
Classical and Quantum Simulations via
Quantum Algorithms

By

PEDRO CONTINO DA SILVA COSTA

ADVISOR: DR. FERNANDO DE MELO

BRAZILIAN CENTER FOR RESEARCH IN PHYSICS

Thesis submitted to the Brazilian Center for Research in
Physics in accordance with the requirements of the degree of
DOCTOR OF PHYSICS.

MARCH 2018

DEDICATION AND ACKNOWLEDGEMENTS

These four years I pursued my doctorate were the most challenging of my life. Indeed, this path
is very difficult and without the support of my advisor, collaborators, and friends, I would not be
where I am today.

I would like to begin with a special thank you to my advisor, Fernando de Melo. When I
started my doctorate, I had no idea what to focus my research on. Thus, it would be accurate to
say that Fernando introduced me to a career in academics. I learned alongside him, and he helped
me to ask more pertinent questions, as well as to think more about the problems I encountered.
He went far beyond what I expected from an academic advisor. He taught me how to conduct a
seminar presentation, and also helped me to improve my writing and speaking skills. Fernando
also gave me the freedom to collaborate with other researchers, a detail that has proven to be
vital to my career. In addition, he also was a great friend, giving me support along these fours
years. It was an honor to me to be his first student.

I am also very grateful to Stephen Jordan, who gave me a special opportunity to work. I
have been collaborating with Stephen almost two years. I could never learn too much with him.
During my days at the University of Maryland, he welcomed me tremendously and gave me
the necessary support to allow me to develop my work and also to enjoy the experience. I am
also grateful to all staff, students, postdocs and researchers of the Joint Center for Quantum
Information and Computer Science to all their support.

Thanks to Renato Portugal for providing me with a place to work in the National Laboratory
for Scientific Computing-LNCC. During the year that I spent working in LNCC, I learned a lot
from Renato and I am thankful for the opportunity to work with him.

Thanks to Bruce Sánchez for the period that we worked together and to the excellent discus-
sions about cellular automata.

I would like to thank many friends, colleagues and professors of the Brazilian Center for
Research in Physics, which was like a home to me. I especially want to thank Pedro Cavalcanti
Malta, Linneu Holanda, and the professors and researchers Sebastião Alves Dias and José
Abdalla Helayël for their advice and discussions.

Thanks to João Calvacanti, a great guy that gave me great support during tough times in
these years.

Thanks to Joel Duberstein, my best friend overseas, for all his support during the time that I
spent in Maryland, and also after I returned to Brazil.

I would like to thank Felipe Figueiredo Rocha, Ana Paula Mussel, and Juliana Menezes de
Sousa to all their support.

Finally, I would like to thank my mother, Isabel Contino, for all her support and advice during
my life, in particular during these last and difficult periods.

i

ABSTRACT

The interest in the quantum information area is increasing fast. We can point the new
quantum computers that are appearing as the main reason. People now seek to see the
potentialities of these quantum machines to investigate their problems. With these new

architectures, we need to develop quantum algorithms and use quantum models of computation
in order to explore these new quantum devices. Going to this direction the main goals of this
thesis are to do improvements in a specific the quantum method of computation, contrasting with
its classical counterpart, and to develop new quantum algorithms.

A few results for classical and quantum models of computations are presented, with a
particular focus on partitioned cellular automata and their quantum counterpart. We presented
a new definition for this model of computation that we believe to be a more clear definition than
the previous ones. Moreover, we show a general recipe to translate the main classes of quantum
walks, as the coined model and the staggered quantum walk with Hamiltonian, to quantum
cellular automata. We expect that this result within our new definition will increase the research
activity in this area. For the classical cellular automata part, we developed coarse-graining, a tool
widely explored to study emergent processes. In this part, we saw stochastic processes emerging
from deterministic ones.

Still in the paradigm of discrete space and time, we propose a quantum algorithm for simulat-
ing the wave equation via Hamiltonian simulation. We move from a classical complexity that has
a lower bound that depends exponentially on the lattice dimension to a quantum complexity that
has an upper bound that depends quadratically on this same parameter. In this algorithm, we
apply a sophisticated discretization method, via graph spectral theory, in order to achieve the
discretization of the lattice. We show how to use this method of discretization to establish the
Dirichlet and Neumann boundary conditions in our algorithm. We also work with a few practical
examples to confirm that our method works.

We present a quantum lattice gas model via quantum walks. We generalized the first model
of gas collision, called HPP, to code our quantum version. We employ a quantum walk with two
interacting walkers in a two-dimensional lattice to perform our analyses. We show how this
simple interaction generates entanglement between the particles and how it increases with time.

iii

RESUMO

O interesse pela área de informação quântica vem aumentando rapidamente nos últimos
anos. Podemos dizer que o principal motivo pelo aumento desse interesse é os novos
computadores quânticos que estão aparecendo. Há um grande interesse de diversos grupos

com diferentes propósitos de testar as potencialidades dessas máquinas quânticas para investigar
seus problemas. Neste novo cenário de computação precisamos desenvolver algoritmos quânticos
e usar modelos quânticos de computação para explorar esses novos dispositivos. Indo para esta
direção, os principais objetivos desta tese são propor melhorias para um método quânticos de
computação, contrastando com seu análogo clássico, e desenvolver novos algoritmos quânticos.

Alguns resultados para modelos clássicos e quânticos de computação são apresentados, tendo
como foco automatos celulares particionados e seu análogo quântico. Apresentamos uma nova
definição para este modelo de computação, o qual acreditamos ser uma definição mais clara
do que as anteriores. Além disso, mostramos uma prescrição geral para traduzir as principais
classes de passeios quânticos, como o modelo da moeda, para automatos celulares quânticos.
Esperamos que este resultado junto com a nossa nova definição aumente a atividade de pesquisa
nesta área. Para a parte clássica dos automatos celulares, desenvolvemos o "coarse graining",
uma ferramenta amplamente explorada para estudar processos emergentes. Nesta parte, vimos
processos estocásticos surgindo de processos determinísticos.

Ainda no paradigma de espaço e tempo discretos, propomos um algoritmo quântico para
simular a equação de onda via simulações de Hamiltonianas. Passamos de uma complexidade
clássica que tem um limite inferior que depende exponencialmente da dimensão de rede para
uma complexidade quântica que possui um limite superior que depende quadraticamente desse
mesmo parâmetro. Neste algoritmo, aplicamos um método sofisticado de discretização, via teoria
espectral de grafos, a fim de alcançar a discretização da rede. Mostramos como usar este método
de discretização para estabelecer as condições de contorno de Dirichlet e Neumann em nosso
algoritmo. Também trabalhamos com alguns exemplos práticos para confirmar que nosso método
funciona.

Apresentamos também um modelo de redes de gases quânticos através de caminhadas
quânticas. Nós generalizamos o primeiro modelo de colisão de gases , chamado por HPP, para
codificar nossa versão quântica. Empregamos o modelo de caminhantes quânticos com dois
caminhantes interagentes em uma rede bidimensional para realizar nossas análises. Mostramos
como essa interação simples gera emaranhamento entre as partículas e como ele aumenta com o
tempo.

v

LIST OF ARTICLES RELATED TO THE THESIS

1. Pedro C.S. Costa, Stephen Jordan, Aaron Ostrander. Quantum Algorithm for Simulat-
ing the Wave Equation. arXiv:1711.05394, 2017. Results presented in chapter 9 of this
thesis.

The paper was submitted to journal Quantum Information and Computation in 28/11/2017.

Current state: we are doing the corrections pointed out by the referees and adding new
sections in order to answer some relevant questions made by them. We will resubmit it in
the beginning of April.

2. Pedro C.S. Costa, Renato Portugal, Fernando de Melo. Quantum Walks via Quantum
Cellular Automata. arXiv:1803.02176, 2018. Results presented in chapter 7 of this thesis.

Current state: Published in Quantum Information Processing, https://doi.org/10.1007/s11128-
018-1983-x.

3. Pedro C.S. Costa, Fernando de Melo, Renato Portugal. Quantum HPP. Results presented
in chapter 8 of this thesis.

Current state: we are converting the results shown in this thesis into an article.

4. Pedro C.S. Costa, Fernando de Melo. Coarse Graining of Partitioned Cellular Au-
tomata. Results presented in chapter 5 of this thesis.

Current state: we are converting the results shown in this thesis into an article.

vii

TABLE OF CONTENTS

Page

1 Introduction 1
1.1 Cellular Automata . 2

1.2 Quantum Walks . 4

1.3 Quantum Algorithms for Classical Simulations . 6

I Classical Models of Computation 9

2 Cellular Automata 11
2.1 Elementary CA . 13

2.2 Reversible and partitioned CA . 15

2.3 Cellular automata modeling . 17

2.3.1 The HPP rule . 17

2.4 PCA vs Wolfram classification . 21

3 Lattice Gas Automata 23
3.1 A Brownian motion automaton . 23

3.1.1 The problem statement . 24

3.1.2 The continuous limit . 29

3.2 A random walk automaton . 33

3.2.1 The multiscale and Chapman-Enskog expansion 36

4 Differential equations via Finite Difference Method 41
4.1 Methods of discretization . 42

4.1.1 General principle . 42

4.1.2 Taylor expansion . 43

4.2 The wave equation problem . 45

4.2.1 Numerical analysis . 47

4.2.2 The incidence matrix . 56

4.2.3 Overview of the FDM complexity . 60

ix

TABLE OF CONTENTS

5 Emergent Phenomena 65
5.1 Coarse Graining of CA . 67

5.2 Coarse Graining of PCA . 71

5.2.1 Coarse-graning procedure . 73

5.2.2 Deterministic CG results for one-dimensional PCA 75

5.2.3 Non-deterministic CG results for one-dimensional PCA 85

5.2.4 CG in Zd for multiparticles with or without interaction 88

5.2.5 Final considerations . 91

II Quantum Models of Computation 93

6 Quantum Cellular Automata 95
6.1 Previous QCA models . 96

6.2 PUQCA . 101

6.2.1 Quantum lattice gases . 103

6.2.2 Final considerations . 114

7 Quantum Walks via Quantum Cellular Automata 117
7.1 CQWd ⊆ QCA . 119

7.1.1 One dimensional example . 121

7.1.2 General Recipe . 123

7.2 SQW ⊆ QCA . 125

7.2.1 One dimensional example . 126

7.2.2 General Recipe . 128

7.3 Final considerations . 129

8 Quantum HPP 131
8.1 Coined model . 132

8.1.1 CQW in L2 . 133

8.1.2 Two quantum particles with HPP interaction 134

8.2 Dynamics analysis . 137

8.2.1 Numerical results . 140

8.3 Entanglement between the particles . 148

8.3.1 Final considerations . 153

9 Quantum algorithm for simulating the wave equation 155
9.1 Algorithm . 157

9.2 Initial conditions . 160

9.2.1 General Case . 161

x

TABLE OF CONTENTS

9.3 Numerical examples . 162

9.4 Discretization Errors . 167

9.5 Post-Processing . 167

9.6 Klein-Gordon Equation . 168

9.7 Maxwell’s Equations . 170

9.8 Final considerations . 172

10 Conclusion and Perspectives 173
10.1 Conclusions . 173

10.2 Perspectives . 174

A Asymptotic Notations 177

B Conditioning number 179
B.1 Vector norms . 180

B.2 Matrix norms . 180

B.3 Condition numbers for linear systems . 183

Bibliography 185

xi

C
H

A
P

T
E

R

1
INTRODUCTION

The age of the quantum computers has already arrived. Right now, there are some quantum

computers available, for instance D-wave1, IBM [41] and others to come by Microsoft

and Google [31]. Even the general public can already access one of those in the cloud,

IBM quantum computers 2. Basic questions one asks are: “what we will be able to do with these

machines?” and “what we will be able to learn with them?” We can be more specific with these

questions, for instance: can we simulate nature more efficiently with quantum computers than

with classical computers (in terms of time and memory)? Can we simulate systems that we could

not do before, in such a way that large experiments will not be necessary anymore? Can quantum

computers help us to answer fundamental questions, studies about the emergence of the classical

world from the quantum one?

Richard Feynman [30], who pointed out some of these questions above, was more interested

in quantum computers for simulating quantum physics basically because of two reasons: the

description of the quantum state increases exponentially with the number of quantum particles,

and from the fact that ultimately we believe that the physical rules are quantum and then we

should work with hardware structure that employs quantum logic in order to mimic nature more

efficiently.

However, since the first quantum algorithms, we could see that quantum computers would

go far beyond of what Feynman expected. Quantum computers might imply new protocols for

cryptography [6], search algorithms [59], to speedup the solution of linear systems [38], results

that can impact significantly multiple and distinct areas. These results related with these areas

that strongly boosted the development and investment to construct a quantum computer, bringing

many different companies to this area, as cited above. Furthermore we are aware about the high

1https://www.dwavesys.com/home
2http://researchweb.watson.ibm.com/ibm-q/

1

CHAPTER 1. INTRODUCTION

costs in carrying out large experiments, as the ones employed to study fundamental interactions.

Then, if we have quantum algorithms that can reproduce the reality of the phenomenon so well

that we can learn about the system investigated, we might replace these large experiments by

simulations, which is a topic that also has economic interests since we would spend much less

economic resources working with quantum computers instead with large experiments. Of course

that for this last claim we should be more careful. First of all, currently our classical computers

are used to investigate complex system when experiments can not be done or when math gets too

hard. Besides, to replace experiments by simulations can not be done without some certification

criteria. In the same way that in experimental science one resulted achieved by some group needs

to be replicate by others groups, computers models also need to be replicated, and independent

groups should be able to get the same results from the model proposed. Then, in this way, when

we have access to large quantum computers employing thousands of controllable qubits, we might

go beyond of our current technology can go for experiments, and maybe the only way to learn

about some phenomena will be by simulations, that needs to be replicated.

Aiming at the simulation of complex systems the first step is to construct an algorithm for the

problem, which in general is not a trivial task. Rather than employing classical algorithms with

quantum computers, we want to employ quantum algorithms, that require quantum logic. During

this process we can already learn more about the problem, as for instance its computational

complexity. Currently, many efforts are being done in this direction with several results already

presenting, some with exponential speedups when compared with their classical counterpart,

[7, 8, 16, 21, 38, 85]. As an example, a quantum algorithm that aims at computing the scattering

process between particles in high energy physics was reported in [70]. Results like that, point out

to us the real possibility of taking simulations instead experiments to study fundamental physics.

Throughout my academic research, these main questions presented above guided me in my

work, and I am pleased to say that I have been successfully collaborating toward some of their

answers. I particularly focused on the models of computation called Quantum Cellular Automata

[36, 57, 83], along with its classical part [17], and Quantum Walks [1, 59, 77], focusing on new

quantum algorithms to explore quantum and classical simulations and to explore emergent

phenomena. Simultaneously I had the opportunity to help build a new quantum algorithm to

solve second order partial differential equations, in particular the ones that solve the wave

equation [21], just applying the well-known Schrödinger equation in a convenient way.

In this chapter I will give a general view about the work presented in this thesis, pointing out

the motivations and open questions of each one.

1.1 Cellular Automata

Since Von Neumann [78], the theory of cellular automata (CA) was extensively explored in several

distinct areas, such as biology [35], cryptography [52], and fluid dynamics [32]. It is not only

2

1.1. CELLULAR AUTOMATA

because its simplicity that CA are attractive to physics, it is also because their local formulation,

which is strongly related with what we expect from physics: local interactions. During my PhD, I

could see by myself the power of this model, chapters 2 and 3, applying it to a few problems in

physics, such as the simulation of the diffusion equation [17] and particles that can collide [37].

After seeing the power of this model, it was quite natural for me to expect the same strength

from its quantum counterpart, quantum cellular automata (QCA) chapter, 6.

Employing the QCA, I could work with some of its previous results and then learn how

this model can be useful to simulate the Schrödinger and the Weyl equation. Likewise, in the

classical version, the simulation is done with discrete time and space; the method to confirm if it

is being done properly is to obtain the continuous limit of their discrete motion equation, which

is not a trivial task. Therefore, I could see within a few examples that working with the QCA,

which employs local operators and whose description is done in terms of qubits, we can simulate

quantum systems properly. Thus, QCA is indeed an excellent platform for quantum algorithms

and a possible hardware structure for quantum computers.

Another interesting aspect of the CA is the nature of its computation structure that allows us

to study emergent phenomena easier than with other computational tools, as done in [39] (chap.5),

which is another rich topic with several applications and questions. Typically, an emergent process

in a physics context occurs when we move from a microscopic description to a macroscopic one,

where the collective dynamics of a large assemblage of interacting parts emerges. Frequently, due

to the weak sensibility of our detectors associated with the lack of information about the complete

system, our recorded dynamics do not allow us to capture the full reality of the microscopic world.

In general, when we move between these two worlds we start with more degrees of freedom and

move to fewer in the macroscopic world. Despite not having complete access to all information,

the main properties of the system are still present and we can describe them effectively. In several

cases, it is exactly what we expect, and working with fewer degrees of freedom catches all the

essential information, which demands fewer resources. The tool that usually allows us to explore

this passage between these two worlds is known as coarse graining (CG).

Although some of these questions were addressed in [39], these results were reported only for

the Wolfram’s elementary CAs [84], which are not immediately important to physics. Since, during

our incursions in the CA theory we learned about others classes of CA, as the “Partitioned Cellular

Automata (PCA)”, the one employed to simulate several diffusion processes and differential

equations [17], we noticed that this class is more interesting to physics. Furthermore, after

spending some time working with the PCA, we realized that it is this model - and not the models

of Wolfram’s classification - that must be quantized to achieve its quantum counterpart, the QCA.

Therefore, if we were able to do an analogous study to the one done in [39] in this class of CAs,

it may find several applications. Moreover, if we have access for the coarse graining tool for the

PCA we can generalize it to the QCA. Finally, with this tool in hands for the QCA, we can, for

instance, use it to study the quantum-to-classical transition.

3

CHAPTER 1. INTRODUCTION

Once we realized the potential of coarse graining techniques to the PCA we started to develop

this tool to this CA class. We successfully obtained a coarse graining tool to the PCA and we

established interesting results reported in chapter 5. For example, by starting with a deterministic

PCA, we achieved a probabilistic PCA after we have applied our coarse-graining tool. The more

interesting thing about this result is the fact that the transition function of this probabilistic

PCA is equivalent to the discrete motion equation that describes the random walk. Therefore, we

can see randomness as an emergent process, and we obtained a tool to understand and predict

the emergence of large scale behavior in a system, starting from its microscopic description.

Despite of all the results for classical cellular automata, and even with these previous results

- the Schrödinger and the Dirac equations - which are well known in terms of QCA, the quantum

cellular automata do not share the same amount of research activity as its classical counterpart.

The phenomenology and applications of quantum cellular automata are very scarce. One possible

reason for the QCA to not be yet widely employed is that a clear definition was unavailable until

recently [83]. Then, after we realize about the potentialities of the QCA model and the lack of its

application we proposed another QCA definition, chap.6, that allowed us constructed a bridge

between this model and another well known model of computation widely explored: quantum

walks. These results might bring the community attention for the QCA, as will briefly comment

in the next section.

1.2 Quantum Walks

While Schrödinger and Dirac equations simulations were done with QCA, I simultaneously did

the same with another well known model of computation, widely applied to simulate quantum

physics that also works with discrete time and space, the quantum walks. This quantum model,

the quantum counterpart of the random walks, is being employed in various applications, most

notably in quantum simulations [3, 26, 50] and in quantum algorithms [59]. Quantum walks,

like its predecessor, comes in various flavors – coined [1], Szegedy [72], staggered [62], and

staggered with Hamiltonians [61], to cite a few – each with its own specificity and tuned to better

deal with a given problem at hand. Foremost, some models of quantum walks were shown to

form a universal platform for quantum computation [14, 15]. All this versatility and possible

applications prompted an intense experimental activity with various realizations of quantum

walks, for instance with trapped ions [90], optical lattices [27] and more [79].

Working with these two platforms for the same problems, I concluded that their equation

of motion in terms of amplitudes are equal, as we expected, since they are describing the same

problem. Thus, dealing with both models at the same time, I could learn how to translate the

operators in terms of QW to the QCA systematically, in such a way that with each time step, the

state described by the QW can be reproduced by the QCA. At the time, I was restricted to the

coined model described on lattice structure. After I observed the existence of other flavors as the

4

1.2. QUANTUM WALKS

Szegedy and the Staggered QWs, the natural question was if this translation between these two

models of computations could be made also for these others flavors. Having this goal in mind, my

advisor and I contacted an expert in quantum walks, Renato Portugal (LNCC) [59]. Since then,

we have worked together with the goal to show how translate the several QW flavors to QCA,

chap.8. Presumably, these results will increase the activity in the QCA model, once we will be

able to bring all the previous quantum walks results, from simulations to search algorithms, to

the QCA platform, which is more experimentally friendly and it is an excellent candidate to be a

hardware structure for a quantum computer.

Another possible strength of the quantum walks is the ability to employ multiple walkers

simultaneously with interaction between them, which can lead to more powerful applications

[9, 15, 67]. However, due to difficulty of dealing with multiparticle quantum walks, since the

dimension of the space state increases exponentially, this area was little explored and only has

been initiated in [55]. Moreover, until now, we have only seen results with two walkers an one

dimensional lattice or on finite graphs with small number of vertices. Although results are very

scarce until now, we can glimpse how powerful these algorithms can be. For instance, in [9], two

interacting and non-interacting quantum walkers are employed on arbitrary graphs to distinguish

nonisomorphic strongly regular graphs. In fact, there is a large list of possible applications for

QWs with more walkers. For example: we can employ these models of multiple walkers to study

the entanglement dynamics between many particles, to study quantum thermalization processes,

search algorithms, and so on.

Furthermore, in my studies I worked with the model proposed by Hardy, Pomeau and Pazzis

called HPP, because of their names, which is a CA rule for multiple particles [37]. Thus, I was

familiar with this kind of interaction between the particles. After we had joined forces with

Renato Portugal and began my studies with QWs, we became interested in the problem with

more walkers following the same type of the interaction as in HPP. The first challenge in this

problem was that the HPP was presented in terms of CAs. However, from our previous results,

which translated QWs to QCA, the inverse path was not a difficult task. Another barrier that we

faced was the huge dimension of state space for two walkers in the two-dimensional lattice. To

work around the problem, we took the advantage of the sparsity of the unitary operator for these

two walkers, and we successfully implemented it in classical computers in order to do simulations

of this new dynamics. Currently, we are doing several investigations, trying to understand their

dynamics numerically and analytically while we study their entanglement dynamics. However,

this study is just at its beginning - there are several directions to take; for instance to use walkers

for search algorithms. In this thesis I will report in chap.8 the results that we have established

so far.

5

CHAPTER 1. INTRODUCTION

1.3 Quantum Algorithms for Classical Simulations

Now we can return to the previous question: can we simulate nature more efficiently than

the classical computers, in terms of time and memory? So far I have discussed algorithms

for simulating quantum systems. However, quantum computers can help us to solve problems

unthinkable by classical computers, problems that would normally take an unimaginable amount

of time in order to see their outputs. One classical example is the Shor algorithm [63], for integer

factorization. Shor obtained a polynomial-time quantum algorithm to do this task against the

exponential algorithms available for classical computers.

There is huge interest from the industry in seeing applicable quantum algorithms that will

demand less resources. In other words, the industry wants to apply better algorithms to solve

their problems more efficiently. They mostly need algorithms for numerical problems, such as

algorithms to solve differential equations or linear systems. Going in that direction, I had the

opportunity to collaborate with Stephen Jordan (UMD/NIST) and Aaron Ostrander (UMD).

Together, we proposed a quantum algorithm for simulating the wave equation, chap.9. Essentially,

this algorithm employs the Schrödinger equation to solve the desired partial differential equation,

[21]. Employing previous results of quantum computation, as in [8], we established an algorithm

that has a polynomial complexity in terms the dimension of the lattice, instead of the exponential

complexity of its classical counterparts, chap.4. There is a wide variety of problems where our

algorithm can be useful, from several electrodynamic scattering processes up to relativistic

problems.

This thesis is divided into two parts: in part one I report only the classical results, and in part

two I present the quantum results. We will present four new results in this thesis, one that is in

part I "Classical Models of Computation" and the others three are in part II "Quantum Models of

Computation". In order to facilitate the understanding of readers in Fig.(3.1) we did a flowchart

to guide them through these results. Showing the chapters that are recommended to be read first

in order to get the necessary background for each new result.

6

Figure 1.1: The aim of this figure is to guide the reader through the new results that are present in this
thesis. Each sequence of arrows with the same colors, always starting from the lower to the higher chapter,
indicates the chapter orders that are recommended to be read first. The four results are: coarse graining
of partitioned cellular automata (CG of PCA), quantum walks via quantum cellular automata (QWs via
QCA), quantum HPP (QHPP) and quantum algorithm for wave equation simulation (quantum Alg. WE).

Part I

Classical Models of Computation

9

C
H

A
P

T
E

R

2
CELLULAR AUTOMATA

A model of computation widely explored in several areas, from biology to physics, is the

cellular automata model. There are different reasons for the CA be so attractive and we

could say that one of them is its simple formulation. A cellular automaton is a lattice

of cells such that at any one moment in time each cell is in one of a finite set of states. At each

discrete time step the state of each and every cell is updated according to some local transition

function. The input of this function is the current state of the corresponding cell, and the states

of the cells in some finite neighborhood. Although they have this simple structure different

dynamics can be achieved by choosing distinct transition functions (rules), which is the name

of the function that will update each cell accordingly with their neighborhood, or employing

different finite alphabets, the part that has the information about the number of possible states

that each cell has.

Cellular automata were originally proposed by John von Neumann in late 1940’s [78]. The

automaton originally described by him is a two-dimensional infinite array of uniform cells, where

each cell is connected to its four neighbors (see figure (2.1)). The main purpose of von Neumann

was to bring the rigor of axiomatic and dedutive treatment to the study of complex natural

systems, such as the human nervous system. One of his motivations to study complex systems

was to build large computers to solve very complex problems. His ambition was to construct

an artificial cellular automata with the capacity of self-control and self-repair, like the nervous

system. Von Neumann suggested that this system of cells, where each cell is characterized by an

internal state, evolves in discrete time steps and the rule of evolution is the same for all the cells.

Because of his premature death, von Neumann was unable to put in a final form the research

he was doing in automata theory. But following the same line of research many other authors

continued to develop his theory of automata. One of the greatest contributions came in 1970 by

11

CHAPTER 2. CELLULAR AUTOMATA

Figure 2.1: The von Neumann neighbourhood for a regular 2D CA.

the mathematician John Conway [33], who proposed his Game of life, a mathematical game in

terms of cellular automata. His motivation was to try to find a simple rule that lead to complex

behaviors. His idea was quite simple, he proposed a two-dimensional lattice CA, following the

neighborhood scheme of (2.1) plus the four second nearest neighbors along the diagonals within

two states: state one and state zero, states that he interpreted as alive and dead cell respectively.

The updating rule (transition function) of the game is given as follows: a dead cell surrounded

by three alive cells comes back to the life. On the other hand, a living cell surrounded by less

than two or more than three neighbors dies of isolation. Even employing these simple rules

the game of life has rich behavior and John Conway also could show that Life could simulate

a universal computer. These results called attention to the public and more and more people

started to become interested in the CA theory. However, despite a range of different interesting

results for cellular automata got from different mathematicians and computer scientists, some

say that the most significant CA contributions were given by the theoretical physicist, Stephen

Wolfram in the early 1980’s.

Stephen Wolfram a physicist working at the Institute for Advanced Study in Princeton,

became fascinated by the CA ideas and the different patterns that it can do. Wolfram decided to

investigate the CA dynamics. In order to do that, as a good physicist, he initiated his studies from

the simplest CA case, Elementary Cellular Automata (ECAs), a model that himself proposed.

The ECAs are one dimensional CAs, two-state in which each cell is connected only to its two

nearest neighbors, (we will explain more formally this model in the next section). Wanting to

understand better the CAs dynamics, Wolfram and his colleagues developed a special programing

language, called Mathematica 1, a software that went far beyond its initial goals and current

it is applied in distinct areas for different proposals. During his dynamics investigation in CAs,

Wolfram became fascinated by rule 30 (there are 256 rules for the ECAs as we will see in the next

section) and he would like to understand how the complex patterns emerged from the very simple

CA rules, see Fig.(2.2). One of the greatest of Wolfram’s results was his proof that the rule 110 is

a universal model of computation, perhaps the simplest known example of a universal computer.

However, we can say that the most important Wolfram contribution was given in his book A new

kind of Science [84]. This title name refers to the idea that the universe and everything inside

in it, can be explained by simple programs. In this book Wolfram showed how to apply CA in

1https://www.wolfram.com/mathematica/

12

2.1. ELEMENTARY CA

different areas of science. Wolfram’s contribution was extremely important for the development

of CA understanding and called much public attention and until today we can see his ideas being

applied in different areas, [17, 35, 52].

a) b)

Figure 2.2: In these figures we can see rule 30 in two different time instants Fig.(a) t = 50 and Fig.(b)
t = 100, where the time flows downwards. Both dynamics have the same initial condition, with only one
black cell in the first row. These figures were generated by Mathematica, which has special functions for
CA dynamics.

After this brief introduction on the history of CA, we present a more formal CA definition:

Definition 2.1. [CA] A Cellular Automata is a 4-tuple (L,N ,Σ, f) consisting of:

1. a d-dimensional lattice of cells indexed by integers L ⊆Zd;

2. a finite neighborhood scheme N ⊆ L;

3. a finite set Σ of cell states;

4. a local transition function f :ΣN →Σ;

The transition function f simply takes, for each lattice cell position x ∈ L, the states of the

neighbors of x, which are the cells indexed by the set Nx = x+N at the current time step t ∈N to

determine the state of cell x at time t+1. There are two important properties of cellular automata

that should be stressed. Firstly, cellular automata are space-homogeneous, in that the local

transition function applies the same function at the neighborhood of all cells. Secondly, cellular

automata are time-homogeneous, in that the local transition function does not depend on the

time step t.

The main proposal in this chapter is to introduce different CA class and see some applications.

Moreover, we will see and understand what is the best CA class to physics.

2.1 Elementary CA

Elementary cellular automata are the simplest CAs possible. They are 1D binary CAs with

neighborhood size one. In this way the evolution of a given cell is dictated by its state and the

13

CHAPTER 2. CELLULAR AUTOMATA

states of its left and right neighbors. This limits the number of elementary CAs to just 223 = 256,

of which just 88 are distinct 2. Having so few rules makes the study of the entire rule space

practicable and wouldn’t leave us reliant on sampling a small (and possibly unrepresentative)

corner of the rule space.

Consider rule 90. The rule number is calculated by finding the decimal representation of the

binary values of the rule’s output states, as shown in figure(2.3). This figure shows a pictorial

representation of the CA transition function, as presented in [84].

Figure 2.3: Elementary CA rule 90. Here the number one is represented by the black box, while the
number zero is represented by the white box. As we have explained before, the second line is determined
by the three cells above.

As ECAs are one dimensional, we can efficiently show the evolution of the CA over time by

placing each subsequent generation underneath the last. Figure(2.4) gives a pictorial description

of the automaton’s evolution in time.

Figure 2.4: This figure represents the evolution in time of the CA described in Fig.(2.3).The initial
configuration, shown in the first line, is a single cell coloured black, while all others are white. Time flows
downwards. Each subsequent line depicts the current state of the automaton, and all stages since the
initial one.

We can see the ECAs in a formal way, as described in the definition 2.1. The 4-tuple is

(Z,N ,Σ, f), with N = {x−1, x, x+1} Σ= {0,1} where we have illustrated these states with black

and white, 0→white,1→ black. Then in this case the update rule is a function f :Σ3 →Σ and

(2.1) an (t+1)= f [an−1 (t) ,an (t) ,an+1 (t)] ,

where the indexing n ∈Z gives the position of the nth cell and t is the time. At each time step,

every cell in the lattice is updated accordingly to the updating rule, as we explained before. As a

practical example we can see how the set of cells in the first line in Fig.(2.4) is updated using

2The others are either reflections or inversions. If a rule produces diagonal lines that move to the left over time,
the reflection would produce a mirror image with lines that moved to the right. An inverse rule substitutes 1 for 0 in
all cases.

14

2.2. REVERSIBLE AND PARTITIONED CA

Eq.(2.1). There we start at the time t = 0 and a0 (0)= 1 while the state of the all other cell is equal

to zero, ai (0)= 0, i ∈Z∗. From the rule 90 in Fig.(2.3) we can write the following evolution,

a0 (1) = f [a−1 (0) ,a0 (0) ,an+1 (0)]

= f [0,1,0]

= 0,

there are only more three distinct configurations that we need compute, the first one is

a1 (1) = f [a0 (0) ,a1 (0) ,a2 (0)]

= f [1,0,0]

= 1,

the second is symmetric of the last one a−1 (1)= f [a−2 (0) ,a−1 (0) ,a0 (0)]= f [0,0,1]= 1 and finally

the same output an (0)= f [an−1 (0) ,an (0) ,an+1 (0)]= f [0,0,0]= 0, for all n ≥ |2|.

2.2 Reversible and partitioned CA

In this section we propose a special class of CA, that employs characteristics of two well known CA

classes. These classes were introduced to facilitate the construction of reversible and conservative

CA that also allow us to work with the concept of conservation laws, a quite important physical

constraint. As many physical systems are invariant under time-reversal and employs conserved

quantities, as the number of particles, in a microscopic level, the CA should guarantee these

conditions.

For a CA to be reversible the global state transition function, F :ΣL →ΣL must be reversible.

In other words, each global state C ∈ΣL, where C denotes the state of the entire CA, must have a

unique successor and predecessor. Moreover we need to work with a CA definition that allow us

to work with the concept of conservation. Our purpose here is to introduce a construction that

ensures the reversibility of global states’ transition functions, using local properties, and that can

also allow for the definition to employ the concept of conservation.

We are aware that from the Toffoli and Margolus CA definitions [76], block cellular automa-
ton and partitioning cellular automaton, well known classes of CA, that we have alternatives

available to work with reversibility and conservation.

The idea of the block formulation is to start from a lattice of cells and then divide it into

blocks of non-overlapping cells. Alternatively to the previous CA definition, where in order to

update the state from t to t+1 we have to apply the transition function only once in a given

neighborhood scheme, the evolution here happens in parts. In this definition we have to apply

a local transition function f at each block. This operation only concerns with the current block

state, which is another contrast compared with the Wolfram’s classification, where the transition

function need to consider all neighborhood states. Subsequently the block is shifted, in such a

15

CHAPTER 2. CELLULAR AUTOMATA

way that in the new block there are different cells, and again we apply f . Only after these two

operations we say that the entire CA state was updated. The cellular automaton is guaranteed to

be reversible if the local transformation f is itself a bijection.

The partitioning CA employs a different formulation in order to achieve the same goals. The

mechanism here consists in partitioning each cell into a finite number of parts, where each part

is devoted to interact with another cell part. Likewise the block formulation the update occurs in

two parts. We have a local operator that interacts all parts from a given cell and another one that

interacts parts from the different cells. Once again, the reversibility can be achieved employing

bijective operations.

Within these formulations we have a convenient way to employ conservation laws, as the

momentum conservation or particle number. For instance, imagine that we relate a cell state

with a particle and we choose local operators that maintain the same number of states at each

block. Then, in the end the number of particles is conserved.

Here we propose another CA definition that employs the main characteristics of these previous

models, that we called it partitioned cellular automata. We called by partitioned since we

kept with the same concept of cell partitions, but here we call each cell part a subcell. Similarly

to the previous definitions the full evolution occurs in steps, that does not have a fix number, by

local operators. Differently from the previous definition, we can have the same subcell interacting

with different subcells during its update. For example, we can have a transition function that

takes the CA state from t to t+1 that was divided in three parts. We can have in this case the

same subcell interaction with different subcells in each part of the evolution.

The closeness with the block definition will be clear now. As we just mentioned the evolution

happens in parts. At each part we associate an operator that acts into a set of subcells, that

does not have overlap with another set. In this sense we can think these set of subcells as

blocks that can be shifted during the updated. Therefore, from this illustration we can see some

characteristics of the block definition.

Unlike the previous definitions here we equipped our definition with the concept of tiling. A

tilling is a uniform partition of the set of subcells and we call tile each element of this partition.

With this definition in hand we can work with the partition concept or block construction more

precisely.

Formally, we define partitioned CA in the following way:

Definition 2.2. [PCA] A Partitioned Cellular Automaton is a 5-tuple (L,N ,Σ, {Ti} , {σi}) consist-

ing of:

1. a d-dimensional lattice of cells indexed by integers L ⊆Zd;

2. a finite neighborhood scheme N ⊆ L;

3. each cell is divided in n subcells, and to the i-th subcell we assign a copy Σi of finite

alphabet of Σ. The total alphabet associated to each cell is then Ξ=Σ0 × . . .×Σn−1;

16

2.3. CELLULAR AUTOMATA MODELING

4. a finite set of tilings {Ti}N−1
i=0 . Each tiling is the union of identical non-overlapping tiles,

Ti =⋃
j T(i)

j , with each tile T(i)
j containing only subcells of neighboring cells;

5. a set of local functions {σi}N−1
i=0 . The same operator σi is applied to each tile T(i)

j of the tiling

Ti.

With this definition, the transition function E :ΞL →ΞL, which updates the automaton state

from the time t to t+1, is given by

(2.2) E =
N−1∏
i=0

 ×
T(i)

j ∈Ti

σi

 .

To work with these tilings more precisely, it is convenient put labels in each subcell. Given

the cell at position x ∈ L, its subcells are denoted by xi, with i ∈ {0, . . . ,n− 1}. For instance,

suppose we have a one-dimensional lattice where each cell has two subcells, and the neighbor

scheme is Nx = {x−1, x, x+1}. In this case two tilings are sufficient to evolve the automaton:

The first tiling is given by T0 =⋃
x∈ZT(0)

x with each tile defined as T(0)
x = {x0, x1}. For the second

tiling, T1 =⋃
x∈ZT(1)

x , each tile is given by T(1)
x = {x1, (x+1)0}. It is then clear that the first tiling

is responsible for “reading” the state of each cell, while the second one is responsible for the

interaction between the neighboring cells. Now that the tilings’ structure is established, the

action of the operator is clear:

σ0 : (Σ0)x × (Σ1)x → (Σ0)x × (Σ1)x ;

σ1 : (Σ1)x × (Σ0)x+1 → (Σ1)x × (Σ0)x+1

for all x ∈ L. Therefore, in this example we can explicit our transition function as

(2.3) E =
(
×

T(1)
x ∈T1

σ1

)(
×

T(0)
x ∈T0

σ0

)
.

If we choose σi for i = 0,1 as a permutation function, which is clearly reversible, our CA is

reversible. The sequence of steps given by E is illustrated in Fig.(2.5).

2.3 Cellular automata modeling

The purpose of this section is to show one specific example that illustrates how cellular automata

may be useful for simulating physics.

2.3.1 The HPP rule

We will now show a very important rule for this work, which can also show us the power of cellular

automata to simulate physical phenomena. The HPP rule [37] is a model of a two-dimensional

gas which the particles can collide, introduced by Hardy, Pomeau and Pazzis (HPP). For this rule

17

CHAPTER 2. CELLULAR AUTOMATA

Figure 2.5: This figure presents how each cell is split in two subcells, and how the operators σi are applied
in accordance with two tilings.

to establish such a phenomenon it must reproduce the basic laws of conservation of microscopic

interaction, such as local conservation of momentum, the number of particles and time reversal.

As we have discussed in the section (2.2) we can establish CA which are reversible, in a more

simple way, by the formalism of PCA.

Here we are dealing with 2-dimensional lattice of cells indexed by integers, L =Z2. In this

case |Ξ| = 16 because we are working with four subcells per cell, 4 bits. In this case we have two

subcells in the x direction which we label by 0 and 1, left and right respectively and the two

others in the y direction whose labels are 3 and 2, up and down respectively, writing in another

way Ξ=Σ0 ×Σ2 ×Σ1 ×Σ3. The neighbor scheme is Nxy =Nx ∪Ny, where Nx = {x−1, x, x+1} and

Ny = {y−1, y, y+1}. The complete updating step consists of three parts, whose functions will be

explained along this section, therefore we need three tilings in order to update this model in a

proper way. The tiles from the first tiling are T(0)
xy = {x0, x1, y2, y3}. Unlike the first tiling the tiles

from the second tiling have subcells from different cells, however there are only interactions

between subcells related with the same axis, T(1)
x = {x1, (x+1)0} and T(1)

y = {
y3, (y+1)2

}
where

in the end the second tiling is the union of these two sets regards to the x and y directions,

T1 =
(⋃

x∈ZT(1)
x

)(⋃
y∈ZT(1)

y

)
. Finally the third tiling is equal to the first one T2 =T0.

First we describe the rule of evolution without any concern about the physical representation

and only after we will show its physical meaning. Let us start analyzing the first operator that we

apply simultaneously on all cells into each cell at same time. The permutation operator applied

in this rule is given by

σ0 (10,02,11,03) = (00,12,01,13) ,(2.4)

σ0 (00,12,01,13) = (10,02,11,03) ,

18

2.3. CELLULAR AUTOMATA MODELING

The other fourteen states remain in the same state after the action of σ0, as an example:

(1,0,1,1)→ (1,0,1,1).

Figure 2.6: The square represents just one cell but partitioned in four subcells.

Now we can move to the next operator. In Fig.(2.7) from the elements of the second tiling we

can see where the operators σ1 are being applied i.e. on subcells in tiles for the second tiling T 1.

Concerning those neighbors in the figure, the cell located at xy, whose state is Σxy = (10,12,01,03)
will have the following final form after the action of σ1, Σxy = (10,02,11,03). In other words, σ1 is

just a swap between its neighbor. This process involves interaction between neighbors.

Figure 2.7: Here we are illustrating how the action of σ1 proceeds.

To finish one time step, we need to apply σ2 which is just a swap operator between the states

3, 2 and 0, 1 from the same cell for instance, (1,0,0,1)→ (0,1,1,0).

19

CHAPTER 2. CELLULAR AUTOMATA

Now we discuss the physical properties of of this rule. Each subcell, see figure (2.6), can

only allocate one particle, where 1 represents the existence of one particle and 0 the absence.

Each position in the four entries now will indicate the direction of movement of the particle, as

illustrated in figure (2.8).

Figure 2.8: The four possibilities of motion of one particle.

Then with these properties we can easily see that σ0 represents the rule of collision between

particles. Clearly the momentum is preserved and give some non-trivial dynamics. Another

option, that we could have chosen, is a rule where the particles flip their direction afterwards the

collision but keeping their motion direction along the same line,

→← σ0=⇒←→

However, it would be equivalent to particles that cross each other without interaction. Moreover it

is also clear that σ1 with σ2 represent the propagation of the particles. Being more precise in the

role of σ2, it is the part that preserves the motion direction of the particle. Suppose, for instance,

that we have a free particle at position xy going to the right direction and the transition function

has only σ0 and σ1. After we apply E we want to see this particle at position (x+1)y going to

right as well, however from the definition of σ1 aside with the direction meaning Fig.(2.8), in

the end we get a particle at position (x+1)y, but going to the left direction, that is an unwanted

result. In order to fix it we have to add the operator σ2.

Often the transition function of this model is written as

E =P ◦C ,

20

2.4. PCA VS WOLFRAM CLASSIFICATION

where the first part C is related with the collision and then

C = ∏
T(0)

xy∈T0

σ0,

and the second with their propagation, thus

P =
 ×

T(2)
xy∈T2

σ2

 ×
T(1)

xy∈T1

σ1

 .

Figure 2.9: We have here the same rule of permutation, as we showed in figure (2.6), but now we have
introduced the representation of particle motion.

In case we want to impose boundary conditions we can do it imposing different rules at

specific points. For instance, in Fig.(2.10) we are simulating a gas collision process in a closed box.

We can do it just removing the action of the operator σ2 at the border cells.

Although for the HPP problem each particle can be described by Newton’s laws and then we

could in principle determine the position of each particle at each time, when we work with many

particles the dynamics begins to get very complex, Fig.(2.10). Thus a good approach to deal with

this problem is to employ the thermodynamics laws that gives laws of macroscopic entities, for

example, heat, energy and entropy.

Therefore, for this simple example we can see that the bridges that connect classical mechanics

to thermodynamics is statistical mechanics. Since the last theory proposes that large-scale

properties emerge from microscopic properties and in our example these particles, that play the

role of the microscopic entities, are the source of these macroscopic quantities.

2.4 PCA vs Wolfram classification

Before we finish this chapter we will point out some differences between these two classes os CA

presented.

Whereas in the Wolfram classification to move the entire CA state from t to t+1 we have to

read each individual state before we update it, in the PCA we only have to employ local operators.

Let us understand better how these differences make these two classes quite distinct. In

practice when we have to update, for instance, the ECAs state to t+1 we need to do a copy of the

state t. With this copy in hands we keep with it until we read all states a(t) along its neighbors in

21

CHAPTER 2. CELLULAR AUTOMATA

a) b)

c)

Figure 2.10: In these figures we can see the particles inside a closed box in three different time instants.
In Fig.(a) the particles are confined on the left corner. In Fig.(b) after 50 time steps we can see the particles
spreading around the box in very ordered behavior. Finally in Fig.(c) after 450 time steps we can see a
disorderly behavior, where the particle are spread along all the box.

order to achieve a(t+1). On the other hand, in the PCA class we do not need to work with copies.

Since there are no overlaps between different subcells, in each part of E , the updating happens

without necessity of read its neighborhood first.

These differences are the reasons for us to adopt a different procedure in chapter 5 in order to

get the CG for the PCA. Moreover, these differences make the PCA, and not the ones that belongs

to Wolfram classification, the classical counterpart of the QCA, as we will see in chapter 6.

22

C
H

A
P

T
E

R

3
LATTICE GAS AUTOMATA

This chapter has two main goals. The first one is to describe two well-know problems:

Brownian motion-(BM) and the random walk-(RW) problem, both in CA formalism. The

second one is to analyze the continuum limit of the cellular automata describing both

problems in one dimension.

3.1 A Brownian motion automaton

It is almost certain that if we ask people about the main Einstein results of 1905 they will

immediately say the special relativity theory and the photoelectric effect. However there is

another one as important as these two others, the Brownian motion result, [5]. This result was

revolutionary in science playing an important role not only in the traditional topics in physics,

but also in subjects like life science, studies in the stock market [56], and much more.

Before 1905 the atom and molecules existences were just theoretical ideas not well accepted

in the science community, for instance the physicist-philosopher Ernst Mach who believed that

atoms do not have practical utility. We can say that these investigations were initiated with

Robert Brown in 1827. During his studies with pollen he made interesting observations about

their microscopical behavior immersed in water. Brown noticed an incessant random motion

of these particles that leads to thinking it as the result of live pollen grains. As the next steps

he continued with the same experiment but employing different materials. In the end he could

conclude that these random motions were not the signatures of life. All these results brought

new possible ideas for the incessant particle motion, for example, the temperature gradients.

Moreover, in the end, they could prove the existence of atom and molecules.

Back to the Einstein results about Brownian motion, we can point out one intermediate step

23

CHAPTER 3. LATTICE GAS AUTOMATA

of his calculation, extremely important to us. He obtained the diffusion equation

∂P
∂t

−D
∂2P
∂x2 = 0,

for P(x, t) the probability distribution of the position x of the Brownian particle at time t, where

D is the diffusion constant. Despite the fact this equation was very well knowing in that time

Einstein’s derivation established a connection between the random walk of a single particle and

the diffusion of many particles, as we will see better in this chapter. All these investigations

by Robert Brown and Einstein, (and others as the Smoluchowski result [68]) culminated with

the Nobel prize of Jean Perrin, who tested Einstein’s theoretical predictions 1926. Therefore,

after the experimental evidence all the scientific community, including the anti-atomists, could

convince themselves about the atom’s reality.

As we mentioned in the beginning of this chapter, the Brownian motion is widely explored until

today. In particular it is the basis for a numerical algorithm for simulation of molecular process

[17, 47], that is our main focus here. To be more specific we are not interested in simulating any

specific process. Our interest is to see how we can employ the PCA to do this task.

3.1.1 The problem statement

The basic ideas for this problem are very simple. If we have some particle moving in some fluid,

as for instance a grain of pollen in a glass of water, this particle will collide with some water

molecules. When the collision happens the particle changes its movement direction [53]. In the

real pollen experiment they could observe an average of 1012 collisions per second. Thus we can

say that the pollen can only do a free displacement, without any collision, an average during

10−12 seconds. Let us try to explain this process in one dimension case, where the particle can

only move to right or to left. Then if we start with a particle going to right we say that, on

average, it can only move freely, without collision, for a short period of time, then, after this short

displacement the collision happens with some probability. Then, we say that with probability

q the particle will collide with some water molecule changing its movement direction. Then, in

case the collision happens, it starts to move again, now to the left, for the same average period.

Therefore we can write the following recurrence relation for this problem

Pl (x, t+1) = qPr (x+1, t)+ pPl (x+1, t) ,(3.1)

Pr (x, t+1) = pPr (x−1, t)+ qPl (x−1, t) ,

where Pi (x, t+1) give us the probability to find a particle at point x in a time t going to right,

when i = r, or going to left, when i = l, and p+ q = 1. We add both equations above and take

P (x, t)= Pl (x, t)+Pr (x, t) to find

(3.2) P (x, t+1)= p [Pl (x+1, t)+Pr (x−1, t)]+ q [Pr (x+1, t)+Pl (x−1, t)] .

24

3.1. A BROWNIAN MOTION AUTOMATON

To understand better Eq.(3.1), let us analyze the equation for Pl (x, t+1). The expression for this

term says that we will find a particle going to the left at time t+1 in the position x if either, at

the time t, we had a particle at x+1 going to right that flipped after its collision or a particle at

the same point going to left that did not collide.

Figure 3.1: As example if we choose p = q = 1/2 in Eq.(3.2) we can construct this chart of probability
distribution after 20 time steps. Then we can see that even after this period of time the highest probability
corresponds to finding the particle at the same starting point.

Now let us see how to simulate this problem with cellular automata. For this problem we need

to work with conservation of the number of particles, in this case only one particle. Furthermore

we would like to see, in the simulation, the movement direction interpretation, therefore the best

option for us is to work with the partition scheme, despite the fact we are not dealing with a

non-deterministic dynamics.

We will describe the propagation of only one particle with two options of movement , right

and left. Thus, in this scheme we only need to work with two subcells, Ξ=Σl ×Σr, where instead

of calling by 0 and 1, we will call by left, (l), and right, (r), subcells, because of the movement

interpretations. If we have a state given by (1,0), this means that we have one particle going to

left, and in the case of (0,1) one particle going to right, as depicted in the Fig.(3.2).

Figure 3.2: Representation of internal states in terms of particle motion.

The neighborhood scheme is N = {x−1, x, x+1}, and, likewise the HPP model, we have to

employ three local operators, the first that reads to interaction between the subcells that belong to

the same cell, the second that reads to interaction between the cells and the third that establishes

25

CHAPTER 3. LATTICE GAS AUTOMATA

the right motion interpretation of the particles. Therefore, we need to work with three tilings

where again T0 =T2 and their elements are T(0)
x = {xl , xr} for x ∈Z and T(1)

x = {xr, (x+1)l}.

The main difference from the previous examples seen until now is in the first operator, σ0,

which is a convex sum of permutations,

(3.3) σ0 := p12 + qπ,

where 12 is a 2×2 identity operator which acts in every cell preserving its original state, while π

swaps the information within the subcells, as example π(0,1)= (1,0). Therefore, in summary we

have the action of σ0 given by the following equations

σ0 : (1,0) → (0,1) withprobabilityq,(3.4)

σ0 : (0,1) → (1,0) withprobabilityq,

σ0 : (0,1) → (0,1) withprobabilityp,

σ0 : (1,0) → (1,0) withprobabilityp,

and if we have no particles, (0,0), nothing happens. The remaining operators σ1 and σ2 are just

swap operators, σ1 between neighbors cells and σ2 again in the subcells from the same cell in

order to keep the particles following the same direction, like we did in the HPP problem. We

illustrated the action of these two operators in Fig.(3.3).

Figure 3.3: We can see in the figure above that if we have a particle in a left (right) subcell in a time
t after we apply σ1 and σ2 Fig.-(a), it will keep at the same subcell in his left (right) neighbor at time
t+1, Fig.-(b). It means that if we do not apply σ0 in the next step the particle will continue in the same
direction.

26

3.1. A BROWNIAN MOTION AUTOMATON

Now we will analyze this problem carefully with the introduction of Boolean functions and

given the motion representation for each subcells, see Fig.(3.2).

In terms of Boolean functions what we have now is,

σ0 : (nl (x) ,nr (x)) → (nl (x) ,nr (x)) with probability p,

σ0 : (nl (x) ,nr (x)) → (nr (x) ,nl (x)) with probability q,

where q+ p = 1, and nl (x) ,nr (x) ∈ {0,1}. We have started with σ0 and then we have to apply σ1

and σ2 ∏
T(2)

x ∈T2

σ2

 ∏
T(1)

x ∈T1

σ1

 (. . . (nl (x−1),nr (x−1)) , (nl (x) ,nr (x)) , (nl (x+1),nr (x−1)) . . .)

(3.5) = (. . . (nl (x) ,nr (x−2)) , (nl (x+1),nr (x−1)) , (nl (x+2),nr (x)) . . .) .

This means that we exchanged the values of the left and right subcells with the left register of

the right neighbor, and the right register of the left neighbor, respectively. Subsequently, with the

action of σ2 at each cell, we were able to put the particles in the right subcell in order to preserve

its movement direction.

Now let us focus in two properties of this evolution. Although E has three operators in its

composition, these just give us one time step. The other important point is to note that after the

action of σ1 and σ2 each new element, in each cell, needs to be reindexed. If we introduce t as a

new parameter, where t ∈N, these two aspects can be realized in a simple way. For instance we

can rewrite Eq.(3.5) as

E : (nl (x, t) ,nr (x, t))→ (nl (x, t+1),nr (x, t+1)) .

As we do not know what happened in the action of σ0 at time t, the value one of nl (x, t+1) could

come from either the excitation localized in the point x+1 in the left subcell, that give to us a

value one for nl (x+1, t) or the excitation localized in the point x+1 in the right subcell, that

implies the value one for nr (x+1, t). We do not have this information, but we know if the particle

came from the left subcell, the collision did not occur, that happens with probability p. Otherwise

the particle was in the right subcell and the collision happened changing its direction, an event

that happens with probability q. Therefore, we can codify these information available in the

following expression

nl (x−1, t+1) = (
1−µ (x, t)

)
nl (x, t)+µ (x, t)nr (x, t) ,(3.6)

nr (x+1, t+1) = µ (x, t)nl (x, t)+ (
1−µ (x, t)

)
nr (x, t) ,

where we introduced a Boolean variable statistically independent of ni(x, t), µ(x, t), in order to

codify these probabilities. This variable assumes the value one with probability q, which leads us

27

CHAPTER 3. LATTICE GAS AUTOMATA

to the right simulation. Although Eq.(3.6) and Eq.(3.1) are rather similar they have a different

meaning. While Eq.(3.1) gives the evolution for the probability distribution, Eq.(3.6) yields a

single realization of the simulation, Fig(3.1).

All realizations illustrated in Fig.(3.4) provide to us different trajectories. If we call by~r i (t)
the i-th particle trajectory after a time t we have ~r1 (20), ~r2 (20), ~r3 (20) and ~r4 (20) distinct

trajectories in Fig.(3.4). Thus the motion of the Brownian particle, in general, is not reproducible

since we are not working with a deterministic dynamics. However, from these realizations, if we

employ large number N,

~r1 (t) ,~r2 (t) , . . . ,~rN (t) ,

we can do probabilistic predictions. Indeed, from these single realizations we can recovery the

same prediction showed in figure (3.1). In other words, we can calculate the probability P(~r, t)

which is the probability of finding the particle at position~r at time t, as we will see now.

a) b)

c) d)

Figure 3.4: Despite the fact that equations (3.1) and Eq.(3.6) have very similar forms they have different
meanings. The first gives the probability distribution, while the second provides us a simulation, which we
used to do these four figures. In all figures we have taken 20 time steps for the excitation starting from
x = 15 and q = p = 1/2.

The predictions are becoming closer and closer to (3.1) as the value of N increase. We

can check these probabilities distribution for different N values in Fig.(3.5). The maximum

correspondence with (3.1) happens for N = 106, which confirms that these realizations reproduce

well the Brownian dynamics for the one dimensional case.

28

3.1. A BROWNIAN MOTION AUTOMATON

a) N = 103. b) N = 104.

c) N = 105. d) N = 106.

Figure 3.5: In these figures we can see four different probability distribution established from four distinct
values for N. The predictions are becoming better as the value for N increase.

3.1.2 The continuous limit

Our goal now is to determine the continuous behavior of our cellular automaton, which describes

the BM problem, expressed by Eq.(3.1).

From now on instead of working with discrete time and space, we will consider both continuous,

x, t ∈R. Our focus now is to analyze the behavior of the automaton in the limit of infinitely short

time step τ and a infinitesimal lattice spacing λ, and see which are the differential equations

that describe the Brownian movement after we take the limit for λ and τ going to zero. The main

steps that we will present here are contained in [17].

Imagine that we have already done several simulations, then the first step is to take the

mean values

(3.7) Nl (x, t)= 〈nl (x, t)〉 ; Nr (x, t)= 〈nr (x, t)〉 ,

thereby allowing this quantities to vary continuously between 0 and 1. These values are equiva-

lent to the ones given by (3.1), but we decided to apply another notation since these quantities now

were achieved by the average of the single realizations. Since µ (x, t) is statistically independent

of either nl (x, t) or nr (x, t) then

〈
µ (x, t)ni (x, t)

〉= 〈
µ (x, t)

〉〈ni (x, t)〉 = qNi (x, t) ,

29

CHAPTER 3. LATTICE GAS AUTOMATA

where i = l, r and q the probability of not changing direction, Eq.(3.4). Therefore the relations

(3.6) can be averaged and yield

Nl (x, t+τ) = qNr (x+λ, t)+ pNl (x+λ, t) ,(3.8)

Nr (x, t+τ) = qNl (x−λ, t)+ pNr (x−λ, t) ,

where p = 1− q. As we can see these quantities are the continuous version of the ones showed in

(3.1).

3.1.2.1 The Chapman-Enskog expansion

To proceed with the continuous limit analyses for the BM problem we will use the technique

known as the Chapman-Enskog expansion [17] which is commonly used in statistical mechanics

to derive the macroscopic laws. The right movement equation can only be achieved if we employ

the right dispersion relation of the problem. For the Brownian motion the relation between the

frequency and the wave number is given by ω(k)= ak2, where a is just a constant, see [17, 53],

that implies λ2/τ=constant. This relation plays an important role during the continuum limit

computation as we will see.

The quantity Ni, (i = r, l), defined in Eq.(3.7), plays the role of the Boltzmann density function
1 f , except that the velocities are labeled with a discrete index i instead of a continuous variable

v. If we only integrate f by velocity variable we obtain a local density of particles ρ (x, t). As we

are not dealing with continuous variable v and we know the two possible velocities, right or left,

the integration can be substituted by just one sum of these two terms

(3.9) ρ (x, t)= Nr (x, t)+Nl (x, t) .

The key of the Chapman-Enskog expansion is to assume that in the zero order perturbation we

have ρ (x, t)= N(0)
r (x, t)+N(0)

l (x, t). Then the Chapman-Enskog expansion makes use of the theory

of perturbation for functions

(3.10) Ni = N(0)
i +εN(1)

i +ε2N(2)
i + . . . for i = l, r;

where ε is a small parameter and N(l)
i are functions of x and t to be determined.

Firstly let us write again Eq.(3.8) but writing 1− p instead q, then

Nr (x+λ, t+τ)−Nr (x, t) = (p−1)(Nr (x, t)−Nl (x, t)) ,(3.11)

Nl (x−λ, t+τ)−Nl (x, t) = (p−1)(Nl (x, t)−Nr (x, t)) .

1The quantity f (~r,~v, t) is a probability density function defined so that f (~r,~v, t)d3~rd3~v is which all have positions
lying within a volume element d3~r about ~r and velocity lying within a velocity element d3~v about ~v, at time t.
Integrating over a region of position space and velocity space gives the total number of particles which have positions
and velocities in that region

30

3.1. A BROWNIAN MOTION AUTOMATON

We add both equations above and use Eq.(3.9) to establish

(3.12) Nr (x+λ, t+τ)+Nl (x−λ, t+τ)−ρ (x, t)= 0.

The result given by Eq.(3.12) reflects that the number of particles is locally conserved. For this

reason this equation is called the continuity equation.

The next step is to consider a Taylor expansion of Nr (x+λ, t+τ) and Nl (x−λ, t+τ), where

both λ and τ are infinitesimal parameters. If we neglect third-order terms we have

Nr (x+λ, t+τ) = Nr (x, t)+τ∂tNr (x, t)+λ∂xNr (x, t)+λτ∂τ∂λNr (x, t)

+ 1
2
τ2∂2

t Nr (x, t)+ 1
2
λ2∂2

xNr (x, t)+O
(
λ3,τ3)

.

Rewriting this expansion to get the same left part in the equality (3.11), we obtain

Nr (x+λ, t+τ)−Nr (x, t)=
[
τ∂t +λ∂x +λτ∂t∂x + 1

2
τ2∂2

t +
1
2
λ2∂2

x

]
Nr (x, t) .

For Nl (x−λ, t+τ) a similar equation holds, but we should introduce a minus sign on odd orders

terms for λ. Let us introduce a coefficient ci, where cr = 1 and cl =−1, which allow us write only

one equation for both expansions

(3.13) Ni (x+λci, t+τ)−Ni (x, t)=
[
τ∂t + ciλ∂x +λτci∂t∂x + 1

2
τ2∂2

t +
1
2
λ2ci²∂2

x

]
Ni (x, t) .

As we discussed in the beginning of this section we want to analyze this equation when both,

time step and the lattice spacing are infinitely short. To put it in evidence we will continue our

calculations employing the infinitesimal parameter ε for λ and τ, however to work with correct

dimensionality we will continue write both λ and τ. As we briefly discussed in the beginning of

this part λ2 ∼ τ, which is consequence of the BM dispersion relation. Therefore λ and τ are not

the same order of magnitude in terms of ε. The previous dispersion relation can be establish if

we write

(3.14) λ∼ ελ; τ∼ ε²τ.

Now we can use Eqs.(3.10-3.13) and compare, order by order the two sides of Eq.(3.11). As we are

neglecting third order-terms we have[
ε²τ∂t +ελ∂x + 1

2
ε²λ2∂2

x

][
N(0)

r +εN(1)
r +ε2N(2)

r

]
= (p−1)

(
N(0)

r +εN(1)
r +ε2N(2)

r

− N(0)
l −εN(1)

l −ε2N(2)
l

)
,

in the same way[
ε²τ∂t −ελ∂x + 1

2
ε²λ2∂2

x

][
N(0)

l +εN(1)
l +εN(2)

l

]
= (p−1)

(
N(0)

l +εN(1)
l +ε2N(2)

l

− N(0)
r −εN(1)

r −ε2N(2)
r

)
.

31

CHAPTER 3. LATTICE GAS AUTOMATA

For the order O
(
ε0)

,

(3.15) N(0)
r = N(0)

l

consequently,

(3.16) N(0)
r = N(0)

l = 1
2
ρ; N(µ)

r +N(µ)
l = 0, ifµ≥ 1

For the next order O (ε),

λ∂xN(0)
r = (p−1)

(
N(1)

r −N(1)
l

)
,

now from the results that we have established in Eqs.(3.16) N(0)
r = ρ/2 and N(1)

l =−N(1)
r yield

N(1)
r = λ

4(p−1)
∂xρ,(3.17)

N(1)
l = − λ

4(p−1)
∂xρ.(3.18)

Finally for the second-order O (ε²),

1
2
τ∂tρ+ λ2

4(p−1)
∂2

xρ+
1
4
λ2∂2

xρ = (p−1)
(
N(2)

r −N(2)
l

)
,

1
2
τ∂tρ+ λ2

4(p−1)
∂2

xρ+
1
4
λ2∂2

xρ = (p−1)
(
N(2)

l −N(2)
r

)
,

where we have already used the previous results. Then, if we add these equations above we

obtain

∂tρ+ λ2

τ

(
1

2(p−1)
+ 1

2

)
∂2

xρ = 0,

Therefore

(3.19) ∂tρ+D∂2
xρ = 0

where D is the diffusion constant,

D = λ2

τ

(
p

2(1− p)

)
.

For a better understanding of Eq.(3.19) we will solve it with a specif boundary condition. By

taking the Fourier transform (FT) ρ,

ρ (x, t)= 1p
2π

∫ +∞

−∞
ρ̃ (k, t) e−ikxdk,

from Eq.(3.19) we easily achieve in the differential equation in terms of ρ̃ below

∂ρ̃

∂t
=−Dk2ρ̃ (k, t) .

The solution is

(3.20) ρ̃ (k, t)= Ce−Dk2 t,

32

3.2. A RANDOM WALK AUTOMATON

where the integration constant C may still depend on k and, in general, is determined by initial

conditions. We can see in the Eq.(3.20) that C = ρ̃ (k,0) is the FT of the initial spatial distribution

of ρ, therefore it is given by ρ (x,0).

A physical motivated choice for our problem is to consider that at time t = 0, all particles are

located at the same point, x = 0, which means ρ (x,0) = δ (x). It is a quite well known that one

representation of the Fourier transform of δ (x) is given by

δ (x)= 1p
2π

∫ +∞

−∞
e−ikxdk,

and then we conclude that C = 1. Therefore the local density of particle has the following format

ρ (x, t)= 1p
2π

∫ +∞

−∞
e−ikxe−Dk2 tdk,

and finally we can write,

ρ (x, t)= 1p
2tD

e−
x2

4Dt

From this analytical solution we can analyze ρ, which is the local particle density, for different

values of t and p. If we work with small values of p this is means that we have higher probability

of the particle flipping it movement direction at each collision. When we plot this case, as in the

Fig.(3.6-a) for t = 20 the density of the particles is concentrated around the origin. However for a

larger value of p we can see, like in the Fig.(3.6-c), the density of particles spreads faster, this

because we have small probability of movement inversion.

It is also important to notice that in any case the peak of the density distribution is in the

origin, independently of the value of p we choose.

a) p = 0.2 b) p = 0.5 c) p = 0.8

Figure 3.6: These figures give us ρ for different values of p.

3.2 A random walk automaton

Un contrast to the Brownian motion that was totally motivated by observations of random pro-

cesses in nature, a random walk (RW) is a mathematical object, known as a stochastic dynamics,

that describes a path that consists of a succession of random steps on some mathematical space

33

CHAPTER 3. LATTICE GAS AUTOMATA

like the integers. The person who first introduced the name random walk was Karl Pearson, a

mathematician and biostatistician, in the same year of the Einstein paper about the Brownian

motion 1905. In this year Karl Pearson in a letter to Nature asked the solution to the problem

stated as follows: "A man starts from a point O and walks l yards in a straight line; he then turns

through any angle whatever and walks another l yards in a second straight line. He repeated this

process n times. I require the probability that after these n stretches he is at a distance between

r and r+δr from his starting point, O." This letter was answered by Lord Rayleigh, who have

already solved a similar problem to a more general context for sounds waves in heterogeneous

materials.

The random walk model, which is an example of Markov process, plays an important role in

several areas of physics, chemistry, biology and much more [81]. In particular, the phenomenon

of diffusion or Brownian motion can be observed in this model. This equivalence between random

walk and Brownian motion will be stressed during this section.

Now, as we have done in the previous section, we will start describing this problem more

formally and only after we will encode it in the CA formalism.

Let us consider a walker who can only move in a straight line. She can move either to the

right or left with probability p and q = 1− p respectively. The step size in either case is l. The

problem is to find the probability PN (m) of the walker to be at position x = ml, after N steps.

The probability of some sequence of N steps, with N1 to the right and N2 to the left is given by

pN1 qN2 . But there are different paths that can be taken for fixed N1 and N2. For example, in

the case of N = 3 with N1 = 2, we have p2q. But she could start giving the first step to the left

and then two to the right, or two steps to the right and one to the left, and also one step to the

right, one to the left and again one to the right. This gives us three possible sequences with the

same probability, or in other words, there are three distinct ways that give the same position to

the walker. The number of different paths with fixed N1 and N2 is N!/(N1!N2!). Therefore, the

probability of she gives N1 steps to the right and N2 to the left is given by binomial distribution

(3.21) WN (N1)= N!
N1!N2!

pN1 qN2 ,

where N1 +N2 = N and p+ q = 12. The mean values for RW are

〈N1〉 = pN, 〈N2〉 = qN,

while the standard deviation is

σ1 = (pq)1/2pN ,

where σ1 =
√〈

N2
1
〉−〈N1〉2 . If the walker start at x = 0 then m = N1 −N2 and we find that the

probability PN (m) is

(3.22) PN (m)= N!(N+m
2

)
!
(N−m

2
)
!
p

N+m
2 q

N−m
2 ,

2We can easily check that this probability is normalized,
∑N

N1=0 WN (N1)= (p+ q)N = 1 and also that 0≤WN (N1)≤
1 for 0≤ N1 ≤ N

34

3.2. A RANDOM WALK AUTOMATON

where we have also employed N1 +N2 = N.

If we consider the limit N →∞ in Eq.(3.21) we have WN (0)= qN → 0 and WN (N)= pN → 0.

Then we can see that WN (N1) must have a maximum for N1. For large N, even for N1 ∈Z, we

can suppose that the function WN (N1) is almost continuous near its maximum.

Let us go back to equation (3.22). If we carefully analyze PN (m) we can see the following

recurrence relation

PN+1 (m)= pPN (m−1)+ qPN (m+1).

If the walker’s step is chosen to be l = 1, and if we associate to each walker’s step a time step t,

with t ∈N, we can rewrite this recurrence relation as

(3.23) P (x, t+1)= pP (x−1, t)+ qP (x+1, t) .

From the equation above we easily conclude that the walker probability for each point x ∈ Z
depends on the its neighbors probabilities, P(x−1, t) and P(x+1, t), each one multiplied by a

constant, in the previous time. These constants are the walker probabilities to move to right p

and to move to left q.

Now that we have already faced the RW problem we are ready to give its prescription by CA.

As we have done for the Brownian motion we shall work with a partition scheme, where again

the complete evolution is given by three tilings in E . We also continue with the interpretation of

movement, left or right, and then we will work with exactly the same operators σ1 and σ2 for

BM. However we have to be prudent with the operator σ0.

Now we are dealing with a particle (we will not call it by walker anymore) that have a

probability p to go to right, which is independent of its internal state, right or left, and q to go to

left. Then following this idea a good format for the operator σ0 is

σ0 : (1,0) → (0,1) withprobabilityp,(3.24)

σ0 : (0,1) → (0,1) withprobabilityp,

σ0 : (0,1) → (1,0) withprobabilityq,

σ0 : (1,0) → (1,0) withprobabilityq.

Differently from the BM the operator σ0 here is not a permutation, then we can not write (3.24)

in terms of convex sum of permutations. As a next step we will see how employing these three

operators σ2, σ1 and σ0 we can simulate the RW by CA.

As we have done for the BM, we can write the recurrence relation for this problem. Like

before we will call nl (x, t) being a Boolean variable which represents the left, l, internal state, and

nr (x, t) being a Boolean variable which represents the right, r, internal state, where both are at

site x in time t. Thus with the operators just presented for the RW problem it is a straightforward

computation to get the following equations

nl (x−1, t+1) = µ (x, t) (nl (x, t)+nr (x, t)) ,(3.25)

nr (x+1, t+1) = (
1−µ (x, t)

)
(nl (x, t)+nr (x, t)) .

35

CHAPTER 3. LATTICE GAS AUTOMATA

where µ(x, t) is statistically independent of ni (x, t) and returns one with probability q.

Before we look for the continuous limit for the RW, let us do some observations about these

two problems that we have faced here, the Brownian motion and the random walk. If we chose

p = q = 1/2 in both problems, RW and BM, we have the same results either in terms of probability

((3.2) and (3.23)) or simulations (Eq.(3.6) and (3.25)). This conclusion will be important for the

continuous limit and we will come back to this discussion after we have established it.

3.2.1 The multiscale and Chapman-Enskog expansion

As we have done before the quantity Ni, (i = r, l), which is the mean value of ni, plays the role of

the Boltzmann density function f , and again

ρ (x, t)= Nr (x, t)+Nl (x, t) ,

where ρ is the local density of particles. Again we work with theory of perturbations for functions

Eq.(3.10), which is one of the main aspects of this expansion. From Eq.(3.25) we easily write its

version in terms of Ni,

Nl (x−λ, t+τ) = q (Nl (x, t)+Nr (x, t)) ,

Nr (x+λ, t+τ) = p (Nl (x, t)+Nr (x, t)) ,

where we have already assumed the fact that we are working with x, t ∈ R, instead of discrete

numbers, and p+ q = 1. As we want to apply the Taylor expansion in both equations above, it is

more convenient we write them as

Nl (x−λ, t+τ)−Nl (x, t) = −pNl (x, t)+ (1− p) Nr (x, t) ,

Nr (x+λ, t+τ)−Nr (x, t) = (p−1) Nr (x, t)+ pNl (x, t) .

If we add the both equations above we can see that the continuity equation is satisfied,

Nl (x−λ, t+τ)+Nr (x+λ, t+τ)−ρ (x, t)= 0.

As we have discussed before in the case that we have p = q, the RW reproduces the same behavior

of the BM. From this observation we can expect that both problems to have the same dispersion

relation for this specific case. However, if we only consider the previous dispersion relation for

the RW, λ2/τ, in advanced, we will get the same differential equation, (3.19), but with p = 1/2.

Since this result does not give all possibilities of the behavior of the RW problem, for instance

when p 6= q, as we see from (3.22), we will assume that there is another dispersion relation which

is linear λ/τ= constant 6= 0. From this prior knowledge about the problem we can work with the

multiscale technique in a simple way.

As we have discussed we are working with two dispersion relations. This means that we

should consider two macroscopic scales T1 and T2 satisfying
τ

T1
=O (ε) ,

τ

T2
=O

(
ε2)

,

36

3.2. A RANDOM WALK AUTOMATON

and one macroscopic length scale
λ

L1
=O (ε) ,

Therefore we introduce two time variables t1 and t2 such that

(3.26) ∂t = ∂t1 +ε∂t2 ,

which is the key of the multiscale expansion. To solve this problem we will adopt the following

strategy: first we will solve the problem for the trivial dispersion relation, λ/τ= constant, applying

t1, following the same steps which we have done for the Brownian motion, afterwards we will

solve for λ2/τ= constant, applying t2. Finally we put both results together by making use of the

Eq.(3.26).

1. λ/τ= constant. In this first moment we will only be concerned about t1;

Ni (x+ελci, t+ετ)−Ni (x, t) = [
ετ∂t1 + ciελ∂x +ε2λτci∂t1∂x

+ ε2

2
τ2∂2

t1
+ε2τ∂t2 +

ε2

2
λ2ci²∂2

x

]
Ni (x, t) .

Since ε is an infinitesimal parameter, and we are considering a first order, O (ε), approx-

imation for this part, we only have to include the first two terms in the right part of the

equation above:

[
ετ∂t1 +ελ∂x

][
N(0)

r +εN(1)
r +ε2N(2)

r

]
= (p−1)

(
N(0)

r +εN(1)
r +ε2N(2)

r

)
+ p

(
N(0)

l +εN(1)
l +ε2N(2)

l

)
,

with the equation for Nl assuming the same form.

For the order O
(
ε0)

,

N(0)
r = p

1− p
N(0)

l ,

and again we assume that the ρ(x, t)= N(0)
r (x, t)+N(0)

l (x, t) remains true, which implies

(3.27) N(0)
r = pρ, N(0)

l = (1− p)ρ.

For the next order O (ε), and last order that we will consider here

τ∂t1 N(0)
r +λ∂xN(0)

r = (p−1) N(1)
r + pN(1)

l ,

τ∂t1 N(0)
l −λ∂xN(0)

l = −pN(1)
l + (1− p) N(1)

r .

Now making use of the relation

(3.28) N(µ)
r +N(µ)

l = 0, ifµ≥ 1,

37

CHAPTER 3. LATTICE GAS AUTOMATA

and of the Eq.(3.27) we achieve

p
(
τ∂t1ρ+λ∂xρ

) = −N(1)
r ,

(1− p)
(
τ∂t1ρ−λ∂xρ

) = −N(1)
l ,

and then adding these two equations we find

(3.29) ∂t1ρ+v∂xρ = 0,

where

(3.30) v = (2p−1)
λ

τ
.

2. λ2/τ= constant. Now we have to deal with t2, which describes the dispersion of the Gaussian

peak. Here we are in the case quite similar of the previous calculation Eq.(3.14), then it is

not difficult to get[
ε²τ∂t2 +ελ∂x + 1

2
ε²λ2∂2

x

][
N(0)

r +εN(1)
r +ε2N(2)

r

]
= (p−1)

(
N(0)

r +εN(1)
r +ε2N(2)

r

)
+ p

(
N(0)

l +εN(1)
l +ε2N(2)

l

)
,

and [
ε²τ∂t2 −ελ∂x + 1

2
ε²λ2∂2

x

][
N(0)

l +εN(1)
l +εN(2)

l

]
= −p

(
N(0)

l +εN(1)
l +ε2N(2)

l

)
+ (1− p)

(
N(0)

r +εN(1)
r +ε2N(2)

r

)
.

For the order O
(
ε0)

we have the same result of the Eq.(3.27), however for the order O (ε)
we can conclude something different

pλ∂xρ = −N(1)
r ,(3.31)

(p−1)λ∂xρ = −N(1)
l ,

and making the use of Eq.(3.28), after we added both equations above, we find

(3.32) (2p−1)λ∂xρ = 0 =⇒ p = 1
2

,

otherwise ρ will be constant in space. The result above implies that in the t2 time-scale the

local density of particles going to right and left is the same, as in the case of BM.

Finally for the second-order O (ε²),

pτ∂t2ρ−
p
2
λ2∂2

xρ = −N(1)
r ,

(1− p)τ∂t2ρ−
(1− p)

2
λ2∂2

xρ = −N(1)
l ,

38

3.2. A RANDOM WALK AUTOMATON

where we have already used Eq.(3.31) in the equations above. Now, as before, we add these

equations, divide the result by τ and take its continuum limit, which give us

(3.33) ∂t2ρ− D̄∂2
xρ = 0,

where

D̄ = λ2

2τ
,

is the RW diffusion constant, which is independent of p.

Since these two results (3.29) and (3.33) are established independently of each other, from

different dispersion relations, the probability dependence in the first equation does not infer in

the second one. Now we can add both equations and use the Eq.(3.26) to get

(3.34) ∂tρ+v∂xρ− D̄∂2
xρ = 0.

We can now solve this equation for the same boundary conditions that we have done for Eq.(3.19)

and compare their behavior. In the same way that we have for the BM we can use the well known

Fourier transform technique to solve the differential equation above, using the same initial

condition. After a few calculations we easily find,

ρ (x, t)= 1p
2π

∫ +∞

−∞
e−ik(x−vt)e−D̄k2 tdk,

and therefore,

ρ (x, t)= 1√
2tD̄

e−
(x−vt)2

4D̄t .

Now we can analyze this solution for the same values which we have analyzed for BM, p = 0.2,

p = 0.5 and p = 0.8 for t = 20. We can see in Fig.(3.7-b) for p = 1/2 the BM and the RW have the

same behavior, as we have already commented before. It is very important to notice that only for

this value p this coincidence happens,

BM∩RW=
{

1
2

}
.

Liwhich characterizes the difference between these models, except for one case. From plots a)

and b) in Fig.(3.7-b), we can see a drift when we have p 6= 1/2. This behavior comes from the term

v∂xρ in Eq.(3.34). Furthermore we can see from Eq.(3.30) that when p = 1/2 this term vanishes

and then we are in the same case of the Brownian Motion Eq.(3.19).

39

a)p = 0.2 b)p = 0.5 c)p = 0.8

Figure 3.7: These figures give us ρ for different values of p.

C
H

A
P

T
E

R

4
DIFFERENTIAL EQUATIONS VIA FINITE DIFFERENCE METHOD

Until here we focused in the cellular automata as the computational method. We saw

that it can be employed for different problems in several distinct areas. In particular in

chapter 3 we saw how the partitioned cellular automata (PCA) can be useful to simulate

both the random walk and the Brownian motion problems. We could confirm by taking the

continuous limit of these problems that in the end our discrete equation of motion are the discrete

version of the stochastic linear differential equation that define these problems, first order in time

and second order in space. In this sense we could see that CA is also an useful numerical tool,

since it inherits all the characteristics of the simulated models, as the use of the local operators,

homogeneity and so on. Although there are interesting connections between partial differential

equation (PDE) and CAs, which is an object of study [75, 87], not always there is a straightforward

translation from PDEs to CAs. While the PDEs are continuum-based models with the advantages

of mathematical methods, which usually deal with systems with small numbers of degree of

freedom, CA are rule-based methods with the advantages of local interactions, homogeneity,

discrete states, and parallelism. Thus they are suitable for simulating systems with large degrees

of freedom, as complex systems. But after we discretize some PDEs, using, for instance, the finite

difference method (FDM) the discrete dynamics of the system achieved might be expressed by

the same update rule employed by the CA. However, within CA the variables at each point of

the grid are only allowed to range over a very small set, different from the real variables of the

PDEs that were discretized. Although this drawback can be bypassed, it should be analyzed

case-by-case, [75]. Then, we can say that if we have some partial differential equation, where

we are not concerned with any particular physical aspects of the problem, for instance, the local

interaction between the microscopic particles, and the system has only a few degrees of freedom,

the best choice is to go to the ordinary numerical methods to solve differential equations, that is

41

CHAPTER 4. DIFFERENTIAL EQUATIONS VIA FINITE DIFFERENCE METHOD

our current topic.

The proposal of this chapter is to introduce the general concepts and ideas of the simplest

and one of the oldest methods to solve differential equations, the finite difference method. The

idea here is to make the reader familiar with this subject before they read chapter 9, where we

propose a quantum algorithm to solve the wave equation. Then, for this reason we concentrate

our examples and analyses on the wave equation problem.

This method was already known since 1768 by L. Euler [29] in the one dimensional space and

was extended to a two dimensional space only in 1908 by C. Runge [65]. However their use for

numerical applications and theoretical results only initiated in 1950s after the appearance of

computers that stimulated their use for science and technology.

4.1 Methods of discretization

4.1.1 General principle

The idea of this method is to approximate the differential operator by replacing the derivatives

using differential quotients. The domain is discretized either in space and time or only in space

(time) and the numerical solution as well as the exact solution is computed at the space and time

points.

There are three pillars that all numerical methods should be tested in order to certify if the

method chosen is indeed good, which are convergence, consistence and stability as we will

explain later. Through these pillars we have access to the errors associated with the employed

method.

Basically, when we talk about errors we are interested in comparing the exact solution with

the numerical one. Since the idea here is to apply the FDM for problems whose solutions we do

not know, this comparison, at first sight, seems to be impossible. However, it can be accomplished

by contrasting the differential operator with a difference operator, which has a special name,

truncation error, that can be analyzed via Taylor series, as we will see.

Before we move to the next section let us introduce the notation used, and define the approxi-

mations for FDM. We discretize the domain into a lattice structure with the points

(
x j, tn

)
with

x j = jh, j = 0,1, . . . J,

tn = n∆t, n = 0,1, . . . N,

and

∆t = T
N

; h = 1
J

.

42

4.1. METHODS OF DISCRETIZATION

Now given a continuous function, φ(x, t), x ∈ (0, J) and t ∈ (0,T), we define the following

approximation for the derivatives of φ(x, t) at the point (x j, tn) on the lattice

∂+xφ
n
j =

φn
j+1 −φn

j

h
,(4.1)

∂−xφ
n
j =

φn
j −φn

j−1

h
,(4.2)

∂0
xφ

n
j = ∂+x −∂−x

2
φn

j =
φn

j+1 −φn
j−1

2h
,(4.3)

where φn
j is the approximate value of the function φ(x, t) in the point (x j, tn). We call Eq.(4.1) as

the forward difference, Eq.(4.2) as the backward difference, and Eq.(4.3) as the central difference.

4.1.2 Taylor expansion

Back to the error truncation subject, we will see that this error comes from the fact that in the

approximations defined above, forward (back) difference and central difference reflect the finite

part of a Taylor series. Let us see this in more detail.

Assume that φ(x) is a C1 twice differentiable function in the open segment (a,a+h). Then for

any h > 0 we have

(4.4) φ (a+h)=φ (a)+h∂xφ (a)+ h2

2
∂2

xφ (a+θh) ,

where θ ∈ (0,1). The last derivative in the approximation above is known as Lagrange remainder.

We can rewrite the equation above as

φ (a+h)=φ (a)+h∂xφ (a)+O
(
h2)

,

which is more convenient to us since we are more interested in knowing the error order in the

approximation. From the equation (4.4) we see that∣∣∣∣φ (a+h)−φ (a)
h

−∂xφ (a)
∣∣∣∣≤ Ch,

and from the forward approximation, we can see that

(4.5)
∣∣∂+xφ (a)−∂xφ (a)

∣∣≤ Ch,

where from Eq.(4.4) we see that,

C = sup
y∈[a,a+θa]

∣∣∂2
xφ (y)

∣∣
2

.

Therefore, doing this simple analysis we could conclude that the truncation error for the forward

difference is of order h. A similar analysis can be done for the backward difference to conclude

that the truncation error is the same.

43

CHAPTER 4. DIFFERENTIAL EQUATIONS VIA FINITE DIFFERENCE METHOD

Now let us suppose that φ(x) is C2, 3 times differentiable in the vicinityΩ of a,Ω= (a−h,a+h),

then

φ (a+h) = φ (a)+h∂xφ (a)+ h2

2
∂2

xφ (a)+ h3

6
∂3

xφ (a+θh) ,

φ (a−h) = φ (x)−h∂xφ (a)+ h2

2
∂2

xφ (a)− h3

6
∂3

xφ (a−θh) ,

Subtracting these two expressions and by an analogous manipulation done for the forward

difference, we obtain ∣∣∣∣φ (a+h)−φ (a−h)
2h

−∂xφ (a)
∣∣∣∣≤ Ch2.

Now from the central difference

(4.6)
∣∣∂0

xφ (a)−∂xφ (a)
∣∣≤ Ch2,

where

C = sup
y∈[a−θh,a+θh]

∣∣∂3
xφ (y)

∣∣
2

.

Thus, now we established an approximation for the first derivative of order h2, which is a better

approximation compared with the previous ones.

Now we will combine the operator (4.1) with (4.2) in order to approximate the second deriva-

tive. After a straightforward computation we can write the follow result,

(4.7) ∂−x ∂
+
xφ

n
j =

φn
j+1 −2φn

j +φn
j−1

h2 .

Like we did for the first derivative we can work with the Taylor expansion to see the error related

with the approximation given by Eq.(4.7). In order to do it we suppose that φ(x) is a C3 function 4

times differentiable on an interval (a−θh,a−θh). Now from the Taylor expansion of φ(a)

φ (a+h) = φ (a)+h∂xφ (a)+ h2

2
∂2

xφ (a)+ h3

6
∂3

xφ (a)+ h4

24
∂4

xφ (a+θh) ,

φ (a−h) = φ (a)−h∂xφ (a)+ h2

2
∂2

xφ (a)− h3

6
∂3

xφ (a)+ h4

24
∂4

xφ (a−θh) ,

Then, similarly to the previous computation, after we add these two expressions, we get

(4.8)
∣∣∂−x ∂+xφ (x)−∂2

xφ (a)
∣∣≤ Ch2,

with

C = sup
y∈[a−θh,a+θh]

∣∣∂4
xφ (y)

∣∣
12

.

Then we conclude that this approximation has the same error order that the central difference,

h2.

The same analysis can be done for the time part. Although the extension for higher dimension

can be done without difficulty, in this chapter we will remain restricted to the one dimension

examples.

44

4.2. THE WAVE EQUATION PROBLEM

4.2 The wave equation problem

The wave phenomenon can be seen everywhere on nature, from water waves and light waves

to gravitational waves. Therefore this phenomenon is extremely important in physics. Math-

ematically all these phenomena can be described by a linear second-order partial differential

equation

(4.9)
∂2φ (x, t)
∂t2 = v2 ∂

2φ (x, t)
∂x2 ,

which describes the propagation of oscillations at a fixed speed v in some spatial degree of

freedom x. This equation is known as the wave equation. This equation can be employed to

widely different phenomena since we can use it to model small oscillations about an equilibrium,

which is why systems can often be well approximated by Hooke’s law. Indeed the one-dimensional

wave equation can be derived from Hooke’s law.

Eq.(4.9) itself does not determine a physical solution. We need to work with further conditions,

such as the initial conditions. For the cases that we want to describe we demand the use

of the boundary conditions where the solutions represent, for instance, standing waves and

harmonics.

Although working with Eq.(4.9) we do not have access to its solution, all solutions to the

wave equation are superpositions of "left-traveling" f (x+vt) and "right-traveling" g(x−vt) waves,

which is a straightforward computation to check. Moreover, since this equation is linear, any

superposition of solutions to the wave equation are also solutions.

Before we move to the numerical analysis of the problem, let us apply the approximate

derivatives (4.7) for time and space to the wave equation and see how it works in practice.

We start employing (4.7) into (4.9)

(4.10) ∂−t ∂
+
t φ

n
j = v2∂−x ∂

+
xφ

n
j ,

or equivalently,
φn+1

j −2φn
j +φn−1

j

∆t2 = v2
φn

j+1 −2φn
j +φn

j−1

h2 .

Doing a quick manipulation in the equation above we get

(4.11) φn+1
j = 2(1− s)φn

j + s
(
φn

j+1 +φn
j−1

)
−φn−1

j ,

with

(4.12) s = v2∆t2

h2 .

However, as we said before, in order to determine the solution we need to add extra conditions, that

are the initial condition and the boundary condition. The idea here is to provide an approximate

solution to the standing wave, where the domain is Ω= [0,1] for all t ∈ [0,T]. Physically we can

45

CHAPTER 4. DIFFERENTIAL EQUATIONS VIA FINITE DIFFERENCE METHOD

think of this problem as the strings of a harp that are fixed on both ends to the harp’s frame,

whose oscillation are described by the solution of the wave equation. The way to deal with the

fixed-endpoint is to work with the Dirichlet boundary condition,

(4.13) φ(0, t)=φ(1, t)= 0.

This condition in the discrete notation is given by

(4.14) φn
0 =φn

J = 0.

As the initial condition we choose

(4.15) φ (x,0)= sin(πx) , x ∈Ω,

and from the notation adopted here,

φ0
j = sin(πx) ,

= sin(π jh) ,

= sin
(
π j
J

)
.

For the wave equation problem, which is a second order differential equation, the initial condition

has to include the first oder derivative in time. For our example we select the following initial

condition

(4.16)
∂φ (x,0)

∂t
= 0 x ∈Ω.

Since we are working with approximate derivatives we need to rewrite the condition above. In

order to make the numerical analysis easier we pick the central difference Eq.(4.3), that gives

∂0
tφ

0
j =

φ1
j −φ−1

j

2∆t
= 0.

This approximation allows us solve the "ghost" point φ−1
j , the point which does not belongs to the

time domain

(4.17) φ−1
j =φ1

j .

Now let us return to Eq.(4.11). The idea is to solve this equation for φn+1
j employing the initial

and boundary conditions. The best way to deal with this problem is to rewrite the equation in a

matrix format, as follows

(4.18)



φn+1
0

φn+1
1
...

φn+1
k
...

φn+1
J−1

φn+1
J


=



2(1− s) s 0 · · · 0

s 2(1− s) s 0 · · · 0

· · · ... · · ·
... s 2(1− s) s

...

· · · ... · · ·
... 0 0 s 2(1− s) s

0 · · · 0 s 2(1− s)





φn
0

φn
1
...

φn
k
...

φn
J−1

φn
J


−



φn−1
0

φn−1
1
...

φn−1
k
...

φn−1
J−1

φn−1
J


46

4.2. THE WAVE EQUATION PROBLEM

because the Dirichlet boundary conditions we have φn+1
0 and φn+1

J always zero, then the best

option for us is writing

(4.19)



φn+1
1
...

φn+1
k
...

φn+1
J−1


=



2(1− s) s 0 · · · 0

· · · ... · · ·
... s 2(1− s) s

...

· · · ... · · ·
0 · · · 2(1− s) s





φn
1
...

φn
k
...

φn
J−1


−



φn−1
1
...

φn−1
k
...

φn−1
J−1


.

When we start with n = 0 we have to take the values of φ0
j and φ−1

j =φ1
j , and then we start from



φ1
1
...

φ1
k
...

φ1
J−1


=



2(1− s) s 0 · · · 0

· · · ... · · ·
... s 2(1− s) s

...

· · · ... · · ·
0 · · · s 2(1− s)





φ0
1
...

φ0
k
...

φ0
J−1


−



φ1
1
...

φ1
k
...

φ1
J−1


or

(4.20)



φ1
1
...

φ1
k
...

φ1
J−1


= 1

2



2(1− s) s 0 · · · 0

· · · ... · · ·
... s 2(1− s) s

...

· · · ... · · ·
0 · · · s 2(1− s)





φ0
1
...

φ0
k
...

φ0
J−1


.

Eq.(4.20) is our starting point for our numerical analysis as long as we fix some value for J and s.

Applying this equation in order to get the vector points related with t = 1, φ1
k with k = 1, . . . , J−1

and returning to Eq.(4.19) to get our next points, t = 2, which depends on vectors at time t = 1

and t = 0, we can approximate the solution for successive times, which is our next step.

4.2.1 Numerical analysis

Before we start with the numerical tests let us explain better the three pillars, mentioned

previously, that our method needs to satisfy.

In order to understand these concepts in an easy way, we will analyze a time-independent

differential equation. Suppose that we have the following second order differential equation to

solve

(4.21)
d2u (x)

dx2 = f (x) for 0< x < 1,

with some given boundary conditions u(0) = α and u(1) = β. The function f (x) is specified and

we wish to compute u(x) numerically. In other words, we attempt to compute a grid function

47

CHAPTER 4. DIFFERENTIAL EQUATIONS VIA FINITE DIFFERENCE METHOD

consisting of values u0, u1, . . ., um, um+1, where u j is our approximation to the solution u(x j),

where from the boundary conditions we have u0 =α and um+1 =β. Now, let us replace d2u/dx2

by the centered difference approximation Eq.(4.7), then we obtain a set of algebraic equations

(4.22)
1
h2

(
u j−1 −2u j +u j+1

)= f
(
x j

)
for j = 1,2, . . . ,m.

From the equation above we should notice that the equation for j = 1 involves the values u0 =α
and the last equation j = m involves um+1 =β. Then we have a linear system to solve, which can

be written in the form

(4.23) AU = F,

where U is the vector of unknowns U = [u1, . . . ,um]T and

1
h2



−2 1 0 · · · 0

· · · ... · · ·
... 1 −2 1

...

· · · ... · · ·
0 · · · 1 −2


, F =



u1
...

u j
...

um−1


.

We also can define a vector of the true values Û = [u(x1), . . . ,u(xm)]. From Eq.(4.8) we know that

the true solution u(x j) will not satisfy the Eq.(4.21) exactly. Then we write this discrepancy by τ j,

which is called truncation error

τ j = 1
h2

(
u

(
x j−1

)−2u
(
x j

)+u
(
x j+1

))− f
(
x j

)
,

where again from Eq.(4.8) we know that the order of the truncation error is O (h2). Now if we

define τ to be the vector with components τ j, we have

τ= AÛ −F,

or

(4.24) AÛ = F +τ.

The last vector that we need to define before we introduce the concepts of stability, consistency,

and convergence is the error vector

(4.25) E =U −Û ,

which contains the errors at each grid point, E j = u(x j)−u j. Then, from Eqs.(4.23) and (4.24) we

have

(4.26) AE =−τ.

48

4.2. THE WAVE EQUATION PROBLEM

• Stability: in order to understand the concept of stability we will rewrite the system (4.26)

in the form

(4.27) AhEh =−τh,

where the superscript h indicates that we are on a grid with mesh spacing h. This serves

as a reminder that these quantities changes as we refine the grid.

Let (Ah)−1 be the inverse of this matrix. Then solving the system (4.27) gives

Eh =−(Ah)−1τh,

and taking its norms, see App.B, gives∥∥∥Eh
∥∥∥ =

∥∥∥∥(
Ah

)−1
τh

∥∥∥∥
≤

∥∥∥∥(
Ah

)−1
∥∥∥∥∥∥∥τh

∥∥∥ .

We know that
∥∥τh∥∥=O

(
h2)

and we expect the same to
∥∥Eh∥∥. Because of it we need that∥∥∥(

Ah)−1
∥∥∥ to be bounded by some constant that does not depend of h as h → 0∥∥∥∥(

Ah
)−1

∥∥∥∥≤ C for all h sufficiently small.

Then we will have

(4.28)
∥∥∥Eh

∥∥∥≤ C
∥∥∥τh

∥∥∥ ,

and so
∥∥Eh∥∥ goes to zero as fast as

∥∥τh∥∥. Now we are in conditions to introduce the definition

for stability.

Definition 4.1. Suppose a finite difference method for a linear boundary value problem

gives a sequence of matrix equations of the form AhUh = Fh, where h is the mesh width.

We say that the method is stable if (Ah)−1 exists for all h sufficiently small and if there is a

constant C, independent of h, such that

(4.29)
∥∥∥∥(

Ah
)−1

∥∥∥∥≤ C for all h ≤ h0.

• Consistency: We say that a method is consistent with the differential equation and bound-

ary conditions if

(4.30)
∥∥∥τh

∥∥∥→ 0 as h → 0.

This simply says that we have a sensible discretization of the problem. Typically
∥∥τh∥∥=

O (hp) for some integer p > 0, and then the method is certainly consistent.

49

CHAPTER 4. DIFFERENTIAL EQUATIONS VIA FINITE DIFFERENCE METHOD

• Convergence: A method is said to be convergent if
∥∥Eh∥∥ → 0 as h → 0. Combining the

ideas introduced above we arrive at the conclusion that

(4.31) consistency+stability⇒ convergence.

It is straightforward to prove it using Eqs. (4.29) and (4.30)

(4.32)
∥∥∥Eh

∥∥∥≤ C
∥∥∥τh

∥∥∥→ 0, as h → 0.

for a given norm ‖·‖.

Moreover it is known that from the Lax-Richtmyer Equivalence Theorem [43], which is often

called the Fundamental Theorem of Numerical Analysis, that always holds for linear differential

equation.

(4.33) consistency+stability⇐⇒ convergence

Despite the fact that the problem that we decided to analyze has analytical solution,

(4.34) φ(x, t)= cos(ωt)sin(πx),

we will not take advantage from this fact in the certification of this method. The strategy that we

will adopt in this section is to start with the analytical analyses for the consistency and stability

for the wave equation. Subsequently we work with the numerical example of this problem. Finally,

in the end we will see numerically that indeed this method is convergent.

We begin with the consistency. From what we have seen in, (4.8) and from the approximation

(4.10), it is easy to see that

φ
(
x j, tn +∆t

)−2φ
(
x j, tn

)+φ(
x j, tn −∆t

)
∆t2 = ∂2φ (x, t)

∂t2 +C1∆t2

and
φ

(
x j +h, tn

)−2φ
(
x j, tn

)+φ(
x j −h, tn

)
h2 = ∂2φ (x, t)

∂x2 +C2h2

with

C1 = sup
y∈[x−θh,x+θh]

∣∣∂4
xφ (y, t)

∣∣
12

; C2 = sup
∆t′∈[t−∆ξ,t+∆ξ]

∣∣∂4
tφ

(
x, t′

)∣∣
12

,

where θ ∈ (0,1). φ(x, t) is C2, 3 times differentiable in space and time in the vicinity of x, Ω =
(x−h, x+h) and in the vicinity of t, T = (t−∆t, t+∆t), respectively. Then,

φ
(
x j, tn +∆t

)−2φ
(
x j, tn

)+φ(
x j, tn −∆t

)
∆t2 −v2φ

(
x j +h, tn

)−2φ
(
x j, tn

)+φ(
x j −h, tn

)
h2

= ∂2φ (x, t)
∂t2 −v2 ∂

2φ (x, t)
∂x2 +τn

h,

50

4.2. THE WAVE EQUATION PROBLEM

where

(4.35) τn
h = C1h2 +C2∆t2,

We should keep in mind that while φ(x j, tn) represents the precise value of the function φ(x, t) in

the point (x j, tn) the quantity φn
j represents the approximate value in this same point. Thus, it is

clear that this method is consistent Eq.(4.30), since τn
h → 0 when h and ∆t go to zero.

Now let us check if we can find a bound for the error

(4.36) en
j =φ(x j, tn)−φn

j .

and if
∥∥eh∥∥→ 0 when h → 0 in order to see if the method is convergent.

It is clear now that we are working with a second order approximation method, then if we

rewrite our wave equation in terms of the values that φ(x, t) assumes at each point (x j, tn) we

have

∂−t ∂
+
t φ

(
x j, tn

)−v2∂−x ∂
+
xφ

(
x j, tn

)= τ,

where

τ≈O
(
h2,∆t2)

.

As a next step we use the approximation expression in the equation above in order to get the

recurrence relation for φ(x j, tn +∆t) thus,

(4.37) φ
(
x j, tn +∆t

)= 2(1− s)φ
(
x j, tn

)+ s
(
φ

(
x j +h, tn

)+φ(
x j −h, tn

))−φ(
x j, tn −∆t

)+∆t2τ,

Now we can take the difference between (4.37) and (4.11) with the error definition (4.36) to

establish the following expression

(4.38) en+1
j = 2(1− s) en

j + s
(
en

j+1 + en
j−1

)
− en−1

j +∆t2τ.

From this equation above we can recursively start to analyse how the errors increase with

time, however we can not estimate any bound for the error from Eq.(4.38) since there are extra

conditions that should be considered. However, we can find a rigorous analysis of the stability

condition, and then a convergent method once we have already seen that the method is consistent,

of the wave equation in [43]. There they could conclude, for instance, that stability reads as long

as

1− s > 0.

From the s definition this implies
v2∆t2

h2 < 1.

Then, from this result above we can conclude that the method needs to obey

(4.39) ∆t < h
v

.

51

CHAPTER 4. DIFFERENTIAL EQUATIONS VIA FINITE DIFFERENCE METHOD

We will go back to this condition later.

Then, from the Lax-Richtmyer theorem, we can conclude that our method is indeed conver-

gent.

Now we are ready to work with a concrete example. Let us get back to equation (4.19), where

we only need to choose the values for h,∆t and v. We fix v = 1 in the examples presented here. In

the first example fig.(4.1) we worked with ∆t = 0.04s and J = 20 that implies h = 0.05. Employing

these parameters in this numerical analysis we can see the stability criterion satisfied, since

∆t/h = 0.8< 1.

a)

b)

Figure 4.1: In these figures we can see two different views from the standing wave simulation.

We can confirm from the results showed in fig.(4.1) that our approximation method could

reproduced the standing wave behavior. Since we took ∆t = 0.04s these 100 time steps means

that these oscillations happened during four seconds, t = 4s.

For the next example we kept the same problem, but we refined the lattice, that means we

employed a smaller value for h. In fig.(4.2) we can see the same behavior, but now with h′ = 0.025.

In order to maintain the same value 0.8, that gives us a stable simulation as before, we had to use

52

4.2. THE WAVE EQUATION PROBLEM

∆t′ = 0.02s. Thus, for the same oscillation pattern that happens in four seconds in the previous

example example we had to work with 200 time steps when we employ a smaller time interval

and we want to keep the simulation as stable as the previous one, ∆t′/h′ = 0.8.

a)

b)

Figure 4.2: As in fig.(4.1) we have two different views from the standing wave simulation, but with
different values for ∆t and h.

One of the reasons to show these two numerical examples is to see how the computational

costs can increase if we need to work with smaller and smaller values for h and we want to

maintain the simulation with the same stability order.

Before we finish this chapter we will confirm that our numerical examples are indeed conver-

gent. Previously we showed that our method is convergent by analytical analyses, but now we

will see it via numerical computation.

4.2.1.1 Q-factor

There are few different ways to analyze the convergence of some numerical method employed. We

can, for instance, take the maximum norm of equation (4.36) and start to analyze the behavior of

53

CHAPTER 4. DIFFERENTIAL EQUATIONS VIA FINITE DIFFERENCE METHOD

the expression ‖en‖∞ for different values of h, respecting the condition established for the stability

criteria (4.39). Thus, we will see that our method is convergence as long as the convergence rates

go to zero when h → 0. However, we adopted a different method to analyze the convergence of

our simulation, the same used in chapter (9). The numerical method employed here, in order

to see the convergence, is called by Q factor. The main reason for this choice is that with this

method we can predict the values for Q analytically for each approximate derivative used in the

numerical simulations. Thus, since we also employed higher order Laplacians in [21], that give

us different values for Q for each Laplacian order employed, we thought that this method would

be more convenient for our results.

The Q factor is a method where its construction is based by the Richardson expansion, which

is a general procedure for improving the accuracy of approximations when the structure of the

error is known [45]. This method is used to quantify discretization errors in numerical simulation,

[18].

To compute this factor we used the discretized solutions at three different lattice spacings φh,

φ2h and φ4h. The Q factor is then defined by

(4.40) Q(t)=
∥∥φ4h −φ2h∥∥

2∥∥φ2h −φh
∥∥

2
.

Now we can use the Richardson expansion

φh = φ (x, t)+h2E2 (x, t)+h4E4 (x, t)+ . . .(4.41)

φ2h = φ (x, t)+ (2h)2 E2 (x, t)+ (2h)4 E4 (x, t)+ . . .

φ4h = φ (x, t)+ (4h)2 E2 (x, t)+ (4h)4 E4 (x, t)+ . . .

where E i are the errors functions that do not depend on h, to predict the values that Q can have.

In fact, these errors functions are related with the derivative order associated with the truncated

error of the approximation used, the values C showed in section (4.1.2). Since we are aware that

we used a second order method for the wave equation simulation (4.35) we expect

(4.42) lim
h→0

Q(t)= 4,

if our method is convergent, check this is a straightforward computation, as we will see now. For

the second order method we have E2 as a dominant error function, thus computing the numerator

in Eq.(4.40), we get

φ4h −φ2h ≈ 12h2E2 (x, t) .

Doing the analogous computation for the denominator part of Eq.(4.40), we get

φ2h −φh ≈ 3h2E2 (x, t) .

Thus, putting these results into Eq.(4.40) we get Q = 4, as we said.

54

4.2. THE WAVE EQUATION PROBLEM

Although the computation above was quite simple to do, in practice we have to be careful

in this calculation. The quantities φ4h and φ2h as well as φ2h and φh are defined on different

lattices, and thus they are vectors of a different dimension. Then, we have to choose the lattices

such that the vertices present in the lattice of spacing 4h are a subset of the vertices present in

the lattice of spacing 2h and 2h is a subset of h. In Fig.(4.3) we can see an example of how we

have to proceed with this computation in practice.

Figure 4.3: This figure illustrate how we have to deal with these vectors that belongs to a different
dimension. From up to down we represented the lattice space where the vectors φ4h, φ2h and φh belongs,
respectively. We called by h3, h2 and h1 the three mesh points for each lattice and we showed how these
points are related after we calling h1 = h. We marked the points of the one-dimensional lattice that should
be compared during the computation of Q. In the end, both are in the same subspace. The red points
represent the boundary points for the standing wave simulation.

From our numerical exploration fig.(4.4) we could see that our method is convergent and

agrees with the expected value for Q when h → 0. In this test we choose h = 1/800 and ∆t = 10−7

and we run our simulation for 104 time steps. In (4.4) we can see that Q converges to the predicted

value.

Figure 4.4: Q factor analyses for the standing wave simulation.

55

CHAPTER 4. DIFFERENTIAL EQUATIONS VIA FINITE DIFFERENCE METHOD

4.2.2 The incidence matrix

We reserved this last section to introduce a powerful discretization method that was extremely

important in the results for the quantum algorithm for the wave equation, chapter 9.

This discretization method employs some results of spectral graph theory [19] in order to

approximate the Laplacian operator. By a simple graph formulation, this technique allows

us to establish two important boundary conditions widely explored in numerical methods for

differential equation: Dirichlet and Neumann boundary conditions.

Let us return to the one dimensional case, where the Laplacian is just a second derivative.

We can now rewrite a second order approximation, (4.7) as follows

(4.43) ∂−x ∂
+
xφ (x)=−



. . .

−1 2 −1

−1 2 −1

−1 2 −1
. . .





...

φ
(
x j−1

)
φ

(
x j

)
φ

(
x j+1

)
...


.

We will call this matrix the graph Laplacian L(Gh). This choice of name comes from the fact

that it will be constructed from a graph Gh as we will see here. More precisely, we say that the

operator − 1
h2 L (Gh) approximates ∇2 in the limit h → 0.

With this new formulation Eq.(4.7) can be written as

− 1
h2 L (Gh) j =

φ(x j+1)−2φ(x j)+φ(x j−1)
h2 ,

for the one dimensional case. As the next step we will see how we can apply graph theory in order

to construct the Laplacian operator, which is called graph Laplacian. We start with the graph

Laplacian definition:

Definition 4.2. Let G be a graph. The Laplacian matrix of G, denoted L(G), is defined by

L(G) =∆(G)− A(G), where A(G) is the adjacency matrix of G and ∆(G) is the diagonal matrix

whose (i, i) entry is equal to the degree of vertex i of G.

The adjacency matrix is a well known matrix widely used in graph theory and its definition

general for a graph with a vertex set {v1 . . .vn} is quite simple

(4.44) A (G)i j =
1 if (i, j) ∈ E (G)

0 otherwise,

where E(G) is the edge set of the graph G. Given that, it is clear that the graph Laplacian in (4.7)

is achieved from the path graph. For a path graph, Fig.(4.5), the degree of all vertices is 2, we get

56

4.2. THE WAVE EQUATION PROBLEM

a diagonal matrix whose all entries are 2, and an adjacency matrix given by

. . .

1 0 1

1 0 1

1 0 1
. . .


The core property of the graph Laplacian for us, that plays the key role of the discretization

Figure 4.5: Path graph, the graph the yields the graph Laplacian from Eq.(4.43)

method, employed in chapter 9, is the fact that the graph Laplacian is a positive semidefinite

matrix. This property implies that this matrix can be decomposed as follows

(4.45) L = BB†.

The |V |× |E| matrix B, square root of L, is called as incidence matrix and it has many applica-

tion in graph and spectral graph theory [19]. The general definition of this matrix for a graph

where edge j has weight Wj is

(4.46) Bi j =



√
Wj if j is a self-loop of i,√
Wj if j is an edge with i as source,

−√
Wj if j is an edge with i as sink,

0 otherwise.

The interesting thing about this decomposition is that we can use the incidence matrix B instead

of the matrix L, in order to get the operator − 1
h2 L (Gh) that approximates ∇2 in the limit h → 0.

Making use of some properties of spectral graph theory we can from the matrix B easily get the

Laplacian operator either under Dirichlet or Neumann boundary conditions. These boundary

conditions are widely used either when we have to determine the solution for some differential

equation or as an initial condition employed in some numerical method.

57

CHAPTER 4. DIFFERENTIAL EQUATIONS VIA FINITE DIFFERENCE METHOD

Although we will explore only one dimensional examples for unweighted graphs, Wj = 1

∀ j ∈ E (G), we can easily manage this formulation for higher dimensional lattices and for weighted

graphs.

4.2.2.1 Dirichlet Boundary condition

Starting with the domain Ω, the Dirichlet case is the one where

(4.47)
(
φ

)
∂Ω = 0.

Let us return to the one dimensional case, with Ω= [0,1]. The Dirichlet condition for this case

implies

φ(0)=φ(1)= 0.

Our goal is to establish get the first order Laplacian approximation (a first order Laplacian means

a second order approximation method O (h2)) L for the one-dimensional case under Dirichlet

boundary condition. Thus, the challenge here is to see the Laplacian structure in the boundary

points. There are two points that should be carefully analyzed, the two extremes points, that we

call the leftmost and rightmost points. Let us see this analyze explicitly for the leftmost point.

From our approximation (4.7) at point h

d2φ (h)
dt2 = φ (2h)−2φ (h)+φ (0)

h2 = φ (2h)−2φ (h)
h2 .

This result was established using the fact that φ(0)= 0. Now let us suppose that we fix h = 1/5.

Thus, doing a similar calculation to the another extreme point, rightmost point, we get

− 1
h2 LDirichletφ= 1

h2


−2 1 0 0

1 −2 1 0

0 1 −2 1

0 0 1 −2




φ (h)
φ (2h)
φ (3h)
φ (4h)

 .

From this result above we can see how the Dirichlet boundary conditions change the first and

last row of the Laplacian matrix, a result we obtain by analyzing the approximation (4.7) in

the extreme points. Furthermore, we can see that choosing h = 1/5 we have only to analyze four

points in the lattice.

We can now achieve the same result working with the incidence matrix. The LDirichlet can be

constructed from the graph in fig.(4.6). It is the self loops put at vertices 1 and 4 that provide the

Dirichlet condition. From definition (4.46), we can easily build the matrix B,

B =

a b c d e

1

2

3

4


1 1 0 0 0

0 −1 1 0 0

0 0 −1 1 0

0 0 0 −1 1


.

58

4.2. THE WAVE EQUATION PROBLEM

Figure 4.6: Incidence matrix for a line segment, Dirichlet.

Thus, with a straightforward matrix multiplication, we can see that BBT = LDirichlet. It is impor-

tant to notice that the direction chosen in the graph of fig.(4.6) is arbitrary since it will not affect

the final structure of L.

4.2.2.2 Neumann Boundary condition

In this case we are restrict to the follow boundary condition

(4.48)
(∇φ · n̂)

∂Ω = 0,

where n̂ is the unit vector normal to the boundary.

This condition to the one dimensional case Ω= [0,1] implies

dφ
dx

= 0,

at the boundaries. Like in the previous case, our goal is figure out how this constraint modifies

the second derivatives approximation. In order to see it, let us discretize the second derivatives

as

d2φ

dx2 = lim
h→0

φ (x+h)−2φ (x)+φ (x−h)
h2 ,

= lim
h→0

(
φ(x+h)−φ(x)

h

)
−

(
φ(x)−φ(x−h)

h

)
h

,

= lim
h→0

dφ
dx (x+h/2)− dφ

dx (x−h/2)
h

.

Now from the Neumann condition at the leftmost point yields

d2φ (0)
dx2 = lim

h→0

dφ(h/2)
dx − dφ(−h/2)

dx

h
= lim

h→0

φ (h)−φ (0)
h2 .

Similarly to the rightmost point,

d2φ (1)
dx2 = lim

h→0

dφ(1+h/2)
dx − dφ(1−h/2)

dx

h
= lim

h→0

φ (1)−φ (1−h)
h2 ,

59

CHAPTER 4. DIFFERENTIAL EQUATIONS VIA FINITE DIFFERENCE METHOD

where φ (x+h/2) vanishes. Thus we can see that dφ/dx = 0 at x =−a/2 and x = 1+a/2. Then, if

we choose h = 1/4, that implies 1= 4h, we get

− 1
h2 LNeumannφ= 1

h2


−1 1 0 0

1 −2 1 0

0 1 −2 1

0 0 1 −1




φ (0)
φ (h)
φ (2h)
φ (3h)

 ,

where again we have to work with four points of the lattice, but with h = 1/4 instead of h = 1/5

under Dirichlet boundary condition. In terms of the incidence matrix, we can recover this

Laplacian from the graph in Fig.(4.7) with four vertices.

Figure 4.7: Incidence matrix for a line segment, Neumann.

In this last section, we just saw two basic examples for one-dimensional cases. Even with

these basic examples, we could see that in order to achieve the correct Laplacian, we need to

be careful. It is necessary we do some algebra calculations to get the correct matrix form under

the two different boundary conditions. This task can become much more complicated if we have

to move to higher dimensions with different boundary conditions. For instance, if we have to

simulate a wave propagation in a two-dimensional lattice, surrounded by holes of different shapes

and so on. On the other hand we saw that employing some results of spectral graph theory

we only have to draw the correct graph, employing self-loops or not, depending on the desired

boundary conditions, and subsequently build the incidence matrix B. Thus, doing just a matrix

multiplication we get L, the reason that makes this technique so powerful. In addition, this

decomposition in terms of incident matrices was extremely important in the quantum algorithm

for simulating the wave equation as we will see in chapter 9.

4.2.3 Overview of the FDM complexity

Now we will see a general view about the complexity of the finite difference method to solve

differential equations. The complexity here is related with the number of computations that our

computer has to do in order to give the approximate value of the function φ(~x, tn,) at time tn. In

order to understand better the complexity of this problem let us see some characteristics of the

matrices that we saw during this chapter, in particular, the matrix of Eq.(4.19) and the Laplacian

of Eq.(4.43). We can see that in both cases the matrices are quite sparse (the number of nonzeros

elements per row), to be more precise the sparsity s of these matrices is s = 3. In general when

we solve differential equations via numerical methods, either from finite difference method [44]

60

4.2. THE WAVE EQUATION PROBLEM

or finite element method [91] the matrices that we get are sparse. The low sparsity is good for

several reasons, for instance we can take advantage of the small numbers of nonzeros to do fewer

computations to get the approximated solution and in general, we get well-conditioned systems

(see App(B)). There are different algorithms, classical and quantum, that take advantage of the

low sparsity to decrease the complexity of the system.

Given the importance of the knowledge of the sparsity, we can estimate the sparsity of the

wave equation problem precisely for a D-dimensional lattice from its Laplacian structure

L(G)=∆(G)− A(G).

The time discretization it is not important in this analysis since it only changes the diagonal

value of Eq.(4.19). Looking at the expression for L it is clear that the sparsity changes according

to the adjacency matrix, since ∆(G) is a diagonal one. From the definition for A(G), which is a

square matrix |V |×|V |, we saw that for the one-dimensional lattice, path graph, s = 2. This result

is because each vertex is linked with other two. If we move to the two-dimensional lattice the

degree of the vertice is four, so each vertex has now four links, then s = 4. Thus, it is clear that as

we increase the dimension two new links appear. Therefore, we get the following expression for

the sparsity of L,

(4.49) s = 2D+1,

where the value one in the expression above comes from the matrix ∆(G).

Now we can look to the condition number of this matrix. As we take small values for h this

matrix becomes more and more ill-conditioned, which means in the end that small perturbations

in φ (x, tn) → φ (x+∆x, tn) will lead to larger errors for φ (x, tn+1)). The first thing that we can

observe is that if have a line segment of size one and L a N ×N matrix, the lattice spacing is

giving by h = 1/N, since as we increase N we get more vertices N = |V | and the segment size still

the same. From App.(B) we know that the condition number κ(L) = ‖L‖∥∥L−1∥∥ in the spectral

norm, the norm commonly used to study κ in linear systems, is given by

κ (L)= λmax (L)
λmin (L)

,

where λmax (L) is the maximum eigenvalue of L and λmin (L) is the minimum. When we look at

Eq.(4.43) we see that our Laplacian is a triangular matrix,

L =



a b 0 · · · 0

b a b 0 · · · 0
...

...
. . .

0 · · · b a b

0 · · · b a


,

61

CHAPTER 4. DIFFERENTIAL EQUATIONS VIA FINITE DIFFERENCE METHOD

with a = 2 and b =−1. Then, we can use the results of [89] in order to get the expression for the

eigenvalues of L,

λl = a+2bcos
(

πl
N +1

)
,(4.50)

= 2
(
1−cos

(
πl

N +1

))
,

for l = 1, . . . , N. In our case, we can see in Eq.(4.50) that the greatest eigenvalue is when l = N

and the smallest when l = 1, however, from the fact that cos(π/ (N +1)) =−cos(πN/ (N +1)) we

can write the following expression for the condition number for L

κ (L)=
(
1+cos

(
πl

N+1

))
(
1−cos

(
π

N+1
)) .

Now when we take larger N, we can use the approximation cos
(

π
N+1

)' 1− (
π

N+1
)2 to conclude

how κ (L) scales,

(4.51) κ (L)'O
(
N2)

,

see App.(A) to understand the big O notation. Although we will not use this condition number

result for our complexity analyses here, the knowledge of κ is widely used in many classical and

quantum algorithm complexity analyses, including the results that we will show in chapter 9.

After we have explored some characteristics of L we are more than ready to see the complexity

of the wave equation simulation via FDM. When we look to Eq.(4.19) we see that the task

involved is a matrix-vector multiplication. We are aware that there are efficient algorithms where

the complexity involved in matrix multiplication is O(N2). Since here we are dealing with a

multiplication between a sparse matrix and a vector we can take Ω(N) or Ω(1/h) as a good lower

bound estimation. Now suppose that we are free to change the line segment size, so instead of 1,

we have l. Thus, our lower bound change to Ω(l/h). Now in case we have a D-dimensional lattice

it is easy to see that the matrix dimension of L will change to ND once the number of vertices

will increase as follows |V |→ |V |D , therefore we get Ω(l/h)D as the lower bound complexity. This

analysis is just to get φ(~x, t j+1) from φ(~x, t j). Thus, if we have to do T computations in the total,

we get

(4.52) Ω

(
T

(
l
h

)D
)

.

Although we have only analyzed the complexity of a particular differential equation via finite

difference method, we can establish the same bound for other differential equations and be

choosing other numerical methods as the finite element method [51]. Let us do general comments

about other differential equations. In particular, let us see the ones widely explored by engineers

where in general are time-independent differential equations, like the ones studied in static and

62

4.2. THE WAVE EQUATION PROBLEM

elasticity problems [91]. Suppose we want to solve numerically the electrical field in the problem

where there is a wave between the parallel plates Fig.(4.8) described by the following differential

equation

(4.53)
1
µr

d2

dx2 E y +k2
0εrE y = f (~x) ,

where E y (~x) is the electrical field in the horizontal direction between the plates with the boundary

conditions E y (0)= E y (xa)= 0, εr and µr are the medium’s relativity permitivity and the medium’s

relativity permeability constants respectively, k0 the free space wave number and finally f (~x)
the source function. It is quite simple to see that solve this differential equation via numerical

method is equivalent to solve a linear system

Ax = b,

with E y(~x)= x and b = f (~x). This equivalence become obvious when we obesrve that in Eq.(4.53)

the operator is the Laplacian, thus,

A = 1
µr

L+k2
0εr I,

where I is the identity matrix. Then, solving this problem is the same as solving x = A−1b and

the complexity is at least linear in N, when A ∈ N ×N, that leads to the same complexity get for

the wave equation problem.

Figure 4.8: Parallel Plate.

To conclude this chapter it is important to notice that in general, using standard techniques

any linear dependent equation can be converted to a first-order linear differential equation

(4.54) ẋ (t)= Ax (t)+b (t) ,

with larger dimension. Then, again we can see that solve this system is at least linear in N. In

particular, our wave equation problem translated to the first order differential equation is given

63

CHAPTER 4. DIFFERENTIAL EQUATIONS VIA FINITE DIFFERENCE METHOD

by

d
dt

[
φ

ϕ

]
= 1

h

[
0 1

−L 0

][
φ

ϕ

]
.(4.55)

64

C
H

A
P

T
E

R

5
EMERGENT PHENOMENA

This chapter is related with an extremely rich topic in the science, emergence, a topic

deeply related, as we will see, with another rich and tricky topic, complex systems. The

general consensus is that emergence is a consequence of collective dynamics of interacting

subsystems [49].

We can observe collective dynamics everywhere. For example, we can cite an ant colony,

resulted of large amount of individual interacting ants, which is also considered a complex

system [24]. The complexity part here comes from the fact that although each individual ant is a

simple creature, well understood, their behavior inside the colony is hard to predict. Working

together they can build complex structures, like their anthill, thinking collectively, without a

leader. Another example of collective dynamics that is also complex is our brain [74]. Here the

neurons play the role of the ants, which are relatively simple components. Besides, the interaction

between them is limited, in the sense that each neuron can only communicate with a small

group of others, compared with the amount existent. Nevertheless, these simple structures, again

without a central controller, with this limited interaction, lead us to complex and important

large-scale behavior, as the consciousness. Very often, the full understanding of each individual

part does not help us to predict the behavior of the whole system.

From these two examples we can see how this topic is rich and important, even nowadays we

can not explain the consciousness. Then a lot of effort is put in order to explain the emergence from

single parts. Here we can cite Ref.[39], where they used cellular automata to study emergence. But

why CA is a good candidate to do this task? Like complex systems in nature, CAs are composed of

large numbers of components, cells, with no central controller, each component can only interact

with a small group of others, like neurons, obeying its neighborhood scheme. Furthermore CAs

can exhibit very complex behavior that is hard to predict from the transition function. As we saw

65

CHAPTER 5. EMERGENT PHENOMENA

in (2.1), from a simple rule (rule 90) we got a complex pattern, a fractal, that we could not predict

from this simple rule. Then, in [39] they build a tool called coarse-graining to study emergence

from cellular automata that played the role of complex system. In their investigations they used

this tool to try to predict and understand the emergence as we will briefly comment in the next

section.

Now we can give a more physical interpretation to this issue. It seems quite plausible that

macroscopic systems are emergent from microscopic. For instance molecules are emergent from

atomic interaction. When we move from micro to macro systems, in general, there are fewer

degrees of freedom in the last. Let us return to the discussion about gas theory in chapter 2

section 2.3.1 to understand better this point. Although we know that each single gas molecule

is fully described by Newton’s theory, in order to proceed with some prediction we move to the

thermodynamics theory, which demands much fewer resources to work. The idea here is to try to

move to another model that can capture the main properties of the microscopic system but that

demands fewer degrees of freedom or less resources to work. We also can think the macroscopic

behavior as being a consequence of weak detector sensibility, which often happens in physics. For

instance, a neutral structure, in general, is established from interactions of positive and negative

charges. Often our detector can not access the total reality of the system, it just gives us the

information that the system is neutral. The same idea can be done in terms of spin particles. Very

often our detectors can not distinguish if there are two neighbors particles with spins pointing

to the same direction, and in the end it only processes the information about one. As in [39] our

main goal is to develop a tool to study the predictability of systems that can be described in terms

of cellular automata. Here, however, guided by physical insights, the ones pointed in the last

paragraph. We could conclude, from chapters 2 and 3, that partitioned cellular automata are

a class of CAs more relevant in the physical context since we can without difficulty work with

conservation laws. Thus, we become interested in doing an equivalent study as was done in [39]

for this model. Similarly to the previous results presented by Israeli and Goldenfeld, we propose a

coarse graining tool that allows us to connect the microscopic world with the macroscopic one. One

interesting aspect about PCA, as we have seen in chap.3, is that we can without difficulty achieve

the continuum limit of the model under investigation. Thus, alternatively to the results presented

in [39] we explored this possibility, from where we can see stochastic differential equations as

emergent from deterministic ones.

This chapter is divided in two sections. In the first one we will briefly present the main ideas

and results achieved by Israeli and Goldenfeld in [39], the CG procedure for Wolfram’s classifi-

cation CAs, and subsequently we will move to our new results: Coarse-graining of partitioned

cellular automata.

66

5.1. COARSE GRAINING OF CA

5.1 Coarse Graining of CA

In this section we will be employing the CA definition introduced in section (2.1). We restrict the

discussion to the CG of binary ECAs, i.e, f :Σ3 →Σ, with Σ= {0,1}.

The main goal of this CG model is that starting from an automaton A = (a(t),ΣA, fA), see

if we can establish a new automaton B = (b(t),ΣB, fB) after we coarse grain A. We will use the

terminology lower level to the system A and upper level to B. To try to see if exists an emergent

automata B, Israeli and Goldenfeld defined a supercell version of A, As = (as(t),ΣAs , fAs). In

As each cell represents a composition of s cells from A. The new alphabet ΣAs simply includes

including all possible configurations of s cells in A, thus

ΣAs =ΣA × . . .×ΣA︸ ︷︷ ︸=Σs
A

s times

.

Finally the transition function works following the previous definition, fAs : {ΣAs }3 →ΣAs , rewrite

it in terms of A we have to apply transition function, fA, s times on all possible initial conditions

of length 3s, fAs = f s
A. Let us clarify all these concepts with an ECA binary example for s = 2.

Let ΣA = {0,1} be the binary alphabet for the automaton A. Then the alphabet for the supercell

is just ΣA2 = {00,01,10,11}. It is clear that a2(t) is composed by two cells. Then, in order to update

the supercell n we should see all its neighbors NA = {n−1,n,n+1}, but now in terms of supercells,

a2
n (t+1)= fA2

[
a2

n−1 (t) ,a2
n (t) ,a2

n+1 (t)
]
.

Then, likewise for A the state a2
n(t) updates to a2

n(t+1) after we read cells at n−1, n and n+1,

but now there are two cells in each location. A problem arises here from the fact that we do not

know the rule for fA2 , only for fA. However, there is a simple procedure to construct fA2 from fA.

Let us return to the rule for fA. In chapter 2 we saw that fA is composed by eight rules,

a number that can be easily computed by the follow equation |ΣA||NA |, where in this instance

|ΣA| = 2 and |NA| = 3. Keeping the same idea, there are |ΣA|s|NA | rules for fAs , that yields 64 for

our case, s = 2. The task is to build these rules from fA. Suppose we have a supercell A2 where

the neighborhood is
{
a2

n−1(t),a2
n(t),a2

n+1(t)
}

and we want to update the state a2
n(t)= (al(t),ar(t))n,

where we wrote al(t) and ar(t) as the cells state at time t that belongs to the super cell s and the

subindex l and r we choose to indicate that they are left and right cells. Thus, fA2 should read all

the content inside the supercells, that includes the left and right cells inside n−1 and n+1. Since

we only have access to fA, one way that we can update the state a2
n(t) is by applying fA twice as

follows: in the first application we need to apply fA in the right cell in n−1, in both cells in n and

in the left cell in n+1. In this part we can think this neighborhood as a CA state with 6 cells

{al (t)n−1 ,ar (t)n−1 ,al (t)n ,ar (t)n ,al (t)n+1 ,ar (t)n+1} ,

where the cells in the boundaries are quiescent states, with means that they remain in the same

state after the update. Then, in this first part we applied fA in the ordinary way updating all

67

CHAPTER 5. EMERGENT PHENOMENA

cells in A except the quiescent cells

{al (t)n−1 ,ar (t+1)n−1 ,al (t+1)n ,ar (t+1)n ,al (t+1)n+1 ,ar (t)n+1} .

We can wonder if with just one application it would be enough to update the state (al (t) ,ar (t))n.

However, applying fA only once the state at the supercell n could not process the state information

of the left cell in n−1

al (t+1)= fA [ar (t)n−1 ,al (t)n ,ar (t)n] ,

and in the right cell in n+1

ar (t+1)= fA [al (t)n ,ar (t)n ,al (t)n+1] .

Thus, in order to catch these informations we need to apply fA again, since ar(t+1)n−1 contains the

information about al(t)n−1 and al(t+1)n+1 contains the information about ar(t)n+1 . Differently

from what we did in the first application we need to apply the transition function only in both

cells located in n, a2
n(t+1)= (al(t+2),ar(t+2))n. We need to stress the fact that we applied fA

only twice in case s = 2. For general cases we need to apply, following the same previous idea, the

transition function s times, which leads to relation fAs = f s
A. Therefore, if we want to construct

the 64 rules for f 2
A we need to do the same procedure for all possible initial conditions of length 6,

which have the same number of possible rules, 64, whose value is again achieved from the same

equation |ΣA|s|NA |. Although this procedure is quite simple it has a exponential complexity in

terms of the supercell size for a fixed neighborhood.

As a next step they defined a projection function P :Σs
A →ΣB, which is used to map a block

with s cells from A into a single cell of B. We can try to understand better the P action with a

physical example. Let us get back to a binary case with the following interpretation: if we have

the state 1 in cell n it will be equivalent to a particle located in this cell, while state 0 means that

the cell is empty. Suppose now we have access to a detector that can not resolve when we have

two neighboring particles. This is equivalent to saying that if we have a state 11 our detector

gives 1 as the output. We can characterize this process as follows

P(00) = 0,(5.1)

P(01) = 1,

P(10) = 1,

P(11) = 1.

Here we presented just one example with a physical meaning. However the number of choices for

P increases exponentially in terms of s, |ΣA|2s.

Following this simple procedure we can already establish states b(t) from A. However, the

core aim is to achieve an emergent dynamics from A, that in the end is to try to get fB from A. In

order to do it, they constructed fB from fAs by projecting the inputs and outputs of As,

(5.2) fB
[
P

(
as

n−1 (t)
)
,P

(
as

n (t)
)
,P

(
as

n+1 (t)
)]= P

(
fAs

[
as

n−1 (t) ,as
n (t) ,as

n+1 (t)
])

.

68

5.1. COARSE GRAINING OF CA

Like we did in the previous steps, let us understand better what this expression above says.

Starting with left part in the equality (5.2) we see that from As we first applied the projection P

and then the transition function fB, since now these states belong to B[
P

(
as

n−1 (t)
)
,P

(
as

n (t)
)
,P

(
as

n+1 (t)
)]= [bn−1 (t) ,bn (t) ,bn+1 (t)] .

We illustrated this idea in Fig.(5.1-a). Differently from this part, the right side of Eq.(5.2) first

updates the state a2
n(t) and just after we have the action of P, that we illustrated in Fig.(5.1-b).

Therefore, expression (5.2) demands consistence in both paths at t+1, Fig.(5.1-c).

Figure 5.1: These figures illustrate the expression (5.2) for a binary ECA in the lower level with s = 2. In
this illustration we applied the projector P expressed in Eq.(5.1).

There is an important constraint to this procedure that is given by

(5.3) P (fAs [xn−1, xn, xn+1])= P (fAs [yn−1, yn, yn+1]) ,

for all x, y such that P(xi)= P(yi), where x and y are possible supercell states at the same instant

and i = n−1,n,n+1. Writing in another way, this constraint means that if we start with two

different states in As at time t, whose values are equal under the action of P, their states should

be the same after we apply the projection function in these states at time t+1, obtained by the

transition function fAs .

This CG idea can also be visualized, for general cases, in the scheme below,

bt
fB→ bt+1(5.4)

P ↑ ↑P

as
t f s

A→ as
t+1

69

CHAPTER 5. EMERGENT PHENOMENA

From these two equations equation (5.2) and (5.3) we have constraints enough to establish

transition functions for B.

We can now comment briefly about some results established in [39]. Some interesting results

were the ones where, from different values for s, they started from binary ECAs and restricted

B to be binary ECAs as well. Since they imposed both CAs, in the lower and upper level, to be

binary ECAs, which are limited by 256 possible rules, they got different rules being emergent

from others.

Even from these simple cases they could learn interesting aspects from these rules and

from these CG procedure. For example, there are different structures that we can establish

after we evolved some CA rule during a given time. In rule 146, for instance, we can see small

triangles appearing everywhere during its evolution. Moreover, this dynamics generates three

large triangles, from a given initial state, well distinct from the others. After they coarse grained

this rule they got the rule 128. Thus, starting from this rule, where its initial state is achieved

from the P action in the initial state of 146, and evolving it during the same time steps we can see

the same types of structures emerging. These three triangles also appear in this rule, furthermore

in these evolution the small triangles do not appear anymore. Then, from this simple example

they could see that the CG eliminated the small scale details of rule 146 and at the same time

preserved the most relevant information. This loss of information is expected since P is not a

injective function and we are contracting the lattice space.

We summarize the idea of their results in Fig.(5.2).

Figure 5.2: Here we illustrated the idea of the results reported in [39] where A and B are binary ECAs.
These numbers represent CAs rules and the arrows between them means that they are linked by some
coarse-graining or writing in another way, there are projection function and a supercell with size s that
allow these rules from A to be connected with different or same rules in B after the coarse graining.

70

5.2. COARSE GRAINING OF PCA

5.2 Coarse Graining of PCA

Like the results of [39], the coarse graining idea for this CA class is to try to build a tool to predict

an emergent PCA. As we saw in the last section, here we also have a map that reduces the CA

space in the lower level in order to try to get a new CA in the upper one. In the last section we

learned that from the transition function fA we have to apply this function s times in order to

update the supercell with size s. Then, putting in other words, all cells inside the same supercell

as
n(t) that were updated until t+ s represents the cell bn(t) which was updated to bn(t+1). But

here, differently from this previous scheme, with this CA class we can build CG for different time

scales. Ultimately it means that we are not restricted to applying the transition function s times

in order to update the PCA in the upper level to t+1. Furthermore in this result we found CG

maps, that play the role of the projectors P in this version, that take deterministic PCA to others

deterministic PCA, but also CG maps from deterministic PCA to non-deterministic PCA. These

new results are achieved when we discard a constraint analogous to Eq.(5.3) for this current

version. Working with less restrictions increase the possibilities for PCAs in the upper level, and

allows us to see results with a more physical perspective, as we will see.

The main difference between the work that we will present here and [39] appears because

of their structural differences. Although we pointed out some of these differences in the end of

chapter 2, we will refresh the ones relevant for us here. As we learned from the previous results,

in order to get fB we need to check all distinct initial conditions in the neighborhood of as
n(t), since

the transition function fAs needs to read these states first. But here we need to check all different

initial states only inside the supercell. This difference comes from the fact that in each part of E

we only need to read the current state of the subcells that belong to the same tile Fig.(5.3).

Figure 5.3: Whereas σ0 is related to the first tiling σ1 is related to the second one. In this instance, each
operator just read the current subcell sates of the two subcells from the same tile.

In these results we only employed subcells with two states Σi = {0,1}, then from now on we

71

CHAPTER 5. EMERGENT PHENOMENA

will write (Z2)i instead of Σi which corresponds to one bit per subcell. Then, Zn
2 corresponds to

our finite set of cell states, which is equivalent to saying that there are n bits per cell. Moreover,

we will concentrate our results on one dimensional PCAs, where the excitations do not suffer any

kind of interaction. Here no interaction is equivalent to say that the dynamics of each excitation

is not influenced by the others. Furthermore, we can easily extend our procedure to higher

dimensions with or without interaction, as we will show in the end of this chapter.

Without loss of generality the evolution in this one-dimensional PCA will be restricted to

the cases of two tilings in the lower level, since the third tiling from the examples analyzed in

chap.(3) does not play an essential role during the PCA evolution. It only gives us a different

movement interpretation. Moreover we will always employ the Swap as the second operator,

σ1 =Swap. The reason for this restriction, as we will see soon, is that non-trivial dynamics, for

the type of interaction between the cells that we choose here, only will happen for this choice of

σ1.

Alternatively to the previous examples seen until the moment, we will explore cases with

more than two subcells per cell in the one dimensional example. However, the interactions will

remain only between two subcells from different cells, that means the tiles of the second tiling

have the following structure; T(1)
x = {xn−1, (x+1)0}. That means the interaction between the cells

happens only across boundary subcells. Besides, this kind of interaction explains the reason for

σ1 =Swap, otherwise we would not allow interaction between the cells.

As we showed previously, for one time step in our CA we need to apply the transition function

E . We are aware that E is composed by the maps σ0 and σ1 that we need to apply simultaneously

in the first and in the second tiling elements respectively. Then we will often write E (σ1,σ0) to

indicate the transition function format employed.

Before we move to the procedure for CG of PCA, we should add an important characteristic of

the operator σ0 that will be present in this work. In all deterministic cases the internal transition

function σ0 is given by permutation matrix π(i), while the extension to the non-deterministic

evolution is obtained by employing a convex combination of permutations,

σ0 =
n!∑

i=1
piπ

(i),

where pi ≥ 0, and
∑n!

i=1 pi = 1.

The restriction to work only with permutation operators naturally appears, since we are

interested in reversible PCA in the lower level and to consequence the number of excitations

during the evolution. Since these operators are just permutations between the subcells from

the same cell, we can easily count the total amount of permutation matrices that we have. The

number of matrices is just the number of possible permutations that we have. To be clearer, n

subcells gives us n! distinct permutations matrices π(i) for i = {1, . . . ,n!}, which is the reason that

we put n! in the convex sum equation above.

72

5.2. COARSE GRAINING OF PCA

5.2.1 Coarse-graning procedure

Like in the previous section, the first thing we should to do in order to get our CG is to construct

a supercell. We begin with a PCA state, Φt, with N cells, each with n subcells,

Φt ∈
(
Zn

2 × . . .×Zn
2
)
N .

As the next step we join s cells, where s is an integer number. Thus we get a PCA state in terms

of supercells, Φs
t ,

(5.5) Φs
t ∈

(
Zsn

2 × . . .×Zsn
2

)
N/s ,

where from this construction we get N/s supercells. We need to stress the fact that we always

take a choice for N such that N/s ∈N. Once we get this N/s supercells we have to construct a CG

map as follows:

(5.6) ΛCG :Zsn
2 →Zn′

2 ,

where although we have the possibility of choosing whenever number of subcells n′ in the upper

level as long as n′ < sn, we will be restricted to the case where n′ = n. Afterward, we apply this

map in all supercells to achieve a possible CA candidate with N/s cells and with n subcells,

(5.7) ΛN/s
CGΦ

s
t = Φ̃T ,

where

ΛN/s
CG =ΛCG × . . .×ΛCG︸ ︷︷ ︸

N/s times

,

and Φ̃T is a PCA state in the upper level. However we do not know yet the transition function, Ẽ ,

for Φ̃T . Moreover, like in [39] our interest is to construct Ẽ from the transition function in the

lower level.

With this goal in mind, we propose an analogous procedure to [39] for the PCA. Thus, starting

with Eq.(5.7) our next step is to apply the transition function in the lower level h times.

(5.8) E hΦs
t =Φs

t+h, where h ≤ s,

where here alternatively to the previous result of Israeli and Goldenfeld who always take h = s we

relaxed this constraint for the PCA, which are the cases that we called temporal and spatial
coarse-graining. Subsequently we apply the CG map to get a PCA state in the upper level at

time T +1,

(5.9) ΛN/s
CGΦ

s
t+h = Φ̃T+1.

Then, we say that a PCA in the upper level is emergent from the lower one as long as there

exists a PCA transition function Ẽ , satisfying the PCA definition transition function presented in

chapter 2 and thus composed by local operators, that connects these two PCA states,

(5.10) Ẽ : Φ̃T → Φ̃T+1.

73

CHAPTER 5. EMERGENT PHENOMENA

with the following restriction

(5.11) ΛN/s
CG

(
E hΦs

t

)
=ΛN/s

CG

(
E hΘs

t

)
,

for all Φs
t and Θs

t that are distinct PCA states at time t, such that ΛN/s
CG

(
Φs

t
)=ΛN/s

CG

(
Θs

t
)
. Then we

can see that Eqs.(5.9) and (5.10) play the role of Eq.(5.2) and Eq.(5.11) plays the role of Eq.(5.3).

Until the moment we have assumed that our CG procedure should be done in the PCA state

that includes all supercells Eq.(5.5). However, from the PCA space homogeneity and from its time

and space translation invariance, the procedure can be done just analyzing these states inside

some neighborhood, Φs
t ∈N s, likewise the CG procedure to CA.

Rather than the previous CG work [39], in this version we have different possibilities for time

scale, thus instead of writing t in the upper level we wrote T. We do not allow h > s, since in

these cases there will be time enough for the information to cross the neighborhood scheme in the

upper level, once we only analyzed the cases where we move s cells to one. We can understand it

better with a simple example. Imagine that we choose s = 2 with the following neighbor scheme

N s = {n−1,n,n+1}. Each supercell will be reduced to one cell in the upper level, where its

neighborhood is the same. As we discussed later our procedure is to build Ẽ from E h. Now, in case

we have h > 2 the excitation can leave the supercells n±1. In this case our procedure will fail,

since the transition function in the upper level only interact inside N = {n−1,n,n+1}. Then,

if we allow h > s we can have an emergent structure with non-local operators, out of the PCA

definition.

As before, we can summarize our general procedure in the scheme below.

Φ̃T
Ẽ→ Φ̃T+1(5.12)

ΛN/s
CG

↑ ↑ΛN/s
CG

Φs
t

E h

→ Φs
t+h

where N/s = |N s|.
At this moment it is important we show some characteristics of the ΛCG employed in this

model. Understanding better this map we can also understand better about the physical process.

From Eq.(5.6) and from the fact that we worked with the same number of subcells in both levels,

n′ = n we have that ΛCG ∈Zn×sn. What we are saying is that ΛCG belongs to the space of n× sn

matrices, where their elements are either zero or one. From here we can already see that this map

is not injective, thus there are different states in the lower level that give to us the same state on

the upper level. Physically speaking, there are different microscopic states that corresponds the

same macroscopic state. Moreover, there is another important characteristic of this map which is

a consequence of the physical interpretation that we are using in our investigations. Since we

are interpreting the value one in the subcells as the existence of one particle, or excitation, and

zero as an empty cell, and as the number of particles is preserved during the evolution, we only

74

5.2. COARSE GRAINING OF PCA

allow one value different of zero in each column of ΛCG(n, s). Otherwise, we will get maps that

increase the number of particles after we coarse grain, which also can lead to dynamics in the

upper level that does not conserve the number of particles. From here we can already see the

number of possible CG maps NCG given the supercell size s and the number of subcells, n. From

the fact that we only can have a single one value in each column of ΛCG , there are n+1 possible

entries for each column. We added one since there are also cases only with zeros. Thus, as we

have sn columns we get (n+1)ns possibilities. However, we will exclude the trivial map, which is

the case of a map with only zeros, then,

(5.13) NCG(n, s)= (n+1)ns −1,

where like the previous results we can see that the map also increase exponentially in terms of s.

In this work, we will only report the results for the CG maps that take two and three cells,

s = 2,3, to one. In addition, we will explain how to get the CG for a two-dimensional lattice where

the particles can collide. Then, this procedure gives the prescription to apply our method to the

HPP, chap.(2). The extension for more dimensions as well as for different values for s can be done

naturally.

The last point that we should notice when we attempt to get the CG in the deterministic

cases is the number of possible connections between the lower and upper level. We are aware that

there are n! permutation matrices for n subcells. Moreover the PCAs will be kept with the same

structure, in the lower and upper level (the same neighborhood scheme and the same number

of subcells). Thus, from each initial dynamics E (Swap,π(i)) there are n! possible deterministic

dynamics in the upper level Ẽ (Swap,π(j)). Then, in the end, we get (n!)2 possible links between

the lower and the upper level. We adopted the word "link" to say that we have connections

between the lower and upper level. In case we have more than one CG map connecting the same

rules between these two levels we will say that there is just one link. The number of links, where

the biggest value is (n!)2, give us the number of different rules connected between the lower

and upper level. This fact will be important in our results analyses, either for quantitative or

qualitative understanding.

5.2.2 Deterministic CG results for one-dimensional PCA

5.2.2.1 Spatial coarse-graining

In this first part we will show the results for the case where we apply the transition function only

once before we coarse grain the lower level E h, h = 1.

75

CHAPTER 5. EMERGENT PHENOMENA

Two cells, s= 2, to one cell: Our starting point is n = 2, for a case where we map two cells to

one. As we previously mentioned, in this case we only have two different permutation matrices,

π(1) =
(
1 0

0 1

)
,

π(2) =
(
0 1

1 0

)
.

Then, working only with σ1 =Swap as the local interaction operator, we have only two determin-

istic transition function E
(
Swap,π(1)) and E

(
Swap,π(2)).

Despite the fact that we have four possible connections linking the levels, we got only one

connection E
(
Swap,π(1)) to Ẽ

(
Swap,π(1)) with the CG map given by

(5.14) ΛCG =
(
1 0 0 0

0 0 0 1

)
.

First, let us understand these dynamics better, which are the same in the upper and lower level.

Thus, we will confirm that they obey the constraints imposed by our CG procedure and finally, we

will show the two possible ways to establish the PCA in the upper level.

The dynamics generated by E
(
Swap,π(1)) is a particle that keeps confined in two cells, going

back and forward between them,

· · · , (0,1)1 (0,0)2 , · · ·
E (Swap,π(1))

� · · · , (0,0)1 (1,0)2 , · · · .

In case we have started with the particle in the first (second) subcell in the cell one (two), the

particle will go to the cell zero (three), but what is important here is that the dynamics will be

the same, wherever the point we start.

Now let us compose our supercell putting the cells i and i+1 together. Then applying our CG

map (5.14) before the transition function

Λ3
CG

[{
(0,0)−1 (0,0)0

}
,
{
(1,0)1 (0,0)2

}
,
{
(0,0)3 (0,0)4

}]
,

we get

(5.15) (0,0)0 , (1,0)1 , (0,0)2 .

Now we apply the transition function in the same initial state

E
[{

(0,0)−1 (0,0)0
}
,
{
(1,0)1 (0,0)2

}
,
{
(0,0)3 (0,0)4

}]
= {

(0,0)−1 (0,1)0
}
,
{
(0,0)1 (0,0)2

}
,
{
(0,0)3 (0,0)4

}
.

and afterwards our CG map,

(5.16) (0,1)0 , (0,0)1 , (0,0)2 .

76

5.2. COARSE GRAINING OF PCA

Now from the results (5.15) and (5.16) we can easily check that they are connected by Ẽ
(
Swap,π(1))

in the upper level. Starting with the other three initial conditions in the supercell the upper level

is always connected by Ẽ
(
Swap,π(1)). These sum up the scheme written in (5.12) which is true

for all times.

Now we can move to the computational task to get these results. There are two alternatives

to deal with this problem. We can either fix the transition function in the lower and upper level

and then we search for a CG map that connects both levels or we can fix the transition function

in the lower level and a CG map and then we look for a transition function in the upper level. Let

us show the idea using this last procedure. Beginning with the following state φ2
t ∈Z4

2 ×Z4
2 ×Z4

2

for three supercells for n = 2,

φ2
t =



04

1

0

0

0

04


,

where the subscript 4 means that we have a vector composed only by four zeros

04 =


0

0

0

0

 .

As the next step we apply the CG map showed in Eq.(5.14), which is a 2×4 matrix in this state,

thus


ΛCG

ΛCG

ΛCG





04

1

0

0

0

04


=



0

0

1

0

0

0


= φ̃T ,

where φ̃T corresponds the state with only three cells after the coarse-grained φt. All matrices

that act into states in the upper and lower level are diagonal and are composed by block matrices.

Now we return to φ2
t and then we apply the transition function,



1

Swap

Swap

Swap

1





π(1)

π(1)

π(1)

π(1)

π(1)

π(1)





04

1

0

0

0

04


=



0

0

0

1

04

04


=φ2

t+1,

77

CHAPTER 5. EMERGENT PHENOMENA

where the ones in the matrix that contains the Swap operator means that we are not applying any

operator in the boundaries, since the action in these points will always be trivial. Subsequently,

we apply the CG map in the state φ2
t+1,


ΛCG

ΛCG

ΛCG





0

0

0

1

04

04


=



0

1

0

0

0

0


= φ̃T+1.

Now from φT and φT+1 we can start to see if there exists some transition function in the upper

level. Since we are looking for a permutation operator in the upper level that connects these two

states, we can parameterize the first operator as follows,

π(x) =
(

p q

q p

)
,

where x = 1(2) if p = 1(0) and q = 0(1). Now we can apply the transition function using, π(x) to

start to build a linear system to solve,


1

Swap

Swap

1



π(x)

π(x)

π(x)





0

0

1

0

0

0


=



0

1

0

0

0

0


.

From this simple case we will get p = 1 and q = 0. However, it does not guarantee that we have

a PCA in the upper level. We have to do this same procedure for all different states inside the

supercell. Then, if we get p = 1 and q = 0 for all different initial conditions for all φs
t and Θs

t that

are distinct PCA states at time t, such that ΛN/s
CG

(
φs

t
)=ΛN/s

CG

(
Θs

t
)

and say that we have a PCA in

the upper level with Ẽ (Swap,π(1)) as its transition function.

One of the main characteristics of our results is that we rarely established maps that preserve

the number of particles. For instance, applying this map either in
{
(0,0)1 , (1,0)2

}
or

{
(0,1)1 , (0,0)2

}
we get (0,0). In fact these results are expected for us. Once we are reducing our space we expect

some information loss, where in this case the information is the number of particles. This also

can be understood from a physical point of view.

Now we move to the case where n = 3. In this case there are six different permutation matrices

that we will list here,

78

5.2. COARSE GRAINING OF PCA

π(1) =


1 0 0

0 1 0

0 0 1

 ; π(2) =


1 0 0

0 0 1

0 1 0

 ;(5.17)

π(3) =


0 1 0

1 0 0

0 0 1

 ; π(4) =


0 1 0

0 0 1

1 0 0

 ;

π(5) =


0 0 1

1 0 0

0 1 0

 ; π(6) =


0 0 1

0 1 0

1 0 0

 .

In this scenario we achieved twelve connections from all the thirty six possible ones, one third of

all possible connections. These links were made by only eight distinct CG maps,

ΛCG1 =


1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1

 ; ΛCG2 =


0 0 0 0 0 0

0 1 1 1 1 0

0 0 0 0 0 0

 ;

ΛCG3 =


0 0 0 0 0 0

0 1 1 1 0 0

0 0 0 0 0 0

 ; ΛCG4 =


1 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

 ;

ΛCG5 =


0 0 0 0 0 0

0 0 1 1 1 0

0 0 0 0 0 0

 ; ΛCG6 =


1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 1

 ;

ΛCG7 =


0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 1

 ; ΛCG8 =


1 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

 .

These results are summarized in figure (5.4).

Moving forward we got results for n = 4. In this case from (4!)2 = 576 permutation matrices

we established 218 connections which represent almost 38 percent of all possible links. Our last

result for this case, s = 2 and h = 1, is with n = 5. Once again we could see more relative links

showing up. Now from 14400 we got 6628, more than 46 percent of cases. Then we could see,

until here, that the relative number of links increases with the number of subcells.

Three cells, s= 3, to one cell: We again started with n = 2. Our results for this case, where

now we have CG maps from three to one cell, in terms of their dynamics, are exactly the same that

we got before, from two to one cell. We established one link between the same transition functions

E
(
Swap,π(1)) to Ẽ

(
Swap,π(1)), where the CG map is only an extension from the previous case

(5.18) ΛCG =
(
1 0 0 0 0 0

0 0 0 0 0 1

)
.

79

CHAPTER 5. EMERGENT PHENOMENA

Figure 5.4: CG results with s = 2 and n = 3. These arrows are connecting the CA dynamics after the CG
maps.

Now with n = 3 we got eight links from the thirty six possibilities. These connections are given by

seven CG maps

ΛCG1 =


1 0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 1 0

0 0 0 0 0 0 0 0 1

 ; ΛCG2 =


0 0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 1 0

0 0 0 0 0 0 0 0 0

 ;

ΛCG3 =


0 0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 0 0

0 0 0 0 0 0 0 0 0

 ; ΛCG4 =


1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

 ;

ΛCG5 =


0 0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 0 0

0 0 0 0 0 0 0 0 0

 ; ΛCG6 =


0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1 0

0 0 0 0 0 0 0 0 0

 ;

ΛCG7 =


1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1

 .

The results are illustrated in figure (5.5). With four subcells we got 202 links and with five

subcells 6286, which represent approximately 35 percent and 44 percent respectively of all

possible connections.

80

5.2. COARSE GRAINING OF PCA

Figure 5.5: CG results with s = 3 and n = 3.

5.2.2.2 Spatial and temporal coarse-graining results

Two cells, s= 2, to one cell: Now we will allow change the time scale by working with different

values of h in the lower level Eq.(5.8). As we are in the case of s = 2 the only value allowed for h

in this case is h = 2.

Starting with n = 2 we did not get any link between the lower and upper level. Working with

n = 3 we got eight links from six different maps

ΛCG1 =


0 0 0 0 0 0

0 1 1 1 0 0

0 0 0 0 0 0

 ; ΛCG2 =


1 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

 ;

ΛCG3 =


0 0 0 0 0 0

0 0 1 1 1 0

0 0 0 0 0 0

 ; ΛCG4 =


0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 1

 ;

ΛCG5 =


1 0 0 0 0 0

0 1 1 0 0 0

0 0 0 0 1 1

 ; ΛCG6 =


1 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1

 .

These are fewer connections and maps than we established with h = 1. These results are summed

up in Fig.(5.6). Moving to n = 4 we got 172 results which represent almost 30 percent of the

possible connections and finally with n = 5 we established 5912, that is approximately 46 percent

of the total possible links. Although these relative numbers are smaller than the case we achieved

81

CHAPTER 5. EMERGENT PHENOMENA

Figure 5.6: CG results with s = 2 and n = 3.

with h = 1, it is important to notice that these results are still increasing with the number of

subcells.

Three cells, s= 3, to one cell: Now we can work with the two values for h, h = 2 and h = 3,

since s = 3. Let us start showing the results for h = 2. With n = 2 we did not get any result, but

with n = 3 the results are summarized in Fig.(5.7). In this case we only got four different maps

Figure 5.7: CG results for s = 3 with h = 2 and n = 3.

82

5.2. COARSE GRAINING OF PCA

ΛCG1 =


0 0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 0 0

0 0 0 0 0 0 0 0 0

 ; ΛCG2 =


0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1 0

 ;

ΛCG3 =


0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1 0

0 0 0 0 0 0 0 0 0

 ; ΛCG4 =


0 1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1

 ;

and again comparing with h = 1 we got fewer links. With n = 4 we have 152 connections and

finally n = 5 give to us 5516, whose values represents approximately 26 percent and 38 percent

respectively from the total possible links.

Now we move to the last value, h = 3. First with n = 2 we just recover the result for h = 1.

It means that after we apply three times the transition function is equivalent to h = 1, E 1 = E 3.

With n = 3 although we found only few a links, they are different from the case we got applying

the transition function just once. Different from the previous cases, here we got four CG maps

for four links, as we can see in Fig.(5.8). Going to the case of four subcells we established 174

Figure 5.8: CG results for s = 3 with s = 2 and n = 3.

connections, approximately 38 percent and with five subcells, 6108, more than 42 percent. While

the number of links for n = 3 is smaller than what we got for h = 2, with four and five they become

larger.

5.2.2.3 Overview of deterministic results

From all these results that we got from deterministic dynamics in the lower level to deterministic

in the upper one we could see that we did not establish all possible links for each value n explored.

However, we could see these relative links increasing, as we can see in Fig.(5.9) for s = 2 and in

83

CHAPTER 5. EMERGENT PHENOMENA

Fig.(5.10) for s = 3. Should we expected all links showing up for some number of subcells? In fact

Figure 5.9: Relative links from the case that we are going from two cells to one cell, afterwards we apply
our CG map.

Figure 5.10: Relative links from the case that we are going from three to one cell, afterwards we apply
our CG map.

this seems quite probable. Let us understand why.

From Eq.(5.13) we know the total number of possible maps given n and s. Besides we are

aware that there are (n!)2 possibly links. Thus, from these quantities we can see that the number

of maps increase faster than the total of links,

lim
n→∞

(n!)2

(n+1)ns −1
= 0,

for a given s. From this brief analysis, we can expect that at some point all links will appear.

Since as we increase the number of subcells the number of maps increase faster than the possible

dynamics. In the end, it means that we are contracting more and more the space. Ultimately,

84

5.2. COARSE GRAINING OF PCA

it implies that we will have more microscopic dynamics that can not be distinguished after the

coarse-graining.

Another observation that we can do at this point is that the links also depends on the values

of h employed. The reason is that there are values for h, the number of times that we have to

apply the transition function in the lower level before we coarse grain the state, that might lead

the particle to stay inside the same initial supercell. In these cases, we will get trivial dynamics

in the upper level, which means particles that do not interact with the neighbors Since we are

not including these possibilities we will get fewer links for these cases.

5.2.3 Non-deterministic CG results for one-dimensional PCA

Now we will search for convex combination of permutations in the upper level starting from some

fixed CA dynamics in the lower level. This is possible as long as we relax some of the constraints

imposed to achieve the transition function Ẽ , in this case, we no longer impose Eq.(5.11). Relaxing

this constraint implies to us that if we have two or more initial states in the lower level going to

the same state after the coarse graining (i.e. different states in the lower level represents the

same state in the upper one), these states in the lower level, afterwards we apply the transition

function, might go to different states in the upper level. Thus, at the end of this process, we can

have different transition functions in upper level.

By comparison with what we saw for the deterministic cases, where there is not more than

one CG map doing the same link, the possibility of the non-deterministic evolution in the upper

level allows us to get different CG maps linking the same dynamics.

The possibility to get different maps from the same link gave us much more maps in com-

parison with the previous results. Moreover, we will only show the results for s = 2 with three

subcells and since the permutation matrices are the same that we worked in the deterministic

cases we will keep the same notation presented in (5.17).

In this section, we will present our results in a different way, since the method employed was

different. We started saying which dynamics we started in the lower level and thus we present all

possible non-deterministic dynamics in the upper level. In this part, we search these dynamics

fixing the CG map and looking for emergent dynamics.

5.2.3.1 Spatial coarse-graining results

Likewise deterministic results, spatial CG means h = 1.

• π(1) : working with π(1) in the lower level we found seven maps, for example

ΛCG =


0 0 0 0 0 0

0 1 1 1 1 0

0 0 0 0 0 0

 ,

85

CHAPTER 5. EMERGENT PHENOMENA

that give in the upper level the follow convex combination for the operator related with the

first tiling,

(5.19) σ0 = p1π
(1) + p6π

(6),

where p1, p6 ≥ 0 and p1 + p6 = 1. We also got a convex combination for the operator related

with the second tiling σ1,

(5.20) σ1 = q112 + q2swap,

where q1, q2 ≥ 0 and q1 + q2 = 1 and 12 is the identity operator. Putting this last part in

words it says that with probability q1 the particle will stay in the same cell and with

probability q2 the particle will leave the cell.

• π(2) : for this case we only got one non-deterministic case in the upper level,

(5.21) ΛCG =


0 0 0 0 0 0

0 0 1 1 1 0

0 0 0 0 0 0

 ,

which leads to the same evolution that we got in Eq.(5.19), except that now π(1) remains

the same.

• π(3) : like the result for π(2) we got only one map,

(5.22) ΛCG =


0 0 0 0 0 0

0 1 1 1 0 0

0 0 0 0 0 0

 ,

for the same dynamics in the upper level, (5.19) for the first operator and swap for the

second.

• π(4) : alternatively for the previous cases the upper level, whose the CG map is given by

ΛCG =


1 0 0 0 1 0

0 0 1 1 0 0

0 1 0 0 0 1

 ,

has a deterministic operator for σ0 that is π(5), but the second operator has the follow

format,

σ1 = 1
2
12 + 1

2
swap.

Thus we have 1/2 as the probability of stay or leave the cell.

86

5.2. COARSE GRAINING OF PCA

• π(5) : once again we got a deterministic evolution for the first operator in the upper level, but

now the permutation is π(4). Coincidentally with the result achieved for π(4) both the CG

map and the σ1 operator are the same. In fact, doing a careful analysis of these permutation

operators, π(4) and π(5), we can see that they are related by a transposition transformation,

(π(4))T =π(5), then this result, in fact, is expected.

• π(6) : finally for our last permutation operator we established three different maps, for

instance

ΛCG =


0 0 0 0 0 0

0 1 0 0 1 0

0 0 0 0 0 0

 ,

connecting the same dynamics got for π(1), (5.19) and (5.20).

5.2.3.2 Spatial and temporal coarse-graining results

Now we present the results established for h = 2.

• π(1) : again we established the same dynamics for π(1) with h = 1, (5.19) and (5.20). However,

now there are 63 CG maps doing the same, for instance

ΛCG =


0 0 0 0 0 0

1 1 1 1 1 1

0 0 0 0 0 0

 .

• π(2) : we keep with the same dynamics achieved in the previous result, but there is only one

map (5.22).

• π(3) : like for the two previous cases, we achieved the same non-deterministic transition

function in the upper level with (5.21) as our CG map.

• π(4) : we could not established any dynamics in the upper level from this deterministic PCA.

• π(5) : as we have already commented that the dynamics generated by π(4) and π(5) are quite

similar, we replicated the last result, non dynamics were established in the upper level.

• π(6) : now we established three CG maps for only one dynamics, the same one that we have

seen for h = 1.

These last results either for h = 1 or h = 2 here a strong physical meaning, as we will see

now. The dynamics generated by Eq.(5.19) with a swap operator related with the operator for the

second tiling gives the Brownian motion, as we saw in chapter 3, Eq.(3.3). Thus, this discrete

87

CHAPTER 5. EMERGENT PHENOMENA

equation of motion, as we saw in chapter 3, is the one that gives a stochastic partial differential

equation in the continuous limit,

∂tρ+D∂2
xρ = 0.

We could see from these last results that this dynamics showed up repeatedly. Now let us to try

to understand the main reason for that.

In the lower level, we had particles with a deterministic behavior. However as we have seen

the dynamics of these particles are strongly related to their initial condition. For example, in case

we have E
(
Swap,π(6)) we will see particles propagates either to the right or to the left, depending

on its initial condition. In our procedure we have to include all initial conditions and after we

take the average of them. Then, despite the fact that these particles have deterministic behavior,

in the upper level our detector do not have access to its information and in the end the process

looks like random to us.

Moreover the differential equation that we got afterwards we took the continuum limit is

described in relation to density of particles. Then, we can also think that we had a bunch of

particles in the lower level with a really well defined behavior. However, after we put all together

our sensors could not describe the dynamics of each particle individually, where their behavior

now look like random for us.

5.2.4 CG in Zd for multiparticles with or without interaction

In all examples and results presented until now, we only have considered the dynamics of only

one excitation. A natural question is if our prescription works for more than one particle. There

are two cases that we need to consider, the case where the particles can interact and the case

they can not.

Let us start with case where the particles do not feel any interaction. In this scenario our

prescription already works. It is because in this case the particles are acting independently of

each other. Then it means that we can get our results for only one particle and apply the same

maps for multiparticles CA. This can be done as long as we take only the CG maps that have only

one element nonzero per row. Let understand better this constraint. We have already explained

the reason that we do not accept more than one value different from zero in each column, however,

we did not say anything about the rows. For the cases of only one excitation there is not any

restriction, however for the cases that we have more than one particle the restriction gave for

the columns have to be put for the rows. Otherwise, we can get more than one particle in each

subcell, which is not allowed in our model.

In case we have more particles and they can interact we should take a special attention. To

understand the general prescription for this case, let us focus in the example for a two dimen-

sional lattice and n = 4, where the neighbor scheme is {(x, y−1), (x−1, y) , (x, y) , (x+1, y) , (x, y+1)}.

Imagine that we have only two particles and we want to get a CG for s = 2 and h = 1. In this

example we only have to include two neighbors in all directions, as we can see in Fig.(5.11), since

88

5.2. COARSE GRAINING OF PCA

applying the transition function once, h = 1, does not allow the particle arrives in any other

supercell. In order to get the CG map we need to consider all different initial conditions inside

the supercell, which gives

(5.23)

(
8

2

)
= 8!

(8−2)!2!
,

different possibilities for the initial condition with two particles. Two distinct cases can be viewed

in Fig.(5.11).

Figure 5.11: CG in a two dimensional lattice with s = 2. These figures show two distinct cases for initial
condition when we have two particles. As in this example our supercell has size two and we are only
working with CG in space we do not have to include more neighbors.

Despite the fact we are in the scenario of two particles, in many situations they can be far a

way from each other. Therefore we also need to consider all cases with only one particle in this

procedure, adding up more eight cases to this example. After we include all these possibilities for

the initial condition we apply the same procedure showed before, for one single excitation. We

89

CHAPTER 5. EMERGENT PHENOMENA

do not have to include the cases where we have one particle inside the supercell of center and

the other in some neighbor supercell since the particles will not interact in one single step. Thus,

these cases are equivalent to more particles without interaction. Besides, after we presented a

new way to deal with many particles, in the end of this section, where we increase the lattice

dimension, the reason that we do not have to consider the initial condition where there are

excitations inside the neighbors supercells will become even more clear.

If we include more particles we need to include more initial conditions, however there is a

limit for these inclusions, whose value is given by the supercell size and the number of subcells,

sn. The argument that we do not have to include the cases where there are particles in the

neighbors is the same said for case where the supercell is completely full.

In summary, if we are working with p particles in total, where p ≤ ns, and we want to get a

CG map where the supercell size is s and each cell has n subcells, the number of initial conditions

that we should consider is

(5.24)
p∑

i=1

(
ns

i

)
,

and if we are in the case that p > ns this sum only have to run until p = ns.

Rather than thinking in terms of many particles and therefore concern about the interactions

between them, we can translate it to one particle scenario which is completely equivalent to

multiparticles if we increase the dimension of the subcells. Let us come back to this previous

example where we had two particles in a two dimensional lattice with four subcells. The dimension

related with the subcells is four and it can be spanned by the canonical bases {e0, . . . , e3} where

e0 = (1,0,0,0)
...

e3 = (0,0,0,1) .

The interaction between the particles can be implemented using two distinct permutation

operators acting in a conditional way. Let us understand it better. From Fig.(5.11) we see that the

four subcells were encoded in terms of left, right, top and the bottom part of each cell. We will

represent the left and the right part as e0 and e3 and the top and the bottom part as e1 and e2,

respectively. When the particles are moving freely if we have a particle located at e0,(3) it goes

to e3,(0) and in case of a particle inside e1,(2) it goes to e2,(1). As we can see the dynamics inside

of each cell can be described in terms of a permutation operator, which we will call by π1. This

operator cover all cases that we have one particle and the cases that we have two particles, except

two particular cases e0 + e3 and e1 + e2. These two last cases are the ones that represents the

particles with opposite direction in the same cell, thus we want to see interaction between them,

following the HPP collision rule, chapter 2. In these configurations we have the action of π2 as

90

5.2. COARSE GRAINING OF PCA

the permutation operator, that acts in the following way

π2 (e0 + e3) = e1 + e2,

π2 (e1 + e2) = e0 + e3.

Although we have our operator σ0 being described by two permutation operators, π1 and π2, they

are acting in a conditional way, which means that in the end σ0 is not a permutation matrix.

However, if we increase the internal dimension from four to ten we can do it. The canonical basis

our space now is spanned by {e0, . . . , e9}. If we work only with this first four basis vector, without

any linear combination, is equivalent to the previous case, four subcells with one particle, but

with a larger space

e0 = (1,0,0,0,0,0,0,0,0,0)
...

e3 = (0,0,0,1,0,0,0,0,0,0) .

Now we can take advantage of this larger space to encode the states where we have two particles

in the four-dimensional space. The idea is to create a single excitation in this new space related

with two particles. We can encode it as follows,

(1,1,0,0) → e4,

(1,0,1,0) → e5,

(1,0,0,1) → e6,

(0,1,1,0) → e7,

(0,1,0,1) → e8,

(0,0,1,1) → e9.

Now we can construct σ0 with only one permutation operator that includes the two interaction

cases, which is given by σ0 : e6 � e7. Thus, working with n = 10 in each cell using the correct

permutation operator as the operator for the elements in the first tiling, we can achieve our

CG map working with only one particle as long as we compute all initial configurations. This

number is exactly the same that we have to apply working with n = 4 in the scenario of two

particles. Therefore, this new point of view suggests to us that both formalisms are equivalent.

Furthermore, in this case, it is evident that we do not have to analyze the initial states that

represent the excitation outside the center supercell once we have only this excitation in this

larger space. Thus, this point of view agrees with our claim about do not include particles in the

neighborhood of the supercell.

5.2.5 Final considerations

Similarly to [39] in this work we studied emergent dynamics but in a different scenario of CA.

Differently from the previous results, work with PCA allowed us to get CG maps for different time

91

CHAPTER 5. EMERGENT PHENOMENA

scales. One advantage in choosing this class of CA is its strong connection with physical processes,

for instance the Navier Stokes [32] and Brownian motion chap.(3) can be easily simulated

applying this computation model. Moreover we established two distinct results, links connecting

deterministic CA to deterministic CA and deterministic CA to non-deterministic CA.

Despite the fact that our results suggest to us that all links between the lower and the upper

level will be achieved in the deterministic results, for some high number of subcells, we could

see how difficult it is to get these emergent phenomena, since the total number of CG maps

increases fast in terms of subcells. While we could not observe different CG maps doing the same

connections in the deterministic results it happened very often in the non-deterministic cases, that

can pinpoint to us why the non-deterministic process in the macroscopic world naturally emerge

from well determined individual particle actions, in agreement with the statistical mechanics,

aspect discussed in section 2.3.1.

Taking advantage of this class of automata we saw in the last section that our method can be

easily translated to multiparticles case, where we only have to be more careful when we have

interaction between them.

Going beyond the classical CA, our CG prescription could be useful to its quantum counterpart

which is the core motivation for the results presented here.

92

Part II

Quantum Models of Computation

93

C
H

A
P

T
E

R

6
QUANTUM CELLULAR AUTOMATA

This chapter initiates our study of quantum models of computation. In part I of this thesis

we gave emphasis to cellular automata, showing how powerful this tool is to simulate

complex process in physics. In particular, we showed how we can use this model of

computation to simulate many particles that can collide, chapter 2, and how the partitioned CA

provides a numerical method for differential equations, when we applied it into the random walk

problem and Brownian motion, chapter 3. Besides, in chapter 5, we saw that the CA structure,

constructed in terms of cells and local operators, is an excellent tool to study emergent processes.

These were only a few examples from the vast research activity of the cellular automata theory,

[17, 35, 52, 87].

After the brief discussion above and everything that we saw in the previous chapters about

CAs, one question naturally emerges to us when we move to quantum models of computation:

does the quantum cellular automata (QCA) share the same amount of research activity? Despite

the fact that the first model proposed to the QCA was given by [36] in 1988, that we can say that

is old since the Feynman’s paper was published in 1982 [30], the research activity on QCA is not

even closer to its classical counterpart. We can point out two possible reasons why the QCA was

not widely employed until today. First, we can say that is because the limitation of our classical

computers to deal with quantum particles. We saw that CA is really powerful to deal with many

particles, complex systems, problems with many degrees of freedom and so on. Thus, if we try to

convert all these problems to their quantum counterparts we might face the limitations that our

classical computers have. Moreover, if we try to use the current quantum computers available it

will not help us because the number of qubits still limited. Thus, it might not motivate people to

try to explore this model. The second possible reason is that the current QCA definitions might be

not so clear, avoiding people use this model of computation to their problems. If we look carefully

95

CHAPTER 6. QUANTUM CELLULAR AUTOMATA

the majority of publications until today about QCA, we will conclude that there are more results

proposing definitions to QCA [36, 48, 57, 80],which in the end were shown to be equivalent [4],

than results applying QCA to investigate physics [23].

After all this study we did, after we have seen how CA is useful to address different classes of

problems, from biology to physics, we believe that its quantum counterpart deserves a special

attention. It is quite possible that if we develop more this model of computation, bringing a

new understanding, the QCA will be as useful as its classical version in a near future. We are

convinced that with a clear QCA definition and after we see how to use them in practical problems,

QCA will be a quantum computational tool widely explored to distinct areas, likewise its classical

counterpart. The main proposal of this chapter is to introduce a new QCA definition and apply it

to two basic scenarios. This new definition served as the basis for our new result presented in the

next chapter, a result that translates the main quantum walk flavors, like the coined model [1],

in terms of QCA.

6.1 Previous QCA models

Instead of starting this chapter writing our QCA definition, we will first make a few comments

about some previous attempts and definitions of QCA.

Grössing and Zeilinger were the first that have tried to formalize a QCA [36]. Their focus was

in the attempt to define an infinite one dimensional QCA. As we expect when we are dealing with

closed quantum systems, the update of their automata was given by an unitary operator, which

was a band-diagonal operator U . Then, if we have
∣∣ψt

〉
being the vector state that describes our

automata in the time t, the vector state of our automata in the time t+1 is
∣∣ψt+1

〉
in such a way

that U
∣∣ψt

〉= ∣∣ψt+1
〉
. To be more precise, their formal definition was

Definition 6.1. [Grössing-Zeilinger QCA]. A Grössing-Zeilinger QCA is a 3-tuple (L,H ,U)
consisting of:

1. an infinite one-dimensional lattice L ⊆Z representing basis states of H ;

2. a Hilbert space H with basis set
{∣∣φi

〉}
;

3. a band-diagonal unitary operator U ;

The band-diagonality of U corresponds to a locality condition. It turns out that there is no QCA

with this definition with nearest-neighbor interaction and nontrivial dynamics [36]. Furthermore

here the unitarity constraint is relaxed to only approximate unitarity, let us see some of these

details with little more attention. They constructed a band-diagonal unitary operator from the

96

6.1. PREVIOUS QCA MODELS

following Hamiltonian

H =



. 0

δ∗ 0 δ

δ∗ 0 δ

δ∗ 0 δ

0
.


,

where δ ∈C and |δ|¿ 1. If we also consider small enough times steps we can construct a band-

diagonal unitary from the following approximation

(6.1) U = e−iHt/~ ' 1− iHt/~.

Now we can understand better why this QCA definition leads us to some problems. We wish that

in a model for QCA even for small or large number of steps the QCA be well defined. But clearly,

even for a small time steps, Eq.(6.1) only represents a unitary evolution for small values of δ. For

larger values of δ, other matrix elements farther off the diagonal would have to be nonzero in a

very specific way to preserve unitarity. This would imply nonlocality, where the nonlocality here

means that we can have interactions between distant cells.

Another try was the QCA defined by Watrous in [80], who made a deep research in the one-

dimensional case. His first model can be viewed as direct quantization of a CA where at each step,

instead of having only one configuration as in the ECA case, he worked with a superposition with

several possible configurations. In this model he had problems with his definition of the transition

function, in such a way that it would be represented by a nonunitary evolution, therefore problems

like norm preservation turned up.

Given this previous problem, Waltrous developed a second model, in such a way that only

after we apply two operators in the QCA we have a one time step in his automata [80]. In fact,

his second version can be thought as a quantization of the partitioned CA. In his second model,

he fixed the number of subcells being equal to three. The first operation that he defined was

inside of each cell. In this operation from a initial state, we get the amplitude of probability to

get all possible configurations. Then, the second and the last operation, before the automaton

updates to the next time, is between the left and right neighbors of each cell, in such a way that

it preserves the movement direction of some excitation, as we have done in the classical case.

Actually, this last operation is divided in two parts, the first that interacts the boundary cells

between neighbors and the last that only does a permutation between the left and right cell from

the same cell. In Fig.(6.1), we illustrated this last operation in just one step.

97

CHAPTER 6. QUANTUM CELLULAR AUTOMATA

Figure 6.1: In this figure we illustrated the second part of the transition function proposed by
Watrous. Each cell localized in position n ∈ Z has three subcells. First the excitation goes from the
right (left) to the left (right) internal cell in the left (right) neighbor, after we have to apply a per-
mutation operation, p, between the left and the right internal cells, in such a way that we have
pa (n, t) = (al (n−1, t) ,am (n, t) ,ar (n+1, t)), where a (n, t) denotes the state of the cell indexed by n at
the time t. The arrow in the figure indicates the final position of the excitation afterward we had applied
these two parts of the same operation.

Although the QCA proposed by Watrous does not lead to any problem, neither nonlocality

nor nonunitarity, its QCA structure is difficult and was not generalized to higher dimensions.

Perhaps because of that, we did not see any application of this model so far.

As a final example of previous QCA definition, we will present the QCA proposed by Pérez

and Cheung in [57], the main QCA model that inspired us in our new definition to quantum

cellular automata. Like the other previous QCA models in [57], they were concerned in try to

establish a natural extension of a classical CA, which can recover the classical CA behavior under

reasonable assumptions.

Like Watrous the first step in their quantization of CA was to change the state space of a

cell to reflect a quantum system. With this focus they could convert the alphabet of cellular

automaton, Σ, into orthogonal basis states of a Hilbert space to every cell x ∈ L, with L = Zd,

assigned HΣ with the span of {|x〉 , x ∈Σ}. They also had to quantize the standard classical CA

update rule. Then they replaced the classical cell update rule for a quantum analogue that acts

on the Hilbert space.

Until here they got that their quantum cell update rule was given by a unitary operation with

two restrictions:

• The operator must act on a finite subset of the lattice. Precisely,

(6.2) Ux : H (Nx)→H (Nx) ,

where Nx =N + x ⊆ L is the finite neighbourhood about the cell x.

98

6.1. PREVIOUS QCA MODELS

• The operator must commute with lattice translations of itself. Precisely, they require that

(6.3)
[
Ux,Uy

]= 0,

for all x, y ∈Zn.

Until this moment in their quantization, they were closer to Wolfram’s classification CA

scheme. We can see this proximity when we analyze Ux closer. In Eq.(6.2) we can see that Ux is

acting on cell x and in its entire neighborhood Nx in order to update cell x, in the same spirit

that the transition function showed in (2.1). Thus, moving to another point y, for instance, a

neighbor cell of x there is also an operator Uy that will update this cell, that also operates in its

entire neighborhood. Therefore, there will be cases where Nx ∩Ny 6=∅. These cases are not a

problem to the classical CAs, in particular to the ones proposed by Wolfram the CA class that we

are considering in this moment, since in classical computer architectures we can use two lattices

in memory: one to store the current values of all points of the current CA state, and one to store

the computed updated values. However, here we are thinking in terms of quantum architectures,

where do a copy of the current CA state is forbidden [86] by the no-cloning theorem1. The

way that they overcome this problem for quantum architectures was imposing the commutation

relation (6.3). Then with this condition the operators Ux, x ∈Zn can be applied in parallel without

the need to consider the ordering of the operators, allowing to apply them simultaneously. At this

point, they become closer to the partitioned CA, since the operators can be applied simultaneously

without the necessity of reading the state first.

In principle the global evolution of their QCA could be described as

(6.4) U =∏
x

Ux,

whose action on the lattice is well-defined. However, as we know from [36], the authors argue that

except for the trivial case, strictly local, unitary evolution of the whole QCA array is impossible

(afterwards, in [48] David Meyer proved what they had claimed and called it a No-go lemma).

Thus, if we try to use Eq.(6.4) to update the QCA state we can only establish trivial dynamics.

They could solve this problem by introducing another unitary operator which acts independent

from the first. Therefore, there are two unitary operators as a update rule in QCA [57]. The first

operator, corresponding to the read operation, the one defined in (6.2). The second operator, Vx,

x ∈ L, corresponds to the update operation, and will only act on the single cell x.

Then, they established the following global update rule

E =VU =
(⊗

x∈L
Vx

)(∏
x∈N

Ux

)
,

1This theorem says that there is no acting of H ⊗H unitary operator U such that for all
∣∣ψ〉 ∈H ,

U
(∣∣ψ〉⊗|e0〉

)= ∣∣ψ〉⊗ ∣∣ψ〉
,

where |e0〉 = [1,0,0, . . . ,0,0].

99

CHAPTER 6. QUANTUM CELLULAR AUTOMATA

which is space-homogeneous and has a well-defined action on the lattice.

We can now present a formal definition of the QCA model proposed in [57].

Definition 6.2. [Pérez and Cheung QCA] A Quantum Cellular Automata is a 5-tuple (L,Σ,N ,U0,V0)
consisting of:

1. a d-dimensional lattice of cells indexed by integers, L =Zd;

2. a finite set Σ of orthogonal basis states with HΣ = span({|σ〉}σ∈Σ). To each cell we assign a

copy of HΣ;

3. a finite neighborhood scheme N ⊆Zd;

4. a local unitary read function V0 : (HΣ) 7→ (HΣ);

5. a local unitary update function U0 : (HΣ)⊗N 7→ (HΣ)⊗N .

As before the update operation carries the further restriction that any two lattice translations

Ux and Uy must commute for all x, y ∈ L.

We only presented three previous models, but there are more and we can find the main

different definitions to QCA in [83]. Although there are many QCA models proposed, in the end

some of these definitions were proved equivalent [4].

In this section, we gave emphasis to the model proposed by Perez and Cheung. The main

reason is that it was this model that guided us to proposed our QCA definition. After we had

employed the definition given in [57] into some examples we returned to the classical theory of

CAs to see which one corresponded to the quantization obtained in [57]. We concluded that the

block CA and the partitioning CA, the ones proposed by Toffoli and Margolus [76], were the closest

models that should be quantized to get [57]. We also realized that doing a right quantization of

these CA classes we also could lift the restriction given by (6.3), since in their evolution scheme we

can avoid overlap between the operators that compose their transition functions, as we explained

in chapter 2. The fact that the transition function of these CA classes is divided in two operators

also helped us to see that these models would be a good candidate to the quantization since it

would allow us to get a quantum version with a non-trivial evolution, thus avoiding the No-go

lemma mentioned above. Then, after we have a better idea from the main classical and quantum

definitions of cellular automata we tried to join the main characteristics of the partitioning and

block CAs to proposed our definition to partitioned cellular automata, chapter 2. We notice that

from our PCA definition there is more access to complicated geometries and dynamics since

we are not restricted to only two operators at each time step. Moreover, we also realized that

the quantization of our PCA definitions would be more natural, without imposing too many

restrictions. Given that we move forward and we propose our quantum version for PCA, that we

called by partitioned unitary quantum cellular automata (PUQCA).

100

6.2. PUQCA

6.2 PUQCA

As we explained in the last section, the QCA definition that we will present here is established

directly from the quantization of the partitioned cellular automata presented in chapter 2,

definition (2.1). We followed the same spirit of the quantization given in [57], which are the

conversion of the alphabet Σ of each cell into a Hilbert space HΣ and the replacement of the

classical transition function E for a quantum analogue that acts on the Hilbert space. Therefore

the main structures of the PCA definition showed in chapter 2 remain the same here, like the

tiling concept and the partition of each cell into n subcells generating, as before, a finer description

for the space where the automaton is defined – be it a lattice or the more general case of a graph.

After all this review and discussion we are ready to define our partitioned unitary quantum

cellular automata.

Definition 6.3 (PUQCA). A Partitioned Unitary Quantum Cellular Automata is a 5-tuple

(L,N ,Σ, {Ti} , {Wi}) consisting of:

1. a d-dimensional lattice of cells indexed by integers L =Zd;

2. a finite neighborhood scheme N ⊆ L;

3. a finite set Σ of orthogonal basis states with HΣ = span{|σ〉σ∈Σ}. Each cell is divided in n

subcells, and to the i-th subcell we assign a copy HΣi of HΣ. The total space associated to

each cell is then HΞ =⊗
i∈{0,...,n−1} HΣi ;

4. a finite set of tilings {Ti}N−1
i=0 . Each tiling is the union of identical non-overlapping tiles,

Ti =⋃
j T(i)

j , with each tile T(i)
j containing only subcells of neighboring cells.

5. a set of local unitary functions {Wi}N−1
i=0 . The same unitary Wi is applied to each tile T(i)

j of

the tiling Ti;

With this definition, the transition function E : (HΞ)⊗L 7→ (HΞ)⊗L, which updates the automa-

ton state from the time t to t+1, is the given by

(6.5) E =
N−1∏
i=0

 ⊗
T(i)

j ∈Ti

Wi

 .

As we said the main structures of the PCA are still valid here. Thus, if we have an one-

dimensional lattice where each cell has two subcells and the neighborhood scheme is Ni =
{i−1, i, i+1}, where i ∈ L and its subcells are denoted by i j, with j ∈ {0,n−1} and we want to

evolve our automata by employing two tilings, we can use exactly the same tilings applied in

chapter 2: the first given by T0 =⋃
i∈ZT(0)

i with each tile defined as T(0)
i = {i0, i1} and the second

tiling given by T1 = ⋃
i∈ZT(1)

i , where each tile is given by T(1)
i = {i1, (i+1)0}. But now, instead

101

CHAPTER 6. QUANTUM CELLULAR AUTOMATA

of permutation operators, we apply unitary operators in each tile, where the alphabet of each

subcell was converted to a Hilbert space, thus

W0 :
(
HΣ0

)
i ⊗

(
HΣ1

)
i → (

HΣ0

)
i ⊗

(
HΣ1

)
i

W1 :
(
HΣ1

)
i ⊗

(
HΣ0

)
i+1 → (

HΣ1

)
i ⊗

(
HΣ0

)
i+1 ,

for all i ∈Z. Therefore, in this example we can explicit our transition function as

(6.6) E =
 ⊗

T(1)
i ∈T1

W1

 ⊗
T(0)

i ∈T0

W0

 .

The cell representation presented in chapter 2 is maintained here Fig.(6.2-a), with the permu-

tation operators replaced by unitary operators. In this example, we can notice that while the

operators W0 plays the role of the local unitary function V0, the operators W1 plays the role of the

local unitary update function in the Pérez and Cheung QCA definition.

Figure 6.2: 1-dimensional automaton. In top-panel (a) it is shown how each cell is split in two subcells,
likewise we did in Fig.(2.5), but now in terms of unitary operators Wi. In the bottom-panel (b) it is shown
the same 1-d automaton, but now in the graph perspective. The tiling T0 is represented by the red ellipses,
while the tiling T1 is shown in blue. Figure from [22].

It is interesting to notice that, if we want, we can emulate and use the same structure used

by Waltrous in [80] into our QCA. This can be done by employing three subcells in each cell and

three tilings. In the first tiling T0 each tile is defined as T(0)
i = {i0, i1, i2}, where we have to apply

the operator W0 on each tile. In the second tiling T1 there are two tile structures, the ones that

will allow the interaction between the neighbors cells T(1)
i = {i2, (i+1)0} and the others that do not

suffer interaction in this step, the middle cells in Fig.(6.1), T ′(1)
i = {i1}. We have a Swap operator

being applied in the elements T(1)
i , and an identity operator being applied in the elements T ′(1)

i .

Finally, in order to preserve the movement direction employed in [80], there is an extra tiling T2,

where the tiles are the same ones used in the first tiling T(2) = {i0, i1, i2}. In this part the operator

W2 is just a Swap operator between the subcells i0 and i2.

102

6.2. PUQCA

Although we did not mention in chapter 2, the above definition of the PUQCA, likewise for

the PCA definition, immediately generalizes to QCA over a regular graph G =G(V ,E). In this

situation, the neighborhood scheme is represented by the edge set E, and the tilings are defined

over partitions of the graph G into complete subgraphs – in every tiling all the vertices are

included, and the union of the tilings must contain all the edges. Within graph theory, tilings

are usually called tessellations (see section 7.2). We can see how the one-dimensional example is

represented in the “graph perspective” in Fig.(6.2-b). Another example of a PUQCA in the graph

picture is shown in Fig. (6.3).

Figure 6.3: Graph perspective: 2-dimensional automaton. For the automaton defined over the 2-
dimensional lattice, with four neighbors, each cell is transformed into a complete graph with 4 vertices
(K4). The first tiling is shown in red, with corresponding unitary operation W0 acting only on the subcells
of each cell. The second tiling is depicted in blue, with the unitary operation W1 being responsible for the
interaction between neighboring cells. Figure from [22].

6.2.1 Quantum lattice gases

The main goal here is to show how we can apply the PUQCA to interesting problems in physics,

as we did for the partitioned CA in part I of this thesis. We showed how the Brownian motion

and the random walk problem, chap.(3), are described in terms of the partitioned CA. Then our

idea here is to do the same for the QCA. Having this goal in mind we will see how the quantum

Brownian motion (QBM), usually known as coined quantum walk, can be described in terms of

the QCA. While the problems employed to the PCA belong to the classical lattice gases, the QBM

belongs to quantum lattice gases. The basic principles are the same in both the classical and

quantum cases: one starts with QCA model which describes particles on the lattice. One can then

take the continuous limit of such CA and show that in this limit, the behavior of the CA mimics a

well-know differential equation.

Our strategy now is to take a similar path that we have done in the classical case. We will

start by introducing the quantum version of the Brownian motion and then we will describe the

103

CHAPTER 6. QUANTUM CELLULAR AUTOMATA

QBM problem using the PUQCA, without taking its continuous limit. The continuous limit which

we will analyze here is the one that yields the Dirac equation in (1+1) dimension.

6.2.1.1 Quantum Brownian motion

Based upon the previous literature about the QW [42], we will see that in fact what people usually

call by QW is really the QBM.

Let us define what people usually call by discrete time quantum walk which is our QBM, as

we will see. We will just define the model in one dimension, on the line or the circle. For general

case see [42, 58].

The QBM is described by the tensor product of two Hilbert spaces,

H =HC ⊗HL,

where HL is the Hilbert space spanned by the positions of the particle and HC is a coin-space.

For a line HL is spanned by basis states {|i〉 : i ∈Z}, if we work on a circle of size N we have

HL = {|i〉 : i = 0, . . . N −1}. For HC we take a two dimension coin, which is spanned by two basis

states

(6.7) {|↑〉 , |↓〉} ,

that we can imagine as the states of a spin-1/2 particle.

The conditional translation of the system can be described by the following unitary operation

S : H →H , known as shift operator,

(6.8) S = |↑〉〈↑|⊗∑
i
|i+1〉〈i|+ |↓〉〈↓|⊗∑

i
|i−1〉〈i| ,

where the index i runs over Z in the case of a line. In the case of circle we have 0 ≤ i ≤ N −1

and the operation related with the particle position in S have to change to sum modulo N. As

we can see the S transforms the basis state |↑〉⊗ |i〉 to |↑〉⊗ |i+1〉 and |↓〉⊗ |i〉 to |↓〉⊗ |i−1〉. For

this reason the shift operator presented above is known as the moving, given that basis state

remains with the same coin state. Thus, the walker continues moving into the same direction.

The first step of the QBM is a rotation in the coin-space, by C : HC → HC. The unitary

transformation C is arbitrary and we can define a rich family of QBM with different behaviors by

modifying C. Choosing different operators for C corresponds to choosing different probabilities of

collision with some molecule in the classical BM.

Then we can define the unitary operator U : H → H which acts on the tensor product of

Hilbert space H by

(6.9) U = S · (C⊗ I) ,

where I is the identity matrix that acts in the walker position Hilbert space I : HL →HL.

104

6.2. PUQCA

First we will analyze a balanced unitary coin, called Hadamard coin

H = 1p
2

(
1 1

1 −1

)
.

With this coin we are able to recover, if we measure our state after each interaction, the classical

probability distribution with probability 1/2. The unitary operator Eq.(6.9) takes the following

form

(6.10) U = |↑〉〈+|⊗∑
i
|i+1〉〈i|+ |↓〉〈−|⊗∑

i
|i−1〉〈i| ,

where

H |↑〉 = |+〉 = (|↑〉+ |↓〉)p
2

,

H |↓〉 = |−〉 = (|↑〉− |↓〉)p
2

,

where we are identifying

|↑〉 =
(
1

0

)
, |↓〉 =

(
0

1

)
.

In fact U is the time-evolution unitary operator for this model,

(6.11)
∣∣ψt+1

〉=U
∣∣ψt

〉
.

Now let us apply U successively in the initial state∣∣ψ0
〉= |↓〉⊗ |0〉 ,

where |0〉 = (. . .010. . .)T . We will see the induced probability distribution on the position. From

Eq.(6.11) we have
∣∣ψt+l

〉=U l ∣∣ψt
〉

and then

∣∣ψ1
〉 = 1p

2
(|↑〉⊗ |1〉− |↓〉⊗ |−1〉) ,

∣∣ψ2
〉 = 1

2
[|↑〉⊗ |2〉− (|↑〉− |↓〉)⊗|0〉+ |↓〉⊗ |−2〉] ,∣∣ψ3

〉 = 1

2
p

2
[|↑〉⊗ |3〉+ |↓〉⊗ |1〉+ (|↑〉−2 |↓〉)⊗|−1〉− |↓〉⊗ |−3〉] ,

∣∣ψ4
〉 = 1

4
[|↑〉⊗ |4〉+ (|↑〉+ |↓〉)⊗|2〉− (|↑〉+ |↓〉)⊗|0〉+ (3 |↓〉− |↑〉)⊗|−2〉− |↓〉⊗ |−4〉] .

Evaluating the probability of finding the particle at position i at time t, Pt (i)=
∣∣〈i ∣∣ψt

〉∣∣2, we can

construct, from the states above, a table which gives us the probability distribution evolution,

see figure (6.4). We can see in (6.4) that only until t = 2 we have the same probabilities from

its classical version. At t = 3 we can already see a difference due to the quantum nature of

the system. Furthermore from this initial condition and coin operator the QBM is asymmetric

105

CHAPTER 6. QUANTUM CELLULAR AUTOMATA

Figure 6.4: Walker probability distribution with
∣∣ψ0

〉= |↓〉⊗ |0〉, in the initial state.

Figure 6.5: Probability distribution of the QBM with Hadamard coin and initial state
∣∣ψ0

〉= |↓〉⊗|0〉. The
x-axis gives us the positions while y-axis give us the probabilities associated with the position at t = 100.

with a drift to left. A rather distinct distribution becomes more evident when we observe the

probability distribution after many time steps. In Fig.(6.5) we plotted the case for t = 100. This

asymmetry in the probability distribution, which is evident in Fig.(6.5), arises from the fact that

the matrix H treats the two direction |↑〉 and |↓〉 differently, since H |↑〉 = 1/
p

2 (|↑〉+ |↓〉) while

H |↓〉 = 1/
p

2 (|↑〉− |↓〉). Although H |↑〉 and H |↓〉 lead us to the same probability distribution at

one single walker step, this negative signal in the last equation leave us to more cancellations of

one side in relation to another after many applications of the unitary U. There are two ways to

obtain a symmetric distribution [59]. We can start with the state vector∣∣ψ0
〉= 1p

2
(|↑〉+ i |↓〉)⊗|0〉 ,

since H does not introduce any complex amplitudes, and then |↑〉 will stay real whereas |↓〉 will

be purely imaginary, or we can use a different (balanced) coin, namely

Y = 1p
2

(
1 i

i 1

)
.

This coin treats the right and left direction in the same way.

106

6.2. PUQCA

Working with Y as the coin, in Fig.((6.6)-a) we show the table only for five-time steps and

in Fig.((6.6)-a) we plot the probability distribution after 100 steps, obtained from a computer

simulation.

a) b)

Figure 6.6: Symmetric probability distribution of the QBM.

As the classical BM we can extract the recurrence relation for QBM. Let us do that by choosing

a SU(2) operator

(6.12) C =
(

p q

q p

)
.

with p, q ∈ C respecting the unitarity constraint |p|2 +|q|2 = 1 and p∗q+ q∗p = 0. Thus, if the

state of the system at time t is

(6.13)
∣∣ψ (t)

〉= ∑
i∈L

(
ψ↑ (i, t) |↑〉⊗ |i〉+ψ↓ (i, t) |↓〉⊗ |i〉

)
,

where ψs (i, t)= (〈s|⊗〈i|)
∣∣ψ (t)

〉
with s ∈ {↑,↓} is the amplitude of the walker being located at the

vertex i with ↑ (↓) as its coin state. Then the after we apply (C⊗ I) into the initial state gives,

(C⊗ I)
∣∣ψ (t)

〉 = ∑
i∈L

[(
qψ↓ (i, t)+ pψ↑ (i, t)

)
|↑〉⊗ |i〉

+
(
pψ↓ (i, t)+ qψ↑ (i, t)

)
|↓〉⊗ |i〉

]
.

As the next and last step, in order to update our state to t+1, we apply the shift operator

S · (C⊗ I)
∣∣ψ (t)

〉= ∣∣ψ (t+1)
〉 = ∑

i∈L

[(
qψ↓ (i, t)+ pψ↑ (i, t)

)
|↑〉⊗ |i+1〉

+
(
pψ↓ (i, t)+ qψ↑ (i, t)

)
|↓〉⊗ |i−1〉

]
.

107

CHAPTER 6. QUANTUM CELLULAR AUTOMATA

From this last expression, we can immediately write the recurrence relations that govern the

quantum BM dynamics

ψ↑ (i, t+1) = qψ↓ (i−1, t)+ pψ↑ (i−1, t) ,(6.14)

ψ↓ (i, t+1) = pψ↓ (i+1, t)+ qψ↑ (i+1, t) .

Now, in order to contrast the QBM with the recurrence relations achieved for its classical

counterpart Eq.(3.1), we will get recurrence relations in terms of probabilities. From Quantum

mechanics theory, we know that the Born’s rule yields the probabilities, which for this case are

given by

(6.15) Ps
t+1 (i)=

∣∣〈ψ (t+1)
∣∣ (|s〉⊗ |i〉)

∣∣2 = ∣∣ψs (i, t+1)
∣∣2 ,

where Ps
t+1 (i) with s ∈ {↑,↓} is the probability of the particle being found at position i at time t+1

in the coin state |↑ (↓)〉. Then, putting Eq.(6.14) into Eq.(6.15) we get

P↑
t+1 (i) = |p|2 P↑

t (i−1)+|q|2 P↓
t (i−1)(6.16)

+ pq∗a↑
t (i−1)a↓∗

t (i−1)+h.c,

P↓
t+1 (i) = |q|2 P↑

t (i+1)+|p|2 P↓
t (i+1)

+ pq∗a↑
t (i+1)a↓∗

t (i+1)+h.c,

where as
t (i) are the amplitudes terms of the particle being found at position i at time t in the state

s ∈ {↑,↓}. From these equations above we can see that the two first terms are exactly the same in

Eqs.(3.1), however instead of working with ↑,↓, we worked with r, l respectively. The difference

from the classical BM came from the interference terms, which is the quantum signature of the

problem. In addition, we did two plots for the probability distribution employing two different

values for p. In case we were describing the quantum version of the random walk problem we

would expect both plots to have the same width for different p values concentrated in different

points, similarly to, the results showed in Fig.(3.6). But we do not see this in Fig.(6.7). These

results agree with what we get in Fig.(3.6) since both results are symmetric around the origin.

Besides, the probability distribution is more concentrated around the origin when we employ

small values for p, which strongly suggests to us that p is the probability amplitude associated

with no collision with the water molecules, chapter 3.

Another distinct characteristic of QBM is its propagation speed. The symmetric BM after T

steps has a variance σ2 = T. On the other hand it can be shown that QBM has a variance that

scales with σ2 ∼ T2 which implies that the expected distance from the origin is of order σ∼ T,

see [59]. The QBM propagates quadratically faster.

6.2.1.2 QBM by quantum lattice gases

Like we have done for PCA, we will propose a PUQCA which is capable to simulate the QBM.

To start with this translation our first step is to correspond to a cellular automaton cell each

108

6.2. PUQCA

a) |p|2 = 0.2 b) |p|2 = 0.8

Figure 6.7: Different from the classical BM the highest probability to find the particle is far way from the
origin. However for both cases, QBM and BM the value of |p|2 determines the speed of the distribution of
probability.

walker position i ∈ L. As we can notice the structure here is very similar to what we have done in

the classical case (3.1): a partition scheme in a one-dimensional lattice. Then, each cell has two

subcells, which means now two qubits per cell, i.e., to each cell is assigned a tensor product of

two Hilbert space of two dimensions,

HΣ =HΣ0 ⊗HΣ1
∼=C2 ⊗C2.

These two subcells encode the two orthogonal states of the coin space HC, Eq.(6.7), of the

QBM. Moreover, we will keep with the convention adopted for BM. Thus, instead of labeling

these two Hilbert spaces by 0 and 1, we will denote them by left, (l), and right, (r) respectively

HΣ =HΣl ⊗HΣr . This will allow us keep to the movement interpretation.

Like before we will only work with just one excitation or particle, but now we associate an

amplitude of probability for each cell

(6.17) Ψ (i, t)=Ψl (i, t)+Ψr (i, t) ,

where Ψl (i, t) and Ψr (i, t) are the amplitudes for a particle to enter cell i from left and right,

respectively. This is the Feynman path sum for one time step of the evolution operator, where

the amplitude Ψ (i, t) is the propagator of evolution. We then encode the QBM state |↓〉⊗ |i〉
with the automaton state

∣∣. . . , (0,0)i−1, (1l ,0r)i , (0,0)i+1 , . . .
〉

while the state |↑〉⊗ |i〉 is written as∣∣. . . , (0,0)i−1, (0l ,1r)i , (0,0)i+1 , . . .
〉
. In this way, an excited subcell (a qubit in the 1 state) indicates

the walker position and its movement direction. All the encoding is done within the single

excitation subspace.

To finish this translation we need to show the tilings and the unitary operators required in

order to mimic the QBM dynamics. In this step, we face one dilemma. In chapter 3 we described

the BM by PCA using three tilings and consequently three operators. On the other hand, we saw

109

CHAPTER 6. QUANTUM CELLULAR AUTOMATA

that the quantum BM demands only two unitaries, the coin, and the shift operator. However,

the PUQCA structure does not allow us to apply the moving shift operator Eq.(6.8) by a single

unitary, let us understand it better. Thinking in terms of QCA, from the translation showed until

now, this operator, Eq.(6.8), means that if we have a single excitation located in the right subcell

r of cell i, which is related with ↑, we have to build an operator for the QCA that moves this

excitation to the subcell r located at cell i+1. If we have such local operator it means that we are

interacting the subcells (i)r and (i+1)r, which at first glance does not seem to be a problem, since

we can do this operation applying the SWAP operator between these subcells. However, from

the PUQCA definition, which is a computational model invariant by translation, it implies that

we have this kind of interaction happening for all i ∈ L. In particular, there is the same kind of

interaction between the subcells (i−1)r and (i)r. Consequently we will get two operators acting

simultaneously in the subcell (i)r, in fact, this overlap of operations is happening in all subcells.

Therefore, it would lead us to have a tiling, related to this operation, with overlapping tiles, which

is not allowed from our PUQCA definition. Furthermore, although interaction with overlaps are

allowed in other QCA models this interaction with SWAPs is not well defined. For instance, for

the one proposed by Pérez and Cheung [57], these overlaps are possible. These interactions mean

that we have a SWAP operator as a local unitary update function between the same subcells

showed above. However, we can see that we will get update functions that do not commute,

[SW APir ,(i+1)r ⊗ I(i+2)r , I ir ⊗SW AP(i+1)r ,(i+2)r] 6= 0,

for all i ∈ L and then a QCA dynamics not allowed. Therefore we will employ, as we did in the

description of the BM, three tilings.

Indeed these three tilings are the same employed in section (3.1). The first one T0 is related to

the coin operator, where the tiles are the subcells from the same cell T(0)
i = {(i)l , (i)r}. The unitary

W0 associated to this tiling is of the same form as the unitary in the coin C Eq.(6.12),

(6.18) W0 =


1 0 0 0

0 p q 0

0 q p 0

0 0 0 1

 ,

where again the requirements |p|2 +|q|2 = 1 and p∗q+ q∗p = 0 are necessary. This operator acts

on a two-qubit, system

W0 : HΣl ⊗HΣr →HΣl ⊗HΣr .

Despite the fact that W0 acts in the full space, it only acts non-trivially on the single excitation

subspace. A general QBM state is then translated as

(6.19)

|Ψ (t)〉 =
∑
i∈L

(
Ψl (i, t)

∣∣. . . , (0l0r)i−1 , (1l0r)i , (0l0r)i+1 , . . .
〉+Ψr (x, t)

∣∣. . . , (0l0r)i−1 , (0l1r)i , (0l0r)i+1 , . . .
〉)

,

110

6.2. PUQCA

where Ψ(i, t)l(r) is the probability amplitude of finding an “excitation” at the subcell (l(r)) of

the i-th cell at time t. Thus, after we apply the evolution corresponding to the first tiling(⊗
T(0)

j ∈T0
W0

)
|Ψ (t)〉, we get

= ∑
i∈L

{
(pΨl (i, t)+ qΨr (i, t))

∣∣. . . , (0l0r)i−1 , (1l0r)i , (0l0r)i+1 , . . .
〉

+ (pΨr (i, t)+ qΨl (i, t))
∣∣. . . , (0l0r)i−1 , (0l1r)i , (0l0r)i+1 , . . .

〉}
,

since the action of W0 at each cell is

W0 |0l1r〉 = p |0l1r〉+ q |1l0r〉 ,

W0 |1l0r〉 = q |0l1r〉+ p |1l0r〉 .

Now we have to move to the tiling that will interact the cells. As we explained above we can not

apply the moving operator in one single operation. Let us go back to the shift operator employed

into QBM, Eq.(6.8). We can split this operation in two parts as follows:

(6.20) S = (X ⊗ I) ·Sf-f,

where

(6.21) X =
(
0 1

1 0

)
,

is being applied into the coin space X : HC → HC, I is the identity operator that acts in the

walker position Hilbert space I : HL →HL and Sf-f is

(6.22) Sf-f = |↓〉〈↑|⊗∑
i
|i+1〉〈i|+ |↑〉〈↓|⊗∑

i
|i−1〉〈i| .

Such operator is known as the flip-flop shift operator, given that S2
f-f = 1.

From the decomposition above, Eq.(6.20), we can understand better from where the next

two tilings come from: one is related to Sf-f and the other with X . Let us start with the flip-flop

operator. When we interpret this operator, Eq.(6.22), in the QCA perspective we can see that if

an excitation is located at the subcell ir this operator moves the excitation to the subcell (i+1)l ,

and if the excitation is located at the subcell i l this operator moves the excitation to the subcell

(i−1)r. Therefore we can put all these subcells that are interacting in the second tiling T1 i.e.

T(1)
i = {ir, (i+1)l}. As we conclude above, the SWAP operator plays the role of the flip-flop operator

in the QCA picture, that means we need to apply W1 = SW AP into the tiles T(1)
i . Thus, after the

evolution due these two tilings,
(⊗

T(1)
j ∈T1

W1

)(⊗
T(0)

j ∈T0
W0

)
our general state Eq.(6.19) is updated

to

= ∑
i∈L

{
(pΨl (i, t)+ qΨr (i, t))

∣∣. . . , (0l1r)i−1 , (0l0r)i , (0l0r)i+1 , . . .
〉

+ (pΨr (i, t)+ qΨl (i, t))
∣∣. . . , (0l0r)i−1 , (0l0r)i , (1l0r)i+1 , . . .

〉}
.

111

CHAPTER 6. QUANTUM CELLULAR AUTOMATA

As a final step we need to translate the action of X in terms of QCA. From the X definition,

Eq.(6.21), we see that it flips the coin state: X |↑ (↓)〉 = |↓ (↑)〉. From the X action we can see that it

is responsible to preserve the walker movement direction transforming the Sf-f to the moving

shift operator. From the QCA perspective we can see that it is only a SWAP between the subcells

from the same cell. Therefore we can see that in the last tiling T2 the tiles are T(2)
i = {i l , ir} and

W2 = SW AP. Therefore after the evolution of this last tiling, that completes the action of the

transition function E =
(⊗

T(2)
j ∈T2

W2

)(⊗
T(1)

j ∈T1
W1

)(⊗
T(0)

j ∈T0
W0

)
we get the general state for t+1

|Ψ (t+1)〉 = ∑
i∈L

{
(pΨl (i, t)+ qΨr (i, t))

∣∣. . . , (1l0r)i−1 , (0l0r)i , (0l0r)i+1 , . . .
〉

+ (pΨr (i, t)+ qΨl (i, t))
∣∣. . . , (0l0r)i−1 , (0l0r)i , (0l1r)i+1 , . . .

〉}
.

From this last result we can immediately obtain the recurrence relations that describe the

automaton dynamics:

Ψr (i+1, t+1) = pΨr (i, t)+ qΨl (i, t) ,(6.23)

Ψl (i−1, t+1) = pΨl (i, t)+ qΨr (i, t) .

Now, when we compare this result with the recurrence relation in terms of amplitudes established

in Eq.(6.14) we can easily conclude that they are equal. Therefore, we saw how we can codify the

QBM in terms of PUQCA since both dynamics are identical at every time-step.

Before we move to the next section it is important to say that there is an alternative method

to use only two tilings for this same problem. Despite the fact that we cannot apply in a single

shot the moving operator in the QCA formalism, we can absorb X in the coin space and then

apply only two operators for the QBM dynamics, as follows,

S · (C⊗ I)= (X ⊗ I) ·S f− f · (C⊗ I)→ S f− f ·
(
C′⊗ I

)
,

where C′ = C · X as long as we do corrections on the initial and final states. In order to see that,

suppose that we have to apply the unitary t times, then

U t = (
(X ⊗ I) ·S f− f . (C⊗ I)

)t

= (X ⊗ I) · (S f− f . (C · X ⊗ I)
)t−1 ·S f− f . (C⊗ I)

= (X ⊗ I) · (S f− f . (C · X ⊗ I)
)t−1 ·S f− f . (C⊗ I) · (X · X−1 ⊗ I

)
= (X ⊗ I) · (S f− f .

(
C′⊗ I

))t · (X−1 ⊗ I
)
.

We can conclude from the calculations above that we can apply only two operators if we translated

the initial state
∣∣ψ(0)

〉
to X−1 ∣∣ψ(0)

〉
and the final state to X−1 ∣∣ψ(t)

〉
. Then, we can do the

translation for the QCA employing two tilings, relating C′ to W0 as long as we do corrections in

the initial and final QCA states.

112

6.2. PUQCA

6.2.1.3 Weyl equation via QCA

Like in chapter 3, where we saw how the PCA can be applied as a numerical method for the

diffusion equation, the ones that describe the Brownian motion and random walk, we will see

how we can apply the PUQCA as a numerical method for the Weyl equation, a relativistic wave

equation proposed by Hermann Weyl in 1928 [82] for describing massless spin-1/2 particles called

Weyl fermions. This equation is a two-component equation to describe massless spin-1/2. This

result was obtained extending the results of the relativistic equation that describes massive

spin-1/2 particles, Dirac equation [11], achieved by Paul Dirac. The Weyl equation is essentially

the Dirac equation for massless particles m = 0, and its compact form, using the natural units, is

given by

(6.24) iγµ∂µψ= 0,

where γµ with µ= 0,1,2,3 are the gamma matrices that obey the Clifford algebra,

{γµ,γν}= 2ηµνI,

where ηµν is the Minkowski metric and I is the identity matrix. The Weyl spinor in Eq.(6.24) is

composed by the left, ψ(−), and right handed spinors,2 ψ(+)

(6.25) ψ=
(
ψ(−)

ψ(+)

)
.

The goal of this section is to show how we can apply the PUQCA to simulate the Weyl equation

in flat two-dimensional (1+1) spacetime, like it was done in [34] via quantum walks. In this flat

two-dimensional (1+1) spacetime, that gives only µ= 0,1 in Eq.(6.24), the Clifford algebra can be

represented by matrices acting on two-component spinors γ0 =σ1 and γ1 =−σ1σ3 = iσ2, where

σ1 =
(
0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0

0 −1

)
,

are the Pauli matrices. Now, applying these matrices into Eq.(6.24) and from the fact that ∂0 = ∂/∂t

and ∂1 = ∂/∂x we get two first-order PDEs

∂ψ(−) (x, t)
∂t

− ∂ψ(−) (x, t)
∂x

= 0,(6.26)

∂ψ(+) (x, t)
∂t

+ ∂ψ(+) (x, t)
∂x

= 0.

The discrete version of Eqs.(6.26) above can be achieved from the PUQCA only choosing p = 1

and consequently q = 0 in the operator W0 used in Eq.(6.18). Doing that our recurrence relation

established in Eq.(6.23) changes to

Ψr (x, t+1) = Ψr (x−1, t) ,(6.27)

Ψl (x, t+1) = Ψl (x+1, t) ,
2We say that a particle is right (left) handed when the its spin is (anti)parallel to p, its momentum.

113

CHAPTER 6. QUANTUM CELLULAR AUTOMATA

where we translated the equations above and changed the notation i ∈ L to x ∈ L. The function

Ψl plays the role of the left handed spinor, Ψr plays the role of the right handed spinor.

In order to confirm the claim about Eqs.(6.27) to be the discrete version of the PDEs showed

in Eq.(6.26) we have to take the continuum limit of Eqs.(6.27). To start with this calculation

we first need to move from the discrete time and space x, t ∈ Z to continuous variables x, t ∈ R.

Thus, our next step is to analyze the behavior of the quantum automaton in the limit of infinitely

short time step τ and a infinitesimal lattice spacing λ, like we did in chapter 3. Then, rewriting

Eq.(6.27) employing continuous variables yields

Ψr (x, t+τ) = Ψr (x−λ, t) ,(6.28)

Ψl (x, t+τ) = Ψl (x+λ, t) .

There is a simple way to handle this computation. We can subtract on both sides of the top

equation the spinors Ψr and subtract in both sides of the bottom equation the spinors Ψl , then

Ψr (x, t+τ)−Ψr (x, t) = Ψr (x−λ, t)−Ψr (x, t) ,

Ψl (x, t+τ)−Ψl (x, t) = Ψl (x+λ, t)−Ψl (x, t) .

Now if we multiply in both equations the left equality above by τ/τ and the right by λ/λ we get

τ
Ψr (x, t+τ)−Ψr (x, t)

τ
= λ

Ψr (x−λ, t)−Ψr (x, t)
λ

,

τ
Ψl (x, t+τ)−Ψl (x, t)

τ
= λ

Ψl (x+λ, t)−Ψl (x, t)
λ

,

or

Ψr (x, t+τ)−Ψr (x, t)
τ

= λ

τ

Ψr (x−λ, t)−Ψr (x, t)
λ

,

Ψl (x, t+τ)−Ψl (x, t)
τ

= λ

τ

Ψl (x+λ, t)−Ψl (x, t)
λ

.

From the equations above, it is clear from what we learned in chapter 4 that we are dealing with

a first order approximation for the first derivatives. Besides, except the right part of the equation

for Ψr, the approximation employed is called forward difference, whereas the right part for Ψr

is the backward difference. Moreover, in this continuous limit computation, we can see that we

are dealing with equations that have linear dispersion relation λ/τ. In fact, this ratio λ/τ gives

to us the velocity of the particle propagation. Since we are dealing with a massless relativistic

particle its velocity is c and as we are using natural units c = 1. Finally, we can take the limit of

both terms λ and τ to zero in the last expression to confirm that both equations are the discrete

version of Eq.(6.26).

6.2.2 Final considerations

In this chapter, the first one of the quantum models of computation, we introduced the parti-
tioned unitary quantum cellular automata, which we believe to be a version that has a more

114

6.2. PUQCA

clear definition when we compared with the others presented in the begin of this chapter. The

meaning of "more clear" here is in respect to the fact that with PUQCA we can easily extend it to

higher dimensions and complicated geometries, as we will see in the next chapter. Moreover, in

this new version, we are not supposed to check relations like Eq.(6.3) to see if we have a QCA well

defined, as long as we work with its right definition. Perhaps within this new definition people

will become more interested in the QCA computation model as a way to explore different problems.

Besides, our PUQCA construction was such that the quantization of its classical counterpart, the

partitioned CA, chapter 3, was straightforward. The simplicity of our model becomes clear when

we translated the QBM to quantum cellular automata. Furthermore, we also could explore the

quantum CA as an alternative model for a numerical method for partial differential equations. We

saw how the PUQCA can, without difficulty, simulate a relativistic equation, the Weyl equation.

Until here the QCA seems to be a computational tool as powerful as its classical counterpart

to explore quantum physics. In addition, we also expect this model to be a good candidate to

explore complex systems as well as to study emergent phenomena like its classical counterpart,

chapter 5. Furthermore, in the next chapter, we will show some results that suggest that the

QCA is indeed a powerful computational tool, like the CA, for simulating physical processes.

115

C
H

A
P

T
E

R

7
QUANTUM WALKS VIA QUANTUM CELLULAR AUTOMATA

In the last chapter we introduced the partitioned quantum cellular automata (PUQCA).

We saw two examples of how this quantum model of computation can be useful to simulate

quantum systems e.g. the quantum Brownian motion, which from now on we will call coined

quantum walk in agreement with the community, and the Weyl equation, the relativistic equation

to describe massless fermions. Until now we gave motivations to use QCA based on its simple

structure in terms of local operators and its discrete formulation which might be handy in order

to describe complex quantum systems. These are basically the same kind of motivations used to

employ the PCA to describe classical systems. In the end, QCA provides a different picture to deal

with the same problems described by different quantum models of computations, as the quantum

circuit model [88] and quantum walks. Like, these other models, the QCA is a universal model of

computation [57, 80] and thus choosing another model of computation will provide an equivalent

simulation. However, there is another characteristic of the QCA that we did not mention until

now, which can be the most important aspect about this computational model. The QCA structure

matches quantum computers architectures employed into most quantum computers available

now and the next to come [12, 31, 41].

When we see illustrations of how the qubits interactions are arranged into the D-wave

[Fig.(7.1)] and IBM [Fig.(7.2)] quantum computers, which employ superconducting devices [12,

41, 69], it is quite clear from these illustrations that these device are closer to QCA than to circuit

models, the most employed language in quantum information theory. The circuit model assumes

that each qubit can interact with all others, even if they are distant, what is not possible (without

a large overhead) in present implementations.

117

CHAPTER 7. QUANTUM WALKS VIA QUANTUM CELLULAR AUTOMATA

Figure 7.1: Qubits and couplers in the D-Wave device. The grey vertices represent non-working
qubits. Figure from [12].

Alternatively, we can see in these illustrations that each qubit can only interact with few

others, obeying some neighborhood scheme, in the same spirit of the cellular automata structure.

In Fig.(7.1) we can think the interaction in each box achieved by the first tiling, following the

PUQCA definition, and the interactions between these boxes achieved by the second tiling. In the

illustration Fig.(7.2-b) of the IBM 16-qubit1 quantum computer, we show how we can think this

device in terms of a 3-tiling problem.

Despite the fact that in the last chapter we only applied the PUQCA to one-dimensional

problems, its structure based in the tiling formalism provides a powerful tool to deal with more

complicated geometries, as the ones showed in figures (7.1) and (7.2). Therefore if the community

starts to see some interesting problems in terms of QCA and if they were concern about the real

interaction between the qubits, they can start to describe their problems in terms of QCA instead

of other models. On the other hand, even the people that help to develop the chips structures can

become motivated to put the qubit interaction in such a way that they respect exactly the QCA

formalism of interaction. Moreover, we only need a handful of a different unitaries.

Given these previous motivations, now we will show our new results on QCA. We expect

that with the results that we will show in this chapter together with everything that we have

seen about QCA model, people realize the power of this model of computation. Our main goal

in this chapter is to start exploring the model of quantum cellular automata, as a suitable

platform for quantum algorithms. We do so by showing that various models of quantum walks

can be translated to a quantum cellular automata dynamics using the same amount of resources

(effective Hilbert space dimension). More concretely we show how to implement two models

of QWs – namely, the coined and the staggered QW with Hamiltonians, which are known to

encompass a large class of QW models [61] – within the partitioned QCA model
1https://www.research.ibm.com/ibm-q/

118

7.1. CQWd ⊆ QCA

a)

b)

Figure 7.2: Qubits interaction via waveguide resonator in the IBM 16 qubits device. In figure
(a) we illustrated the interaction between the 16 qubits in the chip of the IBM quantum computer. Although
the interaction between the qubits are via coplanar waveguide resonator [69], and thus the interaction
between them can happen in distance scale of µm, which is relatively long, since we are dealing with
interaction under quantum regime, the interaction of each qubit is restricted to the only three nearest
qubits, except the ones located in the left and right boundaries. In figure (b) we show how the PUQCA can
easily, using three tilings, incorporate this structure of interaction.

7.1 CQWd ⊆ QCA

In chapter 6 we saw how we can translate the coined quantum walk to the partitioned quantum

cellular automata, Def.(6.3). We showed how this translation works in a one-dimensional lattice

and we employed the ordinary quantum walk definition for a line, [42]. This translation was

our starting point to construct a general recipe to move from the coined quantum walk model to

QCA. In our general translation we are not restricted to only a one-dimensional lattice, we can

translate coined quantum walk over a d-regular graph (CQWd) to PUQCA. In order to achieve

this goal we move to a more sophisticated (CQWd) definition [58] to cope with general dynamics

in arbitrary finite graphs, which we will present now.

Given a graph G =G(V ,E) its vertices are associated to the walker’s classical positions, while

its edges define the possible directions the walker can take in a single step. To the position i ∈V

and direction (i, j) ∈ E we associate the state |(i, j) , i〉. Defining N G
i as the graph-neighborhood of

a vertex i, N G
i = { j|(i, j) ∈ E}, the total Hilbert space associated to the quantum walk is given by

HG = span({|(i, j), i〉 |(i, j) ∈ E, i ∈V , j ∈N G
i }).

119

CHAPTER 7. QUANTUM WALKS VIA QUANTUM CELLULAR AUTOMATA

As each edge is connected to exactly two vertices, the dimension of HG is 2|E|. We should stress

the fact that we are not in the case where the Hilbert space HG is a tensor product of a space

associated to the edges and another space associated to the vertices, like we did in chapter 6.

Despite the fact that we are employing a different definition for the CQW than we used in the

last chapter, its dynamics is established in the same manner: first the “flip” of a quantum coin, by

the coin operator C, and then a coin-dependent coherent displacement, by the shift operator S.

As before, given a walker in the state |(i, j), i〉, the coin operator must create a superposition of all

allowed directions, i.e., a superposition of the states |(i,k), i〉 for all k ∈N G
i . The action of the coin

operator C : HG →HG for this current definition can be decomposed in blocks for each vertex. So

instead of writing the global coin operator acting in HG , we can write the correspondent operator

for each vertex space, H i
G with

H (i)
G = span

(
{|(i, j) , i〉}| (i, j) ∈ E, j ∈N G

i

)
,

and HG = ⊕i∈V H (i)
G . Thus, for a d-regular graph, each such block is a d-dimensional Hilbert

space. Then, employing this decomposition lead us to

(7.1) C = ⊕
i∈V

Ci,

where each Ci is a unitary acting on H (i)
G . In the cases where the coin flip does not depend of the

vertex, what happens in most cases of interest, each coin operator Ci, i ∈V , is identical. Now, in

order to finish the walker step we must apply the shift operator Sπ : HG →HG , which is again a

global operator and it is not vertex independent. Since the walker can only walk "through" the

edges, the action of the most general shift operator is given by:

(7.2) Sπ |(i, j) , i〉 = |(π (i) , j) , j〉 ,∀i ∈Vand∀ (i, j) ∈ E,

where π(i) ∈ N G
j . π is a permutation function between all possible edges from a given vertice.

Thus, it fixes the walker’s direction after the step. For a d-regular graph it implies that there

are only d! different shift operators. Furthermore, since the π function is vertex independent,

this part can be absorbed into the coin operator as long as we change the initial and final states,

like we showed in the last chapter. Thus, from a given shift operator, we always can choose π

as the identity operator and keep with the same walker dynamics as long as we translate the

content of π for the coin operator. Fixing π as the identity permutation the shift operator takes

the following form

SI |(i, j) , i〉 = |(i, j) , j〉 ,

which is the flip-flop operator, Eq.(6.22), in this new definition, given that S2
I = 1. In summary,

since the walker evolution is composed by these two operators, coin and shift, the one time step

of the quantum walker is given by the unitary UG : HG →HG , whose action can be written as:

(7.3) UG = SI ·C.

120

7.1. CQWd ⊆ QCA

Now with the same spirit of chapter 6 we will translate a general one-dimension coined

quantum walk, within this definition, to the partitioned unitary quantum cellular automata. The

goal of this example is to see how to construct a general recipe, starting from the simplest case.

7.1.1 One dimensional example

This example that we will show here is the same one presented in chapter 6, the one that gives

the quantum Brownian motion, translated to this CQW definition showed above.

As we saw above, this current CQW employs a graph perspective, thus the first thing that

we have to do is translate the lattice perspective to the graph one. Since we worked within an

infinite one-dimensional lattice, here we move to a infinite 2-regular graph. In such a graph

perspective, the set of vertices is V =Z, and the set of edges is E = {(i, i+1) |i ∈V } and, as before,

the neighborhood, that here we call by vertex-neighborhood, is N G
i = {i−1, i+1}. We associate

the state |(i, i+1), i〉 if the walker is on the vertex i moving to the right and |(i, i−1), i〉 if the

walker is on the vertex i moving to the left, respectively. While in the example of chapter 6 the

coin superposes the spin states, that determines the walker direction, the coin here superposes

these two directions of movement |(i, i+1), i〉 and |(i, i−1), i〉. Thus, similarly to the the coin used

in Eq.(6.12), this can be done by choosing Ci : H (i)
G →H (i)

G as a SU(2) operator

Ci =
(

p q

q p

)
∀i ∈V ,

with p, q ∈C respecting the unitarity constraints |p|2+|q|2 = 1 and p∗q+ q∗p = 0. The total coin

operator is then C =⊕
i∈V Ci. Like we did in the last chapter we will use the "moving" as the shift

operator. This operator acts on HG as,

SX |(i, i−1), i〉 = |(i−2, i−1), i−1〉 ,

SX |(i, i+1), i〉 = |(i+2, i+1), i+1〉 .

The relation between the moving shift SX to the flip-flop SI one is simply: SX = X ·SI , where

X =⊕
i∈V X i with

X i =
(
0 1

1 0

)
∀i ∈V .

A single step evolution is then given by U = X ·SI ·C. As we said before, the last operator X can

be absorbed into the coin operator. Now, in order to get the recurrence relation for this example,

we will follow the same steps that we did in the previous chapter, which are to write the state of

the system at time t,

(7.4)
∣∣ψ (t)

〉= ∑
i∈V

(
ψ(i,i−1) (i, t) |(i, i−1), i〉+ψ(i,i+1) (i, t) |(i, i+1), i〉) ,

where ψ(i, j) (i, t) := 〈(i, j) , i
∣∣ψ (t)

〉
is the amplitude of the walker being located at the vertex i

pointing to the vertex j at time t, and compute U
∣∣ψ (t)

〉
. After we do this last calculation we can

121

CHAPTER 7. QUANTUM WALKS VIA QUANTUM CELLULAR AUTOMATA

easily write the recurrence relations that govern the quantum walk dynamics

ψ(i−2,i−1) (i−1, t+1) = pψ(i,i−1) (i, t)+ qψ(i,i+1) (i, t) ,(7.5)

ψ(i+2,i+1) (i+1, t+1) = qψ(i,i−1) (i, t)+ qψ(i,i+1) (i, t) ,(7.6)

which is exactly the same achieved in Eq.(6.14) as we expected, since both have the same coin

and shift operators. The difference arises only from the way that we write these operators. While

in chapter 6 we used the ordinary CQW definition, in terms of a tensor product between the coin

and the particle position, here we used a global Hilbert space associated with the graph G.

Now as we did in the previous chapter let us translate this CQW dynamics into a PUQCA.

As we pointed above we are dealing with the same dynamics achieved for the QBM problem.

Thus, the translation will be exactly the same showed in (6.2.1.2). Nevertheless, we will show

this translation step by step, since we are dealing with another QW definition. In order to do

that, each vertex i ∈V we change to a cellular automaton cell and as before each cell is divided

into two subcells since each vertex has two neighbors. Here, instead at labeling these subcells by

i0 and i1, we will label them by i i−1 and i i+1, once we want use the graph properties into the

QCA translation and to establish a general procedure in the end. Again in each subcell we place

a two-dimensional quantum system (a qubit)

H(i)(i−1)
∼=H(i)(i+1)

∼=C2.

One main difference from this translation to the one showed in chapter 6 is in the way that we

encode the quantum walk state into the automaton state. For the quantum walk state |(i, i−1), i〉
the automaton state is |. . . , (0,0)i−1, (1i−1,0i+1)i, (0,0)i+1, . . .〉 and for the quantum walk state

|(i, i+1), i〉 the automaton state is |. . . , (0,0)i−1, (0i−1,1i+1)i, (0,0)i+1, . . .〉. The excited subcell has

the same meaning showed before and indicates the walker position and its movement direction.

All the encoding is done within the single excitation subspace.

Moving forward we need to show the set of unitary operators in the QCA formalism that we

need to employ in order to achieve the QW dynamics established in Eq.(7.5). Indeed, we have to

employ the same unitary operators used in the last chapter, which are:

1.

W0 =


1 0 0 0

0 p q 0

0 q p 0

0 0 0 1

 ,

that plays the role of the coin C that also fulfilling the requirements that |p|2 +|q|2 = 1

and p∗q + q∗p = 0. As before this operator is associate with the first tiling T0 where

now the tiles are written as follows T(0)
i = {(i)i−1, (i)i+1}, and thus W0 : HΣ(i,i−1) ⊗HΣ(i,i+1) →

HΣ(i,i−1) ⊗HΣ(i,i+1) , and it is written in the basis {|(0,0)i〉 , |(0,1)i〉 , |(1,0)i〉 , |(1,1)i〉}.

122

7.1. CQWd ⊆ QCA

2.

W1 = SW AP

that plays the role of the flip-flop shift operator SI . Again this operator, that is associated

with the second tiling T 1, is responsible for interaction between subcells of neighbors cells

in the QCA picture N = { j−1, j, j+1}. The tiles here are written as T(1)
i = {(i)i+1, (i+1)i}.

3.

W2 = SW AP

that plays the role of the X operator, the action that will encode the moving shift operator.

As we know this operator acts inside of each cell. Then the tiles in T 2 are given by

{(i)i−1, (i)i+1}.

Now in order to show that the three operators above mimic the QW dynamics Eq.(7.5) we

need first to write a general state |Ψ (t)〉 for the automaton at time t

∑
i∈Z

[
Ψ(i,i−1) (i, t)

∣∣. . . , (0,0)i−1 , (1i−1,0i+1)i , (0,0)i+1 , . . .
〉+

+Ψ(i,i+1) (i, t)
∣∣. . . , (0,0)i−1 , (0i−1,1i+1)i , (0,0)i+1 , . . .

〉]
,

where Ψ(i,i±1) (i, t) is the probability amplitude of finding an “excitation” at subcell i±1 of the

i-th cell at time t (note that this initial state is the same of Eq.(7.4) encoded in the QCA), and

then apply the transition function

E =

 ⊗
T(2)

j ∈T2

W2


 ⊗

T(1)
j ∈T1

W1


 ⊗

T(0)
j ∈T0

W0


using the operators showed above. Doing this calculation, which is exactly the same done in the

last chapter, we obtain the recurrence relations that describe the automaton dynamics:

Ψ(i−2,i−1) (i−1, t+1)= pΨ(i,i−1) (i, t)+ qΨ(i,i+1) (i, t) ,

Ψ(i+2,i+1) (i+1, t+1)= qΨ(i,i−1) (i, t)+ pΨ(i,i+1) (i, t) .

Then, we set the same recurrence relations for the 1-d coined quantum walk, as we expected.

7.1.2 General Recipe

Now we give a prescription to find the QCA correspondent to a given coined QW on a d-regular

graph. As input we take a d-regular graph G =G(E,V) (or lattice L) where the quantum walk

is defined; the coin operator C; and the shift operator Sπ. As output we must return a com-

plete PUQCA whose evolution is the same as the CQW. The steps to find this translation are

enumerated below.

123

CHAPTER 7. QUANTUM WALKS VIA QUANTUM CELLULAR AUTOMATA

1. The number of cells in the automaton is given the number of vertices, |V |, of graph G. As

the graph is d-regular, each cell is split in d subcells. We place one qubit in each subcell,

and then a total of |V |.d qubits are employed (see the resources discussion below).

2. The automaton neighborhood scheme N is determined by the graph-neighborhood N G , by

the simple inclusion of the “central” cell: Ni =N G
i ∪ {i}.

3. To each CQWd state |(i, j), i〉 we associate the automaton (single excitation subspace) state∣∣. . . (0h, . . . ,1 j, . . . ,0m)i . . .
〉
, where h,m and all other subindex labeling the subcells of cell i

belong to N G
i . While the subindex i gives us in which cell the excitation is located, the

subindex j tells us its subcell location (corresponding to the movement direction). In this

way the space associated to each cell is HΞ = (
C2)⊗d.

4. To simulate the CQWd dynamics within the automata language three tilings are sufficient 2.

The first tiling is related to the action of the coin, with each tile given by all subcells that

belongs to the same cell: T(0)
i = {(i) j| j ∈N G

i }. The second tiling is devoted to the simulation

of the flip-flop shift acting on neighboring cells. From the definition of SI we can see that in

terms of QCA we have the subcell j in the cell i interacting with the subcell i of the j-th cell,

and vice-versa. Therefore T(1)
(i, j) = {(i) j, (j)i} where (i, j) ∈ E. The third tiling is responsible

for simulating the permutation that connects SI to Sπ. As this operation is “local” in each

vertex, then T(1)
i = {(i) j| j ∈N G

i }.

5. To each tiling we associate one unitary operator. To the first tiling, the unitary operator

W0 : HΞ → HΞ is directly related to the unitary operator Ci by employing the unary

representation for the cell states (see two steps above) within the single excitation subspace.

Out of this subspace the action of W0 is trivial, being completed by ones in the diagonal

entries. Since the flip-flop operator is translated as a swap between the two subcells of

neighboring cells, the unitary W1 : H(i) j ⊗H(j)i → H(i) j ⊗H(j)i , for (i, j) ∈ E, is the SWAP

gate between them. Lastly, W2 : HΞ → HΞ implements the permutation π on cell i, by

encoding the operator πi in the same way as for the coin operator.

These steps give the full translation between a CQWd and a QCA.

Before we move on, we compare the resources required in each model. The dimension of

the Hilbert space in the quantum walk model is 2|E|, which is equal |V |d due to the assumed

d-regularity of the graph. For the corresponding QCA at first sight we would need a Hilbert

space of dimension |V |.2d. Nevertheless, as we only need the single excitation subspace for our

construction, whose dimension is d, we in fact only use an effective Hilbert space with dimension

|V |.d. Therefore, both models require the same amount of resources.

2Here again the action of the third tiling can be absorbed in the action of the first one, plus modifications in the
initial and final state. We however present the translation with three tilings for clarity reasons.

124

7.2. SQW ⊆ QCA

7.2 SQW ⊆ QCA

We start by describing the staggered quantum walk with Hamiltonians (SQWH) over a graph

G =G(V ,E) [60]. As before, to each vertex i ∈V we associate a unit vector |i〉, with 〈 i| j〉 = δi j for

all i, j ∈ V . As such, to the vertices of G we associate the Hilbert space HV = span({|i〉 | i ∈ V }).

Crucial to the SQWH is the concept of a graph tessellation: A graph tessellation ℑ is a partition of

the graph into complete subgraphs, i.e., into cliques. Such a partition directly induces a partition

of HV : let α be an element of ℑ, then HV = ⊕
α∈ℑHα, where Hα = span({|i〉 | i ∈ α}). Each

element α is called a polygon, as it is related to a clique. It is now simple to define a rank-one

projector |α〉〈α| into Hα, by defining the vector

|α〉 = ∑
i∈α

a (i) |i〉 ,

where a(i) ∈C and
∑

i∈α |a(i)|2 = 1. Note that the coefficients a do not depend on the polygon in a

given tessellation, but they do depend on the label given to each vertex within a polygon [61]. A

dynamics that does not connect different subspaces Hα can be given by the Hamiltonian operator

associated with this tessellation as

(7.7) Hℑ = 2
∑
α∈ℑ

|α〉〈α|− 1.

If we want to check that Hℑ does not connect different subspaces we just need to take two vertices

from different polygons in the same tessellation ℑ, for instance i ∈α1 and j ∈α2, and check that

〈i |Hℑ| j〉 = 0, which is a straightforward calculation as we can see below

〈i |Hℑ| j〉 =
〈

i

∣∣∣∣∣2 ∑
α∈ℑ

|α〉〈α|− I

∣∣∣∣∣ j

〉
,

= 2
∑
α∈ℑ

〈i |α〉〈α| j〉−δi j,

= 2(〈i |α1〉〈α1| j〉+〈i |α2〉〈α2| j〉) ,

= 0.

Such operator is known as the orthogonal reflection of the graph [60], and it is Hermitian

and unitary, implying that H2
ℑ = 1. The dynamics generated by this Hamiltonian is then Uℑ =

exp(iθHℑ), with θ ∈ [0,2π]. This propagator respects the partition of HV into subspaces related

to the tessellation polygons, as Uℑ =⊕
α∈ℑUα with

(7.8) Uα = e−iθ1α+2isin(θ)
∑

i, j∈α
a∗(i)a(j) |i〉〈 j| ;

where 1α :=∑
i∈α |i〉〈i| is the identity operator in the α subspace.

If the dynamics of the walker was to be given simply by the propagator Uℑ, then a walker

starting in a vertex i ∈ V would remain stuck in the polygon that contains such a vertex. As

Szegedy noticed [72], a walker dispersion over a graph can be obtained without a coin if we

125

CHAPTER 7. QUANTUM WALKS VIA QUANTUM CELLULAR AUTOMATA

alternate propagation operators, with each of them acting within a different subspace-partition

of HV . At this point we observe that a given tessellation contains all the vertices of a graph,

but not necessarily all its edges. In [61] it was defined a set of tessellations, a tessellation cover

{ℑ0, ...,ℑN−1}, whose union also covers the edge set. Each tessellation ℑk induces a different

subspace-partition of HV , with associated Hamiltonian Hℑk constructed in the same way as in

Eq.(7.7). One time-step evolution of the SQWH is then generated by the operator

(7.9) U =
N−1∏
k=0

eiθkHℑk

with θk ∈ [0,2π] for all k ∈ {0, . . . , N −1}. We are now ready to show how to translate the SQWH

model into a QCA one. As previously, before giving a general recipe we first show a simple

example of such a translation.

7.2.1 One dimensional example

In this example, we consider a SQWH over a 1-d lattice. The vertex set is V =Z, and thus HV =
span({|i〉 | i ∈Z}). The smallest tessellation cover for such 2-regular (infinite) graph is composed

of two tessellations {ℑ0,ℑ1}, with ℑ0 = { | i ∈Z} and ℑ1 = { | i ∈Z}. These tessellations

are shown Fig.(7.3). Each tessellation induces a different partition of HV as
⊕

αk∈ℑk Hαk , with

k ∈ {0,1}. For this example we take general projectors into each polygon-subspace via the vectors

∣∣ 〉= a0 |2i〉+ ã0 |2i+1〉 ,∣∣ 〉= a1 |2i+1〉+ ã1 |2i+2〉 ,

for all i ∈ Z, and where the coefficients are constrained to |ak|2 +|ãk|2 = 1 with k ∈ {0,1}. With

these projectors we follow Eq.(7.7) to construct the evolution operator as

U = eiθ1Hℑ1 eiθ0Hℑ0 .

126

7.2. SQW ⊆ QCA

Figure 7.3: This picture shows the two tessellations used in the one-dimensional example of translation
between the SQWH and the PUQCA. Within the SQWH the operator U0 (U1) acts on the red (blue)
polygons. In the PUQCA picture, this is translated to the action of W0 (W1) on the qubits in the red (blue)
tiles. Figure from [22].

As the evolution propagator is composed by the product of similar operators, eiθkHℑk , acting

in similar ways in different partitions of HV , below we only show how to translate a single of

these operators, say eiθ0Hℑ0 , into automata language. Still within the SQWH language, with the

aid of Eq.(7.8), the propagator in each subspace is

U = e−iθ0 (|2i〉〈2i|+ |2i+1〉〈2i+1|)+2isin(θ0)
(|a0|2 |2i〉〈2i|

+ a∗
0 ã0 |2i〉〈2i+1|+a0ã∗

0 |2i+1〉〈2i|+ |ã0|2 |2i+1〉〈2i+1|) .

The evolution operator for this tessellation is then Uℑ0 =
∑

i∈Z U . Let a general walker state

at time t be expressed as
∣∣ψ (t)

〉 = ∑
i∈Zψ (i, t) |i〉, where ψ(i, t) is the probability amplitude for

vertex i at time t. The state after the action of Uℑ0 is then given by

Uℑ0

∣∣ψ (t)
〉 = ∑

i∈Z

{[
e−iθ0 +2isin(θ0) |a0|2ψ (2i, t)+2isin(θ0)a0ã∗

0ψ (2i+1, t)
]
|2i〉

+
∣∣∣[e−iθ0 +2isin(θ0) |ã0|2ψ (2i+1, t)+2isin(θ0) ã0a∗

0ψ (2i, t)
]
|2i+1〉

}
.

This is the evolution that we want to simulate within the quantum cellular automata model.

For the QCA simulation, in each lattice vertex we place one qubit. The two tessellations

needed for the walker dynamics will now give us two tilings. The polygons of the first tessellation

determine now the tiles of the first tiling: T(0)
i = {2i,2i+1}. Similarly, for the second tiling the

correspondence implies the tiles T(1)
i = {2i+1,2i+2}. There are two possibilities to define the

cellular automaton cell: first is to take the tiles of the first tiling as forming a single cell with two

subcells; second is to consider each vertex as a single cell with no subcell division. Both cases are

equivalent, and we take the second choice as it simplifies the simulation description. The encoding

of the walker state into the QCA framework is then simply given by |i〉→ |. . . ,0i−1,1i,0i+1, . . .〉,

127

CHAPTER 7. QUANTUM WALKS VIA QUANTUM CELLULAR AUTOMATA

for all i ∈V . A general state for the automaton at time t is then written as

|Ψ(t)〉 = ∑
i∈Z
Ψ(i, t) |. . . ,0i−1,1i,0i+1, . . .〉 ,

with Ψ(i, t) the amplitude of finding on “excitation” at the i-th qubit at time t. Now we need to

simulate the evolution operator Uℑ0 with the action of the first tiling. To that we note that each

polygon in ℑ0 corresponds exactly to a tile in T0. Therefore, the propagator Uℑ0 =
⊕

α0∈ℑ0 is then

translated into
⊗

T(0)
i ∈T0

W0, where

W0 =


1 0 0 0

0 e−iθ0 +2isin(θ0)|a0|2 2isin(θ0)a0ã∗
0 0

0 2isin(θ0)a∗
0 ã0 e−iθ0 +2isin(θ0)|ã0|2 0

0 0 0 1

 ,

when written in the computational basis {|02i,02i+1〉 , |02i,12i+1〉 , |12i,02i+1〉 , |12i,12i+1〉}. With

such a encoding, the evolution given by
⊗

T(0)
i ∈T0

W0 leads a general state of the automaton at

time t to the state:∑
i∈Z

{[
e−iθ0 +2isin(θ0) |a0|2Ψ (2i, t)+2isin(θ0)a0ã∗

0Ψ (2i+1, t)
]
|. . . ,02i−1,12i,02i+1,02i+2, . . .〉

+
[
e−iθ0 +2isin(θ0) |ã0|2Ψ (2i+1, t)+2isin(θ0) ã0a∗

0Ψ (2i, t)
]
|. . . ,02i−1,02i,12i+1,02i+2 . . .〉

}
.

After decoding, this state is exactly equivalent to the SQWH state shown in Eq.(7.10).

This example shows that the tessellations in the SQWH play the role of the tilings in the

QCA, and the set of operators {Wi} in the QCA are obtained from the polygon-subspace operators

associated with the tessellations of the SQWH.

7.2.2 General Recipe

The general procedure to translate a SQWH into a PUQCA takes as input a d-regular graph

G = G(E,V) (or lattice L), a tessellation cover {ℑk}N−1
k=0 with polygons αk for each tessellation,

and a set of coefficients {ak(i)}|αk|−1
i=0 . As result the procedure outputs a well-formed PUQCA by

following the subsequent recipe.

1. Starting from SQWH on a d-regular graph G(V ,E), we use the same graph for the QCA.

2. Since the graph is the same, the neighborhood scheme for the corresponding automaton is

also the same: N j = {vi|(v j,vi) ∈ E}.

3. To each state
∣∣v j

〉
of the computation basis of the SQWH we associate the automaton state∣∣. . . ,0 j−1,1 j,0 j+1, . . .
〉

(single excitation subspace).

4. For each tessellation of the SQWH we have an equivalent tiling in the QCA. That is, the

vertices that belongs to the polygon τ(i)
k of tessellation i yield the elements in the tile T(i)

k .

128

7.3. FINAL CONSIDERATIONS

5. For each local unitary operator exp(iθiHi) of the SQWH, we build an equivalent unitary

operator Wi, that acts on tile T(i)
j . To finish the description of this step, we need to obtain the

block matrices associated with the polygons of a tessellation. From the Hamiltonian struc-

ture (7.7) of the SQWH, the entries of these blocks are given by Ol,m = 〈vl |exp(iθiHi)|vm〉,
where vl ,vm ∈ τ(i)

k . The unitary operator Wi is built from O employing the unary represen-

tation.

This completes the translation from the SQWH to the PUQCA model. As we have done before,

let us analyze the resources required by the PUQCA formalism for a given a SQWH dynamics. For

a graph G =G(E,V), the Hilbert space associated with the SQWH is a |V |-dimensional one. For

the PUQCA we employed |V | qubits, yielding a 2|V |-dimensional total space. However, here again,

we only use the single-excitation subspace, which is |V |-dimensional. Once more, the effective

amount of resources required by the PUQCA are the same as the original model.

7.3 Final considerations

With this chapter we finish our discussion on the topic about quantum cellular automata. In

chapter 6 we proposed a new QCA definition that we believe to be a more clear definition than

the previous ones. In the previous chapter we started to see the potentialities of this model of

computation, and we tried to convince the reader that this model deserves the same attention as

its classical counterpart. In the current chapter we continued to give motivations for this model,

but exploring other aspects of the QCA formalism. We saw that the technologies employ hardware

structures where the qubit interactions match the local aspect of the interaction employed by the

QCA. After these arguments and claims about the potentialities of the QCA we showed our main

results using the partitioned unitary cellular automata. We explained how we can translate the

main QWs models, coined quantum walk and Staggered quantum walk with Hamiltonians, into

a PUQCA dynamics. Since in [61] the authors showed how these two QWs models encompass the

others flavors of QW, we are convicted that the PUQCA can cover all the others flavors, at the

least when they are employed in d-regular graphs.

One question that is immediately raise by our translation results (QW→QCA) is whether

quantum walks and quantum cellular automata are equivalent, i.e., if there is for every QCA an

correspondent QW (QW←QCA). Of course this depends on how strict the definitions of the models

are. For instance, it is usually accepted that in a coined quantum walk, the shift operator does

not create superposition of the walker’s position states, it is just a permutation operator. When

translating CWQ into PUQCA, this implied that all the interactions between cells were simply

SWAP gates. Therefore, if a given PUQCA has an interaction between cells other than a SWAP

gate, our results suggest that there is no equivalent coined quantum walk to such a PUQCA.

Since that there are no doubts about the power of the QWs to simulate physics, from quantum

[13] to relativistic theories, [3, 26, 50], and as a platform to develop quantum algorithms, in

129

CHAPTER 7. QUANTUM WALKS VIA QUANTUM CELLULAR AUTOMATA

particular quantum search algorithms [59], with the results presented here we can conclude that

the QCA model is at least as powerful as QWs, with the advantage of bring more experimentally

friendly. Therefore, we hope that our results will serve as the catalyst for the development of a

whole new phenomenology of simulation of quantum systems.

130

C
H

A
P

T
E

R

8
QUANTUM HPP

Through out this thesis we saw different problems in physics that can be handled with

cellular automata. In particular in chapter 2 we saw how we can apply the partitioned

cellular automata (PCA) to simulate particles that can collide, a model known as HPP [37].

Although the HPP rule is quite simple, it was an extremely important model, since it was the first

model applied in the area of molecular dynamics and it gave inspiration to more sophisticated

models, as the FHP [32], a discrete model for the Navier Stokes equation. Furthermore, the HPP

rule captures the main aspects of the interactions of the particles, namely the number of particle

and momentum conservation during the collision, as we showed in chapter 2.

Working with the quantum counterpart of the PCA, we become motivated to generalize the

HPP’s to collision rule to the partitioned unitary quantum cellular automata (PUQCA). The idea

was to consider quantum phenomena as superposition and interference for the quantum version

of the HPP interaction. With this model we would be able to study molecular dynamics and

thermodynamical properties from a quantum perspective. However, we are aware of how difficult

it is to work with many quantum particles using classical computers, since the Hilbert space

dimension increases exponentially with the number of particles. Thus, even the description as

three particles in one-dimensional lattice is already a hard problem for our ordinary computers.

But we know that what we called particles in the HPP formulation are just excitations in the

QCA perspectives, a fact that we can take advantage in the quantum HPP version. But again, a

naive PUQCA implementation in a 5×5 two-dimensional lattice requires 25 cells with 4 subcells

each one, since each excitation has two degree of freedom. We learned in chapter 7 that each

cell in this case demands four qubits. Thus, it would requires in the end 100 qubits, a Hilbert

dimension equivalent to 2100, which is out of reach for our classical computers. Despite the fact

that are some tricks to handle many particles [40], we did not explore them so far and we took

131

CHAPTER 8. QUANTUM HPP

another direction to explore this rule in a quantum version.

During our investigations of how to bring problems implemented by quantum walks (QW)

to quantum cellular automata we became familiar with QW’s structures and how to use them

for physics, as we briefly showed in chapter 6. Moreover, during our incursions in this quantum

model of computation we saw a few results where people used two walkers either with or

without interaction between them for different proposals. For instance, in [67] they applied two

interacting quantum walks to understand their dynamics on a percolation graph, where they

only did numerical analysis for one-dimensional lattice with 80 points (nodes, vertices). Now

in [10] they used two interacting and noninteracting walkers to propose a quantum algorithm

to determine if two graphs are isomorphic (related to each other by a relabeling of the graph

vertices) with up 64 vertices. Finally in [9], like in [10], they applied two quantum walkers to

the graph isomorphism problem with up 40 vertices and they also studied the entanglement

dynamics between the two walkers in a 1D lattice. After we had seen these examples and with our

wish to propose a quantum version to the HPP. Problem we thought that two quantum walkers

in a coined model with the HPP interaction could be a good starting point.

The goal of this chapter is to introduce a model of two quantum walkers that can collide

following the HPP interaction proposed in [37]. Despite the fact that this rule is described

in terms of PCA, we took advantage of our results showed in chapter 7 to bring the HPP to

the QWs formalism, the reverse path showed in chapter 7. Differently from what we expected

at first the quantum phenomenon in this model appears only when the particles are alone,

undergoing independent QW dynamics. On the other hand the interaction between them does not

create any superposition, following the HPP rule. Differently from the previous results, that we

briefly commented here, initially we are not interested in apply these two walkers to the graph

isomorphism problem. Our initial interests are to try to understand the dynamics generated by

this new model and investigate the entanglement dynamics between the two walkers. But, we

saw, so far, three possible applications that can motivate the study of this model: to use these two

quantum walkers with the HPP interaction to try to get an advantage in search problems [59]; to

study thermodynamic effects, defining quantum thermodynamical quantities like temperature,

similarly as done in [64]; to apply the quantum HPP (QHPP) to the graph isomorphism problem,

as the previous works.

8.1 Coined model

There are three main goals in this section, the first one is to review the coined quantum walk

model, focusing it on a two-dimensional lattice, the second one is to extend this model for two

quantum walkers and finally to show the mathematical rule for a two quantum walkers model

following the HPP interaction.

132

8.1. COINED MODEL

8.1.1 CQW in L2

Differently from what we did in chapter 7, we will work with the coined model quantum walk

where the Hilbert space is a tensor product of two parts: one related with the state space of the

particle and other with the coin-space,

(8.1) HC ⊗HL2 .

For a two-dimensional lattice with a grid-length 1 the spatial part is spanned by basis states

{|x, y〉 : x, y ∈Z} and if we work with a lattice size N, HL2 = {|x, y〉 : x, y= 0,1. . . N −1}. The coin

space HC, spanned by the four possible directions on the two-dimensional lattice, namely left,

right, up and down of the particle, has dimension 4 and its computational basis can be denoted

by
{∣∣cx, cy

〉
: 0≤ cx, cy ≤ 1

}
. Each one of these states is related with the direction of the particle.

For the x part we have

|0〉 →
|1〉 ←

and for the y part

|0〉 ↑
|1〉 ↓

Then, composing these elements we get the following directions for the particle displacement

|00〉 ↗(8.2)

|01〉 ↘
|10〉 ↖
|11〉 ↙

These four coin states are interpreted here as the possible momentum directions of the particle.

This momentum interpretation is extremely important for this model, as we will see.

The generic state of the walker at time t is described by

∣∣ψ (t)
〉= 1∑

cx,cy=0

N−1∑
x,y=0

ψt
cx cy

(x, y)
∣∣cxcy, xy

〉
,

where ψt
cx cy

(x, y) is the amplitude of the walker being located at the point x, y with the momentum

direction given by cx, cy at time t, which obey the normalization condition

1∑
cx,cy=0

N−1∑
x,y=0

∣∣ψcx,cy (x, y, t)
∣∣2 = 1,

for all time t.

133

CHAPTER 8. QUANTUM HPP

As we know, in this model we have a unitary V , that acts in the particle state at time t given

as output the particle state at time t+1, V :
∣∣ψt

〉→ ∣∣ψt+1
〉
, which is composed by two operators.

The first one is the coin operator C that acts only in the coin space and the second one that acts

in all space, called shift operator S. Thus, in the end we have the following form for our unitary

(8.3) V = S · (C⊗ I) ,

where I is the identity operator acting in HL2 . Under the action of a four dimensional generic

coin in the base state
∣∣cxcy, xy

〉
, we have

C⊗ I
∣∣cxcy, xy

〉= ∑1
cx,cy=0αcx cy

∣∣cxcy, xy
〉

√∑1
cx,cy=0

∣∣αcx cy

∣∣2 ,

where αcx cy ∈C.

In our model we will employ a shift operator that allows the walker only to move diagonally,

see figure (8.1), respecting the possible momentum directions of the walker, as we showed in (8.2),

(8.4) S
∣∣cxcy, xy

〉= ∣∣cxcy,
(
x+ (−1)cx

)
,
(
y+ (−1)cy

)〉
.

Figure 8.1: The four possible particle displacements coming from the four coins states. Then, starting
with a particle at the point (0,0) it does not have the option of going in a straight line. For instance, going
to the point (1,0) is not allowed from this initial position.

For instance, if cx = 0 and cy = 0, the values of x and y are incremented by one unit, which

means that if the walker leaves position (0,0), it will go to (1,1), that is, it goes through the main

diagonal of the lattice, figure (8.1).

8.1.2 Two quantum particles with HPP interaction

To add a new particle in this model first we need to increase our Hilbert space. If we have H1 for

the first particle and H2 for the second one, our new Hilbert space is a tensor product of both

(8.5) H1 ⊗H2,

134

8.1. COINED MODEL

where each one has the same format of (8.1). Thus, the generic state of the two walkers at time t

is described by

(8.6)
∣∣ψ (t)

〉= ∑
c1,c2

∑
l1,l2

ψt
c1c2

(l1, l2) |c1, l1〉⊗ |c2, l2〉 ,

where ψt
c1c2

(l1, l2) is the amplitude of the walker one being located at the point l1 ∈ (x, y) with

momentum direction given by c1 ∈ (cx, cy) and the walker two being located at the point l2 ∈ (x, y)

with momentum direction given by c2 ∈ (cx, cy), both in time t. In case we do not have interaction

between the particles, we have two operators that act independently, V1 and V2, where both are

the same that we showed in Eq.(8.3). But here we propose a local interaction when these particles

are in the same point on the lattice with opposite directions, following the HPP rule.

Like we saw in chapter 2, a natural choice for this collision is to change their momentum

from p to −p, however, it is not a good choice here. Working with indistinguishable particles this

rule is equivalent to the case where these particles cross themselves without interaction, thus we

will keep with the same collision rule of HPP. We can see in Fig.(8.2) two examples, from the total

of four, how the collision rule works under the perspective of diagonal displacement adopted here.

Figure 8.2: Collision rule

In the present work we took the convention that every time that we have two particles at the

same point with opposite momentum the collision between them will change their direction by

ninety degrees clockwise. For instance, if a particle has |00〉 as its coin state before the collision,

then after the interaction, its coin state move to |01〉. The scheme below sums up this convention.

00

↗ ↘
10 01

↖ ↙
11

135

CHAPTER 8. QUANTUM HPP

Now in order to get this interaction we present a new unitary operator VInt. This operator, as

the previous ones, is composed by two parts,

(8.7) VInt = (S1 ⊗S2) ·C ,

where C is the collision operator that acts in the total Hilbert space (8.5) and S1 and S2 are

the shift operators that act independently in each particle. The collision operator has a trivial

behavior in the particle position, always projecting to the same point. However, in the coin space

there are four non trivial operations, which correspond to the four possible collisions. Therefore,

the operator VInt will act non trivially as long as both particles are at the same point, which

means

(8.8) U =
VInt if (xy)1 = (xy)2,

V1 ⊗V2 otherwise.

Now we need to understand how the operator VInt works, which ultimately means knowing the

action of C . Suppose now we have both particles at the same point, then, in this case the collision

operator will only act non-trivially when the particles have opposite directions. In this case we

apply our rule convention

(8.9) C
∣∣cxcy, xy

〉⊗ ∣∣∣c′xc′y, xy
〉
=


∣∣c̄′ yc′x, xy

〉⊗ ∣∣c̄ycx, xy
〉

if c′xc′y = c̄x c̄y,∣∣cxcy, xy
〉⊗ ∣∣∣c′xc′y, xy

〉
otherwise,

where c̄ = c⊕1, sum mod 2. From the operation defined above, we can see that when we have two

particles located in the same point of space the action of C does not give us any superposition.

The superposition appears only when we have one particle.

We will finish this part summing up the total action of U, where from now on we will write

this operator as UHPP, since it is the unitary that implements the quantum version of the HPP

rule,

UHPP
∣∣cxcy, xy

〉⊗ ∣∣∣c′xc′y, xy
〉
=



∣∣∣cyc′x, (x+ (−1)cy)
(
y+ (−1)c′x

)〉∣∣c̄ycx,
(
x+ (−1)c̄y

)
(y+ (−1)cx)

〉
if (xy)= (x′y)′ and (c′xc′y)= (c̄x c̄y)

∣∣cxcy, (x+ (−1)cx) (y+ (−1)cy)
〉∣∣∣c′xc′y,

(
x+ (−1)c′x

)(
y+ (−1)c′y

)〉
elif (xy)= (x′y′) and (c′xc′y) 6= (c̄x c̄y)

V1
∣∣cxcy, xy

〉⊗V2

∣∣∣c′xc′y, x′y′
〉

otherwise

The extension for more particles can be achieved taking the same steps, however we need

to keep in mind the computational resources required. In case we have only one particle in a

136

8.2. DYNAMICS ANALYSIS

two dimensional lattice N × N the Hilbert dimension is given by Dim(H) = 4N2, thus if we

employ n particles the dimension of the new Hilbert space will increase exponentially in n,

Dim
(
H ⊗n)= 4nN2n.

8.2 Dynamics analysis

This section is reserved to try to understand the dynamics of the two interacting quantum

walkers. Instead of presenting the numerical results achieved from the QHPP model and then

trying to explain them, we will discuss the dynamics of each part separately, since both the HPP

part and the coined walker without interaction are well understood. Only after we will show our

results.

Before we continue in this section, it is important we say now that although our model was

described in terms of a periodic boundary condition, all results that we will present here the

walkers do not cross the boundary. Thus, in all cases, the evolution goes until there is some

probability of the walkers arrive on the border. Besides, in order to facilitate the understanding of

the dynamics and to simplify the notation, we will often work with the arrows notation introduced

in (8.2) for the momentum direction, for instance |00〉 = |↗〉.

• HPP

Let us analyze some possible behaviors of the two walkers under the HPP interaction,

without the action of the coin, where in the end we are only interest in analyzing the

action of VInt. Despite the fact that the behavior of many particles which can collide,

following the HPP interaction, is hard to predict, as we saw in chapter 2, for two particles

the analysis becomes easier. There are two interesting cases to see for two particles: the
non-interaction behavior and the periodic interaction.

The non-interaction behavior: Unlike the multiparticles undergoing the HPP interac-

tion, where there are many collisions happening simultaneously, with our two particles with

periodic boundary conditions, in the most cases we will not see any interaction going on. For

instance, if we have two particles starting from different points with the same momentum

direction, or opposite direction, but with some translation displacement between them,

these particles can not arrive at the same point simultaneously and thus they will never

interact. Another case to consider is when the particles can meet at the same point, but they

have not opposite direction, for instance, with the particle one with ↗ as its momentum

direction and the second ↖. All these cases included here the particles remains moving in

the same direction for all time. In the equation below we illustrate one of these cases

U t
Int (|↗〉|x1, y1〉⊗ |↗〉|x2, y2〉)= |↗〉|x1 ⊕ t, y1 ⊕ t〉⊗ |↗〉|x2 ⊕ t, y2 ⊕ t〉 ,

where x1 ⊕ t is sum mod N, N is the box length. Now let us move to the other case.

137

CHAPTER 8. QUANTUM HPP

The periodic interaction: now imagine a initial condition where we have these two

particles colliding at the center of the lattice, where N is a odd number. We are aware

that in the collision instant the particles can be in one of the options showed in Fig.(8.2).

As a consequence of the collision rule, the particles will flip their direction and they will

keep moving freely on the lattice. However, due to the periodic boundary condition, these

particles will meet themselves again at the same point of the previous collision, again with

opposite velocity direction. Therefore, with a period tp = N these particles will collide again.

Thus, at each collision these particles flip their direction until they return to their initial

condition, that happens after four collision. The equation below exemplifies the case

Uαtp

Int

(∣∣cx, cy
〉 |x, y〉⊗

∣∣∣c′x, c′y
〉
|x, y〉

)
= ∣∣cx, cy

〉 |x, y〉⊗
∣∣∣c′x, c′y

〉
|x, y〉 ,

where α= 4n with n ∈Z and x = y= (N +1)/2. Despite the fact we only have analyzed one

specific case, we will see a similar behavior for collisions in different points as long as they

have opposite direction.

From this short analyzes we can conclude that the HPP interaction will not lead the two

walkers become coupled. In contrast, this rule leads the walkers spread inside the lattice,

as we showed in chapter 2 for many particles.

We know that in the QHPP model the quantum superposition comes from the coined evolution.

Thus, in order to understand only this part of the model, V , Eq.(8.3) we will do a similar analysis

showed for the HPP part.

• 2D CQW

Since we only applied the Grover coin in our model

(8.10) C =G = 1
2


−1 1 1 1

1 −1 1 1

1 1 −1 1

1 1 1 −1

 ,

we will only consider this coin in this dynamics analysis. AS we did in chapter 6 we can

establish the recurrence relation in terms of amplitudes and probabilities for this model.

The four possible momentum directions are established from the four-dimensional coin

space HC =C4 and thus the state vector can be expressed as the spinor of four components

(8.11) |Ψ (t)〉 =
N−1∑
x,y=0


ψt

00 (x, y)
ψt

01 (x, y)
ψt

10 (x, y)
ψt

11 (x, y)

 |x, y〉 ,

138

8.2. DYNAMICS ANALYSIS

where the subscripts denote the same four directions showed in (8.2). Then, the probability

of finding the walker in the point (x, y) at time t for each coin state is

P t
00 (x, y) = ∣∣ψt

00 (x, y)
∣∣2 ,

P t
01 (x, y) = ∣∣ψt

01 (x, y)
∣∣2 ,

P t
10 (x, y) = ∣∣ψt

10 (x, y)
∣∣2 ,

P t
11 (x, y) = ∣∣ψt

11 (x, y)
∣∣2 ,

and the probability of finding the walker in the point (x, y) at time t is

(8.12) P t (x, y)=
∣∣ψt

00 (x, y)
∣∣2 + ∣∣ψt

01 (x, y)
∣∣2 + ∣∣ψt

10 (x, y)
∣∣2 + ∣∣ψt

11 (x, y)
∣∣2 .

In order to understand this dynamics better we can express the recurrence relation for both

quantities, the amplitudes and the probabilities of each component. After a straightforward

computation using the Grover coin (8.10) we get

ψt+1
00 (x, y) = 1

2
(−ψt

00 (x−1, y−1)+ψt
01 (x−1, y−1)+ψt

10 (x−1, y−1)+ψt
11 (x−1, y−1)

)
,

ψt+1
01 (x, y) = 1

2
(
ψt

00 (x+1, y−1)−ψt
01 (x+1, y−1)+ψt

10 (x+1, y−1)+ψt
11 (x+1, y−1)

)
,

ψt+1
10 (x, y) = 1

2
(
ψt

00 (x−1, y+1)+ψt
01 (x−1, y+1)−ψt

10 (x−1, y+1)+ψt
11 (x−1, y+1)

)
,

ψt+1
11 (x, y) = 1

2
(
ψt

00 (x−1, y−1)+ψt
01 (x−1, y−1)+ψt

10 (x−1, y−1)−ψt
11 (x−1, y−1)

)
.

Working with these quantities we can easily establish the recurrence relation in terms of

probabilities, for instance

P t+1
00 (x, y) = 1

4
[
P t (x−1, y−1)−ψt

00 (x−1, y−1)
(
ψ∗t

01 (x−1, y−1)+ψ∗t
10 (x−1, y−1)

+ ψ∗t
11 (x−1, y−1)

)+ψt
01 (x−1, y−1)

(
ψ∗t

10 (x−1, y−1)+ψ∗t
11 (x−1, y−1)

)
+ ψt

10 (x−1, y−1)ψ∗t
11 (x−1, y−1)+h.c

]
.

Adding the probability equation expressed above to the other three analogous terms

P t+1
01 (x, y), P t+1

10 (x, y) and P t+1
11 (x, y) we get the follow result

P t+1 (x, y) = 1
4

(
P t (x−1, y−1)+P t (x+1, y−1)+P t (x−1, y+1)(8.13)

+ P t (x−1, y−1)
)+ interference terms.

From the equation above it is clear that the first four terms represent the classical part that

can be achieved from the Random Walk in a two-dimensional lattice and the interference

terms come from the quantum part. Starting from some initial state
∣∣ψ (0)

〉
, with the

expression (8.13) we can establish the probability distribution for t′ > 0 working with this

expression recursively. In particular the following initial condition

(8.14)
∣∣ψ (0)

〉= 1
2

(|↗〉−|↘〉−|↖〉+|↙〉) |x = bN/2e , y= bN/2e〉 ,

139

CHAPTER 8. QUANTUM HPP

where b·e is the nearest integer function of real number and N is the lattice size, yields a

probability distribution for the Grover coin as shown in figure (8.3).

Figure 8.3: This figure gives the spatial probability distribution at time t = 50 for the Grover walker. The
initial condition employed for the state is the one showed in Eq.(8.14). Figure from [25].

The superposition in the coin state (8.14) is the one that gives the largest standard deviation

for the Grover coin, as computed analytically in [66].

Now we are ready to present our results and then discuss the dynamics achieved using the

knowledge of each separate part discussed here.

We used six different initial states
∣∣ψ (0)

〉
in order to learn some characteristics of this model.

There are two initial states that were extremely important for the verification of the model. With

one of them we could turn off the interaction between the particles, and with the other we could

see only the HPP part acting.

8.2.1 Numerical results

We used a 30×30 lattice size during our numerical investigations, marked from 0 to 29. Thus,

the center of the lattice, which is a reference point for our analysis, is (14,14). We employed six

different initial states where three of them are separable product states and the others three

are maximally entangled states between the coins. These last states, that are generalization of

the Bell state for a four qubits (the maximally entangled bipartite state to a higher dimensions),

140

8.2. DYNAMICS ANALYSIS

were proposed in [71]. The initial states are:

|Sep1〉 = 1
2

(|↗〉−|↘〉−|↖〉+|↙〉) |14,14〉⊗ 1
2

(|↗〉−|↘〉−|↖〉+|↙〉) |14,14〉 ,(8.15)

|Sep2〉 = 1
2

(|↗〉−|↘〉−|↖〉+|↙〉) |13,13〉⊗ 1
2

(|↗〉−|↘〉−|↖〉+|↙〉) |15,15〉 ,(8.16)

|Grover〉 = 1
2

(|↗〉−|↘〉−|↖〉+|↙〉) |14,14〉⊗ 1
2

(|↗〉−|↘〉−|↖〉+|↙〉) |13,13〉 ,(8.17)

|Ent1〉 = 1
2

(|↗〉|↗〉+|↘〉|↘〉+|↖〉|↖〉+|↙〉|↙〉) |14,14〉⊗ |14,14〉 ,(8.18)

|Ent2〉 = 1
2

(|↗〉|↙〉+|↘〉|↖〉+|↖〉|↘〉+|↙〉|↗〉) |14,14〉⊗ |14,14〉 ,(8.19)

|Ent3〉 = 1
2

(|↗〉|↖〉+ i |↘〉|↙〉−|↖〉|↗〉+ i |↙〉|↘〉) |14,14〉⊗ |14,14〉 .(8.20)

We can see that in the first three initial states, the separable product states, we used the same

superposition in the coin state given in Eq.(8.14).

8.2.1.1 Probability distribution

In this part we will show our results achieved for the probability distribution of just one particle

for t = 15, that means that we applied the operator UHPP fifteen times. The one particle probability

distribution, P t(x1, y1), after t steps is given by the following expression

(8.21) P t (x1, y1)=
1∑

cx1 ,cy1=0

1∑
cx2 ,cy2=0

29∑
x2,y2=0

∣∣〈cx1 cy1 , x1 y1
∣∣⊗〈

cx2 cy2 , x2 y2
∣∣ (UHPP)t ∣∣ψ (0)

〉∣∣2 .

• |Grover〉
We initiate showing this result, since it is the one that we have noninteracting walkers.

Thus, they have a typical behavior of the Grover coin, the reason that we called this state

"Grover". These noninteracting behavior can be easily understood, since the walkers started

from neighboring points. Then, during the evolution they always alternate their position,

as we illustrated in Fig.(8.4). In Fig.(8.5) we can see the probability distribution of one

walker at time t = 15. This amount of evolution leads the walker arrive in the boundary of

the lattice, as we expected. We can compare the distribution achieved in Fig.(8.3) with the

one showed in Fig.(8.5) and see that they agree.

• |Ent1〉
In the last result we saw a case where the operator UHPP is reduced to V1 in the first and

V2 in the second particle. Now let us see the case where UHPP is reduced to UInt. Doing a

quick analysis of |Ent1〉, Eq.(8.18), we can see that the four terms of the entangled state

are the ones that we have both particles with the same momentum direction. From our

proposed model (8.8), this state leads to the action of VInt, since they are at the same point.

Now, moving to the analysis of (8.7) we see that from the prescription of C , Eq.(8.9), this

141

CHAPTER 8. QUANTUM HPP

Figure 8.4: We can see that with this type of initial condition |Grover2〉 the particles will not interact
during their evolution. The circle represents one walker and the triangle represents the other one. At time
t = 0 each one is located on distinct points of the lattice, but they are neighbors points. Subsequently, at
time t = 1 each one spread diagonally into the four possible directions, but they do not touch each other. If
we continue with the same kind of analysis we will see that they will stay with alternate positions.

operator will act trivially, since the particles do not have opposite momentum directions.

Then, the action of VInt is reduced to the shift operator in each walker, see figure (8.6). The

four components in the superposition of |Ent1〉 will remain the same during all evolution,

since we will not have the action of V1 and V2. Despite the fact that the QHPP model

does not give us coupled particles, this coupled behavior here was enforced by the initial

condition. Besides, our model does not allow these particle to decouple. Therefore, the four

peaks achieved in the probability distribution at t = 15, Fig.(8.7), are expected from the

analysis we did here.

• |Sep1〉

Now we are in the case where the QHPP dynamics shows up, but not completely, as we will

explain. As we can observe from Eq.(8.15) the two particles are located at the same point and

both have the same superposition in the coin state, like the one of (8.14). This superposition

in both walkers leads to 16 terms, where 4 terms are the ones where the walkers have

the same momentum direction. Thus, these terms represent the superpositions of coupled

particles, that will be preserved along the evolution, like we saw in |Ent1〉. At the same

time we have 4 terms where both particles have opposite directions, that will suffer the

collision from the beginning After the first time step we will see four terms that represent

the coupled particles, four that suffered collision and the remainder that will keep with

their momentum direction. In the second step, except for the 4 coupled states, the coin

operator will lead to a superposition and subsequently, after the shift operator action, we

will see amplitudes terms from all the four diagonal points returning to the starting point.

142

8.2. DYNAMICS ANALYSIS

Figure 8.5: Probability distribution for one walker after 15 steps, where the initial state is given by
|Grover〉.

Consequently, these superposition terms at the initial point have opposite directions and

thus, they will suffer interaction. During the entire evolution we will see amplitudes go

back and forth into the initial point, which give to us a peak in the center of the lattice, as

we can confirm in Fig.(8.8). The other terms around the lattice will remains moving freely

without interaction, following the Grover dynamics. Therefore, in the end of the evolution,

t = 15, we expect to see terms that represent coupled particles and others that represent

the superposition terms that did not face any interaction. We cold confirm in our numerical

analyses Fig.(8.8) these predicted results.

• |Sep2〉

Now we are in the case where we will not have coupled particles, since each one started in

different points. After the first time step we will see amplitudes terms going to the center of

the lattice, with opposite momentum direction and amplitudes terms spreading diagonally

to the remaining direction. While the terms in the center will start to feel the interaction,

the others amplitudes terms will spread freely along the lattice. We can visualize this

idea in Fig.(8.9). Then, from this quick analysis we can expect the pattern of collision in

the center and the Grover speeding around the other directions, that can be confirmed in

Fig.(8.9).

143

CHAPTER 8. QUANTUM HPP

Figure 8.6: We can see that with this type of initial condition |Ent1〉 the particles remains coupled during
the entire evolution. The arrows indicates the movement direction of both particles that will not suffer any
superposition during their evolution.

Figure 8.7: Probability distribution for one walker after 15 steps, where the initial state is given by
|Ent1〉.

• |Ent2〉

We are in the case of entanglement in the coin space between the particles, where the

momentum directions are opposite Eq.(8.19). These four terms will lead to a strong effect of

collision, different of the previous examples, since all terms begin colliding at time t = 0.

In our numerical result Fig.(8.11) we could see a big peak in the center of the lattice, that

144

8.2. DYNAMICS ANALYSIS

Figure 8.8: Probability distribution for one walker after 15 steps, where the initial state is given by
|Sep1〉.

we know to come from the interaction part. The remaining amplitudes, related with the

noninteracting part, are small in this case.

• |Ent3〉
We are in the case really similar to |Ent2〉. But now in this entangled state (8.20) the

momentum directions are not opposite, which leads to a slightly different pattern in the

probability distribution little different Fig.(8.12), since the collisions started only in the

second step. But the peak at the center remained strong.

8.2.1.2 Standard deviation

As we said in the beginning of this chapter, we are interested in applying this model for some

algorithms, for instance for search problems [59]. The Grover coin, for example, with the initial

condition given by (8.14) is the one that gives the highest value for the standard deviation, a

model often applied for algorithms, compared with other initial conditions and with other coins,

like the Hadamard coin [59]. Thus, in order to analyze the QHPP model for future algorithms

we computed the standard deviation for all these initial conditions explored until here. We used

|Grover〉 as our comparison criteria for the performance of our model, since it is (8.17) the initial

state that yields the behavior of noninteracting walkers and the one that have the highest value

145

CHAPTER 8. QUANTUM HPP

Figure 8.9: At time t = 0 the state |Sep2〉 represents both particles localized in different points. Subse-
quently, at time t = 1, we can see amplitudes terms related with the collision in the center. We marked
by red the region related with the collision and by green and blue the part of the dynamics that will be
strongly related with the Grover dynamics with the initial state given by (8.14), for each walker.

for the standard deviation in the coined walkers models. The formula employed for the standard

deviation of the position of one particle was

σ (t) =
√
σ2

x (t)+σ2
y (t) ,(8.22)

=
√∑

x
(x− x̄)2 P t (x)+

∑
y

(y− ȳ)2 P t (y) ,

where

x̄ = ∑
x

xP t (x) ,

ȳ = ∑
y

yP t (y) .

The results in Fig.(8.13) show that there are two initial cases that overpassed the standard

deviation values of |Grover〉. The first is |Ent1〉, where we have only amplitude terms of coupled

particles. The second is |Sep1〉 which also contain terms of coupled particles. Coupling between

particles that seems to be the dominant factor that leads them to have a higher standard deviation

value than |Grover〉.
The |Sep2〉 is a case that deserves our attention. This state characterizes well the QHPP

model, since it is the case that we do not enforce the walkers to be coupled, and have a high value

for the standard deviation. From Fig.(8.13) we can see that although |Sep2〉 has the standard

deviation value smaller than |Grover〉 they are close.

8.2.1.3 Distance

In the standard deviation analysis, we only investigated the probability distribution behavior

of one particle, without taking into consideration the probability behavior of the second walker.

146

8.2. DYNAMICS ANALYSIS

Figure 8.10: Probability distribution for one walker after 15 steps, where the initial state is given by
|Sep2〉.

Although the probability distribution established is influenced by the interaction with the second

walker we do not have information whether the particles are close or distant during their

evolution. Thus, with the goal of capturing this information in some way, we used the following

formula

(8.23) D (t)=
∑

x1,y1

∑
x2,y2

P t(x1, y1; x2, y2)
√

(x1 − x2)2 + (y1 − y2)2 .

In this expression we are computing at each time step t the probability of we have particle one

at the point (x1, y1) and the second at the point (x2, y2) multiplied by the euclidean distance

between them, taking the sum for all points of the lattice. This equation contains information

if the particles become closer or distant along their evolution. For instance, D(t) for |Ent1〉 is

zero during the whole evolution, since we have only amplitude terms associated with coupled

particles.

In Fig.(8.14) we can see our results. The fact that we have |Sep2〉 with bigger value during the

total evolution is due the fact that the particles started with the highest distance, compared with

the other states. In fact, the |Grover〉 state that has the higher inclination curve, suggesting that

the noninteracting particles are the case where they stay more distant of each other. Moreover the

states |Sep1〉 and |Sep2〉 have basically the same curve inclination which is also true for |Ent2〉
and |Ent3〉, where the last states are the ones with the smallest inclination. We can understand

147

CHAPTER 8. QUANTUM HPP

Figure 8.11: Probability distribution for one walker after 15 steps, where the initial state is given by
|Ent2〉.

the small inclination for the entangled initial states because of their strong collision behavior

that leads the particles to become closer in the center of the lattice.

8.3 Entanglement between the particles

There are already works where the amount of entanglement between the coin and the position is

investigated [2, 46]. Thus, we can consider that for a single particle this study was well explored.

Despite the fact that there is an analysis of entanglement between two interacting walkers [9],

these studies are just at their beginning. In [9] they used the von Neumann entropy to measure

the total entanglement between the subsystems describing each of the two particles in quantum

walks. Although in [9] they did this investigation on arbitrary graphs, they focused their analyses

on two walkers on the infinite line. During their investigations they could see, for instance, the

entanglement between the particles to increase as they started to interact.

Similarly to the results briefly discussed above, we will investigate the dynamics of entan-

glement between the degree of freedom of first walker and the degree of freedom of the second

walker on the two-dimensional lattice using the von Neumann entropy S

(8.24) S(ρ1)=−Tr
(
ρ1 logρ1

)
,

148

8.3. ENTANGLEMENT BETWEEN THE PARTICLES

Figure 8.12: Probability distribution for one walker after 15 steps, where the initial state is given by
|Ent3〉.

Figure 8.13: Standard deviation of the quantum HPP model on the two-dimensional lattice.

with 0log2 0 := 0. Since the trace is invariant under similarity transformations and the density

matrix ρ1 has real, nonnegative eigenvalues λi, Eq.(8.24) can be written in terms of λi as follows

(8.25) S(ρ1)=−∑
i
λi logλi.

ρ1 is the reduced density matrix that belongs to L (H1) the set of all linear operators acting on

H1 = HC ⊗HL2 . The matrix ρ1 is obtained by tracing the density matrix ρ = ∣∣ψ〉〈
ψ

∣∣ over the

149

CHAPTER 8. QUANTUM HPP

Figure 8.14: Distance analyses of the quantum HPP model on the two-dimensional lattice.

subsystem 2,

ρ1 =Tr2
(
ρ
)
,

where
∣∣ψ〉

is the pure state in H1⊗H2 given by Eq.(8.6). We do not have to concern in doing this

study with the second walker, since S
(
ρ1

)= S
(
ρ2

)
. This equality holds since for bipartite system

both reduced density matrix share the same eigenvalues (modulo multiplicities of zero). We can

check it easily via the Schmidt decomposition [28]. Moreover, we are aware that complete mixed

states are the ones that yields the maximum von Neumann entropy,

S
(

I
d

)
= log2 d,

where d =Dim(H1)= 4N2 and I the d×d identity matrix. Thus, since we know the lattice size

we have already an upper bound for the amount of entanglement:

(8.26) S
(
ρ1

)≤ 2log2(2N).

In this part of the work we used a smaller lattice, 20×20, since the numerical computation of

the entropy has a high cost. We can understand better the complexity related with this calculation

from the complexity involved in computing the eigenvalues of a d×d matrix, which is O(d3).

Thus, since we have to compute the eigenvalues of ρ1 in order to calculate (8.25) and d, in this

case, is 4N2 we can see why this computation is difficult for bigger lattices.

Similarly to the results presented for the probability distribution, we will show and discuss

the results for each initial state. We will not include the states |Grover〉 and |Ent1〉 in this

discussion. The reason to not include |Grover〉 is that this state does not have interaction between

the walkers, and thus the entropy remains zero during the entire evolution. For the state |Ent1〉
we are in the case where the particles remain coupled during all evolution, and thus the entropy

remains constant equal two since this state is the case of the maximally entangled states between

the coins, log2(4)= 2. Both cases were confirmed numerically.

150

8.3. ENTANGLEMENT BETWEEN THE PARTICLES

• |Sep1〉
For this state we observed in Fig.(8.15) that only at t = 3 the entanglement between the

walkers appears. If we observe this state and its dynamics, we can see that in this time

instant there are amplitude terms that just left the center of the lattice after suffering

one collision. We also can see from Fig.(8.15) that after t = 6 the entropy remains almost

constant. We can understand it from the fact that there are several amplitude terms that

do not suffer interaction during the evolution and consequently the entanglement stops to

increase.

Figure 8.15: Entropy evolution starting from |Sep1〉.

• |Sep2〉
For this state we also could see the entanglement between the particles increasing during

the evolution. In Fig.(8.16) we can see that different from the previous case entanglement

starts to appear earlier. We can understand it from the fact that in (8.16) they started

in different points but again at time t = 2 there are amplitude terms that just left the

center of the lattice after a collision. We also can see from the results in Fig.(8.16) that the

entanglement did not increase much when compared with |Sep1〉. We can understand it

from the fact that we have less amplitude terms interacting in this state. Indeed, we can

check that while we have four amplitude terms that collide at t = 2 in |Sep2〉, here we have

two amplitude terms related with the collision at time t = 1.

From t = 1 until t = 7 we could see that these points increased logarithmic. We could fit

these points by the following curve

(8.27) a log2 (bt) ,

for small t since we have a bound estimated in Eq.(8.26), with a = 0.668 and b = 1.064.

• |Ent2〉

151

CHAPTER 8. QUANTUM HPP

Figure 8.16: Entropy evolution starting from |Sep2〉.

Here we are in the case where the particles are already entangled at t = 0. In our results,

Fig.(8.17), we observed that the entanglement remains constant until t = 4. Moreover,

although it starts to increase at time t = 5 this growth is small. It means that the collision

effects were not able to entangle more these particles and that might have many other

amplitude terms that do not collide during the evolution.

Like we did for |Ent2〉 we could fit the growth from t = 4 until t = 7 by a logarithm curve

(8.27), but with parameters given by a = 0.094 and b = 3.26.

Figure 8.17: Entropy evolution starting from |Ent2〉.

• |Ent3〉

We are again in the case where the particles are maximally entangled states between the

coins at time t = 0. In Fig.(8.18) we can see that the entanglement increases with time. But

differently from previous states, this growth is bigger. This result suggests to us that this

state undergoes more interactions during the evolution.

We also can see a logarithm increase from t = 2 until t = 7 with a = 0.703 and b = 4.718.

152

8.3. ENTANGLEMENT BETWEEN THE PARTICLES

Figure 8.18: Entropy evolution starting from |Ent3〉.

It is important to point out that in all these numerical analyses for entropy the upper bound

(8.26) , which in this case is 10.644, was respected.

8.3.1 Final considerations

In this chapter we introduced a quantum walk model for two interacting walkers following the

interaction rule of HPP, proposed in [37], that we called by QHPP model. In this first moment we

only studied, by numerical analysis, some dynamics’ aspects of this model. From six different

initial states we could confirm that we successfully implemented the model, since we could recover

the expected results for the Grover and HPP part. We have already got results, like the ones

presented about the standard deviation, that point to us that QHPP can be a good model to be

used in some algorithms, since from just these six initial states we found cases that give higher

values for the standard deviation when compared with the Grover state. Furthermore, we could

see how easily this model generates entanglement between the particles, which can be further

explored in future works, when we, for example, define temperature between these parts like it

was done in [64].

For the next steps we expect to do an analytical study for this model, to see if we can get a

better understanding of the QHPP. At the same time we will investigate the behavior of this

model for search algorithms, since we believe that with two particles we can gain some speedup

compared with other quantum search algorithms. In addition, in this chapter we could explore

two quantum walkers in a two-dimensional lattice, something that had never done before. With

this ability we can try to use this type of interaction for graph isomorphism test to a larger

number of different graphs. We can either try to use QHPP to do this certification test or use the

previous interactions proposed in [9, 10], since we can use our computational ability to test these

previous models for different graphs.

Hardy, Pomeau and Pazzis proposed in [37] the first model for molecular dynamics. Despite

the fact that the model is able to capture the essential features for a realistic problem, particle

153

CHAPTER 8. QUANTUM HPP

and momentum conservation, the capability of this model to simulate a real gas is poor, due to a

lack of isotropy. We can observe this drawback in Fig.(8.19). There we can see that if we put a

high particle density in the middle of the lattice we can see that the particles do not propagate

identically in all directions. The main reason is the lattice structure used for this model. In order

Figure 8.19: HPP simulations initiated with a high particle density in the center of the lattice, left figure.
Then, after some time steps, we can see the particles do not propagate identically in all directions, right
figure. This behavior it is not expected for real gas process. Figure from [17].

to solve this isotropy problem and propose a more realistic model to fluids, Frisch, Hassalacher

and Pomeau proposed in [32] a model, with the same spirit as HPP lattice gas, that became

known as FHP model for fluids. In this model they used an hexagonal lattice, where each site has

six neighbors. This model solves the isotropy problem. Until today this model is used to simulate

fluids, as it is a discrete model for the Navier Stokes, a non-linear differential equation [17].

With the same spirit here we might had given the startup for studies of more realistic

"quantum fluids" (any system that exhibits quantum mechanical effects at the macroscopic level).

Moreover we can try to use the same lattice structure of the FHP with its collision rule to see the

behavior for two quantum walkers and try to move to more walkers and see if the quantum FHP

model could be a better candidate for search algorithms.

154

C
H

A
P

T
E

R

9
QUANTUM ALGORITHM FOR SIMULATING THE WAVE EQUATION

During the recent years we notice more and more specialized quantum algorithms appear-

ing. As, there are some quantum computers available (D-wave [12], IBM [41, 69]) and

others to come (Microsoft1, Google [31]), people seek to see quantum computers solving

problems with a better performance than our ordinary computers, for instance, spending less time

to compute the same task. In particular, we saw during these last years many results focusing in

quantum algorithms for numerical methods, that can lead a great impact on the industry. We can

emphasize the results established in [38], that current is known as HHP algorithm, since the

authors last name are Harrow, Hassidim and Loyd. The authors proposed a quantum algorithm

to solve linear systems of equations, where they could get exponential speedup compared with

the best classical algorithms, but only in special cases, for instance the matrix should be sparse.

Some restrictions established in [38] were solved in [20].

It is quite obvious the importance of results like that, since it can be useful in many distinct

areas, from academy to industry. Keeping in the same line, we can cite some results which

proposed quantum algorithms to solve differential equations. In [7], for instance, Berry asked

about the possibility to use quantum computers to solve differential equations. Berry knew that

solve differential equations via numerical method is equivalent to solve linear systems and that

the matrices achieved after the discretization are sparse (see chapter 4). Moreover he was aware

about the results of [38] that gives great speedups in the runtime to solve linear system when A

is a sparse matrix. To be more precise the runtime in [38] to solve linear systems like Ax = b is

given by

Õ
(
log(N)s4κ2/εL

)
,

where A ∈ N ×N, s the sparsity of A and κ the condition number (see App.(B)) of A and εL is the

1https://www.microsoft.com/en-us/quantum/

155

CHAPTER 9. QUANTUM ALGORITHM FOR SIMULATING THE WAVE EQUATION

allowable error. From these previous results and from the fact that any linear dependent equation

can be converted to a first-order linear differential equation Eq.(4.54) they build a quantum

algorithm to solve the differential equation in time O(poly(D log N)) instead Ω(ND) achieved in

the classical algorithms, chapter 4. After that, in 2017, Berry, Childs ,Ostrander and Wang [16]

extended the results of [7], proposing a quantum algorithm for differential equations with an

exponential improvement over previous quantum algorithms for this problem. These types of

algorithms are useful to simulate many classical physical systems, thus they have great potential

for applications in distinct areas.

In this chapter we will maintain the line of results for differential equation. The result that

we will present here [21] is a quantum algorithm for simulating the wave equation. Although, the

previous quantum algorithms can solve the wave equation problem, we developed an extremely

specialized quantum algorithm that can solve only the wave equation. We took a different

approach to solve this problem that yields an exponential speedup compared it with the ordinary

classical methods and also a better performance even when we compared with the previous

quantum algorithm for differential equations.

We saw in chapter 4 that when we apply the well knowing numerical methods for differential

equation, like the finite difference method [44] and the finite element method [91], we can see

that the complexity involved to solve general linear differential equations have time complexity

scaling exponentially with D the lattice spacing, Ω(T(l/h)D) where h is the lattice spacing, l is the

lattice size and T is the evolution time for the wave equation. However, we will present results

via Hamiltonian simulations where the time complexity is Õ(TD2/h) Moreover, when we employ

the previous quantum algorithms [7, 16] to solve the wave equation problem our results gave

a quadratic improvement in the complexity of state preparation (l/h) against (l/h)2, where this

quadratic improvement is achieved in exchange for being specialized for solving wave equations

rather than general linear differential equations. When we say specialized here we mean that we

do not have the HHP algorithm as the main subroutine for our algorithm. Unlike the previous

results [7, 16] for the wave equation simulation we did it by Hamiltonian simulations and the

complexity of our method is achieved from the number of necessary gates to implement the

unitary e−iHT .

Therefore we will show an alternative quantum algorithm for the wave equation problem,

that has a better performance even when we compared with other quantum algorithms. Unlike

the previous results that are more interested in proposing the method and confirm that their time

complexity is better than the classical counterpart, we show in practice few numerical examples of

wave simulations via Hamiltonian simulations, imposing either Dirichlet or Neumann boundary

conditions. Like in [20] we consider as our primary application the simulation of scattering in

complicated geometries, as illustrated in figure 9.1. Moreover, like we did in chapter 4 we provide

numerical evidence that our approach accurately simulates the wave equation with appropriate

behavior at boundaries.

156

9.1. ALGORITHM

We strongly recommend the reader see the chapter 4 first, where we solved the wave equation

applying the finite difference method. Besides in chapter 4 we present a powerful discretization

method via graph theory that has a key role for the quantum algorithm that we will show here.

scatterer

wavepacketdetector

Figure 9.1: For a given initial wavepacket and a given scatterer, we would like to estimate the resulting
spatial distribution of wave intensity resulting at some later time t. In particular, one may wish to know
the total intensity captured by a detector occuppying some region of space. This can be estimated using
a quantum simulation in which the wavefunction directly mimics the dynamics of the solution to the
wave equation. The final intensity in the detector region is equal to the probability associated with the
corresponding part of the Hilbert space, which can be estimated from the statistics resulting from a
projective measurement. Figure from [21].

9.1 Algorithm

Before we go to the technical details of the algorithm we will discuss the strategy adopted here to

construct a quantum algorithm for the wave equation problem.

We are aware that quantum algorithms demand unitary operators, thus we need them for

our wave equation simulation. Then, our goal is to try to convert the numerical computation in

terms of unitary operations. We were successful in this task by taking advantage of the incidence

matrix, chap.(4) as we will explain now.

Differently from chap.(4), in our algorithm we only considered space discretization. Thus

starting with
d2

dt2φ= v2∇2φ,

after the discretization, we are faced with the task of simulating

d2

dt2φ=− 1
h2 Lφ,

via quantum computation, where again h is the lattice spacing and we are already considering L

as the graph Laplacian (4.45). The way that we encode this problem in terms of unitary operators

is constructing a off-diagonal Hamiltonian with a block form, where there block matrices are the

incidence matrix B,

(9.1) H = 1
h

[
0 B

B† 0

]
.

157

CHAPTER 9. QUANTUM ALGORITHM FOR SIMULATING THE WAVE EQUATION

We will now explain how this Hamiltonian provides the wave equation. In chapter 4 we saw

that incidence matrices and the Laplacian operator are defined in terms of graphs [19]. We saw

that B is a |V |× |E| matrix, where V is the vertex set and E the edge set from a graph Gh. Then,

from some graph Gh there are these two sets and from Gh we can construct the incidence matrix.

Since we have defined a Hamiltonian there is a Hilbert space where it is defined H ∈H . From

what we know about B is quite natural we decomposed our Hilbert space as follows

(9.2) H =HV ⊕HE,

where HV is the vertex space and HE is the edge space. As a next step we will write the

Schrödinger equation, employing the Hamiltonian above Eq.(9.1) into some vector
∣∣ψ〉 ∈H

∣∣ψ〉= [∣∣φV
〉∣∣φE
〉] ,

where
∣∣φV

〉 ∈ HV and
∣∣φE

〉 ∈ HE, and thus to use the property BB† = L to codify the wave

equation via Hamiltonian simulation. Following these steps we first write the Schrödinger

equation

(9.3)
d
dt

[∣∣φV
〉∣∣φE
〉]= −i

h

[
0 B

B† 0

][∣∣φV
〉∣∣φE
〉]

then, we can see that

d2

dt2

[∣∣φV
〉∣∣φE
〉] = −i

h

[
0 B

B† 0

]
d
dt

[∣∣φV
〉∣∣φE
〉] ,

= −1
h2

[
0 B

B† 0

]2 [∣∣φV
〉∣∣φE
〉] ,

= −1
h2

[
BB† 0

0 B†B

][∣∣φV
〉∣∣φE
〉] .

where we adopted the natural units, which implies that the Planck constant ~ is equal to one.

Then we can see that the full subspace HV evolves according to a discretized wave equation. We

should emphasize the fact that we are simulating the wave equation, a second order differential

equation via Schrödinger’s equation, a first order differential equation in time. This is possible

since we have a Hamiltonian that interacts these two subspaces HV and HE in such a way that

one subspace evolves according the wave equation.

Now we should ask ourselves what are the advantages in run this equation via a quantum

algorithm. A crucial part now is to investigate the complexity involved in this quantum version.

We begin this analysis looking at the dimension of Hilbert space for this problem. From (9.2)

we see that dim(H) is is equal to the number of vertices of the graph plus the number of edges:

|V | + |E|. In particular, for a hypercubic region of side-length l in D-dimensions, discretized

158

9.1. ALGORITHM

into a hypercubic grid of lattice spacing h, one has |V | = (l/h)D , (see chapter 4, section (4.2.3)

to understand better this equality) and |E| = D (l/h)D . Thus, the number of qubits needed is

log2
[
(1+D) (l/h)D]

. There are more two necessary informations to compute the complexity of this

quantum algorithm, the largest matrix element of H, that has magnitude 1/h, and the number of

nonzero matrix elements in each row or column of H that is at most 2D. This sparsity value of H

can be easily understood taking into account that the Hamiltonian is composed by the incidence

matrix which has the sparse pattern like the adjacency matrix analyzed in chapter 4, section

(4.2.3).

What we did until this moment was to convert the wave equation simulation to a Hamiltonian

simulation. Putting in another way, we converted a second order differential equation to a first

order one, which is a technique well known, similar to the translation showed in Eq.(4.55). Then,

if we stop here and proceed with this simulation via classical algorithms the complexity of the

problem still the same. However, there are quantum algorithms that give better runtime to

Hamiltonian simulations when the Hamiltonian is a sparse matrix, which is our case, as we use

the results of [8]. There they showed that the unitary time evolution e−iHT to within ε can be

achieved using a quantum circuit of

(9.4) g =O
[
τ
[
n+ log5/2 (τ/ε)

] log(τ/ε)
loglog(τ/ε)

]
,

gates, where τ= s‖H‖max T, where ‖H‖max is the largest matrix element of H in absolute value,

s = sparsity of H, and n = number of qubits. For the Hamiltonian of (9.1), s = 2D, ‖H‖max = 1/h,

and n = log2[(1+D)(l/h)D], and therefore the total complexity of simulating the time-evolution is

g = O

[
DT
h

(
log

[
(1+D) (l/h)D

]
+ log5/2

(
2DT

hε

)) log
(2DT

hε
)

loglog
(2DT

hε
)]

,(9.5)

= Õ
(

TD2

h

)
,

where the notation Õ indicates that we are suppressing logarithmic factors.

The remaining considerations are the implementation of desired boundary conditions, the

preparation of an initial state implementing the desired initial conditions, errors induced by

discretizing the wave equation, and the relative probability to obtain the desired state related

with the function at time T computation. In the following sections analyze each of one of these

topics commented here.

The topic related with the implementation of desired boundary conditions was explored in

chapter 4, section (4.2.2). Since we already know to implement both Dirichlet and Neumann

boundary conditions by the incident matrix, we know how to deal with these boundary conditions

in our quantum version for the wave equation problem. Therefore we can go to the initial condition

part.

159

CHAPTER 9. QUANTUM ALGORITHM FOR SIMULATING THE WAVE EQUATION

9.2 Initial conditions

The first step in our quantum algorithm is to prepare a quantum state
∣∣φV

〉⊕ ∣∣φE
〉 ∈H corre-

sponding to desired initial conditions φ(x, t) and ∂φ (x, t) /∂t at t = 0. Our method for preparing

the initial state and its complexity varies depending on the specific type of initial conditions.

As a first example, consider a line-segment with Dirichlet boundary conditions, discretized

into four lattice sites. In this case, by (9.1) and (4.46), we have

(9.6) H = 1
h



0 0 0 0 1 1 0 0 0

0 0 0 0 0 −1 1 0 0

0 0 0 0 0 0 −1 1 0

0 0 0 0 0 0 0 −1 1

1 0 0 0 0 0 0 0 0

1 −1 0 0 0 0 0 0 0

0 1 −1 0 0 0 0 0 0

0 0 1 −1 0 0 0 0 0

0 0 0 1 0 0 0 0 0



.

This can be viewed as a discretization of

(9.7) H =
[

0 d
dx

− d
dx 0

]
,

where we used the the forward and backward difference approximation in Eq.(9.6). More generally,

in an arbitrary number of dimensions, the Hamiltonian (9.1) can be seen as a discretization of

(9.8) H =
[

0 ~∇T

−~∇ 0

]
.

Consequently, for an arbitrary
∣∣φ0

〉=∑
xφ (x,0) |x〉 and

∣∣φ̇0
〉≡∑

x
∂φ(x,0)
∂t |x〉 and from the Schrödinger

equation
d
dt

[∣∣φV
〉∣∣φE
〉]=−i

[
0 ~∇T

~∇ 0

][∣∣φV
〉∣∣φE
〉] ,

that yields the follow relation
d
dt

∣∣φV
〉=−i~∇· ∣∣φE

〉
,

we one must prepare a corresponding initial quantum state that is a solution to

φV = φ0

~∇·~φE = i
d
dt
φ0,(9.9)

where we used the notation φ0 =φ (x,0). In more than one dimension, the equation (9.9) does not

uniquely determine φE since ~∇×~φE is unspecified. (In one dimension φE is determined up to an

additive constant.) In the remainder of this section we consider how to compute a solution to (9.9)

and how to prepare the initial state
∣∣φV

〉⊕ ∣∣φE
〉 ∈H on a quantum computer for general cases of

interest.

160

9.2. INITIAL CONDITIONS

9.2.1 General Case

In the general case we may imagine that we are given efficient quantum circuits preparing

the states
∣∣φ0

〉=∑
xφ (x,0) |x〉 and

∣∣φ̇0
〉=∑

x
∂φ(x,t)
∂t |x〉, (from now on we will write the equations

only in terms of the amplitudes of
∣∣φV

〉
and

∣∣φE
〉

.) The discrete analogue of (9.9) is, via our

incidence-matrix discretization:

φV = φ0(9.10)

− i
h

BφE = φ̇0.(9.11)

At second order and above, the solution to i
h BφE = φ̇0 is non-unique in general since the number

of edges, D (l/h)D , in the graph Gh exceeds the number of vertices (l/h)D . Thus, the number

of columns of B exceeds the number of rows by a factor of order D, the number of spatial

dimensions. The non-unique solutions come from the basic concepts of linear algebra, since

although φ̇0 ∈ Im(B), where B : HE →HV , B is not injective in general. One valid solution is to

use as our quantum initial state

(9.12)

[
φV

φE

]
∝

[
φ0

ihB+φ̇0

]

where B+ denotes the Moore-Penrose pseudoinverse of the matrix B. A Moore-Penrose pseudoin-

verse has the property that the image of B+ is the orthogonal complement of the kernel of B.

Recall that B is a map from HE →HV , which at first order (i.e. when B is the signed incidence

matrix of a graph) and in the continuum limit can be interpreted as a divergence. The Helmholtz

decomposition theorem says that any twice-differentiable vector field can be decomposed into a

curl-free component and a divergence-free component, which means in this case

~φE = −~∇a1 (~r)+~∇×~a2 (~r)

= ~φE l +~φE t ,

where ~φE l is the longitudinal component of ~φE l and ~φE t the transverse one. Thus, φE =−ihB+φ̇0

corresponds in the continuum limit to the solution to the following system of equations.

~∇·~φE = −iφ̇0(9.13)

~∇×~φE = 0,(9.14)

since −ihB+φ̇0 corresponds the longitudinal term of ~φE. To construct the state (9.12) we can

use the quantum linear systems algorithm of [16]. Specifically, we wish to prepare the state

proportional to the solution to Ax = b where

A =
[
1 0

0 ih−1B

]
(9.15)

b =
[
φ0

φ̇0

]
(9.16)

161

CHAPTER 9. QUANTUM ALGORITHM FOR SIMULATING THE WAVE EQUATION

since This can be done using the quantum linear systems algorithm of [16], which is a result

that improved the runtime of the HHL algorithm, whose time complexity is Õ(κ), where κ is

the condition number of A, which in this case is equal to the condition number of the incidence

matrix B.

9.3 Numerical examples

The above analysis can be confirmed by numerical examples, as shown in this section. In all cases

one sees that the dynamics and implementation of initial conditions and boundary conditions are

consistent with theoretical expectations. Our quantum algorithm is implemented on a gate model

quantum computer, and time evolution is discretized into a sequence of elementary gates via the

method of [8]. The error induced by this time discretization is rigously upper bounded in [8]. Thus

the focus of our numerical study is to investigate the errors induced by spatial discretization and

verify the implementation of boundary conditions and initial conditions.

In our simulation we need to choose a sufficiently small timestep to ensure stability of the

numerical method. We achieve this by taking

∆t < h,

in order to keep our numerical analysis stable, as we saw in chapter 4, [43]. In small examples

we verified the accuracy of the numerical solution to the differential equations by comparing

against direct computation of the entire unitary operator e−iHt applied to the initial state vector.

162

9.3. NUMERICAL EXAMPLES

a)

b)

Figure 9.2: Shape preserving on line segment Dirichlet. Here we consider the case of a rigidly-
translating wavepacket. We can see two different views of the same wave packet starting in the middle
point in a box with size 20, where space is represented by the x-axis while in the y-axis we have the
time. We can see the packet going back and forward between the extremes of the box. Although its wave
amplitude is preserved in time, when the wave packet arrives at the end points its amplitude in inverted
with its propagation’s direction. The red color gives us the positive amplitude against the blue one with
negative value. In this example we choose lattice spacing h = 0.2469 and gaussian wavepacket width
σ= 1.6, where σ plays the role of the standard deviation, when we think the gaussian wavepacket as the
probability density function. Figures from [21].

163

CHAPTER 9. QUANTUM ALGORITHM FOR SIMULATING THE WAVE EQUATION

a)

b)

Figure 9.3: Spreading wave on line segment Dirichlet. In these figures we kept with the same
parameters used for the previous plots, changing only the initial condition for ~φE . Now we can see the
wave spreading equally for both sides. Both waves amplitudes reflect in the boundary and then arrive in
the lattice center at the same time, but with the amplitude inverted. Figures from [21].

164

9.3. NUMERICAL EXAMPLES

a)

b)

Figure 9.4: Standing wave. Here we consider a standing wave, which can be described analytically
by φ (x, t)= cos(ωt)sin(πx). This can be simulated by Schrödinger’s equation employing the follow initial
conditions φV =φ0 = sin(πx) and φE = dφ0/dt = 0 as long as we start with t = 0.Figures from [21].

165

CHAPTER 9. QUANTUM ALGORITHM FOR SIMULATING THE WAVE EQUATION

a) b)

c) d)

Figure 9.5: Wave packet in a cavity. Here the initial state is a Gaussian wave packet, but now in a
two dimensional region with nontrivial boundary. Specifically, we simulate scattering of the wavepacket
off a square object with Dirichlet boundary conditions. This is implemented as a square hole in the
underlying discrete lattice. These four views represent the same wave packet in different time instants,
where ta > tb > tc > td . As in the one dimensional example, we worked with Dirichlet boundary conditions;
however, the shape is not preserved. Here, the box has size ten in both axes, and we choose h = 0.1563 and
σ= 0.4. Figures from [21].

166

9.4. DISCRETIZATION ERRORS

9.4 Discretization Errors

Like we did in chapter 4, we investigate the behavior of our numerical simulations via the Q

factor,

Q(t)=
∥∥φ4h −φ2h∥∥

2∥∥φ2h −φh
∥∥

2
.

to quantify the discretization errors.

Differently from what we did in chapter 4 we worked with the concept of average Q from t = 0

to t = 0.5. Thus, we present these results via a table, where the parameter chosen were h = 60

and 0.0001 as the time step employed in the software.

〈Q〉spreading 3.98

〈Q〉standing 3.99

Then, from these values above we can conclude that our method is convergent and that the order

of the Laplacian is h2, Eq.(4.42).

9.5 Post-Processing

Since we are dealing with a quantum algorithm we expect to use it in a quantum computer,

otherwise we will return to the same complexity class that the ordinary numerical methods for

differential equations. Then, there is a fundamental question that we must address here: what is

the success probability of we measure the desired output? Trying to answer this question is our

central proposal in this chapter.

After we perform a Hamiltonian simulation from t = 0 to t = T we are left with both states

φ(T) and B−1dφ(T)/dt, where the first state lives in HV and the last in HE. Then, depending on

the application we may be interested in one or other state.

If our interest is to produce a state proportional to φ, we will show now that there is not any

reasonable lower bound on success probability in this measurement, even for simple cases. Let us

see this fact with a simple example. Suppose we have the following initial conditions φ0 = cos(x)

and φ̇0 = 0. Then in any other time the function can be written as φ(x, t) = f (t)cos(x) for some

f that oscillates between -1 and 1. Then in case we decide to measure our state after a time

T where f (T) = 0, we will not see any support of this state in HV . Then, we can see how the

post-processing depends on the initial state, thus, each case needs to be carefully analyzed.

In case we only care about a state proportional to dφ/dt we can do an estimate estimative. As

before we begin measuring if the state is in HV or HE, but now we are interested in the success

probability of our state in HE. The resulting state is proportional to B−1dφ/dt, then we need

to cancel B−1, which is a easy task, since we only have to apply B and we can do after we get a

estimation.

167

CHAPTER 9. QUANTUM ALGORITHM FOR SIMULATING THE WAVE EQUATION

Inspired by [38] the procedure for matrix multiplication is

|B−1dφ/dt〉|0〉|0〉 =∑
j
α j|Λ j〉|0〉|0〉(9.17)

7→∑
j
α j|Λ j〉|λ̃ j〉|0〉(9.18)

7→∑
j
α j|Λ j〉|λ̃ j〉

 λ̃ j

C
|0〉+

√
C2 − λ̃2

j

C
|1〉

 .(9.19)

Let us explain with more detail the procedure used above. At first we e-expresses the initial

state in the eigenbasis {|Λ j〉}. The idea here is to apply the well-known quantum algorithm to

phase estimation [54] that gives the following map

∣∣Λ j
〉 |0〉→ ∣∣Λ j

〉∣∣λ̃ j
〉

where λ̃ j is the binary representation of λ j to a certain precision. In this step we have to apply

the unitary exp(iHt) into the eigenstates
∣∣Λ j

〉
in order to get

eiHt ∣∣Λ j
〉= eiλ j t

∣∣Λ j
〉

.

Finally, in the third line we perform a controlled rotation of the second qubit. This rotation is

a multiplexed gates rotation

R (|0〉1 |x〉n−1)= Rx |0〉1 |x〉n−1 ,

where the subscript means the number of qubits related with the state. In our case we have

R j = e−iθ jσy =
(
cosθ j −sinθ j

sinθ j cosθ j

)
,

where θ j = arccos
(
λ̃ j/C

)
. C is a constant of normalization and must satisfy C ≥p||L|| so that

the argument under the square root is not negative. Setting it to Θ(
p||L||), the probability of

measuring the last qubit in |0〉 is κ(L)−2 in the worst case. Then we produce a state proportional

to dφ(T)/dt conditioned on measuring the last qubit in the state |0〉.

9.6 Klein-Gordon Equation

It is quite well known that if we want to describe phenomena at high energies we need go to

relativistic theories. In particular, we are interested in relativistic quantum mechanics theory

since there are a group of particles, spinless particles, that are described by relativistic wave

equation.

When we move to the high energy physics the kinetic energy of the particle is in the same

energy scale of its mass energy, mc2. In this case we need to include the mass term in the total

168

9.6. KLEIN-GORDON EQUATION

energy of the system, where in the end it will change the particle equation format, as we will see

now. From elementary quantum mechanics we know that Schrödinger equation

i~
∂φ (x, t)
∂t

=
[
− ~2

2m
∇2 +V (x)

]
φ (x, t) ,

where m is the particle mass and V the potential energy. This equation corresponds to a nonrela-

tivistic equation. This equation has the follow operation form

Ê = p̂2

2m
+V (x),

where,

Ê = i~
∂

∂t
, p̂ =−i~∇.

The idea here is to show how we can modify this equation to get a relativistic wave equation.

There is a well known relativistic relation that can be our starting point

(9.20) pµpµ = E2

c2 −~p ·~p = m2c2,

where pu with µ= 0,1,2,3 is the four-momentum of the particle

pµ = {
p0, p1, p2, p3}= {

E/c, px, py, pz
}
,

pµ =
{
E/c,−px,−py,−pz

}
,

where E is the total energy for the free particle and c is the speed of light. p · p = pµpµ is the

scalar product in four dimensions

pµpµ = p0 p0 + p1 p1 + p2 p2 + p3 p3.

Likewise the scalar product is invariant by rotations in Euclidean space, this scalar product in

four dimension is invariant by Lorentz transformation in Minkowski space 2. In the end, relation

(9.20) is saying that the mass is a relativistic invariant of the particle.

Returning to Eq.(9.20), we can use the vectorial form of the four-momentum pµ

p̂µ = i~
∂

∂xµ
= i~

{
∂

∂t
,−∇

}
,

p̂µ = i~
∂

∂xµ
= i~

{
∂

∂t
,∇

}
.

Thus, we obtain the Klein-Gordon equation for free particles,

p̂µ p̂µφ= m2c2φ,

2Minkowski space is a 4-dimensional real vector space equipped with a nondegenerate, symmetric bilinear form on
the tangent space at each point in spacetime, here simply called the Minkowski inner product, with metric signature
either (−,+,+,+) or (+,−,−,−).

169

CHAPTER 9. QUANTUM ALGORITHM FOR SIMULATING THE WAVE EQUATION

or

(9.21)
1
c2
∂2φ

∂t2 −∇2φ+ m2c2

~2 φ= 0.

From the equation above we can see that we are dealing with a wave equation with an extra

factor. As we will see now our algorithm can easily contemplate this extra factor by just adding

self-loops on the graph Gh. From now on we will go back to natural units, that implies both ~ and

c are equal to one.

Suppose we have a graph G′, from where we can construct the graph Laplacian that approxi-

mates,
1
h2 L

(
G′)=∇2φ+m2φ,

thus
∂2φ

∂t2 = 1
h2 L

(
G′)φ,

is the discretized version of Eq.(9.21). It means that our Laplacian has the whole information

about the particle, which includes its mass term. In fact this graph G′ can be easily achieved

from a graph G that approximates the following operator

1
h2 L (G)=∇2φ,

that gives our ordinary wave equation, which means L (G) does not have a mass term.

Beginning with G the mass term can be established by adding self loops with W = (hm)2 as its

weight on all vertices of G, see chapter 4 section 4.2.2. This manipulated graph is our graph G′.
Finally, like before, we need to construct its incidence matrix B

(
G′) in order to get the Laplacian,

B
(
G′)† B

(
G′)= L

(
G′) .

Moreover, it is easy to see how this Laplacian L(G′) is related with the Laplacian from G, L(G)

L
(
G′)= L (G)+h2m2I,

where I is the identity matrix. Therefore, whereas B (G) gives our ordinary wave equation,

applying B
(
G′) in our Hamiltonian gives our relativistic wave equation.

9.7 Maxwell’s Equations

As a final application, we can see how our algorithm can deal with Maxwell’s equation.

We are aware that in a region with no charges and no currents, such as in a vacuum, Maxwell’s

equations governing the time evolution of electric ~E and magnetic fields ~B take the form

(9.22)
∂~E
∂t

=∇×~B,
∂~B
∂t

=−∇×~E.

170

9.7. MAXWELL’S EQUATIONS

Taking the second derivative with respect to time in the left equation above yields,

∂2~E
∂t2 =∇× ∂~B

∂t
.

Now, from the right equation in (9.22) we can replace ∂~B/∂t in the last equation to get

∂2~E
∂t2 =∇×∇×~E.

As the next step we can make use of the following relation

∇×∇×a =∇ (∇·a)−∇2a,

and use the fact that we do not have extra sources, that means ∇·~E = 0 to get in the end

∂2~E
∂t2 =−∇2E.

which implies that ~E follows the wave equation. An analogous calculation can be done for ~B

to see that it also obeys the wave equation. From our Hamiltonian simulation method for the

wave equation, it is clear that we can simulate each field separately. However, we will show an

alternative method, also via Hamiltonian simulation, that can simulate both fields simultaneously

and thus the electromagnetic field in vacuum.

If we consider discretizing space, then we can write Eqs.(9.22) as

∂

∂t

[
~E
~B

]
=

[
0 C

−C 0

][
~E
~B

]

where C is the finite difference approximation of the curl operator. To see how to construct C,

consider the following

∇×


a

b

c

=


∂c/∂y−∂b/∂z

∂a/∂z−∂c/∂x

∂b/∂x−∂a/∂y

=


0 −∂/∂z ∂/∂y

∂/∂z 0 −∂/∂x

−∂/∂y ∂/∂x 0




a

b

c

 .

This suggests we should consider the linear differential equation

(9.23)
∂

∂t



Ex

E y

Ez

Bx

By

Bz


=



0 0 0 0 −∂/∂z ∂/∂y

0 0 0 ∂/∂z 0 −∂/∂x

0 0 0 −∂/∂y ∂/∂x 0

0 ∂/∂z −∂/∂y 0 0 0

−∂/∂z 0 ∂/∂x 0 0 0

∂/∂y −∂/∂x 0 0 0 0





Ex

E y

Ez

Bx

By

Bz


Now we can discretize space into a uniform cubic lattice, since we are in a three-dimensional

lattice, and approximate the differential operators using finite difference methods, chapter 4, to

171

CHAPTER 9. QUANTUM ALGORITHM FOR SIMULATING THE WAVE EQUATION

simulate the EM field via Hamiltonian simulations, as we did in the previous examples. We should

notice that in this case, unitarity translates to conservation of the classical energy contained in

the field
∫

V
|~E(~x)|2 +|~B(~x)|2.

9.8 Final considerations

Here we presented an extremely specialized quantum algorithm for simulating the wave equation

problem. We got an exponential speed up in terms of the lattice dimension D compared with the

ordinary numerical methods for differential equations. Moreover, even contrasting our result

with analogous quantum results, our algorithm is more efficient. For instance we obtained a

quadratic speed up for the state preparation compared with [16].

In contrast with previous quantum algorithms, here we do not only proposed the method,

we also saw basic examples of the wave equation simulation via Hamiltonian. Thus, one is

first expectation is seeing this algorithm being applied in more complicated cases for different

proposals. Moreover, we hope this algorithm can be implemented in some quantum computer in a

near future.

There are few directions that we are considering to go next. We want to investigate the

performance of quantum algorithms for simulating the wave equation based on finite element

methods [91], rather than finite difference methods, as considered here. Finally, we are interest

in extending this algorithm to more complicated wave equations, as non linear cases [73].

172

C
H

A
P

T
E

R

10
CONCLUSION AND PERSPECTIVES

10.1 Conclusions

In general, when we want to propose new theories, we try to use all our knowledge about the

ones well establish to try to build new models consistently. We see it very often when we want to

go from classical physics to quantum and relativistic theories. In general, after we move to new

models we usually attempt to recover the predictions of the classical theory, the theory that we

have more access and knowledge. For the quantum models of computation, this is not different.

Commonly we try to use what worked for classical models of computation to build the quantum

ones. It was exactly the case of the quantum walks, which emerged from random walks, and

quantum cellular automata that emerged from classical cellular automata, where the main idea

is to try to use these quantum tools to explore quantum phenomena. In this thesis we tried to put

this issue in evidence when we separate it into two parts, classical, part I, and quantum models

of computation, part II.

Throughout this thesis, we gave emphasis to the partitioned cellular automata and its

quantum counterpart. In part I, we showed the strength of this model to deal with both classical

physics and classical model of computation as to motivate the use of its quantum counterpart

to quantum physics and quantum model of computation. Despite the fact that in the classical

models of computation our focus was to show already established results, we also started new

investigations in the partitioned cellular automata, proposing a coarse-graining technique,

chapter 5, for this CA class. In the same spirit of the analogous result for the coarse-graining to

elementary CA [39], we investigated emergent processes from a more physical perspective. We

can say that until our last analysis the core result was the emergence of stochastic process from

deterministic ones, pointing to us why it is so natural to work with non-deterministic process

173

CHAPTER 10. CONCLUSION AND PERSPECTIVES

in nature. Moving to part II, in chapter 6 we brought the partitioned unitary quantum cellular

(PUQCA), our definition to QCA that we believe to be a more clear definition compared with the

previous ones. Subsequently, in chapter 7, we showed the main result of this thesis. Working with

the PUQCA we could translate the main quantum walk classes into QCA. We expect that these

results will boost the use of QCA in physics and other areas since the QCA is more experimentally

friendly and matches with the quantum architecture used in the quantum computers available

nowadays. In part II, we also started the investigation of the model that we called quantum

HPP (QHPP), chapter 8. The QHPP model is a topic closely related with the QCA, since the HPP

rule [37], the first gas model proposed, is described in terms of partitioned cellular automata.

However, we used the quantum walk model to encode the QHPP. In chapter 8 we initiated the

study of the QHPP with two quantum walkers using a two-dimensional lattice. Until the moment

we only investigated numerically the new dynamics generated by two interacting quantum

walkers, following the HPP as the collision rule. Moreover, we also investigated the entanglement

dynamics between the particles. In this part, we could observe how the entanglement between

them evolves with time and how it depends on the initial condition. Another important result

presented in part II, chapter 9, was the quantum algorithm for simulating the wave equation, a

result with a proposal distinct from the others. Despite the fact that the wave equation is widely

applied in physics in different contexts, our interests were quite different from the others, since

our main concern was to use a quantum computer to get a more efficient numerical method, in

terms of the number of computations, to the wave equation. Although we achieved our results via

Hamiltonian simulation, in the first moment we do not expect to learn more about physics with

this algorithm, but to show that quantum computers can do the same task, in our case solve the

wave equation numerically, more efficiently. We just can say that we will be able to learn more

about physics with this result when we use it to simulate larger systems, that requires a large

amount of memory, not possible to classical computers.

10.2 Perspectives

All the works presented in this thesis could be continued in several directions. For instance, for

the one introduced in chapter 5, coarse-graining of PCA, the natural next step is to try to convert

the CG technique to the quantum regime, namely to the PUQCA. Doing that we want to explore

emergence under quantum perspective. In this part we can do, for instance, a similar study to the

one done in chapter 5. We can try to get effective dynamics after we coarse grain some quantum

phenomenon described via QCA. In this point we certainly will make use of our results of chapter

7, to translate several dynamics described in terms of quantum walks, like QWs to quantum field

theories, to see what dynamics will emerge from them. Another interesting study that can be

done after we construct the CG tool for the PUQCA is the study of quantum-classical transition,

a very rich topic with several questions to explore. Moving to our results shown in chapter 8,

174

10.2. PERSPECTIVES

QHPP, there are several directions to take. Our next step is to try use it for quantum search

algorithm, to see if will get some speed up compared with the models of one walker. In order to do

that we should be able to explore these dynamics analytically. Furthermore, we hope to convert

this model in terms of QCA. Given that, we can try to study this model with more particles and

also try to use different lattice structures, like the one used in the FHP model (a more realistic

model applied to the study real fluids).

Furthermore, we expect to see more and more quantum computers available employing more

qubits. As this happens, we hope to use our results in these quantum machines. For example,

we can try to implement our quantum algorithm to wave equation and see how it will behave

in realistic quantum devices. Moreover, we can use the PUQCA to implement several quantum

search algorithms in these computers to confirm the predictions estimated from these models.

175

A
P

P
E

N
D

I
X

A
ASYMPTOTIC NOTATIONS

When we are interested in to analyze the complexity of some algorithm, which is concern

about how fast or slow is the performs of the algorithm, we are interested in estimates

its performs asymptotically. There are various cases that we can only estimate bounds,

for instance, upper or lower bounds, about the algorithm performs. The proposal here is just to

introduce the notation used for these complexity estimations.

In order to introduce these notations we give two functions s(n), t(n) on N. Moreover, we say

that two functions are asymptotically equivalent when

lim
n→∞

s (n)
t (n)

= 1.

Thus, we write

• s(n)=O(t(n)) if there are constants c,d such that for all n,

s(n)≤ c · t(n)+d

• s(n)=Ω(t(n)) if t(n)=O(s(n)), and

• s(n)=Θ(t(n)) if s(n)=O(t(n)), and s(n)=Ω(t(n)).

In the first case, we say s(n) is "Big-Oh-of" t(n), whereas in the second, we might say t(n)

is asymptotically bounded below by s(n), and in the third, we say s(n) and t(n) have the same

"asymptotic order".

177

A
P

P
E

N
D

I
X

B
CONDITIONING NUMBER

Suppose that we have a linear system to solve

Ax = b,

and you are interest in know how a small change in b,

b̂−b = δb,

or in A will influence the solution x,

x̂− x = δx,

where x̂ and b̂ satisfies Ax̂ = b̂. Here our focus is the changing in b. The quantity that measures

this perturbation in x, but in terms of of relative errors of b

(B.1)
‖δb‖
‖b‖ ,

and relative errors of x

(B.2)
‖δx‖
‖x‖ ,

is known as condition number. For linear systems this quantity depends on the matrix norm

of A as follows

(B.3) κ(A)= ‖A‖∥∥A−1∥∥ ,

and we call it by condition number of the matrix A. From Eq.(B.3) we can see that this quantity

changes accordingly the norm definition employed, but the meaning will be always the same. Let

us understand how this expression appears and see its format in terms of spectral norm. The

best way to start our analysis is with a review of vector and matrix norms.

179

APPENDIX B. CONDITIONING NUMBER

B.1 Vector norms

A vector norm ‖x‖ measures the size of a vector x ∈Rn by a nonnegative number and has the

following properties

‖x‖ ≥ 0, ‖x‖ = 0⇒ x = 0,

‖αx‖ = |α|‖x‖ ,

‖x+ y‖ ≤ ‖x‖+‖y‖ ,

for any x, y ∈Rn and α ∈R. From these three properties we can define many possible vectors form,

for instance

‖x‖1 = |x1|+ . . .+|xn| ,
‖x‖2 = (|x1|2 + . . .+|xn|2

)1/2
,

‖x‖∞ = max {|x1|+ . . .+|xn|} .

If we did not writhe any subscript in ‖x‖, then the equation is valid for all three norms.

If the exact vector is x and the approximation is x̂ we can define the relative error with respect

to a vector norm as ‖x̂− x‖
‖x‖ .

B.2 Matrix norms

An m×n matrix can be considered a particular kind of vector x = A ∈Rm×n and like the vector

norm the matrix norm gives us a real number ‖·‖ :Rm×n →R. The same three properties showed

to vector norm is valid here

‖A‖ ≥ 0, ‖A‖ = 0⇒ x = 0,

‖αA‖ = |α|‖A‖ ,

‖A+B‖ ≤ ‖A‖+‖B‖ ,

for any A,B ∈Rm×n and α ∈R. There are more two additional properties for matrix norm that are

not required of all matrix norm, which are subordinance,

(B.4) ‖Ax‖ ≤ ‖A‖‖x‖ ,

and submultiplicativity

‖AB‖ ≤ ‖A‖‖B‖ .

For our proposal we are particularly interest in the Induced or operator norms, where the

matrix norm of A is based on any vector norm ‖x‖ as follows

(B.5) ‖A‖ := sup
x∈Rn

x 6=0

‖Ax‖
‖x‖ =max

x∈Rn
‖x‖=1

‖Ax‖ .

We can now show without difficult that the operator norm satisfy all properties given above.

180

B.2. MATRIX NORMS

1. ‖A‖ > 0 if A 6= 0 this part is trivial and obvious from the operator norm definition;

2. ‖αA‖ = |α|‖A‖

‖αA‖ =max
x∈Rn
‖x‖=1

‖αAx‖ = |α|max
x∈Rn
‖x‖=1

‖Ax‖ = |α|‖A‖ ;

3. ‖A+B‖ ≤ ‖A‖+‖B‖

‖A+B‖ =max
x∈Rn
‖x‖=1

‖(A+B) x‖ =max
x∈Rn
‖x‖=1

‖Ax+Bx‖ ,

now we can apply the triangular inequality

≤max
x∈Rn
‖x‖=1

{‖Ax‖+‖Bx‖}≤max
x∈Rn
‖x‖=1

‖Ax‖+max
x∈Rn
‖x‖=1

‖Bx‖ = ‖A‖+‖B‖ ;

4. ‖Ax‖ ≤ ‖A‖‖x‖

‖A‖‖x‖ = sup
y∈Rn

‖y‖6=0

‖A y‖
‖y‖ ‖x‖ ≤ ‖A y‖

‖y‖ ‖x‖ ,

As y is arbitrary, we let y= x and get

‖A‖‖x‖ ≤ ‖Ax‖ ;

5. ||AB|| ≤ ||A|| ||B||

‖AB‖ =max
x∈Rn
‖x‖=1

‖(AB) x‖ ≤max
x∈Rn
‖x‖=1

{‖A‖‖Bx‖}= ‖A‖max
x∈Rn
‖x‖=1

‖Bx‖ = ‖A‖‖B‖ ,

where first we used the inequality 4 and after inequality 1.

Now we can see the operator norm for two especial cases, first form the one norm ‖A‖1 and

then for the spectral norm ‖A‖2. From the vector norm we know that the one norm is given by

the sum of all absolute values components from a given vector. Thus, in case of ‖A‖1 we first do a

matrix multiplication,

Ax =∑
j

ai jx j

where ai j are the matrix elements of the matrix A. Now, we use the 1-norm definition,

‖Ax‖1 =
∑

i

∣∣∣∣∣∑j
ai jx j

∣∣∣∣∣ .

As the next step we can use the follow inequality,

∑
i

∣∣∣∣∣∑j
ai jx j

∣∣∣∣∣≤∑
j

(∑
i

∣∣ai j
∣∣)∣∣x j

∣∣ ,

181

APPENDIX B. CONDITIONING NUMBER

and also ∑
j

(∑
i

∣∣ai j
∣∣)∣∣x j

∣∣≤∑
j

(
max

j

∑
i

∣∣ai j
∣∣)∣∣x j

∣∣ ,

where this last inequality comes from the fact that we changed all different row sums
∑

j
∑

i
∣∣ai j

∣∣
to the ones where it assumes the maximum values, then

∑
j

(
max

j

∑
i

∣∣ai j
∣∣)∣∣x j

∣∣= (
max

j

∑
i

∣∣ai j
∣∣)‖x‖1 .

Thus,

‖Ax‖1 ≤
(
max

j

∑
i

∣∣ai j
∣∣)‖x‖1 .

Finally, we can use the one norm definition to get

‖A‖1 =max
x∈Rn
‖x‖=1

‖Ax‖1 =max
j

∑
i

∣∣ai j
∣∣ .

Now we can see the operator norm for the spectral norm

‖x‖2 =
(
x†x

)1/2
.

From the spectral vector norm above we have

(B.6) ‖Ax‖2 =
(
x† A† Ax

)1/2
.

Now we can use the fact that the matrix A† A is a hermitian matrix and then use the eigen-

decomposition of A† A,

A† A =V DV †,

where

D = diag (σ1, . . . ,σn) , and U = (
φ1, . . . ,φn

)
,

are the diagonal eigenvalue matrix and the eigenvector matrix of A† A, satisfying

A† Aφi =σiφi,

for i = 1, . . . ,n. Now we can return to Eq.(B.6) and use the eigen-decomposition to get

‖Ax‖2 =
(
x†UDU†x

)1/2 =
((

U†x
)†

D
(
U†x

))1/2
=

(
y†D y

)1/2
,

where y=U†x. Thus, we can rewrite the equality above in terms of its elements

‖Ax‖2 =
(

n∑
i=1

σi y2
i

)1/2

.

182

B.3. CONDITION NUMBERS FOR LINEAR SYSTEMS

As A† A is a symmetric positive definite square matrix, all of its eigenvalues are real and positive

and assumed to be sorted

0≤σ1 ≤ . . .≤σn =σmax.

Moreover, the new vector y=U†x can be considered as a rotated version of x with its Euclidean

2-norm conserved, ||y||2 = ||x||2. Now, from the fact that σmax is the maximum eigenvalue of A† A

the follow inequality is obvious(
n∑

i=1
σi y2

i

)1/2

≤
(
σmax

n∑
i=1

y2
i

)1/2

=p
σmax ‖y‖2 .

Therefore, from the operator norm definition

‖A‖2 =max
x∈Rn
‖x‖=1

‖Ax‖2 =
p
σmax .

In case we have A as a hermitian matrix we get that σi =λ2
i with i = 1, . . . ,n, where λi are the

eigenvalues of A and σi the eigenvalues of A† A.

Now we are ready to return to the condition number issue.

B.3 Condition numbers for linear systems

Returning to our initial question, where we have a linear system to solve Ax = b and we want to

know how the relative error Eq.(B.1) influences the relative error Eq.(B.2). We have that

A (x̂− x)= b̂−b.

Then, it is clear that

‖x̂− x‖ = ∥∥A−1 (
b̂−b

)∥∥ .

Now we can make use of the inequality Eq.(B.4) to get

‖x̂− x‖ ≤ ∥∥A−1∥∥∥∥b̂−b
∥∥ .

Similarly, it is a straightforward calculation to show that

1
‖x‖ ≤ ‖A‖

‖b‖ ,

that yields

(B.7)
‖δx‖
‖x‖ ≤ ‖A‖∥∥A−1∥∥ ‖δb‖

‖b‖ ,

where the number

κ (A)= ‖A‖∥∥A−1∥∥ ,

183

APPENDIX B. CONDITIONING NUMBER

is called condition number of the matrix A. It determines how much the hand side of Eq.(B.7)

can be amplified. Now, it is easy to see that for the spectral norm, in case we have employed the

operator norm, the condition number of the matrix A takes the following form

κ (A)= λmax

λmin
,

where λmax and λmin are the highest and lowest eigenvalues, respectively when A is a Hermitian

matrix.

184

BIBLIOGRAPHY

[1] Y. AHARONOV, L. DAVIDOVICH, AND N. ZAGURY, Quantum random walks, Phys. Rev. A, 48

(1993), pp. 1687–1690.

[2] M. ANNABESTANI, M. R. ABOLHASANI, AND G. ABAL, Asymptotic entanglement in 2d quan-

tum walks, Journal of Physics A: Mathematical and Theoretical, 43 (2010), p. 075301.

[3] P. ARRIGHI, S. FACCHINI, AND M. FORETS, Quantum walking in curved spacetime, Quan-

tum Information Processing, 15 (2016), pp. 3467–3486.

[4] P. ARRIGHI AND J. GRATTAGE, Partitioned quantum cellular automata are intrinsically

universal, Natural Computing, 11 (2012), pp. 13–22.

[5] G. K. BATCHELOR, The effect of brownian motion on the bulk stress in a suspension of

spherical particles, Journal of Fluid Mechanics, 83 (1977), p. 97–117.

[6] H. BECHMANN-PASQUINUCCI AND A. PERES, Quantum cryptography with 3-state systems,

Physical Review Letters, 85 (2000).

[7] D. W. BERRY, High-order quantum algorithm for solving linear differential equations,

Journal of Physics A: Mathematical and Theoretical, 47 (2014), p. 105301.

[8] D. W. BERRY, A. M. CHILDS, AND R. KOTHARI, Hamiltonian simulation with nearly optimal

dependence on all parameters, (2015), pp. 792–809.

[9] S. D. BERRY AND J. B. WANG, Two-particle quantum walks: Entanglement and graph

isomorphism testing, Physical Review A, 83 (2011).

[10] S. D. BERRY AND J. B. WANG, Two-particle quantum walks: Entanglement and graph

isomorphism testing, Phys. Rev. A, 83 (2011), p. 042317.

[11] A. BISIO, G. M. D’ARIANO, AND P. PERINOTTI, Quantum walks, weyl equation and the

lorentz group, Foundations of Physics, 47 (2017), pp. 1065–1076.

[12] S. BOIXO, T. F. RØNNOW, S. V. ISAKOV, Z. WANG, D. WECKER, D. A. LIDAR, J. M.

MARTINIS, AND M. TROYER, Evidence for quantum annealing with more than one

hundred qubits, Nature Physics, 10 (2014), p. 218.

185

BIBLIOGRAPHY

[13] H. BOUGROURA, H. AISSAOUI, N. CHANCELLOR, AND V. KENDON, Quantum-walk trans-

port properties on graphene structures, Phys. Rev. A, 94 (2016), p. 062331.

[14] A. M. CHILDS, Universal computation by quantum walk, Phys. Rev. Lett., 102 (2009),

p. 180501.

[15] A. M. CHILDS, D. GOSSET, AND Z. WEBB, Universal computation by multi-particle quantum

walk, Science, 339 (2013), pp. 791–794.

[16] A. M. CHILDS, R. KOTHARI, AND R. D. SOMMA, Quantum linear systems algorithm with

exponentially improved dependence on precision, arXiv:1511.02306, (2015).

[17] B. CHOPARD AND M. DROZ, Cellular Automata Modeling of Physical Systems, Cambridge

University Press, 2005.

[18] M. W. CHOPTUIK, Lectures for vii mexican school on gravitation and mathematical physics;

relativistic and numerical relativity; numerical analysis for numerical relativists.

University of British Columbia, 2009.

[19] F. R. K. CHUNG, Spectral Graph Theory, no. 92, Conference Board of the Mathematical

Sciences, 1994.

[20] B. D. CLADER, B. C. JACOBS, AND C. R. SPROUSE, Preconditioned quantum linear system

algorithm, Phys. Rev. Lett., 110 (2013), p. 250504.

[21] P. C. COSTA, S. JORDAN, AND A. OSTRANDER, Quantum algorithm for simulating the wave

equation, arXiv:quant-ph/1711.05394, (2017).

[22] P. C. S. COSTA, R. PORTUGAL, AND F. DE MELO, Quantum walks via quantum cellular

automata, Quantum Information Processing, 17 (2018), p. 226.

[23] G. M. D’ARIANO AND P. PERINOTTI, Quantum cellular automata and free quantum field

theory, Frontiers of Physics, 12 (2016), p. 120301.

[24] C. DETRAIN AND J.-L. DENEUBOURG, Self-organized structures in a superorganism: do

ants “behave” like molecules?, Physics of Life Reviews 3, (2006), pp. 162–187.

[25] C. DI FRANCO, M. MC GETTRICK, T. MACHIDA, AND T. BUSCH, Alternate two-dimensional

quantum walk with a single-qubit coin, Phys. Rev. A, 84 (2011), p. 042337.

[26] G. DI MOLFETTA, M. BRACHET, AND F. DEBBASCH, Quantum walks as massless dirac

fermions in curved space-time, Phys. Rev. A, 88 (2013), p. 042301.

[27] W. DÜR, R. RAUSSENDORF, V. M. KENDON, AND H.-J. BRIEGEL, Quantum walks in optical

lattices, Phys. Rev. A, 66 (2002), p. 052319.

186

BIBLIOGRAPHY

[28] A. EKERT AND P. L. KNIGHT, Entangled quantum systems and the schmidt decomposition,

American Journal of Physics, 63 (1995).

[29] L. EULER, Institutionales calculi integrate, Saint Petersburg, (1768).

[30] R. P. FEYNMAN, Simulating physics with computers, International Journal of Theoretical

Physics, 21 (1982), pp. 467–488.

[31] B. FOXEN, J. Y. MUTUS, E. LUCERO, R. GRAFF, A. MEGRANT, Y. CHEN, C. QUINTANA,

B. BURKETT, J. KELLY, E. JEFFREY, Y. YANG, A. YU, K. ARYA, R. BARENDS, Z. CHEN,

B. CHIARO, A. DUNSWORTH, A. FOWLER, C. GIDNEY, M. GIUSTINA, T. HUANG,

P. KLIMOV, M. NEELEY, C. NEILL, P. ROUSHAN, D. SANK, A. VAINSENCHER, J. WEN-

NER, T. C. WHITE, AND J. M. MARTINIS, Qubit compatible superconducting intercon-

nects, Quantum Science and Technology, 3 (2018), p. 014005.

[32] U. FRISCH, B. HASSLACHER, AND Y. POMEAU, Lattice-gas automata for the navier-stokes

equation, Phys. Rev. Lett., 56 (1986), pp. 1505–1508.

[33] M. GARDNER, Mathematical games: The fantastic combinations of john conway’s new

solitaire game ”life”, Scientific American, 223 (1970), pp. 120–123.

[34] P. D. M. GIUSEPPE, Discrete time quantum walks: from synthetic gauge fields to spontaneous

equilibration, PhD thesis, Université Pierre et Marie Curie, 2015.

[35] D. G. GREEN, Cellular automata models in biology, Math. Comput. Model., 13 (1990),

pp. 69–74.

[36] G. GRÖSSING AND A. ZEILINGER, Quantum cellular automata, Complex Syst., 2 (1988),

pp. 197–208.

[37] J. HARDY, O. DE PAZZIS, AND Y. POMEAU, Molecular dynamics of a classical lattice gas:

Transport properties and time correlation functions, Phys. Rev. A, 13 (1976), pp. 1949–

1961.

[38] A. W. HARROW, A. HASSIDIM, AND S. LLOYD, Quantum algorithm for linear systems of

equations, Phys. Rev. Lett., 103 (2009), p. 150502.

[39] N. ISRAELI AND N. GOLDENFELD, Coarse-graining of cellular automata, emergence, and

the predictability of complex systems, Physical Review E, (2006).

[40] Z. JIANG, A. B. TACLA, AND C. M. CAVES, Bosonic particle-correlated states: A nonpertur-

bative treatment beyond mean field, Phys. Rev. A, 96 (2017), p. 023621.

187

BIBLIOGRAPHY

[41] A. KANDALA, A. MEZZACAPO, K. TEMME, M. TAKITA, M. BRINK, J. M. CHOW, AND J. M.

GAMBETTA, Hardware-efficient variational quantum eigensolver for small molecules and

quantum magnets, Nature, 54 (2017), p. 242.

[42] J. KEMPE, Quantum random walks:an introductory overview, Contemporary Physics, 44

(2003), pp. 307–327.

[43] P. D. LAX AND R. D. RICHTMYER, Survey of the stability of linear finite difference equations,

Communications on Pure and Applied Mathematics, Ix (1956), pp. 267–293.

[44] R. J. LEVEQUE, Finite Difference Methods for Ordinaty and Partial Differential Equations,

Siam, 1955.

[45] D. LEVY, Introduction to numerical analysis.

Department of Mathematics and Center for Scientific Computation and Mathematical

Modeling, CSCAMM, University of Maryland, September 2010.

[46] O. MALOYER AND V. KENDON, Decoherence versus entanglement in coined quantum walks,

New Journal of Physics, 9 (2007), p. 87.

[47] R. M. MAZO, Brownian Motion. Fluctuations, Dynamics, and Applications, Clarendon Press.

Oxford, 2002.

[48] D. A. MEYER, From quantum cellular automata to quantum lattice gases, Journal of Statis-

tical Physics, 85 (1996), pp. 551–574.

[49] M. MITCHELL, Complexity A guided Tour, Oxford University Press, 2009.

[50] G. D. MOLFETTA AND A. PÉREZ, Quantum walks as simulators of neutrino oscillations in a

vacuum and matter, New Journal of Physics, 18 (2016), p. 103038.

[51] A. MONTANARO AND S. PALLISTER, Quantum algorithms and the finite element method,

Phys. Rev. A, 93 (2016), p. 032324.

[52] S. NANDI, B. K. KAR, AND P. P. CHAUDHURI, Theory and applications of cellular automata

in cryptography, IEEE Transactions on Computers, 43 (1994), pp. 1346–1357.

[53] P. NELSON, Biological Physics, W. H. Freeman, 2004.

[54] M. A. NIELSEN AND I. L. CHUANG, Quantum Computation and Quantum Information,

Cambridge University Press, 2010.

[55] Y. OMAR, N. PAUNKOVIĆ, L. SHERIDAN, AND S. BOSE, Quantum walk on a line with two

entangled particles, Phys. Rev. A, 74 (2006), p. 042304.

[56] M. F. M. OSBORNE, Brownian motion in the stock market, 7 (1959).

188

BIBLIOGRAPHY

[57] C. A. PÉREZ-DELGADO AND D. CHEUNG, Local unitary quantum cellular automata, Phys.

Rev. A, 76 (2007), p. 032320.

[58] P. PHILIPP AND R. PORTUGAL, Exact simulation of coined quantum walks with the

continuous-time model, Quantum Information Processing, 16 (2016), p. 14.

[59] R. PORTUGAL, Quantum Walks and Search Algorithm, Springer, 2013.

[60] R. PORTUGAL, Staggered quantum walks on graphs, Phys. Rev. A, 93 (2016), p. 062335.

[61] R. PORTUGAL, M. C. DE OLIVEIRA, AND J. K. MOQADAM, Staggered quantum walks with

hamiltonians, Phys. Rev. A, 95 (2017), p. 012328.

[62] R. PORTUGAL, R. A. M. SANTOS, T. D. FERNANDES, AND D. N. GONÇALVES, The staggered

quantum walk model, Quantum Information Processing, 15 (2016), pp. 85–101.

[63] P.W.SHOR, Polynomial-time algorithms for prime factorization and discrete logarithms on a

quantum computer, Proc.R.Soc.London A, (1985).

[64] A. ROMANELLI, Thermodynamic behavior of the quantum walk, Phys. Rev. A, 85 (2012),

p. 012319.

[65] C. RUNGE, Über eine methode die partielle differenkalgliechung constans numerisch integri-

eren, Z. Math, Phys, 56 (1908), pp. 225–232.

[66] R. A. M. SANTOS, R. PORTUGAL, AND S. BOETTCHER, Moments of coinless quantum walks

on lattices, Quantum Information Processing, 14 (2015), pp. 3179–3191.

[67] I. SILOI, C. BENEDETTI, E. PICCININI, M. G. A. PARIS, AND P. BORDONE, Quantum walks

of two interacting particles on percolation graphs, Journal of Physics: Conference Series,

906 (2017), p. 012017.

[68] M. SMOLUCHOWSKI, Drei vorträge über diffusion, brownsche molekularbewegung und

koagulation von kolloidteilchen, Physik. Z, (1916), pp. 557–571.

[69] M. STEFFEN, D. P. DIVINCENZO, J. M. CHOW, AND T. N. THEIS, Quantum computing: An

ibm perspective, in IEEE/CSC & ESAS EUROPEAN SUPERCONDUCTIVITY NEWS

FORUM, no. 19, 2012.

[70] K. S. M. L. STEPHEN P. JORDAN, HARI KROVI AND J. PRESKILL, Bqp-completeness of

scattering in scalar quantum field theory, arxiv.org/abs/1703.00454, (2017).

[71] D. SYCH AND G. LEUCHS, A complete basis of generalized bell states, New Journal of Physics,

11 (2009), p. 013006.

[72] M. SZEGEDY, Quantum speed-up of markov chain based algorithms, (2004), pp. 32–41.

189

BIBLIOGRAPHY

[73] D. TATARU, Nonlinear wave equations, arXiv:math/0304397, (2003).

[74] Q. K. TELESFORD, S. L. SIMPSON, J. H. BURDETTE, S. HAYASAKA, AND P. J. LAURIENTI,

The brain as a complex system: Using network science as a tool for understanding the

brain, Brain Connect, 1 (2011), pp. 295–308.

[75] T. TOFFOLI, Cellular automata as an alternative to (rather than an approximation of)

differential equations in modeling physics, Physica D: Nonlinear Phenomena, 10 (1984),

pp. 117 – 127.

[76] T. TOFFOLI AND N. MARGOLOUS, Cellular Automata Machines, MIT Press Series in Scien-

tific Computation, 1985.

[77] S. E. VENEGAS-ANDRACA, Quantum walks: a comprehensive review, Quantum Information

Processing, 11 (2012), pp. 1015–1106.

[78] J. VON NEUMANN, Theory of Self-Reproducing Automata, University of Illinois Press, 1996.

[79] K. M. WANG, Physical Implementation of Quantum Walks, Springer, 2013.

[80] J. WATROUS, On one-dimensional quantum cellular automata, (1995), pp. 528–537.

[81] G. H. WEISS, Random walks and their applications: Widely used as mathematical models,

random walks play an important role in several areas of physics, chemistry, and biology,

American Scientist, 71 (1983), pp. 65–71.

[82] H. WEYL, Gruppentheorie und quantenmechanik., Leipzig: S. Hirzel, (1928).

[83] K. WIESNER, Quantum Cellular Automata, Springer New York, New York, NY, 2009,

pp. 7154–7164.

[84] S. WOLFRAM, A new kind of science, Wolfram Media, 2002.

[85] T. G. WONG AND R. A. M. SANTOS, Exceptional quantum walk search on the cycle, Quantum

Information Processing, 16 (2017), p. 154.

[86] W. K. WOOTTERS AND W. H. ZUREK, A single quantum cannot be cloned, Nature, 299

(1982).

[87] X.-S. YANG AND Y. YOUNG, Cellular automata, pdes, and pattern formation, (2010).

[88] A. C.-C. YAO, Quantum circuit complexity, in Proceedings of 1993 IEEE 34th Annual

Foundations of Computer Science, Nov. 1993.

[89] W.-C. YUEH, Explicit inverses of several triagonal matrices, Applied Mathematics E-notes,

(2006), pp. 74–83.

190

BIBLIOGRAPHY

[90] F. ZÄHRINGER, G. KIRCHMAIR, R. GERRITSMA, E. SOLANO, R. BLATT, AND C. F. ROOS,

Realization of a quantum walk with one and two trapped ions, Phys. Rev. Lett., 104

(2010), p. 100503.

[91] O. ZIENKIEWICS, R. TAYLOR, AND J. ZHU, The finite element method its basis and funda-

mentals, Elsevier, 2013.

191

	Introduction
	Cellular Automata
	Quantum Walks
	Quantum Algorithms for Classical Simulations

	Classical Models of Computation
	Cellular Automata
	Elementary CA
	Reversible and partitioned CA
	Cellular automata modeling
	The HPP rule

	PCA vs Wolfram classification

	Lattice Gas Automata
	A Brownian motion automaton
	The problem statement
	The continuous limit

	A random walk automaton
	The multiscale and Chapman-Enskog expansion

	Differential equations via Finite Difference Method
	Methods of discretization
	General principle
	Taylor expansion

	The wave equation problem
	Numerical analysis
	The incidence matrix
	Overview of the FDM complexity

	Emergent Phenomena
	Coarse Graining of CA
	Coarse Graining of PCA
	Coarse-graning procedure
	Deterministic CG results for one-dimensional PCA
	Non-deterministic CG results for one-dimensional PCA
	CG in Zd for multiparticles with or without interaction
	Final considerations

	Quantum Models of Computation
	Quantum Cellular Automata
	Previous QCA models
	PUQCA
	Quantum lattice gases
	Final considerations

	Quantum Walks via Quantum Cellular Automata
	 CQWd QCA
	One dimensional example
	General Recipe

	 SQW QCA
	One dimensional example
	General Recipe

	Final considerations

	Quantum HPP
	Coined model
	CQW in L2
	Two quantum particles with HPP interaction

	Dynamics analysis
	Numerical results

	Entanglement between the particles
	Final considerations

	Quantum algorithm for simulating the wave equation
	 Algorithm
	 Initial conditions
	General Case

	 Numerical examples
	Discretization Errors
	Post-Processing
	Klein-Gordon Equation
	Maxwell's Equations
	Final considerations

	Conclusion and Perspectives
	Conclusions
	Perspectives

	Asymptotic Notations
	Conditioning number
	Vector norms
	Matrix norms
	Condition numbers for linear systems

	Bibliography

