
IOP PUBLISHING PLASMA SOURCES SCIENCE AND TECHNOLOGY

Plasma Sources Sci. Technol. 17 (2008) 015006 (7pp) doi:10.1088/0963-0252/17/1/015006

Anisotropy of thermal stresses in confined
dusty plasmas
V S Tsypin1,6, S V Vladimirov2, R M O Galvão3,4 and C A de Azevedo5

1 Brazilian Center for Physics Research, Rua Xavier Sigaud 150, Rio de Janeiro, BR-22290180 Brazil
2 School of Physics, The University of Sydney, N.S.W. 2006, Australia
3 Institute of Physics, University of São Paulo, Cidade Universitária, 05508-900 São Paulo, Brazil
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Abstract
Anisotropy of thermal stresses in confined dusty plasmas is considered. It is shown that in a
multi-component low-temperature plasma containing electrons, ions and dust, the complicated
dependence of the ion viscosity on ion temperature gradients leads to a plasma equilibrium
state with anisotropic pressure. This pressure anisotropy can be of the order of the ion pressure
in some limiting cases, in which the ion Larmor radius or the ion mean free path are of the
order of the characteristic length of the plasma nonuniformity. For a sufficiently large dust
number density, they contribute to the plasma pressure anisotropy and to its spatial
dependence. Currently, it is not yet clear whether this equilibrium state is stable or not. Under
these conditions, some convective plasma flows can arise in confinement devices. Therefore,
this question needs special consideration.

1. Introduction

There are a number of electronic devices, e.g. thermal
emission converters, plasma diodes and plasma surface
deposition and etching devices, in which plasma is confined
in magnetic configurations with various geometries [1–7]. In
axially symmetric devices such as coaxial thermal emission
converters, there are some special plasma flows related to
the dependence of the plasma viscosity not only on spatial
derivatives of plasma velocities (the Navier–Stokes kind of
plasma viscosity), but also on the spatial derivatives of heat
fluxes (the Burnett kind of plasma viscosity) [8,9]. These flows
are analogous to the so-called residual poloidal and toroidal
rotation in tokamaks [10–13], which have been confirmed
experimentally on many occasions.

If there is no axial symmetry in such devices, e.g. in
the case of the plane geometry of closed devices, such as
parallelepipeds, it is clear that these flows are absent in the
equilibrium state. Nevertheless, the viscosity dependence
on the spatial derivatives of heat fluxes and, consequently,
on spatial derivatives of plasma temperature, can lead to an
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anisotropy of thermal stresses in confined plasmas. Moreover,
the complicated dependence of the ion viscosity on ion
temperature gradients can lead to a plasma equilibrium state
with anisotropic pressure. The pressure anisotropy can be of
the order of the ion pressure in some limiting cases.

An important feature of plasma technological devices
is the presence of natural contamination or dust [14, 15].
The presence of dust modifies plasma properties [16–18],
especially in inhomogeneous plasma regions near walls
[19, 20]. It was previously shown [21] that dust contamination

of devices with pulsed external current circuits (e.g. thermal
emission converters and plasma diodes) can induce the
temperature-gradient driven flows of ions.

In this paper, we show that dust can also contribute
to the anisotropy of thermal stresses in plasmas produced
in such devices. This contribution appears through the ion
viscosity dependence on the ion–dust collision frequencies.
We found an equilibrium state for a magnetized dusty plasma
with the anisotropic pressure; however, it is at present unclear
whether this equilibrium state is stable. Indeed, under the
physical conditions required for the equilibrium, convective
flows can arise in the plasma, bringing up the necessity of
further investigations of the problem.
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2. Starting equations

To show the origin of the induced viscosity forces in plasma
dynamics, we proceed from the momentum equations [22–26]
for particles of α-species

Mαnα

dαVα

dt
= −∇pα − ∇ · π̂α + eαnα

×
(

E +
1

c
[Vα × B]

)
+ Ruα + RT α, (1)

where the common notations are used, and α = e, i and n,
stands for the plasma electrons, ions and neutrals, respectively.
We take into account that the plasma quasineutrality condition
is strongly affected by the presence of dust particles, and is
given by −ene + eZini − eZdnd = 0, where ne, ni, nd and −e,
eZi, −eZd are the electron, ion and dust grain densities and
charges, respectively. For the majority of dusty plasmas, the
dust particles are highly (negatively) charged, Zd ∼ 102–104,
and their diameter d is approximately of a micrometer size,
d ∼ 1µm [14, 15]. It follows from the quasineutrality
condition that the density of the dust component may vary
within the wide range 0 � Zdnd � Zini depending on the
specific laboratory conditions. Thus, the electron density can
also be changed within the range Zini � ne � 0.

The friction forces Ri,e, affecting electrons and ions,
include collisions of these particles with neutrals and dust
particles; we also take into account the thermal forces RT α .
The ion–dust collision frequencies are given by [21]

νid = 4
√

2πλe4Z2
i Z

2
dnd

3
√

MiT
3/2

i

, (2)

where the standard Braginskii [22] notations are used (in
particular, λ is the Coulomb logarithm).

We consider a plasma nonuniform in the x, y-directions,
which is confined by plane conducting walls at the coordinates
x = 0 and x = x0, such that the sheath temperatures are
T (0) = T1 and T (x0) = T2 > T1, respectively. In contrast
to [21], we take into account here the anisotropy of plasma
pressures. The magnetic field is directed along the axis z,
B = Bez. The particle mean free paths λii = vTi/νii,
λin = vTi/νin, and λid = vTi/νid are assumed to be smaller
than the system characteristic size x0, namely, λi(i,n,d) < x0.
For simplicity, we consider a two-dimensional problem with
∂/∂z = 0 and neglect plasma collisions with neutrals. In this
case, the equilibrium equations, summarized for electrons and
ions, are

∂

∂x

(
p + π i

xx

)
+

∂

∂y
π i

xy − eZdndEx − RT dx = 0, (3)

∂

∂y

(
p + π i

yy

)
+

∂

∂x
π i

xy − eZdndEy +
1

c
jxB − RT dy = 0,

(4)

where jx is the plasma current density component and RT d is
the thermal force affecting ions as a result of their collisions
with the dust. Generally speaking, the dust charge and number
density can also be functions of the corresponding coordinates,

namely Zd(x, y) and nd(x, y) [16–18]; for simplicity we
neglect such a dependence here.

3. Thermal forces

We consider the thermal force RT d in the Braginskii form
[22], with the replacement of electrons by ions and ions by
dust, i.e. we change in the corresponding Braginskii formulas
indices ‘e’ → ‘i’ and ‘i’ → ‘d’. Thus, we have

RT d = −βuT
⊥ ∇⊥Ti − βuT

∧ h × ∇⊥Ti, (5)

where βuT
⊥ = Zini(3.80δ2

d + 0.15)/�d, βuT
∧ = Ziniδd(1.5δ2

d +
0.88)/�d, δd = ωci/νid, ωci = eiB/Mic is the ion cyclotron
frequency and �d = δ4

d + 7.48δ2
d + 0.10. We neglect in (5)

the electron terms, which are small in comparison with that
of the ion, at least as

√
Me/Mi. Thus in (5) we have only

two components of the thermal force, RT dx = −βuT
⊥ ∂Ti/∂x +

βuT
∧ ∂Ti/∂y and RT dy = −βuT

⊥ ∂Ti/∂y − βuT
∧ ∂Ti/∂x. For

consistency with the nonuniformity assumptions, we consider
y0 � x0, where y0 is the characteristic scale of the system
along the y direction. Such a situation can appear in plane
thermal emission converters.

The components of the electric field, Ex and Ey , can
be estimated from the ion momentum equation (1) Ex ∼
(1/eini)∂pi/∂x and Ey ∼ (1/eini)∂pi/∂y. Taking into
account the relation Zdnd � Zini, we can rewrite equations (3)
and (4) in the form

∂

∂x

(
p + π i

xx

)
+

∂

∂y
π i

xy − RT dx = 0 (6)

and
∂

∂y

(
p + π i

yy

)
+

∂

∂x
π i

xy +
1

c
jxB − RT dy = 0. (7)

In equations (6) and (7), the terms π i
xx and π i

yy contribute
to the pressure anisotropy. Thus our goal is to calculate these
terms. The components of the thermal forces RT dx and RT dy

and the viscosity tensor component π i
xy are responsible for the

spatial dependence of the components of the pressure stress
tensor p + π i

xx and p + π i
yy .

4. Ion viscosity

The expression for the ion viscosity is rather cumbersome in the
general case of the arbitrary parameter δi = ωci/νii [24–26]. It
is presented in the appendix (see for the viscosity components
equations (A1)–(A7), and for the viscosity coefficients
equations (A8)–(A13)). The complicated structure of the ion
viscosity is also explained in the appendix.

In the chosen plane geometry, the needed components of
the viscosity tensor can be taken in the form [26]

π i
xx = 1

2
η

(0)

(m)

(
W(m)

xx + W(m)
yy

)
+

1

2
η

(1)

(m)

(
W(m)

xx − W(m)
yy

)
− η

(3)

(m)W
(m)
xy , (8)

π i
yy = 1

2
η

(0)

(m)

(
W(m)

xx + W(m)
yy

) − 1

2
η

(1)

(m)

(
W(m)

xx − W(m)
yy

)
+ η

(3)

(m)W
(m)
xy , (9)

2
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and

π i
xy = η

(1)

(m)W
(m)
xy +

1

2
η

(3)

(m)

(
W(m)

xx − W(m)
yy

)
. (10)

Here

W(1)
xx = 2

3

(
2
∂Vix

∂x
− ∂Viy

∂y

)
+

4

15niTi

(
2
∂qix

∂x
− ∂qiy

∂y

)

− 3

50

νiiMi

n2
i T

3
i

[(
2q2

ix − q2
iy

)
+

7

4

(
2qixq

∗
ix − qiyq

∗
iy

)
+

63

64

(
2q∗2

ix − q∗2
iy

)]
, (11)

W(1)
yy = 2

3

(
2
∂Viy

∂y
− ∂Vix

∂x

)
+

4

15niTi

(
2
∂qiy

∂y
− ∂qix

∂x

)

− 3

50

νiiMi

n2
i T

3
i

[(
2q2

iy − q2
ix

)
+

7

4

(
2qiyq

∗
iy − qixq

∗
ix

)
+

63

64

(
2q∗2

iy − q∗2
ix

)]
, (12)

W(2)
xx = 2

3niTi

{(
2qix

∂ ln pi

∂x
− qiy

∂ ln pi

∂y

)

−

2

∂
(
qix − q∗

ix

)
∂x

−
∂

(
qiy − q∗

iy

)
∂y







− 2

3niTi

[
2

(
2qix − q∗

ix

) ∂ ln Ti

∂x
− (

2qiy − q∗
iy

) ∂ ln Ti

∂y

]

− 89

1400

νiiMi

n2
i T

3
i

[(
2q2

ix − q2
iy

)
+

865

356

(
2qixq

∗
ix − qiyq

∗
iy

)
+

5915

5696

(
2q∗2

ix − q∗2
iy

)]
, (13)

W(2)
yy = 2

3niTi

{(
2qiy

∂ ln pi

∂y
− qix

∂ ln pi

∂x

)

−

2

∂
(
qiy − q∗

iy

)
∂y

− ∂
(
qix − q∗

ix

)
∂x







− 2

3niTi

[
2

(
2qiy − q∗

iy

) ∂ ln Ti

∂y
− (

2qix − q∗
ix

) ∂ ln Ti

∂x

]

− 89

1400

νiiMi

n2
i T

3
i

[(
2q2

iy − q2
ix

)
+

865

356

(
2qiyq

∗
iy − qixq

∗
ix

)
+

5915

5696

(
2q∗2

iy − q∗2
ix

)]
, (14)

W(1)
xy = ∂Vix

∂y
+

∂Viy

∂x
+

2

5niTi

(
∂qix

∂y
+

∂qiy

∂x

)
− 9

100

νiiMi

n2
i T

3
i

×
[

2qixqiy +
7

4

(
qixq

∗
iy + qiyq

∗
ix

)
+

63

32
q∗

ixq
∗
iy

]
, (15)

and

W(2)
xy = 1

niTi


qix

∂ ln pi

∂y
+ qiy

∂ ln pi

∂x
−

∂
(
qiy − q∗

iy

)
∂x

− ∂
(
qix − q∗

ix

)
∂y

]
− 1

niTi

[(
2qix − q∗

ix

) ∂ ln Ti

∂y

+
(
2qiy − q∗

iy

) ∂ ln Ti

∂x

]
− 267

2800

νiiMi

n2
i T

3
i

[
2qixqiy

+
865

356

(
qixq

∗
iy + qiyq

∗
ix

)
+

5915

2848
q∗

ixq
∗
iy

]
. (16)

Heat fluxes qi and q∗
i are presented in the appendix,

equations (A19) and (A20), respectively.

5. Approximation for the strong magnetic field,
νii � ωci

To simplify these expressions, we use them in two
approximations; first, when the ion–ion collision frequency
νii is much smaller than the ion cyclotron frequency ωci,
i.e. the parameter δi is large. In this case we have,
equations (A8)–(A12),

η
(0)

(1) = −0.96
niTi

νii
, η

(1)

(1) = −3niTiνii

10ω2
ci

, η
(2)

(1) = −6niTiνii

5ω2
ci

,

η
(3)

(1) = niTi

2ωci
, η

(4)

(1) = niTi

ωci
, (17)

η
(0)

(2) = 0.24
niTi

νii
, η

(1)

(2) = −9niTiνii

100ω2
ci

, η
(2)

(2) = −9niTiνii

25ω2
ci

,

η
(3)

(2) = 0, η
(4)

(2) = 0. (18)

Correspondingly, we find, equations (A21)–(A23),

κ i
⊥ = 2niTiνii

Miω
2
ci

, κ i
∧ = 5niTi

2Miωci
,

κ∗i
⊥ = 6niTiνii

7Miω
2
ci

, κ∗i
∧ = 0. (19)

The heat fluxes in the necessary approximation are

qi = qi⊥ = −2niTiνii

Miω
2
ci

∇⊥Ti +
5niTi

2Miωci
h × ∇Ti (20)

and

q∗
i = q∗

i⊥ = −6niTiνii

7Miω
2
ci

∇⊥Ti. (21)

From the Braginskii equations in the case of the quasistationary
plasma in the absence of macroscopic flows, we have an
equation for the spatial dependence of the ion temperature
following from ∇⊥ · qi⊥ = 0,

∇⊥ ·
[

niTi

Miωci

(
2νii

ωci
∇⊥Ti − 5

2
h × ∇⊥Ti

)]
= 0. (22)

Assuming x0 � ∂/∂y, we find

∂2Ti

∂x2
+

∂Ti

∂x

(
2
∂ ln ni

∂x
− 2

∂ ln B

∂x
− 1

2

∂ ln Ti

∂x

)
= 0. (23)

In addition, we suppose that the ion Larmor radius,
ρi = vYi/ωci, is smaller than the characteristic length x0,
ρi < x0. Thus we have a substantial simplification of
equations (8)–(10).

π i
xx = −0.48

niTi

νii

(
W(1)

xx + W(1)
yy

)
+ 0.12

niTi

νii

(
W(2)

xx + W(2)
yy

)

− 3niTiνii

20ω2
ci

(
W(1)

xx − W(1)
yy

) − 9niTiνii

200ω2
ci

(
W(2)

xx − W(2)
yy

)

3



Plasma Sources Sci. Technol. 17 (2008) 015006 V S Tsypin et al

− niTi

2ωci
W(1)

xy , (24)

π i
yy = −0.48

niTi

νii

(
W(1)

xx + W(1)
yy

)
+ 0.12

niTi

νii

(
W(2)

xx + W(2)
yy

)
+

3niTiνii

20ω2
ci

(
W(1)

xx − W(1)
yy

)
+

9niTiνii

200ω2
ci

(
W(2)

xx − W(2)
yy

)

+
niTi

2ωci
W(1)

xy , (25)

π i
xy = −3niTiνii

10ω2
ci

W(1)
xy − 9niTiνii

100ω2
ci

W(2)
xy +

niTi

4ωci

(
W(1)

xx − W(1)
yy

)
,

(26)

which leads to

π i
xx = − niTi

2Miω
2
ci

∂Ti

∂x

[
0.74

∂ ln Ti

∂x
+

∂

∂x

(
ln

∂Ti

∂x

)

+
∂ ln ni

∂x
− ∂ ln B

∂x

]
, (27)

π i
yy = niTi

2Miω
2
ci

∂Ti

∂x

[
1.26

∂ ln Ti

∂x
+

∂

∂x

(
ln

∂Ti

∂x

)

+
∂ ln ni

∂x
− ∂ ln B

∂x

]
, (28)

π i
xy = −0.1νiiniTi

Miω
3
ci

∂Ti

∂x

[
∂

∂x

(
ln

∂Ti

∂x

)
+ 3.8

∂ ln ni

∂x

− ∂ ln B

∂x
− 5.4

∂ ln Ti

∂x

]
. (29)

Expressing the derivative ∂ ln B/∂x from equation (23)

∂ ln B

∂x
= 1

2

∂

∂x

(
ln

∂Ti

∂x

)
+

∂ ln ni

∂x
− 1

4

∂ ln Ti

∂x
, (30)

we find, from equations (27)–(29),

π i
xx = − niTi

2Miω
2
ci

∂Ti

∂x

[
∂ ln Ti

∂x
+

1

2

∂

∂x

(
ln

∂Ti

∂x

)]
, (31)

π i
yy = niTi

2Miω
2
ci

∂Ti

∂x

[
1.5

∂ ln Ti

∂x
+

1

2

∂

∂x

(
ln

∂Ti

∂x

)]
, (32)

π i
xy = −0.1νiiniTi

Miω
3
ci

∂Ti

∂x

[
1

2

∂

∂x

(
ln

∂Ti

∂x

)
+ 2.8

∂ ln ni

∂x

− 5.2
∂ ln Ti

∂x

]
. (33)

Equations (31)–(33) define the equilibrium state with the
pressure anisotropy, p + π i

xx 
= p + π i
yy , and the spatial

dependence of the anisotropic pressure in equations (6) and (7)
due to the term π i

xy for the case of the disconnected external
current jx and the negligibly small dust number density. The
pressure anisotropy, �p = p+π i

xx −(
p + π i

yy

) = π i
xx −π i

yy , is

�p = − niTi

2Miω
2
ci

∂Ti

∂x

[
2.5

∂ ln Ti

∂x
+

∂

∂x

(
ln

∂Ti

∂x

)]
. (34)

For the sufficiently large ion Larmor radius, ρi � x0, the
anisotropy pressure, �p, can be of the order of the ion pressure,
�p � pi, as can be seen from equation (34).

6. Approximation for the strong collision frequency,
ν ii � ωci

In the case νii � ωci, we obtain from equations (A8)–(A12)

η
(0)

(1) = η
(1)

(1) = η
(2)

(1) = −0.96
niTi

νii
,

{
η

(3)

(1); η
(4)

(1)

}
= {2.04; 1.02} niTiωci

ν2
ii

, (35)

η
(0)

(2) = η
(1)

(2) = η
(2)

(2) = 0.24
niTi

νii
,

{
η

(3)

(2); η
(4)

(2)

}
= − {0.82; 0.41} niTiωci

ν2
ii

(36)

and from equations (A19)–(A23)

κ i
‖ = 3.91

niTi

νiiMi
, κ i

⊥ = 3.91niTi

νiiMi
,

κ i
∧ = 6.84

niTiωci

ν2
iiMi

, (37)

κ∗i
‖ = −1.04

niTi

νiiMi
, κ∗i

⊥ = −1.04
niTi

νiiMi
,

κ∗i
∧ = −2.63

niTiωci

ν2
iiMi

, (38)

qi = −3.91niTi

νiiMi
∇⊥Ti + 6.84

niTiωci

ν2
iiMi

h × ∇Ti, (39)

and

q∗
i = 1.04

niTi

νiiMi
∇⊥Ti − 2.63

niTiωci

ν2
iiMi

h × ∇Ti. (40)

The temperature evolution equation is as follows:

∂

∂x

(
T

5/2
i

∂Ti

∂x

)
= 0. (41)

Its solution is Ti (x) = (C1x + C2)
2/7, with C1 =(

T
7/2

2 − T
7/2

1

)
/x0 and C2 = T

7/2
1 .

The components of the viscosity tensor are

π i
xx = niTi

ν2
iiMi

∂Ti

∂x

(
1.92

∂ ln Ti

∂x
− 1.26

∂ ln ni

∂x

)
, (42)

π i
yy = − niTi

ν2
iiMi

∂Ti

∂x

(
1.75

∂ ln Ti

∂x
− 0.63

∂ ln ni

∂x

)
, (43)

and

π i
xy = niTiωci

ν3
iiMi

∂Ti

∂x

(
−4.90

∂ ln B

∂x
+ 8.13

∂ ln ni

∂x

− 17.82
∂ ln Ti

∂x

)
. (44)

We conclude, analogously to the end of section 5, that the
equilibrium state has a pressure anisotropy given by

�p = niTi

ν2
iiMi

∂Ti

∂x

(
3.67

∂ ln Ti

∂x
− 1.89

∂ ln ni

∂x

)
. (45)

In the case of the sufficiently large ion mean free path, λii �
x0, the pressure anisotropy can be of the order of the ion
pressure, �p � pi.

4
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7. The role of dust in plasma equilibrium

The role of dust in equations (3) and (4) (or in equations (6)
and (7)) is important only in the case when the ion–dust
collision frequency, νid, is larger than the ion–ion collision
frequency, νii, νid � νii, i.e. for the sufficiently large
dust number density, nd � niZ

2
i /Z

2
d , when ion collisions

with dust are more relevant than ion–ion collisions. In
this case, to obtain transport equations, in particular the
ion viscosity, it is necessary to take into account ion–dust
collisions in the collision term in the Boltzmann kinetic
equation. This situation is similar to electron–ion collisions
in the electron kinetic equation, see Braginskii [22]. These
transport coefficients were not calculated taking into account
the ion–dust collisions. However, according to Braginskii, the
structure of viscosity in this case is the same except for the
numerical coefficients. Then, for qualitative evaluations, we
can use all expressions obtained above replacing νii → νid and
considering numerical coefficients to be of the order of unity
for the case nd � niZ

2
i /Z

2
d .

Then, assuming ωci � νid, we find βuT
⊥ = 3.80Ziniν

2
id/

ω2
ci and βuT

∧ = 1.5Ziniνid/ωci. Correspondingly, we have

RT dx = −3.80Zini
ν2

id

ω2
ci

∂Ti

∂x
, RT dy = −1.5Zini

νid

ωci

∂Ti

∂x
.

(46)

For the case ωci � νid, we arrive at βuT
⊥ = 1.5Zini and

βuT
∧ = 8.8Ziniωci/νid. Consequently, we have

RT dx = −1.5Zini
∂Ti

∂x
, (47)

and

RT dy = −8.8Zini
ωci

νid

∂Ti

∂x
. (48)

Thus the role of dust in equations (6) and (7) leads to
replacing νii → νid in the viscosity components π i

xx , π i
yy , and

π i
xy , considering numerical coefficients to be of order unity

in these components, and giving rise to the thermal force
terms related to the ion–dust interaction in these equations.
Estimations for the pressure anisotropy, equations (34) and
(45), are qualitatively the same. It means that dust contributes
to the pressure anisotropy and to the spatial dependence of the
anisotropic pressure in the case of the sufficiently large dust
number density, nd � niZ

2
i /Z

2
d .

Here, we provide some characteristic parameters for
thermal emission converters [7] and make the corresponding
estimations. Usually, the plasma in these converters consists
of Cs133

55 , K39
19 or Ru101

44 . Typical parameters of converters are
the following: temperatures of emitters T2 and collectors T1,
the plasma pressure p, the magnetic field B are T2 = 1600–
2400 K, T1 = 800–1100 K, p = 0.15–70 Pa, B � 102. For
example, we can find the ratio νii/ωci for the plasma which
consists of K39

19: νii/ωci � 10. Thus, to describe the plasma
equilibrium state (the plasma pressure anisotropy) in thermal
emission converters with the above-mentioned macroscopic
parameters, we can use results of section 6 with the factor
δi ∼ 0.1. Furthermore, for devices where the typical ion

number density is ni ∼ 1013 cm−3 and the neutral gas density
is of order nn ∼ 1016 cm−3 [7], the influence of plasma–
neutral collisions can be neglected. The ion νin and electron
νen collision frequencies with neutrals can be obtained from
the kinetic theory [28]. If the mass Mn of the neutral particle
is greater than the ion mass Mi, the frequency is given by

νin ≈ πσ 2nnvTi , (49)

where σ is the diameter of the neutral atom. These collisions,
however, can become important when the ion number density
falls lower than 10−5 nn, as direct comparison of the (A13) and
(49) can justify.

Turning to the possible applications of results obtained
here, for example, we find a large variety of thermal emission
converters such as the close-spaced high vacuum, low-
pressure diodes, high-pressure cesium and others [7, 29]. The
voltage–current characteristics of such devices can depend on
plasma pressure in some conditions [3, 7, 29]. The effect
of the natural anisotropy of plasma pressure on voltage–
current characteristics of the thermal emission converters,
and as a result on the outgoing characteristics such an
efficiency, is a completely unknown subject. In addition,
plasma convective flows resulting from the pressure anisotropy
can also affect the characteristics of the thermal emission
converters and analogous devices. Thus problems arise in
finding out the natural pressure anisotropy in such devices,
possible convective flows resulting from this anisotropy, and
in studying these effects and their possible effect on outgoing
characteristics of closed plasma devices with temperature
gradients and transverse magnetic field.

8. Conclusion

To conclude, we demonstrated that in a multi-component
low-temperature plasma containing electrons, ions and dust,
the complicated dependence of the ion viscosity on the ion
temperature gradients leads to a plasma equilibrium state with
anisotropic pressure. This plasma pressure anisotropy can
be of the order of the ion pressure in some limiting cases,
in which the ion Larmor radius or the ion mean free path
are of the order of the characteristic length of the plasma
nonuniformity. The cases considered are (i) strong magnetic
field, when the ion cyclotron frequency is larger than the ion–
ion collision frequency, and (ii) strong collisional plasma,
when these frequencies are in the contrary relation.

For sufficiently large dust number density, nd � niZ
2
i /Z

2
d ,

dust effectively contributes to the plasma pressure anisotropy
and to its spatial dependence. For qualitative evaluations, one
can use all expressions obtained only for the case only ion–
ion collisions replacing the ion–ion collision frequency by
the ion–dust collision frequency and considering numerical
coefficients to be of the order of unity in the corresponding
expressions.

The obvious next step after having established the
equilibrium is to check its stability, especially with respect to
perturbations of convective types. Also, it would be useful to
proceed with a self-consistent calculation for some systems of

5
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interest. Since the x-directed electric field is a key element, it
would seem that the physical sheath and flow to the electrodes
might have to be handled in more detail. It might also be useful
to examine the infinite uniform plasma with no electric field to
see if any Hall-type instabilities are to be found. It seems likely
that, without significant electric fields from the electrodes, any
such instabilities would require rather high magnetic fields
to reach their threshold. It seems physically reasonable that
for sufficiently weak magnetic fields one might expect some
anisotropy but not enough to force breaking of the assumed
symmetry of uniformity in the y-direction. In that case a point
that should be addressed is how these anisotropies might be
measured experimentally. Indeed, measuring ion kinetics in
the plasma is not easy; perhaps the video tracking of dust
motion might provide a useful diagnostic. As we observe,
with sufficient anisotropy there is the likelihood of a convective
instability for which case no stationary state exists. With
such symmetry breaking one would expect y-modulation of
the ion Hall current, which ought to be measurable. A further
theory/model might give threshold values and frequency and
y-wavenumber for the symmetry-breaking instability.
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Appendix A. General expressions for the collisional
ion viscosity and ion heat flux

Here we present general expressions for the ion viscosity and
ion heat flux for the arbitrary parameter δi = ωci/νii (see [26]).

π i
ik = η

(p)

(m)W
(m)

(p)ik, (A1)

where m = 1, 2 and p = 0, 1, 2, 3, 4.

W
(m)

(0)ik = 3

2

(
hihk − 1

3
δik

) (
hµhν − 1

3
δµν

)
W(m)

µν , (A2)

W
(m)

(1)ik =
(

δ̂iµδ̂kν − 1

2
δ̂ikδ̂µν

)
W(m)

µν , (A3)

W
(m)

(2)ik =
(
δ̂iµhνhk + δ̂kνhihµ

)
W(m)

µν , (A4)

W
(m)

(3)ik = 1

2

(
δ̂iµεkγ ν + δ̂kνεiγµ

)
hγ W(m)

µν , (A5)

W
(m)

(4)ik = (
hihµεkγ ν + hkhνεiγµ

)
hγ W(m)

µν , (A6)

δ̂iµ = δiµ − hihµ. (A7)

δiµ is the Kronecker symbol, and εkγ ν is the antisymmetric
tensor with the components 0 or 1.

The coefficients η
(p)

(m) in equation (13) are the following:

η
(0)

(1) = −0.96
niTi

νii
, η

(1)

(1) = η
(2)

(1) (2δi) ,

η
(2)

(1) (δi) = − niTi

νii� (δi)

(
6

5
δ2

i + 2.23

)
, (A8)

η
(3)

(1) = η
(4)

(1) (2δi) , η
(4)

(1) (δi) = niTiδi

νii� (δi)

(
δ2

i + 2.38
)
, (A9)

η
(0)

(2) = 0.24
niTi

νii
, η

(1)

(2) = η
(2)

(2) (2δi) ,

η
(2)

(2) (δi) = − niTi

νii� (δi)

(
9

25
δ2

i − 0.55

)
, (A10)

η
(3)

(2) = η
(4)

(2) (2δi) , η
(4)

(2) (δi) = −0.96
niTiδi

νii� (δi)
, (A11)

where
� (δi) = δ4

i + 4.05δi + 2.33 (A12)

and

νii = 4
√

πλe4Z4
i ni

3
√

MiT
3/2

i

. (A13)

The ratio νii/νid is

νii/νid = Z2
i ni√

2Z2
dnd

, (A14)

i.e. it can be small in the case

1 � Zini

Zdnd
� Zd

Zi
. (A15)

The coefficients η
(p)

(m) in equations (19)–(23) are obtained in the
approximation νii/νid � 1.

The functions W(m)
µν in equations (13)–(17) are

W(1)
µν = 〈∇Vi〉µν +

2

5niTi

〈
∇qi

〉
µν

− 9

100

νiiMi

n2
i T

3
i

×
(〈

qiqi

〉
µν

+
7

4

〈
qiq

∗
i

〉
µν

+
63

64

〈
q∗

i q∗
i

〉
µν

)
(A16)

and

W(2)
µν = 1

niTi

[〈
qi∇ ln pi

〉
µν

− 〈
∇

(
qi − q∗

i

)〉
µν

− 〈(
2qi − q∗

i

)
∇ ln Ti

〉
µν

]
− 267

2800

νiiMi

n2
i T

3
i

(〈
qiqi

〉
µν

+
865

356

〈
qiq

∗
i

〉
µν

+
5915

5696

〈
q∗

i q∗
i

〉
µν

)
. (A17)

Here

〈AB〉µν = AµBν + AνBµ − 2

3
A · B (A18)

and qi and q∗
i are the ion heat flux and its analogue, respectively.

Expressions for these values are

qi = −κ i
‖∇‖Ti − κ i

⊥∇⊥Ti + κ i
∧h × ∇Ti (A19)

and

q∗
i = −κ∗i

‖ ∇‖Ti − κ∗i
⊥ ∇⊥Ti + κ∗i

∧ h × ∇Ti, (A20)
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where

κ i
‖ = 3.91

niTi

νiiMi
, κ i

⊥ = niTi

νiiMi

(
2δ2

i + 2.65
)

�q

,

κ i
∧ = niTi

νiiMi

δi
(
2.5δ2

i + 4.65
)

�q

, (A21)

κ∗i
‖ = −25

24

niTi

νiiMi
, κ∗i

⊥ = niTi

νiiMi

(
6
7δ2

i − 0.71
)

�q
,

κ∗i
∧ = −1.79

niTi

νiiMi

δi

�q
, (A22)

and
�q = δ4

i + 2.70δ2
i + 0.68. (A23)

The structure of the tensorsW(1)
µν andW(2)

µν , equations (A16)
and (A17), is the following. The term with spatial derivative
of the ion velocity in equation (A16) is the Braginskii [22]
(Navier–Stokes) viscosity. The terms in equations (A16) and
(A17), which are linear with the heat flux qi or its analogue q∗

i ,
contribute to the Burnett kind of viscosity [23–26]. The terms
in these equations that are nonlinear with heat fluxes qi and q∗

i
contribute to the so-called nonlinear viscosity [27].

The origin of the terms with the heat flux derivatives
(with the temperature gradients) in equations (A16) and (A17)
can be understood analogously to the similar terms in the
electron momentum equation [22]. There is the electron–
ion friction term Re = Ru + RT , which contains two
contributions: the friction of the electron–ion particle fluxes
Ru ∼ Mene (Ve − Vi), and the friction of the electron–ion
heat fluxes (the thermal force) RT ∼ Me

(
qe − qi

)
/Te. The

last term can be expressed via the temperature gradients, as
has been demonstrated in [15]. The terms with the velocity
derivatives in equations (A16) and (A17) (i.e. the friction
between the adjacent ion velocity fluxes) can be considered
analogously to the term Ru. Finally, the terms with the ion
heat flux derivatives are analogous to the thermal force RT .
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