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Abstract
This thesis develops the theory of creation of gravitons and fermions for a bounce model
whose initial singularity is avoided by quantum phenomena that are interpreted by de
Broglie-Bohm theory. Gravitons correspond to primordial gravitational waves and are
generated by quantum tensor fluctuations before the bounce. The creation of fermions
occurs by the minimum coupling of a fermionic field. In both cases, particle production is
small compared to other forms of production.

Palavras-chaves: bounce; particle creation.





Resumo
Esta tese desenvolve a teoria de criação de gravitons e fermions para um modelo de ricochete
cuja singularidade inicial é evitada por fenômenos quânticos que são interpretados pela
teoria de deBroglie-Bohm. Os gravitons correspondem às ondas gravitacionais primordiais
e são geradas por flutuações tensoriais quânticas antes do ricochete. A criação de fermions
acontece pelo acoplamento mínimo de um campo fermiônico. Em ambos os casos, a
produção de partículas é pequena se comparada a outras formas de produção.

Key-words: Ricochete, criação de partículas.
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1

Introduction

This thesis develops the theory of creation of gravitons and fermions for a bounce
model whose initial singularity is avoided by quantum phenomena that are interpreted
by the theory of de Broglie-Bohm [1]. It is part of a set of works which develop the
bounce scenario with de Broglie-Bohm which includes the cosmological perturbations [2],
evolution analysis [3] and creation of scalar particles [4]. Physics has a standard model
of cosmology that has been extensively tested ranging from the formation of the first
astrophysical structures to the formation of the first atomic nuclei. Thereafter, there are no
experiments that undoubtedly determine which theory should best explain the physics of
the first milliseconds after the bounce (or initial singularity). There are numerous theories
devoted to what happens before these first milliseconds. Among these theories exist the
non-singular quantum ones that have a bounce, so that the scale factor of the Universe is
never zero.

In this work, two quantum theories will be presented to avoid the initial singularity:
the canonical quantization with the interpretation of de Broglie-Bohm and the Affine
Covariant Integral quantization. Affine Covariant Integral quantization associates the
quantities of classical phase space with coherent quantum states that have the desired
characteristics of the object to be quantized. In this case, quantities that are always positive
and never zero, such as the scale factor. By its construction and by being an integral
quantization, it constructs self-adjoint and ordered operators from classical quantities,
as expected from quantum observables [5]. However, these operators are not unique and
depend on the form of construction of coherent states, whose physical interpretation is not
yet clear [6]. For this reason, this quantization is developed at the end of Chapter 2 for
simple examples, and was not used for particle creation.

Canonical quantization associates quantities of phase space with quantum Hilbert
space operators and classical Poisson brackets with quantum commutators (or anti-
commutators). This quantization does not generate self-adjoint operators for the scale
factor and has ambiguity in the ordering of certain quantized operators, being necessary
to choose an ordering and a self-adjoint extension. Result on this topic were published in
reference [6]. The classical canonical theory of Hamiltonian formalism and Poisson brackets
applied to cosmology with tensor perturbations are presented in Chapter 2. Quantum
canonical theory is developed at the beginning of Chapter 2, and will serve as the basis for
the particle creation chapters. In Chapter 3, the theory of primordial gravitational waves,
generated from a quantum vacuum of tensor perturbations in the context of a bouncing
Universe, will be developed. It is an extension of previous works [7] that seeks to detect
the main characteristics of these waves and applies in the case of a bounce dominated by
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a matter whose sound velocity of the perturbations is close to that of light. Results are
published in reference [8].

In Chapter 4, the theory of the creation of fermionic particles for de Broglie-Bohm
bounce is developed. The Hamiltonian theory is revisited for the case of spinors, and a
numerical prediction is obtained. Unfortunately, the production of primordial gravitational
waves due to quantum perturbations and fermionic particles by the minimum coupling are
very low. The modeled waves would hardly be detected, having a density far below any
current detector. And the production of fermions is much less than expected, requiring
another mechanism (or coupling) to generate fermions.
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Notation

The follow notation will be used throughout this Thesis.

All greek indices go from 0 to 3, where the 0 coordinate represent the time. Latin
indices go from 1 to 3 and represent the spatial coordinates. Capital latin indices between
parenthesis are tetrad indices1, and goes from 0 to 3.

Each four-vector A can be expressed in the basis {∂µ} as Aµ∂µ, where Aµ are their
coeficients. In the same way, each one-form ~B can be expressed in the basis {dxµ} as
Bµ dxµ, where Bµ are their coeficients. For this thesis, Aµ and Bµ will be called vectors
and represents a four-vector and a one-form. These basis are dual to each other:

(∂µ)α(dxν)α = δνµ. (1)

This thesis uses Einstein summation notation, which equal indices are summed.
For instance

AµB
µ =

3∑
µ=0

AµB
µ

AiB
i =

3∑
µ=1

AµB
µ.

The space-time is a four dimension manifold, with a metric gµν with signature
(+−−−), and a metric connection

Γµνα = gµσ

2 (gσν,µ + gσµ,ν − gµν,σ), (2)

whereby the covariant derivative space-time ∇µ is defined over a tensor T a1...an
b1...b2

∇µT
a1...an

b1...b2 = ∂µT
a1...an

b1...b2 + Γa1
λµT

λ...an
b1...b2 + ...+

+ Γa1
λµT

a1...λ
b1...b2 − Γλb1µT

a1...an
λ...b2 +

− ...− Γλb1µT
a1...an

b1...λ .

(3)

If vµ is a four-vector and g the metric determinant, then

√
−g∇µv

µ = ∂µ
(√
−gvµ

)
(4)

is a total divergence.
1 See Chapter 4
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Due to the metric signature, vectors can be separated in respect to its norm. If a
vector vµ is such that

vµvνgµν = vµvµ > 0, it is a time-like vector (5a)

vµvνgµν = vµvµ < 0, it is a space-like vector (5b)

vµvνgµν = vµvµ = 0, it is a null vector. (5c)



5

1 Hamiltonian Approach
In this chapter, the Space-time separation and the Hamiltonian approach be
presented.

“Caio, logo existo.”
(Nelson Pinto-Neto)
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The Hamiltonian approach is not covariant. It needs a separation of space-time
manifold in constant time spatial sections, a foliation, in which a Hamiltonian is responsible
for the translation from one spatial hypersurfaces. Not all manifolds can be globally
separated in space and time. For instance, the Gödel Universe [9], which allow closed
time-like curves, does not allow such foliation [10].

In the follow section (1.1), the space-time action will be separated in space and
time. First the space-time will be separated in spatial equal time hypersurfaces, then the
configuration space will be constructed with elements that belong to this hypersurface.

1.1 Space and time separation
For a manifold like the Freedmann-Robertson-Lemaître-Walker (FRLW) Universe

[11], it is possible to define a continuous function τ(x) with a non-vanishing continuous
time-like gradient1 dτ(x). The space-time function τ(x) defines a set of constant-time
non-overlapping space-like hypersurfaces given by τ(x) = t, where t is a constant. The
union of all constant-time hypersurfices is igual to the all 4-dimensional space-time. The
gradient dτ(x) is perpendicular to the hypersurfaces. The separation of the space-time in
such hypersurfaces is called foliation. If vµ is a vector tangent to a curve in the hypersurface
generated by the foliation τ , then the variation of τ in the tangent vµ direction is given by

vµ∂µτ = vµ dτµ = 0, (1.1)

for all vectors tangent to any curves in the spatial hypersurface. So the metric gµν can be
separated in a spatial hypersurface part, and a τ -like part as

gµν = γµν +N2 dτµ dτ ν = γµν + nµnν , (1.2)

where γµν is the metric of the hypersurface, N2 = (gµν dτµ dτ ν)−1 and nµ = N dτµ is a
normalized time-like vector.

The hypersurface has independent geometric properties. It has its own metric,
covariant derivative and curvature tensor. The covariant derivative in the hypersurface
that acts over hypersurface vectors vα is

Dµv
α = γνµ∇νv

α. (1.3)

The curvature tensor is defined as

D[µDν]v
α = R3 α

λµνv
λ. (1.4)

In order to define how hypersurfaces are embeded in the space-time, it is important
to track the variation of their normal vector dτµ throughout themselves. It is done by the
1 Such manifolds are known as globally-hyperbolic manifolds.
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extrinsic curvature tensor

K ν
µ = −γαµ∇αn

ν = Kν
µ = γ σ

µ γνλK λ
σ , (1.5)

which is a symmetric tensor that belongs to the spatial hypersurface.

Let {∂i} be a orthonormal basis of the hypersurface. It means that

dτµ (∂i)µ = dτ i = 0

(∂i)µ(∂i)νgµν = −1.
(1.6)

Along with ∂τ , the set {∂τ , ∂i} forms a vector basis for the space-time tangent
vector space. Also, the time basis ∂0 = ∂τ is chosen to be dual to the τ gradient2

(∂0)µ dτµ = 1

(∂0)µ = N2gµν dτ ν + βi,
(1.7)

where βi is the coordenade shift, a hypersurface vector.

The dτµ and (∂τ )µ vectors are fundamentally different. The first points to the
direction where the time increases more rapidly, while the second points to the direction
where the time increases and the other coordinates are constant. Hence, while the vector
dτµ is perpendicular to the hypersurfaces, the vector (∂τ )µ is not.

The velocities of the configuration space are given by the variation of a variable
along a curve of increasing time with constant spatial positions. It means that the velocity
of the variable A is given by its Lie derivative along (∂τ )µ

Ȧ = L(∂τ )A. (1.8)

In the basis {∂µ}, the metric is written as

gµν = gαβ(∂µ)α(∂ν)β=̇
N2 + βkβk βj

βi γij

 (1.9a)

gµν = (gµν)−1=̇
N−2 − βj

N2

− βi

N2 γij + βjβi

N2

 (1.9b)

√
−g = N

√
γ, (1.9c)

where the inverse is obtained by the Banachiewicz identity for block matrices, and the
determinant can be obtained by the Schur formula [13].

Using the basis {∂µ}, all spatial quantities will be expressed only with latim indices,
representing its lack of the 0th coordenate. It includes the spatial metric γij, the extrinsic
2 For FRLW Universe, but not for all metrics, like Kerr black-hole metric [12], it is possible to choose a

basis in which βi = 0.



8 Chapter 1. Hamiltonian approach

curvature kij and the shift βi. In this basis, the velocity of any tensor T µ1...µn
ν1...ν2 is its

coeficient partial derivative

Ṫ µ1...µn
ν1...ν2 = L(∂τ )T

µ1...µn
ν1...ν2 = (∂τ )α∂α(T µ1...µn

ν1...ν2 ) = ∂τT
µ1...µn

ν1...ν2 . (1.10)

The quantities N , βi and γij with theirs velocities forms configuration space
variables. An action written with these quantities is

A =
∫ t

t0

∫
Ωt
Lg d3x dt , (1.11)

where Ωt is an equal time hypersurface and Lg is the Lagrangian density, given by

Lg = −
√
−γ

6`p
N
[
R3 + KijKij −K2

]
, (1.12)

where where `p = (8πGN/3)1/2 is the Planck length (~ = c = 1), K = Kijγ
ij and

Kij = 1
2N

[
D(iβj) − γ̇ij

]
. (1.13)

The equation (1.12) is the Lagrangian written in terms of the configuration space
variables. However, only the variable γij represents true degrees of freedom that will evolve
in time. The other variables, N and βi, will correspond to Lagrange multipliers over the
hypersurface. It means that there is no one-to-one correspondence between the velocities
and momentum, and constraints will appear in the Hamiltonian.

1.2 The constrained Hamiltonian
The Hamiltonian method is a Legendre transformation that takes the 6 second

order differential equations that comes from the extremization of the Lagrangian (1.12)
into 12 first order linear equations. It relies in a one-to-one transformation between the
velocities and its dependence in the Lagrangian. The function in (1.12) depends only in
the spatial metric velocity. Hence, the momenta conjugate to N and βi are null. These are
the conservation in time of constraint equations. The Hamiltonian adds news constraints
to support these variables. Therefore, the Hamiltonian density will be

H = Πij γ̇ij − Lg + λiPβi + λPN , (1.14)

where Πij is the spatial metric momentum and the last two terms are constraints. The
momenta Pβi and PN are such that

(
Ṗβ
)
i

= ṖN = 0.

From equation (1.12) and (1.13) we get

Πij =
√
−γ

6`p

(
Kij −Kγij

)
. (1.15)
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From (1.14), the Hamiltonian density has the form

H = NH0 + 2βiHi + λiPβi + λPN , (1.16)

where

H0 =
√
−γ

6`p

(
R3 + K2 −KijKij

)
=
√
−γ

6`p
R3 − 6`p

γ

(1
2γlpγjk − γljγpk

)
ΠlpΠjk (1.17a)

Hi = 1
6`p

(
DjKj

i −DiK
)

= 1√
−γ

DbΠ b
i . (1.17b)

The Hamiltonian is
H =

∫
Ωt
H d3x . (1.18)

All the dynamic relations can be derived from the Hamiltonian density from the
equal time Poisson bracket defined as

δf(x)
δf(x′) = δ(x− x′) = δ(x1 − x′1)δ(x2 − x′2)δ(x3 − x′3)

{A(x), B(x′)} =
∫

Ωt
d3x′′

(
δA(x)
δγij(x′′)

δB(x′)
δΠij(x′′) + δA(x)

δN(x′′)
δB(x′)
δPN(x′′)+

+ δA(x)
δβi(x′′)

δB(x′)
δPβi(x′′)

− δB(x′)
δγij(x′′)

δA(x)
δΠij(x′′) −

δB(x′)
δN(x′′)

δA(x)
δPN(x′′)+

− δB(x′)
δβi(x′′)

δA(x)
δPβi(x′′)

)

Then we get {
γij(x),Πkl(x′)

}
=
δki δ

l
j + δliδ

k
j

2 δ(x− x′) (1.19a)

So, using the Poisson bracket

{N(x), H} = Ṅ(x) =
∫

Ωt

√
−γλ

δ(3)(x−x′)︷ ︸︸ ︷
{N(x), PN(x′)} d3x′ = λ (1.20a)

{
βi(x), H

}
= β̇i(x) =

∫
Ωt

√
−γλj

δijδ
(3)(x−x′)︷ ︸︸ ︷{

βi(x), Pβj(x
′)
}

d3x′ = λj (1.20b)

{γij(x), H} = γ̇ij =
∫

Ωt

√
−γ

[
N{γij,H0} − 2βk{γij,Hk}

]
d3x′ =

= −2N(x)Kij(x) +D(iβj) (1.20c)

{
Pβi(x), H

}
=
∫

Ωt

√
−γHk

−δ(3)(x−x′)︷ ︸︸ ︷{
Pβi, β

k
}

d3x′ = Hi =
(
Ṗβ
)
i
≡ 0 (1.20d)

{PN(x), H} =
∫

Ωt

√
−γH0

−δ(3)(x−x′)︷ ︸︸ ︷
{PN , N} d3x′ = H0 = ṖN ≡ 0 (1.20e){

Πij(x), H
}

=
∫

Ωt

√
−γ

[
N
{

Πij,H0
}

+ 2βk
{

Πij,Hk

}]
d3x = Π̇ij

⇒ (L∂0 − Lβ)Kij = −DiDjN +N
(
R3 ij + KKij − 2Kl

iKlj

)
. (1.20f)
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The equations (1.20a) and (1.20b) show that the evolution of N and βi are arbitrary:
they are Lagrange multipliers. Equation (1.20c) is the inverse transformation of the
momentum. equations (1.20e) and (1.20d) are constraints, they do not contain dynamic.
The last equation (1.20f) is the true dynamic equation. Equations (1.20) represent the
evolution of all degrees of freedom in the space-time metric in vacuum.

1.2.1 The perfect fluid

In this section the perfect fluid representation [14, 15] formalism is developed. This
formalism is a four dimensional extension of the potential velocities description of a perfect
fluid [14]. A perfect fluid is a continuum which does not conduct heat nor has viscosity. It
is a reliable approximation for the large scale content of the Universe like dark matter,
baryons, radiation and relativistic particles [16]. It can be described by a normalized four
vector field uµ(x) which represents its space time flux. In the coordinate system that the
fluid is at rest3, Nuµ = (∂τ )µ = N2 dτµ, there is no preferred direction, if the Universe is
homogeneous and isotropic.

Any time-like continuous four-vector field can be described by 5 dependent scalar
potentials: α, β, Φ, S and h [17]. The first two, α and β are related to vorticity, and have
no effect in the large scale Universe. The four-vector field can be described as

uµ = −g
µν (Φ,ν + θS,ν)

h
, (1.21)

where S is the entropy and h is the enthalpy. The other quantities do not have direct
interpretation [18].

The four velocity is normalized, from which the dependence between the scalar
potentials can be extracted

uµuµ = −(∂τ )µ (Φ,µ + θS,µ)
Nh

= −

(
Φ̇ + θṠ

)
Nh

= 1

⇒ h = −

(
Φ̇ + θṠ

)
N

.

(1.22)

The Universe can be modeled by non-interacting perfect fluids with constant sound
velocity, that follow the state equation p = λρ, where p is the pressure of the fluid, ρ is its
energy density, and λ is a constant. The first law of thermodynamics states that

T dS = dΠ + ρd(1/ρ0) = (1 + Π)d [ln(1 + Π)− λ ln(ρ0)] (1.23a)

⇒ T = 1 + Π (1.23b)

⇒ S = ln
(

1 + Π
ρλ0

)
∴ p = λρλ+1

0 exp(s), (1.23c)
3 A particle at rest has no spatial shift in its velocity, i.e., uµgmi = βi = 0.
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where Π is the specific internal energy, T is the temperature and ρ0 is the rest energy
density. Using the definition of enthalpy

dp = ρ0dh− ρ0τdS (1.24)

h = p+ ρ

ρ0
(1.25)

⇒ ρ0 =
(
he−s

1 + λ

) 1
λ

. (1.26)

The action for the perfect fluid is

AM =
∫
p
√
−gd4x (1.27)

As in the case of the gravitational Hamiltonian, constraints appear. The map
between the time variation of the velocity potentials and their momenta are not one-to-one.
For instance, the momentum associated to θ, Pθ, is null. The constraints are obtained by
the definition of the momenta

PS = θPΦ Constraint (1.28)

Pθ = 0 Constraint (1.29)

PΦ = ρ0
√
−γ (1.30)

⇒ p = λ

(
PΦ√
−γ

)λ+1

exp(S) (1.31)

For the quantized fluid it is interesting to use other canonical variables so that we
have well determined the time. The transformation of variables

{
a, Pa, N, PN , Ṅ , S, Ṡ, PS, θ̇, θ, Pθ,Φ, PΦ

}
→
{
a, Pa, N, PN , Ṅ , Ṡ, θ̇, θ, Pθ, PT , T ,ΦN , PΦN

}
,

where

PT = −
(
PΦ√
ζ

)λ+1

exp(S)
√
ζ (1.32a)

T = PS exp(−S)
(
PΦ√
ζ

)−(λ+1) 1√
ζ

= −PS
PT

(1.32b)

ΦN = Φ(λ+ 1)PS
PΦ

(1.32c)

Pθ = 0 (1.32d)

TPT + θPΦN = 0 (1.32e)

PΦN = PΦ , (1.32f)
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is a canonical transformation, since their Poisson bracket relations are canonical4 [19].

The Legendre transformation generates the Hamiltonian

HM =
∫

Ωt
N

PT
a3(λ−1)

√
−γ d3x (1.33)

where

{T,H} = Ṫ = N

a3λ (1.34a)

where, from (1.34a), it is obtained the relation between the time variable τ and the fluid
time T 5

In this section, it was derived the Hamiltonian of a perfect fluid in a homogeneous
Universe. In fact, the observable Universe is not homogeneous. The existence of galaxies
corroborate the existence of inomogeneities in our Universe. At certain scales much larger
than the size of galaxies [16], the inomogeneities are small enough to allow perturbative
treatment of the Friedmann model. In the next section, the perturbed FRLW Universe
will be derived.

1.2.2 The Full Hamiltonian

The perturbed FRLW metric is given by

γij = a2(τ)(ζij + wij) (1.35a)

βi = 0, (1.35b)

where wij is the tensor perturbations, and ζij is a maximally symmetric metric for
tridimensional space.

A maximally symmetric metric as ζij has the Riemmann tensor like

Rζ µναβ = Rζ

6 (ζµαζνβ − ζναζµβ), (1.36)

where Rζ = 6C is its Ricci scalar, with a constant C.
4 In fact, it is a canonical transformation

{T,ΦN} = (λ+ 1) T
PΦ
− (λ+ 1) T

PΦ
= 0

{ΦN , PT } = {T, PΦN
} = 0

{ΦN (t, x′), PT (t, x)} = {ΦN (t, x′), PT (t, x)} = δ(x− x′)

5 The variable τ is the cosmic time t if N = 1, and is the conformal time if N = a.
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The tensorial perturbation wij is a traceless tranverse spatial tensor, which indices
are raised and lowered by the maximally symmetric metric ζij

wijζ
ij = wii = 0 (1.37a)

wij|i = 0 , (1.37b)

where O|i is the covariant derivative with respect to ζij.

The momentum canonically conjugate to the metric is

Πij = ∂Lg
∂γ̇ij

= Pa
∂ȧ

∂γ̇ij
+ P ab∂ω̇ab

∂γ̇ij
(1.38a)

P abζab = 0 (1.38b)

γ̇ij = 2 ȧ
a
γij + a2ωij (1.38c)

⇒ Πab = Paζ
ij

6a − Pmnwmn
3a4 ζ ij + P ij

a2 , (1.38d)

where Pa is the scale factor momentum, and P ij
w is the tensor perturbation momentum.

Using (1.38) in (1.17a) with (1.33), the full Hamiltonian in second order in tensor
perturbation is

H =
∫

Σt
N

{(
6C − Cwabwab −

wab//cwab//c
4

)
a

√
ζ

6`p
+

+6`p√
ζ

[
P 2
a

24a

(
1− 5wabwab

12

)
− P ij

w wijPa
3a2 −

P ij
w P(w)ij

a3

]
+ PT
a3ω

(
1 + ω

4wabw
ab
)}

d3x+

+
∫

Σt

[
ṄPN + θ̇Pθ − Ṡ

(
TPT

(
1 + ω

4wabw
ab
)

+ θPΦN

)]
d3x .

(1.39)

The Hamiltonian can be simplified by the canonical transformation [20]

ã = ae−
wabw

ab

12 ' a

(
1− wabw

ab

12

)
(1.40a)

P̃a = Pae
wabw

ab

12 ' Pa

(
1 + wabw

ab

12

)
(1.40b)

w̃ij = wij (1.40c)

P̃ ij
w = P ij

w + aPaw
ij

6 = P ij
w + ãP̃aw̃

ij

6 (1.40d)

which generates the Hamiltonian

H =
∫

Σt
N

{(
6C − C

2 w
abwab −

wab//cwab//c
4

)
ã

√
ζ

6`p
+

+6`p√
ζ

[
P̃ 2
a

24ã −
P̃ ij
w P̃(w)ij

ã3

]
− PT
ã3λ

}
d3x+ Other variables,

where, for simplicity, there will be no longer used.

The equations of motions from the Hamiltonian (1.41) are
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• for the scale factor

{PN , H} = ṖN ≡ 0 = −6Ca
√
ζ

6`p
− 6`p

P 2
a

24
√
ζa

+ ρa3
√
ζ (1.41a)

{a,H} = ȧ = 6`p
NPa

12a
√
ζ

(1.41b)

{Pa, H} = Ṗa = −6C
√
ζN

6`p
+ 6`p

P 2
aN

24a2
√
ζ
− 3pa2

√
ζN, (1.41c)

which are the Friedmann equations [21]
(
ȧ

a

)2
= `pρN

2 − CN2

a2 (1.42a)

ä

a
− ȧṄ

aN
= −`pN

2(ρ+ 3p)
2 (1.42b)

• for the fluid is the same as in (1.34)

• for the tensor perturbations

{wij(x), H(t)} = ẇij(x) = −12`pN√
ζ

P(w)ij

a3 (1.43a)

⇒
{

12`pN√
ζ

P(w)ij

a3 , H

}
= −{ẇij, H}

√
ζ

6`p
= −ẅij = −w //c

ij //c + 2Cwij + 2Hẇij

(1.43b)

∴ẅij − w //c
ij //c + 2Cwij + 2Hẇij = 0 (1.43c)

The perturbation wij has only 2 degrees of freedom 6, which are the modes of
polarization of the tensor perturbations. For better understanding how the modes evolve,
they are divided into their Fourier modes.

wij = 1
(2π)3/2

2∑
λ=1

∫
Σ̄t
ε

(λ)
ij w

(λ)
k (t)e−ik·xdVk (1.44)

The Fourier transform of the equation (1.43c) leads to the evolution of the gravitational
wave modes

µ̈k +
(
k2 + 2C − ä

a

)
µk = 0 , (1.45)

where µk = w
(λ)
k a represents the amplitude of the modes of the tensor perturbations.

The equation (1.45) gives the evolution of the Fourier modes as a function of time.
Direct gravitational wave detectors7, measure the energy density of gravitational waves per
6 The tensor wij has 9 indices and 7 equations: 3 because of the symmetry wij − wji = 0; 1 due to the

null trace wii = 0; 3 due to the null divergencew|iij = 0.
7 It is possible to detect gravitational waves indirectly, as done with CMB polarization measurements

[22].
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logarithm of frequency ΩOG(f). It is defined by expanding the gravitational wave energy
density8

ΩOG(η) = ρOG
ρc

= 〈T
0
0 〉
ρc

= −
〈

2
ρc
√
−g(0)

∂L(2)

∂g
(0)
00
g00

〉

= 1
12`2

p

〈 1
a2w

ab′wab′ −
1
2w

ij,kwij,k

〉
(1.46)

where ρc =
(
H0
`p

)2
is the critical energy density, in Fourier modes

ΩOG(η) = 1
ρca2

∑
λ

∫
d(ln k) k

3

4π2

[∣∣∣µ(λ)′
k

∣∣∣2 − 2HRe
{
µ

(λ)′
k µ

(λ)
k

}
+
(
k2 +H2

) (∣∣∣µ(λ)
k

∣∣∣2 +
∣∣∣µ(λ)′
k

∣∣∣2)]
=
∫
d(ln k)ΩOG(k, η). (1.47)

where µ(λ)
k = aw

(λ)
k .

When the perturbations are inside the curvature scale k � H, the energy density
of gravitational waves has a simpler form

ΩOG(k, η) =
k5
∣∣∣µ(λ)
k

∣∣∣2
4π2ρca2 , (1.48)

where in this approximation, µ(η) ∝ e−ikη.

8 The < · > means the spacial mean, in classical regime, and vacuum expected value in quantum regime
[58].
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2 Quantization methods
In this chapter, the canonical quantization and affine covariant quantization
will be developed.

“[...] Starting with a classical system, one often wishes to formulate a quantum theory,
which in an appropriate limit, would reduce back to the classical system of departure. In a

more general setting, quantization is also understood as a correspondence between a
classical and a quantum theory. In this context, one also talks about dequantization, which
is a procedure by which one starts with a quantum theory and arrives back at its classical

counterpart.[...] ”
[23]
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In 1922, Friedmann derived from General Relativity equations describing a homo-
geneous and isotropic Universe, filled with a perfect fluid, which just depend on a scalar
time-dependent function: the scale factor a(t) [24]. This proposal contrasted the static
and unstable model of Einstein [25], and was a landmark of the dynamic of Universe
models. Finding Friedman’s equations independently, Lemaître published in 1927 in a
French magazine of little impact [26, 27] what would be called afterwards the Hubble law.
Two years later, in 1929, at the Mount Wilson Observatory in California, Hubble published
the famous article “A relation between distance and radial velocity among extra-galactic
nebulae” [28] where he proves the ideas suggested by Lemaître. Extending Friedman’s
model to the past, Tolman published in 1931 the first solution of the Universe with
a bounce [29]: a periodic Universe, pointing out the difficulties of finding a fluid with
reasonable energy condition which could produce the bounce. This energy condition would
be latter named the zero energy condition.

In the following decades, the standard cosmological model was constructed suc-
cessfully describing an ever expanding Universe. However, the model encountered some
problems concerning its initial condition which can be listed as:

• The problem of the horizon: Until then there was no explanation for the causality
of homogeneous regions of the Universe that in the past were not in causal contact.
This problem raised in 1956 by Rindler in an article in which he organized the works
of event and particle horizons [30].

• The flatness problem: This problem deals with the fact that the energy density
of matter has a value very close to the critical density, in which the spacelike
hypersurfaces of the Universe would be flat. The problem was proposed by Dicke in
lectures he gave in 1969 that are available in the book “Gravitation and the Universe:
Jayne Lectures for 1969” [31].

• The initial singularity problem: The standard model predicts a singularity in
the past. It was inevitably that the scale factor go to zero a(t) = 0, limiting the
validity of the general relativity equations at this point [32, 33].

In order to solve these problems, it was needed a theory of space-time or matter
beyond the standard model.

Even though they were not the first to address the initial singularity problem
[32], two groups published in 1979 bounce solutions with no singularity: On July 15, two
Brazilian physicists proposed a minimal coupling between classical electromagnetism and
gravity that produced the necessary effects for the bounce [34]. Four months earlier, on
March 19, two Russian physicistsproposed a bounce caused by quantum effects of a scalar
field with gravitational interaction [35]. On the other hand, a new paradigm emerged
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some years later in other to address the other puzzles: inflation [36]. At that time, bounce
solutions responded to the problem of initial singularity, while inflation solved the other
problems, and even proposed a way to get the spectrum of initial perturbations [32],
necessary to understand the initial conditions of the Universe.

Today it is known that bounce scenarios solve the singularity problem and the
all other puzzles of the standard cosmological model, and it also supplies a mechanism
to generate primordial cosmological perturbations from quantum vacuum fluctuations,
with almost scale invariant spectrum [37, 38, 1], as in inflationary models [39], when the
contracting phase is mainly dominated by a matter fluid (a fluid with equation of state
p = λρ with λ ≈ 0)[40, 41]. Hence, they can also be viewed as alternatives to inflation,
although they are not necessarily contradictory to it.

There are nowadays many mechanisms to generate the bounce, normally they
involve new physics and/or new types of fields. There are also many open questions and
issues to be investigated concerning these models [42, 33]. One of them is trough quantum
effect, which we will review.

2.1 Canonical quantization and the Bohm interpretation of quan-
tum mechanics
In the canonical quantization, the classical phase space variables are transformed in

Hibert space operators. The Poisson brackets of these classical quantities are transformed
into quantum commutators (or anti-commutators) of quantum quantities [43]

{A,B} → 1
i~
[
Â, B̂

]
, (2.1)

where ~ is the Plank constant divided by 2π. For now on, ~ = 1.

This method is robust enough to handle rectangular coordinates of variables that
belong to the entire real axis. However, for situations where you are in a curvilinear
coordinate system or the variables are not the real line, this quantization needs more
conditions, or it should be abandoned. The case of the scale factor is an example of
situations where more information is needed. In a half-line, as the scaling factor, the
Hamiltonian operator is not Hermitian1, needing an extension [44]. One way to obtain this
analytical extension is to use the method proposed in [45], presented in 2.2; another way
is to impose boundary conditions on quantum states at the edge of the half-line [44]. This
imposition limits Hilbert space to states in which the Hamiltonian operator is Hermitian.

The general relativity Hamiltonian in flat FRLW metric with tensorial perturbations
filled with a perfect fluid is given by the equation (1.41). It can be quantizated by
1 In this case, the canonical transformation takes the Hamiltonian into an operator that is not self-adjoint.
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transforming the scale factor, fluid parameter, tensor perturbations and its canonical
conjugate momentum into operators that satisfies anti-commutation rules in equation
(2.1).

a→ â (2.2a)

T → T̂ (2.2b)

wij → ŵij (2.2c)

Pa → P̂a=̇− i
∂

∂a
(2.2d)

PT → P̂T =̇− i ∂
∂T

(2.2e)

P ij
w → P̂ ij

w =̇ δ

δwij
. (2.2f)

The Hamiltonian has a mixed momentum scale factor term in which different ordering are
not equivalent. A covariant choice was taken by [46], where the Hamiltonian has the form

Ĥ =
∫

Σt
N̂

{(
6C − C

2 ŵ
abŵab −

ŵab//cŵab//c
4

)
â

√
ζ

6`p
+

+6`p√
ζ

 1
24â 3ω+1

2
P̂aâ

3ω−1
2 P̂a −

P̂ ij
w P̂(w)ij

â3

− P̂T
â3ω

 d3x = 0.
(2.3)

The Dirac quantization procedure implies that the wave function should be annihi-
lated by Ĥ

ĤΨ = 0

⇒ i
∂Ψ
∂T

=
(
a3ω+1C

√
ζ

12`p
wabwab + a3ω+1

√
ζ

24`p
wab//cwab//c −

6`p√
ζa3(1−ω)

δ2

δwijδwij

)
Ψ+

+
[
−a3ω+1C

√
ζ

`p
+ `p√

ζ4
∂2

∂χ2

]
Ψ ≡ ĤTΨ ,

(2.4)

where χ = 2
3(1−ω)a

3(1−ω)
2 .

The notion of time lost by the constraint (1.20e) is recovered by the T fluid
parameter that generates the Hamiltonian ĤT . The new Hamiltonian ĤT is defined on
the Hilbert space endowed by the scalar product

(ψ, φ) =
∫ ∞

0

∫
Ωw
ψ∗φdχdw =

∫ ∞
0

∫
Ωw
a

1−3ω
2 ψ∗φdadw , (2.5)

where the domain (0,∞) of χ will imply in a necessary boundary condition to be satisfied
by Ψ, so that ĤT is self-adjoint.

The solution wave function of (2.4) can be separated into two parts Ψ = ϕψ: one
referring to the background, ϕ(χ, T ), and another concerning perturbations ψ[χ, T, wij].
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Applying this separation to (2.4) we get

0 = ϕ

(
a3ω+1C

√
ζ

12`p
wabwab + a3ω+1

√
ζ

24`p
wab//cwab//c −

6`p√
ζa3(1−ω)

δ2

δwijδwij
− i ∂

∂T

)
ψ+

+ψ
[
−a3ω+1C

√
ζ

`p
+ `p√

ζ4
∂2

∂χ2 − i
∂

∂T

]
ϕ+ `p

4
√
ζ

(
2∂ϕ
∂χ

∂ψ

∂χ
+ ϕ

∂2ψ

∂χ2

)
,

(2.6)

To achieve the separation between background and perturbation, it suffices that ψ[χ, T, wij ] =
ψ1[T,wij ] +ψ[T,wij ]

∫ dξ
ϕ2(ξ) . Thus, the last term of (2.6) cancels, and each part of the total

wave function must meet

i
∂ψ

∂T
=
(
a3ω+1C

√
ζ

12`p
wabwab + a3ω+1

√
ζ

24`p
wab//cwab//c −

6`p√
ζa3(1−ω)

δ2

δwijδwij

)
ψ (2.7a)

i
∂ϕ

∂T
= `p√

ζ4
∂2ϕ

∂χ2 − a
3ω+1C

√
ζ

`p
ϕ (2.7b)

For the case without spatial curvature C = 02, the Hamiltonian requirement for ĤT to be
self-adjoint implies that, if two wave functions φ(ξ, T ) and σ(ξ, T ) belong to the solution
set of (2.7b), they must be such that

∫ ∞
0

φ∗
∂2σ

∂χ2dχ̄ =
∫ ∞

0
σ
∂2φ∗

∂χ2 dχ̄

⇒
(
φ∗
∂σ

∂χ
− ∂φ∗

∂χ
σ

)∣∣∣∣∣
χ=∞

=
(
φ∗
∂σ

∂χ
− ∂φ∗

∂χ
σ

)∣∣∣∣∣
χ=0

∴
∂φ

∂χ
= αφ

∂σ

∂χ
= ασ , (2.8)

where α is a parameter that will define the boundary conditions of the system, which will
limit the solution space of (2.7b) [44].

Equation (2.7b) can be rewritten in the form

∂ρ

∂T
+ ∂j

∂a
= 0 , (2.9)

where ρ is the quantum density and j is the conserved quantum current, given by

ρ = a
1−3ω

2 |ψ|2 (2.10)

j = ia
3ω−1

2

4 (ψ∗∂aψ − ψ∂aψ∗) (2.11)

The equation (2.7b) defines a quantum state for the Universe. In the Copenhagen
interpretation, which is the standard one, this wave function defines the probability of
a classical observer measuring an observable. For instance, the probability of a classical
observer measuring a scale factor a of a quantum universe is |Ψ(a, t)|2. However, there
2 This means that ζ = 1.
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are no classical observers in a quantum Universe. Moreover, the probabilistic idea loses
sense, since there is access only to only one realization of the Universe. To solve these two
problems, this thesis work with the Bohm-DeBroglie interpretation, where the quantum
state is given by a path in configuration space that does not depend on the existence of
an observer.

2.1.1 Bohm-DeBroglie Interpretation

When the scale factor was very small, the Universe went through a quantum phase,
where everything that exists belongs to the quantum world. In this period, there were no
classical observers. This this is not compatible with one of the principles of Copehagen’s
interpretation of quantum mechanics, where physical reality is only attained by such
observers [47]. The interpretation of quantum mechanics proposed by de Broglie and Bohm
says that the trajectory of the quantum variables in configuration space does not depend
on a classical world, and its probabilistic character comes from the ignorance of the initial
position. This interpretation describes Bohmian trajectories, in which every quantum
system evolves, and it is obtained when a measurement is made. This interpretation defines
Bohmian trajectories for every quantum system, where the positions (or amplitudes of
fields) have objective reality. The Bohmian trajectories are deterministic and given by the
equation

dqtb
dt

= j

ρ

∣∣∣∣∣
q=qtb

. (2.12)

The equation (2.12) is a supplementary equation of quantum mechanics that is in
agreement with the other equations. It defines the Bohmian trajectories, which are on the
left side of the equation, with the conserved current j and quantum density ρ.

With this quantization, it is possible to define a Bohmian trajectory of the quan-
tum background, i.e., the scale factor, for the cases of particle creation and primordial
gravitational waves [48, 49].

In the case of the scale factor presented in (2.10), the equation can be further
simplified if one separates the wave function in its amplitude A and its phase S: ψ(χ, T ) =
AeiS. In this case, the equation of the Bohmian trajectory can be written as

datb
dT

= a3ω−1 ∂S

∂a

∣∣∣∣∣
a=atb

. (2.13)

The equation (2.13) can be solved given the phase of the pilot wave ψ. This wave
is the solution of the equation (2.7b) given an initial condition3. The initial condition for
the Bohmian trajectory, selects one of the possible trajectories.
3 This initial condition measures the ignorance of the initial Bohmian trajectory.
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A simple solution to the equation (2.7b) is the Gaussian[50]

A =
[

8Tb
π(T 2 + T 2

b )

]1/4

exp
[

−4Tba3(1−ω)

9(T 2 + T 2
b )(1− ω)2

]
(2.14a)

S = −
[

4Ta3(1−ω)

9(T 2 + T 2
b )(1− ω)2 + 1

2 arctan
(
Tb
T

)
− π

4

]
(2.14b)

which the solution for the Bohmian trajectory reads

atb(T ) = ab

[
1 +

(
T

tb

)2] 1
3(1−ω)

(2.15)

Different S solutions results in different Bohmian trajectories.

The Friedmann equation in terms of the equation (2.15) is

H2 = H2
0 Ωω

1
a3(ω+1) −H

2
0 Ωωa

−3(ω+1)
b

(
ab

a

)6

= H2
0 Ωω

1
a3(ω+1)

[
1−

(
ab
a

)3(1−ω)
]

,

(2.16)
where

H0Ωω = a
3(1−ω)
b

9(1− ω)T 2
b

(2.17)

With the Bohmian trajectories are the evolution of the eigen-values of the quantum
quantities, in this interpretation. Thus, it is possible to replace the operator â by the time
function a(T ).

2.2 Affine Covariant Integral quantization
Another the solution to the self-adjointness problem in the gravitational Hamilto-

nian (1.41) induced by the scale factor, is the half-line quantization using Affine Coherent
States (ACS). If the operator Ô is self-adjoint, then for any states |ψ〉 and |φ〉〈

ψ
∣∣∣Ôφ〉 =

〈
Ôψ

∣∣∣φ〉 . (2.18)

An observable quantity in quantum mechanics is described by self-adjoint operators. It
includes the Hamiltonian (1.41).

This section is devoted to present the quantization basisd on ACS. It is an alternative
to the canonical quantization presented in the previous subsection 2.1, and it will not be
used in the particle creation chapters.

Affine Covariant Integral quantization uses the affine group of symmetries on the
half-plane combining dilatation and translations which intertwines classical and quantum
symmetries through an integral operation. The affine quantization associates coherent
quantum states [45] of a overcomplete4 basis which have the symmetry of a half-line with
4 A basis of states {|ψi〉} is overcomplete if it still a basis after one removes a states |ψj〉.
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∣∣Ψ
〉 ∣∣q, p

〉
Û(q, p)

HC

x→ q

p→ p
ÂH

ρ(q, p)

(q̌, p̌)

Figure 1 – Affine Covariant Integral quantization associates classical phase space variables
with parameters of a overcomplete basis generated by a affine group. With the
quantized operator, the semi-classical quantities are generate.

classical quantities, so that the quantum system naturally meets the constraints of a
variable that belongs to the half-line, for example, the scale factor. The method is depicted
in 1

• First, a overcomplete basis |p, q〉 is generated by the action of all elements of the
two parameter representation of affine group Û(p, q) in one state |Ψ〉, called fiducial
vector.

|p, q〉 = Û(p, q) |Ψ〉 . (2.19)

• Each classical observable O(p, x) from the phase space is mapped in a quantum
operator ÂO in the Hibert space by the integral

ÂO =
∫

Π+
|p, q〉 〈p, q|O(p, q) dp dq

2πc−1(Ψ) (2.20)

where c−1(Ψ) is a function of the fiducial vector

c−1 =
∫ ∞

0
|Ψ|2 dx

x
. (2.21)

The classical momentum p is associated with the translation part of the affine group
p, and the classical position x is associated to the dilatation part of the affine group
q.

• The evolution of a state |ψ〉 with the quantized Hamiltonian ÂH

−i~∂t |ψ〉 = ÂH |ψ〉 (2.22)

• The probability density in the semiclassical space ρ(p, q, t) is constructed with the
probability of finding the state |ψ〉 in the state |p, q〉

ρ(p, q, t) = |〈p, q|ψ〉|
2

2πc−1
(2.23)
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• The lower symbol f̌ of a classical quantity f is the classical behavior from the
quantum operator given by the trace of its quantized operator in the |p, q〉 basis

f̌ =
∫

Π+
〈p, q| Âf |p, q〉

dp dq
2πc−1

(2.24)

The examples presented in this chapter [6] correspond to the quantizations of a
Hamiltonian in the form

H = p2/2 + V (q) . (2.25)

in the case of a gravitationally collapsing dustball (V (q) ∝ q2), an electrically charged
sphere (V (q) ∝ −q) and a simplistic model of Newtonian cosmology (V (q) ∝ 1/q).

The coherent states are quantum states that form a basis X of linearly dependent
quantum states |x〉 that belong to the space of Hibert that serve two properties:

• For every quantum state |ψ〉 belonging to the Hilbert space, there exists a represen-
tation ψ(x) = 〈x|ψ〉 in terms of the coherent state basis, where 〈x|ψ〉 is the scalar
product between the states |x〉 and |ψ〉;

• The coherent states form a basis:
∫
X |x〉 〈x| dµ (x) = 1, where 1 is the identity and

dµ (x) = g(x) dx is a non-zero positive quantity, called measure.

2.2.1 The affine group and its unitary representation

The affine group is a Lie group that is associated with point transformations of a
half-line into another half-line. For the one-dimensional case, this group has two parameters
that are in the half-plane Π+ = {(q, p)|q ∈ R∗+ e p ∈ R}. The factor q is related to a
dilatation transformation, and p with a translation with a scale. For example, let x be a
point that belongs to the half-line R+, then the transformation

x→ x′ = (q, p) · x = x

q
+ p ,

takes points from one half-line to another half-line.

In this way the sequence of points is always maintained, that is, if x1 < x2 < x3,
therefore, x′1 < x′2 < x′3. Another property is that the ratio between distances is also
maintained: x2−x1

x3−x2
= x′2−x

′
1

x′3−x
′
2
.

The transformation generates a group whose law of composition and inverse are

(q, p) · (q0, p0) =
(
qq0,

p0

q
+ p

)
;

(q, p)−1 = (1/q,−qp) .
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This group has a unitary representation Û given by

(Û(q, p)ψ)(x) = eipx
√
q
ψ

(
x

q

)
, (2.26)

where |ψ(x)〉 is a state of the Hilbert space and ψ(x) are the components of this state
expanded in the position operator X̂.

The transformation of the group generate a two parameters basis of coherent states:

eq,p(x) =
(
Û(q, p)ψ

)
(x) = eipx

√
q
ψ

(
x

q

)
, (2.27)

where the state e1,0(x) = ψ(x) is called fiducial vector. In the bracket representation

|q, p〉 = Û |ψ〉 . (2.28)

The great difference of this quantization is to associate the new parameters q and
p with classical positions and momentum, with the operator Q̂ = Âx 6= X̂.

The gain of this choice is that the self-adjoint extension of the momentum is
resolved naturally, but the cost is the freedom of choice of the fiducial vector that does
not yet have a clear physical interpretation.

2.2.2 The basis

From the fiducial vector ψ(x), it is possible to generate a overcomplete basis of
states ∫

Π+
|q, p〉〈q, p|dµ(q, p) = 1 , (2.29)

where Π+ is the half-line, and dµ(q, p) = dqdp
2πc−1

is the measure. The constant c−1 satisfies
the equation (2.29)

cλ(ψ) =
∫ ∞

0

dx

x2+λ |ψ(x)|2 (2.30)

The quantization of f(x, p)→ Âf (Q̂, P̂ ) is done through integration

Âf =
∫

Π+
f(q, p)|q, p〉〈q, p| dqdp2πc−1

, (2.31)

which associates classic momenta with the variable p and classic positions with the variable
q.

The classical behavior of this quantum system is given by the f̌ function, called
the lower symbol, which is the sum of Âf in all coherent states

f̌ =
∫

Π+
〈q, p|Af |q, p〉dµ . (2.32)
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The equation (2.32) can not be interpreted as a simple mean since it disregards
the overlap between coherent states.

The basis of p and q allows the definition of a configuration space for the variables
p and q, where it can be defined as a probability density ρ(q, p, t) of the system. This
probability density contains the quantum and classical system regimes. It is defined by

ρφ(q, p, t) = 1
2πc−1

∣∣∣〈q, p ∣∣∣e−iÂH t∣∣∣φ〉∣∣∣2 . (2.33)

The density presented in (2.33) would be an extension of the classical configuration
space for quantum regions if the variables q and p can be directly associated with the classic
positions and momenta. An example of probability density evolution of the configuration
space of the variables q and p and the lower symbol is represented in the figure 6 for the
cosmological case.

2.2.3 The quantization of the Dirac Delta

The basis generated by the action of the affine group depend on the fiducial vector.
Its relation with the momentum basis |p〉 and position basis |x〉 can be seen by quantizing
the Dirac delta. For a real ψ, the lower symbol of the quantized version of a Dirac delta
localised at (q0, p0) is

δ̌(q0,p0) = |〈p, q|p0, q0〉|2

2πc−1
= 1

2πc−1qq0

∣∣∣∣∣
∫ ∞

0
dx e−i(p−p0)x ψ

(
x

q

)
ψ

(
x

q0

)∣∣∣∣∣
2

. (2.34)

which generates a new probability distribution on the phase space, centered at (q0, p0),
which regularises the original Dirac probability distribution. In Figure (2) it is shown the
shape of this regularized delta at the origin, with the following choice of rapidly decreasing
fiducial function

ψν(x) =
(
ν

π

)1/4 1√
x

exp
[
−ν2

(
ln x− 3

4ν

)2]
. (2.35)

The above real function, which is nothing but the square root of a Gaussian distribution
on the real line with variable y = ln x, centered at y = 3/4ν (x = e

3
4ν ), and with variance

1/ν, verifies c−2(ψν) = 1, c0(ψν) = c−1(ψν), and more generally

cγ(ψν) = exp
[

(γ + 2)(γ − 1)
4ν

]
. (2.36)

As ν →∞, the function (2.35) approaches a Dirac peak. More precisely, it is shown
in Fig. (3) that as ν grows, this function smoothly concentrates around δ(x− 1), which
is the position eigendistribution for x = 1. Conversely, as ν goes to 0, (2.35) tends to 0,
which illustrates the total lack of information about the x position. Through these features,
one can understand the smoothing effect of ACS quantization on classical functions or
distributions.
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Figure 2 – 3d representation, for different values of ν, of the regularized Dirac δ at the
origin with the choice of the rapidly decreasing fiducial function (2.35). The
figure on the left is for ν = 2 and the figure on the right is for ν = 4.

Figure 3 – Fiducial function (2.35) for different ν. As ν grows, it approximates to the
Dirac delta.

For a more localized fiducial function, the basis approximates to the positon basis
|x〉. For delocalized fiducial states, it approximates the momentum basis |p〉.

Lower symbol of powers of q

It is given with the same power up to a constant factor

qβ 7→ q̌β = cβ−1c−β−2

c−1
qβ . (2.37)

Lower symbols of momentum, kinetic energy, and product qp

Calculated with real ψ, they read respectively

p 7→ p̌ = p , (2.38)

p2 7→ p̌2 = p2 + d(ψ)
q2 , (2.39)
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qp 7→ q̌p = c0c−3

c−1
qp , (2.40)

where
d(ψ) =

∫ ∞
0

(ψ′(x))2
(

1 + c0

c−1
x

)
dx = c−2(ψ′) + c0Kψ (2.41)

where
Kψ = 1

c−1

∫ ∞
0

dx x[ψ′(x)]2 > 0 (2.42)

2.2.4 Classical limit

Dealing with the classical limit imposes to reintroduce the Planck constant by
taking into consideration the physical dimensions of the phase space variables (q, p).
Consistently, it is replaced in (2.31) by the measure dq dp by dq dp/~. Whatever the choice
of a fiducial vector |ψ〉, one should expect that a certain combination of the limits ~→ 0
with suitable limits of the parameters of ψ(x) yields the original f(q, p) as

f̌ → f (2.43)

in a certain sense. With the choice (2.35), from (2.36) we get cγ(ψν)→ 1 as ν →∞, and
the classical limit is trivially obtained for the above expressions (2.37), (2.38) ,(2.39), and
(2.40).

2.2.5 ACS quantization of dynamics on half-line

The quantized Hamiltonian (2.25) is

AH = P 2

2m + Kψ

2Q2 + AV , (2.44)

A set of functions that can serve as fiducial vector can be built from a well-known
orthonormal composition of Laguerre polynomials [51],

e(α)
n (x) :=

√
n!

Γ(n+ α + 1) e
−x2 x

α
2 L(α)

n (x) ,
∫ ∞

0
e(α)
n (x) e(α)

n′ (x)dx = δnn′ , (2.45)

where α > 0 is a free parameter for functions which, with a certain number of their
derivatives, vanishes at the origin. On the other hand, for a general n, the expression of
the constants cγ appears quite involved [52]

cγ(e(α)
n ) = Γ(α− γ − 1)

Γ(α + 1)
1
n!

dn

dhn
2F1

(
α−γ−1

2 , α−γ2 ;α + 1; 4h
(1+h)2

)
(1 + h)α−γ−1(1− h)γ+2

∣∣∣∣
h=0

. (2.46)

This expression is valid for α > γ + 1.
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The second option is the normalized function [53]

ψ(x) = ψν,ξ(x) = 1√
2xK0(ν)

e−
ν
4 (ξx+ 1

ξx) , (2.47)

with ν > 0 and ξ > 0. Here and in the following, Kr(z) denotes the modified Bessel
functions [51], where

ξrs = ξrs(ν) = Kr(ν)
Ks(ν) = 1

ξsr
. (2.48)

One attractive feature of such a notation is that ξrs(ν) ∼ 1 as ν → ∞ 5. The function
ψν,ξ(x) falls off with all its derivatives at the origin and at the infinity. The normalization
constant and other integrals involving the function ψν,ξ are obtained with the formula [52]

∫ ∞
0

xa−1e−cx−b/x dx = 2
(
b

c

)a/2
Ka(2

√
bc) , (2.49)

∀ a, b, c ∈ C, Re(b) > 0,Re(c) > 0. With such a fiducial vector the integrals cγ read as

cγ
(
ψν,ξ

)
= ξ

γ
2 +2 K−γ−2(ν)

K0(ν) = ξ
γ
2 +2 ξ−γ−2,0 . (2.50)

With these fiducial functions, there are two free parameters ξ and ν (besides the
scaling parameter κ). Hence some freedom is left to the ratios cγ/cγ′ .

2.2.6 Some examples

In the following sections, the Affine Covariant Integral quantization will be applied
to some simple examples. In such examples, the state where q = 0 is not allowed, which is
a requirement for the validity of the quantization.

2.2.6.1 Half harmonic oscillator

The system is in a one dimensional oscillatory potential, where the equilibrium is
at the origin q = 0, but it is limited to the positive axis, q > 0. Its Hamiltonian is given
by

H = p2

2 + k
q2

2 , p = q̇ q > 0 . (2.51)

An example of a phase space trajectory at constant energy H = E, a truncated circle, is
given in Figure 4a.
5 For large argument ν

Kr(ν) ∼ e−ν
√
π/(2ν),

whereas at small ν �
√
r + 1

Kr(ν) ∼ (1/2)Γ(r)(2/ν)r

for r > 0 and
K0(ν) ∼ − ln(ν/2)− γ

.
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According to (2.44), the ACS quantization of this classical dynamics yields the
quantum Hamiltonian

AH = P 2

2 + K̃

Q2 + k̃

2 Q
2 , K̃ = ~2Kψ

2 , k̃ = k
c1

c−1
, (2.52)

in which the presence of the Planck constant is restored in accordance with the phase
space variables (q, p). Passing to the lower symbol of the equation (2.52) through formulas
given in (2.37) and (2.39) at constant energy AH = E yields the quantum phase-space
correction to (2.51)

E = p2

2 + ~2

2
d(ψ)
q2 + k

2
c1 c−4

c−1
q2 ≡ p2

2 +
˜̃
K

q2 +
˜̃
k

2q
2 , (2.53)

where d(ψ) is defined in (2.41).
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(a) Classical trajectory

0.23 0.97

-1

0

1

q

p

Quantum phase space

(b) quantum phase-space trajectory

Figure 4 – Figure (4a) is an example of phase space trajectory in the positive half-plane
defined by the equation E = p2/2 +kq2/2 with E = 2 and k = 1. The reflection
at the origin produces the momentum discontinuity −p0 7→ p0. Figure (4b)
is an example of regularised phase space trajectory in the positive half-plane
defined by the equation (2.53) with E = 2, ˜̃k = 1, and ˜̃

K = 1, which is the
quantum phase space portrait of the classical (2.51). The latter choices for ˜̃K
and ˜̃k are easily made possible thanks to a suitable fixing of parameters of the
fiducial vector, as was stressed at the end of the previous section. The classical
reflection has become a smooth bouncing near the origin.

The presence of the repulsive potential in equation (2.53), of purely quantum origin,
allows to eliminate the singularity due to the reflection by creating a smooth bouncing as
it is illustrated by Figures (4b).

Note that there is a modification of the oscillator strength k which becomes k̃ (or ˜̃k).
If one considers this fact as a problem, the “renormalised" k̃ or ˜̃k can be made arbitrarily
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close to k by choosing in a suitable way the parameters present in the expression of the
fiducial ψ. For instance, with the choice of fiducial (2.47), ˜̃k = ξ4 ξ30 ξ2−1 and with ξ = 1,
the product ξ30 ξ2−1 becomes rapidly closer to 1, as shown in the Figure (5). On the other
hand, one could decide that what is measured is not k, which belongs to the classical
model, but rather the “effective" k̃ (from which ˜̃k is deduced ), viewed as more “realistic”
since it is supposed that the quantum model is more fundamental than the classical one.
This open a debate analogous to that one arising from the distinction between bare mass
and dressed or effective mass in Quantum Field Theory. The same discussion concerns the
strength K̃ of the repulsive potential, which should be adjusted to their observed values if
there is any experiment proving the existence of such a regularising effect.
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Figure 5 – ξ30 ξ2−1 rapidly becomes closer to 1 for larger ν.

The eigenvalues En and eigenfunctions φn of Equation (2.52) in its operator form
are found by solving the eigenvalue equation

1
2

(
−~2∂2

x + ~2Kψ

x2 + k̃ x2
)
φn = Enφn . (2.54)

Defining the quantities

µ = 1
2
√

1 + 4Kψ , λ = 1
2~2

(
k2

2

) 1
4

, (2.55)

the solutions are a combination of exponentials and associated Laguerre polynomials, in

φn(x) = 2 1
2 (µ+1)x(µ+ 1

2 )e−λx
2
Lµn
(
2λx2

)
, (2.56)

with n ∈ N, and the eigenvalues are given by

En = 2~3λ (2n+ µ+ 2) . (2.57)

2.2.6.2 Simple dust Universe

This section applies the related quantization on a simplistic model of the Universe,
in which the Friedman equations are obtained by means of a Newtonian system.
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In this system, the Universe is represented by a sphere of gas of radius q that
collapses gravitationally. The dynamics of the q variable is the same as the scale factor for
a dust-filled universe. In this system, the Hamiltonian is [21]

H = p2

2 −
k

q
, (2.58)

where q represents the scale factor.

The quantization of the Hamiltonian6 (2.58), associating the scale factor and its
classical moment with the transformation variables scale q and translation of scale p, is

ÂH = P̂ 2

2 + ~2

2
Kψ

Q̂2
− 1
c−1

k

Q
, (2.59)

where Kψ is a constant that depends on the fiducial vector. This quantized Hamiltonian
has the last two terms different from the canonical case: the middle term does not appear,
and the latter has an extra positive multiplicative constant.

The lower Hamiltonian symbol has an extra term

Ě = p2

2 + K̃ψ

q2 −
k

q
, (2.60)

where K̃ψ is a constant that depends on the fiducial vector.

The extra term introduced by quantization causes the dynamics of the scaling
factor q to never reach zero, as shown in figure 6

In terms of the scale factor of the Universe, and using the relation q̇ = p, one gets
(
ȧ

a

)2
= H2 = + k

q3 −
K̃ψ

q4 + Ě

q2 (2.61)

The quantum effects on the scale factor appear in (2.60) as a phantomic radioactive
component, preventing the Universe from collapsing. The energy plays the role of curvature,
and the potential the energy density [21].

Although tempting, the figure 6 can not be literally interpreted as a phase space
for the quantum case. The variables q and p have no direct relation to the position and
momentum when the system is very close to the bounce. In order to have both variables,
moment and position, the fiducial function must be distributed over x, so that the Heseiberg
inequality holds.

Although simple, this cosmological model avoids the initial singularity as the more
realistic model [5]. The difference is that the quantum term is proportional to 1/q6, not
1/q4. This difference occurs because (2.60) is not the real Hamiltonian of general relativity.
6 This operator can not be interpreted as a quantization of gravitation, since it is a Newtonian model.

The gravitational Hamiltonian follows the equation (1.41).
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(a) t=1 (b) t=2 (c) t=3

(d) t=4 (e) t=5 (f) t=6

Figure 6 – Evolution of the probability density ρ(q, p, t) and the trajectory defined by
the lower symbol (2.60) for a dust-filled Universe. The probability density is
defined in the equation (2.33).

The Affine quantization is very practical, since classical systems can be quantized
by integrating the classical Hamiltonian. The determination of the fiducial function for
the cosmological case would be related to the probability distribution of the scale factor in
a certain time; for example, in the bounce. However, the association of the scale factor a
with the quantization variable q is not clear. For this reason, this quantization was not
considered in the particle creation part of this work.
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3 Primordial gravitational waves
In this chapter, the theory of primordial gravitational waves for a bounce
Universe will be presented.

“The gravitational-wave detectors record isolated events which are not detected by
seismometers, gravimeters, tilt meters, or devices responsive to only electromagnetic fields,
of types currently in use. The new limits on gravitational radiation are sufficiently low to

be of interest for cosmology.
[54]
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One of the big question around the initial Universe concerns the presence of
primordial gravitational waves. In the case where the fluid driving the contracting phase
is a canonical scalar field, in which the sound velocity of scalar perturbations cs is equal
to the speed of light, cs = c = 1, the production of primordial gravitational waves is
usually very high [55], yielding a tensor to scalar perturbation ratio r = T/S ≈ 1 which
is incompatible with observations [56] (T and S are the amplitudes of tensor and scalar
perturbations, respectively). On the other hand, for K-essence scalar fields, which mimic
hydrodynamical fluids and cs = λ ≈ 0, the amplitude of primordial gravitational waves
produced is very small [7], and they cannot be seen in any band of frequency. This feature
is compatible with present cosmological observations, but it does not offer any testable
prediction into which this model could be confronted with future observations. As it is
well known, the detection of gravitational waves emitted by black holes [57] opened the
gravitational waves astronomy era. One of the possible signals to be detected in different
frequency ranges in the next decade, away from cosmological scales, are precisely the
primordial gravitational waves. Unlike the black hole collision signals recently detected,
these primary waves are stochastic and less intense. The detection of such waves will give
information about the early Universe [58], e.g., if there was an inflationary era, a bounce,
or even both.

The aim of this chapter is to investigate whether high energy modifications of the
model described in Ref. [7], a Universe containing radiation and dust which goes through
a quantum bounce, can increase the amplitude of primordial gravitational waves in the
high frequency regime, the features of such signal and an analytical approximation for the
phenomena.

Such regime is the typical frequency region of LISA and LIGO/VIRGO [59, 60]
detectors (around 10−2Hz and 103Hz, respectively), much bigger than the typical frequen-
cies relevant for the Cosmic Microwave Background (CMB) observations of primordial
gravitational waves, around 10−18Hz [61]1. In fact, the energy density of gravitational
waves has a spectrum proportional to f

2(9wc−1)
1+3wc , where f is the frequency and wc is the

equation of state parameter of the fluid which is dominating the background when the
mode is leaving the Hubble radius. Hence, for modes leaving the Hubble radius at the
dust dominated phase, it decreases with frequency as f−2, and it increases as f 2 for modes
leaving the Hubble radius at the radiation dominated phase. If one adds to the model
a stiff fluid with w ≈ 1, which should dominate its densest phase, so dense that that
the sound velocity of the fluid becomes comparable with the speed of light [62], then for
modes leaving the Hubble radius at the stiff matter dominated phase, the energy density
of gravitational waves would increase with frequency as f 4. The goal of this chapter is to
evaluate whether adding this stiff fluid to the model can sufficiently increase the energy

1 This convention was already used in [61].
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density of gravitational waves in the high frequency regime in a way that they could be
detected by future observations, without spoiling the good features of the model (scale
invariant spectrum of scalar cosmological perturbations, standard nucleosynthesis phase,
etc)2.

3.1 The full background model
The present model contains three non-interacting perfect fluids: dust, radiation,

and a fluid satisfying p = wρ, with 1/3 < w < 1, usually with w ≈ 1, an almost stiff
matter (asm). The dust fluid controls the dynamics of the Universe when it is large, and
the asm dominates its dynamics near the bounce, when the curvature scalar reaches its
highest values3, and the Universe moves from the contracting to the expanding phase. The
radiation fluid dominates in between these two fluids. When the curvature scale approaches
the Planck length scale, the scale factor gets near its smallest value ab, and quantum
effects realize the transition between contraction to expansion, the bounce. This quantum
phase is dominated by the asm fluid.

The radiation and dust fluid model massless or ultra-relativistic massive fields, and
cold massive fields, respectively. The asm fluid can represent the content of the Universe
when it was so dense that the sound velocity of the fluid becomes comparable with the
speed of light [62].

In order to satisfy cosmological observations and the model hypotheses, there are
some constraints the asm fluid must fulfill4:

• The quantum effects must be restricted to the asm dominated phase;

• Radiation must dominate during nucleosynthesis;

• There must be a classical region between asm and radiation.

As shown in figure 7, the Universe had a contracting phase in the past, when it
was almost flat and very homogeneous. The inhomogeneities were generated by quantum
vacuum fluctuations at this phase, and amplified afterwards. The tensorial quantum
stochastic fluctuations generated in this contracting past were the sources of the primordial
stochastic gravitational waves which could be observed today5.
2 Only very small scales, around 10−20RH , where RH is the Hubble radius today, could cross the

curvature scale in the period where the w fluid is dominant. Since this are very small scales, they do
not affect neither CMB observations nor large scale structure formation.

3 The curvature scale is proportional to the inverse of the square root of the curvature scalar.
4 Imposing these constraints will limit the amplification of gravitational waves in the asm era, as we will

see.
5 As they are stochastic, there is no coherent time-dependent signal that could be detected using a

match-filtering method as used in the first direct detection of gravitational waves [57]
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Figure 7 – Evolution of the scale factor in parametric time.
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Figure 8 – Crossing the curvature scale. The co-moving wavelength λ = 1/k, the horizontal
line, is smaller than the co-moving curvature scale |a/(a′′)|1/2, the dashed line,
in the far past and in the far future of the history of the Universe, when the
tensor mode oscillates, and it becomes bigger around the bounce, when the
tensor mode gets amplified.

Waves with different frequencies will have different amplifications, depending when
their wavelengths becomes bigger than the Universe curvature scale. When they are
smaller, they do not feel the curvature of the Universe and they oscillate as free fields in
flat space-time. When their wavelengths become bigger than the curvature scale, they are
pumped by the gravitational field, and they get amplified. figure 8 shows a comparison
between the co-moving wavelength λ = 1/k and the co-moving curvature scale |a/(a′′)|1/2

along the history of the Universe.

This amplification changes according to which fluid dominates the dynamics of the
background when the crossing occurs. Hence, we expect to obtain different dependence of
amplitude with frequency for each different fluid domination. The background model have
two regimes. A classical and a quantum regime. The quantum regime has a classical limit
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which must match with the usual classical evolution. Therefore, there must be a matching
period where both regimes become very close to each other.

In the classical one, the Friedmann equation relates the scale factor a and the
conformal time η through the equation

a′ = Sign(η)H0

√
Ωr + Ωda+ Ωwa(1−3w), (3.1)

where Ωi ≡ ρi/ρc, i = r, d, w and ρc is the critical density today; H0 is the Hubble factor
today; and w is the fluid parameter of asm, i.e., pasm = wρasm. We set atoday ≡ a0 = 1.

The critical densities must satisfy the constraints of observation: the equality
between radiation and dust must occur in the redshift 2740, and asm must dominate
earlier than the nucleosynthesis era, which occurs at redshift 109 [21]:

Ωr = Ωd
1

1 + ze
(3.2)

Ωr > Ωw

( 1
1 + zn

)
. (3.3)

In the quantum regime,

a′ = Sign(η)H0

√√√√Ωwa1−3w

[
1−

(
ab
a

)3(1−w)
]
, (3.4)

which in terms of the Hubble parameter reads

H2

H2
0

= Ωω

a3(1+ω) −
Ωωa

3(1−ω)
b

a6 . (3.5)

The equation (3.5) presents an effective negative energy of a stiff matter fluid
on its right-hand-side besides the usual classical ams fluid, but this effective negative
energy fluid is not really there. It comes from the quantum correction of the classical
Friedmann equation. It is similar to what happens in Loop Quantum Cosmology, where
the right-hand-side of their Friedmann equation can be effectibelly written as

(
ρ− ρ2

ρ2
c

)
,

but the negative term comes from the quantum amend [63, 64, 65].

There is a period when both (3.1)) and (3.4) are valid, dominated by a classical
asm, which happens when (

ab
a

)3(1−w)
� 1.

Let us take (
ab
a

)3(1−w)
<

1
100 � 1 (3.6)

This choice will not affect the main results. Equality between asm and radiation happens
for the scale factor (

Ωw

Ωr

) 1
3w−1

.
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Then,

ab10
2

3(1−w) < a <

(
Ωw

Ωr

) 1
3w−1

< an, (3.7)

where an is the scale factor at the nucleosynthesis era. Equation (3.7) constrains Ωw with
respect to the scale factor in the bounce ab, and the fluid parameter w. Because of this
equation, the stiffness of the fluid is limited to

w < 1− 2
3Log10

(
an
ab

) . (3.8)

While the nucleosynthesis scale factor is an ∼ 10−11, the bounce scale factor has the value
ab > 10−31 (we are using the Wheeler-DeWitt approach for the quantum phase, which is
not expected to be valid at scales very close to the Planck energy scale [4]). Hence, for the
more realistic models, where the bounce does not happen very close to the nucleosynthesis
era, 1010 < an/ab < 1020, which implies that the ratio an/ab is a large number. Therefore,
another choice in (3.6) will not affect significantly the inequality (3.8).

The amplitude of gravitational waves satisfies the wave equation (1.43c)

v
′′

k +
(
k2 − a′′

a

)
vk = 0, (3.9)

where the potential takes the form

a′′

a
= H2

0
2

[
Ωd

a
− (3w − 1) Ωw

a3w+1

]
Classical (3.10a)

a′′

a
= α2

(
ab
a

)4
[
1− 3w − 1

2

(
ab
a

)3(w−1)
]
Quantum, (3.10b)

where
α2 ≡ H2

0 Ωw

a1+3w
b

For 1� a� ab in the equations (3.10) the classical and quantum regimes approach each
other.

The behavior of the potential is shown in figure 9. Two maxima are classical due
to the transition radiation-asm, one in each bounce side. The two minima come from the
quantum regime, and the highest peak happens in the bounce.

3.2 Numerical solutions and analytical approximations
For a better understanding on how the different fluids present in the model control

the amplitude of gravitational waves, it is necessary a semi-analytical approach. Such
approximation can be done separating the evolution in three regions, as shown in figure
(10).
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Figure 9 – Structure of the potential a′′/a (not in scale).
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Figure 10 – Crossing the potential a′′/a (it is not in scale).
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(A) Outside the potential, or inside the curvature scale: k � a′′

a

(B) Inside the potential, or outside the curvature scale: k � a′′

a

(C) Outside the potential again, or re-entering the curvature scale: k � a′′

a

There are regions in B where k > a′′

a
, but they are negligible.

In A and C, the solutions are oscillatory. Using the quantum initial condition

v(η) = e−ikη√
2k
, in (A) (3.11)

v(η) = C1e
−ikη + C2e

ikη, in (C). (3.12)

In (B), the zero order term neglecting k reads

v(η) = a(η)
[
B1 +B2

∫ η

−ηc

dη̄

a2(η̄)

]
, (3.13)

where −ηc denotes the conformal time when k2 =
∣∣∣a′′
a

∣∣∣ in the contracting phase, η = 0
is the bounce conformal time, and ηc is the conformal time when the solution exits the
potential again (the potential a′′/a is symmetric). The constants can be obtained through
matching conditions, and read,

B2 = (av′ − va′)|−ηc (3.14a)

B1 = v(−ηc)
a(−ηc)

. (3.14b)

From now on, ac = a(ηc) = a(−ηc) and a′c = |a′(ηc)| = a′(ηc) = −a′(−ηc).

The constants in equations (3.14) are, using equation (3.11)

B1 = e−ikηc

ac
√

2k
(3.15)

B2 = eikηc

ac
√

2k

(
a′cac − ika2

c

)
. (3.16)

Therefore, equation (3.13)) can be expressed as

v(ηc) = eikηc√
2k

[
1 +

(
a′cac − ika2

c

)
I(ac)

]
, (3.17)

where
I(ac) =

∫ ηc

−ηc

dη

a2(η) = 2
∫ ac

ab

da

a2|a′(a)| . (3.18)

Using the fact that B2 is constant, the derivative in the region B can be expressed
as

v′ = B2

a
+ v

a′

a

⇒ v′(ηc) = eikηc√
2k

[
a′c
ac

(2 + a′cacI(ac))− ik (1 + a′cacI(ac))
]
. (3.19)
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With the functions v and v′ in region B determined, the constants present in the
function in region C are

C1 =
[
v(ηc) + v′(ηc)

−ik

]
eikηc

2 (3.20)

C2 =
[
v(ηc)−

v′(ηc)
−ik

]
e−ikηc

2 . (3.21)

The critical energy of gravitational waves [58] when the waves reenter the curvature
scale is then given by,

Ωg '
k5l2p

3π2H2
0

|v|2 +
∣∣∣∣∣v′k
∣∣∣∣∣
2
 =

2k5l2p
3π2H2

0
(|C1|2 + |C2|2)

=
k4l2p

3π2H2
0

[
2 + 4a′cacI(ac) + a′2c a

2
cI

2(ac) + k2a4
cI

2(ac)+

+ a
′2
c

a2
ck

2

(
4 + 4a′cacI(ac) + a

′2
c a

2
cI

2(ac)
)]
. (3.22)

The peak of the potential, which happens at the bounce, leads to a maximum k

k2
M = 3(1− w)

2 α2 ⇒ k2
M

H2
0

= 3(1− w)Ωw

2a1+3w
b

. (3.23)

As 10−31 < ab � 10−11 [4], this is a huge physical frequency, and implies a minimum
physical wavelength many orders of magnitude smaller than the Hubble radius today.
For frequencies smaller than this huge maximum frequency, the term I2(ac) dominates in
equation (3.22). In fact, as the integrand in equation (3.18) is a decreasing function of a,
one has

ac|a′c|I(ac) = 2ac|a′c|
∫ ac

ab

da

a2|a′|
� 2ac|a′c|

(ac − ab)
a2
c |a′c|

' 2, (3.24)

when ac � ab, which is the case for k � kM . As in the crossing a′′c/ac ' (a′c/ac)2 ' k2,
and as

I(ac) = 2
∫ ac

ab

da

a2|a′|
' 2

∫ aq

ab

da

a2|a′|
≡ Iq, (3.25)

because the integrand in I(ac) is dominated by small values of a (aq denotes the scale
factor in the beginning of the quantum phase), the energy density can be expressed as

Ωg ∝
k6l2p

3π2H2
0
I2
q a

4
c , (3.26)

where Iq does not depend on ac. As

ac ≈
(
H2

0 Ωw

k2

) 1
1+3wc

,
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Ωg ∝
l2p

3π2 I
2
q

(
Ωwc

2

) 4
1+3wc

(
k

H0

) 2(9wc−1)
1+3wc

∝ k
2(9wc−1)

1+3wc , (3.27)

where wc is the equation of state parameter of the fluid which is dominating the background
when the mode is leaving the Hubble radius6.

The equation (3.27) shows that frequencies that crosses the potential in the dust
era (λ = 0) have energy density decaying with f−2; the ones entering the potential in
the radiation era have energy density growing with f 2; and frequencies that crosses the
potential in the asm era have energy density growing with f 4. For frequencies k ≥ kM , the
integral Ic is zero, since the waves never crosses the curvature scale. In this case, Eq. (3.22)
is dominated by the first term inside the braces, and hence the energy density grows also
as f 4. It is the usual flat spacetime ultraviolet divergence. These behaviors are shown in
figures 12, 14 and 13 below.

Concerning the amplitudes, the term which contributes mostly to the energy density
is the quantum part of the integral equation (3.19):

Iq =
∫ aq

ab

da

a2|a′|
= 1
α

∫ aq

ab

da

a2
√(

ab
a

)3w−1
−
(
ab
a

)2

= 2
H0

√
Ωwa

3(1−w)
b

arctan
(√(

aq
ab

)3(1−w)
− 1

)
3(1− w) .

(3.28)

Its dependency on w shows that it decreases until w ≈ 1 + 2
3 ln(ab)

, when it reaches
its minimum value, then it increases rapidly to infinity, when w = 1, as shown in Fig 11.

However, w is limited to the constraint equation (3.8), which is also indicated in
figure (11). It shows that, although the energy density increases more in frequency for
higher values of w as shown in equation (3.27), the value of Iq decreases significantly with
w in its physical allowed region, as shown in figure 11. The combination of these two
behaviors implies a net decreasing in the amplitude with respect to the case without the
asm fluid, as shown in of figure 12.

The usual increasing in the energy density due to the depth of the bounce is
quite suppressed due to the presence of the asm fluid. Indeed, the ratio between different
gravitational waves energy densities for two different bouncing models with different scale

6 In a cosmological model described by general relativity with single fluid domination, leaving the Hubble
radius is the same as leaving the curvature scale and as crossing the potential
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Figure 11 – The ratio between the integral equation (3.28)) and its value for w = 1/3 for
different w, considering ab = 10−24 and (aq/ab)3(1−w) = 100. The minimum
value is when w ≈ 0.99. However, due to the constraint equation (3.8), w is
limited to w ≈ 0.96.
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Figure 12 – The energy density of gravitational waves with state parameter w = 1/3 and
minimum scale factors ab = 10−24, 10−18, represented by dot-dashed curves,
and state parameter w = 0.9 with minimum scale factors ab = 10−24, 10−30,
represented by continuous curves. The higher energy densities correspond to
smaller ab, respectively. The dashed curve corresponds to the limit where the
frequency never enters the potential. The different inclinations of the curves
are in accordance with the discussion after equation (3.27).
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Figure 13 – Gravitational waves energy density dependence on Ωw for minimum scale
factor ab = 10−24, and ams fluid parameter w = 0.6. The dot-dashed curve
corresponds to Ωw = 10−19, while the continuous curve corresponds to Ωw =
10−15. The dashed curve corresponds to the limit where the frequency never
enters in the potential. Again, the different inclinations of the curves are in
accordance with the discussion after equation (3.27).

factors at the bounce, ab1 and ab2, reads, using equation (3.28),

Ωg1

Ωg2
=
(
ab2
ab1

)3(1−w) arctan
(√(

aq
ab1

)3(1−w)
− 1

)

arctan
√( aq

ab2

)3(1−w)
− 1

 . (3.29)

Hence, for fluids with state parameter close to 1 dominating during the bounce,
the increase in intensity due to the bounce depth is exponentially suppressed, as shown in
figure 11.

The summary of the results are:

• The energy density of primordial gravitational waves decreases with the energy
density of the fluid which dominates at the bounce. Shown is equations in equations
(3.27)) and (3.28), together with the figure 13.

• The increasing of the energy density of primordial gravitational waves in frequency
for increasing w with 1/3 < w < 1 does not usually compensate the decreasing of its
intensity due to the decreasing of Iq with w presented in figure 11. This compensation
usually happens only for very high frequencies, inaccessible by nowadays experiments,
shown in figure 14.
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Figure 14 – Behavior of the energy density of primordial gravitational waves with respect
to the equation of state parameter w for minimum scale factor ab = 10−24,
and ams energy density today given by Ωw = 10−19. The fluid parameter
w = 0.9 corresponds to the continuous line, and w = 0.6, corresponds to the
dot-dashed line. The dashed curve correspond to the limit where the frequency
never enters in the potential. Once again, the different inclinations of the
curves are in accordance with the discussion after equation (3.27).

• The energy density of primordial gravitational waves is more sensitive to the depth
of the bounce for lower equation of state parameters w, as shown in the equation
(3.29). This sensitivity is shown in figure 12.

• Finally, Fig. 15 presents one of the highest energy densities of primordial gravitational
waves we found for one particular bouncing model, comparing it with results from
inflation and present observational bounds. Note that the amplitude is still far
below possible observations. In these frequencies, there is also the astrophysical
background, proportional do f 3. The LIGO detectors can separate between different
grow behaviors [60].

3.3 Conclusion
In bouncing models containing K-essence scalar fields simulating hydrodynamical

fluids with c2
s = w, the amplitude of primordial gravitational waves produced is usually

very small [7] for cosmological scales, or low frequencies, but it can grow significantly at
high frequencies if the fluid which dominates the background dynamics at the bounce is as
close to stiff matter as possible. In this chapter it was shown that this can indeed be true,
described in equation (3.27), but the amplitude of gravitational waves does also depend
on Iq defined on equation (3.25), which gets smaller when the bounce fluid approaches
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Figure 15 – Amplitude of gravitational waves energy density for high frequencies. The
amplitude refers to a model with ab = 10−30, and w = 0.9. The inflation
amplitude corresponds to a slow-roll model with r = T/S = 0.6 [39]; the CMB
line refers to the imprints we should expect in CMB [66]; the LIGO limit is
the lower sensitivity for scale-invariant perturbations [60]. Note that the usual
flat spacetime ultra-violet divergences were not subtracted in this figure.

stiff matter. The compromise between these two effects makes the amplitude of primordial
gravitational waves not sufficiently big at high frequencies in order to be detected by
present day or near future observations for background models being symmetric around
the bounce, and satisfying the nucleosynthesis bounds. These conclusions are corroborated
by figures 13, 14, 12 and 15, based on numerical calculations, and understood through
analytical considerations. Hence, it seems that bouncing models where the background is
dominated by hydrodynamical fluids do not present any significant amount of primordial
gravitational waves at any frequency range compatible with observations. Any detection
of such waves will then rule out this kind of models.

An alternative would be to consider bouncing models which are not symmetric
around the bounce due, e.g., to particle production near the bounce [4]. In this case, one
could suppose that radiation was created after the bounce, and the nucleosynthesis bounds
originating constraint equation (3.8) could be relaxed, because in the contracting phase
there would be almost no radiation. It would be a bouncing model with some sort of
reheating. In this case, one could have w as close to 1 as necessary, yielding a sufficiently
big Iq as indicated by the w ≈ 1 part of figure (11). In this case, the model could produce
a sufficient amount of relic gravitational waves that could be detected.
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4 Fermions creation
In this chapter, the fermions production in the bounce model will be presented.

“(...) the spinor ψ (...) provides a realization of an irreducible representation of the
Lorentz group(...)”

[67]
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The Universe may have started with the same amount of particles we see today, or
they may have been created along their evolution. Whatever the origin of the particles
that fill the Universe, a number of them are needed in the expansion phase to explain the
formation of the first atomic nuclei and the subsequent formation of all the astronomical
objects that are observed today. Without having a special reason for choosing initial
conditions for particle density, arises the hypothesis that they were created throughout
the evolution of the Universe. This hypothesis is addressed in inflation theories which,
due to an exponential expansion of the Universe, the density of particles is much lower
than the value necessary for the formation of the first atomic nuclei. The main theories
of inflation solve this problem by proposing a phase called reheating where there is still
controversy as to how these particles are generated [68].

In this chapter, the initial particles have been generated by the evolving gravitational
field of the Universe . A phenomenon similar to the Unruh effect and the Hawking radiation
[69, 70]. The treatment of uncharged spin 1/2 fermions is an extension to earlier works that
dealt with the creation of scalar fields in the bounce [4]. In the worked models, the very
homogeneous, isotropic, large and contracting initial condition of the Universe presents
quantum fields in a vacuum state. During the evolution of this Universe, the definition of
quantum vacuum changes, generating particles.

When the Universe had a very large scale factor and was in the era of contraction
of a bouncing model, there were no fermionic particles. The field of fermionic particles was
in the vacuum state, and as the Universe evolved, the definition of vacuum state changed
through Bogoliubov’s transformations. After the bounce, the state of the fermionic field is
in the vacuum of the contraction era, which was not equivalent to the vacuum defined
by the observer. This difference gives rise to fermionic particles that inhabit the whole
Universe. In this chapter, it is shown that the creation of fermionic particles has a very
characteristic spectrum and differs from other theories like [71]. In the case of articles
following the line of [72, 73], the particles are created by a transition effect of the mass of
fermionic particles at the end of inflation. During creation, the article [71] argues that the
scale factor is practically constant, and the particles undergo successive transitions. In the
present case, the creation of particles occurs over a longer period, and is given only by the
dynamics of the scale factor.

4.1 Classical fermions

In this section, the theory classical of fermionic fields is derived. The aim is to
define a Hamiltonian H and a momentum Π canonically conjugate to the spinor field
Ψ(x, t) that will be quantized in the next section.
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The fermionic field Lagrangian for curved space-times is given by [74]

Lf = i

2
[
ΨγµDµΨ−

(
DµΨ

)
γµΨ−mΨΨ

]
. (4.1)

The 4 Dirac matrices γµ satisfy the anti-commutation relation

{γµ, γν} = 2gµν1, (4.2)

where gµν is the space-time metric and 1 is the identity matrix.

The spin metric hs is a matrix that relates the spinor field Ψ with its dual Ψ

Ψ = Ψ†hs, (4.3)

and relates the Dirac matrices to its transpose complex,

γµ† = hsγ
µh−1

s , (4.4)

a crucial property for the invariance of the Lagrangian (4.1) under spinor point transfor-
mations [74].

The differential operator Dµ is the covariant derivative that has the properties

DµΨ = ∂µΨ + ΓµΨ; (4.5a)

DµΨ = ∂µΨ−ΨΓµ; (4.5b)

Dµγα = ∇µγ
α + [Γµ, γα] = 0, (4.5c)

where ∇µ is the space-time covariant derivative, and Γµ is the spin connection.

Without loss of generality, the Dirac matrices can be written as1

γµ = eµ(A)γ
(A), (4.6)

where eµ(A) are a tetrad coordinate, and γ(A) are any constant set of Dirac matrices that
satisfies {

γ(A), γ(B)
}

= 2η(A)(B), (4.7)

where η(A)(B) is the Minkowski metric. All the tetrad indices are depicted by latin capital
indices in parenthesis, like (A).

The tetrad basis has the properties

eν(A)e
(A)
µ = gνµ; (4.8a)

eµ(A)eµ(B) = η(A)(B), (4.8b)

1 There is always a spin transformation S such that, for any set of γµ, [74]

γ̃µ = SγµS−1 = eµ(A)γ
(A).
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where η(A)(B) is the Minkowski metric.

In terms of the tetrad basis choice in equation (4.6), the spin connection is

Γµ = 1
8e

ν
(C)eν(D);µ

[
γ(C), γ(D)

]
= 1

8[γν , γν;µ] (4.9)

The dynamics of the fermionic field can be obtained by the Hamilton equations.
The space-time is divided in space-time hyper-surface given by τ(x, t) constant is space-like,
perpendicular to dτµ. The gradient dτµ points to direction where τ increases. For different
foliations τ(x, t), there are different Hamiltonians.

First, it will be defined the time variation Ψ̇ with respect to the foliation τ . Then
the Lagrangian will be expressed in terms of Ψ̇, whereby the momentum will be defined.
At last, the Hamiltonian will be constructed and the Hamilton equations will be derived.

The variation of the spinor field along a time line is given by the Lie derivative
[67, 75]

Ψ̇ = L∂τΨ = (∂τ )µDµΨ; (4.10a)

Ψ̇ = L∂τΨ = (∂τ )µDµΨ. (4.10b)

The vector (∂τ )µ is the direction where τ increases, but the coordinates over the
spatial surface are still the same. Explicitly,

dτµ = gµν∂ντ (∂τ )µ = ∂τx
µ, (4.11)

where these two vectors satisfy the relation

dτµ (∂τ )µ = ∂τ

∂xµ
∂xµ

∂τ
= ∂τ

∂τ
= 1. (4.12)

Due to the relation (4.12), the vector ∂τ can be expressed in terms of the gradient

(∂τ )µ = N2 dτµ + βµ, (4.13)

where βµ is a vector over the spatial surface2, and N−2 = dτµ dτµ. Different from the
gradient, ∂τ is not perpendicular to the spatial surface.

Using the equation (4.13), it is possible to construct the relation

δµν = P µ
ν + Lν(∂τ )µ, (4.14)

where P µ
ν (∂τ )µ = 0, and Lν = (∂τ )ν

(∂τ )α(∂τ )α
. Using the (1.9) coordinates for the FRLW metric,

P µ
ν is the projector in the spatial indices and Lν in the temporal indices. It is important to

notice that the equation (4.14) does not separate the manifold in space and time sections,
because (∂τ ) is not perpendicular to the spatial surface.
2 It means that βµ dτµ = 0.
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Using the equation (4.14) and the definition (4.10), the Lagrangian can be expressed
as

Lf = i

2
[
ΨγµPα

µDαΨ + ΨγµLµΨ̇−
(
DαΨ

)
γµPα

µΨ− Ψ̇γµLµΨ
]
−mΨΨ =

= i
(
ΨγµPα

µDαΨ + ΨγµLµΨ̇
)
−mΨΨ− 1√

−g
∂µ
(√
−gΨγµΨ

)
=

= −i
[(
DαΨ

)
γµPα

µΨ + Ψ̇γµLµΨ
]
−mΨΨ + 1√

−g
∂µ
(√
−gΨγµΨ

)
,

(4.15)

where the last term 1√
−g∂µ

(√
−gΨγµΨ

)
is a total divergence3.

From (4.15), the momentum is defined by

Π1(x, t) =
∫

d4x′
√
−g δL(x′, t′)

δΨ(x) = iΨ(x, t)γµ(x, t)Lµ(x, t); (4.16a)

Π2(x, t) = −iγµ(x, t)Lµ(x, t)Ψ(x, t). (4.16b)

From equations (4.16), the Hamiltonian density is defined as

H = Π1Ψ̇ + Ψ̇Π2 − L =

= − i2
[
ΨγµPα

µDαΨ−
(
DαΨ

)
γµPα

µΨ
]

+mΨΨ =

= −iΨγµPα
µDαΨ +mΨΨ + 1√

−γ
∂α
(√
−γΨγµPα

µΨ
)

=

= i
(
DαΨ

)
γµPα

µΨ +mΨΨ− 1√
−γ

∂α
(√
−γΨγµPα

µΨ
)
,

(4.17)

where the last term 1√
−γ∂α

(√
−γΨγµPα

µΨ
)
is a total divergent over the spatial surface4,

and γ is the determinant of the metric of the spatial surface5.

The Poisson bracket relations are defined as

{A,B} =
∫

Ωτ
d3x
√
−γ

(
δA

δΨ
δB

δΠ1
+ δA

δΨ
δB

δΠ2
− δB

δΨ
δA

δΠ1
− δB

δΨ
δA

δΠ2

)
, (4.18)

3 It was used the relation(
DµΨ

)
γµΨ =

√
−g√
−g
Dµ
(
ΨγµΨ

)
−ΨγµDµΨ = 1√

−g
∂µ
(√
−gΨγµΨ

)
−ΨγµDµΨ,

paying attention to the relation Dµ
(
ΨγµΨ

)
= ∇µ

(
ΨγµΨ

)
,because ΨγµΨ is a vector.

4 It was used the relation(
DαΨ

)
γµPαµΨ =

√
−γ√
−γ
Dα
(
ΨγµPαµΨ

)
−ΨγµPαµDαΨ = 1√

−γ
∂α
(√
−γΨγµPαµΨ

)
−ΨγµPαµDαΨ,

paying attention to the relation Dα
(
ΨγµPαµΨ

)
= ∇3

α

(
ΨγµPαµΨ

)
,because ΨγµPαµΨ is a vector over

the space surface; where ∇3
µ is the covariant derivative over the spatial surface.

5 The metric in the spatial surface is defined by

g3
µν = gµν −N2 dτµ dτµ

.
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where Ωτ is the spatial equal time τ surface, and whereby

{Ψ(x, t),Ψ(x′, t′)} = 0; (4.19a){
Ψ(x, t),Ψ(x′, t′)

}
= 0; (4.19b)

{Ψ(x, t),Π1(x′, t′)} = δ(3)(x, t, x′, t′); (4.19c){
Ψ(x, t),Π2(x′, t′)

}
= δ(3)(x, t, x′, t′). (4.19d)

where τ(x, t) = τ(x′, t′) and

∫
Ωτ

d3x
√
−γδ(3)(x, t, x′, t′)f(x, t) = f(x′, t′). (4.20)

With the Hamiltonian density defined in (4.17), the momentum in (4.16) and the
Poisson bracket (4.18), the Hamilton equations of motion for Ψ is

{Π2,H} = Π̇2 = −i(∂τ )µDµ(γαLαΨ) = −iγαLα(∂τ )µDµΨ =

= −iγαLαΨ̇ = iγµPα
µDαΨ−mΨ

⇒iγµ
[
Pα

µ + Lµ(∂τ )α
]
DαΨ−mΨ = iγµDµΨ−mΨ = 0

(4.21a)

and for Ψ reads

{Π1,H} = Π̇1 =
(
DµΨ

)
iγαLα(∂τ )µ = iΨ̇γαLα = −i

(
DαΨ

)
γµPα

µ −mΨ

⇒i
(
DαΨ

)
γµ
[
Pα

µ + Lµ(∂τ )α
]

+mΨ = i
(
DµΨ

)
γµ +mΨ = 0

(4.21b)

The fermions are described by the field Ψ(x, t) which carries its degrees of freedom.
Such field is a solution of the Dirac equation for curved space-times6 that comes from
Hamilton equations (4.21).

The full Hamiltonian of the fermionic field with respect to τ is, using the equations
of motion (4.21), and the Hamiltonian density (4.17),

H =
∫

Ωτ
d3x
√
−γH =

=
∫

Ωτ
d3x
√
−γ

{
− i2

[
ΨγµPα

µDαΨ−
(
DαΨ

)
γµPα

µΨ
]

+mΨΨ
}

=

= i

2

∫
Ωτ

d3x
√
−γLα

(
ΨγαΨ̇− Ψ̇γαΨ

)
= i

2

∫
Ωτ

d3x
√
−γLα

(
Ψγα ∂

∂τ
(Ψ)− ∂

∂τ

(
Ψ
)
γαΨ + (∂τ )µΨ(γαΓµ + Γµγα)Ψ

)
(4.22)

6 There is more than one Dirac equation for curved space-times [76]. The equations (4.21) uses Dirac-
Fock-Weyl development [77, 78], which is the standard equation for fermions in curved space-times.



4.1. Classical fermions 55

4.1.1 Dirac equation in a homogeneous and isotropic Universe

In the FRLW Universe, in terms of the conformal time, the metric is given by

gµν = a2(η)ηµν=̇a2(η)


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

, (4.23)

From (4.8), the tetrad read

e (A)
µ = δ(A)

µ a(η); (4.24a)

eµ(A) = δµ(A)a
−1(η), (4.24b)

where the tetrad indice is a capital latin label. It means that eν(D) is a one form, not a
tensor of rank 2. From equations (4.24), the quantity

eν(D);µ = eν(D),µ − Γανµeα(D) = gανδ
α
(D)

(
a−1

)
,µ

+ a′
(
ηνµδ

0
(D) + ην(D)δ

0
µ − δ0

νηµ(D)
)
, (4.25)

is a tensor of rank 2.

Equation (4.24) applied to (4.6) yields

γµ =
γ(A)δµ(A)

a(η) . (4.26)

Applying equation (4.25), equations (4.24) and equation (4.9) give

Γµ = aH

2
(
γ(A)γ

(0) − δ(0)
(A)

)
δ(C)
µ = −aH2

(
γ(0)γ(A) − δ(0)

(A)

)
δ(C)
µ ; (4.27a)

γµΓµ = 3
2Hγ

(0); (4.27b)

Γµγµ = −3
2Hγ

(0), (4.27c)

where H = a′

a2 is the Hubble function.

Hence the Dirac equations (4.21), using (4.27), becomes

iγ(A)δµ(A)

a
∂µ + i

3
2Hγ

(0) −ma

Ψ = 0; (4.28a)

i∂µΨ
γ(A)δµ(A)

a
+ i

3
2HΨγ(0) +maΨ = 0. (4.28b)
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Using (4.7), without lost of generality, it is choosen a set of constant Dirac matrices
such that

hs = γ(0)

⇒ hs 6= γ0 = γ(0)

a

⇒ γ(A)† = γ(0)γ(A)γ(0)−1;

⇒ γ(0)† = γ(0) = γ(0)−1;

⇒ γ(A)† = −γ(A) = γ(A)−1 for A 6= 0.

(4.29)

There are two possible standard foliations of the FRLW Universe: The cosmic time
t and the conformal time η, where dt = a dη. For cosmic time foliation one gets

(∂t)µ = ∂xµ

∂t
= ∂η

∂t
δµ0 = a−1δµ0 (4.30a)

(∂t)α(∂t)α = a−1δµ0a
−1δβ0 gαβ = 1 (4.30b)

L(t)
ν = (∂t)µ

(∂t)α(∂t)α
gµν = aδ0

ν (4.30c)

P (t)µ
ν = δµν − δ0

νδ
µ
0 (4.30d)

L(t)
ν γ

ν = aδ0
ν

δν(A)

a
γ(A) = γ(0) (4.30e)

(∂t)µΓµ = Ha

2
(
γ(0)γ(A) − δ(0)

(A)

)
δ(A)
µ a−1δµ0 = 0 (4.30f)

dtµ dtµ = N−2 = ∂t

∂xµ
∂t

∂xν
gµν = 1 (4.30g)

γµν = gµν −N2 dtµ dtν =̇


0 0 0 0
0 −a2 0 0
0 0 −a2 0
0 0 0 −a2

 (4.30h)

√
−γ = a3 (4.30i)

δ(3)(x, η, x′, η′) = 1
a3 δ(x− x

′) (4.30j)

Π1 = iΨγ(0) = iΨ† (4.30k)

Π2 = −iγ(0)Ψ (4.30l)
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Using the (4.30) and (4.22), the hamiltonian for cosmic time foliation is

H(t) = −a3
∫

Ωt
d3x

(
iΨγi∂iΨ + 3

2HΨγ(0)Ψ−mΨΨ
)

+ Const =

= a3
∫

Ωt
d3x

[
i
(
∂iΨ

)
γiΨ− 3

2HΨγ(0)Ψ +mΨΨ
]
− Const =

= ia3

2

∫
Ωt

d3x
[
Ψγ(0)∂tΨ−

(
∂tΨ

)
γ(0)Ψ

]
=

= ia2

2

∫
Ωt

d3x
[
Ψγ(0)∂ηΨ−

(
∂ηΨ

)
γ(0)Ψ

]
=

= ia2

2

∫
Ωt

d3x
[
Ψ†∂ηΨ−

(
∂ηΨ†

)
Ψ
]

=

= i

2a

∫
Ωt

d3x
[(
a3/2Ψ†

)
∂η
(
a3/2Ψ

)
−
(
∂ηa

3/2Ψ†
)(
a3/2Ψ

)]
=

= i

2a

∫
Ωt

d3x
[
χ†∂ηχ

† −
(
∂ηχ

†
)
χ
]
,

(4.31)

where χ = a3/2Ψ. The “Const” term comes from a spatial divergence, given in the equation
(4.17), and the summation over i goes from 1 to 3.

For the conformal time foliation

(∂η)µ = ∂xµ

∂η
= ∂η

∂η
δµ0 = δµ0 (4.32a)

(∂η)α(∂η)α = δµ0 δ
β
0 gαβ = a2 (4.32b)

L(η)
ν = (∂η)µ

(∂η)α(∂η)α
gµν = δ0

ν (4.32c)

P (η)µ
ν = δµν − δ0

νδ
µ
0 (4.32d)

L(η)
ν γν = δ0

ν

δν(A)

a
γ(A) = γ(0)

a
(4.32e)

(∂η)µΓµ = Ha

2
(
γ(0)γ(A) − δ(0)

(A)

)
δ(A)
µ δµ0 = 0 (4.32f)

dηµ dηµ = N−2 = ∂η

∂xµ
∂η

∂xν
gµν = a−2 (4.32g)

γµν = gµν −N2 dηµ dην =̇


0 0 0 0
0 −a2 0 0
0 0 −a2 0
0 0 0 −a2

 (4.32h)

√
−γ = a3 (4.32i)

δ(3)(x, η, x′, η′) = 1
a3 δ(x− x

′) (4.32j)

Π1 = i

a
Ψγ(0) = iΨ† (4.32k)

Π2 = − i
a
γ(0)Ψ (4.32l)
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Using the (4.30) and (4.22), the hamiltonian for cosmic time foliation is

H(η) = ia2

2

∫
Ωt

d3x
[
Ψ∂ηΨ−

(
∂ηΨ

)
Ψ
]

= H(t) ≡ H. (4.33)

4.2 Creation of particles
In the previous section , it was obtained in equation (4.28) for the classical Dirac

equation in a FLRW Universe. In this section the theory of creation of particles will be
developed for the Unvierse, in which the scale factor is given by (2.15).

In this section, the fields are quantized by replacing the functions Ψ and Ψ by the
operators Ψ̂ and Ψ̂, that satisfy the equal time anti-commutation rules [43]

{
Ψ̂(x, η), Ψ̂†(x′, η)

}
= δ(3)(x− x′) = δ(x− x′)

a3 (4.34a){
Ψ̂(x, η), Ψ̂(x′, η)

}
= 0. (4.34b)

The quantized hamiltinan is, from (4.31)

Ĥ = −a3
∫

Ωt
d3x

(
iΨ̂γi∂iΨ̂ + 3

2HΨ̂γ(0)Ψ̂−mΨ̂Ψ̂
)

+ ˆConst =

= a3
∫

Ωt
d3x

[
i
(
∂iΨ̂

)
γiΨ̂− 3

2HΨ̂γ(0)Ψ̂ +mΨ̂Ψ̂
]
− ˆConst.

(4.35)

The Heisenberg equations of motion are

Ψ̇ = 1
a
∂ηΨ = −i

[
Ψ̂, Ĥ

]
=

= −a3
∫

Ωt
d3x

(
i
{

Ψ̂, Ψ̂†
}
γ(0)γi∂iΨ̂− i

{
Ψ̂, ∂iΨ̂

}
Ψγi+

+3
2H

{
Ψ̂, Ψ̂†

}
Ψ̂− 3

2H
{

Ψ̂, Ψ̂
}

Ψ̂†+

− m
{

Ψ̂, Ψ̂†
}
γ(0)Ψ̂ +m

{
Ψ̂, Ψ̂

}
Ψ
)

=

= −iγ(0)γi∂iΨ̂−
3
2HΨ̂ +mγ(0)Ψ̂

⇒ 0 =
(
i

a
γ(A)δµ(A)∂µ + i

3
2Hγ

(0) −m
)

Ψ̂.

(4.36)

The quantum non-charged fermionic field operator that describe the degrees of
freedom in a homogeneous and isotropic Universe obeys the Dirac equation (4.36)(

i
γ(A)

a
δµ(A)∂µ + i

3
2Hγ

(0) −m
)

Ψ̂(x) = 0, (4.37)

where H is the Hubble rate given by H = a′

a2 .

The differential equation (4.37) commutes with spatial translations and rotations.
Therefore the spinor operator Ψ̂ can be separated in spatial translation and rotation basis
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with time independent indices. It means that each Fourier mode of the field can evolve
independently and does not depend on the direction.

The same does not happen with time translations. The differential equation in
(4.37) does not commute with temporal translations, therefore coefficients of the temporal
translations basis do not evolves independently. In practice this means that the spinor
operator cannot be expanded in independent temporal frequency modes. In fact, the time
dependency will be described by functions with mixed time-frequencies.

The equation (4.37) can be simplified by using χ̂(x) = a
3
2 Ψ̂(x)

(
iγ(A)δµ(A)∂µ −ma(η)

)
χ̂(x, η) = 0. (4.38)

The equation (4.38) is a variable mass Dirac equation, which one of its properties
is the non conservation of particle number.

In the momentum representation, the spinor operator χ̂(x, η) is divided in Fourier
modes

χ̂(x, η) = 1
(2π) 3

2

∫
d3~k e−i~k·~xχ̂(~k, η), (4.39)

which satisfies the equation

(
iγ(0)∂η + ~γ · ~k−ma(η)

)
χ̂(~k, η) = 0. (4.40)

The spinor part of the field in momentum representation can also be separated
in a basis generated by the eigen-vectors of the helicity h and γ(0). These two matrices
commute and their eigen-vectors form a basis Sl,j for the 4-dim spinor, where l is for γ(0)

eigen-values and j for h. Explicitly

χ̂(~k, η) =
∑
l,j

Sl,j(~k)Ôl,j(~k, η), (4.41)

where Ô are the coefficients of the expansion.

The helicity can be expressed by [79]

h = γ(0)~γγ5 · k̂, (4.42)

where

γ5 = −i
√
−g
4 εαβσθγ

αγβγσγθ = iγ(0)γ(1)γ(2)γ(3), (4.43)

where the final equality was only possible due to (4.6). In general coordinates, γ5 is not
constant.
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Without loss of generality, it is chosen a basis Sl,j that has the following properties:

hSl,j = jSl,j; (4.44a)

γ(0)Sl,j = lSl,j; (4.44b)

γ5Sl,j = −jS−l,j. (4.44c)

S†l,jSm,n = 1
2δlmδjn (4.44d)

Equations (4.44) define a basis uniquely, including its phase (4.44c).

Applying the γ5γ(0) operator to the equation (4.40), one obtains

γ5γ(0)
(
iγ(0)∂η + ~γ · ~k−ma(η)

)
χ̂(~k, η) = 0 =

=
(
iγ5∂0 +

(
γ(0)~γγ5 · k̂

)
k −ma(η)γ5γ(0)

)∑
l,j

Sl,j(~k)Ôl,j(~k, η) =
(
iγ5∂0 + hk −ma(η)γ5γ(0)

)∑
l,j

Sl,j(~k)Ôl,j(~k, η) =

∑
l,j

(
i(−jS−l,j)∂0Ôl,j + jkSl,jÔl,j + jlma(η)S−l,jÔl,j

)
= 0

∴ i∂0Ôl,j(~k, η)− kÔ−l,j(~k, η)− lma(η)Ôl,j(~k, η) = 0, (4.45)

where k =
∥∥∥~k∥∥∥ is the norm of the ~k vector.

Explicitly, equation (4.45) has the form

i∂0Ô1,j(~k, η)− kÔ−1,j(~k, η)−ma(η)Ô1,j(~k, η) = 0 (4.46a)

i∂0Ô−1,j(~k, η)− kÔ1,j(~k, η) +ma(η)Ô−1,j(~k, η) = 0 (4.46b)

which can be joined to a second order l independent equation

Ô′′±1,j(~k, η) +
(
ω2 ± ima′(η)

)
Ô±1,η(~k, η) = 0, (4.47)

where ω2 = k2 +m2a2(η). The equation (4.47) has two linearly independent solutions. One
is associated to particles (u±) and the other to anti-particles (v±)

Ô±1,j(~k, η) = u±(~k, η)âj(~k) + v±(~k, η)b̂†(−~k), (4.48)

where âj(~k) (b̂†j(−~k)) is the annihilation (creation) operator for a particle (anti-particle)
with momentum ~k (−~k) and helicity j.

The particle and anti-particle association with the linearly independent solutions
of equation (4.47) depends on the existence of a period of time where it is possible to
separate the solution in positive (particles) and negative (anti-particles) frequencies. For
the analyzed model, it happens in η → −∞ and η → ∞. For other times, equation
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(4.47) mixes positive and negative frequencies, losing a unique description of particle and
anti-particle. This happens in de-Sitter Universes.

The relation between u+ (v+) and u− (v−) is obtained by applying the equation
(4.48) to the equations (4.46)

u′+(~k, η) = iku−(~k, η)− ima(η)u+(~k, η) (4.49a)

u′−(~k, η) = iku+(~k, η) + ima(η)u−(~k, η) (4.49b)

where v± satisfy the same equations. Equation (4.49) preserves the quantity

|u+|2 + |u−|2 = 2, (4.50)

and the same is valid for v±7.

Similarly to the (4.47), u± has a second order equation

u′′±(~k, η) +
(
ω2 ± ima(η)

)
u±(~k, η) = 0. (4.51)

If u+(~k, η) is a solution of the equation (4.51), then the function u∗−(k, η) is a linear
independent solution of the same equation8. It implies that, with a choice of phase,

v± = ∓u∗∓. (4.52)

So the functions u+ and v+ (u− and v−) are linear independent solutions of equation
(4.47) that represents particles (u±) and anti-particles (v±). χ̂(~k, η) can be rewritten in
terms of particle and anti-particle representation

χ̂(~k, η) =
∑
j

Uj(~k, η)âj(~k) + Vj(~k, η)b̂†j(−~k), (4.53)

where Vj and Uj are spinors given by

Uj(~k, η) = u+(~k, η)S1,j(~k) + u−(~k, η)S−1,j(~k) (4.54a)

Vj(~k, η) = v+(~k, η)S1,j(~k) + v−(~k, η)S−1,j(~k) = (4.54b)

= −u∗−(~k, η)S1,j + u∗+(~k, η)S−1,j(~k) (4.54c)

By the definitions of Ul and Vl in (4.54), one obtains the following important
properties:

U †j Vm = 0, ∂

∂η
(U †j Vm) = 0, Ūj

∂

∂η
Vj −

(
∂

∂η
Ūj

)
Vj = 0, U †jUm = V †j Vm = δjm .

7 It was chosen, without any loss of generality, the value 1 for the sum in the equation (4.50).
8 The Wronskian of u+ and u∗− is constant, which makes then linearly independent. In fact, from (4.49)

W (u+, u
∗
−) = u′+u

∗
− − u+u

′∗
− = ik(|u+|2 + |u−|2) = ik
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Therefore, the field operator Ψ̂(x) in terms of the defined quantities above reads

χ̂(x) = 1
(2π)3/2

∑
j

∫
d3~k e−i~k·~x

(
Uj(~k, η)âj(~k) + Vj(~k, η)b̂†j(−~k, η)

)
(4.55)

From (4.31), the Hamiltonian of the fermionic particles is given by

Ĥ = i

2a

∫
Ωt

d3x
[
χ̂†∂ηχ̂

† −
(
∂ηχ̂

†
)
χ̂
]

(4.56)

From the canonical anti-commutation relations (4.34), one gets

{âj(~k), â†m(~k′)} = {b̂j(~k), b̂†m(~k′)} = δjmδ(~k− ~k′) , (4.57)

and null for the other combinations.

Substituting Eqs. (4.54) and (4.55) into the Hamiltonian, quations (4.56) one
obtains

H =
∫
d3~k

∑
j

{
Ek(η)

[
â†j(~k)âj(~k)− b̂j(−k)b̂†j(−~k)

]
+

+Fk(η)b̂j(−~k)âj(~k) + F ∗k (η)â†j(~k)b̂†j(−~k)
}

, (4.58)

where

ωk(η) =
√
k2 +m2a2(η) , (4.59)

Ek(η) = −
(
kRe

(
u∗+u−

)
+ma(η)

(
1− |u+|2

))
, (4.60)

Fk(η) = −
(
k

2
(
u2

+ − u2
−

)
+ma(η)u+u−

)
, (4.61)

E2
k + |Fk|2 = ω2

k , −ωk ≤ Ek ≤ ωk . (4.62)

One can diagonalize the Hamiltonian (4.58) through the Bogoliubov transformation
[80]:

ˆ̃aj(~k) = αk(η)âj(~k) + βk(η)b̂†l (−~k) , (4.63a)
ˆ̃bj(~k) = −β∗k(η)âj(~k) + α∗k(η)b̂†l (−~k) , (4.63b)

where αk(η) and βk(η) satisfy

αk(η) = βk(η)
(
Ek(η) + ω

F ∗k (η)

)
, βk(η) = F ∗k (η)

2w(η)α∗k(η) , (4.64)

|βk(η)|2 = |Fk(η)|2
2ω(ω + Ek(η)) = ω − Ek(η)

2ω , (4.65)

|αk(η)|2 + |βk(η)|2 = 1 , |αk(η)|2 − |βk(η)|2 = Ek(η)
w(η) . (4.66)
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In terms of the new creation and annihilation operators, Eqs (4.63), the normal
ordered Hamiltonian operator then reads

Ĥ = 1
a

∫
d3~k

∑
j

ω(η)
[
ˆ̃a†j(~k)ˆ̃aj(~k) + ˆ̃b†j(~k)ˆ̃bj(~k)

]
. (4.67)

From the Hamiltonian (4.67), an observer will naturally define the vacuum state in some
conformal time η as ˆ̃aj(~k)(η) |0η〉 = ˆ̃bj(~k)(η) |0η〉 = 0. In order to obtain the number of
particles created, it is necessary to compare the different vacua in different times. This
evolution is dictated by the dynamics of u+(η) and u−(η) through equations (4.49).

4.2.1 Convenient description of u±
The equations for u± will be rewritten in a more convenient way.

The number of particles is related with the functions u±. The differential equations
for these functions can be written in matrix form

u′ = Mu, (4.68)

where

u =
u+

u−

 (4.69)

M =
−ima(η) ik

ik ima(η)

 = −M† (4.70)

The derivative of the norm, using the equation (4.70), reads(
u†u

)′
= u†Mu + u†M†u = 0, (4.71)

This is the property stated in the equation (4.50).

It is possible to rewrite the matrix equation (4.69) in a clear way diagonalizing the
matrix M through a transformation Tr.

TrMT−1
r =

λ 0
0 −λ

 (4.72)

z = Tru (4.73)

u′ = (T−1
r z)′ =

(
T−1
r

)′
z + T−1

r u′ = MT−1
r z (4.74)

z′ =
λ 0

0 −λ

z−T′rT−1
r z (4.75)

Z =
e−i∫ ωdη 0

0 ei
∫
ωdη

z =
α(~k, η)
β(~k, η)

 (4.76)

∴ Z′ = −
ei ∫ ωdη 0

0 e−i
∫
ωdη

T′rT−1
r

e+i
∫
ωdη 0

0 e−i
∫
ωdη

Z (4.77)
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where ±λ are the eigen-values9 of M. The Tr matrix can be constructed with the two
eigen-vectors of M of norm 2

e+ =
√1− ma

w√
1 + ma

w

 (4.78)

e− =
 √

1 + ma
w

−
√

1 + ma
w

 (4.79)

where

Me± = ±iωe± (4.80)

So Tr is formed by a matrix which its lines are the eigen-vectors e†±, and its inverse
is a matrix whose columns are the eigen-vectors e±

Tr =
e†+

e†−

 (4.81)

T−1
r =

(
e+ e−

)
(4.82)

TrT−1
r =

e†+e+ e†+e−
e†−e+ e†−e−

 =
1 0

0 1

 (4.83)

T′rT−1
r =

e†+
′e+ e†+

′e−
e†−
′e+ e†−

′e−

 = e†+
′e−

 0 1
−1 0

 = −ma
′k

ω2

 0 1
−1 0

 (4.84)

Applying the (4.84) to the Z equation (4.77) one gets

Z′ =
α(~k, η)
β(~k, η)

 = ma′k

ω2

 0 −e−2i
∫
ωdη

e2i
∫
ωdη 0

Z, (4.85)

where Z†Z = |α|2 + |β|2 = 1. The α and β are the same as the Bogoliubov coefficients
(4.64). This means that the initial condition is given by

Z(~k, η0) =
0

1

 (4.86)

Rewriting u in terms of Z

u = T−1
r

ei ∫ ωdη 0
0 e−i

∫
ωdη

β(~k, η)
α(~k, η)

 (4.87)

one obtains

u+(~k, η) = β(~k, η)
√

1− ma

w
ei
∫
ωdη + α(~k, η)

√
1 + ma

w
e−i

∫
ωdη , (4.88a)

u−(~k, η) = β(~k, η)
√

1 + ma

w
ei
∫
ωdη − α(~k, η)

√
1− ma

w
e−i

∫
ωdη , (4.88b)

9 The eigen-values are λ and −λ because the matrix M is traceless.
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where it is explicit the relation between the fields u± and the parameters α and β. The
empty fields are defined when α = 1 and β = 0.

The initial condition for u± correspond to the positive frequency solution which
is expected for a particle description [43]. The particle creation is related to a negative
frequency solution. In the Bogoliubov transformations (4.63), a new creation operator
is defined. It depends on time and it is a mixture of operators related to particles and
anti-particles in the far past. It means that the definition of vacuum in the far past is
different of the one defined today.

Using Hamiltonian (4.56) only for particles when η → −∞, where

u+ =
√

1 + ma

ω
, (4.89a)

u− = −
√

1− ma

ω
, (4.89b)

it is obtained that

Ĥ
(
â†l (~k) |0〉

)
= Ek

(
â†l (~k) |0〉

)
=
√
k2 +m2a2

(
â†l (~k) |0〉

)
, (4.90a)

Ĥ
(
b̂†l (~k) |0〉

)
= −Ek

(
b̂†l (~k) |0〉

)
= −
√
k2 +m2a2

(
b̂†l (~k) |0〉

)
. (4.90b)

As expected, the initial conditions gives positive energies eigen-values for particles
and negative eigen-values for anti-particles.

4.2.2 Inflation

The inflationary scenario, in its most common implementation, comes from a scalar
field slowly rolling down its potential [81]. By the time the inflationary quasi-de Sitter
phase comes to an end, the universe is still unpopulated by particles. The mechanisms
responsible for the particle production in the scenario are the so-called preheating and the
reheating processes [82, 83, 84].

The reheating consists of the decay of the inflaton field through oscillations around
its minimum. The coupling of the inflaton to bosonic and/or fermionic fields allows its
decay to the respective bosons and/or fermions. Each reheating model has its peculiarities
[84, 85], but they must lead to the predictions of Big-Bang Nucleosynthesis.

Particle production can be even more efficient considering a phase prior to reheat-
ing10. Contrary to the narrow parametric resonance of the reheating, a broad resonance
can be achieved going beyond perturbative effects on the inflaton field. The preheating
phase [82, 85] then opens new channels of decay, boosting the production of particles.

10 It can also be thought as the first phase of reheating
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4.2.3 Bounce

The Wheeler-DeWitt equation for a minisuperspace model of a FLRW geometry
in the case where the matter content is a single hydrodinamical fluid with a barotropic
equation p = λρ is given by the equation (2.7b) with no tensorial perturbations

i
∂Ψ(0)(a, T )

∂T
= 1

4
∂2Ψ(0)(a, T )

∂χ2 , (4.91)

where

χ = 2
3(1− λ)−1a3(1−λ)/2, (4.92)

a is the scale factor 11 and T is a degree of freedom which plays the role of time. The
solution for this equation [86, 87] is given by (2.14)

Ψ(0)(a, T ) =
[

8Tb
π (T 2 + T 2

b )

]1/4

exp
{[

−4Tba3(1−λ)

9 (T 2 + T 2
b ) (1− λ)2

]}

× exp
{
−i
[

4Ta3(1−λ)

9 (T 2 + T 2
b ) (1− λ)2 + 1

2 arctan
(
Tb
T

)
− π

4

]}
, (4.93)

which is subject to unitary evolution condition and the normalized initial wave function

Ψ(i)
(0)(χ) =

( 8
Tbπ

)1/4
exp

{
−χ

2

Tb

}
. (4.94)

The generated bohmian trajectory is given by (2.15)

ȧ = ∂S

∂a
, (4.95)

which has the solution

a(T ) = ab

[
1 +

(
T

Tb

)2]1/[3(1−λ)]

, (4.96)

which is nonsingular at T = 0 and tends to the classical solution for T → ±∞.

In terms of usual perfect fluids, radiation dominates for small a, so it will dominate
during the bounce. Dust matter dominates far from the bounce, hence it will considered
in this work the cases for pure radiation and radiation plus dust matter. The relation
between η and of T is, from (1.34a)

dη = [a(T )]3λ−1 dT. (4.97)

For pure radiation (λ = 1/3), T = η and equation (4.96) for this particular case reads

a(T ) = ab

√√√√1 +
(
η

ηb

)2

. (4.98)

11 The scale factor behaves like a spatial variable. Theis trajectories will be constructed.
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For radiation plus dust matter the scale factor is given by [88]

a(η) = ae

( η
η∗

)2

+ 2ηb
η∗

√√√√1 +
(
η

ηb

)2
 , (4.99)

where ae is the scale factor at matter-radiation equality and parameters η∗ and ηb are
related to the wave-function parameters. It is recovered the case of pure radiation expanding
this expression for large η∗ and identifying ab = 2aeηb/η∗.

In order to make contact with cosmological data, it is convenient to reparametrize
the bounce solutions in terms of observable quantities. The Friedmann equation for
radiation and dust matter fluids reads

H2 = H2
0

(
Ωr0

a4 + Ωm0

a3

)
, (4.100)

where H is the Hubble parameter, Ωr = ρr/ρcrit and Ωm = ρm/ρcrit are the density
parameters for radiation and dust matter, respectively, and ρcrit = 3H2/(8πG) is the
critical density. The subscript 0 denotes the values observed today. The critical density
today is ρcrit0 ≈ 10−26 Kg/m3.

Far from the bounce scale (large η), where quantum effects are negligible, the
Friedmann equation reads

H2 = 4ae
η2
∗

(
ae
a4 + 1

a3

)
, (4.101)

Comparing Eqs. (4.100) and (4.101), in terms of the comoving Hubble radius as RH =
1/(a0H0) the density parameters today are given by

Ωr0 = ae
a0

4R2
H

η2
∗
, Ωm0 =

(
ae
a0

)2 4R2
H

η2
∗
. (4.102)

Expanding the scale factor (4.99) for large η∗, i.e., for radiation domination near the
bounce and dust matter domination in the far past, the Friedmann equation results

H2 = H2
0 Ωr0x

4
(

1− x2

x2
b

)
, (4.103)

where x = a0/a is a redshiftlike variable and, consequently, xb provides the scale factor
where the bounce occurs (apart from a small correction from dust matter density), which
is defined by

xb = RH

ηb
√

Ωr0
. (4.104)

Solving equations (4.103) and (4.104) for ae, η∗ and ηb and computing the scale factor at
the bounce ab in terms of theses quantities, one obtains

ae = a0
Ωr0

Ωm0
, η∗ = 2RH

√
Ωr0

Ωm0
, ηb = RH

xb
√

Ωr0
, ab = a0

xb
. (4.105)
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In terms of these variables, the bounce curvature scale can be obtained from the four-
dimensional Ricci escalar R = 6a′′(η)/a3(η), which results

Lb = 1√
R

∣∣∣∣∣
η=0

= abηb√
6(1 + 2γb)

= 1√
1 + 2γb

a0RH

x2
b

√
6Ωr0

, (4.106)

where

γb ≡
Ωm0

4xbΩr0
(4.107)

is the ratio of the dust matter and radiation density at the bounce. The bounce scale
factor xb, which appears explicitly in the Friedmann equation, must be constrained by
physical conditions. The first condition is that the bounce curvature scale must be larger
that the Planck length, Lb > Lp, which sets an upper bound on xb. This bound is
relevant since the Wheeler-DeWitt equation should be a valid approximation for any
fundamental quantum gravity theory only at scales not so close to the Planck length.
Using H0 = 70 [Km s−1 Mpc−1], a0RH/Lp ≈ 8× 1060, which sets

xb .

√
81030

(6Ωr0)1/4 ≈ 2× 1031. (4.108)

This result is obtained for γb � 1, where one assumes the bounce energy scale must
be larger than at the start of nucleosynthesis (≈ 10 MeV). Here it were assumed that
Ωr0 should not be smaller than its usual value Ωr0 = 8× 10−5, and we used the cosmic
microwave background radiation temperature value T = 2.7 K. This assumption in the
energy scale set a second condition xb � 1011, which gives a lower bound in the bounce
scale factor. Therefore, it is obtained the constraint

1011 � xb . 2× 1031. (4.109)

In the case where dust matter is taken into account, assuming the value Ωm0 = 3× 10−1,
from the range of xb one obtains the following interval for γb:

3.7× 10−29 . γb � 7.5× 10−9. (4.110)

The small values of γb make it explicit that the dust matter fluid dominates only in the
far past, whereas the radiation fluid dominates near the bounce scale.

Some of the bounce parameters introduced above appear explicitly in the equations
of motion of fermions in the Friedmann background with bouncing. For this reason, it is
convenient to introduce some new parameters in terms of the current ones to be used in
these equations in the following sections, which are defined by

η̄ = η

ηb
, k̄ = kηb, rb = mabηb. (4.111)
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In terms of these parameters, the scale factor, Eq. (4.99), for radiation and dust matter
can be written as

a(η̄) = ab

(
γbη̄

2 +
√

1 + η̄2
)
, (4.112)

whereas the case of pure radiation (Ωm0 = 0, i.e., γb = 0) it reduces to

a(η̄) = ab
√

1 + η̄2. (4.113)

Finally, it is relevant to notice from Eq. (4.106) that Lb ≈ abηb, which leads to

rb ≈
Lb
m
, (4.114)

where 1/m can be identified with the Compton length of the massive particle.

In the following subsection it is introduced the equations of motion for fermions
for Universes dominated by dust matter and radiation and by pure radiation.

4.2.4 Equations

The equations of motion in the reciprocal space for the variables uk,±(η), equations
(4.51), that parametrize the Dirac fermion evolution in the FLRW background in terms of
the variables (4.111) read

d2uk̄,±(η̄)
dη̄2 +

[
k̄2 + r2

b

a2
b

a(η̄)2 ± i rb
ab

da(η̄)
dη̄

]
uk̄,±(η̄) = 0, (4.115)

where initial conditions for uk,±(η) for (4.49), in the new variables read

uk̄,±(η̄0) =

√√√√1± rba(η̄0)
abω(η̄0)e

iφ. (4.116)

In the special case where the universe matter content is a radiation fluid, the scale factor
is given by Eq. (4.113) and equation (4.115), resulting in

d2uk̄,±(η̄)
dη̄2 +

[
k̄2 + r2

b

(
1 + η̄2

)
± irbη̄√

1 + η̄2

]
uk̄,±(η̄) = 0. (4.117)

These equations have no analytical solutions in terms of known functions and need to be
solved numerically. It is worth to mention that their asymptotic limits (η̄ → ±∞) have
solutions in terms of parabolic cylinder functions [52]. These same special functions give
analytical results for the Fourier modes of a scalar field in the same background, which
have similar equations except for the absence of the complex term in the square brackets.

In the case when the energy fluid content is radiation and dust matter, the scale
factor is given by Eq. (4.112) and Eq. (4.115), yielding

d2uk̄,±(η̄)
dη̄2 +

[
k̄2 + r2

b

(
γbη̄

2 +
√

1 + η̄2
)2
± irbη̄

(
2γb + 1√

1 + η̄2

)]
uk̄,±(η̄) = 0. (4.118)
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These equations have no analytical solution as well, and are solved numerically. Asymptot-
ically analytical solution are also no longer available.

Once the solutions for uk̄,±(η̄) are obtained, the occupation number |βk(η)|2 for
each mode k can be obtained from Eq. (4.64). The occupation number is a function of the
rescaled conformal time η̄, and converges to a constant. We will see that for some momenta
and masses, |βk(η)|2 exhibits a peak near the bounce and oscillates until it stabilizes to a
constant value for some η̄ = η̄∗, where particle prodution becomes negligible. This constant
value behaves as an asymptotic state12, and represents the particle creation. Thefefore, for
|βk(η)|2 evaluated at η̄ = η̄∗, one obtain the particle number |βk̄|2, where the time variable
is suppressed and write in the new parameters (4.111).

In terms of the parameters defined in (4.111), we obtain that

n = 1
π2a3η3

b

∞∫
0

dk̄k̄2|βk̄|2, (4.119)

∆ρ = 1
π2a4η4

b

∞∫
0

dk̄k̄2|βk̄|2ωk̄, (4.120)

where ωk̄ =
√
k̄2 + r2

ba
2/a2

b .

4.3 Numerical Integration

4.3.1 Fermion masses and bounce depth

For the fermion production during the bounce,we will focus on two types of
neutrinos: the standard model neutrinos, mν and right-handed heavy Majorana neutrinos
mR, inspired by the see-saw mechanism and possible leptogenesis scenarios. It will also be
taken into account the production of fermions with mass of order of neutrons.

The neutron mass is known for decades, and its value to the decimal place is
939.6MeV. Most recent measurements of the SM neutrino masses13 give only upper limits
to its value, of about 10−2 eV. For the right-handed neutrinos, there is a larger range of
values to work with.

Different realizations of leptogenesis [89, 90] and SM-extensions [91] provide a
whole range of scales for the right-handed neutrino masses. A model independent analysis
of the leptogensis together with the upper bound on SM-neutrino masses gives us the
lower bound on their mass to be 109GeV [92]. Considering Grand Unification Theories,
12 In [4], one obtains analytically particle production between two asymptotic states, which are adiabatic

vacua
13 In the Standard Model, to be precise, the neutrinos are massless. We’re referring to massive light

neutrinos as SM ones to the sake of simplicity.
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the mass of the massive neutrino could even reach values of their scale, of the order of
1015∼18 GeV [72].

As the Majorana neutrino in question is a sterile one (interacts only with gravity),
it can also be treated as a Dark Matter candidate [93], which in turn gives us different
constraints, in accordance to how the DM model is constructed. In general, the scale for
DM candidates is of order of KeV or MeV, despite being allowed to reach the GUT scale
mass as previously mentioned [94, 95]. Basically, different applications of the neutrinos
results in mass ranges of their own. For our model, the massive neutrinos would only
represent a fraction of the Dark Matter, considering that the contracting universe already
has most of this component already in place.

Different ranges of masses will be tested. The efficiency of production of the fermions
is expected to be related to their masses, as well as to the depth of the bounce. This trial
and error approach will give us the most efficient particle production from the pairs of
fermion mass and bounce depth.

The bounce scale is relevant since it shows how gravity is strong during the bounce
phase. It is responsible for the aforementioned deviation from the Minkowski spacetime.
The stronger the curvature, the more it is expected the curved spacetime effects to be
felt – as particle production. The bounce scale is present at the expression of rb, which
is rb = mLb. The value of rb is usually small, even for the heavier SM particles. Starting
with a deeper bounce, i.e. closer to the Planck scale, with Lb = 103LP , and picking the
Higgs boson, mH = 125 GeV, its value would be of the order 10−15. For the order of the
magnitude of the masses presented above, rb could be evaluated between 101 and 10−29.
Shallower bounces would mean a higher value of rb, up to 6 orders of magnitude.

4.3.2 Results

In this section it is shown some numerical results for the creation of neutral
fermionic particles in a radiation dominated quantum bounce. Information about particle
creation is obtained from the behavior of the Bogoliubov coefficient βk, which is non-zero
when particles are created. From the definition of particle number density, Eq. (4.120),
the relevant physical quantity is the integrand, from which it is obtained the density of
created particles for each mode k. It is performed a numerical analysis of this integrand in
the logarithmic scale.

In figures 16 and 17 it is plotted the behavior of the Bogoliubov coefficient βk for
each mode k for the production of neutrinos and neutrons, respectively. For each case, the
solid and dashed curves represent the choices xb = 1024, 1030, respectively. The neutrinos
masses are not precisely known, but have the upper limit ≤ 0.12 eV [96]. It is chosen
mν ≈ 0.1 eV for our calculations. On the other hand, the neutron mass is well know, so
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we consider mn ≈ 1 GeV.
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Figure 16 – The Bogoliubov coefficients for the neutrino mass 10−4 GeV for the represen-
tative choices xb = 1024 (rb = 5.1× 10−15) and xb = 1030 (rb = 5.1× 10−27)
given by solid and dashed lines, respectively.
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Figure 17 – The Bogoliubov coefficients for the neutron mass 1 GeV for the representative
choices xb = 1024 (rb = 4.7× 10−5) and xb = 1030 (rb = 4.7× 10−17) given by
solid and dashed lines, respectively.

In addition to neutrino and neutrons masses, it is also considered heavier neutrinos.
In figure 18 it is plotted the behavior of the Bogoliubov coefficient βk for each mode k for
the production of heavy neutrinos masses 1, 103, 106 GeV for the specific choice xb = 1030,
whereas in figure 19 it is plotted the density parameter Ωνh = ρνh/ρcrit0 normalized by x3
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for heavy neutrinos as a function of mνh for the same xb value. In comparison to figures 16
and 17, it is chosen only the value xb = 1030 because, from figure 19, it gives a relevant
range (mνh . 5× 107 GeV) for which Ωνh . 10−2 today (x = 1). For the choice xb = 1024,
however, Ωνh . 10−2 is obtained only for mνh . 1 TeV.
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Figure 18 – The Bogoliubov coefficients for the neutrino masses 1 GeV, 103 GeV, and 106

GeV for the representative choice xb = 1030 given by solid, dashed and dotted
lines, respectively.

The particle number density n is a time dependent quantity. In order to obtain
particle creation due to the quantum bounce, it is taken as an initial condition some η = ηi
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Figure 19 – The density parameter Ωνh = ρνh/ρcrit0 for heavy neutrinos normalised by x3

as a function of mνh for the representative choice xb = 1030.
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in the far past (η → −∞) such that βk ≈ 0 and evolve the system to some (η → ∞),
where βk stabilizes to a constant value, which means that particles are no further produced.
In order words, it is captured the region near the bounce instant which gives a relevant
particle production density.

Despite any analytical solution for βk was not obtained, it is possible to numerically
integrate it for all values of k modes and give approximations for n and ∆ρ, Eqs. (4.119)
and (4.120), respectively, in terms of the definition x = a0/a and the new variables (4.111).
In the calculation of n, it was computed the integral numerically, which gives a number, and
the expression outside the integral is proportional to x3

bx
3, then n ∝ x3

bx
3. For each choice

of xb, n ∝ x3 and, finally, n for x = 1 gives the particle density today. In the calculation of
∆ρ, there is a also a dependence on the frequency ωk̄, which results ωk̄ =

√
k̄2 + r2

bx
2
b/x

2.
Evaluating ∆ρ today, i.e., when x = 1, the frequency reads ωk̄ =

√
k̄2 + r2

bx
2
b . For all cases

it was considered in the analysis the values of momenta for which particle production is
most relevant, k̄peak, are much smaller than rbxb. Therefore, it is possible to approximate
k̄ � rbxb (i.e., k � ma) in ωk̄, which implies ωk → rbxb (similar to a limit of large a).
Thus, the particles created by the quantum bounce are non-relativistic today. From the
non-relativistic approximation

∆ρ ≈ mn. (4.121)

For a visualization of this non-relativistic behavior, Table 1 shows the momenta kpeak

and k∗ for each case of figures 16, 17 and 18, which are, respectively, the momenta for
which particle creation is most relevant and the momenta k = rbxb/x in the value which
separates relativistic and non-relativistic behavior. Finally, from ∆ρ it is straightforward
to obtain the density parameter Ω = ∆ρ/ρcrit0.

For neutrinos and neutrons

nν ≈ 5× 10−41x3 cm−3 , nn ≈ 4× 10−26x3 cm−3. (4.122)

∆ρν ≈ 8× 10−69x3 g/cm3 , ∆ρn ≈ 8× 10−50x3 g/cm3. (4.123)

Ων ≈ 8× 10−40x3 , Ωn ≈ 8× 10−21x3. (4.124)

For the heavy neutrinos

nνh,m=1011GeV ≈ 1× 10−9x3 cm−3 , nνh,m=1 GeV ≈ 5× 10−26x3 cm−3. (4.125)

The results for n, ∆ρ and Ω revealed a negligible dependence on the bounce depth
xb for both neutrinos and neutrons. For this reason, for both choices of xb it is presented
single results ni, ∆ρi and Ωi, where i = ν, n.
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The energy density results represent dust-like fluids, for which ρ = mn. The density
parameters results show that for both cases the energy density of created particles is much
smaller than the current critical density.

Comparing the results of particle creation, Eqs. (4.122), with figures 16 and 17,
it is noticed that although particle creation is stronger for specific k modes in each case,
numerical integration for over all k modes reveals that the total production is the same
for each choices of rb (i.e., xb) for each type of particle as already mentioned.

4.4 Conclusion
In this chapter, it was discussed the creation of non-charged fermions due to

minimal coupling with gravity. Numerical results were found to Universes filled only with
radiation, even though it is not expected a huge difference with Universes filled with
others fluids, since the major creation of particles occur in the radiation era. The range of
particle density calculated is not enough to explain all fermionic matter present in the
Universe [71, 97]. Different from [71, 72], where the creation of particle occur due to phase
transitions, the number of particle by logarithm of frequency is smooth, and less intense.
Although it is not possible to explain the amount of fermionic matter, a heavy fermion
with a stronger coupling with gravity like [98] could explain why there is more particles
than anti-particles in the Universe. This is measured by the Baryon Asymmetry of the
Universe (BAU) [97] given by

η = NB −NB̄

Nγ

∣∣∣∣∣
T=3K

' 10−10

. 10−10
(

n

4.11× 1013cm−3

)
.

(4.126)

For the calculated particles, only the heaviest one could be responsible for such process.
This will be the subject of future investigations.
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