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In this paper it is shown how to obtain, without ever using the background classical equations of motion,

a simple second order Hamiltonian involving the Mukhanov-Sasaki variable describing quantum linear

scalar perturbations for the case of scalar fields with arbitrary potentials and arbitrary spacelike hyper-

surfaces. It is a generalization of previous works, where the scalar field potential was absent and the

spacelike hypersurfaces were flat. This was possible due to the implementation of a new method, together

with the Faddeev-Jackiw procedure for the constraint reduction. The resulting Hamiltonian can then be

used to study the evolution of quantum cosmological perturbations in quantum backgrounds.
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I. INTRODUCTION

The usual theory of cosmological perturbations, with
their simple equations, relies essentially on the assumptions
that the background is described by pure classical general
relativity, while the perturbations thereof stem from quan-
tum fluctuations. It is a semiclassical approach, where the
background is classical and the perturbations are quantized,
and the fact that the background satisfies Einstein’s equa-
tions is heavily used in the simplification of the equations.

The next and more fundamental conceptual step is to
consider the more general situation where quantum effects
are present already on the background geometry. In this
regime, the usual semiclassical treatment of cosmological
perturbations is no longer valid. Even though quantizing
simultaneously the homogeneous background and their
linear perturbations is still far from the full theory of
quantum gravity, one can consider the inclusion of
quantum effects in the dynamics of the background
homogeneous model as an important improvement to the
usual semiclassical approach [1]. Note, however, that this
program prevents us from using the classical background
equations, as it is usually done, to turn the full second order
action into a simple treatable system.

Furthermore, it has already been shown that it is possible
to simplify the Einstein-Hilbert action through canonical
transformation techniques for a barotropic perfect fluid and
scalar fields without potential in a flat spatial section
Friedmann model [2–4]. In these frameworks, the
Hamiltonian constraint of general relativity up to second

order was put in the form H ¼ H ð0Þ þH ð2Þ, where

H ð0Þ is the background Hamiltonian constraint while

H ð2Þ is the Hamiltonian constraint for the perturbations.
The natural and more general way to Dirac quantize the
theory is to impose the annihilation of the wave functional

by the full Hamiltonian constraint H , Ĥ j�i ¼ 0, which

imposes a quantization of the background and perturba-
tions. Because of the simplifications obtained, it was pos-
sible to solve the quantum equations for the background
and perturbations in many circumstances, and calculate
their observational consequences.
The scenarios obtained describe cosmological pertur-

bations of quantum mechanical origin evolving in a non-
singular homogeneous and isotropic background, in which
quantum effects replace the usual classical singularity by a
bounce. The physical properties of these cosmological
models were analyzed in many papers [5–12], and they
proved to be complementary or even competitive with
usual inflationary models as long as they are capable to
lead to almost scale invariant spectra of long-wavelength
cosmological perturbations.
The aim of this paper is to improve the previous

formalism and to extend the known results to a scalar field
with arbitrary potential in a Friedmann background with
arbitrary spacelike hypersurfaces. In order to carry out
this work, we use the same techniques of Ref. [13]: we
implement a set of variable transformations along with the
Faddeev-Jackiw [14,15] reduction method, rather than the
Dirac formalism. The resulting action and Hamiltonian up
to second order then become very simple and suitable for
canonical quantization.
Besides the motivation related to the quantization

procedure, our choice of variables used to write down
the second order Lagrangian simplifies significantly the
calculations involved. This simplification allows us to
obtain all expressions without choosing a gauge. This is
an important advantage since we have shown in Ref. [16]
that the choice of a gauge implies an additional assumption
that the perturbations should remain small in this gauge.
The paper is organized as follows. In the next section we

define some relevant geometrical objects and settle down the
notation and conventions. In Sec. III we review the methods
to obtain the second order gravitational Lagrangian for geo-
metrical perturbations around a homogeneous and isotropic
geometry with arbitrary spacelike hypersurfaces, while in
Sec. IV we obtain the second order matter Lagrangian for a
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canonical scalar field with arbitrary potential. All the results
are obtained without assuming the validity of the background
Einstein’s equations. In Sec. V we combine the results of
Secs. III and IV in order to obtain the full simplified general
relativistic action up to second order terms, and its resulting
full simplified Hamiltonian constraint in the desired form

H ¼ H ð0Þ þH ð2Þ, ready to be Dirac quantized. We end
with the conclusions.

II. GEOMETRYAND SPACETIME FOLIATION

The present paper follows closely the definitions and
terminologies used in [13] but, for sake of completeness,
we shall briefly define some relevant geometrical objects
and fix our notation.

The spacetime Lorentzian metric g�� has signature

ð�1; 1; 1; 1Þ and the covariant derivative compatible with
this metric is represented by r�, i.e., r�g�� ¼ 0.

We define the foliation of the spacetime through a
normalized timelike vector field v� normal to each spatial
section (v�v� ¼ �1). The foliation induces a metric in

the hypersurfaces as ��� ¼ g�� þ v�v� which projects

nonspatial vectors into the hypersurfaces.
For an arbitrary tensor M�1...�k

�1...�m
the projector is

defined as

�½M�1...�k
�1...�m

� � ��1

�1 . . .��m

�m��1
�1

. . .��k
�k
M�1...�k

�1...�m
;

and we shall call a spatial object any tensor that is invariant
under this projection, i.e., �½M�1...�k

�1...�m
� ¼ M�1...�k

�1...�m
.

The covariant derivative compatible with the spatial
metric ��� is

D�M�1...�m

�1...�k ¼ �½r�M�1...�m

�1...�k�; (1)

from which we can define the spatial Riemann curvature
tensor as

R���
�A� � ½D�D� �D�D��A�; (2)

with A� an arbitrary vector field. The spatial Laplacian is

represented by the symbol D2, i.e., D2 � D�D
�, and we

denote the contraction with the normal vector field v� with
an index v, e.g., M�v � M��v

�.

The derivative of the velocity field defining the foliation
can be decomposed as

r�v� ¼ K�� � v�a�; (3)

with the acceleration and the extrinsic curvature defined,
respectively, as a� � v�r�v� and K�� � �½r�v��.
In addition, from the extrinsic curvature we define the
expansion factor and the shear1 as

� � K�
�; ��� � K�� ��

3
���: (4)

In what follows we are going to study perturbations of
the metric tensor, hence, we are impelled to distinguish
between the actual physical metric g�� and a given fiducial

background metric �g�� that can be used as reference. We

shall also assume that the physical metric g�� can be seen

as close to the fiducial metric in the sense that their
difference �g�� ¼ g�� � �g�� can be treated perturba-

tively (see [16] for details).
The background and the perturbed tensors shall have

their indices always raised and lowered by the background
metric. Therefore, we must distinguish between the object
formed by raising the indices of �g�� and the difference

between the inverse metric and its background value i.e.,
�g�� � g�� � �g��. To avoid any possible confusion, we
define the tensor ��� and its covariant form as

��� � g�� � �g��; ��� � �g�� �g�����; (5)

which will always describe the perturbations of the metric
tensor.
The covariant derivative compatible with the back-

ground metric is represented by the symbol �r or by a

semicolon ‘‘;’’, i.e., �g��;� � �r� �g�� ¼ 0.

Using a background foliation described by the normal
vector field �v�, we can again define the background pro-
jector ����, spatial derivative �D�, and the background

spatial Riemann tensor �R���
� in the same way we have

done for objects derived from the foliation of the physical
manifold.
We use the symbol ‘‘k’’ to represent the background

spatial derivative, i.e., Tk� � �D�T for any tensor T.

Finally, we define the dot operator of an arbitrary tensor as

_M�1...�m

�1...�k � ��½L �vM�1...�m

�1...�k�: (6)

III. GRAVITATIONAL ACTION

In order to have a linear dynamical system, we must
expand its associated action functional at least to second
order in the perturbations. In [13], we have performed the
simplification of the second order action considering a
system composed of gravity and a generic perfect fluid as
its matter content.
The full simplification can be completed only once we

consider simultaneously the gravitational and the matter
sector. Notwithstanding, the coupling between matter and
gravity occurs only in the matter Lagrangian. As a result, a
great amount of work in the perturbative expansion of the
gravitational sector can be done independently from the
perturbative expansion of the matter fields.
Accordingly, much of the work in the expansion of the

gravitational sector has already been done in [13]. Here we
shall reproduce only its essential steps without lack of

1The Frobenius theorem guarantees that for a global spatial
sectioning the normal field satisfies v½�r�v�� ¼ 0, which can be
expressed as r½�v�� ¼ a½�v��. Therefore, for a global spatial
sectioning the vorticity is null, i.e., K½��� ¼ 0.
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clarity for the reader inasmuch as the same technique will
be used in detail for the scalar field matter Lagrangian in
Sec. IV.

As it is well known, the pure gravitational part of the
action reads

Sg ¼
Z

d4xLg; Lg �
ffiffiffiffiffiffiffi�g

p
R

2	
; (7)

where 	 ¼ 8
G=c4, G is the gravitational constant, c the
speed of light, and R is the curvature scalar. The expansion
in the curvature tensor induced by Eq. (5) can be described
by a tensor F ��

� that is defined as the difference between

the covariant derivative of the perturbed and of the back-
ground metrics, i.e.,

ðr� � �r�ÞA� ¼ F��
�A�;

F ��
� ¼ �g��

2
ðg��;� þ g��;� � g��;�Þ:

(8)

Let us reemphasize that a semicolon represents a covariant
derivative with respect to the background metric. Thus,
even though we have a Riemannian physical manifold, in
general g��;� � 0. Making use of this tensor we can con-

struct two covectors as

F a� � F ��
� ¼ ��;�

2
; (9)

F b� � �g��F ��� ¼ ���
�
;� þ �;�

2
: (10)

The physical Riemann tensor associated with g�� can be

written in terms of the background Riemann tensor �R���
�

related to �g�� as

R���
� ¼ �R���

� þ 2F �½�
�
;�� þ 2F �½�

�F ���
�: (11)

Thus, the expansion of the curvature scalar up to second
order reads

R � �Rþ �R���g
�� þ ðF a

� �F b
�Þ;� þF b

�F a�

�F ���F ��� þ ðF a�;� �F ��
�
;�Þ�g��; (12)

with �R and �R�� being, respectively, the scalar curvature

and the Ricci tensor of the background.

A. Second order gravitational Lagrangian

The above expansion Eq. (12) shows that with respect to
the tensor F ��

� the second order Lagrangian assumes a

simple and compact form. Indeed, ignoring a surface term,
the gravitational Lagrangian decomposes in three terms as

Lg ¼ �Lg þ �Lð1Þ
g þ �Lð2Þ

g : (13)

The background and the first order terms are given by

�Lg ¼
ffiffiffiffiffiffiffi� �g

p �R

2	
; �Lð1Þ

g ¼ �
ffiffiffiffiffiffiffi� �g

p
2	

�G���
��; (14)

with �G�� being the background Einstein tensor. The sec-

ond order Lagrangian can be split in a kinetic term �Lð2Þ
gk

that includes derivatives of the perturbations and a poten-

tial term �Lð2Þ
gU without their derivatives. These terms read

�Lð2Þ
gk ¼

ffiffiffiffiffiffiffi� �g
p
2	

½F ���F �ð��Þ �F a�F
�
b �; (15)

�Lð2Þ
gU ¼

ffiffiffiffiffiffiffi� �g
p
2	

�
�G�� þ

�g��

4
�R

�
��

�

�
��� � �g���

2

�
: (16)

Regardless of the compact and elegant form of the above
expression, the perturbed degrees of freedom are in fact
encoded in the perturbations of metric tensor. Thus, we
need to express the F ��

� tensor in terms of the perturbed

kinematic parameters associated with the spatial slicing.
For a given background foliation �v�, the metric perturba-
tion can be decomposed as

��� ¼ 2� �v� �v� þ 2Bð� �v�Þ þ 2C��; (17)

where by construction

� � 1

2
� �v �v; B� � ��½� �v

��;

C�� � ��½����
2

; C � ��� ��
��

2
:

Besides, we can continue the decomposition in terms
of their tensorial nature. By taking into account the
decomposition in terms of scalar, vector, and tensor objects
(see [17]), we are able to write them as

B� ¼ Bk� þ B�;

C�� ¼ c��� � Ek�� þ Fð�k�Þ þW��;

which should be traceless W�
� ¼ 0 and divergence free

B�
k� ¼ F�

k� ¼ W�
�
k� ¼ 0. In terms of this decomposi-

tion, the perturbation in the expansion factor translates into

�� ¼ �D2��s þ ���þ 3 _c ; (18)

and the perturbed shear tensor

���� ¼
�
�Dð� �D�Þ �

����
�D2

3

�
��s þ ��v

ð�k�Þ þ _W�
� ����;

(19)

where we have defined

��s �
�
B� _E þ 2

3
��E

�
; ��v� � B� þ _F�: (20)

The perturbed spatial Ricci tensor for this foliation is

��½�R�
�v�¼0; ��½�R �v

��¼�2 �K½Bk�þB��;
��½�R�

��¼�c k�
k�� ���

�½ �D2þ4 �K�c �½ �D2�2 �K�W�
�;

�R¼�4 �D2
Kc ;
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where we have defined the operator �D2
K � �D2 þ 3 �K. The

detailed calculation of these quantities for a general back-
ground and for a Friedmann background can be found in
Appendix A and Sec. IIIA of Ref. [13], respectively. There
the calculations were done for an arbitrary background and
without fixing the spatial hypersurfaces, hence, the slicing
of the physical manifold need not be the same as the
background spatial hypersurfaces. The only assumption
was that both spatial sectioning were global and the back-
ground foliation is geodesic, i.e., �v�r� �v�¼0. However,

when applying for a Friedmann background we considered
the same foliation for the kinematic variables where the
fields v� and �v� differ only by their normalization2

As we have shown in [13], one can expand the gravita-
tional action up to second order without the need to impose
any symmetry for the background foliation. The full pro-
cedure is, however, very involved. In contrast, if we assume
that the background is a Friedmann-Lemaı̂tre-Robertson-
Walker (FLRW) universe, the gravitational second order
Lagrangian in terms of these quantities reads

�Lð2Þ
g ¼ �Lð2;sÞ

g þ �Lð2;vÞ
g þ �Lð2;tÞ

g ;

where each represents one of the independent sectors,
namely, the scalar, vector, and tensorial. Explicitly, they
are, respectively,

�Lð2;sÞ
gffiffiffiffiffiffiffi� �g

p ¼ 1

3	
ð �D2��s �D2

K��
s � ��2Þ

þ
�
c

2
��

�
�R
2	

þ
�G �v �v

2	
ðB�B

� ��2 � 2C�Þ

þ
�G�� �g

��

6	
ð2C�

�C�
� � C2Þ; (21)

�Lð2;vÞ
gffiffiffiffiffiffiffi� �g

p ¼��v
ð�k�Þ��

vð�k�Þ

2	
; (22)

�Lð2;tÞ
gffiffiffiffiffiffiffi� �g

p ¼
_W�

� _W�
� þW�

�ð �D2 � 2KÞW�
�

2	
: (23)

IV. SCALAR FIELD ACTION

In close analogy with the perturbation procedure
developed for the gravitational sector, we shall now perturb
the matter Lagrangian up to second order. We will consider
the case where the matter content is described by a real
scalar field with an arbitrary algebraic potential Uð’Þ. The
action for a scalar field with potential reads

Sm ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �r�’r�’

2
þUð’Þ

�
: (24)

It is straightforward to show that its energy-momentum
tensor can be written as

T�� � �2ffiffiffiffiffiffiffi�g
p �Sm

�g��

¼ r�’r�’� g��

�r�’r�’

2
þUð’Þ

�
: (25)

As a matter of consistency, the energy-momentum
tensor must be compatible with the symmetries of the
spacetime metric. Thus, by considering the FLRWuniverse
as the background structure, it follows that the given
projection of the energy-momentum tensor must be zero,

�½ �T�
v� ¼ _�’ �D� �’ ¼ 0; (26)

where �’ is the background scalar field, such that, �’ �
’� �’ defines the perturbation on �’. This restriction im-
plies that �D� �’ ¼ 0. In this manner, we can rewrite the

derivative of the background field as �r� �’ ¼ � �v�
_�’. The

background energy-momentum tensor is then

�T��¼ �� �v� �v�þ �p���; ��� _�’2

2
þ �U; �p� _�’2

2
� �U;

(27)

where �U � Uð �’Þ. An expansion of the components of
the energy-momentum tensor shows that its perturbed
quantities are given by

�� ¼ _�’ _�’þ� _�’2 þU �’�’; (28)

�p ¼ _�’ _�’þ� _�’2 �U �’�’; (29)

V� ¼ �
�D��’

_�’
; ���

� ¼ 0; (30)

where U �’ means U �’ ¼ @U
@’ j �’. Using a power expansion in

the perturbed variables, we can separate the matter action
order by order in the perturbations,

Sm ¼ �Sm þ Sð1Þm þ Sð2Þm ;

with

�Sm ¼
Z

d4x
ffiffiffiffiffiffiffi� �g

p � �r� �’ �r� �’

2
þ �U

�
; (31)

Sð1Þm ¼
Z

d4y

�
�S

�’
�’þ

ffiffiffiffiffiffiffi� �g
p
2

�T�����

�
; (32)

Sð2Þm ¼
Z

d4x�Lð2Þ
m ; (33)

where the overline in the variations means that these
expression are evaluated at the background fields, i.e.,
ð �’; �g��Þ.
Adirect calculation shows that the secondorderLagrangian

�Lð2Þ
m can be decomposed in four terms �Lð2Þ

m ¼ �Lð2;1Þ
m þ

�Lð2;2Þ
m þ �Lð2;3Þ

m þ �Lð2;4Þ
m , which are, respectively,

2For more details see also the discussion in the beginning of
Appendix B of [13].
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�Lð2;1Þ
m ¼

Z
d4y

ffiffiffiffiffiffiffiffiffiffiffiffiffi
� �gðyÞ

q �T��ðyÞ
�’ðxÞ

�’ðxÞ���ðyÞ
2

; (34)

�Lð2;2Þ
m ¼

Z
d4y

ffiffiffiffiffiffiffiffiffiffiffiffiffi
� �gðyÞ

q �T��ðyÞ
�g��ðxÞ

���ðxÞ���ðyÞ
4

; (35)

�Lð2;3Þ
m ¼ 1

8

ffiffiffiffiffiffiffiffiffiffiffiffiffi
� �gðxÞ

q
�T��ðxÞ�ðxÞ���ðxÞ; (36)

�Lð2;4Þ
m ¼

Z
d4y

�2Sm
�’ðxÞ�’ðyÞ

�’ðxÞ�’ðyÞ
2

; (37)

with � � ��� �g
��.

Combining all these contributions, the second order
matter Lagrangian reads

�Lð2Þ
m ¼ lg’ þ l’ � ffiffiffiffiffiffiffi� �g

p ðB�B
� ��2 � 2C�Þ ��

2

� ffiffiffiffiffiffiffi� �g
p ½2C�

�C�
� � C2� �p

2
; (38)

where we have combined in lg’ terms that mix metric

perturbations with �’ and in the l’ terms that are simply

quadratic in the latter, i.e.,

lg’ffiffiffiffiffiffiffi� �g
p � ���þ C�p�

�
B�V

� þ�2

2
þ C�

�
_�’2; (39)

l’ffiffiffiffiffiffiffi� �g
p � 1

2
ð _�’2 � �D��’ �D��’�U �’ �’�’

2Þ: (40)

Note that the specific combination of perturbed fields of the
last two parts of Eq. (38) also appears in Eq. (21). When we
combine them in the full second order Lagrangian, their
sum forges terms that are proportional to the background
dynamical equations, namely, the time-time and the space-
space Einstein equations.

These particular expressions and the background
equations of motion will repeatedly appear in our subse-
quent calculations. Therefore, it is convenient to define the
following quantities:

E �’ � €�’þ _�’ ��þU �’; E �v � �G �v �v � 	 ��;

E �� �
�G�� ��

��

3
� 	 �p;

E �g � E �v þ E �� ¼ _��þ 3	 _�’2

2
� 3 �K:

The suitable calculation needed to simplify the
perturbed action contains a lot of terms and can become
unmanageable. Thus, every change of variable that
simplifies the expressions are in fact crucial. In this spirit,
we shall make two changes of variable that seem devoid of
physical significance. They should be viewed only as an
intermediary step that simplifies the equations. Thus, we
define

V � ��’
_�’
; c t � C

3
¼ c � 1

3
�D2E:

Using the variables defined above and the others defined
in Eqs. (18)–(20) and (28)–(30), the expression for lg’
changes to

l�g’ffiffiffiffiffiffiffi� �g
p ¼ �� _�’2V þ 3c tV _�’E �’; (41)

where we discarded the surface term @ctð3c t
ffiffiffiffiffiffiffi� �g

p
_�’�’Þ.

Applying the same reasoning to l’ we obtain

l�’ffiffiffiffiffiffiffi� �g
p ¼ ð��� �� _�’2V Þ2

2
þV 2

2
ð _�’2E �g �U �’E �’Þ

þ _�’2

2

�
V �D2

KV � 3	 _�’2V 2

2

�
; (42)

where we discarded the term @ctð ffiffiffiffiffiffiffi� �g
p

�’2ðU �’= _�’þ ��Þ=2Þ.
The symbol � in the expressions above means that we have
removed from l’ and lg’ the terms that cancel out in the

sum, i.e., l’ þ lg’ ¼ l�’ þ l�g’.
The terms proportional to E �’ and E �g in the above

equations can be eliminated without assuming the validity
of the background equations of motion. As discussed in
[13], it is legitimate to redefine our basic perturbed varia-
bles by adding second order terms to them.
In this way, we redefine, for instance, the variable �

into a new variable �new in such a way that �new ¼
�þ �f with �f being a certain combination of second
order perturbations. Note that, by construction, both
variables agree at first order and are different only at
second order.
Thus, this kind of transformation changes only the

second order part of the Lagrangian by adding a new
term coming from the first order part in the old variables.
The fact that it comes from the first order Lagrangian
makes them proportional to the background equation of
motion

2	�Lð1Þð�Þffiffiffiffiffiffiffi� �g
p � 2	�Lð1Þð�newÞffiffiffiffiffiffiffi� �g

p þ 2E �v�f:

We shall profit from this freedom in defining the per-
turbed variables and cancel the terms proportional to E �’ by

redefining the V variable as

V ! V þ 1

2
U �’V 2 � 3c tV _�’: (43)

The terms proportional to E �g can also be discarded in a

very similar way, but for that we have to use the full
second order Lagrangian as we shall show in the next
section. For the moment, the second order matter
Lagrangian becomes
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�Lð2Þ
m ¼�Lð2Þ

m;effþ
ffiffiffiffiffiffiffi� �g

p �
V 2

2
ð ��þ �pÞE �g

�ðB�B
���2�2C�Þ ��

2
�ð2C�

�C�
��C2Þ �p

2

�
;

(44)

where the effective matter Lagrangian is expressed by

�Lð2Þ
m;effffiffiffiffiffiffiffi� �g

p ¼ ð��� �� _�’2V Þ2
2

þ �� _�’2V

þ _�’2

2

�
V �D2

KV � 3	 _�’2V 2

2

�
: (45)

V. FULL SECOND ORDER ACTION

In the last two sections we have developed the perturba-
tive expansion of the action up to second order indepen-
dently for the gravitational and the matter parts. This was
advantageous due to the extensive number of variables.
However, we shall now combine them to deal with
the full second order Lagrangian for the scalar sector in
order to conclude the simplification procedure. Grouping

�Lð2Þ ¼ �Lð2;sÞ
g þ �Lð2Þ

m coming, respectively, from equa-
tions Eqs. (21) and (44), we have

�Lð2Þffiffiffiffiffiffiffi� �g
p ¼ 1

3	

�
�D2��s �D2

K��
s �

�
��� 3	 _�’2V

2

�
2
�

þ ð��� �� _�’2V Þ2
2

þ
�
c

2
��

�
�R
2	

þ _�’2

2
V �D2

KV þ E �v

2	
ðB�B

� ��2 � 2C�Þ

þ E ��

2	
ð2C�

�C�
� � C2Þ þV 2

2
_�’2E �g: (46)

The last three terms can be discarded with the same kind
of transformation we have used to eliminate the E �’ in

Eqs. (41) and (42). This simplification can be implemented
by the following change of variables:

� ! �þ _�’2

2
V 2; C�

� ! C�
� þ _�’2

2
V 2 ���

�: (47)

Notice that we can remove the terms proportional to the
background field equations even if these equations are not
valid, i.e., E �’ � 0, E �v � 0 and E �� � 0. In general, any

term linearly proportional to the background equations
appearing in the second order action can be removed
with this kind of transformation. The first order total
Lagrangian can be written as

2	�Lð1Þ
gffiffiffiffiffiffiffi� �g

p ¼�½ �G���	 �T������¼�2�E �v�2CE ��: (48)

Thus, the prescription to remove these terms is as follows.
Any term in the second order Lagrangian that is linear in
the E’s can be written as

Qð1ÞE �v þQð2Þ�� ����E �� þQð3ÞE �g þQð4ÞE �’;

where Qð1Þ, Qð2Þ��, Qð3Þ, and Qð4Þ are arbitrary second
order tensor fields. These terms can be removed by imple-
menting the transformations

� ! ��Qð1Þ

2
�Qð3Þ; (49)

C�
� ! C�

� � 1

2
Qð2Þ

�
� � 1

3
Qð3Þ ���

�; (50)

V ! V �Qð4Þ: (51)

Henceforth, any term linear in the background equa-
tions appearing in the second order Lagrangian will be
discarded by using the appropriate transformation as
described above.
Nevertheless, even after removing the background

equations, the �Lð2Þ given by Eq. (46) is still not in its
most compact form. One should note, for instance, that two
of the perturbed variables, namely,� andB, do not appear
with time derivatives. Indeed, they play the role of
Lagrange multipliers. This fact becomes evident when
we perform the Legendre transformation to go to the
Hamiltonian formalism. In addition, this transition
naturally leads us to define new variables that will simplify
the physical description of the system.
Thus, instead of introducing a nonevident change of

variables in the Lagrangian scenario, we shall now follow
the procedure to go from a Lagrangian to a Hamiltonian
formalism that will result in the simplest and final form of
the second order action.
At the present stage, it seems that there are five variables

to describe the scalar perturbations ð�;B;V ; c t; EÞ.
However, as just mentioned, the canonical momentum
associated with� andBwill result in constraint equations.
To deal with these constraints we shall follow the pro-

cedure developed in [14,15]. This formalism is completely
equivalent to Dirac’s [18,19] but has the advantage of being
less laborious. Their crucial difference is that we shall
implement the Legendre transformation only to those var-
iables for which we can complete the method without
generating constraint equations.
Accordingly, the canonical momenta associated with c t,

E, and V are

�c t ¼ � 2
ffiffiffiffiffiffiffi� �g

p
	

�
��� 3	 _�’2

2
V

�
; (52)

�E ¼ � 2
ffiffiffiffiffiffiffi� �g

p
��

3	
; (53)

�V ¼ � ffiffiffiffiffiffiffi� �g
p ð��� �� _�’2V Þ: (54)
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These relations can be inverted to give

_c t ¼ 1

3

�
3	 _�’2

2
V � 	�c t

2
ffiffiffiffiffiffiffi� �g

p � ���� �D2B
�
; (55)

@ctð �D2EÞ ¼ 3	

2
ffiffiffiffiffiffiffi� �g

p �D2�E þ �D2B; (56)

_V ¼ �Vffiffiffiffiffiffiffi� �g
p

_�’2
þ�� E �’

_�’
V : (57)

By performing the Legendre transformation only to these
variables we obtain

�Lð2Þ ¼ �c t _c t þ �D2
K�E@ctð �D2EÞ þ�V

_V � �H ð2Þ;

with

�H ð2Þ ¼ �2
V

2
ffiffiffiffiffiffiffi� �g

p
_�’2
�

	�2
c t

12
ffiffiffiffiffiffiffi� �g

p þ3	 �D2�E
�D2
K�E

4
ffiffiffiffiffiffiffi� �g

p

�
ffiffiffiffiffiffiffi� �g

p
2	

c

2
�Rþ	 _�’2

2
�c tV

�
ffiffiffiffiffiffiffi� �g

p
_�’2

2
V �D2

KV �E �’

_�’
�VV

þ�

�
�V �

���c t

3
þ ffiffiffiffiffiffiffi� �g
p �R

2	

�

þB �D2

�
�D2
K�E�

�c t

3

�
:

Once again, the term in the above second order
Hamiltonian that is proportional to E �’ can be eliminated

by a redefinition ofV similarly to Eq. (43). In addition, we
can now fully recognize that � and B are indeed pure
Lagrange multipliers since there is no time derivative of
these variables and they appear only linearly in the
Lagrangian. Requiring the action to be stationary with
respect to these variables imposes constraint relations
among the remaining canonical variables3

�V ¼
���c t

3
� ffiffiffiffiffiffiffi� �g

p �R
2	

¼ 0; �c t ¼ 3 �D2
K�E:

(58)

These relations show us that there is only one independent
canonical momentum that could, for instance, be taken as
�E . However, combining the above constraints we see that

�V ¼ 2
ffiffiffiffiffiffiffi� �g

p
	

�D2
K

�
c þ

��	

2
ffiffiffiffiffiffiffi� �g

p �E

�
;

which suggests that we define the following momentum:

� � c þ
��	

2
ffiffiffiffiffiffiffi� �g

p �E ¼ c þ
��

3
��s: (59)

Note that this quantity is exactly one of the gauge invariant
variables originally introduced by Bardeen [21] and com-
monly used in the gauge invariant approach. In terms of
this new momentum and using the above constraints we
have

�c t _c t þ �D2
K�E@ctð �D2EÞ þ�V

_V

¼ 6
ffiffiffiffiffiffiffi� �g

p
	 ��

�D2
K�

_U�
ffiffiffiffiffiffiffi� �g

p
4	

�
1� 3 _��

��2

�
c�R

� 2
ffiffiffiffiffiffiffi� �g

p
	 ��

�D2
K�

_��V ;

plus a surface term that we have neglected, where

U � c þ ��V =3. We can identify in the above expres-
sion that the generalized velocity associated with the ca-

nonical momentum� is not just _c nor _V but the variable
U. In terms of these new variables the second order
Lagrangian reads

�Lð2Þ ¼ 6
ffiffiffiffiffiffiffi� �g

p
	 ��

�D2
K�

_U� �H ð2Þ;

where now

	�H ð2Þffiffiffiffiffiffiffi� �g
p ¼2 �D2� �D2

K�

	 _�’2
þ 6 �K

	 _�’2

� _��
��2

þ1

�
� �D2

K�

�9	 _�’2

2 ��2

�
U� 2 �K

	 _�’2
�

�
�D2
K

�
U� 2 �K

	 _�’2
�

�

þE �g

�
3c �D2

Kc
��2

þ2V �D2
K�

��
� 6 �K

��2	 _�’2
� �D2

K�

�
:

Once again, the last term being proportional to the
background equations E �g can be discarded with a change

of variables. We also note that the variableU appears only
in a specific combination. Thus, we can define a new
perturbed variable


 � U� �1�; �1 � 2 �K

	 _�’2
: (60)

As a final simplification, we rewrite the term propor-
tional to � �D2

K� as

6 �K

	 _�’2

� _��
��2

þ 1

�
� �D2

K� ¼ � 3@ctffiffiffiffiffiffiffi� �g
p

� ffiffiffiffiffiffiffi� �g
p
��

�1� �D2
K�

�

þ 6� �D2
K@ctð�1�Þ
	 ��

� 6

�
U �’

_�’
� E �’

_�’

�
�1

� �D2
K�
��

:

This term modifies the generalized velocity associated

with � by including precisely the term to transform _U

3The Laplace-Beltrami operator �D2 has a unique inverse in the
case of a definite signature metric and if the manifold is compact
or if its domain is composed of only rapidly decaying functions
that go to zero at infinity (see [17,20]).
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into _
 . Therefore, after neglecting another surface term and
performing a final change of variables to remove the term
proportional to E �’ we have that the second order

Lagrangian reads

�Lð2Þ ¼ 6
ffiffiffiffiffiffiffi� �g

p
	 ��

�D2
K�

_
 � �H ð2Þ; (61)

with the unconstrained Hamiltonian �H ð2Þ given by

�H ð2Þ ¼
ffiffiffiffiffiffiffi� �g

p
	

�
2 �D2

�� �D2
K�

	 _�’2
� 9	 _�’2

2 ��2

 �D2

K


�
; (62)

�D2
� � �D2 � �2; �2 ¼

6 �KU’

_�’ ��
: (63)

The above result completes our goal. We have succeeded
in obtaining the simplest form of the second order action
without ever using the background field equations. As
expected, the scalar sector of the second order action has
only a single degree of freedom that combines in a specific
manner the gravitational and the matter perturbations.

A careful reader might have noticed that while
constructing the second order Hamiltonian (62) we have
performed the Legendre transformations only in the per-
turbed variables.

In usual perturbative schemes, one normally uses
the background field equations, hence, the first order
Lagrangian vanishes automatically. However, because
we have nowhere assumed the validity of the back-
ground equations of motion, this part still remains.
Notwithstanding, we can also avoid this kind of compli-
cation by a simple redefinition of the background variables.

Once we have arrived at the Lagrangian given by
Eq. (61), we can proceed to construct the zero order
Hamiltonian by defining

�a ¼ @Lð0Þ

@ _a
; ��’ ¼ @Lð0Þ

@ _�’
:

In general, in addition to the zero and second order
terms, the full action still contains first order terms.
There are different approaches to deal with such terms as
we have discussed in [13]. In this work we set this issue
aside, as our main objective is to build the second order
terms without enforcing the classical background motion
equations. Hence, ignoring the first order terms, the final
result is

L ¼ �a _aþ��’
_�’þ 6

ffiffiffiffiffiffiffi� �g
p
	 ��

Z
d3x �D2

K�
_


�H ð0Þ �
Z

d3x�H ð2Þ;

with

H ð0Þ ¼ �2
�’

2a3 ~V
� 	�2

a

12Va
� 3 ~Va ~K

	
; (64)

where ~V is the comoving volume and ~K � a2 �K the comov-
ing spatial curvature. The Poisson structure of this system
is given by the expressions

fa;�ag ¼ 1; f �’;��’g ¼ 1;

f
ðxÞ;�
 ðyÞg ¼ �3ðx� yÞ; any other is zero:

The Lagrangian given by Eqs. (61) and (62) is first order
in time derivatives. If desired, one can obtain a second
order time derivative Lagrangian by recovering the relation

between _
 and�, hence, by varying the action with respect
to the latter, i.e.,

� ¼ 3	 _�’2

2 ��
�D�2
�

_
: (65)

Substituting the above result back in Eq. (61) we have

�Lð2Þ ¼ 1

2	

� _
 �D2
K
�D�2
�

_


z2
þ 
 �D2

K


z2

�
; (66)

where we have defined

z2 � 2 ��2

9
ffiffiffiffiffiffiffi� �g

p
	 _�’2

: (67)

Our results agree with that obtained in [22], with the
difference that in this reference they have included the
spatial differential operators �D2

K and �D2
� in the definition

of z2. The procedure of recasting the Lagrangian in the first
order form and then solving the constraints was developed
in Faddeev and Jackiw [14] (see also [15]). This was
already done in the context of perturbations around a
FLRW universe in [23] (see Appendix B.1).
As was mentioned above, in our calculation we have

nowhere used the background field equations to simplify
the Lagrangian. All simplifications have been done by
identifying terms proportional to the background equations
and redefining the perturbed variables. Note that this is not
equivalent to imposing the validity of the background
equations. The only type of terms that we can eliminate
following this reasoning are those linearly proportional to
the background field equations. Any term having, for
instance, a time derivative of perturbations cannot be dis-
carded with our procedure.

VI. CONCLUSIONS

Without using any background Einstein equations, we
were able to obtain the very simple second order
Hamiltonian Eq. (62) describing the dynamics of linear
cosmological perturbations on homogeneous and isotropic
geometries with generic spacelike hypersurfaces for the
case of a canonical scalar field with an arbitrary potential.
This is a generalization of previous works. The resulting
Hamiltonian essentially coincides with the one obtained in
the literature if one assumes the validity of the background
Einstein equations.
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This second order Hamiltonian, together with its zeroth
order companion presented in Eq. (64), can now be used to
investigate the evolution of scalar perturbations of general
canonical scalar fields in the situation where the back-
ground is also quantized, an improvement over the usual
semiclassical approach to the inflationary scenario. Then
we can move to more involved subjects, like obtaining the
Hamiltonian describing the dynamics of linear perturba-
tions in Bianchi models and of second order perturbations

in Friedmann models. These will be the subjects of our
future investigations.
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