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Abstract. The one-dimensional Domany-Kinzel cellular automaton is investigated by two numerical
approaches: (i) the spontaneous-search method, which is a method appropriated for a search of criticality;
(ii) short-time dynamics. Both critical frontiers of the system are investigated, namely, the one separating
the frozen and active phases, as well as the critical line determined by damage spreading between two
cellular automata, that splits the active phase into the nonchaotic and chaotic phases. The efficiency of the
spontaneous-search method is established herein through a precise estimate of both critical frontiers, and in
addition to that, it is shown that this method may also be used in the determination of the critical exponent
ν⊥. Using the critical frontiers obtained, other exponents are estimated through short-time dynamics. It
is verified that the critical exponents of both critical frontiers fall in the universality class of directed
percolation.

PACS. 05.70.Ln Nonequilibrium and irreversible thermodynamics – 64.60.Ht Dynamic critical phenomena
– 64.60.-i General studies of phase transitions

1 Introduction

Cellular automata are dynamical systems with applica-
tions in many areas of science, like physics, chemistry,
biology, and computation [1]. They are very convenient
from the computational point of view, since they are de-
fined in terms of a discrete-time evolution of a given set of
variables (essentially, discrete variables) in a lattice (i.e.,
discrete space). In most cases, all variables are updated
at once (i.e., parallel dynamics) through dynamical rules,
that may be either probabilistic or deterministic, defined
in such a way that in each time step, the new variables
depend on the states of their neighboring variables at the
previous time. Since the updating rules do not follow nec-
essarily a Boltzmann weight or a detailed-balance condi-
tion, the system does not reach a standard equilibrium
state, and for this reason, it may be appropriate for de-
scribing out-of-equilibrium situations, like crystal growth,
turbulence, and chemical reactions.

Contrary to what happens in equilibrium models,
which after some time of a numerical simulation (usually
known as the “equilibration time”) reach a state that does
not exhibit interesting dynamical effects, nonequilibrium
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models, like cellular automata, may present curious be-
havior, e.g., nonequilibrium phase transitions [2,3]. In this
case, time plays an important role, and is usually con-
sidered as an additional dimension. Since time and space
present different characteristics, one needs to distinguish
the physical properties in these two dimensions, in such a
way that one frequently associates to them the indices ‖
and ⊥, respectively. The corresponding phase transitions
are characterized by two independent correlation lengths,
namely, a temporal length scale ξ‖, and a spatial length
scale ξ⊥, which should both diverge at criticality, with
different exponents, ν‖ and ν⊥, respectively.

Among many cellular automata studied in the litera-
ture [1–3], the one-dimensional (as usual, this nomencla-
ture applies to the spatial dimension only) Domany-Kinzel
cellular automaton (DKCA) [4,5] appears as one of the
most investigated. This great interest comes from the fact
that it is a simple probabilistic cellular automaton exhibit-
ing phase transitions. The DKCA presents a critical fron-
tier separating an active from an inactive (frozen) phase;
in the former, a fluctuating steady state exists, whereas
in the latter, the system always attains the absorbing
state, characterized by a configuration that the system
can reach, but cannot escape. This is the only phase tran-
sition that appears in the DKCA if one gets restricted to
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an analysis of a single copy of the automaton. However,
the DKCA has been investigated also within the damage-
spreading technique, which consists in following the time
evolution of two configurations that differ, at an initial
time, in the states of some of its variables (commonly de-
nominated of an initial “damage”) [6]. In this case, one
finds that the active phase of the DKCA splits into two
new phases, namely, the chaotic (where the initial damage
tends to increase in time) and the nonchaotic (where the
initial damage is suppressed after some time) ones.

The directed percolation (DP) problem provides a uni-
versality class that covers a wide range of models, which
have in common the existence of an absorbing state [2,3].
The remarkable aspect of DP concerns its robustness with
respect to the microscopic dynamic rules involved, lead-
ing to a conjecture [7,8] that, any model presenting a con-
tinuous phase transition from a fluctuating active phase
to a unique absorbing state, characterized by a positive
one-component order parameter, following a dynamics de-
fined in terms local (i.e., short-range) rules, should fall in
the DP universality class. It is well-accepted nowadays
that the critical frontier frozen-active of the DKCA falls
in the DP universality class, except for a single termi-
nal point, which is known to belong the the compact DP
class [4,9,10]. Apart from that, there is numerical evidence
that the critical frontier nonchaotic-chaotic should also be-
long to the DP universality class [11].

The spontaneous-search method (SSM) is inspired on
the concept of self-organized criticality [12], according to
which certain dynamical systems evolve spontaneously to-
wards the critical state, i.e., the critical state is an attrac-
tor of the dynamics. A conceptual framework for such phe-
nomena was proposed in reference [13], based on the idea
that a control rule, designed to keep the order parameter
close to a small positive value, pushes the system automat-
ically to the vicinity of the critical point. The SSM is based
on a recursive relation, in such a way to implement oper-
ationally the proposal of reference [13]. By an appropriate
choice of the order parameter, the recursion drives certain
physical systems spontaneously to the value of the control
parameter associated with such a choice; in particular, if
the order parameter is set to a small value, the system will
be driven towards the critical point. The SSM was intro-
duced for the determination of critical properties in poly-
mers [14] and percolation [15]; later on, it was successfully
applied to magnetic systems [16–18]. This method uses an
algorithm based on a recursive relation,

Xn+1 = Xn − α (Yn − Y ∗), (1)

involving two dimensionless variables (Xn, Yn), associated
with the parameters of a given physical system. The vari-
ables (Xn, Yn) change at each iteration step n, in such a
way that after a sufficient number of steps, Xn will con-
verge to a stationary value X∗, compatible with the sta-
tionary value Y ∗ ≡ Y (X∗), assumed by Yn. The desired
stationary state (X∗, Y ∗) may be previously chosen by
setting the input quantity Y ∗; at the first iteration, one
chooses the initial value X0, which will define the range
of parameters to be investigated [(Xn, Yn) will vary from

(X0, Y0) to (X∗, Y ∗)], whereas the rate of convergence to
the stationary state is controlled by the parameter α. As
an example, for a simple ferromagnet, such quantities may
be related to the temperature and magnetization, respec-
tively [16–18]; instead of performing a careful sweep in
the temperature T , one may reach criticality by taking
the magnetization m → 0+, which is equivalent to ap-
proaching the critical temperature, T → T−

c .
Numerical simulations in the short-time regime, com-

monly known as short-time-dynamics (STD) simulations,
became an important tool in the investigation of critical
phenomena [19], based on the curious aspect that impor-
tant scaling behavior seems to be already present in the
early stages of the dynamical evolution of some statistical-
mechanics models, at criticality [20]. A significant reduc-
tion in the computational effort comes out from the STD
approach, when compared with standard numerical sim-
ulations, essentially due to the following aspects: (i) the
smaller times that one is concerned in STD; (ii) at its
early stage of evolution the system presents small spatial
and temporal correlation lengths, leading to a substantial
reduction of finite-size effects. Since in the STD simula-
tions one is dealing with an out-of-equilibrium regime, the
scaling behaviors should depend on the initial conditions,
in such a way that several scaling forms, associated es-
sentially with different initial conditions for the moments
of the order parameter, have been proposed and verified
numerically in the literature (see, e.g., Refs. [19,21–24]).
As a simple illustration, one may consider a ferromag-
netic Ising model, described in terms of binary variables,
Si(t) = ±1, for which one may represent the k-th moment
of the magnetization at time t, as

M (k)(t) =
1
Nk

〈(
N∑

i=1

Si(t)

)k〉
, (2)

whereN stands for the total number of spins of the lattice,
and 〈..〉 represents an average over different samples at
time t, i.e., an average over distinct sequences of random
numbers up to time t. For this system, different initial
conditions are essentially taken into account through the
definition of the initial magnetization of the system. If
the system is quenched from an initial state with a small
magnetization, M(0) � 1, one gets for the magnetization
at time t [herein we use the standard notation, M (1)(t) ≡
M(t)] and its second moment, respectively,

M(t) ∼M(0)tθ, (3)

M (2)(t) ∼ t(d−2β/ν)/z, (4)

where d corresponds to the lattice dimension. In the scal-
ing laws above, the standard equilibrium exponents β and
ν (which corresponds to ν⊥ in the DKCA), as well as the
dynamic exponent z, appear, leading to the possibility of
evaluating them already for very short times of the evolu-
tion of the system. However, a new and independent dy-
namical exponent arises, θ, which is related to the increase
of the magnetization at the critical temperature, when the
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system is quenched from a high-temperature state. In or-
der to compute θ from equation (3) one should consider
distinct, small (although finite) values of M(0), and then
take an extrapolation to M(0) → 0. An equivalent way
to carry on such a procedure consists in starting with a
random initial configuration (i.e., magnetization and cor-
relation length both equal to zero) and computing the
correlation function [23],

Q(t) =
1
N

〈
N∑

i,j=1

Si(t)Sj(0)

〉
∼ tθ. (5)

Now, if one starts the system with a completely ordered
configuration [M(0) = 1], the magnetization should follow
the simple power-law behavior,

M(t) ∼ t−β/(νz). (6)

For such an Ising model, one may also define quantities
that take into account mixed initial conditions, like [24]

F2(t) =
M (2)(t, L)|M(0)=0

[M(t, L)]2|M(0)=1
∼ td/z. (7)

Apart from the scalings above, other forms have been pro-
posed, involving higher-order moments of the order pa-
rameters in both initial conditions (i.e., completely ran-
dom and ordered initial configurations), in such a way
that it is possible to find all the exponents defined above
through STD simulations.

In the present work we investigate the one-dimensional
DKCA. Considering a single copy of the DKCA we ana-
lyze the critical frontier frozen-active; following the time
evolution of two copies of the DKCA we study the critical
frontier nonchaotic-chaotic that splits the active phase.
In both cases, we use the spontaneous-search method,
which appears to be very accurate for the determination
of the critical frontiers, and we show how this technique
may be used also to estimate the critical exponent ν⊥;
the effectiveness of the method is verified herein for the
DKCA. Using the critical frontiers determined through
the spontaneous-search method, we apply short-time dy-
namics to obtain other critical exponents. Our critical-
exponent estimates indicate that both critical frontiers of
the DKCA fall in the DP universality class. In the next
section we define the numerical procedures to be used; in
Section 3 we present and discuss our results.

2 The model and numerical procedure

Let us consider the one-dimensional DKCA, consisting of a
linear chain of L sites, with periodic boundary conditions;
all sites are occupied by binary variables, in such a way
that at each instant of time t, σi(t) = 0, 1 (i = 1, 2, ..., L).
The state of the system at a given time t is specified by the
set of all variables, {σi(t)}. The one-dimensional DKCA is
usually defined in its symmetric form, in terms of the con-
ditional probabilities, {P [σi−1(t), σi+1(t)|σi(t + 1)]}, for

the state of site i at time t+1, depending on the states of
the variables at its nearest-neighboring sites, at the previ-
ous time. However, for computational purposes, it is more
convenient to work with the DKCA in its nonsymmetric
form [6,25,26], for which the conditional probability asso-
ciated with the state of the variable {σi(t + 1)} depends
on the previous states of the variable itself, as well as of
one of its neighboring sites, e.g., {P [σi(t), σi+1(t)|σi(t +
1)]}. Herein, we shall work with this later formulation,
with the conditional probabilities given by P (0, 1|1) =
P (1, 0|1) = p1, P (1, 1|1) = p2, P (0, 0|1) = 0; obviously,
P [σi(t), σi+1(t)|0] = 1−P [σi(t), σi+1(t)|1]. In order to de-
scribe the possible phase transitions of the DKCA, let us
define the average density of active sites,

ρ(t) =

〈
1
L

L∑
i=1

σi(t)

〉
, (8)

which is defined for a single copy of the DKCA. Another
important parameter in this problem [6] consists in the
average Hamming distance between two copies A and B
of the DKCA,

ψ(t) =

〈
1
L

L∑
i=1

|σA
i (t) − σB

i (t)|
〉
. (9)

In the equations above, 〈..〉 denotes an average over in-
dependent realizations, i.e., an average over different ini-
tial states of the DKCA. It is important to remind that,
in principle, there are two limits to be performed in the
present problem, namely, t → ∞ and L → ∞, although
within the STD approach, only the thermodynamic limit
will be considered. As will be discussed in detail further
on, the results of the SSM depend on the relaxation time
(to be called hereafter trel) of the automaton. After relax-
ation, we apply the SSM for a given finite time interval,
over which one gets a convergence on the respective recur-
sive relations; once this convergence is attained, the results
of the SSM do not change, within the error bars, by con-
sidering this method over larger time intervals. For each
given value of L, we extrapolate the results of the SSM to
the limit trel → ∞ and whenever the limits trel → ∞ and
L → ∞ become necessary, we will assume that they may
be freely interchanged; in the present analysis we will be
restricted to the order trel → ∞ first, and then, L → ∞.
Considering these extrapolations, the quantities in equa-
tions (8) and (9) represent the order parameters of the
DKCA. For a given finite time, after the automaton re-
laxation, the phase transition separating the frozen and
active phases is signaled by the onset of the stationary
value of the average density of active sites of equation (8),
whereas the phase transition that splits the active phase
into the nonchaotic and chaotic phases can be detected
only by considering two copies (A and B) of the system,
through the stationary value of the average Hamming dis-
tance defined in equation (9).

In order to implement the SSM for the determination
of the critical frontiers of the DKCA, we will make use
of recursive relations, like the one of equation (1). Before
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doing that, we let the automaton relax for a given time
trel; then, we choose one of the probabilities (p1 or p2)
to keep fixed, and apply the respective recursive relation
in the search for the critical value associated with the re-
maining probability; this corresponds to the initial time
(t = 0) for the SSM. For the critical frontier frozen-active,
we fix p2 to a given value in the range [0,1] and analyze
the convergence of p1(L, t) to the associated value at the
critical frontier, according to

p1(L, t+ 1) = p1(L, t) − b[ρ(t) − (1/L)]. (10)

For the critical frontier nonchaotic-chaotic, we have cho-
sen to set p1 to a high value, presumably in the region
where the desired frontier is present, and follow the time
evolution of p2(L, t),

p2(L, t+ 1) = p2(L, t) + c[ψ(t) − (1/L)]. (11)

In the equations above, the constants b and c are set to
small positive values, and their magnitude control the rate
of convergence to the critical frontier; once the critical
frontier is approached, fluctuations O(1/L) occur around
the desired critical point. The different signs preceding
constants b and c in equations (10) and (11) tend to pro-
duce a small positive (negative) increment in the investi-
gated probability, if one is below (above) the critical point.

The convergence of the SSM occurs for relatively small
times (essentially for t ≈ 100 steps), although we have ver-
ified a strong dependence of this procedure in trel, in the
sense that for each relaxation time trel, one gets a differ-
ent convergence in the corresponding recursion relation.
Therefore an extrapolation trel → ∞ is necessary in or-
der to obtain the average stationary probability, p̄1(L) [or
p̄2(L)], which depends now only on the size L. By analyz-
ing different sizes, one may extrapolate these probabilities
to the thermodynamic limit; in addition to that, one can
also compute the critical exponent ν⊥, associated with the
corresponding critical frontier, by using the scaling rela-
tions,

p̄1(L)− p1c ∼ L−1/ν⊥ , and p̄2(L)− p2c ∼ L−1/ν′
⊥ .

(12)
In the equations above, p1c and p2c represent the extrap-
olated critical probabilities, in the thermodynamic limit,
associated with the critical frontiers calculated from the
set of data {p̄1(L)} [obtained from Eq. (10)] and {p̄2(L)}
[obtained from Eq. (11)], respectively. Furthermore, ν⊥
and ν′⊥ represent their respective critical exponents.

The STD approach consists in numerical simulations
carried at criticality, for a short time t greater than a cer-
tain microscopic time scale. This method has been applied
successfully in a wide variety of magnetic systems [19],
for which several interesting power-law behaviors were ob-
served at short times, and it was used also for the inves-
tigation of the critical behavior of nonequilibrium models
(cf., e.g., Ref. [27]). As mentioned in the previous sec-
tion, due to its short-time character, the scaling behav-
iors should depend on the initial conditions; herein, we will
consider such conditions directly associated with the order
parameters of the DKCA at initial times, t = 0. Herein, we

suppose that the STD technique leads to scaling relations
for the order parameters of the DKCA similar to those of
the ferromagnetic Ising model, presented in the previous
section; such an assumption will be confirmed in the next
section. It should be mentioned that, although considered
in two different numerical procedures, the variable t con-
sidered in the STD approach corresponds to the same time
variable used in the SSM [cf. Eqs. (10) and (11)], i.e., in
both cases each unit of time corresponds to a simultaneous
updating of all variables {σi(t)}.

Therefore, considering small initial values [O(1/L)] for
the order parameters, one should have [cf. Eq. (3)]

ρ(t) ∼ tθ; ψ(t) ∼ tθ
′
, (13)

whereas if one starts the system with the order parameters
at their maximum values, then [cf. Eq. (6)]

ρ(t) ∼ t−β/ν‖ ; ψ(t) ∼ t−β′/ν′
‖ , (14)

where the primed exponents apply to the critical frontier
nonchaotic-chaotic and we have used that z = ν‖/ν⊥. The
validity of these power-law behaviors for the DKCA, at
short times, will be verified in the next section. From the
exponents of equations (13) and (14) one may estimate
the dynamical exponent z by using the scaling relation,

θ + 2
β

ν‖
= d

ν⊥
ν‖

⇒ θ + 2
β

ν‖
=
d

z
, (15)

where d denotes the space dimension (d = 1 in the present
problem); similar relations hold for the primed exponents.
Based on these relations, authors have calculated the dy-
namic exponent z directly by computing the ratio between
one of the quantities in equation (13) and the square of
the analogous quantity in equation (14) [27].

In the next section we present and discuss the results
obtained by applying the SSM and STD to investigate the
critical properties of the DKCA.

3 Results and discussion

The DKCA was studied in its nonsymmetric form, as
defined above. If not specified explicitly, all realizations
started with random initial configurations, by assigning
to each site an equal probability for its variable to be in
one of the two possible states.

In the application of the SSM for the frontier frozen-
active, before using the appropriate recursive relation, we
let the system relax for a given time, trel. For the critical
frontier nonchaotic-chaotic, the replica A was generated
randomly, and it was let to evolve for a time Δt = 5000;
at this time, a copy of it was made (copy B), at which
the initial damage was introduced, by changing some of
its variables {σB

i (t)}. Then, both copies were let to evolve
towards relaxation (time trel), and after that, the corre-
sponding recursive relation of the SSM was applied. It is
important to stress that, as usual, the same sequences of
random numbers were used for copies A and B, in order to
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ensure that the possible differences between these copies,
at later times, should be due only to the initial dam-
age. Larger times for the first evolution process of copy
A (e.g., Δt = 20 000) did not change our results, within
the error bars. Different relaxation times were used (con-
structed from successive multiplications by factors of 2),
trel = 1600, 3200, . . . , 102 400, for the time extrapolations
trel → ∞. These procedures were considered for each of the
linear sizes, L = 2500, 3750, 5000, 7500, and 10 000, from
which the thermodynamic limit was considered. Samples
averages were carried overNs = 3000 independent realiza-
tions. For the constants b and c, in equations (10) and (11)
respectively, we have used typically, b = c = 0.005 close
to criticality, although slightly larger values for these con-
stants were employed far from criticality, for quicker con-
vergences of the SSM. For large values of L, the particular
choices of the constants b and c are essentially related to
the rate of convergence to criticality, e.g., larger values
for these quantities lead to a faster convergence of the
SSM. However, for small values of L, greater values for b
and c also lead to larger fluctuations around the critical
point. Neverthless, we have verified that, for sufficiently
large values of L, the results of the SSM are independent
of these choices.

It is important to mention that there are two possible
variants of the DKCA [11], in what concerns the use of
random numbers in the updating rules of the variables
of the automaton, following the conditional probabilities
P (0, 1|1) = P (1, 0|1) = p1 and P (1, 1|1) = p2, as defined
above. One may use either (i) different, or (ii) the same
random numbers when dealing with probabilities p1 and
p2. The critical frontiers happen to be a little different in
these two cases, and specially the chaotic phase turns out
to be slightly larger in case (i). We have verified that the
SSM yields precise estimates of the critical frontiers for
both variants of the DKCA, and below we shall present
the results obtained by using variant (ii).

In Figure 1 we exhibit the time evolution ruled by
equation (11), for a DKCA of linear size L = 10 000, in the
search for a point of the critical frontier nonchaotic-chaotic
associated to the fixed value p1 = 0.95. The time t = 0
in Figure 1a corresponds to the initial time for the SSM,
after the relaxation process over trel steps, as described
above. One observes that the recursive relation drives the
system quickly to a basin of attraction, with the probabil-
ity p2(L, t) presenting small fluctuations around a given
average value. However, the stationary value of p2(L, t)
depends strongly on the relaxation time used, although
for a given relaxation time, the stationary value obtained
is essentially independent of the initial condition p2(L, 0)
used for the SSM (see, e.g., two very distinct initial condi-
tions, namely, p2(L, 0) = 0 and p2(L, 0) = 1, used for the
relaxation times trel = 3200 and 25 600). As expected, the
difference between the stationary values associated with
two successive relaxation times decreases for increasing
values of the relaxation time, indicating a convergence for
large values of trel. For each relaxation time considered,
one may use the last 500 time steps of the SSM in order
to get a statistics, i.e., the average value and correspond-

Fig. 1. (a) The probability p2(L, t) calculated from the SSM
[Eq. (11)] for p1 = 0.95 and different relaxation times. Herein,
t = 0 corresponds to the initial time for the SSM, set right
after the relaxation process over trel time steps. The linear
size considered was L = 10 000. (b) Plot of p2(L, t) versus
1/trel showing the extrapolation to the limit trel → ∞ of the
data in (a), leading to the extrapolated value p̄2(L) = 0.26386.
The error bars are typically of the size of the symbols and
squares (circles) correspond to the initial condition p2(L, 0) = 0
[p2(L, 0) = 1].

ing error bars for the stationary probability. After that,
one may estimate the average probability p̄2(L), associ-
ated with a given size L, by considering an extrapolation
of the data obtained for distinct values of trel, to the limit
trel → ∞, as illustrated in Figure 1b.

Applying the same procedure described above for the
critical frontier frozen-active, one may obtain a set of
probabilities, {p̄1(L)}, which depend only on the size
L. In Figure 2 we exhibit a nonlinear fit, according to
the behavior presented in equation (12), for the point
of this critical frontier corresponding to p2 = 0.5. The
error bars presented were obtained from the extrapola-
tions trel → ∞, for each size L. By using the probabili-
ties {p̄1(L)}, associated with five different sizes, namely,
L = 2500, 3750, 5000, 7500, and 10 000, our fit yielded
p1c = 0.7493 ± 0.0003 and ν⊥ = 1.099 ± 0.015. The in-
set shows a plot of ln[p1c − p̄1(L)] versus ln(1/L), us-
ing this value of p1c obtained from the nonlinear fit; the
slope of the straight line yields an estimate for 1/ν⊥ that
is in agreement with the value of ν⊥ obtained from the
nonlinear fit, within the error bars. We have analyzed
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Table 1. Coordinates of typical points of the critical frontier frozen-active of the nonsymmetric DKCA within variant (ii)
[which corresponds to the use of the same random numbers when dealing with probabilities p1 and p2 (see text)], as obtained
from the SSM, are compared to other results available in the literature.

p2 1.00 0.80 0.50 0.20 0.00
p1c 0.5000 ± 0.0002 0.6762 ± 0.0001 0.7493 ± 0.0003 0.7893 ± 0.0001 0.8095 ± 0.0003

Other estimates 1/2 (Ref. [28]) – 0.749 ± 0.001 (Ref. [26]) – 0.8095 (Ref. [26])

Table 2. Coordinates of typical points of the critical frontier nonchaotic-chaotic of the nonsymmetric DKCA within variant (ii)
which corresponds to the use of the same random numbers when dealing with probabilities p1 and p2 (see text), as obtained
from the SSM, are compared to other results available in the literature.

p1 1.00 0.95 0.90 0.85
p2c 0.3119 ± 0.0002 0.2641 ± 0.0003 0.2092 ± 0.0001 0.1390 ± 0.0003

Other estimates 0.31215 ± 0.00004 (Ref. [11]) – – 0.1400 ± 0.0002 (Ref. [11])

Fig. 2. Nonlinear fit (full line) of the probabilities {p̄1(L)}
versus 1/L, for five different sizes of the system, corresponding
to the point of the critical frontier frozen-active with p2 =
0.5. In the inset we show a log-log (base e) plot using the
critical value p1c obtained from the extrapolation L → ∞ of the
nonlinear fit; the slope of the straight line yields an estimate for
1/ν⊥, in agreement with the one obtained from the nonlinear
fit.

other points along the critical frontier frozen-active and
some of our estimates for p1c are presented in Table 1. It
should be pointed out that such estimates are in agree-
ment (within the error bars), with other estimates avail-
able in the literature, obtained from the application of
different approaches to the nonsymmetric DKCA, e.g.,
references [26,28]. In what concerns the critical-exponent
ν⊥, the estimate above falls in the DP universality class
(within the error bars), for which ν⊥ = 1.096854(4) [29].
Except for the terminal point p2 = 1, which is well-known
to lie in a different universality class, i.e., the class of
compact DP, all points considered in the critical frontier
frozen-active yielded estimates for ν⊥ in the DP univer-
sality class.

We have also applied nonlinear fits similar to the one of
Figure 2 to sets of probabilities {p̄2(L)}, corresponding to

Table 3. The critical exponents for both critical frontiers
of the DKCA. The estimates of ν⊥ and ν′

⊥ follow from the
SSM (see text); other exponents were computed from the STD
technique, as well as through scaling relations. For comparison,
estimates of the DP problem are included.

Critical Frontier Frontier DP
Exponent Frozen-Active Nonchaotic-Chaotic Ref. [29]
ν⊥, ν′

⊥ 1.099 ± 0.015 1.094 ± 0.014 1.096854(4)
θ, θ′ 0.308 ± 0.005 0.316 ± 0.004 0.313686(8)
z, z′ 1.618 ± 0.039 1.602 ± 0.041 1.580745(10)
ν‖, ν′

‖ 1.778 ± 0.052 1.752 ± 0.037 1.733847(6)
β, β′ 0.276 ± 0.009 0.270 ± 0.011 0.276486(8)

different points along the nonchaotic-chaotic critical fron-
tier. The critical points obtained are in good agreement
with those available in the literature, and some of them
are presented in Table 2. For the critical exponent ν′⊥,
two different critical points, corresponding to p1 = 1 and
p1 = 0.95, yielded the estimates, (ν′⊥)−1 = 0.916 ± 0.011
and (ν′⊥)−1 = 0.913 ± 0.012, respectively. Considering
the average of these two estimates, one gets that ν′⊥ =
1.094 ± 0.014 (cf. Table 3). The phase diagram resulting
from the application of the SSM to both critical frontiers
of the nonsymmetric DKCA in its variant (ii) described
above, using equation (10) (critical frontier frozen-active)
and equation (11) (critical frontier nonchaotic-chaotic), is
presented in Figure 3.

After a precise determination of the critical frontiers,
as well as of the corresponding exponents ν⊥ and ν′⊥ from
the SSM, one may use now other approximative methods
for the estimation of different critical exponents. Herein,
we make use of the STD technique [19], which was ap-
plied for the DKCA only recently, in an investigation of
the critical frontier frozen-active [27]. Contrary to what
was done in the SSM, the STD simulations do not follow
the relaxation process characterized by the time trel, i.e.,
trel = 0. Therefore, in what concerns the critical frontier
frozen-active, the time t = 0 corresponds to time right
after the generation of the initial configuration. However,
in the case of the critical frontier nonchaotic-chaotic, we
also let copy A evolve initially for a time Δt = 5000, in
order to attain its stationary state, before creating copy
B (we have used higher values for Δt as well, and our
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Fig. 3. Phase diagram of the nonsymmetric DKCA obtained
from the SSM. The squares represent points obtained from the
SSM; the full lines are guides to the eye.

results did not change within the error bars); then, we
create copy B, introduce the initial damage, and set the
time t = 0 for the STD method. Using the procedures
described in the previous section [cf. Eqs. (13) and (14)],
we may obtain estimates for the exponents θ and the ra-
tio β/ν‖, associated with the critical frontier frozen-active
(the same applies to its counterparts, θ′ and β′/ν′‖, of the
critical frontier nonchaotic-chaotic). In Figures 4 and 5
we exhibit log-log plots of the order parameters of the
DKCA, at criticality, versus time, obtained from the STD
approach. The data presented correspond to a linear size
L = 10 000, to a maximum time of 2000 time steps, and
to sample averages over Ns = 10 000 independent realiza-
tions. The data for the order parameter ρ(t) (circles) cor-
respond to the point of the critical frontier frozen-active
with p2 = 0.5 (see Tab. 1), whereas those associated to
Ψ(t) (squares) correspond to the point p1 = 1.0 of the crit-
ical frontier nonchaotic-chaotic (see Tab. 2). In Figure 4
the slopes of the straight lines yield θ = 0.308±0.005 and
θ′ = 0.316 ± 0.004, respectively. From Figure 5 one gets
that β/ν‖ = 0.155±0.005 and β′/ν′‖ = 0.154±0.006. Then,
using the scaling relation of equation (15), one may esti-
mate the dynamic exponent z, which, together with the
estimate of ν⊥ obtained from the SSM, yields ν‖. All other
exponents may be calculated from these estimates, using
scaling relations (see Tab. 3). A similar procedure applies
to the primed exponents, associated with the critical fron-
tier nonchaotic-chaotic. The STD technique, applied re-
cently for evaluating the critical exponents z and ν‖ of
the critical frontier frozen-active of the DKCA, yielded
z = 1.581 ± 0.001 and ν‖ = 1.731 ± 0.009 [27], which are
in agreement with our estimates, within the error bars
(cf. Tab. 3). It should be mentioned that all exponents
obtained, for both critical frontiers of the DKCA, fall in
the universality class of DP (precise estimates of the ex-
ponents of DP are included in Tab. 3 for completeness).

To conclude, we have investigated the Domany-Kinzel
cellular automaton using two different numerical ap-
proaches, namely, the spontaneous-search method and

Fig. 4. Log-log (base e) plots of the order parameters of the
DKCA, at criticality, versus time, within the STD approach.
The order parameters ρ(t) (circles) and Ψ(t) (squares) are asso-
ciated with the critical frontiers frozen-active and nonchaotic-
chaotic, respectively. In both cases the initial order parameters
(at time t = 0) were considered with infinitesimal values. The
slopes of the straight lines yield the exponents θ and θ′ [cf.
Eq. (13)].

Fig. 5. Log-log (base e) plots of the order parameters of the
DKCA, at criticality, versus time, within the STD approach.
The order parameters ρ(t) (circles) and Ψ(t) (squares) are asso-
ciated with the critical frontiers frozen-active and nonchaotic-
chaotic, respectively. In both cases the initial order parameters
(at time t = 0) were considered with their maximum values.
The slopes of the straight lines yield the ratios of exponents,
−β/ν‖ and −β′/ν′

‖ [cf. Eq. (14)].

the short-time-dynamics technique. We have shown that
the spontaneous-search method is adequate for estimat-
ing precisely the critical borders of the automaton, i.e.,
the frozen-active, as well as the nonchaotic-chaotic criti-
cal frontiers. In addition to that, this method produced
accurate estimates for the critical exponent ν⊥ on both
critical frontiers investigated. Using the critical frontiers
obtained, we have applied the short-time-dynamics ap-
proach in order to find other critical exponents. To our
knowledge, such a technique was never applied in an in-
vestigation of the critical frontier nonchaotic-chaotic of
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the Domany-Kinzel cellular automaton. All exponents ob-
tained, for both critical frontiers studied, fall in the uni-
versality class of directed percolation. The present analy-
sis provides further reliability to both techniques, and in
particular, to the spontaneous-search method, which has
been already applied successfully in the study of the criti-
cal properties of polymers [14], percolation [15], as well as
of magnetic systems [16–18], and may be implemented in
the future also for investigating other systems exhibiting
critical behavior.
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