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In this paper we show that there exists a new symmetry in the relativistic wave equation for
a scalar field in arbitrary dimensions. This symmetry is related to redefinitions of the metric
tensor which implement a map between non-equivalent manifolds. It is possible to interpret these
transformations as a generalization of the conformal transformations. In addition, one can show
that this set of manifolds together with the transformation connecting its metrics forms a group.
As long as the scalar field dynamics is invariant under these transformations, there immediately
appears an ambiguity concerning the definition of the underlying background geometry.
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I. INTRODUCTION

In this letter we will show that there exists a novel internal symmetry related to the underlying metrical structure
in which a relativistic field propagates. It allows a continuous infinity of active transformations of the metric tensor
and, in a sense, is complementary to the usual Lorentz and gauge symmetries. As it is well known, Lorentz symmetry
represents translational and rotational invariance in the Minkowski spacetime while gauge symmetries result from the
invariance of the equations of motion under certain internal groups of transformations [1]-[3]. Our result reveals a
third class of symmetry: invariance under a specific map between non-equivalent manifolds. We will show that the
set of allowed transformations constitutes a group and characterizes a class of distinct metric tensors.

Typically, the equation of motion of any field, in particular of the scalar field ϕ, is an intricate amalgam of the
underlying metric structure gµν , derivatives of the fields and some field’s functional (see, for instance [4, 5]). Apart
from the context of the Theory of General Relativity, the spacetime structure has to be previously and completely
characterized, for instance by giving the metric tensor in a riemannian manifold. This condition is necessary so as to
guarantee a well defined dynamics. Within this scenario, the spacetime should be understood as an a priori structure
by and over which fields propagate without disturbing its properties. To simplify our reasoning we disregard any
gravitational effect and consider the background as given by the Minkowski metric. We shall come back to some
considerations related to General Relativity at the end.

In general, each theory presents its external and internal symmetries. Besides being associated with conservation
laws and possible internal gauge freedoms, they also play a fundamental role in the very characterization of the
elementary particles. The Poincaré group distinguishes a privileged class of observers from which all the labels
attached to the building blocks of matter are specified (mass, spin, charge, etc) [6]. Note, however, that in the
framework of conservation laws the metric is taken as an ad hoc external object. Even in Noether’ s theorem one
generally studies the invariance of the action with respect to coordinates and dynamical fields variations, but always
keeping the metric fix.

Accordingly, it seems that to a greater or lesser extent all physical results depend on the previously assumed space-
time structure. Nevertheless, we will show that there is a certain degree of arbitrariness in the characterization of the
underlying background geometry that was not noted before. Indeed, starting from a very simple scalar field equation
in the flat spacetime we demonstrate that its corresponding dynamics is invariant under a specific transformation of
the background metric. Hence, the field dynamics does not distinguish which is the spacetime structure within this
class of non-equivalent curved metrics. In effect, if the scalar field ϕ is a solution of the Klein-Gordon equation in
Minkowski spacetime, then it will also be a solution of the Klein-Gordon equation in each and every curved metric of
an infinite family of metrics. The unveiling of this new internal symmetry raises new profound conceptual problems
related to quantization and may be viewed also as a mechanism to generate new solutions in curved spacetimes.
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II. THE SYMMETRY MADE MANIFEST

Let us start by considering a flat Minkowski spacetime M in D = 1 + d dimensions with metric tensor γµν in
an arbitrary coordinate system. The simplest possible relativistic wave equation in M is that of a neutral massless
spin-zero particle, which is described by the second order, linear, hyperbolic PDE [7]

�ϕ ≡ 1√
−γ

∂µ
(√
−γγµν∂νϕ

)
= 0 , (1)

with ϕ real and γ ≡ det(γµν). Let us consider a symmetric tensor field qµν in M defined as

qµν ≡ A γµν +B γµαγνβ∂αϕ ∂βϕ , (2)

where A and B are two arbitrary continuous and differentiable real functions. Denoting the canonical kinetic term as
w ≡ γµν∂µϕ ∂νϕ, the following identity holds

qµν∂νϕ = (A+Bw)γµν∂νϕ .

If qµν is non-degenerate there exists a new tensor1 q−1µν such that qµαq−1αν = δµν . In general, the inverse of an object

gµν = ηµν + hµν , with arbitrary hµν , is given as an infinite series2. Notwithstanding, due to algebraic properties
encoded in qµν , its inverse is simply

q−1µν =
1

A
γµν −

B

A(A+Bw)
∂µϕ∂νϕ . (3)

The determinant of q−1µν in D = 1 + d dimensions may be easily calculated using Sylvester’s determinant theorem
which states that if M and N are respectively p× q and q × p matrices, then

det (1p + MN) = det (1q + NM) ,

where 1r is the identity matrix of order r. A direct calculation yields the expression√
−det

(
q−1µν
)

=
√
−γ
[
A−d/2(A+Bw)−1/2

]
. (4)

Hereafter, we shall envisage the tensor field qµν as defining a metric on a new riemannian manifold M̂. In addition,
we shall consider if it is possible to choose A and B such that any given solution of the massless Klein-Gordon equation
(1) with metric γµν is also a solution of the massless Klein-Gordon equation in the qµν metric spacetime.

Curiously enough, by choosing B = (Ad − A)/w with A(x) still completely arbitrary, there is such a degeneracy
in the description of the metrical structure. Note also that in this case the determinant (4) ceases to depend on the
scalar field and becomes proportional only to a power of the function A. Hence, by demanding A to be a non-zero
and well behaved function, the metric is always invertible.

Consequently, the equation of motion that describes a real massless scalar field in a D-dimensional Minkowski
spacetime is invariant under all possible transformations of the metric γµν → qµν with

qµν = A

{
γµν +

Ad−1 − 1

w
γµαγνβ∂αϕ∂βϕ

}
. (5)

Thus, if ϕ is a solution of equation (1), then it also satisfies

1√
−det

(
q−1µν
) ∂µ(√−det (q−1µν ) qµν∂νϕ) = 0 .

For a fixed solution ϕ(x), transformation (5) is completely characterized by the function A(x). Therefore, we shall
label each metric with a subscript qµν(A). Furthermore, one should view qµν(A) as a metric tensor that defines a new

1 Note that q−1
µν 6= qαβγαµγβν .

2 The inverse of gµν = ηµν + hµν , with arbitrary hµν , is given as gµν = ηµν − hµν + hµαhαν + . . .
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spacetime. In this new manifold, every tensor should have its indices raised and lowered by the metric qµν(A). In

particular, the inverse of the metric which is given by the relation qµα(A)q(A)αν = δµν is simply q−1µν , i.e. q(A)µν = q−1µν .

This nontrivial result brings to light an interesting ambiguity concerning the very definition of the background
metric. In fact, due to the described symmetry, it seems that it is impossible to distinguish between these metrics
by studying the dynamics of the ϕ field. The scalar field has the same evolution in all these different spacetimes, i.e
given an arbitrary solution ϕ of the wave equation (1), there exists an infinite class of curved spacetimes in which ϕ
is also a solution.

At this point, we should mention that the above internal symmetry in the dynamical equation should not be
mistaken by general covariance. Indeed, one can easily show that the metric γµν cannot be mapped into qµν(A) by a

simple coordinate transformation. First note that in its definition, equation (5), there is a global factor A(x) which
plays a role similar to a conformal factor. Thus, it cannot be a coordinate transformation if A(x) is a non-constant
function. Notwithstanding, even when A is constant, it is still not a coordinate transformation. We can convince
ourselves by noting that in this case the metric assumes the form of a Gordon-like metric [8, 9]. In analogue models
of gravitation [10, 11], a Gordon metric is of the form

gµν = a0η
µν + b0v

µvν ,

with a0 = const, b0 defined in terms of the electromagnetic properties of the medium and vµ a normalized vector in
the Minkowskian inner product. This is precisely the same form of qµν(A) when A is constant. Conclusively, we can also

show that qµν(A) is not Minkowski spacetime written in a different coordinate system by displaying a specific example.

Consider a static spherical symmetric solution of the Klein-Gordon equation. This solution is of the form ϕ = λr−1

with λ a real constant. Pluging this solution in equation (5) one can show that the curvature tensor associated with
qµν(A) is non-zero which is a result that cannot be accomplished by a coordinate transformation.

While covariance is connected with different coordinate coverings in the same manifold M, the present symmetry

defines a set
{
M̂
}

of different manifolds. Each one of them is parametrized by a realization of the function A(x).

Thus, if we are constrained to make experiments only with the massless scalar field ϕ, we are not able to distinguish
in which particular realization the field propagates, at least at the classical level.

Note that if d = 1 the transformation (5) reduces to a conformal transformation (see [12, 13] for a detailed
discussion). This is the unique space dimension where the transformation does not depend on the particular solution
ϕ. Hence, the well known conformal invariance of the wave equation in (1+1) dimensions can be viewed as a
particular case of transformation (5). In this sense, this new symmetry transformation is a generalization of the
conformal transformation.

Having defined the metrical structure of a riemannian manifold, one can study its properties by constructing the
geometrical objects and the Debever’s invariants associated to it. Considering for instance the curvature tensor that
has second derivatives of the metric qµν(A), it happens that it will also depend on third derivatives of the scalar field

and second derivatives of the function A

Rαβµν(A) = Rαβµν(A)

(
γ, . . . , ∂2γ; ϕ, . . . , ∂3ϕ; A, . . . , ∂2A

)
.

The explicit expression in terms of the function A and ϕ is a very long and involved equation that should be analysed
for each particular solution. Besides, there seems to have no natural way to separate and classify the terms appearing
in its decomposition. It is also worth noting that, in general, the metric qµν(A) does not have the same isometries as

the original γµν . There is no reason for these two metrics to share the same set of killing vectors. A trivial example
is to consider static solutions where the scalar field single out a preferred direction hence destroying the isotropy of
the Minkowskian metric.

Our analysis has focused in the invariance of the equation of motion (1) under metric transformations and, as it is
well known, symmetries of the equation of motion do not imply symmetries in the action. However, it is straightforward
to show that transformation (5) is also a symmetry of the action. Indeed, the action integral

S =

∫
γµν∂µϕ ∂νϕ

√
−γd4x (6)

is invariant under the map

γµν → qµν(A)

√
−γ →

√
−q(A) (7)

with q(A) ≡ det q(A)µν .
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In a Taylor expansion around a fiducial point x0, the function A(x) is characterized by an infinite number of
parameters. Consequently, the continuous symmetry of the action is also characterized by an infinite number of
parameters [14].

In each curved manifold belonging to M̂, there is a conservation law that is associated with the propagation of the
scalar field in the qµν(A) metric. In each riemannian manifold defined by qµν(A), one has the metricity condition

∇µ
(A)q

αβ
(A) = 0 , (8)

where the subscript (A) in the covariant derivative operator indicates that it is constructed with the metric qαβ(A).

Defining the tensor

Tµν(A) ≡ q
µα
(A)q

νβ
(A)∂αϕ ∂βϕ−

1

2
qµν(A) q

αβ
(A)∂αϕ ∂βϕ (9)

it is immediate to check that it is divergenceless with respect to qµν(A), i.e.

∇(A)µ T
µν
(A) = 0 . (10)

III. THE TRANSFORMATION VIEWED AS A GROUP

Another interesting property of the symmetry transformation (5) is that together with the set of differential man-

ifolds
{
M̂
}

they form a group for each and every solution ϕ. To simplify notation, from now on we define the

transformation symbol Ta associated with the function a(x). An application of Ta in the γµν metric is such that

Ta [γµν ] ≡ qµν(a) (11)

with qµν(a) defined by the rule (5). According to our previous discussion the transformation symbol relates two non-

equivalent manifolds. Let us show that a successive transformation Tb associated with the function b(x) yields again
a tensor of the form qµν(c). We have

Tb [Ta [γµν ]] = Tb [qµν(a)] . (12)

Replacing all γµν by qµν(a) into (5) one immediately obtains

Tb [qµν(a)] = b

{
qµν(a) +

bd−1 − 1

w(a)
qµα(a)q

νβ
(a)∂αϕ∂βϕ

}
,

where w(a) ≡ qµν(a)∂µϕ∂νϕ. A direct calculation using explicitly qµν(a) in terms of γµν gives us

Tb [qµν(a)] = c

{
γµν +

cd−1 − 1

w
γµαγνβ∂αϕ∂βϕ

}
,

with c = b.a. Therefore, the composition of two successive transformation, γ
T a−−→ q(a)

T b−−→ q(c) equals a single

transformation γ
T ba−−→ q(ba), i.e. q(c) = q(ba). Thus, the contraction of any two objects of the form (5) with γµν is

again an object of the same type. A carefull inspection of the transformations Ta reveals that all the usual group
properties are verified, i.e.

i) Identity

T1 ◦ Ta = Ta ◦ T1 = Ta

ii) Inverse

T −1a = T(a−1)
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iii) Closure

Tb ◦ Ta = T(b a)

iv) Associativity

Tc ◦
(
Tb ◦ Ta

)
= Tc ◦ T(ba) = T(cba) = T(cb) ◦ Ta =

(
Tc ◦ Tb

)
◦ Ta

It is worth noting that, since each transformation is characterized by a real function, we are dealing with an infinite
parameter abelian Lie group.

Actually, there is two possible ways to interpret transformation (5). First, one can view equation (5) as a rule to
define a new metric of a different manifold. Hence, it is a prescription to map different riemannian manifolds as we
have been considering so far. However, there is another possibility that is to consider equation (5) as a definition
of a family of tensors in the same spacetime, i.e. the only metric is the Minkowski metric. Thus, all tensors should
be raised and lowered with γµν . In this second approach, the family of tensors defined by (5) is a realization of the
group described above and the composition between two of its elements is made through the metric γµν . Indeed, the
product of two elements gives

qµα(a) γαβ q
νβ
(b) = qµν(ab) . (13)

Therefore, in this realization the identity element is the γµν metric and the inverse of qµν(a) is given by qαβ(a−1) γµα γνβ .

In order to distinguish between these two approaches we may refer to them as an active or passive transforma-
tion. The active transformation defines different metrics and maps different riemannian manifolds while the passive
transformation defines a family of tensors in the same manifold.

IV. GENERAL REMARKS

Finally, we would like to comment on how it is possible to generalize our results. First, instead of considering a
massless free scalar field, one could consider a mass term m2ϕ2 or include self-interaction through a potential V (ϕ) in
the lagrangian. In both cases, all the above results are preserved if in addition to the transformation of the metric one
also transforms the mass and the potential of the scalar field. Thus, if the field ϕ is a solution of the Klein-Gordon
equation with mass m and potential V (ϕ) in the γµν spacetime, then it is also a solution of the Klein-Gordon equation
with

m2 → Adm2 VA(ϕ)→ AdV (ϕ) (14)

in the qµν(A) spacetime. Thus, the map endows a position dependent mass term or in the case of a constant function A

it can simply renormalize the mass of the scalar field.
Until now, we have deliberately excluded gravity from our analysis but at this moment it is compelling to engage in

some considerations. The first alert is that, in principle, there is no dynamics for the metric qµν(A). It simply inherits

the dynamics of the scalar field but with still an arbitrary function. Note that the function A does not need to satisfy
any equation at all. Thus, in the present status of the formalism we cannot propose any dynamical equation for these
metrics. However, there is yet a nontrivial and open question that one can ask. Is it possible to find specific functions
A that, for a given solution ϕ, the metric qµν(A) satisfies Einstein’s Equations? It would surely be a very interesting

result that we hope to analyze in a future work.
Apart from this question, there is another way to consider gravitational effects. One could, for instance, examine

how this ambiguity in the definition of the metrical structure could be sustained in a gravitational scenario. Suppose
there is a single scalar field with energy density strong enough so that it is imperative to consider how it deforms the
spacetime structure. The solution that satisfies simultaneously Einstein’s equations and the Klein-Gordon equation
is a pair of fields (gµν , ϕ). Thus, it seems that GR would imply a unique characterization of the metric as far as the
propagation of ϕ is concerned. Nevertheless, even in this case, there is still a degeneracy in the metrical structure
of the spacetime inasmuch we don’t have a direct access to the metric gµν . Supposing that we can only survey the
spacetime by studying the behavior of its matter content, i.e. by analyzing the evolution of the scalar field ϕ, then
we will still have an ambiguity in the definition of its metrical structure.

In fact, as long as the Klein-Gordon equation still maintains its internal symmetry, one can define an infinite family
of spacetimes by replacing the Minkowski metric in equation (5) by the gµν metric coming from Einstein’s equations.
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Thus, if ϕ satisfies Klein-Gordon equation in the gµν metric then it will also satisfies it in the q(A)µν metric. Under
the condition that the only means by which we can analyze the metric of the spacetime is through the dynamics of
the scalar field, we become in all cases unable to distinguish between any of the non-equivalent metrics related by
transformation (5).

We end our considerations with the following yet open questions. Is there a similar internal symmetry associated
with the dynamics of other physical fields such as the gauge bosons or spinors? Does this spacetime ambiguity still
remains in the realm of quantum physics? We will investigate these problems in a forthcoming paper.
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