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ABSTRACT

The formal expressions of the scattering
operators for meson-deuteron processes are expanded
in terms of twosparticle scattering operators. The
terms of this expansion which represent first and
second order processes are explicitly evaluated.
Formulae for inelastic (K+d—;K+np) and charge-exchange
(k*a » K°pp) processes are written in terms of the
parameters describing the twoeparticle processes in-
volved., It is assumed that the K meson-nucleon inter-
actions in both I = 1 and I = 0 isotopic spin states
are purely S-wave. Comparison of the calculated 4if-
ferential oross-seotions with the experimental results

seems to confirm this assumptiona
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CHAPTER I

INTRODUCTION

In the experimental study of the interactions of the
strongly interacting elementary particles, protons are in a
very speoial situation. The hydrogen atom is a neutral system
consisting of only protons and of the much more weakly inter-
aocting electrons. Due to the small mass of the electron, the
proton is nearly at rest in the system of the centre of mass
of the atom. Thus, for the purpose of the study of the strong
interactions, a target consisting of hydrogen atoms is almost
the same as an ideal target consisting of free protons at rest,
In a hydrogen bubble chamber the interaction of all the elemen-

tery particles with protons ocan be studied with accuracy.

On the other hand, mesons and hyperons are not stable,
and are not known to form any stable system., We do not know
how to make targets containing these particles, Interactions
smong them can at present be studied only by indirect means.
They can be produced and beams formed with them, so that before
they decay they can be made to interaet with stable systems.

The neutron falls between these two extremes. It is
not stable but, together with protons, neutrons form stable sys-
tems. With the exception of hydrogen, any kind of common matter
can be used as a target containing neutrons, with which other

partieles can bs made to interact,



But it is not simple to understand and interpret in
terms of elementary jpteractions the experiments in which
beams of particles are soatfered by matter in general, Neutrons
and protons are closely packed together to form most of the
nuclei, so that the interaction of the incident particle with
only one of the nucleons of the nucleus without the others
strongly participating is almost impossibie, During and after
the dinteraction of the inecident particle with one of the nucleons
of the nucleus, this nucleon will interact strongly with the
other nucleons. The ineident particle itself will very likely
interact with two or more nucleons at a time, or at least suf=-
fer multiple scattering, since the scattering centres (the
nucleons) are so close to each other. - On the other hand, the
nucleons are not at rest inside the nucleus, and their motion
should be known if proberties of the elementary two-particle
interaotions are to be used or deduced, This knowledge is not

available for most of the nucled,

In studying the experiments in which beams of particles
are scattered by heavy or medium nuclei, these are considered as
acting through an average effective potential. It is the col=~
lective behaviour of the nucleons which is of primary importance

rather than their individual properties.

The deuteron is a rather special systis anong the
nuclei. It consists of a single neutron loosely bound to a
single proton, The two nucleons in the deuteron are separated
by a relatively large distance, so that the incident particle

probably interacts strongly with only one nucleon at a time. If



the interaction Between'the ineident partiocle and one nucleon
lasts enly a relatively short time, the presence of the second
nucleon will not affect much the state of motion of the first
micleon during this intefval of time, and the characteristics

of the twom~particle interaction will be approximately obeyed.
Also, the equations of the motion of the nucleons in the deuteron
are quite well known. Thus the deuteron provides us with a set
of circumstances that may enable us to approximately describe
scattering events in terms of a series of two-particle inter-
actions, These properties of the deuteron were first recog-
nized by G.F. Chew (Ref. 1) who introduced what is called the
Impulse Approximation to treat the problem of scattering on
deuterons.

In the Impulse Approximation the scattering amplitude
for a complex nucleus is represented &3 a superposition of scat-
tering amplitudes for free nuoleons which have the same momentum
distribution as the actual bound nucleons, It is bhased on the

following accumptions.

I. The range of the forces between the incident particles
and the nucleons is shorter than the average distance

between two nuclsons.

IT. The nueleus is rather “transparent™ to the incident wave
so that the amplitude falling on each mucleon .s approxi-

mately the same as if the nucleon wsre alone.
ITI. Multiple scattering processes have small probability.

IV. The forces that bind the nucleons only have the effect

of giving to each nucleon a certain distribution of momentum.



The conditions of applicability of the Impulse Approximation
were qualitatively discussed by several authors (Refs. 1-3).
G¢.F. Chew and M.L. Goldberger (Ref. L) expanded the formal
expression for the transition probabiiity for elastie scatier-
ing of & particle by a complex nueleus in terms of two-particle
soatiering amplitudes and showed how the terms corresponding to
the Impulse Approximation appear naturally in this case. They
left open the question of the quantitative estimate of the cor-
rections to the Impulse Approximation. S. Fernbach, T.A. Green
and K.M, Watsan (Ref. 5) applied the Impulse Approximation to
pion-deuteron scattering, and related the amplitudes for the
elementary pion-nucleon processes to the pion-dsuteron elastic
and inelastic cross-section. R.M, Rockmore (Ref. 6) treated
the same pion~deutepon problem using a phase-shift expansion for
the pion-nucleon amplitudes. Comparison of Rockmore's analysis
with experimental results on pion-deuteron scattering (Ref. 7)
verified the reliasbility of the use of the Impulse Approximation
in this problem, Later the Impulse Approximation was applied
to K meson-deuteron scattering by M. Gourdin and A. Martin

(Ref'. 8) and by the present author (Ref. 9). Then M. Gourdin
and A. Martin (Ref. 10) improved the calculation of the in-
elastio and charge exchange K ~deuteron scattering by taking
into account the interaction of the two nucleons in the final
state by analogy with the case of the photodisintegration of

the deuteron.

We intend here to make a more ocomplete quantitative
analysis of the meson-deuteron inslastie scattering, We start

by writing the formal expressions for the scattering amplitudes



for inelastic scattering of a particle by a complex nucleus
(Chapter 11)., This amplitude is then expanded in terms of
two-particle scattering amplitudes (Chapter III), and physical
meaning is given to the several terms of this expansion, ~ For
the ocase of the deuteron the terms representing double scatter-
ing of the incident mesonr and those representing a meson-nucleon
scattering followed by a nucleon-nucleon collision are explicitly
written in Chapter IV, where the contributions from the mucleon
spin variebles are discussed, and expressions for the cross-
seotion are given, In Chapter V a complete evaluation of the
terms of the meson scatbtering amplitude representing double scat-
tering and nucleon~nucleon interaction in final state is made for
the oase of inelastic K meson-deuteron socattering. Differential
and total cross—section for K%—deuteron inelastic and charge
exchange scatbtering are caleulated and discussed in Chapter V,

In Chapter VI an analysis is made of the experimental results

on K -deuteron interactions available at present,

We must now emphasize the importance of this analysis

of' the K+~deuteron eXperiments.

Apcording to the present ideas, the w+, 7° and 7
mesons are the components of a triplei of isotopic spin I = 1
and protons and neutrons arse the components of a doublet of iso-
topic spin I =%, Thus, for the pion-nucleon system the pos-
sible velues of the total isotopic spin ere then I = "4 and I = %.
Assuming charge independence (i.e. conservation of total iso-
topic spin) all the pion-nucleon interaetions can be described by

the two amplitudes corresponding to these two isotopic spin states.
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Experiments on the scattering of beams of the two 6harged plons
by protons'are in principle sufficient to give complebte informa-
tion on these two amplitudes., Thus, if charge independence in
the strong interactions is a valid concept, experiments on scat-
tering of pions by neutrons (i.e. by deuterons) do not give any
additional information (though they can serve as a direot check

on charge independence).

However, the situation is not the same in the X meson-
muicleon system. K and K° mesons being the two components of
an I =% doublet, the K meson-nucleon system has two possible
values of the total isotopic spin, namely I = 1 and I = 0, Ase-
suming charge independence, two independent amplitudes are suf=-
ficient to desoribe all the K meson~-nucleon processes. Now the
K proton interaction can only give information on the scattering
emplitude for, the isotopic spin I = 1 state so that, since experiw
ments with K* mesons are not easy to perform, access to the I =0
state must be made through K" neutron processes., We have to
meke experiments with beams of XK' mesons incident on dsuterons,
apply the results of the analysis in terms of the two~partiocle

prooesses, and extract the values of the reguired amplitude.

The Strusturse of the Deuteron

The possibility of success by this method is dependent
on our having a fairly good knowledge of the struoture of the
neutron-proton bound state. In the artiele on The Two-Nucleon
Problem written by L. Hulth®n and M. Sugawara for the FEngyclopedia
of Physics (Ref. 11) the structure of the deuteron is desoribed
and discussed. We detail here the properties whioh will be needed

later.
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The deuteron binding energy is 2.226 MeV. The spin
is 1.  The ground state is mainly an S-state, with a small
admixture (% or 4% in the probability) of D-~state, The momen~
tum spectra of the nucleons in the S-and D-states is of almost
the same shape. Also,lthere is a correlation betwsen the
direction of the deuteron spin and the direction of the orbital
angular momentum in the D-state. But unless there is a strong
spin dependence of the meson-nucleon interaction, the presence
of the D-gstate can be ignored for our purposes. The small
value of the binding energy indicates that the deuteron is a
rather diffuse, loosely bound structure. It is accepted that
the 381 ground state is well represented by the Hulthén wave

funetion

4 (x) =N (e""‘r- o F r) / r (T.1)

where r is the internucleon distance, and

& = 15,7 MeV/he

B =Ta.

(1.2)

The normalization constant is

N =|:o:ﬁ(a+ﬁ) 2n(ﬁ—a)’-]2 (1.3)

The momentum space representation of Eq. (I.1) is

(@ = 2] olm - o1y ] ()
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where Afis the momentum common to both the nucleons in the rest
system of the deuteron.

Pigures I,1 and I.3 represent the wave funetions of

Egs. (I.1) and (I.L), and Figs. I.2 and I.3 vepresent their
corresponding probabilities.
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CHAPTER IT

FORMAL DESCRIPTION OF K~DEUTERON SCATTERING

1. Introduction

To study the scattering of K mesons by deuterons, we
have to derive the expressions for the probability amplitudes for
transitions from the initial state, which consists of a free meson
incident on a deuteron, to a!final state, which can be either a
meson and a deuteron or a system of three fres particles, l.6. one
meson and twoe nucleons. (We call the first kind of processes

slastic scattering, the second kind inelastic scattering. )

We do net consider processes in which the meson forms a
bound state with a nucleon, The fact that the deuteron is the only
possible bound stete simplifies our problem, since then we have
either elastic scettering (with the same deuteron in final state )
or we have a completely unbound system of thyee particles in the

final state.

We are not concerned with a relativistie field theoretic
problem, that is, we are not going to consider processes of creation
or sbsorption of particles. Our system will always consist of
three particles, one meson and two nucleons, We will be working
with K-meson incident energies such that no particles can be created
or such that oreation of particles (e.g. @ mesons ) has a very small

probability.
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We want to write the trensition amplitudes for elastic
and inelastic scattering of mesons by deuterons in terms of the
guantities describing the interaciions between pairs of particles
of our system of three particles. That is, we internd to deseribe
the meson~deuteron scattering in terms of meson-proton, meson-

neutron, and nucleon-nucleon interactions,

Let us introduce a potential U describing the nucleon-
nucleon interaction. It is responsible for the formation of the
bound state of the neutron-proton systems The initial state,
being a deuteron and a free meson, is an eigenstate ¢a of' the
Hamiltomian K + U, where K is the operator for the total kinetio

energy, that is, we have
(K+ Uk, =E9, » {IT.1)

In the same way we introduce potentials Vb and Vn that
are responsible for the interaction between the meson and the

proton and neutron respsetively., The total Hamiltonian is

HeK+U+V_+V ., (11.2)
el n

Strictly speeking, these potentials connect several
reaction channels and must really have a matrix structure, For
example, V. must describe both the processcs K » K'n and X'n -+ K.
U must describe n-p and p-p interactions at least, since these two
pairs of nucleons will occur in our problem. But this does not af-

feet the formelism presented in this and in the next chapters.
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(+)

An outgoing scattering state z,ba , an exact solution of
H with the asymptotic behaviour of a frec meson and a free deutcron

wave plus an outgoing wave of a meson and e deuteron, satisfiocs

"’éﬂ =g Ea-K1U+ie (Vp+vn)"“§.+)° (ZL.3)

(+)
b

corresponding to plane plus outgoing waves of three free particles

An outgoing scattering state @ with asymptotic behaviour

satisfies
(+) - ,,__,,,_l__,,,_ T (+)
AN K vie (vp+vn+ Uy (IT.4)
where @ is a plane-wave state of three free particles, satisfying

b

= Eb (I)b . (II¢5)

We can find an explieit formael solutiun for Eqe (IT.3)
using the technique introduced by Gell-Mann und Goldberger (Ref. 12)
in the following way. Using the general operator identity

il (Gel (11.6)

with A = (Ea—K-U-VP—Vn-b:Le) and B = (IL&—K—U +ie) we get

1 1 1

BE~-K=U+ile E -X-U=V -V 4ic <1 - (V *V )E -K- U+1e) )
a g P n
Substituting in Bq. (I1.3) we get

: 1 ()
“b:g ) = ¢a. N Ea-K—U-Vp—Vn+ie (Vp'!'V )|: -K—-U+1e (V W )1
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Using BEq. (II.3) again for simplifying the last part of this expres-

sion, we finally obtain

(+) y

b " =¥y PE IRV oV 5 ic (Vp+Vn)sﬁa (II.7)
a P n

(+)
a
analogous way we can obtain

which does not contain ¢ in the right-hand side. In a precisely

+) ' 1
=8y By~ K-V -V T3

@é (1I1.8)

(VP+ v +U)

which is an explicit expression for &

(+)
AN

0f course, these solu~-
tions for ¢a+ and §b+) are only formal, since we do not know how
to find the inverse operators (E»K—U—Vp—Vn~z—:ke)_1 which are in the
right-hand side of these expressions. To know how to calculate
these inverse operators would correspond to knowing how to solve

the Schroedinger equation

('K+U+vp+vn)¢ = B .

Bquations (II,7) and (II.8) can be regarded as giving
the transformations from the sets of plane-wave states to the set
of scattering states with specified asymptotic conditions. I we
note that, dus to Bgs.{(II.1), (IT.2) ard (I1.5),we have

(V, + V0, = (H -8y, (17.%)
(vP *V o+ U)@b= (H-Eb)@a (I1.10)

we see that Eq. (II.7) and Eq. (I1.8) can be written in a single

squation
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o) _y s ETT-TETZ? (B-E)Y = Q¥ (I1.11)
where ¥ is any of the states of the set of "plane-wave states" of
the system of three particles. This set includes the states in
which we have a deuteron and a meson‘as separate plane waves, and
the states in which we have three separate plane waves. @(+5 re-
presents the corresponding outgoing scattering states. As ¥ and

¥ *) form two complete sets of states and there is a omne to one
correspondence between the elements of +these sets, Eq. (II.10)

defines completely the wave operator Q .,

We can similarly define the ingoing scattering state

(=) _ 1
by " =¥y Y E K-~V -V _-ie (Vp+Vn)¢a (1T.12)
a8 e 1

for the case of proton and neutron being bound to Torm a deutsron,

and

=) .~ i

ARG TIESU-V. oV, < (VP+Vn+ u)e, (11.13)
P n

for the case of p and n being asymptotically free. Again the two

relations can be combined in a single expression

‘{J(-) =¥ +===-jw.-“=-§_-€ (H—E)‘l’ = Q_‘I’ (II"‘“"')

which defines the wave operator (1 conneoting the complete set

of plane-wave states ¥ with the complete set of ingoing scatter-

(=)

ing states ¥ T
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2. The Expressions for the Collision Operators

R . +
We now proceed to write expressions for operators T and

T-, which we call collision operators, related to these wave opera-

tors Q+ and 0_ ard which, when operating between states of equal
energies, reduce to the ccllision operators defined by Lippman and
Schwinger (Ref. 13}, their squere being then proportional to %he

trensition probability between the two states.
The case of elastic scattering has been treated by Chew
and Goldberger (Ref. 1+). They define two operators

+
1
Ty (vp+vn) + (vp+vn) B TKSTIV Ve (vp+vn) (11.15)

H

and

1
(vp+vn) + (vp+vn) Ef-K~U-Vp-i7n+ie (vp-z-vn) (11.16)

]

el

where Ei is the energy of the meson-deuteron state on the right of
the operator T;I, when it is acting between two states, and Ef is
the energy of the state on the left of T;

1 In other words, the

matrix elements of T; and Tel between states 1 and £ of the meson-

1
deuteron system are

(To1) = <dgltgyluy> = <l (@ v > (11.17)
(T;l)fi: <‘f’f'T;1'?i> = <¢§-—)|(Vp+vn)¢i> (11.48)

where , end ¢, satisfy Bq. (1IT.4), gtrj(_*) satisfics Bq. (II.3) and

w(-) satisfies BEq. (II.11)}. TYor B, = B, of course, we have
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(T;i)fi = (T;l)fi, since the only difference between them is in
the parameters Ef and Ei in the denominators, and they coincide
with the usual Tfi matrix element of scattering theory. Tfi is
related to the S-matrix element by

Spq

= 8oy - 2ma(Ef-Ei)Tfi . (IT.19)

Let us now consider the case of inelastic scattering of
mesons by deuterons. The expression for the transition amplitude
from the bound to an unbound state was obtained by Goll-Mann and
Goldberger (Ref. 12). The result they obtained is

(T

inel

) = <o dwevs vl (11.20)
£i , o

(+)

where ¢: ' obeys Eq. (I1.3), 4, s & state of three frec particles,

1
and Ef = Ei.

Given Bgs. (I1.20) end (ITa7) we scc that an cxtonsion of

the definition of Tinel

ments is obtained by defining the operator

to include off-the-energy-shell matrix ele=

+ 1 :
= : : V o+V_ ). (IT.21
T o1 (U+VP+Vn) + (U +Vp-rvn) D ST ( L n) (IX.21)
To define the correspording operator T;nol Wo onall noed

an oxpression for the transition smplitude, equivaelent to Eg. (IT.20),
but written as a matrix element between states @f_ and ¢, instcad of
between éf and. ¢i+); We shall now obtain such an exproescion by
using the samo method as Gell-Mann end Goldberger (Ref. 12) used to
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obtain Eq. {IX.20), The transition rate from the planc-wave state
is . |

_ o A(K4V_ AV U)E ~1(UK ) 2
by = 5% I<zgle PR e lo; >1

where the time dependent exponentials are responsible for the time
variation of the state vectors in the Schroedinger representation.
At t = 0 we get

. A - (= #
bog =3 <@§ )-va+vnl¢i><@§ )I¢i> + ¢cic.
But using Bq. (I1.13) we obtain

(=) 1
<ep 'l > = <oy ¢ By k-0 -V oV <ic (v, + v +Ueply, > =

.
=Lyt <Ef—K-U-ie *

1 1
d m———— (V +V ) - - )(V +¥ +U)¢’ ’?/f. »o=
Ef, K-U-ie *'p 'n Ef K-U VP-Vn-].E P n £'71

_ 1
= <8y + H oK -7 ~i¢ (11rp+vn+U)¢>f +

+ Ef-KlU-ie (Vp+ Vn)(éf(_")_@f)lqai) .

1 1 -,)(—) By -
" <% PETR-UTEE U % Y E -K-U-ie (Vs Rog o2 =




323_

_ — e 5 (=) _
=<ep + U E,-F, - 1ic Pp * E,-E, - it (U Vo ey > =

I : 1 (=) -
R e

i

1
.Ef,—Ei+:Le

]

(-)
<o VoAV Ly >
In the last step we have used the fact that the deuberon
wave function satisfies g[ri = (Ei—K)MU i,!fi.

Substituting the a@bove result into the expression for the

transition rate we obtain

5
H

2
£i. '<‘I’f VoVl > e BT
. hig i bl i

2

1

: (=) :
28 (B, ~E, ) <o |vp+ vn|.yi>

Comparing with the usual expression for the transition

rate we see that

(T

1) T <<b§‘)|vp+vnl¢i> . (IL.22)

i

An adequate definition of the collision operator T;nel
is then

~ - 1
Tine1 = (Vp+vn+U) EwKwlUwV -V t+i¢
f T n

(vp+vn) + (vp+ vn). (11.23)
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Comparing the formulae (IT.24) and (II.23), we see that
+

Tinel and Tinel

Ef in the denominator, but also by an extra U that appears in T;

differ not only by the values of the energy Ei and
nel’
We can prove that this difference also disappears on the energy
shell. In fact, since the integrals over closed surfaces of the
flux of Qf and ¢i vanish, and K is hermitian, we have

<o lulp, > = <o [ (x+0) ~Kly; > = (B -Eo) <o 4>

arnd this is zero for Ef = E,,
i

We now obtain general expressicns for the operators T+ and
T~ which apply to both elastic and inelastic scatterings, and so
combine Eqs.{I1.15) and (11.21) intc one expression, anl Egs. (II.16)
and (II.23) into another expression. As before, we designate by ¢
a "plane wave" state, which can either consist of a frec meson and
a free deuteron, or of three free particles, one meson and two nu-
cleons, Scattering states ¢(+ and ¢ - s, and operators Q+ and
are defined by Egs. (II.11) and (II.44). By considering Egs, (II.9)
and (I1.10) we can easily sce that Egs. (II.15) and (II,21) can both
be given the form

+ - -:-=-=-=l===— — P e T "z.\
(T )fi = (H-Ef) + (H—Ef) R PET: (H Ei) = (H Bf)0+(Ei) (11,205

and that Eqs.(I1.16) and (II.23) can be written as

(27)py = (H=B,) + (H-E e (-E) = l(m) (-1, ). (1r.25)

)
f Ef—H+1e
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CHAPTER IIT

EXPANSIONS OF THE COLLISION OPERATORS FOR K-d
PROCESGES 1IN THRNG OF THO-PARTICLE OPERATORS

1. The Two-Particle Collision Operators

The purpose of our analysis is to obtain (approximate)
expressions relating cuantities which can be obtained directly or
indirectly from experiments. In Chapter II we have written the
formulae for the collision operators for elastic and inelastic
scattering of mesons by deutercns in terms of the potentials Vp,
Vn, U between pairs of particles. But we cannot expect to extract
from the results of a limited number of experiments on scattering
of mesons by nucleons very useful information about the potentials
V. and Vn. In fact, almost nothing can be said to be known about
them at the moment. What can be directly obtained from real or
ideal scattering experiments is information on guantities like
matrix elememts of scattering operators (and trivially related
guantities, such as our collision operators). Thus it is in terms
of these two-particle collision operators that the K-d scattering

is to be analysed.

As the neutron and proton form a bound state and are, in
general, a much more extensively studied system than the K~nucleon
system, we have some knowledge of the potential U causing their
intersction. In the aspects of our problem, in fact, which involve

the bound state of the neutron-proton system, we shall make use of
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+this knowledge of U (especially by explicitly using the deuteron
wave function). In the analysis of the inelastic K~d scattering,
when two umbound nucleons come out from the reaction, the collision
operator for the system of two nucleons will also appear as an im=-

portant quantity.

We now proceed to define these quantities (the two-perticle
collision operators) in terms of which we interd to describe the XK-d

scattering.

For the meson-proton system we define the collision opera~

tors
+ 1
Yo =Vt B I SUARER v (111.1)
. =V +V " v (111.2)

o P PEf"K'Vb+1€ P

where Ei is the energy of the plane-wave state on the right and Ef
that of the plane-wave state on the left when these operators are
acting bvetween two states. These are extensions for regions off-
the-snergy shell (Ref. 4 ) of the usual operators of the scattering
theory, They are, of course, obtained by directly extending the

expressions

(tp)fi = <q>f,vP@§-+)> = <¢f(,'),vp<z>i>

where
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(+) _ 1 (+) _ 1
B =l ETE T P Ty rEIR VT Py (T
i R 1 P
(=) _ 1 (=) _ 1.
K S ey = T By K-V~ ic Vprp  (ITT.4)

which were defined by Lippman and Schwingor (Ref. 13) only for Ef==Ei.
We nced these extended definitions because we will be concerned with

off«the-energy-shell matrix elements.,

For the meson-neutron intersction we defimne perfectly ana-
logous expressions merely by changing the index p to n. Also we

define nucleon-nucleon collision operators

+ 1
tu=U+UEi_K_U+i€U (1I1.5)
t. = U+U ! U (111.6)
u Eo~-K-TUw+ie *

The definitions we have given for the £ operators (we
drop for a while the indices n,p,U) assume that they are to act be=
tween states of which the state at the right is an eigenstate of
the kinetic energy operator K, with energy Ei' This definition of
the operator is not complete, in the sense that it does not tell how
the operator acts on an arbitrary state, i.c. on a superposition
% 6¢ ®¢ of free particle states & (with K 8¢ = Ee Be e t* must
have the following property

. .- 1
t Zfﬁ Te> ulca <V+VEC_K_V+16 v>@e> (111.7)
¢ |

17




-~ 28 -

We can find an explicit expression for such an operator, namely$

N\ 4 :
t = Z <V+V Ej_K_V+i€ v) @j><@j . (I11.8)
J

Here we need to include explicitly the bra and ket symbols that we
kept implicit before.

Similarly the complete definition of the t operator is

- 1
t = ZJ 2,><2, (v +V B R-ViIe v) . (II1.9)

J

For brevity, we shall suppress the bra, ket and summation symbols
when writing the expressions for the £ operators., In other words,
we shall write expressions like BEgse (IIT.1) and (III.2), but keep
in mird the complete expressions (III.8) and (III.9) and actually
use them whenever we are operating with t+ or t on packets of free

waves.,

2. Analysis of the Elastic K-d Scattering

We have now to tackle the problem of expressing the col-
lision operators T of the K-d system, which, in Chapter II, were
written in terms of the above-defined operators referring to two-
particle scattering. We have to deal seperately with elastic and
inelastic scattering for two reasons., The first is that the cx-
plicit expressions for T:l and Tinel in terms of the two-particle

potentisls are not the same [see formulas (II.15), (II.16), (II.21)
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and (II.23)]. The second is that the arrangement and interpreta-
tion of the terms which we shall have in the two cases are different.
This is due to the fact that in the case of inelastic scattering the
two nucleons in the final state.are free and we do have the colli-
sion operator tu acting on this state, while in the elastic scat-
tering we are concerned with the bound neutron-proton system in thoe

final state and not with a scattering state of these two particles,

Chew and Goldberger {Ref. 4 ) have already considercd the
problem of the elastic scattering of a particle by & number of in-
teracting centres of force. They obtained the expansion which cor-
responds in our problem to exprossing the collision operator T ol
fir elastic scattering of mesons by dewterons in terms of tp,

t" and U, We now usc thelr method to darive another expansion,
wh:Lch differs from thairs in the arrangement and interpretation

of some terms.

We are interected ‘r the collision operator for elastic

. + -
- 1 s 211 =%, = = .
K-d scattering on the energy she=ll. So we take Ef Fl, Tel Tel Tel
This only gives simplicity of notation, and has no effects at 211 on

the results.

The initial and final state consist of a deuvtercn and a
free meson, and san be renressnted by a superposition of plane-wave

states of three perticlosy’

g, > = L cefee > (III.10)

where ¢¢ is determinod by our knowledge of the structure of the

deuteron - it is in fact the deuters: weve function in momentum
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space, We call E; the energy of the free particles in the com~
ponent &, of this wave packet, i.ef

!
Klge > = Befoe > o

By applying the operator identity

1.

1 1
e (B-A)=B- (TIT.41)

o= B

to the expression (III.8) defining t; after multiplication on the
1 .
left by T rieX we obtain

1 1
Ee - K-V +1ic Vp|®ﬁ> ® e rie~X

t; |2e> (ITI.12)

By multiplying Eqs (IIT.9) on the right by Bor ic ok * W ocbtain
anelogously
Lot |V 1 = &3 P g, B (IIT.13)
¢ pch-K-Vp+ie" My Ber+ ie~K .

Equations (III,12) and (III.13) are very useful relations. We can

write analogous expressions for Vn and U, of course.

By repeatedly using Egs. (III.11), (IIL.12), (II1.13),
etc., we have

1
Telqui) = [(vp+vn) + (vp+vn) E-K-U-VP-Vn "y (vp +vn):| Ie/ri> .

=\ 1 1 L
- ;1J°€[Vpﬁ*vﬁfkvp [#e-K-Vp+i€ + E-K-UJVPHVn+ie (EE-E+U¥Vn) x
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1 1
x [}
Eﬁ"'K"V +1€:'V +VpE KeU=V =V +ie¢ Vn+
P - P n

] 1
+ v ==Y+ V [ — 4
E— = - = - -
n K=UT Vp | Vn+ ie p n)| E -K Vn+ ie

] 1
+ E-K-U-VP-Vn+i€ (Ee-E+U+V ) FTRLY +:|.€]Vn] l@e>

= gl L 1 +
zce[tp”n"’vp E-K-U=V -V +ic (Be~E+U+V) gryyye B

1 . 1 +
+ v, e SU R AR A T (Be = E+ U+Vp) TR by

T — AR St o

L U+V +Ee-D) _‘K"‘_ e

+ Vp[:Ee, —K'—vn+ie E-K-U-vp-v tie ( Ee RV, +1

‘ S S [2¢>
A ] s (U+V + B~ E) Eo~K=V +j_€] vp] €
VnEEJg KV +ie + KU -V, +ie n ¢ K-V
: 1 ( «FE+U+V ) +
. -+ + E‘ + 0
:zce[ tp+tn+‘:vp E"'K-U“‘vp— vn_l_ie
g ,
‘ - [ A R S
+V+V E-K-U~- 1V -V+ e(U+Vn+E€ E)]Ee—K+:1.e P
p

1 B =B+U+V. ) + V_ +
*‘[Vn E-K=U- V-V +ie (% o+ T
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: : 1 1 +
vy E~K U=V -V +1e _(U’“vp*E‘“'“E):I B ~K+ic tn} 3¢ >

(L 1 1 +
-—[tp-i-'tn-i-[v +T1Emwm—=-K T (Be ~E+U+V ):lE—=———=—_K+lE tp +

4 ]
|:V+Te13 o Tae (e~ B+ U+ V) gy }“’>

In this step we used the relation

y ) 1
(V, + V) 57757 o Vorie T Tl FIR TTIe

(I11.44)

which was obtained by the same method as {III,13): multiplying

T, by (E-K-U+ i€)™! and using identity (ITI.11).

The purpose of this series of transformations has been
that of eliminating the "uncbservable" potentials and introducing
the "“observable" collision operators. To transform the terms Vh
and Vﬁ that are still left inside the brackets, we must remember
that the above expression is to be multiplied on the lef't by the

. We obtain

. ke
final state < ¢f] = %,eef< B ¢

+ Lt 1 1 .7
<vplTqlys > = <4yl {tp+ o+ Ty Tome e B+ U) g Bt

1 1 +
Tﬂ.EFK—U+i€(Ee-E+U)Ev-K+ietn + (III.15)

- 1 + - 1 +
+tnim—K+ie§p+tpEg—K+ietn}I¢i>

+ terms of higher orders.



..35..

By "terms of higher orders" we mean terms which when expressed
in the form of products of collision operators and propagators
will consist of & product of two or more propagators and three

or more collision operators.,

The meaning of these terms can be understood in the
following manner,. We have an initial state [wi:> = % ce |Be >
which consists of a packet (deuteron bound state) of frec waves
of proton and neutron and a frec incident meson. Similarly for
the final state., The term

+ N +
<tpltoley > = Lcecw <ger [t]loe > (111.16)
¢,e’
represents collisions of the incident meson with a proton of
momentum 1sbelled by £, the meson taking the momentum specified
in the final state of the system, and the proton passing to a
free state of momentum labelled by £'. The sums over £ and ¢
correspond to using #ll the components of the initial and final
wave-packets, The collision operator t; contains a §-function
of momentum varisbles as a factor so that the totel momentum of
mesons and protons is conserved in this collision. This means
that for each value of ¢ only one value of £’ contributes to the
gbove sum. This value of ¢’ which is fixed by the momentum con-
servation is specified by the initial end finel meson momenta.
Energy, of course, is not necessarily conserved in these two-
particle collisions. Similarly, <¢f|tzl¢i> :}%ﬂ0§l0g<@elit;]@ﬁ>
represents single scattering of the incident meson by the neutron

slone.
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Terms like

.1
Ee =K +1¢

- 1 + 3 -
<¢fltn Eg"K.+iE tp|¢i> = Cerce <q)€’|-tn

t;l@e > (II1.17)

T
€

~

)

represent double scattering processes. Here the incident meson
collides with a proton of & certain momentum lebelled 4 the
system of three free particles of energy E; then "propagates"
(factor Eﬁe-K+ie) until there is scattering of the meson by the
neutron, leading the system to the component ¢! of the packet of
waves of the final state, There is conservation of momentum,
but not necessarily of energy, in each of these two collisions,
due to the fact that each operator t contains a §-function of
momentum variables as a factor., Again we sum over all components
of the initial and the finel wave packets. Analogously, some of
the terms of higher order in the expansion of Tel will represent

multiple scattering processes.

The term
T — (Eg-E+U) ———1-—-—’ t+ (1I1.18)}
6l E~K~T +ie Ee-K+1e p

represents a complication to these double and single scattering

processas. It brings out the fact that the two nucleons are not
free, and strictly ' speaking caennot be considered as such during
the interval of time during which coliiéion processes occur. Ths

simplest terms contributing to the above-mentioned term are

ﬁcccz‘: <oer| (47 +17) S S— (Be= B+ U) L t+|<f> >
p 1’ Bpy-K+ie \©¢ E;~-XK+ie p ¢

4
(’.’6
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which are obtained by iterations using <:¢f|Tel = <:¢f[tp—btn + eee
and Eq. (III.11) to transform the propegator (E-K-U+ie)™! .
This expression is represented by the figure below, which shows

the nucleons interacting between two meson-nucleon collisions.

t t
nucleon huel nucl. Micleopn
nuclseon nucleon

Terms like Eq. (IIT.18) correspond to three-body effects which
cannot be reduced to combinations of two-body processes: it is
not possible to express Eq. (III.18) in terms of tP, t s t, only,

eliminating U,

Much has already been said in the literature (Refs. 2-4)
on the conditions under which the double scattering and these ad-
ditional potential effects afe small compared to the single scat=~
tering processes. In our case of K-dsuteron scattering, these
conditions are well satisfied for incident mesons of medium or
high energies. The meson boing fast and its interaction with
the nucleon being of short range, we expect that during the short
time in which the meson-nuclson interaction tukes place, the
nucleon-nucleon binding has very small effects. The short range
of the meson-nucleon interacticn as compared to an average inter-
nuclesanic distance in the deuteron, ocauses double scattering pro-

cesses to be much less impoftant than the single scattering ones,

An estimate of the value of these double scattering con-

tributions can be given in the following way (Ref. 2 ). Let us
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take p and n as two sources of scattering, separated by a
distance R = 4,3 X “IO-13 em which is the average inter-
nucleonic distance in the deuteron., The amplitude of the
wave scattered by one nucleon, calculated at the position

of the other, is /R = VE?ﬂET/h.Where f is the scattering
amplitude and ¢ is the total cross-section. Phase factors
have been neglected. For K+-proton scattering, we have

o~ 16 mb (Ref. 14), and then f/R = %z, i.e. the wave scat-
tered by the proton, when hitting the neutron, is twelve
times weaker than the wave incident directly on the neutron.
This indicates that double scattering gives a much smaller
contribution to the K'-deuterons processes than single scat=
tering, For K -deuteron scattering, double scattering pro=-
cesses become more important due to the fact that the total
K--proton cross-section is several times higher than the
K+-proton cross=section, Taking o ~ 60 mb (Ref, 15) for
example, the ratio of the contributions to the maitrix elemen$
coming from double and single Soattering could be of the
order £/R = %, which is too high to justify neglect of
double scattering terms in the K case, if a relizble com=

parison with experimental data is to be made.

It would be interesting to calculate the contributions
of double scabtering terms and of the simplest potential correge

tions to the matrix element cf Tel' We have not done so in this
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case of elastic meson-deuteron scattering, though we have in the
case of inelastic scattering, which will be treated in the next

section and in following chapters.
The approximation whereby one assumes that
<ppln o, > = <poltl el ly, > (I11.19)
£'17el!7i” 1% "n''i *

is usually called the Impulse Approximation. As we have Jjust
shown, we expect it to give results correct to within a few per-
cent (perbaps 10%) for K'-deuteron scattering cross-section, but

it may not be so geod in the case of X -deuteron scattering,

Analysis of the Inelastic K-d Scattering

The inelastic scattering of mesons by deutercons is
governed by the metrix elements of the collision operator Tinel
. + - = - - - 3 Y

(Tinel?xineI”Tinel for on-the-energy-shell matrix elements) be
tween an initial state consisting of a deuteron and a free inci-
dent meson, and a final state consisting of a free meson and two

free nucleons. The expression for Ti in terms of the poten-

nel
tials Vb, Vn’ U, has been glven in Chapter IT, Qur task in this
section is to expand this expression in such a way that the two-

perticle collision operators tp, tu, tn appear in the most impor-

tant terms instead of the potentials Vb, Vn, U.

We again represent the deuteron by a superposition
lg, > =§ e |8¢ > of free waves, with K|&; > = Bl >. The final
state satisfies KJ@fj> = E|@f:$ and the initial state obeys
(K+0)|¢; > = Bly, > .
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By using the operator identity (IIT.11) and relations
like Egs. (IIT.12) and (III.13) we obtain

_ o 1 -
[4o > = [(U+Vp+vn) + (U+VP+Vn) E—K-U—VP-Vn-l-ie (V_+V ) ,‘/’i> =

Tinel

= z cg{(mvan) + (U+VP+Vn) o +i€_K_VP VP + E+ie-K-U~VP-Vn x

¢

1 1
* (B -E+U+vn) Be +ie-K-VP Vrp * Ee +ie~—K~Vn Vn ¥

4 1
- EAe RO, (Eg-E+U+V ) B viekV_ n]} 3¢ >

— ’ 1 ,
= Lce{m (Vp*’vp Eg+ie-K-V, o) T nt T E +ie=K~V_ Vo) ¥
4

1 1
- (Be-B) | gy U, +
E+ie~K-U-V -V, Be +ie-K-V, P

+ (U+Vp+Vn )

1

1
¥ Ee+ie—K-V, Vn:l + (U+7,) Be+ie-K-V, P Vp *

1

1
+ (U747 ) n/ E+leK-U-V_ o7, U+ ) g eV Vp *
1 1
* (U+V ) B +ie-K V V * (U+V i ) E+1€—K-U-V V (U+v ) x
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1
* B ¥ie- K-V vn] loe> =

]

i
;lch{U+t++t++ (U%V
P 1

e

+ (U+Vn) + (U+VP+V )

U+V U4V _+V
+| (U4 P) + (U« ot n)

Let us

square brackets.

1

+V )

1

E+1e—K—U—V V

E+ie~K-U~V =V
P n

1

Biie-KaU-V -V
P n

(U+Vn )_

(U+Vp )

(Be-

1
) E; +ie~K (t h ) *

1 +

| Be+ie-k P

1
Ep +ie~K n } ]®6:>

evaluate the contribution from one of these terms in the

In order to do this, we apply the operators in-

side the brackets to the final state < @fl on the left:

.1

<8 | [(U+V )y + U+v +V )E+l€_K_U_V =

1

=<2, [an’"vp B e-K-0-0_V_

1 1
¥ Vn E+ie-K-U-VP-Vn U+ U[#+16-K—U

1 1
% U+vn|}‘..+ie-K—V A P
n n

uBpic =

1
= <3 fl{t o+t

(U+Vn) + U

1

(9+v )] v e M P

.1

* Eie-K-U

(U+v_)

1

.1
(V,+7,) E+ie-K-U—VP-Vn]

1
:!V } -Be Ep+ie-K
Il

T E+ie-K-U—VP—V

v +

E+ie-K-U~V =V n
P n

tolv >

(V+V)

E+ice -K~U-~- V ~'V

U+
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- 1 1 1
by Friex (U+Vp) B R0V -V nt i Eie-R-0-7, -V, (U+V) +

1 : 1 1 +
* U E+ie-K—U—Vp-Vn vn+vn E+ie—K—U-Vb-Vn v } Ee +ie-K tphb:i_:> *

We thus obtain products of the type t/Got”Got”... [where Go=(E-K+ie)‘1=
= free particle propagator] of higher and higher orders, which cor-
respond to multiple scattering effects, together with terms which
represent the corrections to them from "essentially three-body
effects", '

Separating contributions from processes up to the second

order we have

30T, o> =) ce<o i et et e Y b e £ 4
< £f'7inel $i ">JO‘3 ' 'n U Eg+ie-K p n Fe+ie-K p
T

+ b ! £t L " + remainder 2 > (111.20)

u B +1e¢=K n'* p By +ie-K tn

where

1
B+ie-K-U-V_~V
‘P n

1 + +
(Be-E) groiemg (b5 + )

remainder = (U+VP+Vn) Tew (b, %y

+ terms of higher order =
1 - ___J____ + +
= Tinel Fiiekm (& ~B) gieck (b, +ty) (111.21)

+ terms cf higher order.

It is easy to undsrstand the meaning of the terms in

Eq. (III.20). Those with t; and t; alone correspond to single



scattering by the proton and by the neutron, respectively. Only
ons of the nucleons is hit, the other being left alone. The
S-function in momentum variables which is contained as a factor
in the t~operators impbses donsefvation of momentum on the. two~
particle interaction and‘onrthe ﬁhole.prooess {this will be seen
in more detasil in Chapter IV). However, energy cannot be con~
served in the two-partiéle collision, i.e.,<:@flt;|@g:> is neces-
sarily an off-the-energy-shell matrix element. This is so for

the following reason. Since we impose conservation of energy in

the whole process, Ef = Ei' But Ei = incident meson energy +

+ deuteron mass, cnd Ee = incident meson energy + proton mass +

+ neutron mass + proton kinetiec energy + neutron kinetic energy,

so thet e » E,, which implies E; > B, for any £

) %n additiOn to the double scattering terms t; ﬁ;:%?zi t;
and t : t_ similar to those which we had in the case of
n Bg+ie=K P :

elastic scattering, we now have two othser second order terms:
- 1 + - 1 ot
u Be +ie-K tp and tu Be +ie-K tn'
of the meson with one of the nucleons. followed by a scattering of

They represent the collision

the two nucleens, and are the simplest form‘of Tpotentisl correc-

tions" to our multiple scattering model..

These terms are disgrametically represented by iie figures
below. - Nucleons are represented by heavy lines, mesons by dotted
lines. The fact that the particle may be "virtuel” is irndi-

cated by a wavy line over the line that represents it.
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As in the case of elastic scattering discussed in
Section III.2, the "remainder" represents multiple scattering
processes of high order, and essentially three-body processes

which cannct be expressed in terms of two-particle operators.

The residual terms correspond to modif'ications of the
processes which the above diagrams describe. for example, pions
may be exchanged between the two nucleons while interactions with
the meson are taking place. In the language of diagrams, this

modification appears as

-~ //
~ K K.~
e -
LT —
Remainder = tp +
1 T
[N [
|
a ‘TT: |’ﬂ'
n Lo n
A¥ 4

+ #4sb 9y



We can obtain a different expension for Tinel in the

following way. We first apply Tinel to < @fl from the right,
obtaining :

o 4
<2glmy g = <2 It *¥ Trie Kl:v + (V) see ., (v, +v ):|

- 1 1
RN - Kl:v +(U+Y )E+16—K-UV = (V,+¥ )]

- 1 1
* tu E+ie~K [(vp * Vn) * (Vp * Vn) E+ie-K—U-VP-—Vn (vp + vn)]

1 1
& —
=< It ey +tp Erie K[V +(U+V,) E+ie-K-0-V W (v * Vn)] *

e e . e =t

- 1 1 - 1
* tn E+ie-KETp+(U+VP) E+ie-K—U-—VP—Vn (vp+vn)] * 1;u E+is-KTel )

By applying this expression from the left %o |¢ri> =%. Ce ]@g) we

obtain, collecting terms up to second order,

1 +
<e Ilnellg'b> Lce <® ,t N +tpE+1e Ktn+

2

-1 o+ -1 =1+

P F 1e ok Bt ETieck vt Erieck p

+ remainder | 3, > (I11.22)
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where

<2 fremainder]@g:> =

= __\c &)t L_ o ! (E¢-E+U) mméL—==(t+-+t+)]@ >
= e <%ity Fivy Tar E-K-U+ie ‘¢ By ~K+ie “'p” ‘n/ité

2

+ terms of same and higher orders, (I1I.23)

Comparing the two expansions (IIT,20) and (III.22) we see
thet they differ, firstly in the single scattering terms by the
fact that in one case [ (II1.20)] we have t; and t; and in the other
case [III.22)] we have t; and. t;. As we are concerned with metrix
elements of these operators of f-the-energy-shell, this is a real
difference.  Secondly, in Eq. (IZI.20) we have B¢ as energy pare-
meter in the propageators that appear in the second order terms,
while in Eq. (III.22) we have E.

The "remainder" for Eg. (IIT.22) is of ons "order" higher
than that for Eq. (III.20). This could suggest that Eq. (III.22)
is a better expansion than Eq. (III.20). However, we have not been
able to evaluate the contributions coming from these residues. Also
we do not know anything zbout the behaviour of off-the-energy shell
matrix elements of the collision operators. Thus we could not
Justify preference for one or other of the two expansions., We can
expect that their difference is smaller than the error involved in

neglecting the residual terms of the expansions,

We can try to write Egs.(III.20) or (III.22) in terms of

two-particle scattering states. Lot us consider Bq. (ITI.22).
If we assume + =t. =+ and + =t' =t we can group the
ST T D P n ol n
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"single scattering® and "potentiel correction" terms into the form

1 -
<qsf| ( + tu FTIc _K> (‘bp+tn)= <<1>fu (tp+tn> (III,24)

where

(=) _ N P P I, S
=1+ TR T tu ) % =1 Y ETRCTeoD V)% (112D

u

represents a free meson plane wave and an ingoing wave scattering
state of the two-nucleon system. It is & solution of the
Schrédinger equation with Hamiltonian K+U with specified esymptotic

behaviour. Equation (III.22) would then become

<eplr ley> = <oy )!t + 4 o>

1 + =
+ <:@ |t p TP tn+-tn E+16-K plwl:> + (11I,26)

+ remainder.

The first term in the right-hand side of Eq. (III.26),
with its ingoing wave-scatiering state on the left-hand side of the
matrix element, resembles the usual form of the Final State Inter-
aotion Theory (Ref. 16). It has been adopted in calculations by
Gourdin and Martin (Ref. 10} and by Karplus and Rodberg (Ref., 17)
as an improvement to the pure Tmpulse Approximation (which takes
into account single scatteringterms only). This term does not in-
elude effects of double scattering, which are described by the
second term in Eq. (III.26).
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The double scattering terms can also be expressed in
terms of the meson-nucleon scattering states. Since @f is a

three-free-particle state with energy E,

SR PN RS W 1+ 1 v )&, (IIL.27)
fp E-K-ie p by E—K-—ie-«Vp p/f
is & solution of the Schrédinger equation with Hamiltonian K-&Vb
reprosenting a free neutron and an ingoing wave scattering state
of the meson-proton system. We have an analogous expression for
@g), the meson-neutron scattering state. Equation (III1.26) can

n .
thén be written

ly, >

)

<ez.lT,

inel

<@(;1)1|tp+tnl¢i> *< @E.':[tnlzjxi> *

+

<@(;lltpl¢i> - <q>f|tp+tnl¢i> +

remainder ‘ (111.28)

+

where we have assumed that matrix elements of scattering operators
t" and t” are equivalent. If we do not make this assumption we

must write

u

<ol aleg> = <BD ke ety > s <@(;;!t;lwi> :
+ <<§(;','31[t;f¢i> - <@f|2t;+ 2t;-t;-t;f¢i> +

+ remeinder.
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As far as the genersl structure of our three-body system
is concerned, we have no reasons to believe that double scattering
processes are less important than the "potential correction" ef-
fects. The competition between the two kinds of processes will
depend, among other things, on the value of the matrix elements
of the collision operators tp, tn, tu, i.s. on peculierities of
the particular system studied. If we keep all the second order
terms we shall have what we believe to be & good approximation o
the meson-deutercn inelastic scattering,. This will be discussed

in more detail in Chapter V,
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CHAPTER IV

DYNAMICAL, VARIABIES AND SPIN SUMS

1. Dynamical Variables and Representation of States

In Chapter III we expressed formally the collision opera-
tors for elastic and inelastic meson-deuteron scattering in terms
of the several two-particle collision operators. Ve now introduce
explicitly the dynamical variables describing the system, and show
how the main terms of the expansions we have obtained depend on
these variables and on the quantities describing two-particle prow-

cesses more directly.

Let us define thelfollowing symbols:

E -~ meson momentum variable in lab. system;

Eo - wvalue of initial meson momentum in lab. system;

af - value of final meson momentum in leb. system;

Eq - meson total energy variable in lab, system;

qu - value of meson total energy in initial state in lab.;

qu - value of final‘meson-total energy in lab.;

p = proton lab, momentum variable;

Bp =~ value of final proton lab. momentum, when it is free
(inelastic scattering);

A - neutron la¥. momentum variable;

ﬁf - wvalue of neutron lab, momentum in finel state, in case
of plane-waves final state (inelastic scattering);

ﬁ - total momentum of centre of mass of deuteron;
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¥
o
i

value of momentum of centre of mass of deuteron in
initial state;

-

Kr = velue of momentum of centre of mass of deuteron in
final state;

proton-neutron relative momentum variable (momentum of
proton relative to the centre of mass of the neutron-
proton system);

&Y
1

,? - vwvalue of proton-neutron rslative momentum in final
state, in case of free particles in this state (inelas-
tic scattering);

We have the following relations:

¥

=

-
Ep~-E

- - - -
K=p+n; ,g:.«-%==+E
n kY

L

. (Iv.1)

For non-relativistic particles, this becomes

Mp-Mn
A
My + 0

-

n).

c s D >
For M, = MP this is £ = %(p -

The inverse relations are

E E
- - - -> - n =
p:.{-i-'"ﬁ“-“‘%ﬁ“l( and n=-/ +ﬁ===:=’§=K. (Iv.2)
n o p n P
Our system of three particles can be desoribed either by
L > >
the set of variables g, p, n or by the set g, K, £.

The meson-proton relative momentum (i.e, the momentum of

the meson in the centre-of-mass system of meson end proton) is:



and the relative mesop-neuvtron momentum is

Eq=-En
‘d'gmﬂg‘“‘ - (Ivv)-i-)

Y

n -

q

In our problem only non~relativistic motion of nucleons
will occur; under these conditions we may define the canonically con-
Jugate coordinates to the set E, ﬁ,,?. We call R the position vec-
tor of the centre of mass of the neutron-proton system, T the rela-
tive position vector from the neutron to the proton, and z the posi=-

tion vector of the meson.

The initial state consists of a free incident meson of
momentum ao and a deuteron with & total momentum Eo. Let us indi-
cate this state by |¢£> = |¢i(§§,ﬁol> . Its representative in

momentum space is
<2’,33K|¢i(30 ,ﬁo )> = 5(3-30)3(1%-1_50 )¢D(£) (IV.5)

where ¢DL£) is the deuteron wave function in momentum space. We
keep the spin variablies implicit in this and the next section to
avoid unnecessary complications. In Eq. (IV.5) we used the |
§-funckion normalization flor the plane-waves, il.e. the state is

normalized in such a way that
- — -2 = > e - -
<f$i(Q1sK1)1¢i(qasKo):> = 8(Ky =Ko)8(qs = qo) »

The representative of this initial state in configuration space is
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> > o>

> > > > > . i o' iKs*R
<r:PsR[’/"i(QOsKO )> = ‘(‘ﬁ e do7o 'E';"j')‘%‘ e l'bD(r)

where ¢D(r) is the deuteron wave function in configuration space.

For the final state, if the two nucleons are bound, we

have, anslogously to the initisl state
- > = - > > =
<2509, (3p K > = 8(a- 38R =Ko p(2) (1v.6)
where ¢F(Z) is a function, with normaelization
% -
f bp(p(l)ass = 1
describing the nucleon~nucleon bound state.

If the final state consists of three free particles, its

representative in momentum space is

n

RNy Gkt )> = 8(2-3,)5(=E, )8 -3)
or | (v.7)
4,9,825 (3,7, 8(q=.)8(n - )8(P - B)

<q:P :nIQ'F(qf.snf sPp )>

it

while its configuration space representative is

- > > > ->, =
3> > > > > 1 igf e 4 in'R 1 j_[;f\»l"
<r’p,RI@ ( SK.pJ! )> = = kY, e £ e .
e

This three-free-particle state is normalized so that

S -

<o (Ch 2 R0 Kpnd,)> = 80 -2,)8(ah - 3 )8R - )
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We are not interested in the case of a2 bound meson-nucleon
state which could, in principle, exist but in fact does not ogcur in our

actual problem,

2. The Structure of the t-operators

As tp does not act on the neutron, we have

- B

- -
<P' »n',qt |tp|P:n,Q>

[t

<wR> <L lel8,a > =

s(n' -n)<pa 6 lp,a > .

<(§5§fltp|§,3:> contains as a factor a §-function responsible for
conservation of momentum in the collision of the two particles.

We define a new operator rb by

> > - - > =2 - - >
<p! ,E'ItplﬁsQ> =~8(p' +q’ - P-Q)<§’,q'|rp!p,q> . (1v.8)

o'a!lr |§ E deponds, in fact, only on the relative meson-proton
P’q P b b

momentum, so that

>, =, > - s T L2 =, - _
<p',q |tplp,q> 8(p' +q' = p-a)<k, [rplkp>

: B (IV.9)
- > - > E fE’HElgl E q>-E 'P>
RIS S UG s IS
P q’ p q

Wo can introduce in the second member the set of variebles ?; ﬁ, E

in the place of E, ;, n. ILet us note that 5’ + E' = ; + E
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corresponds to

S EH,E' - Ep,;?;" E_ (P+3-q') - E ,E
' = O - L
L' = E, +E, E, +E,
el P n P

4]

R B E,
z*m(qq)+K<E+E"E,+E,>
n n" p 'n

od P
so that
> e - > 3 -
<p',n’,q"‘t I B, 1, Q> =
B B
nf 5 - > f
- - il 1. ——r R AN P - P
B 8( +q q)8|:£ E FE L, (a-q') K(E +BE° E ,+& )]
- d
k' r k T .
x ke kD> (1v.10
where
U E, 3 -E , -8 o L2
P Epf +qu P'q ! ! Enr + EP'
and (IV.11)
- B 1 _ 1mprm—>
kp..EP [Eq EqZ n+EK:1.

In the same way we can find the expl:.clt dependence of <p q n" l 6 ]E,é,ﬁ:.

on the momentum variables. As q ol o= q + 1 implies that

E_, E E

->’ _-)- 2 =3 “-a. s 2 ;..:.., '
£ =4 E,+E (20 qf)+1§<En+Ep E, +E
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we obtain

- > >

> >
<p'yn', qlltn|P,n:Q> =

B E E
ORI £ Bl B e P SRS LA s S WU - SN N
= - 8(K'+ g Kq)SE? [+E,+E,(q° o) = K (§7F E_,+E,
n’ " 7p n p o 7p
2, r ->
x <k el k> (1v.12)
where
k! 1 E ,q' +E ¢ ~E Py K¢
T or——— + - S
n En’+Eg _xﬂq q’ q’En,+EP,
and (1IV,13)

~¥
]

E
1 - n —>
= LI E q + B 2 - E e - K] .
n En + Eq n q q En + EP

Only tu rcmains te be discussed. As it involves only the
nucleon-nuclcon interaction, the meson is left alone, and analogously
to the previous cases we have

e

> >
<phasn’ 1t lpem>

1]

- 5(3 - e 41 - B-R) <& r 2>
(IV.14)

-

S s e - F-Rps( - B) <F I |25

For off-the-energy shell matrix elements, the two kinds of c¢ollision
operators, t* and t” are different. We must then define two corres-

+ -
ponding operators r and r :

—>'->'r,,-a- ->\ ->,—> -> -=> —>—>l > >
L p!,pil i b,Pe> = = 8(Df +D4 ~ Py =Da) <P, 04| |Dr,02>



- 56 -

The differential cross-section is given as usual by
do om)? . 2 '
R-[) ] <olela> | -5 pa

where v is relative velocity of the bwo particles, p’ is the momen—
tum of one of the outgoing particles, and 2 means sum over final

and average cover initial spin states.

For a non~relativistic collision, an on-the-energy shell
matrix element < E’!r ¥ > is velated to the scattering amplitude
£(e) by

e(0) = (2% p < Bt e ]B>

where @ is the angle betwoen k! and ﬁ, and p is the reduced mass of

the system of the two rolliding particles,

3+ The Single-Scattering Terms in
the Expansion of T,y and Ts, 01

For scattering by the proton we have

<pltloy > =fd3q'd3K'ézz' <yple'’K! > (1v.15)

B le [EdE> <2 Rly; > aaa.ka,7

By using Bgn.(IV.5), (IV.6) and (IV.10) and choosing Eo:zo
(deuteron at rest in the laboratory system) we get



E
<ol luy > = - a(Kf.._a’f-?-io)[w;(ma@f-z - ~ (G- qf)>

<k e k> %y, (£)as2a57 (IV.16)
P PP D
where k%) k are given by Bq. (IV.11) with q" > q_f. -5-* Qo 3 £ = 0,
k= ﬁfo For elastic scattering we have

<GB 6 1oy (BosBo= 00> = = 5(Rp e 8- 30 )[¢;(2+ o)

M@-E?-E (Eo-af) Mgo - E 2
e G do -
< M+ E l P , ¥ o+ qu >>< ‘;[ID(/Z)dB'e . (IV.17)

For inelastic scattering, with non-relativistic nucleons in
the final state, we obtain

<@f(§f-a§f:1—3’f)ltpl¢i(gwﬁo = 0)> =

Mi.-E_ P, Mg, +E_n
- -> ->
== S(Kf+qf'q°)¢D(nf)< Wi E

For single scattering by the neuitron we have

<¢f(qf:K )It |¢’ qosﬁo = 0)> = - S(Ef‘*"@l}"acr) X

< [ U882 5By (G - KDY RCANRINLE;

Ji n'

(1Iv.19)
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=

. = = . . -» - = >
with k! ,k given by Bq. (IV.13) with q = go, K = Ko = 0, K/
-> -

! = . For elastic scatterin
q dp ' 8

<¢f'(§f.i’f)ltnl¢i(§o,ﬁo -0)> = - 5(Ro+ Go- Qo) x fwg(f-%(go..ng y

n

W +E £ - B (o-3p) Mo +E_F
Qo
Qo

Yor inslastic scattering we obtain
) R
<'§f(qiﬂnfﬁpf)[tn|¢i(q0!KO = O)> =

qO

+qp - q°)¢b(Pf)<::==TT:3§;:““ “n ”ﬁ@rjﬁizf*”:> . (1v.21)

-

(K

L+ The Double-Snattering Terms

Using Egs. (IV.6)}, (IV.10) and (IV.12) we get

<vplt 4y > =

i n E-K- Ki—lE

x < 2q &g (4% = 0)> asd a5’ a5k 457 a5q X .
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Introducing complete sets of free particle states between

tn, tp and the propagator we may write this as

[y <Gl > 0 - B0 + =R )
*FrETTe abalplDB> 86, - DGy + 4 -3 - &)
mn

- -2 - -> -
X ¢D('£) d3,f’ dsd dsz d3nm d3qm .
For elastic scattering we obtain

¢’i(aosﬁo = O)> = a(ﬁf"'af"EO) X

AL qf)l

nE- K+l€ p
W EORCEANA D = R LN S
x g (£) asd' 4k (1V.22)
where am = n"+‘c3f--'1-'1> = q+p-2', D =2 =~ 1, P! =2' + % Kfa
n = -+

E is the total energy of the state where momenta of the particles
are gm, 5’, n. We have
lz

-
2
= . B 2 2
Em M +2M +Mp+2M + m-i-qTIl
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for a relativistic meson (mass m) in the intermediate state.. For
. . - '
inelastic scattering we put $F(Z') = 8([’-uf}) and get

R 4t e e = - - -
<op(aphel )|ty FoRre bp| Yildosko = 0> = 8(Kp+qp-a0) %

x f a5k <§f-5f_»‘|rn|K Em> ﬁ“:ﬁi”;';_'; <§mﬁf|rplao,5> sl'D(/f) (1v.23)
i m

where
-> -> >
p =-n=4{
- > - -> -> -~ -
4y =G0 t A4 " Pp =G LN
Z 2

22 pf = =

Em = Mn + 2Mn + M+ 2Mp + Vm -qu .

More expliecitly,

Ko = 0)> = 8(%}4—qf- Qe ) X

P e
<:¢ (quf )l nk- K4-1e

Mg, -E 1B MG+ Z-D,) -E_ I
xfd;g Lﬁ;‘.f;ilr‘ * £ ‘1m>EE1+_><
M+ qf n M+ Eqm -5 ie
MEm-EE
qu
« < =il TR > by (4) (Tv424)

M+ E
e

When the first collision is on the neutron, we obfain in

an entirely analgous way, for elastic scattering
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<#p qf’ﬁ )IPE""%T";{; ‘/f(flo,Ko =0)y = B(Kf%q}-?io)x

* 000 Y N 1 > > - -
Xf ) x <p'hgplr [p,q; > ECE i <qn'|r lao,n>

Yp(8) a3 4 (1v.25)

> - - - - -

> - >

where p =A? = = n, 9, = Qo +n=-n" =7p + 9 - P and Em is the
energy of the state in which momenta of the particles are Sm, E’,
->

Py Lee.

For inelastic soattering

=5 = = 1

<G| i o] ok = 0> = 8Re G- o) x
x [ 4,2 <§f?!>flrpli; Em> ‘E"‘“:'E‘l';"’f? <%ﬁf|rnlao,3> lﬂD(a{) (Iv,26)
m

- -» - -> - - >
where q = qo + D = Ny = Qo -/c"-nf=qf+‘Pf-/£

. Lo -
and EmnMp oM +M +-2-}‘—'I;+m+qm .



- 62 -

5., The Potential Correction Terms
for Inelastic Scattering

mﬁﬂi“p:t
UE~K+ie p
By introducing sets of

We now consider the terms of the type t

which occur in our e nsion of T.
h u xpansio insl®

free particle states in the appropriate places we obtain

< (Ef_ﬁ;f)l u'ﬁ“‘f{l:; o ¢y (%0,Ko = 0)> =

- <G ER >EIR GRS 5ogtom

- -3 =y . - - - - - -
x <Epa Kol lEaX><ZaK]y, > 458 a50’ @R auf 4q ok 6.8, x

> -
% d3qm d3Km .

Using the representatives of the final ond initial states and the

properties of t and tp as given by (IV.10) and (IV.14), we obtain

e 1 4 > > ~>
<‘§f<anqu>|tu Bk 1e tp|¥i(dosfo = 00> = 5(Ko+ qp~ a0) x

f ds£ < pghglr, |5 5> m <agb Iz [dop> (1v.27)

-> >

- > > - - . .
where P, = P+ =g, :,g4—qo-qf and Em is the energy of the inter-

mediate state

-3 -> R Y]
z ,Z + Qo )
E =B +M + 4£u»+ M+ ( ¥ .
m A 2M P 2M
n
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Analogously we get

<8,(pp0,0,) |t

1 > - -> - -
0 TR TTe bal¥i(aesko = 00> = 8(Rp+ qp-do) x

desz’ <peBplt,lp B> ﬁ‘*‘"ﬁ"ﬁ? <apB [t laon> ¢p(£)  (1v.28)

h -> .= - - _ 7 -> “Z
where n.o= Qo +D =gy = Qo= dp
- > 2
E E M - i} (ﬁo-qf-'f)
and 0 qf+ * SN I+ =T R

6. Expressions for the Cross-Section

We see that all the terms contributing to the expansions
- - > >
of T, and T, . have B(Kf +Qn = Qo- Ko ) as a factor, as they should.

We define the operators Rel and R nel by
= -> ~> ->
(Tel)f‘i == S(Kf-l- q-f =~ o _KO)(Rel)fi (IV.29)
(T o )py = = 8o+ T =~ Do=K DRy 1)y o (Iv.30)

The elastic scattering differential cross-section will then

-_—f Z’ Lég_).i S(Emei)

be given by

2q_f2dqf dg, (IV.31)

el’f
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where 2/ represents the appropriate sum and average over the final
and initial spin states., dQ_ 1is the element of solid angle about
the direction of af. v is.the veloclity of the incident meson. If
we want the differential cross-section we do not integrate over

an_ .
A

The inelastic scattering cross=-section is given by

4
_ {om)"
% el = _/ Z v 3(Ef"Ei)|(Rine1)fi

2

8xp dabp e+ (IV.32)

Spin Varisbles and Spin Sums

The most general meson-proton interaction can be described

by an operator

r =a_ + E:p < % (1Iv,33)

where 3; is the proton spin matrix and a_ and ﬁé do not depend on
spin variables, The vector bp depends on the relative momenta of
the two colliding particles in the initial and final states.

Analogously, for the meson-neutron interaction we have

r =a +0 *b . (Iv.34.)

The generai fermion-fermion interaction has a much more
complicated depéendence on spin variables (Ref. 18), In our prob-
lem we shall be concerned with relative energies of the nucleon-
nucleon system which are not very high, and we can assume they interact
in S-and P-waves only, Let us first assume tho nucleon-nucleon inter=

action is purely S-wave.,
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A, DNucleons interacting in S-waves only

Under this condition the most general form for r, is
r = a +’D(-8"‘3')
u u utp

where &, and bu do not depend on spin variables, We prefer to

write this as

- -
-0 O 5-!-0"0’
r. = (%mu-ﬂ———§> +c ( ) o P +c.P (1V435)
u 5 " t t
~» - ->
‘g 3+a0 *0
where P3 ‘___JL__,_ and P% ¢—==%%—-33 are the projection opera-

tors for the 31nglet end triplet states of the nucleonwnucleon sys-—

tem respectively. ¢ and cy do not depeni on spin variebles.

In the terms of the expansions of T ol and Ti o1’ there
appear products r rp, r,rhe rpr besides the single soattering terms
r_ and Tor So, as far as spin variables are goncerned, the most
general form of matrik element which we have to consider (if we in-
clude up to second order processes and if the nucleon-puclecn inter-
action in the finsl state is purely S-wave), is the matrix eloment

of

== =»

Re = A + B‘Gb + 3'0' + (D'd )(ﬁ' ) +F P+ G P+
- =P - - -3 =¥ - )
+ Ps(Hco—p) " PS(I-O—H) + Pt(J o’p) + Pt(K crn) (1Iv.36)

caleoulated between the initial and final state of our system of one

meson amd two nucleons. The first three terms refer to single
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scattering of the meson by a nucleon, the fourth one refers to the
double scattering processes, and the others to meson-nucleon col-

lisions followed by nucleon-nucleon interactions.

The initisl state is a triplet (spin of deuteron is one ).
Our problem is to square the matrix element < fIR,|i > and then sum
over some or all of the possible polarizations in the final state,
and to take the average over the three directions of polarizations
of the deuteron in the initiel state. We have two independent
spin variasbles 3b and gﬁ belonging to independent spaces., Their
correlation in initial or final stetes can be taken into account
by means of the appropriate projection operators; we then sum over
the two states of polerization of each of the two nucleons, We get

the following results.

1) Initial State is a Triplet State, Final State is any one.

<1[R,lf><f|R.P [i> = Trp Tr, (R RyP,) =

.F/J

Hy

2L

sat+et)(are) + AT+ e)BE) +(a+e)BHET) +

ui-\-
=

3> 5> >

P e T -> -»> - -> ->

# 307 D)ETE) + 23T+ K +CT4BT) © (FJ+K+C+B) +
> o, = > . T 3 -

¢ (@ -TH-CT 4B s (H-I-C+B)- (DB )(D*EB) +

<> > -» -> - - -» -»> - >
+ D E)D"*E) +i[(3+~c+-1”+ H') * PAE) -

- B-B-T0) - (13’+AE+)]} : (1v.37)
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ii) Initial State is Triplet, Final State is Triplet.

1 N * ' LA +
5§:<1m,PJf><¢mBJ1>._BTH;hn(mR@J%)=
f£,i '

1 { 3%s 0T )aee) + (AT eT)B ) 4 (a+)(BTE) +

3

- -> - - O A O S e
s 2B+ T CY4KY) - (B+T+C+K) + 200TD)(EE) -

BHEE - B) + 20T E)ED) ] (Iv.38)

iii) Initial State is Triplet, Final State is Singlet.

% ;{:<<1IR1 Py [£>< IR 1> = - T, Tr, (R,P R,P,) =

f,i

. (BFD)EYE) +1[(§ ST B AE) -
- Ben-8-T) . @ Ai:’*)]} : (17.39)

In deriving these expressions the following formulae

were used:



Tr Tr
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Tr Tr
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Tr Tr
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Ty Tr
PR
Tr Tr
P n
Tr_ Ty
3] n

., I'r Tr
P n

—

L.

_(z-ép)@’-zr’p)jn] < 4(3%)

@3)6:3)G,3) |- 16D

> - > = > = 5 - > >
(crp‘crn)(g.'crp)(crp'an) = (a’crp) In + 2(a'dn)1p

S 3> > > > ] _ e

H_(a O’P)(O'P crn)(b O’p)(c)‘p crn)_ =l 8°b
(8+3)(3,°3):3,)(3,+3,) | = & 3%

B p’Yp n n’*p n’ | &

(33,3, 500838 )E )] - 0

“<z-3p><s’-3p)<a’-gp> 1,] b1 B BAD)

P

-> -

G, 3 E3)EFIE3ER) |- o[ @DED) -
— - @B)(E"3)

S [(z-a-’p)(zoap)(z-gp)ca*-gpn,]= b [(z-i;)(-s-a)

> o 3 > >
Trp Tr, l:(a C)’P)(b crn)(crp o

(IV,40)

)(5-3}))(3-3-11)(310-311)] = [2(3-3)(3%) :

+ 22 ) (33) - (g-a)(zez)] .
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Here 1, and 11) are the unit matrices in the neutron
and proton spin spaces respectively, and of course we get valid
formulae analogous to the atove by interchanging p and n indices.
In the exprossion (IV.36) for R these unit matrices have not been

explicitly written.

B. The P-waves in the nucleon—nuoleon interaction

Now let us consider the contributions of the P-waves to
the nucleon-nuclzon interaction. TIf the total spin of the two
nucleons is S = 0, only on: valus of the total angular momentum
is possible, mamely J = L = 1. Thore is no spin dependence of
the nucleon-nucleon interaction *n this particular state, and its
contribution can be abscrbed in Eq. (IV.36) by suitably modifying

- >
the parameters F,H,T of the S-wave case.

If S = 1, three values of J are possible, namely 0,1,2
with three corresponding independent scattering amplitudes. The
spin dependence of the scattering in these states can be obtained
in the following way. We expand Py {cos® )x:n = ¢os0 XT, where ©
is the scattering angle in the cen*re-of-mass system, and XT is
the spin~function with S = 1 and spin component m along direction
of quantization (which we choose to be the direction of the final
relative momentum), in terms of the simuliteneous eigenfunctions
of J%, 12, 8%, J,. This expansion is easily obtained with the
help of a table of Clebsch-Gordan coeffiecients., It is

ul

2 rm“
o(®)XT = < >P1'005®)X1 = "J? 5m,0} 1,1 +( Sm -1%,1,1
PR
1
- "‘5 Sm Z,:;.) + ' ’\F Ao o yg,. l Sm'a(}ﬂ,i 1 +J- 3m,-1% )

(Tv.s1)
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M
where % L.g indicetes the normalized eigenfunctions of J°%, L%,
E it

S%, J, with eigenvalues J{J+1), L(L+1), 8(S+1), M. We can then
separate the J = 2,1,0 parts and write each of them again in terms

of angle and spin functions by using

o)
-4 1 o
2,1,1 ='-J_‘§“Y1,1(@,¢P)X1 + %Yi,-a(@:th 'EY1,0(@s(P)X1
1 1 o
%,1,0 =EY1,1(@:<P)X1 -
0
? = [y, @it - |1y, _(0,0)x
130, = |5 21,1080 )X N 1,-1{9,9 )Xy
)
? 1 -1 1 a
1,9, =J;Y§,0(®:‘P)X1 'J_:Yt,ﬂ(@a‘P)Xt (IVih2)
1 3 0
}E,Q,G 3\].?2'1'1,1(@&))(1
. .
v 1 Q
}z,t,l FEYﬁ,t(@:‘P)x\'1 +J_%'¥1,—1(®;‘P)X1 +JF% Y ,0(0,0)Xq
-1 ‘ ‘
Ko+ [otmtont [
24,1 =EYt,-1(®s<P)X1 +J—'-2'- Ty ,0%4

1
Yy ,0(0,0)X;

=

3¢

ER
I\)Eéa

1
¥y »© (@,0)X;

which were obtained by again consulting & table of Clebsch~Gordan
coefficients. These formulae are general for addition of engular
momontum vectors L and 3 with magnitudes L = 5 = 1, We can now
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specify the spin S as being the result of the sum of the intrinsic

spins of two spinf% particles: 3 =

472 -
Z(Gb'+oh)'

Introducing the

corresponding spin functions x§, using convenient projection

operators to eliminate the Kronecker &~symbols, utilising proper-

ties of the Pauli spin metrices, etc., we obtein (Ref. 19) that

the J = 0O part of cos® x{ can be written

the J = 1 part is

>

k,

=
L

mi&l—:’_‘) .
; 2(°b Uh)
j_-) -> .
2(0ﬁ4—oﬁ)

X1 (TVl3)

¥
£

XY (IV.ih)
£

and the J = 2 part is cos® x7 minus these two parts. Here ﬁf is

a vector along the z~axis and k is a vector which forms an angle

8 with kf +

It @ is a scattorlng angle, k and &, will be the

f

relative momonta in the centre-of-mass system before and after the

collision,

There will be different scattering parameters in these

three states with different values of J.

In our problem the

nucleon-nucleon interection occurs in the final state, after a

meson=nucleon collisiOn.

matrix element of

k
3
Pt [(ﬂo‘aa)% %(cb"dh)'

- -
¢ (ayas )t 3(553)°

,
553 o
2\p n ke

We shall then have to calculate the

(Q+S '(-J)'P+'f'gn) .
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e -

The term 2,cos®(Q+ S Gb4-T °0£) can be considered as absorbed

in the equivelent (with respect to spin variables) terms of (IV.36).
We can then write in this more compact form, which maintains all

the necessary spin dependence:

B =P, [(f-gp)(ﬁ-ép) e @EIEE) + WIS +
o T )@ ap)] (2+8+3 +%+3) (1V.45)

We have to square the matrix element of R = Ry + Rz and
sum over the possible polarization of the two nucleons., R, will
not contribute to final singlet states, and the transition probabi-
1ity to singlet states will be given by Eg. (IV.39). For final
triplet states we have

1 . 1 +
3 Z((ilﬁ*Pdf > PR P_t|1> =3 I Tr_(Ry P, Ry Pt) +

Fi (IV.46)

alle

+ + 1 +
'3’ TI‘ Tr EL' Pt R Pt+R2 Pt Ry Pt] + 3 TI'P Trn [Rg P‘t R, Pt] .

The first term of the right-hand side is given by Eq. (Iv.38). For

the second term we obtain
1 + + 2 + + 3 =

- = | = MI(L*N +
3 Trp Tr [R, P, Re P, + R P R4 Pt] {3 (A"+ G )[(5+ ) )Q

- - - > - - > - >
s 21 (T+8) (TA 'ﬁ)] + S(B% T 0K ’li(LA M)2iq + (3+ T)2(T + F) +
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s TR @eT)M41) 'ﬁi’-(é’ﬁ)(m-ﬂ] .
ey [2M('5+- DYE' W) + 2t W)E - L) + (-M'+1)(B+- )T -'ﬁ)]
+21 @41 - ES’* Bt (DAN) + BF DT+ (DAN) + MEA B)(OF 1) +
« HOTAN)E D) + MEA DO T) « HETAL)E" 53)] } s
+ complex conjugate . (Tv.47)
For the third term in Eq. (IV.46) we obtain
lop e |:RZ P_R, P :| - % ¢%g {(ﬁ*’- LY D)3+ Mad =t W) +
3 7p n 4 t 3
2 T D ) ¢ 2 DIET WY (et M)} .
. &3;'1- l}*(&%) +Q(§++’T’+)] . [(’N’“‘AE*)z(E ‘X + @A@Y+
+ (DAN) (FATH + Tu@ALY) N - L M*(NAL) N

HNA LYY T - N w8 @AD) - T + @A DU~ N)
» (A THMET D) + @ ANR@ T) - ('ﬁniﬁ*)m““m(ﬁ- 'ﬁ*)}

ENCT SRICEY) {(f FE T -+

s @ DET e wN) + @ DET DY M+M)}
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o4 [:(§++ THIACS + E)] . {(EAE)(? )+« BATHE T+ M)] s
bk E\?*- ('&%)]{(i’* : ﬁ)l:E : ('s’t?’)] (14 - -0 4

+ (E+' E) N ‘(§+ + E+):’(—1 + M+ M- M+M)} +
e (IV.48)
R %[xﬁ . (§+az’)] [(‘ﬁ* Iy[Fe @ +?E+)] (4 + 30 =2 - W) +

s @[T @ . '%*)] (4 - M - " - M+M)] .

o Gentn@ i [ @ ][E- @] [1- @8 i @0

ok oratn@D) [ @) [ @E]« [ 648 [[i @) |

In the eveluation of the traces the following formulae have

been used:
3> - > O Y > - - >
e Tr, [(ap 3 )R, crn)f(o‘p,dn)] s T T [- (R+3)e(3,3,)
= = > >
+ 2(A O‘n)f(o‘p,c)'n)}

(‘&P-“&n)(z-‘&P)(ﬁf?}p)(‘é-p-'&n) = 2R )33, + 2R3 ) B q,) -

- @)@ - o)
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R

W) EE)E ) = R3)EEIE, ) +

n PP n
s (3 3)@F)@E) - (BF)EF) - (E8)(ET)

+ 4 E:P *(AAB) + 4 ‘o’-n- (EAE) - (K-a’p)(ﬁ-&’n) + 2(E8)

1, 35, {6, 5)0%)63)G,3) Gy | =

= - Z(K . -ﬁ) . Tx-n ‘ln x Trp [f(;;})} (IV.49)
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CHAPTER, V

INELASTIC MESON-DEUTERON SCATTERING

Introduction

We must now proceed to the explicit evaluation of the
terms contributing to the collision operator T. We shall be con-
cerned with inelastic scattering only. The terms corresponding
to single scattering of the incident meson by the proton and by
the neutron are already given explicitly by Egs. (IV.18) and (IV.21)
respectively. To obtain the contributions coming from double
scattering and potential correction terms we have to evaluate the
integrals in Egs, (IV.24), (Iv.26), (IV.27) and (IV.28).

We first notice in the integrands the presence of the
matrix elements of rp, r, T, with arguments which depend on the
variable of integration. In Eq. (IV.24) the dependence of the
arguments on? is explieitly exhibited. The values of £ that
contribute to the integral are those available in the deuteron
wave function, i.e, those which make ZawD([) large, These values
of £ lie between zero and about 150 MeV/c. AS.Z varies in modulus
and direction within this range of values, the relative momentum of
the two colliding particles and the scattering angle vary. If go
is not small, the relative momentum Ep of the meson-nucleon system
will vary within a not very wide solid angle and the scattering
angle will correspondingly not have a large fluctuation. We try
to illustrate this situation in the figure below. Most of the
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Fig. V.1

-

contributions to the integral come from valuess of kp such that the
point V is inside the sphere of radius R = ﬁ?f%g“ J%ax' For inci-
dent K mesons of momentum qo = 200 MeV/c (qu =q%h0 MeV), and

d;ax = 150 MeV/c, the value of the angle g 5 20 degrees, and
the modulus of kp varies from 180 to 80 MeV/c. If qo = 500 MeV/e
(qu = 700 MeV),

= 13 degrees and the modulus kp varies from
140 to 350 HeV/o,

max

By using the relaticn

! - T in 5(F-En) (Vo1)

where P means principal value, we can separate the integrals repre-
senting the second order processes into two parts, one taking into
account the contributions coming from values of Em on the energy
shell E = Ep, and the other involving values of En which are dif=-
ferent from E = E,.  In ell integrals [Bqs. (IV.24), (IV.26),
(Iv.27) and (IV.28)] En = E is the energy shell for the second
interaction in the double scattering processes represented by them.
We shall show that due to the particular loosely bound structure

of the deuteron, the on-the-energy shell part is of the same order
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of magnitude as the contributions coming from off-the-erergy shell,
Now we must noticé that to on-the-ensrgy shell matrix elements of
the collision cperator fof the second scattering correspond off-
the~energy shell matrix elements of the collision operator repre-
senting the f'irst scattering. This is because in the calculation
of transition provabilities and cross~sections we are concernsd

only with matrix elements of Tinel for which the total energies in
final and initial states are equal, i.e. for which E= Ef: Ei: M04~qu.
Now, for any value of relative momentum £ in the deuteron wave func-
tion we have that the sum of the kinetic energies of the three
particles is FEg = 2M + L +E > Mo +E_, so that it can never be

M do 0
Eg = E,. The larger the value of 4ﬂ the farther from the shell

Ep = Ei = E is the matrix element for the first interaction. This
is so if we use the expension {ITI.22) for T, oy 88 we did all
through Chapter IV. If, instead, we adopt the expansion (ITI\20)
the strong contribution will come from values of_Z'such that Ep = Ee,
which is the energy shell for the first interaction in the second

order pProcesses.

So, striotly speaking, a knowledge of the behavicur of
the off-the-energy shell matrix elements of the collision operators
of the meson-nucleon system is essentisl in our problem. This
knowledge is not available at present, however (if it were, the
two-particle interaction potential would virtually be known, and
perhaps our whole analysis would be completely unnecessary). In
fact, even the magnitudes of the on~the~energy shell matrix elements
for the K meson-nucleon systems are scarcely known at present. We
shall then have to assume some sort of behaviour of these matrix

elements off~the-energy shell, perhaps that they have a constant
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value, or that there is a deorease in value as the distance to the
energy shell increases, As the deuteron wave function contains
morienta up to a value which is not very large (J;ax'N 150 MeV/c),
only matrix elemerits which are riot very far from the energy shall
will have important contributions to the processes we have, and

probably it will not be very bad to assume a constant value.

For the K+p - K+p interaction the e xperimental results
(Ref., 14) seem to indicate an almost constant and isotropic dif-
feréntial cross—-section over a wide range of energies. This im=-
plies that the modulus l<;|rp|:>l depends little on the relative
momentum and on the scattering angle over a wide range of values
of relative momentum, though nothing can be said about the phase

of the complex quantity <:lrp]:>.

For the K'n interaction, there is not so much available
data, and that which exist are not so reliable as the K+p data.
At high energies (above 500 MeV, up to 1,500 MeV), data (Ref. 14)
seem to indicate that‘the-Kfn cross~section does not vary much
with the energy. At lower energies therears practically no avail-
able data, except that coming from the measurement of the charge
exchange cross-section, with the assumption of charge independence.
These data are not detailed or reliable enough to suggest any kind

of variation of < rnp > with energy or with angle.

We thus see that at least we are not contradicting any
available experimental evidence by assuming that <:]rplj> and
<:|rn|)> can be extracted from inside the integral signs as being
approximately constant over the most important values of the

variables.,
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2, The Double=-3cattering Terms

Let us consider the process in which the meson is

scattered by a nsutron and then rescattered by the proton:

g
”_59__)_____31'/
qm -
:/q_f
D e

The matrix slement is giVen by [Eq. (IV.26)]
2 > = T -, - > > 1
8(Rptap=ao) I = 5(Kf+qf-qo)f 454 < Gpplr 98> g

x <3 Rele (o, > @) (V.2)

where if the intermediate meson is non-relativistic we have

" En =2M+%+£{+m+.(:"'§£"f)a . (V.3)
Let us call
Bk Go -3
, -
(e e ) (B
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The integral (V.2) is singular in a spherical surface
. ‘ 2 - 2
712 o p? . 2 -k > m o 1o 2
@-K)® =®* =K*+20 = &5 (q_f = pf) K (V.5)

where Ef is the momentum of the meson in the final state, relative

to the centre of mass of the meson-proton system.

v

N - Fig. V.2

ﬁm in the figﬁre above is the momentum of the meson in the inter-
mediate state relative to the centre of mass of the meson-proton

system. We can write

e
f m
T BT TE (v.)

Using Bq. (V.1) we can separate Eq., (V.2) into two parts.
For the on~-the-erergy shell part we obtain, assuming that <:|rp|:>

and <:[rn1:> are constants equal to ap and ap respectively,
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iaa J(i)’:fdsz' <dgPelr |8d> (im) 6 (B-8)< Gfplxy o= > iy (£) =

Pn pn

T 7pn \K 2

8%+ (K-R)? g% + (K+R)?

(v.7)

where N = 4% 1s the normalization constant in the deuteron

(Hulthén) wave function.

Let us notice that in the integration over the sphere
E = Em the relative meson-to-proton momentum Em varies only in
direction, its modulus being constant. So, extracting <:|rp[:>
from the integrand means only to assume that it is independent of
the scattering angle (that is, that it has an S-wave-like behaviour).

On the other hand, the energy shell Ey = Ep for the scattering by
the neutron is a sphers with centre at the point - K %%%{% (at the

. . . . - N
left of the point O in the figure above) and radius (M 1&7’IM‘¥J'E’nf|'
This sphere does not cross the surface E = Ey, and so only off~the~

energy shell matrix elements of r are involved in the integration
in Eq. (V.?). "We cannot tell if approximating these matrix elements

by a constant a, is a good approximation.

‘Let us consider now the principal part of the integral in
Eq. (V.2). We obtain, by considering the metrixz elements as constant

1]

ot I = B[ a7 Gl I3 g <Guelri@-2> 60 -

- -1 K
a8 (I% ZWVEFN> X {tan ! (E%E? - tan™' ("'%’"‘5‘)} .

it

C+'2“0.'
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It is not esasy to compare directly and in a generally
valid wdy the values of Egs. (V.7) and (v.8), because two of the
three quantities C, K, R have a certain freedom of variation with
respect to each other, which is only restricted by the total energy
conservation imposed by the S(Ef-Ei) that appears in the expres=
sion for the cross-sections (IV.BZ). This is due to the fact that,
as we have three particles in the final state, for each scattering
angle there will be a spectrum of values of momentum and energy of
the particles. We have evaluated numerically Egs. (V.7) and (V.8)
for several values of the momenta of the particles in the final
state, trying to cover all the specira of possible values. We
obtained that the two parts, Jlglfl) and JI(;), are in general of the
same order of magnituds, oné or other predominating in the different

regions in the spechrum.

It is instructive to discuss the way in which the integral
{V.8) is formed. It L1s particularly interesting to see whether or
not importani contributions to this integral come from values near

the energy cshell,

R . > Tz .
Using the variable kn = «K we can write

2 dk o 82 2 (en=K)* 8% + (kp+K)
( \[#’ ) ?§m+§)fim~Rj' aa'F(kz“K)zi-ln a2-+(k:+K)2 - (V.9)

We have a pole at ka =R.  The factor kn/{kn+R) is regular in the

range of ittearaticn and varies slowly from km = O to kn = «. (If

R is small this variation is not so slow, and ocours near the origin,
where the total guantity inside the brackets in the expression above
is small.) The function 1ln [[ a?+ (kp + K)a]/[ﬁ‘2 + (kn +K)2]} has a
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bell-like shape, centered at kp = =K. ' The other logarithm func-
tion has the szme shapé and ié centered at km = K.  Forgetting

for the moment the factor kpn/(km+R) we have the funotions indicated
in the figure below.

/
\ P 2, (1 iK)?
\---—-“ ln&—t—(nm—-'"—)—

e® + (kn+K)?

Fig. V.3

|
|
|
|
|
|
I
|

Let us first consider that R(= kf) is not very small., (By a small
value of R we mean a value for which a considerable part of the
left-hand side branch of the pole function is outside the range of
integration. ) In a more or less narrow strip-éround knm = R, the
contributions coming from each of the two sides of the pole kpm =R
are not very different and tend to cancel each other, If K is far

from R, the produot of the bell-shaped and the pole functions will
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2
_ n
to be cancellation becauss of the symmetry in the bell~shaped

be small, and ‘so will be the integral Jé ). If K - R there tends

function (and antisymmetry in the pole~function). For a certain
range of values between K and R the integral assumes values
that are not small. - Most of the contribution to Jé;) in thsse
cases comes from the region of integration between R and K, that
is, from a region which is not far from the energy shell. Ir
instead of having a deuteron wave function (which gave rise to the
two subtracting bell-shaped logarithmic functions) we had a con-
stant function in momentum space (which would correspond to the
two scatterers n and p being at short distance from each other,
i.e. to the deuteron having a small "radius"), there would be a
stronger cancellation of the contributions coming from the two
sides in the neighbourhood of the energy shell, and contributions
to the integral would come from all the range of values of kn from
2R to infinity, i.e. from values of the variable that are very far

from the energy shell.

Now let us consider the case in which R is small (the
meson and protonin the final state having a small relative momen-
tum), The energy shell is then near the origin, and a large part
of the negative branch of the pole function is outside the range
of integration. In the region between 0 and R the two logarithmic
functions canocel each other partially.  The function kn/(km + R),
which increases from O at kp = 0 to & at kn = R, helps in reducing
the value of the contribution coming from the regilon on the left-
hand side of the energy shell. So unless K 4'0, the integral Jé;)
will have a large value in this case, contributions coming mainly
from the region near the energy shell, extending from kn =R to

some value of km a little greater than K.
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So, we shall conclude that by assuming <:|rpl:> to be
constant in the integration is possibly not a bad approximation,
since the most important contributions come from values not very
far from the energy sheli, By introducing a "cut-off" factor
that decreases as the distance to the energy shell increases we

could perhaps obtain a better result,

For the double scattering process in which the meson
first hits the proton and then is scattered by the neutron, we
obtain results of the same form as Egs. (V.7) and (V.8) with the

roles of proton and neutron interchanged in the definitions (V.9).

Comparison with First Order Processes

We must now compare the magnitudes of the contributions
to the transition amplitude for meson-deuteron inelastic scattering,
of the single and double scattering processes. For a final state
in which the momenta of the particles are Ef, ff, Ef, we have that
the scattering amplitude for single scattering by the proton is pro-
portional to '_ap$D(nf) and if the scattering is by the neutron it
is proportional to -an¢D(pf) (cf. Chapter IV, Section 3). The
values of these amplitudes vary along the spectra of possible values
of Ef,gf, but to have a value characteristic of the important part
of the spectra, we may take the value of the deuteron wave [unction
at the origin, which is of about ;2; N 5712" . The amplitudes for
double scattering proocesses are given by Egs. v.7), (V.8) and the
corresponding expression for the case in which the proton is the

first scatterer. The expression that multiplies apan % 20 V2ir N

in Bq, (V.7) bas an interval of variation which is inside the inbtcrval
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0, In % = 2 . The ocorresponding expression in Eq. (V.B) varies
M an intervhl which is enclosed by the interval (-m, +r). (In
fact, due to energy conservéxtion the allowed range of values is
smaller than indicated by these intervals.) Let us then take |

apan “(Kn—lm + - oo Nx 2 as a typical value of the double
D .

n

\ - w2 ...."> - ~ Horr _Z
scattering terms. Here Knp = (qoz pf)1 and Kpn o ‘(qo nf). We
have to compare this with (ap+a.n) = N — which gives the order

of magnitude of the single scattering terms. Let us teke a.p and

an to be of the same value, We obtain

ond order . /.1 . 1\ 1
ot e a(K t g ) VO‘Tibarnsi (v.10)

order 3
pn  np

where O'T(barns) is the total cross-—seotidn for meson-nucleon scat-
tering, measured in barns. The parameter a of the Hulthen wave
function is a = 45 MeV/c. For K= meson-nucleon scattering we have

o, ~ 0,016 barms, so that we have

T

18t order X 56
np

2nd_order < 1 1 1
K
n
We thus see that for values of ;%, ff such that both

gpn and Knp have moduli not small compared to a(= 45 MeV/c), the
contributions coming from double scattering processes are small
compared to those coming from single scattering terms. For small
values of K.P or XKn, which are allowed by energy oconservation, the
double scattering terms may become important. (We must note that
£g. (V.10) is pot valid for Kp;Kn - 0, since then we have that both
tan ' and logarithm functions in Egs. (V.7) and (V.8) also tend to

zero, keeping the matrix elements finite.) This will happen in
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parts of the energy and angular spectra, and will affect strongly
certain differential cross-sections. We can expect that total
cross—gections will not be seriously affected by these double
scattering processes in this case of X-deuteron inelastic scat-
tering. If the meson-nucleon cross—section were, say, ten times
bigger, we would have a much stronger double scattering effect.
This partially explains why the pure impulse approximation (single
seattering terms only) has given bad results when applied to

K ~deuteron scattering.

The "Potential~Correction” Terms

Let us now consider the second order process in which
the meson collides with the proton, which recoils and is then
scattered by the neutron. The integrand in-

- = - - 1 >
Ly f dsd < Bgbelryl B, > sgmpe <omodplr 853> ¢ (8)  (vo11)

Za' 2
* -> -

i 1
here EoBn =5 - E@'P +2 (do- qf)] (v.12)

is singular on the surface of the sphere of radius,ff and centre

at the point ~%;(Eo-§f). This sphere is the enérgy shell of
<hﬁf§f|ru]h§m,-;?> . The energy shell for <Em§f|rplf),ao > is a
plane orthogonal to the vector (Eo-af). This plane does not cross

the sphere if we impcse energy conservation to the whole process,

E:Ei:Eq_O+N£D°
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The integral in Bq. (V.11) is similar to that in
(Vv.2). So here we could make the same considerations
about the behaviour of the integrand near and far from the

energy shell as we did with the double scattering terms,

iet us call
R = ‘q’f - o e (V.13)

By considering < Ir | > and < |r |> as constants respectively
equal to ap and a u’ we obtain for the on=-the-energy shell part

of Bq. (V.11)

) : 3 o +(2A-— ) ) a2+(-12~A+4,)2
i auap up 2 u( (2m) Nv:l [ pr +(25-1)2 In ﬁ3+(1§ﬁ+4)2:|

(V. 14)

and for the principal part

2 M o] - A
8% It(,,p) S I:'S (2m) /aNJ {'ban 1(?*—%;; - tan *(zﬁ_i — )].

2 b
With < |ru| > = a, = conste, (V.15)
| - DG
ap & (:. Iup + I s ) (V.16)

If the Pirst collision is with the neution we have
Ay 1 5P
E—Em="ﬁ-'§[f+§5:l (V.17)

instead of Eq. : (v.12), but the evaluation of the matrix element
gives exactly the same expressions as Egs. (vV.14) and (V.15), the
only change being that ap is substituted by a .
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Now a few considerétions impose. First, the nucleon-
nueleon interaction has a range (judged by the value of its cross=
section) much longer than that of the meson-nucleon interaction.
This means that the matrix elements of the collision oPefator for
muicleon~nucleon scattering must decrease more rapidly as the dis-
tance to the energy shell increases.  The approximation of ag-
suming a constant value for the matrix elements of the two-particle
processes in the principal-~part integrals might not be so good in
the case of mucleon-nueleon interaction as it was assumed to be in
the case of meson-nucleon interactions. The introduction of some

sort of cut-off might be necessary.

Secondly, for meson incident momenta over a certain value,
the recoil ensrgies of the nucleons will be such that the nucleon=-
nucleon interaction will occur rather strongly in S, P and higher
waves, These higher waves may be important in the nucleon~
nucleon interaction in the final state. Particularly the P-wave
may be impértant in the p-p interaction (which would occur after
a oharge exchange K'n - K°p) in the triplet state, where S-and

D~waves are excluded due to the Pauli principle,

It thus seems important to take into account the finite
range of the nuolear forces and to include P_waves in our treat-
ment of the nucleon-nuoleon interaction. Both these tasks can
be more easily accomplished if we write the expression for the

matrix element (V.11) in configuration space. We have
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<l li> = [ <elf B30 <BORGTIGIERT> <IRT> -

- > > - - -
X dsf! dzX’ dsq’ dad dsK daq =

> >
pmdo
2

- - sy [ <l > s oTeben) <RnIE> <Ai> Al

(v.18)

Assuming that <i_;’ IrplE) is a constant ap, and introducing the

Fourier transforms of the guantities in the integrand, we obtain

-i—!'; .
<fltpli> = - a("P’f-.I?i)apf <tle>e 2 <rlid a&r. (V.19)
Thus, Iup can be written as
.1 8,3
A >
Ip =~ % f LE[r> e g[:D(r)d;r (V. 20)

where zﬂD(r) is the deubsron wave function in conf'iguration space
and
Fifrer

' (2?)3/2 E"Ea'-le <er o> a4’

<rif> = Lx

‘tul‘l‘f> = -

FK-ig
(v.21)

<r|f> i3 the configuration space representation of the scattered
waves in the nucleon-nucleon interaction. It is a solution of the
Schroedinger equation with a certain asymptotic behaviour: it re-
prasents the ingoing-wavé scattering state gb; minus the

incident plane wave pardt, r is the relative proten-to-neutron

coordinate.
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First let us consider the case of S-waves in the
nucleon-nucleon interaction. We substitute <j?’]ruL?f:> by
&, (a constant) in Eq. (V.21) and obtain

<rleg>==a, s 4 (2_)3;; i Jo(dpr) + no(‘!fr)]° (v.22)

The first part, jo(Z}r)g-comes from the on-the-energy shell part
of the integral. The part in no(j%r) comes from the principal
part, Now this is a valid solution of the Schroedinger equation
only for values of r that are outside the range of the nuclear
forces. For r - 0, no(J}r) tends to infinity. To avoid this,
we have to introduce a cut-off in <;?’!ruJij>: it must tend to
zero as |4 - 1;[ increases,  This would affect the part no(z%r),
transforming it in a function which converges as r -» 0, leaving
the part ja(x%r) as 1t is. The best way to introduce this effect
is directly in the result (V.22): we can either cut-off no(A;r)
for distances r smaller than the range of nuclear forces, or
introduce a convenient convergence factor, for example (1"5-Zr)'
(Raf. 10) where Z is a parameter relsted to the range of nuclear
foreces. We shall then write

o=

<rleg> =-a g 75%77_[1 3o (4) + no(ffr)u-e'zl‘)]. (V.23)

Now let us consider the case of P-waves in the nucleon-
nucleon interaction. ILet us substitute <2?’[ruL?f:> by bu cos 9/,
where 8/ is the scattering angle in the centre-of-mass system of

the two nucleons, i.e, the angle between,?% and Z!. We then have
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(Z’ |‘I‘u],?> =a .+ bu cos (f' ,E) . (V.24)
We obtain

<rle,>--v. 5 4 (’2%37; (+1)Py (cos ©) {i 51 (er) +
. aﬂ_#[a, () ca(fz) + ny (£ m%ﬁ] ] (v.25)

As in Bg, (V.23) we have introduced the convergence factor
(4 -e Tl

pal part of the integral. This divergence was due to the

) to cancel the divergence resulting from the princi-
fact that the amplitude bu was kept constant.

When substituting <z[£> = (r]fs> + <r|f‘P> taken
from Egs. {V.23) and (V.2%) into Eqs. (V.20) we have to note
that < flr> = <r|e>",

The angular part of the integral (V.20) can be easily
evaluated by using the expansion

L) > -
o~if.r :Z(_i)ﬁ(2f+1) P, [:cos (%,?)] j(:,(%'r) (V.26)
4
and the addition theorem for legendre polynomials, which gives

ch I:cos (g, r>:| P l:cos (?f,%’)] any = -2-2%_"'%]- Seer Py E)os (g ,l;):} :

(v.27)

NI
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Thus, of the expansion (V.26, only the term jo %r will survive
multiplying <fslr} and orly %r will be multiplying <fP|r>

after the angular integreticn 1s effeutuated.

We may observz +hat due tc the rzwD(r} appearing in the
integrand, Eq. (V.20) is finite even without the introduction of
' -Zr
the factors (1=-e ™)

of the integral coming from the divergent fun-tions would be too

" However finite, the values of the parts

large. We try to exemplify this by the graphs below in which we
plot the integrand in Erq, (7.20) (after the angular. in‘tegra‘tions).
for the case (V.25} 63? P-wave interaction. Curve Cy represents

the part of the integrand comiﬁg from the part i j, (Zfr) (the on-
the~energy shell part) in Eq. {V.25). Curve (z represents the

contribution of the part 1% [3« {£pri0iidor) +n: (Jfr)Si(ffr)]l to the
ini_:eg_ran«'i in Eq, (V.20), without cut~offi factor being introduced.

Curve -703 is such that 6 = Ca (1w e--._gr}, where Z; = 10 x{0'? cx_n—1

= 200 MeV. L Oy we have another value given to the cub-of'f
parameter, C4 = Ca(1- 6"y with % = 5 x 107 om ' = 100 MeV.

We usod the values léf. = A/2 = 100 HMeV/¢, which are compatible with
energy oconscrvation if the incident meson momentum is go = 200 MeV/e.
The values of Z are chozen so that (1~ e-—Zr) has a strong effect

on the wave furcticn < r:fo > only inside the range of the nuclear
forces. With 2 = 200 MoV the value of < ~c 2% for r=2 x 107 om
(the range of the nuclear forces in the triplet state) is 0.865, For
% =100 eV, (1~e ™) =0.63 at the same value of r, and this is cer-
tainly a too strong reduction in the value of the wave function. We
must choose Z =200 YeV or larger, and we see from the curves that its
effect in the integral (V.20) can be expected to be very small. In

the case o mecon-miclenn Turcer *he correspending effect would be



A
Gl : the on-the-energy shell part
007 [~ A
2 (37) 31 QP ()
06 |- G 02 : the principal value part.
(572 [RIELAET
05
+ n, (2,r)8i( !lfr)]r?' Pp(r)
+04
«03
'.02
«01
0
Mg, V.4
P~WAVE PARTS OF THE INTEGRAND IN (V.20) WITH DIFFERENT VALUES OF THE CUT-

OFF PARAMETER.
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much wesker (larger values of the parameter Z), as 1t was assumed

when we treated the double-scattering terms.

For the S-wave part we have the same sort of behaviour

as for the P-wave part quoted above,

If the first collision is on the neutron, then we have
instead of Eq. (V.20)

7

nogRe

+
Iun ==-a, j‘< flr > e

dp(r) d? (V.28)

so that the S-wave part will give the same result as in the
proton case, but the P-wave part will have the opposite sign.
We then have

I +I =
up un

4o (ora )] (=150 () +n (,c;r)u-—e'zr)} so(§e ) pperetar +
# A (2m) 1 _cos(F,,8) (a_-a )f [-13, (4)+ 2 (1-0""Y 5y (L) (4 =

¢ 0y (ffr)Si(Zfr)]} 5 (-24‘- r) pp@tar | (v.29)

AJ1 these integrals, except those involving Si(J%r) and Ci(J%r),
ean be analytically evaluated. The flact that a complete analytic
gvaluation is not possible is not a problem, since numerical compu-

tations with these expressions can be made easily., Also, since
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Ci(x) and Si(x) are functions with a simple behaviour, and since,
due %o the presence of ¢D(r)j1 % rir? in the integrand, all the
important contributions to the integral come from a very limited
range of values of », approximate expressions for Ci(x)} and Si(x)
in terms of other functions can be used. For example, for

values of x in the interval from zero to three, we have

si{x) = 1.85 sin (1—%>

Ci{x) = - 0.453 + In x + 1.03 cos (0.7 x)

1¢

with an accuracy better than 2%. We may note that for values of
A} in the range from zero to 100 MeV/c, this is the only region
that has to be considered,

A natural modification in the function
21 . . .
250 Gresh) + m (40540 |

which may, in fact, constitute an improvement, is the following.
For large values of r this function becomes n,(i}r). This was
to be expected since n,({%r) is a solution of the Schroedinger
squation for angular momentum equal to one in regions where the
potential is zero, and % [ji(J}r)Ci()%r) + n1(£}r)Si(Z%r)] was
obtained as & solution of the Schroedinger equation with angular
momentum equal to one for some potential which must decrease
with r.  [Of course, there is the other solution of the

Schroedinger equaticn, the "on-the-energy shell" part j,(J}r).}
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Now, we have some knowledge about the nuclear potentisl, and we
may use it. We kunow that the nuclear forees are restricted to
8 region of radius R, and then from r =R to infinity the fune-
tion ng (Zfr) is a true solution of the Schroedinger squation.
For r < R we may ther adopt the funection

(1-5 %) 8 3 Ur)osller) + m (ffr)si([fr)]

or then (1=~¢ Zr‘jzng (ffr) (Ref. 10) which is slso regular. By
ovaluating these two expressions for Z = 50 MeV and several
valyaes of [f,, we tizd that there is no important difference be=
tween them [at least as far as their effects in the integrand in
Eq. (V.29) are conserned]. The form (1~¢ Zr)Zm ([},r) has the
- -advantage of naking the iptegral simpler for analyticsl evalua-
tion. ) o

We shall then write

PACHLINOR) f[—a o (£,7)+ 10 (£x) (1= Z‘)] Jo(%' n) PR
+.—M{m%~nu_@n-wzf,ﬁpf E L3 () e

+ Ny (fr _Zv\:‘ J1< ) ¢fD\I‘ 2ar (v.30)

instead of Eq. (V.29).
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The integral involving jo(fer)do -g-r gives the
expression (V,14), the only change being that We now have
ap + & instead of only a . The integral with no (Zfr).] -%r
gives Bg. (V.15) minus the same Eg. (V.15) where we substituté
@ >a+2, f>f+2, This is due to the cut-off factor that
has been introduced.

For the part of Eq. (V.30) corresponding to on-the-

onergy—-shell P-waves we obtain

(ah-ap)buiL(;:) cos (Zf’z) =
Foli B (45)

- i .
= by (a,72y) cos () (§ 2n VB ) 2 — T it -
N2
2 2
o®+ 82 +5 a4 (£ 45
i S Sl )
244 o® + (4.~ 5)
. . . A
and for the integral involving ng (,ffr).j, 5 r) we obtaig.
(an-z_a,p)bu LIEE) cos (}fj) = ” N
y P (;, +(§> A
=b_(a ~a_) cos (£a.sB) (mEﬁ@N){——u——————-tag“&f - -
uv’n p T A ‘ . A%
. Aé‘ f""‘z;" L
A .
a® +,{; + <“2—> . oA ( )
- tan —— 2 } V.32
AJ;, a2 —waf, - %:- .

minus twice this same expression witha » e + 2%, S+ f ¢ Z plus
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this same expression with the substitution e » ¢ + 22,
g -+ 2%,  (This is due to the cut=off fagtor (1-—é‘dr)a.)

Comparison with First Order Processes

For A = 0, all these expressions eoniributing to
Iup + Iun tend to zero, in spite of the presence of A in the
flenominator.

For A? + 0 the S-wave parts (V.14) one (V,15), and
also (V.31), remain finite, but (V.32) inoreases iiXke 1/2},
and the matrix element diverges if we consider bu as o -astant,
This ocan be modified by noticing thnt the P-wave scattering
amplitude bu must tend rapidly wc zerc with the relative momen-—
tum of the two colliding particies (bu "'&? for low enczzicsa).

Thus, all the matriz elements are always finite.

To compare the magnitudes of thess nucleon-nucleon
interaction effects with the Tirst order term:, we can do as
we did in the discussion of the double soeatteriny terms - notice
that the 1ln and tan”' functions that appear gan cnly vary inside
a limited interval, and then take typical values for them, as

well as for the first order terms, We obtain

2nd Order (nmcleon-nueleon interagtion) f-jfumnm_,”
— ~ O
- . b he I .

1st Order N UNN( avas)  (V.33)

T . .
where GNN(barns) is the nucleon-nuoleon total eross—section

measured in barns, For low-ensrgy n-p seattering in the trip-

m

let state e have G§N * 2.4 barns, and the relation above Y
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indicates that the effect of the nuclean-nucleon interaction
in the final state may be very strong., For example, for
incident mesons of momentum go = 200 MeV/b, a momentum brans-
fer of 150 or 200 MeU/b is "typiecal™, and the ratio between 2nd
and lst order matrix elements is then of about ﬁé or ?Q. We
oan expeot that at least some differential oross-sections will
be strongly affected by the nucleon-mucleon interactions in
the final state.

Evaluation of Cross-Sections
for Inelastic Scattering

We have obtained explicit expressions for all terms,
porresponding to fis.” and second order prooesses, that oon~-
tribute to the transition amplitude for meson-deuteron in-
elastic scattering., We have now to square this transition

amplitude and make the necessary sums over spin variables.

Let us assume that there is no spin-dependence in
the meson-mucleon interactions. As the deuteron has spin 1,

only triplet final states will ocour.

We must note that in our system the relative momen=
tun of the two nucleons before they interact is a variable of
integration. Using the denomposition of the nucleon-nucleon
triplet P-wave in terms of eigenstates of J as given by
Eqs. (IV.43) and (IV.4) we have that the matpix element of

the transition ovmerator is of the form
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7

- y. il 2 2y Ail 3.3y R
@y e1),, = <E[AH Ry f d’fi[(b" ve)33 OpSy) T 7z Cpon) 7
> > ’? 1 ,» = Z -
s (oeb2) § 5 (545 Z’l 3 G#5) 71;- + ba cos uf,zi)]ce(z’i) 1>

(V.34)

where bo,by,bz are parameters that describe the scattering in

the J = 0,1,2 states respectively. Rearranging the terms we

oan put this in a form convenient for comparison with Egs. (IV.36)
and (IV.45), so as to use the formulae (1v.38), (IV.47) and (IV.48).

We obtain
Z I

2
+

Ry 0r)

inel’ps

i

0+ [oe 0@ 000 @) &2,

+ complex conjugate } + (v.35)

e

+ F(bi-b2) (b0s=b2) [47 (L) oco0s (?f;?;)ds?gf o) cos (Bpoty )8l +

+ EILQ (br"b:)(brbz) + —é%‘ (b:—bz)(bo-baz\ [ Q*@i)dzzf Q(}’i)oos(j’j’:,,?i)da?i.

We ocan write

Go5 (Zi’?l) = cos’ (Zi’?f) ces (’?1’2f) +
+ sin (?;.’?f) sin (:"I’Zf) cos ((P:‘-L,"(Pi)
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the laat parst giving_zero in the integration over 7Y sinoce

Q(Zi) depends only on the angle CZf’ji)°

-

+ %-(b2‘+3bf+5bf) AB® + %E—(bf+b§)(b,+b2) + %(b§+2b§)(bo+2baﬂB*B .

Grouping conveniently the terms, we obtain

z ‘
(R,lnel)'f_| = A"A 4 19-(700 + 3by + Sba) A'B +
L .

(V.36)

A includes the single and double scattering effects,
and the potential correction terms involving S-waves in the
micleon-nucleon interaction. B includes the processes with
mueleon-rucleon interaction in P-waves. It is interesting
that the parameters be,bi,bz appear in the last term of Eq. (V.36)
in a combination different from the combination with statistical
weights bo + 3by + Bbz, which is the only one that ocours in the
soattering of unpolarized nucleons., This is, of course, due to

the correlation of the spins of the two nucleons in the deuteron.

For the problem of K deuteron inelastic scattering,
we have the possibility of 2 double exchange process in whioch
the KT hits the neutron giving K° and proton, and then the K°
hits the proton produecing k' and neutron. We then have

A = aP¢D(3f) + an¢D(§f) - apan_[} I J(QT]

(
Lot v [ 500+ 5][oy + o s ) 58]
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where I(p) (2) ( ) ( ) are given by Egs. (V.1k), (V.15),

up g
(v.7), (v.8). g and J are obtained from J( ") and J( 2)

by exchanging neutron and proton variables, We must not for-
get to modify Ié; by subtracting from Eq. (V.14) the same ex-
pression with ¢ » a + 2, f - § + Z. B will be given by

B = (i L&i) + Lﬁa)) cos (2%,3)(aﬁ—an) (v.38)

with L£1) and Liz) given by Bas. (V.31) and (V.32).

bo,by,b2 are related to the P-wave phase-shifts fox
the neutron-proton interaction in the triplet state by

18
2x Jg o
bJ = l} sin 5y e N (V.59)
a, is related to the S-wave phase~shift in the triplet state

by
isd

2 . .
E.u = m s81n Sé ] . (V.l}-O)

The cross-seotion is given by

o7 LY O,

,f;, (EID "af')a
with BEo-B; " Tt M- My - . (Veti2)

-5

2 ->
§(B - %) dsqp &2, (V)

I
=
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The integral over [}:‘ oan be made at once, since Ef-Ei does
not depend on the direction of '?f but only on its modulus.
The inbegral over e will be limited to the interval from

qf =0 to a qf max whioh is the root of

quax 39_
quma; M 24 Y max

2
cos © =B +M -2M=-332
08 2 MD T

where © is the angle betwsen a_f and ao.

We can express ng(nf) and z,[;D(pf) as functions of
;éf, and & by writing

27

(Vol3)

1 -ip, ¥ L4 [T S >
I.er(Pf) = ?;‘)72'[8 dp(r)dar :—E:)’az’[e ° dp(r)er =

- iy };(m 1P c0s (2f,a)] I (g) 5% £ Jope)etar -

- AT + cos (Z.,8 ¢ (Las
WZ(M 1)Pe (Zp ):ll‘ (Zos)

and.

‘bD(nf) = -22—11:1;-52- Z(Zf+ 1)(=1)*¢ Pe.E:os (?f,K)] Te (,{E,A)

where we have called

(Velds)

(Voli5)
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I't’-(lf;A) =[wée (Jfr)jc(% r) gbb(r)rzdr =

2 i,z ' 2. gz , 1 a2
N o +f§,+—-ﬁ B+ Lo+ A
f i ra f

where the Q¢'s are the Legendre polynomials of the second kind.

Let us neglect double scattering processes in the
K+-deuteron inelsstic scattering. We have seen that their ef ~
feots are small due to the smallness of the X -nucleon soat-
tering parameters. Then both guantities A and B that appear
in Eq. (V.56) can be expressed in terms of A,A%. and the angle
between Zf and A, The integration over all directions of 2’f
can then be made without need of the approximation, which was
made in the previous papers dealing with the analysis of the
meson-deuteron scattering, that the energy in the final state

En, given by Eq. (V.42), does not depend on £, Ve obtain

ML =
do = (em)* % d3‘§f{8 z (24+1) azp+a;+(-‘! )e (a;an+a:ap)] T3 (£.,8) -

¥ 2
£ =0
2 27
- %SL;Z": To (ff,A)(ap+an)(a§+a§)al’: [— i IS.;)) + I’-EP)_ -

- ﬁﬂﬂl%z ro(z%,ﬁ)(a;+az)(ap-yan)&uI: i I&;) + I&;y— +

(o)
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+ 4 fap+an|2 a; Iﬁ;)z (2)2] i: L(bo + 3by + 5by ) (1L( ) 1&2)) .

(b + 3by + Bba ) (-1 L +L( ))}—(ﬂ@r Ty (£50) ]a -8 |*

\.Dl-—*

R %[% (b7 + b3) (by +b2) + 2‘9-<h:+zb:><bo+2bz)] |2 = o)

x [L&' - Léa)a:l %”»] (V.17)

The integrals I'¢ in Eq. (V.L6) decrease rapidly to
zoro as £ increases above a certain value. This can be seen
in the following way. The function Nr(e oF - e-ﬁr) = r2¢D(r)
has the value zero at r = 0, inereases to a maximum at (ar) = 1,
and then decreases rapidly: at (ar) = 5 its value is Yo of the
value at the maximum, The functions je (ar) with £ > 1 start
from zero at r = 0, and remain very small up to ar ~ 4, where
a bump starts. So, if £ is so large that the bump in the
function je starts, say, after ar = 5, where the rzwn(r) is
very smell, T¢ will be very small., So we expeet that only
few terms in the sum 2(2£+ 1)T¢ that appears in the expression
for the oross-section will be dimportant. For the largest
values of A; and A/2 the integrals T¢ will have the largest
values, because then the bumps in ja({;r) and Jje % r) will oo~
cur for smaller values of r, and there will be stronger inter-

sections with rzwn(r). We ocan adopt the following oriterion
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l Yo decide where to stop the sum Z(2£+1)rg (Zf,A/Z) For a
given incident momentum go We choose the highest values of f
and A/2 that are compatible with energy conservation [E El
in Bg. (V.42)]. For example, for qo = 200 MeV/c we may take
Z. = 150 MeV/c, A/2 = 120 MeV/e. For qo = 100 MeV/o wo may

£
vake £. = 0/2 = 70 MeV/o.  Substituting these values in the

explicit expressions for the Legendre polynomials Q¢ we cen
Pind the value of £ for which (2{+1)T'f can be neglectsd. For
go = 200 MeV/c, for example, we find that cutting the series
ot £ =l causes an error whioh is smaller then 3% at the ex-
treme values ! = 150 MeV/c and A/2 = 120 MeV/e. For other
values of ,f and A the error is much smaller, For higher
incident energies we have to take more terms in the sum if

we want to keep the error negligible.

With 8 = 7o and for not very high incident energies,
the second Q¢ in Eq. (V.46) for £ Z 1 is very small and oan be
neglected.

Tf the scattered mesons moments are not experimentally
measured, it is interesting to integrate Eg. (V.47) over the
spectrum of values of e for each sosttering angle O. This
integration can be made with the help of an electronic oomputber,
The dspendence of the heutroen-proton -scatbering parameters
2, Dos by, bz on the relative momentum ,J;? cen easily be taken
into scoount in the integration. For the S-wave phase-shif't

8; we take the shape independent approximation

cot 8:, = - ;:725 + :|2_ rotjf" (VOLI-B)
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with ay = 5.38 x 10~"? em, T g = 1.70 x 10"}> cm. The P-wave
phase-shifts for mucleon-nucleon 'scattering are small and not
very well determined at low energies. The terms of Eq. (v.47)
involving P-waves in the n-p interaction which could give non-
negligible contributions are then those containing Lu2 .

These depend only on the "average" phase-shift in P-wave

§p = (8] + 35 + 557) which seems to have a value of about 1°
at B, . = 20 MeV (f, ~ 100 MeV/c)}. We adopted a linear depen-

lab _
dence of BP on 4;

ap = c.g’f

with C chosen so as to satisfy the above mentioned value of

gp =1° at A% = 100 HeV/e. Then the numerical computations
showed that the effect of the P-wave interaction of the two
nucleons is negligible in X'd inelastio soattering for an inoi-

dent meson momentum of qo = 200 MeV/o.

We now present the results of numerical computations
made for qo = 200 MeV/c. In terms of the socattering ampli-
tudes in theisotopic spin states I = 1 and I = 0 we have

a
b

a
n

a4

F(ar +80) - (V,49)

|

Here we are neglecting the Coulomb interaction between the K
meson and the proton., This has very little importance in the
inelsstic scattering for go 2 200 MeV/e. It can only deform
o little the shape of the differential inelastic owess=-seotion

at small angles.
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We 0all s¢ and 8o the scattering lengths for I = 1
and I = 0 respectively. The relation between the parameters

ay and ao and the scattering lengths are
sy = (2m)%p 8y (V. 50)

and the analogous expression for so. g = 323.6 MeV is the re-.
duced mass of the K -nuoleon system, The experimentally
measured value of the K+p total oross-seotion at 200 MeV/o is
14 mb, and the differential oross-seotion shows a construotive
interference between Coulomb and nuclear interaotion (Ref. 1k4),
g0 that we have

Sy = - 03338 x 107" cm . (v.51)

The value of so is to be determined from the analysis of the
experiments made with deuterium bubble chambers., As we shall
see in the next seotion, the measured value of the cross-ssction
for the charge exchange scattering implies that 11 -so/Bil‘is
leas than one. A value of 0.7 for this quantity will give

o ~ 0,95 mb, whiech 48 olose to the measured valus [with

piiﬁhstatistics.(Ref. 20)]. The inelastic cross-secction has

not yet been determined experimentally. As the phase-angle
between the two quantities s, and sy is unknown, we cannot
detgrmine uniquely the value of so. The relation |1—-so/%1|‘=0.7
implies that lso/%tl is somewhere between 0.3 and 1.7 and that

the phase-angle is between O and 45°. ‘More dstailed informa-
tion ocan only come through measurement of the inelastic oross-

section.



- 111 -

Pigures V.5 and V.6 represent the momentum speoirs
of the X' mesons emergent from the proocess K'd - K+np at two
different angles (lab, angles © = 45° and ® = 90°), For each
angle we traced two curves, one ocorresponding to s, = 0, the
other %o s8¢ = - 0.1 X% 10—13 cem, to show how the choice of the
parameter s, can affect the momentum speotrum of the outgoing
megsons, For s¢ = 8¢ the speotrum is the most peeked, with the
minimum of tail., TUnless the statisties become very good, it
appears that a determination of the meson momentum spectrum is

not a convenient way of fixing the value of sq.

The differential cross-seotion for inelastioc scatter-

ing oan be written in the form

inel ,0,10136 E
doia ==< q%){:1381*'5012F(qo,@) +

Qo

+ |84 - SOlZG(q0:®i] . (V.52)

The functions F{qo,®) and G(ge,®) were evaluated numericellys In
Fig, V.7, curve €4 represents the "inelastic + elastic™ cross-
section for so = 0 in the closure approximation (Refs. 5, 21).
This is obtained by neglecting the final state interaction,

Curve (. represents the inelastic differential crosgs-section

for the same value of the parameter sq. Comparison of €, with
C4 shows that if the closure approximation is wvalid, the elastio
scattering must predominate at this energy (meson incident momen-
fum 200 MeV/c),
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Curves in Fig. V.8 show the inelastic differential

oroas—-seotion for two different values of 8.

The total iﬂelastio eross-section at 200 MeV/o is

given by

AL (o0 = 200 MeV/c) = 0.50]38y + sol%+ 0.89]sy = s0|?.  (V.53)
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5, Charge-Exchange Scattering

. We now consider the process K'd - K° PP. We may
have flrst o collision. with charge exchange, of the k' with
the neutron, followed by the interaction of the two protons in
the final state or a rescattering of the (K°} meson., Or we
may have first a collision of the incident K" meson on the pro-
ton followed by a scattering, with charge exchange, of the K
by the neutron. Iet us call 8, the value of the matrix element
of the collision operator for charge—exchange K n = X°p scat-
tering, and a,p the value of the matrix element of the ocollision
operator for the scattering K°p - K°p. Besides the faot that
these different amplitudes have to be considered, we have in
this case of charge—exchange scattering two other important dif-
ferences with respect to the inelastic (K+d > K*n;a) soattering.
One is that in the present case we have two identical particles
(protons) in the final state, and the Paull principle requires
the final state wave Tunction to be antisymmetric with respect
to the coordinates of the two protons. The other diffsrence
1ies in the presence of the Coulomb interaction between the two
protons. This must not be neglected a priori since the two
micleons in the final state will not always have a high energy
of relative motion. Another fact that must not be forgotten is

the mass difference of the Kf and K° mesons.

et P W B Y e P ey P 4 S e ] = e L S SO S o il Lty A S S i

The terms in the expansion of the collision operator
for charge exchange meson-deuteron scattering which correspond

to a single stattering (with charge exchange) of the meson by
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the neutron and to this scattering followed by a proton-proton

interaction give (forgetting the antisymmetrization for the

moment )
hl. 1 h .
KEEEHLD + B[P e £ 51> =
- - 7 .; -
= - S(Pf—?i) aexf<¢r( )Ir> e 2 ¢rD(r) dar (v.51)

where the amplitude for charge exchange K'n scattering has been
taken as constant over the range of integration. < ¢ - |r> is
the configuration space representation of the scattering state
(with proper asymptotic behaviour) of the proton~-proton system
with nuclear and Coulomb interactions. Outside the range of

the muelear forces we have

dora g
<Ol = ) TR 2ag)'s () puoonBp)

€=p

X{F(E+1+in,2f+2,-2i,£i.r) + (230 YWy (£+1+in,2l+2,-2i{€r)} (Va52)

e~ _ M
where n = 24 = 57 ’gf (v.53)

and 8¢ are the nuclear phase-shifts.

F is the well-known confluent hypergeometric function.
Wy is related to the Whitteker function W, ( ) by
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1. Cf2u + 1) _gyutEen ~(usd)
We(u+tg=n 2041, 8) =3 TR (-1) z Ww(z) A
Pis regular at r = 0, but rw, ](-l-'! +in, 2l+2 -2i/, r) diverges
like /r ' shen v - 0. Thus to extend Eq. (V.52) to the region
inside the range of the nuclear interaction we must introduce a
cut-of'f factor of some kind in the part containing Wy to elimi-

nate this divergence.

Our problem now is to evaluate the integral in Eq. (v.51)
using the expression in Eq. (V.52) for < ¢(_)|r > . Let us first
oconsider the pure Coulomb part. It is

e Z sl (0140 ¢ M (1) Raloos (B R)]

+1i 3
x F(£+1+in, 2+42, -214r) o 2y (r) asF =

Q2
I

_ -Znm o= I (/+14in) - .
e S ) EGE Rleos D ) ) (v.55)
€ =0
oo ' . i/éfp,r /A . ' .
X [ (21,Zfr) e Jg<-2-> ¢D(r)F(Z+1+ in, 28+ 2,-2:Llfr) r?dr

=0

the integral over angles having been effectuated in the usual

Way. Now we substitute F by its integral representation (Ref. 22)
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F({+1+in,2{+2,-214r) =

1 .
r{(2f+?2 o w2ifru L+in £=-in
= T+ +i(n)I‘+(,32r1-in) f ° fu (1-u) du (v.56)

u=0

and integrate over r first., We obtain

o Z AT T (24e2)r (£ +1
C==a,_ W LN Z W fA)ch[cos (,gf,K)] _(IT-&!;—‘%.&BJ X

f | a0 (1-u)z'in { — L -

: {é:— - i:o: + 1.4 (201 ):| 2} e+
1 v
T a7 ) 7

Substituting u/(1-u) = t the integral in the expression above

becomes

»Z-i-in 06

t{gdt [[%; . (aj-i,é;.)a:l £+ (t-t1)ﬁ*‘(t“t2)ﬂ+1] - Ldt {a-’ﬁ}
P (§+4>‘"'

2
%: + (a+iz€.)a

- o - (_% - 4)2 (v.58)

-A{- + (a +:‘1.A%)2

t2(a)

1l



- 121 -

and analogous expressions for ty(8), t2(8). The poles at
t = ty, t = %tz are not in the path of integration. Let us
go to the complex plane. We have a branch point at t = 0.
We now make a cut from O to infinity along the real axis, and.

integrate over the contour indicated below.

The integral over the curve at infinity and over the infinitely
small circle around t = O both vanish.  The integral over (D

. 2riin -27n . R .

is = (e7"7) T =~ e times the integral over AB, which corres-
ponds to the one we want to evaluate. We then obtain, by the

Theorem of the Residues, that

%0 £4in ¢ ¢+in
/ o )
b=ty Yo' (5-ta O+ qoe™2T0 Pr L \att (t-t,)81Y/
t=e ety
e+in
at 4
(o) ) (759

t=ty
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We thus finally have for C

-nw

- e 7 2mi kA 23-&- 1 s
¢ 7 fex E;;??Z i (1_8-2wn) 223(24%3) P(£+1~1n) Fej 0 (Zf’zi]

e+in

[[[_ oY, ]“" (dte (bt )“’) ey

e+in

5 (a:izg)ﬂ o (ie (tftZ)Hi)t:t, (a)} ]

(o)) T

£

The evaluation of the terms in this series is atraightforward.

Now for the term that depends on the nuclear phase=~
shifts, The proton-proton scattering phase-shifts in P-waves
are very small. In the case of the triplet state of the p-p
system, the antisymmetrization introduced by the Pauli principle
will reguire the final state wave function to be negligible for
very small relative momenta of the two protons. Thus n = E%ﬂ %%
will not have very high values, being in general small compared
to unity. We ocan then put n = O in the argument of the funetion
W, in Bq. (V.52) and thus reduce the second term of this expres-

sion to the usual combination of spherical Bessel functions that
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represent the pure nuclear scattered wave. & purely nuclear
term like this has already been treated in Section V.4, where
I‘L(J.;) 3 ép), 1(11) and L(a) were obtained., This approximation
corresponds to writing the soattering amplitude for p-p scat-
toring as a sum of the scattering amplitude for a pure Coulomb
interaction with the amplitude for a purely nuclear interaction,

namely

5 =tC + 80, (V.61)

The single scattering term in the left-hand side of Eq. (V.51)

gives
2 .
-if.°r 12>
ox ? 5 - iy + 5 K T >
<f|t | > == 8(. f*":)i) 7 DERA l/ID(I‘)dsI‘ =

ex (27__.) /2

- s(ﬁf-ﬁi) B -(;:—’)T%- Z(zfn )P{cos (}f,Z)]re(l;,,A)
e

and we have, without having yet antisymmetrized the final atate
1 ex B \
£t ————tTF 1> = - (B, -F, Ce =
<I“E—K+ie nil> (f 1)2__,[
1
" Fex (2 ) PR (24+1) Pe[cou (,Bf:K]I‘ﬁ( }

+ <f'l‘t ;Eﬁ_ﬁe hn | i> . (V.62)
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Now, the wave scattered by the Coulomb field, which gives rise

to all the part of the above expressiua which is ewbdraced by

the % symbol, will consist of cnly a few angular momentum waves,
This is due %0 the fach that n is nct very small (Coulomb scat-

tering at not very lcw energies it described by only a few
spherical waves). Thus, the series above will converge rapidly,
only a few terms being necessary for cur prrposes. In the case
of a triplet spin-state of the two protens only the =erm with

A= 1 has to be considered (f =0 and £= 2 are ¢xcluded by anti-

symme trization and =3 already gives very small contribution}.

Charge-Exchange Svattering Cross-loovion

Let us coneider the ecase in which there is no spin
dependence in the ssallerirs aapi.ituvle .., for the charge-exchange
process Kn > K%p, as well ac in the awpiitudes aP and aopn Then
the two protons witl be in the triplet state, as they are in the
deuteron. Antisycmetiization of the wave function will elimi~
nate all even paxity states, Sguaring the properly anvi-
symme trized amplitude,zand surming over spin variables, we

obtain for ! (R an expressis: of the form (V.36), with

§
inel)fi‘

!{-.! ( (2
A=+V2 ;:ice - La a |z J;‘) - J ? Lot g
/ VB 8X Cp Pa2P1 Pi1P= bzp, P1Pa2

¢ odd
‘, ) » 7]
-~ =L a !_.i N ? - J('f + J.E') _J(z)
g5 ex Py o Fabi Pils FaPr  P1P2 |

B=~V2 a  cos (E;,Z)l_i LéT) s Iﬁ:}:i (v.63)
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where py,pz indicate the two protons in the final state and

§1f,§2f are their monenta. ,z} is the vector %(§1f = Bﬁf)l

The Ce¢'s include both the single scattering terms
and the terms which involve the Coulomb interaction in the
final state. We have seen that the contributions coming from
the single scattering processes can be represented in the form
of a series in Af, the contributions from the terms of the
series decreasing rapidly as A?increases. Algo, very few
values of .f (and possible only one) will give non-negligible
contributions to the Coulomb interaction. If only P-waves
are important we have for the differential cross-section,
after integration over d32}, and neglecting double socattering

prooesses,

g =28 e a0 (ko N 16(244 1) TE(L,0) -
Ty 5 %ax B39 t\Apo

£53,5,7...
2 . L (1 2 2
] (bo +3by +5bz2)( 1 L£ )+ L& )) ?éi%%; P1(J%3A) -

2 #y e .1 (1) (2) :
-2 @t e mte )1l o )éf—%zr,(zg.,m

_ %E,n), el - F b+ 2b2|2] %E[Lfl‘)i r@j } (V.64
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where ( Q)a
2
K = 16 x 6w N {mp()[ncos( log )
a® +

(1= 7" )n(14n%) A% ( o+ 2)

A 2
o:2+;-;A2+ Zfz n @ +<’%‘-_2’>
+ gin { 5 log ) :]—
P o (2 a? +(,8f+%>2
e . (f __A_>2
..emp(ﬁ)[ cos <Elogﬁ+ *Z >+
2 ﬁa (/gf_l_% 2

. )+’ff'A £ . (glog ﬁz+</£’+§2>:|}a' (V.65)

K accounts for the Coulomb interaction between the two protons.
If n>0, K»16x3 a2 rf([ff.,a) as it should.

In Bq. (V.65)

() ke (v.66)
p(a) = arc tan V.66
'}Z A2 4 g% - lgfa

with an analogous expression for ¢(f).

Fig. V.9 shows the charge-exchange differential oross-
section for an ineident meson momentum go = 200 MeV/c, and scat-
-13
tering lengths s, = = 0.3338 x 10 em and s = 0. In curve
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Cy the Coulomb interaction of the two protons was btaken into ac-
count, and in curve Cz it has been neglected. We see that the
shape of the angular distribution is not much altered by the
Goulomb effect at this energy, but that the value of the cross-
section is uniformly increased at all angles. The increags in
the celeulated total crdss-section,obtained by ineluding the
Coulomb interaction, is 20% for 200 MeV/o incident meson momen-
Ctum; 1% for 350 MeV/e; 7.5% for 530 MeV/c; and 6% for

642 MeV/o.

The general form of the differential charge-exchange

soattering eross~section in the Lab, system is

dcexchc <0.10156 E

i qo) ]51'50!2 H{qo,®) . (v.67)

Jdo

The function H(ge,®) has to be calculated numerically,
Fig. V.10 shows the shape of the differential charge-sxchange
oross-section for go = 200 MeV/e. Due to the smallness of the
pumber of observed charge-sxchange events at this energy (Ref. 20),
The angular distribution is not yet known experimentally. With
5y = = 0,3338 x 107" om, the total charge=exchange cross-section
for 200 MeV/c is given by

2
oFXCB (00 = 200 MeV/o) = 1.924‘1 - 22
1

‘_“8“2 mb at 230 MeV/e.

is of about 0.7 at this

The reported experimental value is 0.9
This implies that the value of [1- 3%
1

anergy.
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CHAPTER VI

COMPARISON WITH EXPERTIMENTAL DATA

Data on the differential and total cross-sections for
the charge-exchange (K+d > K pp) scattering for K -meson beams
of several energies have been obtained with deuterium bubble
chambers (Ref., 20).

The results for the differential cross-sections are shown
in the curves at the end of this chapter. The measured values of

the total exchange cross-secticn are reproduced below.

Lab. mom. Lab. en. o

ex
230 ¥eV/o 52 eV | 0.9 7 8";
350 MeV/c 111 MeV | 3.0 £ 0.3
530 MeV/o 230 MeV | 5.8 * 0.6

62 MeV/e 315 MeV 6.7 = 0.6

A X' beam of higher momentum (810 MeV/c) is also avail-
able for the same experimental group, but data with deuterium at
this energy have not . yet been obtained. The scattering of this
beam by free protons in a hydrogen bubble chamber showed that the
K+p - K+p differential cross-sectlon is not inconsistent with a

pure S-wave interaction, the total cross-section being of 16 mb.
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The cross-sections for inelastic scattering K+d-aK°np

have not yet been obtained.

In the previous chapters we adopted a model in which
it is assumed that the meson-deuteron processes can be approxi-
mately described by a series of two-particle processes.  As-
suming that the K+n and K+p interactions are purely in S-waves,
and neglecting multiple scattering (but not neglecting the
nucleon-nucleon interaction in the final state), in Chapter V
we obtained that the inelastic and charge~exchange differential

cross-sections are given by

inel 0.10136 E 2
d
Gdn = ( 0 qo) | 519 ] {F(qo 5®)

54

2 b3
34 20) G(q0,®)l1-§%l } (VI.1)

exoh 0.10136 E 2 2
do
= = ( - qO) |s4] H(qo,®)!i - %% . (V1,2)

The functions ¥, G and H were calculated for five different
values of the incident meson momentum gg. Their values are
tabulated at the end of this chapter.

s¢ and sy are the scattering lengths in the I =0 and
I =1 isotopic spin states. The value of sy is to be taken
directly from the K+p - K+p experiments., We can adopt the value
sy = = 0,357 x 107"
of 16 mb,

which corresponds to a total cross-section

The interesting feature of the experimental values of
the charge-sxchange cross-section is the rather fast increase of

the total cross=section with the incident energy. This feature
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led some authors to believe in the existence of strong P-waves

. + . .
in the X - n interaction.

The value of the total charge-exchange coross-section
fixes the value of [1 - 50/5112, By integrating Ea. (vi.2)

over angles we obbain

UBX = 3.4 |1- so/s1]2 mb at 350 MeV/c
% = 4.86]1 - 50/5¢]% Wb at 530 MeV/c
ex 5 (VI.3)
o =55 |i-so/s1| mb at 642 MeV/c
X = 6.1 |1 =50/3]% mb at 810 MeV/c .

Comparing these formulae with the experimental results we find
that the quantity |1— sc/s1| has the valuss of 0.94 at 350 Merb
and 1.1 at 530 and €42 ¥eV/c. Thus we see that we do not need
mors than a more or less consitant value of the S-wave amplitude
in the L = 0 state to explain the rise in the total exchange
cross-gection with the energy. This rise is already contained
in the functions H, and can be attributed to a rapid increase

of the phase-space factors with the incident energy, due to the
fact that there are three free particles in the final state to

share the available energy.

The total exchange cross-section at 810 MeV/c has not
y2t been measured. If we assume that the value of |1~ 30/51|
will remain more or less constant at about 1.1, we can make the
prediction that the value of the total exchange cross~section at

this energy is of about 7.5 millibarns.
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If the adopted model is good, the angular distribution .
must be well described by Eq. (VI.2). There is no possibility
of playing with pearameters to adapt the shape of the angular
distribution in the charge-exchange scattering, except by multi-
plying it by the proper constant 11 ~so/s1|2 so0 as to obtain the
required value of the total cross-section. For qp = 642 MeV/o'
the theoretical curves fit the experimental points well. For
qo = 930 MeV/c the agreement is still fairly good, but the curves
for 530 and 350 MeV/c together show that there may be a systema-
tic deviation of the experimental points from the theoretical
cuUrves. This may be due to essential three-body effects, which
we would expect %o be stronger at the lower energies. Also it
may be due to a P-wave contribution in the K+n interaction, but
we would expect this to be also strong in the higher energy

(6h2 MeV/b) where the agreement is so goed with S-waves only.

Besides an improvement in the statistics in the measure-
ments at the lower energies, it seems desirable to have the ex-
perimental determination of the differential exchange cross=-
section at 810 MeV/c. We expect the independent particle model
to be valid at this energy, as it scems to be at 6i2 MeV/e.

The phase angle between the two quantities s¢ and s¢ is
unknown, so that the measurement of the charge-exchange cross-
section alone cammot give very definite information on so.  The
value ]1 - so/s1|2 = 1,1, for example, can be obtained with any
value of |so/s1| from 0.1 to 2.1, the phase angle ranging ac—
cordingly from 7 to 0. Since the inelastic cross-section

[Eq. (VI.1)] invelves ancther linear combination, namely |351+ So],
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its determination 1s important. We suggest that effort be put
into the determination of the inelastic scattering total cross-~

* section at 530 MeV/c and higher energies.



™ . — 6™ =3,0mb

—————® =34 mb —

(YA

milibarns / steradian

=140 0,6 0,2 0,2 0,6 1,0

cos 6 (G=lab engle)

DIFFERENTIAL CHARGE EXCHANGE CROSS SECTION MESON INGIDENT MCMENTUM
qo = 350 MBV/GO



1’6 -

ef

/

° | | L I T ) 1

~1,0 0,6 0,2 0,2 0,6 1,0
oos @ (8 ~ lad angle)

DIFFERENTTAL OHARGE EXOHANGE OROSS SECIION q, = 530 MeV/c,



1’6"
o™
an
1,2
¢®* = 6,74 mb o
&
£ 0,8
~
E -
H
o
=]
0,4
0 k 1 T T T T
"’lgﬁ i ‘=696 ”“032 @92 096 190

cos 8 (6 - lab angls)

DIFFERENTIAL GHARGE EXCHANGE CROSS SECTICN
q@ = 642 MQV/ea



- 138 -

TABLE I

e r—————

qo = 200 MeV/e

e ‘ b G H
0° 0.0302 0.0609 0.1846
10 0.0142 0.1185 ' 0.2928
20 0.0460 C. 2400 0.533%2
25 0.0669 0.2901 0.6527
30 0.1007 0.3319 0.7 7L
35 0.1393 0.3607 0.8138
40 0.1682 0.3764 0.849,
45 0. 1945 0.3806 0.8561
50 0.2136 0.374% 0.8386
55 0.2254 0. 3595 0.8014
60 0.2299 0.3392 0. 7501
65 0.2286 0.3153 0.6905
70 0.2228 0.2891 0.6293
80 0.2016 0.2360 0.4992
90 10,1748 0.1880 0.3881
100 0,1485 041584 0.2993
110 0.1254 0.1 78 0.2312
120 0.1064 Q.0946 0.1837
120 0.0917 0.0780 0.1492
140 0.0806 0.0662 0.1253
150 0.0728 0, 0581 0,1090
160 0.0675 0.0528 0.0985
170 0,0644 00,0499 0.0928
180 0.0635 0.0489 0.0909
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TABLE _II
g0 = 350 MeV/c

® cos @ F G H
0° 1.000 0.0120 0.0922 0.2970
10 0.985 0.0630 0.4792 1.3728
20 0.940 0.3865 0.9840 2.5669
25 0.906 0.6021 1.1837 2. 98l
30 0.866 0.7760 1.,2765 3.1042
35 0.819 0.9129 1.3123 3.0990
40 0.766 1,0054 1,3007 3,0147
L5 0.707 1.0429 1.2638 2.8709
50 0.643 1.0433 1.1921 2.6984
55 0.574 1.0153 1.1085 2,4618
60 0,500 0.9648 1.0147 2,2268
65 0.423 0.9021 0.9181 1.9945
70 0.342 0.8273 0.8209 1.7668
80 0.174 0.6756 0.6415 1.3577
90 0,000 0.5359 0.4906 1.0232
100 - 0,174 044204 0.3730 0.7680
+10 ~ 0,342 0.3312 0.2861 0.5829
120 ~ 0.500 0.2650 0,2237 0.4520
130 - 0.643 . 0.2172 0.1799 - 0.3608
140 - 0.766 0.1837 0.1497 0.2988
150 - 0.866 0.1607 0,129 0.2573
160 ~ 0.940 0.1458 0.1464 0.2309
170 - 0.985 0.1375 0.1093 0.2164
180 ~ 1.000 0.1349 0.1070 0.2118
j%dn = 6.7867 jhan = 7.4226 jhdn = 16,4648
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TABLE IIT
3o = 530 MeV/c

) cos © F G H
0° 1,000 0.05k3 0.1473 0,3883
10 0.985 0.3535 14641 4. 1953
20 0.940 1.6555 2.4560 5.9668
25 0.906 2.1122 2.8988 6.61%8
30 0.866 2.3745 2,8833 6.5613
35 0.819 2.4670 2. 789 6.2138
40 0.766 2.4993 2,6692 5.8639
45 0.707 2.3843 2.4536 5434436
50 0.643 2.2307 2.2276 18075
55 0.574 2,039 1.9927 4 2660
60 0,500 1.8328 i.7576 3.7358
65 0.423 1.6267 1.5355 3.2442
70 0,342 14233 1.3272 2,7883
80 0.174 1.0658 0.9727 2.0231
90 0.000 £ 0.7818 0.7007 14045
100 - 0,17k 0.5725 0.5044 1.0320
110 ~ 0,342 04243 0.3688 0. 7500
120 - 0.500 0.3223 0.2767 0.5599
130 - 0,643 0.2532 0.2151 0.4316
140 ~ 0.766 0.2069 0,174 0.3506
150 - 0.866 0.1765 0.1478 0.2966
160 ~ 0,940 0.1573 0.1312 0.2629
170 - 0.985 0.1469 0.1222 0.2431
180 ~ 1.000 0.1437 0.1193 0.257h
/}dn=12.735o /Ean=13.oyw; fﬁan=28°2825
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TABLE IV
a0 = 642 ¥eV/c

e cos © F G H

Qe 1.000 0.0628 0.1468 0.4329
10 0.985 0.5102 “71.988L 5.7962
20 0.940 2.68%0 3.6942 8.2996
25 0.906 3.4252 L1463 8,9932
30 0.855 3.6845 4. 0771 8,7282
35 0.819 3.6758 3.7929 8.1353
N 0.766 3,5698 3.5783 7.522L
45 0.707 3.2593 3.2065 6. 7065
50 0.643 2.9495 2,84.36 5.9175
55 0.57h 2.6223 2,4850 5.1480
60 0.500 2,2887 2.1415 4 4195
65 0,423 1.9765 1,8289 3.,7607
70 0,342 1.6855 1.5450 3.1661
80 0.174 1.2019 1.0828 2.2050
90 0.000 0.8409 0. 7468 1.5120
100 - 0,17k 0.5888 0,5165 1.0412
110 - 0.342 0.4202 0. 3644 0.72N
120 - 0,500 0.3090 0.2654 0.5290
130 - 0.643 0.2365 0.2016 0.4027
140 - 0.766 0.1895 0.1605 0.,3180
150 - 0.866 0.1592 0.1342 0.2655
160 - 0.940 0. 1404 0.1180 0.2333
170 - 0.985 0.1305 0.1093 0.2159
180 - 1,000 0.1272 0.1066 0.2105

deQ: 16,1020

f 2a0 = 16,0863,

chm - 39,2936
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TABLE V

go = 810 MeV/c

O] cos @ B G H

0° 1,000 0.1080 0.2600 0.5820
10 0.985 2. 1441 5.8271 12,5470
20 0,940 543420 64136k 14,0307
25 0.906 5. 9642 6.4423 13.7279
30 0.866 5. 8452 5.973L 12.8380
35 0,819 5.6159 545490 11,6464
40 0.766 5. 0646 . 9065 10.1588
L5 0.707 I 53k Is 2966 8.8975
50 0.643 3,919 3.6813 7.5927
55 0.574 3.3637 3.1064 6.3853
60 0.500 2,824 - 2,5827 5.2920
65 0.423 2.3450 2.1264 Ly 3446
70 0.342 1.9233 1.7297 3.5243
80 0. 17k 1.2649 1,1220 2.2742
90 0,000 0.8171 0.7160 14446
100 - 0,174 0.5309 0.4603 0.9216
110 - 0,342 0.3555 0.3054 0.6081
120 - 0,500 | 0.2476 0.2114 0.4192
130 - 0,643 0.1817 0.1540 0.3049
140 . 0,766 0.1412 0.1190 0.2352
150 - 0,866 0.1160 0.097% 0.1923
160 - 0.940 0.4008 0.0845 0.1666
170 ~ 0.985 0.0930 0.0776 0.1530
180 - 1,000 0.0905 0.0755 0.1483

/ch = 20,9790 f{;em = 20. 8461 deQ = 4343570

s smre
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