
Probing Cosmology with Strong Lensing:

from image processing

to cosmological constraints

Tese apresentada
ao

Centro Brasileiro de Pesquisas F́ısicas
como requisito para

A obtenção do t́ıtulo
de

Doutor em Fisica

Clécio Roque De Bom

Orientador: Prof. Dr. Mart́ın Makler

Rio de Janeiro, Março de 2017



i

“(...) omnipotens, audacibus adnue cœptis.”
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Apicelo Souza De Bom sem a qual a vida perderia grande parte do seu brilho. Agradeço ao

meu orientador Dr. Mart́ın Makler sem a sua expertise, amizade e compreensão este trabalho

jamais se concretizaria.

Agradeço aos meus familiares e companheiros de jornada da vida. Que me deram grande

suporte emocional ao longo do tempo. Em especial aos amigos Dr. Marcelo Portes de Al-
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Resumo

Bom, C. R. Cosmologia com efeito forte de Lentes Gravitacionais: do processa-

mento de imagens aos v́ınculos cosmológicos. 2017. Tese (Doutorado), Centro Brasileiro

de Pesquisas F́ısicas, Rio de Janeiro, 2017.

O efeito forte de Lentes Gravitacionais é uma ferramenta de interesse para explorar a dis-

tribuição de matéria em galáxias e aglomerados de galáxias, podendo também fornecer in-

formação sobre a geometria do Universo entre outras aplicações. Em particular sistemas de

múltiplas fontes em diferentes desvios para o vermelho vem sendo utilizados para determinar

razões de distância diâmetro angular e, a partir delas, extrair v́ınculos cosmológicos.

Nesta tese nós dicutimos diversos aspectos da área de efeito forte de Lentes Gravitation-

ais. Primeiramente nós introduzimos uma nova técnica para extrair atributos de imagens de

arcos gravitacionais a qual denominamos: método de filamentação Mediatrix. Esta técnica

foi constrúıda para analisar formas curvas e alongadas. Analisamos a qualidade de algumas

quantidades morfológicas obtidas por essa técnica em arcos tais como raio de curvatura,

comprimento e largura.

Na segunda parte da tese, discutimos como encontrar sistemas de lentes gravitacionais.

Iniciamos a discussão descrevendo a busca visual em uma levantamento de grande área, o

Dark Energy Survey (DES). A seguir, discutimos a construção de métodos automatizados

para encontrar arcos. O primeiro deles baseados nos atributos morfológicos obtidos pelo

método Mediatrix e o uso de uma rede neural de retropropagação (backpropagation). Estu-

damos esse método otimizando seus parâmetros de entrada para obter uma maior completeza

e uma menor quantidade de falsos positivos. Constrúımos, também, um outro método para

buscar lentes gravitationais voltado para o regime de lentes na escala de galáxias. Este

método foi baseado em um algoritmo de aprendizagem profunda (deep learning) denom-

inado rede neural convolucional (Convolutional Neural Network ; CNN). Nós treinamos e

validamos este método em um conjunto de imagens simuladas.

Na última parte desta tese, nós discutimos como a determinação de parâmetros cosmológi-

cos obtidos pela modelagem de lentes gravitacionais se comportam em diferentes condições

observacionais, isto é, imagens de menor qualidade tais como levantamentos de grande área.

Analisamos imagens com menor profundidade e com maior função de espalhamento de ponto

(Point Spread Function; PSF). O foco desta análise foi no aglomerado RXC J2248.7−4431,

que contêm múltiplas fontes e tem sido analisado utilizando imagens profundas do telescópio
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Hubble além de dados de espectroscopia dispońıveis.

Palavras-chave: Lentes Gravitacionais, Cosmologia, Processamento de Imagens



Abstract

Bom, C. R. Probing Cosmology with Strong Lensing: from image processing to

cosmological constrains. 2017. Tese (Doutorado), Centro Brasileiro de Pesquisas F́ısicas,

Rio de Janeiro, 2017.

Strong Lensing is a powerful probe of the matter distribution in galaxies and galaxy clus-

ters and the large-scale geometry of the Universe, among other applications. In particular,

systems with sets of multiple images originating from sources at different redshifts have

been used to determine cosmological distance ratios, and therefore to constrain cosmological

parameters. In this thesis, we address several aspects of the Strong Lensing program. We

start by proposing a novel image processing technique to extract features from arc images

named Mediatrix Filamentation Method, which is particularly suited to curved and elon-

gated shapes. We study how some morphological parameters of the arcs such as curvature

radius, length and width can be recovered. In the second part of this work, we discuss how

to find Strong Lensing systems. We start by describing a visual search in the Science Ver-

ification area of the Dark Energy Survey. Thereafter, we discuss an automated method to

find Gravitational Arcs based on the features derived from the Mediatrix Method and on an

Artificial Neural Network (ANN). We study this approach, named ANN Mediatrix Arcfinder

(AMA for short), in order to tune its parameters to reach a reliable detection fraction with a

low fake positive rate. Then we discuss a second method most suitable to galaxy scale lens-

ing based on Convolutional Neural Networks (CNN). We trained and validated the method

on a sample of galaxy-scale lensing simulations. In the last part address the determination

of cosmological parameters from Strong Lensing systems and, in particular, on systematic

errors arising from the observational conditions, such as the depth and seeing of the images.

We focus on Strong Lensing systems with a large number of families of multiple images that

have been exhaustively analyzed using deep space-based images (from HST) and massive

spectroscopic follow-up.

Keywords: Lensing: Strong, Cosmology, Image Processing
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Chapter 1

Introduction

The Gravitational Lensing effect (e.g., Mollerach & Roulet, 2002; Petters et al., 2012;

Schneider et al., 2013) is produced by the deflection of light caused by the matter distribu-

tion on its way from the source to the observer. This matter distribution distorts space-time,

acting as a lens. The image of distant astronomical objects may be strongly distorted and

magnified in the so-called Strong Lensing regime, forming multiple images and gravitational

arcs. The first detection of gravitational arcs produced by the lensing of galaxies by galaxy

clusters was performed by Lynds & Petrosian (1986) and Soucail et al. (1987). The lensing

phenomenon conserves the surface brightness, such that magnified images, i.e., with a larger

angular size due to lensing, are also brighter. Therefore, Strong Lensing acts as a gravita-

tional telescope, enabling the study of distant galaxies that would not be detected under the

same observational conditions (see, for example, Jones et al., 2010; Richard et al., 2011).

Since Strong Lensing is produced by massive matter haloes along the line of sight, it

provides useful tools to uncover the mass distribution in galaxies (e.g. Koopmans et al., 2006;

Treu & Koopmans, 2002; Treu & Koopmans, 2002) and galaxy clusters (e.g., Abdelsalam et al.

, 1998; Carrasco et al., 2010; Coe et al., 2010; Kovner, 1989; Natarajan et al., 2007; Zackrisson & Riehm

, 2010), independently of the dynamical state of the systems or the nature of their con-

stituents, presenting a window to study dark matter (see, e.g., Meneghetti et al., 2004).

Besides the mass distribution in the deflector, the Lensing effect also depends on the

angular diameter distances between observer, lens and sources. These distances are cosmol-

ogy dependent. One may use the Strong Lensing effect to constrain those distances and

1
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therefore infer the cosmological parameters. This approach is being used as a complemen-

tary cosmological probe (see, e.g., Caminha et al., 2016b; Jullo et al., 2010). In chapter 2 we

briefly review some of the key aspects in the Strong Lensing field and discuss how it can be

used as a tool for Cosmology.

The many applications of gravitational arcs in astrophysics and cosmology have spurred

the search for these objects in both space-based and ground based observations. This in-

cludes searches in Hubble Space Telescope (HST) mosaics, such as in the Hubble Deep

Field (HDF; Hogg et al., 1996), the HST Medium Deep Survey (Ratnatunga et al., 1999),

the Great Observatories Origins Deep Survey (GOODS; Fassnacht et al., 2004), the Ex-

tended Groth Strip (EGS; Marshall et al., 2009), and the HST Cosmic Evolution survey

(COSMOS; Faure et al., 2008; Jackson, 2008), as well as in targeted observations of galax-

ies (Bolton et al., 2006; Brownstein et al., 2012) and clusters (Horesh et al., 2010; Sand et al.

, 2005; Smith et al., 2005; Xu et al., 2016). Investigations from the ground include follow-ups

of clusters (Furlanetto et al., 2013a; Hennawi et al., 2008; Kausch et al., 2010; Luppino et al.

, 1999; Zaritsky & Gonzalez, 2003) and galaxies (Willis et al., 2006), and searches in wide-

field surveys, such as in the Red-Sequence Cluster Survey (RCS; Bayliss, 2012; Gladders et al.,

2003), the Sloan Digital Sky Survey (SDSS; Bayliss, 2012; Belokurov et al., 2009; Estrada et al.,

2007; Kubo et al., 2010; Wen et al., 2011), the Deep Lens Survey (DLS; Kubo & Dell’Antonio,

2008), The Canada-France-Hawaii Telescope (CFHT) Legacy Survey (CFHTLS; Cabanac et al.

, 2007; Gavazzi et al., 2014; Maturi et al., 2014; More et al., 2012, 2016; Paraficz et al., 2016),

the Dark Energy Survey (DES; Nord et al., 2015), the Kilo Degree Survey (KIDS; Petrillo et al.

, 2017) and the CFHT Stripe 82 Survey (CS82; Caminha, More et al., in prep.).

As of now, the largest homogeneous samples of gravitational arcs have on the order

of a hundred systems. However, due to the small size the samples of lens systems, sev-

eral studies are hindered, in particular, those using arc statistics (e.g. Bartelmann et al.

, 1998; Golse et al., 2002; Meneghetti et al., 2004). These numbers will increase by one or-

der of magnitude with the close completion of the KIDS1 (KiDS; de Jong et al., 2015) and

DES2 (DES; Dark Energy Survey Collaboration et al., 2016), which will cover, respectively,

1http://kids.strw.leidenuniv.nl/
2http://www.darkenergysurvey.org
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1000 and 5000 square degrees with sub-arcsecond seeing. Comparable numbers are expected

from the ongoing Hyper Suprime-Cam3 (HSC) and the forthcoming Javalambre Physics of

the Accelerating Universe Astrophysical Survey (J-PAS; Benitez et al., 2014) projects. These

numbers are expected to increase even further in the near future, with the operation of the

Large Synoptic Survey Telescope (LSST; LSST Sci. Collaboration et al., 2009) and Euclid4

(Refregier et al., 2010), which are both expected to detect O (105) systems with arcs (Collett,

2015).

The vast majority of the current samples of arc systems involve a visual search and classifi-

cation. This is true for the targeted surveys and also for the wide-field imaging surveys, where

either the full footprint or cutouts around potential lenses (e.g., luminous red-galaxies, galaxy

clusters) are visually inspected. In section 4.1 we discuss the visual inspection approach in

which we participated using Dark Energy Survey Science Verification data (Nord et al., 2015),

which covered an area of 250-sq-deg.

However, this manual procedure will become prohibitive for the complete DES and KiDS

footprints, not to say for LSST and Euclid. Therefore, the development of automated arc

finding methods is absolutely needed for the scrutiny of these surveys in the quest for gravi-

tational arcs. In section 4.2 propose a novel arcfinder algorithm based on pattern recognition

suitable for cluster scale lensing, while in section 4.5.2 we propose an algorithm based on

deep learning methods for galaxy scale lensing.

Regardless of the size of the survey, automated arc detection is essential for an objective

and reproducible definition of arc samples, which often includes the determination of arc

properties. In chapter 3 we discuss how to obtain arc morphological features with a novel

approach to measure curvature (Bom et al., A&A submitted). This is, of course, critical for

arc statistics (see, e.g., Meneghetti et al., 2013; Xu et al., 2016) and for any comparison of

real and simulated data (e.g., Horesh et al., 2011, 2005) and among different data sets (e.g.,

Horesh et al., 2010).

During the past decade, the Strong Lensing program has been emerging as a relevant

probe to constrain cosmological models, using Strong Lensing data alone or in combina-

3http://www.naoj.org/Projects/HSC/surveyplan.html
4http://www.euclid-ec.org/
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tion with other probes (e.g. Bartelmann et al., 1998; Caminha et al., 2016b; Cao et al., 2015;

Cooray, 1999; Golse et al., 2002; Jullo et al., 2010; Magaña et al., 2015; Meneghetti et al., 2004,

2005; Treu & Koopmans, 2002; Yamamoto et al., 2001). High accuracy time-delay distance

measurements in multiple image systems are used to measure the expansion rate of the uni-

verse using QSOs (Oguri, 2007; Suyu et al., 2010). More recently, using multiple images of a

Supernova (Goobar et al., 2016; Kelly et al., 2015). The time time-delays were also exploited

in the determination of the dark energy equation of state (Suyu et al., 2013). In the recent

years, arcs and Einstein rings, in combination with kinematic information for the lenses, have

also been employed for testing modified gravity (e.g. Enander & Mörtsell, 2013; Pizzuti et al.,

2016; Schwab et al., 2010).

Among the many Strong Lensing observables being used to constrain Cosmology we

focus our attention on Strong Lensing constraints arising from multiple families of multiple

images. This involves a detailed modeling of the galaxy cluster mass distribution, whose free

parameters are fitted together with the cosmological parameters. This approach has also

been explored as a powerful probe of the mass distribution in the inner cluster regions (e.g.,

Grillo et al., 2015; Halkola et al., 2008). The many applications of inverse modelling have

motivated the developments of several algorithms to derive the lens mass distribution either

in a parametric way or in free-form (e.g., Bradač et al., 2009; Coe et al., 2008; Diego et al.

, 2005; Jullo et al., 2007; Oguri, 2010). The great number of free parameters and diverse

response due different techniques, models or observational conditions led to a concern in the

robustness of this type of analysis. Some authors have investigated the systematic errors

arising from the models and make comparisons between the lens inversion techniques (e.g.

Meneghetti et al., 2016; Priewe et al., 2016). In chapter 5 we address the issue of systematics

in the multiple image Strong Lensing constraints, due to observational effects. Our goal is

to analyze the response of cosmography to observational conditions, in particular in the

conditions of wide-field surveys, where we are more likely to find a large number of systems

with several arcs for which deep data from space may not be obtained. In chapter 6 we wrap

up our results and mention current and upcoming publications based on them.



Chapter 2

Introduction to Gravitational Lensing

2.1 The deflection of light

The history of the light deflection by massive bodies can by traced back to Newton’s

book Optics in which he speculates that light particles should be affected by gravitational

potentials. Although only in the late 17th century Henry Cavendish and John Mitchell

derived the first attempt to calculate the deflection angle based on Newton’s Gravity. For a

point mass deflector with mass M , this angle α̂ is given by:

α̂ = 2GM
c2 ξ0

, (2.1)

where G is the gravitational constant, c is the light speed and ξ0 the impact factor. Since in

Newton’s Gravity only mass can feel the gravitational pull, Eq. (2.1) relies on the corpuscular

theory of light. In 1801 Von Soldner obtained α̂ = 0.83′′ for a light particle near the solar

disk (Jaki, 1978).

In 1915, considering the General Theory of Relativity (hereafter GR), Einstein obtained

a corrected deflection angle:

α̂ = 4GM
c2 ξ0

, (2.2)

which differs from (2.1) by a factor of two. The light deflection by stars near the Sun was first

observed during an eclipse in 1919 by two teams, one at Pŕıncipe island led by Sir Arthur

Stanley Eddington and the other at Sobral, Brazil, led by Andrew Claude de la Cherois

5
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Crommelin. The teams obtained 1.61± 0.30 (Dyson et al., 1920) in agreement with the GR.

From the confirmation of the light deflection to the current time, the Gravitational Lens-

ing studies and developments gave rise to a wealth of applications in astrophysics and Cos-

mology as discussed in the previous chapter. In this thesis, we focus in the Strong Lensing

of background galaxy by a foreground galaxy or galaxy cluster. In this case, the background

source may be multiply imaged, magnified and/or strongly distorted, forming the Gravita-

tional Arcs or Einstein Rings. In the next sections, we discuss some key aspects of Cosmology

and in XX we discuss the basic ideas in the Strong Lensing field.

2.2 Homogeneous and isotropic Cosmology

Strong Lensing phenomena involve cosmological distances, which can be used as a probe

of Cosmology. In particular, in this work we focus on the angular diameter distances. For an

object with size x and angular size δθ the angular diameter distance is given by:

DA = x

δθ
. (2.3)

The key to assess Cosmology in this context is the connection between distances and cos-

mological parameters which we discuss in this section.

In GR, the presence of energy distorts the space-time according to the Einstein’s Field

Equations (hereafter EFE, see, e.g., Schutz, 2009; Weinberg, 1972):

Gµν = 8πG
c4 Tµν , (2.4)

where Gµν is the Einstein tensor, related to the geometry of space time, Tµν is the stress-

energy tensor, which defines the mass-energy content of space-time. The EFE solutions are

metric tensors gµν which describe the geometry of space-time.

On large scales the Universe is approximately homogeneous and isotropic. This statement

is supported by the distribution of galaxies in large scales and the Cosmic Microwave Back-

ground (CMB) which is nearly isotropic (see, for instance, Peebles, 1993; Ryden, 2016). In

this context, the metric which satisfies these conditions is the so-called Friedmann-Lemâitre-
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Robertson-Walker (FLRW):

ds2 = c2dt2 − a2(t)d2σ, , (2.5)

where a(t) is the scale factor representing the universe expansion with a(t0) denoting the

scale factor in present time and d2σ is the line element of space with constant curvature,

d2σ = d|~x|2

1− k|~x|2 + |~x|2(dθ2 + sin2 θdφ2), (2.6)

where ~x are the so-called comoving coordinates and k is the curvature. From the EFE one

can derive the Friedmann equations, the first from the 00 component of 2.4:

H = ȧ2

a2 = 8πGρ
3c2 −

kc2

a2 , (2.7)

where H is the expansion rate of the Universe, ρ is the energy density, k is a constant

which depends on the curvature. Since the CMB also gives a strong evidence that the Uni-

verse is approximately flat, from now on we take k = 0 (e.g., Komatsu et al., 2009, 2011;

Planck Collaboration et al., 2016). The second Friedmann equation rises from the trace of

EFE.

ä

a
= −4πG

3

(
ρ+ 3p

c2

)
. (2.8)

The energy density can be written as a sum of several components

ρ = ρm + ρr + ρDE, (2.9)

where ρm stands for the energy density of matter, ρr is the energy density of radiation and

ρDE is the density of the so-called dark energy, a component which accelerates the Universe

expansion rate (Riess et al., 1998). It is worth noticing that, at present, ρr is very small and

the energy density is essentially dominated by ρm and ρDE. From 2.7 and 2.8 we may derive

the energy-momentum conservation:

ρ̇ = −3 ȧ
a

(
ρ+ p

c2

)
. (2.10)
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The last equation can be easily solved if one considers that each component conserves the

energy independently and if we take the equation of state of the fluid to be p = wρ with w

constant. This leads to

ρ ∝ a−3(1+w), (2.11)

where wm = 0 for non-relativistic matter, wr = 1/3 for radiation and wX = −1 for dark

energy. It is convenient to introduce the critical density, i.e., the energy density in which the

Universe is flat:

ρcrit = 3H2

8πG, (2.12)

which can be used to define the density parameters

Ωi = ρ0
i

ρ0
crit

, (2.13)

where i is the energy density component and the upper index 0 denotes the present value.

Equation 2.13 can be combined with the first Friedmann equation 2.7:

H2

H2
0

= Ωr

(
a(t0)
a

)4

+ Ωm

(
a(t0)
a

)3

+ (1− Ωtot), (2.14)

where Ωtot = Ωr + Ωm. In a Universe in expansion is also interesting to consider the relation

between scale factor a(te) from a time te, where a photon was emitted to the scale factor at

the present time t0, a(t0), which is related to the redshift z due to Universe expansion:

a(t0)
a(te)

= 1 + z. (2.15)

It is convenient choice to take a(t0) = 1 which simplifies 2.15 and 2.14. It is worth noticing

that the z is an observable. In the FLRW cosmologies, the distances scales with 1/H0 and, as

the Friedmann equation describes the Universe expansion it is possible to write the angular

diameter distances, defined in 2.3, as a function of the redshifts z1 and z2 with z2 > z1, and

in terms of Cosmological parameters:

Da(z1, z2) = c

H0(1 + z2)

∫ z2

z1

1√
Ωr(1 + z)4 + Ωm(1 + z)3 + ΩΛ

dz. (2.16)
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In the Strong Lensing case, one may assess only the ratio between Cosmological Distances.

Since this observable is degenerated to the Lensing mass, we may need other constraints to

probe Cosmology with Strong Lensing. In cluster scales, this can be resolved using multiple

images from several sources. This approach is discussed in chapter 5.

2.3 Gravitational Lensing and General Relativity

For light traveling though cosmological distances in a Universe that is homogeneous and

isotropic on large scales, passing near some potential Φ (generated by a galaxy or cluster

acting as a lens), one may obtain the solution of light propagation from the geodesics of the

perturbed Friedmann-Lemâitre-Robertson-Walker (FLRW) metric:

ds2 =
(

1 + 2Φ
c2

)
c2dt2 − a2(t)

(
1− 2Φ

c2

)
d2σ, (2.17)

where a(t) is the scale factor that describes the universe expansion and d2σ is given by

(2.6). The potential is assumed to be weak in the sense that Φ � c2, which is an excellent

approximation for galaxy and cluster scales. In this case, Φ obeys a Poisson equation:

∇2
xΦ = 4πGa2(ρ− ρ̄),

where ρ̄ is the mean density of mass-energy in the Universe and ρ is the density at a position

~x and time t. Since the ρ� ρ̄ for galaxies and clusters, the ρ̄ is usually ignored. Considering

this approximation, in proper coordinates d~r = ad~x the Poisson equation can be written as:

∇2
rΦ = 4πGρ, (2.18)

i.e., the Newtonian result.

2.4 The Lens Equation

To derive the Lens equation we consider a scheme presented in Fig. 2.1 in which a

mass distribution M , which acts as a lens, is located between the observer and a source
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of light. The lens is close to the line of sight between observer and source. The angle ~θ is

the observed position, ~β is the “real” source position, i.e., what one would observe without

the light deflection and ~̂α is the deflection angle. These quantities are related by the Lens

equation

~θDOS = ~βDOS + ~̂αDLS, (2.19)

where ~ξ0 is the impact parameter, DOL, DLS e DOS are angular diameter distances between

observer and lens, lens and source, and observer and source, respectively. As the distances

are cosmological it is worth recalling that DLS 6= DOS −DOL.

Figure 2.1: Schematic figure of the lens equation.

We may define the reduced deflection angle

~α =
(
DLS

DOS

)
~̂α(~ξ0), (2.20)

such that the lens equation can be written as

~β = ~θ − ~α. (2.21)

For the case of point mass lens, the deflection angle ~̂α is given by (2.2). For a perfect alignment

between the lens, source and observer, in which ~β = 0, due to the symmetry of the problem

the image is a ring known as Einstein Ring. The position θE, the Einstein Radius, is given

by:
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θE =
√

4GMDLS

c2DOSDOL

. (2.22)

This quantity also defines a typical scale for the Strong Lensing regime, as the typical angular

separation of the images is ∼ 2θE.

2.5 Extended Lenses

As the distances between the source, the lens, and the observer are much larger than

the size of the lens one may consider only the limit of a “thin lens”, we may consider that

the deflection occurs in a single plane. In this approximation, we define the projected mass

density

Σ(~ξ ) =
∫ ∞
−∞

ρ(~ξ, z)dz, (2.23)

where we decompose ~r = ~ξ + zẑ, with z is the axis defined by the observer and the lens.

In the weak field regime (linear gravity) the deflection is linearly dependent with the mass.

Thus we may construct a general solution for ~̂α as a sum of infinitesimal point mass lenses

where each mass element contributes with a deflection angle given by 2.2:

~̂α(~ξ) = 4G
c2

∫
Σ(~ξ′)

~ξ − ~ξ′

|~ξ − ~ξ′|2
d2~ξ′, (2.24)

where ~ξ′ is the distance of dM = Σ(~ξ′) d2~ξ′ to the origin. We may also define the projected

potential:

ψ(~ξ) =
∫ ∞

0
Φ(~ξ, z)dz. (2.25)

Considering that ∇2 = ∇2
~ξ

+ ∂2/∂z2 and (2.18) combined with (2.23) we may write:

∇2
~ξ
ψ(~ξ) = 4πGΣ(~ξ). (2.26)

The Green function for (2.26), which satisfies ∇2
~ξ
G(~ξ, ~ξ′) = 2πδ2(~ξ − ~ξ′) is

G(~ξ, ~ξ′) = ln |~ξ − ~ξ′|. (2.27)
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Thus the projected potential is given by:

ψ(~ξ) = 2G
∫

Σ(~ξ′) ln |~ξ − ~ξ′|d2 ξ′, (2.28)

using the identity ∇x ln |~x− ~x′| = ~x−~x′

|~x−~x′|2 we may write the deflection angle ~̂α as:

~̂α(~ξ) = 2
c2∇ξψ(~ξ). (2.29)

This last equation indicates that the projected potential can be used to obtain the deflection

angle, or, if the surface mass distribution is known, we may use it to determine the potential

and thus ~̂α. From (2.29) we may rewrite the lens equation as

~β = ~θ −∇θΨ(~θ), (2.30)

where we defined Ψ = 2
c2

DLS
DOSDOL

ψ and we changed the variable ~ξ to ~θ by using ~ξ = ~θDOL.

From (2.30) we may notice that for each image θ there is a single source at ~β. However, as

(2.30) is nonlinear in θ, there may be several images for a single source located at ~β.

2.6 Lensing Models

In this section we briefly review three lensing models of interest. The Singular Isothermal

Sphere (SIS), which is a simple model for galaxy lensing, and other two models which

are used in our Cluster Lensing Cosmology modelling, the Pseudo Isothermal Elliptical

Mass Distribution (PIEMD) and its variation, the Dual Pseudo Isothermal Elliptical Mass

Distribution (dPIE).

2.6.1 Singular Isothermal Sphere - SIS

Perhaps the simplest lens model besides the point source is given by the Singular Isother-

mal model whose mass distribution is given by

ρ(R) = σ2
v

2πGR2 , (2.31)
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where σv is a parameter given by the unidimensional velocity dispersion of particles in an

isothermal self-gravitating gas in equilibrium.

Despite this simple form and the divergence at the center. This model has been widely

used for lenses on the galaxy scale. Indeed, it has been shown that this density profile is

an excellent approximation to the mass distribution in early type galaxies from a vast and

diverse set of observations as well from simulations (see, e.g., van de Ven et al., 2009). By

integrating (2.31) one can obtain the surface density

Σ(θ) = σ2
v

2GDOLθ
. (2.32)

In this case, the deflection angle is given by

α̂(θ) = 4πσ2
v

c2 , (2.33)

which is independent of θ. Then, we may write the lens equation as

~β = ~θ

(
1− θE

θ

)
, (2.34)

where the Einstein Radius θE is given by:

θE = 4πσ2
vDLS

c2DOS

. (2.35)

2.6.2 The Pseudo and Dual Pseudo Isothermal Elliptical Mass

Distribution - PIEMD and dPIE

The Pseudo Isothermal Elliptical Mass Distribution (PIEMD, Kassiola & Kovner, 1993)

is a simple isothermal-like aspheric model. The PIEMD main feature is that its potential, as

well as its first and second partial derivatives, can be obtained analytically, which enables to

derive deflection angles, distortions and time delays for any ellipticity. This advantage makes

it very suitable to parametric approaches in Strong Lensing modeling. This model has been

reported as a robust approach to describe Strong Lensing in clusters, sometimes with a
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better fit than canonical Navarro-Frenk-White (hereafter NFW, Navarro et al., 1996, 1997)

mass distribution. For instance, Grillo et al. (2015) found that the dark matter components

of the Hubble Frontiers Field (HFF) galaxy cluster MACS J0416.1−2403 is better fitted by

PIEMD models. For such model the projected mass density distribution is

Σ(R) = σ2
v

2G

 1√
R2(ε) + r2

core

 , (2.36)

where R(x, y, ε) is an elliptical coordinate on the lens plane, σv is the velocity disper-

sion, rcore is the core radius and ε is the ellipticity. Some variants of PIEMD have fre-

quently been used in lensing analysis (see e.g., Caminha et al., 2016a; Grillo et al., 2015;

Keeton & Kochanek, 1998; Kneib et al., 1996; Smith et al., 2005). One of the most common

variants is the two component PIEMD with both a core radius, rc and a scale radius, rs known

as dual Pseudo Isothermal Elliptical mass distribution (dPIE, Eĺıasdóttir et al., 2007). In

the case of rc < r < rs, the 3-D profile ρ(r) behaves as ρ ∼ r−2, though in the outer regions

it falls like r−4. The surface density which defines this model is given by

Σ(R) = Σ0
rcrs
rs − rc

 1√
r2
c +R2

− 1√
r2
s +R2

 . (2.37)



Chapter 3

Morphological Analysis and Image

Processing for Gravitational Arcs

Shape analysis and detection are fundamental issues in image processing field. The mea-

surement of basic morphological quantities, such as the length and width of an object, is

useful in many applications and may have multiple definitions.

In the case of Strong Lensing phenomena, another quantity that should be relevant to

characterize the Gravitational arcs is the presence of a curvature center and determination

of the curvature radius. This quantity is not directly provided by standard morphologi-

cal estimators, such as those obtained from second moments of the light distribution (e.g.,

Bertin & Arnouts, 1996) or by fitting the object surface brightness with elliptical isophotes

(Peng et al., 2010). Providing appropriate characterization tools for the objects detected in

the image, such as those derived from the method presented here, is a major step in develop-

ing arcfinders (Bom et al., 2015, 2017) and for gravitational arc statistics (Meneghetti et al.

, 2013). We have developed a novel technique to decompose shapes (images of objects) into

a set of filaments on their intensity ridgeline, which allows one to define a length along

the ridgeline and to determine a curvature center. Though applicable to many shapes, the

technique is particularly appropriate for long and curved objects.

In the following, we describe the method to decompose elongated objects into a set of

line segments. For concreteness, we will consider the object to be composed of a set of pixels

with given intensity, as in a standard digital image. However, in principle, the method can

15
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be applied to any intensity distribution, even if not pixelated. The only requirement is that

the object should have a clearly defined boundary, in other words, the intensity must be zero

outside the object.

3.1 Mediatrix Method

The Mediatrix method was originally designed to characterize and search for curved

objects. It was inspired on a basic geometrical property of the perpendicular bisector of pairs

of points on a circle, namely that these lines, for any set of pairs of points, intersect at the

circle center. Therefore if an elongated object can be decomposed into a set of points along

its longer direction, and if this object has a shape close to an arc segment, the perpendicular

bisectors of pairs of these points will intersect in nearby points (i.e., close to the center of

curvature). It turns out, however, that this method can be used to assign segments along

the longer direction of elongated objects, i.e., to “filament” the object, or to determine its

“spine”, regardless of the presence of curvature. The key procedure to segment the object is

to recursively obtain the perpendicular bisector of pairs of points on the object’s image.

Given the points P1 = (x1, y1) and P2 = (x2, y2), the perpendicular bisector is a straight

line y = mx + b perpendicular to P1P2 that intersects the segment at its middle point and

whose coefficients are given by:

m = −x2 − x1

y2 − y1
, (3.1)

b = (y1 + y2)−m(x1 + x2)
2 . (3.2)

The Mediatrix method is a recursive method that operates in several iteration steps.

Each step is a new Mediatrix level and, in principle, the method can be iterated up to an

arbitrary level n. In the following, we describe the first few levels as an example (see Fig.

3.1).

In the first step, we determine the extreme points, E1 and E2 of the object (i.e., the two

points most distant from each other). Several methods have been considered to determine
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the extreme points of an object (see, e.g., Brandt et al., in prep.). Here we use the “farthest-

of-farthest” method, by which E1 is defined as the most distant point from a reference point

on the object (e.g., the brightest pixel on the image or its geometrical center), whereas E2 is

defined as the pixel on the object farthest from E1. Next, the perpendicular bisector of these

two points is calculated. The first Mediatrix point M1 is defined as the brightest pixel of

the object along the perpendicular bisector. In practice, we take the brightest pixel located

at a distance d ≤ α∆p from the perpendicular bisector, where ∆p is the pixel size and α is

chosen as α =
√

2/2. The first Mediatrix Point M1 is shown in Fig. 3.1(A) for an arc-shaped

object (more specifically, an ArcEllipse, Furlanetto et al., 2013b).
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Figure 3.1: Steps of the Mediatrix Filamentation method. After n iterations, the method deter-
mines a set of 2n points defined by the maximum of intensity along the 2n perpendicular bisectors
and 2n vectors perpendicular to neighbouring points with the magnitude given by the distance be-
tween these points. For clarity, only some points are shown on the figure, which illustrates the steps
for n = 3.

In the second step the perpendicular bisectors are now calculated with respect to (E1,M
1)

and (M1, E2). These two perpendicular bisectors define two other Mediatrix Points: M2
1 and

M2
2 using the same criteria we used to define M1 (Fig 1B). The upper index refers to the

iteration level and the lower index is a label to identify the points. Proceeding to the third

step, presented in Fig 1(C), we start from the previous set of Mediatrix Points M1, M2
1 ,

M2
2 and the two extremes E1 and E2. Those points are used to define new Mediatrix Points

M3
i obtained, again, by picking the highest intensity pixel near the perpendicular bisector

between two neighboring points. The algorithm may continue defining new Mediatrix Points

M j
i , corresponding to the i-est point in the j-est iteration level, in higher iteration levels

until reaching a specified final step n. In Fig 1(C), we present the last step for n = 3 (as
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in the previous panels some points were omitted not to crowd the figure). The collection of

Mediatrix Points together with the two extreme points are then named keydots. From the

keydots, the object is decomposed in N = 2n segments or filaments. Each segment connects

a keydot to its neighbors. The algorithm outputs a set of vectors ~nj, where j varies from 1

to N . Those vectors are perpendicular to the segment that connects a keydot to its neighbor

with origin in the midpoint of its segment and norm equal to the length of this segment.

This is shown in Fig. 1(C) for ~n7, where |~n7|=|M3
4M

2
2 |.

3.2 Features derived from the Mediatrix Method

Using the outputs of the Mediatrix filamentation method, for an iteration level k, the

object length is defined as:

Lk =
N∑
j=1
|~nj| =

N∑
j=1

li. (3.3)

One may define an arc width Wk (in the kth level) by the following expression

Wk = 4A
πLk

, (3.4)

where A is the object area in pixels derived from the object segmentation, i.e., the number of

pixels labeled as part of an object by a segmentation and labeling algorithm. This expression

is taken from the ellipse-area relation but is still exact for other shapes, such as an ellipse

whose main axis is distorted into an arc segment (precisely the shape used to illustrate Fig.

3.1, see Furlanetto et al., 2013b).1 and is an excellent approximation for a specific solution

for gravitational arcs (Pacheco et al. in preparation).

For arcs constructed from circle segments, as in the case of the object of Fig. (3.1),

all perpendicular bisectors intercept at the center of curvature. In a more general case, we

may define the center of curvature as the point closest to all perpendicular bisectors. We

thus define the “M -statistic’” function M(~r) as the mean of the distances from ~r to the

perpendicular bisectors of all Mediatrix segments (i.e., the average distance to the lines

1Some authors use the relation W = A/L, which is more suited to a boxy, i.e., closer to rectangular,
shape (see, e.g. Meneghetti et al., 2013, for discussions). Throughout this contribution, we will use definition
(3.4) and will not address which of the two gives a better representation of the width of real objects.
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spanned by the vectors ~ni). Then we have

M(~r) := 1
N

N∑
i=1
|~di(~r, ~ni)|2, (3.5)

where |~d| is the distance of point ~r to the lines defined by ~ni. Therefore the center of curvature

is defined as the point ~r0 in the plane that minimizes the function M(~r). In the case of a

circle arc, the procedure above yields the circle center. However, this method is also well

suited for more generic shapes.

If the object has a well-defined curvature center, not only the function M(~r) will have

a clear global minimum, but also small deviations from r0 lead to a substantial increase in

M(~r). We treat M(~r) analogously to a “chi-square function” and define a Confidence Region

(CR) such that

M(~r)−M0 ≤ σm, (3.6)

where σm is an arbitrary parameter. After some visual assessment, for the images used in

this thesis we found a reasonable value of σm = 1.

3.3 Tests in a controlled sample

To test the method, and in particular its ability to recover the parameters of arc-like

objects, we ran it on a controlled sample, for which these parameters are known. To that end

we use the PaintArcs method (Furlanetto et al., 2013b), which produces a surface brightness

distribution mimicking arcs from an analytical prescription. The isophotes are given by

ArcEllipses, which are ellipses whose main axis is curved into an arc segment. In polar

coordinates centered on the center of curvature, the ArcEllipse is defined by

(
rc (θ − θ0)

a

)2

+
(
rc − r
b

)2
= 1, (3.7)

where rc is the ArcEllipse curvature radius of curvature (i.e., the radius of the circle on

which the ellipse is distorted), θ0 is the position angle of the center of the ArcEllipse, b is
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the its half-width (computed at the center) and a is its half-length. The resulting shape is

as illustrated in Fig. 3.1. The area of this figure is simply given by πab, exactly as for an

ellipse (Furlanetto et al., 2013b).

Now we can take any profile, such as a Gaussian, for example, and make the argument

of this function constant over ArcEllipses, i.e. we construct a surface brightness distribution

with the chosen radial profile and ArcEllipses isophotes. The resulting image looks like a

gravitational arc, and this prescription (ArcEllipse+radial profile) has been used to fit arcs

in simulations and on real data (Furlanetto et al., 2013b). We are thus able to produce arcs

controlling all their parameters, such as curvature radius R, length 2a and width 2b and

position, providing a perfect sample for testing the Mediatrix method. As the arcs can be

added, i.e., “painted” on background images for a number of application, this prescription

was dubbed PaintArcs (Furlanetto et al., 2013b). PaintArcs has been used to add simulated

arc images on the so-called Data Challenges of the Dark Energy Survey. It is interesting

to note that while the ArcEllipse is a pure geometrical construction with no connection to

the physics of gravitational lensing, it does provide an excellent approximation for images

of circular sources lensed by a Singular Isothermal Sphere (Pacheco et al., in preparation).

To carry out our tests we use a sample of arcs produced by PaintArcs which are pixelated

and have their counts scaled to reproduce a given magnitude. The sample has ∼ 600 images

with magnitudes2 of 22, 22.5, 23.0 and 23.5. The arcs curvature radius, rc are given by

5.0′′, 10.0′′ and 15.0′′ while their L/W are 2.0,4.0, 7.0 and 10.0. We work in two samples

with different observational conditions. The first is the pure arcs (hereafter PA), i.e. with no

observational effect applied. The second sample have background noise addition (hereafter

BN), we assume a background comparable to Smith et al. (2005), and since we are mimicking

the sample to be a space based like we did not include the PSF in this application example.

To add a constant background we selected an visually empty area in Smith et al. (2005)

image and calculated its mean. We use this value to add a constant background. Then we

assign a Poisson noise by sampling each pixel value from a Poisson distribution with mean

given by the pixel value.

To make the object segmentation we adopted a simple algorithm: for PA sample we pick

2This range roughly corresponds to the arcs studied in the survey Smith et al. (2005).
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all pixels brighter than 1/10 the maximum pixel value and defined it as a single object. For

BN sample, which included a constant background and noise addition, we selected all pixels

above the mean +1σ values of the image histogram. We did not make any fine tuning in the

detection parameters.

In the next subsections, we apply the Mediatrix method for both sample of arcs (PaintArcs

with and without the addition of background and noise). We assess its ability ti recover arc

parameters, in particular curvature radius and the lenght-to-width ratio L/W . The curvature

radius R is defined as the distance from the center of curvature ~r0 from the minimization of

M(~r) to the arc center given by the first Mediatrix point M1
1 , whereas L/W is determined

from the definitions of L and W in Eqs. (3.3) and (3.4). In the PaintArcs simulated images,

these quantities correspond exactly to rc and a/b. Therefore, we have a truth table for com-

paring the values from Mediatrix to the input values used to simulate the arcs. Notice that

we compare L/W and not L and W individually. These quantities are strongly dependent

on the object boundary, i. e., on the chosen segmentation. If we decided to cut the object

for pixel threshold values different from a tenth of the peak values (in the PA case) or other

multiples of σ (in the BN) case, the values of L and W would change significantly. However,

due to the self-similarity of the PaintArcs isophotes the ratio L/W should be robust (and

equal to a/b). We apply the Mediatrix filamentation method and generate the outputs for

each iteration level up to n = 5, including the keydots and normal vectors ~ni, the length Ln

and width Wn, the curvature center r0 and the confidence regions. Some examples are given

in Fig. 3.2. We may notice in the bottom panels of the Fig. 3.2 that some objects are poorly

detected in BN sample which compromises the curvature center determination

From our first curvature analyses and after visually inspecting the results we noticed that

the vectors in the image borders, i.e. the vectors defined by one of the extrema, degrade the

determination of r0. This is not an unexpected result, since the extrema are very sensitive

to the segmentation, unlike the others Mediatrix points. If the arcs edges are not sharp (i.e.,

for fat arcs) or for objects that span large angles (L/R > π), E1 and E2 will not correspond

to arc extremities. Therefore, we choose to eliminate these 2 points from the analysis of the

center of curvature and curvature radius, as illustrated in 3.2. Of course this can only be

done for the Mediatrix level n > 1.
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Figure 3.2: Examples of PaintArcs images after Mediatrix Analyses for n = 3. Top: Pure Arc
Sample (PA). Bottom: Background and Noise (BN). The keydots, except the extrema and the center
(M1

1 ), are shown as [red] circles, the arrows are the ~ni normal vectors. In some cases, the curvature
center ~r0 [red losangle] and confidence regions (CR) are shown. (bottom left).

3.3.1 Results for the Pure Arcs Sample

In Fig. 3.3 we present the results for the determination of the curvature radius R Media-

trix as a function of the input curvature radius rc for the PA sample along with its fractional

deviation with respect to the PaintArcs inputs. As we have 3 values of rc in our sample, we

show the results for all arcs for the three corresponding values of R and all values of the

other parameters. The error bars are the standard deviations. We see that R is a decreasing

function of the iteration level n. The results for n = 1, which represent a standard method

used in the literature are all biased high. The level n = 2 already shows interesting results,

but the optimal value in this sample is n = 3 with smaller error bars. For n = 4 and espe-

cially n = 5 the values are biased low and the error bars increase probably due to the excess

of divisions such that the directions are affected by the pixel scale. The n = 3 case shows

less than 10% deviation for all values of the curvature. For instance, the error bar for the

lowest curvature R = 5′′ is 0.3′′, which is roughly the pixel size.

We have also split the sample into two size groups: low-L (hereafter LL) containing

objects from 10 pixels to 50 pixels in length (or ∼ 3′′ to ∼ 14′′) and high-L (hereafter

HL), containing objects from 100 to 150 pixels (or 27′′ to ∼ 40′′). We present the results
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Figure 3.3: Curvature radius R obtained from Mediatrix (up) and fractional deviation from the
input PaintArcs values (bottom) in PA sample for different levels of Mediatrix iterations. The red
dashed lines indicate the ±10% deviations. The points were shifted horizontally for clarity.

for curvature in both groups in Fig. (3.4), as expected the Mediatrix loses its precision for

small objects. The constraints in level 2 are more accurate than level 3 for curvature radius

R = 10′′ or R = 15′′ showing that it does not help to further decompose small objects due

to the pixel size. From the figures 3.4a and 3.4a is clear that by using the extrema (level 1)

ones always bias the results for both the HL and LL to higher values of R. Also as expected.

The method is more precise for large objects as they have a better resolution and stand more

divisions. Nevertheless, n = 5 still gives results that are biased low.

In Fig. 3.5 we show L/W . As expected, L/W is an increasing function of the iteration

level. Indeed, by construction, L can only increase with i, while W is given by Eq. (3.4),

whose the area of the object is fixed. In any case, the dependence with i is much weaker

than in the case of curvature radius. We see from the bottom pannel of 3.4 that all results

are compatible with the PaintArcs input within their standard deviations (except for the
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(a) Low-L subgroup (b) High-L subgroup

Figure 3.4: Curvature radius R and deviations from the input PaintArcs values in the PA sample
for different levels of Mediatrix iterations in two subset of arcs, the low L and high L. The red
dashed lines indicate the 0 and ±10% deviations.The points were shifted horizontally for clarity.

smaller L/W and i = 1). Here, again, i = 2 or 3 seem to yield the best performance. Also,

as before i = 5 gives an exceedingly high variance.

3.3.2 Results on the Arc sample with added Background and

Noise

We present the results of the determination of curvature radius for this sample in Fig.

3.6. We see that the Noise and Background addition have a substantial impact on the R

determination. In this case, both the scatter is tremendously increased, and the means have

a larger deviation from the true value. Contrarily to the PA case, for which R was both

accurately and precisely recovered for i = 3. There is no iteration level that provides reliable

results. Nevertheless, i = 2 and i = 3 produce the best results with a mean bias of ∼ 20%.

If one considers the HL and LL subsamples, as shown in Fig. 3.7, we conclude that

the method fails to define a reliable curvature center in LL sample. On the other hand, R

is correctly recovered for i = 3 in this case with a small mean deviation. For the highest

curvature, which corresponds to largest errors we obtained, for level 3, R = 13.4± 2.0 while

for R = 5.0 we get 5.0± 0.6, i.e. with errors bars ∼ 10%.

Due to the presence of noise and background, it makes sense to look at the results as a

function of the signal-to-noise of the object or, alternatively, as a function of their magnitude.
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Figure 3.5: Length to width ratio, L/W and fractional deviations from the PaintArcs input values
(a/b) in the PA sample for different levels of the Mediatrix Iterations. The red dashed lines indicate
the 0 and ±10% deviations. The points were shifted horizontally for clarity.

The results for the brightest arcs, with magnitude 22 are shown in Fig. 3.8. In this case, the

results are highly improved when compared to Fig. 3.6 and are similar to the ones in HL,

which may indicate that the main issue in the determination of R is a reliable segmentation

even if we already eliminate the extreme points. We made the same test for magnitude 23,

but we obtained results similar to the ones in Fig. 3.6.

In Fig. 3.9 we present the results for L/W in the BN sample. Comparing to Fig. 3.5 the

results are surprisingly similar, or even better than in the PA case. By construction, L/W

is a growing function of i, and, as expected, the scatter is larger for L/W than in the PA

case. However, the mean is even closer to the PaintArcs input than for the PA (in all cases,

except the smaller L/W ). Here i = 2 provides the best results, i = 3 and i = 1 are still

acceptable, 4 is consistently worse, and i = 5 should not be used at all.
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Figure 3.6: Curvature radius R and deviations from the input paint arcs values in BN sample
for different levels of Mediatrix Methods. The red dashed lines indicate the ±10% deviations. The
points were shifted horizontally for clarity.

3.4 Concluding Remarks on morphology and arc fea-

tures

The Mediatrix filamentation method is a technique to decompose elongated shapes into

filaments, which enables one to define a number of morphological parameters, including the

length and curvature center. In particular, it provides means to estimate the confidence of

the curvature center.

In this chapter we apply the Mediatrix method to a sample of simulated arcs shapes

using the PaintArcs method, providing a diverse set of images with different length-to-width

ratios, curvature radius, and magnitudes, providing a controlled sample to test the method.

Firstly we report that the use of extreme points leads to a strong bias in the curvature radius

constrains.
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(a) Low-L subgroup (b) High-L subgroup

Figure 3.7: Curvature radius R and deviations from the PaintArcs input values in the BN sample
for different levels of the Mediatrix iterations in two subsets of arcs, the low-L (left) and high-L
(right). The red dashed lines indicate the 0 and ±10% deviations. The points were shifted horizon-
tally for clarity.

We firstly worked on the pure arc, PA, images (i.e. with no background and noise)

segmented using all pixels brighter than a tenth of the brightest one. We found that the

recovered curvature radius as a strong variation with the iteration level n. In particular,

n = 3 provides excellent results with less than 10% scatter, which is less than the pixel scale

for R < 10′′ and a mean precision with virtually no bias.

Regarding the length-to-width ratio, L/W the dependence with n is smaller. The scatter

increases with L/W ranging from ∼ 5% to ∼ 40% (except for n = 5). Overall, the best

results are obtained with n = 2, 3, 4, with mean deviations . 10% (for L/W = 2, 4).

Then we studied R and L/W in the sample with noise and background added. The

segmentation is, of course, more subtle in this case. We considered all pixels with values 1σ

above the background as part of the object.

The results for R are strongly degraded concerning the PA case. Both the scatter is

significantly larger, and the mean values have a stronger deviation with respect to the input

values. The best results are obtained for n = 2, 3 but the mean values deviates ∼ 20% in

those cases. The situation is much improved for both larger arcs (HL sample) or the brightest

ones (mag = 22.0) for which the mean values of R are . 10%.

On the other hand, the results for L/W are much less sensitive to the presence of noise and
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Figure 3.8: Curvature radius R and deviations from the PaintArcs input values in a sample
containing sources with mag ≤ 22.0 for different levels of the Mediatrix iterations. The points were
shifted horizontally for clarity.

background. The scatter are much less susceptible to the presence of noise and background.

As expected the scatter is larger, but the mean values of L/W are even closer to the input

ones than for the PA case. We will carry out a few tests aiming to improve the results of

the BN case. As we saw that the brighter and larger objects yield better results, this hints

to selecting higher Signal-to-Noise regions. To minimize the effect of noise, we will convolve

the images with a small kernel to make them smoother.

We have not used the confidence region (CR) in our statistical evaluations. However,

we stress that visually, the CR has a very distinct behavior for straight or curved objects.

For arcs with a clear curvature, the CR has a small area and small ellipticity, showing that

the M(~r) function has a well defined minimum. For more straight objects, M(~r) still has

a minimum (as there is a dispersion on the ~ni directions), but the CR is much larger and

very elongated in the direction perpendicular to the arc. In this case ~r0 gets closer to the
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Figure 3.9: Length to width ratio, L/W and fractional deviations from the PaintArc input values
in BN sample for different levels of Mediatrix iterations. The red dashed lines indicate the 0 and
±10% deviations. The points were shifted horizontally for clarity.

object center as k increases and the CR starts intersecting the object. This effect is more

pronounced in the images with noise and background since the presence of minima is a

consequence of the fluctuations.

Therefore, the “M -statistic”M(~r) is a good indicator for the presence of curvature. On

one hand it takes into account the details of the object shape (as opposed to just using

the object extremities and brightest pixel, for example), through the many vectors ~ni of the

Mediatrix decomposition, and, on the other hand, it has a very distinct behavior for curved

objects. This function not only provides an estimate for the center of curvature location,

but also, and more importantly, gives a measure of the significance of the presence of such

center. A more systematic and quantitative study is still needed to determine the optimal

values of σm in Eq. 3.6 and the threshold on the CR parameters to define the significance

of the curvature. This may depend on several factors, including the image properties, and is
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left for subsequent work.

The Mediatrix method may provide interesting discriminators for gravitational arcs, es-

pecially by combining its outputs. This motivated the development of a gravitational arc

finder based on this approach, which is discussed in the next chapter (see also Bom et al.

, 2015, 2017).

Two important quantities to characterize gravitational arcs are their length L and width

W (and the derived ratio L/W ). One standard definition of L is the sum of the distances

from the brightest arc pixel to the two arc extreme points, E1 and E2 (e.g., Luppino et al.,

1999), while W is often defined from the area of the arc, as discussed in Section 3.2. In most

cases, this definition of L is very close to L1, the length after the first Mediatrix iteration.

In principle, the Mediatrix fillamentation allows for a more accurate determination of the

length along the arc. However, it is easy to see that significant differences are not expected

for objects with simple morphology. In fact, for objects whose intensity ridgeline has the

shape of an arc of a circle, we expect the difference between Mediatrix iterations to be the

largest when the angle spanned by the arc with respect to the curvature center is π.

It must also be said that the filamentation method is rapid, such that applying the

Mediatrix decomposition to a large set of objects in astrophysical images has a low compu-

tational cost. The method is well suited for gravitational arcs but could be useful in many

other astronomical applications, such as for interacting galaxies, planetary nebulae, etc. In

the examples of this work, the objects show a well-defined “main direction” having a surface

brightness distribution with a clear “spine”. However, the method can be trivially extended

to more general situations. For example, instead of using the object extrema as the first

Mediatrix step, other definitions for the first step can be used for objects without a clear

single preferred direction, such as objects with several tips. In this case, each pair of tips will

define a different set of Mediatrix filaments and the final filamentation can be constructed

as the combination of them. For binary images, where the pixels have all the same value, the

midpoint of the pixels along the perpendicular bisector can be chosen as Mediatrix points,

instead of the brightest pixel along this line.

From gravitational lensing theory, it is known that the curvature center of the arcs and

the center of mass of the lens do not need to coincide (indeed, there are straight arcs, etc).
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Lensing systems may have lots of matter clumps, for instance, the curvature center may

be affected by a perturber galaxy and not point to the center of cluster halo in which the

galaxy is embedded. However, we expect that the mean curvature center will be close to the

lens center. Thus the Mediatrix curvature radius might be used as an estimator for Einstein

Radius and therefore to the mass inside the Einstein Radius. This remains to be tested using

arcs from lensing simulations and real data, when multiple images are available to carry out

lens inversion. This is currently being implemented and under investigation in the SOAR

GRavitional Arc Survey arc sample (Makler et al. in prep.).



32 MORPHOLOGICAL ANALYSIS AND IMAGE PROCESSING FOR GRAVITATIONAL ARCS3.4



Chapter 4

Gravitational Lens Detection

4.1 Visual Inspection

Several algorithms have been proposed for the automated detection of Strong Lenses.

However, as discussed in Chapter 1, none of them emerged as a definitive method for lens

finding, and a further visual inspection on the candidates is still needed. In this section,

we discuss the visual inspection performed on the Dark Energy Survey Science Verification

(hereafter SV) data (Nord et al., 2015). Since the SV area is a considerably small, a visual

assessment could be done in a reasonable amount of time by a small team of inspectors,

including the author. Also, visual inspection is likely to recover high-ranking candidates

that would be found in different automated methods without the bias due to premises in

the arcfinding algorithms. For instance, Horesh et al. (2005) search for thin and elongated

objects only, while Bom et al. (2017) search for curved objects not necessarily with high

elongation. Nevertheless, there is a bias towards larger Einstein radii, which are easier to

identify through visual inspection.

The criteria to define a lens candidate was based on the morphology and color of the

objects. Our team searched for objects with clear curvature, ring-like features and multiply

imaged sources. As galaxies in higher redshifts are bluer due to high star formation and

Luminous Red Galaxies (LRGs) are among the most massive, we search in particular for

blue sources associated with red galaxies. Though red sources have also been identified.

Two types of visual scan were performed: a non-targeted search in the SV area (∼ 250 sq.

33
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deg.) and a targeted search around previously identified galaxy clusters. The non-targeted

search was done by roughly 20 inspectors who looked at PNG images. Each image combines

the g, r, i filters to produce a false-color image. Two targeted searches were performed.

The first one in 67 clusters identified in the SPT SZ survey (Bleem et al., 2015) and the

second one on 374 galaxy clusters with richness > 50. Those clusters were detected using the

red-sequence Matched-Filter Probabilistic Percolation cluster-finder algorithm (redMaPPer;

Rykoff et al., 2014). The searches were combined, and the candidates were ranked from 1 to

3, with 1 denoting least likely to be a lens system, and 3 the most likely. The search results

yielded 53 high-quality candidates, i.e. rank 3, of which 24 were considered appropriate for

spectroscopic follow-up and had never been identified as lensing systems before.

The spectroscopy was acquired by the Gemini Multi-Object Spectrograph (GMOS; Hook et al.

, 2004) and by the IMACS multi-object spectrograph (Dressler et al., 2011) on the Magel-

lan/Baade Telescope. From the 24 candidates, 21 have been observed within the allocated

time and six were confirmed as lensing systems. The confirmed candidates are shown in Fig.

4.1. We present the main lensing features in table 4.1. From the observed sample, in 9 of

them, it was not possible to define a continuum emission, 4 have no discernible features and

2 were confirmed as not lenses.

It is worth noticing that two of the systems have galaxies that are notably interesting.

DES J0221-0646 and DES J0446-5126 have source galaxies at redshifts z = 2.7251 and

z = 3.22086, respectively. Due to the magnification effect provided by lensing, these galaxies

are among the brightest observed galaxies (in their apparent magnitude, due to the lensing)

in their redshift ranges and may provide relevant information into the star formation history

and galaxy formation at these cosmic epochs.

4.2 The Mediatrix arcfinder algorithm

Due to the many applications of Strong Lensing and the large amount of available data,

several automated methods to find Strong Lensing/arcs have been proposed in recent years.

Most focused on “pattern recognition”, i.e., on identifying shapes that look-like gravitation

lensing, in particular arcs, thin and elongated structures (e.g., Alard, 2006; Horesh et al., 2005;
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a) DESJ0221-0646

A1 A2

b) DESJ0250-0008

A

B

c) DESJ0329-2820
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e) DESJ0446-5126
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f) DESJ2336-5352
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B

Figure 4.1: Color co-added DES images of the six systems confirmed in the SV visual inspection
a) DES J0221-0646, b) DES J0250-0008, c) DES J0329-2820, d) DES J0330-5228, e) DES J0446-
5126, f) DES J2336-5352. The lensing features are labeled by the letters. Figure reproduced from
(Nord et al., 2015).

Lenzen et al., 2004; More et al., 2012; Seidel & Bartelmann, 2007), sometimes requiring also

a degree of curvature (e.g., Estrada et al., 2007; Kubo & Dell’Antonio, 2008). Maturi et al.

(2014) combine this approach with a multi-colour selection of the sources. Marshall et al.

(2009) use lens inverse modelling to find strong lenses, i.e., assume that a given object

in an image is a consequence of lensing and determine whether the lensing solution is

favoured by the data. More recently, new arc finders have been proposed that subtract

the lens candidate (usually Early-type galaxies) light distribution, either using two bands,

as in Gavazzi et al. (2014), or by modelling the lens in a single band, as in Joseph et al.

(2014) and Brault & Gavazzi (2015). The residuals are then investigated, using either their

shapes (Joseph et al., 2014; Paraficz et al., 2016), by color selection (Gavazzi et al., 2014), or

with inverse modeling (Brault & Gavazzi, 2015).

Due to blending issues, the lens subtraction approach is very frequent for galaxy-scale

lenses, especially when observed from the ground, as the arcs can be embedded in the galaxy’s
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Table 4.1: Lensing Features

System ID Spectral Redshift Einstein Radius Enclosed Mass
Source Image ID Features θE (′′) Menc (M�)

DES J0221-0646 0.672± 0.042
A1 Lyα 2.7251± 0.0008 5.0± 1.4 7.5± 4.7× 1012

A2 Lyα 2.7241± 0.0008
DES J0250-0008 0.841± 0.042

A [OII]3727 1.2081± 0.0004 6.6± 1.1 3.7± 3.0× 1013

DES J0329-2820 0.655± 0.033
A [OII]3727 0.7963± 0.0001 7.2± 1.4 1.6± 0.9× 1013

B [OII]3727 1.2976± 0.0003
DES J0330-5228 0.463± 0.046

A [OII]3727 1.4541± 0.0004 6.1± 1.5 9.0± 3.7× 1012

DES J0446-5126 0.746± 0.047
B1 Lyα 3.2068± 0.0010 7.0± 1.5 1.6± 0.9× 1013

B2 Lyα 3.2086± 0.0011
DES J2336-5352 0.530± 0.075

A [OII]3727 1.1528± 0.0006 5.0± 1.5 8.6± 7.7× 1012

B [OII]3727 0.8972± 0.0004 8.6± 1.9 3.5± 3f3× 1013

Notes. Lensing features of confirmed systems. We show the DESDM object ID’s for lenses, the source
image IDs, names of spectral features, photometric redshifts of lenses zl, spectroscopic redshifts of sources
zs, an Einstein radius for each source image θE, and the resulting enclosed masses Menc. The main spectral
features are all emission lines. Table reproduced from (Nord et al., 2015).

light. On the other hand, it is less critical for arcs on cluster scales, which span larger angular

sizes than the galaxies and the PSF.

Most lens finders in the “pattern recognition” category use sets of measurements on the

objects (such as ellipticity, length, L, width W , etc.) to determine whether they are lens

candidates or not. They usually employ hard (i.e. fixed and mutually independent) cuts,

whose values may be arbitrarily assigned or tuned using data or simulations. However, given

the diversity of lensed sources properties (shapes, sizes, S/N ratios, etc.) and their physical

origin, different cuts could perform better in various regions of the multi-dimensional space

of lensed source parameters. For example, on cluster scales lensed sources may be very

elongated, with several arcs but not necessarily with a clear curvature, while on galaxy scales

lensed sources are not as drastically elongated but exhibit a clear curvature. Therefore, a

flexible criterium based on a combination of parameters may be more efficient than applying

hard cuts. This is a typical situation where machine learning methods can be extremely

helpful. A suitably trained algorithm can then classify the objects into lenses or not, given a

set of input images or values for the object features. Such training can be carried out either



4.2 THE MEDIATRIX ARCFINDER ALGORITHM 37

on real data (on objects previously known to be arcs) or using simulations, by feeding the

algorithm with a large set of lensing and non-lensing samples. This process is characteristic

of supervised learning methods, the most well-known of which being the Back Propagation

Artificial Neural Network (ANN; Rumelhart et al., 1988; Williams & Hinton, 1986).

As important as the choice of the classification method and its configurations is the

selection of the set of input parameters. In this work, we concentrate the AMA algorithm to

find for arc features. Thus we adopt measurements derived from the Mediatrix Filamentation

Method presented in chapter 3 (Bom et al., 2016a,b), a novel iterative technique well suited

to find arc-like shapes such as the ones from strong lensing.

Therefore, the purpose of this section is to construct an ANN gravitational arc finder

based on the Mediatrix Filamentation Method, or ANN Mediatrix Arcfinder (AMA) for short

to detect a sample of strong lensing candidates. We use a sample of simulated gravitational

arcs and a sample of non arcs from HST images to train and validate the ANN. This sample

is used to pin down a few configurations among the many possible choices involved in the

ANN detection process: the types of images used for the training, the selection of inputs

given to the ANN, the number of neurons, and the final threshold for classification. As an

illustration of the application of the method to real data, we consider four galaxy cluster

images from HST and run the AMA on them, comparing the results with the training and

validation.

The Mediatrix Arcfinder can be divided into four steps: object segmentation, preselection,

measurement, and final classification. In the segmentation phase, sets of pixels above the

background are grouped into objects (as discussed in Sec. 4.2.1). In the preselection phase,

we define a sample of objects to be analyzed, performing cuts to eliminate those that can be

readily discarded as not being arcs (Sec. 4.2.2). The measurements are carried out through

the Mediatrix filamentation method introduced in section 3 (see Sec. 4.2.3). For the final

classification, we use an ANN trained to identify arc candidates (see Sec. 4.2.4).

4.2.1 Object segmentation

The first step is to identify the objects in the image, separating them from the back-

ground and defining which set of pixels belong to a given object. To this end, we use



38 GRAVITATIONAL LENS DETECTION 4.2

the SExtractor (Bertin & Arnouts, 1996) software, which has several parameters control-

ling the object identification, deblending, and measurement process, including the minimum

signal-to-noise ratio for a given pixel to be considered, a minimum number of pixels, and de-

blending thresholds. Tuning these parameters is a critical step in arc identification, especially

as arcs are low surface brightness objects, are often close to brighter sources, and can thus

be easily missed and/or blended with other sources. However, in this contribution, we do

not perform a systematic optimization of these parameters. We rather use a set of manually

tuned values that provided good results on a visual inspection, as our primary focus is in

the measurement and final classification phases. Horesh et al. (2005), Estrada et al. (2007),

and Kubo & Dell’Antonio (2008) also use SExtractor in the object segmentation phase

of their arc finding methods.

SExtractor provides an output catalog containing measurements on the objects iden-

tified and several image outputs. Here we use two such output images, namely OBJECTS,

containing the pixel values of all objects identified, and SEGMENTATION, in which all pixels

belonging to the same object have the same value (corresponding to the object ID in the

catalog). From these two images, we produce a single array per object, which contains only

the pixels belonging to that object and the respective pixel value. These arrays are called

postage stamps and are kept in the memory for the next steps. From this point on the AMA

algorithm will work separately on each object.

4.2.2 Preselection

Among the measurements provided by SExtractor are the object semimajor axis A

and semiminor axis B derived from the weighted central second moments of the pixels

(Bertin & Arnouts, 1996). From them we define the ellipticity e as

e = 1− B

A
, (4.1)

which is used to eliminate from the sample objects with ellipticities below some threshold

eth. For the images used in this chapter, we set eth = 0.4. We also add a cut on the maximum

number of pixels to exclude objects that are too large and are definitely nonarcs. To avoid
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spurious detections we remove objects that are close to the image borders. We do not make

cuts in the object signal-to-noise ratio or magnitude, as this could remove some of the faint

arcs. We do not apply any star-galaxy separation either, as the cut on e already removes the

stars.

4.2.3 Measurements with the Mediatrix filamentation method

In chapter 3 we presented and discussed the Mediatrix Method basics applied essentially

to arcs shapes, for the AMA algorithm we apply the method to all (preselected) objects in

an image for the sake of classification as arc candidates. For an iteration level k the object

length Lk and width Wk are given by Eq. (3.3) and (3.4) respectively. We use an adaptive

method to decide when to stop the mediatrix iteration. When the distance between two

neighboring segments li (see 3.3) is too small, there is no point in continuing the Mediatrix

iteration. On the contrary, the decomposition starts to be dominated by noise (or by the

finite pixel size). We expect that when li . Wk the directional information is lost and no

further division is useful. Therefore we impose the following condition as a criterium to stop

the iteration:

li ≤ αWk, (4.2)

where α is a parameter that is set to α = 1 in this work. The decision to continue with

the Mediatrix filamentation is taken independently for each segment following Eq. (4.2).

The iteration generally stops for regular objects at the same level for all segments, such

that the total number of segments (and oriented vectors) is N = 2n, where n is the last

iteration level. However, if the shape is irregular, the iteration can be carried out to different

levels for different regions of the object. Also, if the object is composed of noncontiguous

sets of pixels, the code may not find any pixel along the perpendicular bisector of two given

Mediatrix points. In this case, the iteration is stopped so that no further division happens

between those two points. After the last iteration, the sum in Eq. (3.3) is carried out for all

segments defining the final length L. The final width W is defined using Eq. (3.4).

As discussed in the previous chapter we may define a center of curvature by determining

the circle that passes through the points E1, M1
1 , and E2. We denote the center of this circle
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by ~rc and its radius by Rc. Using these points, we may also define a length as the circle arc

length, Lc, between the two extreme points, E1 and E2. Another possibility is to define a

curvature center based on all points from the Mediatrix filamentation using Eq. (3.5) and

(3.6) to derive the curvature center ~r0 and the confidence region respectively. We expect that

curved arcs have a small CR as compared to the arc size. We noticed by visual inspection of

the CR and the objects, that for arcs the CR is usually elongated along the radial direction

and does not, in general, intersect the arc.

We provide, as inputs to the ANN, combinations of the parameters described above

derived from the Mediatrix filamentation. These combinations are defined so as to be scale

invariant, such that they depend mostly on the object shape and are weakly sensitive to

the pixel scale. In some cases, we normalize the output by the appropriate power of L to

produce the scale invariant quantities. In particular, we tested the ANN with the following

set of parameters:

i) The length-to-width ratio L/W .

ii) The mean of the scalar products of each unitary vector ~ni/|~ni| with its neighbor,

~ni+1/| ~ni+1|, i.e.,

s := 1
N

N−1∑
i=1

~ni
|~ni|
�
~ni+1

|~ni+1|
. (4.3)

This quantity provides a measurement of the coherence of the shape. For very irregular

objects, its value is low, while for long and smooth objects (curved or not), its value should

be close to 1.

iii) The minimum value of the function M(~r) divided by the arc length squared (for

dimensional reasons), M0/L
2.

iv) The arc aperture ∆θ := L/R, where the radius R is the distance from ~r0 to M1
1 .

v) The ratio between the arc aperture defined above and the one constructed from the

circle that contains points E1, M1
1 , and E2, ∆θ/∆θc := (L/R) / (Lc/Rc).

vi) The distance between the center of the circle ~rc and the minimum of M(~r) normalized

by the arc length, δr := |~r0 − ~rc|/L.

vii) The ratio between the major axis of the CR, LCR, and the arc length: LCR/L.

viii) The eccentricity of the CR, eCR.
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ix) The ratio between the number of pixels from the arc enclosed by the CR, ACR, and

total number of pixels in the object, A, i.e., ACR/A.

The choice of parameters above is somewhat arbitrary, but is inspired by the visual

assessment of these quantities on samples of arcs and objects that are clearly nonarcs. An

important component of this chapter is to obtain a set that is at the same time good for

discriminating arcs from nonarcs and is less time- consuming.

4.2.4 Arc identification with an artificial neural network

The arc identification process through the ANN can be subdivided into two parts: the

training process and the actual classification. In the current implementation, we use a stan-

dard back-propagation and fully connected ANN (Rumelhart et al., 1988; Williams & Hinton,

1986). The ANN has the following structure: a) an input layer with i neurons, where i is

the number of inputs used in the specific ANN configuration, which in this case is a subset

of the parameters described in section 4.2.3; b) a second layer with j hidden neurons; and

c) the output layer with one neuron. The ANN activation function is linear and the output

is a floating point number R in the range −1 to 1. The AMA code was developed using the

python binding for the Fast Artificial Neural Network (FANN) library1.

In order to recognize the arc shape using this type of ANN, it is necessary to train this

neural network on a group of objects, which were previously classified as arcs and nonarcs. A

successful training process is determinant to reach acceptable results in any back-propagation

ANN code. The training requires presenting to the ANN two groups: the arcs group (AG),

with desired output +1 and the nonarc group (NAG), with desired output −1. The two

groups also need to have the same order of number of objects. Otherwise, the ANN may just

output as the result a number that represents the larger group. The AG and NAG are split

into a training group and a validation group. In this work, we used 80% from all objects

chosen randomly from the sample of AG and NAG for training and 20% for validation.

After the training, the ANN is applied to the validation group, yielding an output value

R for each object. We have thus to set a threshold t on this output such that the code finally

classifies each object (i.e., each set of input measurements on the object) as an arc or not.

1For further information see http://leenissen.dk/fann/wp/
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After running in the validation group the code computes the completeness, c, defined as the

fraction of arcs recovered (i.e., the ratio of the number of detected arcs and the total number

of arcs in the validation group) and the fraction of false positives, f , defined as the fraction

of nonarcs that are classified as arcs (i.e., the ratio of the number of nonarcs detected as arcs

and the total number of nonarcs in the validation group).

After the validation test, the training and validation groups are redefined randomly and

the whole process is repeated m times. In this work we retrained the ANN for a single set

of input parameters 40 times. The validation code outputs the mean completeness c̄, mean

false positive fraction f̄ , and their standard deviation for the m = 40 validation groups.

4.3 Training and validation of the ANN

In this work, we use the training and validation steps to characterize the behavior of the

AMA with respect to all aspects of the ANN identification process mentioned in Sec. 4.2.4

above, including the types of images used in the training, sets of inputs, number of hidden

neurons, and threshold for classification. The goal is to define a good set of configurations for

practical applications of the AMA. In particular, we seek to have a high completeness c at

the same time limiting the fraction of false positives f . This search for the best parameters

for the ANN detection is described in Sec. 4.3.3

The arcfinder method was trained using a sample of 175 simulated arcs (AG) described

in Sec. 4.3.2 and 437 nonarcs (NAG) taken from HST images, as described in Sec. 4.4.

These numbers are the result of steps 1 (object identification) and 2 (preselection), and

thus all objects from the two samples already pass the preselection criteria described in Sec.

4.2.1. Notably, all have ellipticities above eth = 0.4. Therefore, in all comparisons and tests

described in this chapter, we are really testing the measurements + ANN steps of the whole

arc finding process, which is the aim of this contribution.

4.3.1 ANN inputs from the Mediatrix filamentation

We performed the training with ten different subsets of the parameters i to ix described

in Sec. 4.2.3 to determine the best combination of Mediatrix parameters to be used as input



4.3 TRAINING AND VALIDATION OF THE ANN 43

for the ANN. Each subset is labeled with a letter from A to J. The input configurations are

presented in Table 4.2. We divided the input parameter sets into two groups depending on

whether the CR evaluation is necessary or not for a given configuration. Group 1 includes

only measurements derived directly from the Mediatrix filamentation process (i and ii) and

from the minimization of M(~r) (iii to vi), while group 2 contains measurements that depend

on the CR (parameters vii to ix). The total time to run the AMA varies only slightly within

each group, but changes considerably between the two groups, as the process to obtain the

CR is currently the most time consuming step of the AMA.

From sets A to J, the number of inputs (i.e., the number of parameters in the input

vectors) is systematically decreased (except for I and J, which have only one input each).

The three sets of configurations in Group 2 (A, B, C) include the determination of the CR

and are thus those that take more computational time. From configuration D downward

the time drops substantially. In all cases but one (J), we keep the parameter (i), i.e., L/W ,

which is historically the primer arc indicator. In section. 4.3.3 we test the AMA for each set

and compare the results for c and f to define the best set for practical applications, both in

terms of maximizing completeness and minimizing contamination, also accounting for the

computational time.

Table 4.2: Combinations of inputs used for the neural network training (A to J).

Group 2 Group 1
LCR/L eCR ACR/A L/W s M0/L

2 ∆θ ∆θ/∆θc δr
A X X X X X X X X X
B X X X X X X X X
C X X X X X X X
D X X X X X X
E X X X X X
F X X X X
G X X X
H X X
I X
J X

4.3.2 The training set sample: simulations with AddArcs

Given the intrinsic variation in gravitational arc shapes it is important to have a large

enough training sample so as to encompass some of their diversity and, at the same time,
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have sufficient statistics to train the ANN. However, the current samples of arcs taken under

uniform observing conditions are still substantially small. Also, we need a truth table of arcs

in the AG and not all known arcs have spectroscopic confirmation. Moreover, we want to

be able to control some observational and instrumental parameters, such as the background

and noise, point spread function, and pixel size so as to test the arc finder under different

conditions. For this sake, we use simulated gravitational arcs for the training and validation

phases.

The simulated sample was created using the AddArcs pipeline (Brandt et al., in prepa-

ration), which uses two input catalogs: one with the properties of the lenses (such as mass,

ellipticity, and redshift) and one with the properties of the sources (such as magnitude, size,

ellipticity, and redshift), plus a number of configurations that can be set, such as observa-

tional and instrumental parameters. The code distributes the sources in random positions

for each lens in the catalog, following the specified surface number density, and then it ran-

domly chooses the source parameters from the source catalog. Given the input models for

the source and the lens, from their respective catalogs, the pipeline uses the gravlens code

(Keeton, 2001) recursively to perform the projection of the sources onto the image plane. It

then identifies which images correspond to arcs and generates postage stamps from them,

providing as one of its outputs a pixelized surface brightness distribution of these objects,

i.e., a simulated image of a gravitational arc.

For our simulated arc sample the input catalog contains galaxy cluster scale halos fromN -

body simulations2 and we assume a Navarro–Frenk–White density profile (NFW; Navarro et al.

, 1996, 1997), with elliptical surface mass density (see, e.g., Caminha et al., 2013), a given

mass–concentration parameter relation (Gao et al., 2008; Neto et al., 2007), and fixed ellip-

ticity. The sources are given by a Sérsic surface brightness distribution (Sersic, 1968) with

parameters derived from the Hubble Ultra Deep Field Survey (UDF; Beckwith et al., 2006;

Coe et al., 2006).

To define a even purer sample of arcs objects we make a visual inspection in the Strong

Lensing simulations by AddArcs and removed objects that even with high L/W do not

2We use a catalog from the Las Damas/Carmen N -body simulation,
http://lss.phy.vanderbilt.edu/lasdamas/.
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have a definite curvature or were too small and pixelated to present a reliable arc shape.

In Sec. 4.4 we apply the trained AMA to real images of systems containing arcs taken

with the WFPC2 instrument on HST (Smith et al., 2005). As in our training the AG is given

by the simulated arc sample, we set the observational conditions in the simulations to mimic

these HST images. In particular, we use the same pixel scale as WFPC2 and convert the

counts in each pixel on the simulated images to data numbers using the properties of these

HST images (for details, see Appendix A of Bom et al., 2016b). At this point the simulated

arcs are smooth, i.e., the pixels have no fluctuations from noise and the simulated images

have no background. We refer to this calibrated set of arcs as pure arcs.

However, real astronomical images have noise (including Poisson noise from the counts

in pixels) and background. Even though it is common to work on background-subtracted

images, of course the background noise remains. Therefore, for a proper test of the arc finding

process we need to include at least these two effects on the simulated images, as they are of

fundamental importance for object detection and measurement3. The (constant) background

is added to all pixels as measured from the HST images. Then each pixel is assigned a new

value sampled from a Poisson distribution with the mean given by that pixel value in count

units (including object plus background). Finally, the new image with background and noise

is converted again to the data units.

Both samples of simulated arcs go through the object identification and preselection

phases, as described in section 4.2.1. In particular, SExtractor is run on each simulated

image containing one arc and a postage stamp is created for that object. The Mediatrix

method is then applied and the derived parameters are input to the ANN.

The validation of the trained ANN is performed using the background and noise sample

as it is the more realistic sample. Nevertheless, it is interesting to test the results of the

training carried out using each type of image as entries. These tests are discussed in the

next section.

3The PSF convolution is not important for this example application in HST images and is not included
in this work.



46 GRAVITATIONAL LENS DETECTION 4.3

4.3.3 The training and validation results: Determining reasonable

ANN configurations

In this section, we present the training and validation results and use them to select an

optimal set of configurations for the ANN arc finding process. We start by looking at the

dependence of f and c as a function of the number of hidden neurons (Nh). We considered

all configurations from A to J described in Table 4.2 and varied the number of neurons

from 2 to 15 fixing the threshold for the ANN output to t = 0 (i.e., objects with the ANN

response function R > 0 are defined as arcs). First, we considered the training carried out

on the pure arcs set and then in the background and noise images as the AG (the NAG is

the same in both cases). In the first case, we do not notice any significant variation of the

completeness and false positives with Nh for any input configuration. On the other hand,

when the training is performed using the images with background and noise, we do see a

dependence on the hidden neurons for some of the configurations. This is shown in Fig. 4.2

for only three configurations: A (representative of group 2), D (representative of group 1 with

several inputs), and J (with one input). We see that the dependence of the completeness

on Nh is only significant for the A configuration, for which we can observe a significant

increase in c up to Nh ∼ 6. In all configurations that we have investigated, there is no gain

in increasing Nh above this value. Thus, only for the configuration with the highest number

of inputs and using the training set with more variation among the systems (due to the noise

in the AG) does the ANN require more complexity than two hidden neurons. On the other

hand, the false positive fraction does increase with Nh in most cases. This is less visible in

configuration A because of the large variance and could be due to overtraining, when the

number of neurons is large.

As we see below, we end up choosing the pure arcs as a training sample and therefore we

could be tempted to choose a very small number for Nh, as this also significantly decreases

the computational time. On the other hand, to be on the safe side for real-world applications,

we still want to have a larger number of neurons for dealing with the diversity of real arcs.

Therefore, we set our final number of hidden neurons to Nh = 4 in all tests to reach a balance

between computational time, false positives, and completeness.
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Figure 4.2: Mean completeness c̄ and fraction of false positives f̄ as a function of hidden neurons,
using background and noise arcs in the AG for training and a threshold t = 0. The error bars are
the standard deviation from the 40 training plus validation subsamples. We shifted the symbols
horizontally for clarity.

Now we turn to the choice of the final set of configurations and the types of images for

the training. In Fig. 4.3 we show the results for c and f for the ten configurations in Table

4.2 using pure arcs (in large blue circles) and those with background and noise (in small

green dots) for the training. Clearly, configurations A to D have the best performance, both

for completeness and for false detections. The results from training on pure arcs in general

have a smaller variance than using background and noise, in particular for configurations A

and B. Besides, for lower thresholds, A and B have much more contamination when trained

on arcs with background and noise than with pure arcs.

At first sight, it could seem surprising that training with the more realistic set of arcs

in general gives worse results. For the ANN, it is better to learn with a more consistent

and well-defined set of parameters from the arcs, than having a larger variation on these
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parameters owing to noise, even if the validation is carried out on the images that do have

noise and background. It is important to mention that the noise is added only once to the

arc sample, i.e., the variance among the 40 subsamples is not due to different realizations of

the noise, but rather to the spread in the parameters caused by the noise in each subsample

of arcs. From now on, we choose to carry out the training process using only the pure arc

sample.

As for the inputs, we see from Fig. 4.3 that the combination that gives the highest

mean completeness, and a low fraction of false detections is configuration A, from group 2.

However, D also gives a good performance (as good as the other configurations in group 2)

but is in group 1, i.e., is computationally faster, as it does not require the computation of

the CR. Therefore, we keep these two sets of inputs, A (the best) and D (almost as good as

A, for both c and f , but faster), for the next test and for applications to real data.

Finally, we look at the dependence of c and f on the threshold t for these two selected

configurations. We vary t in steps of 0.25. The cases t = −1 and t = +1 are trivial as all

objects are classified as arcs and nonarcs, respectively. In Fig. 4.4 we show the results for

t in the range [−0.75, 0.75]. As expected, both the completeness and the false detections

decrease as t is increased. However, c has a softer dependence with t than f . Two possible

choices for t are in order. If we want to have a higher completeness, even at the expense

of a higher percentage of false detections, then t = −0.75 is a good choice. This threshold

would be preferred, for example, in targeted surveys, where a visual inspection to discard

false positives is feasible even if the false detections outnumber the real arcs. In this case, we

obtain c ∼ 95% and 90% and f ∼ 10% and 25% for configurations A and D, respectively.

On the other hand, if we seek a purer sample of arcs, a good choice is t = +0.25. After

this value c drops considerably, while f does not vary much. This choice could typically be

adopted for a wide-field survey, where we need to minimize the fraction of the objects to be

inspected for a final selection. In this case, c decreases a bit to ∼ 90% and 80%, but f drops

substantially to ∼ 3% and 2%, respectively, for A and D.

We recall that f is defined as the fraction of false positives concerning the total number of

nonarcs, i.e., it is essentially the number of false detections over the total number of objects

that pass the preselection cuts. In the training and validation process the numbers of arcs
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Figure 4.3: Mean completeness c̄ and false positive fraction f̄ for the different sets of inputs (for
threshold t = 0). The results from the training in pure arcs are shown as large blue dots, while
those using images with background and noise are shown as small green dots. The error bars are
the standard deviation from the sets of training plus validation subsamples. We shifted the symbols
horizontally for the two types of input images for clarity.

and nonarcs are of the same order of magnitude. However, for wide-field surveys, the number

of arcs is roughly five orders of magnitude less than the total number of objects detected.

Therefore, even if the preselection phase filters out 90% of the objects and f is as low as

1%, the false detections would still outnumber the real arcs by large amounts. Thus, even a

low contamination as currently achieved with t = +0.25 would still require a further step of

visual inspection when applied to large surveys, as happens with most arc finders proposed

so far.

It is worth pointing out that t can always be set a posteriori in the sense that the ANN

is specified without the need to define a threshold. Once the inputs and hidden neurons are

defined and the training is carried out on a given sample, the ANN is fully determined. When

the ANN is applied to the data, the result is an output value of the response function for
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each object. Therefore we can vary the value of t after the ANN is run and choose a suitable

balance between c and f to set the threshold.

We see from Fig. 4.4 that the completeness for configurations A and D are compatible

with each other within their standard deviations for the whole range of t (except for t =

0.75), showing that both configurations are comparable for arc detection (although c̄ is

systematically higher for A). Regarding the false detection fraction, it is clearly higher for

configuration D and t < 0. The highest difference with A occurs for t = −0.75 and is smaller

than two standard deviations. It is not clear whether this is a real difference between the

two configurations or if it is just a fluctuation.

In the next section, we apply the two ANN (i.e., with configurations A and D) trained

as described in this section to objects from real HST images.

Figure 4.4: Mean completeness c̄ and mean false detection fraction f̄ for the input configurations
A and D as a function of threshold. The results are obtained from the training on pure arcs with
an ANN with four hidden neurons. Symbols are shifted in the horizontal direction for clarity.
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4.4 Application on HST cluster images

In this section, we show an example of an application of the AMA to real images taken

with the HST. In particular, we consider a well-known sample of massive clusters observed

with the Wide Field and Planetary Camera 2 (WFPC2) instrument on HST from Smith et al.

(2005). Images from this camera have been used in other exploratory studies of arc finders

(Horesh et al., 2005; Lenzen et al., 2004; Seidel & Bartelmann, 2007), and, in particular, the

same Smith et al. (2005) sample was used in Horesh et al. (2005).

The WFPC2 instrument has a mosaic of three wide-field (WF) CCDs (forming an L

pattern) and a smaller CCD with finer pixel scale close to the center of the field. The

exposures of each cluster are centered on one of the WF CCDs. Several exposures are taken

with a dither pattern, so as to combine all CCDs into a single image with no gaps. The

HST server4 provides both the combined image with all CCDs and a combined image of all

exposures for each single CCD. For the purposes of this paper it is better to work on the

single images per CCD, as the mosaic images have strong S/N variations and artifacts in

the regions between CCDs and close to the edges. This can produce spurious detections and

affect the background estimation and it is beyond the scope of this paper to deal with them.

For each CCD image, we remove the regions near the image borders to avoid the spurious

detections.

We use the images from Smith et al. (2005) to apply the AMA to find arcs in the images,

but also to provide the sample of nonarcs for the training of the ANN. This is so that the

NAG have exactly the same observational and instrumental conditions as the images in

which we look for arcs. We mimic those same conditions in one of the simulated arc samples

as discussed in5 Sec.4.3.2. In particular, we consider CCDs that do not contain the cluster

center and have no apparent arcs to provide the NAG. We use seven such CCDs, carry out

the detection and preselection steps and end up with the sample of 437 nonarcs used in the

training of the ANN discussed in the previous section.

We apply the AMA to four clusters in the Smith et al. (2005) sample that have giant and

4The HST data products can be downloaded from the European HST Archive at ESA/ESAC:
http://archives.esac.esa.int/ehst/

5 For details on the noise and background evaluation in the HST images see Bom et al. (2016b).
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clearly visible arcs, namely Abell 68, Abell 383, Abell 773, and Abell 963. The images of the

CCD with more arcs for each cluster were visually inspected and the arc candidates were

classified in three categories: A for the best candidates, objects with curved shapes close to

the cluster central regions or galaxy cluster members; B for intermediate candidates, which

are curved but do not have a cluster center or galaxy as a center of curvature or that are

close to the cluster center but are not curved; and C for more ambiguous candidates that

do not fall in the previous categories. This classification is somewhat arbitrary but is useful

for a first assessment of the ability of the ANN to recover the arcs as a function of their

quality/likelihood. For each cluster we label the arcs in each category with a number (e.g. a4,

b2, and c1). In Figs. 4.5 and 4.6 we show cutouts of the images encompassing the regions of

each selected CCD where arcs were visually selected and marked. In cluster A68 we marked

9, 2, and 1 arcs in the A, B, and C categories, respectively. For A383 we labeled 7, 4, and 2

arcs in these categories, while for A773 the numbers are 1, 1, 1, and for A963 7, 3, 1. This

gives a total of 39 arc candidates, 24, 10, and 5 respectively in the A, B, and C, categories.

We use these identifications as a truth table for testing the AMA.

The aim here is only to have a set of objects with a morphology visually associated with

gravitational arcs. It is hard to compare the numbers above with the other identifications

for the same clusters in the literature. On one hand, we only consider the arcs from a single

CCD, do not include radial arcs, and do not impose an L/W cut for arc selection. On the

other hand the visual identification is rather ambiguous anyway. In any case the orders of

magnitude are compatible with the visual searches in Sand et al. (2005), which identified 27

arc systems in these four clusters and Smith et al. (2005), which found 33 multiple images

in the four CCD chips we consider in this work.

Now we apply the AMA algorithm, to the four selected clusters. First we run SExtractor

(step 1), with the same configurations used in the training and validation phases, obtaining

a total of 1378 detections. Applying the ellipticity and other cuts on the preselection (step 2)

leaves us with 304 objects, on which we run the Mediatrix filamentation (step 3), providing

the inputs for the ANN. It must be pointed out that not all arcs visually identified comprising

our truth table are found to be objects in the SExtractor run (likely because of their low

surface brightness). Moreover, many of the arcs found end up blended with other objects in
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Figure 4.5: Arc candidates in Abell 68 and Abell 383. The candidates were classified in 3 cat-
egories: A, best candidates indicated with blue circles; B, intermediate candidates indicated with
green rectangles; and C, ambiguous candidates indicated with magenta ellipses.

the image and therefore the morphology of the generated postage stamp does not represent

an arc anymore. The total number of arcs that are either not detected or blended is 15. For

a fair comparison with the results of Sec. 4.3.3 these objects should not be considered in the

denominator for computing the completeness c, as we do not expect the ANN to identify

them as objects; the ANN was not trained on blended objects and obviously the arcs that

are not detected cannot be classified by the ANN.

Finally, we apply the ANN, trained as described in Sec. 4.3.3, using either the sets of

inputs A or D, which are selected from our exploratory runs on the simulated arcs (using

four hidden neurons and trained using the pure arcs as AG). The resulting number of arcs
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Figure 4.6: Arc candidates in Abell773 and Abell963. The arc candidates in the 3 categories are
indicated following the same convention as in Fig. 4.5.

detected is, of course, a function of the threshold t. In Table 4.3, as an example, we show the

results using configuration D and t = −0.75. In that case, a total of 16 arcs were identified

and there were 43 false detections. We also show the number of arcs visually identified in

each category along with the arcs that were not detected by SExtractor and those that

were blended with other objects. We note that in A68 four out of six detectable arcs were

found, while for A383 six out of seven were identified by the ANN, in A773 one out of two

and in A963 five out of eight. The overall c in this case is 16/24 ' 67%. Considering each

subclass, we have a completeness of 71%, 67%, and 50% for the A, B and C categories

respectively. Although these numbers show the expected trend with arc quality, they are all

mutually consistent taking Poisson statistics into account, and we cannot conclude whether

the arc finder performs better or not with arc quality. Therefore, in the remaining of this
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chapter we consider all categories together for evaluating c.

Table 4.3: Arc detections in the 4 selected HST clusters. Columns 2 to 6: number of arc candidates
visually identified in each category (A, B, and C), objects that are not detected by SExtractor,
and arcs that are blended with other objects. Column 7 shows the arcs detected by the ANN for
configuration D and t = −0.75. The last column shows the number of false positives (i.e., objects
classified as arcs but not on the arc truth table) for the same configurations.

Category SExtractor ANN

Cluster A B C Not detected Blended Arc detections Nf

Abell 68 9 2 1 a9 a2, a3, a4, b1 a6, a7, a8, b2 12
Abell 383 7 4 2 a5, b1, b4 a7, b2, c2 a1, a2, a5, a6, b4, c1 3
Abell 773 1 1 1 — a1 c1 13
Abell 963 7 3 1 — a1, a3, a6 a2, a5, a7, b2, b3 15

As a comparison, we point out that the arc finder run presented in Horesh et al. (2005)

found 16 arcs in the four clusters under consideration. Restricting to the areas where we

denoted arcs for our truth table (see Figs. 4.5 and 4.6) these authors found a total of 9

arcs, 5 of which are in common with the sample of 16 arcs detected with the AMA, and 3

are blended in our detections. On the other hand, only objects with L/W > 7 are selected

by Horesh et al. (2005), while we make no cuts in this quantity. In any case, the focus in

Horesh et al. (2005) is not on completeness, but on a comparison between a real and a

simulated arc sample. A more detailed comparison of the AMA with this and other arc

finders is outside the scope of this thesis (see Bom et al., 2015, for preliminary results).

As for the false detection fraction f , it is computed as the ratio of the false positives to

the total number of nonarcs given as input to the ANN. For the configuration in Table 4.3

we have f ∼ 15%. With respect to the total number of objects detected, the fraction of false

detections is 3%.

The false positives are objects classified as arcs, but that are not on the truth table.

In principle, some of these objects could be real arcs that are missed by visual inspection.

However, we did look at all false positives and only two of them could be associated with

arcs; they were in fact pieces of arcs with multiple peaks, other pieces of which have been

identified by the arc finder. Thus these cases are negligible for the purposes of this thesis.
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In Fig. 4.7 we show c and f as a function of the threshold t for configurations A and D

combining the arc detections for the four cluster images considered in this section. Poisson

error bars are indicated. We see that the ANN achieves a reasonable completeness, ∼ 70%

for configuration D, and ∼ 50% for A, for a low threshold (t = −0.75), while still keeping a

low contamination rate, ∼ 15% and ∼ 9% for configurations D and A, respectively.

As in the simulations, configurations A and D yield values of c that are compatible with

each other in the whole range of t, taking their Poisson errors into account. However, c

differs considerably between the real and simulated data. The completeness is significantly

lower on the data and decreases more abruptly with the threshold than what was seen in the

simulations. We interpret this result as an indication that the simulations are not realistic

enough for a proper quantitative comparison with the real data. In fact, the simulated

arcs are very diverse, but do not include some relevant degrees of realism, such as surface

brightness variations in the sources and lenses with substructure. In addition, the real arcs

are often close to bright galaxy cluster members, which can affect their segmentation and

deblending (both due to contamination from the galaxies and background misestimation

on the crowded field) and thus affect their shape. The strong effect of blending with other

objects is already accounted for in our comparisons in the sense that these objects are

removed from the denominator of c. However, a less significant contamination from close-by

objects or a breaking into smaller objects affects the Mediatrix measurements and therefore

the arc detection with the ANN, which was trained in simulations that do not include these

effects.

In the validation c is a bit higher for A than D in the whole range of t. On the other

hand, in the real data there is an apparent trend for D to have a higher completeness than

configuration A for the smallest threshold. For the remaining interval the performance is

very similar among configurations A and D.

Regarding f , the results are also compatible between A and D within the error bars, and

the difference is again higher for t = −0.75. The false positive fraction drops substantially

for higher t, reaching f . 5% for t > −0.25.

Comparing the false positive fraction obtained during the validation process with those

from the runs on the HST images (bottom pannels of Figs. 4.4 and 4.7), we see that the
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Figure 4.7: Completeness c and fraction of false detections f , including Poisson error bars, for
the arcs in the 4 selected HST Abell clusters, for configurations A and D, as a function of threshold.
Data points for configuration A are shifted horizontally for clarity.

results are consistent for configuration A in the whole range of t. However, for configuration

D and t < 0 the false detection fraction is clearly higher in the validation than in the

real data. The highest discrepancy occurs for t = −0.75, but is smaller than twice the

standard deviation within the training plus validation samples. This difference could be just

a consequence of the difference in f between A and D pointed out in the previous section or

may be a difference in the behavior of f in the real data with respect to the validation.

The agreement between the validation set and the real data for f is expected; the NAG is

obtained from the same set of images from WFPC2 for the training plus validation, although

the CCDs are different and include other clusters. Thus we would expect a similar behavior

between the bottom panels of Figs. 4.4 and 4.7 for f . This is indeed the case for configuration

A and strengthens the case for a fluctuation in the false positives obtained in the simulations

for configuration D.
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4.5 Convolutional Neural Networks for Strong Lensing

detection

The AMA algorithm presented in the previous sections was conceived particularly to

objects with curvature, i.e. gravitational arcs but it turns out that the current implemen-

tation is not well suited for galaxy scale lensing, due to the blending of the arc and the

lensing galaxy light, for instance we may have Einstein Radius θE < 1′′. In this regime,

the SExtractor algorithm may blend the lens and the arcs/multiple images, particularly if

we are running in a wide field, where we may not find a suitable fine-tuning to deblend all

objects of interest. In order to have a method applicable to galaxy-galaxy Strong Lensing we

sought for methods that could be directly applied in cut outs, i.e., is not sensitive to the fine

tuning in the deblending process. The natural choice was to look into Convolutional Neural

Networks (hereafter CNN) algorithm. This kind of Neural Network has been developed for

image recognition tasks. In recent years the CNN has been used in Astronomy applications

(Hála, 2014; Hoyle, 2016; Huertas-Company et al., 2015). In particular Petrillo et al. (2017)

applied this kind of approach to Kilo Degree Survey (KiDS; de Jong et al., 2015) to search

for Strong Lenses. We developed our method and performed tests on a sample of simulated

lens as in the context of the Gravitational Lens Finding Challenge6 (PI. R. Benton Metcalf)

in which we participated using the methods described below.

4.5.1 Gravitational Lens Finding Challenge data sample

The Gravitational Lens Finding Challenge is an initiative of the Bologna Lens Factory7

(hereafter BLF) group. The BLF is a database for simulated gravitational lenses. The aim

of the Challenge is to accurately quantify the detection efficiency and bias of automated lens

detectors by running the algorithms in a sample of thousands of simulated lens.

In this first generation of the challenge, the focus was on the galaxy-galaxy Strong Lens-

ing. In the development of our CNN Lens finder method, we used two training sets from

simulations. The first C.1 mocks a space-based survey. Though it has less noise and PSF

6for further information see: http://metcalf1.bo.astro.it/blf-portal/gg challenge.html
7http://metcalf1.bo.astro.it/blf-portal/index.html
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than the second group (C.2) it is a single band survey. The data set consists of 20,000 ob-

jects among ∼ 50% lensed and ∼ 50% unlensed sources. The data set C.2 mocks a ground

based wide-field survey. It also consists of 20,000 images but in four bands u,g,r,i. The bands

represent the galaxies in the appropriate redshifts. However, we have no information of the

redshifts. The sample C.2 presents some image artifacts and masked regions. All images are

101× 101 pixels. This is an important feature as the CNN algorithm requires images of the

same size.

4.5.2 Convolutional Neural Networks

Convolutional Neural Networks are a powerful technique for supervised machine learning

well suited for image recognition (see e.g., Krizhevsky et al., 2012; Lawrence et al., 1997;

Simard et al., 2003). Particulary, algorithms based on CNNs have won the ImageNet Large

Scale Visual Recognition Competition (ILSVRC; Russakovsky et al., 2015) for four years.

The CNN main feature is that its connectivity pattern is inspired by the visual cortex

of animals, i.e., how animals process visual information. The visual cortex has a complex

arrangement of cells in which some of them are sensitive to small regions of the visual

field known as Receptive Fields. The cells assigned to the receptive fields act as local filters

and exploit strong spatially local correlations in images. The response of a given neuron

to stimuli in its receptive field is mimicked by a convolution operation. The receptive field

regions correspond to a small portion of a digital image and a sequence of convolutions of a

given input image defines a feature map. The CNNs, as a deep learning algorithm, do not

require that we input the features defined by the developer, skipping the object segmentation

process. They also have the measurement part embedded in the Neural Network. The training

process usually takes advantage of the use of Graphics Processing Units (GPUs) as in the

current method. In the following section, we describe how we implement our method for the

of the two types of samples of the challenge.



60 GRAVITATIONAL LENS DETECTION 4.5

4.5.3 Image preprocessing

We tested two simple image processing routines that visually enhance the images in

order to check if they improve the automate arc detection with CNN. We choose a contrast

adjustment and apply a low pass band Wiener filter (Wiener, 1964) to reduce the effect of

the noise. In Fig. 4.8 we present a simulated lensed image (from the lensing challenge) before

and after the wiener filter and the contrast adjustment.

Figure 4.8: The preprocessing in the images for a color composition of g, r, i (top), for g-band
(middle) and u-band (bottom).

4.5.4 CNN Lens Finder Algorithm Configurations

To implement the CNN method we propose several different configurations combining

CNNs in different ways to use multiband information available and including or not the

preprocessing phase described in the preceding subsection. To select the configuration that
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is better suited to our purposes we carry out several tests to the simulated images produced

for the lens finding challenge. As in the ANN case, the CNNs outputs a single float number

p in the interval [0, 1] in which p = 0 represents, ideally, an image with no lensed source and

p = 1 represents an image with a lensed source. As in the AMA case, for real applications,

one must choose a threshold t such that a system with p above t is considered a lens and is

classified as not lens otherwise.

As any supervised Machine Learning Methods, CNNs require a prior training process. For

the training process we adopt a similar cross-validation approach as in the AMA case: we use

90% of the sample, chosen randomly as a truth table to train the CNN. The remaining 10%

are used for validation purposes. Then we repeat this process 10 times. However, contrarily

on what we did in the case of the AMA, instead of randomly chasing the 10% of the object

each of the 10 times, we just split the sample into 10 subsamples and pick one subsample at

a time for the validation, and the other 9 for the training. In this way, any object appears

in the validation only once and the 10 validation samples are thus independent.

Later we evaluate the efficiency for each configuration by analyzing its Receiver Operating

Characteristic (hereafter ROC) curve. This curved can be defined as the Completeness c (also

known as True positive rate) versus a False Positive Rate, f , with the same definitions as the

ones described in section 4.2.4. Each point in the curve represents a given c(t) and f(t) for a

threshold t. For t = 0 we have both c = 0 and f = 0, whereas for t = 1. Thus, all ROC curves

start at (0, 0) and end at (1, 1). For a totally random classification the ROC is a straight line

c(t) = t and f(t) = t. A useful measurement of the quality of the classification is the area

under the ROC, aROC . For an ideal classifier we would have aROC = 1 and for a random

classifier aROC = 0.5. Other interesting quantities are c10 and c0, which are the completeness

when we have a maximum of 10 or 0 false positives. For our 2000 images cross-validation

groups, this represents c when f is ∼ 0.005 (for c10) and 0 (for c0). Since our cross-validation

samples are small and c10 and c0 are very sensitive to the sample size we considered only c10

in our analysis due to resolution limitations.

We have tested CNN configurations for the two sets of images made available for the

challenge: single band space-based images and ground-based images in four bands. The

current implementation of the CNN code we use work only in single band and on RGB
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colour composite. Therefore, if we want to use the information on the 4 available bands, we

will have to either combine the bands or use more than a single CNN.

We start with the simplest case of the space-based simulations. Here we have considered

two configurations:

I.s) A direct input of the single band image in the CNN for classification.

II.s) Use of wiener filter and contrast adjustment functions in the image, then using the

resulting image as a direct input in the CNN for classification.

The results will be discussed in section 4.5.5.

In the case of ground-based simulations, as mentioned above, we either combine 2 of

the 4 bands to end up with 3 bands for a single RGB CNN (configuration I below) or we

use multiple CNNs to use the information available (configuration II to VI). To combine

the outputs of several CNNs, we use a Support Vector Machine (hereafter SVM; see e.g.,

Meyer & Wien, 2015; Rebentrost et al., 2014) one of state of the art supervised ANN. The

SVN is used to combine outputs of pi of the several CNN (configurations II, III, IV and

VI). Instead of just using only pi as inputs to the SVM we also tested giving to the SVM

the CNN image features (feature maps, configuration V) as inputs. Finally, we also test the

preprocessing discussed in section 4.5.3. A more detailed description of each configuration

tested is presented below:

I) Combination of bands r and i with the average between bands u and g. Use one CNN

for classification.

II) Creation of 1 CNN for each band (total of 4). The 4 outputs are used as input to a

SVM classifier which returns the final classification p.

III) Combination into 4 different combinations of bands: RGB → (u,g,r), (u,g,i), (u,r,i)

and (g,r,i). One CNN for each combination of bands and then use of the output score as

input to an SVM classifier.

IV) Average of bands in different combinations RGB → (ug,r,i), (u,gr,i) and (u,g,ri).

The outputs of these 3 CNNs are inputs to a SVM classifier.

V) Use of CNN-activations (CNN feature maps) as inputs to a SVM classifier, using same

combinations of bands of III. The output of each CNN is used as input to a SVM classifier.

VI) Use of wiener filter and contrast adjustment on each band, then using the resulting
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images in the same architecture as III.

4.5.5 Results of the CNN Lens finder on the Space Based sample

We present the ROC curves from 10 trainings and validations subsamples for configu-

rations I.s e II.s in the space-based simulations in Fig. 4.9. The aROC , presented in table

4.4, in both configurations are mostly lower than the multi-band case, presented in the next

section, for the 4 best configurations, in which indicates how the CNNs are sensitive to color

information to find Strong Lensing. Particularly, configuration II used one CNN per band

thus not considering color information and has the same aROC as our best single band con-

figuration. However, II had more information (4 images for each entry) and a PSF greater

than II.s.

Figure 4.9: ROC curves for two Space single band configurations with its confidence levels.

The completeness c of II.s is higher than I.s within 1σ for a large range of f until t ∼ 0.3.

This result highlights the importance of the pre-processing phase. It is worth noticing that
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II.s grows very rapidly and thus it has a high completeness for ∼ 10 false positives which

is a tendency also observed in Fig. 4.9. This result suggests that even if the overall quality

of the method as pointed out by aROC analysis is lower in a single band case, for the low

end of f the use of images with lower PSFs may be more valuable in a case where one must

minimize the false positives.

4.5.6 Results of the CNN Lens finder on the Ground Base sample

We present the average of ROC curves in the multi-band data for configurations I-VI in

Fig. 4.10. The results for aROC and c10 are presented in table 4.4. In Fig. 4.11 we present the

standard deviation for the three configurations with highest aroc: III,IV and VI. Although the

aROC are very similar we see in Fig. 4.11 that VI are superior than IV considering its 1σ until

the f ∼ 10%. It is worth mentioning that in a wide-field application as lensing phenomena

are very rare and we would have several orders of magnitude less between lensing systems

and fake detections, for our purposes we should concentrate in the low end of f . For the c10

feature only I have c10 ∼ 10% greater than the others though this analysis must be taken in

consideration very careful since in the cross-validation we have ∼ 2000 images only and the

function may not have enough resolution in this extremely low range.

Table 4.4: Area under ROC and c10 for each configuration considered for the CNN lens finder
method.

Configuration aROC(%) c10(%)
I 75, 4 27, 1
II 81, 0 17, 2
III 83, 1 10, 2
IV 81, 4 15, 5
V 76, 1 12, 3
VI 84, 1 15, 5
I.s 74, 6 16, 9
II.s 81, 0 42, 6

To give an intuition on the behavior of the code, we show in Fig. 4.12 some examples of

the Strong Lensing systems recovered and some of the typical fake detections. By examining

the false positive figure we may note that, among other objects, the method classifies some

spiral galaxies as lenses.
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Figure 4.10: ROC curves for the CNN Lens finder configurations tested in multi-band images.

Figure 4.11: ROC curves for three configurations with highest aroc presented with their confidence
levels in CNN Lens finder for multi band images.
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(a) True Positives

(b) False Positives

Figure 4.12: Some examples of objects classified by the CNN Lens Finder as Lenses.

4.6 Discussion

The purpose of the chapter was to present some key aspects in the Strong Lensing finding

scenario, one recent example of a human inspection and the two Lensing finders methods

proposed in this thesis: AMA, well suited for cluster scale systems and a CNN lens Finder,

developed in the context of the Gravitational Lens Finder Challenge, and well suited for

galaxy scale lensing.We also provide a simple example of an application of AMA in 4 HST

images of Strong Lensing in clusters and the application of the CNN arcfinder to the Strong

Lens Finder Challenge. We illustrate the training and validation processes for both methods

in simulated arcs.

The major novel aspects of AMA are the use of the Mediatrix method in step 3 of the
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arc finding process and the use of simulations. The simulated arcs are used not only to

train, but also to find a good set of ANN configurations for step 4. There is room for many

improvements in the processes described in the AMA development, most notably in the use

of more realistic simulations and increasing the number of systems in the application to real

data, but also in other aspects arc detection.

On the object identification and segmentation side, betterments can be implemented in

order to detect faint sources, avoid the breaking of large arcs, improve on the deblending

with nearby objects, and to find and segment sources in high background regions, which

are known issues for arc identification. Although SExtractor does not deal with all these

issues in an optimal way for arc detection, it has been used in many arc finders for their ob-

ject identification to some degree (e.g., Estrada et al., 2007; Horesh et al., 2005; Joseph et al.

, 2014; Kubo & Dell’Antonio, 2008; Marshall et al., 2009; Maturi et al., 2014). A better per-

formance than running SExtractor in a straight way, as in the current work, has been

obtained by carrying out multiple runs of this code with different thresholds (Horesh et al.

, 2005), or by using SExtractor only for pixel thresholding (Kubo & Dell’Antonio, 2008).

Other arc finders use different approaches for object detection and segmentation, which are

specifically oriented toward identifying arcs (e.g., Alard, 2006; Lenzen et al., 2004; More et al.,

2012; Seidel & Bartelmann, 2007; Xu et al., 2016).

A key issue for detection and segmentation for arcs is that these objects are often em-

bedded in the haloes of bright galaxies (especially for galaxy-scale arcs and radial arcs) or

blended with foreground galaxies (especially for arcs in clusters). One approach that has

been implemented to address this issue is to fit and subtract the light profile of galaxies,

as in Brault & Gavazzi (2015); Sand et al. (2005). Several codes have been proposed in the

literature to this end (e.g., Barden et al., 2012; Vikram et al., 2010; Yoon et al., 2011), often

running galfit (Peng et al., 2010) recursively to fit each galaxy by a combination of ellipti-

cal brightness distributions with Sersic (1968) profiles. Advanced versions of SExtractor

also fit and subtract all identified objects in a field (e.g., Desai et al., 2012; Durret et al., 2015,

Moraes et al., in prep.). Other schemes to subtract objects from images, which could be use-

ful for arc finding have also been proposed (e.g., Jiménez-Teja & Beńıtez, 2012). The central

galaxy removal has been already exploited by Paraficz et al. (2016) and Joseph et al. (2014)
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using Principal Component Analysis (PCA) in context of other Lens finder approaches. A

different approach has been carried out by Xu et al. (2016), who propose a new detection and

segmentation scheme, working in intensity difference space, which performs well in bright

halos without the need of subtraction.

Regarding the preselection, for applications to wide-field surveys this phase must also

include the removal of image artifacts such as satellite tracks, star spikes, and regions with a

large amount of noise or with a steeply varying background. In the example of HST cluster

images, we removed noisy regions by simply cutting off objects that are close to the CCD

borders. However, the AMA code already includes a proper handling of survey masks, which

are produced to avoid bright star halos and spikes, satellites, and other image features. The

approach of Xu et al. (2016) is also well suited to remove diffraction spikes without the

need to use masks and may be useful for less bright nonmasked stars whose spikes could

contaminate the arc detection.

For object measurement, we propose the use of the Mediatrix filamentation method, and

several parameters derived from it, as it was designed for elongated and curved objects. Most

arc finders end up using fewer parameters and simpler measurement schemes to characterize

the arc candidates, such as L and L/W , and only in a few cases include estimates of the

curvature (Estrada et al., 2007; Kubo & Dell’Antonio, 2008). However, other sets of inputs in

addition to the Mediatrix inputs could be given to the ANN, such as higher order moments

of the brightness distribution, including the arcness (Kubo & Dell’Antonio, 2008).

We argue that by using a machine learning algorithm for the final candidate selection (in

this case a back-propagation ANN) one may achieve a better efficiency in finding arcs than

using hard cuts on a few variables. By working on a multidimensional parameter space, it is

possible to deal with correlations among the variables and empirically obtain combinations

that represent gravitational arcs. For example, arcs tend to be more curved and smaller at

galaxy scales than in massive clusters, such that a single cut in L/W or arcness would not

be optimal for finding arcs at both scales.

Artificial neural networks were first used by Estrada et al. (2007) to search for Strong

Lensing systems. In their case, the simulated lensed sources are arcs derived from simply

sections of a circle with a surface brightness profile that is uniform along the tangential
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direction and is convolved with a Gaussian with FWHM similar to the typical seeing of

the images. The ANN is trained using a hundred such simulated arcs covering a range of

sizes and brightnesses, which are added to SDSS images. The objects are also identified

with SExtractor and the preselection is also carried out using an estimate of the object’s

elongation. Finally, four inputs are given to the ANN, based on a fit of the object by a

circle and on a determination of the object’s length (using its furthest pixels). Estrada et al.

(2007) study the efficiency for recovering the simulated arcs both for a visual inspection and

for the automated process as a function of peak surface brightness and L/W . A maximum

efficiency of 40% (concerning the number of simulated arcs) is achieved in the automated

search. The AMA code can be seen as an improvement on Estrada et al. (2007) in the

sense that we use more realistic simulated arcs and a wider set of input measurements well

suited to characterize the arcs, in addition to tuning the ANN configurations to improve the

completeness.

Of course the key to a good performance in a learning algorithm is the realism of the

training sample. Many improvements can be incorporated into the simple AddArcs simula-

tions described in this work, such as considering more realistic lenses (e.g., Horesh et al., 2011;

Xu et al., 2016) and sources (Horesh et al., 2011; Kubo & Dell’Antonio, 2008; Marshall et al.

, 2009). Moreover, in addition to having a realistic sample of isolated arcs, those have to be

added to real images, for example, to address the issue of blending with other sources and of

embedding in the halo of bright galaxies in cluster cores. Other works have used simulations

to test arc finders, define their parameters, or train their methods, and in some cases deter-

mine the selection functions (e.g., Brault & Gavazzi, 2015; Gavazzi et al., 2014; Horesh et al.

, 2011, 2005; Joseph et al., 2014; Kubo & Dell’Antonio, 2008; Marshall et al., 2009; Xu et al.,

2016). Another possibility is to use the growing number of strong lensing systems detected

in wide-field surveys and HST images to perform the training on real data sets. For exam-

ple, over 600 candidate systems have been detected in recent studies using CFHTLS data

(Brault & Gavazzi, 2015; Gavazzi et al., 2014; Maturi et al., 2014; More et al., 2016; Paraficz et al.

, 2016), which could be used to train and better characterize the AMA and other arc finders.

By training and validating the ANN with more realistic simulated arcs or with real data,

we expect to reach a better agreement for c in comparison to applications to other data
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sets (and therefore to achieve a higher completeness), which is different from what we found

when applying our trained ANN to the HST data.

The CNN lens finder was a more direct application of a Machine Learning Algorithm,

particularly a Deep Learning Method, i.e. a method that derives the sample of relevant

features by exploring the data. The main goal in our analysis was to explore several con-

figurations, including a pre-processing and combinations of input images and concatenate

machine learning algorithms (a combination of CNNs and/or SVMs) to explore a good ar-

chitecture for our CNN lens finder. In a recent paper Petrillo et al. (2017) also use CNN for

arc finding. Although they work on the KiDS multi-band data, they use only the r -band

images and therefore their method is more comparable to our single-band implementation.

A comparison of the two codes was made as part of the Gravitational Lens Challenge and a

paper including all the participating algorithm is in preparation.

For the Challenge we worked on two samples of 100, 000 cut outs, one for the space-based

and another for the ground-based (simulated) data. We participated using configuration VI

and II.s for the ground and space based samples respectively. In the challenge preliminary

results, configurations II.s ranked third out 15 in the c0 comparison, while the Petrillo et al.

(2017) based approach were on the eleventh position. In addition, our II.s configuration

performed better than human inspection. In the area under the ROC analysis our methods

gave essentially the same results: aROC = 0.813 for our CNNs while Petrillo et al. (2017)

based approach obtained aROC = 0.818. In the multi-band data our method performed

twelfth out of 16 in the c0 analysis, but still better than at least one CNN based approach.

The CNN lens Finder also has lots of room for improvements. In particular the prepro-

cessing phase must be exploited. To deal with the blending between the light of the lens

and the source one promising approach would be to remove the light of the lens galaxy

even if we are not as sensitive to segmentation issues as discussed in the AMA algorithm.

Cut outs with the foreground galaxy subtracted would probably be more distinguishable as

lenses. Although the CNN is one of the top algorithms for image recognition, it still has

some important limitations. For instance, the images must have the same size, which is a

problem, as arcs may span a large interval in radii, especially from galaxy to cluster scale

lenses. Too big cut outs could include many objects in the cut out and too small would
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hinder the detection of large Einstein radii systems. Another important issue from running

on cut outs of the same size is that it usually implies to run over a catalog of pre-selected

objects, such as Luminous Red Galaxies (LRGs), and not the whole field. To deal with this

kind of limitation one may explore a new class of CNNs named Region-based Convolutional

Neural Networks (R-CNNs; see, e.g., Ren et al., 2015), which can detect an object in images

of any size within a wider range of angular sizes.

In general, the several Lens finders proposed in the literature carry out an end-to-end

approach from the science image to a list of candidates, implementing at least three (Pre-

selection/Preprocessing, Measuring and Final Classification for deep learning method) out

of four steps (all other Pattern Recognition methods) that we refer to in this contribution.

However, they have their own solutions for each step with different degrees of sophistication

and specificity for finding Lenses. For example, in the AMA we focus on the third and fourth

steps, respectively, by using a set of object measurement parameters that are well suited to

arcs and a trained ANN, while most methods use simple cuts on a few parameters for the

final classification. On the other hand, we use a generic object segmentation code that is not

optimal for arcs (SExtractor). In the CNN Lens Finder case we focused our efforts in the

Final Classification (Machine Learning algorithm architecture) though there is an enormous

room for sophistication in the Preprocessing phase. For most methods, these four steps could

be performed interchangeably. Therefore, if the codes are presented in a modular way, we

would be able to test the performance of each step independently. Moreover, new lens finders

could be created combining the solutions for each step that work better in specific situations.

Several possible concatenations of the lens finder modules could also be compared using their

end-to-end performance.

After a decade of progress in the development of Strong Gravitational Lens Finders,

several codes are ready for exploring the new generation of wide-field surveys in the quest

for gravitational arcs. However, more progress is still needed for fully automated runs so as

to produce samples that can be readily exploited for their applications. Besides improving

the efficiency in some situations, the most important is to limit the false positives to a

level low enough to be corrected for and certainly less than the number of real systems,

as thousands to hundreds of thousands strong lenses are expected in the forthcoming data.
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Different strategies have been proposed and implemented to address these issues. Combining

aspects of these solutions, which are more suited to each step of lensing detection, seems a

natural way to proceed. We believe that using neural networks or other machine learning

methods may provide an important contribution to the task of selecting more complete and

pure samples of gravitational arcs for a broad range of deflector scales and backgrounds.



Chapter 5

Probing Cosmology in Different

Observational Conditions

The Strong Lensing effects are sensitive to the mass distribution in the lens and the

angular diameter distances involved. It is worth mentioning that this effect does not depend

on the dynamical state of the object acting as lens and is also achromatic. As discussed in

chapter 2, one may infer the underlying geometry of the universe by assessing the cosmologi-

cal angular diameter distances. The lens equation (2.21) can be written with its cosmological

dependence explicit as

~θ = ~β + 2
c2
DLS

DOS

∇ξψ(~ξ), (5.1)

where we used 2.29, ~β is the source position and ψ the projected Newtonian potential given

by 2.25.

Therefore, in principle, to obtain the cosmological constrains provided by the angular

diameter distances one must describe the potential, i.e., the mass distribution, with a precise,

and reliable model. However, if we have information from sources at different redshifts, we

may be able to remove (or at least reduce) the dependence of the results on the lens potential.

In particular, we may be able to place constraints on certain distance ratios, from which

cosmological constraints can be derived.

The aim of this contribution is to assess how those cosmological constraints are affected

by the observational conditions, in particular by the depth and Point Spread Function (PSF)

of the images. We use a reference model constructed from deep space-based images and ex-

73
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tensive spectroscopic follow-up of a massive cluster with several families of multiple images.

We then “degrade” those images to mimic the aforementioned effects, i.e., we artificially

decrease the image depth and simulate a larger PSF. The degraded images have less identifi-

able multiple images of the sources than the original one, which will impact the cosmological

constraints derived from modeling the multiple images. In the following sections, we describe

how to obtain constrains from a set of families of multiples images, i.e., multiple images from

sources at different positions and redshifts. We then describe our procedure for degrading

the images. Finally, we present our preliminary results on how the cosmological constraints

are affected by the simulated observational conditions.

5.1 Strong Lensing Constraints from multiple images

The underlying Cosmology in the lens equation (5.1) is embedded in DLS/DOS, also

known as efficiency E, which is independent of H0 as can be seen in (2.16). The efficiency

is however degenerate concerning the absolute normalization of lens mass. To break this

degeneracy and constrain the cosmological parameters, we may use systems with multiple

sources. In this approach, the cosmological constraints arise from the distance ratios:

ΞS1,S2(~π) = D(~π)LS,1D(~π)OS,2
D(~π)LS,2D(~π)OS,1

, (5.2)

where ~π is the set of cosmological parameters and the subscripts 1 and 2 refer to sources at

redshifts zs1 and zs2 respectively.

To illustrate why the distance ratios are the physical quantity determined by the use

of sources at different redshifts, let us consider the very simple and idealized case of a

double Einstein ring produced by a Singular Isothermal Sphere (SIS) model with velocity

dispersion σv. The rings are generated by sources at redshift zs1 and zs2. In this case, the

observed “source positions” are the Einstein radii, θE1 and θE2, given by Eq. (2.35). The

dependence on the SIS mass parameter σv can be removed by computing the ratio of the

Einstein radii:

θE1

θE2
= 4πc2σ2

vDLS,1DOS,2

4πc2σ2
vDLS,2DOS,1

= DLS,1DOS,2

DLS,2DOS,1
. (5.3)
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Therefore, the observable quantities determine the distance ratios, in a way that is inde-

pendent of the lens mass parameters. Of course this is a very idealized model and the lens

parameters may not cancel exactly in more realistic cases. Nevertheless, it is useful to gain

some intuition on how we may use several sources to assess the underlying cosmology and

reduce the degeneracies with the lens mass parameters.

To reach acceptable constraints one must use several families of multiple images arising

from sources at different redshifts. This approach has been used with a few massive clus-

ters with extensive spectroscopic coverage for the sources. See, for instance Caminha et al.

(2016a); Jullo et al. (2010); Soucail et al. (2004), which apply these ideas to the galaxy

clusters Abell S1063 (also known as RXC J2248.7−4431), Abell 1689 and Abell 2218, re-

spectively. If we fix a high redshift source zs2, the most suitable redshift for zs1 to distinguish

between different cosmological models is zs1 ≈ zL. The highest the difference between zs2

and zs1 the best is the constraint (Golse et al., 2002). It is worth noticing that a source

redshift close to the lens redshift means that the strong lensing cross sections are smaller

and the image must be very close to the lens center which make the detection difficult since

the it might be embed in the BCG light. Nevertheless, the difference between different Cos-

mological scenarios are of order of few %, for instance Golse et al. (2002) shown that is less

than 3% between the Einstein-de Sitter model (EdS) and a flat ΛCDM one, indicating that

we must have a robust and accurate model for the lens mass distribution in order to define

cosmological constraints.

Such requirements lead to a concern on how the systematics in strong lensing modeling

may bias the determination of the mass distribution. In Priewe et al. (2016) the authors show

that magnification maps based on different lens inversion techniques may differ from each

other by more than their nominal statistical errors, which indicates that some models under-

estimate their uncertainties. Substructures in the lens, whether baryonic or dark matter may

also bias the modeling and resulting in the so called flux ratio anomalies (Despali & Vegetti,

2016; Gilman et al., 2016).

The study of possible biases arising from the analyses of clusters with many families of

multiple images is a very relevant and active topic of research in the field. In this chapter.

we focus on one aspect, namely what happens if we have observational conditions (especially
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depth and seeing) that are worse than those deep space-based data used in the current studies

of cosmology with strong lensing. This is particularly relevant for the next generation surveys,

such as the Large Synoptic Survey Telescope (LSST; LSST Sci. Collaboration et al., 2009),

the Euclid Mission (Refregier et al., 2010), and the Wide-Field InfraRed Survey Telescope

(WFIRST; Spergel et al., 2015). By how much are the error bars on cosmological parameters

enlarged from analyses of strong lensing clusters on the data from these surveys? Do biases

on these parameters arise with respect to the high-quality data? This will be addressed in

the following sections.

5.2 Strong Lensing Modeling and data

5.2.1 RXC J2248.7−4431

We focus our analysis on the cluster RXC J2248.7−4431 (hereafter RXC 2248), in which

RXC stands for ROSAT X-ray Cluster. This cluster was first cataloged in Abell et al. (1989)

as Abell S1063. It is a rich cluster at redshift zL = 0.348, with X–ray bolometric luminos-

ity of (6.95 ± 0.1) × 1045 erg s−1 with the X-ray temperature within R500 as 11.1+0.8
−0.9 keV

(Maughan et al., 2008). This cluster has dozens of multiple images many of them are spectro-

scopically confirmed (see, for example, Caminha et al., 2016b). This cluster was extensively

analysed by several authors (e.g. , Boone et al., 2013; Cruddace et al., 2002; Gruen et al.

, 2013; Karman et al., 2016, 2015; Richard et al., 2014). There is an evidence that indicates

that RXC 2248 may be a merging system, which is supported by an offset between the

galaxy distribution and the peak of X-ray isophotes. It is worth noticing that the analysis

in Gómez et al. (2012) shows that the velocity distribution is better fitted in the merging

model. However, previous strong lensing analyses (Johnson et al., 2014; Monna et al., 2014;

Richard et al., 2014) have shown that the cluster total mass distribution of RXC 2248 can be

reliably modelled by a single elliptical dark matter halo, added to the galaxy cluster mem-

bers. Many studies have measured the cluster mass with a reasonable agreement (on the

order of 1014 solar masses) using different probes. In particular, we mention an analysis that

compares the robustness of the stellar mass fraction for a high quality set of images from

Cluster Lensing And Supernova survey with Hubble (CLASH) and the wide-field ground
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based image from the Dark Energy Survey (DES) by Palmese et al. (2016). The authors

report that they are able to estimate stellar masses from ground based images (DES) within

25% of deep space images (HST-CLASH) values.

5.2.2 Imaging data

For our reference model we use images from the Frontiers Field project (FF; Lotz et al.

, 2016) which is a director’s discretionary time campaign with HST and the Spitzer Space

Telescope. The survey imaged six clusters for over 840 HST orbits with 5σ depth magAB ∼ 29

in seven filters using the Advanced Camera for Surveys (ACS) and the Wide Field Camera 3

(WFC 3). To obtain some of the degraded models for our studies, we have also used images

from Cluster Lensing And Supernova survey with Hubble (CLASH; Postman et al., 2012).

The survey imaged 25 massive galaxy clusters in 17 filters with 5− σ depth magAB ∼ 27.5.

We are particularly interested in the filters F475W, F625W and F775W which roughly cor-

respond to g,r an i bands with limiting magnitudes 27.6, 27.2 and 27.0 for 5σ limiting mag-

nitude, respectively. To constrain our models we make use spectroscopic redshifts available

for RXC 2248, many of them obtained as part of Very Large Telescope (VLT) spectroscopic

follow-up campaigns with the VIsible Multi-Object Spectrograph (VIMOS; Le Fèvre et al.

, 2003) and the Multi Unit Spectroscopic Explorer (MUSE; Bacon et al., 2010). The red-

shift data is described in Balestra et al. (2013); Boone et al. (2013); Caminha et al. (2016a);

Karman et al. (2016, 2015); Richard et al. (2014).

5.2.3 Modelling definitions

Our starting strong lensing model, which is revisited after the degradation procedure, is

built upon the presented in Caminha et al. (2016a) with minor changes discussed below. The

modeling is performed by a parametric approach using the Lenstool software (Jullo et al.

, 2007).

Since the optical and X-ray images do not indicate a large asymmetry nor massive sub-

structures near the multiple images, three dominant components were considered for the

total mass distribution in the lens modelling. The first one is a smooth component describ-
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ing the halo(s) of extended dark matter distribution. The second to accounts for the mass

distribution of the Brightest Cluster Galaxy (BCG). The third component is made out of

small scale halos associated to cluster members. In Caminha et al. (2016a) the authors used

the three components and checked if the presence of external shear could improve the overall

fit, though they could not find any significant improvement. However, with the addition of

new multiple families described by Karman et al. (2016), they found that the overall fitting

gets improved with the addition of an additional halo component associated to a secondary

system of multiple images. In this contribution, we performed the modeling using these four

components. The three main halos were modeled by a Pseudo Isothermal Elliptical Mass

Distribution (hereafter PIEMD, Kassiola & Kovner, 1993) with projected mass density given

by (2.36). This is a parametric model with 6 free parameters which follow: the centre position

x0 and y0, the ellipticity and its orientation angle1, i.e. ε and θ, the velocity dispersion σv

and the core radius rcore.

To account for the cluster member halos, we considered only galaxies within 1′ radius from

the BCG center. This radius was chosen since it encloses all multiple images considered. This

condition improves the computational time, and it is worth noticing that we do not expect

outer regions to affect significantly the positions of multiple images and, as a consequence,

the constraints. The procedure to determine a cluster member is described in Caminha et al.

(2016a), which is our reference model, we include 139 cluster members in the model, 64 of

which are spectroscopically confirmed.

We consider each cluster member as dual pseudoisothermal elliptical mass distribution

(dPIE, Eĺıasdóttir et al., 2007). For simplicity, we choose zero ellipticity and core radius, and

a finite truncation radius rcut. Following a standard procedure in cluster-scale strong lensing

analyses and to reduce the number of free constrains (e.g., Grillo et al., 2015; Halkola et al.

, 2006; Jullo et al., 2007) we use the following velocity dispersion-luminosity and truncation

radius-luminosity scaling relations for each i member:

σgalsv,i = σgalsv

(
Li
L0

)0.25
, rgalscut,i = rgalscut

(
Li
L0

)α
, (5.4)

1the horizontal is the principal axis and the angle is counted counterclockwise
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where σgalsv and rgalscut are constant for all galaxy cluster members, L0 is a reference luminosity

associated to the second most luminous cluster member, marked in a magenta circle (Fig.

5.1). The first relation describes the velocity dispersion scaling with the total luminosity as

in the the Faber-Jackson relation. For the second relation we pick α = 0.5 which, as we will

see below, represents a constant mass-to-light ratio. Considering this the total mass in a

cluster member is

Mi = π

G
(σgalsv )2rgalscut

(
Li
L0

)
, (5.5)

Therefore, from now on, there are only two free parameters for the whole set of galaxy

cluster members, the reference velocity dispersion σgalsv and truncation radius rgalscut , with

exception of the BCG for each σBCGv and rBCGcut is fitted independently.

15 ′′

Figure 5.1: Colour composite image of RXC J2248 overlaid with the Chandra X-ray contours
in white (Gómez et al., 2012). Red circles indicate the selected cluster members in the reference
model. The magenta circle shows the second brightest cluster member. Its luminosity is used as the
reference for the normalization of the mass-to-light ratio of the cluster members, figure reproduced
from Caminha et al. (2016a).

To obtain the Cosmography we used a set of 15 families with 41 multiple images. We

follow the nomenclature from Caminha et al. (2016a) in which a family is identified by a

number and its multiple images by a letter. We also added 5 families (23− 28) which were

identified using MUSE data in Karman et al. (2016). Images which were not spectroscopi-

cally confirmed, that are close to a cluster member, possibly lensed by Line of Sight (LOS)
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structures, or not having a secure counter image were excluded. The multiple families and

images for our reference model are presented in Table 5.1. All images used in the reference

model were visually identified in a stacked image using FF data in filters F435W, F606W,

F814W, F105W, F125W, F140W, F160W. We used the Trilogy application (Coe et al., 2012)

to combine the filters and to define a scale that improved the visualization. Trilogy re-scales

the image by defining a log scaling constrained at three points, this, in general, improves the

visualization by enhancing the faint objects while not saturating bright sources. The code

returns png images that we converted to fits files. The Trilogy code has been recently used

by the CLASH team and also by the DECam Legacy Survey (Blum et al., 2016) team.

5.3 Inverse Strong Lensing Modelling

In order to derive the free Cosmological and cluster parameters, we have used an opti-

mization method to fit the data based on a Bayesian Markov Chain Monte Carlo (MCMC)

approach implemented in the software Lenstool (Jullo et al., 2007). From the lensing model

and the peaks of the image position, which are the constraints we may define the χ2 from

multiple image system i as

χ2
i =

ni∑
j=1

[xjobs − xj(~π, ~∆)]2
σ2
ij

, (5.6)

where ni is the number of images from the source i, xj(~π, ~∆) is the position of the peak

of image j predicted by the lensing model, whose halo parameters are ~∆, the Cosmological

parameters are ~π and the error on the position of image j, is σij. In the optimization process,

we assume that the errors associated with the measurement of the image positions are

Gaussian and uncorrelated from one image to another. Thus, we may define the likelihood

function as

L = Pr
(
D|x(~π, ~∆)

)
=

N∏
i=1

1∏
j σij
√

2π
exp−

χ2
i

2 , (5.7)

where N is the number of sources.

Since we are considering a situation in which the available data is not completely sufficient
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Table 5.1: Multiple image systems in RXC J2248.7−4431

ID RA DEC zspec

2a 342.19559 −44.52839 1.229a,b,d

2b 342.19483 −44.52735 1.229a,b,d

2c 342.18631 −44.52107 1.229a,b

3a 342.19269 −44.53118 1.260a,b

3b∗ 342.19212 −44.52984 1.260a,b

3c 342.17986 −44.52156 1.260d

4a 342.19317 −44.53652 —
4b 342.18782 −44.52730 1.398a,b

4c 342.17919 −44.52358 1.398a,b,d

6a 342.18847 −44.53998 1.428a,b,e

6b 342.17585 −44.53254 1.428e

6c 342.17420 −44.52831 1.428d,e

7a 342.18006 −44.53842 1.035e

7b 342.17554 −44.53590 1.035e

7c 342.17191 −44.53023 1.035e

13a 342.19369 −44.53014 —
13b 342.19331 −44.52942 —

14a 342.19088 −44.53747 6.112b,c,e

14b 342.18106 −44.53462 6.111b,c,e

14c 342.18904 −44.53004 —
14d 342.17129 −44.51982 6.111b,c

14e 342.18408 −44.53162 —

18a 342.18150 −44.53936 4.113e

18b 342.17918 −44.53870 4.113e

20a 342.18745 −44.53869 3.118a
20b 342.17886 −44.53587 3.118a
20c 342.17065 −44.52209 —

23a 342.19023 −44.52976 0.73010f
23b 342.18954 −44.52882 0.73010f
24a 342.1983800 −44.53575200 2.97800f
24b 342.1924400 −44.52506900 2.97800f
24c 342.1815100 −44.52025400 2.97800f
25b 342.1887700 −44.52277200 5.23730f
25c 342.1838000 −44.52123800 5.23730f
26a 342.1908500 −44.53565600 5.05100f
26b 342.1901500 −44.53095900 5.05100f
27a 342.2021700 −44.53211100 3.28600f
27b 342.1960800 −44.52295300 3.28600f
27c 342.1893000 −44.51871800 3.28600f
28a 342.1991000 −44.53600400 3.16900f
28b 342.1919800 −44.52417700 3.16900f
28c 342.1829200 −44.52031200 3.16900f

Multiple images used in our reference model with their coordinates and redshifts. The coordinates
correspond to the luminosity peak used in the strong lensing models. a Caminha et al. (2016a) b

Balestra et al. (2013); c Boone et al. (2013); d Richard et al. (2014); e Karman et al. (2015); f
Karman et al. (2016).



82 PROBING COSMOLOGY IN DIFFERENT OBSERVATIONAL CONDITIONS 5.4

or reliable to determine the models one may infer that the use of a Bayesian approach may

be useful for the model fitting by the use of priors and/or in combinations of data from

other experiments. For the model x(~π, ~∆) with the parameters ~π, ~∆ and given data D we

may write the so-called Bayes Theorem as:

Pr
(
~π, ~∆|D, x(~π, ~∆)

)
=

Pr
(
D|x(~π, ~∆)

)
Pr(~π, ~∆)

Pr(D) , (5.8)

where Pr
(
~π, ~∆|D, x(~π, ~∆)

)
is the posterior Probability Density Function (hereafter PDF),

Pr(~π, ~∆) is the prior PDF for the parameters, and Pr(D) is a normalization factor known as

the evidence. The best fit parameters are the parameters from the maximum in the posterior

PDF. The evidence can be interpreted as the probability of getting the data D given a model

x(~π, ~∆) and can be used to quantify the complexity of the model, and thus used in model

selection.

In the present case, we have nontrivial posterior PDFs and also dozens of parameters from

the halos, cluster members and Cosmology. Therefore, it is reasonable to use Markov Chains

to converge progressively from the prior PDF to the posterior PDF due to the computational

time involved. The current implementation of Lenstool uses 10 interlinked Markov Chains

at the same time to avoid any of them from falling in a local minimum.

In all results discussed in this thesis, we considered a flat XCDM cosmology with H0 =

70 km/s/Mpc, free ΩM and a Dark Energy equation of state p = wXρ, as the one in section

2.2 where we set wX = −1 for a Dark Energy model, with free wX . We set a flat prior for

both ΩM and wX ranging from 0 to 1 and 0 to −4 respectively. We choose a large range

of priors for wX since in previous Cluster Strong Lensing studies (for instance, Jullo et al.,

2010; Soucail et al., 2004) the contours are very degenerated for w > 1 and we are interested

in the analysis of the uncertainties arising from the degraded models.

5.4 Mimicking observational effects

Simulating images in different observational conditions has become an essential task for

obtaining realistic forecasts in astrophysics and cosmology (e.g., Bergé et al., 2013; Bertin,
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2009; LSST Sci. Collaboration et al., 2009; Overzier et al., 2012). Before designing an exper-

iment is it crucial to understand what may be obtained from data and how the experiment

systematics behave, e.g., if the planned constraints are feasible and competitive to other

probes and surveys.

In this section, we discuss a more direct approach, starting from the real images, to

simulate different observational conditions. We concentrate our efforts on how to add obser-

vational effects in images, i.e., how to degrade images, to mimic several observational condi-

tions. Our ultimate goal is to investigate the bias in Cosmology from the inverse modeling of

strong lensing systems with families of multiply imaged sources due to image degradation.

5.4.1 Point Spread Function

The Point Spread Function, thereafter PSF, characterizes the response from an imaging

system to a point source, i.e., how the incident photons are displaced due observational effects

such as scattering from atmosphere for ground-based images, or by instrumental issues, for

instance, telescope motion blurring (jitter and guiding errors), instrument diffraction and

aberrations, optical diffusion effects, or intra pixel response (see, for example, Bertin, 2009).

To simulate the PSF we worked with a Gaussian profile

G(r) = 1√
2πσ

exp
(
− r

2

2σ

)
, (5.9)

where σ = PSFin
2
√

2 log 2 , to mimic these effects.

The procedure to add a PSF in HST images with a subtracted background is the follow-

ing:

1. As the images used in this work had their background subtracted is necessary to

estimate their original background. This is so because when we decrease the S/N , we must

be able to compute the noise from the background (which, of course, is not changed when we

subtract the constant background). We assume that the background effects are essentially

a Poisson process where the variance σ is equal to mean N . Therefore by measuring the

noise from the background, we are able to recover the original background. For this sake,

we Select an area in the original image with no visible sources. Then convert the counts to
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units of charge by using the effective gain. Then we define the estimated background as the

variance of this image histogram.

2. To determine the PSF in the original image we run SExtractor. Using the output

catalog we select a stellar box in the Flux Radius, Rf , versus magnitude M plot. We eliminate

objects with FLAGS> 0 (a SExtractor quality flag) and MAGERR > 0.1 (the uncertainty

in magnitude, δmag). We use the mean 2 × Rf and its standard deviation to estimate an

initial2 PSF0. To determine the output PSF (FWHM) we sum in quadrature:

PSFout =
√
PSF 2

0 + PSF 2
in, (5.10)

3. We add the estimated background to the original image in charge units. Next, we

convolve the image with the Gaussian Kernel with a width σ computed from PSFin.

4. Then we add a Poisson noise as follows: each pixel is assigned a new value sampled

from a Poisson distribution with the mean given by that pixel value in charge units.

5. Finally, the (constant) background is subtracted from the convolved image.

In Fig. 5.3 we show the original image of RXC 2248 from the CLASH survey for three

filters (F475W, F625W and F775W) and the resulting image after Gaussian convolution

with a PSF with FWHM = 0.9”. To check our procedure, i.e., to evaluate if the actual

PSF of the convolved image matches the expectation from Eq. (5.10), we need to obtain the

stellar box in the resulting image. This was not possible to be done using the HST images of

RXC 2248, as they have very few stars. Therefore, as a test, we consider a DES image which

covers this same system, but with a much wider field of view. In this case, of course, we have

to convolve with PSFs larger than the DES one. The results are shown in Fig. 5.2, where

we display the difference between the measured and expected PSF FWHM. The initial PSF

obtained in step 2 was 1.2′′. In general, using the above procedure, we recover the desired

PSF within less than 10%, which is less than the pixel scale and enough for the purposes of

this study.

2In the case of the HST images of the cluster under consideration, there are not enough stars to measure
the PSF. In this case, we use a typical value of PSF0 = 0.1′′ from Postman et al. (2012).
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Figure 5.2: Deviations between the measured output PSFout from the Gaussian convolution and
the input desired PSFin for a DES tile containing RXC 2248.

5.4.2 Limiting magnitude

When observing astrophysical sources through CCDs, the signal, S, indicates the number

of photons detected from a given source. However, since the CCDs detect only a fraction of

the photons, converting them to electrons (in charge units) we assume that the S is given

by the electrons detected. The ratio between electrons/photons is named quantum efficiency

and it ranges, typically, from 50− 85%.

The Noise represents the random contribution due to several effects which impacts the

Signal such as, sky noise, electrons that are coming from thermal radiation of the detector

itself and read-out noise. The noise may be interpreted as the error on the flux measurement.

Thus, Signal-to-Noise ratio, thereafter SNR, is a measurement that describes the detec-

tion quality. We may define it as

S

N
= µ

σ
, (5.11)

where µ is a measurement, in our case the magnitude, and σ is its uncertainty. Eq. (5.11)

consequence is that the SNR is an inverse measurement of the fractional uncertainty for a

direct measurement. Thus by changing the SNR we actually change the limiting magnitude.
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From the definition of magnitude m:

m−m0 = −2.5 log10 f, (5.12)

where f is the flux and m0 is the magnitude zero point, If we consider a linear relation

between the Signal S in charge units and some flux units f = C0S, and also a magnitude m

and its uncertainty δm have

m± δm = C0 − 2.5 log10 (S ±N), (5.13)

where C1 = m0 + log10C, from which we may derive

δm = ±2.5 log10

(
1 + 1

SNR

)
, (5.14)

which may be expanded to

δm = ±1.0875
(

1
SNR

− 1
2

( 1
SNR

)2
+O(3)

)
, (5.15)

δm ≈ ±1.0875
SNR

. (5.16)

If one considers the image pixel values mainly as a Poissonic process, we have SNR ≈

N/
√
N =

√
N , where N is the counts. This hypothesis indicates that we may change the

limiting magnitude, or SNR by multiplying the counts, in units of electric charge, by a

factor F . The relation between the original SNRold and the new signal-to-noise would then

be given by:

SNRnew =
√
F × SNRold. (5.17)

The procedure to determine F and validate the results is described below:

1. We determine the original depth (i.e. limiting magnitude) of the image using a MAG×

MAGERR diagram, where these quantities are taken from the SExtractor catalog. The limit-

ing magnitude is given by the intersection of the resulting curve (binned in MAGERR) with

the desired SNR (or equivalently δmag from Eq. 5.16). In Fig. 5.4(A) we show the results for
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Figure 5.3: Colour composite image of RXC J2248 from the F475W, F625W and F775W filters.
Left: Original CLASH Image, with limiting magnitude ∼ 27.6 and assumed PSF 0.1′′. Center:
Limiting magnitude reduced to 26. Right: convolved with a Gaussian PSF, with FWHM=0.9.

a chosen SNR = 5 (i.e. δm = 0.2175), from which we recover the original limiting magnitude

of the image, mlim = 27.4.

2. To determine the factor f we use again the MAG×MAGERR diagram. Setting a new

limiting magnitude mnew
lim gives us the corresponding SNR in the original image SNRnew, or

equivalently, δmagnew. Therefore, using Eq. (5.17), the f factor will be given by

F =
(

δmag
δmagnew

)2

=
(

SNRnew

SNR

)2

, (5.18)

where SNR is the significance chosen for the magnitude estimation in the original image (in

this case SNR = 5).

3. Now we take the original image, in units of electric charge and with the background

added (as discussed in section 5.4.1) and multiply all counts the the factor F .

4. Finally, we add back the Poisson noise to the resulting image and subtract the new

background (as described in section 5.4.1). Here we assume that the Poisson noise from the

original (deeper) image is significantly smaller than in the one with lower SNR, such that we

sample the Poisson noise from the rescaled counts in the original image without removing

its noise.

In Fig. 5.4(B) we show and example of the resulting MAG×MAGERR diagram obtained

from the RXC image from CLASH following the procedure above with a chosen mnew
lim = 26.

By choosing the SNR = 5 (i.e. δmag = 0.2175) we recover precisely this target magnitude.

Using the described algorithm, we were able to obtain the initial depths compatible with



88 PROBING COSMOLOGY IN DIFFERENT OBSERVATIONAL CONDITIONS 5.4

Figure 5.4: Magnitude versus error in magnitude for RXC 2248 in a CLASH image in the F475W
filter (Postman et al., 2012). Left (A): in the original image. Right (B): in the degraded image
with decreased SNR. The horizontal lines are set at SNR = 5, such that the vertical lines show
the limiting magnitude for this chosen SNR. Reported magnitudes are measured by SExtractor in
circular apertures of 0.4 arcsec in diameter.

the ones in Postman et al. (2012) within 0.1-0.2 mag and recover the target limiting mag-

nitude within 0.1-0.2 in degraded images even without using the rms maps while measuring

the original images from SExtractor. For the Hubble Frontier Fields data if one does not

consider the rms to measure the original images the initial depths are overestimated from

0.3 to 1.0 mag, which can be fixed by using the rms maps. However, in this case the scatter

in the magnitude errors are higher which affects the estimation of F and thus the target

limiting magnitude recovery which deviates from 0.3 − 0.7 from the target limiting magni-

tude, depending on the filter. For the model evaluation in the next sections, we considered

the recovered limiting magnitude.

5.4.3 Degraded Models

We used the procedure described in the previous subsections to produce a set of degraded

models from which we derive the Cosmology. To define a model in the degraded images we

visually identify the multiple images on the color stacked images. It is worth noticing that,

as we already know the images in the reference model this procedure represents an upper

limit on the number of the multiple images that could be really found in the degraded

observational conditions.

Another important point is that we only consider systems of multiple images where at
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least one image has a spectroscopic redshift. This is so because it has been shown that

the inclusion of systems with photo-z may make the the resulting cosmological constraints

weaker (as in, e.g., Caminha et al., 2016a). In particular, the system under consideration has

15 sources with spec-z from MUSE and VIMOS from Balestra et al. (2013); Boone et al.

(2013); Caminha et al. (2016a); Karman et al. (2016, 2015); Richard et al. (2014). Therefore,

our systems identified in the degraded images will be a subset of this sample. As Sources with

only one image, i.e. no counter image, are highly degenerate with cluster and cosmological

parameters if only single image from a family (see table 5.1) still classified as visible in the

degraded model we excluded it in the lens inversion. Hence, for each model, we define a group

of visible images with Nv images and Fv families and a group of images which were effectively

used in the lens inversion with Neff images. These numbers along with a description and ID

for each model are presented in table 5.2.

To determine the image positions in the reference model, we employ the procedure de-

scribed in Caminha et al. (2016a), in which different iso-luminosity contours around each

peak are drawn and we determine the position of the centroid of the innermost contour

enclosing a few pixels. The peaks of the light distribution of different multiple images corre-

spond to the same position on the source plane.

First, we considered how multiple images may be lost by going from FF images, where

our reference model is defined with all 41 visible images, to those of CLASH. We considered

a color composite of CLASH data using the following bands: F435W and F475W (for Blue),

F606W, F625W, F775W, F814W, and F850W (for green) and F105W, F110W, F125W,

F140W, and F160W (for red). The results from the visual inspection in CLASH are shown

in table 5.2. We see that in this case 4 images are no longer visible. By just using the filters

F475W, F625W and F775W which roughly correspond to the SDSS g, r and i bands (see,

e.g. Abazajian et al., 2009; York et al., 2000), the effect is even more dramatic: we lose 9

images in 3 families from our reference model, particularly images that are mostly red. It is

worth noticing that in a model with FF data but depth reduced below CLASH values the

resulting model has more visible images and families than the CLASH model in 3 SDSS-

like bands which suggests that the loss in depth should affect the models less than the loss

of flux in redder bands. We considered two models with PSF = 0.6, one from FF (F3)
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and another from with 3 filters from CLASH (C4). This PSF would be a typical value that

would be achieved with good seeing from the ground, for instance, KiDS (de Jong et al., 2015,

thought this is much shallower), or with LSST3 (LSST Sci. Collaboration et al., 2009) which

will reach limiting magnitude ∼ 27 in 10 years releases. We also considered a FF model

with limiting magnitude reduced to 26.74, which is roughly 1 magnitude shallower than

CLASH. We considered a model with 3 SDSS-like filters and with limiting magnitude4 26.1

and 25.0, which is feasible to a wide field survey, particularly if we consider a space-based,

with PSF ∼ 0.1′′ like WFIRST (Spergel et al., 2015). In all models except for the ones with

PSF degradation, the Trilogy algorithm scale was sufficient to visualize the multiple images.

In the PSF degraded images the trilogy defined scales that made most of the objects very

faint and it was necessary to vary the scale parameters in the DS9 visualization software5 in

order to define which multiple images are visible.

In Fig. 5.5 we present the sources and the images as function redshift for each considered

model. We used bins with 0.5 width in redshift. From this figure one may infer that the

models may be split in two major groups, one containing the most degraded models C3, C4

and C5 with very few sources at high redshift. C3 and C4 have 1 source in the range [2.5, 3)

and two in the range [3, 3.5), while C5 has only one source in each of these ranges. The second

group contains the less degraded models: F1, F2, F3, C1 and C2. This group has sources

with redshift above 3.5 and have more sources in the range [2.5, 3.5). Golse et al. (2002) and

(Caminha et al., 2016a) argued that sources in higher redshifts range would be more suitable

to define distance ratios that would be able to constrain Cosmological parameters.

.

5.5 Results

We explored the degraded Strong Lensing Models discussed in the previous sections fo-

cusing on their ability to constrain a flat XCDM cosmological model with free Ωm and

w. We present our results for those parameters along with constraints from the combina-

3for further information see https://confluence.lsstcorp.org/display/LKB/LSST+Key+Numbers.
4 We present the limiting magnitude recovered from the procedure described in 5.4.2 rather than the

input limiting magnitude.
5For further information see http://ds9.si.edu/site/Home.html
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Table 5.2: Number of identified families Fv, multiple images identified Nv and number of images
effectively used images in the lens inversion Neff for each model of RXC J2248.7−4431.

Model ID Model Description Fv Nv Neff

F1 FF original maglim ∼ 29 15 41 41
F2 FF maglim = 26.7 13 33 33
F3 FF - PSF = 0.6′′ 13 34 32a
C1 CLASH original maglim ∼ 27.6 13 37 36
C2 CLASH 3 filters 12 32 31
C3 CLASH 3 filters - maglim = 26.1 9 26 24
C4 CLASH 3 filters - PSF = 0.6′′ 9 25 22
C5 CLASH 3 filters - maglim = 25 7 18 17

aThe family 28 was visible with only two multiple images and the model had difficulties to
converge. Thus we have removed this family in this case.

Figure 5.5: Number of Images (top) and Sources (bottom) as a function of the source redshift for
each model: FF (F1, green), FF with limiting magnitude 26.7 (F2, red), FF with PSF = 0.6′′ (F3,
? in cyan), CLASH (C1, magenta), CLASH with 3 filters (C2, black), CLASH with 3 filters and
with limiting magnitude 26.1 (C3, blue), CLASH with 3 filters and with PSF = 0.6′′ (C4, cyan)
and CLASH with 3 filters and with limiting magnitude 25.0 (C5, yellow). The points were shifted
horizontally for clarity.

tion with Planck data (Planck Collaboration et al., 2014) in table (5.3). The Planck data

used is a combination of Planck temperature power spectrum with a WMAP polariza-

tion low-multipole likelihood. It is worth noticing that all Strong Lensing only results pre-
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sented, except for CLASH with limiting magnitude 25, agree within 1σ with the combina-

tion of Planck6 with cosmic shear (i.e., Weak Lensing) data, Baryon Acoustic Oscillations

(BAO), type Ia Supernova values, which yields Ωm = 0.3089± 0.0062 and w = −1.019+0.075
−0.080

(Planck Collaboration et al., 2016). The confidence contours and PDFs for Ωm and w for

each model are presented in Figs. 5.6 to 5.13.

An interesting feature concerning the contours in the Ωm × w plane is that the Strong

Lensing data is complementary to the one from CMB, and its overall shape remains qual-

itatively the same for all models with the exception of C4 and C5, which are the most

degraded7. We also noticed that the confidence contours are qualitatively comparable to a

similar Strong Lensing analysis in Abell 1689 by Jullo et al. (2010). From the plots, we see

that the best-fit to the combined data (SL+Planck) in the Ωm x w plane is shifted to the

border of the 1σ Planck contours. This is so for all models from the less degraded ones (F1,

F2, F3, C1, C2) and two in the more degraded ones (C3 and C4), indicating that this result

is robust, even with the loss of ∼ 40% of the image families.

From table 5.3 we notice that although the Strong Lensing constraints are very degenerate

in the lower limit of w they may constrain its upper limit with error bar comparable to the

Planck one with a single cluster and even with shallow images with depth reduced to 26.7 if

one considers a coadd of several bands, including the redder ones. It is also worth noticing

that the stringent upper limits on w were first obtained in this work. This is due to the new

set of images that we employ for constraining cosmology for the first time. A previous work

concerning the CLASH+VIMOS and MUSE data from Caminha et al. (2016b) obtained

Ωm = 0.250.11
−0.14 and w = −1.20+0.25

−0.47 for a model with spectroscopically confirmed families

only. This previous result is comparable to models of the less degraded group F1, F2, F3, C2

and particularly C1, which represents what can be seen with CLASH. On the other hand,

in that paper, the lower limit of w is much better constrained than in the present results.

We believe that this lower limit might be dominated by the prior in w, as Caminha et al.

(2016b) use a flat prior ranging from 0 to −2.

There is a major difference between the two groups, the less degraded in comparison to

6For further details see table 4 and 5 in Planck Collaboration et al. (2016)
7Despite of the fact that their uncertainty regions are larger when the models are more degraded.
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the more degraded, which confirms the expectation that to obtain better constraints it is

important to have high redshift sources. Despite of the bias in C3 and C4 when considering

Strong Lensing only, we may note that the results for the analyses are still consistent in 1σ

with those from F1, the reference model, with very similar error bars to C2, which suggests

that the observational effects may increase the bias but not change much the error bars. The

most significant change in error bars from one model to the next one with fewer constraints

was in the Ωm from C1 to C2, in which the upper error has doubled suggesting that the loss

of the readder images when changing from CLASH with 12 bands to CLASH with 3 bands

are more important than the change in depth.

Table 5.3: Cosmological parameters Ωm and w for the Strong Lensing analysis for each model
of RXC J2248.7−4431 and the results for Strong Lensing in combination with Planck data. The
errors represent 1σ confidence levels.

Model Ωm w Ωm (SL+Planck) w (SL+Planck)

Planck Only 0.16+0.10
−0.02 −1.67+0.48

−0.16
F1 0.36+0.08

−0.16 −1.03+0.05
−1.99 0.28+0.02

−0.05 −1.14+0.05
−0.27

F2 0.34+0.10
−0.14 −1.03+0.16

−2.20 0.24+0.02
−0.08 −1.24+0.05

−0.38
F3 0.36+0.14

−0.16 −1.03+0.05
−2.20 0.24+0.04

−0.08 −1.14+0.05
−0.48

C1 0.34+0.10
−0.14 −1.03+0.05

−2.31 0.24+0.04
−0.04 −1.24+0.05

−0.27
C2 0.34+0.26

−0.10 −1.14+0.05
−2.20 0.24+0.04

−0.04 −1.24+0.16
−0.27

C3 0.48+0.28
−0.20 −0.92+0.05

−2.52 0.28+0.04
−0.08 −1.14+0.16

−0.37
C4 0.52+0.26

−0.23 −0.92+0.16
−2.42 0.24+0.04

−0.04 −1.24+0.16
−0.27

C5 0.24+0.44
−0.08 −1.24+0.16

−2.20 0.18+0.04
−0.04 −1.57+0.27

−0.27

(a) Ωm × w contours (b) Ωm (c) w

Figure 5.6: Model F1: all visible multiple images in Frontiers Field. Panel (a): Confidence levels
for the cosmological parameters with Strong Lensing (Black Lines), Planck Data Release 2 data (red
contours) and the combined constraints (green regions). The yellow circles indicate the maximum
likelihood peak from SL+Planck in this projection. Panel (b): PDF for Ωm in the Strong Lensing
Model and (c): PDF for w in the Strong Lensing Mode.
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(a) Ωm × w contours (b) Ωm (c) w

Figure 5.7: Model F2: all visible multiple images in Frontiers Field images with limiting magni-
tude 26.7. Panel (a): Confidence levels for the cosmological parameters with Strong Lensing (Black
Lines), Planck Data Release 2 data (red contours) and the combined constraints (green regions).
The yellow circles indicate the maximum likelihood peak from SL+Planck in this projection. Panel
(b): PDF for Ωm in the Strong Lensing Model and (c): PDF for w in the Strong Lensing Mode.

(a) Ωm × w contours (b) Ωm (c) w

Figure 5.8: Model F3: all visible multiple images in Frontiers Field images with PSF = 0.6′′. Panel
(a): Confidence levels for the cosmological parameters with Strong Lensing (Black Lines), Planck
Data Release 2 data (red contours) and the combined constraints (green regions). The yellow circles
indicate the maximum likelihood peak from SL+Planck in this projection. Panel (b): PDF for Ωm

in the Strong Lensing Model and (c): PDF for w in the Strong Lensing Mode.

5.6 Discussion

In this chapter, we evaluated the cosmological constraints arising from Cluster Strong

Lensing in a flat XCDM model for different degraded models of RXC 2248, which exploited

the dependency of the cosmological constraints on the observing conditions. We considered

how the constraints were biased due to the degradation in combination with Planck data

release 2 in order to evaluate if those constraints are robust and if it would be feasible

to derive cosmological constraints with limited observational conditions such as PSF and

depths compatible with ground-based data, such as LSST and/or future space-based wide

field surveys such as WFIRST and Euclid. We also exploit models using fewer bands. We

derived the cosmological constraints for a set of families of multiple images which were
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(a) Ωm × w contours (b) Ωm (c) w

Figure 5.9: Model C1: with all visible multiple images in CLASH model. Panel (a): Confidence
levels for the cosmological parameters with Strong Lensing (Black Lines), Planck Data Release 2
data (red contours) and the combined constraints (green regions). The yellow circles indicate the
maximum likelihood peak from SL+Planck in this projection. Panel (b): PDF for Ωm in the Strong
Lensing Model and (c): PDF for w in the Strong Lensing Mode.

(a) Ωm × w contours (b) Ωm (c) w

Figure 5.10: Model C2: all visible multiple images in CLASH images using 3 sdss-like filters only:
F475W, F625W and F775W. Panel (a): Confidence levels for the cosmological parameters with
Strong Lensing (Black Lines), Planck Data Release 2 data (red contours) and the combined con-
straints (green regions). The yellow circles indicate the maximum likelihood peak from SL+Planck
in this projection. Panel (b): PDF for Ωm in the Strong Lensing Model and (c): PDF for w in the
Strong Lensing Mode.

spectroscopically confirmed. A sample with well defined redshifts is important to derive the

cosmography since redshifts are highly degenerate with the Cosmological parameters. We

reported that the best fit in the Ωm x w plane remains robust in several models in combination

with Planck data, changing the Planck best fit to the 1σ Planck contours borders. This result

remains robust even with depth reduction from ∼ 29 in the reference model to 26.1 with 3

bands only. A depth that would be feasible in a wide field survey, particularly space-based

with low PSF, in which it would be possible to combine the analysis of several Clusters.

In a previous analysis of RJC 2248, Caminha et al. (2016b) also highlighted the impor-

tance to use a wide range of source redshifts, as also pointed out by Golse et al. (2002). For
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(a) Ωm × w contours (b) Ωm (c) w

Figure 5.11: Model C3: all visible multiple images in CLASH images using 3 earth-like filters only:
F475W, F625W and F775W and with limiting magnitude 26.1. Panel (a): Confidence levels for
the cosmological parameters with Strong Lensing (Black Lines), Planck Data Release 2 data (red
contours) and the combined constraints (green regions). The yellow circles indicate the maximum
likelihood peak from SL+Planck in this projection. Panel (b): PDF for Ωm in the Strong Lensing
Model and (c): PDF for w in the Strong Lensing Mode.

(a) Ωm × w contours (b) Ωm (c) w

Figure 5.12: Model C4: all visible multiple images in CLASH model using 3 earth-like filters only:
F475W, F625W and F775W with PSF=0.6′′. Panel (a): Confidence levels for the cosmological
parameters with Strong Lensing (Black Lines), Planck Data Release 2 data (red contours) and the
combined constraints (green regions). The yellow circles indicate the maximum likelihood peak from
SL+Planck in this projection. Panel (b): PDF for Ωm in the Strong Lensing Model and (c): PDF
for w in the Strong Lensing Mode.

illustration purposes, Caminha et al. (2016b) derived cosmological constraints without the

highest redshift source (z = 6.11). They obtained Ωm = 0.49+0.26
−0.26 and w = 1.07+0.42

0.57 which

roughly represents an increase of ∼ 50% in the errors of the Cosmological parameters. In

this work, we considered a set that included 6 sources identified by Karman et al. (2016) not

considered for Cosmological constraints previously. We noticed that the error in the upper

limit of Ωm has increased to the value close to the one in C2 (degraded to CLASH data in 3

bands) model, which has no sources with redshift higher than z = 4.11 (i.e., family 18 already

included in Caminha et al., 2016b). However, the extra families added in this model (23, 24,

27 and 28) appear to keep the lower limit of Ωm comparable to the model which includes
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(a) Ωm × w contours (b) Ωm (c) w

Figure 5.13: Model C5: all visible multiple images in CLASH images using 3 earth-like filters
only: F475W, F625W and F775W with limiting magnitude reduced to 25.0. Panel (a): Confidence
levels for the cosmological parameters with Strong Lensing (Black Lines), Planck Data Release 2
data (red contours) and the combined constraints (green regions). The yellow circles indicate the
maximum likelihood peak from SL+Planck in this projection. Panel (b): PDF for Ωm in the Strong
Lensing Model and (c): PDF for w in the Strong Lensing Mode.

Figure 5.14: Ωm and its 1σ error bars as a function of the limiting magnitude for each model.
From right to left: FF with PSF = 0.6′′ (F3, in cyan), original FF (F1, green), CLASH with 3
filters and with PSF= 0.6′′ (C4, cyan), CLASH (C1, magenta), CLASH with 3 filters (C2, black),
FF with limiting magnitude 26.7 (F2, red), CLASH with 3 filters and with limiting magnitude 26.1
(C3, blue), CLASH with 3 filters and with limiting magnitude 25.0 (C5, yellow). The green line
presents the value of Ωm for the reference model (F1). The points were shifted horizontally for
clarity.
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Figure 5.15: w and its 1σ error bars as a function of the limiting magnitude for each model
for each model. From right to left: FF with PSF = 0.6′′ (F3, in cyan), original FF (F1, green),
CLASH with 3 filters and with PSF = 0.6′′ (C4, cyan), CLASH (C1, magenta), CLASH with
3 filters (C2, black), FF with limiting magnitude 26.7 (F2, red), CLASH with 3 filters and with
limiting magnitude 26.1 (C3, blue), CLASH with 3 filters and with limiting magnitude 25.0 (C5,
yellow). The green line presents the value of w for the reference model (F1). The points were shifted
horizontally for clarity.

the high redshifts sources though shifting the range of Ωm to upper values. The lower limit

range of w is about half if one compares to the similar model with all spectroscopic families

in Caminha et al. (2016b), which includes the z = 6.111 redshift. These results suggest that

the increase in the uncertainties due to removal of a high redshifts source, i. e. z ∼ 6, may

be compensated by adding more constraints in low/intermediate redshifts.

Now we look into our results to have a first glance on the issue of constraining cosmological

parameters with strong lensing in the upcoming wide-field survey data. Given that we expect

several systems with multiple families of multiple images to be found on that data, will the

statistics be able to overcome the effects of the worse PSF and/or depth compared to the

Frontier Fields data? Are there systematic errors arising from the degraded data that will

not go away by averaging several systems? What is the number of systems needed so that
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the error bars on the parameters get down to the Frontier Fields ones? To touch upon these

questions, let’s look at Figs. 5.14 and 5.15, where we summarize the constraints on Ωm

and w derived from the models considered in this work. We see that in all cases but the

most degraded one (C5), the biases are quite small (at most about 0.1 in w and 0.03 in

Ωm). Nevertheless, these biases are already significant for CLASH (C1) and shallower FF

(F2), as they show stringent upper limits on the two parameters. In general, the error bars

do not change much for the cases we have considered. The largest effect is on the upper

level of w and Ωm, which is significantly increased in the CLASH models with 3 filters (C2,

C3, and C4). To have a rough estimate on how the statistical error bars will change as we

consider the combination of several clusters, we assume that the fractional errors will scale

as δΩm/Ωm ∝ 1/
√
N . For example, let’s consider the variation on the upper error bar on Ωm

from models F1 to C4: δΩC4+
m /δΩF1+

m ≈ 3. In this case, employing the assumed scaling of the

error bars, one would expect that by using about 10 clusters under the C4 conditions, the

error bars would shrink to the values obtained with the full FF data. In this case, of course,

the bias would start being significant. Clearly, the arguments above are very rough and

a systematic study with more observational conditions and, especially, with more systems

(either from simulations or data) is needed for a more quantitative assessment. This is an

avenue we will pursue the continuation of this work.
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Chapter 6

Concluding Remarks and Perspectives

In this thesis, we address several aspects of the Strong Gravitational Lensing program,

from finding lens systems to using multiple images to constrain cosmological parameters. In

section 3 propose a new method to make measurements in gravitational arcs, and particularly,

how to estimate their curvature. These developments are presented in two articles: one

submitted to Astronomy and Astrophysics and the other a CBPF technical note (Bom et al.,

2016a).

The Mediatrix decomposition and its measurements were applied to the recovery of

arc features, in simulated and real arcs in Furlanetto et al. (2013b), on which I am a co-

author. This method is presently being applied by myself and collaborators to characterize

arc candidates and estimates Einstein radii in the SOAR (Southern Astrophysical Research)

Gravitational Arc Survey (SOGRAS Furlanetto et al., 2013a). We expect to submit this paper

on SOGRAS data on this semester.

In section 4 we discuss how to find Strong Lenses. We present three approaches, a stan-

dard visual inspection in which the author took part (Nord et al., 2015), a Pattern Recogni-

tion automated algorithm, named ANN Mediatrix Arcfinder (AMA) and a Deep Learning

pipeline with which we have participated in the Gravitational Lensing Challenge. Presently

a paper is being prepared in which the results in the Challenge will be presented. The AMA

algorithm was fully described in an article recently published in A&A (Bom et al., 2017).

More recently, the author and collaborators worked on an optimization of SExtractor based

in Genetic Algorithms, named GOSEx (Genetic Optimization in SExtractor), which may

101
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improve significantly the deblending and therefore, the results in the arcfinder and the mor-

phology measurements.We plan to further develop the AMA arcfinder, both implementing a

cleaning of the image using SExtractor model fitting options as well as training in a sample

of real cluster scale arcs, for instance in CFHTLS. We also plan to improve the CNN Lens

finder and apply it in wide-field surveys in targeted searches for galaxy scale lensing.

In the last part of this thesis, we discuss how observational effects such as the PSF

and image depth may affect the constraints from multiple image cosmography to have a

glance on how they can bias the cosmological parameters from ground-based observations

and for present and future wide-field surveys (both space or ground based). To the best

of our knowledge, this has never been tested, although recent works have addressed other

systematics, such as those arising from substructure, structure along the line of sight (LOS)

or lens modelling codes (Despali & Vegetti, 2016; Gilman et al., 2016; Meneghetti et al., 2016;

Planck Collaboration et al., 2016; Priewe et al., 2016). Even in these cases, the authors are

concerned with the accuracy, precision, and reliability in the mass distribution constraints

and do not focus on the cosmological constraints. We combined our results with Planck

data and derived the constraints on the cosmological parameters. The results were robust

in several degraded models when defining an upper limit to w. In combination with Planck,

the results improved the Planck constraints in all degraded models except to the one with

limiting magnitude 25 (the one with fewer images). We are currently preparing a paper with

the summary of our tests and discussion in section 5.6 and plan to submit it a near future.

In a future work, I also plan to develop simulations to explore what cosmological constraints

would be feasible to derive with the emerging astronomical technologies such as the MKIDs

(Day et al., 2003) detector that would enable us to have a low resolution redshift for every

imaged source.

Therefore, in this thesis we covered several fields, from image processing and pattern

recognition to the final proposed goal, which are the cosmological constraints from multiple

image Strong Lensing analyses as a cosmological probe. Particularly we evaluate the fea-

sibility to derive the constraints in conditions similar to future wide-field surveys that will

provide many systems of multiple image Strong Lensing, which, when combined, might be

used as a powerful cosmological probe.
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Journal Supplement Series, 182, 543

Abdelsalam, H. M., Saha, P., & Williams, L. L. R. 1998, MNRAS, 294, 734

Abell, G. O., Corwin, Jr., H. G., & Olowin, R. P. 1989, ApJS, 70, 1

Alard, C. 2006, arXiv:astro-ph/0606757

Bacon, R., Accardo, M., Adjali, L., et al. 2010, in Proc. SPIE, Vol. 7735, Ground-based and
Airborne Instrumentation for Astronomy III, 773508

Balestra, I., Vanzella, E., Rosati, P., et al. 2013, A&A, 559, L9
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Cruddace, R., Voges, W., Böhringer, H., et al. 2002, ApJS, 140, 239

Dark Energy Survey Collaboration, Abbott, T., Abdalla, F. B., et al. 2016, arXiv:1601.00329

Day, P. K., LeDuc, H. G., Mazin, B. A., Vayonakis, A., & Zmuidzinas, J. 2003, Nature, 425,
817

de Jong, J. T. A., Verdoes Kleijn, G. A., Boxhoorn, D. R., et al. 2015, A&A, 582, A62

Desai, S., Armstrong, R., Mohr, J. J., et al. 2012, ApJ, 757, 83

Despali, G. & Vegetti, S. 2016, arXiv: 1608.06938

Diego, J. M., Protopapas, P., Sandvik, H. B., & Tegmark, M. 2005, MNRAS, 360, 477

Dressler, A., Bigelow, B., Hare, T., et al. 2011, PASP, 123, 288

Durret, F., Adami, C., Bertin, E., et al. 2015, A&A, 578, A79

Dyson, F. W., Eddington, A. S., & Davidson, C. 1920, Philosophical Transactions of the
Royal Society of London Series A, 220, 291



BIBLIOGRAPHY 105
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