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Realism in Energy Transition Proesses: an example fromBohmian Quantum MehanisJ. Aaio de Barros, J. P. R. F. de MendonçaDepartamento de Físia � ICEUniversidade Federal de Juiz de Fora36036-330, Juiz de Fora, MG, BrazilN. Pinto-NetoCentro Brasileiro de Pesquisas FísiasR. Dr. Xavier Sigaud 15022290-180, Rio de Janeiro, RJ, Brazil25th September 2008AbstratIn this paper we study in details a system of two weakly oupled harmoni osillators.This system may be viewed as a simple model for the interation between a photon and aphotodetetor. We obtain exat solutions for the general ase. We then ompute approximatesolutions for the ase of a single photon (where one osillator is initially in its �rst exited state)reahing a photodetetor in its ground state (the other osillator). The approximate solutionsrepresent the state of both the photon and the photodetetor after the interation, whih isnot an eigenstate of the individual hamiltonians for eah partile, and therefore the energiesfor eah partile do not exist in the Copenhagen interpretation of Quantum Mehanis. Weuse the approximate solutions that we obtained to ompute bohmian trajetories and to studythe energy transfer between the two partiles. We onlude that even using the bohmian viewthe energy of eah individual partile is not well de�ned, as the nonloal quantum potentialis not negligible even after the oupling is turned o�.1 IntrodutionThe disussions about the inompleteness of the wavefuntion to desribe physial proesses datesbak to the beginning of quantum mehanis itself. This disussion is losely related to thepossibility of desribing quantum mehanial systems from an underlying realisti model. In 1952,David Bohm showed that suh a realisti model was possible. However, Bohm's theory had theproblem of being nonloal [1, 2℄. In 1963 John Bell showed that in order to obtain the same resultspredited by quantum mehanis, any realisti theory would have to be nonloal [17℄. Bell's resultand the failure of using the Copenhagen interpretation of quantum mehanis to some partiularsituations, as in for example Quantum Cosmology, lead to a raised interest in Bohm's interpretationand in nonloal realisti theories [7℄.The subjet of reallity and nonloality has been an interest of Patrik Suppes for quite a while[17℄, in partiular for the photon. In fat, one of the authors of this paper o-published withhim a series of papers that layed down the foundational analysis of realisti and loal model ofphotons that ould explain the double slit experiment, the EPR experiment and other phenomena[18, 19, 20, 21℄. The problem with the Suppes and de Barros model was that it did not havea onsistent theory of photon-ounting for single photons, and therefore ould not explain thenon-loality of single photons and the GHZ experiment, for example.1
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In this paper we try to respond, within Bohm's model, the question: what is a photon? Wedo not follow the standard Bohmian interpretation for bosoni �elds (as an be found in [11℄).Instead, we use the simple interpretation that �a photon is what a photodetetor detets�. One maythink of a photodetetion as a transfer of energy from a quantized mode of the eletromagneti�eld (the photon) to an atom in its ground state (the quantum photodetetor). Therefore, tostudy this photodetetion we will fous on the proess of transfer of energy from the photon tothe photodetetor.To study the exhange of energy in details, we have to hoose between two di�erent andsimple models of a photo-detetor: a photo-detetor with disrete or ontinuous band [5℄. Forthe purpose of simpliity, we will hoose the former. However, sine we are only interested in theaspets of energy transfer between the two systems, we will make an even further simpli�ation andonsider that the photon and the detetor will both be desribed by a single harmoni osillator.Furthermore, during some time ∆Tint, we will assume that a linear interation exists between thetwo osillators, and that this interation is weak. This detetion model is known as an indiretmeasurement [4℄, and has been the subjet of intense researh lately as it is diretly onnetedto quantum nondemolition experiments. As we will see, this �toy model� will allow us to apturesome important features of the entanglement between the two systems.This paper is organized in the following way. In Setion 2 we will quikly review the interationbetween two harmoni osillators for the lassial ase. This will allow us to understand how thetransfer of energy happens in suh ase. We then ompute the exat solutions for the quantummehanial system with interation (Setion 3). In Setion 4 we apply the results of Setion 3 toa spei� ase of exhange of a single quantum of energy and analyze its outomes. In Setion 5we use Bohm's theory to interpret the results obtained. The onlusions are in Setion 6.2 The Classial CaseBefore we go into the details of the quantum mehanial examples, let us begin by analyzing thelassial system of two one-dimensional oupled harmoni osillators with the same massm, elastionstant k, and oupling onstant λ, as shown in Figure 1. The Hamiltonian for this system isgiven by
H =

1

2m

(

P 2
1 + P 2

2

)

+
1

2
k
(

(X1 + d)2 + (X2 − d)2
)

+
1

2
λ (X1 −X2 + 2d)2 . (1)To simplify the equations of motion and eliminate the undesirable onstant d we an make theanonial transformation

x1 = X1 + d,

x2 = X2 − d,

p1 = P1,

p2 = P2.With the new variables equation (1) rewrites to
m m

k kλ

x−d dOFigure 1: Idential harmoni osillators oupled by a spring of onstant λ.
H =

1

2m

(

p2
1 + p2

2

)

+
1

2
k
(

x2
1 + x2

2

)

+
1

2
λ (x1 − x2)

2
. (2)2



The Hamiltonian equations of motion are
ṗ1 = − ∂H

∂x1
= −kx1 − λ (x1 − x2) ,

ẋ1 =
∂H

∂p1
=
p1

m
,

ṗ2 = − ∂H

∂x2
= −kx2 + λ (x1 − x2) ,

ẋ2 =
∂H

∂p2
=
p2

m
,yielding

m (ẍ1 + ẍ2) = −k (x1 + x2) , (3)and
m (ẍ1 − ẍ2) = − (k + 2λ) (x1 − x2) . (4)The general solutions to (3) and (4) are
√

2ξ+ = x1 + x2 = A cos

(

√

k

m
t+θ) ,

√
2ξ− = x1 − x2 = A′ cos

(

√

k + 2λ

m
t+ θ′

)

,(ξ+ and ξ− are the normal oordinates of the oupled harmoni osillators) or, equivalently,
x1 =

A

2
cos

(

√

k

m
t+ θ

)

+
A′

2
cos

(

√

k + 2λ

m
t+ θ′

)

x2 =
A

2
cos

(

√

k

m
t+ θ

)

− A′

2
cos

(

√

k + 2λ

m
t+ θ′

)

.We will assume that the two osillators are initially at rest the �rst one in its equilibrium position(null initial energy, Ei1 = 0), while the seond one is disloated from its equilibrium position by adistane D (initial energy given by Ei2 = (1/2)kD2):
ẋ1(0) = ẋ2(0) = 0,

x1(0) = 0,

x2(0) = D.The integration onstants then read
θ = θ′ = 0,

A = D,

A′ = −D,yielding 3



x1(t) =
D

2
[cos(ωt) − cos (ω′t)] (5)

x2(t) =
D

2
[cos (ωt) + cos (ω′t)] . (6)where we de�ned ω ≡

√

k/m and ω′ ≡ ω
√

1 + ε, with ε = 2λ/k. Equations (5) and (6) an bewritten in the following suggestive way.
x1(t) = −D sin

[

(ω − ω′)t

2

]

sin

[

(ω + ω′)t

2

]

, (7)
x2(t) = D cos

[

(ω − ω′)t

2

]

cos

[

(ω + ω′)t

2

]

. (8)We will now assume that the interation onstant λ is weak when ompared to the elastionstant k, ε≪ 1. Then, we an expand ω′ around ε = 0, yielding
ω′ =

√

k + 2λ

m
= ω

√
1 + ε = ω + 2δω (9)with

δω ≡ ω′ − ω

2
≈ λ

2
√
km

. (10)De�ning
ω̄ ≡ ω′ + ω

2
= ω + δω, (11)the solutions an now be written as

x1(t) = D sin(δω t) sin[ω̄ t], (12)
x2(t) = D cos(δω t) cos[ω̄ t], (13)where the dependene on λ of Eqs. (12) and (13) are present in δω and ω̄ through (10) and (11).The movement of both partiles is periodi, with two harateristi frequenies δω and ω̄. Thefrequenies δω and ω̄ are known as the normal modes of vibration, with ω̄ being alled the highernormal mode and δω the lower normal mode. Both movements have period τ = 2π/ω̄ and aremodulated by a variable amplitude with muh greater period given by τ = 2π/δω. They are

π/2 out of phase. We an ompute the energy of the two partiles, E1 = p2
1/2m + kx2

1/2 and
E2 = p2

2/2m+ kx2
2/2. They are

E1(t) =
kD2

2
sin2(δω t)

[

1 + 4
δω

ω̄
cos2(ω̄ t)

] (14)
E2(t) =

kD2

2
cos2(δω t)

[

1 + 4
δω

ω̄
sin2(ω̄ t)

] (15)Due to the oupling, the partiles exhange energy between themselves periodially, with period
τ = 2π/δω. Eah of the osillators ahieve its minimum energy value when the other have itsmaximum value. The maximum value of the energy an be a little bit bigger then kD2/2. Thismay seem odd, but we must remember that the extra energy is due to the interation energy
λ(x1 − x2)

2/2 = kε(x1 − x2)
2/4. It is easy to hek that if we add this interation energy to thesum E1 + E2 we obtain the total energy of the system
ET =

kD2

2

(

1 + 2
δω

ω̄

)

+O(δω2), (16)4



a value that is onstant for the whole movement, as we should expet. For more details, seeRefs.[8, 22℄, where this system and generalizations of it are analyzed with detail. Of ourse, as theHamiltonian is time independent, energy is always onserved.It is also interesting to note that the total energy of the system depends on the ouplingonstant, as shown by (16). A quik analysis of the origin of the �extra� energy shows us that thishappens beause of the initial onditions hosen. The initial onditions from whih we obtained(16) have the partile represented by x2 o� its equilibrium position, whereas the other partile isat its equilibrium position, with both partiles having zero kineti energy. This initial onditionobviously imply that the oupling spring, with elasti oe�ient λ, is also strethed from itsequilibrium position, and therefore has nonzero potential energy at t = 0. If we use other initialonditions, the �extra� energy due to oupling does not appear. For example, we an hoose bothpartiles at an initial position where all spring have no potential energy (in our ase, x1 = x2 = 0)and one of the partiles has some kineti energy while the other partile has zero kineti energy.With this set of initial onditions, the energy transfer from one partile to the other is the sameas before, but no oupling energy is present in the total energy.3 Quantum Evolution: Exat SolutionsNow we want to study the quantized version of the resonant spinless one-dimensional oupledharmoni osillator presented in the previous Setion. First we note that the total Hilbert spae
H = H1 ⊗H2 is spanned by H1 and H2, the Hilbert spaes for partiles 1 and 2, respetively. Forexample, the two anonial variables desribing partile 1 are

X̂1, P̂1 ∈ H1,with
[X̂1, P̂1] = ih̄1̂,and are therefore represented as

X̂1 ⊗ 1̂2, P̂1 ⊗ 1̂2 ∈ H,where 1̂2 ∈ H2 is the identity operator. In this way, the Hamiltonian operator for partile 1, iswritten as
Ĥ1 =

1

2m

(

P̂1 ⊗ 1̂
)2

+
1

2
k
(

X̂1 ⊗ 1̂ + d1̂ ⊗ 1̂
)2

.For shortness of notation, we will drop the tensor produt and keep in mind that operatorsregarding partile 1 at on H1 whereas operators regarding partile 2 at on H2.With the simpli�ed notation, the total quantum Hamiltonian operator for the two osillatorsplus the interation term is
Ĥ = Ĥ1 + Ĥ2 + ĤI

=
1

2m
P̂ 2

1 +
1

2
k
(

X̂1 + d̂
)2

+
1

2m
P̂ 2

2 +
1

2
k
(

X̂2 − d̂
)2

+
1

2
λ
(

X̂1 − X̂2 + 2d̂
)2

. (17)We an now make the following hange of variables, similar to the lassial ase:
x̂1 = X̂1 + d̂,

x̂2 = X̂2 − d̂,

p̂1 = P̂1,

p̂2 = P̂2.This hange of variables obviously keeps the ommutation relations between momenta and posi-tions. Hene, in the oordinate representation we have the Hamiltonian operator
Ĥ = − h̄2

2m

(

∂2

∂x2
1

+
∂2

∂x2
2

)

+
1

2
k
(

x2
1 + x2

2

)

+
1

2
λ (x1 − x2)

2
. (18)5



In analogy to the lassial ase, we work with the normal oordinates
ξ+ =

1√
2

(x1 + x2) , (19)
ξ− =

1√
2

(x1 − x2) . (20)This hange of variables has Jaobian one, and does not hange the normalization of wavefuntions.With the normal oordinates, the Hamiltonian is
Ĥ = − h̄2

2m

(

∂2

∂ξ2+
+

∂2

∂ξ2
−

)

+
1

2
kξ2+ +

1

2
(k + 2λ) ξ2

−
, (21)and is now separable, i.e.,

Ĥ = Ĥ+ + Ĥ−, (22)where
Ĥ+ = − h̄2

2m

∂2

∂ξ2+
+

1

2
kξ2+, (23)

Ĥ− = − h̄2

2m

∂2

∂ξ2
−

+
1

2
(k + 2λ) ξ2

−
. (24)Equations (23) and (24) are the well known Hamiltonians for one-dimensional unoupled harmoniosillator with frequenies √k/m and √(k + 2λ) /m, respetively.The Shroedinger equation for the system is

Ĥψ(ξ+, ξ−, t) = ih̄
∂

∂t
ψ(ξ+, ξ−, t). (25)To solve (25) we need to �nd its eigenfuntions and eigenvalues sine they form a basis for theHilbert spae. The general solution an be written as a superposition of the eigenfuntions. Hene,we need to �nd the solutions to the time independent Shroedinger equation

Ĥψ(l)(ξ+, ξ−) = Elψ(l)(ξ+, ξ−), (26)where l is an index (perhaps a olletive index for both osillators) for the energy to be determined.Sine Ĥ is separable, we an write (26) as two independent eigenvalue equations
Ĥ+φ

(n)
+ (ξ+) = Enφ

(n)
+ (ξ+) (27)and

Ĥ−φ
(n′)
−

(ξ−) = E′

n′φ
(n′)
−

(ξ−), (28)where we de�ne
ψ(l)(ξ+, ξ−) = φ

(n)
+ (ξ+)φ

(n′)
−

(ξ−), (29)and
El = En + E′

n′ .Clearly, l is an index that depends on both n and n′, and for that reason we will write ψ(n,n′)(ξ+, ξ−)instead of ψ(l)(ξ+, ξ−). The eigenfuntions of (27) and (28) are well known to be
φ

(n)
+ (ξ+) =

( √
mk

πh̄22n(n!)2

)1/4

Hn





(√
mk

h̄

)1/2

ξ+



 exp

[

−
√
mkξ2+
2h̄

]

, (30)
φ

(n′)
−

(ξ−) =

(

√

m (k + 2λ)

πh̄22n′(n′!)2

)1/4

Hn′





(

√

m (k + 2λ)

h̄

)1/2

ξ−



 exp

[

−
√

m (k + 2λ)ξ2
−

2h̄

]

,(31)6



and its orresponding eigenvalues are
En = h̄

√

k

m

(

n+
1

2

) (32)and
E′

n′ = h̄

√

k + 2λ

m

(

n′ +
1

2

)

, (33)where Hn are the Hermite polynomials of order n [3℄.The solution to the time dependent Shroedinger equation (25) is obtained applying the timeevolution operator
Û(t, t0) = exp

(

−iĤ(t− t0)/h̄
)on ψ(ξ+, ξ−, t0). Sine ψ(n,n′)(ξ+, ξ−) = φ

(n)
+ (ξ+)φ

(n′)
−

(ξ−) form a basis for H, we have
ψ(ξ+, ξ−, t0) =

∞
∑

n,n′=0

Cn,n′ψ(n,n′)(ξ+, ξ−),

Cn,n′ =

∫

∞

−∞

∫

∞

−∞

φ
(n)
+ (ξ+)φ

(n′)
−

(ξ−)ψ(ξ+, ξ−, t0) dξ+dξ−, (34)and we used the reality of φ(n)
+ (ξ+)φ

(n′)
−

(ξ−) in the expression for Cn,n′ . Then,
ψ(ξ+, ξ−, t) = Û(t, t0)ψ(ξ+, ξ−, 0)

=

∞
∑

n,n′=0

Cn,n′e−iEnt/h̄φ
(n)
+ (ξ+)e−iE

′
n′ t/h̄φ

(n′)
−

(ξ−)

=

∞
∑

n,n′=0

Cn,n′e−i(En+E′
n′)t/h̄ψ(n,n′)(ξ+, ξ−),where exp

(

−iĤt/h̄
)

= exp
(

−iĤ+t/h̄
)

exp
(

−iĤ−t/h̄
) sine [Ĥ+, Ĥ−

]

= 0 and we assumed,for simpliity, that t0 = 0.We an now �nally go bak to the original oordinate system x1 and x2, and the expliit formfor the general solution in this oordinate system is
ψ(x1, x2, t) =

√

m

πh̄

∞
∑

n,n′=0

Cn,n′

(

ω

22n(n!)2

)1/4(
ω′

22n′(n′!)2

)1/4

×

Hn

[

(mω

2h̄

)1/2

(x1 + x2)

]

Hn′

[

(

mω′

2h̄

)1/2

(x1 − x2)

]

×

exp
{

−m

4h̄

[

ω (x1 + x2)
2

+ ω′ (x1 − x2)
2
]}

×

exp

{

−i
[(

n+
1

2

)

ω +

(

n′ +
1

2

)

ω′

]

t

}

. (35)where we de�ned, as before, ω =
√

k/m and ω′ =
√

k + 2λ/m . The wavefuntion (35) thusdesribe spinless one-dimensional oupled harmoni osillators with no approximation.
7



4 A Simple ExampleWe saw in the lassial ase that two oupled osillators an transfer energy to eah other. Thiswas lear with the example where at t = 0 one osillator had zero mehanial energy while theother one had nonzero potential energy. As time passes, the mehanial energy of the former istransferred to the latter. It is interesting to study the quantum mehanial analogue to this ase,i.e., when one quantum osillator is in an exited state and the other is in its fundamental state.We will onsider as the initial wavefuntion the following
ψ(x1, x2, 0) =

√

2

π

(√
mk

h̄

)

x2 exp

[

−
√
mk

(

x2
1 + x2

2

)

2h̄

]

. (36)The wavefuntion (36) is an eigenstate of the Hamiltonian
Ĥ = Ĥ1 + Ĥ2 (37)without the interation term ĤI . Clearly, ψ(x1, x2, 0) is separable, i.e., it is possible to write

ψ(x1, x2, 0) = ϕ1(x1, 0)ϕ2(x2, 0). Sine Ĥ1 (Ĥ2) ats only in ϕ1(x1, 0) (ϕ2(x2, 0)), the state
ψ(x1, x2, 0) represents a system where the partile desribed by x1 is in the ground state andthe partile desribed by x2 is in the �rst exited state. So, we an think of our example as thefollowing. We have initially a system of two harmoni osillators, one in the ground state andthe other in the �rst exited state. After t = 0 we suddenly turn on a interation between thetwo osillators, and as a onsequene we expet to have a �transfer of energy� from one osillatorto the other, as it happens in the lassial ase. We will now proeed to analyze in details thisexample.4.1 Approximate SolutionTo use equation (35) we need to �nd the oe�ients Cnn′ . It is straightforward to ompute theoe�ients from (34) by just using the orthogonal properties of the Hermite polynomials and byrewriting (36) in the normal oordinates, yielding

Cn,n′ =
√
ω

(

ω

22n(n!)2

)1/4(
ω′

22n′(n′!)2

)1/4
√

2

(ω + ω′)

(

ω′ − ω

ω + ω′

)j

×
[

√

1

ω

2j!

j!
δn′,2jδ1,n −

√

2

(ω + ω′)

(2j + 1)!

j!

√

2ω′

ω + ω′
δn′,2j+1δ0,n

]

, (38)where δij is Kroeneker's delta.It is interesting to note that there exists in�nite terms of Cn,n′ that are di�erent from zero.Therefore, if we write down the expression for the time evolution of the wavefuntion after theinteration we obtain an expression with an in�nite number of terms. However, a lose look atthe Cn,n′ oe�ients may shed light on how to deal with this problem. First we see from (38)that only the terms C0,n′ and C1,n′ are nonzero. If we ompute the ratio between two onseutivenonzero terms, i.e, C0,n′+2/C0,n′ and C1,n′+2/C1,n′ we obtain
C0,n′+2

C0,n′

=

(

ω′ − ω

ω + ω′

)

√

(n′ + 2)

(n′ + 1)
, (39)

C1,n′+2

C1,n′

=

(

ω′ − ω

ω + ω′

)

√

(n′ + 1)

(n′ + 2)
. (40)We note that both ratios (39) and (40) are proportional to (ω′

−ω
ω+ω′

). Then, if the oupling onstant
λ is small ompared to k (weak oupling) we an make an expansion of (39) and (40) around λ = 08



and obtain, up to �rst order in λ, that
(

ω′ − ω

ω + ω′

)

=
λ

2k
+O

(

λ2
)

.We onlude that if λ is small ompared to k, as we inrease the value of n′, the oe�ients Cn,n′beome less important. Therefore, it is justi�able to keep only a �nite amount of terms in theexpression for ψ(x1, x2, t) for small λ. In our example, we will keep only terms up to �rst order in
λ. Sine we will be working with λ small, it is onvenient now to introdue the following parametersalready used in the lassial ase

δω =
ω′ − ω

2
,

ω̄ =
ω′ + ω

2
.Then, if λ is small,

δω =
ωλ

2k
+O(λ2),and

δω

ω̄
≪ 1.Keeping only terms up to �rst order in δω

ω̄ , we have
ψ(x1, x2, 0) =

∞
∑

n,n′=0

Cn,n′ψ(n,n′)(x1, x2)

∼= C1,0ψ
(1,0) + C0,1ψ

(0,1) + C1,2ψ
(1,2) + C0,3ψ

(0,3), (41)where
C10

∼=
√

2

2
, (42)

C01
∼= −

√
2

2
, (43)

C12
∼= 1

2

δω

ω̄
, (44)

C03
∼= −

√
3

2

δω

ω̄
. (45)We are �nally in a position to write, up to �rst order, the time dependent wavefuntion for theoupled harmoni osillators. From (41) and (42)�(45) it is straightforward to obtain

ψ(x1, x2, t) =

√

1

2π

mω̄

h̄
exp

{

−mω̄
2h̄

[

x2
1 + x2

2

]

}

exp {−i2ω̄t} ×
{

2i

(

x1 + x2

[

1

2
− mω̄

h̄
x2

1

]

δω

ω̄

)

sin (δωt) + 2

(

x2 + x1

[

1

2
− mω̄

h̄
x2

2

]

δω

ω̄

)

cos (δωt)

+
1

2

δω

ω̄
(x1 + x2)

[mω̄

h̄
(x1 − x2)

2 − 1
]

exp {−i (2ω̄ + δω) t}

−1

2

δω

ω̄
(x1 − x2)

[mω̄

h̄
(x1 − x2)

2 − 3
]

exp {−i (2ω̄ + 3δω) t}
}

+O(δω2). (46)The wavefuntion (46) determines the evolution of the system. We will now proeed to analyzethe system using (46). 9



4.2 Marginal ProbabilitiesFrom (46) we ompute the joint probability density for x1 and x2 as a funtion of t. The jointdensity is simply
P (x1, x2, t) = |Ψ(x1, x2, t)|2,and keeping terms up to �rst order in δω we have

P (x1, x2, t) =
1

2π

(mω̄

h̄

)2

exp
{

−mω̄
h̄

[

x2
1 + x2

2

]

}

×
{

4

(

x2
2 + 2x1x2

[

1

2
− mω̄

h̄
x2

2

]

δω

ω̄

)

cos2 (δωt)

+4

(

x2
1 + 2x1x2

[

1

2
− mω̄

h̄
x2

1

]

δω

ω̄

)

sin2 (δωt)

+2x2
δω

ω̄
(x1 + x2)

[mω̄

h̄
(x1 − x2)

2 − 1
]

cos (δωt) cos {(2ω̄ + δω) t}

−2x2
δω

ω̄
(x1 − x2)

[mω̄

h̄
(x1 − x2)

2 − 3
]

cos (δωt) cos {(2ω̄ + 3δω) t}

−2x1
δω

ω̄
(x1 + x2)

[mω̄

h̄
(x1 − x2)

2 − 1
]

sin (δωt) sin {(2ω̄ + δω) t}

+2x1
δω

ω̄
(x1 − x2)

[mω̄

h̄
(x1 − x2)

2 − 3
]

sin (δωt) sin {(2ω̄ + 3δω) t}
} (47)It is interesting to see how the marginal probability distributions for x1 and x2 behave. Let usreall that the marginals are de�ned as

P (x1, t) =

∫

∞

−∞

P (x1, x2, t) dx2, (48)and
P (x2, t) =

∫

∞

−∞

P (x1, x2, t) dx1. (49)Therefore, P (x1, t) dx1 represents the probability of measuring the position of partile 1 in theinterval (x1, x1 + dx1) independently of partile 2. The interpretation for P (x2, t) is similar.From (47), (48), and (49) it is tedious but straightforward to ompute (one again up to �rstorder in δω) suh quantities, whih read
P (x1, t) =

√

mω̄

h̄π
exp

{

−mω̄
h̄
x2

1

}

{

cos2 (δωt) +
2mω̄

h̄
x2

1 sin2 (δωt)

−δω
ω̄

[[

1

4
− mω̄

2h̄
x2

1

]

(3 cos ((2ω̄ + 3δω) t) − cos ((2ω̄ + δω) t)) cos (δωt)

−mω̄
h̄
x2

1

[

3

2
− mω̄

h̄
x2

1

]

(sin ((2ω̄ + 3δω) t) − sin ((2ω̄ + δω) t)) sin (δωt)

]}

, (50)and
P (x2, t) =

√

mω̄

πh̄
exp

{

−mω̄
h̄
x2

2

}

{

sin2 (δωt) +
2mω̄

h̄
x2

2 cos2 (δωt)

−δω
ω̄

[[

1

4
− mω̄

2h̄
x2

2

]

(3 sin ((2ω̄ + 3δω) t) + sin ((2ω̄ + δω) t)) sin (δωt)

−mω̄
h̄
x2

2

[

3

2
− mω̄

h̄
x2

2

]

(cos ((2ω̄ + 3δω) t) + cos ((2ω̄ + δω) t)) cos (δωt)

]}

, (51)10



We an ompute the values of the marginals (50) and (51) at t = 0 and �nd that, after makingsure that we use ω as the frequeny instead of ω̄, and keeping only terms up to �rst order in δω/ω̄,suh marginals indeed represent the ones for the ground state HO and the �rst exited state HO,as one should expet.To better grasp the behavior of (50) and (51), let us plot them as a funtion of time. Beforeplotting, we need to hoose the appropriate values for the onstants in the equations. If oursystem is in atomi sale, it is not reasonable, from a omputational point of view, to use the MKSsystem. So, we will measure time in femtoseonds (1 fs = 10−15 s) and distane in Angstroms (1Å= 10−10m). If we say that the partiles in the osillators are eletrons, then m = 1me, whereme is the mass of the eletron, then we have
h̄ = 10me · Å2 · fs−1,and

k = 1me · fs−2,and, for the harmoni osillator,
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Figure 2: Graphs for the marginal probabilities of x1 and x2 as a funtion of time. In these graphswe used m = 1me, ω̄ = 1 fs−1 and δω/ω̄ = 1/10. The sale for time is fs and the sale for distaneis Å.
〈(∆x)2〉 =

h̄

2meω
.The behavior of the probability density for partiles 1 and 2 are found in Figure 2. The time intervalhosen for the time axis in the graphs was ∆t = π/δω as this is the value where cos (δωt) = −1,whih is an extreme in the behavior of the marginal densities. Looking at the graphs we see thatpartile 1 starts with a marginal density that is mainly a Gaussian funtion, whereas partile 2starts from the produt of x2

2 times a Gaussian. This is beause partile 1 is at the ground stateand partile 2 is at the �rst exited state at t = 0. However, as time passes there is a swap in theroles of partile 1 and 2, in the sense that at t = π/δω the marginal density for partile 1 resemblesthat of partile 2 for t = 0 and vie versa. This is of ourse due to the interation between thetwo partiles. We may think of those densities as showing that, at t = π/δω (more generallywhen t = (2n+ 1)π/δω) partile 1 is no longer in the ground state, but in the �rst exited state,whereas partile 2 is in the ground state.4.3 Energy ExpetationsThe densities above suggest that there is an energy transfer from one partile to the other. Tosee that this is the ase, let us ompute the energy values for eah partile. First we should note11



that the system is not in an eigenstate of the Hamiltonian, as we started from a superposition ofdi�erent energy states. We de�ne the energy or partile 1 as
E1 = 〈Ĥ1〉,the energy of partile 2 as
E2 = 〈Ĥ2〉,and the total energy as the sum of the two energies plus the interation energy

ET = E1 + E2 + 〈ĤI〉.In oordinate representation we have that
E1 =

∫

∞

−∞

∫

∞

−∞

dx1dx2 ψ(x1, x2, t)
∗Ĥ1ψ(x1, x2, t)

=

∫

∞

−∞

∫

∞

−∞

dx1dx2 ψ(x1, x2, t)
∗

[

− h̄2

2m

∂2

∂x2
1

+
1

2
kx2

1

]

ψ(x1, x2, t),and omputing this term we obtain, up to seond order in δω/ω̄,
E1 = h̄ω̄

(

1

2
+ sin2 (δωt)

)

(1 − δω/ω̄)

= h̄ω

(

1

2
+ sin2 (δωt)

)

. (52)Similarly, for E2 we have
E2 = h̄ω̄

(

1

2
+ cos2 (δωt)

)

(1 − δω/ω̄) .

= h̄ω

(

1

2
+ cos2 (δωt)

)

. (53)If we ompare the quantum energies (52) and (53) to the lassial expressions (14) and (15) theresemblane is striking. They are pratially the same for δω/ω̄ ≪ 1, exept for a zero energyfator of 1
2 h̄ω̄ present in the quantum mehanial ase. In fat, the same onlusions an now bedrawn from (52) and (53) , i.e., that due to the oupling, the partiles exhange energy betweenthemselves periodially, with period τ = 2π/δω. Eah of the osillators ahieve its minimumenergy value when the other have its maximum value. For the interation energy we ompute

〈ĤI〉 = 2h̄δω. (54)Then, it is easy to ompute the total mean energy
ET = E1 + E2 + 〈ĤI〉

= 2h̄ω̄

= 2h̄ω + 2h̄δω.This is one again in agreement with the lassial ase seen above, in the sense that the totalenergy is the sum of the energy of eah osillator (keeping into aount the nonlassial zero pointenergy) without the interation term plus an interation term 2h̄δω.We just saw that the state we used had a term in the total energy 2h̄δω that was due to theoupling between the two osillators. However, if we remember the lassial ase of Setion 2, withdi�erent initial onditions � e.g. x1 = 0, x2 = 0, ẋ1 = v, ẋ2 = 0, at t = 0 � no interation term ispresent in the total energy. What about the quantum ase? Do we always have an interation term12



present, as in (54)? A short omputation shows that for any initial state that is a ombination ofFok states for the two HO of the form
|ψ〉 = |n1〉 ⊗ |n2〉,where |n1〉 and |n2〉 are eigenstates of two unoupled HO, the value of 〈ĤI〉ψ (the interationterm) is di�erent from zero.The question remains as to whether it is possible to �nd an initial state that has an interationterm that is zero. A good guess would be to take both HO in a oherent state at t = 0, sine it isa state that has many of the harateristis of a lassial system [6℄. It is easy to show that it isindeed true that for the state
|ψ〉 = |α〉 ⊗ |β〉,where

|α〉 = e−
|α|2

2

∞
∑

n=0

αn√
n!
|n〉,and similar for |β〉, the expeted value of the interation energy at t = 0 is zero if α and β havean appropriate phase relation. It is left up to the reader to �nd out this phase relation and aset of initial onditions for a lassial system whih reprodues the expetations in the quantummehanial ase.5 The Bohmian InterpretationBefore we analyze the transfer of energy from a Bohmian point of view, let us quikly reviewBohm's interpretation of quantum mehanis. Let us begin with the ausal interpretation for thease of the Shrödinger equation desribing a single partile. In the oordinate representation, fora non-relativisti partile with Hamiltonian Ĥ = p̂2/2m+ V (x̂), the Shrödinger equation is

ih̄
∂Ψ(x, t)

∂t
=

[

− h̄2

2m
∇2 + V (x)

]

Ψ(x, t). (55)We an transform this di�erential equation over a omplex �eld into a pair of oupled di�erentialequations over real �elds. We do that by writing Ψ = R exp(iS/h̄), where R and S are realfuntions, and substituting it into (55). We obtain the following equations.
∂S

∂t
+

(∇S)2

2m
+ V − h̄2

2m

∇2R

R
= 0, (56)

∂R2

∂t
+ ∇ · (R2∇S

m
) = 0. (57)The usual probabilisti interpretation, i.e. the Copenhagen interpretation, understands equation(57) as a ontinuity equation for the probability density R2 for �nding the partile at position xand time t. All physial information about the system is ontained in R2, and the total phase Sof the wave funtion is ompletely irrelevant. In this interpretation, nothing is said about S andits evolution equation (56).However, examining equation (57), we an see that∇S/mmay be interpreted as a veloity �eld,suggesting the identi�ation p = ∇S. Hene, we an look to equation (56) as a Hamilton-Jaobiequation for the partile with the extra potential term

Q = − h̄2

2m

∇2R

R
,where Q is the so alled quantum potential. Thus, sine Bohm's interpretation identi�es p with

∇S, from the di�erential equation p = mẋ = ∇S we may ompute its solutions and obtain the13



trajetory of the quantum partile. Therefore, in Bohm's interpretation both momentum andposition are quantities that are ontologially well de�ned.For our ase of two oupled-HO, the on�guration spae has two variables, x1 and x2, repre-senting the positions of partiles 1 and 2, respetively. For two partiles, the nonloality of Bohm'sinterpretation beomes evident as the Shrödinger equation beomes
ih̄
∂Ψ(x1, x2, t)

∂t
=

[

− h̄2

2m1
∇2

1 −
h̄2

2m2
∇2

2 + V (x1, x2)

]

Ψ(x1, x2, t), (58)where ∇2
i is the laplaian operator with respet to the oordinates of partile i. If we follow thesame transformation as before, we an obtain the following equations.

∂S

∂t
+

(∇1S)2

2m1
+

(∇2S)2

2m2
+ V − h̄2

2m

∇2R

R
= 0, (59)

∂R2

∂t
+ ∇1 ·

(

R2∇1S

m1

)

+ ∇2 ·
(

R2∇2S

m2

)

= 0. (60)The nonloality omes from the fat that, even if the potential V (x1, x2) is loal, it is possiblethat the quantum potential given by
Q = − h̄2

2m1

∇2
1R

R
− h̄2

2m2

∇2
2R

Ris nonloal, depending on the form of R. This harateristi is neessary, as proved by Bell, ifBohm's theory is to reover all quantum mehanial preditions.Using (46) it is straightforward to ompute the phase S(x1, x2, t) from the expression
S(x1, x2, t) = −h̄ arctan

[

−i Ψ(x1, x2, t) − Ψ(x1, x2, t)
∗

Ψ(x1, x2, t) + Ψ(x1, x2, t)∗

]

.After some long and tedious algebra we obtain
S(x1, x2, t) = −h̄ arctan

(

SA(x1, x2t)

SB(x1, x2t)

)

,where
SA(x1, x2, t) = 4 cos (2ω̄t)

{(

x2
1 sin (δωt)

2 − x2
2 cos (δωt)

2
)

sin (2ω̄t)

+x1x2 sin (δωt) cos (δωt)} ,and
SB(x1, x2, t) = (x2 cos(2ωt) cos(δωt) + x1 sin(2ωt) sin(δωt))

2
,where we keept all terms in (δω/ω̄) t but we negleted terms in δω/ω̄.From S(x1, x2t) we obtain the di�erential equation that desribes the trajetories of partiles

x1 and x2 as dx1dt =
1

m

∂S(x1, x2t)

∂x1
= − h̄

m

x2 cos (δωt) sin (δωt)

x2
1 sin2 (δωt) + x2

2 cos2 (δωt)
(61)and dx2dt =

1

m

∂S(x1, x2t)

∂x2
=

h̄

m

x1 cos (δωt) sin (δωt)

x2
1 sin2 (δωt) + x2

2 cos2 (δωt)
. (62)We an see that the trajetories follow a set of di�erential equations that are oupled and nonlinear.It is interesting to notie that if δω = 0 we reover the standard Bohmian result that in the ase14



of no interation eah HO is in an eigenstate and therefore both partiles are at rest. However, if
δω 6= 0, we obtain at one that, after the hange of variables

t′ =
δω

δω′
t, (63)

x′1 =

√

δω

δω′
x1, (64)

x′2 =

√

δω

δω′
x2, (65)the di�erential equations (61) and (62) are form invariant with respet to a hange in the ouplingonstant from δω to δω′. This invariane is illustrated in Figures 3 and 4, where typial Bohmiantrajetories were omputed for both partiles. The solutions shown in Figures 3 and 4 wereobtained numerially using a 7th-8th-order ontinuous Runge-Kuta method.

Figure 3: Bohmian trajetories for two CHO. The trajetories orrespond to ω̄ = 1 fs−1, δω/ω̄ =
0.01, x1(0) = 0, and x2(0) = −1. The solid line represents the trajetory of x1(t) whereas thedashed line represents that of x2(t). The sale for the ordinates is in Å and the time sale is in fs.It is important to ompute, in Bohmian theory, the quantum potential Q de�ned as

Q = Q1 +Q2where
Q1 = − h̄2

2m

1
√

P (x1, x2, t)

∂2
√

P (x1, x2, t)

∂x2
1and

Q2 = − h̄2

2m

1
√

P (x1, x2, t)

∂2
√

P (x1, x2, t)

∂x2
2

.It is straightforward to ompute
Q1 = h̄ω̄ − 1

2
mω̄2x2

1

+
1

2
h̄ω̄

x2
1 sin2 (δωt) − x2

2 cos2 (δωt)

x2
1 sin2 (δωt) + x2

2 cos2 (δωt)15



Figure 4: Bohmian trajetories for two CHO. The trajetories orrespond to ω̄ = 1 fs−1, δω/ω̄ =
0.005, x1(0) = 0, and x2(0) = −

√
2. The solid line represents the trajetory of x1(t) whereas thedashed line represents that of x2(t). The sale for the ordinates is in Å and the time sale is infs. We an observe that the trajetories are idential to the ones shown in the previous Figure,exept for the oordinate sales, a result onsistent with equations (63)�(65).
−1

2

h̄2

m

x2
2 cos2 (δωt) sin2 (δωt)

(

x2
1 sin2 (δωt) + x2

2 cos2 (δωt)
)2 , (66)and

Q2 = h̄ω̄ − 1

2
mω̄2x2

2

+
1

2
h̄ω̄

x2
2 cos2 (δωt) − x2

1 sin2 (δωt)

x2
2 cos2 (δωt) + x2

1 sin2 (δωt)

−1

2

h̄2

m

x2
1 sin2 (δωt) cos2 (δωt)

(

x2
2 cos2 (δωt) + x2

1 sin2 (δωt)
)2 , (67)whih yields

Q(x1, x2, t) = 2h̄ω̄ − 1

2
mω̄2

(

x2
1 + x2

2

)

−1

2

h̄2

m

(

x2
1 + x2

2

)

sin2 (δωt) cos2 (δωt)
(

x2
2 cos2 (δωt) + x2

1 sin2 (δωt)
)2 . (68)We are now in a position to ompute the total bohmian energy for eah one of the partiles,

E1 = K1 + V1 +Q1

= h̄ω̄ +
1

2
h̄ω̄

x2
1 sin2 (δωt) − x2

2 cos2 (δωt)

x2
1 sin2 (δωt) + x2

2 cos2 (δωt)
,

E2 = K2 + V2 +Q2

= h̄ω̄ − 1

2
h̄ω̄

x2
1 sin2 (δωt) − x2

2 cos2 (δωt)

x2
1 sin2 (δωt) + x2

2 cos2 (δωt)
,16



where Ki = 1
2m
(dxidt )2 is the kineti energy of partile i (obtained from the guidane equations(61) and (62)) and Vi is the potential for partile i (negleting terms in δω/ω̄).The total energy for the system is just the sum of the individiual energies, yielding

ET = E1 + E2 = 2h̄ω̄,the same value as the expeted energy of the system.6 Conlusions and Final RemarksWe see that the expressions obtained for E1 and E2 involve an interation term that makes itimpossible to distinguish what part of the energy belongs to the partile x1 and what part belongsto the partile x2, exept for some partiular values of t. In the Copenhagen interpretation of QMit does not make any sense to talk about the energy of eah osillator for all t, as the osillatorsare in a quantum superposition and are not in an eigenstate of its hamiltonian operator. In Bohm,it will not make any sense to talk about the energy of eah osillator for all t, sine the quantumpotential reates an interation between the two osillators that is of the same order of the otherterms in the hamiltonian. Therefore it does not make any sense in the bohmian theory to say thatthe energy of the photon was transfered to the photodetetor (exept for very speial values of t).However, the bohmian interpretation gives an onthologial explanation for the inde�niteness ofthe energy of eah partile. Even with the interation turned o�, there is still a quantum nonloalinteration between the osillators given by the quantum potential and, in fat, one osillatoris not isolated from the other. This indiates that a real measurement has not yet ourred. Itseems to us that in order for a measurement to take plae, a more elaborated desription of thephotodetetion proess involving a thermal bath or a marosopi desription must be used. Insuh ase, we expet that the quantum potential will vanish and no further nonloal interationwill be present after the measurement.Referenes[1℄ D. Bohm, Phys. Rev. 85, 166�179 (1952).[2℄ D. Bohm, Phys. Rev. 85, 180�193 (1952).[3℄ D. Bohm, Quantum Theory, Dover Publiations In., New York, 1989.[4℄ V. Braginsky, F. Ya. Khalili, Quantum Measurement, Cambridge University Press, Cam-bridge, 1992.[5℄ C. Cohen-Tannoudji, Proessus d�Interation entre Photons et Atoms, InterEditions et Edi-tions du CNRS, 1988.[6℄ C. Cohen-Tannoudji, B. Diu, F. Laloe, Quantum Mehanis, Vol. 1, John Wiley and Sons,New York, 1977.[7℄ J. Aaio de Barros, N. Pinto Neto, �The Causal Interpretation of Quantum Mehanis andthe Singularity Problem in Quantum Cosmology�, Nulear Physis B 57, 247�250 (1997).[8℄ A. P. Frenh, Vibrations and Waves, W. W. Norton and Co., New York, 1971.[9℄ H. Goldstein, Classial Mehanis, 2nd Edition, Addison-Wesley Pub. Co., Reading, Mas-sahusetts, 1980.[10℄ S. W. Groesberg, Advaned Mehanis, John Wiley & Sons, In., New York, 1968.[11℄ P. Holland, The Quantum Theory of Motion, Cambridge University Press, 1993.17
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