds, fish, and reptiles (COURCHAMP; BEREC; GAS-
COIGNE, 2008a; KRAMER et al., 2009). In addition, thanks to
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Figure 1.1 – Per capita population growth rate against population
size for the Logistic model, weak Allee effect and strong
Allee effect.

Synthetic Biology it is possible to observe the Allee effect in pro-
grammed bacteria (SMITH et al., 2014).

Besides ecology, conservation biology (COURCHAMP; BEREC;
GASCOIGNE, 2008a) and invasion biology (TAYLOR; HASTINGS,
2005), there is a growing number of studies addressing the impor-
tance of the Allee effect in other subjects such as epidemiology (RE-
GOES; EBERT; BONHOEFFER, 2002; DEREDEC; COURCHAM-
P, 2006; HILKER; LANGLAIS; MALCHOW, 2009) and cancer bi-
ology (KOROLEV; XAVIER; GORE, 2014; SEWALT et al., 2016)
among others. Explicitly, in Ref. (KOROLEV; XAVIER; GORE,
2014) the authors suggest the manifestation of the Allee effect as
the tumor growth threshold may be explored in therapeutics.

For long the Allee effect was mostly studied at the popula-
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tion scale, but in Ref. (AMARASEKARE, 1998) it was shown its
relevance at the metapopulation level as well. Afterwards, it was
effectively demonstrated the Allee effect at the metapopulation lev-
el can come up from the Allee effect at the local population lev-
el (ZHOU; WANG, 2004, 2006).

Focusing on the theoretical approach to the problem, sever-
al models — spanning from phenomenological to purely microscopic
proposals — have been able to reproduce the Allee effect and to ex-
plore its dynamical outcomes (BOUKAL; BEREC, 2002; BEREC,
2008; TAYLOR; HASTINGS, 2005), namely those coping with the
interplay between the Allee effect and dispersal. Note that Depend-
ing on the primary approach to population dynamics, the concept
of dispersal is also known as migration or dispersal. Let us mention
a few examples: on the one hand, one can find works showing a
positive association between migration and the number of invaded
patches (ACKLEH; ALLEN; CARTER, 2007); the invasion diagram
presented in Ref. (KEITT; LEWIS; HOLT, 2001) shows that the
propagation failure regime shrinks as the dispersal rate increases.

In Ref. (BRASSIL, 2001), it is asserted that in a simple
metapopulation dynamics the larger the migration the larger the
mean time to extinction. On the other hand, there are works indicat-
ing that the combination of the Allee effect and dispersal produces
a negative impact on the population dynamics; that is the case of
Ref. (HOPPER; ROUSH, 1993) where the authors claim that the
vulnerability to extinction increases with the mean-square displace-
ment. Considering a nonlinear dynamics analysis of the Allee effect,
the survival-extinction bifurcation diagram shown in Ref. (HADJI-
AVGOUSTI; ICHTIAROGLOU, 2004) reveals that the extinction
regime augments directly with the dispersal probability. Comple-
mentary, it was also found that a dispersive population under the
Allee effect faces a dramatically slowed spreading (VEIT; LEWIS,
1996). Additionally, it was shown in (PETROVSKII; MOROZOV;
LI, 2005) that the dispersal does not always enhance regional per-
sistence in a predator-prey system under the Allee effect. Last, the
results conveyed in Ref. (ROBINET et al., 2008) indicate that pop-
ulations with the Allee effect face an inverse relationship between



Chapter 1. Optimal dispersal in ecological dynamics with Allee effect in

metapopulations 21

the settlement probability and the pre-mating dispersal.

Particularly in population ecology, Windus and Jensen (WIN-
DUS; JENSEN, 2007) proposed a minimal model that successfully
captures the strong Allee Effect – the focus of this work – by means
of a bistable dynamics arising from microscopic rules. Inspired by
their model, we develop an ecological metapopulation dynamics in
order to explore how the threefold interplay between the Allee Effect,
dispersal and spatial constraints impacts on the survival probability
of a population dynamics. It is reasonably expected that the disper-
sal has a beneficial impact on population survival by decreasing the
local competition for resources. But interestingly, we observe that
for severe spatial constraints there is the emergence of an optimal
dispersal rate that promotes the highest survival probability. This
nonmonotonic relation between survival and dispersal — which is
not very intuitive at first glance — was recently observed in con-
trolled experiments with engineered bacteria (SMITH et al., 2014).

MODEL AND MONTE CARLO SIMULATION

Consider a metapopulation (HANSKI; GILPIN, 1991; HAN-
SKI, 1998) with L subpopulations composed of agents that are able
to move, die or reproduce. As usual in metapopulation dynamics
(HANSKI; GILPIN, 1991), we assume a well-mixed subpopulation,
i.e., inside each subpopulation all individuals have the possibility to
interact with each other. 1 The mobility is implemented as a random
walk between the neighbor subpopulations and it occurs with proba-
bility D for each agent. At a given time step, if the dispersal event is
not chosen (probability 1−D) then one of the two events is chosen
(WINDUS; JENSEN, 2007): death of an agent with probability α or
reproduction with probability λ when two agents meet.

At this point, some remarks are worth making: first, heed
that D controls the time scale between migration or death/reproduc-
tion; second, it is clear that we make no extra assumptions on the
probabilities α or λ; Moreover, there is no local condensation of the
1 In Statistical Physics parlance that is to say that our local dynamics exhibits a

mean-field character.
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agents because the random walk uniforms the agents distribution
among the subpopulations. We would like to stress that our goal is
not to model a specific ecological dynamics, but rather to investi-
gate the possible emerging scenarios from this minimal agent-based
migration-reproduction-death dynamics.

The Monte Carlo Algorithm

Computationally2, we use an array with N states divided
into the L subpopulations. Each state in the subpopulation u indi-
cates an agent, iuA or a vacancy, iuV . The time is measured in Monte
Carlo Steps (mcs) that consists of a visit to each one of the N states.

Monte Carlo Step:

For each state i= 1, . . . ,N :

• First get the subpopulation, say u, of the state i.

• With probability D:

– Dispersal: If the state i indicates an agent, iuA, then move
it to one of its neighbors w chosen at random: iuA⇒ iwA

• With probability 1−D:

– Reproduction: If the state i indicates a vacancy, iuV ,
then pick at random another state j in the same sub-
population u. If this j indicates an agent, juA, then pick at
random another state l in the same subpopulation u. If
the state l indicates another agent, luA, then transform the
vacancy iuV into an agent iuA with rate λ: iuV + juA + luA⇒
iuA+ juA+ luA

– Death: If the state i indicates an agent, iuA, then trans-
form it into a vacancy with rate α: iuA⇒ iuV

After each Monte Carlo Step we apply a synchronous up-
dating of the states.
2 Our main code is availabe at (MAP, 2019).
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Mathematical approach

Consider that Au(t) and Vu(t) are the number of agents
and vacancies in the subpopulation u at instant t, respectively. We
use a ring metapopulation where each node is a subpopulation con-
nected to k neighbor subpopulations. The parameter k controls the
magnitude of the spatial constraints. Let u = 1, . . . ,L. Considering
the well-mixed population (mean-field) at the local scale, the time
evolution of the networked system is given by

dVu
dt

= (1−D)
[ Reproduction︷ ︸︸ ︷
− λVuA

2
u

(Vu+Au)2 +
Death︷︸︸︷
αAu

]
(1.1)

dAu
dt

= (1−D)
[ λVuA

2
u

(Vu+Au)2︸ ︷︷ ︸
Reproduction

− αAu︸︷︷︸
Death

]
+D

[
−Au︸ ︷︷ ︸

Emigration

+
L∑
z=1

1
k
WuzAz︸ ︷︷ ︸

Immigration

]

(1.2)

with Wuz being the elements of the adjacency matrix which
assumes the value 1 if u and z are connected or 0 otherwise.

Aiming at taking into account both the cases of single and
multiple sources of invasion, we shall use an initial condition given
by

Au(0) =
{

1
ns

N
L u= 1, . . . ,ns

0 u= ns+ 1, . . . ,L
(1.3)

where N/L is the initial size of each subpopulation and ns is the
number of initial sources. By default, we use Vu(0) = N/L−Au(0)
as well.

Survival-extinction phase transition

From a preliminary numerical analysis we observed that the
steady-state solution satisfies
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A∞u = Ā, V∞u = V̄ ∀u u= 1,2, . . . ,L (1.4)

Using that observation as an ansatz to solving our equations
implies

N =
L∑
u=1

(Au+Vu) = L(Ā+ V̄ )⇒ V̄ =N/L− Ā (1.5)

dĀ

dt
= (1−D)

[
λ(N/L− Ā)Ā2

(N/L)2 −αĀ
]

+D

[
−Ā+ 1

k

(
kĀ
)]

= 0

(1.6)

From Eq. (1.6) we can obtain three solutions to Ā. The
stability analysis yields a qualitative picture of the steady-state:

A∞u =


N
2L

(
1 +

√
1−4αλ

)
Au(t= 0)≥Aoc and α≤ λ/4

0 otherwise
(1.7)

Where Aoc is the threshold initial population size required
for the local persistence:

Aoc = N

2L

(
1−

√
1−4α

λ

)
(1.8)

Equations (1.7)-(1.8) do not explicitly take into account the
dispersal parameter D, but they allow us to get an insight into the
nature of the survival-extinction phase transition: they show that
the subpopulation faces a discontinuous transition at the critical
point αc = λ/4. As in the long-term, the mobility spreads the ab-
sence of local correlations to the whole metapopulation, then the
global dynamics undergoes an abrupt phase transition as well; we
numerically confirm in the next section.
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Figure 1.2 – Total number of agents vs time (in mcs) for D =
{0.03,0.05,0.07,0.09,0.14,0.19} with L= 10, N = 104L,
ns = 1. Each color corresponds to one sample. The sym-
bols were obtained from Monte Carlo simulations and
the lines from Eqs. (1.1)-(1.2).
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Figure 1.3 – Stationary density of agents a∞ vs mortality rate α
withD= 0.2, k= 2, L= 10, N = 104L, ns = 1. The sym-
bols come from the Monte Carlo Simulations and the
lines come from the numerical integration of Eqs. (1.1)-
(1.2).

RESULTS AND DISCUSSION

In this section, we present our results for metapopulations of
sizes 10≤L≤ 50 and increasing k, but all of the results remain valid
for larger networks as we checked using Monte Carlo Simulation and
our coupled differential equations (1)-(2), which represent the limit
of very large systems. For the sake of simplicity and without losing
generality for our results we fix λ= 1.

Fig.1.2 shows the time series of the total number of agents
in the metapopulation for different dispersal rates. The temporal
evolutions for D= {0.03,0.09,0.019} display a single stable (steady)
state, but the cases with D= {0.05,0.07,0.014} exhibit bistable solu-
tions. This rich dynamics is the outcome of competition between the
reproducibility and mortality. It is worth stressing the role of ran-
domness — governed by our probability parameters — in revealing
that bistability. A clear outcome of the combination of randomness
and bistability is the existence of ecological scenarios in which extinc-
tion can take place without apparent reason, even in the presence of
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Figure 1.4 – Phase diagram α v D for ns = 1,2, . . . ,6 sources, L= 10,
N = 104L. The point D = 0 is excluded from the dia-
gram since it refers to isolated populations with thresh-
old αc = λ/4 = 0.25. In all the cases n0 = 104

ns
, where n0

is the initial subpopulation size. The lines are obtained
from Eqs. (1.1)-(1.2).
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abundant resources. Last, a scenario marked by two well-separated
stochastically-induced steady-states is a hallmark of a sudden phase
transition as anticipated in the previous section. Such discontinu-
ous transition is confirmed in Fig. 1.3 where we show the density
of individuals, which is our order parameter, displays a pronounced
jump for a critical mortality rate αc. To fully grasp the idea behind
the survival-extinction transition in Fig. 1.3, consider the ecological
scenarios with α= {0.04,0.08,0.12}. If the environmental condition-
s rise the mortality from α = 0.04 to α = 0.08, the total density of
individuals undergoes just a slight drop (which may cause a false im-
pression of resilience). However, if the mortality increase from point
α= 0.08 to α= 0.12, there is tremendous dynamical response in the
population density namely the mass extinction. That is, the same
amount of rising in mortality rate can spark either a small or drastic
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Figure 1.6 – Phase diagram α vs D for networks with increasing
number of neighbors k = 2,4,6,8 (decreasing spatial
constraints). The theoretical lines (red) comes from nu-
merical integration of Eqs. (1.1)-(1.2).
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Figure 1.7 – Regime diagram of the dependence between threshold
mortality αc vs dispersal rateD for L= 50. The vertical
line that separates the two regimes is kthreshold = 30.
For k < kthreshold: αmax > αD=0.5 then αc×D displays
a nonmonotonic dependence. For k≥ kthreshold: αmax =
αD=0.5 then αc×D exhibits a monotonic dependence.

decline in the population. In other words, the population can behave
either in a robust or fragile manner to environmental perturbation-
s depending on the proximity to the threshold point. This feature
is a remarkable fingerprint of discontinuous phase transition. It is
worthwhile to mention that abrupt phase transitions are not an odd
phenomenon in biological dynamics.

Up to now, we have not distinguish between the role of D
and that of ns on the threshold αc(D). In order to separate out each
contribution we call attention to Fig. 1.4 disentangles the role played
by the interplay between the D and ns. To estimate the thresholds
we have employed an iterative procedure quite similar to that de-
scribed in section 2.1 of Ref. (WINDUS; JENSEN, 2007): (i) first
we set an initial guess for the threshold αc

′, then the dynamics s-
tarts; (ii) if a given sample enters in the extinction state we decrease
αc
′ by a given amount dα; (iii) if a given sample has a long-term

persistent population, then we increase αc′ by a given amount dα.
In the Fig. 1.4 we see that this iterative procedure provides a rea-
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sonable good estimation of the threshold that agrees very well with
the theoretical threshold obtained from Eqs. (1.1)-(1.2). Also note
that there is an optimal dispersal rate that allows the population to
have comparatively high threshold mortality rates αc. The number
of sources do not change the nonmonotonic dependence of α vs D,
but it changes the magnitude of this dependence.

Interestingly, Fig.1.5 shows there exists an optimal number
of sources that promotes the largest survival area in the diagram α vs
D> 0, as antecipated in Fig. 1.4; that is to say, the survival probabil-
ity is maximised for an intermediate number of sources, wherefrom
we understand that in populations subjected to the Allee Effect it
is best to spare the population in many sources, but not too much.
Similar results were found in Ref. (ZHOU; WANG, 2006) where the
authors came up with an integrated model that displays an Allee-like
effect at the metapopulation level, which is the outcome of impos-
ing the Allee effect at the local population level. That is in contrast
with our work because we use a microscopic model with no extra
assumption on the birth and death rates.

The survival-extinction phase diagram in Fig. 1.6 shows that
a decrease in the severity of the spatial constraints — i.e., an increase
of k — leads to a decreasing in the threshold mortality αc(D) for
all k. That is to say, the population becomes more vulnerable to
extinction when there are more open paths to emigrate. This result
is supported by Ref. (ACKLEH; ALLEN; CARTER, 2007) where it
was found that “with fewer connections, the probability of invasion
is greater”. Furthermore, we observe the emergence of two regimes:
αc increases nonmonotonically with D for severe spatial constraints
(k= 2,4), but it increases monotonically with D for loose spatial con-
straints (k = 6,8). Although we used a simplified minimal network
it already shows the importance of spatial constraints in changing
the qualitative behavior of the system. At last, Fig. 1.7 summarises
our results for different magnitudes of spatial constraints k. Clear-
ly there is a threshold for k, above which there is a monotononic
dependence between αc and D.

What is the underlying mechanism behind the qualitative
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change presented in Fig.1.6-1.7? When the geometric constraints are
very severe, we have a nonmonotonic regime caused by the source-
sink dynamics between the donor subpopulation and its surround-
ings. For small dispersal, the source cannot provide enough individ-
uals to produce a sustainable colony in the first-neighbors that in
turn acts as a drain from the donor subpopulation. For intermediate
dispersal the first neighbors receive enough individuals to bear suffi-
cient reproduction to overcome the Allee Effect. However, if the dis-
persal is further augmented, then the first neighbors receive as many
individuals as they lose for the next-nearest neighbors, which yields
an insufficient net reproduction to foster long-term survival. Alter-
natively, in the monotonic regime the of loose spatial constraints
allows the emergence of multiple secondary sources that feed one
another in a way that by boosting the dispersal one enhances the
net reproduction to overcome the Allee effect.

From the empirical side, the specific work of Smith et al
(SMITH et al., 2014) supports our finding of the optimal dispersal.
Therein, they engineered E. coli colonies aiming at displaying the
strong Allee effect and found that dispersal acts as a double-edged
sword. In other words, intermediate dispersal rates favours bacterial
spreading whereas both low and high dispersal rates inhibits the
spreading. Additionally, they present empirical evidence for another
interesting result present in Fig.1.6-1.7: increasing connectivity can
increase the vulnerability to extinction.

FINAL REMARKS

We studied ecological dynamics under the Allee effect and s-
patial constraints. Employing numerical and analytical tools we have
shown that the survival-extinction boundary has a nonmonotonic
behavior for severe spatial constraints and but a monotonic behav-
ior for loose spatial constraints. The verification of this qualitative
change in the dependence of the mortality threshold as a function
of the dispersal highlights the importance of the threefold interplay
between the Allee Effect, dispersal and geometric constraints for the
persistence of populations.
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Besides the experimental work of Ref. (SMITH et al., 2014),
there are previous theoretical models pointing to our conclusions
over the likely existence of an intermediate mobility rate that opti-
mises the survival probability. Explicitly, Ref. (YANG et al., 2017)
found a “nonmonotonic dependence of the critical Allee thresholds on
the migration rate” by imposing the Allee Effect at the microscopic
scale considering a nonlinear per capita birth rate rni/C+ rnic/C

2

per capita death rate rn2
i /C + rc/C.3 In addition, we can also re-

fer to Ref. (SOUTH; KENWARD, 2001) in which it was used an
individual two-gender population on a hexagonal grid where the
juveniles disperse away from their natal territory with dispersal dis-
tances distributed as a negative exponential. In that case, the pop-
ulation growth was highest for an optimal distance of the dispersal.
Yet, both works did not observe the fact that the magnitude of the
spatial constraints can change qualitatively the survival-extinction
boundary from a nonmonotonic to a monotonic dependence.

In a broader view, there are other biological systems that
exhibit nonmonotonic effects of dispersal such as epidemic spread-
ing (SOUTH; KENWARD, 2001), birth-death-competition dynam-
ics with migration (LAMPERT; HASTINGS, 2013), evolutionary
dynamics with the Allee effect and sex-biased dispersal (SHAW;
KOKKO, 2015), logistic growth dynamics in metapopulations with
heterogeneous carrying capacities (KHASIN et al., 2012), metapop-
ulation genetics dynamics with balancing selection (LOMBARDO;
GAMBASSI; DALL’ASTA, 2014), two-type (mutants, strains, or
species) population dynamics under the Allee effect (KOROLEV,
2015), and range expansion of a genetically diverse population where
individuals may invest its limited resources partly in motility and
partly in reproduction (REITER; RULANDS; FREY, 2014). As we
adopted a minimal ecological model, it is possible to bring forth dif-
ferent extensions of the present work in order to fit for the traits of
the problems we have just mentioned.

3 ni stands for the number of individuals on habitat patch i, C is the carrying
capacity, c is an Allee threshold



Chapter 2

Dispersal plays an unusual role

in ecological quasi-neutral

competition in metapopulations

In this chapter, we investigate the phenomenology emerging
from a 2-species dynamics under the scenario of a quasi-neutral com-
petition within a metapopulation framework. We employ stochastic
and deterministic approaches, namely spatially-constrained individual-
based Monte Carlo simulations and coupled mean-field ODEs. Our
results show the multifold interplay between competition, birth-death
dynamics and spatial constraints induces a nonmonotonic relation
between the ecological majority-minority switching and the diffu-
sion between patches. This work is available in Ref.(PIRES; CROKI-
DAKIS; QUEIRÓS, 2021).
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INTRODUCTION

Table 2.1 – List of symbols used in this chapter.
Symbol Meaning

λ Reproduction rate
α Death rate
r Ratio between faster (F) and slower species (S)
D Dispersal rate
fFo Initial density of species F
fSo Initial density of species S
nS Number of sources in the network
N Number of individuals in the metapopulation
L Number of populations in the metapopulation

The battle for resources plays a significant role in the dynam-
ics of competitive ecosystems. For a long time, the outcome of such
a dispute was directly associated with the set of birth/death ratios
of the contending species, λi/αi. However, that scenario has been
challenged by ecological models seasoned with other factors such
as mobility, which proved themselves capable of leading to a priori
upset results. The impact of those different contributions to com-
petitive dynamics is especially interesting when one is dealing with
quasi-neutral instances, for which the specific values of the birth, λi,
and death, αi, rate of species i yields the same ratio λi/αi for all
i. As we explore herein later on, besides the standard deterministic
approach to an ecosystem, the problem has been analyzed from a
stochastic perspective by means of a series of techniques systemati-
cally applied at the population scale.

In the present work, we tackle the problem of understand-
ing the role played by patch diffusion — which we use as a quan-
titative proxy for mobility — in quasi-neutral competition within
the metapopulation framework. Ecologically, a metapopulation —
i.e., a population of populations — corresponds to a group of lo-
cal connected populations of a species, the size of which changes
in time due to microscopic factors such as the birth, death and mi-
gration of the individuals as well as mesoscopic events affecting the
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local populations contained within the metapopulation, namely e-
mergence and dissolution. We have considered a survey at this scale
because a small local population can imperil the species (e.g., by
reducing mating) (THOMPSON, 2016). Besides being empirically
observed (SWEANOR; LOGAN; HORNOCKER, 2001; BORTHA-
GARAY et al., 2015; FOBERT; TREML; SWEARER, 2019), metapop-
ulation approaches have set forth important results regarding ecolog-
ical landscape dynamics in either homogeneous (JOHST; BRANDL;
EBER, 2002; VUILLEUMIER; POSSINGHAM, 2006; COLOMBO;
ANTENEODO, 2015) or heterogeneous populations (NAGATANI;
ICHINOSE, 0019; JÚNIOR; F.FERREIRA; OLIVEIRA, 2014; JUHER;
RIPOLL; SALDAÑA, 2009). Our results show that the interplay be-
tween quasi-neutral competition between two species with different
biological clocks, spatial constraints and diffusion in metapopulation
is complex. Indeed, we verified that large mobility between different
patches can have the same impact as no migration between patch-
es. In addition, depending on the level of mobility, being biologi-
cally slower can be actually an advantage. The ecological majority-
minority switching exhibits a nonmonotonic relation with the diffu-
sion between patches.

LITERATURE REVIEW

The effects of diffusion were studied in many works in re-
cent years: In (SMITH et al., 2014) it was studied the Allee effect
in bacteria populations and was showed that it led to a biphasic
dependence of bacterial spread on the dispersal rate: spread is pro-
moted for intermediate dispersal rates but inhibited at low or high
dispersal rates. Correlated to such experimental work, the authors
in (PIRES; QUEIRÓS, 2019) explored theoretically the threefold
interplay among the Allee Effect, dispersal, and spatial constraints.
They showed that the survival-extinction boundary undergoes a nov-
el transition of monotonicity in the way that for the nonmonotonic
regime there is an optimal dispersal rate that maximizes the survival
probability. Diffusion of populations can also relate to the emer-
gence of Parrondo’s paradox instances for which the combination
of two losing (extinction) strategies – diffusion and inefficient α –
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combined yield a winning (preservation) situation (TAN; CHEONG,
2019; TAN; KOH, et al., 2020).

Considering competition between two distinct species, Pigolot-
ti and Benzi showed that an effective selective advantage emerges
when the two competing species diffuse at different rates (PIGOLOT-
TI; BENZI, 2014). In reaction/kinetic systems, diffusion can lead to
distinct scenarios in reaction/kinetic system: it destroys the stabili-
ty of possible equilibrium, leading to the formation of characteristic
patterns; drive an otherwise persistent competing species to extinc-
tion (SU; ZOU, 2019). Some paradoxical situations can emerge in
the competition between species as well. For instance, for a sizable
range of asymmetries in the growth and competition rates, it was dis-
cussed that the numerically disadvantaged species according to the
deterministic rate equations survive much longer (GABEL; MEER-
SON; REDNER, 2013). In d-dimensional spatial structures, the sur-
vival of the scarcer in space is verified for situations in which the
more competitive species is closer to the threshold for extinction
than is the less competitive species when considered in isolation
(DOS SANTOS; DICKMAN, 2013).

Another recent work studied the competition between fast-
and slow-diffusing species, considering non-homogeneous environ-
ments (PIGOLOTTI; BENZI, 2016). The authors considered the
case in which non-homogeneity in the nutrients is contrasted with a
fluid flow concentrating individuals around a velocity sink. In such
a case, diffusing faster constitutes an advantage as faster individ-
uals can colonize more easily upstream regions, from which they
can invade. It was also argued that in time-independent environ-
ments it is always convenient to diffuse less (PIGOLOTTI; BENZI,
2016; HASTINGS, 1983; DOCKERY et al., 1998); particularly, the
authors in Ref. (PIGOLOTTI; BENZI, 2016) suggested that deter-
ministic models can miss a crucial ingredient to determine the best
dispersal strategy.

Considering two species that differ only in the rates of their
biological clocks, the authors in (OLIVEIRA; DICKMAN, 2017)
showed that the slower species can enjoy an advantage in stationary
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population density for reproduction rates close to (but greater than)
a critical value, and large initial population densities. Alternative-
ly, it was shown (CHEONG; TAN; LING, 2018) that switching-rule
approaches relying upon biological clocks provide an efficient mech-
anism by which species might undergo behavioral nomadic-colonial
alternation that allows them to develop well. For a recent review
about the slower is faster effect, considering pedestrian dynamics,
vehicle traffic, traffic light control, logistics, public transport, so-
cial dynamics, ecological systems, and others, see (GERSHENSON;
HELBING, 2015).

MODEL

Consider a metapopulation with L subpopulations composed
of agents that are able to move, die, and reproduce. As usual in
metapopulation dynamics, we consider well-mixed subpopulations
so that the individuals inside each of them can interact with one an-
other, or in Statistical Physics parlance, we employ a local dynamics
that has a mean-field character. The mobility is implemented as a
random walk between the neighbor subpopulations and it occurs
with probability D for each agent.

At each time step, if the dispersal event is not chosen with
probability 1−D, then we implement the events related to the
quasi-neutral competition (OLIVEIRA; DICKMAN, 2017) between
species F and S inside each subpopulation:

F +V ⇒ 2F with rate λF (2.1)

F ⇒ V with rate αF (2.2)

S+V ⇒ 2S with rate λS (2.3)

S⇒ V with rate αS , (2.4)

where F (S) stands to faster (slower) species and V for a vacancy.

In order to allow a comparison between the biological clock
of the two species we introduce a relative birth ratio so that

λS = rλF , αS = rαF ; (2.5)
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explicitly we have the following relations:{
λS = rλF r < 1 disadvantage of S: smaller birth rate,
αS = rαF r < 1 advantage of S: smaller death rate.

To computationally implement the set of microscopic rela-
tions Eqs. (1)-(4), we consider an array with N states divided into
the L subpopulations. In this case, we assume periodic boundary con-
ditions. Each state in subpopulation u indicates an agent {iuF , iuS}
or a vacancy, iuV . Our time unit is a Monte Carlo step (mcs) that
consists of a visit to each one of the N states.

For each state i= 1, . . . ,N :

• First we get the subpopulation, say u, of the state i.

• With probability D:

– Dispersal :
iuF ⇒ iwF . (event 1F)
iuS ⇒ iwS . (event 1S)

• and with probability 1−D:

– Reproduction:
rate λF : iuV + juF ⇒ iuF + juF . (event 2F)
rate λS : iuV + juS ⇒ iuS + juS . (event 2S)

– Death:
rate αF : iuF ⇒ iuV . (event 3F)
rate αS : iuS ⇒ iuV . (event 3S)

The details of our computational approach can be found at
the URL: https://github.com/PiresMA/diffusion_2cp.

https://github.com/PiresMA/diffusion_2cp
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Figure 2.1 – (scenario I) Time series for the total number of indi-
viduals F and S. Shaded area comes from Monte Carlo
simulation (mean±standard deviation). The theoretical
lines comes from the numerical solution of Eqs. (2.6)-
(2.8). To summarize:D= 0, winner: S;D= 0.01, winner:
F; D = 0.1, winner: S; D = 0.5, winner: S.
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Figure 2.2 – (scenario II) Time series for the total number of indi-
viduals F and S. Shaded area comes from Monte Carlo
simulation (mean±standard deviation). The theoreti-
cal lines comes from Eqs. (2.6)-(2.8). To summarize:
D= 0, winner: S; D= 0.01, winner: F; D= 0.1, winner:
S; D = 0.5, winner: F.
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RESULTS

Applying a previous bottom-up mathematical framework
(PIRES; QUEIRÓS, 2019) to the set of rules described above we
arrive at

dVu
dt

= (1−D)
[ Reproduction︷ ︸︸ ︷
−λVu(Fu+ rSu)

Vu+Fu+Su
+

Death︷ ︸︸ ︷
α(Fu+ rSu)

]
(2.6)

dFu
dt

= (1−D)
[ λVuFu
Vu+Fu+Su︸ ︷︷ ︸
Reproduction

− αFu︸︷︷︸
Death

]
+

D
[
−Fu︸︷︷︸

Emigration

+
L∑
z=1

1
k
WuzFz︸ ︷︷ ︸

Immigration

]
(2.7)

dSu
dt

= (1−D)
[ rλVuSu
Vu+Fu+Su︸ ︷︷ ︸
Reproduction

−rαSu︸ ︷︷ ︸
Death

]

D
[
−Su︸︷︷︸

Emigration

+
L∑
z=1

1
k
WuzSz︸ ︷︷ ︸

Immigration

]
, (2.8)

where Wuz is the adjacency matrix which assumes values 1 if u
and z are connected or 0 otherwise. We work with a circular/ring
metapopulation wherein each location/region contains a population
that is coupled to k neighbor populations. The parameter k is the
connectivity of each population, i.e., it regulates the strength of the
spatial constraints. We use an initial condition given by

Fu(0) = fFo
ns

N

L
u= 1, . . . ,ns (2.9)

Su(0) = fSo
ns

N

L
u= 1, . . . ,ns (2.10)
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with fFo,fSo being the modulating factors that account for the frac-
tion of individuals at the subpopulations, N/L is the initial size of
each subpopulation and ns is the number of initial sources. Addition-
ally, we use Vu(0) =N/L−Fu(0)−Su(0). As we have a plethora of
parameters we set fSo = 1−fFo as well as ns = 1 (all the agents are
located initially in one source). Besides, without losing generality we
have also set λ= 1.

We implement our spatially-constrained Monte Carlo algo-
rithm in computer simulations considering metapopulations with
N = 106 and L= 10. Despite that fact, we assert that all of the our
findings remain valid for larger metapopulations since the determin-
istic coupled mean-field Eqs. (2.6)-(2.8) are valid in the limit of infi-
nite population. This assumption is clearly validated with the results
shown in Figs. 2.1-2.2 where we see a good agreement between the
numerical solution of the multidimensional ODEs in Eqs. (2.6)-(2.8)
and the individual-based Monte Carlo simulations (VINCENOT et
al., 2011; GRIMM; RAILSBACK, 2005) with 100 samples in each
panel.

In Fig. 2.1-2.2, we present the outcomes for some specific
configurations in order to explain in detail the myriad of majority-
minority switching in the ecological dynamics. In the subsequent
analyses we show the results for more general settings in order to
provide an overall perspective about the robustness of the emergent
phenomenology.

Focusing solely on Fig. 2.1, we depict the time evolution of
the number of individuals F and S for which the initial population
of the faster species (initial density fFo = 0.48) is smaller than the
slower one (initial density fSo = 0.52). For D = 0, the slower species
S becomes dominant at the steady state. For small values of disper-
sal (such as D= 0.01) the initially majority species (S) becomes the
minority one at the steady state. Such scenario changes for inter-
mediate values of the dispersal rate (D = 0.1), where we see that S
recover the majority position. For D= 0.5, the dominance of species
S becomes greater. From the different panels, it is visible that, as
we increase the value of the dispersal parameter D, we first observe
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the faster species achieves a larger final (steady state) population,
and afterward, the slower species S becomes prevalent.

However, the outcome changes as we pay attention to Fig. 2.2,
where the faster species has the initial majority (fFo = 0.51 and
fSo = 0.49). For D = 0, the slower species S becomes again the dom-
inant one at the steady state. For D = 0.01 the initially prevailing
species (F) becomes the minority one in the short run but recovers
to become the majority at the steady state. For intermediate values
in the mobility (D = 0.1) the minority species S becomes the major-
ity. For D= 0.5 the dominance of species S is destroyed again. That
is, the overall picture now is more diverse than the previous setting
in Fig. 2.1.

Figure 2.3 – Relative difference in the number of agents fS−fF ver-
sus the dispersal parameter 0 < D ≤ 0.5. Results are
for r = 0.86. Dispersal leads to four types of distinct
scenarios regarding the dominance of the species F/S.

The dominance of a species can be also represented by the
relative difference between the size of the populations at the steady
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state, ∆f ≡ fS−fF = (NS−NF )/N . For a given value of the asym-
metry parameter r we can plot parametric curves for fixed initial
conditions in the ∆f -D plane depicted in Fig. 2.3. In that plot, we
verify that taking into consideration the initial condition regarding
the initial fraction of each species, there are intuitive curves for which
the majority species is the prevalent species in the final (steady) s-
tate (e.g., solid and dot-dashed lines) whereas for the dotted line
we find a trivial region for large values of the dispersal parameter,
D & 0.3, as well as very limited dispersal parameter D . 0.05 and
within those values of D we observe a non-trivial region where in
spite of being outnumbered at first by F , the slower species S reach
a larger population at last.

Combining Fig. 2.3 and Fig. 2.4, we understand the exis-
tence of an optimal value for each curve fFov = constant; that is
reminiscent of a competition mechanism between the multifold fea-
tures of the model. For absent patch diffusion, D = 0, the agents in-
teract only inside one patch. For maximal dispersal, the individuals
are able to interact with a much larger number of other individuals
at the expense of weakening the links that necessarily establish the
populations of the metapopulation. Accordingly, there is an opti-
mal value of the dispersal parameter, Dop, for each fFov at which is
achieved a balance between finding new individuals whilst preserv-
ing the robustness of the metapopulation. Notwithstanding, species
F is at its maximal situation, it does not mean it is the prevailing
species as in dealing with a similar scenario species S can end up in
a situation for which the number of elements in the total population
overcomes that F .

We have extended that analysis to other values of the asym-
metry parameter r keeping the magnitude of the dispersal rate con-
stant in D= {0,0.01,0.1,0.5} in Fig. 2.5. When there is no dispersal
in the system, D = 0, S is the dominant species, excepting for large
values of fFo and r. However, such scenarios change drastically for
all D > 0. Specifically, even for the case D = 0.01 for which there
is very little dispersal, it is already possible to change the outcome
regarding the steady-state dominant species. For r = 0, the dynam-
ics of S is naturally frozen because λS = rλF = 0 and αS = rαF = 0.
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The broad panorama from the present panels highlights that the
establishment of the final majority depends on an intricate relation
between competition, mobility and birth-death dynamics under spa-
tial constraints.

Figure 2.4 – Diagram of the relative difference fS − fF . The four
vertical straight lines in this diagram corresponds to the
curves in the Fig.2.3 with fFo = {0.4,0.48,0.51,0.6}.

Finally, in the panels exhibited in Fig. 2.6 we analyze how
the number of new patches that individuals can move impacts on the
mortality-dispersal diagram for the competition between species F/S
considering severe (k= 2) and loose (k= 8) spatial constraints. First,
note that for D= 0 the slower species (S) becomes dominant for any
α. Yet, this picture changes when we have mobility given by D 6= 0.
For a given α not too high, α. 0.2 , S is dominant only if D is high
enough. Increasing the number of new patches from k = 2 to k = 8,
by reducing the spatial constraints, the individuals are naturally
able to move more which leads to an enhancement of the advantage
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Figure 2.5 – Dependence of the relative difference fS − fF in the
steady state with r versus fFo. Diagrams obtained from
Eqs. (2.6)-(2.8) with α= 0.88, k = 2.

of being slow. To explain such results keep in mind that in the long-
run the mobility spreads the absence of local correlations to the
whole metapopulation and thus the results for high D qualitatively
approaches the results for D = 0 as k increases.

FINAL REMARKS

In this work, we have used dispersal to study the role played
by mobility in quasi-neutral competition within a metapopulation
context, which from a physical perspective can be understood as a
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Figure 2.6 – Dominant species in the mortality vs dispersal diagram
for strong (k = 2) and weak (k = 8) spatial constraints.
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coarse-grained approach to an ecological system. Considering quasi-
neutral competition a metapopulation analysis is worthwhile since
in being a population of populations, events that affect local popula-
tions, namely the possibility of moving with impact on mating and
the structure of network correlations, can put the whole metapopu-
lation structure.

Our theoretical results – obtained from Monte Carlo simu-
lations as well as numerical integration of multidimensional ODEs
– show that the multifold interplay between quasi-neutral compe-
tition between two species with different biological clocks, spatial
constraints, and dispersal in metapopulation is remarkably complex.
Nevertheless, it was possible to understand that large mobility be-
tween different patches — which at first would benefit mating —
can have the same impact as no migration between patches. That
being so, for given initial conditions, there is a set of parameters
that optimize the population imbalance, which can be favorable to
the slower species. In other words, depending on the level of mo-
bility, being biologically slower can be actually an advantage. The
take-home message from our work is that the ecological majority-
minority switching for quasi-neutral competition in metapopulations
exhibits a nonmonotonic relation with the diffusion between patch-
es. This phenomenon is highly counter-intuitive, but it could be
further studied resorting to experimental setups within Synthetic
Biology where bacteria can be programmed to exhibit new behav-
ior (SMITH et al., 2014; DING; WU; TAN, 2014; WANG et al., 2016;
PADILLA-VACA; ANAYA-VELÁZQUEZ; FRANCO, 2015). From
a broader point of view, the present contribution adds an interest-
ing and new building block to the list of counter-intuitive ecologi-
cal dynamics (SHAW; KOKKO, 2015; LOMBARDO; GAMBASSI;
DALL’ASTA, 2014; KHASIN et al., 2012; KOROLEV, 2015; AB-
BOTT, 2011; DUNCAN; GONZALEZ; KALTZ, 2015; CHEONG;
KOH; JONES, 2019; DOAK et al., 2008). It is worthwhile to note
that minority-majority inversions have also been observed in social
systems (CROKIDAKIS; OLIVEIRA, 2014).

Some points were not addressed in our work, like the impact
of the presence of a topology or time-dependent rates in the results.
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In future works, it would be interesting to generalize our model to
incorporate time-dependent dispersal rates as well as networks with
more sophisticated topologies than those used in this manuscript.



Chapter 3

Ecology with the Allee effect:

impact of nonlinear correlations

In this chapter, we consider ecological Allee-like dynamics
under perturbations with random and nonrandom temporal arrange-
ments but the same linear autocorrelation pattern. We show that
populations are more vulnerable to extinction under perturbation-
s with nonlinear correlations. Accordingly, this result provides an
insight toward the disentangling the distinction between linear and
nonlinear correlation in extinction dynamics which, in turn, allows
comprehending how randomness jeopardises the long-run prolifera-
tion of organisms. This work is available in Ref.(PIRES; CROKI-
DAKIS; QUEIRÓS, 2020).
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INTRODUCTION

Table 3.1 – List of symbols used in this chapter.
Symbol Meaning

λ Reproduction rate
α Death rate
p(t) Proportion of individuals in the population
fext Fraction of populations undergoing extinction
ACF Autocorrelation function
LZC Lempel-Ziv complexity

The study of Ecological problems – namely, population dy-
namics – can be easily placed at the spotlight of Complexity. Besides
the interaction between the biotic and abiotic elements, it is possible
to find several layers of further interactions and dependencies that
impact in the evolution of the system. With that respect, extinction
is still the subject of great academic debate and in the spotlight of
opinion public and mass media because of the rising interest in en-
vironmental preservation and conservation. Several ecological mech-
anisms of extinction were discussed in Ref. (BEISSINGER, 2000),
like distinct rates of population increase (e.g., fecundity, survival
rates, generation times), differential vulnerability of lineages to habi-
tat loss, introduction of predators, mobility among other features.
Those mechanisms often influence one another and can also affect
and be affected by macroscopic measures of the ecosystem like the
population size/density. One of those cases is the Allee effect that
describes the relation between population measures and the fitness
of a species (COURCHAMP; BEREC; GASCOIGNE, 2008b). More-
over, mechanisms as those we have listed are usually translated into
parameters when we establish quantitative descriptions of Ecology.
However, quantities like survival, fecundity, etc., are not fixed in
time and generically subjected to randomness.

Mathematically, randomness can assume alternative origins
implying in different dynamical and statistical features, namely cor-
relation and dependence. In this manuscript, we aim at shedding
light on the effects created by different non-linear properties of the
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randomness of the ‘parameters’ of a standard Allee effect dynamical
model.

LITERATURE REVIEW

Frommolecular biology (WOLFRAM, 2002; LONGO; MON-
TÉVIL, 2012) (eg, cell mitosis, morphogenesis) to collective behaviour (CAV-
AGNA et al., 2013), passing by evolution (WAGNER, 2012; ROSA;
VILLEGAS, 2019), randomness – including disorder – has shown
to be a key ingredient in Biology (MERLIN, 2009; SPAGNOLO;
VALENTI; FIASCONARO, 2004).

Understanding the ecological mechanisms that lead to the
extinction of a species is thus fundamental to conserve it. The impact
of the different sources of ecological evolution – particularly those
we have made mention to – have been consistently surveyed in the
literature. Considering the ancestry issue it was observed different
lineages are threatened by distinct mechanisms of extinction, and
unrelated ecological factors predispose taxa to different sources of
extinction risk (OWENS; BENNETT, 2000). In Ref. (O’GRADY et
al., 2004), the authors pointed that population size and trend in pop-
ulation size were clearly the best predictors of extinction risk. Math-
ematical and computational models were widely proposed to explain
the phenomenon of extinction (FORGERINI; CROKIDAKIS, 2014;
CARLSON et al., 2018; DRAKE, 2014).

At the level of the resources in ecological systems, it is pos-
sible to find randomness and stochasticity as well. Namely, simple
models incorporating the key features of time-dependent resources
and specific descriptions of survivorship for consumer species show
the importance of the time dependence of available resources and
the role that allochthonous inputs play on the temporal and spatial
abundances of species (HASTINGS, 2012; TULJAPURKAR, 1990).

Extinction is a major ecological event. Because it corre-
sponds to the termination of a species, extinction can be under-
stood within a Physics framework as a phase transition event with
the emergence of an absorbing state. The Contact Process (CP) is
the paradigmatic model for phase transitions into absorbing states
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(MARRO; DICKMAN, 2005). In the CP, temporal disorder can be
introduced by allowing the control parameter to be time dependent.
For example, the authors in (FIORE; OLIVEIRA; HOYOS, 2018)
showed that in contrast to spatial disorder, uncorrelated temporal
disorder does not forbid the existence of discontinuous absorbing
phase transitions, and it can also turn a discontinuous transition
into a continuous one when disorder is sufficiently strong, even for
low-dimensional systems (OLIVEIRA; FIORE, 2016). Also consider-
ing the CP, the authors in (BARGHATHI; VOJTA; HOYOS, 2016;
VOJTA; HOYOS, 2015) considered the temporal disorder as an ex-
ternal environmental noise. The results suggest that the temporal
disorder gives rise to an exotic critical point, where the average den-
sity and survival probability decay only logarithmically with time.
In nonequilibrium magnetic models, temporal disorder acting as a
time-dependent magnetic field leads to rich critical phenomena, with
the occurrence of dynamical tricritical points (CROKIDAKIS, 2010;
YÜKSEL et al., 2012).

An Ecosystem has been regarded as the quintessential com-
plex systems since the interactions between its components can feed
back to impact such interactions by means of the macroscopic state
that gets established (LEVIN, 1998). Accordingly, considering tools
like agent-based or cellular automata models, a new understanding
arises of ecosystems as wholes that emerge in novel ways from pos-
sibly simple, mechanical rules governing interactions among their
parts (PROCTOR; LARSON, 2005).

Finding robust methods for quantifying spatio-temporal sig-
nals in the presence of noise, nonstationarity and short data series is
an active area of research in many disciplines. For ecosystem applica-
tions, we would expect these methods to detect pattern transitions
(i.e., sequences of stable, periodic, quasi-periodic, chaotic, or random
trends) as well as where and when they occur (PROULX, 2007).



Chapter 3. Ecology with the Allee effect: impact of nonlinear correlations 55

Figure 3.1 – Time-dependent death rate α(t) = {α0,α1} considering
the protocols: (a) nonrandom and (b) random. Both
time series have the same mean value ᾱ, since the case
(b) is just a shuffle of the case (a).

MODEL

Extinction dynamics

We consider an ecological dynamics for the proportion of
individuals in a given population, p(t), that takes into account the
Allee effect by means of the minimal ODE (WINDUS; JENSEN,
2007)

dp(t)
dt

= λ [1−p(t)]p2(t)−α(t)p(t). (3.1)

The first term on the right hand side is related to reproduction
occurring at rate λ and the second term is related to death rate
α(t). While in Ref. (WINDUS; JENSEN, 2007) the death rate is a
constant, here we consider that it is time-dependent.

The reproduction-death dynamics described by Eq. (3.1) al-
so includes the Allee effect (ALLEE, 1931; DRAKE; KRAMER,
2011) that is an important class of density-dependent phenomenon
which has been widely observed in nature (KRAMER et al., 2009).
Apart from Ecology, the Allee effect is also important in several re-
search areas such as conservation biology (COURCHAMP; BEREC;
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Figure 3.2 – Main properties of the time-dependent binary se-
quences used for α(t) = {α0,α1}. (a) Autocorrelation
(ACF) versus lags. (b) Lempel-Ziv complexity (LZC)
over time. The LZC is able to detect hidden patterns
that are not recognized by the ACF.

GASCOIGNE, 2008b), invasion biology (TAYLOR; HASTINGS, 2005)
as well as biofilm formation (GOSWAMI; BHATTACHARYYA;
TRIBEDI, 2017; JORNET, 2020), epidemiology (REGOES; EBERT;
BONHOEFFER, 2002; HILKER; LANGLAIS; MALCHOW, 2009;
DEREDEC; COURCHAMP, 2006) and cancer biology (KOROLEV;
XAVIER; GORE, 2014; SEWALT et al., 2016; JOHNSON, K. E. et
al., 2019; NEUFELD et al., 2017). Such variety of domains wherein
the Allee effect plays a role highlights the significance and broad
interest of our work.

An initial insight into Eq. (3.1) is obtained from the steady-
state solution for the case with constant death rate α(t) = a

P∞ =


1
2 + 1

2

√
1−4 aλ Po ≥ P oc and a≤ λ

4

0 otherwise
(3.2)

where P oc is the initial density required for the long-run survival,

P oc = 1
2

(
1−

√
1−4a

λ

)
. (3.3)
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Figure 3.3 – Time series for the population fraction considering (a)
nonrandom and (b) random perturbations. Each curve
is obtained with increasing initial population densities
P0 = {0.1,0.2, . . . ,1}. Parameters: λ= 0.9 and α0 = 0.2.

From Eq. (3.2), we see that the time-independent model with α(t) =
a presents a discontinuous absorbing transition(MARRO; DICK-
MAN, 2005; HENKEL et al., 2008; PIRES; OESTEREICH; CROKI-
DAKIS, 2018). Equation (3.3) yields the Allee threshold, ie, the
population fraction below which extinction is the eventual scenario.
Thus, the bistable nature incorporated in Eq. (3.1) is the mechanis-
m responsible for the Allee effect. Frameworks more general than
Eq. (3.1) could be considered (BEREC, 2008), but we are interest-
ed in a fundamental question: What makes the pure randomness
increase the vulnerability of populations?

Protocol for α(t)

As we aim at studying the possible effects of randomness on
the dynamics of Eq. (3.1), we assume the simplest of the instances
where α alternates between α0 and α1. In order to assess the role
of non-linearities in that process we assume that α(t) sequences are
given by either purely or Rudin-Shapiro protocols. In such binary
arrays we map 0→ α0 and 1→ α1. In all the cases, we start from 0,
subsequently we apply one of the following rules:
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Figure 3.4 – Time series for the population fraction considering non-
random and random perturbations. (a) Linear scale and
(b) Semi-log scale. We use 100 samples for the proto-
col with randomness. Parameters: P0 = 0.5, λ = 0.9,
α0 = 0.1 and α1 = 0.3.

Figure 3.5 – Barplot with the fraction of populations undergoing
extinction, fext, among the total of time series ob-
tained with P0 = {0.1,0.2, . . . ,1}. For all panels, we have
α0 = 0.1.

• Rudin-Shapiro: first, we generate a sequence with four letters
by means of the substitution rule A→AB, B→AC, C→DB

and D→DC. Then we set A=B→ 0 and C =D→ 1;

• Random: we first generate a sequence with the Rudin-Shapiro
protocol until tmax, then we shuffle it. This procedure is done
to make a fair comparison between such sequences.
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For further details on the Rudin-Shapiro (RS) sequences we
point the reader to Refs. (BARBER, 2008; DAL NEGRO; BORISKI-
NA, 2012). From such references, we see that aperiodic series have
been used for a long time in Physics, but these sequences remain un-
deremployed in Ecology. At this point we stress that we do not claim
that RS sequences model a realistic system in Ecology. Rather, we
show that the pure RS and the randomly rearranged RS sequences
work as an insightful theoretical platform that enables to disentangle
the distinction between linear and nonlinear correlation in extinction
dynamics.

RESULTS AND DISCUSSION

In this section, we show our results obtained by solving the
ODE in Eq. (3.1), where we employ the solveivp of python. Con-
cretely, we apply the RK45 routine that performs the Runge-Kutta
method of order 5(4). Thus, the time evolution takes place with a
4-order accurate control of errors and 5-order accurate formula for
steps. In such procedure, we set the time increment with maximum
value dtmax = 0.1 and between each interval [i, i+ 1[ we keep the
same α(i), where i= 0,1,2, . . . , tmax.

Before delving into the analysis of the population dynamics
per se, let us discuss the properties of α(t). In Fig. 3.1 we illustrate
the setups for α(t) and in Fig. 3.2 we evaluate the architectural
characteristics of the sequences we use for each protocol. Firstly, we
compute the autocorrelation function (ACF) considering several lags.
In Fig. 3.2 (a) we see that the overall behavior of the nonrandom RS
array presents values for the ACF that resembles the ACF values
for the random series, although with weak fluctuations.

Additionally, we quantify the Lempel-Ziv complexity (LZC)
of the sequences we use. The LZC is is a nonlinear measure that
provides information about the abundance of nonidentical patterns
in an array when examined from t0 to tmax (LEMPEL; ZIV, 1976;
KASPAR; SCHUSTER, 1987). In this sense, the minimum and max-
imum values for the LZC are obtained for the periodic and random
sequences, respectively. Although the Rudin-Shapiro chain has a lin-
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ear correlation pattern comparable to random series [Fig.3.2(a)], its
LZC presents considerable differences [Fig.3.2(b)]. In this work, the
LZC is used as a measure of nonlinear correlations.

In Fig. 3.3, we observe how the bistability embedded in Eq.
(3.1) is impacted by the presence or not of randomness in α(t). On
the one hand, if the initial density Po is high enough, the popula-
tion survives regardless of the type of perturbation. On the other
hand, if the initial density Po is too low, the extinction takes place
independently of the kind of perturbation. Between both cases, it
is clear the ecological outcome depends on how the perturbation is
temporally arranged. In such setting (Po = 0.2) the time evolution
leads to extinct state for the random protocol, whereas it leads to a
survival state for the nonrandom protocol. If α(t) exhibits the same
autocorrelation pattern and the same mean ᾱ, why do the random
and nonrandom protocols lead to different outcomes? The answer
in our controlled computational experiment relies on the nonlinear
correlations incorporated in α(t), as shown in Fig. 3.2 (b). Thus,
the dynamics of a species on the verge of extinction is strongly influ-
enced by the nonlinear correlation of time-dependent perturbation.
This is an important finding because at present there several species
at risk of extinction (PIMM; RAVEN, 2000; IUCN, 2020).

In Fig. 3.4, we see the long-run scenarios arising from the
random and nonrandom setups considering a fixed initial condition
Po = 0.5. Both time evolutions are marked by fluctuations that are
driven by the switches between {α0,α1}. We emphasize that all the
curves (blue or red) are obtained considering sequences that dis-
play null Pearson’s correlation and have the same mean ᾱ. Despite
that the nonrandom perturbation promotes a long-run survival of
the population, however the presence of randomness compromise
the population persistence. That is, the Rudin-Shapiro protocol for
time-dependent perturbations in α(t) is less prone to induce a tran-
sition to an absorbing state. This adds new understanding of the
field of nonequilibrium absorbing-state phase transitions (MARRO;
DICKMAN, 2005; HENKEL et al., 2008; PIRES; OESTEREICH;
CROKIDAKIS, 2018).
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In Fig. 3.5, we see how the outcomes regarding fraction of
extinction fext are affected by different values for the reproduction
rate as well as the death rate α1. We note an agreement between
the long-run scenarios for some combinations of parameters mean-
ing that in such cases the underlying birth-death dynamics is more
important than the type of patterns in α(t). For other cases, we
see a disagreement between fext, meaning that for such settings the
temporal arrangement of the patterns in the perturbation α(t) plays
an important role on the final ecological outcome. Thus, it is clear a
competition between dynamics (reproduction and death) and struc-
ture of α(t).

Taking a broad view of the information conveyed in Figs. 3.1
- 3.5, we note that the random and nonrandom perturbations can
lead to different scenarios depending on the balance between the
birth-death dynamics and the disposition of the patterns in α(t).
When the imbalance between structure and dynamics sets the ar-
rangement of patterns as a relevant feature, we see that the ACF
fails to provide an explanation for the fate of extinction in the ran-
dom perturbation, whereas the LZC allows us to explain the distinct
emergent phenomenon observed in the time evolution of the popu-
lation. In such cases, the mass extinction events are triggered by
cumulative effects arising from hidden patterns in α(t) that are de-
tected by a quantifier of nonlinear correlations. Mathematically, this
can be traced back to the fact that the time series can be embed-
ded with nonlinear dependencies that are not recognized by a single
measure (see e.g. Ref. (QUEIRÓS, 2009)).

While we could have employed an agent-based simulation (VIN-
CENOT et al., 2011; GRIMM; RAILSBACK, 2005; PIRES; QUEIRÓS,
2019), in this work we have used a mean-field approach because we
avoid the presence of multiple sources of randomness. With a single
source of randomness we can make controlled computational exper-
iments. Equation (3.1) – valid in the limit of infinitely large popula-
tion size – enables us to understand how large populations respond
to random and nonrandom perturbations. In relation to that, we
note in Figs. 3.3 - 3.5 that uncorrelated sequences do not necessar-
ily endanger the sustainability of a population, but non-trivial and
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hidden patterns – produced by randomness – are the great villain of
population survival in our controlled setup.

Previously, it was shown (OLIVEIRA; FIORE, 2016) that
temporal randomly distributed disorder does not destroy the bistable
nature of dynamics described by models similar to Eq. (3.1). Our
results exhibited in Figures 3.3 and 3.5 expand such claim regard-
ing the robustness of the bistability for the realm of nonrandom
aperiodic disorder incorporated as a time-dependent perturbation.

FINAL REMARKS

The minimal and universal set of ingredients embedded in
Eq. (3.1) puts us in a position to provide fundamental comprehen-
sion on how the notion of chance shapes the ecology of extinction-
s (BEISSINGER, 2000; EHRLICH; EHRLICH, 1981; SIMBERLOF-
F, 1993). Specifically, we show that a measure of nonlinear corre-
lations, rather than the standard Pearson correlation coefficient, is
able to properly explain the fate of extinction for Allee-like dynamics
under linearly uncorrelated perturbations with random and nonran-
dom temporal arrangements. Thus, our work opens the door for the
possibility of new bridges between the theory of nonlinear correla-
tions and ecological dynamics.

As previously mentioned, the Allee effect has been consid-
ered as an important phenomenon in several fields including cancer
research (KOROLEV; XAVIER; GORE, 2014; SEWALT et al., 2016;
JOHNSON, K. E. et al., 2019; NEUFELD et al., 2017). For instance,
in Ref. (KOROLEV; XAVIER; GORE, 2014) it was proposed that
the presence of the Allee effect in the tumor growth dynamics may
offer a window for therapeutics. In that sense, the results shown
herein can provide insights into this kind of dynamics since they
show how randomness becomes a threat for the long-run prolifera-
tion of organisms. Effects of diffusion were analyzed in the context
of models similar to Eq. (3.1) with temporal disorder (SOLANO; O-
LIVEIRA; FIORE, 2016). Such temporal disorder was considered as
a time-dependent diffusion rate D(t). The results suggest a strong
effect of such time dependence on the phase diagrams of the CP.
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It can be interesting to also consider diffusion in our model with a
time-dependent rate D(t), and analyze the impact of such disorder
in the extinction patterns.

From an experimental point of view, the few number of pa-
rameters in our proposal – basically related to reproduction and
death – is an advantage in terms of the build-to-understand ap-
proach in Synthetic Biology (SMITH et al., 2014; DING; WU; TAN,
2014; WANG et al., 2016; PADILLA-VACA; ANAYA-VELÁZQUEZ;
FRANCO, 2015). For instance, we mention that in such a field bacte-
ria can be engineered to display the Allee effect (SMITH et al., 2014)
as well other new behaviors (DING; WU; TAN, 2014; WANG et al.,
2016; PADILLA-VACA; ANAYA-VELÁZQUEZ; FRANCO, 2015).
In other words, our take-home message that nonlinear correlation-
s jeopardizes population survival can be biologically programmed
within the current technology.

We have adopted a widespread and practical measure of
nonlinear correlations that is based on the number of unlike pattern-
s (LEMPEL; ZIV, 1976; KASPAR; SCHUSTER, 1987). By using
the paradigmatic Rudin-Shapiro sequence and its shuffled version
we have disentangled how linear and nonlinear correlations impact
extinction dynamics. In future works, it would be interesting to en-
gineer new sequences for α(t) that capture nuances of complexity,
per se (LLOYD, 2001).



Chapter 4

On the potential for a second

peak in the evolution of

SARS-CoV-2 in emerging and

developing economies

In this chapter, we investigate the potential scenarios from a
Susceptible-Infected-Recovered-Asymptomatic-Symptomatic-Dead
(SIRASD) model. As a novelty we consider populations that differ in
their degree of compliance with social distancing policies following
economic attributes that are observed in emerging and developing
countries. Considering epidemiological parameters estimated from
data of the propagation of SARS-CoV-2 in Brazil – where there is a
significant stake of the population making their living in the informal
economy and thus prone to not follow self-isolation – we assert that
if the confinement measures are lifted too soon, namely as much as
one week of consecutive declining numbers of new cases, it is very
likely the appearance of a second peak. Our approach should be
valid for any country where the number of people involved in the
informal economy is a large proportion of the total labor force.
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This work is available in Ref.(PIRES; CROKIDAKIS; CA-
JUEIRO, et al., 2020).

INTRODUCTION

Table 4.1 – List of symbols used in this chapter. See Fig.4.1.
Symbol Meaning
φu Noncompliance degree of the group u= {1,2}
p Proportion of individuals who develop symptoms
q Probability of an individual dying from infection
βA Transmissibility rate of the asymptomatic cases
βI Transmissibility rate of the symptomatic cases
gA Recovery rate of the asymptomatic cases
gI Recovery rate of the symptomatic cases

Despite existing some differences among the countries public
health policies, the vast majority of them have tried to reduce the
growth rate of the COVID-19 pandemic by implementing policies
of social distancing (ADAM, 2020) aiming at preventing mayhem
of the health-care systems, the so-called “flattening of the curve”.
A series of models have been brought forth to the specific study
of the evolution of COVID-19 through the world. Initially, some
of those works focused on its calibration in order to estimate typ-
ical parameters of the disease, like infection rates, epidemic dou-
bling times among others (CROKIDAKIS, 2020b; LI et al., 2020;
MUNIZ-RODRIGUEZ et al., 2020; LIU et al., 2020; ZHAO; LIN,
et al., 2020; LAI et al., 2020; ZHOU; LIU, et al., 2020; PEDER-
SEN; MENEGHINI, 2020a; TSALLIS; TIRNAKLI, 2020; ROCHA
FILHO et al., 2020; WEBER; IANELLI; GONCALVES, 2020). Af-
ter these preliminary studies, many authors considered the effect of
several types of non-pharmaceutical interventions (CROKIDAKIS,
2020a; BASTOS; CAJUEIRO, 2020; DE FALCO et al., 2020; PEL-
LIS et al., 2020; MANCHEIN et al., 2020; MAIER; BROCKMANN,
2020; VASCONCELOS et al., 2020; FAGGIAN; URBANI; ZANOT-
TO, 2020; FERGUSON et al., 2020; KRAEMER et al., 2020; BIN
et al., 2020; BISWAS; KHALEQUE; SEN, 2020; ARENAS et al.,
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2020).

A study analyzed the impacts of mobility lockdown in I-
taly due to the fast spreading of COVID-19 (BONACCORSI et al.,
2020) in which the authors identified two ways through which mobil-
ity restrictions affect the population. They verified that the impact
of lockdown is stronger in municipalities with higher fiscal capacity,
and also that mobility restrictions are stronger in municipalities for
which inequality is higher and where individuals have lower income
per capita, causing a segregation effect. In Ref. (BONACCORSI
et al., 2020), the authors also discussed about the income distribu-
tion, that plays an important role: municipalities where inequality
is greater have experienced a stronger increase in mobility and their
citizens are more at risk. Finally, they concluded that the results
suggest the necessity of asymmetric fiscal measures. In other words,
according to that work, central governments should implement finan-
cial transfer mechanisms to people, companies and local government
in the form of living allowances, no-interest loans and treasury trans-
fers to compensate the loss of tax income to allow each case to cope
with the current scenario. As also stated in Ref. (BONACCORSI
et al., 2020), the absence of targeted lines of intervention during the
lockdown would induce a further increase in poverty and inequality.

Another work deals with wealth distributions under the
spread of infectious diseases (DIMARCO et al., 2020). Considering
the coupling of a compartmental epidemic dynamics with a kinetic
model of wealth exchange, the authors found that that the spread of
the disease seriously affects the distribution of wealth. Indeed, the
evolution of disease together with the dynamics of wealth exchange
changes the wealth distributions from a bimodal form to a fat-tailed
one (DIMARCO et al., 2020). Still talking about the economic impli-
cations of mobility restrictions, it was reported the decline of Gross
Domestic Product in China (HUANG et al., 2020).

In this chapter, we discuss the effectiveness of social distance
policies in developing and emerging countries where the share of in-
formal employment is very high. Although it is not always true that
there is a relationship between informal employment and poverty,



Chapter 4. On the potential for a second peak in the evolution of SARS-CoV-2

in emerging and developing economies 67

we may find a clear positive relationship among them. It is worth
mentioning that in developing and emerging countries the share of
informal employment in total employment ranges from 50% to more
than 98%(ORGANIZATION, 2018). In this context, we investigate
emerging scenarios for a generalized SIR-like model taking into ac-
count a heterogeneous propensity of individuals to comply with the
self-isolation policies.

MODEL

Figure 4.1 – Susceptible - Infected - Recovered - Asymptomatic -
Symptomatic - Dead (SIRASD) compartmental model.

We divide the population into two types of individuals:

• Type 1: the group that has the option of self-isolation. This
group represents a fraction f1 of the full population.

• Type 2: low income workers in the gig economy and informal
sectors. This group represents a fraction f2 = 1−f1 of the full
population.

Let φu be the noncompliance degree of the group u(u =
{1,2}) concerning governmental containment policies. Thus 1−φu
is the degree of engagement with self-isolation advice.

For the COVID-19 there are both asymptomatic and symp-
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tomatic cases. Thereby we consider a framework close to Ref. (BAS-
TOS; CAJUEIRO, 2020) (and references therein), ie, we use a SIR-
ASD (Susceptible-Infected-Recovered-Asymptomatic-Symptomatic-
Dead) model where here extend it for the inclusion of two groups.

To explain in detail our model consider two individuals {i, j}
belonging to the groups {u,z}, respectively. Then

• If i is in the state S and if j is infected in the state X =
{A or I} then a transmission event occurs in which i enters in
the state I with rate pφzφuβX or enters in the state A with
rate (1− p)φzφuβX , where p is the proportion of individuals
who develop symptoms.

• If i is in the state A then it enters in the state R with rate gA.

• If i is in the state I then it enters in the state D with rate qgI ,
otherwise it enters in the state R with rate (1− q)gI . In such
case, q is the probability of an individual in the class I dying
from infection before recovering.

It is important to stress that D(t) informs how many individ-
uals who tested positive for COVID-19 were declared dead at
date t.

An illustration of the transition between the compartments
is shown in Fig.4.1. From the above-stated rules the set of coupled
ODEs that govern the system considering the mean-field assumption.
Explicitly, we arrive at:

dSu
dt

=−Su
N

2∑
z=1

φuφz(βIIz +βAAz), (4.1)

dAu
dt

= Su
N

(1−p)
2∑
z=1

φuφz(βIIz +βAAz)−gAAu, (4.2)

dIu
dt

= Su
N
p

2∑
z=1

φuφz(βIIz +βAAz)−gIIu, (4.3)
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dRu
dt

= (1− q)gIIu+gAAu, (4.4)

dDu

dt
= qgIIu, (4.5)

where N =
∑2
u=1(Su +Au + Iu +Ru). From the aforementioned e-

quations we define the effective transmission rate,

βuef =
2∑
z=1

φuφz(βI
Iz
N

+βA
Az
N

) , (4.6)

where the terms φuφz show that the interaction can involve individ-
uals within the same group (intragroup interaction: φ1φ1, φ2φ2) or
between different groups (intergroup interaction: φ1φ2, φ2φ1).

We intend to model scenarios that arise, as above-mentioned,
in emerging and developing economies, where the number of indi-
viduals in the informal economy is a large stake of the total la-
bor force. In order to provide convincing numerical arguments, our
model uses epidemiological parameters that come directly or indi-
rectly from Ref. (BASTOS; CAJUEIRO, 2020), that were estimat-
ed from the COVID-19 pandemics that has taken place in Brazil:
βA = 0.458, βI = 0.455, gA = 0.144, p= 0.624, q = 0.029, gI = 0.149
and φu = 0.799. For further comments on q, gI and φu see our sup-
plementary material. Here we consider N = 210147125 as the total
population (similar to Brazil). We consider an initial condition as
I1(t0) = 1 and A1(t0) = 0.5 for the group 1. For the group 2 we set
I2(t0) =A2(t0) = 0.

RESULTS

In this section we present the results solving our coupled
ODEs using the solveivp of python. Specifically, we use the RK45
method that implements an explicit Runge-Kutta method of order
5(4). Such procedure manages the error considering an accuracy of
the 4-order and it employs a 5-order accurate formula to take the
steps.
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Figure 4.2 – Time series for the number of individuals in the class∑
i Ii as well as

∑
i(Ai+ Ii) considering: (a) protocol I

(b) protocol II. In the protocol II we apply φ= 0.799→
φ= 0.7 on day t(2)

policy = 90 after the first case (red shad-
ed region).

Figure 4.3 – Time series for the number of individuals in the class∑
i Ii as well as

∑
i(Ai+ Ii) considering: (a) tOFF = 7,

(b) tOFF = 15 and (c) tOFF = 30. The first white, yel-
low and red shaded areas are explained in the previous
Figure. The last white region represents the case with
soft self-isolation rules.
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Figure 4.4 – Dependence of the peak size of
∑
i(Ai+ Ii) with tOFF .

Parameters: tmax = 365, f1 = 0.6, φ(2)
1 = φ

(2)
2 = 0.7,

φ
(3)
1 = 0.8 and φ

(3)
2 = 0.9. Regime I: the second peak

is larger than the first one. Regime II: the secondary
peak is smaller than the first one. Regime III: absence
of a second peak. Each of these regimes is illustrated in
Fig. 4.3.

Figure 4.5 – Diagrams φ(3)
1 vs φ(3)

2 for: (a) P2 and (b) RES. Results
obtained for tmax = 365 days, tOFF = 7, f1 = 0.6 and
f2 = 0.4. The regimes I,II and III are explained in the
Fig.4.4. P2 is computed considering both symptomatic
and asymptomatic individuals, ie A1 +A2 + I1 + I2.
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It is important to mention that second waves of infections
can be observed measuring distinct quantities, like the new daily
cases or the number of active cases in a given day (LEUNG et al.,
2020; CASTRO, 2020; PEDRO et al., 2020; FARANDA; ALBERTI,
2020; VAID et al., 2020; XU; LI, 2020; NETO et al., 2020; SINGH;
MOHAPATRA, 2020; MENON et al., 2020; GHANBARI, 2020). In
this work, we choose to exhibit the number of active cases in a given
day.

Apart from the number of individuals in each class, there
is a second quantity of interest, namely the Relative Epidemic Size
(RES) that is computed from t0 to t

RES =
2∑
z=1

Sz(t0)−Sz(t)
N

. (4.7)

In order to better grasp our full protocol lets first consider the case
with f1 = 1. Let u be the index of group u. We consider φu = φ

(0)
u = 1

during the initial stage of the epidemic spreading because the level
of self-isolation is almost null. We shall assume φ(0)

u → φ
(1)
u = 0.799

on day t
(1)
policy = 25 after the beginning of the epidemic spreading.

With this procedure (we call it protocol I) we obtain the time series
shown in Fig.4.2(a) that recover the results presented in Ref. (BAS-
TOS; CAJUEIRO, 2020) considering the scenarios with the current
confinement rules imposed by the government for an indefinite time.
Taking into consideration that the value of the total population is
210 million people, the peaks in the panels are between 9% and 14%
for Infected+Asymptomatic cases and circa 5% for the Infected cases
alone. In spite of the subnotification issues that have been reported
(VOLPATTO et al., 2020; PAIXÃO et al., 2020; CORONAVIRUS
BRAZIL, 2020), these figures are compatible with the fraction of
infected people computed in other countries close to 10% as well
(FLAXMAN et al., 2020).

Consider the protocol II shown in Fig.4.2(b). During the ex-
plosive growth of the epidemic, the isolation policy is improved by
better surveillance. Explicitly, we decrease the noncompliance degree
from φ

(1)
u = 0.799 to φu = φ

(2)
u on day t(2)

policy = 90 after the first case
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at day t0. Henceforth we set φ(2)
u = 0.7, but the nature of our results

does not change qualitatively for other values, as discussed in the
supplementary material. In Fig. 4.2(b), we see that such strengthen-
ing of the confinement restrictions leads to a substantial decrease in
the number of symptomatic and asymptomatic individuals.

The self-isolation measures are permanent in the protocols
I and II. However, after the epidemic growing phase, there might
be political and economic pressure to ease strict confinement rules.
In that sense, lets us move to the protocol III with temporary self-
isolation guidelines. Explicitly,

• After each time step (day) we monitor δI(t) =
∑
z (Iz(t)− Iz(t−1)).

• At t0 we set tdecrease = 0. For each dI(t)< 0 we increase tdecrease
in one unit.

• If tdecrease = tOFF we set φu = φ
(3)
u . That is if dI(t)< 0 during

tOFF consecutive days, the social distancing rules are relaxed.

As one can see in the above items, the method we consider
is applicable after the number of active cases has reached a peak.
Figure 4.3 exhibits the time series for the number of individuals in-
fected considering f1 = 0.6 and f2 = 0.4. We have made this choice
due to a recent poll in Brazil made by the Brazilian Institute of
Geography and Statistics (IBGE), that stated 39.9% of the popula-
tion works in the informal economy (BRAZILIAN INSTITUTE OF
GEOGRAPHY AND STATISTICS - IBGE, 2020), which leads to
f2 = 0.4. However, we considered other values of f1 and f2 in the
supplementary material. The self-isolation measures are lifted tOFF
days after the peak. At that moment, the degree of noncompliance is
increased to φ(3)

1 = 0.8 and φ(3)
2 = 0.9 (last white regions in Fig. 4.3).

If the interruption of the confinement rules takes place one week
after the peak, tOFF = 7, we see that the second outbreak is larger
than the first one. This scenario is different for tOFF = 15, where
the secondary peak is smaller than the first one. If tOFF = 30 days,
then there is no rising of the secondary peak even though there is a
rise in the person-to-person contagion.
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Figure 4.4 shows how the time for interruption of the con-
finement rules impacts the epidemic spreading behavior. The peak
size is computed taking into account both symptomatic and asymp-
tomatic individuals A1 +A2 + I1 + I2. Specifically, there are three
main outcomes. Easing the mobility restrictions too soon triggers
an abrupt rise of the new cases that leads to a pronounced second
peak that is worse than the first one. This is the regime I. In regime
II, the secondary chain of contagion also leads to a new noticeable
outbreak but now with magnitude smaller than the first one. In
regime III, there is no second local maximum. Then, we highlight
that there are two thresholds: (i) for prevention of a second large-
scale epidemic outbreak; (ii) for prevention of a second small-scale
outbreak.

Figure 4.5 disentangles the role played by the degree of non-
compliance φ(3)

u of each group u. When the confinement guidelines
are lifted too early (tOFF = 7) the majority of the combinations of
φ

(3)
1 vs φ(3)

2 leads to the regime I where the second outbreak is more
aggressive than the first one. In this setting, the relative epidemic
size (RES) can achieve about 90% of the population in the long-run
(1 year in such figure). For combinations of moderated values of φ(3)

1
vs φ(3)

2 , there is a substantial region in regime II where RES is mostly
between 70%-80% of the population. The non-negligible presence of
the regime III indicates that the prevention of a secondary epidemic
outbreak can be achieved if the engagement of the population with
the stay-at-home guidelines does not decrease too much.

Let us now turn our attention to the main results depicted in
Figs.4.6-4.7 for f1 = {0.6, ...,1} and tOFF = {7,15,30}. In panels (a-
c) each barplot or boxplot is obtained considering grids with 61x61
combinations of φ(3)

1 ×φ
(3)
2 ∈ [φ(2)

1 ,1]× [φ(2)
2 ,1] where φ(2)

1 =φ
(2)
2 = 0.7.

Thus, all the panels (a-c) totalize 3∗5∗61∗61 = 55815 different pro-
jections. The panels (d-f) show the results for the those combinations
satisfying φ(3)

2 ≥ φ
(3)
1 . In the boxplot the gray shaded box goes from

the first quartile to the third quartile and the horizontal line inside
the box is the median.

Figure 4.6 shows the barplots for the proportion of each
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Figure 4.6 – Barplot with the proportion of each regime pregime in di-
agrams similar to the shown in Fig.4.5. (Top) All 61x61
combinations of φ(3)

1 ×φ
(3)
2 ∈ [0.7,1]× [0.7,1]. (Bottom)

Combinations satisfying φ(3)
2 ≥ φ

(3)
1 . Regime I: the sec-

ond peak is larger than the first one. Regime II: the sec-
ondary peak is smaller than the first one. Regime III:
absence of a second peak. Outcomes for: (a,d) tOFF = 7,
(b,e) tOFF = 15 and (c,f) tOFF = 30.

regime pregime for several f1 and tOFF . In the setting with tOFF = 7
and f1 = 0.6, the overwhelming majority of configurations lead to
the establishment of the regime I, as previously observed. But, this
advantage of the regime I decrease as f2 decreases (by increasing
f1). In the setting with tOFF = 15 all the scenarios exhibit a small-
er proportion for the regime I in comparison with corresponding
scenarios for tOFF = 7. However, there is a dual effect of rising f1.
On the one hand, it increases the proportion of configurations as-
sociated with the regime III. On the other hand, it also increases
the possibilities for the emergence of regime I. In the setting with
tOFF = 30 we also see a double-edged sword: (a) the percentage of
regime I is null and all the percentage of the regime III is higher
than the corresponding to the cases tOFF = {7,15}; (b) an increase
of f1 increases the relative advantage of regime II. These nonmono-
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Figure 4.7 – Boxplot with the range of values exhibited by RES in di-
agrams similar to the shown in Fig.4.5. (Top) All 61x61
combinations of φ(3)

1 ×φ
(3)
2 ∈ [0.7,1]× [0.7,1]. (Bottom)

Combinations satisfying φ(3)
2 ≥ φ(3)

1 . Results for: (a,d)
tOFF = 7, (b,e) tOFF = 15 and (c,f) tOFF = 30.

tonic effects arise because some combinations φ(3)
1 ×φ

(3)
2 favor the

regime I and other combinations favor the regime III as depicted
in Figure 4.5. Such mechanism is corroborated with the panels (d-f)
where we see that the combinations satisfying φ(3)

2 ≥ φ
(3)
1 leads to a

monotonic behavior of pregime vs f1 for all tOFF = {7,15,30}.

Figure 4.7 shows the boxplots for RES considering decreas-
ing values of f2 = 1−f1 as well for increasing values of tOFF . Such
results show that an increment in tOFF leads to an overall decrease
in the relative epidemic size (RES). But a detailed analysis in each
panel shows that an increase in f1 produces an increase in the in-
terquartile range of values for RES (gray area). This indicates the
presence of a twofold effect since RES can achieve smaller values as
f1 increases, but it also leads to the possibility for RES reaching
higher values. Again such twofold effect arises because some combi-
nations φ(3)

1 ×φ
(3)
2 are responsive for an increase in RES and other
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combinations promote a decrease in RES as unveiled in Figure 4.5.
This is confirmed with the panels (d-f) where the combinations sat-
isfying φ(3)

2 ≥ φ
(3)
1 leads to a decrease in RES as f1 increases for all

tOFF = {7,15,30}.

DISCUSSION

The findings in Figs. 4.6-4.7 are our main results. Such fig-
ures show that, for our parameters, it is very likely the emergence of
a second peak (regimes I+II) if the preventive measures are lifted too
soon. Even more alarming, there is a non-negligible risk for the mag-
nitude of such second peak be higher than the first one (regime I).
Apart from this, we note that for a given tOFF there is the possibil-
ity for a twofold effect in which an intervention designed to hamper
the epidemic spreading can backfire. However, in such a situation
the establishment of positive or negative outcomes depends on the
combinations of φ(3)

1 vs φ(3)
2 as indicated in Fig.4.5. Such findings

highlight that it is significant to have a substantial alignment be-
tween different interventions designed to decrease the degree of non-
compliance as well as to support the fraction of the population that
cannot afford for the self-isolation even after the first peak of spread-
ing. Moreover, complementary studies using different parameters we
could verify that the present model is also capable of reproducing dif-
ferent situations of separated peaks as found in several U.S.A. cities
during the Spanish flu pandemics(BOOTSMA; FERGUSON, 2007;
HATCHETT; MECHER; LIPSITCH, 2007). Therein, it is possible
to assess the impact of different public health measures in the num-
ber and evolution of fatalities, with some cities basically exhibiting
a single peak (an indicator of proper policies) and other cities with
significant second peaks. Importantly, some of the cities showing two
peaks were cities that have not had good governance and provided
adequate responses to the COVID-19 pandemics. In other words, al-
though we have adjusted our model to the present COVID-19 case,
our model is likely to be relevant, in theoretical viewpoint, in the
analysis of other situations, namely the computational forward test-
ing of public health policies.
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Other correlated works considering COVID-19 spreading have
also shown the possibility of a second epidemic peak. In Ref. (ROGER-
S, 2020), it is shown – with variants of the SIR model – the potential
of the second peak of infections for the UK. In Ref. (HOERTEL et
al., 2020), the authors calibrated a stochastic agent-based model
from data in France and they projected that it would be unlikely to
prevent the second chain of contagions once quarantine is lifted. A
second chain of spreading was also predicted – using a generaliza-
tion of the SIR model – as a potential outcome for Italy after the
relaxation of the mobility restrictions (PEDERSEN; MENEGHINI,
2020b). A recent work considering the case of Brazil in a group-
free Susceptible-Exposed-Infected-Recovered-Dead model presented
some time series suggesting that the social isolation must hold until
the end of 2020 in order to diminish the chance of the second peak
(CINTRA; NUNES, 2020). Effectively, the conclusion of all those
works is that the safer situation is to hold the isolation for as long
as possible in order to decrease the magnitude of the second peak.
For further discussion see our supplementary material.

LIMITATIONS

We consider that as the epidemic starts to climb sharply
there will be an increased pressure to decrease the degree of non-
compliance (red shaded region in Fig.4.3). At this point we still
assumed the same level of compliance of both groups because of the
current implementation of income transfer for the group 2 (BRAZIL-
IAN FEDERAL GOVERNMENT, 2020). After the first peak and as
soon as the stay-at-home restrictions are suspended we set different
levels of compliance with the post-quarantine stage for each group
(last white region in Fig.4.3).

Besides, our work does not consider explicitly an upper
bound for the capacity of the healthcare system. Underreporting
is another feature that is not modeled here and we have not consid-
ered the clear regional heterogeneity in Brazil as well. In addition,
we considered a mean-field-like approach, where each individual can
interact will all others. In this case, spatial features were not consid-
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ered in the model.

Although our work presents limitations in several dimen-
sions, the qualitative results of our work do not seem to change for
several variations of the parameters of our model as we have checked
with extensive simulations with deterministic and Monte Carlo sim-
ulations.

FINAL REMARKS

Our work has investigated the evolution of COVID-19 pan-
demics in emerging and developing economies where the informal
economy represents a large fraction of the total economy. Although
we have used parameters estimated for the Brazilian case to analyze
the effectiveness of social distancing policies and to estimate the
likelihood of arising a second peak, our results are qualitatively the
same for all economies that show these characteristics. We apply a
SIRASD model considering a population split into two groups with
different behaviors, namely a group that belongs to a class that is
able to self-isolate and a group that is formed by low-income workers
in the gig economy or informal sectors. While the first group usually
belongs to the higher income class or is able to work at home, the
second group is usually in a low-income class and supplies services to
consumers and businesses, and is not able to provide their services
in home office. In this context, the results show that the existence of
these two types of social behaviors strongly affects the dynamics and
possibility of a second peak in the evolution of COVID-19. Based
on these results, it is possible to understand that in order to mas-
ter the evolution of the disease, low-income people — who largely
make their living on informality — must adhere to self-isolation as
pointed by public health authorities worldwide. In order to solve the
dilemma choosing between i) going out to get few earnings and risk
being infected or ii) stay home and face starvation in favor of the
latter, the present results signal it is pivotal the design of income
transfer policies that pay for these people to stay at home at least
30 days after of the first peak.



Chapter 5

Coupled opinion and epidemic

dynamics with vaccination in

modular networks

In this chapter, we study an epidemic spreading under a vac-
cination campaign in community-based populations with individuals
in favor and against the vaccine. Our results show that such coupled
dynamics exhibit a myriad of phenomena such as nonequilibrium
transitions accompanied by bistability. Besides we observe the emer-
gence of an optimal modularity where the community structure can
favor the negative opinions about vaccination but counterintuitively
hinders - rather than enhance - the global disease spreading. Thus,
our results point out that vaccination campaigns should avoid poli-
cies that end up segregating excessively anti-vaccine groups. This
work is available in Ref.(PIRES; OESTEREICH; CROKIDAKIS;
QUEIRÓS, 2021).

INTRODUCTION
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Table 5.1 – List of symbols used in this chapter. See Fig.4.1.
Symbol Meaning

λ Transmissibility rate
gi Vaccination rate of agent i
φ Resusceptibility rate
α Recovery rate
µ Community interconnectivity

One of the greatest expectations of today is precisely the
new vaccine to contain the spread of SARS-CoV-2. While vaccina-
tion has been started in some countries for specific groups, there
is also growing concerns about the presence of groups opposed to
vaccines. Indeed, it is possible to find several anti-vaccine movement
around the world (JOHNSON, Neil F et al., 2020), despite the suc-
cess of the mass vaccination (KEELING et al., 2013). In population
terms, if a large proportion of citizens choose not to be vaccinated,
the consequences can be disastrous, as happened in Rio de Janeiro
in 1904 with the vaccine revolt (NEEDELL, 1987) and more recently
in France in 2010 where the French government required 90 million
doses of the H1N1 vaccine, but only about 6 million people decided
to get vaccinated (GALAM, 2010).

The interplay between the spreading of opinion — particu-
larly the diffusion of ‘anti-vaxxers’ ideas — and the dissemination
of a contagious disease is a natural focus of attention for policy-
makers. Since the online discussions dominate the social interactions
in our modern world, the propagation of such anti-vaccine opinions
is growing fast. The authors in (JOHNSON, Neil F et al., 2020) re-
cently pointed that if the current trends continue, anti-vaccine views
will dominate online discussion in 10 years. The importance of anti-
vaccine movement is fundamental for the evolution of COVID-19
outbreaks. Indeed, the authors in (BUONOMO, 2020) called atten-
tion to the fact that it is a key point to qualitatively assess how the
administration of a vaccine could affect the COVID-19 outbreak,
taking into account of the behavioral changes of individuals in re-
sponse to the information available on the status of the disease in the
community. According to a study published in August 2020, nearly
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one in four adults would not get a vaccine for COVID-19 (BOYON;
SILVERSTEIN, 2020) and in some countries, more than half of the
population would not get it, including Poland and France (CURIEL;
RAMÍREZ, 2020). In September 2020, it was verified that only 42
percent of Americans said yes to receiving a future COVID-19 vac-
cine, across all political sides. It means that even in a best-case
scenario where a future high performing vaccine is 95% effective in
an individual, it would only impact 42x95≈ 40% of the population,
which is way below predicted thresholds for herd immunity (JOHN-
SON, N F et al., 2020).

Complex networks are natural tools to study processes that
take place in society. The impact of network modularity in gener-
al spreading processes have been investigated in recent years. Since
the work of Ref. (NEMATZADEH; FERRARA, et al., 2014), a series
of works were published regarding the subject of optimal network
modularity; therein, the authors showed that modular structure may
have counterintuitive effects on information diffusion. Indeed, it was
discussed that the presence of strong communities in modular net-
works can facilitate global diffusion by enhancing local, intracommu-
nity spreading.

Still in relation to modular networks, it was recently found
that an optimal community structure that maximizes spreading dy-
namics which can pave the way to rich phase diagrams with exhibit-
ing first-order phase transitions (SU; WANG, et al., 2018). Within
the same context, the authors in (WU et al., 2016) discussed about
the impact social reinforcement in information diffusion. They also
found optimal multi-community network modularity for information
diffusion, i.e., depending on the range of the parameters the multi-
community structure can facilitate information diffusion instead of
hindering it.

The authors in (CUI et al., 2018) studied the importance
of close and ordinary social contacts in promoting large-scale conta-
gion and found an optimal fraction of ordinary contacts for outbreak
at a global scale. With respect to correlations in complex networks,
it was found that constraining the mean degree and the fraction of
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initially informed nodes, the optimal structure can be assortative
(modular), core-periphery, or even disassortative (CURATO; LIL-
LO, 2016). Other recent works leading with optimal modularity in
networks can be found in (NEMATZADEH; RODRIGUEZ, et al.,
2018; PENG et al., 2020).

In a recent work (VALDEZ; BRAUNSTEIN; HAVLIN, 2020),
it was proposed a model of disease spreading in a structural modu-
lar complex network and studied how the number of bridge nodes
n that connect communities affects disease spread. It was verified
that near the critical point as n increases, the disease reaches most
of the communities, but each community has only a small fraction
of recovered nodes.

Disease information can spark strong emotions like fear — or
even panic — that would affect behaviour during an epidemic. The
authors in (BI et al., 2019) considered an agent-based model that
assumes that agents can obtain a complete picture of the epidemic
via information from local daily contacts or global news coverage.
Those results helped conclude that such model can be used to mim-
ic real-world epidemic situations and explain disease transmission,
behavior changes, and distribution of prevalence panic. Game theo-
ry was also considered to reproduce the decision-making process of
individuals during the evolution of a disease. In (ZHAO; KUANG,
et al., 2018) a spatial evolutionary game was coupled to a SIR mod-
el, and the results showed that protective behaviors decrease the
numbers of infected individuals and delay the peak time of infection.
The study also concluded that increased numbers of risk-averse indi-
viduals and preemptive actions can more effectively mitigate disease
transmission; however, changes in human behavior require a high so-
cial cost (such as avoidance of crowded places leading to absences
in schools, workplaces, or other public places).

Recently, the anti-vaccine sentiment was treated as a cultur-
al pathogen. The authors in (MEHTA; ROSENBERG, 2020) mod-
eled it as a ’infection’ dynamics. The authors showed that inter-
ventions to increase vaccination can potentially target any of three
types of transitions - decreasing sentiment transmission to unde-
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cided individuals, increasing pro-vaccine decisions among undecided
individuals, or increasing sentiment switching among anti-vaccine
individuals.

Models of opinion dynamics were applied in the context of
opinions about vaccination (pro versus anti-vaccine) without cou-
pling an epidemic process (GALAM, 2010). Later, kinetic opinion
dynamics were coupled to classical epidemic models in order to s-
tudy the feedback among risk perception, opinions about vaccina-
tion, and the disease spreading. In (PIRES; CROKIDAKIS, 2017) it
was found that the engagement of the pro-vaccine individuals can be
crucial for stopping the epidemic spreading. On the other hand, the
work (PIRES; OESTEREICH; CROKIDAKIS, 2018) found coun-
terintuitive outcomes like the fact that an increment in the initial
fraction of the population that is pro-vaccine can lead to smaller
epidemic outbreaks in the short term, but it also contributes to the
survival of the chain of infections in the long term.

Coupled behavior-change and infection in a structured popu-
lation characterized by homophily and outgroup aversion (SMALDINO;
JONES, 2020). It was found that homophily can either increase or de-
crease the final size of the epidemic depending on its relative strength
in the two groups. In addition, homophily and outgroup aversion can
also produce a ‘second wave’ in the first group that follows the peak
of the epidemic in the second group.

MODEL

Opinion dynamics

Based on (PIRES; OESTEREICH; CROKIDAKIS, 2018)
(and the original model (LALLOUACHE et al., 2010)), we consider
an agent-based dynamics in which the opinion about vaccination,
oi ∈ [−1,1], of each agent, i, evolves with

oi(t+ 1) = oi(t) + εoj(t) +wIneig(i)(t) (5.1)

A negative (positive) values of oi represents an individual i support-
ing anti-vaccine (pro-vaccine) opinion. Eq. (5.1) takes into account
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that the agent’s opinion oi(t+ 1) depends on multiples factors: (i)
his previous opinion oi(t); (ii) a peer pressure exerted by a ran-
domly selected neighbor j, modulated by a heterogeneity ε which
is randomly distributed; (iii) the proportion of infected neighbors
Ineig(i)(t) modulated by a risk perception parameter w.

The opinion dynamics regarding the vaccination campaign
is coupled with the epidemic dynamics, due to the factor Ineig(i)(t)
in Eq. (5.1). The microscopic details of the disease dynamics and
the evolution of the epidemic compartments will be discussed in the
next subsection. In Fig.5.1 we present an overview of our model.

Epidemics-vaccination dynamics

Based on (PIRES; CROKIDAKIS, 2017; PIRES; OESTERE-
ICH; CROKIDAKIS, 2018) (and references therein), we define the
transitions among the epidemic compartments as follows:

• S
gi→R: a Susceptible agent i becomes Vaccinated with proba-

bility gi;

• S
(1−gi)λ→ I: a Susceptible agent i becomes Infected with proba-

bility (1−gi)λ if he is in contact with an Infected agent;

• I
α→ S: an Infected agent i recovers and becomes susceptible

again with probability α;

• R
φ→ S: a immune agent i becomes Susceptible again with the

resusceptibility probability φ. Based on (ZENG; CHEN, 2005;
RAO; MANDAL; KANG, 2019; MONEIM; GREENHALGH,
2005; LAHROUZ et al., 2012; DOUTOR et al., 2016) we as-
sume that Vaccinated and Recovered agents are in the same
compartment.

The vaccination probability gi of an agent i is proportional
to his opinion about vaccination −1≤ oi ≤ 1:

gi(t) = 1 +oi(t)
2 ∈ [0,1] (5.2)
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Figure 5.1 – Sketch of our coupled model with epidemic and opinion
dynamics about vaccination.

Community structure

Based on (OESTEREICH; PIRES; CROKIDAKIS, 2019)
and related literature, we start by picking the first N1 = N/2 of
the N nodes and attaching them to community 1, and assigning
the other N2 =N −N1 nodes to community 2. We then proceed to
randomly assigning (1−µ)M connections randomly among pairs of
nodes from the same community and µM connections are randomly
distributed among pairs of nodes that belong to distinct community.

The parameter µ regulates the community strength: large
values of µ means more ties between the two communities conse-
quently a weaker community organization. See Fig.1 5.2.

Initial condition

We consider that the community 1 holds a positive view
about vaccination, whereas the community 2 holds a negative opin-
ion about the vaccine. We also assume that the chain of infections
starts in the community 2 because this case is more important since
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Figure 5.2 – Examples of modular networks with N = 100, 〈k〉= 10
for different values of µ. In these examples we can see
the strengthening of the community structure for lower
values of µ.

oi < 0 leads to a low propensity for the agents to get vaccinated. If
the epidemic would start in the community 1, the positive opinions
oi > 0 would induce a relatively high probability for an agent to get
vaccinated which ends up disrupting the chain of contagions.

Let U(a,b) be a single random value from a uniform distri-
bution in the range [a,b].

At t= 0 we set:

• For i in 0 . . .N/2−1: (community 1: oi > 0; 0% infected)

– oi ∼ U(0,1)
– status(i) = S

• For i in N/2 . . .N −1: (community 2: oi < 0; 1% of infected)

– oi ∼ U(−1,0)
– status(i) = S with probability 0.99
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Figure 5.3 – Steady-state for the spreading measure Ii and collective
opinion mi for each community i= {1,2}. Symbols are
the steady-state outcome for each sample. Results for
µ= 0.1.

– status(i) = I with probability 0.01

RESULTS AND DISCUSSION

In this section we present our results come fromMonte Carlo
simulations of networks with N = 104 nodes. In all simulations we
set α = 0.1 and φ = 0.01, without losing generality. In Figs.5.3-5.6
we show Iu that is the steady-state density of infected agents in the
community u. We also show mu that is the stationary opinion in the
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Figure 5.4 – Steady-state for the spreading measure Ii and collective
opinion mi for each community i= {1,2}. Symbols are
the steady-state outcome for each sample. Results for
µ= 0.2.

community u. In turn, Itot and mtot refer to the global proportion
of infected individuals and global mean opinion.

The outcomes in Fig.5.3 show that in the community 2 (seed
community) there is a transition from the absorbing phase (extinc-
tion of the epidemic) to the epidemic survival phase. In the commu-
nity 1 there is no survival of the chain of infections in the long term.
In this setting with µ= 0.1 (weak modular structure) the seed com-
munity remains with the negative opinion about vaccination which
weakens the vaccination campaign and thus facilitates the local per-
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Figure 5.5 – Steady-state for the spreading measure Ii and collective
opinion mi for each community i= {1,2}. Symbols are
the steady-state outcome for each sample. Results for
µ= 0.3.

manence of the disease. Similarly, there is a persistence of the initial
opinion in community 1, which in this case is pro-vaccine and there-
fore favors the vaccine uptake that makes the epidemic spreading
unsustainable. This means that a low number of inter-community
ties hinders the change in the community stance about vaccination,
thus creating a strong distinction in epidemic spread between both
communities. Community 1 being unfavorable to epidemic spreading
since m1 > 0, and community 2 being favorable since m2 < 0.

In Fig.5.4 it is notable that an intermediate community
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Figure 5.6 – Steady-state for the spreading measure Ii and collective
opinion mi for each community i= {1,2}. Symbols are
the steady-state outcome for each sample. Results for
w = 0.1 and λ= 0.8.

strength leads to the elimination of the epidemic transmission in
both communities even when there is a dominance of the negative
opinion about vaccination in community 2. The epidemic contagion
spreading is halted in community 2, even thou the agents have a neg-
ative opinion about the vaccination, due to the intermediate number
of bridges, µ = 0.2, to the other community. These bridges are just
strong enough to drain the infected agents of community 2, but not
strong enough to change its average opinion.

In Fig.5.5, with µ = 0.3 there is a high number of inter-
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community links. This additional connectivity between communi-
ties weakens the initial epidemic spreading in community 2, but it is
sufficient to introduce the possibility of a community wide opinion
change in community 1. The opinion change in community 1 facili-
tates the epidemic spreading in that community. This effect is lim-
ited, because we can see that for high infection probabilities λ > 0.8
the epidemic spread vanishes. So, we have a counterintuitive effect,
because for a higher transmissibility the epidemic spread vanishes.
The reason behind this is the risk perception, wI in Eq.5.1, which
promotes vaccination, so a higher transmissibility leads to a bigger
outbreak that in turn leads to better opinions about vaccination
which ends up stopping the epidemic outbreak.

In Fig.5.6 is evident the emergence of an intermediate range
of µ that blocks the local and global epidemic spreading. Regarding
the opinion dynamics, an initial increase in µ leads to a decrease in
m1 and an increase in m2, that is the collective opinions tend to be
less extremist for an initial rise in the amount of inter-communities
routes. Then a further increase in µ promotes a sudden rise in m1
and m2 which means a speed up in the switch of opinions in the
community 2. A further rise in µ leads to a biestable behavior in
both communities.

While in Figs.5.3-5.4 there is a single stable steady-state
(either extinction or persistence), Figs.5.5 display bistable solutions
depending on the randomness ’embebed’ in the dynamics. Moreover,
the outcomes in Figs.5.3 suggest that the absorbing-active epidem-
ic transition is continuous for strong communities (such as µ= 0.1)
whereas the results shown in Figs.5.5 signalize that this extinction-
persistence epidemic transition is discontinuous for weak communi-
ties (such as µ = 0.3). Therefore, the structural factors present in
the modular networks can induce the emergence of bistability in the
epidemic-vaccination-opinion dynamics as well as a change in the
nature of the absorbing-active transitions.

An overall look into Figs.5.3-5.6 reveals that a sudden tran-
sition can emerge from structural factors (increasing µ) or epidemio-
logical factors (increasing λ). The transitions from the Disease-Free
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phase to the active phase and vice-versa (epidemic resurgence) high-
light the nonmonotonic behavior of the full dynamics with the trans-
missibility λ.

Comparing with other works, we see that while in (NE-
MATZADEH; FERRARA, et al., 2014) there is an optimal modu-
larity for enhancing information spreading, here there is an optimal
modularity for hindering epidemic spreading.

FINAL REMARKS

In (SALATHÉ; BONHOEFFER, 2008) was shown with a
binary opinion dynamics that the spread of opinions against vac-
cination is one of the potential responsible for the large outbreaks
of vaccine-preventable diseases in many high-income countries. Here
we show with continuous opinion dynamics coupled to a networked
SIRSV model that the spectrum of scenarios arising from the com-
petition of pro vs anti vaccine views during an epidemic spreading
is highly complex.

The several outcomes shown in Figs.5.3-5.6 point out that
our model produces a diverse phenomenology where the social and
biological scenarios exhibit a nonmonotonic dependence with spread-
ing rate λ. From the perspective of the dynamical systems, our re-
sults provide a new mechanism for bistability in a biological-social
setting. From a practical point of view, our work offers new perspec-
tives for the development of novel strategies for halting epidemic
spreading based on tuning the modularity to an optimal degree.

Some pro-vaccine strategies can have as side effects the segre-
gation between individuals with conflicting views about the vaccines.
In this regard, it was shown recently (BIZZARRI; PANEBIANCO;
PIN, 2020) that segregation of anti-vaxxers can potentially extend
the duration of an epidemic spreading. In (SAAD-ROY et al., 2020)
was found that an increase in the contact between vaccine refusers
and the rest of the society can lead to a scenario where vaccination
alone may not be able to prevent an outbreak. Here we show that
too much or too low segregation of anti-vaxxers favors the chain
of contagion, but an intermediate level of segregation disfavor the
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epidemic spreading. Therefore, our results indicate that vaccination
campaigns should avoid strategies that have as a side effect too much
segregation of anti-vaccine groups.

Our work produces an intriguing analogy. In a small-world
architecture there is an intermediate number of long-range bridges
that lead the full network to have unusual properties such as high
clustering and low path lengths. Here, a structure with an interme-
diate number of inter-community ties lead the dynamics in the full
network to produce an interesting outcome, namely the suppression
of the epidemics. In future works it would be valuable to consider
more sophisticated network architectures.



Concluding Remarks

In this thesis we worked in some important problems related
to the fields of Ecology and Epidemiology. We employed two tools
such as agent-based simulations as well as simple and coupled mean-
field equations. We obtain a series of novel results:

• In the chapter 1 we show that the survival-extinction boundary
undergoes a monotonicity transition: it has a nonmonotonic
behavior for severe spatial constraints, but it has a monoton-
ic behavior for loose spatial restrictions. As a consequence we
show the emergence of an optimal diffusion that maximizes
the survival probability for metapopulations with weak con-
nectivity (strong spatial restrictions). Besides, this work set
an agenda for empirical studies that could be done within the
field of Synthetic Biology.

• In the chapter 2 our results point out that the multifold inter-
play between competition, birth-death dynamics and spatial
constraints induces an interesting nonmonotonic relation be-
tween the ecological majority-minority switching and the dis-
persal between patches. This study also set an agenda for works
that could be done within the field of Synthetic Biology.

• In the chapter 3 we show that a complexity measure, rather
than the standard autocorrelation function, is able to properly
explain the fate of extinction and to what extent the threshold
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establishing the risk of extinction. Accordingly, these results
allows comprehending how randomness jeopardises the long-
run proliferation of organisms. Moreover, this work can also
inspire empirical studies of Synthetic Biology.

• In the chapter 4 we show that the existence of two types of
social behaviors strongly affects the dynamics and possibility
of a second peak in the evolution of COVID-19. Taking Brazil
as a case study our results point out that if the confinement
measures are lifted too soon, namely as much as one week of
consecutive declining numbers of new cases, it is very likely the
appearance of a second peak. This work has the contribution
of adding a new feature to the epidemic modelling, namely the
stratification in groups according to socioeconomic attributes
that are observed in emerging and developing countries

• In the chapter 5 we show that network modularity produces
nonmonotonic effects on coupled opinion-vaccination-epidemic
dynamics. Moreover, we provide insights into the problem of
segregation of anti-vaxxers where we show that vaccination
campaigns should avoid strategies that have as a side effect
too much segregation of anti-vaccine groups. This work adds
a new framework to the field of vaccination dynamics, name-
ly the bridging of multiple fields (epidemic-vaccination-opinion
dynamics) within the setup of complex networks. Another con-
tribution of this endeavor is the new mechanism for bistability
in a biological system.

In all chapters, we have observed transitions between states.
This fact, under the presence of randomness, has important conse-
quences in scenarios closer to a critical point: (i) for chapters 1-3
it unfolds the occurrence of ecological scenarios in which extinction
can take place without apparent reason, even in the presence of
abundant resources; (ii) for chapters 4-5 it implies that it is possible
that the disease spreading can be interrupted without the applica-
tion of suitable policy interventions, which may lead to misleading
for policy-makers.
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All in all, this thesis produces a series of contributions in rel-
evant areas of Ecology and Epidemiology. As we have employed mini-
mal models it is natural that there are many extensions of our works.
In chapter 1 we have observed that the magnitude of the spatial con-
straints can change qualitatively the survival-extinction boundary
from a nonmonotonic to a monotonic dependence. We have used a
k-regular graph, thus it will be worthwhile to consider more sophisti-
cated complex networks (BASCOMPTE, 2007). Similarly, in chapter
2 it will be important to investigate how the underlying connectiv-
ity matrix influences the ecological majority-minority switching. In
chapter 3 it will be interesting to extend our analyze on how ran-
domness/complexity jeopardizes the long-run survival of species for
a spatially-constrained environment (DEANGELIS; YUREK, 2017;
MERON, 2015). In chapter 4 we have assumed that after recovering
from COVID-19 individuals cannot be infected anymore. Thus, this
assumption should be relaxed as new evidence shows the possibility
of reinfections (SAAD-ROY et al., 2020). Finally, in chapter 5 it
will be worthwhile to consider the interplay between several sources
of heterogeneity in the agent’s bias, namely plurality and polariza-
tion (OESTEREICH; PIRES; QUEIRÓS, et al., 2020).
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