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The equation of state (EOS) in quartessence models interpolates between two stages: p ’ 0 at high
energy densities and p � �� at small ones. In the quartessence models analyzed up to now, the EOS is
convex, implying increasing adiabatic sound speed (c2

s) as the energy density decreases in an expanding
universe. A nonnegligible c2

s at recent times is the source of the matter power spectrum problem that
plagued all convex (nonsilent) quartessence models. Viability for these cosmologies is only possible in the
limit of almost perfect mimicry to �CDM. In this work we investigate if similarity to �CDM is also
required in the class of quartessence models whose EOS changes concavity as the Universe evolves. We
focus our analysis in the simple case in which the EOS has a steplike shape, such that at very early times
p ’ 0, and at late times p ’ const< 0. For this class of models a nonnegligible c2

s is a transient
phenomenon and could be relevant only at a more early epoch. We show that agreement with a large
set of cosmological data requires that the transition between these two asymptotic states would have
occurred at high redshift (zt * 38). This leads us to conjecture that the cosmic expansion history of any
successful nonsilent quartessence is (practically) identical to the �CDM one.

DOI: 10.1103/PhysRevD.74.063524 PACS numbers: 95.35.+d, 98.80.Cq

I. INTRODUCTION

In the current standard cosmological model, two un-
known components govern the dynamics of the Universe:
dark matter (DM), responsible for structure formation, and
dark energy (DE), that drives cosmic acceleration.
Recently, an alternative point of view has started to attract
considerable interest. According to it, DM and DE are
simply different manifestations of a single unifying dark-
matter/energy (UDM) component. Since it is assumed that
there is only one dark component in the Universe, besides
ordinary matter, photons and neutrinos, UDM is also re-
ferred to as quartessence [1].

A prototype candidate for such unification is the quar-
tessence Chaplygin model (QCM) [2]. Although this
model is compatible with the background data [3], prob-
lems appear when one considers (adiabatic) perturbations.
For instance, the CMB anisotropy is strongly suppressed
when compared with the �CDM model [4]. Further, it was
shown that the matter power spectrum presents oscillations
and instabilities that reduce the parameter space of the
model to a region very close to the �CDM limit [5].
However, these oscillations and instabilities in the matter
power spectrum and the CMB constraints can be circum-
vented by assuming silent perturbations [6,7], i.e., intrinsic
entropy perturbations with a specific initial condition
(�p � 0). In fact, silent perturbations solve the matter
power spectrum problem for more generic quartessence
[8]. Efforts to solve the matter power spectrum problem
also have been put forward in [9,10]. However, we under-
stand that these works are not, strictly speaking, quartes-
sence. In fact, [9] introduces what seems to be a particular
splitting of the Chaplygin model. It is a two component
system although only one component is perturbed. A way

to implement silent perturbations is presented in [10], but
they use additional fields that can be interpreted as new
matter components.

In this work we present a possible alternative to solve the
above mentioned problems in the context of the more
standard adiabatic perturbations scenario. We shall discuss
a model in which the quartessence EOS changed its con-
cavity in some instant in the past. We focus our investiga-
tion on models with a steplike shape EOS. We show that, in
order to be in accordance with observations, the EOS
concavity change would have occurred at high redshifts.
Similarly to what happens in the Chaplygin case, observa-
tions constrain one of the parameters of the model to such a
low value that, at least at zero and first orders, the steplike
model cannot be observationally distinguished from the
�CDM model.

II. A NEW TYPE OF QUARTESSENCE

In the quartessence models explicitly analyzed up to
now, the EOS is convex, i.e., is such that

 

d2p

d�2
�
dc2

s

d�
< 0: (1)

Stability for adiabatic perturbations and adiabatic sound
speed less than c imply

 0 � c2
s � 1: (2)

Condition (2) and the fact that p < 0 immediately implies
the existence of a minimum energy density �min, once the
energy conservation equation is used. This is a generic
result for any uncoupled fluid model in which w � w���.
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It implies that the p � �� line cannot be crossed and that
in any such a quartessence model the minimum value of the
EOS parameter is wmin � �1. The convexity condition (1)
implies that c2

smax occurs at � � �min. This last result is
only a consequence of the convexity of the EOS. In this
case, the epoch of accelerated expansion is also a period of
high adiabatic sound speed, causing the oscillations and
suppressions in the power spectrum. However, this prop-
erty is not mandatory for quartessence. Models with con-
cavity changing equations of state may have c2

s negligibly
small at � ’ �min. As we shall show, it is possible to build
models in which a nonnegligible c2

s is a transient phenome-
non and relevant only at a very early epoch, such that only
perturbations with relatively large wave numbers (outside
the range of current linear power spectrum measurements)
are affected.

The steplike quartessence, given by a sigmoid, is an
example of UDM with concavity changing EOS (see
Fig. 1, left panel),

 p � �M4

�
1

1� exp��� �M4 �
1
��	

�
: (3)

For this model, the adiabatic sound speed has the following
expression:

 c2
s � �

exp��� �
M4 �

1
��	

f1� exp��� �M4 �
1
��	g

2
: (4)

There are three free parameters in the model. The parame-
ter M is related to the minimum value of the energy
density, i.e., the value of � when the asymptotic EOS,
pmin � ��min, is reached. The parameter � is related to
the value of the energy density at the transition from the
p ’ 0 regime to the p ’ �M4 one (�trans � M4=�). Notice

that if �
 1, the transition takes place well before the
minimum density is reached. The parameter � controls the
maximum sound velocity c2

smax as well as the redshift
width of the transition region (higher values of � implying
faster transitions). For the sigmoid EOS the maximum
adiabatic sound speed is given by c2

smax � �=4, and there-
fore we require 0 � � � 4.

In the present model, the �CDM limit is not necessarily
associated with the maximum sound speed, in contrast to
what is found in the convex EOS case. The �CDM limit is
reached when �! 0, which implies p � �� � �M4.
Another possibility is to take �! 0. In this case c2

smax !
0 and we also have a �CDM limit, but now with p �
�� � �M4=2. Since � strongly affects the redshift width
of the transition, these two limits have different character-
istics. The case of a nonvanishing �
 1 has a drastic
effect on the matter power spectrum. In fact, although the
maximum sound speed will be small, it will be nonnegli-
gible during a long redshift range and/or time, practically
ruling out these models.

We note that a steplike quartessence may be represented
by the more generic expression,

 p � M4f
�
�
�
�

M4 �
1

�

��
; (5)

where f is a steplike function, with f��1� � 0 and
f��1� � �1. The maximum adiabatic sound speed is
c2
smax � �f0max. For �
 1, pmin � �M4.

III. OBSERVATIONAL CONSTRAINTS

The zeroth order quantities (such as the luminosity and
angular diameter distances), depend only on integrals of
the Hubble parameter. Therefore, they are not very sensi-
tive to local features of the function ��a�. In particular,
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FIG. 1 (color online). Left panel: pressure (p) as a function of the energy density (�) for the sigmoid EOS. Also shown is the
p � �� line. Right panel: typical behavior of the EOS parameter (w) and the adiabatic sound speed (c2

s) as a function of the redshift
(z).
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they should not depend on the specific form of the tran-
sition from p � 0 to p � �M4. For example, for small
values of �, the observational data (from SNIa, for in-
stance) constrains only M4 and not � nor �. Thus we
expect the background observational constraints to be
highly degenerate for small � (� & 0:1). Further, as will
be shown, first order tests, such as cosmic microwave
background fluctuations or large-scale structure data, con-
strain the value of� to be very small (�
 1). Therefore, a
real step function is a good model-independent approxi-
mation for the background evolution in the type of quar-
tessence we are dealing with in this paper.

In the following we derive constraints on the parameters
� and M4=�0 from four data sets: SNIa, x-ray cluster gas

mass fraction, galaxy power spectrum and CMB fluctua-
tions. Here, �0 is the present value of the quartessence
energy density. For the sake of simplicity, in our compu-
tations we fixed the parameter � to the intermediary value
� � 2. We remark that, for small values of �, �M4=�0 ’
w0, where w0 is the present equation of state parameter. It
is worth pointing out that w0 should not be compared to the
usual dark energy EOS wDE but with weff � wtot�tot. In a
flat universe and neglecting the small amount of baryons
weff � wDE�DE. Values around M4=�0 � 0:7 are there-
fore to be expected.

In our SNIa analysis we use the ‘‘gold’’ data set of Riess
et al. [11]. To determine the likelihood of the parameters
we follow the same procedure described in [7] assuming

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

  M
4
 / ρ0

A
rc

ta
n

σ

1.0

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
4
/ρ0

A
rc

ta
n

σ

1.0

FIG. 2 (color online). Constant confidence contours (68% and 95%) in the �M4=�0; arctan�� plane allowed by SNeIa (left panel) and
X-ray galaxy clusters (right panel).
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FIG. 3 (color online). Constant confidence contours (68% and 95%) in the �M4=�0; �� plane allowed by CMB (WMAP) [13] (left
panel) and matter power spectrum (SDSS) [14] (right panel).
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flat priors when marginalizing over the baryon density
parameter �b0h2 and Hubble parameter h. For the galaxy
cluster analysis, we use the Chandra measurements of the
x-ray gas mass fraction data from Allen et al. [12]. Again,
we follow the same procedure described in [7] to determine
confidence region of the parameters of the model. We first
marginalize analytically over the bias b, using a Gaussian
prior with b � 0:824� 0:089 and then, as in the SNIa
analysis, we marginalize over �b0h

2 and h assuming flat
priors. In Fig. 2 we show constant 68% and 95% confi-
dence levels contours on the parameters M4=�0 and � for
SNIa and x-ray galaxy clusters. From the figure it is clear
that, as expected, background tests impose only weak
constraints on the parameter �.

In order to obtain constraints on M4=�0 and � from
CMB data [13] we follow the procedure described in [7],
fixing TCMB � 2:726 K, YHe � 0:24, and N� � 3:04, and
marginalizing over the other parameters, namely, �b0h2, h,
the spectral index ns, the optical depth �, and the normal-
ization N. In Fig. 3 (left panel) we show the confidence
region on the parameters for CMB. Note that � plays a
decisive role in the evolution of perturbations; now the data
constrain this parameter to be � & 3 10�3.

We next consider the matter power spectrum, comparing
the baryon spectrum with data from SDSS [14]. To com-
pute the likelihood, we used a version of the code provided
by M. Tegmark [15], cutting at k � 0:20 h Mpc�1 (19
bands) and marginalizing over �b0h2, h, ns and the am-
plitude. In Fig. 3 (right panel) we show the 68% and 95%

confidence levels on � and M4=�0 from the SDSS power
spectrum. This is the most restrictive test we have consid-
ered in this work, implying that � & 7 10�5.

In Fig. 4 we display the constant (68% and 95%)
contours for the combined analysis SNIa�
xraygalaxy clusters�matter powerspectrum�CMB data.
Our final result (95%) is 0:68 & M4=�0 & 0:78 and 0<
� & 4 10�5. It is straightforward to show that the tran-
sition redshift from a pressureless epoch to a constant
negative pressure period is given by zt ’ ��M4=�0�

�1� ��=��1�M4=�0���	
1=3. Therefore, assuming

M4=�0 � 0:7 and since � & 4 10�5 the transition from
p � 0 to p � �M4 would have occurred at zt * 38.

IV. CONCLUSION

In this work we presented a new adiabatic quartessence
model characterized by a change of concavity in the EOS.
We obtained the constraints on the model parameters from
SNIa, x-ray gas mass fraction in galaxy clusters, CMB, and
matter power spectra and showed that the model is viable if
� & 4 10�5. The redshift of the transition from the
regime p ’ 0 to p ’ const: < 0 is, therefore, zt * 38. On
the other hand, the inclusion of matter power spectrum data
for smaller scales (k * 0:2 h Mpc�1) could impose
stronger constraints upon � pushing the minimum redshift
of the transition to higher values. We checked that this is, in
fact, the case by considering data from the matter power
spectrum from the Lyman-alpha forest [16]. However,
since there are still systematic uncertainties in this data,
we did not include them in our analysis. Although differ-
ences between quartessence models and �CDM may exist
in the nonlinear regime [17], the results of the present
work, in combination with the results of [5,7], indicate
that at zero and first orders, any (convex or not) successful
adiabatic quartessence model cannot be observationally
distinguished from �CDM.
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FIG. 4 (color online). 68% and 95% in the �M4=�0; ��
plane for the combined analysis SNIa� galaxy clusters�
matter power spectrum� CMB.
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