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Abstract

In this work we study the effect of hybridization on the superconductivity within an attractive two-band Hubbard model. We describe

the interband effects through an one body mixing term, differently from standard approaches. We consider a s-wave superconducting

gap and a Hubbard-I approximation to describe the strongly correlated superconducting regime. We use Greens’ function method to

obtain the order parameter D0 and the superconducting critical temperature T c for various values of the hybridization strength V and the

attractive potential U. The results show that for fixed values of U and V the gap raises for low temperatures and diminishes abruptly as

the temperature increases. Also, T c diminishes as V increases, and there exist a critical value V c for which superconductivity is

suppressed.
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1. Introduction

The influence of hybridization on superconductivity has
been extensively discussed in the literature [1–6]. A two-
band mechanism for superconductivity was proposed by
Suhl et al. [1], and Kondo [2], and later investigated
by several others [3–7]. In particular, in Ref. [5] it was
studied that the influence of an one body hybridization on
superconductivity in two-band systems through a sp–d
model of overlapping bands close to the Fermi level. The
physical meaning of the hybridization is to create, in the
normal state, new bands with mixed features. In Ref. [5], U

was treated within the BCS theory, i.e., a weak correlation
regime.

On the other hand, with the discovery of the high
temperature superconductors (HTSC) a lot of new systems
have been considered. In particular, the cuprates have been
extensively studied, but a great number of questions related
- see front matter r 2008 Elsevier B.V. All rights reserved.
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to them remain to be answered. It is recognized that the
electrons which move in the CuO2 planes are the most
relevant to describe their superconducting properties [8]. In
particular, there is no doubt that the d–d electrons plays a
fundamental role in the superconductivity. Therefore, we
adopt an extended two-band Hubbard model, with a
Hubbard-I treatment [9] for the d–d attractive correlation.
In this work we calculate the superconducting gap D0

and the superconducting critical temperature Tc, with
both: a k-dependent hybridization Vk, and a constant one,
focusing in a s-wave gap symmetry. We verify that T c is
renormalized by a parameter a, which gives the ratio of the
effective band masses. Moreover, there is also a critical
value V c for which T c vanishes. Some considerations
involving HTSC materials, as well as transitions metals
superconductors, are also made.
2. The model

In order to study the dynamics of the carriers with
correlations and the basic attractive interaction we consider
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a Hubbard Hamiltonian
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isðdisÞ are the fermionic creation
(annihilation) operator at site ri for the s and d bands,
respectively. The lattice parameter for the square lattice is
a ¼ 1, and spin s ¼ f"#g. nd

is ¼ d
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isdis is the density
operator, tdij and tsij are the hopping integrals between sites
i and j nearest-neigbours and next-nearest-neigbours for
the s and d electrons. U is the nearest-neigbour attractive
potential between the d electrons, which can result from the
elimination of the electron–phonon coupling through a
canonical transformation or, as suggested by Hirsch and
Scalapino [10], it may be provided by the competition
between on-site and nearest-neigbours site Coulomb
interaction for some range of parameters. V ij is the
nearest-neigbours hybridization of the two bands, which
may be k-dependent, arising from a non-local character of
the mixing, or a constant one, representing an average
hybridization over the Brillouin zone.

Since the d-band density of states is much higher than
the s one at the Fermi level, we assume throughout this
work, that the superconducting pairs originate at the
d-band. To obtain the superconductor order parameter,
we calculate the equations of motion in the Wannier
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the classical Hubbard-I approach and a mean-field treatment:
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j;�si is the superconducting order parameter. From

the above relations one obtains the gap self-consistent gap
equation for a s-wave symmetry
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where Ns is the number of sites in the lattice, pk ¼ ð3Bk-
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3. Numerical results and conclusions

To obtain D0 and Tc for a specific value of V and U,
Eq. (2) is solved self-consistently in the first Brillouin zone
of the momentum space of a square lattice, together with
the dispersion relation:

�sk ¼ �2t½cosðkxÞ þ cosðkyÞ� þ 4t2 cosðkxÞ cosðkyÞ þ �0.

(9)

Here, t ¼ 1:0 is the hopping integral for the nearest-
neigbours and it is the energy unit, t2 ¼ 0:55t is the value of
the hopping integral for the next-nearest-neighbours, and it
is known to describe well the HTSC phase diagram [11]. �0
is an adjustable parameter. Also, we introduce now the
homothetic relation concerning the dispersion relation for s
and d electrons [5]: �dk ¼ a�sk, where a is a phenomen-
ological parameter and plays the role of the effective band
masses, and gives a fair approximation for the description
of the two-band system. For the symmetric case, �sk and �dk

are centered at the Fermi level. To solve Eq. (2) we start
with an initial guess for D and kBT . Then, these values are
changed and Eq. (2) is iterated until the limit T ! Tc is
achieved. In Fig. 1 we exhibit the behavior of the gap
curves as a function of Vk for a constant hybridization, for
half filled bands (hndi ¼ hnsi ¼ 1), and strong coupling
limit U ¼ 8t. One sees that as the magnitude of V increases,
D0 and kBTc diminish. For low temperatures the gaps
increase and, as the temperatures increase, the gaps
diminish abruptly. Also, we can see that the critical
hybridization is V c ¼ 7t. We want to point out that in
general the hybridization increases with applied pressure.
So, our results imply that the superconducting gap
decreases with increasing hybridization V. This behavior
is observed for HTSC as well as in some transitive metals,
such as Niobium [5]. It is important to remember that,
in our calculations we have considered a Hubbard-I
approach, which is beyond the usual BCS.
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Fig. 1. The figure shows the behavior of the gap curves when V changes.

As one can see, as V increases, kBT c and D0 diminish. The results are for a

constant hybridization. We have obtained the same results for a k-

dependent hybridization. Notice that, for low temperatures the curves

increase and, as the temperature increases, the curves abruptly decrease.

For V47:0t there is no superconductivity. Therefore, V c ¼ 7:0t for these

parameters.

Fig. 2. Here we have the dependence of 2D0=kBT c when V changes for a

constant and a k-dependent hybridization. For Vk ¼ 0, D0 � 0:16t for

both hybridizations. Notice that when V increases, 2D0=kBT c becomes

null for both: the k-dependent and the constant hybridizations.

Fig. 3. Here we have the dependence of 2D0=kBTc on U, for a k-

dependent hybridization, for three different hybridization strengths.
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Fig. 2 shows the behavior z ¼ 2D0=kBTc for a
k-dependent and a constant Vk. One sees that there is an
abrupt change in z when one goes from small V regime to
large one, clearly showing the presence of a non-BCS
regime (small V) to a BCS one (large V).
Fig. 3 shows the behavior of z when U changes, for a
k-dependent hybridization. For low values of U, z
decreases and becomes null. As U increases, going into
the strong coupling limit region (U=tb1), z seems to
stabilize in a specific value. This feature appears also
in s-wave superconductors in the inhomogeneous two-
dimensional attractive Hubbard model [12]. In fact, in
some materials z seems to have a constant value. The
results for a constant Vk are quite similar. A more
complete work on the thermodynamics arising from the
model presented here will be published elsewhere [13].
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