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ABSTRACT

It ie known that the Riemann properties of the four-dimensional space
can be obtained from & given field of four 2 x 2 spin matrices. © With six
2 X 2 Hermitian matrices a cancnical formalism is set up, following the
methods originated by Dirac., =

It is shown that a complete set of dynamical variables cam be
constructed which are relsted to each other by a total number of ten cons=
traints at each point of the three-dimensional hypersurface where the state
of the system is defined. The Hamiltonian of the theory is a linear combing
tion of the constraints.

The meaning of these constraints is discussed in terms of the gener-
ators of the invariance group of the theory.
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I. INTRODUCTION

The two=component spinor thesory has recently gained importance
in the trsatment of purely classical problems,; such as gravitational
radiation; asymptotie conditions on ?he curvature tensor, and the
initial=value problém for null hypersurfaces. In this article we
shall develop the Dirae Hamiltonian formmlation of General Relativi
ty in terms of two-component spinors and spin matrices. The

principal motivation for this work arises from two different reasons.

First, any quantum field theory of gravitation eventually will
fnvolve the interacticr of the pravitational with other fields. It
is well known that fermion fields can be included in our descrip-
tion only when we use tetrads {or, equivalent, spin-matrices) for
#he description of the gravitational field. Since avery known
field is capable of interacting with gravitation, the spinor formulg
tion of Dirac's Hamiltonian theory seems to be a useful step toward

a future gquantum theory of General Relativity.

The other motivation for this'treatment arises from the possibili
'ty *that a spinor formilation may be more suitable for the discussion
of the probleh of fluctuations in the g-number metric field than the
sonventional tensor formmlation., In a spinor formulation the
gignature of the metric field is fixed; the metric field is given
entirely in terms of four 2 x 2 Hermitian spin matrices. 7If we-allow
fluctuations in the g-number Hermitian matricesg\tﬁese fluctuations
will not change the signature of the metric, either. Hence the range
of integration of c¢-number field varlables; as called for in Feyn-

ments method of integrating over histories,; for instance, is signifi



cantly different in the spinor and in the conventional formulations
of general relativity. This difference may be expected to lead to
inequivalent quantum theories of gravitation, which eventually will

deserve separate exploration.

Our formulation is related to Dirac's tetrad method; - but we
are not restricting the orientation of the tetrad axes which are

intrinsically associated with the spinor field at each point.

Since the techniques employed in this article involve twow
component spinors and its properties, we shall first review briefly
the basic propertiess of the standard spinor theory of wvan der
Waerden, in Section II. No attempt has been made to render +this
review complete as thig material can be found in the literature.
The notation used will be the following: Greek letters designate
tensor indices from 0 to 3. Small Latin letters designate tonsor
indlces running from 1 to %; whereas capital Latin letters referto
spinor indices; the latter are of two different types and will be
denoted by dotted and undotted capital Latin letters,; both running
from 1 to 2. Small Greek letters inside a parenthesis refer to
local (or tetred) indices} they are related to spin degrees of
freedom as explained in Section IXI. They range from O to 33 no

system of triads is used in this paper.

Because of its simplicity the index-free notation (or matrix
notation) for spinors will be used as far as possible. However,
for the definition of the Poisson bracket between spin dynamical
variables we shall need explicitly the index notation.
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The metric tensor gpv(and g"’) nhas the signature -2; it can be
brought to the diagonal from (1, =1, =1, =1) at each individual
world pointj we shall denote this diagonal form by EFvo (In special
;relativity this can be done globally)., The remaining seetions of
this paper can be outlined ag followss Seétion IIT is a brief ac-
count of Diracrs Hamilfonian formulation of general relativity in
the standard tensor form; all relationships required for subsequent
nse have been furnished in this section,‘ The foﬁrth sectlon treats
the problem of the determination of the dynamical wvariables in the
framework of the spinor theory of general relativity. In Section V
we discuss the emergence of the new six spin constraints, as well
as the meaning of these constraints in terms of infinitesimal cano-
nical transformations, and the associated generators. Finally,
Section VI deals with an application of the formalism, namely the
determination of the classical commutator for infinitesimally

separated times, up to the first order.
16rk _ -
We use units such that vl 1; C=1,; where k is the Newtonian
C
gravitational constant.

IT. FOUR-DIMENSIONAL FORMULATION OF GENFERAL RELATIVITY IN TERMS OF

TWO-COMPONENT SPINORS

At each point in the four-dimensional space-time we can define
a two-dimensional linear vector space. The elements of this space

are the ordered complex functions of the coordinates, 4
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(x3 = ul(x)>
BET w2 (x)

We shall call this linear vector space in short spin-space and its
elements spinor fields. Just as in tensor calculus these spinor
fields can be described in terms of different base systems by form
ing linear combinations of their components. The coefficlents of
this transformation matrix are arbitrary complex functions of the
coordinates,; but they are restricted by the requirement that the

determinant of the matrix be equal to 1. With respect to this

transformation group the spinor fislds can be divided into four
types,
wh = X uf, o = MK A u'A, (1.1)
u?A = MA ¥ uﬁg uﬁ = Mwlﬁ A uﬂA,, (1.2)
wo=m My, =y M, (2.1
u, = Uku MKM u_;(= uy y1A K9 (2.2)

where, Mgk is the coordinate-independent transformation matrix

nﬁx=(:§> s My =(°:,; g), (3.1)

which satisfies the condition
x8 -fBr=1. (3.2)
o means the complex conjugate of «j and a dot on all indices is the

same as taking the complex conjugate. The relation (3.2} is the

unimodular condition. The relations (1), (2) can be written in
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matrix notation as:

ur = Mu , u= M1 y
o= MT =Mt
v =vi M, vi =v ML,
v osvi N, I

where, v = (uA) can be Iinterpreted as a row vector. Spinor indices

are ralsed and lowered by means of the spin matrices eAB, €y and

their complex conjugate,

0 1 T
CAB = ) = €A‘B ’ (4)
«-l 0
AB - A
< eBc - 80 3 (5)
uA = AB uB 2 (601)
. ..B - B
uA =u eBA - = AB a © (602)

From Eqs. (1), (2)s and (6) it follows that,

AL L pp i oFB
or,

eﬂ=M€MTo (7)

Using Eq. (4) together with the unimodular condition (3.2) we can
prove that the € matrices have the same expression in all base
systems

e'AB _ AB

- o
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Since §p = €AB$ the same result holds for the components €rpe

Higher-rank spinors transform in the same way as the dydadie
A B

produst of spin-ve¢tors; for instance xABé transforms like ww va
under the action of the unimodular transformation group.
A hermitian sscond=rank spinor is defined by,
Wic T Yed 0

W ﬁ.(wAc)g wl = (w@A)? w = (WAG) 3

wli = CWGA) = ;T =W o
Hermieity is preserved under unimodular spin trangsformations. Any

Hermitian spinor of rank two can be described by a set of four resl
numbers (or functions). Associated with each point of tke foupr-

dimensional coordinate space, we shall define a sot of four linsayly
KM

independent Hermitian svin matrices Ty e Under unimoduiar transfop
mations they transform as,
KM _ i sP
o' = M s MMlP T, (8)
L&) o
o) = Mx) o,(x) ¥lx) . (9)
With respest to the index p they transform as a four=vector undeyr
2ll coordinate transformations,
] oxH
o, (x1} = = o (x) ,
P ' Irp H
ox

xta = x1%x) .
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The spin matrices OFKM’allaw us t¢ assoclate with any tensor THY°°°

KM,RP. . .

a spinor T ¢ such that to sach tensor index corresponds a

pair of spinor indices; one dotted, the other undotted,

TKM?RPOOO - G.FKM @,VRP oo THV oo

and
KVooo 1 V H?RPOOD *
I ( ) o T eoe ™ 3

From the condition of Hermicity of the A it follows that:

pKMoRP _ oMK,PR

This relation has the effeat of maintaining the same total number of

components in both sides of the above equation.

From these relations we see that the reality of tensors is

translated into Hermicity of the correspondent spinors.

We define the set of matrices v, accoerding to,
V= € T, € .
£ (10)
L ST
Under the local transformation group they transform as
T
Yx) = M THx) px) M) (11)

. x¥= constant.

Eq. (11) is a consequence of the definition (10) along with Eqs. (7)
and (9).

* fThe contravariant ¢ matrices will be defined later on, The number n denotes
the rank of the tensor, for instance, for a vector n=1,
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From (9) and (11) we conclude that the matrix produect of acand a
Y matrix has the following transformation law at the point x/;

bl =1
UF V-MUHTVM )

Now, we introduce the set of Hermitian spin matrices ?r’", which

Y (123

are the Paull spin matrices and the two-by-two identity matrix,
ol,KM 0 1 02 ,KM 0 -1 03 yKM 1 0
o = y O = » O = ’
1 0 i 0© 0 =1
00 ,KM 1 0
o - o (13)
0 1

The matrices G/ allow us to write the elements of o, as,
o«
O—H - hp(“) 0- o (14)

From the Hermiticity of o, amnd & it follows that h,.,4 are a set
of 16 real functionsj the role of these h () will be clarified in

what will follow. Similarly we can write,

—_—

o o]
T®= ¢ o , (16)
By using the &* as given by (13), we can write the components of

the £ matrices from (16),
TV =207, Y = =0 o (17)
A strightforward calculation shows that,

§o 2B 4+ §P Y™ = p g .y, " (18)

* By taking Hermitian conjugate on both sides of (18) we conclude that an equation
identical to (18) slso holds with the ¥ matrices written at the left. A similar
result holds for Eq. {20).
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Where E‘iﬁ is defined in the Introduction, and 1 is the two-by=two
identity matrix.

If we form the symmetrized product of a o matrix snd a T matrix,
and use Eqs. (14), (15}, and (18), we obtain:

TuTy * OV T =2hyegy gy EORL (19)

KV ¥

This symmetrized o v product has all the properties of a metrie
tensor and it will be interpretesd in that way. 1

O‘H"t‘y'&@vﬁ:‘“ = =2 gi“"l 9 (20)
g}w = hp(ot) hl’(ﬁ') éaﬁ o (213

Therefore, the hp(a) introduced in Eq. (14) are just the set of

four tetrad axes at the point xM.

From Egqs. (12) and (20) it follows that the value of the metric
field is the same for all possible choices of spin frame at any
point xH,

The spin transformation (9) can be generated by giving to the
tetrad axes a suitable four-rotation {or Loprentsz transformation),

as it is clear from the relation (149,

The important result to be noted for subsequent exploitation
is that a given field of four Hermitian $pin matrices ob defines
uniguely the metric field by means of (20).

The local (or tetrad) indices are raised and lowered by means
of the ghP and §Pps as an example, given the covariant local
components A(H) we can form the contravariant components A ag

cording to,
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(3 . 0
N Ay o

and reciprocally,
alP)

Aay = Eup
In this paper tetrads will be used only as an intermediste aid
in some of the calculations; the fundamental wariables taking over
the role of the metric tensor will be the spinor fields O o How =
ever, in order to clarify some of the relations involving tetrads,

some further results of the tetrad calculus will be given briefly.

From the relation;
#(p) _ (p)
h}-l(ﬂ) h S(A) 9 (223
it follows that G can be intempreted as the tetrad components of
“ﬁs this allows us to raise or lower the indices in these "local

matrices" similarly as we did for an arbitrary tetrad vector,

&a = hp(cx} O-H* 9
b = Bup 87

The contravariant tetrad vector (contravariant with respect %o the

tndex p) ') has not yet been defined; the definition of this

vector is equivalent to the definition of the components of the

contravariant metric tensor; since:

g = hp(a3hV(B)§u@ = ptledyr(e) _ (hp(ljh”(134-h”(zshv(20+if(3%f(333¢
(23)

If we form the relations, 1

* The tetrad components of any given temsor are defined by the relation:
aCIBY oo o phO) () .

FV cob



- xBA .
s =g Bitoy Ba(1) Paczy Baczy o (24)
0} _ A=l A
KD = A= ghef Ba1y Bp2y Paczy ¢ (25.1)
R o pt grapry o hazy Byzy (25.2)
(23 Jp=1 ¢ papr
hP _A 8}‘ rg hd(O) hﬁ(l} hA(}) 9 (2503)
(3 - A=l gHapA Re( 0 hﬁ(i) LIV (25.4)

where €'°P*1g the permutation symhel, defined to be +1 for the
order 0123. We can prove that the h“(&) of (25) satisfy the
‘relation (22). Equivalently, from Egs. (213, (23), (24), and (25)

we can show that the above gMY satisfies,
AP =g P
Eur 8 8y -
Therefore, the relations (23) and (25) define the contravariant
metric tensor and the contravariant tetrad vector h”(mﬁg We note
that Eq. (24) gives the determinant of the matrix (hp(q))g where

the first index (the coordinate index) designates the rows and the

tetrad index the columns.

A = th(cx)' °

Now, we consider the following expression:’

D = ¢ O Vg O, Ty - (26)

Using the Eq. (14) and the definition of determinant, we can write
the above equation as,

b= 8(!-‘-)(")(93("?5 %F@Agé%v 9 E: Ih(:‘)l 5
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a direct ealculation shows that,

gWONENN) 58 & ¢ cu ey 1,

then,
D=al(-1)A -1,

%ok

A=v/Ag, %= gyl .

From (21} we have:

Which gives,
D =al («1) /% .1,

We define the quantity

vE=gh"PO o v o =gHYPT p SR &,

() Bo(p) Bo(a) @

as a consequence of the definition of determinant, we have:

(a3 L (B) ((A) _ A (TI(xX(B) 1) A
eRYPT RS nf) nM) =Ly e RIATA,

using this relation in the Eq. (28), we obtain:

N T

&

since,

<]

g (TII(pXA) o’ = -3 1 g,

[»] <
O‘OC“CB

we can write,

A e 1-
ol=pt &V= 1(3X)"1 vH = ok,

*

8(0)(1)(2)(3) =41,

* * B = hg’t) h(,,ﬁ) Eq(a

<5

(27)

(28)

(29)
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This relation defines the contravariant components of the o matrices.

For the v matrices we have,

. +
e oy 31A)yt R = TH, (30)
R = e VHe =ghVPO T, O T - (%1)

Due 0 the fact that the spin transformation matrizx M is an
arblitrary function of the coordinates, it follows that the derivati-
ves of a spinor do not transform as a spinor field under spin trans-

formations; the quantities which transform as a spinor field. are

K _:K K V4
uSP uzp * rP Yo
that is,
tK L
usp L u & P 3
thigs means that the rp transforms as
'K WK v X ~1P
For =Wyl op=Mgp ) ¥y

under spin transformations. With respect to coordinate transforma-
tions the derivatives of a spinor field transform as a vector; the

same beling valid for the i‘qs

o
; J x«
u,. = ", 9
x
P axDP 3

x'P = x'P(xv) ,

The u; defines the covariant derivative of the spinor u, and the

(o]
I-PK 1 are the spin-affine connection.

If we require,



we find the following expressiom for ["‘P,

1 * L4
K - . o,uRK {,u} « RK
= o €y + o °
'[; L 4 KHIR { op xp
In the above expressions, {a%} are the Christoffel symbols, the
metric being defined dy Bq. (20).

The spin curvaturs is defined by the relation,

A A B
u, “‘zgop“PgGBu ?

= A _ A A C = A C
PQGB-_‘FEQUB *%QB“@ crUB+iUCl; B °
These equations in matrix notation read as,

‘ll “u. =P ug

ipo T50p po
P = = = — L L]
po i-"pgur ro,,p [?310 1-“o—[mp
We shall use this notation in the next relations; an equation relat-
ing the components of the Rilemann curvature tensor with the spin
curvature, is obtained from the relations,

o - O,y = O

uzop ~ Tuspo " 9%

e
R P =P, .0
Auep R oop T T T
W x = ¥ysmy =T R +P ¥, + ¥, Prg o
Wiep T H3pX Apag T Top Tp Tty g
Since we have taken the covariant derivatives of the oy, v matrices

equal to zero, we have:
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A + -
g R?L,uaqg @}1 B = Prx]a fp =0 5
A + =
A R-"P“’ﬁ PO‘(3 “CH + t’;_, ?Q,p o .
These relations allew us to express the two curvatures in terms of

each other,

R = % Tr[%;f@at@ - 9 Ty )+ (‘cB Q= r&o*p)PAF] 3

=4 p
%‘ﬁ 4?.’ o Ro&[ﬂlp o
Due to the fact that R"‘ﬁ‘)‘i‘ is antisymmetric in (A, 4), we obtain:
T Euﬁ =0 ,

We note that f;‘is not a Hermitian spin matrix (which implies that
PPO' is not Hermitian) a coneclusion easilly acceptable considering
that both indices of f;;?’ and Pp@yg are of the same type (undotted
indices). From the above expressions we can derive the components

of the Ricecl tensor and the scalar curvature., x

ITI. DIRAC CANONICAL FORMULATION OF THE GRAVITATIONAL FIELD

The physical state of a given system in the Hamiltonian theory

is described in terms of a complete * system of dynamical wariables

and their conjugate momentum densities at a given instant of time.

In a theory that from its natural starting point is fully covariant,

*
By "complete® we mean a set of canonical variables s 8uch as Eun? pm, which

describe wuniquely the stata of the system, For instancs; all Weyl scalars
depend only on the B ® pmo 3
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this amounts to the necessity of giving the initial data on a three-

dimensional hypersurface of the four-dimensional Riemann space.

Dirac Z hes shown how we can obtain a formulaticn of genersl
relativity in terms of Cauchy data on a given three-dimensional

hypersurface.

The continuation in time out of the hypersurface; which shoulld be
obtained by integration of the canonical field equations; Iis
arbitrary insofar as the Hamiltonian itself contains arbitrary

coefficients. Some of the components of the metric, which are not

‘-h
=

to be found among the Cauchy data, are present as coefficients
the Hamiltoniani their free choice reflects the arbitrariness in

the choice of coordinates outside the hypersurface.

The set of twelve canonical field variables chosen as the Cauchy
data are not all independent of each otherj; they are related by a
set of four constraints (relations involving the dynamical variables
but not their time derivatives). The values of the canonical field -
variables at any given time must therefore be chosen consistent with
-these constraints (the "representative point' should lie on the
constraint hypersurface of the phase space of the theory). Because
Dirac's constraints are "first class" (their Poisson brackets va-
nish on the constraint hypersurface), and because the Hamiltonian
is a linear combination of the constraints, it follows that the
econtraints have vanishing Poisson brackets with the Hamiltonian,
Therefore, if the set of canonical variables chosen at one time
gatlafies these constraints, the variables will continue to satis~

fy the constraints at all later times. Let us denote by C, the
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set of contraints (the range of index "a" is not important for the

present discussion). The definition of first-class is that

t - &
E’a’ cb] = flap] Cc

on the constraints hypersurface, C_, = 0. The Hamiltonian ig given

c
by the relation

_ a
H—ch Cad3x

Then:
dCp

e o = [ ety m om0

which vanishes on the constraint hypersurface. Hence the tra-
Jectories in accordance with Hamilton's equations of motion do not

lead off the constraint hypersurface.

After these initial comments, we shall review the Dirac's Hamil-

- tonian formulation of the gravitational field.

First of all we shall introduce the concept of D-invariance,

which we shall refer to frequently in what follows.

We shall cail D-invariant any funetion (or functional) defined
on a given three=dimensional space-<like hypersurface of the four-
dimenslonal Riemann space whose infinitesimal transformation law
under infinitesimal coordinate transformations does not involve
the partial derivatives of the §x™ normal to the hypersurface,; 1l.e.

the &x%, FQM’ where {M is the unit normal to the hypersurface. *

Geometrically, they are quantities which are indspendent of the continuation
of the coordinate system immediately outside the points of the hypersurface.
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Higher-order normal derivatives are also exclnded from the trang=-
formation law of D=invariants. The unit normal to the hyrersurface

is defined by

= 2 Dy =gy LN = By (32)
= 3 Afu T Bpa = 9
%oo ‘%oo

Over an infinitesimal volume containing a given point x/ the ¥ take
the Galilean value,
Ho gH = 8O
2“609 2’1 Spo
If we consider the éxH as an infinitesimal displacement; we can re-

write the normal derivatives to the hyperfusrface as usual time

derivatives.

The covariant spatial components of any four-tensor form s D-

invariant, sinee:
§ Tyy 653 Tap = 5,1 Tag = Tag,a b

8 Tij(xj = Tij(x) = Tij(x3 9

where
xift = xH a4 §F(x3 9

the same obviously holds for tensors of higher rank, » How=

Toi[?)o”
ever, the contravariant spatial components of any four-tensor do

not form a D=invariant; for instance,
il 2 £ ip I god _ i) e
. o1 §9|3T +§9°’-T Tsugs
contains §§oo

If we define the quantities;
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=P . P
QP GQO-A = QPK!
which serve as projectors, we can construct from the components
rdBec*A of an arbitrary four-tensor the D-invariant,
p ceo ¥V P y e § oooA,
TP H =P, ofg... @’ T f . (34)

Since the components QgL vanish, we can write this relation simply

asy

%‘ijoook = Qi(x Qjﬁooo ka TNP.-.V ’ (35.1)

§O eeeV o g .

The explicit expressions for Q%c are:

Qty =87, O (36.1)

Q) = (g0t . (36.2)

For the special case of a contravariant four-vector, Eq. (34) turns

into:
| TP=QqPy 7%,

and from (35) and (36),

™=0,

therefore, given the contravariant components T* we can form the

1 by means of the ébove relation. We note'that %1

depehds on T° as well as on Tio

N
D-invariant T

The spaﬁ;al components of the covariant metric four-tensor,
g4y form a D-invariant. From the contravariant components we can

form the foliowing D-invariant:
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80}’ =0,
ol ok
=4 =4
PRI L AL A (37)
gOO

The notation eik was first introduced by Dirac. We shall use it
in all that follows. eik is the reciprocal of Bik?

ol g, =6 (38)

With the components pHV oo 3 we can also form the quantity

TL Z»QPE'V cow ,Q,A. T“VQ“.’A 4 (39)
which is a D=invariant.

In particular, from (33) we have,

t

gy, =iuty g =1,

It is a consequence of the previous results that we can

construct the following D=invariants with a given scalar f£(x),
fi1

ol
g /B0
fgaﬁq= f£,1 + f4y0 goo °

/lgOO

In what follows we shall have the opportunity to lntroduce
other D-invariants.

We shall now proceed to introduca Diracts theory in some

We can also form the four quantities, ﬁx==gaﬁ QB o ¥, is not a D-invariant,
88 it equals (g°°)°1/2; the remaining v, vanish (they are equal to L,).
Thus, from 3cxﬁ we can form only six D-invariant nontrivial components, the

€rg°
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detail. Given Einstein's Lagrangian density,

2=/ () (8- (A1)

ppf lve

we can construct the canonical momentum densities conjugate to Buy

by the usual relations, ST,

: (40)
agpv

Because of the covariance of the theory, it is found that
there exist four relations among the twenty canonical variables

8y 9 pH”, the so-called primary constraints,
op T _
P + ,0 (gd|99 gqﬁsi) 0. (41)

As a consequence of (4l1) we cannot solve (40) for all the "velo~-

cities" in terms of p"”; namely éoy cannot be written as

g
1%
function of the momenta. As a consequence the Hamiltonian densi

ty,

H = P”v épv =L,

cannot be written as a function of only the field variables Eyuvs
ph

Dirac has solved this difficulty by adding to L a suitable

divergence, which has no effect on the field equations.
Iy =L+8,

The addition of this divergence does change the definition of the
pM. With the new Lagrangian density Lj we find that

O%p

38y,

:{}9
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instead of the constraint equations (41). In this scheme the

%D = J[ dsx (P%j éij=‘ LD) 9

Hamiltonian is

2
EER o
D déij

The péj have the form
p%J = V=g (eip“ejmmeij elm> Vim ?
g = lgikl 3

where, vij are the so-called Dirac "invariant velocitles",

1
v, = {} :
00 i
_ Ve J
These vij are D=invariant; hence the momenta p%j are also D=in-
variant. Accordingly, the twelve canonical field variables of

Dirac's theory, the gij and the p%j are all D-invariants.

Dirac's Hamiltonian still contains the Bop (which is not =
D=-invariant) as coefficients, the explicit expression for HB be=
ing,
#y = f dzx Hy = fd3x {(goo)"i HL+g°rHr}, (42)

with H; and i independent of Eop?

. rsf uv L s v . _ o ru

3 - ® 1P Buv,s 2(p gus’,v:l 2P |y 0 (43)
= g~1lf rs _ 1. r_s rs

Hy = K P Ppg~ 3 Pp ps] +Ke'® 8. 5 (44)

where ,

= vn
Prs " Epy Bsn P ¢

K2==gs
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' 1 v ve={ ‘
[;599, rrﬂgs+r;°s r;,v = r;ﬂ,[;v 9 (45)

u _ us
[;v N %'e (%skav ¥ Bsyek T gkv;é)’ (46)

By a vertical bar we indicate the covariant derivative with respect
to the three-dimensional metric Eix and its reciprocal eik. All
relations ffﬁm here on will be written in this three-~dimensional
geometry on the space=like hypersurface of the four-space. For
instance, the "covariant' derivative of a given Ti3 isy three-dil-
mensionally,
il = Tig + [}i pld & [“fr pid

If we require that the primary constraints, po}j = 0, are
maintained in the course of time, then if p°“ =0at t = to and
it t = to + A (with 1 a firsb-order infinitesimal) we have, to

the first order in A,
pPHE) = PR ) A [P Etg) ] 5 (471
hence ’
OH,— . =
[P (xstojg RD] = Q0 . (47.2)
The Poisson bracket is defined here in terms of all the canonical

variables g» pMs

[A; B] =

A 8B SA 6B

g(X) §pfvy  8Pfry ég(x)

0

3 (48)

for two given functionals of the canonical variables. Using Eq.
(48), we have for (47.2),

gko
[ko(x,t ),j{] Hk(xgt ) + = L(Xat )y =

g0
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E)°°("£’9to)5,%§ = -i-;--/g"'0 H (X)) = 0 .

Then 9

Hy =0, | (493

Hk:og (50)
which are the secondary constraints (see an analogous discussion

for the electromagnetic field in the Appendix),

3,
These secondary constraints coincide with four of the gravi-

tational field equations; the equations

= i
qpo - Rp@ =2 Buo

R=0,
which correspond to the equation v:E = 0 in the case of the elec-
tromagnetic field.

These secondary constraints are first-class, the expression

“for their Poisson brackets being, 6

il - r A hnd —
[Bys Hg ) = H, (6;3 §a - Sd‘sg) ésr(x=x?) )
= T
HoL'QcLHLd}’Q o grkHk °
Hence,; in accordance with the argument presented at the beglnning
of tHis section, the set of consiraints Hy s B is complete, and no
additional constraints are cbtained by further differentiation with

respect to %,

The three gecondary constraints

= ka .
Hkn-map ]u-o

resemble the constraint for free electromagnetic flelds, VP = O

(see Appendix}, except that the divergences are now "three-dimen-

sionally covariant®,
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If we give gij’ pij at some initial time, it 1s possible in
principle to get the value of these variables at a later time by
means of the Hamiltonian equations of motion; however, even if
we give g°P at the same initial time, it will remain arbitrary
at any later time, This arbitrariness in 80# in turn affects
the determination of gij’ pij at the later time, since gop 1s
present in the equations of motion. Hence if we marelg_give ggq0
ptd at the initial time, we cannot predict uniquely their values
at & later time, This property is characteristic of any generally

govariant field theory, and in particular of general relativity.

Equivalently, we can say that the continuation of the coordi-
nate system outside the three~dimensicnal hypersurface x° = cong~

tant, where the Cauchy data was given, remains arbitrary.

The dependence of gop on the cholice of coordinates corresponds
to the behaviour of the scalar potentiai 0 with respect to the
arbitrary choice of gauge (if we went to draw an anglogy between

the two theories), as is explained in the Appendix.

To finish this section we analyze the total numbef of degrees
of freéedom involved in the set gijs pijo These data are complete
but redundant, in the sense that they do not represent a minimal
set describing a field of spin 2 and zero rest mass. As we have
four constraints relating these twelve variables, only 8 afe
independent. Besldes we also have to choose our coordinate system;
this choice could be made by making four functions of 8347 pi:l
equal- the coordinates xH,

x"l = f“(gij, pid) °
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The arbitrary variables gOF should then be fixed by the condition
¢ £F =8k .

Once the coordinates have been fixed, we are left with but four

independent field variables, a number appropriate to a massless

field of spin 2. This kinematical consideration obviougly holds

both in the full nonlinear theory and in the weak field Qpproximg

tion.

IV, THE DYNAMICAL VARTABLES IN THE SPINOR FORMULATION

In this gection we shall exploit the results of Section II as
applied to the Hamiltonian formulation of the gravitational field.
In Section II we have shown that the knowledge of the set of linear

ly independent Hermitian spin matrices o, is sufficilent for the de=-

H
termination of a8ll properties of the Riemann space; presently we

shall look for a set of dynamical spin variables from which we can
derive all the properties of the Dirac theory outlined in Section

III.

In order to follow the same 1line of approach as was used in
Section III, we shall first introduce the full set ofvbiinfariants
which we can form from the spin matrices G, In passing we note
that the definition of D-invariance is related only to transforma-
tion properties with respect to (infinitesimal) coordfndﬁé'trans-
formations but not to spin transformations (or equivalYeritly to
tetrad rotations), which are transformations at a fixed poimt of
the four-space. Hence the search for D-invariants associated with

L reduces to the search for D-invariants associated with a four-
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‘vector V, of the coordinate space.

Thus, from oy we can form the D=invariants oy and O s

op =£H0‘“= o, b, * (51)

The variable Cy is not a D-invariant, just as gop is not a D-inva=-
riant. The role played by these two variables is about the same in
each formalism, even the total number of components of each of them

is the same (4 real numbers).
We can also define the D-=invariants,
- K

which are algebraically dependent on the set (51), as from the

normalization condition (33) it follows that

Y = oo =1
L g

Using Eq. (29) and, o o

o g
O’L = = 9 (52)

we obtain,

VP iik
1 E"p%"'p O g € %1 T3 %
O-L = e b ° (53)
3! V=lgygl 3! Vlgl

. _
It is simple to verify this explicitly: consider the infinitesimal coordinate

transformetion x | = x *'E" (x), under which the components of (! (Eq. (32))
transform as, _
Hoo gl (490y=1/2 M 4B 0 I 00,-1/2 0
S L o Rl T L O L R e 6 8
for a given four-vector,
| Yy (x') =V, (x) - &5V, (x)
.the contracted product V), {'Mis then equal to V EP s Plus terms independent

1
of the time derivative of g“o :
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Erm)
—— e rs
(we have used that, Aég =1/~ and g°° = |6°]). The expres-
sion for the determinant of Epg is,
1
S mny .1ijk =
Ig:r*sl _3” 2 € .gim €in Bxy
LV L emv e13 K o bs _ fv
=T (Z) ;T €77 7 Tikw Vigh YkvE % % Oy - (54)

To obtaln this relation first note that Eq. (10) for Epy may be

written as

) UPKM Ourg * UVKM IR = 2 g’uvag R * (55)
then,
L[ kw KM
gy",::;(% o;,m{*'%-O'v %m)s (56)
or,
1
By = = ; Trlo,x, + o, 1) . (87)

This can be further simplified if we recall that the o, v matrices

are Hermitian, which allow us to write,

Tr(% t,) = Tr(o, LA (58)

* From Ego (10) we have, ] ,
Yip =€ 5 e, =-®e e, zep =05 .
mIE T LR % Pk RL “PK nIK I
Using this we rewrite Eq. (20) in the form of (55) sbove. It should be noted
that in this equation we have the symmetrized product of the matrix,
‘ o 1i ¢ 12
G-Hm . . 8
o 2L o 22
with the transpose of o, with all indices lowered:

- E(}l Yw)]KR N E(}l ;v)] KR =2 gpv‘sg °
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‘Then, Eq. (57) takes the form: \
8y = = % Tr(o%‘q) . o (59)
A similar result holds, both for (58} and (59)y with the v matrices
written at the left. We go from one set toc the other simply by

taking Hermitian conjugates.

Eq. (59)9 taken for the spatial 1nd1&es, proves that the rela~
tion (54) is correct. This relatlon 1s obviously D-invariasnt, as
1t should be.

From Eq. (52) we see that the:op matrix has a determinant equal
to 1, this property translated in terms of the relation (53) means
that the square of the denominator 1s equal to the determinant of
the matrix standing in the numerator; actually we can indeed show
that this is truej first of all we can show that the spin matrix,

M = gldk oy Yy O = - M+
is generally not & multiple of the identity matrix. For proof we
use tetrads and write:

M= glik h,(P) h(ﬂ) hlszy) & 5 & .

p MY
Taking the sum over the index p we getz

13k (o) () (V) g 13k () L (p) (v)

M= e hihjhk%” +€4 % ng® n} hk‘&%&

For an easler understanding of the properties of this matrix we shall
perform explicitly all sums indicated, the result being,

e L3k o (rY () f4)
I" +€J 1 h héf &' 8':
Whenever r, 8 is equal to 143 or 233 in the sun ove:.r,a 1n the firat

13k ) o
M mE J hgo? hgr héa),r

term, we shall have nondlagonel matricoa 32, 81 econtributing to M.

The second term in the above expression is ‘proportionql
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to the identity matrix, since Eijk

is completely antisymmetric.
The trace of M comes entirely from this latter term:

T M= 121 eldk h(1) h(2) hk3)

The matrix M is clearly not prOparticnal to the 1dent1ty_matrix
unless the three tetrad components h§°)'a11 vanish. By contrast
in four dimensions we had Eqs. (26) and (27).

If we want to take this further, we may define the two~di-

mensional products

Hk = Ekij 0'1' Tj 9

which are also not proportional to the identity matrix,

NE = 5 ck1d g (o) h(r) ¢_Ekij h(r) hgs) 3

since nondiagonal matrices occur when we take r = 1,2 in the
first term, or rj,s equal to 1,3 or 2,3 in the second term. Since
all diagonal matrices are here proportional to 83, we conclude
that the matrfces N° have vanishing traces unlike M. This is go
because in M we have terms proportionmal to the identity matrix,

but no suech terms are present in Nko

We can teke the determinent of M and show by a straight~-
forward caleculation that this is the same as taking the determi=
nant of g, according to Eq. (54),

1
— ik Amm
lgpgl = 5 ET e By Byp Byen -
Whgre we use tetrads,

_ () (v} e
giﬂ. = hi h£ g}w ]
then,
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- 1 3 ]
- ijk ¢ (1) (»Y 4 (p) (¥ (o}  (BY 2 ¢ o X
Igrsl - ;T € : ¢ i {hi hi, th hm hkOL hnB g,uv nggOtp} ?

the final result being,

i\2
IN2 | ..
3') |E Ui Tj o-kl Igrsl °

Care should be taken with the notation. The determinant on the
left hand side refers to spinor indices of the matrix, whereas
at the right side it refers to the three-dimensional vector in-
dices (see Eq. (54)). The determinant of the left hand side ig
calculated by using the previous expansion of M in terms of the
ftetrad four-vectors. The above relation is naturally equivalent
to (54). Actually, the relation (54) is simpler for practical

caleulations than the above relation.

To summarize, oy, of Eq. (533lhas a determinant equal to 1,
and it is D=invariant0 From the set of matrices Oy Wwe can form
only the three independent D-invariants 0y the remaining D-
invariant o1, being algebraically dépendent on the oy because of
Egs. (53) and (54). Finally the property that lohl = 1 corres-
ponds to g7, = 1 of Dirac’'s theory.

The next subjeect to be discussed is the construction of

D-invariants with the contravariant spin matrices. From Eq. (29)

Y 9%
ol = o (60.1)

3! Valg, |

F-5

we have 1 /g% HVPT &
v

This can also be written as,

oM = 4/ 5, 1y 0o

9 (60.2)

X378
g OBLTB OH*Ta
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where we have made use of the relations (26) and (27). The contra
variant ¢! are not D-invariant, in accordance with our previous
discussion,; as we cannot form D-invariants using only the contra-

variant components of a four=vector.

We have shown previously that some combinations can be defined
among the contravariants components and the Qg‘ which are D-in-
variant. Let us see how they look presently. According to the

definition given by the Eq. (34),

3‘“= Q'uv G'v 9 (6101)
Q’JV = 6:' = ’QP ﬂp? Qov = 0 ’ (6192)
or gy
%=0, (62.1)
gl=0l-l o, (62.2)

since in Eg. (61.1) the ¢’ are given by (60), in the relation

(62.2) the ol are given by (60) taken for s = 1; the oy are given
by (5356
The explicit from for &% is then,
invp i imn
» 4 g cr“’tvrzrp il-e % Ty %
g = B S il s (63)
aLBY _ /
3 T g % Y 30 vV-le,!
Similarly we can define expressions like,
AP =R QMg o%aP= GH g, (64)

up to any desired order in the o!; the quantities o, AH are the
D-invariants that we can form with the contravariant o” These

relations are more complicated that the relation giving the D-in-
\h

-
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variant associated to the oﬁo

The components of the above AMY are ;

A% = o 9 .
Aijf:cri‘rj ==-Jlj ol W:wa,i G‘L‘rjcﬂi 23 . (65)

we ugsed that

ol L ? -
o (66)
¥ =0,
and, by Eq. (30) -4 6Vp?\p v, 0, TP
M
TV = (67)
SOLB"Y&O& r,‘S o, YS

The relation (65) symmetrized over the indices ij takes the form,
JACE R R L

/\(ij) 2 - chij +Li X,j} = 11(0'1' ?j-ﬂ-dj YL)Q Q’j(ci T’L'FO"L Yi) 9
since '
oprd el v =-20d 1, (68)
o+ 0l =23 1 (697

(use the Eq. (20) written for contravariant components, and the

definition of the "),

We obtain, )
ALY =538 = LMot gy 1. (90
Using Eq. (37) we rewrite (70) as,

& 33w L el (719
in this equation both sides are manifestly D=invariant. In the
next sections we will use this relation in order to write the
eij in terms of spin matrices in such expressions as the secondary

congtraints.,
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In order to write the &1 entirely in terms of our set of spin

matrices o, we still need to give the expression of the normal

in function of these matrices. i
Nowy from the Eq. (68) or (69) we get,

ool

=3 Tr(ot ri) = = % Tr(l’L o1y

Y, (72)
(we used that the op(or vy) is Hermitian, a property which follows
from the fact that the L/ are real).

.USing (6035 (723, and (53) we write (62.2) as:

ivopo - i _rsk
4 i€ o, o o, ile o Tg O (53
o" = = 9 73
31 v/-lg,,l 31 /=lgg.l

eiaﬁq’eﬂm Tr(olrm 611T0L UB T’Y)

20319 /-lg, | Vlgyl

11 - .

9 (743

with Igrs| and igwl given by (54) and (27) respectively. Eg. (73)
is equivalent to Eq. (63), Similarly,

- ivpo i_.rsk
" ieg Y,0% Yo il*e Tp O Ty
T = + 9 (75)
31 Volg | 31 elg,

with &1 given by (74). From Eqs. (73) and (75) we can write ex-
plicitly the expression of eij in term of the spin matrices; note

that form (71), .
eld = L 2 Ty ES’ (i%j)] o (76)
4

The discussion concerning the construction of D=invariants

from the spin matrices ends here. The remaining of this section
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will be used for the discussion of the problem of determination
of the canonicel variables for the gravitational field in the

spinor theory.

We make the substitution of gpvin LD in terms of spin matrices
by using the relation (56). With this substitution Ly becomes a

function of Ohr Oy and of the "spin velocitlies" 6p° Therefore,
we can calculate the conjugated momenta associated to Oy s
9
Ao D (77.1)
KM~ M
T
we can write this as follows:
3 ag g
B Lp oo po
TTKM p _'_: y . . (7702)
gpo' BGKM aaﬁ”
a straightforward calculation using (55) or (56) gives,
ag |
( Mo (78)
ok * S O Mﬁ)
aoKM P
substituting (78) into (77) and using the symmetry of pP° we obtain,
oL,
rhe —— = o pt v, (79)
BGP

for the conjugated momenta to 0, The primary constraint p°P==0,
Implies that:

™ =0 ’
which is also a primary constraint. Therefore the equation (79)
reduces to,

mt=aptd oy, (803
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these m' are D-invariant since p'J and ¥, are both D-invariant. Ve
have twelve variables oy and twelve veriables wi; later on, it will
be shoﬁn that we have gix primary constrainte relating these twenty
four canonical variables at each space=time point. Presently we
note that thils number of variables can be decompcsed intc real com

ponents if we use tetrads; that is, if we use Eqs. (14) and (15),

o, = n{™ & , (81.1)
ot = pld hg"‘) Ty = ) g, (§1.2)

the hguj, xi(“) represents twenty=four real functions of the coor-

dinates o

We can also define the variable,
0
e 0

3ty

id

A -p oy = eTle, (82>

which is algebraically dependent on the set given by nio

The knowledge of o; is sufficient for the determination of the
covariant spatial components of the metriec, which is Dirae‘*s theory
represent half of the dynamical variables; now we ask whether know-

ledge of the 7' is sufficient for the determination of the Dirac's

pijo In other words, we ask if the set oy s wi is sufficient for
the determination of the gijg pij of the théory oittlined in Section
III. In order to answer this guestion we need to solve Eq. (80)
for the Pyj in terms of the spin variables. In order to do that,
we multiply both sides of Eg. (80) by 09

i = i

this can also be written as,
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1 . .1 1] | o1 .13 o
T T3P ("j"k‘“"k‘rj) 2P0 (Y %= %) 0
using Eq. (20) and the definition given by (82), we obtain,

1.4 1 =1 . 43, .
ST o +S 1€ Te=p gjk 1,

taking trace on both sides, and using:

Tr(’t‘ke;ie> = Ty (Tri Uk) 9

i
ptd By = % Tr(y o?) 0 (83)
In order to solve this equation explicitly for the pij we multiply

we get the result,

both sides by the ekt defined by the Eq. (37), the final result
being
ptt = % okl 1 (Tri O"k) ’ (84)
ekﬁ Tr(%i 0?) = eki Tr<ﬁﬂ ok) =0 3 (85)

the relation (85) has been imposed in order that the p”

Lk

of (84)

is now written in terms of

it

be symmetric. In these relations e
"the spin matrices (see Eq. (76)); ‘hence p " is given entirely ag
a function of the spin matrices. However; we should note that in
this egquation not only the Oy s ni are present in the right-<hand
side, but we also have the eiko These 1atter§ in spite of being
D-invariant, are complicated functions of the spin matrices Oy 0
(See (76)y (75), and (73)). The fact that piﬂ is such a
complicated function of the spin variables is_not to be considered
a draw=back of the present method; from the present point of
view, the wi, not the pig, are basic variableg. Therefore,; the

knowledge of the variablesg T3 wi is sufficient for the determina
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tion of the 8gys pij by means of the relations (20); (84), If we
add to this scheme the six primary spin constraints (which will
be studled later on), snd also the six conditions for the detep-
mination of a spin frame (or orientation of the tetrad axsg) we
will have twelve independent components in the set Te Wi which

completes the correspondence with the gijg pijo This digecugsion
i

allowé us to interpret the set of D-invariants wvariables Tgy T
as the dynamical variables for the gravitational field in the

spinor theory.

In the next section we shall discuss the meaning of therrelaw

tion (8570

V. THE HAMILTONIAN AND THE PRIMARY SPIN CONSTRAINTS -

In this section we shall introduce the expressions for the
primary spin constraints; besides; we shall also write théxﬁémilé
tonian of Dirae's theory as a function of the spin variables, and
introduce the commutator algebra of the spinor thaory, theéé con-
siderations will allow us to interpret the spiﬁ constraints as the

generators of the spin transformation group.

If we consider the Oy 9 wi as a set of Hermitian spin matrices,
they should contain a total number of twenty-four real numbers in

their matrix elements. However, inspection of the relation (80)

i

shows that the 7~ contain actually only six variables; that is to

says given o,, the T; are determined from (10), and thefefore,

the vi contain additionally only the pij which represent but six
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real funections.

i are eliminated by the defini-

Therefore, six components of
tion (80); the reason is asfollows: the Dirac Lagrangian density
is invariant under unimodular spin transformations, a property
which follows {rom the fact that all spin matrices appear in LD
only through the spin-invariant combinations £33 éij and gijgr’*
this invariance property implies that some of the components of
wi will vanish; a similar situation prevalls in the case of the
Maxwell Lagrangian density, where the gauge invariance of L implies
that the momentum density conjugate to the gcalar potential
vanishes, since we cannct form any gauge-invariant quantity out
of the fime,derivatives of the scalar potential. We can also as
well draw an analogy with the invariance of the Einstein-Dirac lLa-
gréngian density L; with respect to arbitrary coordinate transfor
mations, which implies that four components of p*” vanish, the p°H,

i vanish

Presently we should expect that six real components of w
because of the spin-invariance of Iy and this is just what hap-
pens. The number six 1is related to the faet that the spin trans-
formations contains six real parameters (or descriptors) on account
of the unimodular condition, and we know that we have as many

B . ' T‘: =
Under the transformation, oy = Moy M?Q T/*: ut TF M 13 the gij given by (20)

are invariant: 1. gij =] . gijﬁ if we take the derivgtives of cig'rv they will

traneform asg + +
D + + o _ o=l =1 =1 =1
O"u,v —.M’u G—F M "'M OFP}V M +H @-}l M’V 9 TPIV - M)V ’r}l M +1}f TH)VM L 3
=1 =1
+ M ”rp MW »

_bhen, the quantities, log}“ﬁa = - 1/2 [;tﬂswarﬂ) + @tpﬁi) ;]3 are also in-
' EJ

variant under the spin transformations, 1. g’ =1.g °
: ’uVSd PVSQ.
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primary constraints as we have parameters in the associasted trange
formation. Indeed; we shail prove later on that the primery spin

constraints are the generators of the unimodular spin transforma-

tion group.

We can present a decomposition of Fi

which shows expiicitlyits
twelve real components, by writing,

T = = pik‘c’k 4-0([

bts

Uy e pty, . (88)

The Hermiticity of wi and of the Tk and ZL assures that the va-

riabies pikﬂ q[ikj and @i are all real. The relation (86) can be
solved for the coefiicients aiikj and ﬁig a similar solution for
pik was done in Fqs. (84) and (85). 1In Eq. (86) m[ik] means the
antisymmetric part of qiko The inverse relations are
h T R i
B = o % Trioy ) (87)
U . 1
oMK 2 2L ot gty | (88)
where
7 Y = im - i
Tr\@izk, & Trfﬁﬁ Tk3 287y o (90)

In order to obtain the Eq. (87) we have used the relation
Trioy v} =0 . (91).
The proof of (91) is obtained as follows. First we use the funda

mental "anticommutation relation' taken for mixed indices,

A AL A
oY, o, X == 28001

where we take A =0 and v = {j from these relations we get
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Tr(c® Ty = = Trloy ) (92)
from the Hermiticity of o and v we get,

Tr(o? 113 = Trioy °y . (93)
Comparison of (92) and (93) shows that
Tr(ao‘ti3 o . (94)

As,ci is Just aj)ﬁnormalized“g according to Eq. (52}, the relation
(91) is confirmed.

From Fgs. (86); (87); (88) along with (80) we can see that the

six primary spin consiraints must be equivalent to the requirements

pt=0, (95)

m[ﬂd = 0 , (96)

We can present these constraints entirely in terms of our chosen
set of canonical variables, the 0y 9 wio Before doing so we note
- that the relation (96) is the same as the relation (85) derived in
the last section. The primary spin constraints have then the ef-

fect of eliminating six of the initial twelve components of wi

]

We define the set of six Hermitian spin matrices,
= i - = 2
1\‘1ij L (O'i’tj aj’riﬁ oE+o~£(rjcri w_fio—j) Tt (97)
= pd
Ni Tf G_L At’i O:E + % (ri O—L TTE o (98)
A straightforward calculation shows that

Tr Ny =4 Big ﬁl 2 (99)

[mm]

Tp Mij =4 g5 Bip & (100)
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In these relations ﬁg and a[mn] are given by Egs. (87) and (887.
The proof of the relation (100) follows straight from (838} and
(9735 but the proof for (99) is a little more elaborated.  We
note that Eq. (98) can also be written as ‘

. 4
Ny = ‘% ooy vy o9y + 3 oy Ty ‘TLT’)“%H oL T[1 %] *

1
where , '
%ki 053 = Ti Gj + Tj oy H T[i oj] = ﬁl Uﬁ - xﬁ Oy o
Hence

- - 2 1
Ni = = qd o7, giﬂ oL T 8)4 + > i o, Y[i 01] +

1l v -
3 GEQ 1] L s
Taking the trace on both sides we obtain:

- 2 < . ,
Tr Ny = = 2 819 Tr(op, v*) + 5 Tr nﬂ(OLXIiO'E]4-dtttiloii]o (101}

Now we can show that the spin matrix,

L4

‘vanishes * by virtue of the "fundamental anti-commutation rela-

%
It is interesting to note that the matrix introduced by the Bq. {102) is of

the form,
= T
Tp = Tgp * Yy 8

since the Egs. (103) can be written as, Op ¥y * 0 T =0, and Yy 0y + T, o=

i
= 0, it follows that Y., is anti-Hermitian, and therefore X, =0
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tiong",
o Ti + Gi T = 0 ] (1.0301)

10 + ¥ 6%= 0. (103.2)
Then,
i = m Q »
Tr Ni 2 gy Tr (ot m ) 5
which completes the proof of the relation (99}, Therefore, the
primary spin constraint can also be presented in the form,
- - . 4
Aij = Tr Mij =0 , {104)
Bi = Tr Ni = 0, (10s5)
which is more adequate for the subsequent discussion relating to

the generators of the unimodular spin transformation group.
We can rewrite Eq. (86) as,

~i _ i, 1 ir ks 143
ThET e e AL +ge Bj T o» (106}

with,

vi = - pik Yk o
In the Eq. (106) we have used the notation % for the momenta
off the spin constraint hypersurface of the phase of the theory;
as we said before, the momenta which follow from the Diracts La-
grangian density‘already refer to points on the spin constraint
hypersurface, as LD 1s invariant with respeét to the unimodular

spin transformations.

Incidentally, a more simple procf of Eq. (99) can be obtained
from the relations,
ULTi+0-iTL=0; TLUi+TiUL=OD
Indeed, using (98):
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Tr § = ) s =
Tr Ny = Tr {n’ Kﬁ}, Kyy =0, % 0 * 0 % o s
then,
Kig =03 Yy Op * 07 0 = -~ 2833 Oy, -
Substituting this result in the previous equation for the trace
of N; we get Eq. (993,

For future reference we now write down some expressions involy
ing the oy and Yi matrices, which have a vanishing trace,
Tr (’I‘i a5 = O”i) =0 , (107}
We need to understand that the relation (107) and also (91),
in spite of being relations involving the twelve components of
the 0y 9 actually do not represent any limitation on these com-
ponients; that is, we still have twelve independent real wvariables
in 0o The proof of this statement is made more simple if we use
tetrads; and represent the twelve real variables in gy by the
hgdjﬂ “
Gy = hgx) 6d‘0

The Egq. (107) takes the form,

{(ny (v, ‘e o °o o \ _ .

hi lﬁ h>(msb= T o = Q0 5

and we see that this equation is always satigfied, independently
of any particular form for the istrad four-wechors. Por dg. (91)

we have,

Using the previous definition of tetrad components we zes that

we can rewprite this reliation as,
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- o B sried
GL - i(Obj @— o
The explicit value for £<m) is obtained from Eq. (327,
= 10 o olAY <%
1(‘&) = by B,y B ) .
Hence,
N s\t

Tr(op Ty) = - 2 hff’} o) Edp (h?w h =0 ,

which again places no limitation on the components of the tetrads.

From the relations (973, (983, (104), (1053, and (108) we see
that not only the constraints are D-invariant, but alsc the ex-

i

pression for ¥ 4is D=invariant,

Now we proceed to work out the second subject of this gection,
namely the determination of the spinor form of the Hamiitonian
theory treated in the Section III. In order to do this we need
first to derive some relationship between Diracts canonical va-
riables and our variables. Since all these relations are easy to
obtain, they will be presented without an expliecit proof. For vi

defined on the spin constraint hypersurface of the phase space,

Py pij = =‘% Tr(at W13 9 {(108)
Bys = Byy By BB T T gy M (109)
pij 834 = % Tr(vi @iﬁ 9 | (110}
pij Bij,r = Tr(wi ﬁigr} 9 (111}
€pa,p T 3 TP(T'i TrT T % gr) ? (112)
pki 8y, = % Tr(wk of) 9 (113)
For vi off the spin constraint hypersurface, that is for %i given

H
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by'qu_§106), we heve:

e [ik] +glop (112.1)

~ 21 1 ir ks L i3
= A tge et A g tre Bjo',tlléz)

which gives
Tr(%iii) = g puvpuv“ Z(Pipi'" c"-[ij] o"-[lj]>9 (115)

where, as before,

~ - -~ . - —-— 1m
Ty = 843 # Bi = B4 ﬁj i %T14] T Bim Bipn olLuml

Using Eq. (114.2) we rewrite (115) ag

~ 31y o uw 1 o1k ir a8
(116)
If the spin constraints are satisfied, the relation (116) goes

over into Eq. (108) derived previously.

We can also show that
(7 oy = it o) 5 (117)
which is a consequence of Eqs. (91} and (107). The equivalent of
- the relation (111) is here

2 o1l ks : y 4 L ir :
Tr(7t oy r) Tr(w )+ | A, Tr(tk °igr3'+4 e BrTr(YLoi,r)’
or, .
= pl 1 .im ks o -
Tp (71 oy ) Eiyrt g O € A Tr(T) O ,p " T4 Ok?r)
1 .im '
+3e B Tr(vg oigr) o (118)
From Eq. (91) we can write
Tr(TL o.i ’r3 = = TI‘(TLQT O-i) o

Finally, the equivalent to the relation (113) is here

~ o~ ki 1 km \
T o) =2t g - L MM L (119)
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We have seen that the primary spin constraints have the effect
of eliminating six out of the twelve components of wio Nevertheless,
we still have twelve real components in the Oy4s 8O that the theory
. is asymmetric in this respect; a somewhat similar behaviour was |
obtained for the case of the electromagnetic field, where the se-~
condary constraint assoclated with the gauge invariance of the La-.
grangian density has the effect of eliminating the three components
ﬁi out of the D (see the Appendix), and we are left with three mo-
menta 5& and the "“coordinate'' wvariables E} in order to get rid of
the remaining three unphysical (nongauge-invariant) variables Ki,

a gauge frame is used explicitly (a gaugé condition is taken), so
that we finally obtain a symmetric theory with the momenta'ﬁ} and
"eoordinates" K}o For the gravitational £161d in the framework

of Dirac's theory we saw that the invariance of the Lagrangian den-
sity has the effect of eliminating four components~p°” of the

initial ten components p"”; we are left with six momenta pij

and
ten "coordinate" variables g,y . In order to get rid of four of
these variables which are not D=invariant, the goﬂ (wvhich are un-
physical in the sense that their values depend on the choice of
%he coordinates outside the three-dimensional hypersurface on
which théy are defined), a coordinate system is chosen, and this
choiée in effect reduces the number of field variables to a sym-

metric theory with six pij and six gijo

By a similar procedure we should expect that we can eliminate
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six variables in the a3 by taking a certain spin frame, or at
least by considering a certsin restricted spin transformation
group. This is equivalent to a choiece for the local orisntation
of the tetrad axes; and we can see what should be the restriction
on the matrix associated to the tetrad rotations; or equivalently

on the matrix M of unimodular spin transf’_ormations°

Since we have six components in gij’ we should expect that we
need only six components in Ty 9 if these two versions are to be
equivalent; so that since the beginning six of the o; are redun-
dant. DNevertheless. the situation Presently is gsomewhat different
from the two cases discussed before, in the sense thét all the
twelve components of 6y are D-invariant, and hence are physical

variables,

After these comments, we return to our original objective, to
rewrite the Hamiltonian of Section ITI so as to turn into a fune-

tion of the spin variableso

For #i belonging to the spin constraint hypersurface,; that is,
for the situation where Eqs. (108) through (113) are valid, we

have: -
- i i
H = TrLf fir = Wai cé] 9 (120)
with
fir = gigr = o‘rsi ) (121)

H, = g., H® is the "transverse" Hamiltonian constraint given by
Eq. (43). In order to obtain the relation (120) we have made use
of the relations (108) through (113).

From Eqs. (108) and (110) we have:
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rs 1. .r_s . _1 i _1 i S |
P "Ppg =5 P Py 5 Tr{A ﬂi} 5 Tr{(mw Oi) Tr(r 033a (122)

Substituting (122) into the expression (44) we obtain

_ k1 1 1 e i 3 re
H = = -E- {Tr(A mg) + 3 Tr(r™ o3) Telw 03)} + K" S,

(123)
the expression for K being given by Egq. (54),

- X = g | .

In order to write HL entirely as a function of the spin variables

we also require the form of Srs in terms of the spin variables.

The expression for the three-dimensional Christoffel symbol
of Eq. (46) in terms of spin matrices is,

- X o '
where fij is given by (121}, and Si3 is short for,
.= o+ R
$4 %05 5+ 054 (125)
In Eq. (124) f;sij is, as usual, ,
Eggij = Byp sz °
Since the spin matrices € are independent of the eoordinates,

we can define the quantities

By s = efkje ”Tkgj=rj9k 9 (126)

n.kj = €Skje =Yk3j+~[j3k ° (127)

Then we have the following expression for the derivatives of ri,ijg

t

. 1
Oy = =47 E’i Tegon T S1gp0 Y Ty Thagy *

* %0 Myt %,y Py * Oy “‘ki]" (128)

The expression for the three-dimensional Ricci tensor is then given

by Eq. (45), which reads:
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_ lu = fu wvn
Spg = (\ 9rs> < iugrﬂ te’" e [zgrs [;,Ev =

570 eln - [;srl r;9SV .
The I';Zgi j are given by (124), their derivatives by (128), and the
o™X are given by Eq. (76). The above relation for Spg» though
far from compact, is sufficient for practical calculations called
for in the Hamiltonian theory, such as the calculation of the

Poigson bracket of Srs with some functional of the momenta Wio

Now, by using the relation

rs _ oojwl 08

Bor © - (g
we can rewrite the Dirac Hamiltonian density (given by Eq. (42))

ass
o= S
B = f(H - 2% H)) , (129)
The expression for £i in Berms of spin matrices was obtained in
Section IV, Eq. {(74)., For the 1, we have from (52}
0 Im‘é'o

= |g (130)

@ J/BG

These I » 1, are net D-invariant, they represent the arbitrary
coefficients of the constraints in the Hamiltonian; the comparison
of this situation with the corresponding case for the electro~
magnetiec field shows that these coefficients correspond to the role
of the scalayr potential £ , whie@ 1s not gauge invariant and which
appears in the electromagnetic Hamiltonian density as the coeffi-

cient of the secondary constraint.

Similar computations can be performed for points outside the
spin constraint hypersurface; from Eq. (43) and from EBgs. (118)
and (119) we get



"
5%

~ % ~4 _xd N, m, _1 _wvm
H£-g2r o Tr(% fii 121 61):¥C£ Amné'nz Bm 3 e AmJa v !’
‘ (131)
where
5. is] L im kn - Fm X -
m._ 1 im
Dy = = 5 e Tr(TL oy R) o (1%3)

By ﬁg we have indicated the velue of Hy (given by Eq. (43)) when
we substitute the vii £nd 84) {and thely derivatives) as functions

-

of the %19 o, by means of the relations (118} and (119), If we

~ ) it . i
take wi = Wig then, ﬁmp @ Qg Bm = 0 ond we gat sgein the relation
(1247, We should note that the 4 _, B < 71921 are given bv the

mt M
expressions (104}, (105) along with 470 ant (987, bhob we wust

take Fi

ingide the errressinnsg giving oo wraors The samse
obviousily holds for Hg. (1067 definine wt tr thiz relation the

Ang 8nd By are the previcus traces taken for il

Using the relation (443, along with the relations {116) and

(11‘7)9 we getg
k=1

~==m _Ni“' \lw”‘i ; wj }
H > {Tr(A T+ Te(or ﬁi) Trin 05) +
T8 ald i
+Ke'¥ g +E Ayg *+ T By (1343
where -]
gl = . -I:-u alT oJ¢ 4 (135)
16 rs ’ >
* ~3 - .5
If we take ™ = 7" in By, (106) we get
1 ir ke 1 Mg v =
4 AI’BT]T 4 -] j L 0.

Multiplying this relation by oy end by T end taking traces in both easea,.
we find directly that Ar =0, and Bj = Ga
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S K=1 .
Fr = w mee otE (136}
i6 Bk

when 7 = wi? we see that the ﬁL of (134) goes over the previous

expression given by (123),

Using Eqs. (129), (131), and (134) we can introduce the quan-
tity i1 given by
AJ_ et s:\;
H = 4y (Hy- g ) - (137)
This quantity is equivalent to a term identical to the previous H,

i in the place of Wig plus a given combination of

where we have T
the primary spin constraints (this combination contains terms linear
and quadratic in those constraints,; as we have seen); if we do not

use the symbol ~ in the wi, we can write (137) as,

3 ij i 1 s vm
H=H+J Aij + K" By =3 EGQ e AmsSv ’ (138)
with
g =g wt ey s cgd 5 (139)
Kt = g, Pt - g 180l (140)

i

in this expression the momenta 7™ are taken outside the spin cong-

traint hypersurface (they are the wr).

Since all terms standing in the right hand side of Egq. (138)
vanish weakly (in Diract's terminology), we see that the " has the
same degree of arbitrariness as the Hamiltonian given by the rela-

~g

tion (129). Therefore; we can use H as the Hamiltonian, as a fune
tional of the #1, 0;. The correspondence with Diracts theory of
Section IIT is obtained when we go over the spin constraint hyper-
surface, and take adequate conditions for the fixation of the spin

frame.
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The next subject is the comstruction of the classieal COL.AM =
tator algebra for the spinor Hamiltonian theory: in order to do
this; we need first to introduce the concept of funchionsl deriva

tive.

Let us consider the functional of some given set of functions
YREIF 7*(x) which we will take as a canonical se of functions
later onj this functional is denoted by the symbol A {7,‘w} ; we
shall restrict ourselves to functionals of the form,

h= [ B0, T2 ax (141)
The functional derivative of the fundamental A with regpect %o any

one of these functions'; is defined by:
8A {ns 1 [ a

= 1im lim = | d,x ﬁ( (x}y m(x)3 + 218 (xmy)> "
8, (3) K m>0 A0 A | 3 TaTED P 1T A%

~

- d3x£-(qa(x)9 rra(x)) 9 (142)

J

thet is, we kept all r]a(x)jg (x) fixed, with exception of 71(339
which goes from Vi(x? to vzi(xT+A6k§ here, 8y 1s any well-behaved
function which in the 1imit k -> 0 tends to the three-dimensional

Dirac delta function.

If we take
A g (x)y 72(x)) = £3(x) 9 (x)+ @ (x) 72(x) ,

we obtain, ‘
A {v).pn'} = I dzx E’a(x) fa(x) + v (x) va(leo (143)
Hence 6A{ |
w
_n...@.l = 1lim lim % J d3x {fa(ﬁ Va (X )+ w (x) ¥ (x) +

Gvi(y) k=0 2aA=0

+ fi(xﬁEii(xﬁ +18k(x~y):i}== J d5x {fa(ﬂ Vg (X3 + fi(x)\?i(x)-'-ug(x)wa(x)} o
| (144)
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In Eq. (142) as well as in (144) the index "i" is one of the
elements of the set "a"; that is "i" in (144) is not a summation

index (dummy}. The calculation indicated in (144) gives

SA ' '
,_iiizl = 1im [ d3x fi(x3 6k(me3 = fi(yi - (145)
5?i(Y3 k-0
Similard
milariy, SA{W?W} i
= wi(y) o (146
Svi(Y}

We can obtain these same relations by taking the variations of A
due to varlations in the funetions v, m (which is essentially what

we did before}d,

54 SA a
SA {qgv} = 57a(x5=*==“""“’5W‘(X3 dzX o (1475
E)Va(X5 Sva(}:j
8 A
This last form of definition for allows us to see directly
SVa(X3
that [‘ Sr}a(X)
S\ya(x?i Q_BXH §{x=x13 CURESD =J 5%(:@3 f;bv.b(xﬂ) dzxt
hence ,
Sy, (x)
= 80 8(Xx1) . (148)
&n, (x) |

This last result will be wused subsequently. Clearly, a result
similar to (148) also holds if we replace v by 7.

With this definition of fundamental derivative, we can now
define the Poisson bracket between two given functionals of the
canonical variables, whiehg for the time being, we shall again

denote by Yy 7, Our definition of Poisson bracket is:



A 8B sS4 8B \

sl - on g5 2

. !
.
{x) Ay ety PR
(149)
From this definition we obtain directly the expresgsions for the

Poisson brackets between the canonical variables themselves,

0 | =0, (150)
8 ~ x0=y°

:ra(x)s rrb(y)— =0, (151)
r b _ ob g -
(a0 (y)]xozyou 8 sEF) . (152)

The relations (150) through (152) are the fundamental Poisson
brackets. Knowledge of these brackets allows us to derive the Poig
son bracket between any two functionals of the complete set of cano

nical variables y,s 7o

The Hamiltonian equations of motion in the notation of func-

tional derivatives read as follows:

. §H
Nglx) = [?a(X)g H{r]w}:l = 9 {153)
s7(x)
&H
B x) = {n¥(x) H = - (154)
E;' XJy {‘?W}j 5'2&(3) y
H = J d5X J{(Qa(x)g Tra(x3> o (155)

Now, we shall apply the definition (149) to our situation, where
the sget Oy s Tri are the canonical variables. The relation (149) takes

the form
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§A 8B SA &B .
[4,8] = dx _ - - o (156)
&TiKM(x) Swén(x) 511'13{'10[(1) 5011{M(x)

The fundamental Poisson brackets which follow from this relation

are,
F5(x), o (¥) =0, (157)
b o~ 00O
X =
;%é(x), rr‘;‘;,(y; =0, (158)
[o,f5), ()] =65 6B 55 sz (159)
x0=y°

These expressions are equivalent to Eqs. (150) through (152). In

order to obtain the relation (159) we have used the relation
S ]
8oB5(x) Smis(y)

dsz

_ Aoz 8(X-F)8(F=2) &% oK §R aé. SK 5{3 3
sokl(z) smifz) )7 | P e Ty O

8Ky % o8 5

which is an application of Eq. (148). Some care must be taken in
calculations of this type. We should note that
RS
Goi (x)

5 6% 85 8(x-3)

66§M(z)

but that .
85 5(x )

;"I‘{‘}}(—)' 6§ (8% 6§I+ S%GIS{) S(x=z) ,
o, (z
h|

would be incorrect, since from this last relation we should obtain

that
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Sq%é(x§ Sﬁié(x)

SG%é(z) 8012(2)

which implies that 0%2 = 0%2; this is contrary to the fact that
the antl-dlagonal matrix elements of an Hermitian matrix are com-
plex. Indeed, if we wriﬁe,
| 1 2
7 9 %4 i

G‘!,KM - =

g 5B
the above equality would reduce to 1& =’7l’ whereas actually only
oy and ﬁx are real. Another way of confirming the arrangement of
indices on the right-hand side of (159) is to consider the pro-
duet qﬁﬁ'ogé, which has all spinor indic?s free, just as in (159},
This product is equal to the product 3HKM oﬁ;g as can be shown
easily by decomposition in the tetrad axes; but UKM S is prepor

tional to sR asg 4 a¢ in (159).

From BEq. (159) we obtain,

[ BS(yy, = LN] = g% NS IR gz (160)
% (y) OO 3

=y
where we have multiplied both sides of (159) by the constant ma-
trices eNV eLPo

Now, we have the necessary mathematical foundation for discug
sing the meaning of the previous spin constralints; it is known from
the theory of infinitesimal canonical transformations that the
infinitesimal variation in a given funection (or functional) of %he

dynamical variables, due to & transformation generated by some
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other given functional of those variablies is obtained by taking

the Poisson bracket between these ftwe functionals. Tharefore, we

53 E T i Kt ] 3 #
look for & functionsl ol the «,, ¥~ to be densued by & {c,w} which
will generate the previousl)y sousidered =70 toosafor easiong s
i, - ?\' i .
§optxs = Loyt (161)
From the "commucation” reiation (is89Y o Ffollocys the' the funa-

tional G of (161} muatv contaiu a2 bernm of the forwu,

G{G,W} = f&By wiﬁﬁy} ngﬁfy} . (162)
The infinitesimei spin transformation is given by the equa=-
tion (9) if we take
M=1+V, (163)
Since the matrix M has a determinant egual to one, the infinite-~
simal matrix V has vanishing trace;
Tr V=0 , (164)
A matrix satisfying this property is,

ijk i

V=€ vk(01t3¢=ajﬁi) + W oi'ti y (165)

where 4 and wk are a set of six real infinitesimal parameters, all
of these parameters being arbitrary functions of the coordinates
(the matrix V describes an infinitesimal local transformation). The
above matrix V is not Hermitian, a result that we know to be trume
since M is nqt Hermitian. The Hermitian conjugate of V is,

vh= gt v (vioy - o) ety o (166)

Before going on with the construction of the generator G, 1t

is Interesting to note that the relations (91) and (107), which
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guarantee that the trace of V vanishes,; are covariant relations,
with respect both to arbitrary coordinate transformations anc to
unimodular spin transformations. If we consider the lagt case,
we have under a gpin transformation

Ly or”‘=1p Mchu

oL,

t -
“L';_ Df'lYiMla o'jf‘-:McriMT,

it

then
t i
Trlop Y ) = Trloy Yy
i) 7 9 !
T;(Yj Og=y ;5 )= Tr(‘rj P 1] o‘j) .
Under coordinate transformation,
xtH = xH+ g"(x) R
with infinitesimal functions §F(x)g the quantities oy, oy, and Y,

transform as

O O
o = o + 1 oHB_ gh® gf ‘ §°S‘(3 3
/‘gOO gOO :
7] vy |5 v

from which we can check directly the D-invariance of these quanti-

ties. Thens:
Tr(oyy) = Tr(ciwhj - 531 Tr(ohﬁh? 9
Tr(Y501==Yioﬁ) =TT(Tjai='rioj)=»§Ei Tr(tﬁok-ntkoj) +
+ 51:;] Tr (V% sa”fkori) "
Hence Eqs. (91) and (107) are verified for any choice of coordinate

system.
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Turning back to the problam of constructing the generator G,
we note that under the action of the matrix given by (163) the

components of @'i transform as

or
KM _ [ K M M K\ SP
Sy "<"’ 58, *+V P%)"i

Using Eq. (165} we obtain

KM_ cijk . [M(_KN_ KN . .
\
K [ My M _ sP
*+8g ("i Yinp = T'.a;.}.w) %

i [RM/_XN . XK M _ SP
+ W E;P(@-L Yyfs * 83 o, T:m%] 9 (1677 ‘_
Substituting (167) inte (162) we get
. {
G = E‘ . ijk P 4 | i E ° *
dX & T Ay } dzx W™ By (168)
Therefore, the six primary spin constraints given by the relations

(104) and (1057 are the integrands of the functional & whieh

generates the unimodular spin transformations. Similar results

* Note that the Eq. (162) can be written as,

_ k
G-dexTr(w 6 o) o
Using (167) we get
k - | t k
Tl 8 ql) =Tr (v Vg s+ q ¥V ),
where we have made a cyclic permutation in the last factor. From this relg
tion we get Eq. (168},
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hold for the secondary Hamiltonian constraints with respect to

cocordinate transformations. 7

The ten generator dengities Hi9,Hr9 Aij’ and Bi are 21l firat
class among thewselves. If we consider the Hamiltonian given by
H (Bq. (138)), we can define an observable.as a funetional of the
71, o; which has a null Poisson bracket with H on the grounds that
H is a linear combination of all the ten generators of the invari-

ance group of the theory.

Given some functional of the dynamical variables, say F, it
is possible- to constcuct an observableiF*by adding to F the neceg
sary coordinate conditions, 5 as well as by choosing a spin frame;
these conditions have the effect of fixing the arbitrary coefficients
of the integrand of % ; the F* is obtained by adding to F a linear
combination of all the constraints {if we impose the ten conditions
fixing coordinates and spin frame, we shall have in all a set of
twenty constraints which have nonvanishing Poisson brackets among

*
themselves); so that the F commutes with all of them.

VI. IHE POISSON BRACKET FOR POINTS ON DIFFERENT HYPERSURFACES, TO
FIRST ORDER.

In this section we intend to give an application of the ahove
method ; namely the calculation of the '¢lassical commutator for
infinitesimal separated points, both in space and in timej the relg
tions which will be obtained in this section can be considered as

a generalization of the same=time classical commutators derived
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previously (Egs. (157) through (159)). Since the method employed
in the derivation of these different-time commutators is essential
ly a power serles expansion in the time separation, an approxima-
tion procedure 1is in order, which is also unavoidable because of
the growing complexity in the caleculations. We will perform the
computation of these generallzed Poisson brackets up to the first
order in the t;me separation; higher-ordef terms can be included

by a stralghtforward but otherwlse rather lengthy calculation.

As our prototype we ghall deal with the Poisson bracket given
by Eq. (159). Let us introduce a function

gg f_(x,x' [0” KM(x'), n'%s(x):l . (169)

= x +T
Eqs. (157) and (158) may be generalized by the same technique. ¥lis
a first-order infinitesimal. For future reference we shall denote

the Poisson brackets of (157) and (158) by the respective symbols

43k ana  oRSsPV
RSPV Tk
i ey = [ @, o , (170)
RS,PV RS P x1%= x% + v
RS PV RS PV
(xxr) = [o Bz, ()] . (7D
ik | 3 % 210 =20 4 1
Up to the first order in <+, we have: .
aO_KH
. . i
o-iKM(:?, P+ 7)) = O'iKM(i', x°%) +Y .

3x° /v=0
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At the point X of the hypersurface x° = constant the time derivative

of 7y equais its Poisson bracket wlth the Hamiltonian. Then,

[0/, x93, who(®y <] = [oX¥E 5 200, md(F5 2]

+’I"[E71KM(;C*'3 xo)gﬂj 'y TTI%S(SC“-Q XO)] o
In the expressions which will follow we shall take the expression
given by Eq. (129) as the Hamiltonian, that 1s, we shall restrict
ourselves to points on the spin constraint hypersurface (equiva-

lent1y§ we shall consider wi

as given by the relation (80) which
we have seen 1s a solution of the six constraint relations). This
restriction will simplify the results oflthe present calculation;
besides we achieve correspondence with Dirac's theory when we adopt
the spin constraints of the theory. Hence we are not losing any

important result by taking this simplification.

The expressions for the quantities fy j, and m have the form

fI,{M’)a = SESK 6%46(?955 pE [-;'iKﬁ(}?“ sxojm‘ﬂ g mh (E’axo)] ? (172)
RS,4 L SR > RS

JJI? =T "Tj.(i’" axoyaﬂ 9 Fk.(;s x%) 9 (173)
RSPV | LRS 17 Ty |

ml;:,PV =Y LMUJRS(% 9 Xo)sﬂ 3 Oi{PV(fE:J xo)il o (174)

We shall give first a simple example of the type of computation to
be performed, consider a scalar real meson field in the framework
of the Lorentz covariant field theory. The expressions for the

Lagrangian, Hamiltonian, and the quantities f, j, and m are,
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i=Jd3xL(x) ’

L(x) = JZl gH cbs}-l ¢sv - % n® ¢2 d

=
"

¢,

H=1 4

31( H(x) ’

S S

Hx) = 3 72 + 2 02 ¢% + 2 @) .

The fundamental Polsson brackets are

Eb(sa, x%), (%, x°)] = (-7 (176.1)
Ea(:’c", x%), $(x1, x°£| =0 , (175.2)
Er(i"', x°Y, w5, xo}] =0, (175.3)
The variables f, j; and m bturn out to be, tc the first crder in 7,
f(X9 X)) = 8(?3 E;.‘j 3 (1‘7601)
$xy %5 ) =~r{mﬁ' §(x,xt ) +75 §(F, % } ) (176.2)
m(xy, xt) = -« YK, XD . (176 .3)

Thus the different-time classical commutator betwecn two fleld
variables ¢, namely; the quantity m(x, x'), has a first-order term
different from zeroj this result, well known in fieid theory, is
the same as the one that occurs when we pass from the three-dimen-
sional delta function standing on the right side of Eq. (175.1) to
the so-called invariant function A(x, xt)}; to obtain A completely
we should have to determinei all the terms of the powef series ex~

pansion.
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The remaining considerations of this section will be related

to the computation of the quantity f of Eq. (172).

On the right-hand side of this equation all operétions involve
only the usual Poisson brackets (or same-time classical commuta~
tors). We have
Erim(i“, xo),ﬂ] = 437 (¥ x°)|:<riK1°‘(i*, x°), H (T, x°):]

(" .
- 457 8,55 =) 255 =)o, 29, 1, <))

o

Using (159), (123) and (160) we obtain:

o™ 20, 1@ )] =- 1, =) {r! M55 2oy 57 50

Loy (F %) + 2 0T, 1) o KT = Trgf{(?, x*)} 8, F) . (177)
By (159) and (120~ we have:
[ %, 22, 7,75 <] = {55 =0 -

- o5 2 8@ ) - 0T 20 &P
Hence the commutator between 0; and the Hamiltonian becomes:
[0, 2°3, %] = - KL, 20 4, =) frd M5 20y
o ﬁT(i: x°) oivT(ES x°) + % ohéR(E: x°) aiﬂK(f: x°) wéR(E:ioj}
- b@ 2% 286 20 {oy Y @& 2% - 01 o, 1)
+ JA3Y Qo(iﬁ x%) 135, x%) oéKﬂkﬁz x°) 6’1(51'?3 . (179)

Taklng the Poisson bracket of this expression with the momenta w4

we Obtain:
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[[o-iKM(E'? 5 xo}g%:[l 5 vés(f, xo‘)}= K='120 vi’m Oi3g 5(;; X9 =

x~+ )Zo ad MK % &s 6'& 6(;9 x) =-%=Km1 Eo P%S oy 6(:; x1) -

3wt gl ol 5M 55 8 T) -2 1,658, 6% 73

a1, 2t s8 ol 5, T+ sl T 20 (180)

The factor B}E gg in Eq. (180) refers to the additional Poisson

bracket which depend: on the arbitrary variable O,c Slnce in Eq.
(180) some of these variables are also pregent as coefficients

(the 1 for instance); all terms in this equation are equally ar-
biltrary. Therefore; the above decomposition is only a matter of

convenience and has no further mearing.

We have:
lg KH - jg }.ﬂ{ VT -=-1'J .P ‘lI
Bisf’{s e O ¥ %1 or Tigl=

%‘Tj ‘TMK jVT [ml Jlo?”’m‘j =

(e}l vl

KM - — 0 — _0 — _0
+ sty oy 531(379 x")[}:o(yg x°) 13(%, %), vés(x, x ):Io
(181)
In this expression v means the value of | taken at x = xt, All

the time coordinates xo have the same wvalnue.

Now using Eq. (54) we get:



~ N 1 = -
Ef“’l(i’s’ x°Y, frés(Xs x°i| =:j;r (=lg . 1) 3/2 gmng Prygee STy

UXLNJ& o UK o HF

! &
'{5 %ux %Ni %SR %m * On %ux %rsk %HF %u g

N 5 N HF, & . . O0X _ KL _
m pSR %ni, OvER %n 0ﬁq Sy pUX eyl ‘m %n ":"qSR"'

+6E UX

, 2 NL _ HF
T pUX Ovuk 9 %nis q 6p rNL %P Omis %n eTq }"

(182)
From the relation
lp= - % (v B O'L)

we have

hence

EEONTRS] 5 okt I’,Kvﬂ "T}'al’s ° (183)

Using Eq. (53), we have ‘
¥ !

+ §j£ O’iKP O‘kVM Rp Sav * SiE Tihv G'VM K} 8(1!9 X1)

3/2 c1ik g prv KP . VM A
2 €7 9% %py % VY Cpuk -
) . L { , _ . _UX _HF
* OrNL %sk “m %n  * 04 %puk %psk OvmF Onm % *

“psR oML %HF ‘n 9 v %pux %8t ®n %n Tgrs *t

+ 61. pUX VI'IF GnRS o—q + p o-I“NL O_VHF UmRS O'n 0"q 6(_}{ X! )o
(184)



74

From the relations

-~ 145 =g, ™%, (185.1)

gGT = % G-T‘Kir G-OKV 9 (185«2)
Eé“’(x% ﬂ = o eij(xﬁ[éjk(x)g ﬂekf’(x) y (185.3)
gjk = ‘% O'ij CTkKV 9 (18504)

(where (185.3) is a consequence of the relation (38) along with

the properties of the Poisson bracket) we can caleculate

Ei 15, 7 Ré:l . (186)

Hence all Poisson brackets present in the Eq. (181) can be written
down by the use of Egqs. (182), (183), (184) and (185). The
integral present in the last term of (181) disappears at the end
of the calculations; since the Poisson bracket of Eg. (186) is
proportional to the Dirac delta function &(X, x1).

Thus we have completed the caleulation up to first order of
the different-time classical commutator giVeA by the relation (169)
(or equivalently by (172)). The Poisson brackets of the relations
(173) and (174} can be obtained similarly.
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VII. APPENDIX

L L R A

THE HARELTQHIAH FORMILATION OF THE ELECTROMAGNETIC FIELD IN

1
.
LR

THE FRAMEWORK OF LORENTZ-COVARIANT FIELD THEORY

Sineerthis formulation is well known, we shall keep our
exposition brisf. Its purpose is to clarify some'of the aspects
of the corresponding theory for the gravitational field. The
similarity between these two theories arises from the fact that
both are invariant with respect 40 well-=defined function groups;
the Lagrangian of ‘he Electromagnetic field is invariant with
respect to the group of gauge transformations, whereas the Lagran
gian of Einstein’'s gravitational field theory is invariant with
respect to arbitrary transformations of the four coordinates. The
difference between these two groups is, for our present purposes
primarily a difference in the number of arbitrary funetions involy

ed in the correspending transformations.

All results relating to the appearance of the constraints
are formally similar in the fwo theories, and this is Just what we

propose to show,

The Lagrangian density for the Maxwell field is ¥

.1 WL
L=~gFy F By AT = s Ly

Indices are raised and lowered by épvand g

,.lV

9 8ince we have a Lo-

rentz=covariant theory.

* Here we use the Heavigide system of units.
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i L,V
S
a - WA o SSwems g
dx, dxy
- 0 Q Ap
T T B By T
= o py
J.Jf - 4 F}ll«’ F o

The free Lagrangian Lf is invariant under the gauge trans-
formation of the potentials APE

A’P - AP ofe maA
90X .
A being an arbitrary function of the four coordinates. The inter-

?

action term Li dependis on the type of fields which form the four-

vector current density jpo If we consider a Dirac field, they

are:

= Vg Uy Gt o

Only the tetal Lagrangian density,

Lp = Lp *+ Ly + Ly »
(where L, is the Lagrangian for the external field interacting
with the Maxwell fielid) is gauge-invariant (beside Les which is
clearly gauge-invariant}., This invariance obviously refers to
the simulitaneocus gauge transformation of A” and of the given
external fieild., As an example, if we take the Dirac field as

the external field, we can define the simultaneous transforma-

tionsg.,

el

= <

i it
-2

=

-~ @B
=

e

Qo w

>
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under which LT is invariant,

We define,

so that,
1
o
The Maxwell equations obtained from the variation of L with

respect to AM are,
i ad

"jp?

ox"
which are equivalent to four separated DtAlembert equations pius

the Lorentz condition on the potentials,
JAY
DAH=jP§"“""=’0°
ox¥

The term Le will not contribute to the expression of the canonical

momeﬁta for the Maxwell field:

.-1 . 2 — i o
L=g (A+%) ==‘% (Vx £)°-pb+ j-a
F=L.T+ve-.% 9

dA

ol -
,n. 25 anar: = Lj a

ad

L

The relation m = 0 ig *hse primary constraint. Its appearance is
related to the gauge invariance of the thecry s indeed, we note
that with i’we can form the gauge-invariant expression_;f +Vd ,
but with ¢ we can form only the expression $ + YA which is the
left-hand side of the Lorentz condition, and which transforms as

“follows:
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$'+ VA' =+ VL +pA

This expression, then,.is gauge invariant if we restrict the %trang

formation function A to be a solution of DtAlembertis equation,
OA=0 .,

but fhis condition also characterizes the gauge transformations

that preserve the Lorentz condition itself,

i c—’= 'u =
d+ VA A,n 0 .

Hence we cannot form any nonvanishing gauge-invariant expression
withiio Hence, L, mast be independent of $ (gauge invarisnce of
Le holds).

The equivalent situation in the case of the gravitational
field 1s given by the primary constraints poy = 0, which are
related to the invariance of Einsteints Lagrangian density under

arbitrary transformation of the four coordinates.

The Hamiltonian for the Maxwell field is

=] Hagx ,
H=BK=-L=232+3 (W2 T -+ (V.F+p) .

We can verify that the constraint m = 0 is not the only
constraint of the theory. Indeed, let us examine the time deri-
vative of m,

m(x) = [m(x), #] = I d3y [v(x)s H(y)] ,
which must vanish if the primary constraint it to be maintained
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in the course of time. * Nevertheless; this Poisson bracket does
not vanish automatlcally; rather, we find:

=YD +p
thus, if we reguire that the primary constraint is maintained in
the course of time; we have

V-I_)"+P=O,
which is an additional constraint in the theory; this constraing

is called & secondary constraint.

From a gifferent point of view, we can say that some of the
field equations written in terms of the canonical variables will
represent constraints. In the electromagnetic theory there is
only one equation with this behaviour,

-V-E + p=0.

{since p = = E).

There are no additional constraints in the theory; the se-~
condary constraint is automatically maintained at all times., For

proof we write out explicitly the canonical Poisson brackets:

[oi(x), es)

6% 6(;“” —;) 3
- (o] (8]

It
]

;i(x)s pd(y) 3

¥ Teke t?=¢t+A. A power series expansion to the first order in A givess
() =mw(t) +An(t) =w(t)+ A [x(t),%] .
Then, if T(t) = 0, we have w(t') = w(t),
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if
o
=]

Ay(x)y Aj(y?] o o
X =y
Then, taking the time derivative of the seconda:y eonstraint, we
obtaling
S= VP +p

48 . .48, 28
at " V'at * 30

for the first term we get, by using the above fundamental Poisson

brackets:
a ., —
V"“"" :V.[p’:ﬁ] :V.j o ¥
dt

Thus, the secondary constraint will be maintained at all times if
the law of conservation of the four-vector of current j" holds,
op

é = J—b+ —_— = 0 ,
V-3 3t

The Hamiltonian has a term which represents the product of
the secondary constraint by the scalar potential ¢, That this
potential is not gauge=invariant implies that the Hamiltonian is
not identically invariant with respect to gauge transformations.
If we take a free electromagnetic field (which is more appropriate
for comparisons with the free gravitational field considered in
this paper), the Hamiltonian,

H=%2F +3 (WxD2 + ¢ VT,
is not invariant with respect to gauge transformations; however,
it reduces to the usual gauge-invariant energy density on the

constraint hypersurface.

We also note that the values of ¢ and ¢>at a given time t

* We denote by j the components ji, 80 that the term = j - A& is equal to -»jiii,
or equivalently to + A, We have used this later form in the previous
caleulation,



81
do not determine ¢ for ali Latwr times, '
L) = ity +Ad(t, ) 4

with t = t® + Ay where A is infinitesimal of the first order.
This is because i)is arbitrary up to a function.h3 hence, 1t

remaing undetermined at the time t.,

All these considerations possesstheir analogs in the theory

of the gravitational field, as was made clear in Section III.

The secondary constraint can be solved easily if we perform

the decomposition

E=ET“Q“EL9
D o

V-ET=09

v kiE; = 0

and the same for'ﬁﬁ since the constralnt equation now reads as,
—
V'EL$0 ?
we conclude that'ﬁz = ngk and the Hamiltonian takes the form,

. L2
HMEET

¢ (VB2 ,

the canonical pair of variables, after the constraint has been
solved for, are = E% and E}o The remaining part of EE-KLQ is
still arbitrary; indeed, it iz easy to see that E& is gauge=in-
variant, but'K; it is not. Under a gauge transformation the
transverse component remains unchanged, whereas the longitudinal

part K}-changes like E}

*1e p # 0, the E:’Lxﬁﬁi is given entirely as & function of p; symbolically we

may write, 5’1" = = V.%) ¢ where ng is the Coulomb integral operator.
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—T.—-—.’
Ap = Ap
s
AL""AL "’VAo
Therefore, we need to choose a condition on A in order to fix the
— —
value of A;j a cholce being, for instance, Ai = 0, which is obtained
if we impose on A the condition,
AL—VA=0¢

—_— e

To obtain the independent canonical variables PT’ AT we not
only solved the constraint equation, but alsoc chose a gauge condi-
tion so as to fix the remsining unphysical wariable ET. Solution
of the constraint equation also fixes the variable F;, which is
physical but redundant.

A comparison with the gravitational field shows that here

the.KL play a similar role as the L (or gop)o
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