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In previous works, it was shown that the Lagrangians and Hamiltonians of cosmological linear scalar,

vector and tensor perturbations of homogeneous and isotropic space-times with flat spatial sections

containing a perfect fluid can be put in a simple form through the implementation of canonical trans-

formations and redefinitions of the lapse function, without ever using the background classical equations

of motion. In this paper, we generalize this result to general fluids, which includes entropy perturbations,

and to arbitrary spacelike hypersurfaces through a new method together with the Faddeev-Jackiw

procedure for the constraint reduction. A simple second order Hamiltonian involving the Mukhanov-

Sasaki variable is obtained, again without ever using the background equations of motion.
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I. INTRODUCTION

In cosmology, when the curvature scale approaches the
Planck length, one cannot avoid to consider quantum cor-
rections already on the background geometry. In this re-
gime, the usual semiclassical treatment of cosmological
perturbations, where only the perturbations are quantized
and the background is held classical, is no longer valid.
Even though quantizing simultaneously the homogeneous
background and their linear perturbations is still far from
the full theory of quantum gravity, one can consider the
inclusion of quantum effects in the dynamics of the back-
ground homogeneous model as an important improvement
to the usual semiclassical approach [1]. Note, however, that
this program prevent us from using the classical back-
ground equations, as it is usually done, to turn the full
second order action into a simple treatable system.
Notwithstanding, it has already been shown that it is pos-
sible to simplify this action through canonical transforma-
tion techniques for a barotropic perfect fluid and scalar
fields without potential in a flat spatial section Friedmann
model [2–4].

The obtained Hamiltonian, with its zeroth and second
order terms, was used to perform a canonical quantiza-
tion yielding a Wheeler-DeWitt equation where cosmo-
logical perturbations of quantum mechanical origin
evolve in a nonsingular homogeneous and isotropic
background in which quantum effects replace the usual
classical singularity by a bounce near the Planck scale.
The physical properties of these cosmological models
were analyzed in many papers [5–7], and they proved to
be complementary or even competitive with usual infla-
tionary models as long as they are capable to lead to
almost scale invariant spectra of long-wavelength cos-
mological perturbations.

The aim of this paper is to improve the previous formal-
ism and to extend the known results to a generic thermo-
dynamic fluid in a Friedmann background with arbitrary
spacelike hypersurfaces. In order to carry out this work,
still without ever using the background classical equation,
it proved to be simpler to work in the Lagrangian formal-
ism, using a set of variable transformations along with
Faddeev-Jackiw [8,9] reduction method rather than the
Dirac formalism. One of the steps of the procedure was
to isolate the perturbation terms in the action which are
multiplied by the background classical equations of motion
and eliminate them through some suitable field redefini-
tions, from where the Mukhanov-Sasaki variable naturally
appears. The resulting action and Hamiltonian up to second
order then become very simple and suitable for canonical
quantization.
Besides the motivation related to the quantization pro-

cedure, our choice of variables used to write down the
second order Lagrangian simplifies significantly the calcu-
lations involved. This simplification allows us to obtain all
expressions without choosing a gauge. This is an important
advantage since we have shown in Ref. [10] that the choice
of a gauge implies an additional assumption that the per-
turbations remain small in this gauge.
The initial works which obtained the second order ac-

tions and Hamiltonians for perturbations in a background
geometry [1,11–14] were extended afterwards to the case
of different matter contents [15–21]. However, the majority
of the papers cited above used the background equations of
motion in order to simplify their final actions and
Hamiltonians, and in the case they do not use them, their
actions were either too complicated and intractable, or they
were not general enough to include the cases of general
fluids and/or curved spacelike hypersurfaces. The present
paper fill this gap: we obtain a simple Hamiltonian for
linear cosmological perturbations involving general fluids
and curved spacelike hypersurfaces, without ever using the
background equations of motion. It is worth emphasizing
that our procedure differs significantly from the cited
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above. In our calculations we first expand the Lagrangian
up to second order without choosing any spacetime folia-
tion or background metric by writing the second order part
quadratic in the variable

F��
� � �g��

2
ðg��;� þ g��;� � g��;�Þ;

where the semicolon represents the covariant derivative
with respect to the background metric. Afterwards, we
express this tensor in terms of kinetic variables introducing
a specific spacetime foliation. Restricting to a homogene-
ous and isotropic background, we perform a Legendre
transformation in a subset of the perturbation variables
reducing systematically the constraints.

The paper is organized as follows: in the next section we
define some relevant geometrical objects and settle the
notation and conventions. In Sec. III we obtain the second
order gravitational Lagrangian for geometrical perturba-
tions around a homogeneous and isotropic geometry with
arbitrary spacelike hypersurfaces, while in Sec. IV we
obtain the second order matter Lagrangian for arbitrary
fluids. In Secs. V and VI the full simplified second order
action and Hamiltonian are obtained. We end up with the
conclusions. In Appendix A we obtain the relations be-
tween the tensorF ��

� and the perturbations on the kinetic

variables and spatial curvature tensor. Then, using these
relations, in Appendix B we obtain the second order
Lagrangian in terms of these for a general background
metric. Finally, in Appendix C we express a general matter
Lagrangian up to second order in the matter fields
perturbations.

II. GEOMETRYAND SPACETIME FOLIATION

In this section we shall briefly define some relevant
geometrical objects and fix our notation. The space-time
Lorentzian metric g�� has signature ð�1; 1; 1; 1Þ and the

covariant derivative compatible with this metric is repre-
sented by the symbol r�, i.e., r�g�� ¼ 0.

The Riemann tensor and its contractions are defined
with the following convention:

2r½�r��u� ¼ R���
�u�; R�� ¼ R���

�; R¼ R�
�;

where the symbols ½� and ðÞ represent the antisymmetric
and symmetric part of the tensor, i.e.,

M½��� � 1

2
ðM�� �M��Þ; Mð��Þ � 1

2
ðM�� þM��Þ:

We define the foliation of the space-time through a
normalized timelike vector field v� normal to each spatial
section (v�v� ¼ �1). The foliation induces a metric in

the hypersurfaces as ��� ¼ g�� þ v�v�, which projects

nonspatial vectors into the hypersurfaces. For an arbitrary
tensor M �1...�k

�1...�m
the projector is defined as

�½M �1...�k
�1...�m

� � � �1
�1

. . .� �m
�m

� �1
�1

. . .� �k

�k
M �1...�k

�1...�m
:

We shall call a spatial object, any tensor that is invariant
under the projection, i.e., �½M �1...�k

�1...�m
� ¼ M �1...�k

�1...�m
.

The covariant derivative compatible with the spatial
metric ��� is

D�M
�1...�k

�1...�m
¼ �½r�M

�1...�k
�1...�m

�: (1)

The spatial covariant derivative compatible with ��� de-

fines the spatial Riemann curvature tensor

½D�D� �D�D��A� � R���
�A�; (2)

where A� is an arbitrary spatial field. The spatial Laplace

operator is represented by the symbol D2, i.e., D2 �
D�D

�, and we denote the contraction with the normal

vector field v� with an index v, e.g., M�v � M��v
�.

The derivative of the velocity field defining the foliation
can be decomposed as

r�v� ¼ K�� � v�a�; (3)

with the acceleration and the extrinsic curvature defined,
respectively, as a� � v�r�v� and K�� � �½r�v��. In
addition, from the extrinsic curvature we define the expan-
sion factor and the shear,1 i.e.,

� � K�
�; ��� � K�� ��

3
���: (4)

For a geodesic foliation, the Lie derivative of the pro-
jector is null (Lv��

� ¼ 0). Therefore, in this case, the Lie

derivative commutes with the projector, i.e.,

Lv�½M �1...�k
�1...�m

� ¼ �½LvM
�1...�k

�1...�m
�:

In what follows, we shall be interested in analyzing
linear cosmological perturbations. Thus, it is imperative
to properly define what it is meant by a metric perturbation.
The space-time is defined by the physical metric g��,

which describes the actual physical dynamics. In addition,
we shall suppose that exist a background metric �g�� such

that the physical metric g�� can be seen as a ‘‘small

perturbation.’’ In other words, we suppose that the differ-
ence �g�� ¼ g�� � �g�� can be treated perturbatively in

the sense discussed in Ref. [10]. Note, however, that one
usually defines �g�� as the difference between the inverse
metric and its background value, i.e., �g�� � g�� � �g��,
which, in general, is different from �g�� �g

�� �g��.

Therefore, it is convenient to define the tensor ��� and

its covariant form as

1The Frobenius theorem guaranties that for a global spatial
sectioning the normal field satisfy v½�r�v�� ¼ 0, which can be
expressed as r½�v�� ¼ a½�v��. Therefore, for a global spatial
sectioning the vorticity is null, i.e., K½��� ¼ 0.
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��� � g�� � �g��; ��� � �g�� �g�����: (5)

The covariant derivative compatible with the back-

ground metric is represented by the symbol �r or by a

semicolon ‘‘;’’, i.e., �g��;� � �r� �g�� ¼ 0. Using a back-

ground foliation described by the normal vector field �v�,
we define the projector ����, spatial derivative �D� and

spatial Riemann tensor �R���
�, as we have done for the

objects derived from g��. We use the symbol ‘‘k’’ to

represent the background spatial derivative, i.e., Tk� �
�D�T for any tensor T.

One should keep in mind that the background tensors
and the perturbation tensors have their indices lowered and
raised always by the background metric. Finally, we define
the dot operator of a arbitrary tensor as

_M �1...�k
�1...�m

� ��½L �vM
�1...�k

�1...�m
�: (6)

III. GRAVITATIONAL ACTION

In what follows, we shall be concerned with the dynam-
ics of linear cosmological perturbations. Accordingly, to
obtain a system of first order dynamical equations, we must
expand the Lagrangian up to second order. As it is well
known, the gravitational part of the action is

Sg ¼
Z

d4xLg; Lg �
ffiffiffiffiffiffiffi�g

p
R

2	
; (7)

with 	 ¼ 8
G=c4, G the gravitation constant, c the
speed of light and R the curvature scalar. The expansion
of the metric tensor in terms of the perturbation defined in
Eq. (5) induces an expansion in the curvature tensor. A
simple way to describe this expansion is through the dif-
ference between the covariant derivative of the perturbed
and of the background metric. Accordingly, we define the
true tensor F ��

� by the equation

ðr� � �r�ÞA� ¼ F ��
�A�;

F ��
� ¼ �g��

2
ðg��;� þ g��;� � g��;�Þ;

(8)

and we remark that the covariant derivative ‘‘;’’ is with
respect to the background metric. Hence, in first order we
have

F ��� ¼ � 1

2
ð���;� þ ���;� � ���;�Þ: (9)

We can also define two covectors as

F a� � F ��
� ¼ ��;�

2
; (10)

F b� � �g��F ��� ¼ �� �
� ;� þ �;�

2
; (11)

and it is worth mentioning that the covectors above and the
tensorF ��� are at least of first order in ���. The perturbed

Riemann tensor is related to the background Riemann
tensor by

R���
� ¼ �R���

� þ 2F �½�
�
;�� þ 2F �½�

�F ���
�; (12)

where �R���
� is the Riemann tensor constructed with the

background metric �g��. Thus, the expansion of the curva-

ture scalar up to second order is

R � �Rþ �R���g
�� þ ðF a

� �F b
�Þ;� þF b

�F a�

�F���F ��� þ ðF a�;� �F ��
�
;�Þ�g��; (13)

where again �R and �R�� are, respectively, the scalar curva-

ture and the Ricci tensor of the background. To complete
the expansion of the Lagrangian we also need the metric
determinant up to second order, namely

ffiffiffiffiffiffiffi�g
p � ffiffiffiffiffiffiffi� �g

p �
1þ �

2
� ����

��

4
þ �2

8

�
: (14)

A. Second order gravitational Lagrangian

Using the above expansions [Eqs. (13) and (14)], we can
decompose the gravitational Lagrangian given in Eq. (7) in
powers of the perturbations ���. Besides grouping the pure

background part and the first order terms, we can distin-
guish in the second order Lagrangian a kinetic and a
potential term. Thence, we decompose the second order
expansion of the gravitational Lagrangian as

Lg ¼ �Lg þ �Lð1Þ
g þ �Lð2Þ

gk þ �Lð2Þ
gp þ �Lgsur;1; (15)

where the background and the first order terms are,
respectively,

�Lg ¼
ffiffiffiffiffiffiffi� �g

p �R

2	
; �Lð1Þ

g ¼ �
ffiffiffiffiffiffiffi� �g

p
2	

�G���
��; (16)

with �G�� being the Einstein tensor evaluated with the

background metric �g��. These two terms are self-evident

in view of the variational principle and need no further
analysis. The last term �Lgsur;1 includes all surface terms

�Lgsur;1 ¼
ffiffiffiffiffiffiffi� �g

p
2	

ðF a
� �F b

� þF ��
����Þ;�

þ
ffiffiffiffiffiffiffi� �g

p
2	

�
ðF a

� �F b
�Þ�

2
�F a��

��

�
;�
; (17)

and hence is irrelevant for dynamics. Finally, as we men-
tioned above, the second order Lagrangian can be split in a

kinetic term �Lð2Þ
gk that includes derivatives of the pertur-

bation and a potential term �Lð2Þ
gp without derivatives of the

perturbation. These terms read

�Lð2Þ
gk ¼

ffiffiffiffiffiffiffi� �g
p
2	

½F ���F �ð��Þ �F a�F b
��; (18)

�Lð2Þ
gp ¼

ffiffiffiffiffiffiffi� �g
p
2	

�
�G�� þ

�g��

4
�R

�
��

�

�
��� � �g���

2

�
: (19)
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Note that the kinetic term �Lð2Þ
gk is quadratic in F ��

�.

Therefore, to express the Lagrangian in terms of the metric
perturbation, we must first relate F ��

� with the perturbed

kinematic parameters associated with the spatial slicing.
We should stress that this is a key step in our procedure.
The conciseness of describing the metric perturbation in
terms of the kinematic parameters is crucial to perform the
very involved expansion of the gravitational Lagrangian
without ever using the background equations. This calcu-
lation can be found in detail in Appendices A and B. In
Appendix A, we obtain the perturbations of the kinematic
parameters for an arbitrary spatial slicing defined by the
normal vector field v�, and in Appendix B we relate them

with the terms appearing in �Lð2Þ
gk for a generic metric.

In the case of a Friedmann background, the second order
Lagrangian given in Eq. (B28) can be further simplified.
For these metrics, there is a preferred slicing with normal
vector �v� in which the spatial sections are homogeneous
and isotropic. Straightforward calculation shows that, for
this foliation, the extrinsic curvature and the spatial Ricci
tensor are diagonal

�K �� ¼
��

3
����;

�R�� ¼ 2 �K ����;

with the expansion factor and the function �K being homo-

geneous, i.e., ��k� ¼ 0 ¼ �Kk�. Thus, the Einstein tensor is
given by

�G�� ¼
�
3 �K þ

��2

3

�
�v� �v� � ð3 �K þ 2 _��þ ��2Þ ����

3
: (20)

The symmetries in the Friedmann metric simplify signifi-
cantly the kinetic second order term in the gravitational
Lagrangian. Given the background foliation �v�, the metric
perturbation can be decomposed as

��� ¼ 2� �v� �v� þ 2Bð� �v�Þ þ 2C��; (21)

where (see Appendix A for details)

� � 1

2
� �v �v; B� � � ��½� �v

��; C�� � ��½����
2

:

Using the scalar, vector and tensor decomposition (see
Ref. [22]) we rewrite the metric perturbations as

B� ¼ Bk� þ B�;

C�� ¼ c��� � Ek�� þ Fð�k�Þ þW��;

where B�
k� ¼ F�

k� ¼ W�
�
k� ¼ W�

� ¼ 0. It is straight-

forward to show, using the results of Appendix A, that in
terms of this decomposition the shear perturbation reads

���� ¼
�
�Dð� �D�Þ �

����
�D2

3

�
��s þ ��v

ð�k�Þ

þ _W�
� ����; (22)

where we have defined

��s �
�
B� _E þ 2

3
��E

�
; ��v� � B� þ _F�: (23)

The perturbation on the expansion factor gives

�� ¼ �D2��s þ ���þ 3 _c : (24)

Finally, the perturbations on the spatial Ricci tensor and
curvature scalar are

��½�R�
�v�¼0; ��½�R �v

��¼�2 �K½Bk�þB��;
��½�R�

��¼�c k�
k�� ���

�½ �D2þ4 �K�c �½ �D2�2 �K�W�
�;

�R¼�4 �D2
Kc ;

where we have defined the operator �D2
K � �D2 þ 3 �K.

Using this decomposition, the second order gravitational
Lagrangian is

2	ffiffiffiffiffiffiffi� �g
p �Lð2Þ

gk ¼ �K�
��K�

� ���2 �C�
��R�

�

þ
�
C

2
��

�
�Rþ �G �v �vðB�B

� ��2 � 2�CÞ
þ �G�� ��

��ð2C��C���C2Þ; (25)

with C � ��� ��
��=2. In the above expression, the last two

terms are proportional to the background Einstein tensor.
Combining them with the part coming from the matter
Lagrangian, these terms will be proportional to the back-
ground Einstein equations. Thus, if the background equa-
tions are valid they vanish. However, we shall show that
they can be eliminated by a simple redefinition of the
perturbed fields, which is valid independently of the back-
ground equations. The main advantage is that the resulting
Hamiltonian obtained without using the background equa-
tions can be used to not only quantize the perturbations, as
it is commonly done in the literature, but also the back-
ground degrees of freedom.

IV. PERFECT FLUIDS ACTION

In Ref. [23], it has been shown that is possible to obtain
the equations of motion for a perfect fluid from a varia-
tional principle. This formalism decomposes the four-
velocity of the fluid #� in terms of potentials as

#� ¼ r�’1 þ ’2r�’3 þ ’4r�s; (26)

where ’a for a ¼ 1, 2, 3, 4 are arbitrary scalar fields
and s � ’5 represents the specific entropy of the fluid.
In addition, the specific enthalpy is simply given by the

module of the four-vector, i.e., # �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�#�#�g

��
q

.

For future use, it is convenient to define a normalized
vector field
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u� � #�

#
: (27)

In principle, this vector-field can have nonzero
vorticity, hence, it does not define a global foliation.
Notwithstanding, this does not pose any problem since
our procedure to study second order perturbations is still
valid regardless of the existence of a global foliation. If
eventually desired, one can always impose conditions on
the scalar fields ’a’s to annihilate the vorticity and con-
struct a cosmological model. Thus, we shall carry on the
simplification scheme for the general case and only after-
wards, when needed, we shall impose the conditions for a
homogeneous and isotropic model.

The action for the fluid is

Sm ¼
Z

d4xLm; with Lm ¼ ffiffiffiffiffiffiffi�g
p

pð#; sÞ; (28)

where the pressure p is a function of the enthalpy and of
the entropy. In terms of the enthalpy, the first law of
thermodynamics can be cast as

d# ¼ �dsþ 1

n
dp;) @p

@s

��������#
¼ ��n;

@p

@#

��������s
¼ n:

Thus, first order variation of the Lagrangian with respect
only to the fluid’s degrees of freedom is

�Lm ¼ � ffiffiffiffiffiffiffi�g
p ½nu��#� þ �n�s�: (29)

The perturbation in the vector field #� should be expressed

in terms of the potentials ’a’s. Hence, by varying the
action with respect to the ’a’s and s, respectively, one has

r�½nu�� ¼ 0; ru’3 ¼ 0; ru’2 ¼ 0;

rus ¼ 0; ru’4 ¼ �n:
(30)

Combining the above equations we obtain

# ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�#�#�

q
¼ �ru’1: (31)

Finally, the energy momentum tensor for the fluid is
simply

T�� ¼ n#u�u� þ pg�� ¼ u�u� þ p���; (32)

where the energy density  is defined by  � n# � p.

A. Second order matter Lagrangian

In this subsection we shall perform the same expansion
up to second order in the fluid Lagrangian as we have done
for the gravitational part of the action. In the process of
expanding the Lagrangian we shall need the following
relations:

@n

@s

��������#
;

@n

@#

��������s
;

@�

@#

��������s
:

Recalling that # ¼ ðþ pÞ=n, we obtain

@n

@#

��������s
¼ n

c2s#
;

@�

@#

��������s
¼ �

#
þ �

n#c2s
;

@n

@s

��������#
¼ � �nð1þ c2sÞ þ �

c2s#

(33)

with the speed of sound c2s and � defined as

c2s � @p

@

��������s
; � � @p

@s

��������
:

The first order term in the expansion of Eq. (28) is

�Lð1Þ
m ¼ �Sm

�’a

�’a þ
ffiffiffiffiffiffiffi� �g

p
2

�T�����; (34)

where the overline means that the quantity should be
evaluated using the background fields. To simplify the
expressions, we define the notation representing, respec-
tively, the perturbation of F by varying only the matter
fields or the metric as

�’F�
Z
d4x

�F

�’a

�’a; �gF�
Z
d4x

�F

�g��

�g��; (35)

noting that one should sum over all scalar fields’a’s. Thus,
the second order part is

�Lð2Þ
mffiffiffiffiffiffiffi� �g

p ¼
�
�’T��

2
þ �gT��

4

�
���

�
�T��

2

�
�����

� � ����

4

�

þ
Z

d4y
�2Sm

�’a�’bðyÞ
�’a�’bðyÞ

2
ffiffiffiffiffiffiffi� �g

p ; (36)

where we wrote explicitly only the space-time coordi-
nates that differs from x. The first two terms above are,
respectively,

�’T�� ¼
�
�n

�
2 ���ð� �v�Þ � ���� �v� � �v� �v�

�c2s
�v�

��
�#�

�
�
�� �nþ��

�c2s
�v� �v� þ �� �n ����

�
�s; (37)

�gT�
� ¼ �n �#

�

�c2s
�v� �v� þ �n �# �v�B

� þ �n �# � ���
�; (38)

while the last term gives

1ffiffiffiffiffiffiffi� �g
p

Z
d4y

�2Sm
�’a�’bðyÞ

�’a�’bðyÞ
2

¼ �n

2 �#

�
�v� �v�

�c2s
� ����

�
�#��#� � �n

2
�2# �v

þ �$

2
�s2

�� �nð1þ �c2sÞ þ ��

�c2s �#
�s�# �v; (39)

with the second derivative of the pressure defined as
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$ � @2p

@s2

��������#
¼ � @ð�nÞ

@s

��������#
: (40)

In the above variational method, we have considered
the enthalpy # and the potentials ’a’s as the fundamental
dynamical variables. However, it is convenient to rewrite
the perturbative expansion in terms of the usual fluid
variables, namely, the energy density, the enthalpy and
the four-velocity of the fluid. To relate these quantities,
we note that the first order perturbation of the
enthalpy gives

�# ¼ ��ð#�#�g
��Þ

2 �#
¼ ��#� �v� þ �#�

¼ ��# �v þ �#�: (41)

In addition, the normalized velocity field u� Eq. (27) is

related to the background velocity field �v� through

u� ¼ #�

#
¼ �v� þ �#�

�#
� �v�

�#
�# (42)

¼ �v� �� �v� þU�; with U� � ��

�
�#�

�#

�
: (43)

These expressions, together with the thermodynamic rela-
tions, allow us to rewrite the first order pressure and energy
perturbations as

�} ¼ �c2s�%þ ���s; (44)

�% ¼ �n

�c2s
�# � �� �nþ��

�c2s
�s;

¼ � �n�# �v þ ð �� �nþ��Þ�s� �n �# �

�c2s
: (45)

Combining all the above results we can write the second
order Lagrangian for a general perfect fluid as

�Lð2Þ
mffiffiffiffiffiffiffi� �g

p ¼ �nð�# �vÞ2
2 �c2s �#

� �n �# U�U
�

2
� �n�2# �v

2
þ �$ð�sÞ2

2

þ ½ �� �nð1þ �c2sÞ þ ����s�# �v

�c2s �#
� �n �# B�U� þ C�}

þ��%� �n �# C�� �n �#

2 �c2s
�2

þ �

2
ð�B�B

� þ�2 þ 2C�Þ

þ �p

2
ð�2C�

�C�
� þ C2Þ; (46)

where �2# �v � 2ð�’2� _’3 þ �’4
_�sÞ.

B. Homogeneous and isotropic perfect fluid

In the last section, we have performed the expansion of the
matter Lagrangian up to second order considering a general
perfect fluid. Nevertheless, considering cosmological models

with a Friedmann-Lemaı̂tre-Robertson-Walker (FLRW)
metric, Einstein’s equations require that the background
energy and pressure of the fluid shall be homogeneous and
isotropic. Even though this condition does not impose that
all the potentials ’a’s are homogeneous and isotropic,
we shall do so to avoid any entanglement in the perturba-
tions such as mixing the vector and scalar sectors (see
Appendix C for details). Assuming that all the potentials
are indeed homogeneous and isotropic, Eqs. (26) and (42)
give us

U� ¼ ��

�
�#�

�#

�
¼ V k�;

V � �’1 þ �’2�’3 þ �’4�s
�#

:

(47)

Additionally, one has that the perturbation of �# �v ¼
�#� �v� is given by

�# �v ¼ �#ðL �v � �c2s ��ÞV � ���sþQ; (48)

where the function Q has been defined as

Q � ��’3E �’2
� �sE �’4

þ �’2E �’3

þ
�
�’4 þV

@ �#

@�s

�������� �n

�
E �s þV

�c2s �#

�n
E �n; (49)

with the E’s representing the background equations of
motion, i.e.,

E �’2
¼ _�’2; E �’3

¼ _�’3; E �s ¼ _�s

E �’4
¼ _�’2 � ��; E �n ¼ _�nþ �� �n :

(50)

The function Q groups all the terms that are formed by
perturbation variables multiplied by background equations
(30). Note that the Lagrangian Equation (46) depends
on �’1 only through V , i.e., we can make the change
of variable �’1 ! V by inverting Equation (47). With
this new variable we can rewrite the perturbed energy
density as

�% ¼ �� �nQ

�c2s
;

� � � �n �#ðL �v � �c2s ��ÞV þ ���s� �n �# �

�c2s
;

(51)

where we have defined the perturbed energy density � by
excluding all the terms that depend on the background
equations. In the same way, we have for the pressure and
particles density

�} ¼ �p� �nQ; �@ ¼ �n� �nQ

�c2s �#
; (52)

where �p and �n do not depend on the background equa-
tions and are given by

�p � �c2s�þ ���s ¼ � �n �#ðL �v � �c2s ��ÞV þ �n �# �;

(53)
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�n � �� �� �n�s
�#

¼ � �n �#ðL �v � �c2s ��ÞV þ ���s� �n �# �

�c2s �#
� �� �n�s

�#
:

(54)

It is convenient to make some simplifications. Note that

we can invert Eq. (54) so that we have �#ðL �v � �c2s ��ÞV in
terms of �n and �s, which then can be substituted in the
Lagrangian. In addition, we shall rewrite the terms involv-
ing C and V k�, respectively, as

C�p� �n �# C� ¼ �L �vð ffiffiffiffiffiffiffi� �g
p

�nC �#V Þffiffiffiffiffiffiffi� �g
p þ �nCV

@ �#

@�s

�������� �n

_�s

þ C �#V ð1þ �c2sÞðL �v þ ��Þ �n
þ �n �#V _C;

and

�n �# B�V k� ¼ ð �n �# B�V Þk� � �n �# B�
k�V ;

�n �#V k�V k�

2
¼

�
�n �#VV k�

2

�
k�

� �n �#V �D2V
2

:

We can use the thermodynamic relations [Eqs. (33) and
(40)] to write

@ ��

@�s

�������� �n
¼ 1

�n

�½ �� �nð1þ �c2sÞ þ ���2
�c2s �n �#

� �$

�
; (55)

@ ��

@ �n

���������s
¼ �� �n �c2s þ ��

�n2
: (56)

As a result, the Lagrangian Equation (46) for a homoge-
neous and isotropic perfect fluid is given by

�Lð2Þ
mffiffiffiffiffiffiffi� �g

p ¼ �c2s �#

2 �n
�n2 � @ ��

@�s

�������� �n

�n�s2

2
þ �n �#V �D2V

2
þ lbg1

� �nð�’4
_�sþ �’2

_�’3 � �#��V

þ �# ���V �� ���sÞ
� �

2
ðB�B

� ��2 � 2C�Þ

� �p

2
ð2C�

�C�
� � C2Þ; (57)

where the term l
bg
1 contains the quantities proportional to

the background equations of motion, i.e.,

l
bg
1 � �Q

�
�@ þ �n

2
þ �nC

�

þVC

�
�#ð1þ �c2sÞE �n þ �n

@ �#

@�s

�������� �n
E �s

�
: (58)

The kinetic term in the Lagrangian above is quadratic in
�n, which is not gauge invariant. The advantage of using a

gauge invariant kinetic term is that the associated momen-
tum will also be automatically gauge invariant. Hence,
we will now eliminate �n from the above expressions.
Note that

�V � � ffiffiffiffiffiffiffi� �g
p ð�� �� �n �#V Þ; (59)

��’3
� � ffiffiffiffiffiffiffi� �g

p
�n�’2; (60)

��s � � ffiffiffiffiffiffiffi� �g
p

�nð�’4 þ ��V Þ; (61)

are gauge invariant combinations of the fluid variables.
Given the definitions above and Eqs. (47)–(54), we have

�c2s �#

2 �n
�n2 ¼ �c2s

2 �n �#

�2
Vffiffiffiffiffiffiffi� �g

p 2
þ �n �# �c2s ��

2

2
V 2

þ �c2s ��
2 �nþ 2�� ��

2 �#
�s2 þ� �nð �# ��V � ���sÞ

� �nð �# ��V � ���sÞ _V � ð �c2s �n ��þ��Þ ��V�s:

In order to simplify the expression above, we rewrite the
following two terms involving V 2 as

�n �# �c2s ��
2

2
V 2 � �n �# ��V _V

¼ � L �vffiffiffiffiffiffiffi� �g
p

� ffiffiffiffiffiffiffi� �g
p

�n �# ��V 2

2

�

þ
�
�#ð1þ �c2sÞE �n þ �n

@ �#

@�s

�������� �n
E �s

� ��V 2

2
þ �n �# _��

2
V 2;

and the two terms involving V�s as

�n ���s _V � ½ �c2s �n ��þ��� ��V�s

¼ L �vffiffiffiffiffiffiffi� �g
p ½ ffiffiffiffiffiffiffi� �g

p
�n ���sV � � �n �� _�sV

�
��

��ð1þ �c2sÞ þ ��

�n

�
E �n þ @½ �n ���

@�s

�������� �n
E �s

�
�sV :

Using the two simplifications above and discarding the
surface terms we obtain

�Lð2Þ
mffiffiffiffiffiffiffi� �g

p ¼ �c2s

2 �n �#

�2
Vffiffiffiffiffiffiffi� �g

p 2
þS

�s2

2
þ��s

_�sffiffiffiffiffiffiffi� �g
p þ��’3

� _’3ffiffiffiffiffiffiffi� �g
p

þ �n �#

2
V �D2

KV � 3	

4
ð �n �#V Þ2 þ �n �#��V

þ lbg1 þ lbg2 � �

2
ðB�B

� ��2 � 2C�Þ

� �p

2
ð2C�

�C�
� �C2Þ; (62)

where the term multiplying �s2 is defined by

S � �n
�c2s ��

2 �nþ 2�� ��
�#

� �n
@ ��

@�s

�������� �n
:
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Hence, �n has been eliminated from the kinetic term of
matter Lagrangian. With these modifications the extra term
including quantities proportional to the background equa-
tions is

lbg2 ¼ � 3 �n �#

4
V 2ðE �v þ E ��Þ

�
��

��ð1þ �c2sÞ þ ��

�n

�
E �n þ @½ �n ���

@�s

�������� �n
E �s

�
�sV

þ
��V 2

2

�
�#ð1þ �c2sÞE �n þ �n

@ �#

@�s

�������� �n
E�s

�
; (63)

where E �v and E �� are the background Einstein’s equations

[see Eq. (20)], i.e.,

E �v � �G �v �v � 	 �; E �� �
�G�� ��

��

3
� 	 �p (64)

and

E �v þ E �� ¼ � 2

3

�
_��þ 3	 �n �#

2
� 3 �K

�
:

Similarly to Eq. (25) that describes the second order
gravitational Lagrangian, the fluid Lagrangian has several
terms proportional to the background equations given by

l
bg
1 þ l

bg
2 . In addition, the last two terms of Eq. (62) multi-

plying the background energy and pressure are identical to
the terms appearing in (25). As we shall see in the next
section, when these terms are combined with the ones
coming from the gravitational sector, it is possible to
discard them without ever using the background equations
of motion.

V. FULL SECOND ORDER LAGRANGIAN

In the last two sections, we have expanded the gravita-
tional and the matter Lagrangians separately. We shall now
show that combining these results we can considerably
simplify the total second order Lagrangian. For simplicity,
in this section we will neglect the spatial surface terms
which appear during the simplification. The full second

order Lagrangian �Lð2Þ � �Lð2Þ
g þ �Lð2Þ

m is

�Lð2Þ ¼�Lð2;sÞ þ�Lð2;vÞþ�Lð2;tÞþ ffiffiffiffiffiffiffi� �g
p ½lbg1 þ lbg2 þ lbg3 �;

with the new background equations included in lbg3 ,

lbg3 ¼ E �v½B�B
� ��2 � 2C�� þ E ��½2C�

�C�
� � C2�

2	
:

(65)

The extra indices indicate each one of the independent
sectors of the linear perturbations, namely, the scalar,

�Lð2;sÞffiffiffiffiffiffiffi� �g
p ¼ �D2��s �D2

K��
s

3	
þ �c2s

2 �n �#

�2
Vffiffiffiffiffiffiffi� �g

p
2
þ S

�s2

2

þ
�
c

2
��

�
�R
2	

� 1

3	

�
��� 3	 �n#V

2

�
2

þ �n �#
V �D2

KV
2

þ��s
_�sffiffiffiffiffiffiffi� �g

p þ��’3
� _’3ffiffiffiffiffiffiffi� �g

p ; (66)

and the vector and tensorial sectors

�Lð2;vÞffiffiffiffiffiffiffi� �g
p ¼ ��v

ð�k�Þ��
vð�k�Þ

2	
; (67)

�Lð2;tÞffiffiffiffiffiffiffi� �g
p ¼

_W�
� _W�

� þW�
�ð �D2 � 2KÞW�

�

2	
: (68)

The Lagrangian above is already in a simplified form.
However, as discussed in Sec. IVB it is more convenient to
have a gauge invariant kinetic term. To accomplish this, we
note that the term

� � ��� 3	 �n �#V
2

þ 3�R

4 ��
;

is gauge invariant, while

� � c �
��

3
��s

is the usual gauge invariant variable defined in the litera-
ture. Rewriting the scalar Lagrangian using both variables
one obtains

�Lð2;sÞffiffiffiffiffiffiffi� �g
p ¼ 3 �D2� �D2

K�

	 ��2
þ �c2s

2 �n �#

�2
Vffiffiffiffiffiffiffi� �g

p 2
þ S

�s2

2
��2

3	

þ 9 �n �#

2 ��2
U �D2

KUþ��s
_�sffiffiffiffiffiffiffi� �g

p þ��’3
_�’3ffiffiffiffiffiffiffi� �g

p ; (69)

where we have defined the gauge invariant variable U �
c þ ��V =3. In this manner, it appears in the total second
order Lagrangian an additional term

l
bg
4 � � 9

8	 ��2
ðE �v þ E ��Þc�R;

which comes from the following substitution

3 _c�R

2	 ��
¼ � L �vffiffiffiffiffiffiffi� �g

p
�
3

ffiffiffiffiffiffiffi� �g
p

c�R

4	 ��

�
� c�R

4	
þ

_��c�R

4 ��2
:

The lbg3 þ lbg4 terms contain the time-time and the

space-space Einstein’s equations, while the other two

terms lbg1 þ lbg2 represent a combination of the fluid’s back-

ground dynamics and Einstein’s equations. Instead of as-
suming that these terms cancel out due to the background
equations, we will follow another route.
Note that since we are interested in linear dynamical

equations, our perturbative expansion has been truncated in
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second order. Furthermore, the expansion has been
done using first order variables and keeping only terms
quadratic in them.

Nonetheless, it is completely legitimate to define per-
turbed variables that already contain second order terms. In
other words, suppose that we have a given second order
combination of the perturbations, �2f. We can define, for
instance, a new variable �new such that �new ¼ �þ �2f.
In doing so, we guarantee that both variables agree at first
order and become different only at second order. Hence,
this kind of modification leaves the first order variables
intact, but can modify the Lagrangian in second order
without, however, modifying the equations of motion up
to first order because we can assume that the zeroth order
equations of motion are valid after variation of the
Lagrangian. Briefly, such change of variables when in-
serted in the Lagrangian does not modify the equations
of motion up to first order in perturbation theory.

Let us explore this change of variables to simplify the
second order Lagrangian. The first order total Lagrangian
can be written as

2	�Lð1Þ
gffiffiffiffiffiffiffi� �g

p ¼�ð �G���	 �T��Þ���¼�2�E �v�2CE ��: (70)

Thus, if we make the change of variable

� ! �� B�B
� ��2 � 2C�

2
þ 9c�R

8 ��2
; (71)

C�
� ! C�

� � 2C�
�C�

� � CC�
�

2
þ 3c�R

8 ��2
���

�; (72)

all the term lbg3 þ lbg4 will be canceled out. Additionally, we

remove the remaining terms proportional to the Einstein’s

equations present in lbg2 with a second transformation

� ! �þ 3	 �n �#V 2

4
; C�

� ! C�
� þ 	 �n �#V 2

4
���

�:

(73)

It is worth noting that the above transformations do not
change the first order Lagrangian as long as the perturbed
fields are modified only in second order. We can also
perform the same procedure to eliminate the background
equations for the fluid. Once more, we consider the total
first order Lagrangian,

�Lð1Þ
mffiffiffiffiffiffiffi� �g

p ¼ �L �vð ffiffiffiffiffiffiffi� �g
p

�n �#V Þffiffiffiffiffiffiffi� �g
p þ �#VE �n

þ �nð�’3E �’2
� �’2E �’3

þ �sE �’4
� �’4E �sÞ;

(74)

where we have used the expression for �# �v coming from
Eq. (48). Therefore, one can check that the transformations

that eliminate the term lbg1 are

V ! V � �c2sV
�
�@ þ �n

2 �n

�
þVC;

�’2 ! �’2 þ �’2

�
�@ þ �n

2 �n
þ C

�
;

�’3 ! �’3 þ �’3

�
�@ þ �n

2 �n
þ C

�
;

�’4 ! �’4 þ
�
�’4 þ @ �#

@�s

�������� �n
V

��
�@ þ �n

2 �n

�
þ �’4C;

�s ! �sþ �s

�n

�
�@ þ �n

2
þ C

�
: (75)

Finally, the remaining terms in l
bg
2 are canceled by the

following transformation

V ! V þ
��ð1þ �c2sÞV 2

2
�

�
��ð1þ �c2sÞ

�#
þ ��

�n �#

�
;

�’4 ! �’4 þ @ ��

@�s

�������� �n
�sV �

��V 2

2

@ �#

@�s

�������� �n
:

(76)

Therefore, we have proved that one does not need to use
the background equations to arrive at the standard second
order Lagrangian. Indeed, by a well defined change of
variables, the terms proportional to the background equa-
tions are eliminated. From a mathematical point of view,
our result is definitely robust, but it remains the question of
the physical meaning of these changes of variables. This
issue can be settle by analyzing the definition of our
fundamental perturbed fields.
Our basic perturbed variable ��� has been defined

using the difference between the physical metric and the
fiducial metric with its co-indices, i.e., ��� � g�� � �g��.

However, there is no reason to not choose the covariant
difference between these metrics �g�� � g�� � �g��.
Assuming �g�� as the fundamental perturbed variable,
its time-time component is written in terms of ���, up to

second order terms, as

�v� �v��g
�� � �2�� 4�2 � B�B

�;

which resembles the transformation Eq. (71). Note that a
simple change of basic first order perturbed variables in-
duces a second order change in the original variables in the
sameway as displayed by our transformations. Indeed, half
of the terms in the transformation Eq. (71) can be perfectly
interpreted is this very same way.
Therefore, our result that the second order Lagrangian

can be simplified by the kind of change of variables de-
scribed above is an indication that neither �g�� nor �g��

should be viewed as the most convenient variables for
cosmological perturbations. Indeed, there must exist a
certain combination of them that implements the above
transformations which simplifies significantly its physical
description. Consequently, this combination should be
viewed as the most convenient one.
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VI. SECOND ORDER HAMILTONIAN

In the last section we have obtained the full second order
Lagrangian for the perturbations. However, in order to
quantize such system one needs to perform the Legendre
transformations to go to the Hamiltonian, and conse-
quently we need the Poisson algebra of the dynamical
variables.

A close inspection of Eq. (66) shows that the scalar
Lagrangian does not depend on any of the time derivatives
of the variables ð�;B; �’2; �’4Þ. On the other hand, it
does depends linearly on time derivatives of ð�’3; �sÞ
and quadratically on the time derivatives of ðc ; E;V Þ.
Therefore, the Hessian matrix is singular and, as expected,
we have a constrained Hamiltonian system.

Here we shall develop the Hamiltonian formalism only
for the scalar sector of the simplified second order
Lagrangian since it is the most involved one, and is more
connected to cosmological observations. The appropriate
generalizations to the vector and tensorial sectors are
straightforward.

Instead of using Dirac’s formalism [24,25], we can deal
with the constraints by using the procedure developed in
Refs. [8,9]. These two formalisms are equivalent but the
latter is operationally simpler than Dirac’s, inasmuch
some of the constrains are solved during the transitions
to the Hamiltonian description. In this way, we keep only
the necessary degrees of freedom.

The quadratic term in the Lagrangian depends on time
derivative of c and E only through ��s and ��, Eqs. (23)

and (24). However, �� depends on both _c and _E.
Therefore, is simpler to use the variable

c t � C

3
¼ c � �D2E;

instead of c , since by using this variable the perturbation
on the expansion tensor is

�� ¼ 3 _c t þ �D2Bþ� ��:

The first step is to reduce Eq. (69) to a Lagrangian linear
in time derivatives by performing a Legendre transforma-
tion on the variables ðc t; �D2E;V Þ. Thus, we shall perform
the Legendre transformations only in those variables that
we can invert their relations with the momenta.
Accordingly, we define their momenta as

�E � �D�2
K

@�Lð2;sÞ

@L �v½ �D2E� ¼
2

ffiffiffiffiffiffiffi� �g
p
	 ��

�; (77)

�c t � @�Lð2;sÞ

@ _c t
¼ �2

ffiffiffiffiffiffiffi� �g
p �

	
; (78)

and�V ¼ @�Lð2;sÞ

@ _V
has already been defined in Eq. (59). The

next step is to invert these relations to obtain the time
derivatives in terms of the momenta,

L �v½ �D2E� ¼ �D2Bþ 3	

2
ffiffiffiffiffiffiffi� �g

p �D2�E � 3 �D2c
��

; (79)

_c t ¼ 	 �n �#

2
V �

��

3
�� �D2B

3
þ �D2

Kc
��

� 	�c t

6
ffiffiffiffiffiffiffi� �g

p ; (80)

_V ¼ �c2s�Vffiffiffiffiffiffiffi� �g
p

�n �#
þ�� ��

�n �#
�s: (81)

With these variables, the Lagrangian reads

�Lð2;sÞ ¼ �D2
K�EL �v

�D2E þ�c t _c t þ�V
_V þ��s

_�s

þ��’3
� _’3 � �H ð2;sÞ

c ; (82)

where the constrained Hamiltonian �H ð2;sÞ
c is

�H ð2;sÞ
c ¼ �c2s�

2
V

2
ffiffiffiffiffiffiffi� �g

p
�n �#

þ3	 �D2�E
�D2
K�E

4
ffiffiffiffiffiffiffi� �g

p �
	�2

c t

12
ffiffiffiffiffiffiffi� �g

p

þ�c t

�
	 �n �#V

2
þ �D2

Kc
��

�
� ���V�s

�n �#

�3 �D2
K�E

�D2c
��

� ffiffiffiffiffiffiffi� �g
p �

9 �n �#

2 ��2
U �D2

KUþS
�s2

2

�

þ�

�
�V �

���c t

3

�
þ �D2B

�
�D2
K�E�

�c t

3

�
:

(83)

In this intermediary stage we have a Lagrangian that is
linear on any time derivative and is a function of seven
variables ðc t; �D2E;V ; �s; �’3; �;BÞ but only of five mo-
menta ð�c t ;�E ;�V ;��s;��’3

Þ. The extra two varia-

bles, namely ð�;BÞ have no time derivative and the
Lagrangian is only linear in these terms. Thus, they can
be safely treated just as Lagrange multipliers. By varying
the Lagrangian with respect to ð�;BÞ one obtains

�V �
��

3
�c t ¼ 0 and �D2

K�E �
�c t

3
¼ 0: (84)

The above constraint equations show that from the three
momenta ð�c t ;�E ;�V Þ, there is actually only one line-

arly independent variable. Therefore, we can rewrite all of
them in terms of just one. The choice is irrelevant, and
leads to the same result. Nevertheless, there is a shorter
route, which is to privilege �E . Thence, let us write �c t

and �V in terms of �E as

�c t ¼ 3 �D2
K�E ; �V ¼ �� �D2

K�E :

We can now use this result to simplify the Lagrangian. In
terms of only one momentum the Lagrangian reads

�Lð2;sÞ ¼ 3 �D2
K�E

_Uþ��s
_�sþ��’3

� _’3 � �H ð2;sÞ;

where we have dropped the subindex ‘‘c’’ in the
Hamiltonian since we have solved all the constraints.
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A direct calculation shows that the unconstrained

Hamiltonian is given by �H ð2;sÞ ¼ �H ð2;sÞ
c þ _���VV ,

with all momenta written in terms of �E . Hence,

�H ð2;sÞ ¼ �c2s ��
2 �D2�E

�D2
K�E

2
ffiffiffiffiffiffiffi� �g

p
�n �#

� �� �� �D2
K�E�s

�n �#

þ
�
3 �K � 3	 �n �#

2
þ �c2s ��

2

�
3 �K�E

�D2
K�E

2
ffiffiffiffiffiffiffi� �g

p
�n �#

� ffiffiffiffiffiffiffi� �g
p �

9 �n �#

2 ��2
� �D2

K� þ S
�s2

2

�

� 3

2
ðE �v þ E ��ÞV �D2

K�E ;

where we have defined a new variable

� � U� �K ���Effiffiffiffiffiffiffi� �g
p

�n �#
¼ U� 2 �K

	 �n �#
�: (85)

The variable � was introduced just to complete the
square and hence to avoid any cross term between U and
�E . However, the kinetic part of the Lagrangian is still
written in terms of U variable. By rewriting this term,
we obtain

3 �D2
K�E

_U¼3 �D2
K�E

_�þL �v

�
3 �K ���E

�D2
K�E

2
ffiffiffiffiffiffiffi� �g

p
�n �#

�

�
�
E �n

�n
þ �c2s _�n

�n
þ@ �#

@�s

�������� �n

_�s�
_��
��

�
3 �K ���E

�D2
K�E

2
ffiffiffiffiffiffiffi� �g

p
�n �#

:

Therefore, discarding a surface term, the Hamiltonian in
terms of � simplifies to

�H ð2;sÞ ¼ �c2s ��
2 �D2�E

�D2
K�E

2
ffiffiffiffiffiffiffi� �g

p
�n �#

� �� �� �D2
K�E�s

�n �#

� ffiffiffiffiffiffiffi� �g
p �

9 �n �#

2 ��2
� �D2

K� þ S
�s2

2

�
: (86)

As a result of this substitution, the Lagrangian gains an

additional term l
bg
5 that has only terms proportional to the

background equations, i.e.,

l
bg
5 ¼ �

�
ð1þ �c2sÞ

��E �n

�n
þ @ �#

@�s

�������� �n

��E �s

�
3 �K�E

�D2
K�E

2
ffiffiffiffiffiffiffi� �g

p
�n �#

� 3

2
ðE �v þ E ��Þ

�
3 �K�E

�D2
K�E

2
ffiffiffiffiffiffiffi� �g

p
�n �#

�V �D2
K�E

�
:

As the final step, we can perform another change of vari-

ables in order to cancel the term l
bg
5 . One can check that the

adequate transformation is

V ! V � 3 �Kð1þ �c2sÞ ���E
�D2
K�E

2ð ffiffiffiffiffiffiffi� �g
p

�n �#Þ2 ;

�’4 ! �’4 þ @ �#

@�s

�������� �n

3 �K ���E
�D2
K�E

2ð ffiffiffiffiffiffiffi� �g
p

�nÞ2 �# ;

� ! �þ 3

2

�
3	 �K�E

�D2
K�E

2
ffiffiffiffiffiffiffi� �g

p 2 �n �#
�V �D2

K�E

�
;

C ! Cþ 3

2

�
3	 �K�E

�D2
K�E

2
ffiffiffiffiffiffiffi� �g

p
2 �n �#

�V �D2
K�E

�
:

(87)

Therefore, we have that the second order Lagrangian to
be used in the variational principle is

�Lð2;sÞ ¼ 3 �D2
K�E

_� þ��s
_�sþ��’3

� _’3 � �H ð2;sÞ;
(88)

with the second order Hamiltonian �H ð2;sÞ given by
Eq. (86).
It is worth emphasizing the steps made up to this point.

When the constraints [Eq. (84)] are solved, the variable

U ¼ c þ
��V
3

(89)

appears naturally as the combination of the perturbations
involving a time derivative. However, in terms of this
variable, the Hamiltonian contains cross terms of U and
its momentum 3 �D2

K�E . To avoid these terms, we defined a
new variable � in which the Hamiltonian is diagonal with
respect to � and its momentum:

�� � 3 �D2
K�E ¼ 6

ffiffiffiffiffiffiffi� �g
p
	 ��

�D2
K�: (90)

To express the results above in a more familiar manner,
we first change the time derivative to a time defined by the
congruence l� ¼ Nv�. We denote the time derivatives
with respect to l� as T0 � LlT ¼ N _T, where the last equal-
ity is valid only when T is a scalar. In terms of this time
variable the Lagrangian reads

�Lð2;sÞ ¼ ���
0 þ��s�s

0 þ��’3
�’0

3 � �H ð2;sÞ; (91)

where the Hamiltonian is given by

�H ð2;sÞ ¼ N

�
	��

�D2 �D�2
K ��

4Nz2
� 	u2���s

2Nz2

�
�
N �c2sz

2

	
� �D2

K� þ ffiffiffiffiffiffiffi� �g
p

S
�s2

2

��
; (92)

and we defined the background quantities

z � 3

�cs ��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� �g
p

k �n �#

2N

s
¼ N

�csH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a3kð �þ �pÞ

2N

s
; (93)

u �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

ffiffiffiffiffiffiffi� �g
p

��
���c2s

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Na3 ��

H �c2s

s
: (94)
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Note that Nz2 does not depend on N and, therefore,
Eq. (92) is linear on the lapse function. In the last equality

above, we defined the Hubble function H ¼ ��=3 and the
scale factor a, with H ¼ _a=a. With these definitions, one
can write

ffiffiffiffiffiffiffi� �g
p ¼ a3. For a general time variable, we

express the Hubble function as H � a0=a ¼ NH. It is
worth noting that, for a conformal time (N ¼ a), one
obtains the same expression for z as in the literature [see
Eq. (10.43b) in Ref. [26]]. From the Lagrangian in Eq. (91),
we read the following Poisson structure:

f�ðxÞ;�� ðyÞg ¼ �3ðx� yÞ;
f�sðxÞ;��sðyÞg ¼ �3ðx� yÞ;

f�’3ðxÞ;��’3
ðyÞg ¼ �3ðx� yÞ;

(95)

where x and y are coordinates at the same spatial hyper-
surface and all other Poisson brackets are equal to zero.
Thus, the time derivative of any perturbation field A is
given by

A0 ¼
�
A;

Z
d3x�H ð2;sÞ

�
:

We can also solve the momentum�� as a function of �
0.

Varying the Lagrangian with respect to �� we obtain

�� ¼ �D2
K
�D�2

�
2z2

	
� 0 þ u2�s

�
: (96)

Substituting back in the Lagrangian of Eq. (91), one
obtains

�Lð2;sÞ ¼ v0 �D2
K
�D�2v0

2
þ v

2
�D2
K

�
z00

z
�D�2 þ N2 �c2s

�
v

þ��s�s
0 þ��’3

�’ 0
3 �

ffiffiffi
k

2

s
v

z
�D2
K
�D�2ðu2�sÞ0

þ
�
N

ffiffiffiffiffiffiffi� �g
p

S þ ku4

2z2

�
�s2

2
;

where we have discarded the surface terms. In the
Lagrangian above, we introduced the Mukhanov-Sasaki

variable v � �z
ffiffiffiffiffiffiffiffi
2=k

p
, which coincide with the one defined

in Eq. (10.61) of Ref. [26]. Note, however, that the
Lagrangian stated in this reference [Eq. (10.62)] is not
valid for a non spatially flat background metric.

Finally, the total Hamiltonian up to second order is

H ¼ Hð0Þ þ
Z

d3x�H ð2;sÞ; (97)

where the zero order Hamiltonian reads

Hð0Þ ¼ N

�
~Va3 �� 3 ~Va ~K

	
� 	�2

a

12 ~Va

�
; (98)

�H ð2;sÞ is given in Eq. (92), and ~V is the comoving volume
and ~K � a2 �K the comoving spatial curvature. In this
construction, the energy density is � � �ð �n; �sÞ, where

�n � ���’1
=ð ~Va3Þ and the Poisson structure is given by

the expressions

fa;�ag¼1; f �’1;��’1
g¼1; f �’3;��’3

g¼1; f �s;��sg¼1:

Accordingly, we have explicitly obtained the second
order Hamiltonian and written the complete Hamiltonian
including its zero order part. However, in general, besides
these terms, the full action still contains the first order

Lagrangian, i.e., the �Lð1Þ. To deal with these linear terms,
one can use different approaches. For example, in Ref. [1]
the authors define a first order Hamiltonian and argue that
in a perturbative regime they are not relevant to the quan-
tization inasmuch as they can be modified by changing the
ordering of the operatores and eventually only add a global
phase to the quantum state. Alternatively, in a classical
Friedmann model, by redefining the background variables
one can always make each perturbed field to have zero
spatial mean, which discard the first order Lagrangian all
together (see for instance Ref. [3]).
Note that our calculations have been done as general as

possible, namely, for an arbitrary spatial curvature K and
for an arbitrary fluid, which can include entropy perturba-
tions. Particularly important is the fact that we have no-
where used the background equations of motion. Thus, this
Hamiltonian system for the second order fields can be
simultaneously quantized with the background degrees
of freedom.

VII. COMPARISON OF THE METHODS

We have repeatedly stressed that our simplification pro-
cedure using field redefinitions eliminates terms propor-
tional to the background equations, but it is important
to remark that this is not equivalent to use these equations
explicitly.
As a matter of fact, the first order Lagrangian is com-

posed of terms that are always in the form of a zero order
equation of motion multiplying a single perturbed field.
This is essentially a consequence of the fact that the
equations leave the action stationary.
As a result, any redefinition of the perturbed variables

including second order terms will inevitably introduce
terms proportional to the background field equations in
the second order Lagrangian. These are exactly the extra
terms that we have used to simplify the second order
Lagrangian. Notwithstanding, one should note that we
are only allowed to implement contact transformations,
as you are working in the Lagrangian formalism, which
limits the types of terms we can eliminate in the second
order Lagrangian. Thus, it is not a priori evident that one
can fully simplify the second order action through these
transformations, but one has indeed to show case by case
that all unwanted terms can indeed be discarded. As an
example, we mention that any second order term involving
time derivatives of the perturbations cannot be eliminated.
Therefore, terms in the second order Lagrangian that are
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proportional, for instance, to E �V
_V (defined below)

cannot be discarded through our transformations.
Another very important point is that the use of the

background field equations produces an ambiguity in
the form of the second order Lagrangian and, for this
reason, an ambiguity in the perturbed momenta obtained
from it. To be more specific, let us consider the momen-
tum �V that is defined in Eq. (59) as �V ¼
� ffiffiffiffiffiffiffi� �g
p ð�� �� �n �#V Þ. We can easily identify that the

term multiplying V is half of the background energy
density conservation equation [see Eq. (50)], i.e.,
E � ¼ 0, where

E � � �#E �n þ �� �nE�s ¼ _�þ �� �n �# ¼ _�þ ��ð �þ �pÞ:
Suppose now that during our procedure, instead of the

above expression defined in Eq. (59), we had bumped into
a similar term such as �V ¼ � ffiffiffiffiffiffiffi� �g

p ð�þ _�V Þ. At the
classical level, or when quantizing only the perturbations,
where the background equations are valid, these two ex-
pressions are equivalent. Nevertheless, this equivalence is
not fulfilled at full quantum level, where quantum expec-
tation values of physical quantities like � may differ, as
its relation to �V is not the same. Therefore it seems
imperative to discern between these two definitions of
the �V momentum.

To change the definitions of �V as above one has to
use the E � term, as we can write �V =

ffiffiffiffiffiffiffi� �g
p ¼

�ð�þ _�V Þ þ E �V . As long as the momentum �V
appears squared in the second order Lagrangian, the
change of definitions of this momentum is equivalent to
have two extra terms in the Lagrangian one being propor-

tional to E ��V / E �V
_V , which is exactly the type of

term that our procedure cannot eliminate. Therefore, this
ambiguity in the definition of �V is not present in our
procedure, contrary to the situation where one assumes the
background field equations. As a matter of fact, following
our procedure all the way through, gives us a unique and
unambiguous definition of the momenta.

The discussion above revolves about the Lagrangian
action principle, therefore, one could wonder whether there
are transformations in the Hamiltonian formalism capable
of dealing with the terms discussed above. It is easy to
check that the type 2 canonical transformation applied to
the constrained Hamiltonian in Eq. (83), with the generator

G2ðV ;�new
V

Þ ¼ ffiffiffiffiffiffiffi� �g
p

E �

V 2

2
þV�new

V
;

transforms the momentum as

�V ! �new
V

¼ �V � ffiffiffiffiffiffiffi� �g
p

E �V ¼ � ffiffiffiffiffiffiffi� �g
p ð�þ _�V Þ:

However, this transformation is time dependent and, for
this reason, the Hamiltonian should transform as

�H ð2;sÞ
c ! �H ð2;sÞ

c þ ð �� ffiffiffiffiffiffiffi� �g
p

E � þ
ffiffiffiffiffiffiffi� �g

p
_E �ÞV

2

2
;

introducing a time derivative of the equations of motion
E �, which cannot be removed from the Hamiltonian using

transformations involving the perturbative first order vari-
ables. This is similar to what happens in the Lagrangian
formalism, using contact transformations: one could try to

eliminate the term
ffiffiffiffiffiffiffi� �g

p
E �V

_V rewriting it as

L �v

� ffiffiffiffiffiffiffi� �g
p

E �

V 2

2

�
� ð �� ffiffiffiffiffiffiffi� �g

p
E � þ

ffiffiffiffiffiffiffi� �g
p

_E �ÞV
2

2
;

and then remove the additional terms using a contact trans-
formation. However, in this case, these terms are not
proportional to the zeroth order equations of motion and,
hence, they cannot be removed with the methods we have
been using so far.
Summarizing, there are at least two strong reasons to

implement our procedure instead of using the background
equations of motion. The first reason stems from the fact
that the change of variables technique implemented in this
article may not yield, in general, the same second order
Lagrangian. One has to show that all the terms to be
simplified are indeed of the allowed form. Secondly, and
most important, our procedure solves the ambiguity in the
definition of the perturbed momenta if one assumes the
validity of the background field equations. Hence, in order
to obtain the correct kinetic terms, and consequently the
correct Poisson bracket structure, it is necessary to obtain
the second order Lagrangian without referring to the
background equations of motion.

VIII. CONCLUSIONS

The main result of this paper was the construction of the
Hamiltonian [Eq. (97)] describing the dynamics of linear
cosmological perturbations on a homogeneous and iso-
tropic background with arbitrary curved spatial sections
filled with a general fluid with entropy, with the zeroth
and second order Hamiltonian terms given by Eqs. (92)
and (98), respectively. It is a rather simple Hamiltonian
obtained without ever using the background equations of
motion, which can be immediately used for the canonical
quantization of the perturbations and background, as it was
done in Refs. [2–4] for the case of hydrodynamical perfect
fluids and scalar fields without a potential.

Similar forms of the Hamiltonian �H ð2;sÞ, obtained in
the case of matter described by one scalar field, have been
derived in the literature and considered in the cosmological
context of a one-bubble inflationary universe and in
K-inflation, see Refs. [27,28]. Besides the generality of
our approach, note that our procedure follows the logical
steps of going from a Lagrangian system to a Hamiltonian
formulation, and the commonly known variables present in
the literature, such as � as defined in Eq. (85), appear
naturally during the process.
Our next steps are, of course, to perform the

canonical quantization of the model, and use the same
Faddeev-Jackiw reduction method in order to obtain a
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simplified Hamiltonian for the case of scalar fields with a
potential filling a Friedmann model with arbitrary curved
spatial sections without ever using the background equa-
tions of motions, hence completing the program initiated
with Refs. [2–4] for the case of linear cosmological per-
turbations in homogeneous and isotropic backgrounds.
Then we can begin the much more involved program of
obtaining the Hamiltonians describing the dynamics of
linear perturbations in Bianchi models and of second order
perturbations in Friedmann models.
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APPENDIX A: KINEMATIC PERTURBATIONS

In this Appendix we shall obtain the perturbations of the
kinematic parameters defining an arbitrary spatial slicing.
The space-time foliation can be defined through the normal
vector field v� which in turn can be characterized by its
kinematic parameters. We perform these calculations for
an arbitrary background with another choice of spatial
hypersurfaces ( �v�) with the assumption that both spatial
sectioning are global and that the background foliation is
geodesic, i.e., �v�r� �v� ¼ 0. However, we are interested in

a description in which these sectioning are close in the
sense that �v� � v� � �v� has the same order of magni-
tude as ���. Thus, at first order we have

v�v�g
�� � �1� � �v �v þ 2�v �v ¼ �1;

) �v �v ¼ � � � �v �v

2
;

(A1)

where we have defined the time-time projection of ���.

Defining the spatial projection of �v�, v� ¼ ��½�v��
we obtain

�v� ¼ �� �v� þ v�; (A2)

and for �v� � v� � �v�,

�v� ¼ � �v� þ v� þ B�; B� � � ��½� �v
��: (A3)

Finally, the perturbation in the projector ��
� is

���
� � ��

� � ���
� ¼ v� �v� þ �v�½v� þ B��: (A4)

1. Acceleration field

Using the expressions above we obtain the perturbation
on the acceleration (�a� � a� � �a�) as

�a� ¼ B� �K�� þ _v� � _� �v� þF � �v
�v: (A5)

From Eq. (9) we note that F �ð��Þ ¼ ����;�=2, hence,

F � �v
�v ¼ ��k� þ _� �v� � B�

�K�
�: (A6)

In terms of the metric perturbation, the perturbation of the
acceleration field reads

�a� ¼ _v� ��k�: (A7)

The covariant field is expressed by

�a� ¼ _� �v� þ ½ _B� þ _v�� ���� �F �v �v
�;

�a� ¼ _v� �g
�� ��k�;

(A8)

where the spatial projection of ��� is defined as

C�� � ��½����
2

; (A9)

and the projection F �v �v� can be written as

F �v �v� ¼ _� �v� þ�k� þ _B�: (A10)

Note also that the global slicing condition r½�v�� ¼
a½�v��, reduces at first order to

v ½�k�� ¼ 0: (A11)

2. Extrinsic curvature

From its definition K�� � �½r�v��, we obtain
�K �v

�v ¼ 0; �K �v
� ¼ �½v� þ B�� �K�

�;

�K�
�v ¼ �v�

�K�
�;

��½�K�
�� ¼ � �K�

� þ ½v� þ B��k� � ��½F �v�
��:

(A12)

The projection ��½F �v�
�� can be calculated directly from

Eq. (9)

��½F �v�
�� ¼ �

�B�
k� � B�

k�
2

þ ���� ���� _C�
�

�
: (A13)

Substituting Eq. (A13) back in Eq. (A12) we have

��½�K�
�� ¼ � �K�

� þ v�k� þ B�
k� � B�

k�
2

þ ���� ���� _C�
�: (A14)

Equation (A12), relates ��½F� �v
�� with the extrinsic

curvature perturbation �K�
�. To obtain an expression

for ��½F ��
�v� we have

�K �v �v ¼ 0; �K� �v ¼ �ðv� þ B�Þ �K��;

��½�K��� ¼ �� �K�� þ v�k� þ ��½F ��
�v�: (A15)

3. Expansion factor

Recalling that � � K�
�, Eq. (A14) gives us

�� ¼ � ��þ ½v� þ B��k� þ _C: (A16)
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4. Spatial curvature

We can rewrite Eq. (2) by substituting the spatial de-
rivative with its explicit form in terms of the covariant
derivative. In this manner, we obtain

R���
� ¼ 2K½�

�K��� þ �½R���
��: (A17)

Therefore, the perturbation at first order becomes

�R���
� ¼ 2�K½�

� �K��� þ 2 �K½�
��K���

þ ��½ �R���
�� þ ��½�R���

��:
Using Eq. (12), the last term above can be expressed as

1

2
��½�R���

�� ¼ ��½F �½�
�
;���

¼ ��½F �½�
��k�� � ��½F �v½�

�� �K���

� �K½�
� ��½F ���

�v�:
We can use Eqs. (A12) and (A15) to express the tensor

F ��
� in terms of the extrinsic curvature. In this way, the

time projections of the perturbed spatial curvature are

�R �v��
� ¼ �ðv� þ B�Þ �R���

�;

�R� �v�
� ¼ �ðv� þ B�Þ �R���

�;

�R�� �v
� ¼ �ðv� þ B�Þ �R���

�;

�R���
�v ¼ �v�

�R���
�;

(A18)

while its spatial projection can be rewritten as

��½�R���
�� ¼ 4½v½� �K��½�k�� þ ðv½� �K��½�Þk��� ����

þ 2ðB� �K�½�Þk�� þ 2 ��½F �½�
��k��: (A19)

In addition, by projecting Eq. (9) we have

��½F ��
�� ¼ ���

� � B� �K��; (A20)

where we have defined the tensor

���
� � ����½C��k� þ C��k� � C��k��; (A21)

and its contractions

�a� � ���
� ¼ �Ck�; (A22)

�b
� � ���

� ���� ¼ �2C
� k�

� þ Ck�: (A23)

In terms of the tensor ���
�, the projection of the spatial

Riemann tensor becomes

��½�R���
�� ¼ 4½v½� �K��½�k�� þ ðv½� �K��½�Þk��� ����

þ 2��½�
�
k��: (A24)

Alternatively, we can also express the perturbation
of the spatial Riemann tensor in terms of metric perturba-
tions, i.e.,

��½�R���
�� ¼ 4½v½� �K��½�k�� þ ðv½� �K��½�Þk��� ����

þ 2ðC�½�k��� �C�½�k���Þ���

�ð �R���
�C��þ �R���

�C��Þ���: (A25)

a. Spatial Ricci tensor

We can obtain the normal projection of the perturbation
on the spatial Ricci tensor by contracting the indexes � and
� in Eqs. (A18) and (A24), which gives

�R �v� ¼ �ðv� þ B�Þ �R��: (A26)

Similarly, its spatial projection is

��½�R��� ¼ 2ðv� �K�ð�k�Þ þ vð� �K�Þ k�
� � vð� ��k�Þ

þ v� �K��k� þ v�kð� �K�
�ÞÞ � v�k�

�K��

� v�k� ��þ�a�k� ����
�
k�: (A27)

Using the spatial projection given in Eq. (A25), one has

��½�R��� ¼ 2ðv� �K�ð�k�Þ þ vð� �K�Þ k�
� � vð� ��k�Þ

þ v� �K��k� þ v�kð� �K�
�ÞÞ � v�k�

�K��

� v�k� ��þ 2C�
ð�k�Þ� � Ck�� � C

��k�
k�:

(A28)

b. Spatial curvature scalar

The spatial curvature scalar is given by R ¼ R��g
��.

Therefore, its perturbation is given by �R ¼ �R�� �g
�� �

�R���
��. Recalling Eq. (A27) we obtain

�R ¼ 4v� �K�
�
k� þ 2v�k� �K�� � 2v�k�

��þ�a
�
k�

��b
�
k� � 2 �R��C

��: (A29)

Alternatively, from Eq. (A28) we have

�R ¼ 4v� �K�
�
k� þ 2v�k� �K�� � 2v�k�

��þ 2C��
k��

� 2Ck�
k� � 2 �R��C

��: (A30)

APPENDIX B: GRAVITATIONAL
PERTURBATION LAGRANGIAN

In this section we shall rewrite the gravitational
Lagrangian in terms of the perturbations on the kinetic
tensors obtained in Appendix A. These perturbations
were obtained by considering two different spatial section-
ing. However, it is more appealing from a physical point of
view, to construct the perturbed quantities with respect to
the same spatial sections.
We can achieve this change in the description of the

perturbations by imposing that both sectioning have the
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same normal one-form field �v�. Note however that their

normalization shall not be equal, since each of them is
normalized with its appropriated metric. From Eqs. (A1)
and (A2), we see that in this case the field v� vanishes.

Therefore, we can obtain all perturbations for the case
where both slicing have the same normal field by setting
v� equal to zero. This kind of kinetic variables are de-

scribed in details in Ref. [29].
First, we shall develop the kinetic part of the second

order gravitational Lagrangian Equation (18). This term
can be decomposed as

F ��
�F �

ð��Þ �F a�F b
� ¼ X5

n¼1

ln;

where

l1 ¼ �ð ��½F �v�
�� ��½F �

�v�� þ 2 ��½F �v�
�� ��½F �

� �v�Þ; (B1)

l2 ¼ 2 ��½F �v �v
�� ��½F � �v

�v� þ ��½F � �v
�v� ��½F �v

��v�; (B2)

l3 ¼ � ��½F a�� ��½F b
��; (B3)

l4 ¼ F �avF b
�v �F �v �v

�vF �v �v
�v; (B4)

l5 ¼ ��½F��
�� ��½F �

���: (B5)

Using Eqs. (A12) and (A15) we obtain

l1 ¼ �ð� �K�
� þ B�

k�Þð� �K�
� þ B�

k�Þ
þ �K�

��K�
� � 2ð� �K�

� þ B�
k�Þð� �K�

�

þ 2 �K�
�C�

�Þ þ 2ð� �K�
� þ 2C�

� �K�
�Þ�K�

�:

In order to obtain a Lagrangian that is quadratic in the
terms involving time derivative, we can use Eq. (A14) to

rewrite the quantity C�
� �K�

��K�
� modifying l1 to

l1 ¼ �ð� �K�
� þ B�

k�Þð3� �K�
� þ B�

k�Þ
þ �K�

��K�
� þ 4C�� �K�

�B½�k��

þ 2� �K�
��K�

� þ 4 ���� �K��C�
� _C�

�:

Additionally, we can rewrite the term 4 ���� �K��C�
� _C�

�

as

4 ���� �K��C�
� _C�

�

¼ 2 ���� �K��L �v½C�
�C�

��

¼ 2L �v½ ffiffiffiffiffiffiffi� �g
p

���� �K��C�
�C�

��ffiffiffiffiffiffiffi� �g
p

þ 2C�
�C�

�½2 �K�� �K�� � ����ð �� �K�� þ _�K��Þ�:
(B6)

Therefore, ignoring the surface term, one has

l1 ¼ �½� �K�
� þ B�

k��½3� �K�
� þ B�

k��
þ �K�

��K�
� þ 4C�� �K�

�B½�k��

þ 2� �K�
��K�

� þ 2C�
�C�

�

�
2 �K�� �K��

� ����½ �� �K�� þ _�K���
�
: (B7)

The second term l2 defined in Eq. (B2) can be simplified
by using Eqs. (A5) and (A8). Thus,

l2 ¼ ��a��a
� þ 2 _B��a

� � 2 _B�B�
�K��

þ B�B�
�K�� �K�

�:

Again we shall rewrite the terms involving only one time
derivative such that

2 _B�B�
�K�� ¼ L �v½ ffiffiffiffiffiffiffi� �g

p
B�B�

�K���ffiffiffiffiffiffiffi� �g
p

� B�B�ð �� �K�� þ _�K��Þ
þ 4B�B�

�K�� �K�
�; (B8)

and also

2 _B��a
� ¼ �L �v½2 ffiffiffiffiffiffiffi� �g

p
B��

k��ffiffiffiffiffiffiffi� �g
p þ 2ðB� _�Þk�

� 2 ��B��a� � 2B�
k� _�þ 4B�

�K���a�:

(B9)

Accordingly, discarding the surface term, we have

l2 ¼ ��a��a
� þ B�B�½ �� �K�� þ _�K���

� 3B�B�
�K�� �K�

� � 2 ��B��a� � 2B�
k� _�

þ 4B�
�K���a�:

The next term is l3, which can be written as

l3 ¼ ��a��b
� þ �a�ð�b

� ��a
�Þ þ �a��a

�

þ ð�a
� � ��½�a��Þð ��B� þ _B�Þ; (B10)

where we have used Eqs. (A5), (A8), and (A20). The last
term above can be rearranged as

ð�a
� � ��½�a��Þð ��B� þ _B�Þ

¼ ½ð _C� _�ÞB��k� þ L �v½ ffiffiffiffiffiffiffi� �g
p ð�a

� � ��½�a��ÞB��ffiffiffiffiffiffiffi� �g
p

� ð _C� _�ÞB�
k� þ 2 �K��ð�a� � ��½�a��ÞB�:

(B11)

Hence, ignoring the total derivative terms, we obtain

l3 ¼��a��b
� þ�a�ð�b

� ��a
�Þþ�a��a

�

�ð _C� _�ÞB�
k� þ 2 �K��ð�a� � ��½�a��ÞB�: (B12)
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The term l4, using Eqs. (A12), (A15), and (A16), reads

l4 ¼ B�
k�ð2� ��þ B�

k� þ _Cþ _�Þ þ�2 ��2 � ��2

þ 2� _� ��þ2 �K��C��ð _�� _CÞ: (B13)

Once more, we rewrite

�2 ��2þ2� _� ��¼L �v½ ffiffiffiffiffiffiffi� �g
p

�2 ���ffiffiffiffiffiffiffi� �g
p � _���2;

2 �K��C��
_�¼2L �v½ ffiffiffiffiffiffiffi� �g

p �K�
�C�

���ffiffiffiffiffiffiffi� �g
p �2� �K�

��K�
�

�2ð �� �K�
�þ _�K�

�ÞC�
��

þ2�2 �K�
� �K�

�þ2� �K�
�B�

k�:

Then, ignoring the total derivatives, l4 becomes

l4 ¼ B�
k�ð2� ��þ B�

k� þ _Cþ _�Þ � ��2 � _���2

� 2 �K��C��
_C� 2ð �� �K�

� þ _�K�
�ÞC�

��

� 2� �K�
��K�

� þ 2�2 �K�
� �K�

�

þ 2� �K�
�B�

k�: (B14)

The last term l5 is simply

l5 ¼ ���
���

�� � 2��
��B� �K�� þ B�B� �K��

�K�
�;

(B15)

where we have used Eq. (9) to rewrite F ��
� in terms of

���
�. Collecting all these five terms we obtain

X5
n¼1

ln ¼ �K�
��K�

� ���2 �½� �K�
�þB�

k��½� �K�
� þB�

k��þ 4C�� �K�
�B½�k��

þ 2C�
�C�

�½2 �K�� �K�� � ����ð �� �K�� þ _�K��Þ�þB�B�½ �� �K��þ _�K���� 3B�B�
�K�� �K�

� � 2 ��B��a�

þ 2B�
�K���a� ��a��b

� þ�a�½�b
� ��a

��þ 2 �K���a�B� þB�
k�½2� ��þB�

k��� _���2 � 2 �K��C��
_C

� 2½ �� �K�
� þ _�K�

��C�
��þ���

���
�� � 2��

��B� �K�� þB�B� �K��
�K�

�: (B16)

In order to simplify further the above equation, we first
note that we have the following identities relating the Ricci
tensor and the kinetic variables,

_�� ¼ � �K�
� �K�

� � �R �v �v; (B17)

_�K�� þ �� �K�� ¼ ��½ �R��� � �R�� þ 2 �K�
� �K��; (B18)

��½ �R� �v� ¼ �K�
�
k� � ��k�: (B19)

These are the exactly combinations of background var-
iables appearing in Eq. (B16). In particular, the term
quadratic in � is

l�� � �ð �K�
� �K�

� þ _�Þ�2 ¼ �R �v �v�
2: (B20)

Repeating this procedure for the terms quadratic in B� we

first have that

B�
k�B

�
k� ¼ ðB�B�

k� � B�B�
k�Þk� þ ðB�

k�Þ2

� B�B� �R��: (B21)

Hence, without the total derivatives, we obtain

lBB � B�B�ð �� �K�� þ _�K��Þ � 2B�B�
�K�� �K�

�

� B�
k�B

�
k� þ ½B�

k��2
¼ B�B� �R��: (B22)

The cross terms of � and B� are

l�B � 2½ ��ð�B�Þk� � �K�
�ð�B�Þk��;

¼ 2½ ���B� � �K�
��B��k� þ 2 �R� �vB

��: (B23)

The next possibility is the cross terms between � and
C��, i.e.,

l�C � �a�ð�b
� ��a

�Þ � 2ð �� �K�
� þ _�K�

�ÞC�
��;

¼ �½�ð�b
� ��a

�Þ�k� ���R� 2 �R�
�C�

��;

(B24)

where we have used Eq. (A29). The last cross terms are
between B� and C��, given by

lBC � 4C�� �K�
�B½�k�� þ 2ðC��k� � Ck� ����Þ �K��B�:

The extrinsic curvature is given by 3 �K�� ¼ ���� ���� þ
3 ����. However, due to the antisymmetry in the above C’s

terms, only the shear contributes. Thus, we can substitute
the extrinsic curvature by the shear in the above equation

lBC ¼ 4C�� ���
�B½�k�� þ 2ðC��k� � Ck� ����Þ ����B�:

There are also the terms quadratic in C��, i.e.,

lCC � 2C�
�C�

�ð2 �K�� �K�� � ����½ �� �K�� þ _�K���Þ
þ���

���
�� ��a��b

� � 2 �K��C��
_C:
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The last two terms above may be rewritten as

���
���

�� ¼ �ð���
�C��Þk� þ C�����

�
k�;

��a��b
� ¼ ½�a�C

�� � C½�a
� ��b

���k�
þ C

2
½��

a ��b
��k� ��a�k�C��:

Hence, ignoring the surface terms, we have

lCC ¼ 4C�
�C�

�ð ���� ���� � ���� ���
� ����Þ � C�

��R�
�

þ C

2
�R� 2C�

�C�
� �R�

� þ CC�
� �R�

�

� 2 �K��C��
_C: (B25)

It is interesting to perform one last simplification by com-
bining the last two terms to change from the spatial Ricci

tensor �R�� to the full Ricci tensor �R��.

Using Eq. (B18), we can rewrite the last two terms
above as

CC�
� �R�

� � 2 �K��C��
_C

¼ �L �v½ ffiffiffiffiffiffiffi� �g
p

CC�
� �K�

��ffiffiffiffiffiffiffi� �g
p þ CC�

� �R�
�

þ C _C�
� �K�

� � _CC�
� �K�

�:

Finally, ignoring the total derivatives and rewriting it in
terms of the kinetic perturbations, we obtain

lCC ¼ CC�
� �R�

� þ ðC�K�
� � ��C�

�Þ ���
�

þ ½ð ���þ B�
k�ÞC�

� � ð� �K�
� þ B�

k�ÞC� ���
�:

Putting all the above results together we have that the

kinetic term �Lð2Þ
gk [Eq. (18)] is given by

�Lð2Þ
gk ¼

ffiffiffiffiffiffiffi� �g
p
2	

�
�K�

��K�
� � ��2 � C�

��R�
� þ

�
C

2
��

�
�Rþ 4C�� ���

�B½�k�� þ 2ðC��k� � Ck� ����Þ ����B�

þ 4C�
�C�

�ð ���� ���� � ���� ���
� ����Þ þ ½ð ���þ B�

k� � ��ÞC�
� � ð� �K�

� þ B�
k� � �K�

�ÞC� ���
�

þ �R �v �v�
2 þ B�B� �R�� � 2C�

�C�
� �R�

� þ CC�
� �R�

� � 2 �R�
�C�

��þ 2 �R� �vB
��

�
: (B26)

Using the decomposition of ���, the potential term �Lð2Þ
gp [Eq. (19)] reads

�Lð2Þ
gp ¼

ffiffiffiffiffiffiffi� �g
p
2	

�
�G �v �vðB�B

� � 2�2 � 2�CÞ þ �G �v�½4B�C
�� � 2ð�þ CÞB��

þ �G��½4C��C�
� � B�B� þ 2C��ð�� CÞ� þ �R

4
ð4C��C

�� � 2B�B
� þ 2�2 � 2C2 þ 4�CÞ

�
: (B27)

Therefore, summing these two terms, we obtain the gravitational second order Lagrangian

�Lð2Þ
g ¼

ffiffiffiffiffiffiffi� �g
p
2	

�
�K�

��K�
� � ��2 � C�

��R�
� þ

�
C

2
��

�
�Rþ 4C�� ���

�B½�k�� þ 2ðC��k� � Ck� ����Þ ����B�

þ 4C�
�C�

�ð ���� ���� � ���� ���
� ����Þ þ ½ð ���þ B�

k� � ��ÞC�
� � ð� �K�

� þ B�
k� � �K�

�ÞC� ���
�

þ �G �v �vðB�B
� ��2 � 2�CÞ þ �G �v�ð4B�C

�� � 2CB�Þ þ �G��ð2C��C�
� � C��CÞ

�
: (B28)

APPENDIX C: MATTER PERTURBATION
LAGRANGIAN

In this section we first express the perturbed matter
Lagrangian up to second order in terms of the perturbations
on the metric and the energy momentum tensor. Then, the
spatial splitting is introduced by writing both perturbations
in terms of its projections.

Expansion up to second order of the matter action given
in Eq. (28) can be written as

Sm½g��; ’a� ¼ �Sm þ �Sð1Þm þ �Sð2Þm ; (C1)

where’a’s represent arbitrary matter fields. We are assum-
ing that the matter Lagrangian does not depend on deriva-
tives of the metric. The first order term is

�Lð1Þ
m ¼ �Sm

�’a

�’a þ
ffiffiffiffiffiffiffi� �g

p
2

�T�����; (C2)

where the overline means that the quantity should be
evaluated with the background fields. To simplify our
notation, we define

�’F �
Z

d4x
�F

�’a

�’a; �gF �
Z

d4x
�F

�g��

�g��;

(C3)

to represent, respectively, the perturbation of F varying
only the matter fields or the metric.
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The second order part is

�Lð2Þ
mffiffiffiffiffiffiffi� �g

p ¼
�
�’T��

2
þ�gT��

4

�
��� �

�T��

2

�
�����

������

4

�

þ
Z

d4y
�2Sm

�’a�’bðyÞ
�’a�’bðyÞ

2
ffiffiffiffiffiffiffi� �g

p ; (C4)

where we have written explicitly only the space-time co-
ordinates that differs from x. In terms of the full first order
perturbation we have �T�

� ¼ �gT�
� þ �’T�

�. Thus, the

second order matter action can be written as

�Lð2Þ
mffiffiffiffiffiffiffi� �g

p ¼
�
�T�

�

2
� �gT�

�

4

�
��

� �
�T��

4

�
�����

� � ����

2

�

þ
Z

d4y
�2Sm

�’a�’bðyÞ
�’a�’bðyÞ

2
ffiffiffiffiffiffiffi� �g

p : (C5)

Given an arbitrary foliation defined by the field v�, we
define the energy density, energy flux and stress tensor as

 � Tvv; q� � ��½Tv��; ��� � �½T���: (C6)

The perturbation of each projection is related with the
components of �T�

� by the relations

� ¼ �T �v
�v � �q�B

�; (C7)

�q� ¼ � ��½�T�
�v� � �q��þ �v�B

� �q�; (C8)

�q� ¼ � ��½�T �v
�� þ �q��� ���

�B� � B� �; (C9)

���
� ¼ ��½�T�

�� þ �v�
���

�B� � �q�B
�; (C10)

where �v� is the background foliation vector field.
Using the above expressions we rewrite the following

parts of the Lagrangian in terms of the projections of both
metric and energy momentum tensor perturbations. For the
energy momentum tensor perturbed with respect to all
perturbations one has

�T�
���

�

2
¼ ��� B��q� þ C�

����
� � �

2
B�B

�

þ �q�ð�B� þ 2B�C�
�Þ � ���

� B�B
�

2
:

For the energy momentum tensor perturbed with respect to
only metric perturbation

�gT�
���

�

4
¼ ��g

2
� B��gq�

2
þ C�

�

2
�g��

� � �

4
B�B

�

þ �q�
2
½�B� þ 2B�C�

�� �
���

�

2

B�B
�

2
:

Concluding, the second order matter Lagrangian for a
general combination of scalar fields expressed in terms of
the projections of the metric and energy momentum per-
turbations is given by

�Lð2Þ
mffiffiffiffiffiffiffi� �g

p ¼
Z

d4y
�2Sm

�’a�’bðyÞ
�’a�’bðyÞ

2
ffiffiffiffiffiffiffi� �g

p � B�

�
�q� � �gq� þ �q�C

2

�
þ C�

�

�
���

� � �g��
� þ ���

��

2

�

þ�

�
�� �gþ �C

2

�
� 1

2
½ �ðB�B

� ��2 � 2�CÞ � �q�ð4B�C
�� � 2CB�Þ þ ����ð2C��C�

� � C��CÞ�:
(C11)

The above derivation is valid for an arbitrary back-
ground metric. However, as it is well known, Einstein’s
equations relate the symmetries of the metric with symme-
tries of the energy-momentum tensor. In particular, while
considering a FLRW metric, the perfect fluid shall have
�k� ¼ �pk� ¼ 0. In addition, through the thermodynamic

relations we shall also have �sk� ¼ �nk� ¼ 0, as long as

�pk� ¼ �c2s �k� þ ���sk� and �k� ¼ �#nk� þ �n �� �sk�.
However, for a barotropic fluid where �� ¼ 0, we no

longer have the constraint over the entropy (�sk� ¼ 0).

Notwithstanding, there is still the constraint �# �nk� þ
�n �� �sk� ¼ 0.

Thus, from Eq. (33), we shall have �� ¼ �# dFð�sÞ
d�s , where

Fð �sÞ is an arbitrary function of the entropy. In this case, the
constraint amounts to ½log ð �nÞ þ Fð �sÞ�k� ¼ 0. Therefore,

we see that the entropy and the particle density can
have nonzero gradient as long as the above combination
remains constant.

The covector field �#� shall be proportional to the nor-

mal field. Consequently, we also have that ��½ �#�� ¼
�’1k� þ �’2 �’3k� þ �’4 �sk� ¼ 0. Therefore, the choice of a

FLRW as the background metric does not directly imply
that all the background scalar fields ’a’s shall be
gradientless.
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