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Abstract

The critical temperatures T c, for different hybridization strengths V , are obtained, within a Hubbard-I approximation, using an

extended two-band Hubbard model. Here we considered an extended s-wave gap symmetry and a two-dimensional square lattice. The

results show that for a fixed value of the attractive potential U and fixed hybridization V the gap raises for low temperatures, and

diminishes as the temperature increases. Moreover, the gap behavior with hybridization is such that when V increases the gap diminishes.
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1. Introduction

The electronic hybridization has been extensively used to
study the superconductivity in the framework of a BCS
theory [1–4]. Since some high-Tc materials, as well as
superconducting heavy fermions, show strong electronic
correlations [5,6], we apply here a Hubbard-I approxima-
tion [6] to obtain the zero temperature superconducting
gap D0 and the critical temperature T c in a two-band
Hubbard model, in the presence of a one-body hybridiza-
tion. We consider an extended s-wave gap symmetry [7]
and a constant and a k-dependent hybridization.

In order to study the dynamics of the carriers with
correlations and the basic attractive interaction we consider
an extended Hubbard Hamiltonian
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where c
y

isðcisÞ and d
y

isðdisÞ are the fermionic creation
(annihilation) operator at site ri for the s and d bands,
respectively. The lattice parameter for the square lattice is
a ¼ 1, and spin s ¼ f"#g. nd

is ¼ d
y

isdis is the density
operator; tdij and tsij are the hopping integrals between sites
i and j nearest-neigbors and next-nearest-neigbors for the s
and d electrons. U is the attractive potential between the d
electrons, which can be provided by the competition
between on-site and nearest-neigbors site Coulomb inter-
action for some range of parameters [8]. V ij is the
hybridization of the two bands, which may be k-dependent,
arising from a non-local character of the mixing, or a
constant one, representing an average hybridization over
the Brillouin zone. Since the d-band density of states is
much higher than the s one at the Fermi level, we assume
throughout this work that the superconducting pairs
originate at the d band. To obtain the superconductor
order parameter, we calculate the equations of motion in
the Wannier representation of the propagators hhdis; d
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Fig. 1. Gap curves for different V . For a critical value V cð� 1:0tÞ, the gap

disappears.
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Fig. 2. In (a) we show the behavior of 2D0=kBT c when U changes. In (b)

we show the results of 2D0=kBTc for two cases: a k-dependent and a

constant Vk.

E.S. Caixeiro, A. Troper / Physica B 403 (2008) 1071–10731072
dlsiio þ 2hndi
P

p Dpihhd
y
p;�s; d

y

lsiioÞ,where
~U ¼ 2Uhndi, and

Dij ¼ Uhd
y

i d
y

j;�si is the superconducting order parameter.
In the momentum space, and considering an extended
s-wave gap symmetry, the order parameter is given by [7]:
Dk ¼ 2Dmaxj cosðkxÞ þ cosðkyÞj, where Dmax ¼ D is the max-
imum gap amplitude and it is independent of momentum.
From the above relations one obtains the gap self-consistent
gap equation for an extended s-wave symmetry
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To obtain D0 and Tc for a specific value of V and U ,

Eq. (2) is solved self-consistently in the first Brillouin
zone of the momentum space, of a square lattice, for
hndi ¼ hnsi ¼ 1:0, together with the dispersion relation:
�sk ¼ �2t½cosðkxÞ þ cosðkyÞ� þ 4t2 cosðkxÞ cosðkyÞ þ �0. We
start with initial values of D and T , then Eq. (2) is iterated,
until the limit T ! T c is obtained. Here t is the hopping
integral for the nearest-neigbors and t2 the hopping integral
for the next-nearest-neigbors. �0 is an adjustable parameter.
Also, we introduce now the homothetic relation concerning
the dispersion relation for s and d electrons [6]: �dk ¼ a�sk,
where a is a phenomenological parameter which plays the
role of the effective band masses, and gives a fair
approximation for the description of the two-band system.
For the symmetric case, �sk and �dk are centered at the
Fermi level.

In Fig. 1 we exhibit the behavior of the gap as a function
of the hybridization for half-filled bands, and strong
coupling U ¼ 8t. Here we plot the case of a k-dependent
hybridization, the results for a constant V being quite
similar. We observe that, for small T , the gap increases
slightly, whereas when T increases the gap decreases
abruptly. Fig. 2a shows the behavior of x ¼ 2D0=kBT c

for the same set of parameters of Fig. 1, for a k-dependent
hybridization. One sees that when U increases, x seems to
stabilize in the region of validity of the approximation
for U . Fig. 2b shows the behavior of x for different V , for
both: a k-dependent and a constant hybridization, for
U ¼ 8:0t. We want to point out that in general the
hybridization increases with applied pressure. So, some of
our results imply that D0 decreases with increasing V .
Therefore, our theoretical calculations can be used to
understand the behavior of Tc under pressure of some two-
band systems, e.g., heavy fermion intermetallic com-
pounds.
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